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Abstract 

This thesis provides an account of a development of tools towards making verifica-

tion of object-oriented programs more feasible. We note that proofs in program 

verification logics are typically long, yet, mathematically, not very deep; these 

observations suggest the thesis that computers can significantly ease the burden 

of program verification. We give evidence supporting this by applying computers 

to (1) automatically check and (2) automatically infer large parts of proofs. 

Taking the logic (AL) of Abadi and Leino as our starting point, we initially 

show how the logic can be embedded into a higher-order logic theorem prover, 

by way of introducing axioms, using a mix of both higher-order abstract syntax 

(HOAS) and a direct embedding of the assertion logic. The tenacity and exactness 

of the theorem prover ensures that no proof obligation is inadvertently lost during 

construction of a proof; we inherit any automatic facilities such as tactics which 

take us part way towards goal (2); and moreover, we achieve goal (1), since we 

inherit machine proofs which can be checked automatically. We present some 

extended examples in AL that have been proved using this embedding. 

Since we use a mix of HOAS and the underlying logic, justification of the 

axioms is no longer trivial. In particular, because we use a HOAS-style encoding 

of the program syntax, using a standard interpretation, the set of programs does 

not correspond to that defined using the first-order syntax. Thus, we construct a 

non-standard model of higher-order logic using categorical constructs, and show, 

in this interpretation (i.e. model), that the axioms are sound. 

Further towards goal (2), we consider a verification condition generator (VCG) 

algorithm which automatically infers large parts of a proof. The VCG takes, 

as input, a program c—possibly with annotations—and a specification 8, and 

outputs a logical sentence called a verification condition (VC). The intention is 

that to prove c satisfies 8, it suffices to prove the VC; or equivalently, the VCG 

automatically proves c satisfies 8, modulo validity of the VC. 

The VC resulting from the algorithm is, in general, a first-order formula with 

fix-points. In particular cases, it is known that there exist brute force checking 

algorithms for such formulae which are much more efficient than those for checking 



arbitrary second-order formulae. Furthermore, we can improve on this: we show 

that by inserting (suitably many) annotations, it is possible to ensure that the 

VC is fix-point-free, that is, we obtain a purely first-order formula. A first-order 

formula further improves on a fix-point formula—as far as automatic checking is 

concerned—and we give accounts of specific examples where the resulting VC can 

be checked using an automatic, first-order logic theorem prover. Such examples 

demonstrate: (i) the possibility to eliminate syntactic overhead leaving only the 

algorithmic contents of a program; and (ii) the possibility of using the VCG to 

provide a "push-button" solution to program verification. 

As a key component of the VCG, we develop a type inference algorithm for AL. 

Partly because AL includes base types (such as natural numbers and booleans) 

and also because of the more expressive form of subtyping (resulting from covari-

ant method return types), existing type inference algorithms for object-oriented 

languages could not be applied directly. Instead, we develop an original type 

inference solution by applying, to existing approaches, non-trivial modifications 

which do not compromise asymptotic performance. 

We give an account of examples that have been attempted with a prototype 

implementation of the VCG, including experimental evidence that this approach 

is somewhat stable with respect to different implementations of the same algo-

rithm. 
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Chapter 1 

Introduction 

Computers have become ubiquitous in modern life, and evidence suggests that 

this is likely to continue for the foreseeable future. Since the the middle of the 20th 

century, the early days of the modern computer, we have seen computers become 

bigger', faster and cheaper. Bigger and faster computers have allowed them to 

be used in applications requiring more complex solutions. Cheaper computers 

have made them more accessible. Complexity and accessibility introduce further 

problems. 

Complicated software is difficult to build, and worse still, the relationship is 

not linear: a program that is twice as long requires more than twice the effort. 

It appears also that accessibility has led to dependence, resulting in increasing 

importance of computers for economy and society. As a consequence, software 

engineers are charged with the task of building software that both is increasingly 

complicated and has increasingly significant consequences if incorrect. 

Research and experience has resulted in, amongst other solutions, the object-

oriented (00) programming paradigm, and program verification. 

1 bigger in capacity, yet smaller in physical form 

1 



2 	 Chapter 1. Introduction 

1.1 Object-oriented programming 

When presented with a large problem, a reasonable, and common practice is to 

break it up into smaller problems which are easier to solve, in such a way that 

these smaller solutions can be composed to give a solution to the large problem. 

In practice, large problems change in an evolutionary way, and so it is desirable 

to break up the problem in such a way that likely changes affect as few of the 

smaller problems as possible, so that more of the smaller solutions can be reused. 

In the case of software, this has resulted in a modular style of programming: 

modules solve smaller problems and we combine them to solve larger problems. 

Although there is still no consensus as to what is the best modular unit, never-

theless, in the past decade, objects have proven to be a popular choice. 

In previous approaches to modular programming, the emphasis is on code and 

data come second: typically, we have code in procedures and functions, which 

manipulate data. In 00 programming, we flip this on its head, and consider data 

as first-class citizens. Objects are data together with computational capabilities: 

given some object, we can make it perform some computation and thereby pos-

sibly modifying itself or other data. Perhaps objects and the way we formulate 

problems fit together quite naturally, and this explains the success of the 00 

paradigm. 

1.2 Verification 

Towards the end of the 20th century, the show of public anxiety over the so-

called Millennium Bug perhaps highlighted the extent of social and economic 

dependence on software, a situation which appears unlikely to diminish. The 

ability to decide whether a program, when executed, will behave "correctly" is 

clearly of value, and has been a long-standing desire. 

The most widely used approximation to this ability is testing: simply execute 

the program for various inputs and observe whether it behaves as expected. But 

a program that passes testing is only known to be correct for those possibilities 

that have been tested. The only way to be able to guarantee correctness for all 
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possibilities, without further analysis of the program, is to test all possibilities. 

Either this is impossible, infeasible (since there are too many possibilities), or if 

it is feasible then the question is not interesting. 

An alternative way to obtain this guarantee is to analyse the program. For 

example, given a rigorous operational semantics, which describes how a program 

is executed, we can use mathematics and logical arguments to predict how a 

program behaves when executed for different inputs. The ability of mathematics 

to describe the infinite allows us to predict behaviour for all possible inputs. 

It has long been realised that, without machine assistance, this is only a theo-

retical solution, in view of the size of programs and the resulting proof obligations. 

In pursuit of machine assistance, research has concentrated on formalising the re-

quired mathematics as logics. 

Examples of such logics are type systems of languages such as ML [MTHM97], 

Pascal and Java [AG98]. Here specifications are types, and thus correctness is 

a very coarse notion, yet fine enough to catch some errors, such as trying to 

cmpute 1 + tt, the sum of an integer and a boolean. But the types of these 

languages are not expressive enough to be able to state that a program computes 

certain value. The lack of expressivity, however, buys us decidability: we can 

automatically determine whether an annotated program is well-typed; and, in 

the case of ML, we can automatically find proofs too. 

Putting decidability aside opens up the possibility of logics which can deter-

mine functional correctness. The prototypical example is the verification calculus 

of bare, which is now referred to as Hoare Logic. Here we determine statements 

of the form {P} c {Q} where c is a program, and P, Q are assertions which are 

predicates over states. Traditionally, such a statement means that starting from 

a state satisfying P and executing c, provided execution terminates, we may 

conclude that the resulting state satisfies Q. 

As in common use, for the rest of this thesis, we reserve the term verification 

for problems of the latter, undecidable case and refer to logics for verification as 

program logics. 
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1.3 Feasible object-oriented verification 

Despite the pervasiveness of the 00 paradigm, verification of 00 programs is 

still in its infancy. Existing program logics are either non-modular or incomplete 

(or both), and in either case cumbersome to use, both for finding and checking 

proofs. This thesis contributes towards the latter: reducing the chore of program 

verification. 

Experience has found that proofs in program logics are usually very long. This 

has consequences for checking and finding proofs. 

We note that the purpose of a proof of some statement P is to convince 

someone beyond all reasonable doubt that P is true. In mathematical textbooks, 

famous proofs which have stood the test of time are invariably short, and for good 

reason too. A proof that is so long that even after checking every detail, one is 

still unsure if it is correct, has less value as a proof. Fortunately, long proofs are 

acceptable if one can delegate the task to a reliable and trustworthy friend, such 

as a computer. 

Finding proofs is hard, and finding long proofs is harder still! Since we have 

given up decidability in exchange for expressivity, we must accept that, in general, 

human creativity is required to find proofs. Typically, in the case of program 

verification, creativity is required only in a very small part of a proof; the bulk 

can be found automatically. 

This thesis proposes that feasible program verification with a program logic 

requires the ability to automatically infer large parts of, and to automatically 

check proofs. We give evidence by example; in the context of the logic AL of 

Abadi and Leino (a summary of which is given in Chapter 2), we present: 

a generic technique for embedding AL into simply-typed lambda calculus 

with higher-order logic, allowing us to use various higher-order theorem 

provers; and 

an algorithm, called a verification condition generator (VCG), reducing the 

proof burden of verffication by distilling the essential mathematical content 

of a proof. 
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In so doing, we make the following contributions to the area of 00 program 

verification. 

• Our approach to embedding AL into a higher-order theorem prover postu-

lates axioms using both higher-order abstract syntax (HOAS) and a direct 

embedding of the logical side-conditions. These two implementation deci-

sions allow us to inherit both the variable management and theorem-proving 

tactics of the underlying theorem prover. 

• We justify the axioms by checking their interpretations in a model of higher-

order logic, which we construct. This is an application of more general 

techniques for reasoning about HOAS, using non standard interpretations 

of the metalogic. 

• We present an algorithm for reducing proof burden in two stages. The 

first stage infers the shape of a proof and its specifications to give skeleton 

proof. This component amounts to inference in the type system of the 

underlying language of AL. it is based on the algorithms of Palsberg {Pa195, 

PW097}, which use constraints solving and automata-theoretic methods. 

Since the type system of AL is more expressive, because of covariant method 

subtyping, nontrivial and original modifications were required. 

• The second stage fleshes out the skeleton proof by introducing predicate 

variables for the unknowns in the proof, giving a natural existentially quan-

tified, second-order formula whose validity is a sufficient (and necessary) 

condition for the existence of a proof. We present sound and complete rules 

that simplify this formula, eliminating the existentially quantified predi-

cates in favour of fix-point operators. Moreover, by allowing annotations, 

e.g. loop invariants, we show that it is possible, given sufficiently many 

annotations, to obtain a resulting formula that is purely first-order. We 

show that in some cases it is possible to delegate proving this formula to 

an automatic theorem prover, with appropriate lemmata. 
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1.4 Related work 

Here we give a summary of the related work in the field of program verification; 

firstly program verification in general, and then in particular verification for 00 

programs and finally computer aided program verification. 

1.4.1 Program verification 

In Hoare's seminal article [Hoa69] of 1969, he presents an axiomatic seman-

tics for a simple imperative (vs. functional) language based on earlier work by 

Floyd [Flo671. Today, such a formalism is described as a Hoare Logic, and in a 

modern presentation it is defined as a collection of rules allowing one to derive 

correctness statements of the form {P} c {Q} where P, Q are assertions on the 

state space and c is a program (fragment). Such a statement, informally, means 

that providing the state satisfies F, if executing c terminates, then the resulting 

state satisfies Q. 

Perhaps the most significant contribution of Hoare and Floyd was the for -

malisation of a proof technique for showing correctness of loops via invariants. 

Another significant contribution was its formalisation of reasoning about assign-

ment: {Q[e/xJ} x:=e {Q}. Here Q[e/x] denotes syntactic substitution of (logi-

cal) expression e for free occurrences of x in Q. Already, the early pioneers of 

program logics argued that this formalisation allows for easier mechanisation. 

Unfortunately, this rule is unsound in the presence of aliasing. 

Nevertheless, bare's early work provided inspiration for subsequent research 

in program verification. bare's logic was extended to more elaborate program-

ming languages2 , for example, to those that include recursive methods. We find, 

in Kleymann's thesis [K1e98], machine-checked proofs of soundness and complete-

ness of logics for one such language (in the special case of one procedure with one 

parameter). In the same vein, von Oheimb formally checked soundness and com-

pleteness metatheorems for a Hoare logic supporting mutually recursive methods 

(with several parameters and local variables) [0he99]. Formal checking of such 

2jn this thesis, we concern ourselves only with sequentia' languages. 
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metatheorems is not our objective: this thesis concerns checking theorems about 

concrete programs. 

Reynolds, in [Rey82], presents a verification logic for an Algol-like language, 

called Idealised Algol. In particular, this language allows for aliased variables 

caused, for example, by repeated parameters in procedure calls. To be able 

to cope with aliasing, Reynolds separates the notion of state into environments 

and stores: environments map program variables to locations, and stores map 

locations to values. Furthermore, he introduces extra assertions expressing inter -

ference—whether executing a program can change a logical expression—and well-

behavedness of variables—for example, if m, n are variables then, in Idealised 

Algol, if in = 1 then in else n is a variable and thus can be assigned to, but it is 

not well-behaved in the sense that Hoare's assignment rule breaks down. 

1.4.2 Object-oriented verification 

With respect to this thesis, the most important 00 verification logic is that of 

Abadi and Leino (AL) [AL97, AL98]. We save an overview of this logic until 

Chapter 2. Another logic of Leino can be viewed as a modification of AL to 

address the issue of recursive types [Lei98]. In this logic, we see a name-matching 

style of subtyping which admits recursive types without the need for fix-point op-

erators. In a departure from AL, specification is intertwined with the underlying 

programming language; explicit specifications have to be provided for all meth-

ods. However, the logic does not feature covariant subtyping. The consequences 

of this limitation are discussed in Section 7.1.1. Ecstatic [Lei97], also by Leino, 

introduces an object-oriented programming language with a weakest liberal pre-

condition semantics. Correctness of programs is defined via a VCG. Similar to the 

other logic of Leino in [Lei98], Ecstatic also uses a name matching-style of sub-

typing, also requires all methods to be specified, and also lacks covariant method 

return types. However, specifications are provided as pre- and post-conditions, 

and methods are also specified with modifies clauses; the author views this as the 

most significant difference between Ecstatic and the other, previously mentioned 

works of Leino. 
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Another logic for 00 programs is that of de Boer [dB91, dB99]. This is proved 

to be both sound and complete with respect to its denotational semantics, but it 

appears that this is possible in part because of a non-standard interpretation, in 

assertions, of universal quantification, which requires a non-standard definition of 

syntactic substitution. In particular, for x a variable (ranging over objects), P 
def 

Vx.q(x) does not imply O(e) for all objects e, but only for those objects e which 

exist (i.e., have already been created) in a state which satisfies P. Furthermore, 

the features of the underlying language appear limited: for example, methods 

are non-reentrant, and in particular, cannot be recursive; and also, there is no 

subtyping. 

The logic of von Oheimb [OheOl] allows us to reason about programs written in 

a fragment of Java. In an exercise reminiscent of Kleymann's, he finds machine 

proofs of both soundness and correctness using Isabelle/HOL. However, when 

reasoning about method invocation, we must be able to look up the method 

bodies of all candidate method implementations (since in Java we have dynamic 

dispatch of methods and so we do not know, a priori, what code will actually be 

executed). In particular, this means the logic is non-modular since by extending 

the program (e.g., by creating a new subclass) the proof may no longer be valid. 

Muller's thesis [Mü101] presents a formalism allowing one to verify programs 

of Mojave, a Java-like language, in a modular fashion. Modular verification (and 

programming) is considered at the methodological level, which is beyond the 

scope of AL. A crucial goal is the ability to verify fragments of a whole program 

in isolation. To this end, a type system is introduced to constrain possible runtime 

aliasing to within program fragments. 

From the point of view of function and purpose, the program logic in bc. cit., 

which is based on that of Poetzsch-Heffter and Muller detailed in [PHM99], is 

most related to AL. We see that subtyping induces further proof obligations: in 

particular, if S is a subtype of T and we want to show {P} T:m {Q} for (virtual) 

method T:m, then we are certainly obliged to show {P} S:m {Q} (and this is also 

the case in von Oheimb's logic, albeit in a different notation). (If we consider 

the subspecification relation of AL as subtyping, since it is behavioural—in the 
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sense of [LW94]—such proof obligations are automatically satisfied because of the 

formulation of the object construction rule.) 

Now, if we prove a program correct in (Poetzsch-Heffter and) Muller's logic, 

and subsequently extend it by adding a new subclass, again, like in the case 

of von Oheimb's logic, the proof may no longer be valid. However, in bc. cit., 

Muller—and, in [PHM99], Poetzsch-Heffter also—make an explicit distinction 

between virtual methods T:m and method implementations T©rn, and formulate 

the rules in such a way that the extra proof obligations are required only in 

subderivations concluding in {P} T:m {Q} (i.e. statements about virtual meth-

ods), and not those concluding in {P} v = w.T:m(p) {Q} (i.e. statements about 

method invocations). In particular, this allows them to verify programs in a 

modular fashion by providing a relatively straightforward, algorithmic descrip-

tion of how to determine what proof obligations are required for the proof to 

remain valid. In contrast, there is no distinction between virtual methods and 

their implementations in von Oheimb's logic of [OheOl], and, in particular, extra 

proof obligations arise in derivations for method invocations. However, in a later 

logic [0NO2], von Oheimb and Nipkow factor the rule for method invocation by 

incorporating virtual methods, a la Poetzsch-Heffter and Muller. Thus, it is likely 

that the extra proof obligations resulting from subclassing can also be determined 

in this later logic, using a similar algorithm. 

1.4.3 Computer-assisted verification 

The works mentioned so far mainly address the theoretical foundations of program 

verification: formulations of logics suitable for verifying programs. However, 

in practice, such logics are cumbersome to use on anything other than small, 

illustrating examples. This thesis aims to narrow the gap between such theoretical 

foundations and verification in practice by using computer assistance. 

Although in Kleymann's and von Oheimb's work we see implementations of 

program logics, in those cases, computer assistance was used primarily as an aid 

to check metatheoretical properties of program logics, as opposed to verifying 

specific programs (which is the topic of this thesis). The latter is also possible 
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in these implementations, but, as Kleymann and also von Oheimb state, this is 

beyond the scope of their work. 

We see in the work of Gordon [Gor88], Homeier [Hom95, HM94], Jacobs and 

Huisman [HuiOl, HJOO], and Leino et al. (ESC) [DLNS98] implementations of 

theory for verification of specific programs. We relate these works to this thesis 

in Sections 3.1 and 5.1. 

1.5 Overview of this thesis 

We start with an overview of AL, the logic of Abadi and Leino, in Chapter 2, 

highlighting those areas that the author believes are interesting in relation to this 

thesis. The first part of Chapter 3 presents a scheme allowing us to embed AL into 

a higher-order logic theorem prover by way of introducing axioms: this exercise 

allows us to automatically inherit machine-checkable versions of proofs in AL. The 

second part justifies the correctness of the implementation by way of constructing 

a model of higher-order logic in which we can check our axioms. Chapter 4 

describes a type inference algorithm for AL which is a crucial component of the 

verification condition generator (VCG) algorithm presentd-inChapter 5. We 

provide an account of a prototype implementation of the VCG and examples 

that have been attempted with it, in Chapter 6. Finally we describe further work 

and conclude the thesis in Chapter 7. 

This thesis can be read in different ways. For example, though type inference 

is crucial to the VCG, we only use it as a black box, i.e. the precise details of 

the algorithm are not important, and so the reader may read Chapter 5 without 

reading Chapter 4. Similarly, neither the type inference nor the VCG algorithms 

depend on Chapter 3. Alas, since this thesis builds on AL, it is recommended 

that the reader is familiar with AL, or at least reads Chapter 2 before reading 

the rest of the chapters. 



Chapter 2 

The logic of objects of Abadi and 

Leino 

Subsequent chapters will concentrate on how to use AL to verify programs in 

• feasible manner. So we concentrate, in this chapter, on AL itself, providing 

• summary of what it does and provides, and also attempt to highlight those 

properties that make it interesting. The reader who is interested in the details of 

what is detailed here is advised to look up the loci classici [AL97, AL98]. In this 

chapter, we do not discuss topics significantly beyond what is covered in bc. cit. 

Logic AL provides a programming language, syntax-directed operational se-

mantics, a type system and verification rules, which we also refer to as axiomatic 

semantics. We will introduce, discuss and summarise each of these in turn. 

2.1 Programming language 

The language of AL exists as a vehicle on which we can build and study its 

verification rules. The primary objective is to answer questions regarding how 00 

features affect verification. To keep the metatheory as manageable as possible, 

the syntax is deliberately kept small, yet keeping those 00 features that we are 

interested in. 

Logic AL provides 00 features such as objects, instance variables (fields), 

11 
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(recursive) methods with an implicit self argument; however it does not feature 

classes (and hence inheritance) nor method update. Objects are thus created 

directly and not from classes, and in this sense, the language is often referred to 

as a prototype-based language [AC96] (versus class-based). 

We now simultaneously introduce the language syntax and informal opera-

tional semantics. The operational semantics, reproduced from locus classicus, is 

defined formally in Table 2.1. We introduce the following definitions to allow us 

to describe the abstract interpreting machine. The interpreter has a store and 

a stack, which are modified during program execution. We assume we have the 

following sets: locn of object names, which can be c nsidered as references, or 

store locations; fname of field names; mname of method names; var of variables; 

val of values, which are constants (such as the two booleans) and object names; 

and prog of syntactic programs. Now we define the collection of stacks, closures 

and stores as follows. 

def 
stack = var - val 

def closure = var x prog x stack 
de f store = locn - ((fname - val) x (mname -i  closure)) 

Thus a stack is a partial function mapping variables to values. A closure is a triple 

consisting of the program text of a method body, its special variable denoting self, 

and a stack. A store is a partial function mapping a location to a pair of partial 

functions: one mapping field names to values; and the other mapping method 

names to closures. 

The first language construct we consider is the let binding: 

let x=a in b 

which introduces the variable x. (The only other way to introduce variables is 

through the object construct, which is explained later.) The abstract interpreter 

executes this program, by first executing a and then executing b. However before 

b is executed, the stack is augmented so that x is mapped to the value resulting 

from evaluating a. Executing a modifies the store of the machine, and b is exe- 
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cuted starting with the modified store. The return result of executing the whole 

program is the return result of the execution of b. 

At this point we note that variables are immutable in the sense that they are 

introduced and have a value which cannot later be changed. This is different from 

variables in languages such as Java and C++, and closer to variables in )-ca1culi. 

Another language construct is that of object creation: 

[f=x1' " , 

which creates a new object. Note that, to create an object, we explicitly provide 

the code (b3 ) for the method bodies, and initial values (x i ) for the fields. In 

this way, we can create objects without classes. In the definition of method 

m3 , we notice a stylised sigma c. This is nothing more than a binder (like \ 

is a binder in lambda calculus), binding the variable y3 , which represents self. 

Through this bound variable, the method body can access its sibling fields and 

methods. To execute this program, the machine finds an unused location h, say, 

and then updates its store o so that ci(h, f) = S(x2 ), where S(x 2 ) is the value 

of variable x2 , as determined by the stack S. It also updates its store so that 

o(h, m3) = (y3 , b3 , S) where S is the current stack. The return result of an object 

creation is the location of the newly created object. This is a general feature 

of the programming language: all objects are passed by reference, i.e. we pass 

the locations of objects, not records. As a consequence, we can also model the 

phenomenon of aliasing. 

The last important language construct is that of method invocation: 

x.m() 

which invokes method m of object x. What this means, operationally, is the 

machine looks up, in the store a, the closure (y, b, 5') and then proceeds to execute 

the program b using the stack 8' augmented so that y is mapped to 8(x). After 

executing b, the interpreter reverts to stack S. Of note is the fact that methods 

have exactly one parameter: the implicit self variable. This comes back to the 

desire to have a simple, small syntax. Invoking a method with several arguments 
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can be simulated by using extra fields, to which we assign before invoking the 

method. 

The remaining constructs are if-then-else, field selection, field update, vari-

ables and constants which are implemented in a standard way. The reader may 

be alarmed that there is no while construct: this has been deliberately omitted, 

again, to keep the syntax small. We do not lose expressivity since we can write 

programs with loops using method recursion. Furthermore, verification of while 

programs is well understood. 

2.1.1 Examples 

Here we present some examples of programs written AL. As in locus classicus, 

we liberally use syntactic sugar. For example, a; a' (sequential composition) is an 

abbreviation for let x=a in a' where x is chosen to be a variable not occurring free 

in a, a'. Also, we allow constants to be used in places where, in the strict syntax, 

only variables are allowed (e.g. [f=true] and y.f:=false}). This is encoded using 

the let construction as explained in locus classicus. 

The first- example demonstrates the phenomenon of aliasing. Consider 

let x=[f=true] in 

let y=x in 

y.f:=false; 

x.f 

Note that false, true are syntax for the boolean values ff, tt. We first create an 

object with a field initialised to tt, naming (the location of) this object x. We 

then introduce another variable y which takes the same value as x, namely the 

location of the previously created object. We then modify f through variable 

y. When we look up f through x, we observe that its value is now ff. This is 

because x and y are both references to the same object. 

The next example (example 3 of locus classicus), demonstrates how we can use 

recursive methods to write programs with looping behaviour. Euclid's algorithm 
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8(x) = v 
a,Sl-x---.-* 	

(osvar) 
v, cr  

a,SF-false—*ff,cr 	a,SF-true-.--*tt,a 	
(os_const) 

S(x) = if a, S F- a1  -'-+ v, a' 	S(x) = tt a-, S F- a0  -.--* v, a-' 
a, S I- if x then a0  else a1  -'--' v, a' 	a, S F- if x then a0  else a1 '-'-* v, a' 

(os.cond) 

a-,SF-a-'--*v,a' a',S[x-*v]F-b---.--*v',a" 
a, S F- let x=a in b 	v', a" 	

(osiet) 

S(x 1 ) = v2 
i1..k  h V dom(a) h E locn 

a' = a[h '-p  (f '-f v1 
i1..k,  m3  '-* (c(y3)b, 8) i=1.1)} 

a, S F- [f = x iL.k,  mj = c(y)bj i=1..€] 	h, 	
(os_obj) 

8(x) = h h E locn a(h)(f) = v 
a, S F- x.f -'--* v, a 	

(osisel) 

8(x) = h h E locn a(h)(m) = (c(y)b, 8') 

a, S'[y '-p h] F- b -'-+ v, a' 

a, S F- x.m() 	v, a' 	
(osninv) 

8(x) = h h E locn a(h)(f) is defined 

S(y) = v a' = a[h -+ (a(h)[f v])] 	
(osiupd) 

a,SF-x.f:=y-'--h,a' 

Table 2.1: Operational semantics. Note, we write (c(y)b, 5) for the triple (y, b, 8) E 

closure. 
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for computing the greatest common divisor (gcd) can be written as follows. 

letx= [ f=1,g=1, 

in = c(y) if y.f <y.g then 

y.g:=y.g - y.f; 

y.m() 

else if y.g < y.f then 

y.f:=y.f - y.g; 

y.m() 

else y.f 

in x.f:=426; 

x.g:=792; 

x.m() 

This program computes the gcd of 426 and 792. 

Finally, we give an example of a program that is quite unusual. Though the 

expressivity it demonstrates does not lend itself to necessarily useful programming 

patterns, we hope it hints at some of the difficulties that we must face when 

working with the metatheory of this language. 

let u=[f=[m=c(y)tr'ue]]  in (u.f:=[m=c(y)u.f.mQ]; u.f.mQ) 

Here we create an object named u with one field f initialised to an object with 

one method in which computes something trivial. Then we update f of u with a 

new object whose method m invokes m of u.f. Then invoking in of u.f puts us 

into an endless loop, and we have done this without using a loop construct nor 

method recursion. (We do have a recursive method, but bound at runtime.) 

The reason why we can write such a program is due to the fact we have a 

mutable, higher-order store: a store that contains higher-order entities, in our 

case methods. Looking at the program more closely, it appears that the field 

update allows us to by-pass syntactic scoping constraints: we could not have 

written 

let u=[f=[m=c(y)u.f.mQJ] in u.f.m() 
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since u is not in scope in the method body. In fact, we can modify this example 

and write any recursive method in this style. 

2.1.2 Types 

In locus classicus, Abadi and Leino present a first-order type system for the 

programming language. Since they later show that the axiomatic semantics (ver-

ification rules) subsumes the functionality of the type system, we shall describe 

the verification rules immediately. 

2.2 Axiomatic semantics 

In AL, we have verification rules allowing us to derive judgements of the form 

x:A I- a : A :: T 

where A and A (i = 1. .n) are specifications, and T is a transition relation. Such a 

judgement is interpreted informally as follows: assuming variables x 1  x, satisfy 

specifications A 1  . . . A,, executing program a, provided it terminates, computes 

a value satisfying specification A, and modifies the store in a way satisfying 

transition relation T. Note that AL deals only with partial correctness. 

Transition relations describe the dynamic behaviour of programs. In the syn-

tactic view taken by Abadi and Leino, a transition relation is defined to be a 

first-order formula with free occurrences of program variables (subject to scope) 

and also pseudovariables r denoting the result of a computation, & and 6 denoting 

the (fiat) store before and after execution. (Since they are working in first-order 

logic, these functions are total, and since fiat stores are partial, they also intro-

duce predicate symbols alloc and alloc, which denote the domains of & and 6 

respectively.) A fiat store is precisely the component of a store that describes 

only the fields of objects: transition relations can only be expressed using the 

values of the fields of objects, not the method closures. We define 

def 
fstore = Iocn -i  (fname —s val) 
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Taking a more semantic view, it is also convenient to consider a transition relation 

as a relation over the return value and flat store before and after, and also ri values, 

where n is the number of variables in scope. For example, in the judgement above, 

we can consider T C va in  x val x fstore x fstore. 

Specifications describe the static properties of a value. They are exactly ob-

ject types further endowed with transition relations describing the behaviour of 

methods on invocation. The syntax for the specifications of values of base type 

is the same as that for their types, since they contain no methods. Writing U for 

transition relations, the syntax of an object specification is 

[fj:A jiv , rnj:Bj::Uj3=1 €] 

Here, (13  is the transition relation describing the dynamic behaviour of method 

m3  and B3  is the specification of its return value. Similarly, A 2  is the specification 

of field f2. 
We take this opportunity to point out: (1) the static specification of a value 

also contains the dynamic specifications of its methods; and (2) pairs x3 :A3  ap-

pearing on the left of the turnstile take the role of formal assumptions. These 

two properties, plus Rule (Let) introduced later (which can be considered to be a 

cut), make AL modular in the sense that it is possible to break a large program 

into smaller programs (that are likely to have free variables) which can be sepa-

rately verified. We elaborate further on this when we introduce the verification 

rules for object creation, method invocation and let. 

Just as subtyping allows us to type check more programs, we have an analo-

gous notion for specifications. We define the reflexive subspecification relation as 

follows: we write 

[fj:A jilk , 	 <: 	 mj:c(yj)B::Uile'] 

precisely when k' < k, £' < £, and both B3  <: B and U3  9 U for i = i.e'. 

We read A <: A' as A is a subspecification of A'. In words: one specification is 

a subspecification of a syntactically longer specification; furthermore, subspecifi-

cation is covariant along methods. Observe that a subspecification is a stronger 

specification, in the sense that fewer programs satisfy it. 
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The possibility of covariant method specifications is perhaps more important 

than covariant method return types in subtyping. Together with the formulation 

of the object creation rule, it allows more programs to be verified. 

We introduce the first verification rule which uses the subspecification relation 

to its full effect. The subsumption rule: 
EHa:A::T 	

A 

E I- a: A' :: T' 
proviueu A : A and I , I 

This is a weakening rule: to derive a judgement E F- a : A' :: T', it suffices to 

derive a stronger judgement. 

At this point, it is perhaps useful to compare AL to the more familiar bare 

logic. Table 2.2 gives the comparison in table form. Here we consider Hoare 

logic for a language with side-effecting expressions. We follow the convention as 

used by von Oheimb [OheOl], and attributed to Kowaltowski [Kow77], of using 

a distinguished variable to denote the result (like r in our transition relations). 

Transition relations are closest to pairs of pre-/post-conditions (assertions), since 

they describe how the store changes during the execution of a program. There is 

no direct analogy to specifications in a standard presentation of Hoare Logic for 

a while language without procedures. Finally, the subsumption rule is analogous 

to the rule of consequence. And since we have static specifications also, our rule 

weakens those too. 

2.2.1 Verification rules 

In addition to the subsumption rule, we have a rule for each program construct. 

To streamline the presentation, we introduce predicate symbols Res, T0bJ, Tfset 

and Tf11d  defined in Table 2.3. For example, we use the predicate symbol Res for 

transition relations that do not change the store but simply set the return value 

register. 

For example, the rule for let can be formulated as 

EF-a:A::T E,x:AI-b:B::U 

	

E H let x=a in b: A' :: T' 	f T; U C T' 
} 	

(Let) 

where B <:A', and T; U is defined to be the transition relation 

def 	 - 	 - T; U = *r, alloc, x.T[x/r, a/a, alloc/alloc] A U[a/a, alloc/alloc] 



20 	 Chapter 2. The logic of objects of Abadi and Leino 

Hoare logic AL 

Judgements {p}c{q} El-a:A::T 

Dynamic assertions transition relations 

specifications (p, q) e (Pow(fstore x val)) 2  T E Pow(val x fstore 2 ) 

Static 
- A 

specifications 

{p}cjq} 
{p'}c{q'}' 

Weakening rule provided p' ç 	q ç  q' subsumption 

(rule of consequence)  

Table 2.2: AL compared to Hoare logic: judgements, dynamic specifications, static 

specifications, and weakening. 

de l 
Res(e) = r = e A Vx, f.cr(x, f) = a(x, f) A Vx.alloc(x) alloc(x) 

def 
T0bJ(xl . . . x) = -ialloc(r) A alloc(r) A 

Vz.z r j al'loc(z) 	alloc(z) A 

á(r, fi) = x1A ... A u(r, fn) = xA 

Vz, w.z w 3 à(z, w) = &(z, w) 
def 

T1sei(x,f) = r = à(x,f) A 

Vx, f.&(x, f) = &(x, f) A 

Vx.aloc(x) 	aloc(x) 

del 
Tfd(x,f,y)= r=xAá(x,f)=yA 

Vz, w.(z, w) (r, f) 3 à(z, w) = a(z, w) A 

Vz.alloc(z) 	alloc(z) 

Table 2.3: Predicate symbols streamlining presentation of verification rules. 
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The composition operator ; is not so different from sequential composition. Its 

more complicated definition is due, in part, to the fact that transition relations 

are asymmetric: transition relations can depend on the result after, but not 

before. Note how (Let) allows us to use assumptions x:A. In this sense, the rule 

is analogous to the cut rule in logic. 

In locus classicus, transition relations are considered as first-order formulae, 

and 6,6 as function symbols, jso the expression T; U is not expressible as a tran-

sition relation. To circumvent this problem, the subsumption rule is incorporated 

into (Let), resulting in what appears to be a less streamlined presentation. On 

the other hand, by taking our more semantic view of transition relation, we have 

in effect given ourselves free rein to choose a language for transition relations, 

and so we may assume that T;x  U is transition relation. 

Another important rule is that for field update. The following is an informal 

formulation 

EI-x:[...f:A ... ]::Res(x) EI-y:A::Res(y) . 
	(Fupd) E F- x.f:=y: [...f:A ... 1:: Tfd(x, f, y) 

When studying the soundness proof in [AL98], we observe that its formulation is 

crucial, since it modifies the store in a safe way; by updating x.f with y which 

has the same specification A, we are preserving the specification of object x. In 

the soundness proof, this allows us to state an invariance property of the store. 

The method invocation rule again illustrates the modularity of AL. If we study 

E I- x : [rn:c(y)B::UJ :: Res(x) 	
(Minv) 

E F- x.m() : B[x/y] :: U[x/y] 

we notice that we can derive judgements about method invocations without the 

need for the program text of the method body. Clearly this is a desirable property 

towards modular verification. 

Of course, we never get anything for free, and the work of verifying the method 

bodies has to be done at some point. We find that the extra work is required in 

the rule for object creation: 

E F- x: A :: Res (xj )il.. 	E, y3 :A F- b2  : B3  :: (3l 	

1Ob E F- [f 	mj 	c(y)bi - '"J : A :: T0b() 
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where A = [fj:A jiJc,  m3 :c(y3 )B::U3 ]. Here we see that to prove the conclusion, 

we are obliged to prove, for each method m3 , its body b3  satisfies the respective 

specification and transition relations. In particular, note that we are allowed to 

use, as an assumption, the fact that y j  satisfies the specification of the whole 

object. This is necessary to allow us to reason about a method body which 

uses its sibling fields and methods, or indeed itself. However, it is only sound to 

assume that y3  has the same (or weaker) specification than the whole object itself. 

Therefore, covariant method specifications are immensely useful; in their absence, 

a method that correctly implements its specification may not be verifiable. (For 

example, to prove a statement P, one often proves a stronger statement P which 

allows for an inductive argument. The possibility of strengthening P is crucial in 

such cases.) 

Finally we return to Rule (Let). This can be considered as our cut (or modus 

ponens) rule, and through this we internalise, in the logic, certain uses of lemmata. 

Thus, in AL, we prove correctness of each method body once and once only. 

Alternatively, for example, in Muller's logic [Mü101}, when finding a proof (i.e. 

derivation) we may need to prove (i.e. derive) a method annotation {P} T:m {Q} 

in several places. In practice, one introduces a meta-lemma stating this statement 

is provable (i.e. derivable), but the proof itself has several copies of the proof (i.e. 

derivation) found in the (meta-level) proof of this meta-lemma. 

There are further rules not detailed here. The reader can find the original 

presentation in locus classicus as well as an the slightly different presentation in 

Table 5.2 on page 178. 

2.3 Metatheory 

In locus classicus, we find a type system for the underlying language of AL, 

and then the verification rules. This gives an explicit demonstration of how the 

verification rules are a generalisation of the typing rules. We also find two simple 

propositions which relate typing with verification. Firstly, if one can derive the 

verification E I- a A :: T, then one can also derive the typing E' I- a : A' 



23. Metatheory 	 23 

where E', A' are obtained from E, A by deleting all transition relation information. 

Secondly, and conversely, supposing we can derive the typing E F a A then 

we can derive E' I- a : A' :: true, where now E', A' are obtained from E, A 

by inserting trivial transition relations, such as true. And in this sense, the 

verification rules subsume the typing rules. 

However, the main contribution of AL was the soundness proof available 

in [AL98]. This states that if we can derive 0, 0 F b -'.- v, o', that is, execut-

ing b starting from an empty stack and store terminates with result v, and we 

can derive F b: Bool :: r = tt, then in fact v = tt. And similarly for transition 

relation r = ff. 

2.3.1 (In)completeness 

Unfortunately, the logic is not complete. In locus classicus, we are presented with 

the program 

def 
a = let y=trae in [m = c(z)y] 

def 
b1  = let x=a in x.m() 

We can use the operational rules to show b1  evaluates to tt. Completeness would 

imply that we would also be able to derive F b1  : Bool :: r = tt. However, a 

proof with the existing rules requires us to derive 

y:Bool,z:[ ... ] F y: Bool :: r = tt 

but this is not possible since our assumptions are too weak. (We may only assume 

that x satisfies specification Bool, but not that x in fact has value tt.) 

Another incompleteness artefact that the authors mention is that they can 

only prove that let x=[f = true] in (y.mQ; x.f) has transition relation r = tt by 

assuming an unnecessarily strong specification for y, such as "m does not change 

field f of any object". Technically this is not an incompleteness issue, if one 

considers completeness for closed programs. However, it is clearly important for 

modular verification. 
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2.3.2 When syntactic sugar leaves a bitter after-taste 

Let us consider a practical consequence of the first of these incompleteness issues. 

The plain syntax of AL is very restrictive. For example, for the field selection 

construct, we cannot write a.f for an arbitrary program a, we can only write x.f 

for variable x. A simple solution to this is to introduce syntactic sugar. Namely, 

we allow programs such as a.f, but insist that this is merely an abbreviation for 

let x=a in x.f. 

For verification, we can add further syntactic sugar and compute derived rules 

for the sugared syntax. For example, we can compute the rule 

E F- a: [f:A] :: T 
E F- a.f : A:: T;x TfseI(x,f 

by combining the rules for field selection and let constructs. Furthermore, we can 

in fact derive the original rule for field selection from this rule, and so we can 

now dispense with the old rule for field selection altogether. 

However, when one tries the same exercise for method invocation and condi-

tion constructs, i.e. derive rules for if a then a0  else a 1  and a.mQ for arbitrary 

programs a, we find that we cannot dispense with the original rules. The desug-

aring process introduces extra let constructs and we lose information. To avoid 

even further incompleteness, we must keep both the original and derived rules. 

For example, assuming a.m() is an abbreviation for let x=a in x.m() (assum-

ing x is a fresh variable). By composing rules together, we obtain the following 

derived rule 

E F- a : [m:c(y)B::U] :: T {B <: A'} 
E F- a.m() : A' :: T; U 

Suppose 

E F- z : [rn:c(y)B::U] :: Res(z) 

To prove 

E F- z.mQ : B[z/y] :: U[z/y] 

we require to prove B <: B{z/y]. In general, this is not true. 
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2.4 Summary 

Logic AL provides a (formally proven) sound axiomatic semantics for an 00 

language with imperative (versus functional) semantics, featuring aliasing and 

recursive methods. Furthermore, it allows for modular verification: we may de-

rive verification statements about programs with free variables by assuming their 

specifications. Not only does this allow us to verify a large program as several 

smaller components, but it also allows us to use formal verification on only the 

critical parts of a larger system. 

We further discuss incompleteness and its other weaknesses in Chapter 7. 



Chapter 3 

AL in higher-order logic 

In this chapter, we describe a first step towards feasible program verification using 

AL: namely, we demonstrate how AL can be embedded into a higher-order logic 

theorem prover. We use the underlying higher-order logic of the theorem prover, 

both as a framework logic (allowing us to formulate the axioms and to build proof 

trees), as well as the assertion language for AL. In this sense the underlying logic 

of the theorem prover plays a dual role. The benefits of this embedding exercise 

are two fold: firstly and primarily, it allows us to check proofs of verification 

judgements, and, secondly, it allows us to find proofs of verification judgements. 

Rather than describing an embedding of AL into a specific theorem prover 

such as LEGO, we work with a general metalanguage which is a fragment of the 

languages of higher-order logic theorem provers such as LEGO, COQ, PVS and 

Isabelle/HOL. Thus the technique described here is generic. 

From studying the literature on embedding of program languages and logics 

into theorem provers, one finds that there are broadly two approaches. On one 

hand, there is the shallow embedding of a language, whereby the syntactic aspects 

of programs are not represented as objects in the encoding, but programs are rep-

resented directly by their denotations. (See [Gor88, HuiOl] for examples of such 

embeddings.) The advantage of this approach is that there is less overhead. How-

ever, as explained in [NvOPOO], when trying to prove a metatheoretical property 

that is expressed syntactically, one often requires extra definitions. The shallow 

embedding amounts to providing a denotational semantics for the programming 

27 
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language. 

Suppose we want to give a shallow embedding of AL programs. Thus we 

must find a denotational semantics. Let us consider denotations of programs as 

functions that map stores to pairs of stores and (result) values, viz, 

del P = store - (store x val) 

Thus the corresponding definition of closure is 

def 
closure = var x P x stack 

Of course, the definition of store and stack can stay as they are: 

store 	locn - ((fname - val) x (mname - closure)) 

def 
stack = var —s val 

Now writing these as one equation, we find that we have to solve 

store = ... x (... - 	mname - (var x (store -* (store x val)) x stack))) 

And since store appears on the right hand side of this equation in both a negative 

and positive position, to be able to encode store, we need an embedding of a 

theory of domains, or similar. Of course different denotations may be possible, 

but in any case, a shallow embedding is less appealing for our purposes since we 

want to encode derivability of verification judgements by recursion over syntax. 

On the other hand, there is the deep embedding of a language, whereby the 

syntax is explicitly encoded in the theorem prover. (See [Kle98, Hom95, NvOPOO] 

for examples where programming languages are given deep embeddings.) In this 

case, it is possible to prove, directly, metatheoretical properties by induction 

over program syntax. For example, type safety of Java is mechanically proved 

in [NvOPOO}. Also, one can work from operational semantics (which typically is 

defined recursively over syntax). However when working with a deep embedding 

of a first-order syntax with bound variables—such as that underlying AL—one 

must explicitly encode operations such as substitution and fresh variables, which 

again adds extra overhead. 
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However, there is a way to maintain the benefits of both of the above ap-

proaches. Our embedding uses higher-order abstract syntax (HOAS) which del-

egates the task of dealing with binding of variables to the metalanguage itself. 

Furthermore, since the syntax is explicitly represented in the embedding, it is 

possible to use syntactically defined devices, such as operational and axiomatic 

semantics. 

As a concrete example, consider 

a true 

b if x then false else true 

c let x=a in b 

Suppose t, f : P are the constructors for the constants, and i: V x P x P —p P is 

the constructor for conditional. In the HOAS-style, we introduce a constructor 

1: P x (V —p P) - P for the let construct. We then define the encoding 'b of 

b to be i(x, f, t), which we observe has free occurrences of x. We note that 

x:V 1:' ri. j 

that is, assuming x has type V, b1  has type O,  so 

V —p 

thus we can define r1 	l(t, Ax.rb).  Note that x is thus bound in rcl. 

In contrast, in a first-order deep embedding, one introduces a constructor 

1: V x P x P —* P and define rcl l(x,t,i(x,f,t)). Note that the variable 

x occurs free in rc1.  Thus one requires more care, for example to then encode 

let x=d in c for some d, since l(x, rcfl, rcl) results in variable-capture. 

The same decision (deep vs. shallow) can be made again for the assertion 

language when embedding a program logic. In our case, we note that, though 

the language of transition relations is defined in locus classicus [AL98} to be first-

order logic (plus some extra function symbols), the soundness of the verification 

rules does not depend on derivability in first-order logic. Thus, there appears 

to be few advantages gained from explicitly embedding the syntax of transition 
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relations, and so we choose a shallow, direct embedding. In the context of Hoare 

logic, we note that shallow embeddings of assertions are used in [Gor88, Kle98, 

HuiO 1, OheO 1]. 

A shallow embedding of transition relations allows us to directly use the fea-

tures of the underlying theorem prover to discharge the side conditions of veri-

fication rules. In particular, we can immediately use the high-level proof tactics 

provided in provers such as PVS and Isabelle/HOL. In contrast, a deep embed-

ding of transition relations requires us to also encode the axioms and rules for 

first-order (or other) logic. Also, the shallow embedding of transition relations 

allows us side-step the issue of completeness of the assertion logic. The resulting 

completeness problem is in fact that of relative correctness in the sense used by 

Cook [Coo78]. 

To allow us to justify our encoding, we give the metalanguage a non-standard 

interpretation using functor categories, in the style of [Hof99]. More precisely, we 

construct a category D, and assign to each type r an object E[rfl of D, and to each 

constant C: T, a morphism : 1 -+ Ift. We then show that the interpretation 

admits a functor Pred : D°' - Poset which satisfies specific properties (namely 

those of a tripos [HJP80, Pit02}). and thus the interpretation models the usual 

axioms and rules for higher-order logic. 

In particular, in this interpretation, programs correspond to first-order pro-

grams allowing us to interpret the verification judgement as an auxiliary deny-

ability relation which can be defined, as usual, by induction over the first-order 

syntax. We then relate the auxiliary relation to the operational smantics by 

giving a proof in the spirit of the soundness proof as found in locus classicus. 

3.1 Related work 

On the subject of embedding program logics in theorem provers, we believe that 

one of the first presentations was that of Gordon [Gor88]. In bc. cit., programs are 

given a shallow embedding and then the bare logic rules are derived as theorems. 

From a pragmatic point of view, this has many desirable consequences. For 
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example, the user may freely mix semantic reasoning and reasoning with Hoare 

logic. This technique can be extended further, since rules for other logics can 

implemented, such as VDM, Dynamic Logic and Dijkstra's weakest preconditions, 

and these logics can be freely mixed together in proofs. 

In Gordon's presentation, programs are given denotations as relations between 

initial and final states. Huisman in [HuiOl] also uses a shallow embedding of pro-

grams, but in this case uses a coalgebraic denotation of programs (of a fragment of 

Java). Furthermore, translation of concrete programs to their denotations in the 

theorem prover is automated using the LOOP tool of Nijmegen [vdBJOl, HuiOl]. 

Similarly, Huisman derives the rules of a bare logic as theorems directly from 

the semantics. 

Gordon also leverages the tactics facility of HOL and defines a verification con-

dition generator (VCG) which automatically applies the Hoare logic rules for an-

notated programs. (Note that we describe a similar exercise for AL in Chapter 5.) 

As what can be seen as an extension of Gordon's work, Homeier [Hom95, HM94] 

implements a deep embedding of a while-language. The deep embedding not only 

allows him to state as a theorem (vs. metatheorem in Gordon's case), the bare 

rule for assignment (which cannot be expressed in Gordon's approach), but also 

allowed the VCG to be encoded, and proved correct. Homeier describes his VCG 

as a "trustworthy tool for trustworthy programs". 

Note that in the approaches of Huisman and Gordon, soundness is guaranteed 

since the rules are derived theorems. Furthermore, completeness is not a theo-  
- 

retical issue since the user can always resort to the semantics if necessary—there 

is no completeness issue. Purists may argue that this is not in the spirit of Hoare 

logic, to which one can concede that the theorems of Gordon and Huisman are 

merely modelled after the rules of Hoare logic. Pragmatically, completeness is 

useful to minimise the need to use the lower-level semantics. 

Kleymann, in [K1e98], embeds bare logic and VDM into LEGO, using deep 

embeddings of the program syntax and the logic rules, but a shallow embedding 

of the assertion language. He then uses the embedding to construct mechanically-

verifiable proofs of soundness and completeness. 
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Similarly, von Oheimb in [OheOl] describes a deep embedding of (a fragment 

of) Java in Isabelle/HOL. He defines an operational semantics from which he 

proves soundness of the type system. He then formulates a Hoare logic for Java, 

which he proves to be not only sound, but also complete. The rules of the Hoare 

logic are given a deep embedding, but, like in Kleymann's work, the assertion 

language is given a shallow embedding. 

Note that in the works of Kleymann and von Oheimb, the motivation is to 

prove metatheoretical properties, namely soundness and completeness, of Hoare 

Logic. On the other hand, Huisman's use of Hoare logic was primarily as a 

device for easing the task for proving correctness statements. In this sense, our 

motivation is closer to hers. An important difference of our approach to those 

previously mentioned is that we use a HOAS encoding of the program syntax. 

The work of Gordon, Huisman, Kleymann and von Oheimb, like ours, also 

use the logic of the theorem prover both as a framework logic and the logic for 

assertions. In contrast, Homeier uses a deep embedding of the assertion language, 

and in that sense, he uses the theorem prover (HOL) only as a framework logic. 

3.2 Metalanguage 

We now introduce the metalanguage which is used to present the implementation 

of the program logic. The metalanguage is based on a higher-order simply-typed 

lambda calculus. 

We have the following types 

o,r ::= Proplaxrlcr —*rIRcdIA 

A 	nat I bool I Var I En I Mn I Val I Sp  I Prg 

Here Prop is the type of propositions, a x r is the product type, a -* -r is function 

space, Rcd is the type of a-indexed records and A represents the base types. For 

base types, we have the natural numbers nat, booleans bool, variables Var, field 

names Fn, method names Mn, values (results) Val, specifications Sp and program 

terms Prg. Records in Rcd are intended to be interpreted as partial functions 
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with finite domain from a into r, but we require only restricted combinations of 

a and r: namely RCdVar,  Rcd 5  Rcd 	and RcdM fl  
(VaI—*Sp) x (VaI—TR) 

Fn 	Fn  

The type of transition relations TR is defined to be Val —, (Val — En — 

VaI) 2  — (Val — Prop) 2  — Prop, where we write 	—* A 2 
— 	 as shorthand 

for — A —f A —' •••. Thus T: TR is a predicate over a return value r Val, 

and two stores à•, & : Val —+ Fn — Val. Note that we already have more typing 

information in the transition relation logic than there is in that of locus classicus; 

within our transition relation logic, for example, we have types for field names En, 

method names Mn and values Val; the transition relation logic of locus classicus is 

untyped first-order logic. We could introduce even more typing information, for 

example, by introducing a type Locn of locations, which would give the natural 

type for stores Locn —* Fn — Val. Extra types makes some things easier but 

can also make some things more difficult. The formalisation without a type Locn 

suffices as an embedding of AL, and it is unclear whether its addition is truly 

useful. 

We have the following terms 

e 	::= 	x I ee' I Ax.e I c 

That is, terms are built from variables x, applications ee', abstractions )tx.e and 

constants c (each of type TC)  which we describe later. We sometimes annotate 

abstractions—for example, AXT.e  —to emphasise that variable x has type T. 

For context F = x1 :r1 , . . . x:r, term e and type -r, the judgement 

Fe:r 

informally means that assuming x i  has type i (for i = 1..n), term e has type r. 

Also, for term P, provided F > P: Prop, then the judgement 

FtP 

informally means that P is true. The first of these two judgements are formalised 
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by the following standard rules for simply-typed lambda calculus: 

(Var) 
F, x:o 1 x : a 

(Const) 
I' 	C: TC 

F, x:a > t : r 
(Abs) 

F > )x°t: a -* y 
Fr't:a—+r 	Ftt':a 

(App) 
F > tt' : r 

Our metalanguage includes a classical higher-order logic by way of constants 

V: (r -* Prop) - Prop 

D: Prop - Prop -* Prop 

We write the more natural V.,-x.P for (V)(,\x T .P) and take standard classi-

cal higher-order logic encodings of absurdity (false), negation ( -1), conjunction 

(A), disjunction (v), if (), existential quantification () and Leibniz equality 

=:T: ,7 r -* Prop, as displayed in Table 3.1. (We omit type annotations wher-

ever possible, use parentheses with commas for (possibly) repeated application 

of terms, and infix notation where appropriate, e.g., x = y, or even x = y, for 

r(x)(y).) We have standard rules for classical higher-order logic, displayed in 

Table 3.2. 

def 
VP false = ropP.P 

def 
-'P = P D false 

PAQ -'(PD -'Q) 
def 

PvQ -PQ 

PQ(PQ)A(QDP) 
def 

2TX.P = -iVx.--iP 
del 

X = y = Vr ..prop P.P(X) D P(y) 

Table 3.1: Standard classical encodings of logical connectives. 
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FtP:Prop 	FQ:Prop 	Fi'R:Prop 
(S) 

F(PJQJR)J(PDQ)JPJR 

FrP:Prop 	FcQ:Prop 
(K) 

FPDQDP 

F > P: Prop 
(DN) 

FPP 

FrP:a—*Prop 	F't:a 
(Forall-Elim)  

F 

FPjQ FP 
(Modus-Ponens) 

F > Q 

FP:Prop 	F,x:ac'PjQ 
(Generalisation)  

F > P D Vx0.Q 

F,x:at:r 	Ft':a 
(i3) 

F 	(Axa.t)tF =T t[t'/x] 

F > t: a —* r 
provided x 0 FV(t)  (i) 

F > Ax .tx 

F, x:at ,t=TtF 
() F > Ax.t 	xa.tF 

Table 3.2: Standard rules for classical higher-order logic. 
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For predicates P, Q: r -* Prop, we write P c Q as shorthand for Vx.(P(x) D 

Q(x)). In particular, for sets A and B, the formula A ç B simply means than A 

is a subset of B, as expected. We define composition ofT : TR and U : Vat -* TR, 

written T; U, by 

(T; U)(r, à, 6, al'loc, alloc) 	o, alloc. T(i, à•, à, al'loc, ailoc) A 

U(i)(r, U, 6, ailoc, alloc) 

For the other constants, we have: the normal constants for natural numbers 

(0, succ, +, ...; but no general recursor giving terms of type nat -* T); booleans 

(ff, •tt, and, ...); product types (lr T2 , 
 TT1T2 (, )r1,r2); and the record ma-

nipulation constants: 

Iookup, 1  : Rcd -* Ti 	T2 - Prop 

updaterir2  : Rcd -+ Ti - T2 -_ Rcd 

empty 12  : Rcd 

The intended interpretation of elements of record types are partial functions 

with finite domain. Constant Iookup(r, i, a) is intended to be interpreted as i is in 

the domain of r and r(i) = a. Constant domain(r, —) is intended to be interpreted 

as the domain of r. Constant update(r, i, a) is intended to be interpreted as r 

overridden at i to take value a. We, thus, have the following axioms for records. 

Vr, i, a, a'.Iookup(r, i, a) D Iookup(r, i, a') D a = a' 	 (rcd...parfun) 

Vi, a. -ilookup(em pty, i, a) 
	

(rcdempty) 

Vr, i, i', a. 	i = i' D Iookup(update(r, i, a), i', a) 

A i 	i' 	Va'.Iookup(update(r, i, a), i', a') 	Iookup(r, i', a') 

(rcd_update) 

For convenience, we use the more succinct notation [f i =ai ,... , fk =ak} for record 

update(. • update(empty, fi, ai),. .. , 1k, ak) 

Also, we introduce the abbreviation dom(r) defined by 

i e dom(r) if 	a.Iookup(r, i, a) 
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3.2.1 Program logic 

The remaining constants are those for the program logic. The following constants 

allow us to construct specifications. 

Nat : Sp 

Bool : Sp 

Va 	V ITR 
- Obj : Rcd -p  RcdMfl p x a—+ 	Sp 

Note that this directly reflects the abstract syntax for specifications: namely a 

specification is either Bool, Nat or [f2 :A. m3:c(y3)B3::U3 '"] for specifica-

tions A, B3  and transition relations U, where y3  can occur free in B3 , U. 

The following constants allow us to construct programs. 

false: Prg 

true : Prg 

nat:nat Prg 

let: Prg - (Var -+ Prg) -p Prg 

obj: Rcd 	. 	 -p Prg 

if:Var—*Prg--Prg—*Prg 

var:Var —*Prg 

fsel : Var -p En -* Prg 

minv : Var -* Mn -* Prg 

fupd:Var—*Fn----*Var—*Prg 

Constants let and obj give our encoding of syntax its higher-order nature. For 

example, returning to our illustration, program 

let x=tr'ue in if x then false else trae 

has encoding 

let(true, )x.if(x, false, true)) 
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We generalise the encoding procedure and write ral  for the encoding of a. 

Finally, we have the Vat-valued constants 

bOOlVa l : boot 'VaI 

natval : nat —* Vat 

varval : Var -+ Vat 

We need constants bOOI ai and natval because we have extra typing information 

in our transition relation language. Their presence forces types bOOI a i and natval 

to be subtypes of Vat. We need var va, because of the deep embedding of program 

syntax together with the shallow embedding of the assertion logic, the combi-

nation of which gives us the type of variables Var which is distinct from that of 

values Val. Whereas, supposing we have a shallow embedding of programs, then 

the distinction between Var and Val would no longer be needed; program variables 

would be identified with variables of the metalanguage. 

We note that since varval  maps program variables to values, it is in essence 

a stack. Considering transition relations as relations over a return value, initial 

and final stores, and the values of the variables in the context, a natural type for 

transition relations would be a predicate over a value, two stores and a stack: 

Vat — (Vat —* En - VaI) 2  —* (Var —* Vat) 

Then each transition relation is parameterised with its own stack, thus allowing 

us to dispense with constant var val . However, this does not fit with the essence 

of HOAS. The stack-parameterised transition relations approach would perhaps 

be obligatory if we were to use a first-order, deep embedding of the program 

syntax since we cannot guarantee that the bound variables are pairwise distinct; 

it is possible for two different bound variables to have the same name, in which 

case, constant var val assigns the same value to both of them when, in fact, they 

should take different values. Our HOAS embedding guarantees uniqueness of 

bound variables, thus this is no longer a problem. The reason why the same trick 

cannot be applied to the other parameters (namely, return value, initial and final 

stores) is because the formulation of the rules in AL require us to substitute for 

these parameters, whereas we do not need substitution of stacks. 
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Since varva l is a constant, a standard interpretation would interpret it as a 

function mapping variables to values. Thus a consequence of this implementation 

decision is: to define a model, we must interpret varval as a stack for which all 

the axioms are true. This is certainly counter-intuitive. 

Since these Va I-valued constants are effectively type-coercion functions, they 

will be omitted from this presentation when there is no risk of ambiguity. 

We introduce predicate symbols for: specification subsumption 

<::Sp—*Sp--* Prop 

assumption for variables' 

[-: 
-] 

: Var —f Sp - Prop 

and derivability (verification) judgement 

[-: - :: -] : Prg - Sp - TR - Prop 

We encode the rules so that if 

x:A, I- a : A :: T 

is derivable, then 

1'VVarX1,.. .x.[x, : rA, -l] D ... 	[x : 	[r,l : 	:: 

is derivable. 

Hereafter, unless explicitly typed otherwise, the following symbols and their 

decorated variants are metavariables of the following types: ri have type nat, x 

and y have type Var; f have type Fn; m have type Mn; a have type Prg; b have 

type Var —* Prg; A have type Sp; B have type Val - Sp; T have type TR; and U 

have type Val —* TR. 

1 1n [HTOO] we have defined [- : -} to be [x : A] 	[var(x) : A:: Res(x)]. This is not 
compatible with the interpretation given here. However, the interpretation can be modified to 
accommodate this. 
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3.2.1.1 Subsumption axioms 

The following axioms are for the subsumption relation. The only subspecification 

of Bool (resp. Nat) is Bool (resp. Nat). 

(ss...bool) 

Nat <: Nat 
	

(ss_nat) 

Object type A is a subspecification of A' if A has all fields and methods of A', and 

furthermore, (1) for any field f, the specification in A along f matches that of A' 

and (2) for any method m, the specification in A along m is a subspecification 

of A'. Note that point (2) is precisely the fact that the subspecification relation 

is covariant along methods, and point (1) is precisely the fact that it is invariant 

along fields. 

vRcdsP 	A'.VRCdvaI_.sp)x(va_.TR), B. 

(Vf.VA.Iookup(A', f, A) D Iookup(A, f, A)) 

(Vh.Vm.VB.Iookup(fl', m,B) D 2Bm . 

	

Iookup(fi, m, B m ) A 	 (ss_obj) 

2Ti (Bm)(h) <:iri (B)(h) A 

212 (Bm )(h) c 72 (B)(h)) 

Obj(A, .) <:Obj(A',  ') 

3.2.1.2 Program axioms 

The remaining axioms are those of the program logic. A program a with specifi-

cation A and transition relation T is said to be well specified (ws) if we can derive 

the judgement [a : A :: T]. The rules to derive judgements stating well specified 

triples are encoded as follows. 

The first rule is the subsumption rule (as mentioned in Chapter 2). Note that 

to prove [a: A' :: T'J, it suffices to find weaker A, T (i.e. to prove that A <: A' 
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and T ç T') and prove [a: A :: T]. 

Va.VA'.VT'.VA.VT. 

(A<:A') 
(wsubs) 

(T ç T')  

[a:A::T][a:A'::T'] 

The following are straightforward rules for constants. 

[false : Bool :: Res(ff)] 	 (ws_constf) 

[true : Bool :: Res(tt)] 	 (ws_constt) 

Vn.[nat(n) : Nat:: Res(n)] 	 (ws..nat) 

The rule for variables states this: provided x:A is in our context, i.e. we know 

[x : A], then we can prove [x : A:: Res(x)]. 

Vx.VA.[x : A] j [x : A:: Res(x)] 
	

(ws.var) 

As an example of functions over constants, for any binary natural number oper-

ation op, we have 

Vx 0 , x 1 . 

[x0  : Nat :: Res(x o )] D [x i  : Nat :: Res(x i )] D 	 (wsnatop) 

{op(xo ,x i ) : Nat:: Res(op(xo ,xi ))] 

The conditional rule is a straightforward translation from locus classicus. 

Vx.Va0 , a1 .VB.VU .VB 0 , B1 .VU0 , U1 . 

[x: Bool:: Res(x)] 

[ao  : Bo (x) :: Uo (x)] 

(B0 (tt) = B(tt) A U 0(tt) U(tt)) D 	 (ws_cond) 

[ai  : Bi (x) :: Ui (x)] 

(B 1 (ff) = B(ff) A U 1 (ff) U(ff)) D 

[if(x, a0 , a i ) : B(x) :: U(x)] 
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In the rule for let, to prove [Iet(a, b) : A' :: T'], we are required to prove three 

conditions, of which the second one has form Vx.[x : A] D [b(x) : A':: U(x)]. To 

prove this, we prove [b(x) : A':: U(x)] but have the extra assumption [x: A]. Note 

further that the universal quantification of x ensures that x is a fresh variable 

name. 

Va.Vb.VA'.VT".VA.VT.VU. 

[a : A :: T] 

(Vx.[x : A] D [b(x) : A' :: U(x)]) D 	 (wsiet) 

(T;UCT") 

[Iet(a, b) : A' :: T"] 

The rule for method invocation is a straightforward translation from that of locus 

classicus. 

Vx.Vm.VB.VU . 

[x: Obj([], [m=(B, U)]) :: Res(x)] D 
	

(ws.ninv) 

[minv(x,m) : B(x) :: U(x)] 

Note the form of conclusion of the rule for field selection: we can derive the triple 

[fsel(x, f) : A :: T] for arbitrary T, provided we can prove T Tfsel(X, f). The rule 

formulated as such allows it to be applied immediately to a goal [fsel(x, f) : A :: TI 
when T is equivalent to, but possibly syntactically different from, Tfsel(X, f). 
Without this trick, certainly in a prover such as LEGO, the user must first ma-

nipulate the goal [fsel(x, f) : A :: T] until T is syntactically equal to TfseI(X, y). 

Vx.Vf.VA.VT. 

[x: Obj([f=A], j) :: Res(x)] D 	
(wslsel) 

T Tfsel(X, f) D 

[fsel(x, f) : A :: T] 

where Tfsel(X,  f)(r, a, 6 , aloc, aloc) tl Res(á(x, f))(r, &, 6, aloc, aloc). 
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The rule for object creation applies both tricks mentioned above. Note the extra 

pathological conditions to ensure that the domains of records 9 and A, and b and 

fi match. This matching is implicit in the notation used in the locus classicus. 

b.VRCdSp A.V(VaI_sp) x (VaI-.TR) B.VT. 

(dom() = dom(A) A dom() = dom()) 

(Vf.VA1 .Vx1 .Iookup(A, f, Af) 	Iookup(, f, x) D [x : A f  :: Res(xf )]) 

(Vrn.Vy.[y: Obj(A,ä)] 

Vbm .VBm .Iookup(,m,bm) D Iookup(fl,m,Bm ) D 

[bm (y) : iri (Bm )(y) :: 7r2(Bm )(y)]) 

TT0bJ ()D 

[obj(, ) : Obj(A, ) Tj 

(wsobj) 

where T0bJ () (r, à, 6, al'loc, alloc) (Vz.z 	r j al'loc(z) 	alloc(z)) A 

(Vf E dom().6(r, 1) = x) A 

(Vz.Vw.z r D 6(z, w) = á(z, w)) 

Finally, the rule for field update uses the same trick as that in the rule for field 

selection. 

Vx, y.Vf.VRCdSp  A.V (Val-.Sp) x (VaI-.TR) B.VT. 
En 	RcdM fl  

{x: Obj(A, fl):: Res(x)] 

[y : A 1  :: Res(y)] 

TTfd(x,f,y) D 

[fupd(x,f,y) Obj(A,) :: T] 

(wsiupd) 

where Tfd(x, f, y)(r, 6,6, aloc, altoc) 	r = x A 6(x, 1) = y A 

(Vz.Vw.-i(z = x A w = f) j 

6(z, w) = 6(z, w)) A 

alloc = alloc 
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3.3 Practical considerations 

The embedding formalisation detailed above has been implemented in two theo-

rem provers: LEGO and PVS. The two theorem provers are quite different and 

each has its strengths and weaknesses. In this section, we highlight some of these 

differences and how they affect the usability of the implementation. 

The LEGO implementation used a direct concretisation of the formalisation 

presented above. A nice feature of LEGO is. its treatment of logic variables. For 

example, assuming 

def 
a =Iet(true, Ax.false) 

del 
T0  =Ar, a, 6, alloc, alloc.r = ff 

suppose we want to prove 

[a : Bool :: T0 ] 

First we apply the subsumption rule wssubs using LEGO's Refine command. 

LEGO automatically instantiates a, A', ' by matching the conclusion of wssubs 

with our goal. It then presents us with the following remaining goals: 

? : Sp 

?2 : TR 

?1 <: Bool 

?2 ç T0  

[a : ? i :: ?21 

where ?i  is LEGO notation for the current goals, i.e. remaining things we have to 

"prove". It postpones instantiation of A, T by introducing logic variables ?i, ?2. 

The first two goals provide the constraints that these two logic variables must 

satisfy. The useful part is that we can postpone instantiating these variables until 

later, for it might be possible that using the Refine command, some of these 

variables get automatically instantiated. For example, we could concentrate on 

goal ?3 and apply rule ssWool. LEGO then automatically instantiates ? with 
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Bool based on the form of rule ss_bool. Similarly, we can concentrate on goal ?5 

which would give us an instantiation for ?2. 

However, a significant weakness of LEGO is its lack of automation. Once 

we have instantiated ?2 (either by explicit instantiation, or LEGO's automatic 

instantiation) we still have to prove the goal ?4. In this particular example, the 

goal is trivial, but using LEGO, we must issue successive commands to discharge 

this goal. 

In search of more automation, we tried the implementation with PVS. As 

an optimisation, rather than introducing record types Rcd as an uninterpreted 

type (i.e. introduce Rcd as a type and then provide axioms), we defined it as an 

interpreted type as follows: 

Rcd : TYPE = [d: pred[dom], [(d) -> ran]] 

using PVS notation. (Technical note: since PVS doesn't provide proper param-

eterised types, we had to put this definition into a module, parameterised by 

types dom and ran.) This defines Rcd as the type of partial functions from dom 

to ran, implemented as a (dependent) pair (d, f) consisting of a subset d of dom 

and a (total) function f from d to ran. We then gave the natural definitions 

to the other record manipulation constants. This implementation is consistent 

with the presentation above in the sense that the record axioms are derivable. 

Furthermore, we believe that the interpretation of the metalanguage (to follow) 

still models the implementation. This interpreted definition of Rcd allows PVS 

to automatically discharge more proof obligations involving records. 

In use, the PVS implementation provided a noticable improvement in usabil-

ity over the LEGO implementation, specifically because many proof obligations 

could be (almost) automatically discharged. However, there were still many proof 

obligations that intuitively could be automaticallly discharged, but could not 

in practice; such proof obligations typically required instantiation of universally 

quantified variables. 

On the other hand, in use, we noticed that PVS's automatic instantiations 

were not as accurate as those of LEGO (in the sense that the instantiations were 

often wrong). Worse still, the lack of proper logic variables meant that in practice, 
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explicit instantiation of the universally quantified variables in the AL rules gave 

more reliable results. 

Overall, the PVS implementation was certainly easier to use. However, having 

to continually provide instantiations for specifications and transition relations 

became a real chore, especially since theoretically they can be automatically 

inferred. (This is effectively what the type inference and VCG algorithms do 

in Chapters 4 and 5.) 

It is also unclear whether it is possible to make other modifications to the 

formalisation (similar to the interpreted definition of Rcd) which would give im-

proved usability. 

3.4 Examples 

We have attempted several examples in our implementations. Initially, we fol-

lowed the development in [AL98] and introduced some abbreviations to make 

our programs more succinct. Furthermore we derived, using the existing axioms, 

theorems (or equivalently, derivable rules) for these syntactic abbreviations. 

For example, in the pure language, field selection strictly has the form x.f 

where x is a variable. We introduce an abbreviation so that for an arbitrary. 

program a, the program a.f is an abbreviation for let x=a in x.f, for some x not 

free in a. This is encoded into our formal system by defining 

de f 
fsel'(a, f) = Iet(a, )x.fseI(x, f)) 

We simply overload our existing notation and write fsel for fsel'. Crucially, we 

then prove the following theorem. 

Va.Vf.VA.VT', T. 

[a: Obj([f=A], U) :: T] 

T' T; AX.Tfsel(X, f) D 

[fsel(a, f) : A:: T'} 

This theorem allows us to directly derive judgements about programs using fsel' 

without expanding its definition. 
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We continue to extend and overload the remaining program constructors and 

derive corresponding "higher-level" rules. Using these rules, we successfully prove 

the examples given in Sec. 4.1-2 of [AL98]. We then derive an easier-to-use rule for 

the let construction before attempting two larger examples: the greatest common 

divisor program (Sec. 4.3 in [AL98]), and an original example based on the dining 

philosophers scenario. We consider these two examples in more detail after the 

new rule for let. 

3.4.1 Reversible let rule 

In locus classicus, Rule (Let) is formulated as 

EI-a:A::T E,x:Al-b:B::U 
El -let x=a inb:B::T' 

provided x does not occur free in B, and the first-order theorem T; U ç ' 

is derivable. In essence, the subsumption rule has been incorporated into this 

rule by default; this is necessary because T; U is not a first-order formula. In 

particular, the rule is not reversible: in general, we cannot recover T, U from V. 

In practice, when building proofs in a goal-directed style (as is the default in 

LEGO and PVS), one finds that whenever we apply the let rule, we must find 

instantiations for T, U, and typically this involves some loss of information. (If 

we choose T, U to be too weak, then we cannot discharge the side condition; so 

typically we choose them to be stronger, but we must be careful not to choose 

them too strong or else we might not be able to discharge a side condition further 

up the proof tree.) Since sequential composition of programs is defined using the 

let constructor, it occurs extensively in typical programs and it quickly becomes 

cumbersome to find these instantiations. 

Using our implementation, we can derive the following substitute for the let 
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rule. 

Va.Vb.VA' .VT".VA.VT.VU. 

[a: A:: T] 

(Vx.[x : A] D [b(x) : A' :: U(x))] D 	 (wsqiet) 

(T;UT")D 

[Iet(a, b) : B :: T"] 

This rule does not lose any information. In proof derivations, it is particularly 

useful because information loss can be postponed until later using an explicit 

application of the subsumption axiom. 

3.4.2 Greatest common divisor 

The gcd program from [AL98], can be written using notation closer to that of 

popular 00 languages, as follows. It is a simple exercise to translate this program 

into our formal language. 

calcgcd(y) 	if 	(y.f <y.g) {y.g = y.g - y.f; y.mQ} 

else if (y.g < y.f) {y.f = y.f - y.g; y.mQ} 

else 	 {y.f} 
def 

gcd = obj([f=1,g=1], [in=calc..gcd]) 

This program creates an object with one method m, such that if the fields have 

nonzero values a and b, invoking m will reduce both fields to the gcd of a and 

b. This is the intuition behind the formal specification given in bc. cit. First 

we strengthened the transition relation given in bc. cit, and then we proved 

gcd satisfies the stronger specification. The subsumption axiom can be used to 

weaken this to the original statement. 

We introduced the constant gcd 1  : Val - Val - Val and postulated axioms 

consistent with its interpretation as the gcd function over natural numbers. Of 

course, we could have define gcd axiomatically, and then derived our postulated 

axioms as theorems about gcd; however, this is not the purpose of the exercise. 
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Explicitly, we defined 

def 
Ugcd(y)(r,cY,o, alloc, alloc) = (1 < a(y,f) Al < a(y,g)) 

r = 6(y,f) Ar = á(y,g) A 

r = gcd 1 (ó(y,f),â(y,g)) A 

1 < á(y,f)A 1 < á(y,g) 

A gcd 	Obj([f = Nat, g = Nat], [m = (Nat, Ugcd)]) 

Using these definitions, we proved 

[gcd : A gcd Tt riv j 

where Ttriv  is a trivial transition relation. 

3.4.3 Dining philosophers 

Object-oriented languages have shown to be particularly suitable for writing sim-

ulations. In the next example, we consider a simulation in an 00 language for 

a formalisation of the dining philosophers scenario. The formalisation we choose 

is based on that presented in Roscoe's book [Ros97], where a general description 

of the scenario can be found. Our implementation follows Roscoe's observation 

that the important events that we should model are when the forks get picked 

up and put down. To make the example more manageable, we only consider the 

case for three philosophers at the table. 

We simulate the scenario by creating an object for each fork, and an object 

for each philosopher. The philosophers interact with the forks by invoking their 

methods. In our example, two of the philosophers pick up their forks "left then 

right" and one picks up his forks "right then left". The resulting system is 

known not to deadlock. We prove this using a suitable formalisation of "does not 

deadlock". 
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Here is code to create a fork object. 

def 
Fork = obj({on_table=true], 

[try_pick_up=As. if (s.on...table) {s.on_table = false; true} 

else {false} 

put_down=As.s.on_table = true; false]) 

A philosopher object invokes the trypicLup method to pick up a fork. The 

method returns true after updating the fork object's state if this is possible. It 

returns false if the fork is not on the table. 

We introduce the following definitions for creating the two types of philoso-

phers. 

phiLtick =
def 

 )s. if (s.n..Sorks == 0 and s.hungry) { 

if (s.forkl.try_pick_upQ) {s.n_forks = 1; false} 

else {false} 

} else if (s.n_forks == 1 and .s.hungry) { 

if (s.fork2.try..pick_upQ) 

{s.n_forks = 2; s.hungry = false; false} 

else {false} 

} else if (s.n_forks == 2) { 

s.fork2.put_downQ; s.n_forks = 1; false 

} else { 

s.forkl.put_downQ; s.n_forks = 0; s.hungry = true; false 

} 

LRPhiI 
def 
 = ).fork1 ,fork..Phil(fork z , fork7.) 

RLPh1I f Aforkj ,fork.7..Phil(fork,.,forkj ) 

Phil 	,\forki ,fork2 . 

obj ( [h ungry=true, n_forks=nat(0), 

forkl=var(forki ), fork2=var(fork2)], 

[tick=phil_tick]) 

A philosopher has four internal states: (1) he is hungry and is holding no forks; 
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(2) he is hungry and he is holding one fork; (3) he is no longer hungry 2  and is 

holding two forks; and (4) he is not hungry and holding one fork. Each state 

transition corresponds exactly to a fork being either picked up or put down. 

Finally, we put the whole system together as follows by creating a "table" 

object. 

def 
Table = let(fk1  = Fork, Jk2  = Fork, flc3  = Fork, 

ph1  = LRPhII(jk1 ,fk2 ), 

ph2  = LRPhiI(fk2 ,fk3 ), 

ph3  = RLPhII(jk3 ,Jk1 ), 

obj ( 
[fl=flq, f2=jk, f3=jk3 , 

pl=ph1 , p2=ph, p3=ph3], 

[tickl=As.s.pl .tickQ, 

tick2=As.s. p2.tickQ, 

tick3=As.s.p3.tickQ])) 

The table should be considered as a "black box" with three buttons, one for each 

of the tick methods. To complete the simulation, one must compose this program 

with another program that plays out the possible traces of the system. 

Note how we use aliasing in this example: philosopher objects ph1  and ph2  

both store references to the same fork object f/c2 ; one can check that ph1  .fork2 

and p.fork1 both store the value of J. 

With the dining philosopher scenario simulated by these code fragments, we 

can prove that this system does not deadlock, which we will now formalise. We 

say that a philosopher is blocked whenever he needs to pick up a fork to perform 

a state transition but cannot (exactly when the fork in question is not on the 

table.) The system is deadlocked precisely when all the philosophers on the table 

are blocked. 

Given the store a, we can determine whether any particular philosopher is 

blocked by inspecting the values of the fields of the philosopher and its forks. To 

2Here we assume that the philosopher instantaneously eats as soon as he picks up the second 
fork and so is no longer hungry. The point is that the event corresponding to a philosopher 
eating is not important with respect to deadlock considerations. 
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assist our intuitions, we define the following predicates. "Philosopher p is holding 

fork fork", 

del 
is_holding(p, fork, a) = a(p, n_forks) = 1 A fork = a(p, fork!) V 

a(p, n_forks) = 2 A fork = a(p, fork!) V 

a(p, n_forks) = 2 A fork = a(p, fork2) 

"Philosopher p is waiting for fork fork," 

waiting_for(p, fork, a) 
def 

(a(p, n_forks) = 0 A a(a(p, fork!), on_table) = ff A fork = a(p, forki)) 

V (a(p, n_forks) = 1 A a(a(p, fork2), on_table) = ff A fork = a(p, fork2)) 

Assuming that F(t) is the set of forks, and P(t) the set of philosophers on table 

t, for p E P(t), the predicate "philosopher p is blocked," 

def 
blocked (t, p, a) = RF()fork.waiting_for(p, fork, a) 

and "all philosophers are blocked," 

del 
all_blocked(t, a) = Vp()p.blocked(p, a) 

We can use the following proof technique to show that the system does not 

deadlock. Let -< be a total (irrefiexive) order such that Jlci  -< fl -< fk. It is the 

case that the philosophers pick up their forks in this order; if a philosopher picks 

up fi  before f2,  then fi -< f2.. It is then straightforward to prove that the system 

does not deadlock3 . 

For table t, order relation orel and store a, if we define lnvTable by 

de 
lnvTable(t, orel, a) = l Vp(t)p.lnvPhil(p, orel, a) A 

(VF( t)f.a(f, on_table) = ff D 

p(t)p.is_holding(p, f, a)) A 

bg_pred 

3This is in fact a special case of Roscoe's rules for avoiding deadlock in [Ros97]. 
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where bg_pred is a required strengthening that states facts such as the fork and 

philosopher objects are pairwise distinct, and the fork fields of the philosophers 

are pointing to the intended forks. Furthermore, 

def InvPhil(p, orel, a) = orel (a(p, forki), a(p, fork2)) A 

(stateo (p) V state 1 (p) V state(p) V state3 (p)) 

where each state3 (p) states the values of the n_forks and hungry fields of philoso-

pher p at the corresponding state. It follows that if we define 

def 
SpecTa ble  = Obj( [fl=SpecFork , f2=SpecFork , f3=Spec Fork , 

pl=Specph , I , p2=SpeCPh , I , p3=SpecphI ], 

[tick1=TRt k, tick2=TRtIk, tick3=TRt k]) 

and 

TRtk  V As, r.Vr, á.Aal'loc, alloc.lnvTable(s, à) D lnvTable(s, ó) 

we can prove in our logic, 

[Table: SpecTa ble  :: Ar.Aà, á.Aalloc, alloc.lnvlable(r, -<, 6)] 

That is, lnvTable is an invariant of the system. It is an invariant in the sense that 

it holds immediately after the table object is created, and it is invariant with 

respect to the actions of the three "buttons." Of course, SPeCFOrk  and SpecPhI 

are specifications that are strong enough to describe the behaviour of fork and 

philosopher objects respectively. 

Furthermore, we can prove, for table t, philosopher p, forks fork, fork' and 

store a, 

blocked(p, a) D is_holding(p, fork, a) D a(p, fork!) = fork 	(3.1) 

is_holding(p, fork, a) D waiting_for(p, fork, a) D a(p, fork2) = fork' 	(3.2) 

lnvTable(t, orel, a) D 	
(3 3) 

VF(t)fork.(a(fork, on_table) = ff D p(t)p.is_holding(p, fork, a)) 
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and 

InvTable(t, orel, a) D Vp(t)P.  orel (u(p, forki), cr(p, fork2)) . 	(3.4) 

Assuming this, it is straightforward to prove the corollary 

InvTable(t, orel, a) D -'aII_blocked(t, a) , 	 (3.5) 

as required. 

3.5 Soundness 

We now proceed to the main contribution of this chapter: soundness of our 

embedding. The basic concept is as follows. We construct an interpretation of our 

metalanguage, including the predicate and function symbols for our embedding 

of AL, and show that it models higher-order logic. Using this interpretation, we 

show that the axioms introduced for AL are indeed admissible. 

First we give names to some sets which will be used throughout this section, 

followed by an overview of the notation for presheaf categories, which we use 

to construct our interpretation. It is well known that presheaf categories, since 

they form a topos, model intuitionistic higher-order logic, and, via restriction 

to double negation closed presheaves, also classical logic. However, we found no 

presheaf category that models our logic; a new construction was required. We 

then construct the category V in which we give the interpretation. Subsequently 

we explicitly interpret terms from our metalanguage as objects and morphisms in 

V. Next we check that this interpretation also models the axioms of the program 

logic. Finally, we prove a soundness result in the spirit of that found in [AL98] 

using the interpretation. 

3.51 Preliminaries 

First we name some sets that will be used throughout the rest of this section. 

Transition relations are predicates over a return value and an initial and final 
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store. We introduce the following convenient abbreviation. (Recall, in the logic, 

a store is determined by a total function and a subset its domain.) 

trans 	Pow(val x ((val x fname) -+ val) 2  x Pow(val) 2 ) 

Also, we follow closely the syntactic definition of specifications and define the set 

of specifications inductively as the smallest set specs closed under the following 

rules. 

hoot E specs 

P/at E specs 

A 2  E specs 	B, : Iocn -* specs j=1..t  U : Iocn - trans j=1€ 

{f=A 2 i=11c, m,=(B,, L)i=] E specs 

where we write [f=Ak,  m,=(B,, U) 1 • t] to denote the record that maps 12 

to A 2  (for i = 1..k) and m, to the pair (By , U) (for j = 1.1). 

3.5.2 Presheaves 

Let C be a small category, and Set be the category of sets and functions. 

A (covariant) functor, or presheaf, F is given by a family of sets (Fx )x€c  

indexed by objects in C, and for each morphism f E C(X, Y), a function F1  

Fx - Fy such that Fjd =id and F901  = F9 oF1 . Ifx E Fx, we may write x y  

for Ff (x) when f: X -* Y is clear from the context. 

A natural transformation m from presheaf F to presheaf G, written m: F -* 

G (or maybe in : G i- F), is given by a family (mx)(xEc)  of maps mx : F -p  Cx 
such that, for f : X -p Y, G1 o mx = my  o F1  (naturality). If x E Fx, we may 

write m(x) for mx(x). 

We write C for the functor category of presheaves from C into Set and natural 

transformations between them. The terminal object is the constant presheaf 
def 	 def defined 1x = 1 and 1r = id. For presheaves F, G, we define their product 

def F x C pointwise as a product in Set as follows: (F x G)x = Fx x Cx and 
def (F x C)1 F1  x C1. Category C is cartesian closed and, for X in C, an element 

f in the function space at X, (F=C)x (sometimes denoted (GF)x), is a family, 
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indexed by morphisms u : X —* Y, of natural transformations f, y  : F — Gy, 

such that f is compatible: 

def 
(F ,-)x = {( fu,y)u:x-yI(fu,y)u is compatible} 

where compatibility is precisely commutativity of the square 

F ___ 

F 
fvou,Z 

Gz 

for all u : X —* Y and v : Y —* Z. And for morphism p : X —+ W, family 

E (FG)x, we define 

(FG)((f,y)) 
def 
= (g,y) 

def 
where (g,y ) is defined pointwise gu,y(x) = f0,y(x), since u now ranges over 

W —* Y. We shall write fy  for f, y  in case where u is clear from the context. 

A presheaf F is said to be a constant presheaf exactly when FX  = S for 

some set S, independent of X, and Fu  = ids. Given a set 5, we write VS for 

its corresponding constant presheaf. When F is a constant presheaf V5, the 

function space F=±G degenerates, and f E (F=G)x is determined by a single 

function from S to Cx.  This last fact is particularly convenient when giving 

interpretations to our constants. 

For any presheaf F, a global element is a natural transformation 1 —* F. 

In particular, using the characteristic property of function space F, G=H) 

x C, H), we have the isomorphisms 

(1, F=G) 	(F, G) 

and 

t(i, F=(G=H)) e(F x C, H). 

That is, finding a global element of a function space amounts to finding a natural 

transformation. 
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3.5.3 Category of interpretation 

As mentioned previously, it is well known that presheaf categories model higher-

order logic. However, we now show how the two obvious presheaf categories do 

not give intuitive models of our axioms. We then show how we use both these 

categories to construct the category in which we can give our interpretation, and 

then proceed to show that it models our axioms. 

3.5.3.1 Categories 11 and X 

Let J[ be the category of finite sets and injective maps. The presheaf category 
def 

Set" appears to be a sensible candidate category in which to interpret our 

metalanguage. As described in [Hof99], we can certainly interpret the higher-

order syntax in a natural way. However, when we try to give an interpretation of 

varval, which, we recall, should be interpreted as the stack, we run into problems: 

any interpretation of varva , in 11 is independent of the stack. We run into sim-

ilar problems when trying to give interpretations to the predicates [- : -] and 

—:: -], which should depend on the environment—a function that maps vari-

ables to specifications. To allow us to interpret these constants and predicates, 

we introduce the category X. 

Recall that Iocn is the set of locations and val is the set of values (constants 

and locations). Let the objects of X be worlds XSE, which are triples (X, S, E) 

where X is a set of variables, S : X - val and E : X -* specs are functions; and 

let morphisms U: XSE -p X'S'E' be injective maps u : X -* X' such that, for 

all x E X, both S'(u(x)) = 8(x) and E'(u(x)) = E(x). Given a world XSE, we 
def think of S as the stack, and E as the environment. Thus in f, =  Set', we can 

give natural interpretations to symbols such as varval, [- : -] and  [- : - :: -]. 

However, we now have further problems: the natural interpretation of programs 

in it (as explained in [Hof99]) includes "programs" that can depend on the stack 

(and environment); in particular, such programs can be constructed if we have 

a function from F into programs, where presheaf F depends on the stack or 

environment. 

Instead, we use categories TE and X to construct a new category V in which 
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we give our interpretation. Before we present the construction, we take this 

opportunity to state the following property of X. 

Lemma 1 For worlds XSE, X'S'E', X"S"E" E X, and morphisms f : XSE -+ 

X'S'E', g : XSE -* X"S"E", there is world X"S ... E" E X and morphisms 

u : X'S'E' -p X"S"E", v: X"S"E" -* X"S"E" such that uf = vg. 

To put this another way, given two divergent morphisms f, g, there is a world 

X"S"E" and morphisms 'a, v which complete the rhombus and give the corn-

muting diagram diagram below. 

XSE 

f 

/ \9  
X'S'E' 	 X"S"E" 

v /,,  

'A 
)çFFI , FI_JIII 

The proof is a straightforward, pointwise construction in Set and can be found 

in Section A.1. 

3.5.3.2 Category V 

We define V to be the category whose objects are pairs F = (F(°) , F(1) ), where 

F °  E 11, and F 1  E X. A morphism f F -+ C is given by a pair (f( 0) ,  f(l)) 

of morphisms f(°) E (F(°), G(°)), j(l) E (F(01),  G( ') ), where _(01) : V -* 
def 

is defined on objects F E V by F°1XSE 	x F'XSE  and F°' u¶ 

x F' U  (since if u E X(XSE, X'S'E') then, in particular, u E 1I(X, X')). 

Composition, in V, of f: F -* C, g: C -+ H is defined at XSE by 

(g f)(0) def (0) x=g x°f ° x 

(g f)(l) 	def (1) 
XSE = 9 XSE 0  (f°x 0 7r1, f'XSE 
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and identity 

de. idF° =f 
ldF(o) 

' 

def 
idF = 72 

where it2 : F °' —* F() is a projection. It is easy to check this definition of 

composition is indeed associative, i.e., V really is a category. Thus, for f: F —p C, 
f(ol) at XSE is defined by 

(01) 	def I XSE = ( f'°x ° in, f " xsE) 

which can easily be shown to be a natural transformation, i.e., a morphism of X. 

It is also straightforward to check that idp °' = idF(ol) and ( gf)) = 

i.e., _(01)  is a functor. 

For objects F, G e V, and morphism m: F —* C, we sometimes write FXSE 

and mxsE  for respectively F°'xsE  and m°'xsE  in the absence of ambiguity. 

We define product by (F(°), F(')) x (G (°) , G(') ) tef  (F(°)  x 	F' x G(') ). It 

immediately follows that _(°), —(') and (°') preserve products. For F, C E V, 
def we define function space by (F=G)= (F(°) C(°), F(°'=G('). Note that the 

exponent of the right component of the function space is F °'. And 

V(E x F,C) 

x 	G'° ) x 	x F °', G") by def. of morphism in V 

(E(° , F ° .G(°) ) x (E °') , F'°1 G") ) since i, it are cartesian closed 

V(E, F=G) 
	

by def. of exponential in V, 

that is, V is cartesian closed. 

3.5.3.3 Properties of V 

To aid presentation, we introduce functors A : 11 — V and IF : X — V, defined as 

follows, where 1 denotes the terminal object (and we overload notation by using 
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the same symbol for different terminal objects). 

LF(F,l) 
def 

Lu = (u, 1) 

WC!(1,G) 

Wu(1,uoir) 

where ir : F x C -* G is a projection. The following theorem states some useful 

properties of V. 

Theorem 1 	1. Functor A is full and faithful. That is, V(1F, zG) 1[(F, C). 

Functor A is right adjoint to _(°). That is, we have a natural isomorphism 

ul(F(°) , G) V(F, LXG). 

Functor A preserves products. That is L(F x C) L&F x LC. 

F=LC 

Functor W is right adjoint to 

Functor 'I' preserves products. 

WF=C W(F=C) 

F=WC 

LF=WC 

WFGLG 

The proofs are straightforward. For example, we can prove 3 as follows. For 

arbitrary F E 7), 

D(F,L(G x H)) 	(F(°) ,C x H) 
	

since A is r. adj. to 

(F(°) , C) x (F(°) , H) 
	

characteristic property of x 

V(F, LC) x V(F, LH) since A is r. adj. to 

D(F, LC x LH) 
	

characteristic property of x. 
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And since clearly F °' x C 	(F x WG) (° ') , we can prove 7 as follows. For 

arbitrary F E 

V(F, W(G=H)) 	F °', C=H) 

>t(F °')  x C, H) 

k((F x 

V(F x WG, WH) 

V(F, WG=WH) 

since 111  is r. adj. to _(01) 

since X is a ccc 

by earlier observation 

since 'I' is r. adj. to 

since V is a ccc. 

Part 4 is an immediate consequence of part 2, as can be seen below. For arbitrary 

H E V, since we know (F x C) (°)  = F°  x 

D(H, F=G) D(H x F, LG) 

(H(°)  x 	C) 

H(°) , F ° G) 

V(H, z(F ° =C)) 

since V is a ccc 

by part 2 and previous observation 

since 11 is a ccc 

by part 2. 

Similarly, parts 8 and 9 are immediate consequences of part 5. 

In particular, Theorem 1 tells us the following facts. From (1), we know that 

to give a morphism of type AF -+ LIC is to give a morphism in ui(F, C). Similarly, 

to give a morphism WF - WG is to give a global element of WF=WC, which, 

by (7), is to give a global element of 'J!(F=C), which is to give a global element 

of FG, i.e., a morphism in (F, C). And, from (10), we know that there are 

only constant morphisms of type WF -* LG. This last fact allows us to give 

interpretations to our types so that the only nontrivial morphisms into Prg are 

those from l[Fn], E[MnJJ and Var; specifically, there are no nontrivial maps I[natjl 
nor I[boolj to Prgfl. 

Finally we also have the following naturality lemma for morphisms in V. The 

proof falls out immediately from the fact that m = (m (°) , m (1) ) and m' are 

natural transformations. 

Lemma 2 ForallF,GEVandf:XSE—+X'S'E', themorphismm:G —.F 

is natural in the sense that F 01 1  0  mxsE = mx's'E' o 
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3.5.4 Interpretation 

We now give interpretations to the terms and types of our metalanguage. 

Each type 'i-  is interpreted as an object ft'rJl in V. Function space in the 

metalanguage is interpreted as function space in V; namely [cr —p rJ 
def 

Similarly, products in the metalanguage are products in D: namely fr x 

E[iExrfl. 
def 

For typing context F = x 1 :'r1 ,... , xk:Tk, we define its interpretation by 

HxjEdomrE[Till For context F, term a and type r, the typing judgement F > a r 

is interpreted as a morphism (of V) E F > a : T : I[F -* fr. When there is no 

risk of confusion, we simply denote its interpretation as 

Each constant c of type r has interpretation E[c,  a global element of frfl, that 

is, a morphism 1 -* E[rJ. 

For terms e, e' supposing t = ftF > e : o - r] and t' = F > e' o], we define 
def 

> ee' rfl = ev o (t', t) where ev is an evaluation morphism of V (which, we 

know is a cartesian-closed category). Also, for term e, supposing t = jF, x:o e: 
def 

T]J : Iq x 	-* fr, we define IF i> Ax°e : a —* A = curry(t): [[ F]1 -* 

And for JIx : [[Ffl -* fr, world XSE and 77 E [[F]1, we define I[x[xsE(ri)
def 

3.5.4.1 Predicates 

We now construct a contravariant functor Pred: D°1 - Poset, which we show 

satisfies criteria amounting to a certain model of higher-order logic, more precisely 

a tripos in the sense of [HJP80, Pit02]. We then appeal to a theorem of triposes 

(namely "soundness"), and conclude that our interpretation models higher-order 

logic. 

Definition 1 Let C be a presheaf in V. A predicate over C is given by a subset 

PxsE c G 01 XSE for each world XSE, such that for all worlds X'S'E', whenever 

f : XSE —* X'S'E', 

g E PXSE if G ° 1(g) E PX'S'E' 

We define 

def  
Pred(G) = {P 	i P s a predicate over G} 
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And we define a partial order < over Pred(G) by a pointwise lifting of subset 

inclusion: for U, V E Pred(G), we define U < V if UXSE 9 VXSE for all worlds 

XSE. Suppose m E V ° (F, C), that is, in: F G. For P E Pred(F) and 

world XSE, define 

QxsE 
def
= { x E G °' XSE I mxsE(x) E PXSE} 

We now proceed to show that Q E Pred(G). 

Suppose x e QXSE, that is, mxsE(x)  E  PXSE.  Since P is a predicate, 

we know that mxsE(x) rXlslE E PX'S'E'.  Thus by naturality, we know that 

mx's'E'(xrx,s,E,) E PX'S'E'.  So by definition of Q, we conclude XIXISEI  E 

QX'S'E'. 

Conversely, we show that if x rx's'E'  E Qx's'E'  then x e QXSE by using the 

same arguments as above but backwards. 

So we conclude that Q E Pred(G). We define Pred(m)(P) te  Q, which gives 

Pred(m) : Pred(G) — Pred(F), as required. 

Given m: C - F, we define a function Vm  : Pred(G) --> Pred(F) as follows. 

For U E Pred(G) and world XSE, define 

def 
(Vm (U))XSE = {x E F °'xsE I for all f : XSE — X'S'E', 

for all a e 
m(a) = XIXS/EF implies a e UX'S'E'} 

We now show that Vm(U) E Pred(F). 

Let f : XSE — X'S'E'. 

Assume x E (Vm U)XSE. We can show F(°') f (x) E  (Vm U)X'S'E' as follows. 

Let X"S"E" E X, g : X'S'E' —* X"S"E" and a E G °'x"s"E". Suppose 

mx"s"E"(a) = F(°1) 9 (F(01 ) 1 (x)). Since x E (Vm U)XSE and (i) gf : XSE — 

X"S"E", (ii) a e G °'x"s"E", and (iii) m(a) = F(01) 9 (F(01) 1 (x)) = XrX,,S,,E,,, we 

conclude that a E UX"S"E". That is, F(01) 1 (x) E (V m U)X'S'E'. 

Conversely, assume F(°') f (x) E (V m U)X'S'E'. We show that x E (Vm U)XSE 

using Lemma 1, as follows. Let X"S"E" e X, g : XSE —p X"S"E" and a e 
G(01 )x ,,s,,E,,. Suppose mx"s"E"  (a) = F01 9  (x). By appealing to Lemma 1, we 
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know there is world X"S"E" and morphisms 'u : X'S'E' -* X"S ... E" and 

v : X"S"E" —* X"S"E" such that uf = vg. We calculate: 

F °1 f (x) 

= F ° ' vg (x) 	 by assumption 

= F°'(mx"s"E"(a)) 	since mxus"E"(a) = F 01 9 (x) 

= 	 by naturahty (Lemma 2) 

Since F(°') f (x) E (V m U)X'S'E' and (i) u : X'S'E' -+ X"S"E", (ii) G °'(a) E 

G 01 x's'E', and (iii) F(°')(F(°')f(x)) = mX"S"E" (G (°') (a)), we conclude that 

E Ux"s"E". And since U is a predicate, we have a E UX"S"E", as 

required. 

So we conclude that Vm (U) E Pred(F). 

Functor Pred : V °" —* Poset satisfies particular properties listed in the next 

theorem. Note that these are essentially those of a tripos as defined in [HJP80] ex-

cept (1) the Beck condition has been weakened and (2) Pred(F) forms a Boolean 

algebra (vs. Heyting algebra) for F E V. This is because we are interested in 

a model of classical higher-order logic (vs. intuitionistic) and, for our purposes, 

the Beck condition in its restricted form as in the theorem below suffices for our 

purposes. We abuse convention (not just notation!) and call this a tripos. 4  

Theorem 2 Functor Pred : D °' -* Poset forms a tripos. That is, it has the 

following properties: 

• the sets Pred(F) form a Boolean algebra with respect to subset inclusion, 

and this structure is preserved by the morphism part of Pred; 

• the functor Pred is representable, i.e. there is an object Prop e V so that 

Pred(F) D(F, Prop); 

• for each morphism in : G — F, there is a function Vm  : Pred(G) -* 

Pred(F) so that U <Vm (V) iffPred(m)(U) <V, where < is the order of 

the boolean algebra; and 

4We note that the definitions of tripos differ in [HJP80] and [Pit021 (as explained in Remark 
4.6 of the latter). 
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• quantification commutes with substitution in the sense that: for A, B, C e 

V, f : A -+ B and U e Pred(B x C), we have Pred(f)(V B (U)) = 

V,, A (Pred(f x id)(U)), where 1 B : B x C -' B and irA : A x C -* A are 

projections. 

The proof can be found in Section A.1. 

We explicitly name the bijections in the proof of Pred(F) V(F, Prop): 

'F :Pred(F)4—V(F,Prop) 

XF : Pred(F) -* D(F, Prop) 

And, as defined in the proof, we recall 

def Prop = 1IIV{ff,tt} 

Now, provided we interpret Prop as Prop and V and D appropriately, we may 

conclude that our interpretation models higher-order logic. More explicitly, we 

note that 

evp, prop : (F=Prop) x F -* Prop 

and for projection ir : (F=i-Prop) x F - F=Prop, 

V,,. : Pred((F=Prop) x F) -* Pred(F=Prop) 

and so we define 

foraliF 
del
= V,r (Ic(evF,prop )) E Pred(F=Prop) 
de f 
= curry(x(forall 1 )) E D(1, (aflProp)=Prop) 

We define pointwise, for x, y E {ff, tt}: 

def Iftt if x = ff or y = tt 
Dy)

f otherwise. 
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To show that JDfl is well-defined, we note that, formally, we require 

	

E V(1, Prop='.PropProp) 
	

(global elt. in Prop=(Prop=Prop)) 

D(Prop x Prop, Prop) 
	

since V is a ccc 

	

(V{ff, tt} 2 , V{ff, tt}) 	since Prop WV{ff, tt}. 

However, for sets A, B and presheaf category C, we know that (VA, VB) 

Set(A,B). So it suffices to define I{1J as a function {ff,tt} 2  - { ff,tt}. 

So we conclude that our interpretation models higher-order logic. That is, 

using any reasonable axioms and rules for higher-order logic, we have F > P, if 

and only if EPI : Erl -* Prop is the constant morphism i '-+ tt. 

3.5.4.2 Forcing 

We now introduce forcing judgements which help us reason about interpretations 

of predicates. 

Let XSE be a world, F be a context and suppose 77  E ftFXSE,  i.e. ij(x) E 

FxsE(x) for all x E dom F. If F > P: Prop then we write 

XSE Fr,,j  P 

to mean 

PflxsE(i,) = tt 

We overload notation again and define, for u : XSE - X'S'E', the notation 

ftF(x)Jj((x)) . A consequence of this definition and that of predicate 

is the following invariant: whenever u : XSE - X'S'E', then XSE Fr,,7  P if 

and only if X'S'E' P. Moreover, a relation that satisfies this invariant 

corresponds to a predicate. 

Using this notation, it follows that 

XSE IFr,,7  Vx.P 

if Vu: XSE -p X'S'E'.Va e ft-rx's'E'.X'S'E'  lFr[x .r], ( ,71) [xa)  P 
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and 

XSE IFr ,, P D Q if XSE IFr ,, P implies XSE lHr , Q 

It is a straightforward calculation to show that these two equivalences follow from 

our definitions of ftV Y fl and 	fl. 
We note that UXSE 

def  = 0 defines a predicate and so there is no world XSE, 

r, 77  such that XSE false since false V VpropP.P and we can always choose 

U as an instantiation for P. 

Thus we obtain the corresponding results for the other logical connectives, 

namely 

XSE IFr ,, P A Q if 1XSE IHr, P and XSE IHr,, Q; 

XSE lHr,, P V Q if XSE IFr ,, P or XSE lF r ,, Q; 

XSE IHr ,, -P if not XSE 	P; and 

XSE Hr,, 7  3,x.P if there is world X'S'E', u : XSE —* X'S'E' and 

a E Mx's'E' such that X'S'E' II','  P, where r" 	F[x i—+ r] and 
, def 

77 = ( j)[x '—* a]. 

3.5.4.3 Leibniz equality 

We now see our first application of the forcing notation by showing that the 

interpretation of Leibniz equality is equality in the interpretation. 

First we show that equality over certain presheaves in the interpretation is 

a predicate. Let F E V and suppose that F preserves injectivity of morphisms 

in X, viz F,., is injective for morphism u in X (which are, in particular, injective 

functions). 

We define a family (SF)xsE c (F(° ')  x F°')xsE  indexed by worlds XSE by 

	

def 	 (01) 
(5F)xsE = {(x,x) x E F XSE} 

We observe, for morphism u XSE — X'S'E': if (x, x) E (6F)xsE then 

x F(° ')(x, x) = (F 01 (x), F °'(x)) e (8F)x's'E'; conversely, if (F(°')  x 
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F(°') )(x, y) E (5F)x' s'E',then F °'(x) = F(°') (y), and so by supposition, we 

conclude x = y, i.e., (x,y) E (SF)xsE. That is, t5F is a predicate over F2 . 

And since 

JF E Pred(F2) D(F2 , Prop) D(F, F=Prop) 

we may consider 8F  as a morphism ö from F into V(F, Prop) V(1, F='.Prop). 

Suppose F > a = b and rJJ preserves injectivity of morphisms. By definition 

of Leibniz equality, this is precisely I' > Vr+p ropP.P(a) D P(b). Since we know our 

interpretation models higher-order logic, we know for all XSE and 77 E ftFXSE, 

XSE IFr, Vr_prop -P.P(a) D P(b) 

That is, for ei: XSE —+ X'S'E' and p E (Predfr)x's'E', 

X'S'E' 1p,'  P(a) implies X'S'E' II ç', P(b) 

def 1- 	 , def where F' = i [P I—* (T —+ Prop)] and = (ijj[P i—* J. 
So, choosing 

def id: XSE —* XSE and p = (8 1 )xsE([a xsE ()) c fr °' xsE() 

since we know ftaxsE(77) E  {1[a]IXSE(?7)} 	 i.e., X'S'E' IF,71 

P(a), we must have X'S'E' IF r'' P(b), that is, jbflXSE E {E[aflxsE}. That is, 

bxsE( 17) = axsE(71). 

Conversely, suppose axsE(77) = E[bJJxsE(7)). So by naturality, for any u 
/ 	 / 	 ,def XSE - X , S, E ,

, ax's'E'(c'1) = bx's'E'(71), where i = iju. So certainly, 

X'S'E' Fr",,7' P(a) implies X'S'E' IFFI,,7/ P(b). 

Thus, provided fr preserves injectivity of morphisms, F > a = b if jal = 

So, when does F E V satisfy this injectivity requirement? The answer is, if 

and only if F °  and F' both preserve injectivity of morphisms: for u: XSE 

X'S'E', 

F(o) is injective (for u considered as a morphism of 11) and 

is injective. 
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This is straightforward to show. 

In particular, for any set A, the constant presheaf VA preserves injectivity of 

morphisms. Thus Prop preserves injectivity of morphisms. 

Furthermore, we can show for presheaves F, C, H where F, C preserve injectiv-

ity of morphisms, then so do F x G and H=F. Thus we obtain the corresponding 

results about objects in V. 

In fact, we interpret all the types introduced in Section 3.2 as objects in V 

which preserve injectivity of morphisms. 

3.5.4.4 Base types 

We interpret Warl = def LW and Prg 
de=f 

 i.P, where V and P are presheaves 

defined as follows. ForX,YEJIandu:X—*Y, 

v x 

V(x) 
def 
 

= U(X) 

Px
def   = programs with free variables among X, modulo a-conversion 
de 

P(a) =f a[u] 

where we write a[u] to denote the program a with all free occurrences of variables 

x replaced by u(x). For example, given 

def 
a = let z=false in if z then x else y 

E P{x, y } 

U: {x,y} -* {p,q,r} 

def I x E-* p 
u=c 

we define a[u] 
def = let z=false in if z then p else q, thus, a[u] E P{p ,q,r}. Clearly, 

V, P preserve injectivity of morphisms since morphisms in X are, in particular, 

injective functions. 

It suffices for us to give only special cases for the definition of [[Rcd]I.  First of 
Ti 

all, let us introduce two auxiliary presheaves for the two special cases. Supposing 
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that S is a set, F 	and G E X, we define pointwise 

(Q')x 
de , 
=l ) - (Fx) 

(Q '

def  
)(f) = F o f 

where u : X - X' and f: S -k Fx, ,and 

def 
(R)xsE = S -k  (GK) 

def 
(R)(g) = 	o g 

where v: XSE - X'S'E' and g: S - GX'S'E'. Now supposing frill = VS for 

some set S, fr2 1 = LF for some F E 11 and fr3ll = WG for some C e k, we can 

define the two special cases by 

E[RcdJ 	(Q z') 

ftRcdll 	T(R) 

It can easily be checked that these two special cases are sufficient for us to inter-

pret all our defined types and axioms. Clearly, provided J-rJ preserves injectivity 

of morphisms, then so does ftRcd]j. 

The remaining types are defined as the following constant objects of V. 

1[Fnll 
def = LVfname 

ft Mn]J del = LVmname 
, ftvalfl def = iI'VvaI 

ftSpll 
def 
 = lPVspecs 

ftnatll 
del = WVN 

ftboolfl def 
= XFVB 

where, of course, N is the set of natural numbers, and 3 is the set {ff,tt}. 

Immediately, we see the interpretations of types defined above preserve injectivity 

of morphisms, since we know that constant presheaves do. 



3.5. Soundness 
	 71 

Recall TR in the metalogic is an abbreviation for Val -* (Val -* Fn -* VaI) 2 -p 

(Val - Prop)2 -+ Prop. Thus, 

TR = 

VaI x (&all x Fnfl)='4{Val]j) 2  x (VaIfl=4'Prop)2 =tProp 

and since VaI]1 and JValJ x Fn]j are constant, 

val x (val x fname - val) 2  x Pow(val) 2  -* {ff, tt} 

a function space in Set. 

3.5.4.5 Transition relations 

Since we know that each syntactically constructed type is interpreted as an object 

of V which preserves injectivity of morphisms, we may use the equivalences in 

Section 3.5.4.2 and 3.5.4.3, and, provided our axioms are consistent: for T, T', U 

suchthatIThT:TR, FT':TR, FU:VaI — TR, 

F > T c T' if for all worlds XSE and 'ij E ftFEXSE, we have 

TxsE(77) 	T'flXSE(I)) 

for all XSE, ri E ftFExsE, we have Res(e)bcsE(77) = 

for all XSE, 'i  e rXSE, we have 

I[Tfsel(X ,  f)flxsE(rl) = Rme(XXSE(), fxsE(1)) 

for all XSE, 'rj E MXSE, we have 

Tfd(x, f, y)]IxsE(1) = T ' (ftxxsE(i) , ftfxsE(r/), YxsE( 71)) 

for all XSE, i E JF J XSE, we have T0bJ(x)]xsE(7j) = 	where f is 

an enumeration of {fxsE(u/) I f e dom()} and i is an enumeration of 

{ftxfxsE() I f E dom()} which is consistent with f; and 

6. for all XSE, we have 71 e RrjxsE, T; U]IXSE(71) = [TçsE(77); U}IxsE(11). 
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3.5.4.6 Interpretation of record constants and axioms 

Formally, for the record manipulation constants, we require 

Iookup,fl E V(1, 

Jupdate,j E D(1, ftRcd rfl=[Rcd1j) 

empty , j E V(1, ftRcdi1J) 

It suffices to consider, for S a set, F e 11, G E X and F, C preserve injectivity 

of morphisms, cases (1) Jul = LWS and I-rj = LIF and (2) Jul = 'IJVS and 

J-rl = WG. 

Suppose case (1), that is, suppose Jul = LWS and 	= LF. We note that 

V(1, Rcd 	flIJr]j=Prop) 	Pred({Rcdfl x Jul x 

So up to isomorphism, it suffices to define [[Iookup,]JxsE LXSE for (LxsE) a 

family of sets with 

LXSE 9 I[RCdXSE X  ftcijjxsE X  frIIXSE 

(S---Fx)xSxFx 

and satisfying the characteristic property of predicate. So we define 

def 
LXSE = {(r, i, a) I i E dom(r) A r(i) = a} 

Let f : XSE - X'S'E' be a morphism. Since F preserves injectivity of mor-

phisms, clearly 

(F1 o r, i, F1(a)) e LX'SIE'  if (r, i, a) E LXSE 

the left-hand side of which is precisely 

(ftRcdi1j x Jul x rfl)1(r,i,a) € LX'S'E! 

That is, L is a predicate. 

Up to isomorphism, we require 

i[update,rfl E ii(Qç <  VS x F, Q') 

emptyar fl E (1, Q) 
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Sowedefine,forr:S—Fx,iES,aEFx, 

ftupdatea 	
de f 

,rx(r,z,a) = r[z '-+ a] 

Remptya,,AX O , the everywhere undefined partial function. 

It remains to check that these definitions are natural transformations. Since 

i = i L I we have (r, i, a) = (r L i,  ar)  and so 

(updatex(r, i, a)) L 
= (r[i i- a]) [u 	by definition 

= (F o r[i i-* a]) 	by definition of (Q') 

= (r 1) [i i* (a j] 	by definition of composition. 

We note that O 	F,. o 0 = 0. Thus 0 is a global element of Q. 

Suppose case (2), that is, suppose oi = WVS and fr = 'IC. Using a similar 
def 

argument as before, it suffices to define E[ I OO kUPa,rJXSE 	LXSE for a predicate 

L. In this case, we define L so that LXSE 9 (S - GXSE) x S x GXSE.  Let 

f: XSE -* X'S'E' be a morphism. Since C preserves injectivity of morphisms, 

clearly 

(Cf o r, i, Gf(a)) e Lx's'E' if (r)  i, a) e LXSE 

the left-hand side of which is precisely 

(I[Rcd]I x ftoij x I[r]1)f(r,i,a) E Lx's'E' 

That is, L is a predicate. 

Up to isomorphism, we require 

Ilupdatea,rJI E (R X VS x C, R') 

[emptyj e i(1, R) 

So we define, for r : S -k  GXSE, i e 5, a E GXSE, 

del 
update,jxsE(r, z, a) = r[z F-p a] 

1 empty,]xsE  0 , the everywhere undefined partial function. 
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We can show that these definitions give natural transformations as in the previous 

case. 

We check the axioms rcd..parfun, rcd.update and rcd_empty using the forcing 

notation as follows. Both of the above cases use the same reasoning. Let XSE be 

a world and suppose we have I',i7 such that i(x) E FflxsE(x) for all x E dom(F). 

For convenience, let us also identify some variables with metavariables, namely 

suppose i(r) = r, = i, ii(a) = a and i(a') = a'. Certainly, if i E dom(r), 

r(i) = a and r(i) = a', then since r is a partial function, it must be the case 

that a = a'. Thus XSE 1F,,7  Iookup(r, i, a) and XSE lFr, ,7  Iookup(r, i, a') imply 

XSE IFp, a = a'. Thus 

XSE Hr',, 7  Iookup(r, i, a) D Iookup(r, i, a') D a = a' 

Thus axiom rcd..parfun is valid. 

For axiom rcd_update, it is certainly the case that if i = i' then i' e dom(r[i 

a]) and (r[i i- a])(i') = a, by the definition of overloading -[- i-p  -]. Thus 

XSE I1 ç ,,7  i = i' D Iookup(update(r, i, a), i', a) 

Also, if i 	i', then 

i' E dom(r[i '-p a]) and (r[i i-  a])(i') = a' 

if i' E dom(r) and r(i') = a' 

Thus 

XSE IF 1 ,,7  i 54 i' D. Iookup(update(r, i, a), i', a') 	Iookup(r, i', a') 

So we conclude that axiom rcdupdate is valid. 

Finally, there are no i, a such that i E dom(0). Thus 

XSE IF- 1 ,,7  -itookup(empty, i, a) 

That is, axiom rcd..empty is valid. 
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3.5.4.7 Program logic global elements 

Let us now consider the specification constructors. Formally, we require 

ftBoolfl E D(1, ftSpfl 

ftNat E V(1, ftSp) 

ftObjfl e D(1, ftRcd -+ Rcd SI,>TR 
-  Sp) 

def 	 . 	 . 	 . 	 . . 	 p01' But since ftSpfl = 'IfVspecs, and using the fact that iji  is right adjoint to -' 

we have V(1, {Sp]J) = X(1, Vspecs) = specs. Hence we can define IlB 	
def

oolfi = Bool 

up to isomorphism. Similarly, we define E[Nat]1 	Nat. Using the characteristic 

property of function space and the fact that IF is right adjoint to ('), we have 

1)(1, ftRcd — RcdT 	Spfl) 

V(ftRcdfl x 	 ftSpfl 	 char. ppty of f. space 

(ftRcdfl' °' x 	 Vspecs) 	by Theorem 1 part 9. 

Thus, up to isomorphism, ftObjfl is a natural transformation in X and 

ftObj]IxSE: ftRCd ]J? 	dV S ( T E x ftRc R l ) — specs Mn 	IIXSE  

It is straightforward to check that 

ft ds (01)  
Rc Fn]]XSE — (fname -k  specs) 

ftRCdVaISPXTR (01) 	(m m - nae 	val -f specs x trans) Mn 	IIXSE - 

That is, ftObjxsE : (fname - specs)x(mname -k  val -~ specs xtrans) --4 Specs, up 

to isomorphism. For A: fname -k  specs and B: mname — (val — specs) x (val -* 

trans), we can thus define 

def E BoolsjXSE = Bool 

ft Natsxs 
def  Nat 

ftObjsExsE(A, B) 
f [f=A(f)1EmA ,  m=B(m)m 0m] 

We give interpretations of program term constructors by first defining natural 

transformations in L Provided we are happy these definitions really give natural 
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transformations, we know that their images under A are morphisms in V. And 

since V is cartesian closed, this is tantamount to finding the required global 

elements of V. 

For x, y E X, z V X, f E fname, m E mname, a, a0 , a 1  E Px, b E (V'P), 

: fname —s  Vx and i: mname -k  (V=P)x, we define natural transformations 
ffalse ,  ftrue ,  flet ,  fobi ,  1if f var ,  ffsel ,  fminv ,  ffuPd of 11 by 

J 
jrfalse

x 
 def 

,ctrue 	del 
J x=tt 

fletx (a b) 
de f 
= let z=a in bxu{}(z) 

1obJ ( 
	) = 

def [f_...(f)fEdom , rn=c(z)(m)xu{} ()mom(b)] 

def 
fx(x, a0 , a1 ) = if x then a0  else a 1  

fvar 	del (x) = 

ffsel 	
del 

X(Xf) = x.f 

fminvx(x 	
def 

 in) = x.m() 

ffuPdx(xfy) def  = x.f:=y 

Except, perhaps, for fletx and fobix, these definitions clearly give natural trans-

formations. 

Let us look more closely at the definition of f let and see why it is a natural 

transformation. We need to show that f kt is well defined since z 0 X is chosen 

arbitrarily. Suppose a € Px, b e (V=P)x and z 0 X. Recall (V=P)x is a 

set of families (f,y)x—y  of compatible morphisms. Hence b is one such family. 

Thus bxu{}  is a function from VXU{Z} = X U {z} into PXU{z}.  In particular, we 

can form bxu{}(z)  giving an element of PXU{z}.  That is, bxu{}(z)  is a program 
def 

with free variables in X U {z}. And so fletx(a,  b) = let z=a in bxu{}(z)  is in 

Px. 

Now we show that the definition of flet(a,  b) is independent of the choice of z. 

Consider, for some z' 0 X, the substitution bxu{}(z)[z'/z].  Since bxu{}(z) e 

PXU{z}, the substitution is precisely the image of bXU{z}  (z) under the action of 

P,,, where p: X U {z} - X U {z'} is the substitution map. Since b is a compatible 
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family of transformations, 

vxu{z} bxu{} PXtj 

I 
{z} 

vxu{z,} 

___ 

bxu{'} 

commutes. Thus 

bxu{}(z)[z'/z] = P(bx u{}(z)) = bxu{'}(V(z)) = bxu{'}(z') . 	(3.6) 

Hence let z'=a in bxu{'}(z ') 	let z'=a in bxu{}(z)[z'/z].  Finally, by a- 

conversion, we conclude that let z=a in bxu{}(z) = let z'—a in bxu{'}(z'), 

precisely the fact that the definition of fret  is independent of the choice of z. 

It remains to show that f 
let is a natural transformation. Namely, 

Px x (VP) x 
 fletx

'Px 

P x (VP) 	 Pp  

Py  x (VP)y 	Py  
.clet 
Jy 

commutes for p: X - Y. Let a E Px and b e (V=P)x. Chasing the diagram 

first across then down, we have (let z=a in bxu{}(z))[p].  Chasing the diagram 

first down then across, we have let z'=a[p] in b[p]yu{'}(z').  We show that these 

two expressions are equal using naturality and the following commutativity prop-

erty: 

Xc 	XU{z} 

p 

Yc -. 	YU{z'} 

where p+  is an extension of p that maps z to z'. 
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We can use a similar argument to show that f0b  is a natural transformation. 

Similarly, to find global elements V(1, F='.lJVaI1I),  we find natural transforma-

tions F °', VvaI). So, for v E J, n E N and world XSE, we define functions 

exsE :JB-4valandexsE valinXby 

N 	def 
exsE(v) = V 

B 	def 
exsE(n) = Ti 

and so eB : V3 —* VvaI and eN : VN —* VvaI are natural transformations 

(morphisms of ). Thus, we can define, up to isomorphism, 

[ booI 	
def 

] = lfeB  

de f 
natvi]1 = We N 

 

def 
and since [{VarI] (°' ) XsE = X and VaI]] = VvaI, it suffices to define I[varvaijl  as a 

family of functions X —p val: 

def 
1varvaIxsE = S 

This definition gives a natural transformation by the definition of morphism in 

X. (I.e. A morphism u: XSE —* X'S'E' is an injective function u: X —* X' 

such that for all x E X, both S'(u(x)) = S(x) and E'(u(x)) = E(x).) 

3.5.4.8 Program logic predicates 

We define auxiliary relations corresponding to subsumption (<:) and derivability 

([— : — :: —]). These auxiliary definitions will not only help us to interpret the 

corresponding relations of the embedding, but also allow us to prove the main 

result in two manageable steps (finding a model and then proving soundness in 

the model.) Tables 3.3 and 3.4 give these auxiliary definitions of — IF — : — :: — 

and — <: aux — 

The definitions use the functions: R : val — trans defined by 

, def 
R(v) = {(r, a, &, alloc, alloc) I Res(v')} 
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function Rfme : val x fname - trans defined pointwise by 

Rfame(h, 1) = {(r, &, 6, al'loc, alloc) I Tfsel(h, f)} 

function Tobj : fname c x  vaVc 	trans defined by 

def T0bJ(f, ) = {( r, o, a, alloc, alloc) I Tb(7)} 

where the domain ofis the set of field names in f and for f2 E  j, we define 
def 

x 1 ; function TfuId : val x fname x val -+ trans defined by 

def 	.. 
f, y) = {( r, o, o, alloc, alloc) I Tfsel(X, f, y)} 

We overload R and write R(h.f) for Rfme(h, f). 

Also, given T e trans and U : val -* trans, we define their composition 

T; U E trans by 

(T; U) 	{(r, 6, 6, al'loc, alloc) I 	alloc, x. (x, 6, U, al'loc, alloc) E T A 

(r, U )  6, alloc, alloc) e U(x) } 

This is the semantic counterpart of the syntactic composition operator. 

We can check that these relations are predicates, i.e. 

def 
UXSE = {(A,A') IA <: au,, A'} 

gives U E Pred(ftSpE 2 ), and 

VXSE
def  

 = {(a,A,T) I XSEII- a: A:: T} 

gives V E Pred(ftPrgfl x 	x ftTR). For - <:aux  -, this is trivial since its 

definition is independent of XSE and Spfl 2  is constant. The case for - II- —: - 

- is a bit more involved since [Prgfl is not a constant presheaf. We show that it is 

a predicate by induction over program syntax: gIven U: XSE -* X'S'E', to show 

XSEIF- a: A:: Tiff X'S'E'U- a[u] : A:: Twe may assume XSEII- a': A':: T' 

if X'S'E' II- a[u] : A' :: T' for all (strict) subterms a' of a. (Recall that a[u] 

denotes a whose free variables are renamed by u, i.e. the definition ftPrg(a).) 

The following lemma is useful. 
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Lemma 3 For A e specs, B e val -* specs, U E val -f trans, a E Px, given 

u : XSE -* X'S'E': (1) 

Vv : XSE -p X"S"E".Vx E X" 

E"(x) = A == X"S"E" IF- a[v] : B(S"(x)) :: U(S"(x)) 

implies 

Vw : X'S'E' -* X"S"E".Vx E X" 

E"(x) = A ==> X"S"E" II- a[u]{w} B(S"(x)) :: U(S"(x)) 

and (2) 

Vw : X'S'E' -p X"S"E".Vx E X" 

E"(x) = A ==> X"S"E" U- a[u][w] : B(S"(x)) :: U(S"(x)) 

implies 

Vv : XSE -* X"S"E".Vx E X".g X"S"E" -p X"S"E". 

E"(x) = A ==> X"S"E" II- a[v]{g} : B(S"(x)):: U(S"(x)) 

Proof Suppose 

Vv : XSE -* X"S"E".Vx E X" 

E"(x) = A == X''S"E" IF a[vj: B(S"(x)) U(S"(x)) 

Let w : X'S'E' - X"S"E", x E X" and E"(x) = A. Since (i) wit : XSE -* 

X"S"E", (ii) x E X", and (iii) E"(x) = A, we know X"S"E" IF a[wu] 

B(S"(x)) U(S"(x)). But a[wu] = a[u][w]. 

Conversely, suppose 

Vw : X'S'E' - X"S"E".Vx E X". 

E"(x) = A == X"S"E" II- a[u][w] : B(S"(x)):: U(S"(x)) 

Let v : XSE - X"S"E", x e X" and E"(x) = A. By Lemma 1, we know that 

there is world X"S"E", f : X'S'E' -* X"S ... E" and g X"S"E" -+ X"S"E" 

such that fu = gv. Since (i) f : X'S'E' - X"S"E', (ii) g(x) e X", and 

(iii) E"(g(x)) = E"(x) = A, we know X ... S"E" II- a[u][f] : B(S'"(g(x))) 
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U(S"(g(x))). But a[u][f] = a[fu] = a[gv] = a[v][g] and S ... (g(x)) = S"(x). 

Thus, in fact, X"S"E" II- a[v][g] : B(S"(x)) :: U(S"(x)). 	 0 

We can prove that — IF — : — :: - is a predicate by induction over AL 

syntax. To demonstrate how the previous lemma is useful, we give the case 

c let x=a in b. 

Suppose XSE IF c : A" :: T". So we may assume that there are A, A', T, U 

such that 

A <:aux A 

T;UCT" 

XSEII-a:A::T 

Vv : XSE —* X"S"E".Vx E X". 

E"(x) = A == X"S"E" II- b[v] : A':: U(S"(x)) 

By part (1) of our lemma, we can conclude 

Vw : X'S'E' — X"S"E".Vx E X". 

E"(x) = A == X"S"E" IF b[u][w] : A' :: U(S"(x)) 

By our induction hypothesis, we can conclude 

X'S'E' II- a[u] : A :: T 

So by the definition of — II- — : — :: —, we know XSE II- c[u] : A" :: T". 

Conversely, suppose X'S'E' II- c[u] : A" :: T". So we may assume that there 

are A, A', T, U such that 

A <:aux A 

T;UCT" 

X'S'E' II- a[u] : A :: T 

Vw X'S'E' —f X"S"E" Vx E X" 

E"(x) = A == X"S"E" II- b[u][w] : A' :: U(S"(x)) 

Let v : XSE — X"S"E", x E X" and E"(x) = A. By part (2) of our lemma, 

we know there is g : X"S"E" -* X"S"E" such that X"S"E" IF- a[v] [g] 
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Bool <:aux Bool 

Nat <:aux Nat 

dom A' C dom A Af = A fEdom(A')  dom fi' C dom 	Bm  ::-~: B mEdom(B') 

[A,ä] <:aux [A',fl'] 
def 

where (B, U) < (B', U') = Vh E locn.B(h) <:aux B(h) A U(h) ç U'(h) 

Table 3.3: Auxiliary subsumption relation. For A,A' E specs, we define A <:aux A' 

to be the smallest relation closed under these rules. Note: we write Af  for the unique 

x such that lookup(A, f, x), and similarly for Bm , B. 

B(S"(x)) :: U(S"(x)). So by our induction hypothesis, we know X"S"E" II- a[v]: 

B(S"(x)) :: U(S"(x)). That is, we know 

Vv : XSE - X"S"E".Vx E X". 

E"(x) = A == X"S"E" IF- a[v] : B(S"(x)) :: U(S"(x)) 

By our induction hypothesis, we also know 

XSEIF-a:A::T. 

And so by the definition of - II- - : —:: -, we know 

XSEII-c:A"::T" 

The case for c 	[f=x2 , m=c(y3 )b3 ] is similar. The remaining cases are 

straightforward to show using the induction hypothesis. 

Since the auxiliary relations defined in Tables 3.4 and 3.3 are predicates, 

we can interpret the assumption relation [— : —] and the derivability relation 

[— : — :: —] as follows 

XSE IFr , [a: A :: T] if XSE IF- ftaxsE(ii) : I[Aflx-sE(ul) :: ftTx sE('q) 

XSE IHr, A <: A' if A] xsE ('q) <:a EI4'1IxsE(71) 
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XSEII-a:A::T A<: a A' TCT' 

XSE IF a : A' :: T' 

XSE IF x: E(x) :: R(S(x)) 

XSE II- false: boot :: R(ff) XSE IF true: bool :: R(tt) 

XSE II- x: boot :: R(S(x)) 

XSE II- a 0  : Bo (S(x)) :: Uo (S(x)) B 0 (tt) = B(tt) U0 (tt) = U(tt) 

XSE II- a : Bi (S(x)) :: Ui (S(x)) B 1 (tt) = B(tt) U1 (tt) = U(tt) 

XSE IF if x then a0  else a1  : B(S(x)) :: U(S(x)) 

XSEII-a:A::T 

Vu : XSE -* X'S'E'.Vx E X'. 

E'(x) = A == X'S'E' IF b[u] : A':: U(S'(x)) 

XSEII- let x=a in b:A' ::T;U 

A del  [f=A lk, mj (Bj , ()i1] S(s) 	S(x i),... , S(x4 

XSE IF x2 : A. :: R(S(x 2 )) 

Vu: XSE -* XS jE) .Vy j  E X'. 

E3 (y3 ) = A == X2 S3 E IF b3 [u] : B(S3 (y)) :: U3 (S3 (y3 )) 

XSE II- [f=x2 , m3 =c(y)b3 (y3 )] : A:: Tobi(T S()) 

XSE IF x: [f=A] :: R(S(x)) 
XSE II- x.f : A:: R(S(x).f) 

XSE II- x: [n=(B, U)] :: R(S(x)) 
XSE II- x.m() : B(S(x)) :: U(S(x)) 

XSE II- x: A:: R(S(x)) XSE IF- y : Ak :: R(S(y)) 
XSE IF x.fk: =y:  A :: TP'(S(x), fk,  S(y)) 

Table 3.4: Auxiliary derivability relation. For world XSE, program a E Px, A e 

specs, and T E trans, we define XSE IF a : A:: T to be the smallest relation closed 

under these rules. 
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and since UXSE  V {(x,A) E X x specs I E(x) = Al gives a predicate U by the 

definition of morphism in X, we can define 

XSE IH 1 , [x : A] if E(frxsE(i)) = I{AflxsE(i) 

3.5.4.9 Interpretation 	models the axioms for AL 

Our interpretation models the axioms introduced in Section 3.2.1, as stated in 

the next lemma. 

Lemma 4 Record axioms rcdparfun, rcdempty and rcdupdate; subspecifi-

cation axioms ss_obj, sa.bool and ss_nat; and program logic axioms wa.subs, 

ws_constf, w&constt, w&.nat, w&.natop, wa.cond, wslet, w&.minv, wsisel, ws_obj, 

ws_fupd introduced in Section 3.2.1 are true in our interpretation. 

The proof of this lemma requires computing the interpretation of each axiom 

and checking that it does take value tt everywhere. We use forcing judgements 

to make this task more manageable. We use the definition in Table 3.4 and find 

that all the axioms are true. (This is no coincidence!) However, the following 

lemma proves useful. 

Lemma 5 We have 

XSE IFp V arX.[X : A'] D 

if, forallu:XSE—X'S'E' andxX', 

E'(x) = ftA'flx's'E'(ri') = 	X'S'E' IFr, q' 

where 

def i =i[xi—*Var] 
, def 

ii = (iiL)[x 	x] 

Note that we are abusing notation here since x is both a formal variable of 

the metalanguage and also an element of Varx's'E' = X'. 
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Proof (Lemma 5) We observe 

XSE IHr,,7  V arX.[X : A'] 

if for worlds X'S'E', morphism u : XSE —* X'S'E' and x E Varflx's'E' 

X'S'E' IHr',' [x : A'] implies X'S'E' 	q 

where F', 77'  are defined as in the statement of the lemma. 

But, by definition 

X'S'E' IHr,,# [x : A'] if E(y) = ftA 'flx'slE/(q ') 

and 

rr v,ar ii  x's'E' = A. 

IMI 

Proof (Lemma 4) The proof proceeds by giving meaning to the axioms using 

forcing judgements. The cases are straightforward and we give the case for wsiet 

as an example. Suppose 

0 IHr,,7  Va, b, A', T", A, T, U. 

[a : A :: T] D 

(Vx.[x : A] D [b(x) : A' :: U(x)]) D 

(T;UCT") D 

[Iet(a,b) : B:: T"] 

Thus, using the equivalences for D and V introduced in Section 3.5.4.2, 

Va, b, A', T", A, T, U. 

XSEIF-a:A::T 

and 

XSE l kr,,7  Vx.[x : A] D [b(x) : A':: U(x)] 

and 

XSE IF r ,,, T; U C T" 

implies 

XSE II- let x=a in b(x) : B :: T" 
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where 77 = (a i-f a, b i- b, A' i-  A', T" i-* T", A i -f A, T i-+ T, U '-p U). So by 

Lemma 5 and the equivalences in Section 3.5.4.5, we have 

Va, b, A', T", A, T, U. 

XSEII-a:A::T 

and 

Vu : XSE - X'S'E'.Vx E X'.E'(x) = A = X'S'E' II- b(s) : A':: U(s) 

and 

T;U CT" 

implies 

XSE IF let x=a in b(s) : B :: T" 

This is true by the definition of - II- - : - :: - in Table 3.4. 	 0 

3.5.5 Justification 

Soundness in our model is expressed as the following theorem which is reminiscent 

of Theorem 1 of [AL981. 

Theorem 3 Assume that the operational semantics says that program b yields 

result v when run with an empty stack and an empty initial store. If II- rb'flo 

booI0 :: Res(tt)0 then v is boolean tt. Similarly, if II- b']0 : E[booIø 

ftRes(ff)J0 then v is boolean If. 

We now take a step back and consider the importance of this theorem in 

relation to the proof of soundness of our embedding. Since we know that our 

interpretation models higher-order logic and the axioms of our embedding, we 

know that if we can derive a judgement of the form 

[a : A :: T] 

it follows that, for all XSE, 

XSE IF ftaxsE : AXSE:: ftT}JXSE 

So now Theorem 3 gives us a soundness result in the style of the soundness 

theorem in [AL98]. 
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To prove Theorem 3, we follow [AL98], and prove a more general theorem 

(namely Theorem 4) which we can prove directly. We follow bc. cit. and use 

the technique of store specifications and introduce similar auxiliary definitions 

relating to store specifications. 

Within the logic, stores are partial mappings from location and field name 

pairs into the set of results; closures of methods are omitted. We call these 

stores flat stores to distinguish them from stores that are used in the operational 

semantics. Recall, va I is the set of values (which includes Iocn, the set of locations) 

and fname is the set of field names. We define 

vat) 
def 	

- ( fname flstore = vat 	-k   

	

We let ir be the projection mapping a store o E store 	vat - ((fname 

vat) x (mname -i  vat)) to the fiatstore a' E fistore which is a with all information 

about methods omitted. We define an embedding fi : (vat x ftstore x fistore) —* 

(vat x store2  x Pow(val) 2) as follows. 

def 
fl(v,a,a) = (v,&,á,al'loc,alloc) 

where 

alloc 
de  f

dom(a) 
def 	, 

alloc = dom(a) 

def Ia(h)(f) if defined 
a(h,f) = 

I J.. 	otherwise 

- 	def I a'(h)(f) if defined 
a(,f) = 

J.. 	otherwise 

and I is some arbitrary but fixed element of val (which certainly is not empty). 

The following lemma about ft is straightforward to prove. 

Lemma 6 The embedding fI satisfies the following properties 

1. If fI(ii, a, &) E T and fI(v, &, a') e U(&) then fI(v, a, a') E T; U. 



88 	 Chapter 3. AL in higher-order logic 

For any v E vat, we have fI(v, a, a) E R(v) 

For anyx, f such that cr(x)(f) is defined, we have ft(a(x)(f), a, a) E R(x.f). 

For any j x, h such that h 0 dom(a), we have 

fI(h,a,a[hF—(fiF--*xi,... ,fkXk)])ET(f,X) 

For any x, f, y such that a(x) is defined, we have fI(x, o, a[x -* (a(x)[f 

y])]) e 7fuPd(x,f,y). 

Theorem 4 If 

 El=a 

 EI=S:E 

 XSEII-a:A::Tand 

 a,St-a-*v,a' 

then there is E' such that 

 fI(v, a, a') E T 

 E'> 

 E' = a' and 

 >' 

Here E and E' are store specifications, maps from val into specs, that in par-

ticular map the constants of base type to their corresponding specification. In-

formally: we write E v : A to mean that given a store satisfying E, value v has 

specification A; we write E = S: E to mean that stack S satisfies the environ-

ment (which can be considered as a stack specification) E; and we write E = a 

to mean that a satisfies E. The reader is referred to [AL98] for the motivations 

and intuitions for these definitions. 
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Definition 2 We have the following auxiliary definitions relating to store speci-

fications. 

E v : A if and only if F(v) <:a A 

E S: E is defined inductively by 

•>=O:O 

• ES:EandEv:AimpliesE=S[xi—v]:E[xi.--*A] 

E = a exactly when dom E = dom a and for all v, supposing E(v) = [f = 

= (B,U)] = A 

• EI=cr(v,f2):Aj 

• for a(v, m3 ) = (c(y3 )b3 , S3 ) there is E such that 

ES,:E 

and 

X'S'E' It- b3  : B(v) :: (J,(v) 

where X'=XU{y 3 },E'=E[y3  A] and S'=S[y2  v]. 

Proof (Theorem 4) We proceed by induction over the operational semantics: 

induction over the depth of the derivation of a, S I- a -'.* v, a'. Hence we consider 

each operational rule in turn. 

• Case osiet. Let us write c for let x=a in b. We have as our assumptions 

(3.7) 

E=S:E 	 (3.8) 

XSEIF-c:C::V 	 (3.9) 

a,S I- let x=a in b-'.-*v,a' 	 (3.10) 

Our induction hypothesis is exactly the text of Theorem 4 for those a, S, 

a, v and a' such that a, S I- a -'.--* v, a' has appeared in the derivation of 
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assumption 3.10. Using the definition in Table 3.4, assumption 3.9 implies 

that there are A, A', T, U such that 

	

A t  <:aux C 	 (3.11) 

	

T;UCV 	 (3.12) 

and 

XSEII-a:A::T 	 (3.13) 

Vu : XSE -* X'S'E'.Vx E X'.E'(x) = A == X'S'E' It- b[u] : A':: U(S'(x)) 

(3.14) 

By inspecting the operational semantics, it is clear that to derive 3.10 we 

must have derived, for some 1', r, 

(3.15) 

&,S[xi—*'iiIE-b-.-+v,o' . 	 (3.16) 

	

def 	 ,def 
In particular, if we choose x X, X = X U {x}, E = E[x i-* A] and 

def 	 ,.def 	, U(Y) 
= y and let v S (x) then from 3.14 we know 

X'S'E' IF b: A' :: U(ui) . 	 (3.17) 

The conclusion from applying our induction hypothesis to conclusions 3.15, 

3.7, 3.8 and 3.13 is: there exists E such that 

fI(,o,&) eT (3.18) 

> E (3.19) 

(3.20) 

1=i:A. (3.21) 

Since conclusion 3.19 merely states that E is an extension of E, it imme-

diately follows that = S : E. Together with conclusion 3.21, we thus 

have 

1= S[x i- 1,] : E[x '- A] 	 (3.22) 
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We thus conclude, by applying the induction hypothesis to conclusions 3.16, 

3.20, 3.22 and 3.17: there is >' such that 

fI(v,&,a') E U(b) 

E'J=v:A'. 

Remember that we require to prove: 

fI(v,o,a')EV 

E'>E 

E' = a' and 

iv. E' 

(3.23) 

(3.24) 

(3.25) 

(3.26) 

We prove these goals as follows: (i) using Lemma 6 part 1 and conclu-

sions 3.18 and 3.23, and the transitivity of c and conclusion 3.12; (ii) using 

the transitivity of > and conclusions 3.19 and 3.24; (iii) is precisely conclu-

sion 3.25; and (iv) using the transitivity of - <: a - and conclusions 3.26 

and 3.11. 

• Case os.minv. Assume 

S(x) = h h e Iocn a(h)(m) = (c(y)b, S') 

a,S'[y i—+ h] I- b--- v,a' 
(3.27) 

a, S I- x.m() -'-* v, a' 

E = a 	 (3.28) 

(3.29) 

XSE II- x.m() : C:: V . 	 (3.30) 

From assumption 3.30 we conclude that there are B and U such that 

B(h) <:aux C 

U(h)cV 

XSEIF-x:[m:B::U]::R(5(x)) 
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And so E(h) = [... , m: B':: U', • .], where B'(h) <:aux B(h) and U'(h) c 
U(h). From assumption 3.29, we conclude that S(x) : E(x), that is 

E = h: E(x). Therefore (h) <:a E(x). And so E(h) = [... , in: B: 

U,. .] where B(h) <:aux B(h) and U(h) C U'(h). From assumption 3.28, 

we conclude that there is E' such that E = S': E' and 

X' U {y}S'[y —* h]E'[y -* E(h)] IF b: B(h) :: IJT(h) . 	(3.31) 

Furthermore 

E = S'[y i—* Ii] : E'[y '—p E(h)] . 	 (3.32) 

Now, we conclude, using the induction hypothesis on the derivation of b, 

assumption 3.28 and conclusions 3.32 and 3.31, that there is E' such that 

	

fI(v, a, a') E U(h) 	 (3.33) 

E' > E 	 (3.34) 

E' = a' 	 (3.35) 

	

E' = v : E(h) . 	 (3.36) 

Thus we conclude: (i) fI(v, a, a') E V by conclusion 3.33 and U(h) c 
U'(h) c U(h) c V; (ii) >' > E is precisely conclusion 3.34; (iii) >2' = a' 

is precisely 3.35; and (iv) >2' = v : C by conclusion 3.36 and E(h) <:aux 

B'(h) <:aux B(h) <:aux C. 

. Case os_var. Assume 

S(x) = v 
a, S F- x "-* v, a 

(3.37) 

>2 = ci 	 (3.38). 

EF=S:E 	 (3.39) 

XSE IF x : C:: V . 	 (3.40) 

We know from 3.40 that E(x) <:C and R(S(x)) C V. So we conclude: (i) 

by Lemma 6 part 2, fI(v, a, a) E R(S(x)) 9 V; (ii) trivially, >2 > >2; (iii) 

from 3.38,E = a; and (iv) since >2 is a store specification and E(x) <:aux C, 

we deduce >2 )= x : C. 
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. Case osconst. Assume 

a, S F- false -'-* ff, a 	
(3.41) 

E = a 	 (3.42) 

(3.43) 

XSE IF false : C:: V . (3.44) 

We know from 3.44 that Bool <: C and R(ff) C V. So we conclude: 

(i) by Lemma 6 part 2, fl(ff, a, a) E R(ff) 9 V; (ii) trivially, E > ; (iii) 

from 3.42, E a; and (iv) since E is a store specification and Bool <:a C, 

we deduce E = ff : C. 

The case for true is similar. 

. Case os_cond. Assume c if x then a0  else a1 , 

S(x) = tt a, S I- a0  -f v, a' 	
(3 45) 

a,SE- c-'-->v,a' 

(3.46) 

E=S:E 	 (3.47) 

XSE IF C: C:: V 	 (3.48) 

We consider the case where S(x) = tt. The other case is exactly similar. 

From 3.48, we know that there are B, U, B0 , U0  such that 

XSE IF C: B(S(x)) :: U(S(x)) 

B(S(x)) <:C 

U(S(x)) c V 

and 

B0 (tt) = B(tt) 	 (3.49) 

U0 (tt) = U(tt) - 	 (3.50) 
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From the induction hypothesis on the derivation of a 0 , we know 

	

fI(v, a, a') E Uo (S(x)) 	 (3.51) 

	

E' > E 	 (3.52) 

	

E' = a' 	 (3.53) 

	

E' 1=: v : Bo(S(x)) . 	 (3.54) 

So we conclude: (i) from 3.51, 3.50, fI(v, a, a') e U(S(x)-) 9 V; (ii) from 3.52, 

E' > ; (iii) from 3.53, E' = a'; and (iv) from 3.54, 3.49 and B(S(x)) <:aux 

C,E'=v:C. 

• Case os_obj. Assume c [f=x11, mj=c(yj)biit], 

S(x 2 ) = v1? h dom(a) h e Iocn 

a' = a[h '-* (Ii -* vi1k, rn '-* (c(y)b, 5)=1..t)] 

a,SF-c-'-+h,a' 

	

= a 	 (3.56) 

EE=S:E 	 (3.57) 

	

XSEII-c:C::V . 	 (3.58) 

From 3.58, there exist A 2 ,B3 ,U (i = 1..k,j = 1.1) and T' such that, 

assuming 

A' 	[f2=A2 irl..k  m3 =(B3 , LTJ) j1t] 

T' T0J(f,  S()) 

T'çV 

we have 

XSE II- x: A 2  :: R(S(x 2 )) 
	

(3.59) 

Vu : XSE -* X 3 SE.Vy E X. 	
(3 60) 

E(y) = A == XSE II- b : B(S(y)) :: Ui(S(y)) . 

In particular, for any h e Iocn, if, for each j, we choose y3  V X, X3  = 
de f 

X U {y3},  S3  = S[y '-* h], E = E[y '-* A]
, 
 and u(y) = y, we have 

XSE II- b 3  : B(h) :: (J3(h) . 	 (3.61) 
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def 	 . 

	

So defining E
, 
 = 	'—* A , 1' we conclude: (1) by Lemma 6, fI(h, a, a , ) E 

T' C V; (ii) by definition, E' > E; and (iv) by definition, E'(h) = A', hence 

E = h: A'. To show (iii), we argue as follows. From 3.59, E F= S(x) : A 2 , 

and so E' = S(x 2 ) : A 2  since E' is an extension of E. Now a'(h, f1) = S(x1 ), 

E' = S(x) : A 2  and a'(h, m3 ) = ((;(y3 )b, S) and so from 3.59, ' = h: A'. 

. Case osisel. Assume 

	

S(x) = h h E Iocn a(h)(f) = V 	
(3.62) 

a, S I- x.f -'-.+ v, a 

a 	 (3.63) 

E=S:E 	 (3.64) 

XSEI}-x.f:C::V . 	 (3.65) 

From 3.65, there is A <: [f:A'] such that 

A'<:C 

R(x.f) c V 

XSE II- x.f : A':: R(x.f) 

def 
So, if we define E

, 
 = E, then we conclude: (i) since a(h)(f) = v, by 

Lemma 6, fI(v, a, a) E R(h.f); (ii) trivially E' > ; (iii) from 3.63, E' = a; 

and (iv) from 3.63, E = a(S(x), f) : E(S(x)).f, and since v = a(S(x), f), 

A'=E(S(x)).f, E'>>1andA'<:C,wehaveE' =v:C. 

. Case oslupd. Assume c x.f:=y, 

S(x) = h h E Iocn a(h)(f) is defined 

	

S(y) = v a' = a[h i—  (a(h)[f i—  v])] 	
(3 66) 

a,SI- c 	h,a' 

a 	 (3.67) 

(3.68) 

XSE IF C: C:: V . 	 (3.69) 
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From 3.69, there are A, A', T such that 

A' <: [f:A] 

T = Td(S(x), f, S(y)) 

T C V 

A <:a,, C 

and 

XSEII-c:A::T 	 (3.70) 

XSE II- x : A:: R(x) 	 (3.71) 

XSE II- y : A' :: R(S(y)) . 	 (3.72) 

From 3.68, E = 8(y) : E(y), and from 3.71 implies E(y) <:A', thus 

(3.73) 

Now pick E' = E. We conclude: (1) by Lemma 6, fI(h, ci, ci') E T; and (ii) 

trivially >' > E. To show (iii), from 3.72, E = cr'(h, f) : A', and a' is defined 

to be the same as ci' at those points other than (h, 1) and so from 3.67, we 

conclude >' = ci'. Finally, to show (iv), from 3.68, E = S(x) : E(x), and 

since h = S(x), we conclude that E(x) <:E(x). But E(x) <:A, and since 

we have 3.71, we conclude (h) <:A, i.e. E = S(x) : A. 

0 

3.6 Conclusions 

The use of HOAS and a direct embedding of the assertion logic allows one to 

embed AL into a theorem prover with minimal overhead: the use of HOAS means 

we inherit variable binding; and a direct embedding of the assertion language 

means we inherit all the theorem-proving facilities of the theorem prover, such 

as tactics. One can argue that it is only necessary to embed AL into one's 

favourite theorem prover once and use it forever after; however, we point out 
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that embeddings are invariably tied to the syntax of the underlying theorem 

prover, and, should a better prover one day become available, it is reassuring to 

know that only a minimal investment has been put into the embedding into last 

year's theorem prover. 

Formalisation of AL in a theorem prover also means we automatically inherit 

a notion of machine proof, at the very least, as a proof script. Crucially, the 

machine proof can be automatically checked, a property that pencil-and-paper 

proofs do not enjoy. However, since we use a direct embedding of the assertion 

language, there is no obvious way to make such machine proofs portable: I cannot 

use my favourite proof checker that I trust beyond all reasonable doubt. 

The embedding has been used to construct proofs for two extended examples, 

namely an implementation of Euclid's algorithm and a simulation of the dining 

philosophers example. The exercises have shown that such endeavours are possi-

ble, but, writing on a personal note, the author does not claim such experiences to 

be particularly enjoyable. One finds, when using the embedding (in both LEGO 

and PVS), that a seemingly unnecessary amount of effort is required in choosing 

and then instantiating proof rules. The majority of these choices do not require 

much ingenuity. Worse still, the choices that do require ingenuity are buried deep 

amongst the others, and so, one must be careful to recognise them when one 

encounters them during proof construction. 

Furthermore, the resulting proof scripts are very sensitive to the syntax of 

the program that we are considering. Even simple syntactic changes may break 

a proof script in the sense that it no longer proves the verification statement. In 

practice, the proof script must be fixed by interactively debugging it using the 

theorem prover. 

In Chapter 5, we develop a verification condition generator (VCG) algorithm 

which can reduce the tedium of constructing proofs. 

Though the choice of HOAS for programs and a direct embedding for transi-

tion relations allows us to present an embedding of AL with minimal overhead, 

the repercussions of these choices are felt when we come to justify the implemen-

tation: what do we really prove using the encoding? 
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If we use a first-order, deep embedding of the syntax, then we can use a 

standard interpretation of the metalanguage and conclude that programs really 

are programs and the rules really are the rules of AL. Thus the soundness proof 

in locus classicus carries over directly to the embedding. However, with a HOAS 

encoding of program syntax and a standard interpretation, programs may not be 

the same as programs in first-order syntax. (For example, the term l(a, f) has 

type P for arbitrary functions f : V -* P.) 

Supposing we choose a deep embedding of transition relations, e.g. embed the 

rules of first-order logic, then it may be possible to normalise a verification proof 

in the embedding, and then translate it into a proof of AL. However this is not 

possible in our case, since the side conditions are proved directly using the logic 

of the underlying theorem prover: there is no longer a correspondence between 

the logic rules and axioms of the theorem prover and those of the assertion logic. 

Instead, to justify our embedding, we find a non-standard interpretation of 

the metalanguage which models our axioms. In particular, the interpretation 

of HOAS-style programs is precisely first-order programs and so, for example, 

allows us to interpret the derivability relation as an auxiliary derivability relation 

defined by induction over the first-order syntax. We then prove the soundness 

result for this auxiliary derivability relation, in the spirit of the proof in bc. cit. 

The technique used in the construction of the model of HOAS is an application 

of some ideas presented in [Hof99] and is not specific to AL. The approach used 

here ay be useful for justifying HOAS embeddings of other program logics. 



Chapter 4 

Type inference 

In this chapter we describe a type inference algorithm for AL. In the development 

of this thesis, the algorithm may be considered to be an important component 

of the verification condition generator algorithm to be described in Chapter 5. 

However, because there is a close relationship between the typing and verification 

rules of AL (specifically, the typing rules may be considered to be a special case 

of the verification rules where we have trivial instantiations for the transition 

relations), it so happens that this algorithm is precisely that of type inference, 

which interesting in its own right. 

4.1 An overview 

Following the techniques used by Palsberg et al. [Pa195, PW097], we take the 

route whereby we introduce variables for the types we would like to find and derive 

constraints over these. The constraint system is then considered as a constraint 

graph, using which we construct an automaton (in fact, a family of automata) to 

recognise a solution. 

Since automata recognise languages, we must find a language-based repre-

sentation of types. In fact we work with more general languages which we call 

pretypes. Pretypes allow us to overcome some technical obstacles caused by base 

types, and give rise to the natural notion of presolution which possess the useful 

property of directedness. 



100 	 Chapter 4. Type inference 

First we give a presentation of a type system for AL. In fact we give variants 

of the rules that can be found in [AL98]. The typing rules can be considered 

to be the verification rules where all the transition relations have been omitted, 

but since this chapter develops a type inference algorithm, it is useful to present 

them specifically as typing rules. We then give the language-based representation 

of (pre)types in Section 4.3. Section 4.4 describes how we derive the constraints 

system given a program to type check. Before we present the automaton in 

Section 4.6, we define constraint graphs and (pre)solntions in Section 4.5. Finally, 

we introduce the key automaton that allows us to solve the problem in Section 4.6. 

In this section, we also introduce the notion of well-formedness which we show 

corresponds precisely to typability. In Section 4.7, we describe in the detail the 

more complicated algorithms that we require and provide an analysis of their 

efficiency. 

4.1.1 Related work 

Since our work was inspired by that of Palsberg et al. [PW097, Pa195], naturally 

there are many similarities. However, there are several notable differences also. 

In [Pa195], Palsberg considers a calculus (AC) [AC96] of Abadi and Cardelli, 

which is related to but simpler than that (AL) of Abadi and Leino which we 

consider. Since AC allows method update operations, fields can be, and are, 

encoded as methods. Initially it would appear that AC is a more expressive 

language and thus would have a harder type inference problem. The absence 

of method update in AL allows for a weaker type system; i.e., there are more 

well-typed AL programs. More precisely, we have a larger subtype relation, since 

we allow for covariant method return types. This difference manifests itself in 

the closure rules for constraint graphs: our closure rules are more complicated. 

Nevertheless, closure is still computable in the same asymptotic time complexity. 

Also in [Pa195], there are no base types such as booleans and integers. Since we 

do have base types, we must have a more involved characterisation of types. Fur-

thermore, we generalise this definition of type to that of pretype, which has useful 

mathematical properties that types lack and allows for simpler presentation. 
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In [Hen97], Henglein exploits the fact that object subtyping in those variants 

of AC, considered by Palsberg in [Pa195], is invariant along fields, and improves 

on Palsberg's cubic-polynomial time complexity solution. The improvement is 

possible since it is no longer necessary to maintain the transitive closure of a 

partial order. Unfortunately, our subtyping relation does not enjoy the same 

invariance property, and so Henglein's optimisation is not applicable. 

In [PW097], Palsberg et al. consider type inference with non-structural sub-

typing. The only types are bottom I, top T and arrow type 'r 1 —r2 . Since 

they have both bottom and top, they can find a least shape solution (typing) 

by finding the smallest set of subterm occurrences to which an arrow type must 

be assigned. This can be done by accumulating lower and upper bounds for 

each subterm occurrence using a product automaton. Our subtype relation hints 

at being non-structural since a subtype can have fewer components (fields and 

methods). Yet it is also structural in the sense that subtypes of object types are 

always objects types, and subtypes of base types are always base types. In any 

case, the type inference problem cannot be solved by simply accumulating lower 

and upper bounds. 

In [PJ97], Palsberg and Jim show that type inference for an object-calculus 

with simple self types is NP-complete. In contrast, AL does not have self types. 

It has recently been brought to the attention of the author through personal 

communications with Jens Palsberg that Palsberg et al. have independently ex-

tended the same type inference framework to a typed object calculus with co-

variant fields [PZJ02]. Furthermore, in bc. cit., there is no syntactic distinction 

between covariant and invariant fields, but rather, fields are determined to be 

covariant by inference. One also notices, in bc. cit., a striking similarity between 

their definition of "R is satisfaction-closed" and our closure rules in Table 4.5. 

Their algorithm (unlike ours) does not handle base types. 
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A,B ::= Bool I [fi :A i ,... ,fk:Ak,ml:B1,..  ,m:Be] 

Table 4.1: Syntax of AL types 

13001 <: 13001 

B3  <: B='" ' 

[fj :Aj 1.k, m:Bi=] <: [fj :Aj 1..k', m1:Bi'"'] {k' ~ k and £' ~ £} 

Table 4.2: Definition of subtype 

4.2 Type derivations 

Abadi and Leino present in [AL98] a type system deriving judgements of the form 

x:A I- a : A 

where a is a program, each x i  a variable and A and each A i  a type, the syntax 

of which is defined in Table 4.1. Such a judgement can be understood to mean 

that assuming each x i  has type A 2 , then the program a has type A. - 

These judgements are derived using rules such as 

EI- x: [f:A] 
E F- x.f : A 

which means, if we can derive E F- x: [f : A], then we can derive E I- x.f : A. Of 

particular note is the subsumption rule 

EF- a:A 
EF- a:A' {A<:A} 

where we have as a side condition A <: A'. The definition of the subtype relation 

<:can be found in Table 4.2. Of course, the presence of the side condition means 

that this rule can be applied only when the side condition is true. 

A closed program a is said to be type correct (or typable) if there is a type 

A and a type derivation for F- a : A. Type derivations are typically presented as 

trees. 
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However, because of the subsumption rule, which can be applied at any point 

of the type derivation, the derivation trees for a given program do not have 

unique shape. For our purposes, we take the equivalent collection of typing rules 

presented in Table 4.3. The rules in Table 4.3 are equivalent to those found in 

locus classicus in the following sense: for program a and type A, 

F-0 a:A if I-a:A 

where we write F-0  a : A to denote typability using the rules of locus classicus. 

Note that there is no longer a separate subsumption rule: it has been incor-

porated into the other rules. Note also that it is not necessary to incorporate 

subtyping into the rules for if, let and method invocation because the subtyping 

can be pushed further up the derivation tree. Of course, one can incorporate the 

subsumption rule into all the rules, in which case, we can prove equivalence of 

the two collection of rules using the straightforward lemma: for typing context 

E, program a and type A, 

EH0 a:A iffEI-a:A 

However, this produces more variables and more constraints. These extra con-

straints are redundant because the subtype relation is transitive. To prove equiv-

alence of the rules in Table 4.3 and those of locus classicus, we need to strengthen 

the lemma above to: for typing context E, program a and type A, 

E I- a : A implies E I- a : A', for all A' such that A <:A' 

EFa:A implies EH0 a:A 

The proof of this lemma falls out, again, from the fact that the subtype relation 

is transitive. 

Using these new rules, it is clear that the shape of a type derivation for 

program term a is determined by the term's syntactic structure. 

4.3 Pretypes and types 

Since we use automata to solve the type inference problem, it is convenient to 

have a presentation of types based on formal languages. Our automaton will 
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El- x:A {E(x) <:A} 
	

(var) 

E I- false : A {Bool <: A} 

	
(constf) 

E F- 
true : A {Bool <: Al 	 (constt) 

El-x:Bool EI-a0 :A El-a1 :A 
E H if x then a0  else a1  : A 	

(cond) 

EI-a:A E,x:AHb:A' 
E H let x=a in b: A' 	

(let) 

E F- x: Ai=lc  E, y:A F- b : Bit J A = [fj:A ji.k, m:Bi"] 

E I- [fi =xi  ..km j=c(y3 )bjil..t} : A' 	A <: A' 

(obj) 

EHx:[f:A] 	
A<:A' } 
	

(fsel) 
EI-x.f:A' 	I 

El-x:[m:A] 	
(minv) 

E H x.rn() : A 

EF-x:A EF-y:A'<IA<:[f:Ah] I 	(fupd) 
El-x.f:=y:A" 	A<:A"  

Table 4.3: Typing rules with built-in subsumption 

actually recognise pretypes, which one may consider as incomplete types. We 

now proceed to introduce these definitions and show their correspondence with 

types as used by Abadi and Leino in bc. cit. 

First, we recall that sets fname and mname are disjoint and we define an al-

phabet E0  = fname U mname. Already, one can see that if we consider languages 

over this alphabet, it is possible, in some way, to capture the structure of ob-

ject types. In fact, in [Pa195], types are defined precisely to be such languages. 

However, in our case, the problem is complicated by the fact that we have base 

types. 
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We notice that prefix-closed languages over E 0  represent trees whose branches 

are labelled with field and method names, but whose nodes and leaves are un-

labelled. We want to represent trees whose leaves are decorated with names of 

base types. In fact, we generalise this further and consider trees whose nodes are 

also decorated, but insist they are decorated with a special decoration *, which 

one understands as "object type". 

One notes that such trees can be represented as a pair (L, f) where L is a 

language and f a mapping from L into a set A of decorations. Though this is 

certainly a reasonable approach to the problem at hand, it appears the following 

representation of trees allows for a cleaner presentation. 

Alternatively, such trees can be represented as languages of words whose let-

ters alternate between node labels (decorations) and edge labels (field and method 

names). We thus define a set of decorations L lef B U {*}, the set of base type 

names plus object type, and define a new alphabet E def 
= E0  + A, meaning the 

disjoint union1  of E0  and A. 

Definition 3 Let L be a subset of E*. 

A word in 	is said to be alternating if for any two adjacent letters, one 

is in E0  and the other is in L. 

A word a is said to be maximal in L if a E L and for all a' in L 

a a' implies a = a' 

where denotes prefix ordering. 

Given a word a, and a set of words L, we define LJa read "L at a" by 

L ia tef 
 

For word a and a set of words L, we define aL by 

def 
aL{aJ3IflEL} 

1 To all intents and purposes, A + E 0  can be considered to be the same as A U E0  except 
that we use the former notation to emphasise the disjointness of the union and in particular 
the fact that we can decide whether an element in A + E0 is in A or Eo. 
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It is easy to check that for any word a, the operation .ja distributes over inter-

section, i.e. for X a set of languages, (flX)icE = flL(Lj.a). 

We now define pretypes and types as languages satisfying certain properties, 

as follows. 

Definition 4 A set of words t c E' is said to be a pretype if 

LANG t is nonempty and prefix closed; 

ALT all non-empty words in t are alternating and start in A , that is, if da E t 

then da is alternating and d E /; 

LEAF for decoration d, if d E B and ad E t then ad is maximal in t; and 

TREE for decorations d, d', if ad e t and ad' E t then d = d'. 

Let P to be the set of all pretypes. Let a type be a finite2  pretype whose maximal 

words are all of odd length, and let T to denote the set of all types. 

The following lemma is easy to check. For our purposes, a set of words is said 

to be a language if it has property LANG. 

Lemma 7 	1. For languages t, t' in E*  with t C t', if t' is a pretype, then so is 

t. 

Pretypes are closed under intersections, i.e., for X a set of pretypes, fl X 

is also a pretype. 

For a an even length word, t.ta  is a pretype if a E t and empty otherwise. 

Note that types, however, are not closed under intersection. Consider, for 

example, the intersection of types t = {€, b1 } and t' = {E, b2 }: the intersection 

t n t' = {} V T since e is maximal in t fl t' and E is not of odd length. 

2The finiteness restriction here can be relaxed to incorporate recursive types. 
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4.3.1 Constructions on pretypes 

Now that we have defined what a pretype is, let us introduce some standard 

constructions. For base type b, there is the corresponding pretype 

which, in fact, is a type. Also, given pretypes t 1 ,... , tk, u 1 ,... ,ut, we introduce 

notation 

[fj :t j i 1 k ,  mj:uj3lt] 	{, *} U U *fit i  U 

It is straightforward to check that if t2  (for i = 1..k), uj (for j = 1..) are types 

then [fj:tji .k  m3:ujilt] is also a type. 

Thus, what we have shown is that given a type (of AL), A, there is a type 

A E T. Conversely, the set of types T is characterised by these constructors: that 

is 

T={AI AatypeofAL} 

To show this, we present an algorithm that, given a type t, computes an AL-type 

A such that t = A. We write t for this A. 

Case b E t, for some b in B. By LEAF, b is a maximal word in t and so by 

TREE, t = L. 
Case * E t. If * is maximal in t, then by TREE, we conclude t = . Otherwise, 

by TREE again, we may assume that there is no word b in t, (b E 13). So suppose 

*fi,... , *fk, *m1,... 
, *'rnt are all the two-element words in t. We recursively 

compute t*f and t*m3 , and by expanding the definition above, we trivially 

conclude 

t= [f:tJ.*f2 ,m:ti*m] 

Thus, we know that our new definition of type coincides with the definition 

of AL-type, and therefore, we can define <: C T x T using the syntactic rules in 

Table 4.2. Explicitly, t <:t' if and only if t <:t'. 
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4.3.2 Ordering pretypes 

We have a binary relation <: defined over types. We now define a partial order 

over pretypes which we show is an extension of <:. 

Define a relation < c P x P over pretypes as follows. Given t, t' E P, we 

write 

t < t' 

precisely when 

both af E t' ==>tj.af = t'af and t D t' 

That is, broadly, branches of tree t' are branches of t, but, when descending the 

branches of t', if we traverse a branch labelled by a field f, the subtree rooted at 

the (far) end of this branch occurs as a subtree of t. This corresponds exactly to 

the fact that there is covariant subtyping along methods, but not fields. Some 

properties that are satisfied by this definition are listed in the theorem below. 

Theorem 5 	1. (P, <) is a partial order. 

For pretypes t, t', if t <:t' then t <t'. 

For types t,t', if t < t' then t <: t'. 

Note that in property 2, if t <: t' holds for pretypes t, t', then they are 

necessarily types, by definition of <:. Proofs of parts 1 and 3 can be found in 

Section A.2. 

We also have the following useful property about this ordering on pretypes. 

Lemma 8 For pretypes t, t', if t < t' then t3 < t'/3. 

Proof By the standard result that j/ preserves inclusion, we immediately con-

clude tJj3 D t'1/3. 

Now suppose af E t'1j3. This is precisely 3af E t'. And since t < t', we know 

that tJ/3af = t'../3af. This is can be written as (40)J,af = (t'113).Laf. 	0 
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4.4 Generating constraints 

Now that we have the preliminary developments out of the way, we are ready 

to consider the problem of type inference. We follow broadly the approach of 

Palsberg [Pa195, PW097] and proceed as follows. 

Given a program a, we introduce type variables for subterm occurrences (and 

variables) and derive constraints that express necessary and sufficient conditions 

for typability. The problem is thus reduced to solving this system of constraints. 

We consider these constraints as edges in a graph, and then use this to define a 

transition function for a family of automata; we get an (non-deterministic finite-

state) automaton by taking each unknown type variable as a start state. We show 

that given any well-formed constraint graph, the solution space is directed, and 

thus has a least upper bound. We show that the languages (pretypes), accepted 

by the automata, give us precisely this least upper bound. 

Assume that we are given a term a whose bound variables are pairwise distinct. 

We introduce the following type variables: 

. for each subterm occurrence a', we introduce a type variable a']I; 

. for each variable x, we introduce a type variable [x]; and 

. for each occurrence of subterm x.f, we introduce a type variable (x.f) 

Note that for (program) variable x and field name f, we have distinct variables [x] 

and xfl, and distinct variables ftx.f and (x.f). Intuitively, for typing judgement 

we write [x2] for Ai  and Eal for A. Although the pair x:A2  may appear to the 

left of the turnstile of many typing judgements, [x i] is still well-defined since A 2  

must be syntactically the same in each case. The distinction between [x] and ftxJJ 

is made clear in the special case where a x. In the case where a x.f, the rule 

EF-x:[f:A] 'A<. A' 
EHx.f:A' 	} 

must occur, and, in this case, we write (x.f) for A and fr.f for A'. 
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Constraints have the form A < A' where A and A' are type expressions with 

possible occurrences of type variables. In fact, for our purposes, it suffices to 

consider the following restricted class of type expressions 

A 	::= 	..X' I b  I [f:X'1'" ,k 	.yi=l .... 

where X, Y and their decorated variants are type variables, and b are the base 

types. A solution of a system of constraints is an assignment of types to type 

variables. Our immediate objective is to find a system of constraints whose 

solutions are precisely the typings of a. 

We consider all subterm occurrences of a, each of which gives constraints as 

listed in Table 4.4, where we write t = t' to mean t < t' and t' < t. Note that 

when we write [a', strictly speaking, a' is a program occurrence. However, we 

shall often write fta'] when a' is in fact a subterm of a; we take care in eases where 

syntactically, equivalent subterms occur more than once in a. - 

The constraints listed in Table 4.4 are derived directly from the side conditions 

of the rules in Table 4.3. Thus a solution of the resulting system of constraints 

is a typing of a and vice versa. 

Lemma 9 Given a program a, let C be the set of constraints determined by 

Table 4.4. The solutions to C are in one-one correspondence with typings of a. 

4.5 Constraint graphs 

On the problem of solving constraints, we first develop the notion of constraint 

graph. A type tree itself is a special instance of a constraint graph: the field 

and method name labelled branches correspond to the stractural edges of the 

constraint graph. Constraint graphs also have subtype edges which represent the 

subtyping constraints between nodes. 

For example, for type variable X, the constraint X < [f:Bool, m:Nat] could 
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Subterm occurrence Constraints 

x [x]<ftx 

true Bool = [[traeE 

false Bool = ffalseE 

if x then a0 else a1 
Vol = Rall= 	if x then a0 else ai]j, 

f[x] = Bool 

let x=a in b 
I[bfl = 	let x=a in b 

[f=x, rn=c(y)b33=' ] 

A 	[fj: frj k, inj :ftbi}'=1 "1] 

A = [yi] = ••• = [ye], 

A<[fi = ... mi= ... ] 

s.f fr]1 = [f:(s.f)], (x.f) < 
x.m() frJ = [m:ftx.mQ] 

x.f:=y ftx]I < [f:y]J], E[fl < fr.f:=y 

- 	Table 4.4: Constraints generation. Given a program a, we consider all its subterm 

occurrences. For each occurrence we look up its corresponding constraints in the 

table above. 

be represented by the following constraint graph. 

< x 

-

nj  

Bool 	Nat 

We have named the root node of [f:Bool, rn:Nat] as n1. We can use this constraint 

graph to solve for X as follows: start at X, and walk along the subtype edge to 

n1; then from n1 we see that we can walk along either the f or in labelled edges, 

and arrive at node Bool or Nat, respectively; thus we conclude that a solution is 

X = [f:Bool,m:Nat}. 

Consider a more complicated, example. For X, Y type variables, the con- 
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straints X < [m:Y] and Y < [f:Bool, f':Nat] can be represented by the following 

constraint graph. 

- 	nl  

m 

< 
Y - 

f I \f  
Bool 	Nat 

We can use this constraint graph to solve for X and Y as follows. Starting from 

we can walk along the subtype edge to n2 , and as in the previous example, 

we can walk along f or f', so a possible solution for Y is Y = [f:Bool, f':Nat]. 

Starting from X, we can walk along the subtype edge to ii1 and walk along the 

in labelled edge to Y, whence we can walk along the same edges as before. Thus 

a possible solution for X is X = [m:[f:Bool, f':NatJ]. 

Constraint, graphs can be considered to be a generalised type trees, where, 

as well as the possibility of descending structural edges (labelled by field and 

method names), we can also walk along subtype edges. 

Now we turn to the formal definition of constraint graph. Recall that we 
def def 	 del define E = fnameUmname, decorations = BU{*} and alphabet = 

A constraint graph C = (N, C, B; E, <) is a directed graph consisting of three 

disjoint sets of nodes N, C and B, a set of labelled edges E ç CxE 0 xN, and 

edges < C GxG (writing C as shorthand for the set of all nodes N U C U B), 

satisfying the following additional property: 

. every node has at most one outgoing edge of label £. 

Intuitively, one can think of C and B as the nodes whose types we already know- 

the (compound) object types [f2 :X, m:Y], and base types b; and think of N as 

the nodes whose types we have to infer. It suffices for the edges in E to have type 
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C xE0  x N since expressions in our constraints systems are of the restricted form. 

A more general notion of constraint graph might insist that E ç C xE 0  x G. 

Consider the constraint [f:X, m:Y] [f:X', m:Y']. By the definition of sub-

type (see Table 4.2), we see that this induces the following further constraints: 

X = X' and Y < Y'. The constraint X = X' can be equivalently expressed 

as two constraints X < X' and X' < X. To account for this, we introduce the 

following notion of closure. 

We introduce the notation u 	v, for 1 a label (i.e. a field or method name) 

and nodes u, v to denote that (u, 1, v) E E. We also introduce the notation u v, 

defined inductively as follows. 

e def < 

ladef< I c = = 

Definition 5 A constraint graph is said to be closed if < is reflexive, transitive 

and closed under the following rules 

for any field name f, 

/a \a 

I;:::::::::::::: I 
for any method name in, 

ml 	Im 
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where existence of the dashed arrows are implied by the existence of the solid 

arrows. 

We note that our closure rules are already more complicated than those 

in [Pa195]. Therein is a closure rule of the form 

I 
which is a special case of rule 1 and also more general case of rule 2. The apparent 

contradiction is explained by the fact in AL there is a distinction between fields 

and methods: the rule for fields is a more general case, whereas the rule for 

methods is a special case. 

More alarmingly, it appears that rule 1 requires us to perform a breadth-first 

search for each closure step. Fortunately there is an efficient closure algorithm, 

asymptotically no worse than that in [Pa195], which is detailed in Section 4.7. 

4.5.1 Presolutions 

A function h: G -p P is said to be a presointion if 

for b in B, we have h(b) = b; 

for u in C, we have * E h(u); 

for £ e E0 , if u --* v then h(n)J*e = h(v) and conversely, if u E C then 

E h(u) implies there is some v such that u v; 

if u < v then h(u) <h(v). 
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A presolution is said to be a solution if its range is included in T. That is, h(u) 

is in fact a type for each u. 

We now consider the space of presolutions ordered by pointwise reverse in-

clusion. As it turns out, this partially ordered space is closed under pointwise 

intersection. 

Theorem 6 The space of presolutions is closed under intersections. That is, 

given a set of presolutions H, the intersection fl H flhH h is a presolution. 

The proof of this theorem can be found in Section A.2. 

Since the space of presolutions is closed under pointwise intersection, it is 

therefore directed. And so, supposing there is at least one presolution to a con-

straint graph, we know that there is a least upper bound which is a presolution 

itself. 

4.5.2 Presolutions of closures 

- 	Conveniently, the closure (with respect to Definition 5) of a constraint graph has 

the same solutions as the original graph. 

Theorem 7 Given a constraint graph C, if h is a presolution of G then it is a 

presolution of G', the closure of C with respect to Definition 5. 

The proof can be found in Section A.2. 

Conversely, if h is a presolution of C, then it is also a presolution of G since 

C' has more constraints. Thus we have the following simple corollary of the above 

theorem. 

Corollary 1 A constraint graph and its closure have the same presolutions. 

4.5.3 From presolutions to solutions 

Later, we construct an automaton that computes the least upper bound presolu- 

tion (Corollary 3). Though a presolution is better than nothing, we really desire 
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a solution. Fortunately, it is a small step from presolution to solution. We now 

consider "closing" a presolution to give us a solution. 

Intuitively, a pretype (presolution) is a type (solution) that is incomplete in 

a particular way; some of the the leaf decorations may be missing. However, the 

space of presolutions has the advantage that it is directed, and so, there exists 

a most general presolution. In contrast, there is not necessarily a most general 

solution. Here the most general presolution in some way encompasses solutions 

of least shape as described by Palsberg. 

Given a finite presolution h, we consider the following closure construction 

for defining h'. For each u in C, define h'(u) to be h(u) except whenever there is 

some even c, maximal in h(u), we ensure that a* E h'(u). 

Theorem 8 The function h', so constructed, is a solution of C. 

Proof The result falls out easily from case by case analysis of the properties of 

presolution. 

4.5.4 From constraints to graphs 

Given our constraints, we take N to be the set of all type variables. For each 

subterm in the constraints system of the form 

[fi : A i , . . . , fk:Ak, m 1 :B1 , . . . , rne :Bt ] 

with type variables A 2  and B3 , we create a node u in C and define the edges 

u - A 2  and u B,. Finally, we define < edges for the inequalities, where 

A = A' is interpreted as A < A' and A' < A. 

Clearly the resulting constraint graph is solvable if and only if the constraints 

system is solvable. 

4.6 A family of automata 

In this section, we construct an automaton A (more precisely, a transition func- 

tion giving a family of automata, one for each start state) that accepts the least 
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presolution. Given a closed constraint graph G = (N, C, B; E, <) we take as the 

set of states, 

def 
2 x C = {(i,u) I i e {O, 1},u E G} 

and define transitions using the following rules 

(i,.u)-+(i,v) if u<v 

(0,u)-(1,u) if nEC 

(O,b) (1,b) if b E B 

(1,u)—*(0,v) if u —*v 

We follow convention and write (i, u) -* (i', u') for the sequence of transition 

steps accepting the letters in a starting from state (i, u) and finishing in state 

(i', n'). Here, E denotes an internal move; in particular, the automaton accepts a 

word a if and only if it accepts letters 11 • 1n in sequence such that a = 

where i 1 	ik  is the subsequence consisting of those indices i E 1. .n for which 

Immediately we see that our automaton has the following invariant property. 

If (i, u) -* (i', u'), then a has even length precisely when i = i' and odd length 

otherwise. 

Let us write L for the language accepted by A from initial state (0, s). We 

define the function : C - Pow (E*) as follows 

def 

We now proceed to show that is precisely the least upper bound of the space 

of presolutions, if it exists. 



118 	 Chapter 4. Type inference 

4.6.1 Well-formed constraint graphs 

Note that L itself may not be a pretype. Consider the following constraint graph 

for b1 , b2  e B with b 1  

no Thl/ \3 

m 	 7n 

p- i. 
U2 

def 
and its corresponding automaton. Starting from s = (0, no ), the automaton can 

perform an internal move to (0, ni ) and eventually accept *mb 1 : 

Alternatively it can perform an internal move to (0, n3 ) and eventually accept 

*mb2 : 

s-+(O,n3)(1,n3)(O,n4)-(0,b2 )-*(1,b2 ) 

Immediately we see that L is not a pretype because it does not satisfy property 

TREE. 

However, such constraint graphs have no solutions. Given a graph G, its au-

tomaton must satisfy certain properties for C to have a solution. If the automaton 

of G satisfies these properties, then C is said to be well-formed. 3  

Definition 6 Let C be a constraint graph and A its corresponding automaton. 

Constraint graph C is said to be well-formed if it satisfies the following properties: 

3Note that an immediate consequence of property 1 of Definition 6 is that no program 
requiring recursive types gives a well-formed constraint graph. To allow recursive types, this 
property must be removed and possibly replaced by a weaker property. The correct weakening 
is necessarily dependent on the definition of the subtype relation. 
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1. A accepts no infinite word; 

2. for u, u' in C, and £ in mname U fname 

U - U'  

I I 
I  + j 

V V'  

the dashed arrow exists whenever the solid arrows do, in the diagram above; 

and 

3. for each s in G, the language £ is a pretype. 

We see immediately that for the previous example, if we choose s = (0, n0 ) 

then, since L is not a pretype, the graph is not well-formed since it does not 

satisfy property 3 above. 

46.2 Completeness 

We now proceed to show that our definition of well-formedness is complete: a 

constraint graph with at least one solution is well-formed. 

Firstly, we show the stronger result that is an upper bound of all presolu-

tions. 

Theorem 9 For any presolution h, we have h(s) D L for all s. 

The proof can be found in Section A.2. 

And now the completeness results follows. 

Corollary 2 A constraint graph with at least one solution is well-formed. 

Proof Suppose C has solution h. Thus h is, in particular, a finite presolution and 

from Theorem 9, we know that h(s) L. So we conclude that A only .accepts 

finite words and also L is a pretype. We have thus shown that C satisfies 

respectively properties 1 and 3 of well-formedness. 



120 	 Chapter 4. Type inference 

To show that C also satisfies property 2, suppose u, u' E C, u < u', and 

u' -+ v' for some label £. Since h is a presolution, * h(u'). We know that 

h(u) < h(u') and in particular, h(u) D h(u'), therefore *f e h(u) also. Finally, 

since h is a presolution, it must be that u V. 

4.6.3 Soundness 

Conversely (and fortunately), our definition of well-formedness is also sound; a 

well-formed constraint graph has a solution. We prove this by first exhibiting a 

presolution, namely that recognised by our automaton, and then applying Theo-

rem 8 to obtain a solution. 

First we have the show that '' as recognised by our automaton really is a 

presolution. 

Theorem 10 Assuming that G is well-formed, the function 0 is a presolution. 

The proof can be found in Section A.2. 

Now we can use Theorem 9 to prove the following corollaries. 

Corollary 3 Given a well-formed C, the function 0 is the least upper bound 

presolution. 

Proof From Theorem 9 we know that O is an upper bound of all presolutions. 

Moreover, Theorem 10 tells us that is a presolution, hence it is the least upper 

bound of all presolutions. 	 0 

Corollary 4 A well-formed and closed constraint graph has a solution. 

Proof Supposing C is well-formed, from Theorem 9 we know that is finite. So 

by Theorem 8, C has a solution. 	 El 

4.6.4 Type inference 

A primary application of our automaton is, given a program occurrence or vari- 

able, to compute all paths in its inferred type tree. This is used in our VCG 
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algorithm described in Chapter 5. Since it is likely that this is applied to many 

program occurrences and variables, it is more efficient to first determinise our 

automaton. We can use the subset approach as described in [HU79] to define a 

deterministic automaton A', which has exponentially many states as A. However, 

our automaton has specific properties which allow us to determinise it into one 

that has no more states and in cubic time complexity (with respect to the size of 

the automaton). 

First let us define an ordering on states of A as follows: define 

s<s' if s--s' 

It is straightforward to check that < over automaton states is a preorder (i.e. a re-

flexive and transitive order) because it is effectively a lifting of a preorder (namely 

over graph nodes). 

Also, given a set of states X (i.e. a state of A'), clearly A' accepts the same 

language starting from state 

Is I 3so E X..s0  < s} 

as starting from X itself. So we can restrict our concerns to only those states of 

A' which are upclosed. 

Furthermore, if X is a chain (i.e. if x, y E X then x < y or y :5 x), and A 

can make the transition X L Y, for £ e E , then Y is also a chain. To see this, 

assume x, y E X, x <y and x --* x', y -+ y'. To show that necessarily y y', we 

consider cases for £ E E0  (i.e. £ is a field or method name) and £ = *. If £ e E0 , 

then this is a simple consequence of the closure rules for constraint graphs. Case 

£ = * falls out immediately from the definition of transitions for A. 

Since the language accepted by A starting from SO is the same as that accepted 

by A' starting from {s o }, and is the same as that starting from the upclosed chain 

X(s o) Is I so  < s}, it suffices for us to consider only those states of A' that 

are upclosed chains. Finally, since < is a preorder, any upclosed chain Y has, 

and can be uniquely determined by, a least element x e Y; for example, s o  is a 

least element of X(s o) and s0  determines the upclosed chain X(s o ). (Note that 

since < is a not a partial order, this least element is not necessarily unique.) 
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Thus we construct a deterministic automaton Ad as follows. The states of Ad 

are the same as those of A. The transitions of Ad are defined by: for any state 

state so of A, if A' has the following transition 

X(s o)LY 

then Ad has the following transition 

£ 
so  -* x 

where x is an arbitrary least element of Y. 

Assuming x <y for states of A can be determined in constant time (which is 

indeed the case, if the data structure introduced in Section 4.7 is used), then the 

transition relation of Ad can be computed in O(1Al2 x lED time. 

Note that although we have avoided an exponential blow-up of automaton 

states, the language accepted by Ad from any start state can still be exponential. 

Consider, for example, an automaton with the following transitions. 

7/ 

S 	

• / S 

	

• 	
\9k

//4/ •• 

S 

4.7 Algorithms 

We now present efficient algorithms for inference of types for AL. Given a program 

a, we compute its system of constraints by induction over its syntax. The recipe 

in Section 4.5.4 allows us to derive a graph from these constraints. We then use an 

efficient algorithm to compute the closure of this graph, as defined in Definition 5. 

We construct an automaton from the closure and the well-formedness checking 

algorithm reuses some data structures used to compute the closure. 



4.7. Algorithms 
	 123 

4.7.1 Efficient closure 

Our definition of closure for constraint graphs is convenient for proving the prop-

erties of our algorithm. However, the naive algorithm suggests a breadth-first 

search for each closure step. We now introduce an alternative definition of clo-

sure, which, we show, coincides with the existing definition, but crucially, lends 

itself more naturally to an iterative algorithm. 

Assume we have a constraint graph C = (N, C, B; E, <). As an auxiliary 

device, we consider a graph G which is a constraint graph which in addition has 

a symmetric relation A. We shall graphically represent x A y as 

emphasising the fact that A is symmetric. We define G to be the smallest graph 

containing C and closed under the rules in Table 4.5. 

Using economy as justification for abuse of notation, we write: C to mean the 

<edges of C; C' for those of its closure (with respect to Definition 5); and G for 

the edges (u A) of C. 

We have the following lemma about the auxiliary A-edges. 

Lemma 10 In G, we have x A y if and only if there exist a and z such that 

Z 

The proof can be found in Section A.2. 

The new closure rules in Table 4.5 correspond to those in Definition 5 in the 

following way. 

Theorem 11 For nodes x and y, we have x <y in if and only if x < y in G. 

The proof can be found in Section A.2. 
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For X a set of (x, y) and [x, 

y] 

 pairs, we define inverse and symmetric closure, 

I (y,x)EX}U{[x,yJ  I [y,x]eX} 

x8 x ux-' 

The set X is said to be reflexive if for all x E C, both (x, x) E X and [x, x] E X. 

For a set X of (x, y) and [x, 

y} 

 pairs, where (x, y) represents x < y and [x, y} 

represents x A y, let us write F(X) for the set of pairs after one application of 

the rules in Table 4.5. More explicitly, we define, for reflexive X, 

F(X) 

U 

U 

U 

U 

U 

U 

x 
{[x,y} I (x,y)X} 

{[x,z} I [x,y}EX,(y,z)EX}8 

{[x',y'] I [X,y}EX,Xr4XF,y.yF}8 

{(x',y') I (x,y) EX,x-x',y-y'} 

{(x',y') I [x,y]EX,xLx',yLy'} 

{(x,z) I (x,y)EX,(y,z)EX} 

Since F(X) is symmetric with respect to its [x, 

y] 

 pairs provided X is symmetric 

with respect to its [x, 

y] 

 pairs, clearly 0 is the least fix-point of F containing the 

edges of C. We present and prove correct an algorithm that computes this fix 

point. 

The algorithm uses the following data structures. All complexity measures 

are with respect to n equal to the number of nodes in C. 

PE a graph for storing potential (x, y) edges. This is implemented as a matrix of 

lists, where entry PE[x, y] is the list of elements (x', y', £) such that x -+ x' 

and y --* y' for £ in E o . It is initialised in the preprocessing phase of the 

algorithm and does not change thereafter. 

ITC a graph for storing (x, y) edges. This is implemented as an iterative transi-

tive closure data structure. Note that Palsberg et al. use the same in [Pa195]. 

Worthy of note is the fact that it maintains an adjacency matrix M such 

that M[x, y] = 1 if and only if there is a path from x to y. Furthermore, 
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0(n2 ) insert operations can be performed in 0(n3 ) time [1ta86]. To main-

tain the transitive-closed property of the adjacency matrix, insertion of an 

edge may result in the addition of many other edges. An insert operation 

returns a list R of all new edges added. 

HG a graph for storing [x, y] edges. This is implemented as an adjacency matrix. 

Q a set of (x, y) and [x, 

y] 

 edges representing the work set: those edges that 

still need to be considered. This is implemented as a data structure allowing 

constant-time insert, pick and delete, and membership test. 

P a set of (x, y) and [x, ] edges representing the edges that have been consid-

ered. This is an auxiliary device that simplifies the correctness argument 

of the algorithm and has no direct computational effect. 

We have the following invariants. 

P = HG + (ITC - Q) 	 (4.1) 

	

PnQ=O 
	

(4.2) 

F(P)cPuQAGcPuQ 	 (4.3) 

	

PUQcG 
	

(4.4) 

In the preprocessing stage of the algorithm, initialise ITC, HG, and P with 

the empty set. Initialise Q to be the reflexive closure of , viz {(x, y) I x <_ 

y} U {(x, x) I x e G}. These initialisation steps take 0(n2 ) time. Initialise 

PE by starting with an empty list for each PE[x, y] and then iterating over all 

x -+ x', y --* y' in E, inserting (x', y', £) into the list PE[x, y] whenever and £ = 

Initialisation of PE takes O(1E12) time. Note that 

(x', y', £) e PE[x, y] 	x - 
£ , 

x , y -* £ , 
y . 	 (4.5) 

Lemma 11 After the initialisation step above, the invariant holds. 

Proof We check each of the invariants in turn. (1) P = 0 = 0 + (0 - Q) = 

HG+(ITC—Q). (2)PnQ=OnO=O. (3)F(P)=F(0)=0cOuQ. Also, 

G c Q 9 PUQ. (4) P U Q = 0uQ ç G'since G'is reflexive and contains G. [I 
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Once the preprocessing stage has been done, we repeat the following step until 

the work list Q is empty. 

Pick and remove some e from Q, and add e to P. Consider the cases where e 

is of the form (x, y) and [x, y. 

. Case (x,y). 

Al Insert (x, y) into ITC, and let R be the list returned by the insert 

operation. 

A2 Add [x, y] and [y, xJ into Q, if they are not in HG. 

A3 For each [x0 , x] in HG, add [x0 , y] and [y, xo] to Q if they are not in 

HG. Since HG is stored as an adjacency matrix, and insertion of a 

pair into Q can be done in constant time, this takes 0(n) time. 

A4 For each (x', y', m) in PE[x, y, add (x', y') to Q if it is not in ITC. 

A5 Append R— (x,y) to Q. 

. Case [x,y]. 

Bl Add [x,y}toHG. 

B2 For each (y, yo)  in ITC but not in Q, add [x, yo]  and  [yo,  x] to Q if 

they are not in HG. 

B3 For each (x', y', in) in PE[x, y],  add [x', y'] and [y', x'] to Q if they are 

not in HG. 

B4 For each (x', y', f) in PE[x, y], add (x', y') and (y', x') to Q if they are 

not in ITC. 

Informally, at each step of the iteration, we move one edge from Q into one 

of ITC or HG (Al or Bi), but certainly into P. By adding an extra edge into 

P, we might have added more edges to F(P). We find out exactly which edges 

these are and put them into Q to be considered later. In the case where we are 

adding [x, y} into HG, we only need to consider those edges required by the rules 

htr (132), hm (B3) and stf (134). Similarly, in the case where we are adding (x, y) 
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into ITC, we only need to consider those edges required by the rules hst (A2), 

htr (A3), stm (A4) and stt (A5). 

Lemma 12 The iteration step as defined above preserves the invariants. 

The proof can be found in Section A.2. 

The algorithm terminates because of the following observation. Note that 

invariant 4.2 tells us that P and Q are disjoint. Note further that at each step 

of the iteration, we add exactly one edge from Q into P. Thus we know that P 

is strictly increasing. We also know that P U Q is bounded above by the set of 

all (x, y) and [x, y] pairs. Thus Q must take value 0 eventually. 

When the algorithm terminates, we know that Q = 0. From invariant 4.3 

we know that F(P) c P and P includes G. But F is monotone hence P is a 

fix-point of F including G. Since is the least such fix-point, we conclude that P 

includes G. Furthermore, from invariant 4.4 we know that C includes P. Taking 

these results together, we have proven that P = C. Invariant 4.1, states that 

P = ITC + HG, and so we know that ITC is the < relation of C. 

On the question of time efficiency, we note that P strictly increases on each 

iteration. Since P is bounded by 2n 2 , we know that the iteration step is executed 

at most 2n2  times. Insertion of 0(n2 ) edges into ITC can be done in 0(n3) time, 

since the insertion operation for ITC has linear amortised time complexity [1ta86]. 

We note that R returned by the insertion operation is a list of new edges added 

to ITC, and moreover the number of edges in ITC is bounded by n2  so over the 

whole computation, step A5 appends at most n2  elements to Q, taking 0(n2 ) 

time. The matrix PE has at most 1E1 2  elements in its lists, and since step A4 

is executed at most once for each (x, y), it therefore inserts at most tEl 2  pairs 

into Q. Similarly for steps B3 and B4. The remaining steps in the iteration are 

clearly bounded by 0(n). 

The preprocessing stage takes 0(n2  + lEt 2) time but this is subsumed by 

the iteration part of the algorithm which takes 0(n(n2  + JEl2)) time. Since the 

constraint graphs that we consider have IEI E 0(n), we conclude that the closure 

algorithm takes 0(n3 ) time. 
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4.7.2 WeIl-formedness 

Recall in Definition 6, a constraint graph is said to be well-formed if: its automa-

ton A accepts no infinite word; existence of u, u', £, v' such that 'u < u', u' L v' 

implies existence of u v; and for each s in G, the language accepted by A is a 

pretype. 

The first of these three conditions can be checked by checking for cycles in A. 

This can be done in total running time 0(n2 ). 

The second is the same as the well-formedness condition of Palsberg in [Pa195]. 

The check can be performed by an algorithm whose running time is 0(n2 ). 

We now consider more closely an algorithm for checking of the third property. 

Recall in Section 4.3, a pretype is a set of words satisfying properties LANG, ALT, 

LEAF and TREE. The first two properties are guaranteed by the definition of A. 

In the case of LEAF, we must check that after the automaton has accepted ad, 

for d E B, then it further performs only silent moves. Now, after accepting ad, 

the only possibility then is to perform an s-move to some (1, u) (that is, d < u) 

and from there accept £ to (0, v) (that is, u --* v). We recall from the definition 

of constraint graph, that the set of labelled edges E is a subset of C x E 0  x G, 

namely only C nodes have outgoing labelled edges. So it certainly suffices to 

check that no descendent of d E B is in C. This is also a necessary condition, 

for even if u E C is some descendent of d E B and n has no outgoing labelled 

edges, this graph is already not well-formed since £d does not satisfy the TREE 
d 	E 	 * property. (Consider (0,d) — (1,d) —* (1,u) and also (0,d) -* (0,u) —* (1,u).) 

For each d e B, we can find all its descendents in 0(n) time by scanning the 

adjacency matrix in ITC, and since IBI is fixed, we conclude that this check can 

be performed in 0(n) time. 

We note that property TREE, is equivalent to: for x, y E Cu B, if x A y then 

x and y are both in C or both in B and x = y. So for each x in C, we check that 

there are only y in C such that x A y. Similarly, for each x in B, we check that 

if x A y then x = y. Since we have already computed the adjacency matrix for 

A in the data structure HG, the former check has running time 0 (nJCI) and the 

latter has running time 0(nIBI). Since IBI, JCJ e 0(n), we conclude that these 
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checks have total running time 0(n2 ). 

4.8 Type inference summary 

Here is a summary of the type inference algorithm presented in this chapter. 

Let a be an AL program. In Section 4.4, we construct a constraint system whose 

solutions are in 1-1 correspondence with typings of a. In Section 4.5, we show that 

the solutions of this constraint system are precisely the solutions of its constraint 

graph C, which are precisely the solutions of the closure of G. We provide an 

efficient algorithm to compute the closure of G in Section 4.7. Using the closure 

of C, we construct a family of non-deterministic automata A. 

In Section 4.6.1, we show that typability of a is equivalent to well-formedness 

of the closure of G, and, furthermore, in Section 4.7 we provide an efficient 

algorithm to decide well-formedness from A. 

We show that the solutions (more precisely, the presolutions) of the constraint 

graph can be recognised by A. We provide an efficient algorithm for determin-

ising A into a family of deterministic finite-state automata Ad in Section 4.6.4. 

The language accepted by Ad can thus be computed using a straightforward 

recursively-defined function. 

4.9 Conclusions and further work 

We have presented an algorithm that (1) determines typability of terms in AL 

and if the answer is positive, (2) constructs an automaton that computes a least 

shape typing. Along the way, we formulated an alternative definition of type, 

using prefix-closed languages. 

Moreover, we introduced the notion of pretype, which encompass not only 

types with missing information in its leaves, but also infinite recursive types. 

Pretypes possess convenient mathematical properties allowing for a cleaner ex-

position, particularly in our hierarchy of lemmata. Furthermore, they also allow 

us to define cleanly, the notion of least-shape typing. 
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Using pretypes, we modified the techniques [Pa195, PW097] as used by Pals-

berg et al. and obtained a solution to the type inference problem. Though the 

solution described in [Pa195] was later shown by Henglein [Hen97] to be too gen-

eral for the subtype relations in the four AC calculi considered, the merits of the 

technique shine through when applied to AL. The modifications were not trivial 

though: our finer-grained subtype relation required a more elaborate definition of 

constraint graph closure. Nevertheless, it is still possible to compute the closure 

in asymptotic 0(n3 ) time. Similarly, a modification of well-formedness, defined 

on the constraint graph, coincides with typability. 

Though type inference for AL was, as far as the author is aware, previously 

unsolved and therefore the work described here makes a contribution in itself, the 

original motivation was the search for a verification condition generator (VCG) 

algorithm for the program logic of AL. In fact, the VCG algorithm uses the type 

inference algorithm described here as a black box, and is presented in Chapter 5. 

However, in order to be able to use the VCG tool in a modular fashion, using 

it to help separately check program components, the black box interface to the 

type inference algorithm described here is insufficient. Since we always infer 

a solution of least shape, for any program a (which is not a subprogram of a 

larger program) of object type, we infer Eal = , namely the object type with 

no fields nor methods, or equivalently the type of all objects. In the context of 

modular verification, type inference for a large program by separate inference on 

its components is not possible as the algorithm stands. 

Typically, in the case where a is a component of a larger program let x=a in b, 

say, we would have preconceptions as to which fields and methods of a we intend 
to use, i.e. are likely to be used in b. That is, a will have an intended type. And so 

the question should no longer be "is a typable?", but "is there a type derivation 

concluding in I- a : A?". To answer this second question, we simply use exactly 

the same algorithm but with the extra constraint a]J = A. At the other end, the 

question becomes "is b typable assuming x has type A?", which, again, can be 

answered using our algorithm but with a further constraint [x] = A. 4  

4 As the formalisation stands, this constraint is valid only if A satisfies the restricted grammar 
displayed in Section 4.4, which precludes, for example, [1: [g:A]J. In such cases, it is necessary 
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The algorithm presented here assumes that there is no subtyping between 

the base types. If subtyping between base types is required, then modifications 

are certainly required in the definition of well-formedness. The details of such a 

modification have yet to be studied. 

def 	 def 
to introduce further variables, e.g., introduce A ,  = [g:A] and define A = [f:A , 

 ]. 
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(stm) 

(hst) 	
XI  ------- YF 

/ y \ 	(stf) 

(htr) 
	 = I 

m 	 1m 	(hm) 	 —
— (stt) 

x - 	 (str) 

Table 4.5: More closure rules 



Chapter 5 

Verification Condition Generator 

In this chapter, we develop a verification condition generator (VCG), which, 

informally, is an algorithm which assigns to each judgement J E I- a : A:: T, 

a logical formula TO  called a verification condition (VC), such that, derivability 

of J follows from validity of 'IJo.  Thus the VCG reduces the task of finding a 

proof of J to proving W 0 , which one hopes is an easier task. This specification of 

a VCG can be considered to be its soundness property. Showing only soundness 

is not enough since we there is always a sound trivial VCG, namely one that 

always returns an unsatisfiable VC. However, our VCG algorithm also satisfies 

the converse, namely if TO  is valid, then J is derivable. Our VCG is thus referred 

to as being complete. 

Finding a proof of J is to build a derivation tree. Firstly, this involves choos-

ing the correct rule at each position, and secondly, instantiating each rule with 

suitable choices of specifications and transition relations. Here "suitability" not 

only requires that the hypotheses and conclusions of the instantiated rules "fit" 

in the proof tree, but also the instantiated side-conditions are verifiable. 

The approach we describe can be summarised as follows. (1) We take an 

equivalent formulation of the verification rules with the crucial property that it is 

syntax-directed: namely the shape of a proof tree, concluding in E I- a : A:: T, 

is uniquely determined by the syntactic shape of a. (2) Thus given any a, we can 

immediately obtain a skeleton proof, which can be considered to be a proof tree 

with all specifications and transition relations omitted. We flesh out this skeleton 

133 
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by introducing higher-order variables of two sorts: a sort for unknown specifica-

tions, and a sort for unknown transition relations. These variables must satisfy 

the constraints imposed by the rules in the skeleton proof, for example those in 

the side conditions. (3) From type inference, we know the component transition 

relations of any specification variable. By rewriting constraints involving specifi-

cations with the equivalent constraints on their component transition relations; 

we can thus eliminate all specification variables in favour of more transition re-

lation variables. Thus we now have unknown transition relations X 1  . . . X, say, 

and a set of constraints I. Thus the formula 'I' tef  3,?A)is a VC, which we refer 

to as the second-order VC, in the sense mentioned above, where is understood 

to be the conjunction of the elements in D. (4) We simplify the VC obtained 

so far, by choosing suitable instantiations for each variable X, such that logical 

validity of the VC is preserved. 

We show that, for a second-order VC W, as described, we can instantiate all 

variables Xi  with first-order, fix-point formulae to obtain a fix-point formula 

which is free of higher-order quantifiers. Furthermore, by allowing annotations in 

the program a, we show that by ensuring our programs are suitably annotated, 

'I' can in fact be instantiated with fix-point-free formulae, thus giving a VC To  
which is first-order in the sense that it contains no higher-order variables, nor 

fix-points. 

At this point, one may question, why not approach the VCG problem as in 

previous work [Gor88, HM94, Hom951, and define a function by recursion over 

the program syntax, which gives a more local solution, as opposed to our global 

approach of collecting constraints and solving the resulting constraints system. 

We point out that in AL, by assuming variables satisfy static specifications, each 

method body is verified once with respect to one specification which is used for all 

its invocations. So, for example, in let x=a in b program b may invoke method m, 

whose body is defined in a, and vice versa. Since in the recursively-defined VCG 

approaches, the VC for a method (procedure) invocation is recursively defined 

using the VC for the method body, we see there is a bidirectional dependency 

between the VCs for a and b. We also know from [AL98] that only well-typed 
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programs can be verified. That is, the VCG problem is at least as hard as type 

inference. A glance at the state-of-the-art [Pa195, Hen97] in type inference for 

object-calculi, suggests constraint systems. 

We note that W, the second-order VC, is no improvement over building a 

proof tree directly, since to prove IF one must find a witness for each existentially 

quantified variable. However, 1IJ, the fix-point VC, is already better, since in 

the case where we have a finite model, fix-point formulae admit polynomial-time 

model checking algorithms. But, 'I', the first-order VC, is better still since it may 

be possible to automatically prove such VCs in an automated theorem prover such 

as SPASS [W99], provided with cleverly formulated lemmata. On the other hand, 

extra work is required to provide annotations in the program. 

5.1 Related work 

The VCG approach described in this chapter depends on the type inference al-

gorithm presented in Chapter 4. However, the algorithm is used only as a black 

box, the details of the algorithm are not important. 

In [HM94], Homeier and Martin formally verify a VCG, for a simple while-

language, notably without procedures. Subsequently, in Homeier's PhD disserta-

tion [Hom95], procedures are a feature of the underlying language. However, the 

VCG considers only well-formed programs, the definition of which, in particular, 

bans the possibility of aliased variables (Sec. 10.4.1 in bc. cit.). In contrast, cor-

rectness of our algorithm is not machine checked and our 00-language embraces 

both aliasing and a higher-order store. 

Compaq Research's ESC project [DLNS98]. also uses VCG technology. How-

ever, they compile the source language (ESC/Java and, earlier, ESC/Modula-3) 

into the language of guarded commands before generating the VCs. These VCs 

are passed to an automatic theorem prover which attempts to prove them without 

further interaction from the user. The motivational lineage of ESC is pragmatic. 

Consequently, the tool aims to catch more errors (than type-checking alone), but 

not all errors. Thus the tool can afford to be unsound; i.e. a program passed by 
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the tool need not necessarily satisfy its specification. Our design goals are differ-

ent in the following respects: soundness is not considered "harmful", but indeed, 

its availability considered crucial; also, the user might want to work directly with 

the resulting VCs, e.g. using an interactive theorem prover, and therefore it is 

important that they correspond in a direct way to the original program; in the 

same way, a C++ programmer does not expect to debug assembly code generated 

by the compiler. 

The LOOP project [vdBJOl, JP01] of Nijmegen, is superficially similar to 

the work described here: the LOOP tool takes as input, annotated Java code 

(JML), compiling it to theorem prover theories (currently PVS and Isabelle), 

which contain theorems to be proved by the programmer. As our approach, 

soundness is maintained, and furthermore, the resulting proof obligations can be 

discharged using a program logic [JP01] defined directly on the source language 

itself. In some ways, LOOP is more ambitious since it considers many features 

of Java not present in AL, including exceptions. However, we suggest that our 

VCG automatically discharges more proof obligations, or equivalently, our VCs 

are "easier" to prove than the theorems from LOOP. Specifically, in our case, 

invariants can be specified in the input through annotations, and no longer need 

to be provided when proving the VCs. In contrast, at present, though loop 

invariants can be specified in the JML input, the LOOP tool does not propagate 

this information, and thus they must be provided again whilst interacting with 

the theorem prover. 

The Proof Carrying Code (PCC) project [NL96, Nec97] of Necula and Lee 

applied many similar ideas to verification of programs in a fragment of DEC Alpha 

assembly language. A code consumer publishes a specification for a program 

called the safety policy. Given a program and this safety policy, a Floyd-style 

VCG is used to generate a safety predicate. Satisfiability of this safety predicate 

entails correctness of the program with respect to the safety policy. The code 

producer ships the code together with a proof of the safety policy; the code 

consumer regenerates the safety predicate and checks that it is proved by the 

provided "proof", and if so, the consumer executes the code which runs without 
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Bool <: Bool 

B 1  <:B 	B, <:B, U1  C (J ••• Ut' C U, 

[fj:Ajic, m 3 :c(y)B::Uji=1t] 	 {k' < k, £' 

<: [fj:Aji1..c', m:c(y)B::Ui='.t1] 

Table 5.1: Subspecification relation. The subspecification relation together with the 

subsumption rule allows us to use a program of finer specification where one of 

coarser specification is expected. It is a natural extension of the subtype relation to 

specifications. We note that the subspecification relation is defined covariantly along 

methods. 

any performance penalties. 

In the following sense, the work on PCC is similar to that presented in this 

thesis. The specification language as presented in bc. cit. can express safety of 

memory accesses. More explicitly, the specification logic is first order logic with 

constants allowing it describe changes to contents of memory locations, which is 

very similar to the language of transition relations in AL. Also, the VCG insists 

annotation of ioops with invariants. The annotations break a program with cycles 

into several smaller cycle-free programs. 

The PCC technology works with assembly language. A consequence of this 

is that it works with code that is directly executed; there is no need to trust an 

interpretor or compiler; at most, we need to trust an assembler (and processor 

hardware). However, it is also well-known that assembly language is not ideal for 

many problems. This thesis considers a much richer language with objects, in-

cluding its consequences such as higher-order store and dynamic-bound recursion. 

For example, in AL, it is not so clear exactly where annotations must be provided 

since the loops cannot be accurately and easily determined statically. Also, in 

AL, our specification language is more expressive, since we have specifications as 

well as transition relations. This extra expressiveness maintains modularity in 

the presence of objects. 
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5.2 Second-order verification conditions 

The logic rules as presented by Abadi and Leino in [AL98] include a s'ubs'umption 

rule of the form 

{A <: A' T C T'} 

Informally, it means that a program satisfying a finer specification can be used 

where one satisfying a coarser specification is required. Since its conclusion can 

match a program of any syntactic shape, it can be used anywhere within a proof. 

That is, proofs do not have a uniquely determined shape. However, if we incor-

porate subsumption into every rule, see Table 5.2 on page 178, then proofs do 

have uniquely determined shapes. The downside is that we now have subsump-

tion constraints in the side conditions of every rule. In practice, this means that 

verifying proofs by hand becomes more laborious, but, with computer assistants, 

we view this as an acceptable compromise. 

Let us recall some notation which we use to define the constraint system 

induced by a program. For typing judgement 

x 1 :A 1 ,... ,x:AF-a:A 

we write 	for A, and [xi ] for A,. The reader is referred to Section 4.4 where this 

notation is introduced in more detail. Note, however, that in this chapter, aJ1 

and [x2] denote the inferred types rather than type variables. For 'y a sequence 

of field names and method names, and A a type, we overload notation and write 

'y e A to mean that 'y is a path in the type A.' We implicitly assume that the 

symbol 'y (and its decorated variants) ranges over sequences ending in a method 

name. Similarly, a ranges over non-empty sequences of method names, and 3 

ranges over sequences ending in a method name but containing at least one field 

name. We write #'y  for the number of method names in y 

A variable renaming is an injective, order-preserving function ci : {1..m} - 

{1..ri} between initial segments of N. Let dom(cr) (domain) denote {1..m} and 

1 We note that, in Chapter 4, by the definition of pretype (Definition 4), a type is a set of 
words whose letters, in particular, alternate between field and method names, and decorations. 
In this Chapter, when we write -y E A for A a type, we implicitly omit the decorations. 
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cod(o) (codomain) denote {1. .ri}. Its application to a transition relation T = 

T(x i ,... , Xm) of arity m is written ciT and is defined pointwise by 

def 
(crT)(x i ,... , x) = T(x 7 ( l ),... X(m)) 

Recall from the discussion in the overview: we take the inferred types as skele-

ton specifications, and flesh them out by introducing variables for all unknown 

specifications and transition relations; and then we eliminate specification vari-

ables in favour of transition relation variables. This is possible since, writing A(7) 

for the component transition relation of specification A along y, by definition of 

subspecification in locus classicus and reproduced in Table 5.1 on page 137, 

A<:A' 

1ff 

A(a) C B(a) 	 for all a E B 

A(/3) = B(/3) 	 for all 3 e B 

And since, for any subterm occurrence a, there is one transition relation for each 

"y E I[a, and we know afl from type inference, we can introduce variables for the 

component transition variables of all specification variables, which can now be 

eliminated by appealing to the previous equivalence. 

Thus for each judgement E I- a : A :: T with unknown A and T, we introduce 

a variable JaD for T and for each -y e afl, a variable JaD Y  for the component tran-

sition relations of A. (There is one exception to this: for subterm occurrence x in 

method invocation x.mQ, we do not introduce variables Nnor this variable 

can be and is more conveniently eliminated before we generate the constraints. 

This is further elaborated on later.) 

The arity of JaD, written ar(la)  is n, for 

x:[x] I- a : 

the derived typing judgement of a. Now consider [m=c(y)b] m, which one can 

see, by studying the rule for object creation in Table 5.2 on page 178, is the 
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transition relation for method m, whose body is b. Since y occurs free in b, its 

arity is one more than that of [m=c(y)b]. By generalising, the arity of Ja is, 

thus, ar(a) + #'y. 

For each variable x and -y E [x], we introduce a second-order variable (x) to 

denote the component transition relation of the specification of x that occurs in 

the verification contexts. If x 3  occurs in the context of verification judgement 

then the arity of (x 3 ), is j — 1 + -y. This is well-defined since a program variable 

must occur in the same position and have the same specification in all contexts; 

we cannot permute variables in contexts. 

Table 5.3 on page 179 defines some useful renaming functions. The renaming 

w' is a weakening/renaming used for variable instances. The idea is to map the 

first p variables into the first q slots, and then map the remaining #-Y variables 

(which are introduced by the c-binders) to the //'y slots after the first q slots. 

Similarly, the renaming o' is also a weakening, and differs from w , 'y only in the 

use of its formal parameters. It is used to shuffle the variables into the correct 

slots for method invocation. 

We now construct a function Cons which, given a list Y of free variables and 

a program a (whose free variables come from ), computes a set of constraints, 

on transition relation variables. In particular, for a closed program a, and E the 

empty list, Cons(E, a) is precise1ythe set of all constraints imposed by the side 

conditions of the skeleton proof. 

For example, supposing the variables in E are x1,... , x, consider the rule 

for variable instances. 

{ E(x 2 ) <: A 

EHx:A::T 	Res(x j)CT} 

The second of the two side conditions is precisely 

Res(x 3 ) c x,F) 

for some suitable formalisation of Res(x 3 ). Note that there is an implicit weaken-

ing in the first of the two side conditions. Recalling that the component transition 



5.2. Second-order verification conditions 	 141 

relations of A are Jxj o.,  for all 'y in [xJ  and similarly those of E(x3 ) are (x3 ) 7  for 

all 'y in [x3], we can use the earlier equivalence and write the constraint as 

n, 	* 
Wj_1

,
Xj)a C Jxj o. , for all a in [xj, 

w(x), = qXj O fl , for all 3 in 1[xj. 

The variable (x) has j - 1 + #^I variables, of which the last #-y variables are 

c-bound variables and similarly the variable Jxj  O y  has n + #^I variables, again the 

last #' of which are the c-bound variables. The implicit weakening allows the first 

j—i variables of (x3 ) to be among the first n variables of qxjD Y .  The remaining c-
bound variables must be considered separately. So the explicit weakening injects 

the first j - 1 variables of (x3 )., into the first n variables; and translates the 

remaining #i  c-bound variables. We thus have the following clause: 

Cons(,x3 ) 	{W(Xj) c. C ~xjO. I a e 

U {w(x)p = ~Xi OP 10 e EX& 

U{Res(x)cx} 

The case for field lookup is similar. 

def 

	

Cons(,x.f) = 	{w 3 _ 1  (xj ) f), = 	I fr e  frfl} 
U {Xjfa  c a e fr3.ffl} 

U {Jx,3 = x3 .fp I 3 E fr3.fJl} 

U {Tfsel(Xj, f) ç 

For field update, we have the rule 

E F- x3  : A :: Res(x 3 ) E F- Xk : A" :: Res(x k ) 
EI— x.f:=xk:A'::T' 

and side conditions 

A <: [f:A"], A <: A', Tfd(x, f, Xk) ç T' 

Noting that the transition relation components of A are IxAy for y in  ftx1J, and 

those of A" are JXJ ,,  for 'y in  ftxkjl, we expand the definition of subspecification 
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using the earlier equivalence. (Note also that the variables xjD  and QXk D  are 

internal in the sense that they cannot be further constrained, and so in theory 

we could eliminate them from the constraint system altogether.) 

def 
Cons(,x 3 .f:=xk) = 	Cons(,x) 

• {Jx = Res(x3 )} 

• Cons(, Xk) 

• {11x, = Res(xk)} 

• {jXjf y  = 1XkI -y I 'Y E I[xk]} 

• {Jx j  ç x.f:=xk 	o E ftx.f:=xk]} 

• {xp = ~Xj j: =Xk Do I 3 E ftx3 .f:=xkfl 

• {Tfd(x, f, Xk) c 

When we consider the case for method invocation 

E I-  x : [m:c(y)B::U] :: Res(x) 
EI- x.rnQ:A::T 

it is slightly worrying because the side conditions 

B[x/y] <:A, U[x/y] C T 

require us to rename y to x, which at first appears to require a non-injective func-

tion. (Remember renamings are, by definition, injective.) Suppose the variables 

in E are x1 ,... , x. Supposing x3  x, writing for y, and expanding the 

rule for variable x, we have the rule 

EHx3 .mO:A::T 

with side conditions 

E(x) <: [m:c(x +i)B::U] 

B[x/x +1] <:A 

U[x3 /x +1 ] C T 
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which, once we expand the definition of the subspecification relation and use the 

fact that Jxj o., are the component transition relations of [m:c(x+i)B::U], gives 

n,mc' w3 _ 1  çxj ) mc. 
n Wj_i,m13  (Xj) m 	Xjmf3 

OXj mci 	x.mQL 

aXjmp lx.mOE.o 

C 

for ma in frJJ 
for m/3 in x}j 

for a in 1[x3.m0fl 

for /3 in ftx.mOfl 

where o is the non-injective renaming defined pointwise 

: 	 +1+#'y)} -* {1..(n+'y)}, 

i, 	fori<n+1 

	

o(z) 
def= 	j, 	forz=n+1 

i—i, 	fori>n+1. 

The arity of 1Xjm7  is n + #m'y, and the arity of 	is n + 'y. We require 

to line up the remaining #-y variables of these two variables, and also identify x, 

and x,1. This is precisely what the renamings a do. 

Note that the composition o o 	= upq,7 ,which is defined in Table 5.3 on 

page'179. Since the nodes of the form ax  are internal in the sense that they 

cannot be further constrained, we can eliminate them immediately. This is why 

43  and QxjD  are omitted from the set of constraint variables. 

Our initial concern has now been addressed. Though the functions cr are 

non-injective, they only appear composed with weakenings of the form Wpq,,  to 

give renamings of the form a" which are injective (and order-preserving). Thus 

we have the following clause: 

def 	 / 

	

Cons(,x.mQ) = 	{o j_ in, çxj )m ç  xj .moo. I a E ftx 3 .mQfl} 

( n,/3, U 10j_l\Xj)mp = lx.mOi 10 E fr3 .mQ} 

U {U_i(Xj) m  ç Jx3 .mQD} 

To justify the definition of Cons(, if x then a 0  else a1 ) we use the fact that 

for transition relations q$  and qY, and term t, we have the equivalence 

cb[t/x] 9 cb'[t/x] if (x = t A ) C ' 
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Thus we have 

q o [tt/x] ç q'[tt/x] A q i [ff/x] c '[f/x} 

1ff 

((x = tt A qbo) V (x = ff A 01)) c 
	

(5.1) 

Thus we introduce new syntax e0  1 x N e1 , read "e0  if x else e1 ," and define 

semantically 

(eo 1xN 	
def

e i )(x) = (x = tt Aeo())V(x = ffAei()) 

Using the previous equivalence and the fact that (x = ff) V (x = tt) for any 

boolean variable x, we derive the following clause: 

Cons(, if x3  then a0  else ai) 
de 
=

f 
 = Res(x3 )} 

• Cons(, ao) U Cons(, a i ) 

• {(jao 	cix N lai 	C (Jaf 	I c e [[a1fl} 

• {a0  .1 x 	a1 	= q aifDa I fl  E I[ajiJj} 

• I qaoD -i x r> qa 1 D C JaifD} 

In the constraints for the let case, we see another variant of the sequential 

composition syntax. We now write it simply as T; U for transition relation ex-

pressions T and U, provided the arity of U is one more than that of T. The 

composition T; U is defined implicitly to be "along the last variable slot of U". 

More precisely, we have semantically 

(T; U)() = 3x, à.T()[à, x/á, r] A U(x)[a/&] 

Note also that the variables (x) are identified with 	as implicitly required in 

the let rule in Table 5.2 on page 178. Thus we have the clause: 

Cons(, let x=a in b) 
def 
 Cons(, a) U Cons(x, b) 

U {la = (x). I 'y E a]1} 

u {bj c w"iaIet I a e IIaietli} 

u {b = w"JaIet 10 E ftaiej} 

U {aa;  qbo 9 
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Repeating the same exercise again, we obtain the following clause for object 

creation, writing a0bJ EL = z= Ic, m3  = 

Cons(, a0bJ) 4ef 	U Cons(, z2 ) U U Cons(y3 , b3 ) 

i=1..k 

U {z = ( 1Jj)f I i = 1.1, j = iJ, f'y E [y3 ]} 

U {1b1 = (Yj')m j .y I jJ = i.e, mj7 E [yJ} 
U {lb = (Yj')m j  I i,i' = i.i, m3  E [y2]} 

U {z 	= aObJDf .).  I i = 1..k, fy E a0bJfl} 

U {Jbf. 	la.bj0mi. I j = 1.J, m3 a E I[aObJfl} 

U {b j p = aobjm5$ I j = 1..t, m/3 E a0bJfl} 

u JJbjO c la.Jmj I j = 1.1, m3  E aObJli 

U {T0i(zi • z) C jabJ1} 

Thus the expression Cons(E, a) computes precisely the side conditions of our 

skeleton proof. Supposing Cons(, a) is a set of constraints over variables X, 

we will consider the second-order formula Cons (, a) where there are implicit 

conjunctions between the elements of Cons(, a). In fact, this second-order for-

mula is a verification condition as we shall show in the following section. 

5.3 Soundness and completeness 

A useful factoring of the statement of completeness requires the following theorem. 

Theorem 12 Given a proof derivation of E F- a: A :: T and a least shape typing 

t mapping subterm occurrences and variables to types, there is a proof derivation 

of E" F- a : A" :: T such that for subterm a' of a, if E' F- a' : A' :: T' occurs in 

the latter proof then A' has the same shape as t(a'). In particular, A" has the 

same shape as t(a), and also, for all variables x, if E"(x) is defined then it has 

the same shape as t(x), the type of x in the contexts. 

To paraphrase: if there is a proof derivatiOn of some verification statement 

about a, then there is proof whose shape corresponds closely to a least-shape type 
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derivation of a. 

The theorem can be proved by presenting an algorithm that takes an arbi-

trary proof of E I- a : A :: T and constructs a proof with the desired property. 

The specifications in the constructed proof are precisely the types in the type 

derivation fleshed-out with the corresponding transition relations from the input 

proof. Since the specifications occurring in the input proof may be syntactically 

bigger (i.e. have more fields and methods) than those in the output proof, typi-

cally some transition relations are omitted from the input proof. To prove that 

this constructed "proof" really is a proof, we proceed by induction over the in-

put proof and use the fact that the typing t is of least shape together with the 

following lemma, which is stated without proof. 

Lemma 13 For specifications A and A' from the input proof, let A and A' be the 

corresponding specifications in the constructed "proof". If A <:A' then A <:A7 . 

This lemma is true because of the close relationship between subspecification 

and subtype and also because A' is of lesser shape than A'. 

Given Theorem 12, we can now state completeness with a slightly stronger 

assumption as follows. 

Theorem 13 (Completeness) Given a program a, specification A and transi-

tion relation T. If I- a : A :: T has a proof whose component specifications have 

the same shape as their corresponding types in the inferred least shape typing, 

then 

Cons(e, a) U {a = A(1) I 'y E Al U {a 	T} 	 (5.2) 

has a solution. 

Intuitively, the proof is obvious: if there is a proof derivation of the required 

shape, then clearly the concrete transition relations therein satisfy the required 

constraints, and so they give us witnesses proving our second-order VC. 

Note that we write A(-y) for the component transition relation of specification 

A along path 'y. The proof proceeds by induction, but in order to do so, we must 

strengthen the statement to that of the following lemma. 
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Lemma 14 For program a, provided specification A has the same shape as the 

type 	and each A has the same shape as 

x 1 :A 1 ,... ,x:AF-a:A::T 

implies 

Cons(±', a) 

= A(-y), 	for i = 1..n and y e [xi ] 

= A(y), 	for'y e Iafl 

has a solution, where we write Y for the sequence x 1  • x. 

Finally, we also have the following soundness theorem which is straightforward 

since Cons computes the set of all side conditions in a skeleton proof. 

Theorem 14 (Soundness) Given a, A, T, if 

Cons(E, a) U {a = A(y) I 'y E Al U {a 	T} 

has solution, then I- a: A :: T is provable. 

5.4 First-order, fix-point verification conditions 

We know from the previous theorem, that Cons(e, a) is a VC, albeit expressed 

as a second-order formula. However, this VC offers us no advantage over finding 

a proof directly, since to prove this formula, one must find witnesses for the 

existentially quantified transition relations. Fortunately, we can simplify this VC 

by automatically finding instantiations that preserve logical equivalence. We now 

present rules that find these instantiations and reduce this formula into a logically 

equivalent, first-order fix-point formula. 

In the following sections, we observe the following notational disciplines. 

. We assume that W0  ranges over first-order, fix-point formulae. 
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• We assume that v (and its decorated variants) range over boolean assump-

iions which are lists of pairs x=b where b E {tt, ff}. 

• We assume that s (and its decorated variants) range over switchings which 

are functions mapping boolean variables (i.e. program variables of type 

boolean, as determined by type inference) to tt, if. These are the semantic 

counterparts to boolean assumptions and we write s v precisely, when for 

each x=b E v, we have s(x) = b. 

• We assume that e (and its decorated variants) range over transition relation 

expressions built-up from the following syntax 

e 	::= 	c'IXIeoxeiIae, 

where 0 are first-order transition relation expressions, X transition rela-

tion variables, u ranges over (injective) renamings (of first-order variables 

occurring in transition relations). 

• Similarly, we assume that L (and its decorated variants) range over transi-

tion relation expression built-up from the following more elaborate syntax 

L ::= XjLoixr'LiIcrLILo;LiIL, 

where ,- is the left adjoint of the renaming a—. 

• Finally, we assume that T (and its decorated variants) range over transition 

relation expressions built-up from the following, yet more elaborate, syntax. 

T ::= v,LITIToVTiIX.T 

Semantically, F : X i-3 L (and also X T) is said to be monotone when X ç Y 
implies F(X) ç F(Y). 

Table 5.6 on page 181 shows a schematic diagram of our simplification al-

gorithm, introducing the syntactic forms of the VCs we will be considering. A 

constraint of the form e0  = e 1  is understood to 'mean both e0  c e 1  and e 1  C e0. 
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We interpret constraints of the form v = e0  = e 1  to mean e0  = e 1  assuming that 

x = b for each x=b in v. Similarly, v, L C e means that L C e assuming v. 

We start at the top with our second-order verification condition, a formula of 

the form 

X. /\e=e' A /\L2cX, 

We simplify this by eliminating constraints of the form e0  = e 1 , for e0 , e 1  depen-

dent on ? (i.e. constraints 40 = can be left alone), using the rules displayed 

in Tables 5.11 on page 184 and 5.7 on page 182. 

Once we have eliminated all such equality constraints, we are left with con-

straints of the form L C e and 0 = qY only. We simplify this VC by applying the 

rules displayed in Tables 5.8 to 5.10 on pages 182-183. 

This approach of reducing a second-order formula into a logically equivalent 

first-order formula by finding instantiations for the existentially quantified second-

order variables is related to the work of Bledsoe. In [B1e79], he presents a theory 

where maximal instantiations are found. For a formula of the form X.(X) A 

'(X) where '1 is antitone and V monotone, a maximal instantiation A for X 

makes (A) trivial, reducing the formula to '(A) which is logically equivalent 

to the original formula. However, unlike in our case, his instantiations are not 

guaranteed to be complete, i.e., it may be that the instantiated formula is no 

longer provable. Also he only considered instantiation of a single variable. The 

present improvements are of course partly enabled by the particular syntactic 

form of our constraints. 

Let us consider the rules in Table 5.11 on page 184 each of which is both 

sound (conclusion implies premise) and, conversely, complete. 

Rule (eq-sym) simply allows us to swap the expressions on either side of an 

equality constraint. Rule (eq-resp) allows us to rewrite equivalent expressions in 

equality constraints, where equivalence is defined in Table 5.7 on page 182. 

Rule (eq-inst) is the rule that allows us to eliminate an equality constraint. 

Note that it can only eliminate constraints of the form E = X = e: those with 

an empty assumption and a variable to the left of the equality. Note further that 
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variable X may not occur free in e. 

In the case where X also occurs free in e, we can apply (eq-idem), which 

introduces an extra existentially quantified variable. A mapping F : X '-* T, 

for some formula T with possibly free occurrences of X, is said to be idempotent 

if F(F(X)) is logically equivalnt F(X). Note that the the rule is certainly 

complete, and it is sound provided that F: X '-p e is idempotent. Fortunately, 

F: X i-* e is idempotent for any e satisfying e = X, as the next two observations 

will show. 

Firstly, since (eq-resp) (together with the relation defined in Table 5.7) allows 

us to pull renamings inside of - - expressions, we may assume without loss 

of generality, that for constraints v = e = e' or L ç e, the expression e has form 

either o, aX or e0  i x r. e 1 . (Setting a to be the identity function recovers cases 

X and q.)  Also, for expression e X i x > X', we note that X '-p e and X' '- e 

are idempotent. Secondly, if F, F' are idempotent, then X '-* F(X) ix > F'(X) 

is idempotent. 

Finally, let us assume E = X = e where X, amongst possibly other variables, 

occurs free in e. Using the first observation, we consider e 	aq, aX, e' ci x > e" 

in turn, and argue that X 	e is idempotent. The first case is trivial. The third 

case follows from the second observation. For the second case, since renamings 

are injective and order-preserving, the only renaming from {1..n} to {1..n} is the 

identity function, and therefore e X after all. So, immediately, we conclude 

that X e is idempotent. 

The motivation for (eq-idem) is to allow us to eliminate variables where (eq-

inst) is not applicable, so, (eq-idem) is. typically applied immediately before an 

application of (eq-inst). Now, supposing 6 = X = e, then (eq-idem) introduces 

a new variable Y, say; an application of (eq-inst) eliminates X; but we can a-

convert Y to X since X is no longer a bound variable. Thus we may assume 

without loss of generality, that whenever we have a constraint 6 = X = e, we 

may apply (eq-inst) whether or not its side condition holds. 

Rules (eq-pullback) and (eq-equaliser) allow us to rewrite equality constraints 

involving renamings. The former for renamings of different variables, and the 
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latter for renamings of the same variable. 

Rule (eq-pullback) uses the pullback of renamings ci and 'r which is defined as 

follows. Given two renamings ci, r with equal codomain their pullback consists of 

two maps 71 , 72  with cod(7ri ) = dom(cr), cod(ir2 ) = dom(r) and cioir 1  = ror2  such 

that whenever ci 0 pi  = 0 P2 then there is a unique renaming ij' with p 2  = 7ri  0 

(i = 1,2). The domain of the pullback is an enumeration of the pairs (i, i) such 

that ci(i) = T(j). Notice that when (i,j) and (i,j') are two such pairs then j = j' 

and analogously for the first component. The renaming 1r 1 , resp., 7r2  maps the 

number corresponding to pair (i, i) to i, resp., j. In this case the pullback is 

unique (not only up to isomorphism as usual). 

Similarly, rule (eq-equaliser) uses the equaliser of ci and 'r, where dom(ci) = 

dom(r) and cod(a) = cod(r), which consists of a renaming p such that ciop = rop 

and whenever ci o = r o then factors uniquely through p. The domain of 

p is an enumeration of the subset of dom(ci) = dom(T) consisting of those i for 

which a(i) = r(i). The map p sends the number corresponding to such an ito i. 

Again, in this case the equaliser is unique. 

The completeness of rules (eq-pullback) and (eq-equaliser) is not obvious. It 

is based on the following categorical lemma: 

Lemma 15 Let I be the categOry of renamings and I be the category of partial 

renamings. If C is any category and F: I —* C is a functor that extends to I,, 

then F preserves pulibacks and equalisers. 

Proof A left inverse of a map e is a map p such that pe = id. Clearly, in this 

case F(p) is a left inverse of F(e) for any functor F. We notice that every map e 

in I has a canonical left inverse p in I which is undefined outwith the image of 

Suppose that a, b, c, d are maps such that ba = dc. If all of a, b, c, d have 

left inverses a', b', c', d' with b'd = ac' and d'b = ca' then they form a pullback 

diagram. Indeed, if bf = dg then f = b'dg = ac'g, so f = ah for h = c'g. 

One continues to argue in this way. Being equationally defined such a pullback 

is preserved by any functor. Now let a, b, c, d with ba = dc be a pullback in 

I and a', b', c', d' be the canonical left inverses in I,,. We show that b'd = ac'. 
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Let x e dom(d) = dom(c'). If dx = by for some y E dom(b) then there is 

z E dom(a) = dom(c) with x = cz, y = az. Thus, ac'x = az = y = b'dx. If, 

on the other hand, dx im(b) then c'x = I = ac'x = b'dx. Likewise, we have 

d'b = Ca' 50 that any pullback in I is of the aforementioned form when viewed in 

I,, so that it will be preserved by any functor. 

For the equalisers we use the following generalisation of so-called absolute 

equalisers. 

Suppose that e, u, v are maps in a category such that ue = ye and that e, 

resp., u have left inverses p and k. If (kv)' = ep for some n E N then e is the 

equaliser of u and v. This follows by straightforward equational reasoning. Being 

purely equationally defined such an equaliser is preserved by any functor. Notice 

also that for element x, if (kv)'x = epx then (kv)h1x = kv(kv)12x = kvepx = 

kuepx = epx. 

Any equaliser in I has this property with p, k being the canonical left-inverses 

of e and u and n greater than the cardinality of dom(u) dom(v). Suppose that 

x E dom(u) = dom(v). If ux = vx then epx = kux = kvx. If ux vx and 

vx 0 im(u) then epx = I = kvx. 

If, however, ux vx, but vx = uy then kvx = y yet epx = I. Suppose 

w.l.o.g. that ux < vx = uy. Then also x < y. Now, uy = vy is not possible 

as otherwise vx = vy contradicting injectivity of v. If vy ' im(u) then as seen 

above kvy = I, so (kv) 2x = I. Finally, if again vy = uz then vx < vy as x < y, 

so uy = vx < vy = uz, so y < Z. Continuing in this way we obtain a chain 

x = x0  < x2  < x3 < 	< x,_1  where epxt = I = kvx t  and vxi  = ux2+i. It 

follows that (kv)t_2x2 = epx 2  hence the result. 	 0 

We instantiate this lemma with C being the category of sets and F being 

the functor mapping 11. .m} to the set of n-ary transition relations and a re-

naming to the induced function on transition relations which extends to partial 

renamings by inserting dummy elements. The conclusion of the lemma is then 

tantamount to the respective equivalence of premise and conclusion of the two 

rules in question. To illustrate let us consider a special case: let dom(cr) = 

dom(T) = {1,2,3},cod(cr) = cod(T) = {1,2,3,4}. Let u(1) = r(1) = 1, 
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o(x) = x, -r(x) = x + 1 otherwise. The equaliser p has domain {1} and sends 

1 to 1. Then crA = TA expands to A(x i , x2, x3 ) A(x i , x3 , x4 ). The lemma 

asserts that there is a 1-ary transition relation C such that A(x i , x 2 , x3 ) = C(x i ), 

i.e., that A does not depend on its second and third variable. Indeed, this 

holds for C(x i ) = A(x i , d, d) where d is a dummy element. Namely, we have 

A(x i , d,d) = A(x i ,x 2 ,d) = A(x i ,x 2 ,x3 ) by successive use of the assumption. 

Similar illustrations are possible for rule (eq-pullback). 

Supposing we have a constraint v = aX1  = rq5, then for the left-inverse a 

of a, if o• o T is a renaming, then we can apply (eq-const). Note that in general, 

o r may be a partial function, in which case it is not a renaming. In such a 

case, there is no X1  satisfying this constraint, and so we conclude that the VC is 

false. 

Rules (eq-if-elim), (eq-betal) and (eq-beta2) allow us to rewrite equality con-

straints involving the if-else expression ecixIe'. Together they consider the cases 

for the assumption list containing x and otherwise. 

Finally rules (eq-if-introl) and (eq-if-intro2) allow us to shorten the list of 

assumptions v in a constraint of the form v = X = e'. 

The rules in Table 5.10 on page 183 eliminate variables X when they occur in 

a constraint of the form T C X. For a transition relation T which is monotone 

w.r.t. X, we write MX.T to denote the least transition relation X such that 

X = T, remembering that X typically occurs free in T. By Knaster-Tarski 

we have the explicit formula p X.T = flT[A/x]CA A and the derived formulae: 

T[jiX.e/X] C jtX.T and ,tX.T C A whenever T c A. In particular, when T is 

independent of X, then the fix-point jLX.T is simply T itself, and this is precisely 

the second rule in Table 5.10. 

The rules in Table 5.8 on page 182 simplify - - - expressions. Rules (if-

betarl), (if-betar2), (if-betall) and (if-betal2) are trivially sound and complete by 

definition of our interpretation of boolean assumptions. The remaining rules (if-

elimi) and (if-elimr) can be shown to be sound and complete by using the fact 

(x = ff) V (x = ff). 

In Table 5.9 on page 183, (collate) is trivially sound and complete. In (adj- 
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ren), we find the left adjoint El, of renaming a: {1..m} -* {1..n}, where adjoint-

ness is defined, for transition relations T, U of arities n, m: 

TcU iff TCaU. 

Such an adjoint exists, and furthermore can be defined thus: 

de 
(RT)(x i ,... , Xm) =f 	,Yn T(y i ,... ,y)A A xj =Ycr(j) 

j=1..m 

Proposition 1 If 'I' is obtained from by application of any of the instantia-

tion or equality rules (Tables 5.8 to 5.11 on pages 182-184) then I and T are 

equivalent. 

This follows by straightforward reasoning in all cases except the equality rules 

involving pullback and equaliser. For those two the equivalence has been estab-

lished above. 

5.4.1 Success 

We will now show that provided the rules are used in the right order, it is always 

possible to reduce a formula of the form 

3X. /\e=e' A /\LcX. 

to a first-order (fix-point) verification condition. The proof provides a strategy 

for applying the rules. The correctness of this strategy relies on a key observation 

about compatibility of boolean assumptions v and v'. Formally, for two lists of 

boolean assumptions v, v', we say that v and v' are incompatible precisely if there 

is no switching s such that both s J= v and s = v'. Using this definition, we state 

and prove the following lemma. 

Lemma 16 Suppose from 

X. v4e=e' A '1 
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we obtain 

aX. v 1 =,-ej =e 	 A 41) 

by repeated applications of (eq-if-elim), (eq-betal) and (eq-beta2). Then the 

boolean assumptions v1 ,... , v, are pairwise incompatible. 

Proof Since applications of (eq-if-elim) just add more constraints without chang-

ing the list of existentially-bound variables, nor modify the other constraints, we 

shall consider only the changing constraints, in isolation. 

We prove the following more general result. Suppose 

and v 1 ,... , v are pairwise incompatible. Now suppose constraint vi  = e, = e 

has form vi  = e' < x r' e" = e. 

If x C v, then w.l.o.g., we may assume x=tt and so we apply (eq-betal), 

replacing the constraint by vi  = e'= %* 

If x v2 , then we can apply (eq-if-elim) and the constraint is replaced by 

two constraints: v2 , x=tt = e7 = e and v2 , x=ff = e" = e. We note that 

v2 , x=tt and v2 , x=ff are incompatible. Furthermore, for j =A i, since vi  and v j  

are incompatible, v, x=tt and v, are incompatible (and similarly for v, x=ff.) 

(To see this, consider some s such that s = v3 , then if s = v, x=tt we can 

conclude that s = v2  also, contradicting the incompatibility of v2  and v3 .) 

In either case, we obtain new constraints whose assumptions are again pairwise 

incompatible. Now the statement of the lemma follows by repeatedly applying 

this more general result to v 	e = e'. 

To help us reason with (eq-if-introl) and (eq-if-intro2), we overload some 

notation. 

Definition 7 Suppose from v = X = e we obtain e = X = e' by repeated 

applications of (eq-if-introl) and (eq-if-intro2). We overload notation and write 

e i v > X to denote e'. 



156 	 Chapter 5. Verification Condition Generator 

In fact, e < v > X is a nested expression of - - - constructs. Considering 

this as a syntax tree, where nodes are labelled with the first-order variables in v, 

and the branches are labelled tt and ff, we have lvi + 1 leaves, lvi of which are 

labelled with X, and one is labelled with e. Now reading v backwards gives us a 

path from the root of this tree to the leaf e. We now state the following lemma 

without proof, but which can be found by formalising this explicit description of 

e 1 V > X. 

Lemma 17 We can repeatedly apply (eq-betal) and (eq-beta2) to i.v = e = 

e0  lv'> X A 'I' and obtain 3X.v = e = e0  A W, if and only if, for every switching 

s, s = v' implies s = v; otherwise, we obtain 3)?.v = e = X A T. 

As a simple corollary, if v and v' are incompatible, then from 	= e = 

a(eo  1 v' X) A W we can obtain 3X.v e = aX A IF by repeated applications 

of (eq-betal) and (eq-beta2). 

Theorem 15 (Success) Given a formula of the form 

FIX. A e = e' A A Li  ç X, 

it is always possible to repeatedly apply the rules displayed in Tables 5.8 to 5.11 

on pages 182-184 to obtain a logically equivalent, first-order, fix-point formula 

Proof Recall we use the convention of letting TO  denote a first-order, fix-point 

formula. 

Given a formula of the form 

3X. A e = e' A A L 2  C Xj , 

we rewrite it as 

X. A 	e0 , 2  = e j , j  A A E , L 2  ç  X. 

that is, choosing the empty list s for our assumptions v i  and v. 
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Next we reveal that the strategy first eliminates all equality constraints by 

applying the rules in Table 5.11 on page 184, until we obtain a formula of the 

form 

. AV,Lj g e A iJj0 

where we have expressions e on the right-hand side of the implication constraints. 

We then apply the rules in Table 5.8 on page 182 until we have eliminated all 

- - - subexpressions, leaving a formula of the form 

• A v, Li c  e A T. 

Now the expressions e appearing on the right can be renamings, variables or 

predicates, and also there are no occurrences of - - - subexpressions in any 

L2 . We then apply the rules in Table 5.9 on page 183 until we obtain a VC of the 

form 

. ATX2 A '1to 

where each variable X e 	occurs at most once on the right of a constraint 

T ç X, and also there are no occurrences of - 	- subexpressions in any 

T. Now we can apply the rules in Table 5.10 on page 183 until all higher-order 

variables are eliminated. 

It is clear that we can apply the rules displayed in Table 5.8 on page 182 until 

all - - - expressions are eliminated. Similarly, it is clear that we can always 

apply the rules in Table 5.9 on page 183 to obtain a formula of the form 

a. 	A Li  C X i  A 	, 

i=1..IX'I 

where each X E 	occurs at most once on the right of a constraint. Finally, it 

is also clear that we can apply the rules displayed in Table 5.10 on page 183 to 

eliminate all higher-order variables to leave a first-order, fix-point formula. 

The only difficult part of the proof concerns showing that the rules in Ta-

ble 5.11 on page 184 allow us to eliminate all equality constraints, and we con-

centrate on this by presenting an explicit strategy. 
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STEP1. Suppose we start with a formula 

3X. v=e=e' A 4 

We iteratively apply (eq-if-elim), (eq-betal) and (eq-beta2) until all - - - 

expressions deriving from v e = e' have been eliminated. Thus the resulting 

formula has form 

X. A 

for some ri, and v, e 1 , e (i = 1..n), and there are no - - - expressions in any 

of e2 , e. Furthermore, by Lemma 16, we know also that v 1 ,. . . , vn  are pairwise 

incompatible. 

STEP2. We now show that we can iteratively eliminate each of these n equal-

ity constraints in turn. Let us consider constraint v 1  e1  = e. We proceed by 

cases, the number of which is reduced since there are no - - - expressions in 

either e 1  nor e. 

• Case v 1  = aX = TY. We apply (eq-pullback) and this constraint is re-

placed by two constraints: v 1  = X = 7r1 Z and v 1  ==> Y = 7r2 Z, where 

7r 1 , 7r2 are the pulibacks of a, r. For each of these two constraints, we re-

peatedly apply (eq-if-introl) and (eq-if-intro2) until they are replaced by 

constraints: E = X = 7r1 Ziv 1 tX and e = Y = 7r2Ziv 1 iY. Now we can 

apply (eq-idem) followed by (eq-inst) to each of these, eliminating both of 

them. 

Now there may be free occurrences of X (resp. Y) in e, e (i = 2..n). 

Suppose that X occurs free in e2 . By assumption, there are no - - . - 

expressions in e 2 , and so e2  p2X 1  for some p. Thus after the substitution 

for X, the constraint v2  = e2  = e'2  is replaced by v2  = p2 (7r 1 Ziv1 r'X) = 

where e' is the substitution applied to e. Now from our hypotheses, we 

know v 1 , v2  are incompatible so by the corollary of Lemma 17 we can apply 

(eq-betal), (eq-beta2) to simplify this constraint to v2  = p2X = e". Now 

we can repeat the same argument for expression e", and conclude that 

eliminating v 1 	e 1  = e'1  has not changed the constraint v2  = e2  = e. 
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Similarly, we can show that the remaining constraints vi  = e2  = e (i = 2. .n) 

also stay the same. 

Thus we have eliminated v 1  ==> e l  = e without changing v2 	e2  = e 

(i = 2..ri). That is we have simplified the VC to 

X. 	 A Ii 

where 	[71 Z/X][7r2Z/Y] 

• Case v 1  => aX = rX. We apply (eq-equaliser) and this constraint is 

replaced by v 1  = X = pZ. Repeated applications of (eq-if-introl), (eq-if-

intro2) simplifies this constraint to E => X = pZ 1 v 1  > X. Now we can use 

rules (eq-idem), (eq-inst) and eliminate the constraint. 

Again, the other constraints v2 	e. = e (i = 2. .n) may have changed 

because of the substitution, but we use the same argument as in the previous 

case to show that we can simplify these constraints to their form before the 

substitution. Thus we have simplified the VC to 

X. 	 A 	i 

def 
where 	[pZ/X}. 

• Case v 1  = aX = 0. We apply (eq-const) followed by (eq-inst). The 

other constraints vi  = ej  = e (i = 2. .n) may have changed because of the 

substitution, but they certainly do not contain - - - expressions. 

• Case vi  = 	= '. This constraint has no free occurrences of higher-order 

variables and so we may ignore it. Explicitly, simplify the VC to 

X. A 

where (D j  = 4DAv=>= 

• The remaining cases are symmetric instances of the above, and can be 

reduced to the previous cases by applying (eq-sym). 
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Thus, in any case, we have shown that we can simplify 

X. A 

to 

X. A 4 

Importantly, we note that v2 ,... , v, are also pairwise incompatible, and also 

e7, e" do not contain - 1- - expressions. Thus we can apply this elimination 

process repeatedly to eliminate the constraints v2  = ej  = e for i = 1. .n. 

Note that once we have eliminated these n constraints, we have reduced the 

number of equality constraints in the VC by one. We can thus repeat this proce-

dure (at STEP1) until all the equality constraints are eliminated. 0 

5.5 First-order verification conditions 

While the possibility of eliminating all second-order quantification in favour of fix-

points is perhaps surprising, the presence of fix-points in a verification condition 

seems quite natural. After all, when verifying a program with looping behaviour, 

be it from a while construct, or recursive method invocation, if one were to obtain 

a purely first-order verification condition, then one would expect to be required 

to provide an invariant of some sort. This last analogy, suggests that if we allow 

the programmer to provide further hints to the verification condition generator, 

in the form of annotations in the program, then we might be able to eliminate 

some of the fix-point operators. 

Closer examination of the simplification rules reveals that fix-point operators 

are introduced only by (freeinst), that is, whenever we find a constraint of the 

form L c X and X occurs free in L, and we instantiate for X. Supposing 

the programmer can provide an explicit instantiation of X to the simplification 

process as a hint, then at least this fix-point occurrence can be eliminated. 

Taking this as our motivation, we extend the syntax of the programming 

language by allowing the user to provide annotations. For our purposes, an 
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annotation 1' is a partial function mapping sequences -y (including E in this case) to 

transition relations. The precise syntax used to write such partial functions is not 

important. Annotated programs, which for the sake of brevity will also be denoted 

by the symbols a and b, are defined as before except we now allow annotations 

a::. Furthermore, annotations of variables can still be used as variables, so for 

example, we can write x.f:_—(y::). 

We now add the following clause to the definition of Cons. 

Cons(, a::'b) Cons(, a) 

• {a 	= 	y) I -y E ftaJJ fl dom()} 

• {Ja = 	() I E E dom()} 

• {1.'(a) C Ja::a I c E 	fl dom()} 

• {,()3) = la::V)Do I 8 E 	aE n dom(i)} 

• {(e) C 	a:: 	I E 	dom(1)} 

• {1a 	= 	a:: 	I 	y 0 dom('b)} 

• I JaD = Ja::14 I 	dom()} 

Here we have extended 	to annotated programs. Note that we use the infor- 

mation in 0 whenever it is defined, and simply identify la  and la::ODy  whenever 

it is not. We ignore (y) for 'y I[a. 

5.5.1 Dependency graphs 

The question still remains as to whether we can avoid all fix-point operators by 

providing enough annotations. Furthermore, a related and interesting question is 

how many annotations are required to avoid all fix-point operators. In particular, 

we would like to be able to express a closed-form description of where annotations 

are required for a given unannotated program. 

Inspection of the constraints generating function reveals that constraints of 

the form L C X with X free in L do not occur initially. They arise in the inter-

mediate steps of the instantiating procedure. We have the following observation: 

given such a constraint, we instantiate for X, the expression aX.L; thus those 

constraints containing X, will also contain free occurrences of the other free vari-

ables in L. This observation suggests that these questions should be answered by 
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considering cycles in some sensible notion of dependency graph. We recall that 

given a graph (G, —*), a path is a sequence of edges (a 3  — a3 +i), and a cycle is 

precisely a path with the same start and end nodes. 

Rule (notfreeinst) suggests that a possible notion of dependency graph for VC 

3)?.I has)? for nodes and an edge X —+ Y whenever there is a constraint in 1 of 

the form L C Y and X occurs free in L. In fact, this is adequate for dependency 

graphs without equality constraints. 

The problem appears to be much harder once we take into account the equal-

ity constraints. A natural approach would be to define an equivalence relation 

relating those variables involved in an equality constraint. Problems arise when 

we consider the case for if x then a 0  else a 1 . Here we have a constraint of the 

form 

1 x > JaiDO =  if x then a 0  else a i p 

This would suggest insisting on 

if x then a0  else a1  

Unfortunately, the transitivity of will force qa o p 	ai p too, which can give 

too many cycles. Consider, for example, the program 

if x then Yi  else let z=y2 .f in [f=z] 

where the two occurrences of y have been decorated with different subscripts. We 

get constraints 

(y)fc 's'.'  c1Y4fQ 

for the first branch of the conditional and 

(Y)fa '' lJY2fa " y2fLc 	(Z) a  " W. ' 
l[f=zIIia - let z=y2 .f in [f=zIia 

for the second branch. By insisting 

lJif x then Yi  else let z=y2 .f in [f=z] 1  

let z=y2 .f in [f=z}j 
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we find that we now have a cycle. However, applying the reduction rules to this 

system of constraints does not give us a fix-point operator. 

Careful consideration shows that variables jy j D c, and Ilet  z=y2 .f in [f=z]a 
should not be equivalent. Instead Jif x then yi  else let z=y2 .f in [f=z]D should 

be equivalent to jyj,, only when x is true, and conversely for the else branch. So 

it appears we have to consider cycles for cases where x is true and false. More 

generally, we should consider cycles for each switching s. 

This example motivates our final definition of dependency graph. 

Definition 8 Given a set N, and binary relations E8 , R3  c N x N, for each 

switching s, the triple C = (N, (E3 ), (R3 )) is said to be dg-closed if, 

. E8  is an equivalence relation, and 

• ES RS ES  ç R3 , 

and said to be tdg-closed if furthermore, for each switching s, 

• R is transitive. 

Notationally, given a tuple C of a set of nodes and two families of binary 

relations over N indexed by switchings s, we write Gdg and Gtdg to denote their 

dg- and tdg-closures, defined below 

Definition 9 For a triple B = (N, (E8 ), (R 8)) where (E3 ), (R 3 ) are families of 

relations indexed by switchings s, we define, 

(N, (E), (9,)) 

Bt' 	' (N, (E), (R'8')) 

where 

E def 
 least equivalence relation including E3  

def D3 — 1" D l' IL  

,def 	, 	 . . 

	

R3  = R3 	the transitive closure of R3. 
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Definition 10 (Dependency graph) A dependency graph (resp. transitive de-

pendency graph) is a dg-closed (resp. tdg-closed) tuple of nodes, and two families 

of relations. A dependency graph C = (N, (E3 ), (R3 )) is said to be acyclic if R 3  

is acyclic for all switchings s. 

We frequently choose symbols such as 	(—), which are suggestive of their 

properties, for the two families of relations of a dependency graph. 

Definition 11 (Dependency graph homomorphism) Suppose we have de-  
- 

pendency graphs C = (M, (E3 ), (Q3)) and D = (N, (F3 ), (R3)). A function 

f: M — N is said to be a dg-homomorphism from C to D, written f : C -+ D, 

if for all switchings s and nodes a, b, 

a E3  b implies f(a) F3  f(b), and 

a Q3 b implies f(a) R 3  1(b). 

A dg-homomorphism C -* D is said to be a tdg-homomorphism if C, D are, in 

particular, transitive dependency graphs. 

We shall often drop the prefixes and simply write homomorphism for both dg-

and tdg-homomorphism, when there is no risk of confusion. 

We note that homomorphisms are morphisms in the categorical sense since: 

homomorphisms f : B — C, g : C -* D, whenever a -* b in B, by 

the definition of homomorphism, we have 1(a) -* 1(b) in C, and also 

g(f(a)) - g(f(b)) in D, for switching s, i.e. g o f is a homomorphism; 

composition of homomorphisms is associative since they are in particular 

functions; and 

for dependency graph D the identity function defined on its nodes is a 

homomorphism D - D. 

Proposition 2 For transitive dependency graphs C, D, if f: C -* D is a tdg-

homomorphism, then C is acyclic provided D is acyclic. 
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Proof Suppose C = (M, (E3 ), (Q3)), D = (N, (F8 ), (R3 )) and f : C -f D is a 

homomorphism. Let us assume that C is not acyclic. Since Q3 is transitive, there 

are .s, a such that 

a Q ., a 

and since f is a homomorphism 

f(a)R 8 g(a) 

which is a cycle in D. That is, D is not acyclic. 

Thus in the case of transitive dependency graphs, acyclicity of C can be shown 

by exhibiting a homomorphism f: C - D for some D known to be acyclic. (In 

fact this is also the case for general dependency graphs.) 

At this point, we reveal to the reader that we will define a function which 

constructs a transitive dependency graph from any given VC, with the crucial 

property that if the VC contains a fix-point expression, then its dependency graph 

is not acyclic. We then show that the rules in Tables 5.9 to 5.11 on pages 183-184 

preserve acyclicity in the following sense: supposing a rule can simplify 4D to 'I", 

then if the dependency graph of is acyclic, then that of V is also acyclic. To 

prove this we exhibit a homomorphism. 

We state the following simple lemma without proof which gives us useful ways 

to construct tdg-homomorphisms. 

Lemma 18 Given triples, C = (M, (E8 ), (Q3)), D = (N, (F3 ), (R3)) which are 

not necessarily dependency graphs, a function f: M -* N satisfying 

a .E3  b implies 1(a) F3  f(b), and 

a Q3 b implies f(a) R 3  1(b). 

is a dg-homomorphism Cd9-* D"  Also, assuming C, D are dependency graphs, 

a dg-homomorphism f : C -* D, in particular, is a tdg-homomorphism C' 
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To allow us to define a dependency graph for a given VC 'I', we introduce an 

auxiliary definition W.Js whose definition is displayed in Table 5.4 on page 179. 

Informally, 'I's is xJt  assuming boolean variables take values as determined by s. 

Given a VC W, we write DG(W) to denote its transitive dependency graph which 

is defined in Table 5.5 on page 180, using the auxiliary definitions (in particular 

C0 ) in Table 5.4 on page 179. Note that by definition, if contains a fix-point 

expression, its dependency graph DG() is not acyclic. 

The following lemma, stated without proof, is required for the next proposi-

tion. 

Lemma 19 Let s be a switching. 

If e ---* e' (as defined in Table 5.7 on page 182) then e,Ls  and e'Js have the 

same free higher-order variables. 

(e{e'/X]),j.s 	(eJs)[e'J.s/X] 

(L[L'/X])j.s 	(L.ts)[L'ls/X] 

([L/X])j.s 	(4s)[LJs1X] 

Proposition 3 Acyclicity is preserved by the rules displayed in Tables 5.8 to 5.11 

on pages 182-1 84 in the following sense. If applications of the rules in those Tables 

can simplify 'I' to 'I" then DG(W) is acyclic implies DG(W') is acyclic. 

The proof proceeds by considering each rule in turn. Supposing a rule has 

form 

for VCs II', W' and side condition P, we show that assuming P, there is a homo-

morphism DG(1I') - DG('I'). Since the composition of two homomorphisms is 

a homomorphism, this is sufficient to show that for any sequence of applications 

of rules simplifying IF to 111 ', there is a homomorphism DG(W) -* DG(iIt'). By 

appealing to Proposition 2, we conclude that DG(W) is acyclic implies DG(W') is 

acyclic, as required. 

The proof can be found in Section A.3. 



5.5. First-order verification conditions 
	

167 

5.5.2 Bridges 

Let us overload notation and write DG(, a) for DG(Cons(, a)). The dependency 

graph DG(,x.f:=y) includes the paths 

(x)f f . 	14fa 	(x)fi 	jXff3 

and 	 I" 

(Y)a 	 1YL 	(y)13 	 1YF,3 
The important aspect of these paths is that they join up the variables (x) f)  and 

(y) by forming a bridge between them. The presence of bridges creates possible 

cycles, as we shall see later. 

Note that the presence of these bridges depends on there being a variable 

that is, 'y E Since 'y  is a sequence ending in some m, we conclude that 

this is precisely when y is higher-order, i.e. stores the location of an object which 

(hereditarily) has methods. Conversely, if the type Jyj has paths containing only 

fields, i.e. y is not a higher-order variable, then there is no 'y E yfl and therefore, 

we do not get these bridges. To summarise, we get bridges when we have a 

higher-order field update. 

Now consider an annotated field update, x.f:=(y::'1'). The edges of the first 

of the two bridges in the previous dependency graph now become 

(X)fc. 

and (y) 

and similarly for the second bridge. Note that there is no edge between nodes 

y:: 	and qyD,.  The annotation has effectively broken the bridge. 

5.5.3 Cycles 

The dependency graph D = DG(, if x then a0  else ai ) is displayed in Figure 5.1 

where the barrel-shaped units denote subgraphs for a 0  and a1  whose internal 
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• then a0  else a1  

• then a0  else a1 a  

• then a0  else a1  

xi  = tt 
xi  = ff 

Figure 5.1: Dependency graph for if x then a0  else a1 . The two barrel-shaped units 

denote the dependency graphs for a0  and a 1 , abstracting the internal paths. The 

V-shaped paths on the left emphasise that the node . • (x 2 ).... are shared between 

the two units. The paths labelled '--'s  on the right emphasise that they are only present 

for switchings s = x3 =tt, similarly for s'. 

Figure 5.2: Two possible ways of creating a cycles in if x3  then a0  else a1 
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(X) a  

(x) 

let x=a in b 

let x=a in b 

let xa in b 13 

Figure 5.3: Dependency graph for let x=a in b. The two barrel-shaped units denote 

the dependency graphs for a and b, abstracting the internal paths. The paths from 

the right of the graph of a to (x), (x) ,q  emphasise the fact that the nodes JaD y  are 

identified with the nodes (x). ) . 

paths have been abstracted. Two examples of possible cycles arising in D from 

interactions between the paths of the subgraphs are shown in Figure 5.2. Here 

we see bridges in the subgraphs joining to form a cycle. An example of the first 

type of cycle is 

if x' then (let z=x.f in y.f:_—x) else (let z=y.f in x.f:=y) 

which creates a cycle through (X)1c. and (Y)fa. 
Similarly, the dependency graph D is displayed in Figure 5.3, and again the 

paths in the subgraphs have been abstracted. Of course the two cycles displayed 

in Figure 5.1 are also possible in D = DG(, let x=a in b), but furthermore, we 

also have the possibility of creating a cycle depicted by the second diagram in 
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x x 

Figure 5.4: Two possible ways of creating a cycle in let x=a in b 

Figure 5.4. In this case, we can get a cycle if, in b, we create a bridge between x 

and some variable that is used in a. An example of such a cycle can be seen in 

let x=y.f in y.f:=x 

This example creates a cycle through (x) and (y)j. 

Though the previous example is the simplest one demonstrating such a cycle, 

the resulting fix-point expression can easily be solved. A reasonable question is 

whether there are really cycles of such form that produce fix-point expressions 

that are not easily solvable. Unfortunately, the answer is yes. 

Our store is updatable and higher-order in the sense that we can store function 

closures. Therefore we can, for example, construct two objects that in isolation 

do not exhibit recursion, but when composed together via the let construct and 

a field update, can become mutually recursive. Consider 

let u= [f= [m'=c(y') trie], m=c(y)a; y.f.m'Q] in 

u.f:=[m'=c(y')u.mQ}; u.in() 

with an arbitrary program a. (Note that we are using syntactic sugar; a strictly 

legal program requires many more let constructors.) Here we create objects in 

both branches of the let construct. In isolation, neither seems to have recursive 

methods. However, when combined with the let construct and the field update, 

we get mutual recursion, albeit bound at runtime. 
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__ 1* 

Qf = xj, rn = c(y)b] ffi  

Qf = x3 ,m c(y)b]jc. 

= x3 ,rn = c(y)b] m  

= x3 ,m = c(y)b] m  

Figure 5.5: Dependency graph for [f = x,m = c(y)b]. The barrel-shaped unit 

denotes the dependency graph for b. The paths from lXF) c , x3 çj to (y)t, (y)it 

emphasise that these nodes are identified. Similarly for the paths from the right of 

the graph of b to (y)mc, (y)mp. 

In the case of object creation, we first consider objects with exactly one field 

and one method. We display D = DG(, [f=x3 , m=c(y)b]) in Figure 5.5. Already 

there are new possibilities for creating cycles. Figure 5.6 shows four possibilities 

where internal paths of the subgraph can cause cycles. The possibility shown in 

the bottom right corresponds to static-bound method recursion. Unlike previous 

examples, we have a cycle that does not pass through a bridge. Nevertheless, if 

we annotate the program with a suitable annotation as follows: 

[f=x3 , m=c(y)(b::b)] 

then we can also break this cycle. 

So far, it may still appear feasible to prove acyclicity of dependency graphs 

by induction over programs and exhaustive case analysis as we have hinted at 

above. If the reader believes we have exhaustively covered all possibilities for 

creating cycles in the previous examples, then perhaps he/she should consider 
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Figure 5.6: Four possible ways of creating a cycle in [f=x3 ,m=c(y)b} 

Figure 5.7: A possible cycle in an object with three method bodies 
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another special case of object creation, namely an object with three methods. 

Figure 5.7 shows a possible cycle caused by interaction between bridges within the 

subgraphs for the method bodies. Clearly in the general case of £ method bodies, 

there can only be more possibilities. Thus it is hoped the reader is convinced 

that exhaustive case analysis is not an ideal proof technique. In the sequel, we 

will propose exhibiting homomorphisms as a more suitable proof technique for 

proving acyclicity. 

5.5.4 How many annotations? 

Ideally we would like to provide as few annotations as possible to allow us to 

obtain a fix-point-free verification condition. A pragmatic solution would be to 

apply the instantiation rules and inform and hint the programmer whenever we 

introduce a fix-point operator. Hopefully each hint will allow the programmer to 

provide an annotation in the right place, breaking a particular cycle. Nevertheless, 

it would be more effective to be able to state, a priori, exactly where annotations 

are needed to be able to obtain a fix-point-free verification condition. 

Our initial discussion about the need for annotations suggested that ioops 

need invariants. We do not have while, for or other ioop constructs, but we can 

create ioops with method recursion. But are there other ways to create loops? 

The answer, as mentioned before, is yes. 

Our store is both updatable and higher-order since we can update objects 

which contain methods, and it is well known that loops can occur in programs 

that do not have recursive functions (methods). Consider the following example 

let u_—[f=[m=c(y)true}] in 

u.f:=[m=c(y)u.f.rnQ]; u.f.m() 

Here we initially create an object, which we call u, with one field f initialised 

to an object with one method in that computes something trivial. Thereafter, 

within the main body of the let construct, we update field u.f with another object 

with method m which invokes method u.f.m. When run, the program exhibits 

non-termination, and in a similar vein it is possible to write programs computing 

factorial, Fibonacci numbers, etc., recursively. 
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We could not have written 

let u=[f==[m=c(y)u.f.mQJ] in 

since the scoping rules of the let construct forbids this. However, we can write 

essentially the same program by updating u.f afterwards. This is allowed by the 

scoping rules, and is precisely runtime-bound recursion. 

The point is that if we insist on annotating only static-bound (mutually) 

recursive methods, then we will not be able to eliminate all cycles from the 

dependency graph. 

5.6 Conclusions and further work 

We have presented an algorithm which can infer large parts of a proof in AL. 

There exists a prototype implementation and in Chapter 6 we give an account of 

the examples we have attempted with the prototype implementation. 

For the future we intend to develop an implementation which could display 

ioops in dependency graphs and so ask the user for more annotations when 

needed. Alternatively, one could strive for a static type system capable of guaran-

teeing cycle freeness of dependency graphs. Our experience so far, in particular 

the presence of implicit recursion described in Section 5.5.4 leads us to a pes-

simistic view as to the existence of such a system which would at the same time 

be reasonably strong and comprehensible. However, recent work on alias analysis 

and linearity [WSROO, OPOO, Hofool might be useful. 

One of the goals of our VCG was to provide increased automation for finding 

verification proofs. The main bulk of this presentation is to show that our VCG 

algorithm is correct. An alternative approach towards the same goal is to embed 

the program logic into a theorem prover, as detailed in Chapter 3. Then one can 

use the automation provided by the theorem prover, for example by implementing 

specialised tactics (e.g. like Gordon's VCG in [Gor88]) to reduce some of the 

resulting proof burden. In particular, unsound tactics cannot allow incorrect 

"proofs" to be derived, since the proof checking facility of the theorem prover 

guards us against such an eventuality. Thus soundness of the VCG is then of 
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reduced importance. Nevertheless, we believe that completeness of the VCG 

algorithm is still important: in its absence, should one obtain an unprovable 

subgoal from a tactic, one cannot conclude that the goal itself is unprovable. 

If one chooses carefully how AL is embedded into a suitable theorem prover 

such as Isabelle/HOL, we believe that the VCG algorithm presented here can be 

implemented as a tactic. 

Our method is currently restricted to closed programs. However, due to the 

compositional nature of AL, and our constraints-solving approach to VCG, we 

foresee no difficulty to extend it to open programs which would allow us to apply 

verification to certain crucial parts of a program and simply assume correctness 

of others. Suppose, for example, x occurs free in program b. If in b we use method 

m of x, then type inference infers 'in E [x]. However, as it stands, since there is no 

constraint of the form T ç (X) m  (where (X) m  is the transition relation that m of x 

must satisfy) and since we choose minimal instantiations for transition relations, 

variable (X) m  is instantiated with the strongest (empty) transition relation; the 

result of this exercise has no practical use since the answer effectively means that 

the program is correct provided m of x satisfies this strongest transition relation 

(in fact, any non-terminating method can satisfy this relation). However, if we 

allow annotations of variables (not simply variable occurrences) within a program, 

then we can impose further constraints on (X) m . For example, if we can add the 

constraint U0  g (X) m , then solvability of the resulting set of constraints implies 

that let x=a in b is correct provided we can show F- a : [m:c(y)B::Uo] :: T for 

some B and T. We may simply assume that a satisfies this proviso 2  or we may 

prove that it does using our VCG or otherwise. 

Extensions of the AL logic either by recursive types or with a view to address 

its incompleteness will lead to new challenges. For example, the equivalence 

allowing us to rewrite A <: A' as an equivalent collection of constraints over the 

component transition relations of A, A' is only possible if A'j is finite. 

In a finite model fix-points can be computed quickly (polynomial in the size 

of the model) by iteration. Thus, if we were able to detect statically, whether the 

2because we are very confident of the correctness of a, or, more likely, because it is too 
expensive to do so 
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required model was indeed finite then we could use model-checking, i.e., iterative 

computation of fix-points to discharge verification conditions automatically. We 

believe that the model, i.e., the state space is indeed finite in examples like the 

dining philosophers example. 

From a point of view of programming methodology, we may use unsound but 

complete approximations to proving the VC, and thus detect possible mistakes in 

the code and/or specification. If these complete methods are "push-button" (i.e. 

automatic) then, for example, they may be applied off-line, e.g. overnight, during 

the development of a project. For example, we could use model-checking on 

an arbitrarily sized, finite model and in this way possibly detect unsatisfiability 

of the verification conditions. Also, we can eliminate fix-point expressions by 

replacing a constraint L C Y, where L contains a fix-point, with finitely many 

approximations: for example, supposing L L'[,uX.F(X)/Z} for some L', the 

approximations can be 

ç Y 

for i = 0. .n. To see why this is complete, we recall that fix-points only arise from 

applications of (notfreeinst) and so Z '-* L' is monotone. Certainly F(±) C 

pX.F(X), so 

L'[F2 (I)/Z] C L'[uX.F(X)/X] 

Therefore L'[F(±)/Z] C Y is a consequence of L C Y. Since these approxima-

tions are fix-point-free, they are more likely to be automatically discharged, or 

disproved, again giving a push-button check. We note that ESC [DLNS98] uses 

approximations of VCs for while loops. 

In [FS01], Flanagan and Saxe address the problem of exponential blow up of 

VCs. It is clear that our VCG can experience the same complexity issues and it 

would be interesting to see if modifications of their solutions can be applied to 

ours. 

Our global approach to verification condition generation appears to be to 

quite some degree independent of the program logic at hand though, of course, 

for simpler logics such as plain bare logic,and possibly those of Poetzsch-Heffter 
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and Muller (Mojave) [PHM991 and von Oheimb [OheOl], the well-known straight-

forward computation of the verification condition by structural recursion works 

just as well. It would be interesting to apply our approach to other logics, for ex-

ample Leino's later variant [Lei98] of AL (LRO), which admits recursively typed 

objects. 

In LRO [Lei98], preliminary investigations suggest that since subtyping is 

defined by name matching (like in Java, as opposed to structural type matching as 

present in AL), the VCG problem is easier. Firstly, type inference is much simpler, 

and also, since each method has exactly one specification for all implementations 

(thus specifications are no longer covariant along methods), fax fewer constraints 

(and thus second-order variables) are generated. Of course, these advantages are 

at the expense of a more restrictive type system, though it appears to be sufficient 

for modelling Java. 

It appears that neither Mojave nor von Oheimb's logic features static spec-

ifications in the same spirit as found in AL and LRO. Thus it may be that the 

generality of our approach to VCG is unnecessary. However, we believe static 

specifications to be useful, especially because it allows us to internalise lemmata 

and thus reduce the size of formal proofs. For example, in a formal Mojave 

proof p, it may be necessary to prove {P} T:m {Q} several times, for virtual 

method T:m. Formally, there is a (possibly different) derivation for each occur-

rence. However, in practice, one introduces a meta-lemma whose proof provides 

a derivation concluding in {P} T:m {Q}, and this derivation is inserted into p 

wherever it is needed. It may be possible to extend Mojave and von Oheimb's 

logic to feature static specifications and an internalisation of lemmata. For such 

a logic, our VCG approach may prove to be useful. Of course, the extended logic 

may become less complete because all possible occurrences of {P} T:m {Q} must 

now be a weakening of one specific triple {P0 } T:m {Qo},  and it may be that the 

assertion language cannot express Po , Qo.  However, in von Oheimb's logic, there 

are such assertions and in fact they are used in the proof of completeness in the 

form of the "Most General Formula"; and so in this case, we believe that the 

logic would be no less complete. 
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 I E(x3 ) <: A 

	

EE-x:A::T 	ReS(x j )CT 

E H trae : Bool :: T { Res(tt) C T } 

E F- false: Bool :: T { Res(ff)CT } 

EF-n:Nat::T I Res (n) C  T I 
E H x: Bool:: Res(x) 
	

To [tt/x] c T[tt/x} 

El-a0 :A 0 ::T0  EHa1 :A 1 ::Ti 	Ti [ff/x] 9 T[ff/x] 

E F- if x then a 0  else a1  : A' :: T' 
	

A o [tt/x] <:A[tt/x] 

A i [ff/x] <:A{ff/x} 

EF-a:A::T E,x:AHb:B::U f T;UT' 

E F- let x=a in b: A':: T' 	B<:A' 

E F- x 2  : A :: Res (xj )<i<c 	 A = [ fj:Aji, 

E,y3 :A 1--b3 : B3  :: U 1 - 5 

E F- [f=x'", 	 : A' :: T' 
	

A<:A' 

T0b(x1,... ,Xk) CT' 

E H x: [f:A] :: Res(x) I A <: A' 

	

EHx.f:A'::T' 	Tfsel(x,f)cT' 

E H x: [m:c(y)B::U] :: Res(x) J B[x/y] <:A 

EF-x.mQ:A::T 	U[x/y}cT 

A <: [f:A"] 
E F- x j  : A :: Res(x 3 ) E F- Xk : A" :: Res(xk) 	

A 	A' 

	

E F- x.f :=xk : A' :: T' 	
<. 

Tfd(x,f,xk) c T' 

Table 5.2: Rules for Abadi-Leino program logic. Definitions of predicate symbols Res, 

T0bJ, Tfsel and Tfd can be found in Table 2.3 on page 20. 
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w": { 1 .. (p  + #'Y)} -* {1..(q + #')} 

i 	ip 
w'(i) Lef 

{ i + (q - p) i > p 

{l..(p+l+#'y)} -4 {1..(q+-y)} 

ip+1 

i+(q—p-1) i>p+1 

Table 5.3: Some basic renamings 

def 
çb.Js = 0 for no X occurring free in q$ 

,. 	del s=X forXEX 

def J Lo Js 	s(x) = tt 
(LoxLi)Is= Ls 

	s(x)=ff 
def (oL).j.s = a(L.J.$) 

ef (Lo ; Li)ls 	(Lo is); (L i s) 
del (Lfl.s = 	LJ.$) 

Supposing 	A2 v 2  = eo,j  = e i , 2  A A v, L 2  C e, 

def 
IJs = 	A{eo,ils = e1,Js I s = v} 

A A{L i ls = ejs I s  1= v} 

andforWiAW0 , 

Table 5.4: "Evaluating" a verification condition at a specific switching s. This is an 

auxiliary device required to define the dependency graph of a VC. 
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For (J 	(Av = eo, = ei,2 ) A (Av , L c e), 

E3 () J{(X,Y) e0  = e 1  E 4i,s, X free in e0 , Y free in e i } 

R3 (I) 	{(X, Y) L ç e' E 'is, X free in L, Y free in e'} 

and for 4D  AT2  ç x2 , 

E()O 

R3 () 	 YfreeinT2 } 

u {(X, X) T, c X 2  E 1, X.T' is a subexpression of T} 

And in either case, 

G0(N, (,) 
del  (N, (E(')), (R 3 ())) 

and for W 	A W 0 , 

G0 (W)G 0(J,) 

Using these definitions, we define the dependency graph D('IJ), by 

D(4') 

and the transitive dependency graph DG(W), by 

DG(W) D(W) t  

Table 5.5: Dependency graph for constraints. For the two different forms of 1, we 

define, for each s, two relations E3 , R3  which form the two families (Es ), (R8 ) used 

to define the triple G0 (N, 1). Note that E need not be an equivalence relation. 
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X. Ae=e' A /\L1cX. 

I embedding 

X. A v 	e0, = e 1 , 1  A A v, L e A W 0  

eliminate equality constraints 

. Av,LjCe A Wo  

simplification of - 1 - - 

• ATiCe A W0  

adjoints 

. /\Tcx2 A Wo  

minimal set instantiations. 

First-order, fix-point formula W 

Table 5.6: Schematic representation of VC simplification algorithm. In the first step, 

we choose E for each v2 ,v to transform the generated VC in to the form suitable our 

simplification rules. We first apply the equality elimination rules in Table 5.11, until 

they have all been eliminated. Then we eliminate all - - - expressions using the 

rules in Table 5.8. Then we apply the rules in Table 5.9 to transform the VC into a 

form suitable for the rules in Table 5.10. 
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a(a'e) -'-* (a o a')e 
	 (rw-renren) 

a(eo i x > e1) '-'--* (creo) i x > (aei) 
	 (rw-renif) 

Table 5.7: Expression rewriting. These rules allow us to pull renamings inside of 

- - - expressions. 

del 	 def 
For v, = v, x=tt and vf = v, x=ff, 

. v,LCe 0 4xie 1  A 
x not in V 

LC e o  A v1 ,LC_e 1  A 

X. 'v,x=tt,v',L C e0 <xe 1  A 

(if-betar2) 
X. v,x=ff,v',L Ce 1  A 

Writing L(L') to denote L"[L'/X] for some L" with exactly one occurrence of X, 

. v,L(L o <xrL1 )ce A 

	

X. Vt, L(L 0 ) ç e A Vf, L(L 1 ) c e A 	
x not in v 	(if-elimi) 

, x=tt, ', L(LO < x r> L) c e A 

	

, x=tt, v', L(L 0 ) c e A 	
(if-betall) 

X. V,Xff,V',L(Lo1XLi) Ce A 4 

	

X. v,x=ff,v',L(L i ) Ce A 	
(if-betal2) 

Table 5.8: Simplification of - - - expressions. Here we, may assume that our 

verification conditions have form (,A 2  v', L c e) A TO  where '1'o  is first-order 

formula. 

X. V,x=tt,V',Lceo A 4' 

X. v, x=ff, v", L c e0 'i x c e1 A 

(if-elimr) 

(if-betarl) 
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J. T c aX1  A ID 	
(adj-ren) 

. (T)cX 1  A 

. T C X1  A T1  C X1  A IP 	
(collate) 

3. (T0 vT 1 )CX 1  A ID 

Table 5.9: Miscellaneous simplification rules. Here we assume that our VCs have form 

A T2  C e2 ) A lIto where IJ  is a first-order formula, and there are no occurrences 

of — — > — subexpressions (except for maybe in W 0 ). 

aXX. T C 
X A 4D X free in T 	(freeinst) 

. 	[pX.T/X] 

	

X. T C X A 	
X not free in T 	 (notfreeinst) 

. 	[T/X} 

	

XX. 	
X not free in 	 (falseinst) 

L.(I) 

Table 5.10: Minimal set instantiations. Here we assume that our VCs have form 

2g• (AT C X) A TO  where W0  is a first-order formula, each X E X occurs at 

most once to the right of a constraint T ç X, and there are no occurrences of 

— <— > — subexpressions (except maybe in 'I'o). 
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X. 	v='e=e' A 	ID 
(eq-sym) 

3X. 	v 	e' = e A 

X. 	v='e0 =e1 	A I 
{eo --- 	e} (eq-resp) 

X. 	v => e', = e 1 	A 

XX. E=X=e 	A 
X not free in e (eq-inst) 

i. 	[e/X] 

EIX . 	eX=e 	A 
X free in e (eq-idem)  

X. 	X = e[X'/X] 	A ' 

For 7r1 , 7r2 the pullback of a, r, 

X. 	v=aX1 =rX2 	A 
(eq-pullback) 

XZ. v 	X 1  = 1 Z 	A 	v 	X 2  = 2 Z 	A 

For p the equaliser of a, r, 

X. 	v=aX1 =rX1 	A 4 
(eq-equaliser)  

2 	= X1 	pZ 	A J Z. 	v 

. 	v='aX1 ='rçb 	A 
cr 4  0 7- a renaming (eq-const)  

v = X1  = (a' 	A 

RX 	ve1rrIei=e A - - ---------- 	- 	- 	
- 	 x not in v, 

X 	= . v, x=tt e0  = e A v, x=ff el  = e A 
(eq-if-elim) 

X. v, x=tt,v' = e0  ix > e = e A 4 
(eq-betal) 

X. v,x=tt,v' = e0  = e A 1 

X. v,x=ff,v' = e0  1x'e 1  = e A 
-. 	 (eq-beta2) 

X. v,x=ff,v'='e 1 =e A 1 

X. v,x=tt=X 1 =e A  
(eq-if-introl) 

aX. vX 1 =eix'X1  A 

	

X. v, x=ff = X 1  = e A 1 	 . 
aX. v=X 1 =X1 ixi'e A 

	 Ie4- 11-ii1U1 uL) 

Table 5.11: Equality elimination rules. 



Chapter 6 

A prototype VCG implementation 

and examples 

The VCG algorithm described in Chapter 5 (and its component type inference al-

gorithm described in Chapter 4) has been partly implemented and used to verify 

some examples. Overall, the experience gained from these has reaffirmed our the-

sis that such tools make verification more feasible. However, the implementation 

has also highlighted some areas in which further progress can be made. 

6.1 Prototype implementation 

For proof of concept, the VCG algorithm has been implemented in prototype 

form. In order to minimise effort, we made the following implementation deci-

sions (amongst others): (1) we used Objective Caml [LDG01] as our choice of 

programming language since it provides functional programming features, such 

as algebraic data types, as well as parser generator tools in the spirit of lex and 

yacc; (2) more significantly from the functional point of view, we chose not to im-

plement renaming of bound variables in programs and instead insist that, in the 

input programs, all bound variables are pairwise distinct; and (3) we incorporated 

definitions into the input language by way of macros, but instead of supporting 

definitions directly in our implementation, we delegate this task to the C prepro- 
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cessor. As a consequence of these last two decisions, the input scripts look more 

complicated than necessary. 

In several places, performance has been compromised in favour of correctness; 

code has been implemented to reflect, as closely as possible, the pseudocode 

presented in previous chapters. In the case of type inference (Chapter 4) we 

still maintain asymptotically cubic-time performance, however, in practice, it is 

poorer than one would expect. 

In the type inference component, careful analysis of the code suggests a limi-

tation in the data structure used. Specifically, for the closure algorithm, the data 

structure HG has been implemented as an adjacency matrix (which suffices to 

ensure asymptotic performance). Recall that in the closure algorithm, we require 

to repeatedly iterate along columns. However, in practice, the matrix is typically 

sparse, and so there is an obvious optimisation which can improve performance. 

Surprisingly (at least from the author's point of view) the instantiation part 

of the VCG algorithm shows good performance whereas the (transition relation) 

constraints generating component shows poor performance. Analysis of the pro-

gram again suggests a shortcoming of a data structure implementation decision:: 

we have implemented program occurrences as sequences of integers, but neglected 

to include information about the syntactic shape of the occurrence; as a conse-

quence, during constraints generation, we must traverse the abstract syntax tree 

for each occurrence. 

It appears the combination of these two performance bottlenecks plus the 

verbatim (macro) expansion of definitions in the dining philosophers example 

(giving a large syntax tree of more than 220 occurrences) explains why the time 

required for the VCG algorithm is of the order of 5 mins on a PIll 500MHz PC. 

6.1.1 The back-end 

The preceding chapters only describe the VCG algorithm in detail; we do not 

consider the precise details of how to deal with the resulting VCs. Perhaps 

naively, the author hoped that the resulting VCs would be succinct to the point 

where it might be possible to convince oneself of their validity, or at the very 
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least, it might be feasible to prove them in an interactive theorem prover such as 

PVS or similar. However, in practice, the VCs are too verbose for that. 

Thus we made experiments with feeding the results into an automatic theorem 

prover, in this case, SPASS [W+99], an automated theorem prover for (sorted) 

first-order logic with equality. 

Though in [AL97, AL98], transition relations are presented as first-order for -

mulae and their validity in terms of first-order derivability, this exact formulation 

is not so convenient for our purposes. Specifically, in bc. cit., stores are intro-

duced as a pair of (formal) function symbols à, & and a pair of (formal) predicate 

symbols al'loc, alloc; thus it is not possible to quantify over them. To allow us to 

quantify over stores, we consider stores amongst our first-order objects and intro-

duce a (formal) function symbol update and a formal predicate symbol lookup 

(since stores are partial we choose this to be a predicate as opposed to a function) 

with the following intended interpretations: for stores s, location 1, field f and 

value v, the term update (s, 1, f , v) is a store which takes value v at (1, f) and 

otherwise is the same as s and the formula lookup(s,1,f,v) is true whenever 

(1,f) is in the domain of s and takes value v at the point. (We note that Leino, 

in his logic with recursive object types [Lei98], also considers stores as first-order 

objects, but therein lookup is a function symbol and partiality is introduced, in 

essence, by a predicate.) 

In fact, we take advantage of sorts which are available to us in SPASS, and 

the outline of a typical S PASS input file (namely that for the gcd example) can 

be found in Section B.1. 

Having settled on this formulation of transition relations in sorted first-order 

logic, we implemented a pretty-printer that can output concrete SPASS syntax, 

provided there are no fix-point expressions. At the time of writing, SPASS does 

not have primitive support for abbreviations'. The author first attempted to 

introduce formal predicate and function symbols for the abbreviations and axioms 

to provide their definitions. However, limited experiments seemed to cause SPASS 

'Through personal communications, the implementors of S PASS assure the author that ver-
sion 2.Od does have primitive support for abbreviations, but unfortunately, as yet, the docu-
mentation has not been updated. 
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#define Doit if y.f < y.g then 	 \ 
y.g := y.g - y.f; y.m() 	\ 

else if y.g < y.f then 	 \ 
y.f := y.f - y.g; y.in() 	\ 

else 	 \ 
y.f 

#define gcd [ f=1, g=1, m(y) = Doit :: [ [],"INV",l ] I 

#define a let x = gcd in 	 \ 
x.f := 426; 	 \ 
x.g := 792; 	 \ 
x.m() 

a :: [ [],"GCDSPEC",O ] 

Figure 6.1: Concrete syntax for Euclid's algorithm, as introduced in Chapter 3. 

to "run away" whilst trying to prove theorems. 

Reluctantly, the author resorted to expanding definitions of predicates which 

would otherwise be abbreviated (e.g. Res, Tsei, Tfd). Due, once again, to a 

limitation of an implementation decision, this was most easily integrated into the 

pretty-printing code. Alas, the VCs in concrete syntax are somewhat bloated. 

However, the resulting performance from SPASS seems acceptable. 

6.2 Euclid's algorithm(s) 

Recall the greatest common divisor (gcd) example introduced in Chapter 3. We 

display the example in its concrete syntax, suitable for parsing by our prototype 

implementation, in Figure 6.1. Note that we use the C preprocessor to implement 

definitions and this is reflected by the syntax #define, and line continuation 

using '\'. The program gcd is the same program as seen previously except we 

now annotate the method body with an invariant INV. In our concrete syntax, we 

represent annotations, which are partial functions mapping paths to transition 

relations, as lists of triples p , , a, where p is a path (list of field names f and 



6.2 Euclid's algorithm(s) 	 189 

method names mO), T a string literal and a an integer arity. (In the prototype 

implementation, the arity is explicitly specified purely as an aid for debugging 

purposes.) 

For the comfort of the reader, we resort to the typical typeset presentation, 

as found in Chapter 3. To emphasise the presence of the annotation, we present 

the whole example again: 

def 
a = (let x=gcd in x.f:=426; x.g:=792; x.m() )::a 

where 

def 
JaD = pos(n i ),pos(n2 ) ===> r = gcd(n 1 ,n2 ) 

and where (program) abbreviation gcd is defined 

def 
gcd= [ f=1,g=1, 

m=c(y) if y.f <y.g then 

y.g:—y.g - y.f; y.m() 

else if y.g < y.f then 

y.f:=y.f - y.g; y.m() 

else y.f 

We now write I for the invariant INV and JaD for GCDSPEC. The predicate symbol 

pos is intended to be interpreted as "is positive". 

Using our implementation, computing Cons(E, a) gives a second-order VC 1& 1 , 

with 60 (existentially quantified) higher-order variables, 6 equality constraints 

and 50 inequality constraints. We can eliminate all higher-order variables by 

applying our simplification rules to obtain a VC 111 2 

As explained earlier, the generated VCs in concrete S PASS syntax can be 

large and unwieldly: for this example, the two VCs were about 3100 and 1000 

characters in length. Therefore, for the purposes of this presentation, we use 

specific facts about AL transition relations, for example 

(Res(n); U(x)) = U(n) 
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and simplify XF2  further, to obtain the following more readable formulae. We 

discuss, in Section 7.3, a generalisation of the simplification displayed above which 

could allow such simplifications to be applied automatically. Here we write the 

VC as an (implicit) conjunction of first-order formulae with 6 and 6 denoting the 

initial and final stores and r for the result value. 

(6(y,f)(y,g)Aa(y,g)&(y,f)A 

'\TfseI(Y,f) 	 ) 	- 

(6(y,f)i&(y,g)A6(y,g)<6(y,f)A 

\ Tfd(y,f,6(y,f)-6(y,g));I 	) 	- 

(&(y,f) <&(y,g)A 	
I 

Tfupd(y,g,&(y,g)6(y,f));I) 	- 

T0bj( 1 , 	 c 
Recall that T c T' is an abbreviation for 

V, 6,6, r.T(, 6,6, r) ===> T'(±, 6,6, r) 

When we define I by 

def pos(&(y,f))A 	r=6(y,f)Ar=6(y,g)A 

pos(&(y, g)) 	r = gcd(6(y, f), 6(y, g)) 

S PASS can successfully prove iJJ2,  if we add the following axioms about gcd and 

subtraction, 

Vax, Y. x <y == pos(y - x) 	 (6.1) 

VZX, Y. x  14  y, y x ==' x = y 	 (6.2) 

VZx,y. x < y,pos(x),pos(y) == gcd(x,y) = gcd(x,y - x) 	(6.3) 

Vx, Y.  y < x, pos(x), pos(y) == gcd(x, y) = gcd(x - y, y) 	(6.4) 

Vx. gcd(x, x) = x 	 (6.5) 

fyg. 	 (6.6) 

Axiom 6.6 can be generated by our implementation, though in this particular 

case, it saves little effort. SPASS required about 15 seconds to find a proof of I J2, 

on a 500MHz Pentium III. 
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One may argue that what we have really shown is just a special case of the 

correctness of the gcd program: namely the case where we compute gcd(426, 792). 

It would be more satisfying if we were able to prove gcd(n i , n2 ) where n1 , n2  are 

metavariables since, after all, we can prove correctness for gcd(426, 792) simply 

by evaluation! We argue that morally we have proved the latter: SPASs has 

no primitive notion of arithmetic and the constants 426, 792 really are formal 

constants and, other than the fact that they are natural numbers, SPASS can use 

no other assumption about these constants. The reason why we have shown what 

appears to be a more specific result is again a limitation of our implementation; 

the parser parses 426 and 792 as integers whereas ni and n2 are parsed as free 

variables, whose types cannot be inferred; clearly this is a limitation that can be 

(and should be) removed. 

As a demonstration of the robustness of this VCG approach, consider a modi-

fication of the algorithm where the second branch of the nested if-then-else state-

ment performs an (inline) swap, before performing a recursive method call: 

let z=y.f in (y.f:=y.g; y.g:=z; y.m,Q) 

The generated VC cannot be discharged by S PASS using only those axioms as 

previously displayed. Careful analysis of the new algorithm reveals why this is 

so; the generated VC can be automatically discharged by SPAss if we also add 

the symmetry axiom 

Vzx, y. gcd(x, y) = gcd(y, x) , 	 (6.7) 

which, one would agree, is expected. Alternatively, if instead we modify the 

second branch so that the swap is performed by invoking a sibling method, viz, 

y.swapQ; y.m() 

(and we add a new sibling method swap) the resulting VC can also be automat-

ically discharged by S PASS with the symmetry axiom (and conversely, cannot 

without). For reference, the version with the inline swap (resp. swap method) 

produced a 2nd-order VC with 64 (resp. 70) higher-order variables, 6 (resp. 9) 

equality constraints and 54 (resp. 55) inequality constraints. 
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Clearly, the two versions with swapping are implementations of the same algo-

rithm. We argue that this is experimental evidence of the VCG algorithm being 

indifferent to syntactically different implementations of the same algorithm. In 

contrast, from personal experience, such a syntactic change requires a significant 

amount of work to construct a proof using the embedding presented in Chapter 3 

alone. 

6.3 Dining philosophers revisited, (almost) push-

button-style 

Recall the dining philosophers example introduced in Chapter 3. We reproduce 

the code where it differs. The code Fork for creating fork objects stays the same. 

We modify philosopher objects by representing its state as an integer field (taking 

values 0,1,2,3 as opposed to a field representing the number of forks held by the 

philosopher and a boolean field representing whether the philosopher is hungry 

or not.) In light of this change, the method body for the "tick" method of a 

philosopher is defined: 

def 
phil_tick(s) = if (s.state == 0) { 

if (s.forkl.try_pick_upQ) {s.n_forks = 1; false} 

else {false} 

} else if (s.state == 1) { 

if (s.fork1try_pick_upQ) 

{s.n_forks = 2; s.hungry = false; false} 

else {false} 

} else if (s.state == 2) { 

s.fork2.put_down; s.n_forks = 1; false 

} else { 

s.forkl.put_downQ; s.n_forks = 0; s.hungry = true; false 

} 



6.3. Dining philosophers revisited, (almost) push-button-style 	 193 

We keep the definitions of LRPhII and RLPhiI the same, but we must change the 

definition Phil as follows. 

Phil(forki , fork,2) e
f [state=O, f6rk1=fork1 , fork2=fork2 , 

tick=c(s)phil_tick(s) 

Finally we introduce annotations: 

del 
Table = let fk1  = Fork:: 1 , 

1k2  = Fork:: 2 , 

J7c3  = Fork::&3 , 

ph1  = LRPhil(jk2 ,j7c3 )::04 , 

phQ  = RLPhil(jk3 ,Jk1 ):: 5 , 

ph3  = LRPhil(flc1 ,Jk)::&6 , 

in [fl=flci , f2=fl 2 , f3=ft3 , 

p 1=1 h1 , p2=ph2 , p3=ph3 , 

tick!: =c(s) (s.p1.tickQ)::O t , 

tick2: =c(s) (s.p2.tickQ):: t , 

tick3 =c(s) (s.p3.tickQ):: t  

:'çl'7  

Just for clarification: i/' annotates the inner-most object creation, /" annotates 

the outer-most let construct (i.e., all the executable code in the definition of 

Table) and , annotates the code and annotation sb'. 

In this example, since there are no loops, one would expect to require only 

one annotation, namely the annotation to tell the VCG what specification we 

would like to prove. We recall from Chapter 3, that we require to prove that each 

tick method preserves some invariant I, and furthermore, after creation of the 

table object, the store satisfies the invariant I. Thus we would dispense with all 
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annotations other than , which would have the form 

— k tickl, tick2, tick3 '—f I(&) ç 1(6) 

and, writing A for aTabIe, the resulting VCs would have form 

A ç 1(6) 	 (6.8) 

c (1(6) ç 1(6)) 	 (6.9) 

for j = 1..3. However, due to the size of A, 	these VCs that are too "hard" 

to prove: given our interface with SPASS, during the proof search, we run out of 

memory for (6.8) and even after several days there is no proof for (6.9). 

And so, we introduce further annotations, which in this case, behave as hints 

to S PASS, in the form of lemmata. So we define the annotations as follows. 

01 
def = 
def = (EI-Si(fki,6)CS2(fki,r,6)) 

03  def = (E-+S2(fki,fk,6)CS3(fk1,fk2,r,6)) 
def = (ei-*S3 (fk 1 ,fkr,fk 3 ,&)CS4 (fk i ,fk2 ,fk3 ,r,á)) 

'05 
def =  (EI-+S4(fk1,fk2,flc3,ph1,6)9S5(fk17fk2,fk3,ph1,r,6)) 

'b6  
ef d fr-i-+S5 (fk i ,fk2 ,fk3 ,phi ,ph2 ,à) 

ç S6 (fk i) fk2 ,fk3 ,phi ,ph2 ,r,6)) 

07  def = (EI-*S6 (fk i ,fk2 ,fk3 ,phi7 ph2 ,ph3 ,6) 

ç S6 (fk i ,fk2 ,fk3 ,phi ,ph2 ,ph3 ,r,6)) 
def 
= ( 	

-+ Tt (fk i ,fk,fk 3 ,phi ,ph,ph3 ,&,6,r)) 

2fk i ,fk,fk 3 ,phi ,ph,ph3 . 

def S7 (ft i ,,ft 3 ,phi ,pl,ph3 ,r,6) 

ticki, tick2, tick3 	i—* 	J7c1 , fk, j7c3 , ph1 , phi2 , ph3 . 

Tt(fki,fk2,fk3,phi,ph2,ph3,6,6,r) ) 
def = (E-*It(fk1,fk2,fk3,ph1,phi2,ph3,6)) 
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where the predicates S3  describes the store after creation of the jth object, viz, 

S(xi .... x3,o) 
def
= 	Al< <kxixk 

• A1<i<min(j,3) x.on_tabIe = tt 

• A4<<3 (x.state = 0 A x2 .forkl = Xf(i) A x2 .fork2 = x9()) 

def 1(i) = min({1, 2, 31 - {i}) 

de f 
g(i) = max({1, 2, 3} - {i}) 

and where the transition relation T describing the state change resulting from 

executing Table is defined 

Tt (fk 1 ,fk,fk 3 ,phi ,ph2 ,ph3 ,&,á,r)  tef  

It(flci,fk,fk3, ph1 , ph2 , a) 9 It(fki,fk2,fk3,  ph1 , ph2, 6) 

and where the invariant It  which each tick method preserves is defined as lnvTable 

is, in Chapter 3. 

Thus annotation b(E) specifies the desired transition relation for the program, 

and annotations 1(tickj) specify the desired transition relation for the tick meth-

ods. In the case of the hints, Ot  is a lemma for VC (6.9) and (i = 1..7) and 

are lemmata for VC (6.8). 

After the addition of the lemmata, VC (6.9) becomes the following VCs. For 

j = 1..3, 

s.pj.tickQ ç h() 	 (6.10) 

(3fk i ,j7c2 ,j7c3 ,ph1 ,ph2 ,ph3 .b()) C '(tickj) . 	 (6.11) 

And VC (6.8) becomes the following VCs, writing O j  for ') (j = 1..7): 

aForkL c  qpj  

~ LRPHD ç  Oj 

RLPhil C ?J 

.. .] 

(01; (b; (O; (04 ; (05 ; (06 ; 07)))))) C 

for j = 1..3 	(6.12) 

forj=4,6 	(6.13) 

(6.14) 

(6.15) 

(6.16) 

(6.17) 
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VC Total time Memory required 

(6.10) (j = 1, 2, 3) 9h26m, 10h45m, 66h51m 35MB, 35MB, 62MB 

(6.11) (j = 1,2,3) 0.31s, 0.31s, 0.30s 819KB, 819KB, 819KB 

(6.12) (j = 1, 2,3) 0.33s, 0.44s, 0.52s 744KB, 754KB, 765KB 

(6.13) (j = 4,6) 14s, 27s 3MB, 6.5MB 

(6.14) 14s 4MB 

(6.15) 28s 7.4MB 

(6.16) 0.35s 792KB 

(6.17) 2.5s 1MB 

Table 6.1: Performance summary of dining philosophers VC proof search using SPA5S 

v2.0d. These results are as reported by SPASS, run on a Dell PowerEdge 1400 (Intel 

Pentium III 933MHz, 896MB RAM) running Linux 2.2.19. 

Each of these VCs can be proved by S PASS, with only the addition of two ax-

ioms (as is required by AL) stating that (1) the field and (2) the method name 

constants are distinct. These axioms correspond to Axiom 6.6 of the previous 

example and, again, can be automatically generated by our prototype implemen-

tation. The results are summarised in Table 6.1; however, the reader is warned 

against taking these results on face value. These performance figures were ob-

tained after tweaking the S PASS input. In certain cases, S PASS can prove a harder, 

more general theorem using fewer resources. For example, for VCs (6.12, 6.13, 

6.14), performance is significantly improved if we force SPASS not to expand the 

definitions of 8,. (This can be done by introducing each S, as a formal predicate 

symbol.) As an extreme example, the performance reported in Table 6.1 for VC 

(6.17), is possible only because, in the definitions of predicates S 7  and It, we can 

factor out Al<<k<7 x2  Xk as a formal predicate symbol. Initial attempts to find 

a proof without this factoring resulted in S PASS running for over 4000mins and 

still not finding a proof. 

Admittedly, it is disappointing that performance is so poor, especially con-

sidering it takes 66 hours to find a proof for a VC derived from (6.9). However, 
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we note that this is an unusual development using the VCG. Since we know in 

advance (from our experiments detailed in Chapter 3) that the program is correct 

and, furthermore, provable using the chosen specifications, we were willing to let 

the computer continue searching even after several days. In contrast, VC (6.8) 

simply cannot be proved using our interface with S PASS, on available computing 

resources and so we were forced to introduce hints in the form of more annota-

tions. We believe a similar exercise is possible for (6.9). 

But we should point out that we have found a push-button solution to proving 

correctness of the dining philosophers example. Though it takes less time to check 

a proof script constructed using theorem provers such as LEGO and PVS and 

the embedding of Chapter 3, the interactive nature of its construction means this 

is certainly more expensive than the VCG approach. 

Finally, concerning the tweaks required in the S PASS input script, it may 

be possible to eliminate this by using a back-end theorem prover with primitive 

support for abbreviations and also better interfacing with our prototype imple-

mentation. 

For reference, the same example in concrete syntax as parsed by our prototype 

implementation can be found in Section B.2. Similarly, the input to S PASS for 

VC (6.10) can be found in Section B.3. 

6.4 Conclusions 

From personal experience, the prototype implementation of the VCG algorithm 

was certainly worthwhile. It allowed us to attempt two examples (Euclid's algo-

rithms and the dining philosophers) that would otherwise be infeasible using a 

pencil-and-paper work-out, since the VCG algorithm generates such a large num-

ber of constraints. In the case of Euclid's algorithms, we obtained compelling 

evidence that this approach to verification of a concrete implementation of an 

algorithm is, at least to a small extent, independent of the implementation. 

However, the implementation also reveals where further work is required. In 

the case of the dining philosophers, the large and cumbersome verification condi- 
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tions create genuine performance issues with regards to automatic verification. It 

appears we only simplify the structural aspects of finding an AL proof; further, 

non-structural simplifications are still possible. On the other hand, this exam-

ple also allowed us to showcase the flexibility of annotations: it was possible to 

provide lemmata as stepping stones for SPASS via extra annotations. 



Chapter 7 

Conclusions and further work 

This thesis proposed that feasible object-oriented program verification requires 

tools to: (1) automatically check proofs; and (2) automatically infer large parts 

of proofs. We demonstrated how such tools can be implemented in the case of a 

specific program logic, AL. 

Specifically, we presented a generic method of embedding AL into a theorem 

prover; from this exercise, we automatically inherited machine-checkable "proofs" 

(at the very least proof scripts). The style of embedding is notable for its use 

of both higher-order abstract syntax (HOAS) and a direct embedding of the 

assertion logic into the metalogic itself. These decisions allowed us to inherit 

functionality such as variable-management and proof tactics from the theorem 

prover. 

To justify the correctness of this implementation, we used a proof technique 

proposed in [Hof99] by constructing a categorical model of the metalanguage and 

arguing semantically. 

We then presented, in detail, a type inference algorithm, for AL, which in-

fers the structural aspects of an AL proof. The remaining aspect, namely that 

relating to dynamic behaviour of programs, was addressed by developing a ver-

ification condition generator (VCG). Because in AL method bodies are verified 

exactly once (since we have an internalisation of lemmata via assumptions and a 

cut—let—rule), it appears that the traditional definition by recursion over syn-

tax is not possible. Instead, our original definition proceeded by simplification 
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of a second-order verification condition obtained by computing constraints on 

unknown assertions. 

We gave experimental evidence that: 

this approach is independent of concrete implementations of the same al-

gorithm; 

it is possible to reduce verification of some programs, including those with 

loops, to providing invariants; and 

if necessary, such as in the case of the dining philosophers, providing lem-

mat a. 

It was possible to provide both invariants and lemmata using the unified facility 

of annotations, which become part of the program. A particular consequence is 

that all the difficult aspects, i.e. aspects requiring human ingenuity, of verification 

are localised in succinct, extended program source; the invariants and lemmata 

are not hidden within some large proof script, as is likely the case if using an 

embedding as described in Chapter 3 with an interactive theorem prover, such as 

LEGO and PVS, for building proofs. 

However, in no way does the author claim that we have finally reached the 

goal of feasible verification of object-oriented programs. There is certainly much 

further work possible: especially with regards to (1) supporting more language 

features, (2) changing the underlying program logic (AL), and (3) improving 

back-end support (i.e. support for discharging the resulting VCs). 

7.1 Supporting more language features 

The underlying language of AL is, as previously mentioned, limited. It is believed 

that features such as explicit parameters for methods and object cloning are 

straightforward to add (see locus classicus). A more challenging feature is that 

of recursive object types. 
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7.1.1 Recursive object types 

Consider the standard implementation of linked lists: nodes containing a datum 

and a pointer (reference) to the next node. Supposing A is the type of such a 

node and field n stores the next-pointer, then A must satisfy 

A <: [n:A] 

if we were to write useful programs with such linked lists. (Given certain pro-

grams, it is possible to determine an upper bound on the length of linked lists 

and thus, in AL, choose A satisfying a finite approximation of the above recursive 

equation. However such programs defeat the purpose of linked lists!) There is no 

such A in AL that satisfies the above equation. 

This problem has already been considered by Leino who presents a logic (LRO) 

in [Lei98]. In bc. cit. the subtype relation, which in AL is defined in a structural 

type matching style in the sense of [AC 93], has been substituted in favour of a 

name matching style definition. Specifically, the subtype relation is defined as .the 

reflexive, transitive closure of a binary relation <0 over types, which is provided 

explicitly by the programmer. Furthermore, subtyping is no longer covariant 

'along methods. 

From the pragmatic point of view, e.g. using the logic as a foundation for 

verifying programs of a class-based language such as Java, these restrictions are 

of little consequence, but from the modular verification point of view, it introduces 

further problems since we must know the whole typing environment (i.e. the type 

names, the ground subtype relation and the fields and methods of the types). We 

suggest that this logic is less modular by presenting the following example. 

Let T1  be a type, and suppose we can prove a statement about a program 

c of type T1 , provided we assume it has a method m, satisfying the following 

specification 

in : T1  -p U1  :: R 1  

i.e. the return type—static specification—of m is U1  and its transition relation is 

R 1 . Suppose we later compose this program c, into a larger program P(c), and 
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we want to use c where a program of type T0  is expected. As it stands, unless T0  

exists in c and T1  is a subtype of T0 , this is not possible, even if the shapes of T0 , T1  

suggest one can be a subtype of the other (because their names do not match). 

A possible work-around is to further insist in the enlarged typing environment 

that T1  < T0  (i.e. T1  is a subtype of T0 ). This is still not enough since program 

P(x) might use method m of program x, and the proof (of correctness of P(x)) 

requires the assumption that 

rn : T0  - Uo R0  

for specifications U0 , 1?, which we may assume without loss of generality to be 

weaker than U1 , R 1  (for otherwise, in general, c cannot be considered to be of type 

T0 ). We cannot directly combine the two different typing environments, since 

there will be a clash between the two specifications of m. We cannot strengthen 

T0 , T1  since in P(x), we may create an object of type T0 , and thus break the 

proof. Neither can we weaken U1 , R 1  since we would have a weaker specification 

of m, and so the proof for c may no longer "go through" (since the method body 

of m, may recursively invoke m, and now the assumption for m is weaker). 

Leino addresses this point in the Section 7 (Limitations of the logic) of bc. 

cit. He states that if the programmer who authored T1  is "willing to let his clients 

rely on the stronger properties" of his implementation, then he can rename the 

method rn as n, say, and then create a stub method m that invokes n, and 

method n has the stronger specification. In fact, the programmer might have to 

do this anyway, regardless of whether or not he is willing to provide a stronger 

specification to the client. Since the method body of rn may recursively invoke 

m and the assumptions are now weaker, the programmer may no longer be able 

to prove that his implementation satisfies the weaker specification of m. 

Of course, it should be possible to formulate a logic with recursive object 

types and subtyping defined by structural type matching and which is covariant 

along methods. However, it is unclear exactly how the subtyping rules should be 

formulated. We believe that the subtyping rules found in [AC93, AC96] may be 

a good place to start. 

In [AC93], the syntactic rules required to define recursive subtyping by struc- 
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tural type matching appear to be quite complicated. In contrast, subtyping of 

types defined as finite state automata (like in Chapter 4 and [PW097, Pa195]) 

degenerates to inclusion of languages recognised by automata, which is decidable. 

However automata inclusion does not directly help us in the case of the VCG al-

gorithm: recall the second-order VC is obtainable because we can rewrite A <:A' 

as an equivalent collection of constraints on the component transition relations; in 

the case where A, A' are recursive, the equivalence as found in Chapter 5 gives us 

an infinite number of constraints! And so, it appears a syntactic characterisation 

of subtyping is still required. 

Initial experiments suggest that it might be very easy to apply our VCG algo-

rithm to LRO: the type inference algorithm degenerates and can be implemented 

simply as a function defined by recursion over program syntax, since now all types 

are named; and we get fax fewer constraints, since there is no covariant subtyping. 

7.1.2 Further language features 

To be able to verify programs written in current object-oriented programming 

languages, we must consider further extensions such as classes, inheritance and 

access control (e.g. private, protected and public access modifiers in C++ classes). 

With the addition of extra features, one must consider the feasibility of accurately 

working out the underlying theory of a verification logic. AL as it stands, even 

with its comparatively limited set of features, is already quite a handful when it 

comes to working with metatheory; when constructing and checking proofs (of 

metatheory such as soundness and completeness of the logic), there are already 

enough cases to make the process tedious, and potentially prone to error 1 . Adding 

extra cases to provide further features in the language only adds further weight 

to these concerns. 

Not so much as to lighten the effort, but more towards increasing reliability of 

metatheory, embedding the program logic in a theorem prover, for the purposes of 

proving metatheorems, in the style of Kleymann [K1e98] and von Oheimb [OheOl] 

1 The metatheory in this thesis relating to properties of AL is a mild reworking of what has 
appeared in locus classicus, and thus the author hopes this instils further confidence in the 
reader. - 
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has much to be commended. A potentially useful approach is to define a simple 

language which is expressive enough for the more advanced features to be encoded 

simply as syntactic sugar. Leino's language, Ecstatic [Lei97], is designed as such 

a language, that is, as a target for translations of languages with more advanced 

features. In this case, rules for the sugared syntax can either be derived from 

the logic rules for the basic syntax (which, if possible, also provides concrete 

evidence towards how complete the logic is), or, at a lower-level, directly from 

the operational semantics. The author believes features such as while loops, 

classes and inheritance could possibly be introduced in this way. 

In the case of access control, the author believes this should be supported in 

the basic language and basic verification rules, since this is morally a strengthen-

ing of the type system in the sense that, by annotating certain fields and methods, 

we have fewer legal programs. 

7.2 Changing the underlying program logic 

As promised in Chapter 2, we now discuss some limitations of AL, and possible ap-

proaches to addressing them. As with extensions to the underlying programming 

language, it may be possible that some of these extra features of the verification 

logic could be implemented as syntactic sugar. 

7.2.1 Incompleteness 

As mentioned in Chapter 2, there are some well-known limitations of AL. For ex-

ample, the logic is incomplete. However, it appears the particular incompleteness 

example of locus classicus, 

def a = let y=true in [m = c(z)y] 
def b1  = let x=a in y.m() 

can be easily fixed. 

It is suggested that there is "insufficient interaction" between A and T in 

judgements E F- a: A :: T, "particularly in the rule for let". 
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An attempt to prove I- b : Bool:: r = tt suggests we need to prove subterm 

[m = c(z)y] has specification [m: c(z) : Bool :: r = tt]. However, when building 

the subproof for [m = c(z) = y], the only assumption we have about y is that it 

has specification Bool; we do not have as an assumption, y = tt. 

Consider the following, semantic-style explanation. Suppose we have some 

denotational semantics for AL. Then the denotation RAI of a specification A 

should be a "set" of values. In a judgement 

x:Af-b:B::U 

we have, to the left of the turnstile, our assumptions. In AL, assumptions are only 

of the form x:A. We suggest that the language of specifications is not expressive 

enough: the collection of value-sets I[A for all specifications A is too coarse. For 

if we could find a specification A such that EAJ = { tt} then the incompleteness 

example should no longer be a problem. 

The difficulty is finding a suitable way to exlend the syntax for specifications 

that gives us better granularity. As a first step, we propose a specification should 

be a pair A A P where A is a specification defined along the lines as for AL, and 

P is a predicate (set of values), and in particular should not refer to the store. 

Intuitively, the soundness proof should require minimal alterations, since these 

new specifications still only describe static properties of values. (Whereas the case 

may be different if P can mention stores, since the store changes during execution, 

whereas values do not.) We propose the following rules to allow interaction 

between dynamic and static specifications: 

El- a: AAP:: T 
E F-a: AAP :: TAP(r) 

El-a:AAP::T 
EF-a:AAQ::T {T(T} 

Soundness and other properties of AL, extended in this manner, have not been 

checked. 
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7.2.2 Data abstraction 

Recall the dining philosophers examples found in Chapters 3 and 6. Since we (1) 

formulate an invariant I for the table object, (2) prove the methods preserve this 

invariant, and (3) prove, after creation the invariant holds, it may appear that I 

is an invariant of the object itself. Alas this is not the case since AL does not 

have data abstraction: there is no way to prevent the fields of the table object 

being changed in an arbitrary fashion and thus violating the invariant. 

The lack of data abstraction is compounded by the following limitation of the 

specification language; transition relations can only be expressed in terms of the 

fields of an object. So, for example, suppose we want to specify a mean calculator, 

i.e. an object that can compute the mean of a sequence of numbers. A typical, 

naïve concrete implementation stores the cumulative total and the number of 

elements entered so far, and then divides the former by the latter to compute the 

mean. Ideally we would like a more abstract specification, for example, in terms 

of a list which stores all the elements entered so far. 

Some specification formalisms allow abstract fields which have no computa-

tional content, but allow for specification. Modelling our example after this, we 

can implement a mean calculator as follows: 

def mc= [ aelts=e, 

ctot = 0, 

cnum = 0, 

arg = 0, 

add = c(y) y.aelts := cons (y. arg, y. aelts); 

y.ctot := y.arg +y.ctot; 

y.cnnm := y.cnum + 1 

mean = c(y) y.ctot/y.cnum 	 ] 

Intuitively, aelts is an abstract field, which in this case is a list of elements, 

ctot, cnum are concrete fields storing the cumulative total and the element count, 

and add, mean are methods that respectively add an element and compute the 

mean. Since there is no syntactic facility in AL to distinguish abstract and con-

crete fields, here we employ programming discipline to separate code that manip- 
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ulates abstract fields so that it may easily be omitted, for example, during compile 
def 

time. There is an intended coupling invariant for this object, namely, I(ci, y) 

a(y, ctot) = sum(u(y, aelts))Ao(y, cnuin) = length(a(y, aelts)). Clearly, add pre-

serves this coupling invariant, and in particular adds an element into the list aelts; 

also, providing the coupling invariant holds, method mean computes the mean 

of the elements in aelt; and the object initially satisfies the coupling invariant. 

Thus it is possible to prove 

F mc: A:: I(á,r). 

where 

[ add:c(y)1j:: I(.r,y) == I(á,y)A 

6(y, aelts) = cons(b(y, arg), à(y, aelts)) 

mean : c(y)num:: I(à, y) == r = mean(à(y, aelts)) 

But, this is not a subspecification of A' defined by 

A' def  [ add : c(y)j :: 6(y, aelts) = cons(à(y, arg), ?.r(y, aelts)) 

mean : c(y)num :: r = mean(à(y, aelts)) 

an abstract specification of a mean calculator, since the latter has a stronger 

specification for method mean. 

We argue that the specification of mean is too weak in A. The problem is 

that it would be unsound to simply assume the coupling invariant holds, precisely 

because we do not have data abstraction. 

Thus we suggest, by adding data abstraction into the programming language 

with support in the logic, we already increase the expressivity of the specifications. 

7.2.3 Support for abstract fields 

Notice in the previous example, we applied programmer discipline to make a 

distinction between abstract and concrete fields. Furthermore, we provided ex- 

plicit code to update the abstract field in order to be able to satisfy the abstract 

specification. It would be better if we didn't need to provide code to satisfy 
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the abstract specification: for example, it would be interesting to consider spec-

ifications as code (i.e. postulate that specification T, when considered as code, 

satisfies specification T). 

7.3 Improving back-end support 

In Chapter 6, we applied, by hand, further simplifications to the generated VC to 

obtain readable formulae. Clearly such simplifications, if done automatically, can 

improve performance, maybe significantly, for post-VCG verification (e.g. verifi-

cation using SPASS). As it is now, when pretty printing to SPASS, the prototype 

implementation expands the definitions of abbreviations such as T; U, Res(x), 

etc., thus losing information. Possible implementations include further simplifi-

cation as another stage of the VCG, or, preferably, propagating the structure of 

the VCs (i.e. output the VCs without expanding the abbreviations) to a back-end 

prover which can use sensible axioms or lemmata to perform the simplifications. 

We suggest these simplifications can make use of the following observation. 

The transition relation T = Res(x) (and also for T = Tfsel(X, f), Tfud(x, f, y)) is 

total and functional in the sense that for all r: there are ó, r (total) such that 

T(&, 6, r); and furthermore 6, r are unique (functional). Moreover, if T, U(x) are 

total and functional transition relations, then so is T; U. More generally, we note 

that if T is total and functional, for arbitrary U, since 

(T; U)(à 	
d 

, 6, r) =
e 
f u, y.T(&, U, y) A U(y)(U, 6, r) 

and U, y are uniquely determined by T, this is simply 

(T;U)(à,6,r) 	U(y)(U,6,r) 

As a particular example, consider Tfd(x, fi, yi); )z.Tfd(z,  12, y2): 

(Tfd(x, fi, yi); )tz.Tfd(z,  f2, Y2))(à, 6, r) 

Tfd(x, 12, y2)(6[(x, f') i- y'J, 6, r) 

6 = à[(x, Ii) '- yi, (x,  f2) - Y2} Ar = x 
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since Tfd(x, f, y)(&, 6, r) Iff 6 = 6[(x, f) '-* yJ A r = x. In contrast, by only 

expanding definitions: 

(Tfd(x, fi, Yi); Az.Tfd(z,  12, Y2)) (0 , ó, r) 

36, z.0 = à[(x, fi) '-p  yi] A z = x A 6 = U[(z, 12) 	Y2] A r = z 

Though the two expressions are logically equivalent, for the purposes of automatic 

checking, the former is preferred. 



Appendix A 

Proofs 

A.1 Proofs for Chapter 3 

Aid Proof of Lemma 1 on page 58 

Proof We define 

x" def
{(x,O)IXEX}U 

{(x,1) I XEX'\ran(f)}U 

{(x,2) Ix EX"\ran(g)} 

(x,O) i-* S(x) 

S" 
def 
 (x, 1) -* S'(x) 

(x, 2) '—p S"(x) 

We define E" similarly to 8"'. 

del { (y, 0) if there is y such that f(y) = x 
U(X) = 

(x, 1) otherwise 

def { (y, 0) if there is y such that g(y) = x 
v(x) = 

(x, 2) otherwise 

Certainly, we know X ... S ... E" E X. It remains to show that u : X'S'E' 

X"S"E", and similarly v : X"S"E" -* X"S"E". First, we note that u is a 

211 
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function since f is injective, and u is injective since f is a function. Recalling our 

definition of morphism in X, this now amounts to showing that for all x E X', 

S"(u(x)) = S'(x). Case x = f(y) for some y: since f : XSE —p X'S'E', we 

know that S(y) = S'(f(y)) = S'(x), and so S"(u(x)) = S ... (y,O) = S(y) = 

S'(x). Otherwise: S"(u(x)) = S ... (x, 1) = S'(x). A similar argument shows 

E"(u(x)) = E'(x). And for x E X", a similar argument shows S ... (v(x)) = S"(x) 

and E"(v(x)) = E"(x). 

To show that uf = vg, suppose x E X. We calculate uf(x) = (x, 0) since f 

is injective. Similarly, vg(x) = (x, 0) since g is injective. 	 0 

A.1.2 Proof of Theorem 2 on page 64 

Proof We prove each property in turn. 

• We show that for U, V e Pred(F), the pointwise inclusion ordering forms 

a boolean algebra. That is, we show that there exist finite meets and joins. 

Explicitly, we define, pointwise, 

d 
(U V V)XSE =

ef 
 UXSE U VXSE 

(U A V)XSE 
d=ef 

 UXSE fl  VXSE 

- 	del 	(01) (U)XSE = {x € F XSE I x V UXSE} 

It is straightforward to show that U V V, U A V, U are predicates. 

Given m: F - C, it is also straightforward to show that 

Pred(m)(U V V) = Pred(m)(U) V Pred(m)(V) 

Pred(m)(U A V) = Pred(m)(U) A Pred(m)(V) 

Pred(m)(U) = Pred(m)(U) 

• Define 

def Prop = (1,V{ff,tt}) 
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Thus, for F E D, 

D(F,Prop) 

fi(F ° , Prop ° ) x (F °', Prop") by definition of homset in V 

c(F(° ' ) , v{ff, tt}) 
	

since Prop °  = 1 

And so, to show that Pred is representable, it suffices to show Pred(F) 

(F(° ') , V{ff, tt}). 

Suppose U E Pred(F), XSE E X and x E F °'XSE. Let A ç F °'XSE, 

let CA : F°'xsE -* {ff, tt} be the characteristic function of A, viz: 

Iftt ifxEA 
CA(X) = 

f otherwise 

Now define a family of functions (mxsE : F°'XSE -+ {ff, tt})XSE, point-

wise: 

def 
mxsE = Ctj 

We now show that in e F 01 , V{ff, tt}). Thus we require to show m is 

a natural transformation, that is: for all f : XSE -* X'S'E', 

F °' XSE 
mxsE

{ff,tt} 

F°'1 I z 	(A.1) 

F °'x's'E' 

commutes. Commutativity is an immediate consequence of the fact that U 

is a predicate. 

Conversely, suppose in E (F(° ') , V{ff, tt}). Define a family of subsets 

U, pointwise by 

def 
UXSE= {x E F °'xsE I mxsE = tt} 

Since m is a natural transformation, Diagram A. 1 commutes. Immediately, 

we conclude x E UXSE 1ff F 01) 1(x) E Ux's'E',  that is, U E Pred(F). 
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• Let m : G -* F be a morphism. We have a function Vm  : Pred(G) 

Pred(F) defined as before and it remains to show that it is right adjoint 

to Pred(m). 

Let U E Pred(F) and V E Pred(G). 

Suppose U < (VmV), that is, for all XSE, UXSE c (VmV)XSE. Let XSE E 

X and x E (Pred(m)(U))XSE. Thus by definition of Pred(m), we know 

that mxsE(x)  E UXSE c (VmV)XSE and since (i) id: XSE -* XSE, (ii) 

x E G °'xsE, and (iii) mxsE(x) = mxsE(x), by definition of VmV, we 

know that x E VXSE. Thus for all XSE, (Pred(m)(U))XSE 9 VXSE, i.e., 

Pred(m)(U) <V. 

Conversely, suppose Pred(m)(U) < V, that is, for all XSE, we have 

(Pred(m)(U))xsE ç VXSE.  Let XSE E X and assume x E UXSE. Let 

f : XSE -* X'S'E', a e G °'X'S'E' and suppose rnx's'E'(a) = F° f (x) E 

UX'S'E', since U is a predicate. Thus a e (Pred(m)(U))x's'E' C Vx's'E', 

that is, X E (V mV)XSE. And so we conclude for all XSE, UXSE c 
(VmV)XSE, i.e., U < VmV. 

• LetXSEbeaworld,A,B,CED,and1rA:AxC—*A,irB:BXC--B 

and hG : B x C -p C be projections. By the fact that Pred and V form an 

adjunction (previous property), we know 

U < Vf1d(Pred(f x id)(U)) 

Pred(7rB)(V,.B (U)) U 

So by transitivity, 

Pred(irB)(V, B (U)) <VI Xd(Pred(f  x id)(U)) 

by adj unction and functor ppty of P red, 

Pred(lrB ° (1 x id))(V 2 U) Pred(f x id)(U) 

by ppty of products, 

Pred(f 0  hA)(V B U) <Pred(f x id)(U) 
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by adjunction and functor ppty of Pred, 

Pred(f)(VBU) :!~ V IIA 
	x id)(U)) 

Thus, in particular, (Pred(f)(V 8 U))xsE 9 (VIA 	x id)(U)))XSE. 

To show the converse, (V A  (Pred(f x id) (U)) )xsE 9 (Pred(f) (V B  U) )xsE, 

suppose x E (V A (Pred(f x id)(U)))XSE 9 A(°')xs.  Let X'S'E' E 

X, u : XSE - X'S'E', b e (B x C)°'X'S'E'  and suppose lrB(b) = 

B (°'(fxsE(x)). Now define a (A°'(x), irc(b)) E (A x C)x's'E'. 

Since x E (V.A (Pred(f x id)(U)))xsE, and (1) u : XSE —* X'S'E', (ii) 

a E (AxC)x's'E', and (iii) lrA(a) = x, we know a E (Pred(fxid)(U))x's'E', 

i.e., (f x id) (°' ) x's'E'(a) E UX'S'E'. And thus 

b = (lrBb, ircb) 

= (B' °'(fxsE(x)), irc(b)) 

= 	 irc(b)) 

= (f x id) °'x's'E'(a) 

E U1l  

by definition of projection 

by supposition 

by naturality 

by definition of a 

by previous observation. 

Thus we have shown f°'xsE(x)  E (V,.B  U)XSE.  Expanding the definition 

of Pred(f), that is precisely x E (Pred(f)(V,.(U)))xsE. 

0 

A.2 Proofs for Chapter 4 

A.2.1 Theorem 5 on page 108 

A.2.1.1 Part 1 

Proof We need to show that < is reflexive, antisymmetric and transitive. It is 

clear that < is reflexive. Furthermore, since t < t' implies t D t', we immediately 

deduce that < is antisymmetric. 

Finally, we consider t, t', t" such that t < t', t' < t" and cxf E t". Thus 

= taf, and so af e t'. Since t <t', we have t'Jaf = t,J.af. Therefore 
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we conclude tjaf = t"jaf. It remains to show that t D t" and this is immediate 

since t D t', t' D t" and D is transitive. 	 0 

A.2.1.2 Part 3 

Proof Assume t <t'. 

We proceed by induction over the size of t'. 

Suppose b E t' for some b e B. Since t D t", we conclude that b E t also. Thus 

by properties of pretypes, we conclude that t = b = t'. 

Suppose * E t'. By the characterisation of types, we can assume that t' = 

[fj:A jii.d' , mj:BilF'], where A 2  = t'1*f2 and B t',L*m 3 . In particular *f2  E 

t' for 1 <i < k', and since t D t', it must be that tj,*f2  = t'j.*f2 . Also, since t D t' 

and *rn3  E t', it follows that *rn3  E t. That is to say t = [fj:A jil, m:B 31"] 

for some k> k' and £ > £', with A, = tj.*f2  and B3  = tJ*m. 

It remains to show that tfrm3  = B3  <B = t'J.*'in3  for 1 < j £'. That is, 

af E t'j.*'rn3  == t'.1.*inaf = tJ*'rn,af 

and 

tJ.*'rn3  D  tJ,*rn3  

Suppose af E t'I.*m. From this we deduce *m3 af e t'. And so 

t'.J*maf = t.j*m3af 

since t < t'. By simply rewriting, we have 

(t'J.*m)J.af = (tJ.*m)j.af 

As required. Finally, since .j.a preserves C and t D t' we conclude &j.*m 	t'J*m 

0 

A.2.2 Theorem 6 on page 115 

Proof Let H be a set of presolutions. 
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Define h: C —* E* pointwise by h(u) = flkEH k(u). 

Since P is closed under intersections, we know, in fact, h : C —* P. 

We now proceed to check that h satisfies the remaining properties of presolu-

tion as defined in Section 4.5.1 on page 114. 

Clearly, for b in B, for any k E H, we have k(b) = b and so h(b) = b. 

Also, for u in C, we have * E h(u) since for any k E H we have * E k(u). 

Now suppose u v. We have 

h(v) = fl k(v) 
kEH 

= fl(k(u)J.*e) 
kEH 

= (fl k(u))J.* 

keH 

= 

by definition 

since each k E H is a presolution 

since J.a distributes over intersection 

by definition. 

Conversely, suppose u e C and *f e h(u). Since h(u) = flkEH k(u), we 

certainly have * e k(u) for all k e H. Any such k gives us some v such that 

u v, since k is a presolution. 

Now suppose u < v. Since each k E H is a presolution, we know that 

k(u) <k(v). 

Consider af E h(u) = flkEH k(u). Thus, for any k E H, we have k(u)Jof = 

k(v)J,cf. And so we trivially conclude that h(u)J,cEf = h(v).j.af. 

For any k E H, since k(u) 2 k(v), we have flkEH  k(u)Q flkH  k(v). 	0 

A.2.3 Theorem 7 on page 115 

To prove this theorem, we need the following lemma. 

Lemma 20 Given a sequence a of length n in E, define a in E*  to be a sequence 

of length 2ri whose 2i-th letter is the i-th letter of a and whose odd letters are 

all *. If h is a presolution and u =c=> v then 

<h(v) 

where a*  is the sequence as defined above. 
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Proof We proceed by induction over the length of a. 

Case e . That is u 	v and so 	= h(u) :!~ h(v), by property 4 of 

presolutions. 

Case La. So there are u0 , u 1  and u2  such that 

< 	£ 	< 	a 
UUO — Ul -- U2'V 

Since h is a presolution, by property 4 h(u) 	h(uo), by property 3 h(u)J-*L = 

h(ui ), and by property 4 h(u i ) < h(u2 ). By our induction hypothesis, we also 

have h(u2)J.a* < h(v). By Lemma 8 on page 108 and the previous observations, 

we have 

h(u)1*L < h(uo ),j.*L < h(u,) 

And since .ta  preserves < (Lemma 8 on page 108), 

h(u)1*La* < h(u2)j.a < h(v) 

Which is what we require, since (La)*  is precisely *La* .  

Now we can prove Theorem 7. 

Proof Suppose h is a presolution of C and G' is the closure of C. We proceed 

by checking the four properties of presolution, with respect to C'. 

Properties 1, 2 and 3 follow immediately from the fact that h is a presolution 

of C and its closure only makes < bigger. It remains to check that property 4 

holds, namely if u <'v then h(u) <h(v). 

We will use the following fact. If u ' v then either u < v or u 	v is obtained 

from one of the closure operations. Since C' can be obtained by applying these 

closure rules iteratively starting from G, we can proceed by induction and consider 

each one of these closure operations in turn. 

Since (P, <) forms a partial order, the cases where u <' v is obtained from 

the reflexive and transitive closure operations is immediate. 
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Suppose 

< F  
U0 VO 

ml 
m 

From our induction hypothesis, we conclude h(uo) :5 h(vo ). And since h is a 

presolution, by property 3 we know that h(uo)J*m = h(u) and h(vo)J*m = h(v). 

And since ja preserves < (Lemma 8 on page 108) we conclude that h(u) h(v). 

Suppose 

/a \a 

jf 

By our induction hypothesis and Lemma 20 on page 217, we have 

h(s)la* < h(uo) 	 (A.2) 

h(s )J a* < h(vo ) 	 (A.3) 

Since h is a presolution, by property 3, we know that *f E h(uo ) and from 

equation A.2, we conclude that h(s)a**f = h(uo ),j*f. Similarly, we conclude 

that h(s)1o**f = h(vo),-kf. Thus h(uo),L*f = h(v o)*f, and in particular, 

h(uo)1*f < h(vo)*f. Therefore 

h(u) = h(uo)1*f < h(vo)1*f = h(v) 

U 
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A.2.4 Theorem 9 on page 119 

We have the following lemma. 

Lemma 21 Assuming that h is any presolution of C, if 

(0,$) - 4 (0,u) 

then 

h(s)J.a D h(u) 

Proof We recall the invariant property of our automaton and note that a must 

be of even length. 

We proceed by induction over the number of transitions in A. We only need 

to consider the following two cases. 

Case u0  E C, u0  :~ ui and u1  

(0,$) - (0,uo) -* (1,uo) -E+ (1,ui ) - 
£ 

* (O,u) 

Our induction hypothesis gives us h(s)J,a D h(uo ). Also, since u0  < u1 , by 

property 4 of presolution, we have h(uo) h(ui ) and in particular h(uo) h(ui ). 

Thus we conclude 

h(s)j.a D h(ui ) 

and since 	preserves D , we have 

D h(ui )* 

But since u 1  -+ u and h is a presolution, by property 3, 

h(u) = h(u1 ).* C h(s)Ja*.e 

Case u0  

(0, s) -* (0, u0) - (0, u) 



A.2. Proofs for Chapter 4 	 221 

From the fact that u0  u and h is a presolution, by property 4, we conclude that 

h(uo) h(u), and in particular h(uo) 3 h(u). Our induction hypothesis gives us 

h(s)Ja 2  h(uo ) and the result follows by transitivity of D. 	 0 

Now we can prove Theorem 9 on page 119. 

Proof Consider some a in £, that is, starting from s, our automaton accepts a. 

We now show that a E h(s). 

We proceed by induction on the number of transition steps. 

Supposing a is of even length, from Lemma 21 on the facing page, we deduce 

that h(s).j.a 2  h(u). Since h is a presolution, we know that E is in h(u), and 

hence is in h(s)J,a. Thus a E h(s). 

Now suppose a is of odd length. We consider cases where the last transition 

is E, * and d E B respectively. 

Case last transition is E. That is 

(O,$) - (1,uo) -* (1,u) 

So by our induction hypothesis, a E h(s). 

Case a*, i.e. last step was *. Thus a is of even length, u e C and 

(O,$) - (O,u) -* (1,u) 

The fact that h(s)Ja'D h(u) follows from Lemma 21 on the preceding page. And 

together with the facts that u E C and h is a presolution, we know, by property 

2, that 

*Eh(u)Ch(s)J.a 

That is, a* E h(s). 

Case ad for some d e B, i.e. last step was d. Thus 

(O,$) 	(O,d) 	(1,d). 

The Lemma 21 on the facing page allows us to conclude that h(s)la 2  h(d) and 

since h is a presolution, d = h(d), and by our unfortunate abuse of notation, 

d e h(d). Thus ad E h(s) as required. 	 1 	 0 
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A.2.5 Theorem 10 on page 120 

Proof Suppose C is well-formed. First of all, we observe that '4'(s) 	L is a 

pretype for each s, by hypothesis. Hence 0 : C - ~ P. Now it remains to check 

that O satisfies the remaining properties of a presolution. 

Consider b in B. By the definition of A, we clearly have b e b(b). Since L is 

a pretype, it must be the case that b) = b. 

Consider u in C. By the definition of A, we clearly have * E (u). 

Now consider u -+ V. Certainly (u).t* 	'i/'(v) since 

(O,u) - (i,u) L (O,v) 

Conversely, suppose 3 E b(u).t*, i.e., there are u0 , u1  and v 1  such that 

f3 	
. 	 , (O,u) - +  (O,uo) -* (1,uo ) -- (1,ui ) L (O,vi ) - 

That is u <uo , u0  :!~ ul  and u1  4 v 1 . Since G is closed we have u < u 1  since 

is transitive, and since we have u 4 v by assumption, by the closure rule 

corresponding to the diagram 

LI-- 
we know v <v1 . And so 

(O,v) - 	 13

~ (O,vi ) -* (i,v) 

that is, 3 E '/(v). Thus we conclude (u).t*L C 

Now suppose u e C and *t E h(u). That is there are u 0 , u1  and v 1  such that 

(O,u) -4 (O,uo) - (1,UO) - (1,ul) L (O,vi ) 

And so, u <u0 , u0  <u1  and u1 	v 1 . Since G is closed (thus, in particular < 

is transitive), u <u1  and'since it is also well-formed, there must be some v such 
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that 
< 

U 	—__•Ui 

£ 

+ 
V 	 V1 

To show that '?I' satisfies the last property of presolution, we assume that u < v 

and are required show that 'ib(u) 9 1(v) and af E (v) implies &(u).Laf = 

'' (v)Jaf. Since u <v, we know that the automaton can make the transition step 

(O,u) - (O,v) 

and we immediately conclude that &(u) ',b(v). Suppose af E ib(v). Since .Jaf 

preserves C , we certainly know 

b(u).tafDb(v)af 

It now remains to show the converse: (u),Iaf c (v)cf. Since by supposition 

af e (v), there are v0  and v' such that 

(O,v) -* (1,vo ) L (O,v') 

Now assume there are u0  and u' such that 

(O,u) - (1,u) L (O,u') 

Thus, writing a' for a omitting all occurrences of *, we have 

at f U >Uo I- U'  
A 

V >Vo 
f a' 

in C. The dashed arrow exists because C is closed. Hence (0, v') -+ (0, u') is a 

valid transition, that is, 

'b(u)af C '(v)Jaf 

which completes our proof. 	 0 
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A.2.6 Lemma 10 on page 123 

Proof Suppose x A y. We proceed by induction over the closure rules in Ta-

ble 4.5. 

Casehst. Sox<y,andsox=xandx=-y. 

Case htr. So there is Yo  such that x A yo  and  Yo < y. And so by our induction 

hypothesis, there is some z and a such that z =c=> x and z =c=> yo•  So by definition 

of , we conclude z ==c> x and z =c=> Y. 

Case hm. So there are x 0  and Yo  such that x0  A Yo,  xo  x and yo - y. And 

so by our induction hypothesis, there is z and a such that z 	x0  and z =c> yo. 

By the definition of 
a
=

m 	 a 
we conclude z =m 	 a x and z m

y. 

And so we conclude that x A y implies there is z and a such that z =c> x and 

z , or graphically 

Z 

Conversely, suppose there is z and a such that z x and z y. We proceed 

by list induction over a. 

Case E . So z < x and z < V. By rule hst, we conclude that z A y and x A z. 

And by rule htr, we conclude x A y. 
a 	m 	 a 	m 

Case am. So z = xo  —p x and z = I/o -* y. By our induction hypothesis 

xo  A yo. By hm, we conclude x A y. 

Case af. So z 	xo  L x and z 	I/o L y. By our induction hypothesis 

x0  A I/o.  By stf, we deduce x <y. And by hst, we conclude x A y. 	D 

A.2.7 Theorem 11 on page 123 

Proof Suppose x <y in 0. Since is the least graph containing G and closed 

under the rules in Table 4.5, we consider, separately, cases for: x < y in C; and 

x <y is imposed by the closure rules. 

Casex<yinG. AndsoxyinG'. 
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With respect to the remaining rules of Table 4.5, we notice that str and stt 

correspond to reflexive and transitive closure rules, as used in Definition 5 on 

page 113. Similarly, rule stm corresponds directly to closure rule 2 in Definition 5 

on page 113. It remains to show that rule stf corresponds to rule 1 in Definition 5 

on page 113. 

Rule stf states that if there are x 0 , yo  and  f such that x0  A yo,  x0  L x and 

yo y, then x <y and y < x. Using Lemma 10 on page 123, the premise is the 

same as there are f, z and a such that z =21> x0  and z 1/0,  xo  x and Yo Y. 

Thus stf is precisely the same as rule 1 in Definition 5 on page 113. 0 

A.2.8 Lemma 12 on page 127 

Proof Assuming P0, Q0,  HG0  and ITC0  are the sets before execution of the 

iteration step, after execution the following equations hold. 

In the case where e = (x, y), 

P = P0  U{(x,y)} 

ITC = (ITC0  U {(x,y)}) 

R=ITC—ITC0  

Q= 	Q0 —{(x,y)} 

• {[x,y]} 8 —HG0  

• {[x0 , y] I [x0, x] E HG0}s - HG0  

• {(x', y') I (x', y', m) E PE[x, y]} - ITC 

• R—{(x,y)} 

HG = HG0 
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And in the case where e = [x,y], 

P = P0  U{[x, y]} 

HG =HG0 U{[x,y]} 

Q= 	Q0—{[x,y}} 

• {[x,yo I (y,yo)EITC0—Q 0}—HG 

• {[x',y'J I (x', y ',m) E PE[x,y]}s - HG 

U {(x', y') I (x', y', 1) E PE[x, y]}8 - ITC0  

ITC=ITC0 . 

Now we compute, for reflexive X, 

F(X U {(x, y)}) = 	F(X) U {(x, y)} 

U {[x, y}} 

U {[x o , y] I [xo,x] E X} 3  

uO 
/ 	 in 	in 

U {(x,y)lx—x, / y—y/} 

uO 
U {(x,yo) I (y,yo) EX}U{(xo,y) I (xo,x) eX} 

and 

F(X U {[x, y]}) = 	F(X) U {[x, y]} 

uO 
U {[x, yo ] I (y,yo) E X} s 

U {[x',y'] x-*x,yZy}8 

uø 
, 	I 	I 	i U { (x, y/ ) Ix —* x, 	-- , y -* y }

s  

uO. 

Returning to the invariants, we consider separately, cases for e = (x, y) and 

e = [x,y]. 

Case e = (x,y). (1) We have as our induction hypothesis 

Po  = HG0  + (ITC0 - Q0). 
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Using the equalities above, we note that 

HG + (ITC - Q) = HG0  + ((ITC0  U {(x,y)}) - Q) 

and since R - (x, y) c Q and (x, y) Q, 

= HG0  + (ITC0 - Q0) U {(x, y)} 

and by our induction hypothesis, 

= P0 U{(x,y)} 

as required. 

(2) We have as our induction hypothesis, P0  fl Q0 = 0. Using invariant (1), 

we have 

P n Q = (HG + (ITC — Q)) n Q 

and since intersection distributes over unions, 

= (HG n Q) + ((ITC — Q) n Q) 

and clearly (ITC - Q) fl  Q = 0 = (ITC0 - Q0) fl  Q0, and using the equalities 

above, 

= (HG0  n Q) + ((ITC0 - Q0) n  Q0) 

and since [x, y] E Q - Q0 implies [x, y] V HG0 , 

= (HG0  n Q0) + ((ITC0 - Qo) fl  Qo) 

using P0  = HG0  + (ITC0 - Q0) and the fact that intersection distributes over 

union, 

=P0flQ0 
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First we note that P0  U Q0 C P U Q, i.e. P U Q does not get smaller. And 

so, assuming that C c P0  U Q0  we immediately conclude C c P U Q. 

We have as our induction hypothesis, F(P0) 9 Po  U Q0.  Then we let e' 

F(P U {(x, y)}), and show, by cases, for each component in the union that e' E 

P U Q. We must use the fact that P = HG + (ITC - Q) (and similarly for the 

subscripted version) and Equation 4.5 on page 125. 

We have as our induction hypothesis, P0  U Q0 G. To show P U Q ç C, 

it suffices to show P U Q 9 FIc(P0UQ0)  for some k; since F is monotone, together 

with our induction hypothesis, we know Fc(Po  U Q0) 9 Fk() and since 0 is 

defined as the fix-point of F, we know Fk (C) = . Thus, we compute P U Q and 

consider each of component of the union in turn. 

Each of the following inequalities are trivial to show: 

P0  U Q0 C P0  U Q0 

Oc{[x',y'} I [a,b]EP0UQ 0 , 
m / 	in a —*x, b—y /  I s  

O 	{(x', y') I [a, b] E Po  U Q0, 
aLx', b -L' } 

The right hand side of each of these inequalities can be shown to be included 

in F(P0  U Q0). And since F is monotone, the left hand side of each of them is 

included in Fk(P0  U Q0) for any positive k. 

We can show the next three inequalities with a little more work: 

{[x, yJ}3 - HG0  c {[a, b] I (a, b) E Po  U Q}S 

{(x", y") I (x', y', in) E PE[x, y]} - ITC c {(x', y') I (a, b) E Po  U Q0, 
I axI  — , b —*y 	} 

{[x0 , yj I [x0 , x] E HG0 } 3  - HG0  ç {[a, c] I [a, b] e Po  U Q0, 

(b,c) E P0UQ0 }8 

The first of these follows immediately from our assumption (x, y) E Q0 and the 

definition of 	as symmetric closure. The second inequality is an immediate 

consequence of the same assumption and Equation 4.5 on page 125. We argue 
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the third inequality as follows: suppose [x o , xl E HG0  (that is suppose (x 0 , x) 

and (x,x0) are in the lhs); since P o  = HG0  +(ITC0—Q 0 ), we know [xo ,x] E P; 

and since (x, y) e Po  U Q0, we conclude that [x 0 , xl (respectively [x, x 0]) is in 

the rhs. Again, the right hand sides of these three inequalities are included in 

F(P0 U Q0) and using the same argument as before, we conclude that the left 

hand side of each of these is included in Fc(Po  U Q0) for any positive k. 

Finally we argue that there is some k such that R - {(x, y) 19 F'(P 0  U Q0). 
We note: given X, its transitive closure X+  can be defined as the least fix-point, 

including X, of H that is defined 

H(X) V X U {(a, c) I (a, b) E X, (b, c) E X} 

We note also that by definition of F, we have H(X) 9 F(X); and by iterating 

this and using the fact that H is order-preserving, we know that for any k, we 

also have Hc(X)  9  Fk(X).  And so we argue 

R—{(x,y)} 

((ITC0  U {(x,y)}) - ITC0) - {(x,y)} by definition of R 

C (ITCo U{(x,y)}) 

= H'(ITCo  U {(x, y)}) 	 for some k 

ç Hc(Po  U Q0) 	 since ITC0  U {(x, y)} c P0  U Q0 

ç F'(P0 U Q0 ) 	 by earlier observation. 

Thus we have shown 

R—{(x,y)} ç Fc(P0 UQ0 ) 

We note that the union of the left hand sides of all the previous inequalities is 

precisely P U Q and thus we have shown P U Q 9 FIc(Po  U Q0) for some k. 

Case e = [x, y].  (1) We have as our induction hypothesis, 

Po  = HG0  + (ITC0 - Qo). 

Using the equalities above, we have 

HG+(ITC—Q) = (HG0U{[x,y]})+(ITC0— Q) 
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and since all new (x', y') edges in Q are not in ITC0 , 

= (HG0  U {[x,yJ}) + (ITC0 - Q0) 

and since unions commute, 

= P0  U {[x, y}} = P 

as required. 

We have as our induction hypothesis, P0  fl Q0 = 0. Using invariant (1), 

we have 

PnQ=(HG+(ITC—Q))nQ, 

and since intersection distributes over unions, 

PnQ=(HGnQ)+((ITC—Q)nQ), 

and since (ITC - Q) fl  Q = O(ITC0 - Q0) fl  Q0, and using the equation for Q 
above, 

=(HGfl(Q0 —[x,y]))+((ITC0—Q 0)nQ0 ) 

and since [x, y] V P0 , therefore [x, y] V HG0 , 

=(HG0nQ0)+(ITC0—Q0)nQ0  

=P0 nQ0 =O, 

as required. 

We use exactly the same argument as in the case for e = (x, y) to prove that 

C ç P U Q. Similarly, we assume as our induction hypothesis F(P0 ) ç P0  U Q0 
and compute F(P0  U {[x, y]}). We let e' E F(P0  U {{x, y]})  and show, by cases 

for each component in the union, that e' E P U Q. We must use the facts that: 

since P0  = HG0  + (ITC0 - Q0), the set of all (x', y') edges in Po  is ITC0 - Q0; 
and Equation 4.5 on page 125. 
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(4) We prove that P U Q c F(P0 ) c 0 as for the case e = (x, y), except here 

it is slightly simpler. We check, in turn, assuming e = [x, y] E Q0, the following 

inclusions: 

P0uQ0  9 P0 uQ0  

0 ç {[a,b] I (a,b) E P0 UQ0 } 8  

{[x, yol I (y, yo) E ITC0 - Q0}8 - HG C {[a, ] I [a, b] E Po  U Q0, 

(b,c)EP0 UQ0  I s  

{[x', y'] I (x', y', m) E PE[x, y]}3 - HG ç {[x', ill I [a, b] e P0  u Q0, 
mm 

, a — x,b —y } 

O c {(x', y') I (a, b) E P o  U Qo, 
in / 	in 

a —+x, b — y 	} 

{(x', y') I (x', y', f) E PE[x, y]}8 - ITC0 	{(x', i') I [a, b] E P0  U Q0, 
1, a 1—'x, 	—*, by 	} 

Oc{(a,c) I (a,b)EP0UQ0, 

(b,c)eP0UQ0 
 } 

The first, second, fifth and seventh inequalities are trivial. To show the third, 

we use the facts: HG contains only [a, b] edges; ITC contains only (a, b) edges; 

and P = HG + (ITC - Q). So, if [x, y]  'is in the lhs, then there must be some 

(y, Yo) E ITC0 - Q0, and since we know [x, y] E Q0, we conclude that [x, yo]  is 

in the rhs. We use a similar argument in the case [yo,  x] in rhs, using the fact 

that - is symmetric closure. To show the fourth and sixth inequalities, we use 

Equation 4.5 on page 125 and the assumption [x, y] e Q0. 
Now we note that the union of the left hand sides of the above inequalities is 

precisely P U Q and that of the right hand sides is precisely F(P0  U Q0).  So we 

argue 

P U Q c F(P0  U Q0) 	since union preserves inclusion 

C F() 	 since Po  U Q0 C G and F is monotone 

C 	 since is defined to be a fix-point of F. 

1-01 
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A..3 Proofs for Chapter 5 

A.3..1 Proof of Proposition 3 

Proof 	 We now consider each rule in turn. In each case, we make 

the following notational assumptions. 

. We assume 'Ii, 'Ti' are respectively, the premise and conclusion of the rule. 

B2 	B2 	def 
. We assume that 

(Ni, 
('-s), (—*)) = B2  for z = 0, 1, and similarly for B2  and 

D2 . 

def 
. We assume that B0  = G0 (W), B 1  =1  G0 (W'). 

• We assume that C2  Lef (Ni, 
(C*)

, (___+ 
C  )) def dg , that is 	is the reflexive, 

—  

B2 	B2  defC2  B2  C2  
symmetric and transitive closure of "-, and — = 

df 	d D2  def C2 	D2  def C2 + 
• We assume that D2 	

t that is, for each s, r = r'. and -*, = -. 

We note that (N0 , ( 9), ()) = DG(iT1) and (Ni, 	()) = DG(W'). 

For cases (freeinst) and (notfreeinst), we exhibit a homomorphism f : B1  -f 

D0 , that is, a function f : N1  -* No such that: (1) X 	Y implies X °., Y; 

and (2) X 	Y implies X 	Y. These two conditions ensure that f is a 

homomorphism DG(W') -* DG(W). 

• Case (freeinst). Thus IF 	XX.T C XA and 'I" 	.[pX.T/X], and 

we may assume X is free in T. So we calculate 

B0  = {X 	Y I switching s, T' 	E W, X free in T', Y free in e'} 

B 1  = 	{ X 	X I switching s} 

U {X
B1

,Y switching s, T' c e' E 'I", X free in T', Y free in e'} 

Now we argue that f : Y '-* Y is a homomorphism B 1  - D0 . 

Suppose Y 	Z. Either Y = X = Z, or there is T' with Y free in T' and 

T' C Z E V. In the former case, since we know that X is free in T, then 

certainly X 	X, and therefore f(X) = X 	X = f(X). 
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In the latter case, there must be some T" such that T' T"[1aX.T/X] and 

T" C Z E 'I'. Thus either (1) Y is free in T", or (2) X is free in T" and Y 

is free in T. So either (1) Y 	Z and so 1(Y) = Y 	Z = 1(Z), or (2) 

Y 	X and X 	Z, and so f(Y) = Y 	Z = f(Z) since 	includes 
Bo 

the transitive closure of 

. Case (notfreeinst). W 1?X.T C X A 4 and W' 	.[T/X], and we 

may assume X is not free in T. So we calculate 

Bo B0  = {X - Y I switching s, 

T' C e' E W, 

X free in T', 

Y free in e'} 
B1 

B 1  = {X -* Y I switching s, 

T' C e' E W', 

X free in T', 

Y free in e'} 

Now we show that f : Y i-' Y is a homomorphism B 1  -* D0 . 

Suppose Y 	Z. So there must be T' C Z E W' with Y free in V. 

From the definition of iJ',  we know that there must be T" C Z e 'I' with 

T' T"[T/X]. Either (1) Y is free in T", or (2) X is free in T" and Y is 

free in T. Therefore (1) Y 	Z and so f(Y) = Y 	Z = f(Z), or (2) 

Y 	X and X 	Z, and so f(Y) = Y 	Z = 1(Z) since 	includes 
Bo 

the transitive closure of 

For the following rules, we show a stronger result by exhibiting a homomor-

phism f: B 1  -p CO , i.e. f is a function N1  -* No  such that (1) X 	Y implies 

f(X) 	1(Y) and (2) X 	Y implies 1(X) 	1(Y). These two conditions 

ensure that f is a homomorphism DG(W') -* DG(W). 

. Case (eq-lust). Thus W 	= X = e A and V 	.[e/X] and we 
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may assume that X is not free in e. We calculate 

B0  = { X g98 Y I switching s, Y free in eJs}  U G0 (1) 

B1  = Go([e/X]) 
B1 

= 	{Y ' Z I switching s, 

e0  = e1  E ([e1X])1s, 

Y free in e0 , 

Z free in ei} 

U {Y
B1  
-* Z switching s, 

L C e' E (I[e/X])Js, 

Y free in L, 

Z free in e ' } 

and from our technical lemma, we know that ([e/X])j.s = (c1J.$)[eJs1X]. 

We now show that f: Y '- Y is a homomorphism B 1  -* Co. We consider 
B1 	B1 	 Co 	Co 

cases Y 	Z, Y - Z and respectively show that Y ' Z, Y - Z. 

Suppose Y 	Z. So there must be 

e0  = e 1  e (1s)[e1s1X] 

with Y (resp. Z), free in e0  (resp. e i ). So there must be 

e'0 	e E 'Ifls 

with e0  = e'0 [ej.s/X] and e 1  e[eJs/X]. 

Since Y is free in e0 , then by the definition of substitution, either Y is free 

in e, or X is free in C'c  and Y is free in eJs. 

Similarly, either Z is free in e, or X is free in eç and Z is free in eJs. 

Bo 	 B0 Thus we have four subcases, and we conclude: (1) Y 	Z; (2) Y '--'s  X 

and X 	Z; (3) Y X and X 	Z; and (4) Y 	X, X 	X and 
Bo 	

'- 
Co 	 B0 X 	Z. In all cases, since ' includes the transitive closure of 	we can 

conclude f(Y) = Y Z = f(Z). 



A.3. Proofs for Chapter 5 	 235 

Now suppose Y 	Z. So there must be 

L C eo E (s)[e.J.s/X] 

with Y free in L, and Z free in e0 ; So there must be 

L' C e E 'TJs 

with L L'[e.J.s/X] and e0  = e'0 [eJ.s1X]. 

Again using the definition of substitution, either Y is free in L', or X is 

free in L' and Y is free in eJs. Similarly, either Z is free in e, or X 

is free in e'0  and Z is free in e.Ls.  Again by considering four cases, we 
 Bo 

conclude: (1) Y Z; (2) Y X, X Z; (3) X Y and X 
B0 	 B0 	 B0 

and (4) X 	Y, X 	X and X - Z. In all cases, we can conclude 
D0 	 . 	Co 	Co B0 Co 	CO f (Y) = Y - Z = f(Z), since - = '-.'--+"-' and '- is the reflexive, 

Bo 
symmetric and transitive closure of 

. Case (eq-idem). Thus W 	= eA and W' 	X'.X = e[X'/X]A, 

and we may assume X is free in e. We calculate 

B0 	{X 	Y I switching s, Y free in els} 

U G0() 
B1 B 1  = 	{X ' Y I switching s, 

Y free in (e[X'/X])Js} 

U G() 

and from our technical lemma, we know that (e[X'/X])Js (eJs)[X'/X]. 

We now show that f defined 

efJX 	ifYX' 
f(Y) 	

Y 	otherwise 

is a homomorphism B 1  - Co . 

Consider Y 	Z. If Z X', then certainly Y 	Z, and so f(Y) = 

Y 	Z = f(Z). Now if Z = X', then Y = X is the only possibility. 
Co. 	 CO Since -' is reflexive, we conclude f(X) = X e-i X = f(X/). 
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Consider Y 	Z. Thus Y 	Z E G0() and so Y 	Z also. Thus we 
Co 

conclude Y -4 1 Z. 

• Case (eq-pullback). Thus 1' tv aX1  = rX2  A and W' 2XZ.v 

X1  = 7r1 Z A v = X2  = irZ A We calculate 

	

B0 = 	{X1 9 8 X2 Ist=v} 

• G) 

	

B 1 = 	{Xi 38ZIsv} 

• {X 2 3 3 ZIs=v} 

• G0 ('F) 

We now show that f defined as 

	

efJX2 	ifYZ 
1(Y) = 

	

Y 	otherwise 

is a homomorphism B 1  -* Co. 

Consider X 	Y. If Y Z then X 	Y G0 (41) and so X 	Y also, 

and therefore, X 	Y. Now if Y = Z, then either X = X 1  or X = X2 . 
CO In the former case, we conclude f(X 1 ) = X1 '-..'. X2  = f(Z). In the latter 

Co 	 Co 
case, since 	is reflexive, we conclude 1(X2) = X2 '-' X 2  = f(Z). 

Consider X 	Y. Certainly X 	Y E G0(), and so X 	Y, and 
Co 

therefore, X -* Y. 

• Case (eq-sym). Thus W 	Xiv e = e'A, \T" 	= e' = eA. It 

is easy to check that f : X i-* X is a homomorphism B 1  -* Co . 

• Case (eq-if-introl), (eq-if-intro2). We consider only (eq-if-introl) since (eq-

if-intro2) is similar. Thus 

X.v, x=tt = X1  = e A 

= X1  = e 1 x r> X1  A 'I 



A.3. Proofs for Chapter 5 
	

237 

We calculate 

- Bo v rl~ 
 A 	S 	V, xtt, 

Y is free in ei,s} 

U G() 

B 1 = 	{X i 3 3 YI s v, 

Y is free in (e<x'Xi )1s} 

U G0() 

We now show that f X '-p X is a homomorphism B 1  - Co. 

Consider X 	Y. If X 	Y E G0(I), then X 	Y also, and therefore 

X 	Y. Otherwise, certainly .s v and X X 1 . We consider cases where 

s(x) = tt, ff. If s(x) = tt, then s v, x=tt and also (e i x > Xi)ls eJs, 
Bo Co 

therefore Y is free in eJs and so X1 '-- 
Y, thus certainly f(X) = X 1  "-

Y= f(Y). However, ifs(x) =ff,then(elxXi)1sXi,henceY X 1 , 

i 
Co 	 Co 

and since r'-'.,  s reflexive, we conclude f(X) = X 1  ".s  X 	f(Y). 

Consider X 	Y. So X 	Y e G0(1), therefore X 	Y, so certainly 

f(X)=X4 3 Y=f(Y). 

For the remaining rules, we can prove a yet stronger result by exhibiting a 

homomorphism B 1  -* B0 . 

• Case (eq-resp). Thus iJ 	 -f e1 , = e1 , 'I" 	J?.v -* e = e 1  and 

we may assume that e0 -'--* e'0 . From our technical lemma, we know that 

eoJs, e'0 js have the same free variables for all switchings s. It is easy to 

check B0  = B 1 , i.e. f : X i- X is a suitable homomorphism. 

• Case (eq-equaliser). Thus W 3X.v = aX 1  = rX 1  A and W 3XZ.v 

X 1  = pZ A 1. We calculate 

B0={X1 
Bo 	

s=v}UGo() 

B
B1 , 

1 ={X18 ,I sv}UGo() 



238 
	

Appendix A. Proofs 

We now show that f defined by 

ef X1 ifX=Z I f(X) 	
X 	otherwise 

is a homomorphism B 1  -p B0 . 

Consider X 	Y. If X 	Y E G0() then also f(X) = X Y = 1(Y). 

Otherwise, s = v, X X1  and Y Z, and 1(X) = X 1 	X1  = f(Y). 

Consider X 	Y. We must have X 	Y e G0 (4), and so f(X) = X 
 Bo 

Y=f(Y). 

• Case (eq-const). Thus W 	J?.v = aX = rA and W a.v X 1  = 

(a0 r)A4. It is easy to check that B0  = B1 , that is, f : X i-* Xis a 

suitable homomorphism. 

• Case (if-eliml), (if-betall), (if-betal2). For these rules, we use the fact that 

L(L') 	L"[L'/X]  for some L", and so (L(L')).j.s 	(L"J.$){L'i.s/X]. 

• Case (falseinst). It is easy to show that the function f : X F-* X is a 

homomorphism. 

For rules (eq-if-elim), (eq-betal), (eq-beta2), (if-elimr), (if-betarl), (if-betar2)., 

(adj-ren) and (collate), it is simple to check that B0  = B 1 , and so f : X '-p X is 

a suitable homomorphism. D 
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Input scripts for VCG examples 

B.1 Example SPASS input script 

#define INV(y,sO,sl,r) \ 
forall([int(yfO),int(ygO)], 	 \ 
implies(and(lookup(sO,y,f,yfO), 	 \ 

lookup(sO,y,g,ygO), 	 \ 
pos(yfO), 	 \ 
pos(ygO)), 	 \ 

exists([int(yfl),int(ygl)], 	 \ 
and(lookup(sl,y,f,yfl), 	 \ 

lookup(sl,y,g,ygl), 	 \ 
equal(r,yfl), 	 \ 
equal(r,ygl), 	 \ 
equal(r,gcd(yfO,ygO)))))) 

#define GCDSPEC(sO,sl,r) \ 
implies(and(pos(426),pos(792)),equal(r,gcd(426,792))) 

begin_problem(Gcdl). 

0_, 0/0_, 01010I 0101010 01010/0101010/0 0/0/0101010/0101010/010101010 

101010 101010 Ioioio,oioiolo/o/o/o/o/o/oh/o/o/o/o/o/o/o/o/o/o/o/o/o/o/oioioioioio 101010/0 /o%%%%%%% loll ,olololo,o/o%%%%h/o% 

list_of_descriptions. 
name({* gcd_vcl *}). 
author({* fhlt *}). 
status(satisfiable). 
description(-C* vcl for gcd example *}). 

239 
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end_of_list. 

0/0I0/0/0/0/0/o 010/ 0/01010 0/010! 01010101010! 0/0!0/0/0101 010/ 

list_of_symbols. 
functions [ 
°h update for stores 
(update,4), 
% boolean constants 
(boolt,0), (boolf,0), 
°h functions for gcd example 
(1,0), (426,0),(792,o), 
(minus,2), (gcd,2) , (f,0) , (g,0) 
I. 

predicates [ 
°h lookup for stores 
(lookup,4), 

°h predicates for gcd program 
(pos,1), (lt,2) 
I. 

sorts [store , fname , locn, bool, mt , value] 

end_of_list. 

0/0JQ/O/0/O/0/ 0/0/0/0/0/O/0/0/0J0/0/0/0/0/OJ0/0/O/o/0/0/o/0/ 0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/o/0/0/0/0/o/o/ 0/0/0/0/0/0/0/0/0/ 
Jo Jo Jo I. Jo lo Jo Jo Jo Jo Jo Jo Jo Jo Jo Jo Jo Jo Jo 10 Job Jo Jo Jo Jo Jo I. Jo lo Jo Jo Jo Jo Jo Jo lob Jo Jo I. F lob Jo Job Jo Jo J Jo Jo Jo Jo Jo Jo Jo Jo Jo Jo Jo Jo Job Jo 10 

list_of_declarations. 
subsort(locn,value). 
subsort (boo 1 ,value). 
subsort(int ,value). 
forall([store(s) ,locn(1) ,fname(ff) ,value(v)], 

store(update(s,l,ff,v))). 
fname(f). 
fname(g). 
forall([int(x),int(y)] ,int(minus(x,y))). 
forall([int(x),int(y)],int(gcd(x,y))). 
bool(boolt). 
bool(boolf). 
int(426). int(792). 

predicate (lookup, store, locn , fnaine,value). 



B.1. Example SPASS input script 	 241 

predicate (pos, int). 
predicate(lt, int, int). 
end_of_list. 

010gOIO'0'0' 0'Q 
	

0'OIO 
	

0,0,0,0,0,0,0,0, 00' 0 0 

list_of_f ormulae(axioms). 

°h Stores 

°h definition of update 
formula(forall([store(s), 

fname(ff) ,fname(fp), 
locn(l) ,locn(lp), 
value(v) ,value(vp)], 

equiv(lookup(update(s,l,ff,v) ,lp,fp,vp), 
or(and(equal(1,lp),equal(ff,fp),equal(v,vp)), 

and(not(and(equal(l,lp),equal(ff,fp))), 
lookup(s,lp,fp,vp)))) 

) , axdefupd). 

°h extensionality axiom 
°hformula(forall([store(sO) ,store(sl)], 
°himplies(forall([locn(l) ,fnazne(ff) ,value(v)], 
°h 

	

	equiv(lookup(sO,l,f,v),lookup(sl,l,f,v))), 
equal(sO,sl)) 

%),axext). 

°h stores are partial functions 
formula(forall([store(s),locn(l),fnaine(ff),value(vO),value(vl)], 
implies(and(lookup(s,l,ff,vO),lookup(s,l,ff,vl)), 

equal(vO,vl)) 
) ,axfunstore). 

% false is not true 
formula(not(equal(boolt,boolf))). 

°h false and true are the only booleans 
°hformula(forall([bool(x)] ,or(equal(x,boolt),equal(x,boolf)))). 

°h adhoc axioms about pos, lt, minus, gcd 
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formula(forall([int(x),int(y)], 
implies(lt(x,y),pos(minus(y,x)))) 
). 

formula(forall([int(x),int(y)], 
implies(and(not(lt(x,y)),not(lt(y,x))),equal(x,y)))). 

formula(forall([int(x) ,int(y)], 
implies(and(lt(x,y),pos(x),pos(y)), 

equal(gcd(x,y) ,gcd(x,minus(y,x))))) 

). 

forinula(forall ( [mt (x) , mt (y)], 
implies(and(lt(y,x),pos(x),pos(y)), 

equal (gcd(x,y) ,gcd(minus(x,y) ,y)))) 
). 

formula(forall([int(x)] ,equal(gcd(x,x) ,x))). 

Next axiom is needed for swapping versions of Euclid's algorithm 

°h GCDSYM axiom 
formula(forall([int(x),int(y)] ,equal(gcd(x,y) ,gcd(y,x)))). 

formula(notCor(equal(g,f),equal(f,g)))). 

ki 

end_of_list. 

00 010/011101011/010 0I0 0' 0' 010 , 4 4 i. is.,'. ,./.%%%%%%%%%%%% 
list_of_formulae(conjectures). 
formulaCand(forall([value(xO_1), 
end_of_list. 

end_problem. 

B..2 Dining philosophers example input script 

#define Fork(sl,s2) 	 \ 
[ ontable = tt, 	 \ 
trypickup(sl) = if sl.ontable then 	\ 
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sl.ontable 	:= ff; \ 
tt \ 

else \ 
ff 	 , \ 

putdown(s2) = s2.ontable := tt 	] 

#define Phultick(s,tpO,tpl) \ 
if s.state = 0 then { \ 

let tpo = s.forki.trypickup() in \ 
if tpo then s.state := 1 \ 
elses} \ 

else if s.state = 1 then { \ 
let tpl = s.fork2.trypickup() in \ 
if tpl then s.state := 2 \ 
elses} \ 

else if s.state = 2 then \ 
s.fork2.putdownO; \ 
s.state 	:= 3 \ 

else{ \ 
s.forkl .putdownO; \ 
s.state := 0 	} 

#define LRPhil(fl,fr,s,tpO,tpl) Phil(fl, fr, s, tpo, tpl) 

#define RLPhi1(fl,fr,s,tpO,tpl) Phil(fr, fi, s, tpo, tpl) 

#define Phil(fl,f2,s,tpO,tpl) \ 
[ state = 0, forki = f 1, fork2 = f2, \ 

tick(s) = Philtick(s,tpO,tpl) ] 

#define Table \ 
{ \ 
{ \ 
let fki = { Fork(sf 11, 	sf12) \ 

[ 	[],IIMKFK1U ,0 ] } in \ 
let fk2 = { Fork(sf2l, sf22) \ 

[ 	1] ,"MKFK2",1 ] } in \ 
let fk3 = { Fork(sf3l, sf32) \ 

[ 	1], "MKFK3" ,2 ] } in \ 
let phi = { LRPhi1(fk2, fk3, spi, tplO, tpll) \ 

C 	1] , "MXPHl" ,3 ] } in \ 
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let ph2 = -C RLPhu1(fk3, fki, sp2, tp20, tp2 i) 
	

\ 
:: [ [],MKPH2",4 ] } in 
	

\ 
let ph3 = { LRPhil(fki, fk2, sp3, tp30, tp3i) 
	

\ 
[ [],"MKPH3",5 ] } in 
	

\ 
{ 
	

\ 
[fl=fki, f2 = fk2, f3 = fk3, 	 \ 
p1 = phi, p2 = ph2, p3 = ph3, 	 \ 
ticki(stl) = stl.pl.tickO 
	

i: 11 , " ITICKi" ,•7 ] 
	

\ 
tick2(st2) = st2.p2.tick() 
	

i: [],"ITICK2",7 ], 	\ 
tick3(st3) = st3.p3.tick() 
	

[ [] ,"ITICK3",7 
	

\ 
] 
	

\ 
[],"MKTBL",6 ] 
	

\ 
} 
	

\ 
1 1] , "TABLEO" ,O 
	

\ 
[ticklO] ,"TICKl",l 
	

\ 
[tick2O] ,"TICK2",i 
	

\ 
[tick30] ,"TICK3",l 
	

\ 
]} 
	

\ 
[],"TABLE",O ] } 

let t = Table in 
{t.tickiQ; t.tick2O; t.tick3Q} 

B.3 Example SPASS input script for dining philoso-

phers example 

#define ISONEOF(xi,x2,x3,x) 
or(equal(x,xl),equal(x,x2) ,equal(x,x3)) 

#define ISHOLDING(pp,ff,$) 	 \ 
or(and(lookup(s,pp,state,1),lookup(s,pp,forkl,ff)), \ 

and(lookup(s,pp,state,2),lookup(s,pp,forkl,ff)), \ 
and(lookup(s,pp,state,2),lookup(s,pp,fork2,ff)), \ 
and(lookup(s,pp,state,3),lookup(s,pp,forkl,ff))) 

#define INVPHIL(pp,$) 	 \ 
exists([locn(ff1),locn(ff2)1, 	 \ 
and(lookup(s,pp,forki,ffi), 	 \ 

lookup(s,pp,fork2,ff 2), 	 \ 
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orel(ffl,ff2), 	 \ 

or(lookup(s,pp,state,O), 	 \ 
lookup(s,pp,state,1), 	 \ 
lookup(s,pp,state,2), 	 \ 
lookup(s,pp,state,3)))) 

#define FKPHTA_UNIQ(ffi,ff2,ff3,ppl,pp2,pp3,t,$) 	 \ 
not (or(equal (ffl,ff2), 	 \ 

equal(ffl,ff3), 	 \ 
equal(ffl,ppl), 	 \ 
equal(ffl,pp2), 	 \ 
equal(ffl,pp3), 	 \ 
equal(ffl,t), 	 \ 
equal(ff2,ff3), 	 \ 
equal(ff2,ppl), 	 \ 
equal(ff2,pp2), 	 \ 
equal(ff2,pp3), 	 \ 
equal(ff2,t), 	 \ 
equal(ff3,ppl), 	 \ 
equal(ff3,pp2), 	 \ 
equal(ff3,pp3), 	 \ 
equal(ff3,t), 	 \ 
equal(ppl,pp2), 	 \ 
equal(ppl,pp3), 	 \ 
equal(ppl,t), 	 \ 
equal(pp2,pp3), 	 \ 
equal(pp2,t), 	 \ 
equal(pp3,t))) 

#define TBL_CFG(ffl,ff2,ff3,ppl,pp2,pp3,t,$) 	 \ 
and(lookup(s,pp2,fork1,ff1), 	 \ 

lookup(s,pp3,fork1,ff1), 	 \ 
lookup(s,ppl,forkl,ff2), 	 \ 
lookup(s,pp3,fork2,ff 2), 	 \ 
lookup(s,ppl,fork2,ff3), 	 \ 
lookup(s,pp2,fork2,ff3), 	 \ 
lookup(s,t,pl,ppl), 	 \ 
lookup(s,t,p2,pp2), 	 \ 
lookup(s,t,p3,pp3), 	 \ 
lookup(s,t,fl,ffl), 	 \ 
lookup(s,t,f2,ff2), 	 \ 
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1ookup(s,t,f3,ff 3)) 

#define ITP(fkl,fk2,fk3,ppl,pp2,pp3,t,s,pp) INVPHIL(pp,$) 
#define ITF(fl,f2,f3,pl,p2,p3,t,s,ff) \ 

and(implies(lookup(s,ff,ontable,boolf), 	\ 
or(ISHOLDING(pl,ff,$), 	\ 

ISHOLDING(p2,ff,$), 	\ 
ISHOLDING(p3,ff,$))), 	\ 

or(lookup(s,ff,ontable,boolf), 	\ 
lookup(s , ff , ontable ,boolt))) 

#define INVTABLE(f1,f2,f3,p1,p2,p3,t,$) 	 \ 
and(ITF(fl,f2,f3,pl,p2,p3,t,s,fl), 	\ 

ITF(f1,f2,f3,p1,p2,p3,t,s,f2), 	\ 
ITF(f1,f2,f3,p1,p2,p3,t,s,f3), 	\ 
ITP(f1,f2,f3,p1,p2,p3,t,s,p1), 	\ 
ITP(f1,f2,f3,p1,p2,p3,t,s,p2), 	\ 
ITP(f1,f2,f3,p1,p2,p3,t,s,p3), 	\ 
FKPHTA_UNIQ(fl,f2,f3,pl,p2,p3,t,$), 	\ 
TBL..CFG(f1,f2,f3,p1,p2,p3,t,$), 	\ 
locn(fl), 	 \ 
locn(f2), 	 \ 

locn(f 3), 	 \ 
locn(pl), 	 \ 
locn(p2), 	 \ 
locn(p3), 	 \ 
locn(t)) 

#define ITICK(fkl,fk2,fk3,ppl,pp2,pp3,t,sO,sl,r) 	 \ 
imp1ies(and(ore1(fk1,fk2), 	 \ 

orel(fkl,fk3), 	 \ 
orel(fk2,fk3), 	 \ 
INVTABLE(fkl,fk2,fk3,ppl,pp2,pp3,t,sO)), \ 

INVTABLE(fkl ,fk2,fk3,ppl ,pp2,pp3,t,si)) 

#define ITICK1 ITICK 
#define ITICK2 ITICK 
#define ITICK3 ITICK 

#define TICK(t,sO,sl,r) \ 
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exists([value(fkl) ,value(fk2) ,value(fk3), 
value(ppl) ,value(pp2) ,value(pp3)], 

TRTICK(fkl,fk2,fk3,ppl,pp2,pp3,t,sO,sl,r)) 

#define TICK1 TICK 
#define TICK2 TICK 
#define TICK3 TICK 

#define xxSTORE1(ffl,$) \ 
and(lookup(s,ffl,ontable,boolt), 

locn(ff 1)) 

#define xxSTORE2(ffl,ff2,$) 	 \ 
and(not(equal(ffl,ff2)), 	 \ 

lookup(s,ffl,ontable,boolt), 	 \ 
lookup(s,ff2,ontable,boolt), 	 \ 
locn(ffl), 	 \ 

locn(ff2)) 

#define xxSTORE3(ffl,ff2,ff3,$) 	 \ 
and(not(or(equal(ffl,ff2), 	 \ 

equal(ffl,ff3), 	 \ 
equal(ff2,ff3))), 	 \ 

lookup(s,ffl,ontable,boolt), 	 \ 
lookup(s,ff2,ontable,boolt), 	 \ 
lookup(s,ff3,ontable,boolt), 	 \ 
locn(ffl), 	 \ 

locn(ff2), 	 \ 

locn(ff 3)) 

#define xxSTORE4(ffl,ff2,ff3,ppl,$) 	 \ 
and(not(or(equal(ffl,ff2), 	 \ 

equal(ffl,ff3), 	 \ 
equal(ffl,ppl), 	 \ 
equal(ff2,ff 3), 	 \ 
equal(ff2,ppl), 	 \ 
equal(ff3,ppl))), 	 \ 

lookup(s,ppl,forkl,ff2), 	 \ 
lookup(s,ppl,fork2,ff3), 	 \ 
lookup(s,ffl,ontable,boolt), 	 \ 
lookup(s,ff2,ontable,boolt), 	 \ 
lookup(s,ff3,ontable,boolt), 	 \ 
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lookup(s,ppl,state,O), 	 \ 
locn(ffl), 
locn(ff 2), 	 \ 
locn(ff 3), 	 \ 
locn(ppl)) 

#define xxSTORE5(ff1,ff2,ff3,pp1,pp2,$) \ 

	

and(not(or(equal(ffl,ff2), 	 \ 

	

equal(ffl,ff3), 	 \ 

	

equal(ffl,ppl), 	 \ 

	

equal(ffl,pp2), 	 \ 

	

equal(ff2,ff3), 	 \ 

	

equal(ff2,ppl), 	 \ 

	

equal(ff2,pp2), 	 \ 

	

equal(ff3,ppl), 	 \ 

	

equa1(ff3,pp2), 	 \ 
.equal(ppl,pp2))), 	 \ 

1ookup(s,pp2,fork1,ff1), 	 \ 
lookup(s,ppl,forkl,ff2), 	 \ 
lookup(s,ppl,fork2,ff3), 	 \ 
lookup(s,pp2,fork2,ff3), 	 \ 
lookup(s,ffl,ontable,boolt), 	 \ 
lookup(s,ff2,ontable,booit), 	 \ 
lookup(s,ff3,ontable,boolt), 	 \ 

	

.lookup(s,ppl,state,O), 	 \ 

	

lookup(s,pp2,state,O), 	 \ 
locn(ffl), 	 \ 

locn(ff 2), 	 \ 
locn(ff 3), 	 \ 
locn(ppl), 	 \ 
locn(pp2)) 

#define xxSTORE6(ffl,ff2,ff3,ppl,pp2,pp3,$) 	 \ 

	

and (not (or (equal (ffl,ff2), 	 \ 

	

equal(ffl,ff3), 	 \ 

	

equal(ffl,ppl), 	 \ 

	

equal(ffl,pp2), 	 \ 

	

equal(ffl,pp3), 	 \ 

	

equal(ff2,ff3), 	 \ 

	

equal(ff2,ppl), 	 \ 

	

equal(ff2,pp2), 	 \ 

	

equal(ff2,pp3), 	 \ 
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equal(ff3,ppl), 	 \ 
equa1(ff3,pp2), 	 \ 
equa1(ff3,pp3), 	 \ 
equal(ppl,pp2), 	 \ 
equal(ppl,pp3), 	 \ 
equal(pp2,pp3))), 	 \ 

lookup(s,pp2,fork1,ffl), 	 \ 
lookup(s,pp3,fork1,ffl), 	 \ 
lookup(s,ppl,forkl,ff 2), 	 \ 
lookup(s,pp3,fork2,ff 2), 	 \ 
lookup(s,ppl,fork2,ff3), 	 \ 
lookup(s,pp2,fork2,ff3), 	 \ 
lookup(s,ffl,ontable,boolt), 	 \ 
lookup(s,ff2,ontable,boolt), 	 \ 
lookup(s,ff3,ontable,boolt), 	 \ 
lookup(s,ppl,state,O), 	 \ 
lookup(s,pp2,state,O), 	 \ 
lookup(s,pp3,state,O), 	 \ 
locn(ffl), 	 \ 
locn(ff 2), 	 \ 
locn(ff3), 	 \ 
locn(ppl), 	 \ 
locn(pp2), 	 \ 
locn(pp3)) 

#define STORE7(ffl ,ff2,ff3,ppl ,pp2,pp3,t ,$) \ 
and(FKPHTA_UNIQ(ffl,ff2,ff3,ppl,pp2,pp3,t,$), \ 

TBL_CFG(ffl,ff2,ff3,ppl,pp2,pp3,t,$), 	\ 
lookup(s,ffl,ontable,boolt), 	 \ 
lookup(s,ff2,ontable,boolt), 	 \ 
lookup(s,ff3,ontable,boolt), 	 \ 
lookup(s,ppl,state,O), 	 \ 
lookup(s,pp2,state,O), 	 \ 
lookup(s,pp3,state,O), 	 \ 
locn(ffl), 	 \ 

locn(ff 2), 	 \ 
locn(ff 3), 	 \ 
locn(ppl), 	 \ 
locn(pp2), 	 \ 
locn(pp3), 	 \ 
locn(t)) 
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#define MKFK1(sO,sl,r) 
	

\ 
STORE1(r, si) 

#define MKFK2(ffl,sO,sl,r) 
implies (STORE1 (ffl,sO), 

STORE2(ffl,r,sl)) 

#define MKFK3(ffl,ff2,sO,sl,r) 
implies(STORE2(ff1,ff2,sO), 

STORE3 (f f 1, ff2, r, si)) 

#define MKPH1(ffl ,ff2,ff3,sO, sl,r) 
implies (STORE3(ffl,ff2,ff3,sO), 

STORE4(ffl,ff2,ff3,r,sl)) 

#define MKPH2(ff1,ff2,ff3,pp1,sO,s1,r) 
implies (STORE4(ffl,ff2,ff3,ppl,sO), 

STORE5(ff 1 ,ff2,ff3,ppl,r,sl)) 

#define MKPH3(ffl,ff2,ff3,ppl,pp2,sO,sl,r) 
implies(STORE5(ffl,ff2,ff3,ppl,pp2,sO), 

STORE6(ffl,ff2,ff3,ppl,pp2,r,sl)) 

#define MKTBL(ffl,ff2,ff3,ppl,pp2,pp3,sO,sl,r) 
implies(STORE6(ffl,ff2,ff3,ppl,pp2,pp3,sO), 

STORE7(ffl,ff2,ff3,ppl ,pp2,pp3,r,sl)) 

#define TABLEO(sO,sl,r) \ 
exists([value(fkl) ,value(fk2) ,value(fk3), 	 \ 

value(ppl) ,value(pp2) ,value(pp3)], 	 \ 

	

implies (and(orel (fkl,fk2), 	 \ 

	

orel(fk2,fk3), 	 \ 
orel(fkl,fk3)), 	 \ 

and(STORE7(fkl,fk2,fk3,ppl,pp2,pp3,r,sl), \ 
orel(fkl,fk2), 	 \ 
orel(fk2,fk3), 	 \ 
orel(fkl,fk3)))) 

#define TABLE(sO,sl,r) \ 
exists([value(fkl) ,value(fk2) ,value(fk3), 	 \ 

value(ppl) ,value(pp2) ,value(pp3)], 	 \ 

	

implies(and(orel(fk1,fk2), 	 \ 
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orel(fk2,fk3), 
orel(fkl,fk3)), 

INVTABLE(fkl,fk2,fk3,ppl,pp2,pp3,r,sl))) 

begin_problem(Gcdl). 

0/0/0/0/0/0/010/010101010/0/0/0/0/0/0/0/0/0/0/0/0/0/ 0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/ OjOJO/0/0J0J0/0/0J 0/0/0/0/0/0/0/0/ 
lode lo lode lob do b/ole lob F. be I. Fe Fe Fe Fe Fe F. Fe Fe F. Fe F. F. F. Fo F. Fe I. Fe Fe Fo Fe be F. Fed. Fe Fe Fe Feb.!. Fo Fob Fe Fe be Fe Fe Fe F. Fo Fe Fe Fe Fe I. Fe!.!. 

list_of_descriptions. 
name({* dinphil_vcl *}). 
author({* fhlt *}). 
status(satisfiable). 
description({* vcl for dinphil example *}). 
end_of_list. 

0'0I010'0'01010'010101 0000 01010101010101 010 e,010101e,0101e,010,e,e 

list_of_symbols. 
functions [ 
/. update for stores 
(update,4), 
% boolean constants 
(boolt,0) , (boolf ,0), 
% fields, methods, constants 
(ontable,0) , (state,0), (forkl,0) , (fork2,0), 
(fl,0) , (f2,0), (f3,0), (p1,0), (p2,O) ,(p3,O), 
(trypickup,0), (putdown,0) , (tick,0), (tickl,0), (tick2,0), (tick3,0), 
(0,0),(1,0), (2,0) ,(3,0) 
I. 

predicates [ 
°h(STORE1,2), 
%(STORE2,3), 
°h(STORE3,4), 
%(STORE4,5), 
°h(STORE5,6), 
°h(STORE6,7), 
%(STORE7,8), 
/O(FKPHTA_UNIQ , 8), 
% lookup for stores 
(lookup,4), 
°h predicates for dinphil program 
(orel,2) 
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sorts [store ,f name ,mnanie , locn,bool, mt , value ,f ork] 

end_of_list. 

010/010! e,o'oioio 0/01010101010101010101010/0101010! 01010!010/010!01 0/0101010' 0 

list_of_declarations. 
subsort (locn ,value). 
subsort (bool ,value). 
subsort (mt ,value). 
forall([store(s),locn(l),fname(ff) ,value(v)], 

store(update(s,l,ff,v))). 

fname(ontable). fname(state). 
fname(forkl). fname(fork2). 
fname(f 1). fnaine(f 2). fname(f 3). 
fname(pl). fname(p2). fnarne(p3). 
mnaine(trypickup). mname(putdown). mname(tick). 
mname(tickl). mnaine(tick2). mnaine(tick3). 
int(0). int(1). int(2). int(3). 
bool(boolt). bool(boolf). 

predicate (lookup,store, locn , fname ,value). 

predicate (orel, locn, locn). 

end_of_list 

0J0/0/O/0/0/ 01 0/0/0/0/0/0/0/0/0/0/0/0/0/ 0/0/0/0/0/0/0/0/0/O/0/ O/0/0/0/0/0/0/0JO/ 0/0/0/0/0/ 0J0/0/0/0/0/0/ 0/0/0/0/0/0/0/0/0/0/0/0/ 0/0/ 
/0 to to to to to to Fe / Fo Fe lo Io Fo jo/ole/ole Fe Fe/ole to blob Fo Fe / tote lola/a to lo Fo I. lo Fe Fe lo lo Ia to Fe Fo to ía F. lo lob Fo to Fe lob Ia I. Fob le lo Fe 

list_of_f ormulae(axioms). 

°h Stores 

°h definition of update 
formula(forall( [store(s), 

fname(ff) ,fname(fp), 
locn(l) ,locn(lp), 
value(v) ,value(vp)], 

equiv(lookup(update(s,l,ff,v),lp,fp,vp), 
or(and(and(equal(l,lp),equal(ff,fp)),equal(v,vp)), 

and(not(and(equal(l,lp),equal(ff,fp))), 
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lookup(s,lp,fp,vp)))) 
) ,axdefupd). 

°h extensionality axiom 
°flformula(forall([store(sO) ,store(sl)], 
°himplies(forall([locn(l) ,fname(ff) ,value(v)], 

equiv(lookup(sO,l,ff,v),lookup(sl,l,ff,v))), 
equal(sO,sl)) 

°h) ,axext). 

°h stores are partial functions 
formula(forall([store(s) ,locn(l) ,fname(ff) ,value(vO) ,value(vl)], 
implies(and(lookup(s, l,ff ,vO) ,lookup(s,l,ff ,vl)), 

equal(vO,vl)) 
) , axfunstore). 

°h false is not true 
formula(not(equal(boolt,boolf))). 

% false and true are the only booleans 
%formula(forall([bool(x)] ,or(equal(x,boolt),equal(x,boolf)))). 

°h adhoc axioms for dinphil example 

formula(not(or(equal(O, 1), 
equal (0 , 2) 
equal (0,3), 
equal(1,2), 
equal(1,3), 
equal(2,3)))). 

formula(not(or( 
equal (fl,f2), 
equal (fl,f3), 
equal (fl,pl), 
equal (fl,p2), 
equal (fl,p3), 
equal (f 1,state), 
equal (f 1,forkl), 
equal (fl,fork2), 
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equal (fl,ontable), 
equal (f 2, f 1) 
equal (f 2, f 3) 
equal (f 2, p1) 
equal(f2,p2), 
equal(f2,p3), 
equal(f2,state), 
equal (f2,forkl), 
equal (f2,fork2), 
equal (f 2, ontable) 
equal (f3,f 1), 
equal (f3,f2), 
equal (f3,pl), 
equal (f3,p2), 
equal (f3,p3), 
equal (f3,state), 
equal (f3,forkl), 
equal (f3,fork2), 
equal (f 3,ontable), 
equal (pl,fl), 
equal (pl,f 2), 
equal (pl,f3), 
equal (pl,p2), 
equal (pl,p3), 
equal (p1, state) 
equal (pl,forkl), 
equal (pl,fork2), 
equal (p1, ontable), 
equal(p2,fl), 
equal (p2,f 2), 
equal (p2,f 3), 
equal (p2,pl), 
equal (p2,p3), 
equal (p2,state), 
equal (p2,forkl), 
equal (p2,fork2), 
equal (p2. ontable), 
equal (p3,f 1), 
equal (p3,f 2), 
equal (p3,f 3), 
equal (p3,pl), 
equal (p3,p2), 
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equal (p3,state), 
equal (p3,forkl), 
equal (p3,fork2), 
equal (p3, ontable), 
equal(state,fl), 
equal(state,f 2), 
equal(state,f3), 
equal(state,pl), 
equal(state,p2), 
equal (state,p3), 
equal (state, fork 1), 
equal (state, fork2), 
equal (state, ontable), 
equal(forkl,fl), 
equal(forkl,f 2), 
equal (forkl,f3), 
equal(forkl,pl), 
equal (f orkl,p2), 
equal (forkl,p3), 
equal (f orki ,state), 
equal (f orki , fork2), 
equal (forkl , ont able), 
equal (fork2,fl), 
equal(fork2,f 2), 
equal (f ork2,f3), 
equal (f ork2,pl), 
equal (fork2,p2), 
equal(fork2,p3)., 
equal (f ork2, state), 
equal(fork2,forkl), 
equal (f ork2 , ont able), 
equal(ontable,f 1) ,equal(ontable,f 2), 
equal (ont able, f 3), 
equal (ontable,pl), 
equal (ontable,p2), 
equal (ontable ,p3), 
equal (ontable, state), 
equal(ontable,forkl), 
equal (ontable , fork2)))). 

formulaCnotCorC 
equal(tick3,tick2), 
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equal (tick3,tickl), 
equal (tick3,tick), 
equal(tick3,putdown), 
equal(tick3,trypickup), 
equal(tick2,tick3), 
equal(ti.ck2,tickl), 
equal (tick2,tick), 
equal (tick2 ,putdown), 
equal (tick2 , trypickup), 
equal(tickl,tick3), 
equal (tickl,tick2), 
equal(tickl,tick), 
equal (ticki ,putdown), 
equal (tickl,trypickup), 
equal (tick,tick3), 
equal(tick,tick2), 
equal (tick,tickl), 
equal (tick,putdown), 
equal(tick,trypickup), 
equal (putdown, tick3), 
equal (putdown, tick2), 
equal (putdown,tickl), 
equal (putdown,tick), 
equal (putdown, trypickup), 
equal(trypickup,tick3), 
equal (trypickup, tick2), 
equal(trypickup,tickl), 
equal(trypickup,tick), 
equal (trypickup ,putdown))))•. 

end_of_list. 

01 0/ 01 01 010/ 0/ 0  O'o,O,o ,  0/0 010/010/0/01/ 0! 01010/0/0/0/01010/ 0/OlO/OlO O,O,OIO,0I 0/ 
lo,ololo Io,oio/o%%%%%%%% 

/0 I, I. /o,o/o%%%7oVo%%% Io,o/o,olo lo jo fo /oIo,o,o /0 io Io Io ,o /0/010/0 
/o%%%%%%%7o/o/o/oIo/o,o 

list_of_formulae(conjectures). 

formula ( 
forall( ... ITICK1(xO_1,xO_2,xO_3,xO_4,xO_5,xO_6,xO_7,sO,sl,r))) 
). 

end_of_list. 

end_problem. 
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