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Conservativeness and translation-dependent
T-schemes

JEFFREY KETLAND

1. The conservativeness of the (restricted) T-scheme (T)

The basic principle of many popular deflationist accounts of truth! is the
disquotational T-scheme

(T): "@'is true in L if and only if .

where to avoid semantic paradox we need a restriction: it is natural to insist
that the sentence @ must be a sentence of the object or base language L.
In Ketland 1999 I reported the following theorem:

1 E.g. Paul Horwich’s minimalist account of truth (see Horwich 1998). Horwich’s
theory is based on the propositional version of the disquotation scheme, where the
singular term on the lhs is a ‘that’-clause rather than a quotation (Horwich calls this
the ‘Equivalence Schema’). Fortunately, it makes no difference to the sort of formal
investigation I am concerned with: all that matters to the formal investigations is that
you have an (injective) mapping from sentences to singular terms. Terms such as ‘that
snow is white’ are singular terms obtained from sentences by an injective mapping.

8]

But see Theorem 4 below, where we introduce (and prove consistent) an unrestricted
T-scheme, in which the truth-in-L condition for any sentence ¢ containing ‘true-in-L’
is some arbitrary absurdity.
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Theorem 1. The (restricted) T-scheme (T) is conservative over (almost) any
theory X in L to which it is added.’

Similar arguments vyield the conservativeness of the scheme for
satisfaction:*

(S): Vx1 ... Vx,, ("' is satisfied in L by the sequence (x) iff ¢(x1, ...,
xn))

In Ketland 1999 (§2) I suggested that the conservativeness of (T) is con-
nected to its deflationary status (for a similar argument, see Shapiro 1998).
Of course, no deflationist has ever put their view exactly like this. But the
fact that the (restricted) T-scheme is conservative provides an important
analysis of a number of features of the truth predicate that the deflationist
wants, such as:

(i) The dispensability of the truth predicate;
(ii) the epistemological neutrality of truth;
(iii) the contentlessness of truth.

For example, suppose you have some non-semantical theory T (perhaps
a physical theory) in a language L and you extend it to a theory Tt =X +
all L-instances of (T). Suppose you deduce in this ‘semanticized’ theory =*
some non-semantical sentence @ (say, a conditional linking initial condi-
tions with final conditions), perhaps using the concept of truth (in-L) in the
deduction. Then, the conservativeness theorem above tells you that you
can already deduce ¢ in X, without invoking the concept of truth. Hence,
we have an important sense in which the minimalist truth predicate is
dispensable. Any non-semantical fact explained with (minimalist) truth can
be explained without it.

Furthermore, the conservativeness of (T) implies that (T) is consistent
with (almost) any internally consistent non-semantical theory ¥ of the
world. Hence, one cannot deduce any new non-semantical facts about the
world from a deflationist or minimalist theory of truth based on (T) alone.
For example, imagine some crazy idealist theory £ which contains a meta-
physical axiom or theorem:

3 Almost any theory? Well, £ must imply the following theory A of syntax:

A={"¢"# "y for all L' — formulae ¢,y such that ¢ # y}

Roughly speaking, ‘syntactical identity’ of formulae must be strongly represented in
%. For example, Robinson Arithmetic Q satisfies this constraint, as should any decent
theory of syntax for an object language L. Many thanks to Volker Halbach for
helping me clear up this point (personal communication).

4 Strictly, (S) below needs to be construed as the union of an infinite number of satis-
faction schemes (S),,, one scheme for each fixed number 7 of distinct free variables in
the formula @(x1, ... , x,).
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(1) All objects are mental constructions.

Adding the T-scheme (T) to this theory £ won’t make any difference to
what can or cannot be proved (in the language of ) about these objects. I
suspect that Tarski would have agreed that this is a precise explication of
what he meant when he alluded, in his 1944 paper, to the ‘epistemological
neutrality’ of his work on the semantic conception of truth:

Thus, we may accept the semantic conception of truth without giving
up any epistemological attitude we may have had ... The semantic
conception is completely neutral toward all these issues. (Tarski
(1944) 1999: 140)°

The conservativeness of (T) implies a kind of contentlessness of mini-
malist truth. Perhaps that fact accounts for the usual undergraduate
response that the scheme (T) is ‘obvious’, even though, when unrestricted,
it is actually inconsistent!

I venture that this is exactly the sort of (formal) behaviour that the defla-
tionist wants (or should want) from a truth theory. In 1980, Hartry Field
argued for a deflationary view of mathematics (see Field 1980), driven by
the intuitively plausible idea that one shouldn’t be able to deduce non-
mathematical facts from mathematical theories. By analogy, I suggest that
deflationism about truth must hinge on the intuitively plausible idea that
one shouldn’t be able to deduce non-semantical facts (like the fall of com-
munism in 1989) from a theory of truth alone. This analogy is between
the properties of mathematical theories crucial to the development of a
deflationary view of mathematics (i.e. the (alleged) conservativeness of
mathematics) and the properties of certain rather weak truth theories (i.e.
the demonstrable conservativeness of minimalist theories of truth).

5 If the idealist/subjectivist/pragmatist wants to add a claim about the relation of the
concept of truth to some such epistemic concept (like knowability, idealized belief,
warranted assertability, or provability), then he or she will get into obvious logical
trouble with the T-scheme. For example, if you add the axiom,

V x (x is true if and only if x is provable in PA)

to Peano Arithmetic, as well as the (restricted) T-scheme, then the result is inconsis-
tent. This is because PA implies (correctly) that the godel sentence G is true iff not
provable in PA. Adding an axiom saying G is true iff it is provable in PA leads to an
obvious contradiction. In this sense, such theories of truth are ruled out by (T).

=N

It was pointed out in Ketland 1999 that Tarski’s full theory of truth behaves differ-
ently (see also Shapiro 1998 for a similar line or argument). To recap briefly, by for-
malizing Tarski’s 1936 axioms for satisfaction, one can construct a rather natural
Tarskian truth-theoretic extension of PA, which is sometimes called PA(S). (It is
important to note that PA(S) expands the induction scheme to include formulae
containing the satisfaction predicate. Let PA(S)y be the system without induction
expanded: this is a conservative extension of PA.) This axiomatic system contains a
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2. Translational T-scheme

Why should we only consider disquotational T-sentences? There is no
formal difficulty in considering non-disquotational T-sentences, such as

(2) ‘Snow is white’ is true if and only if snow is 7of white
(3) ‘Some cat is on some mat’ is true if and only if some cherry is on
some tree

or perhaps all instances of non-disquotational schemes, such as,

(4) T¢'is true if and only not ¢
(5) To@'is true if and only 0 =1

In general, we can proceed by fixing an arbitrary translation mapping
f from the object language L to itself, and considering the general meta-
linguistic scheme,

(T)s:"@'is true if and only if f(o)

Then our disquotational T-scheme (T) is just the case of (T)s when f =
I (the identity mapping). The scheme (T)f is thus a translation-dependent
generalization of the usual disquotational T-scheme. And, of course, when
the metalanguage (i.e. the language containing the truth predicate; the lan-
guage in which (T)s is formulated) does not contain the object language,
then one must use some kind of translation mapping to form the appro-
priate (‘heterophonic’) T-sentences, such as

(6) ‘Der Schnee ist weiss’ is true-in-German if and only if snow is
white

This is the case that arises in the famous application of Tarski’s ideas
to meaning, translation and interpretation by Donald Davidson (see
Davidson 1967). So, (T)f gives the general form of the non-disquotational
T-sentences which the Davidsonian truth theorist is looking for.”

nice theory of truth for arithmetic formulae — many standard meta-mathematical
results can be formalized and proved within PA(S), that is, the sort of results one
learns informal proofs of in an intermediate logic course (e.g. the set of arithmetic
truths is not recursively axiomatizable). The important thing is that PA(S) is a non-
conservative extension of PA (indeed, you can deduce the godel sentence G for PA in
PA(S)). There is (as Shapiro and I went on to spell out) a very deep sense in which the
minimalist truth theory (Horwich-style) is deeply inadequate as a representation of
our grasp of the concept of truth, as compared with a system like PA(S). Thus, when
the technical dust settles, we have the following philosophical conditional: if defla-
tionism turns on conservativeness, and Tarski’s theory is (in certain circumstances)
non-conservative, then deflationism is wrong.

~

Except that Davidson works ‘backwards’. One starts with the Tarski-style truth
theory that implies a system of heterophonic T-sentences, and then one attempts to
‘extract’ the relevant translation mapping f that generated these sentences.
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Here, I want to discuss the simpler case, more usual in logical studies,
where the metalanguage is an extension of the object language L. The usual
(or even ‘natural’) metalanguage L* is the object language L plus a new
predicate Tr(x), governed at the very least by the disquotation scheme (T).8

3. Comnservativeness of the restricted translational T-scheme

Having explained the philosophical significance of the notion of conserva-
tiveness, I want to report an interesting fact. This translation-dependent
scheme (T)ris also conservative over (almost) any theory Z, no matter how
insane the translation mapping [ is!

The theorems below are somewhat technical and I shall briefly go
through the details. L is a language (the base language) which contains the
usual first-order language of arithmetic with signature 0, s, +, x. Extend L
to a language L* by introducing a new monadic predicate symbol Tr. Let
the map #: L* — N be some godel coding function, where N is the set of
natural numbers. Let Sent(L) be the set of L-sentences and let Form(L) be
the set of L-formulae (and correspondingly for L*).

Let X be a theory in L which proves each ‘distinctness’ formula "' = "y,
for each pair of distinct L*-formulae ¢ and v, where r(p-' is the usual godel
numeral for ¢ relative to the coding function # (i.e."¢'is the term s ... s(0),
with #¢ iterations of s). If this theory X has a model M at all, then all the
syntax of L can be ‘coded’ as elements of dom(M). (If M satisfies certain
other axioms as well, it is sometimes called an ‘acceptable structure’). Let
us describe how L*-formulae (and terms) are coded within this model M.
The fact that M = "¢' # "y for all distinct formulae ¢, W implies that
dom(M) must be infinite. Since Fdom(M)F < X, one can then define a new
(injective) coding function #*: Form(L") — dom(M) which maps each L*-
formula @ into dom(M) such that ("¢")M = #*(¢). To achieve this, we define
#* () to be g"(0M) (g applied # times), where the function g is just (s)M (the
interpretation of the successor symbol in M) and # is the usual code, #o.
The fact that M |= "¢ = "y for all distinct @, y, implies that this coding
function #* is injective. Hence, each L*-formula ¢ can be coded as a dis-
tinct element #*(9) € dom(M).

8 When the base theory ¥ in L is sufficiently rich (e.g. Peano arithmetic), this scheme
cannot be interpreted within the base language, by Tarski’s Indefinability Theorem:
there is no (arithmetic) L-formula W(x) such that PA - W("¢') <> o, for all L-sentences
¢. This sort of fact already points to the irreducibility of (even minimalist) truth. In
general, if X is a sufficiently rich domain of truths, then the concept of truth in X is
not definable in X. For example, on plausible assumptions, physical truth is not defin-
able in physics. Set-theoretical truth is not definable in set theory. And so on. This
implies that, despite the claims of semantic naturalists, truth (and associated alethic
notions like reference and satisfaction) is conceptually irreducible.
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Theorem 2. Let f: Sent(L) — Sent(L) be an arbitrary map. Consider the
restricted scheme

(T)y: Tr(C@") < flo)
where @ is any L-sentence. Then, X U (T)is a conservative extension of X.

Proof. If X is inconsistent, then any extension is conservative. So, assume
that ¥ is consistent and pick any model M of X. (We use the model-
theoretic method of proving conservativeness.’) We define an expansion
M as follows.'® Let M*[Tr] be the set {#*(¢) € dom(M): ¢ € Sent(L) and
M = fl9)}. Then, clearly, M* = (T)z. Thus, the scheme holds in M*. It is a
well-known result of mathematical logic that if any model M of a theory =
can be expanded to a model M" of some extension X, then " must be a
conservative extension of .11 Hence, ¥ U (T)fis a conservative extension
of . O

9 A proof-theoretic method is also available (and in some cases preferable). The method
is to show how to convert any proof I of an L-sentence ¢ in the extension £ U (T)f
to a new proof I'* in X. This proceeds by finding a suitable L-predicate W(x) which
behaves like a restricted truth predicate and using this to reinterpret each instance of
the T-scheme that occurs in the original proof ' as an L-formula which is provable
in . In brief, if the T-instances that occur in the original proof I' are Tr("g;") <> f(¢:),
for some finite set {Q1, ..., @,} of L-sentences, then we choose W(x) to be the L-
formula

(x =", fleNVv...v(x="9,"Af(0,)

Then one can show that each formula W("¢;') <> f(¢;) is a theorem of X. Replacing
each T-instance Tr("@;") <> f(¢;) in the original proof I by W(",") <> f(;) yields a new
proof T'* which is a proof of @ in E. (More exactly, the sequence T'* of L-formulae
can be enlarged to a genuine proof of ¢.)

10 An ‘expansion’ of a model corresponds to an extension of a language L. Roughly, a
model M is an ordered tuple (D, Ry, ..., R,). An expansion of M is obtained by
‘adding’ a new relation R* to obtain a richer structure (D, Ry, ..., R, R*) and cor-
respondingly a new primitive relation symbol to the language associated with M.
If the new relation R* can already be defined in M (by some L-formula ¢(x)), we say
that the expansion is a definitional expansion. For example, adding the usual
order relation < to the natural number structure (N, 0, s, +, X) is a definitional
expansion.

1 To see this, suppose that every model M of = can be expanded to a model M* of £*

and suppose that not-(X = ¢), where @ is an L-sentence. By the completeness theorem,
there is a model M of T in which ¢ is false. By assumption, M can be expanded to a
model M* of ¥ where ¢ is also false. Hence, not-(X" F ¢). (The converse of the result
is not true: ' can be a conservative extension of X even though there are models of
¥ which cannot be expanded to a model of *.) For example, see Hodges 1997:
58-59. In general, the level of mathematical logic assumed in this article is standard
intermediate (classical) first-order logic, e.g. Boolos and Jeffrey 1989.
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One can obtain a similar result for a satisfaction predicate (or what
Putnam 1981 calls a reference predicate). One can (partially) define a ‘sat-
isfaction’ predicate Sat(x, y) by an f-dependent satisfaction scheme like

(S)f: V1 ... Vx, [Sat(@'(x)) <> AQ(x1, ... , x)].

It is not hard to show that the result of adding the ‘satisfaction’ scheme
(S)f to Peano Arithmetic PA (and thus any extension) is also conservative,
by a construction analogous to the one above. In brief, let M be a model of
PA (this M needn’t be standard) and let SAM) be the f-dependent ‘satisfac-
tion’ relation on the structure M. That is, the class of pairs (#¢, 72) where
@ is an L-formula, the number 72 codes a finite sequence (s) of elements of
M, and f(9) is satisfied in M by that sequence (s). Then you define the
natural expansion M* by setting the extension M*[Sat] to be the relation
S¢(M). This expansion M satisfies the f-dependent ‘satisfaction’ scheme.

To illustrate, consider adding to PA all the sentences

Tr('9") & ¢*

where ¢ doesn’t contain Tr(x), and @* is obtained from ¢ by swapping any
occurrences of the symbols + and x. The result is a conservative extension.

For a non-mathematical example, consider adding to non-semantical
English all the sentences,

(7) ‘Snow is white’ is true if and only if snow is not white
(8) ‘Grass is green’ is true if and only if grass is not green etc.

The extension of any non-semantical theory in English obtained by
adding these axioms is conservative.'?

4. Conservativeness of unrestricted translational T-schemes

We have shown that the restricted translational T-scheme (T)sis conserva-
tive for any translation mapping f. What about the unrestricted transla-
tional T-scheme? This is the scheme,

(T)r: Tr(@") < flg)

121 hope it is obvious that the quasi-semantical concepts being introduced by these
‘twisted’ schemes are not truth or satisfaction. In short, I would maintain there is
really something special about the disquotation scheme(s), where f=1. One way to
see this is to consider, instead of a single truth predicate Tr(x), a distinct predicate
Tri(x) for each translation mapping f. Then the scheme (T)zis

(D Trs("@") & f().
The claim would be that there is something special about the predicate Tri(x) (the case

where f=1). I lack the space to discuss this issue here, but I hope to discuss it more
fully at a later date.
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where @ can now be any L*-sentence, even one containing the predicate
Tr(x). More exactly, the appropriate set of instances of the scheme (T)¢* is
the set {Tr("@") <> f(9): ¢ € Sent(L")}. Suppose we set f=1. Then it is a well-
known consequence of the Diagonalization Lemma that (T)1* is inconsis-
tent when added to theories like PA (or decent theories of syntax). Consider
the formal theory PA U (T)1*. By the Diagonalization Lemma there must
exist a fixed point ‘liar’ formula A such that PA U (T)1* F "Tr("A") <> A. But
we already have that PA U (T);* F =Tr("A") <> A, so PA U (T);* must be
inconsistent. Thus, the choice f=1 (which is roughly equivalent to the naive
disquotational conception of truth) is ruled out by logical considerations.
At the very least, this implies (at least if we adhere to classical logic) that
the full disquotation scheme must be restricted in some way.

However, there is an interesting intermediate result. For a large class
of choices of translation mapping f, we can prove that the associated un-
restricted T-scheme is conservative (and thus consistent) also.

Theorem 3. Same assumptions as in Theorem 2. Let f: Sent(L*) — Sent(L)
be any translation mapping (N.B. the range of f is the set of L-sentences).
Consider the unrestricted translational scheme

(T)r: Tr(@") < flg)

where @ is now any L*-sentence. Then, X U (T)/* is a conservative exten-
sion of X.

Proof. As before, choose a model M of T and fix an injective coding
function #*: Sent(L*) — dom(M). Define an expansion M" similar to the
previous one: let M*[Tr] be the set {#*(¢p) € dom(M): ¢ € Sent(L*) and
M E fle)}. (Notice that this makes good sense because f(¢) is always an
L-sentence, even when ¢ is an L*-sentence.) Again, we can show that
M* = (T)f*. If ¢ € Sent(L) then proceed as before. If ¢ € Sent(L"/L), then
M= Tr("@") iff #% (@) € M'[Tr] iff M |= f(). Because f(¢) is an L-sentence,
we have M F f(¢) iff M = f(¢). Hence, M* F Tr("¢") < f(¢). Hence, T U
(T)f* is a conservative extension of Z. [

Again, the same trick works for a satisfaction predicate. What is crucial
in this theorem is that the range of the translation function f be the class of
L-sentences. For example, we can translate the L*-predicate Tr(x) as the
formula x =8. In general, we can translate the ‘truth’ predicate Tr(x) as any
formula of L (with just x free). Theorem 2 is a consequence of Theorem 3.
An application of Theorem 3 is this:

Theorem 4. Same assumptions as in Theorem 2. Define a translation
mapping [ by:

(i) flo) = ¢, for any ¢ € Sent(L);
(ii) flo) = (0 #0), for any ¢ € Sent(L*/L).
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Then, X U (T)* is a conservative extension of X.

Proof. The range of the mapping f on Sent(L") is Sent(L). Apply Theorem
3. O

There is a rough sense in which this choice of fis Tarski’s choice. For this
mapping fis disquotational on L-sentences, but maps every L*-sentence to
an absurdity in L. Intuitively, the idea here is that the Tarskian truth pred-
icate Tr(x) really means x is true in L’, where L is the language not con-
taining the truth predicate (i.e. L is the base or object language). Clearly, if
a formula @ contains the truth predicate, then it is not a sentence of L (since
the truth predicate is not definable in L) and thus is 7ot true in L either.'?
Thus, no such @ is true in L and thus the correct truth-in-L condition for
¢ is the absurdity 0 # Q (or -, if you like). That is what the translation
mapping f in Theorem 4 achieves.'
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On Soames’s solution to the sorites paradox

TERESA ROBERTSON

Scott Soames (1999, ch. 7) has recently offered a new solution to the sorites
paradox. Although this solution has some appeal, it seems to me that, short
of some substantial revision, it fails.

1. Presentation of Soames’s solution

Soames’s solution to the sorites paradox turns on two features of vague
predicates: (i) they are (at least potentially) partially defined and (ii) they
are context-sensitive. A partially defined predicate, ‘is F’ say, is one whose
extension and antiextension are mutually exclusive but not jointly exhaus-
tive. For any object o that is in neither the extension nor the antiextension,
both the claim that o is F and the claim that o is not F should be rejected.
There is (at least potentially) a truth-value gap.! Given the understanding
of the material conditional that is provided by the strong Kleene tables,?
this means that for any standard sorites paradox of the form of the (implau-
sibly short) one displayed in §2, the conditionals near the beginning will be
true; the ones in the middle will lack truth values — that is, will be ‘un-
defined’; and the ones toward the end will be true, since their antecedents
will be false. None will be outright false. So the conclusions of sorites argu-
ments can be avoided by rejecting some of the conditional premisses
without thereby being forced to accept their negations.

By itself, this is not very satisfactory. Soames considers two objections.

Objection 1. If partial definition were the whole story and o were an
object in the undefined range of the predicate, then we would have no

! The gap would be merely potential in the case of ‘is bald” if, for example, all people
had no hair.

2 Where ‘U’ is used for neither T nor F, we have the following: (T, T) yields T; (T, U)
yields U; (T, F) yields F; (U, T) yields T; (U, U) yields U; (U, F) yields U; (F, T) yields
T; (F, U) yields T; (F, F) yields T.
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