

This thesis has been submitted in fulfilment of the requirements for a postgraduate degree

(e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following

terms and conditions of use:

This work is protected by copyright and other intellectual property rights, which are

retained by the thesis author, unless otherwise stated.

A copy can be downloaded for personal non-commercial research or study, without

prior permission or charge.

This thesis cannot be reproduced or quoted extensively from without first obtaining

permission in writing from the author.

The content must not be changed in any way or sold commercially in any format or

medium without the formal permission of the author.

When referring to this work, full bibliographic details including the author, title,

awarding institution and date of the thesis must be given.

3D Scene Graph Inference and

Refinement for Vision-as-Inverse-Graphics

Lukasz Romaszko

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Doctor of Philosophy

Institute for Adaptive and Neural Computation

School of Informatics

University of Edinburgh

2019

Abstract
The goal of scene understanding is to interpret images, so as to infer the objects present

in a scene, their poses and fine-grained details. This thesis focuses on methods that can

provide a much more detailed explanation of the scene than standard bounding-boxes

or pixel-level segmentation – we infer the underlying 3D scene given only its projection

in the form of a single image.

We employ the Vision-as-Inverse-Graphics (VIG) paradigm, which (a) infers the latent

variables of a scene such as the objects present and their properties as well as the

lighting and the camera, and (b) renders these latent variables to reconstruct the input

image. One highly attractive aspect of the VIG approach is that it produces a compact

and interpretable representation of the 3D scene in terms of an arbitrary number of

objects, called a ‘scene graph’. This representation is of a key importance, as it can be

useful e.g. if we wish to edit, refine, interpret the scene or interact with it.

First, we investigate how the recognition models can be used to infer the scene graph

given only a single RGB image. These models are trained using realistic synthetic

images and corresponding ground truth scene graphs, obtained from a rich stochastic

scene generator. Once the objects have been detected, each object detection is further

processed using neural networks to predict the object and global latent variables. This

allows computing of object poses and sizes in 3D scene coordinates, given the camera

parameters. This inference of the latent variables in the form of a 3D scene graph acts

like the encoder of an autoencoder, with graphics rendering as the decoder.

One of the major challenges is the problem of placing the detected objects in 3D at a

reasonable size and distance with respect to the single camera, the parameters of which

are unknown. Previous VIG approaches for multiple objects usually only considered a

fixed camera, while we allow for variable camera pose. To infer the camera parameters

given the votes cast by the detected objects, we introduce a Probabilistic HoughNets

framework for combining probabilistic votes, robustified with an outlier model. Each

detection provides one noisy low-dimensional manifold in the Hough space, and by

intersecting them probabilistically we reduce the uncertainty on the camera parameters.

Given an initialization of a scene graph, its refinement typically involves computati-

onally expensive and inefficient search through the latent space. Since optimization

of the 3D scene corresponding to an image is a challenging task even for a few LVs,

previous work for multi-object scenes considered only refinement of the geometry, but

iii

not the appearance or illumination. To overcome this issue, we develop a framework

called ‘Learning Direct Optimization’ (LiDO) for optimization of the latent variables

of a multi-object scene. Instead of minimizing an error metric that compares observed

image and the render, this optimization is driven by neural networks that make use of

the auto-context in the form of a current scene graph and its render to predict the LV

update. Our experiments show that the LiDO method converges rapidly as it does not

need to perform a search on the error landscape, produces better solutions than error-

based competitors, and is able to handle the mismatch between the data and the fitted

scene model. We apply LiDO to a realistic synthetic dataset, and show that the method

transfers to work well with real images. The advantages of LiDO mean that it could be

a critical component in the development of future vision-as-inverse-graphics systems.

iv

Lay Summary
The goal of scene understanding is to interpret images, so as to understand the objects

present in a scene and their properties. This thesis focuses on methods that can provide

a much more detailed explanation of the scene than standard bounding-boxes or pixel-

level segmentation – we predict the underlying 3D scene given only a single image.

We employ the Vision-as-Inverse-Graphics (VIG) approach, which (a) infers the scene

parameters such as the objects present and their properties as well as the lighting and

the camera, and (b) renders these 3D scene to reconstruct the input image. One highly

attractive aspect of the VIG approach is that it produces a compact and interpretable

representation of the 3D scene in terms of a number of objects, called a ‘scene graph’.

This representation is of a key importance, as it can be useful e.g. if we wish to edit,

refine, interpret the scene or interact with it.

First, we investigate how the recognition models can be used to understand the scene

graph given only a single image. These models are trained using realistic synthetic

images and corresponding ground truth scene graphs, obtained from a scene generator.

Once the objects have been detected, neural networks are used to predict the object and

global parameters of a 3D scene. This allows compression of an image into a scene

graph representation, and then rendering it back to reconstruct the image.

One of the major challenges is the problem of placing the detected objects in 3D at a

reasonable size and distance with respect to the single camera, the parameters of which

are unknown. To infer the camera parameters given the votes cast by the detected ob-

jects, we introduce a Probabilistic HoughNets framework for combining probabilistic

votes. Each detection provides one noisy vote for the camera parameters, and by inter-

secting them we increase the accuracy of the prediction.

Given an initialization of a scene graph, its refinement typically involves computatio-

nally expensive and inefficient search through the latent space. To overcome this issue,

we develop a framework called ‘Learning Direct Optimization’ (LiDO). This optimi-

zation is driven by neural networks that make use of the current scene graph and its

render to update the parameters. Our experiments show that the LiDO method con-

verges rapidly and produces better solutions than competitors. We apply LiDO to a

realistic synthetic dataset, and show also that the method transfers to work well with

real images. The advantages of LiDO mean that it could be a critical component in the

development of future vision-as-inverse-graphics systems.

v

Acknowledgements
I am deeply grateful to my supervisor Chris Williams, with whom I had the privilege to

work with for four years. His broad knowledge and attention to very detail have greatly

advanced and enriched my research. He has also given me a large amount of patience

when discussing the technical aspects and then the details of the write-up. He has also

provided me with the opportunities to learn numerous skills relevant to researchers, and

to attend three excellent summer schools in Canada, England and Italy, and computer

vision conferences.

I would like to thank my thesis examiners, Robert Fisher and Timothy Cootes, for

providing rich and valuable feedback.

I am very grateful for the Microsoft Research 2014 PhD Scholarship provided by the

joint initiative of the School of Informatics of the University of Edinburgh and Micro-

soft Research Cambridge. I thank also the Microsoft Research advisor, John Winn for

useful comments and discussions. I would also like to thank the staff and the current

and past PhD students from the Institute for Adaptive and Neural Computation, and

the staff of the Institute of Perception, Action and Behaviour, for their support and

feedback.

I am grateful to my parents Krystyna and Albert for their support for my entire life, as

well as patience and encouragement during my PhD studies. Finally, to Agnieszka for

her love and support, especially during our long long-distance time.

vi

Declaration
I declare that this thesis was composed by myself, that the work contained herein is

my own except where explicitly stated otherwise in the text, and that this work has not

been submitted for any other degree or professional qualification except as specified.

7th April 2020

(Lukasz Romaszko)

vii

To my parents.

viii

Contents

1 Introduction 3
1.1 Vision-as-Inverse-Graphics . 4

1.2 Thesis Outline . 7

1.3 Statement of the Contributions . 10

2 Background 11
2.1 2D vs. 3D Representation . 11

2.2 Discriminative Models for Object Detection 14

2.3 Generative Models for Image Reconstruction 17

2.4 Vision as Inverse Graphics . 19

2.4.1 Single-Object Reconstruction in 3D 21

2.4.2 Multi-Object Reconstruction in 3D 23

2.4.3 Summary of the Methods for 3D Reconstruction via VIG . . . 26

3 Rich 3D Explanation of a Multi-Object Scene via Inverse Graphics 27
3.1 Introduction . 27

3.2 Stochastic Scene Generator . 29

3.2.1 Overview . 29

3.2.2 Scene Graph: Global Latent Variables 29

3.2.2.1 Camera . 29

3.2.2.2 Illumination . 30

3.2.2.3 Ground Plane . 32

3.2.3 Scene Graph: Object Latent Variables 32

3.2.4 Sampling and Rendering Procedure 33

3.3 Approach . 34

3.3.1 Detector . 35

3.3.2 Predictor Networks and Scene Graph 37

ix

3.3.3 Image Formation and Back-Projection 38

3.3.4 Iterative Refinement . 40

3.4 Experimental Set-Up . 41

3.4.1 Mugs Dataset: Experimental Set-up 42

3.4.2 CNNs Experimental set-up 43

3.5 Results . 45

3.5.1 Detector . 46

3.5.2 Evaluation of Global LVs . 47

3.5.3 Evaluation of Object LVs . 48

3.5.4 Scene Understanding – Quantitative Results 48

3.5.5 Scene Understanding – Qualitative Results 51

3.5.6 Scene Understanding – Additional Results 51

3.6 Discussion . 53

4 Probabilistic HoughNets 55
4.1 Introduction . 55

4.2 Probabilistic HoughNets . 57

4.2.1 Finding the MAP of the Joint Posterior: 58

4.2.2 Probabilistic Chain Rule within PHNs 59

4.2.2.1 PHN Decomposition 59

4.2.2.2 PHN Composition 60

4.3 Exact Solution for the Camera Latent Variables 60

4.3.1 Motivation . 61

4.3.2 Angle of View vs Focal Length 61

4.3.3 Solution . 62

4.3.4 Practical Example . 65

4.4 Experiments . 67

4.4.1 The Hough Space Used in the Experiments 68

4.4.2 Critical Value of β for Obtaining a Maximum 70

4.4.3 Evaluation using Re-Projection Error 71

4.4.4 Integration for Log-Likelihood Computation 72

4.4.5 Neural Networks Set-up . 73

4.5 Results . 74

4.5.1 Examples . 74

4.5.2 Quantitative Evaluation . 77

x

4.5.3 Results: Comparison of the Methods 79

4.5.4 Detailed PHNs Results . 79

4.6 Discussion . 82

5 Learning Direct Optimization for Scene Understanding 83
5.1 Introduction . 84

5.2 Learning Direct Optimization . 85

5.3 Related Work – Refinement via VIG 87

5.4 Latent Variables . 88

5.5 Initialization Networks . 90

5.5.1 CNN Architectures of Detector and LV Initialization Networks 91

5.6 Stochastic Scene Generator and Experimental Datasets 93

5.6.1 Stochastic Scene Generator 93

5.6.2 Training Datasets . 94

5.6.3 Test Datasets . 95

5.6.4 Initialization Network Performance for the Test Datasets . . . 96

5.7 Experimental Set-up of Error-Based Optimization 96

5.8 Experimental Set-up of Learning Direct Optimization 97

5.9 Experimental Evaluation Measures 101

5.9.1 Evaluation of the LVs . 101

5.9.2 Evaluation in the Image Space (2D Projection, Pixels) 102

5.10 Results . 102

5.10.1 Results: Evaluation of the LVs on the Synthetic Dataset . . . 103

5.10.2 Results: Image-Space Evaluation – Synthetic Dataset 107

5.10.3 Results: Image-Space Evaluation – Real Dataset 108

5.10.4 More Examples of Prediction for Synthetic Dataset 110

5.10.5 More Examples of Prediction for Real Dataset 111

5.11 Discussion . 112

6 Conclusion and Future Work 113
6.1 Summary of Contributions . 114

6.2 Critique . 115

6.3 Future Work . 117

A Modelling Shape Using a Skeleton-Based 3D Deformable Mesh 121
A.1 Skeleton-Based 3D Deformable Mesh 121

xi

A.1.1 Introduction . 122

A.1.2 Notation . 125

A.1.3 Bone Coordinate Frames . 126

A.1.4 Details of the Skeleton Deformation Properties 126

A.1.4.1 Scaling . 126

A.1.4.2 0D and 1D Rotation 127

A.1.4.3 2D and 3D Rotation 128

A.1.5 Determining the Affine Matrix of a Given Bone 129

A.1.6 Calculating the Vertex Weights 132

A.1.7 Preparation of the Deformable Mesh 133

A.2 Deformable Mesh Fitting . 135

A.2.1 Fitting a Shape Model to Data 135

A.2.2 Skeleton Parameters Priors 137

A.2.2.1 Class-General Part 137

A.2.2.2 Class-Specific Part: Teapot 139

A.2.3 Fitting Experiments . 140

A.2.4 Implementation . 142

A.2.5 Results . 143

A.3 Generative Model of Skeleton Parameters 144

A.3.1 Shape Model . 144

A.3.2 Object Completion . 145

A.3.3 Constrained Sampling . 147

A.4 Discussion . 148

Bibliography 149

xii

Glossary

Acronyms

CNN – Convolutional Neural Network

GBO – Gradient-Based Optimization

GMM – Gaussian Mixture Model

GT – Ground Truth

HT – Hough Transform

LiDO – Learning Direct Optimization

LV – Latent Variable

MAP – Maximum a Posteriori

MSE – Mean Squared Error

PHN – Probabilistic HoughNet

PHT – Probabilistic Hough Transform

RGB – Red, Green, Blue (colour channels)

Sim – Simplex Optimizer

SSG – Stochastic Scene Generator

VGG – VGG-16 convolutional neural network (Simonyan and Zisserman, 2015)

VIG – Vision-as-Inverse-Graphics

Papers

3DParsing – Holistic 3D Scene Parsing paper (Huang et al., 2018)

AIR – Attend, Infer, Repeat paper (Esalmi et al., 2016)

IM2CAD – IM2CAD paper (Izadinia et al., 2017)

NSD – Neural Scene De-Rendering paper (Wu et al., 2017a)

1

Chapter 1

Introduction

The goal of scene understanding is to interpret images, so as to infer the underlying

3D scene in terms of objects present and their properties as well as the lighting and

the camera parameters. However, obtaining an interpretable representation from a 2D

image is a complex and an ill-posed task. Solving this task requires embedding certain

prior knowledge about the world and image formation, as well as combining evidence

from multiple cues to allow for inference of a likely scene configuration and object

descriptions. Humans are not only able to easily interpret clean images, but also to

understand the scene under unusual types of illumination and heavy occlusions, due to

their knowledge about objects and their possible appearances from different views.

Early computer vision research was focussed on images with simple and clean objects.

The representational gap (Dickinson, 2009) between the image pixels and 3D shape

representation caused difficulties in e.g. generating arbitrary 3D shapes, matching them

properly to the observed image, and distinguishing object edges from texture. This led

some computer vision researchers into abandoning of 3D reconstruction and solving

simpler problems such as providing object detections or pixel-level segmentation in the

image frame. To this end, numerous approaches have been proposed, and consequently

a wide range of image interpretation tasks have been designed to evaluate their quality,

such as object bounding-box detection or semantic instance segmentation. However,

these provide only flat 2D information. Similar limitations apply to some approaches

that predict depth and surface normals, which output predictions in a per-pixel manner.

The main theme of the thesis is to provide a much more detailed explanation of the

scene than bounding-boxes or a pixel-level segmentation – we seek to infer the un-

3

4 Chapter 1. Introduction

derlying 3D scene given only its projection in the form of a single RGB image. The

representation of the scene is interpretable, by which we mean that it is editable, where

one could e.g. rotate an object, or observe the scene from a different viewpoint. In

addition to inference of the scene’s composition, we seek a description of properties of

the objects: their shapes, poses, attributes, parts present and appearances. Much of the

literature for the 3D reconstruction task focuses only on representations that are not

interpretable and do not provide a full 3D scene explanation, or work only for specific

objects with a fixed texture (not object classes) – the relevant literature is discussed in

Chapter 2. Another strand of literature considers a richer input than a single image;

either using a depth channel, or multiple images of a scene from different viewpoints.

In contrast, we consider more challenging problem where only a single RGB image is

observed.

The problem of vision is extremely complex: objects of a specific object class can have

different shapes and appearances, can be seen from different views, be occluded, may

look different depending on the illumination environment and the viewpoint, etc. For

instance, objects which occlude others might be difficult to segment when they have

similar colours. Therefore, providing of a prior knowledge about the size, shape and

appearance is crucial, yet difficult, as all the factors can widely vary. Finding a way to

incorporate such prior knowledge into algorithms is a challenging task, yet crucial for

successful inference.

1.1 Vision-as-Inverse-Graphics

Our work is carried out in the vision-as-inverse-graphics (VIG) or analysis-

by-synthesis paradigm, where the vision task is the inverse of the rendering process.

One not only extracts a 3D scene representation from the input image, but renders that

scene to allow comparison with the input image. This inference of the 3D scene acts

like the encoder of an autoencoder, with graphics rendering as the decoder, as shown

in Figure 1.1. VIG is a long-standing idea, see e.g. Grenander (1976, 1978); Stevens

and Beveridge (2001); Yuille and Kersten (2006), but it can be reinvigorated using the

power of deep learning for the analysis stages. Inference in generative models typi-

cally involves searching through the space of latent variables. Due to the complexity

of scene configurations, we make use of supervised learning techniques to make the

search more efficient. These methods rely on large quantity of annotated examples,

1.1. Vision-as-Inverse-Graphics 5

Figure 1.1: Vision-as-Inverse-Graphics paradigm: given an observed image (top left),

an interpretable scene graph representation of a 3D scene (top right) is inferred by the

encoder, this can be then rendered by the decoder. We specify the decoder in a form of

computer graphics renderer and the vision task is then to learn to invert the rendering

process. Bottom: outline of the 3D scene graph considered in this thesis.

which we can generate using a synthetic scene generator. One of the aspects of the

VIG approach is the possibility to make use of modern 3D computer graphics engi-

nes at inference time, as used in recent VIG literature that considered a single object

(Kulkarni et al., 2015a; Shotton et al., 2011; Yildirim et al., 2015; Jampani et al., 2015).

One highly attractive aspect of the VIG approach is that it produces a compact and

interpretable representation of the 3D scene in terms of an arbitrary number of objects

(as shown in Figure 1.1, right). This representation is called a ‘scene graph’ (see e.g.

Angel 2003, sec. 9.8) as used in computer graphics for describing a scene in terms

of objects as well as lighting and cameras. We specify the “3D scene graph” as a col-

lection of the scene latent variables representing a 3D scene, to differentiate from scene

graphs considering 2D vector graphics. This representation is of a key importance, as

it is useful e.g. if we wish to edit, refine, interpret the scene or interact with it.

The problem of 3D scene reconstruction from a single image that we investigate is

6 Chapter 1. Introduction

Figure 1.2: The three main properties of 3D reconstruction via VIG considered in this

thesis. We handle real images of multi-object scenes and obtain a rich 3D scene repre-

sentation that includes inference of the appearance and illumination.

very challenging. We build methods that can produce a richer representation than the

existing VIG approaches for scenes containing multiple objects. Related work that

predicts a 3D scene representation for multi-object scenes has usually considered sim-

plified scenarios, either working only with objects of fixed identity (thus with a known

appearance and size), or by focusing only on geometry matching, but not searching

over appearance and illumination. Often only toy artificial datasets are used, so as the

models work only for the images used during training, but are not applicable to real

images. This thesis develops methods to provide a rich framework for scene under-

standing via VIG without the above limitations, to enable handling of real images, and

serve as a base for further development of VIG approaches. Figure 1.2 outlines the

three main properties of the problem we solve: the ability to handle real images at

test time (including dealing with variable camera pose and object appearance), scenes

containing multiple objects, and inference of the scene appearance (including object

colours and illumination), so the output is a similar RGB image to the input. The next

section provides the details of the claims and of the contributions.

1.2. Thesis Outline 7

1.2 Thesis Outline

The further chapters of the thesis are organised as follows:

Chapter 2 provides Background on the history of computer vision, a general over-

view of the computer vision literature for object explanation, and comparison to the

related work for image interpretation, including the approaches that incorporate the

VIG paradigm.

Chapter 3 entitled Rich 3D Explanation of a Multi-Object Scene via Inverse Graphics
considers inference of a 3D scene graph from a single RGB image. The models are

trained using realistic synthetic images and corresponding ground truth scene graphs,

obtained from a rich stochastic scene generator, to predict the object and global latent

variables. In the framework we incorporate auxiliary modules for object contact point

and projection scale prediction, to allow the computation of object poses and sizes in

3D scene coordinates, given the camera parameters. The contributions of this chapter

are:

• We show that we can successfully reconstruct a 3D scene via VIG from a single

RGB image (for a given set of object classes).

• We demonstrate the quality of the reconstructions obtained quantitatively on

synthetic data, and qualitatively on real scenes.

Chapter 4 entitled Probabilistic HoughNets considers a new method for combining of

the probabilistic votes. The method is applied to the camera estimation problem, where

the votes are cast by the detected objects. Each detection provides one noisy low-

dimensional manifold in the Hough space, and by intersecting them probabilistically

we reduce the uncertainty on the camera parameters. Previous VIG approaches for

multiple objects usually only considered a fixed camera, while we allow for variable

camera pose and place the detected objects in 3D at a reasonable size and distance with

respect to the single camera. The contributions of this chapter are:

• We introduce PHNs, a new method for combining of the probabilistic votes.

• We show that the models that predict directly given the whole image, rather than

combining information from the detected objects perform poorly.

• We show that combination using PHNs outperforms standard combination met-

hods using the same CNN architecture.

8 Chapter 1. Introduction

• We show that the PHNs are robust in case of misdetections.

Chapter 5 entitled Learning Direct Optimization for Scene Understanding
thoroughly investigates the problem of iterative scene refinement. Since optimiza-

tion of the 3D scene corresponding to an image is a challenging task even for a few

latent variables, previous work for multi-object scenes considered only refinement of

the geometry, but not the appearance or illumination. The standard way to proceed is

to measure the error between the observed image and the predicted render, and use an

optimizer to minimize the error. However, it is unknown which error measure would be

most effective for simultaneously addressing issues such as misaligned objects, occlu-

sions, textures, etc. To overcome this issue, we develop a framework called ‘Learning

Direct Optimization’ (LiDO) for optimization of the latent variables of a multi-object

scene. Instead of minimizing an error metric that compares the observed image and the

render, this optimization is driven by neural networks that make use of the auto-context

in the form of a current scene graph and its render to predict the latent variable update.

The experiments have been performed both on synthetic and real datasets. This allows

for a smarter refinement, for example that is robust to occlusions, and can ignore the

noise such as a mismatch in texture while refining the object pose.

The contributions of this chapter are:

• We introduce LiDO, a new method for optimization of the latent variables of a

multi-object scene.

• We introduce the first method that refines the geometry, appearance and illumi-

nation for multi-object scene at the same time.

• We verify that LiDO is much faster than the standard optimizers.

• We verify that LiDO performs significantly better than the standard optimizers

in terms of various error measures.

Chapter 6 provides Conclusion and Future Work. We summarize the thesis results

and contributions, and outline several interesting directions for the future developments

of the VIG paradigm.

Appendix A provides a chapter entitled Modelling Shape Using a Skeleton-Based
3D Deformable Mesh. A deformable generative shape model is developed that can

model a wide range of object shape variability, as well as generalizing to generate new

shapes of a given object class. This is done by specifying an object template mesh and

1.2. Thesis Outline 9

a skeleton (consisting of a number of “bones”), and implementing the deformation to

be automatically-differentiable so as to fit the template to a collection of 3D mesh in-

stances using a gradient-based optimizer. The skeleton is controlled by joint locations,

and we specify methods for automatic computation of bone rotation parameters. This

allows for robust local gradient-based optimization where the parametrization of the

child bone joint location are independent of the parent. Importantly, such a skeleton-

based representation is interpretable, and could be used in VIG approaches, where one

may want to explain an object by fitting its render to the observed image, and sample

new object shapes for the purpose of generation of a large amount of synthetic data.

We also demonstrate the performance of our generative shape model on the object

completion and constrained sampling tasks.

10 Chapter 1. Introduction

1.3 Statement of the Contributions

The work in each chapter was primarily supervised and guided throughout by Chris

Williams. Below we outline the work done by additional contributors.

Chapter 3 (VIG Framework) All the implementation of the detector and initializa-

tion networks was done by myself. The initial code for importing CAD models and

generating and rendering scenes with multiple objects was provided by Pol Moreno.

These have been thoroughly extended and improved by me for the purposes of this

project.

All the experiments related to the detector and the initialization networks were con-

ducted by myself. Pol Moreno conducted the gradient-based optimization experiments.

These additional experiments were done given the scene graph initializations obtained

from the VIG framework developed in this thesis.

Pushmeet Kohli was a co-investigator of this project and provided the initial guidance.

Chapter 4 (PHNs) The PHNs implementation and experiments were conducted en-

tirely by myself.

Chapter 5 (LiDO) The LiDO implementation and experiments were conducted enti-

rely by myself.

John Winn played a key part in the formulation of LiDO, provided guidance via video

calls, and commented on the drafts of the paper.

Publications The work in Chapter 3 and Chapter 4 is published as: Romaszko, L.,

Williams, C. K. I., Moreno, P., and Kohli, P. (2017). Vision-as-Inverse-Graphics:

Obtaining a Rich 3D Explanation of a Scene from a Single Image. In ICCV 2017

Geometry Meets Deep Learning Workshop, pages 851–859, 2017.

The work in Chapter 5 has been accepted for publication as: Romaszko, L., Williams,

C. K. I., and Winn, J. (2020). Learning Direct Optimization for Scene Understanding.

Pattern Recognition, 2020.

Chapter 2

Background

This chapter provides background on object recognition and scene understanding re-

levant to this thesis. Section 2.1 provides analysis of different approaches for scene

representation (2D vs 3D), and Section 2.2 provides the discussion of the early as well

as recent related work for object detection. In Section 2.3 we discuss generative mo-

dels for image reconstruction. Finally, in Section 2.4 we compare the work carried

out in this thesis to the related work on image interpretation, focusing on the approa-

ches that incorporate the VIG paradigm. We overview the related literature by starting

with autoencoders, then discussing methods that reconstruct a single object in 3D, and

finally the methods that reconstruct multiple objects in 3D.

2.1 2D vs. 3D Representation

The key challenge of computer vision is how to find a representation of images which

are 2D projections of 3D scenes. The early computer vision research focused on mo-

delling the 3D representation of the objects, see e.g. the work of Marr and Nishihara

(1978). One of the obstacles is that datasets consisted only of 2D images and there

exists a significant gap between 2D and 3D representations (see e.g. Grimson and

Lozano-Perez, 1984). Since the datasets consisted only of images, a 3D representation

had to be model-based. The developed methods include approximating the shape with

simpler shapes such as generalized cylinders (Brooks et al., 1979) or using a set of 3D

CAD models (Tan et al., 1998). These were not able, however, to deal with objects of

11

12 Chapter 2. Background

different appearances and textures, so images were often pre-processed to detect edges

or other simpler representations, which in turn led to a significant loss of information.

For these reasons, currently the majority of computer vision approaches aim at directly

extracting properties of objects from their view present in an image, without any under-

lying 3D shape model. These approaches explicitly explain the image pixels, i.e. they

use a projection of a scene (such as usual real images) and try to learn the shape and ap-

pearance from it. Such models learn appearances of an object given a lot of examples

of the given object class or their parts, seen from different views. For these approaches

there were multiple tasks created, for example through the Pascal VOC Challenges

(Everingham et al., 2010) which annually took place from 2005 until 2012. These

tasks include classification (a binary classification for each class whether there is an

object of this class present in the scene), object detection (predicting object bounding

boxes for each object of a given class), object segmentation (assignment of coherent

regions of pixels to respective objects or to the background). All these tasks consider

only making predictions in the 2D image frame, as such annotations can be easily pro-

duced by image annotators. Such predictions do not provide any 3D explanation of the

scene.

In contrast, humans understand the underlying scene, that is they immediately think

of a 3D representation of the objects in the space. To bridge the gap between 2D

and 3D representations, a depth map (or a Z-order) might be inferred to recover 3D

scene configuration to some extent. For example, Hoiem et al. (2007) develop methods

for labelling pixels with their Z-order, nevertheless such an enhancement does not

solve the object detection problem. Recent work on this theme includes pixel depth

prediction (Li et al., 2018a); exploiting 3D geometry by placing object detections into

perspective at predicted scale and depth (Hoiem et al., 2008); and representing an

indoor scene by furniture items described by 3D bounding-boxes (Choi et al., 2015).

A key difficulty is the problem of putting objects in 3D if the camera view is unknown,

therefore most of the methods which explain scenes with multiple objects make use of

a depth channel (Zou et al., 2019; Song and Xiao, 2014) or explain scenes using simple

bounding boxes, for example R-CNN network (Girshick, 2015), sometimes predicting

the camera view (Hoiem et al., 2008; Kar et al., 2015). Other works assume usage of

objects of known shape and texture (e.g. Kendall et al., 2015). There are also several

works that predict pose and overlaid 3D deformable model for each object in the image,

but they are applied per object basis (Su et al., 2015; Tulsiani et al., 2016), so the view

2.1. 2D vs. 3D Representation 13

is predicted independently, with a separate camera for each object.

To perform accurate inference, it is helpful to incorporate the context of image regi-

ons. For instance, Torralba (2003) shows that given a street scene, humans recognize

vertical blurry shapes as pedestrians and the same shapes rotated by 90 degrees as cars,

even though alone they do not resemble any concrete object. In addition to the shape

and pose, the scale and the location of an object suggests the most likely interpretation.

Moreover, the context of the nearby objects is of high importance, thus incorporation

of such information is crucial for successful image recognition. For example, a high

accuracy of image labelling is obtained by the multiscale Conditional Random Fields

(mCRF) approach (He et al., 2004). To improve the classifier predictions, the authors

use contextual features and directly model patterns of label variables. These patterns

are based on the commonly neighbouring classes or regions where a particular class

usually tends to be present.

Figure 2.1: Learned hierarchical representation of a horse. From Ahuja and Todorovic

(2008).

14 Chapter 2. Background

In addition to the contextual influence upon understanding of a particular image region,

another key problem of vision is how to deal with intra-class shape and appearance

variability. One approach is to decompose objects into smaller pieces and learn scale-

invariant appearances of the parts (e.g. Fergus et al. 2003). Objects can look different

not only due to shape and appearance variability of their parts, but also due to pose

variation or having different structure. Figure 2.1 illustrates the system developed

by Ahuja and Todorovic (2008) which employs a tree-based segmentation hierarchy

to represent fragments of objects, which can handle a shape variability of non-rigid

objects such as animals.

For a 3D model-based representation of a shape the simplest solution would be to use

a set of 3D models of a given class. However, it is crucial to interpolate between

shapes using a deformable model. A common approach to model a shape variability

is to use Principal Component Analysis (PCA) to lower the dimension of the shape

representation, e.g. Cootes et al. (1995) consider 2D shapes, and Blanz and Vetter

(2003) develop a 3D morphable face model. An analogous generative approach can

be employed to model objects as well as their parts using Probabilistic PCA (PPCA,

Tipping and Bishop, 1999). Alternatively, a deformable mesh could be specified by

a skeleton, which represent shapes in a natural way. This approach is common in the

context of hand pose detection and body pose estimation, where an explicit skeletal

model is defined and then the latent variables of the skeleton are inferred (Sharp et al.,

2015). Other approaches establish correspondences between a set of 3D shapes and

model the shape by a parametrized surface (Davies et al., 2002). Recently, several

approaches learn a 3D shape model of an object class directly from manual annotations

of real images, such as object segmentation masks and keypoints (Tulsiani et al., 2016;

Kanazawa et al., 2018).

2.2 Discriminative Models for Object Detection

The first step in scene explanation is to detect the objects present in the scene. Discri-

minative recognition models map an image to features suitable for a given task, with

the aim of reducing the search space by using a more informative feature represen-

tation than raw pixels. Usually a set of local features is detected within the whole

image that together should contribute to a given shape. There were a variety of fea-

ture extraction methods developed, a common early one is the Scale-Invariant Feature

2.2. Discriminative Models for Object Detection 15

Transform (SIFT, Lowe, 1999). SIFT features make use of interest points which are

extracted from the given images, often used to match to object templates. Later, a

frequently employed image descriptors were Histograms of Oriented Gradients (HOG,

Dalal and Triggs, 2005) which represent the types of gradients located in smaller cells

of the image, highly invariant to the colour and the appearance. The features are usu-

ally obtained at multiple scales to provide scale-invariance. Vector-representations of

the features, also called bag-of-features, were often used as an input to common clas-

sification models, such as Support Vector Machines (SVM).

Performing object detection is difficult since objects can look different and might be

seen from many viewpoints. Therefore, a given class may be represented as a set of

templates. For dealing with the template matching problem, one well known met-

hod is the Generalized Hough Transform (GHT) introduced by Ballard (1981) which

performs voting for template pose latent variables by accumulation of evidence. The

evidence can be obtained from the detected edges which are then used to predict the

possible pose of the template shape. For example Leibe et al. (2004) describe the Im-

plicit Shape Model where interest points are treated as hypotheses, employing GHT

for template matching and a Minimal Description Length (MDL) criterion to limit in-

clusion of additional hypotheses if the potential improvement is too low. Although the

GHT technique was successfully applied in this work, the trained model was applied

only to the side views of cars.

To advance object detection, a lot of approaches focus on modelling parts of objects

instead of rigid templates, as objects can exhibit high intra-class variability. This in-

cludes a variability in appearance of object parts, different kinds of parts that may

be present, or self-occlusion. In 2010, the best results for the object detection in the

PASCAL VOC Challenge were obtained by methods such as Deformable Parts Model

(DPM, Felzenszwalb et al., 2010). This approach uses a star-structured, part-based

model, which stores for each part templates of their shape and appearance. A detection

whether each part is present is performed across the whole image using a sliding win-

dow approach. The confidence of the detections at the given locations are stored in

the form of a grid, called a heat-map. The heat-maps for each object part are obtai-

ned at different resolutions and then combined. DPM relies on several aforementioned

techniques, such as HOG, PCA and SVM.

Nowadays the best performing methods are deep learning-based ones. These methods

use neural networks (NNs) to extract features from a large amount of examples, and

16 Chapter 2. Background

can be trained for arbitrary tasks and using a whole range of objectives. Approaches

using neural networks have yielded the state-of-the-art performance for several com-

puter vision tasks, learning to detect features that are important for a given objective.

Convolutional Neural Networks (CNNs) are particularly suitable for vision tasks as

they explicitly consider the spatial relationships in the input. CNNs date back to the

late 1980’s (LeCun et al. (1990), presented in 1989), but only since 2012 have they

begun to outperform other computer vision methods (Krizhevsky et al., 2012; Szegedy

et al., 2015). One such very popular model is the VGG network (Simonyan and Zis-

serman, 2015). VGG is a CNN classifier of 1000 object classes, which has been used

in numerous works which have fine-tuned it for specific purposes.

CNNs are composed of several layers, where each layer learns to recognize features

from the previous one. Shared weights, representing different patterns, improve the

convergence by significantly reducing the number of parameters. CNNs recognize

small patterns at each layer, detecting higher order, more complex patterns in higher

layers. They are trained using back-propagation and may use a variety of loss measures

specified on their outputs, parameters or additional intermediate representations. They

generally require large datasets for training, therefore a training is usually performed

on GPUs which speed up the execution several times, allowing to train larger networks

and to obtain a higher accuracy. Although usual NNs provide little interpretation of the

learned features, CNNs features (filters) can be visualized (Zeiler and Fergus, 2014).

Currently deep learning methods are being applied to even more complex tasks, often

being trained for several goals with different objectives simultaneously. These include

object detection in the form of bounding-boxes (e.g. Uijlings et al. 2013, Redmon et al.

2016), object instance segmentation (Hariharan et al., 2016) and semantic pixel label-

ling (e.g. Badrinarayanan et al. 2017) in the image frame. Other application domains

include object tracking (Nam and Han, 2016), 3D shape segmentation (Kalogerakis

et al., 2017), and 3D shape reconstruction using voxel representation for a single ob-

ject from a single image (Wu et al., 2017b; Sun et al., 2018)

When a CNN detector is applied to an image as a sliding window, a consequent issue

becomes how to perform the actual detection from heat-maps, as they are blurred. Non-

Maximum Suppression (NMS) is a straightforward technique commonly applied to

tackle this problem (see e.g. Neubeck and Van Gool, 2006). The input to this algorithm

is a set of the proposed bounding boxes. The goal is to filter out the detections which

capture only a fragment of a given object if there already exists another bounding

2.3. Generative Models for Image Reconstruction 17

box which better captured the whole object. It was shown (Hosang et al., 2016) that

an NMS alternative, where the neural-network re-scores the detections, may also be

learned. Currently state-of-the-art approaches for object detection, such as YOLO

networks (You Only Look Once, Redmon et al. 2016, Redmon and Farhadi 2017)

make use of a single network that divides the image into regions (Regions of Interest),

each region predicts bounding-boxes anchored at it and the detection probability.

2.3 Generative Models for Image Reconstruction

Our VIG approach employs a renderer of a 3D scene, but in general it is not necessary

to use a renderer to specify a generative model of images. Numerous works employ

generative models that output an image without the 3D rendering step. Note these

methods can be trained also on images rendered using 3D graphics, but instead of

generating the underlying interpretable 3D scene, they predict only the image in a per-

pixel manner, nowadays usually using a neural network, e.g. PixelCNN (Van den Oord

et al., 2016). Although recently realistic high resolution image samples have been

obtained by employing numerous types of Generative Adversarial Networks (GANs)

such as BigGAN (Brock et al. 2019), these can only sample new images but not explain

them. Such approaches can be seen as autoencoders, which encode an image (usually

demonstrated on face and gray-scale chair data) into an uninterpetable low dimensional

vector or array-like representation. Although there have been attempts to obtain GANs

with disentangled representation (see e.g. InfoGAN, Chen et al. 2016), these were not

very successful and produced images that are of relatively poor quality, see Figure 2.2

column B.

Much focus has hence been on Variational Auto Encoders (VAEs, Kingma and Welling

2014), employing extensions aiming to provide some notion of interpretability. These

variations of VAEs allow to learn some explainable factors, such as object azimuth

or width (only to some extent, and when varying a given factor, often other unrelated

object properties are being changed). These methods are for instance: Deep Convolu-

tional Inverse Graphics Network (DC-IGN, Kulkarni et al. 2015b); beta-VAE (Higgins

et al., 2017); and FactorVAE (Kim and Mnih, 2018). Figure 2.2 shows two random

examples of the generated images by each of these methods. For instance, DC-IGN

method performs training in batches where only a single latent variable is being chan-

ged to allow learning a specific “disentangled” representation of an image. However,

18 Chapter 2. Background

A) DC-IGN B) InfoGAN C) beta-VAE D) FactorVAE

Figure 2.2: Each column shows two random example outputs for the chair dataset,

from: A) DC-IGN (Kulkarni et al., 2015b), B) InfoGAN (Chen et al., 2016), C) beta-VAE

(Higgins et al., 2017), D) FactorVAE (Kim and Mnih, 2018).

this method does not make use of a renderer to generate novel images. In consequence,

their model can generate only a blurry object, the shape of which is approximated by

a CNN un-pooling layers (see Figure 2.2, column A). To sum up, pixel-based methods

can learn some fuzzy patterns of factors present in the aligned training datasets, but

unfortunately all of them produce low resolution images and lack of an interpretable

representation where one could edit the scene to e.g. shift an object.

There are some very recent works that consider the case of multiple objects: one ex-

ample is a Generative Query Network (Eslami et al., 2018) that predicts an image from

a queried viewpoint given a set of observations from known cameras. This method was

trained on toy scenes with 3D primitives1. Again, such a representation does not allow

for editing, such as shifting an object. The above approaches aim to model the distri-

bution of pixel intensities of simple and low-resolution images of an aligned object,

but do not generalize to actual images. There is also recent work that uses GANs to

model appearance of an interpretable object-based representation of multiple cars, and

predicts 3D models for these (Yao et al., 2018). However, the cars are only overlaid

on the image, as the method does not model object locations or a camera pose in 3D

space. In the next section we provide background on the approaches that reconstruct

an underlying 3D representation.

1Note that for this method, to obtain an autoencoder, we would need to query for the same viewpoint
as in the observed image.

2.4. Vision as Inverse Graphics 19

2.4 Vision as Inverse Graphics

The fact that the latent variables of the generative model of real images are unknown

has led much computer vision research to focus on discriminative recognition models

as outlined above. These approaches belong to the class of bottom-up models, as they

map an image to features suitable for a given task. An alternative, top-down approach

to the recognition problem is to consider a 3D scene representation and the process of

the projection of the scene onto an image. When a scene generator is defined in a form

of a standard graphics renderer, the vision task requires inversion of the rendering pro-

cess. Contrary to the popular bottom-up approaches, the top-down ones do not make

use of features obtained from the given input image, but define an underlying genera-

tive process in order to explain the data. Figure 2.3 illustrates the generic bottom-up

(recognition model) and top-down VIG approach (generative model).

Figure 2.3: VIG paradigm: for the observed image (left) one aims to infer the 3D scene

representation (right), bottom-up approaches make use of features to predict the re-

presentation via a recognition model, the top-down VIG approach defines a generative

model in order to explain the input via its latent variables.

An important strand of VIG research uses RGB images plus the depth channel. For

instance Sharp et al. (2015) apply a VIG approach successfully to human pose recog-

nition from RGB+Depth images. Other very related work that also takes as input a

depth channel is the work by Zou et al. (2019), applied to multi-object scene parsing.

The authors describe a technique for 3D scene parsing closely related to the problem

of 3D scene understanding that we investigate. They employ a recognition approach to

recreate an indoor scene by composing furniture pieces and cuboid shapes to create a

3D representation (Figure 2.4). They search over CAD models and their poses whose

20 Chapter 2. Background

shape best fits the depth point cloud. Their method uses 1,500 real images and their

annotated scenes. The 3D annotations are hand-crafted approximations, making the

method less scalable and less accurate. In contrast, our VIG approach does not require

manual annotations as we can make use of a much larger amount of synthetic scenes

sampled by a synthetic scene generator.

Input Reconstruction

Figure 2.4: Example of an indoor scene and its reconstruction for observed RGB+Depth

images (Zou et al., 2019), the top row shows a very good prediction, and the bottom

row a failure case with superfluous object detections.

The lack of the depth channel makes the 3D reconstruction problem much more chal-

lenging, as then the image depth has to be reconstructed as well. While humans can

evaluate the depth due to observing the scene with both eyes, at least to some extent,

they are also capable of understanding scenes just from single RGB images. This is

exactly the problem covered in this thesis.

The final three sections below provide background on VIG approaches. Section 2.4.1

describes methods that reconstruct (sometimes via optimization) a single underlying

3D object, Section 2.4.2 presents the most related methods that reconstruct a 3D scene

containing multiple objects. Section 2.4.3 provides the summary of the discussed VIG

approaches.

2.4. Vision as Inverse Graphics 21

2.4.1 Single-Object Reconstruction in 3D

In this section we discuss VIG methods that output a single 3D object (usually as

a mesh), not image pixels. These single-object works assume an object of a given

class to be centred in the image. Single-object works are interesting on their own,

and single-object fine-tuning methods could be used to improve explanation of each

individual object in a multi-object scene. Once all the objects are instantiated in the

scene, one can take image patches with the objects located at a fixed distance and

view-point in the 3D scene, and then refine these. In general, VIG inference can be

broken down into an initialization phase, and a subsequent refinement phase. The

work of Williams et al. (1997a) is an early example of using neural networks for the

initialization phase. More recent works make use of a deep recognition models for

initialization, and later refine predictions using MCMC or gradient-based methods.

Several works for this task are fitting a parametrized geometry to an underlying 3D

object (Kulkarni et al., 2015a; Yildirim et al., 2015; Jampani et al., 2015). For instance,

in the work by Kulkarni et al. (2015a) the authors chose to use the space of the features

extracted by a CNN to perform the comparison of the observed and rendered image.

This method could possibly be resistant to details like noise or texture, but it is not

easy to interpret the activations of a hidden layer. There is very recent work on 6DOF

pose refinement by Manhardt et al. (2018), which we call “6DPR”, and the DeepIM

method (Li et al., 2018b), also applied to the problem of object 6DOF pose estimation.

These methods make use of a render of a considered object during the refinement, but

this was demonstrated only for an object with a known identity, and known texture that

was also applied in the renderer.

There are a few single-object works that handle a more interesting case, which in addi-

tion to the geometry and the pose, predict or optimize also the appearance (sometimes

including the illumination), as outlined in Figure 2.5. Here and in subsequent figures

with exemplary predictions, the observed input is given on the left, and the inferred

output on the right. For instance Moreno et al. (2016) consider the VIG problem for

an occluded teapot object on synthetic data. A different, non-mesh based approach

is developed by Tulsiani et al. (2017), who make voxel-based predictions by learning

by multi-view supervision via differentiable ray consistency of arbitrary shapes, where

they define gradients of the voxelized representation. This is applied to model each

object class separately, however the method is not able to e.g. reconstruct the chair

wheels (see Figure 2.5B, bottom).

22 Chapter 2. Background

A) Moreno et al. (2016) B) Tulsiani et al. (2017)

C) Tran and Liu (2018) D) Kanazawa et al. (2018)

Figure 2.5: Examples of methods for single object reconstruction that jointly fit both

shape and appearance, for synthetic images (top panels) and real images (bottom pa-

nels). The cases considered by the related works are as follows: A) synthetic data

with occlusions and known shape model (Moreno et al., 2016), B) synthetic data and

unknown shape model (Tulsiani et al., 2017), C) testing on real images, learning the

shape model on synthetic data (Tran and Liu, 2018), D) training on real images, and

learning the shape model (Kanazawa et al., 2018).

For real images, the majority of the works use face data, since there are several datasets

of faces that are centred in the image (e.g. Liu et al. 2015 (CelebA), Huang et al. 2008),

and there are publicly available 3D morphable models of face shape and appearance

(Blanz and Vetter, 2003). Recent works not only fit a parametrized model, but also

learn the shape and appearance model. For instance Tran and Liu (2018) and Genova

et al. (2018) train autoencoders for this task. A novel approach by Kanazawa et al.

2.4. Vision as Inverse Graphics 23

(2018) jointly models the shape, pose and texture for a single object and is trained

only on real images. This method is evaluated on the bird class dataset, see Figure

2.5D for examples. The object is represented as a deformed sphere, plus a texture field

mapped onto it. The texture field maps a mesh surface to the corresponding observed

pixels, and the whole reconstruction is trained to maintain the projection consistency,

including pixel colours, object mask and the keypoints. This work is interesting as it

uses only real images for training, using masks and keypoint annotations to help learn

the shape model, without supervision on synthetic data.

2.4.2 Multi-Object Reconstruction in 3D

In this section we discuss related work that considers multi-object scenes. This case

is much more challenging, as one needs to infer object locations and poses, and deal

with the ambiguities arising from unknown object sizes and the camera pose. Hence,

the related work on multi-object scenes often handles only simplified scenarios. It is

crucial to represent the presence of each whole object as a separate entity to deal with

objects in a natural way, which is done by all the discussed related work below.

Input Reconstruction Input Reconstruction

NSD AIR

Figure 2.6: VIG frameworks that consider synthetic objects of fixed appearance. Left:

example of images from the NSD paper (Wu et al., 2017a) and their reconstructions by

the same renderer, right: example of images from the AIR paper (Esalmi et al., 2016)

and their reconstructions by the same renderer.

Our framework is closely related to Neural Scene De-rendering (NSD, Wu et al. 2017a),

24 Chapter 2. Background

who also define the vision problem as 3D scene graph inference. However, their appro-

ach was demonstrated to work only on synthetic images: the authors consider scenes

comprised of either 2D sprite type objects, or 3D objects from the Minecraft game

with 12 object types with fixed shapes and appearances. Figure 2.6 (left) shows exam-

ple images and predictions from the NSD paper. However, note that their background

scene (green grass and blue sky) is fixed, as are the camera parameters and the lighting.

Also their predictions are made only for the cartoon scenes, not real images.

There is also an earlier work that considers multiple objects and a renderer within a

VAE framework, the Attend, Infer, Repeat (AIR) network (Esalmi et al., 2016). One

issue with the AIR network is that it uses a LSTM-based recurrent network to sequen-

tially select an unordered set of object detections. Figure 2.6 (right) shows example

images and predictions from the AIR paper. Although the visualized images are of a

higher resolution, the network takes as input only 32×32 images, which cannot repre-

sent even relatively simple real images. Most of the AIR work is on 2D images, but the

authors do provide a demonstration of the AIR network on a simple “tabletop” scene,

where different object types and the background have fixed and unique colours. This

means the network does not need to learn to detect certain objects, but the problem is

simplified to the detection of a given colour. Note since the camera is always at a fixed

distance and elevation relative the ground plane, it is trivial to place the objects on the

ground plane.

One of the key features in our VIG approach is an ability to transfer from synthetic to

real images. The NSD and AIR works use objects of constant identity and appearance

for both training and testing. Our work considers understanding of real images, thus

we render high-quality anti-aliased realistic scenes with variable illumination, objects

with different textures and cast shadows.

Our application of VIG to real images is very related to two works developed in the

context of explaining real indoor images: IM2CAD by Izadinia et al. (2017) and the

most recent work by Huang et al. (2018), Holistic 3D Scene Parsing (which we call

“3DParsing”). These methods detect the objects, infer and optimize the room layout

and object shapes and locations, and are evaluated in terms of the predicted 3D geo-

metry, but not in terms of the reconstructed image.

The IM2CAD and 3DParsing methods recover the geometry for the purpose of room

layout estimation, 3D room free space prediction and 3D object localization. IM2CAD

2.4. Vision as Inverse Graphics 25

Input Reconstruction Input Reconstruction

IM2CAD 3DParsing

Figure 2.7: Related works that consider real images. Left: example recovered geometry

outputs for IM2CAD; right: for 3DParsing. These methods reconstruct the 3D geometry

of indoor scenes, but do not match the colours of images or model the illumination. For

visualizations, objects are given a colour in a post-processing step.

uses a simple and not very effective refinement of the initialization by optimization of

the poses of the predicted and observed shapes based on the VGG activations. The

3DParsing method is much more advanced overall. It adds extra regularization terms

for geometry and functionality, and matches objects to the predicted surface normals,

depth and semantic maps. The optimization involving all these terms is done by sam-

pling, and 3DParsing obtains better results for all the metrics than IM2CAD.

The main difference between our work and the IM2CAD and 3DParsing methods is

that these methods do not optimize the appearance or illumination parameters (for vi-

sualizations, objects are given a colour in a post-processing step). These works are

designed for a good performance on the geometry metrics, but do not match images in

the original RGB space. Obviously, for any method that outputs a 3D shape, whether

single object or multi-object, one can set a colour in a post-processing step to match

the pixels covered by the mask of the predicted object. For example, the colour app-

lied can be the mean colour of these pixels. Note however that this does not include

the further effects of illumination, the colour and illumination are not included in the

optimization procedures, does not match the brightness, and is not robust when the

objects are not well-aligned. For instance in Figure 2.7, in the top-right example, the

predicted objects are shifted compared to the observed ones, and obtain grey colours

as a result of covering a number of objects. In our framework we consider the colours

26 Chapter 2. Background

and illumination as latent variables, and learn to predict and optimize these.

2.4.3 Summary of the Methods for 3D Reconstruction via VIG

Figure 2.8 presents an annotated version of Figure 1.2, highlighting the related work

wrt. real images, appearance learning or optimization, and multi-object scenes. Our

work deals with all the three aspects simultaneously, which is why our methods can

serve as a base for development of VIG approaches for real images, and can be further

extended.

Figure 2.8: Classification of the discussed papers for 3D reconstruction into three

groups of problems that they deal with. The works the closest to ours are the ones

at the intersections of any two groups, either full VIG reconstruction for a single ob-

ject (orange background) or multi-object room geometry reconstruction methods (green

background). The remaining works handle simplified scenarios and only some aspects

that we incorporate.

Chapter 3

Rich 3D Explanation of a Multi-Object

Scene via Inverse Graphics

Our goal is the classic computer vision task of scene understanding, by which we mean

obtaining a scene graph representation that includes descriptions of the objects in the

scene (shape, appearance and pose) and their spatial layout, as well as global factors

like the camera parameters and lighting. In this chapter we investigate how the recog-

nition models can be used to infer the scene graph given only a single RGB image.

This is to be contrasted with methods that simply predict 2D image-based bounding

boxes or pixel labelling. Our models are trained using realistic synthetic images and

corresponding ground truth scene graphs, obtained from a rich stochastic scene ge-

nerator. We demonstrate the quality of the reconstructions obtained quantitatively on

synthetic data, and qualitatively on real scenes.

3.1 Introduction

Our work is summarised in Figure 3.1. Object detectors (stage A) are run over the

input image, producing a set of detections. We then predict the scene latent variables,

consisting of the camera parameters (stage B), global parameters (stage D) and ob-

ject descriptions (stage C), and back-project objects into the scene given the predicted

camera (stage E). This acts like the encoder of an autoencoder, with graphics rende-

ring as the decoder. Importantly the scene representation is interpretable and is of

variable dimension to match the detected number of objects plus the global variables.

27

28 Chapter 3. Rich 3D Explanation of a Multi-Object Scene via Inverse Graphics

Figure 3.1: Overview: (A) Objects are detected in the image (green dots: contact

points), which jointly predict the camera parameters (B) using PHNs. Then (C) other

global parameters (e.g. lighting) and (D) object latent variables are predicted. These

allow back-projection of the objects into the scene (E), and iterative refinement.

To solve the problem of inferring the camera parameters we introduce a novel Proba-

bilistic HoughNets (PHNs) architecture, which carries out a principled integration of

information from multiple object detections. The scene latent variables can then be

rendered by a graphics engine to produce the predicted image, and by optimizing them

the match to the input image can be refined iteratively.

We develop accurate recognition models trained on latent variables of realistic synthe-

tic images in a way that they transfer to work with real images. We demonstrate the

quality of the reconstructions obtained quantitatively on synthetic data, and qualitati-

vely on real scenes.

In Section 3.2 we describe the scene latent variables and the Stochastic Scene Gene-

rator (SSG). We use our Stochastic Scene Generator to generate the datasets for the

experiments. We then present our approach in Section 3.3, including the image forma-

tion mechanism from a 3D scene to a 2D image, as our goal is to invert this process. We

describe all the framework stages as outlined above, to produce the final 3D scene re-

presentation. Section 3.4 presents the details of the experiments, Section 3.5 provides

the results, and Section 3.6 provides the discussion.

In Chapter 4 we introduce Probabilistic HoughNets architecture and its use for prin-

cipled integration of information both for uni-modal and multi-modal problems. We

3.2. Stochastic Scene Generator 29

use PHNs for estimating the camera parameters within the framework as per label B in

Figure 3.1.

3.2 Stochastic Scene Generator

3.2.1 Overview

The main task of our research is recognition and inference on multiple objects. We

consider scenes with various items located on a ground plane. This allows us to focus

on the core of the problem, i.e. the explanation of multiple objects present in the scene.

We develop a stochastic scene generator, which samples 3D scenes in a form of the

scene graph and renders them to produce images. The fact that all the latent variables

are specified means that it is known what objects are present in the scene and what

their poses are. Images with labels serve as the dataset for training of the recognition

model. As we are interested in creating a generative model, we can employ the VIG

paradigm, because then all the latent variables are directly available. Importantly, this

is also the case for pixel labelling of any kind (such as segmentation or depth masks).

The scene latent variables (scene graph) are denoted by z = {zglobal,zob ject}. The two

subsets of scene latent variables are as follows:

– global variables zglobal = {zcam,zill,zcol}: the camera latent variables, zcam, the

illumination zill and the ground plane colour zcol .

– the set of latent variables of each of O objects, zob ject = {zob ject
o }, o = 1 . . .O.

3.2.2 Scene Graph: Global Latent Variables

3.2.2.1 Camera

The camera model has both intrinsic and extrinsic parameters. The extrinsics are the

translation and rotation of the camera; we assume that the objects lie on the (x,z)

plane, and that the camera is at height y = h above the origin. This is valid as we wish

to estimate object poses relative to the camera. The camera rotation is as shown in

Figure 3.2, with the camera looking at the ground plane at angle of elevation α.

30 Chapter 3. Rich 3D Explanation of a Multi-Object Scene via Inverse Graphics

y

zpplane

p

(0,h,0)

(x1,0,z1) (x2,0,z2)

α

α
ω

Figure 3.2: Scene side-view diagram depicting camera latent variables: (α,h,ω), two

example objects, and camera principal point p projected onto the plane pplane

We assume a standard pin-hole camera model with no in-plane rotation. The camera

sensor is a square of a standard size with a side a0 of 35 mm; this is valid for any

rectangular input as in such a case some areas at the border are inactive (truncated).

The intrinsic parameter to be determined is the focal length f , or equivalently the angle

of view (AoV) ω, which are related by f = a0/(2tanω/2). This is also equivalent to

inferring the zoom given a constant focal length. Thus zcam = (α,h,ω).

3.2.2.2 Illumination

Another set of latent variables is responsible for the illumination parametrization. The

illumination is represented as a uniform light around the whole scene plus a single

directional light source, which we call Uniform-Directional (UD) representation. The

directional light rays are parallel to each other, as for a distant light source. Figure

3.3 shows scenes with different UD light set-ups. The UD representation is able to

cover a wide range of real illuminations, such as light coming from a lamp located on

a tabletop or any mixture of uniform illumination coming from an overcast sky plus

the directional one from the Sun. The UD representation zill consists of four latent

variables: the strength of the uniform light, the strength of the directional light, and the

azimuth within range [0◦,360◦] and elevation within range [0◦,90◦] of the rotation of

the directional light.

One may note that a general scheme for representation of a function on a sphere, such

as illumination environment, are Spherical Harmonics (SH, Ramamoorthi, 2006). SH

are a series of orthogonal functions that are used to represent a function defined on

3.2. Stochastic Scene Generator 31

a) b) c)

Figure 3.3: UD light. Top: a polar plot of the amount of light received from the uniform

component (red) and directional component (blue). The lights are around a sphere

and are at the maximal strengths used in the experiments. Bottom: example scene

consisting of a red ground-plane and a green teapot, with the mean strength of colours

and the mean strength of illumination: a) only Uniform light, b) only Directional light

from the side and at 45 degrees elevation angle, c) both lights together.

the surface of a sphere, in our case the illumination strength around the scene. Given

enough coefficients, they can approximate any function arbitrarily well. However,

although SH are suitable for illumination representation once it is known, it has several

drawbacks when it comes to the inference.

First, the representation is very complex, as each but first degree of freedom of SH ef-

fectively controls multiple light sources. Although when observing the whole function

there is only one solution, several different combinations of SH coefficients may lead

to the same illumination when observing a scene from a single viewpoint, hence the

problem becomes ill-posed. Further difficulties arise as observed shading/shadows in

real images are evidence for the presence of positive and additive illumination, while

SH can combine multiple negative light components, thus allow light subtraction. The-

refore, CNN recognition models are unable to accurately predict the coefficient given

32 Chapter 3. Rich 3D Explanation of a Multi-Object Scene via Inverse Graphics

the image (cf. Moreno et al., 2016). On the other hand, the UD representation is di-

sentangled as the direction and strength of the shading and the shadow in the image

approximately determine the direction and proportion of directional light. Moreover,

the UD representation admits a straightforward sampling scheme, while for SH it is

not obvious which combinations of SH coefficients may likely appear in real images,

as these could not contain negative light sources.

Finally, UD illumination allows for straightforward manipulation of the configuration

in order to refine the prediction, e.g. the direction of light is parametrized using the

azimuthal and elevation angles. This is not the case for SH, since a change in rotation

leads to a different configuration of SH coefficients responsible for different sphere

areas. The coefficients configuration has to change in such a way that the ones that

caused light in the area before the rotation would make the illumination strength lower,

while causing the light strength to be higher at the light area at the final configuration.

3.2.2.3 Ground Plane

The remaining global latent variable is related to the colour of the ground plane. Thus

zcol is an RGB representation of the ground plane colour.

3.2.3 Scene Graph: Object Latent Variables

Each rigid object zob ject
o in a 3D scene is described by its class co, and its position

(xo,0,zo); yo = 0 as the object is lying on the scene plane. For reference, Figure

3.2 presents the orientation of the axes and two objects in a 3D scene. The other

variables are scaling factor so (where the scaling factor so = 1 is the mean scale of

the object class) and azimuth angle φo (rotation around the vertical y-axis). The

remaining latent variables are class-specific ones which are responsible for appea-

rance and shape descriptions, ao and ho. Summing up, the object is represented as

zob ject
o = (co,xo,zo,so,φo,ao,ho).

A key assumption behind our inference approach is that all objects are placed on the

surface of a plane e.g. a mug on a tabletop. Hence, the key question is how we place a

3D object at the desired position (xo,0,zo) on the ground plane. To this end we specify

the central contact point of an object, and then learn to detect it. This enforces that

an object located lower in the image frame is located closer to the camera in the 3D

3.2. Stochastic Scene Generator 33

scene. A contact point is defined as the point on the plane below the centre of the main

part of a given object class. From the top view it is the point around which the object’s

azimuthal rotation is defined, which allows the object position to be azimuthal rotation

invariant. For example, for a mug class it will be the point on the plane below the

centre of the mug body.

3.2.4 Sampling and Rendering Procedure

Even though the recognition models are trained on synthetic images, we keep in sight

the main goal, which is to facilitate understanding of real images. Therefore, the scene

generator is able to generate plausible scenes and render very realistic, anti-aliased

images with noisy textures and cast shadows, similar in their structure and appearance

to the real ones.

For each image we first sample the global parameters and a number of objects which

lie on the ground plane. These are rendered using Blender at 256 × 256 resolution. To

sample a scene we first select a target number of objects. We then sample the camera

parameters and the plane colour. Objects are added sequentially to the scene, and a

new object is accepted if at least a half of it is present in the image, it does not intersect

other objects, and is not occluded by more than 50%. If is is not possible to place the

target number of objects in the scene (e.g. when a camera is pointing downwards from

a low height) we reject the scene.

We impose a prior on the scale variable, p(so), reflecting our class-specific knowledge

about a realistic scale of objects of a given class, and sample the scale according to

it. Without knowing object prior scales, an inferred scene configuration would be in

unknown units, since the whole scene could be scaled without a change of the image.

For each object we sample its size, shape, colour and rotation, and also a random

texture. The textures are applied to introduce noise which is present in real images

(such as labels or text), otherwise the trained networks could deal only with untextured

objects. A collection of textures is converted to grey-scale and then the object colour is

multiplied by a random texture. The associated ground-truth colour is the mean colour

of the resulting pattern. This way we obtain various noisy patterns in our images. This

dataset obtained from the Stochastic Scene Generator serves for training, validation

and testing purposes.

34 Chapter 3. Rich 3D Explanation of a Multi-Object Scene via Inverse Graphics

3.3 Approach

We train our models to predict the scene latent variables, i.e. we do not aim to simply

minimize the reconstruction error in terms of pixel colours of the observed and pre-

dicted image. Since similar images may have different interpretations, we do not want

to predict a scene where objects look similar to the ones in the observed image but

are for instance of different classes (e.g. a cup vs. a mug). The same is true for other

latent variables, such as the object azimuth: an identical mug to the ground-truth one

rotated by 180 degrees will still match almost all the pixels, with minor errors where

the handles differ. However, the predicted azimuth latent variable will be incorrect,

and a wrong initialization would make the fine-tuning infeasible. It was shown by Wil-

liams et al. (1997b) that a recognition model can help to efficiently find a solution for

inverse graphics problem, therefore our first goal is to perform accurate inference of

scene latent variables without an additional optimization procedure at the test time.

We explain all objects (their pose, size, shape etc. in 3D units) using a single camera

and common illumination. For a single image with a single object there exist multiple

likely solutions to the scene configuration problem. An object can be a large instance

of its class, or a smaller one with the camera located either closer, or with the camera

located farther but using a larger zoom (focal length). The more objects are located in

the scene, the posterior over the camera and other global scene latent variables becomes

less ambiguous. Analogously, each object brings in additional evidence for a particular

illumination. We allow the objects and their sizes to explain the camera, contrary to the

approaches that make use of vanishing lines or Manhattan-world assumptions (Bazin

et al., 2012; Lee and Yoon, 2015), as they are not generally applicable (e.g. boats on

the sea). We also do not use the notion of the horizon which may be outside of the

image frame.

Recall that zob ject = {zob ject
o }, o = 1 . . .O, and zob ject

o = (co,xo,zo,so,φo,ao,ho). The

set of object latent variables zob ject is the representation of all the objects in the 3D

scene. However, as we process the input in a form of a 2D image, there are latent

variables defined within the image frame and depending on the view-point: the position

in the image frame xview
o ,yview

o and projection scale of the object sview
o . The position in

the image frame is related to the pixel position (row/column), where (0,0) position is

the centre of the image, and image is of a unit size and is defined for [−0.5,0.5]×
[−0.5,0.5].

3.3. Approach 35

Since the distance of the object is unknown, we can directly predict only the scale of

the projection sview
o (Szeliski, 2010, page 57), see also Equation 4.12. As sview

o is the

scale of the projection, for a fixed viewpoint and object size it is related to the number

of pixels that an object covers, so it can be easily predicted from the image window

(image window). Given the camera, we can later back-project these variables into the

3D scene to obtain xo,zo,so.

Typically, the size of an object is captured using bounding boxes, and prediction of

bounding boxes is the ultimate goal of many standard computer vision tasks. However,

bounding box dimensions depend on the view, which makes using them for the object

scale inference much more complicated. The reason is that we would then need to

somehow fit the object to the bounding-box, but the silhouette depends on the view-

point, shape and pose of the object. Therefore, we instead predict the projection scale

sview
o , which is directly related to so through the mean size of the given object class.

For instance the bounding-box of a mug varies when we rotate the mug or change the

elevation of the view-point. By using the notion of the projection scale, we directly

predict the representation we need to incorporate. Here we directly map from the

image window to the object instantiation, and avoid using additional constructs such

as the object bounding-box.

To sum up, the object detection is represented by a class co, the contact point position

(xview
o ,yview

o), plus the projection scale sview
o . Thus the view-dependent latent variables

and the object class are predicted by the object detector, while the remaining ones, spe-

cific to each class (φo,ao,ho) are directly predicted by the object predictor conditioned

on the object detection.

3.3.1 Detector

We propose our own original object detector. The main reasons for not using any

already existing one are: (i) typically the detections are blurry as detectors activate at

any part of the object of a given class, while we aim to detect object contact points

and (ii) classifiers do not predict any of the variables of interest to us. Nonetheless, we

do use all the convolutional layers from the VGG-16 network to substantially improve

the accuracy on real data. We train our detector to predict specific outputs by training

only the fully connected layers on top of all 13 convolutional VGG-16 layers. The

parameters of VGG network are kept fixed, this significantly decreases the number of

36 Chapter 3. Rich 3D Explanation of a Multi-Object Scene via Inverse Graphics

trainable parameters and prevents overfitting. Such an approach has been shown to

perform with a great success in Kar et al. (2015) and Bansal et al. (2016).

Thus the detector is used to produce object detections in the image frame. The set

of possible classes includes a class representing the background is included. It was

crucial to prevent the detector from activating for other object classes or noisy back-

grounds that are present in real images, therefore a half of the training dataset consists

of random negative windows from real images. The background class is predicted in

a case when there is no object, or the object is actually present but its contact point

is greater than some distance from the centre. In this way we force the detector to

have the highest confidence when the object is centred, as we need to know the object

contact point to perform back-projection.

Note that the xview,yview variables are not predicted, but are defined by the location of

the detector application. The detector is trained in a supervised manner on positive

and negative image windows, and there are two neural networks in total, i.e. class co

(one-hot-encoded) for all the image windows, and projection scale sview
o (single value)

for the positive image windows.

A CNN sliding window detector produces predictions in the form of two heat-maps

with entries representing the detection class and projection scale. Heat-maps are a

suitable representation as they can capture a variable number of objects. A potential

drawback of the sliding window approach is its slow execution. However, the standard

practice is to overcome this inefficiency by performing the whole computation of the

sliding window algorithm at once. This is possible for our CNNs, as the feature maps

in all convolutional layers can be computed at once, thus the execution time of a sliding

window evaluation is similar to the application of a CNN to a single input image.

We use the above approach to produce candidate detections in the form of two heat-

maps (see Figure 3.4b). The output probability map of the detector is thresholded, and

finally, the detections are sparsified using a method based on non-maximum suppres-

sion (NMS, Neubeck and Van Gool, 2006). Then, the value of the projection scale at

the pixel location of the detected contact point is used as the predicted projection scale

for the given detection.

We generate bounding-boxes as squares of the predicted size, and extend the NMS to

use the notion of object contact point, i.e. we disregard the detections if there is a hig-

her scoring contact point within the bounding-box area. This allows us to detect more

3.3. Approach 37

objects located further away or in cluttered scenes. Note the positions of detected con-

tact points and predicted sizes are very accurate. Objects located far away, truncated,

or partly-occluded are usually detected properly.

(a) detections (b) heatmaps (class, scale)

Figure 3.4: The detected objects (a) and example heat-maps (b, detection confidence

and projection scale). The green circles in (a) represent the position of the detected

contact points and mug diameters, the diameters are proportional to the predicted pro-

jection scale. The white circles are the ground truth. The detector peaks are at the

contact points of the mugs.

Once the object detector network is trained, we obtain a derived dataset of the true

positive detected image windows, which incorporates errors made during the detection

step. For each detection the closest object within a fixed radius is assigned, along

with the corresponding object latent variables that are known for each of the assigned

object. We use 24 pixel radius for the derived dataset of the true positive detections,

note this is much larger distance than the average error of the detector, which is 5.4

pixels. The average size of an object’s bounding box in the Mugs dataset is 42× 45

pixels, so this is about half the spatial size of the object. We then use this dataset for

training the object and global predictor models.

3.3.2 Predictor Networks and Scene Graph

The global and object predictor networks predict the scene latent variables. The net-

works are applied individually to each image windows with the detected object to pre-

dict the global latent variables and the remaining object latent variables, (φo,ao,ho).

These networks also take as input the position and projection scale of the object

38 Chapter 3. Rich 3D Explanation of a Multi-Object Scene via Inverse Graphics

(xview
o ,yview

o ,sview
o). We then aggregate the estimates so as they vote together for the

most likely scene configuration, as outlined below. The details of the networks are

given in Section 3.4.2.

Illumination is predicted by making lighting predictions for each detected object, and

then combining these by the taking median in each dimension (latent variable) across

the detections. This works much better than providing whole images as input; we

believe that providing the detections allows cues from shadows and shading to be used

more effectively. The ground plane colour is predicted in an analogous manner.

The instantiation of object poses in the 3D scene is very sensitive to any changes in

the camera parameters, and larger errors could prevent the gradient-based refinement

(see Section 3.3.4) to converge properly. Therefore we developed the Probabilistic

HoughNets method (see Chapter 4) to infer the camera LVs with a high accuracy, even

though it was more computationally expensive. The probabilistic camera predictions

made by each object are combined using PHNs, then the detected objects are back-

projected into a 3D scene given the predicted camera to obtain the 3D positions of

objects. The next section provides the details of the back-projection process.

The outputs of the above stages are assembled into a scene graph, in the form as outli-

ned in Figure 1.1. As the scenes we study contain only certain types of latent variables,

the output of our analysis can be expressed in terms of a domain specific scene graph

language. Using the object instantiations, the plane appearance and the illumination

latent variables we can then render the scene as observed by the predicted camera.

3.3.3 Image Formation and Back-Projection

A 2D image is a projection of a 3D scene generated by Stochastic Scene Generator

(SSG), which leads to the task where the inferred position of the object in the image

frame has to be mapped to the position in the 3D scene frame. Therefore, we need

to perform a back-projection of the detected objects from the image frame onto the

plane. This is possible due to the assumption that objects are placed on the plane,

otherwise objects could be hanging in the air and their depth would be ambiguous.

The problem of mapping objects from an image to 3D was studied e.g. by Hoiem et al.

(2008), however under a simplifying assumption that the camera view was horizontal.

We relax this restriction and treat the camera elevation angle as an unknown latent

3.3. Approach 39

variable. We assume a unit-aspect, zero-skew pin-hole perspective camera with no in-

plane rotation. For a given camera the mapping from the image frame to the 3D scene

plane is known, but the camera parameters have to be inferred.

y

z
pppplane

ppp

(0,h,0)

(xview
1 ,yview

1)
∆y1

(xview
2 ,yview

2) ∆y2

(x1,0,z1) (x2,0,z2)

α

αω

Figure 3.5: Two objects and projections of their contact points in the image frame:

(xview
1 ,yview

1), (xview
2 ,yview

2). ∆y1 and ∆y2 are the y-axis deviations of the observed object

contact points from the centre of the image.

The perspective projection formula gives us the relationship between the world (scene)

and the image coordinates through the camera extrinsic and intrinsic parameters. The

centre of the image (the principal point position) is located at (px, py) = (0,0). This

way, we can relate the detections of the object at the point (xview
o ,yview

o) in the image

frame to the camera variables and world position (xo,0,zo) of the object (yo = 0 as

objects are on the plane). Figure 3.5 shows how the scene is projected onto the image.

The projection (using homogeneous coordinates) is given by the following formula

(Szeliski, 2010, page 51):


xview

o

yview
o

1

= K
[
R(−α) R(−α)t(−h)

]


xo

0

zo

1

 , (3.1)

where K represents the calibration matrix depending on the camera intrinsic parame-

ters. R(·) is a 3×3 rotation matrix of the 3D scene for the camera elevation angle α,

t(·) is a 3×1 translation vector along the y-axis, as follows:

40 Chapter 3. Rich 3D Explanation of a Multi-Object Scene via Inverse Graphics

R(−α) =


1 0 0

0 cos(−α) sin(−α)

0 −sin(−α) cos(−α)

 ; t(−h) =


0

−h

0

 . (3.2)

The affine transformations are negative as in the actual projection formula we trans-

form the 3D scene instead of the camera pose. K has the following form (zero entries

omitted for clarity) :

K =


m1

m2

1




f px

f py

1

=


m f

m f

1

 , (3.3)

where we assume pixel magnification factors denoted m1 = m2 = m are equal in each

direction, and the principal point position (px, py) = 0 as it lies in the centre of an

image. The first matrix in (3.3) is simply a scaling transformation. Note that the input

images still come in arbitrary scales. The second matrix scales the image by f . Thus,

to sum up, the matrix K simply scales the image by a value proportional to f .

Once we infer all the camera latent variables, we can calculate the contact point posi-

tion on the ground plane (x0,0,z0) given the detected contact point in the image frame

(xview
o ,xview

o) and back-project the object.

3.3.4 Iterative Refinement

As the predictions are in the form of a scene graph, we can refine the fit iteratively

using the generative model (graphics renderer) to further enhance the predicted scene.

The likelihood of the scene graph is based on the similarity over pixel intensities of

the observed and the generated image. Observed image IO and the rendered image IR

given the scene graph θθθ have P pixels and are represented as a vector of a length 3P,

with P values for each RGB colour channel.

We compute the match between the actual and rendered images using a robustified

Gaussian likelihood model as in Moreno et al. (2016), i.e. we assume that pixel inten-

sities come from a mixture of a Gaussian and a uniform distribution, where α is the

3.4. Experimental Set-Up 41

mixing proportion:

p(IO
i |θθθ) = αN (IO

i ;IR
i (θθθ),σ

2)+(1−α)U(IO
i). (3.4)

The mean of the Gaussian component is equal to the predicted pixel intensity of a

given colour channel. The uniform component is introduced to deal with outliers, i.e.

noisy pixels that were not explained properly, for instance due to occlusion, a texture,

or inability of the generative model to represent each object shape or appearance detail

exactly.

To allow to perform the iterative optimization we use an enhanced differentiable ren-

derer1 based on OpenDR: Differentiable Renderer (Loper and Black, 2014). The basic

version is extended to simplify rendering multiple textured objects and to use modern

OpenGL functionality (e.g. shaders). The speed of differentiation is of a great im-

portance for us, as we have several latent variables per object, approximately 50 on

average for the whole scene. The main advantage of the differentiable renderer is a

faster gradient computation than when using finite differences.

In the original OpenDR implementation the derivatives of the pixel intensities with re-

spect to vertex translation are approximated using the Sobel Filters. To more accurately

capture the gradients at the object edges, as the gradients are the largest for the pixels

where multiple objects interact, we perform anti-aliasing by calculating 8 samples per

pixel. The derivatives of the likelihood computed by OpenDR are fed to a nonlinear

conjugate gradient optimizer2.

3.4 Experimental Set-Up

This section provides the experimental details for the presented approach. In the first

part (Section 3.4.1) we present the set-up of the Stochastic Scene Generator which was

used for generating the datasets. The second part (Section 3.4.2) describes the details

of the CNN architectures.

The questions to be assessed are as follows:

• Can we can successfully reconstruct a 3D scene via VIG from a single RGB

image (for a given set of object classes)?
1https://github.com/polmorenoc/inversegraphics
2http://learning.eng.cam.ac.uk/carl/code/minimize/

42 Chapter 3. Rich 3D Explanation of a Multi-Object Scene via Inverse Graphics

• What is the quality of the reconstructions on synthetic data?

• Do the models transfer to work well on real images?

3.4.1 Mugs Dataset: Experimental Set-up

Figure 3.6: Example realistic synthetic images from the Mugs dataset.

We use our Stochastic Scene Generator to generate the training dataset of 7k images.

They contain a total of 35k objects, with up to 7 objects per scene. The Background

images are taken from the NYU Depth V2 dataset (Silberman et al., 2012). The col-

lection of 200 textures with a wide range of pattern kinds was obtained from the May-

angs website 3. Figure 3.6 presents a few examples of the generated scenes. The SSG

is implemented in Python and makes use of the Blender API 4 to handle the scenes 5.

3www.mayangs.com
4www.blender.org
5The initial script for importing CAD models, generating scenes with multiple objects, and rendering

synthetic images was provided by Pol Moreno. This has been thoroughly extended and improved: I col-
lected and included randomized textures and backgrounds, made improvements in the specification of
the scene and camera placement, fixed a major memory leak and made the data generation reproducible
even if any rendering call fails. I also made various fixes in object collision code, code for creating Blen-
der materials and illumination, and improved efficiency of the scene sampling. Later on, for Chapter 5, I
collected, prepared and aligned new CAD models, for which several manual fixes such as reversing face
normals or decreasing amount of vertices had to be performed. I also implemented handling multiple
object classes within SSG, and specified an improved method for sampling the colours.

3.4. Experimental Set-Up 43

We sample the camera AoV and then height and elevation uniformly in the appropriate

ranges: ω ∈ [20◦,60◦], α ∈ [0◦,90◦], h ∈ [0,150] cm. Illumination is represented as

Uniform-Directional illumination, with the strength of the uniform light in the range

[0,1] and the strength of the directional light in the range [0,3]; the azimuth ∈ [0◦,360◦]

and elevation ∈ [0◦,90◦] of the rotation of the directional light.

As per the dataset name, the objects are of the mug class, and we use 15 diverse mug

shapes from ShapeNet6. The size prior is specified in terms of a mug diameter and

is uniform within [8.0,10.4]cm. The colours of the objects and the ground plane are

sampled uniformly in the RGB space. Thus the object shape ho is represented as 1-of-

K CAD shapes, the appearance ao is object colour represented as an RGB triple.

3.4.2 CNNs Experimental set-up

All the CNNs, as presented in Table 3.1, are based on the VGG-16 network of Si-

monyan and Zisserman (2015) except for those that predict colour, which are stan-

dard 3-layer CNNs. The reason for using simple CNNs for colour prediction is that

VGG layers extract the shapes, but do not preserve the colours. The networks’ hyper-

parameters were optimized on a validation dataset. The VGG-based networks use all

13 convolutional layers of VGG for 128 × 128 input, but without the last two max-

pooling layers in order to be more spatially accurate, resulting in an output of size

512× 16× 16. On top of these, we train three convolutional layers with 50 filters,

each of a filter size of 6 × 6. We have found this configuration to work best amongst

different CNN architectures. This leads to an output of the third convolutional layer

being of size 50× 1× 1. We then use this representation of the length of 50 values

as an input to fully connected layers. The output of each network is a specific set of

latent variables, as outlined in Table 3.1. Since the predictor networks take the image

windows as input, we also concatenate the input to the first fully connected layer, for

each network, with (xview
o ,yview

o ,sview
o) of an image window. The values in the dataset of

the latent variables and those of the image window are standardized. We only train all

the layers on top of the VGG ones, the VGG layers are kept fixed; this decreases sig-

nificantly the number of trainable weights to approximately 1 million for the detector

and 0.4 million for the rest of the VGG-based predictor networks.

We use softmax output for classification and sigmoid for regression as all our latent

6https://www.shapenet.org/

44 Chapter 3. Rich 3D Explanation of a Multi-Object Scene via Inverse Graphics

Detector Predictor

Resolution (outgoing) Class Scale Shape Azimuth Lighting

128×128×3 RGB Image

16×16×512 VGG-16 (all 13 convolutional layers)

11×11×50/20 C-50-6 C-50-6 C-50-6 C-20-6 C-20-6
6×6×50/20 C-50-6 C-50-6 C-50-6 C-20-6 C-20-6
1×1×50/20 C-50-6 C-50-6 C-50-6 C-20-6 C-20-6

F-200 F-200 F-50 F-50 F-100
Softmax-2 Sigm-1 Softmax-15 Sigm-2 Sigm-5

Learning rate

Class Scale Shape Azimuth Lighting
0.001 0.0002 0.001 0.0001 0.0001

Table 3.1: The configurations of the five main CNNs and learning rates. Each CNN is 18

layers deep. Layer types are: C – Convolutional, F – Fully connected, Sigm – Sigmoid

and Softmax. Convolutional layers are described as follows: C - number of output units

- filter size, for the remaining layers the name is followed by the number of units (e.g.

F-200 is a fully connected layer with 200 units/neurons).

variables are bounded. For rotations we predict the sine and cosine of the angle, hence

two network outputs are used for each azimuthal rotation latent variable. Networks are

trained by SGD with Adam optimization algorithm Kingma and Ba (2015). We found

the tanh activation in all the layers on top of VGG to be superior to other activations

for all the main recognition models – but note that all the VGG layers use rectified

linear (ReLU) activations, hence the majority of layers in each CNN uses ReLU.

Table 3.1 shows the network configurations and learning rates used for training. We

use all 13 convolutional layers of VGG-16 as the core but on 128 × 128 pixel input.

The fully connected layers of the detector networks are implemented as filter 1× 1

convolutional layers, so they can be efficiently applied in a sliding window manner. We

use dropout in the convolutional layers on top of VGG ones: in the detector networks

with p = 0.5 and in predictor networks with p = 0.2 . The colour networks are 3-

hidden-layers CNNs (1282, C-27-6, F-40, F-40, Sigm-3), however here we use leaky

3.5. Results 45

rectify activations in the whole network and stride 6 in the first layer.

We performed a set of preliminary experiments that led to these hyper-parameters. The

reason for using a higher dropout value in the detector than in the predictor is that the

detector uses a larger dataset. The VGG output resolution (N×N of 512 channels)

can be controlled by using less or more max-pooling layers, and we found 16×16 to

work better for latent variable prediction than the original 7×7 used for the ImageNet

classification task. The most important was the choice of the network architecture on

top of the VGG, given the constraints of 16× 16 input resolution and 1× 1 output

resolution. We have tested different configurations of the number of layers and the

filter size, and eventually used 3 convolutional layers with filter size 6 × 6. We do not

use any padding or stride in our convolutional layers.

3.5 Results

Figure 3.7: Input real image, reconstructed 3D scene and a different view of it. Due

to the interpretable representation, one could easily edit the scene, e.g. change object

positions or their colours.

We perform a quantitative evaluation of all the components on a synthetic test set

of two hundred images containing approximately 1000 objects for which we know

all the latent variables. Note that we are interested in the correct underlying scene

interpretation, we evaluate accuracy in object detection and each object and global

latent variable separately, so as each aspect of the scene reconstruction is assessed.

First, we evaluate the predictions of the global and object-specific latent variables.

Finally, we evaluate the prediction qualitatively for real images, showing that the pro-

46 Chapter 3. Rich 3D Explanation of a Multi-Object Scene via Inverse Graphics

posed framework is able to transfer to real images. Figure 3.7 shows an example of an

inferred scene representation.

3.5.1 Detector

Figure 3.8 shows the precision-recall curve when varying the detection threshold from

0 to 1. Note that the precision-recall curve is near to the perfect classifier. The detector

has 98% precision at 93% recall – we chose the threshold such as the false positives

rate is much lower than the false negative rate. Thus superfluous objects are hence very

rare (only 2%) and usually are due to multiple detections of different object parts, not

an accidental detection in a noisy background. The inclusion of random real images in

the training dataset significantly decreased false positive detections in the background

by around one order of magnitude.

Figure 3.8: Detector: precision-recall plot. The blue dot indicates the performance at

the threshold of 0.75, leading to 98% precision at 93% recall.

We treat the detection as positive if the predicted contact point is within a 24 pixel

radius around the ground truth contact point. The average size of an object’s bounding

box in the Mugs dataset is 42× 45 pixels, so this is about half the spatial size of the

object. Figure 3.9 shows the histogram of the distances between the predicted and

ground truth object contact points. The average distance is 5.4 pixels, this is very

accurate compared to the average bounding box size of 42×45 pixels, and the image

size of 256×256 pixels.

3.5. Results 47

Figure 3.9: Histogram of the distances between the predicted contact point and the

ground truth contact point, in pixels (the image size is 256×256 pixels).

3.5.2 Evaluation of Global LVs

The error metric of the ground plane colour is the mean square error (MSE) of colour

(a,b) components in the Lab space7. The Lab space expresses a colour using three

values: L is the lightness, (a,b) are green-red and blue-yellow colour components. By

disregarding the L component, we evaluate the hue but not brightness, since multiplica-

tive interaction between illumination and colour introduces a problem when evaluating

the colours directly, as the actual illumination is unknown. The baseline is the mean

intensity of the RGB channels in the training set8.

The whole predicted uniform-directional lighting is projected onto a full sphere S, this

produces intensity ip,s at any point s on the sphere. The illumination is evaluated at a

fixed number of points uniformly distributed on a sphere. The points were generated

using a set of 15 equidistant latitude lines, with the points at each latitude being at

the same distance as the distance between each latitude line, using the algorithm from

Deserno (2004). In our case this resulted in N = 313 points. Note one could use any

method for choosing equidistant points, as long as the number of the generated vertices

is high.

The strength of the illumination is evaluated at N points, and the errors between igt,s

7https://en.wikipedia.org/wiki/Lab_color_space
8The colour prediction results are better than in Romaszko et al. (2017). Earlier the colour GT values

were noisy as they did not include the darkening effect of the textures, thus also the colour predictors
were less accurate.

https://en.wikipedia.org/wiki/Lab_color_space

48 Chapter 3. Rich 3D Explanation of a Multi-Object Scene via Inverse Graphics

are computed by MSE, so as to approximate the LHS of

1
I

∫
S
(ip,s− igt,s)

2ds≈ 1
I

1
N

N

∑
n=1

(ip,n− igt,n)
2. (3.5)

To allow comparison with other illumination intensity ranges, the illumination is scaled

by a normalizing constant I so that the maximal potential error is unity.

For illumination we use a constant baseline that minimizes the error containing both

uniform illumination and directional illumination from the top, at optimal strengths.

A thorough analysis and quantitative evaluation of the camera predictions are the main

problem studied in Chapter 4. Note, however, that qualitative reconstructions in Figure

3.12 and Figure 3.13 show the quality of the predicted camera.

3.5.3 Evaluation of Object LVs

For azimuthal rotation we measure the absolute angular difference between the pre-

diction and ground truth, but with wrap-around, so the maximum error is 180◦. The

baseline is a fixed rotation angle chosen to minimize the error. We evaluate the object

colour in the same way as for the ground plane colour. For object shape prediction we

make a 1-of-K classification (K = 15).

3.5.4 Scene Understanding – Quantitative Results

Global LVs Baseline CNN

Illumination [MSE] 0.084 0.025
Ground plane colour [MSE] 2.414 0.174

Table 3.2: Global latent variables: median errors. Colour errors ×102.

Object LVs Baseline CNN

Azimuthal rotation [degrees] 91◦ 22◦

Colour [MSE] 2.172 0.211

Table 3.3: Object latent variables: median errors. Colour errors ×102.

3.5. Results 49

Figure 3.10: Histograms of the errors in the latent variables.

The results for the global latent variables and object latent variables are given in Table

3.2 and Table 3.3. We can note that for all the LVs our CNNs make predictions that are

several times better than the simple baselines. For illumination the median predictions

are more than 3 times better, for object azimuth more than 4 times better, while for the

ground plane and object colours these are at least 10 times better.

The accurate predictions are further confirmed by the histograms of the prediction

errors. Figure 3.10 shows the histograms of the errors in the latent variables for both

the baseline (red) and our CNNs (green). We can note that for all the LVs for the CNN

predictors the majority of the errors fall into the leftmost bin, with higher errors being

much less frequent than the Baseline errors.

For the object shape classification the accuracy is 31.6%, compared to 6.7% for a

random choice. This is a good result as often it is difficult to distinguish particular

shapes, e.g. when a mug is viewed from the top, or from far away. Figure 3.11 shows

the confusion matrix of the shape prediction. The best predictions are obtained for

shapes that are not similar to other examples, e.g. mug number 13. On the other hand,

examples 1 and 15 are similar, for these the majority of the prediction is that either

these are classified correctly (73 times in total), or the prediction of these shapes is

50 Chapter 3. Rich 3D Explanation of a Multi-Object Scene via Inverse Graphics

Figure 3.11: Shape prediction – confusion matrix for 15 CAD shapes.

swapped, which happened 45 times (22+23).

3.5. Results 51

3.5.5 Scene Understanding – Qualitative Results

Input image Predicted scene After refinement Input image Predicted scene After refinement

a) b)

c) d)

e) f)

Figure 3.12: Results on synthetic (top row) and real scenes (middle, bottom). For each

example the input image, predicted 3D scene, and result after iterative refinement are

shown (left to right).

In Figure 3.12 we show results on both synthetic (top row) and real scenes (middle

and bottom rows). We note that our methods work well on real images, despite not

having been trained on them. The mugs are generally predicted well in location, azi-

muth and colour, and the camera parameters and lighting are in good agreement with

the input image. The iterative refinement (rightmost panels of each example) mainly

improves the colours of the objects. Note iterative refinement uses the OpenGL ren-

derer, which cannot produce shadows. In (e) the directional light source is predicted

almost properly. In the cluttered scene (f) all mugs are detected properly except one.

3.5.6 Scene Understanding – Additional Results

Figure 3.13 provides more examples of prediction for real images. The scenes are

generally reconstructed well, and the predicted view-points are accurate. Again, the

iterative refinement improves the colours of the objects and of the ground plane.

52 Chapter 3. Rich 3D Explanation of a Multi-Object Scene via Inverse Graphics

Input image Predicted scene After refinement Input image Predicted scene After refinement

Figure 3.13: Results on real scenes. In each the order is the input image, predicted

3D scene, and the result after iterative refinement. Four examples in the bottom two

rows have errors in detection, yet even in these cases the remaining objects are recon-

structed correctly, as well as the correct view-point.

3.6. Discussion 53

3.6 Discussion

We have shown how to successfully put all of the framework components together to

create an interpretable scene-graph representation of a 3D scene from a single image.

Importantly, the framework has been shown to work on both real and synthetic images.

The models are trained using realistic synthetic images and corresponding ground truth

scene graphs, obtained from a rich stochastic scene generator, to predict the object and

global latent variables. In the framework we incorporate auxiliary modules for object

contact point and projection scale prediction, to allow the computation of object poses

and sizes in 3D scene coordinates, given the camera parameters.

The framework acts like an autoencoder, where the latent representation of the scene is

interpretable and is of variable dimension to match the detected number of objects. The

scenes for both synthetic and real images are generally reconstructed well, and the pre-

dicted view-points are accurate. We have shown that this interpretable representation

can be used for editing the scene to further refine the initial predictions.

As outlined in the Background chapter, the competitor VIG methods usually handle

only the geometry, but not the appearance of the objects. At the time this work was

done (2016 – 2017) the related works (AIR, NSD) predicted only object class and

poses, but not the appearance and size of objects, camera and illumination. The most

related works did not exist (IM2CAD, 3DParsing). Although these works predict or

refine the shape and the size of the objects, they still focus only on the object geometry

and the camera.

There are a wide variety of possible extensions to explore, including the use of more

object classes, and richer models of shape and appearance for each object class. The-

refore, we perform experiments for a more complex dataset in Chapter 5.

Chapter 4

Probabilistic HoughNets

In this chapter we introduce Probabilistic HoughNets (PHNs), a new method for com-

bining of the probabilistic votes. The method is applied to the camera estimation pro-

blem, where the votes are cast by the detected objects. One of the major challenges is

the problem of placing the detected objects in 3D at a reasonable size and distance with

respect to the single camera, the parameters of which are unknown. Previous VIG ap-

proaches for multiple objects usually only considered a fixed camera, while we allow

for variable camera pose. In PHNs, each detection provides one noisy low-dimensional

manifold in the Hough space, and by intersecting them probabilistically we reduce the

uncertainty on the camera parameters. Section 4.1 discusses the background on the

Hough transform, and Section 4.2 introduces the PHNs framework. Section 4.3 gives

the analytical solution for the camera parameters given an observed object that should

be expected in the noise-free set-up. Section 4.4 presents the details of the experiments.

Section 4.5 provides the results, and the discussion is given in Section 4.6.

4.1 Introduction

We introduce Probabilistic HoughNets in order to combine information from a number

of voting elements1. Our examples below are on the estimation of the camera parame-

ters z based on detections of multiple objects {xi} in a scene. Each voting element i has

a local descriptor xi, and provides evidence via a mixture of Gaussians in the Hough

space for the instantiation parameters z. With Hough transforms, the predictions of a

1We use the terminology from Barinova et al. (2012).

55

56 Chapter 4. Probabilistic HoughNets

voting element can lie (in the noise-free case) on a low-dimensional manifold in Hough

space. When noise is present the manifold is “fuzzed out” in the remaining dimensi-

ons. In our case for the problem of the camera estimation, a 1D manifold arises from

the trade-off between the distance of an object from the camera and the camera’s focal

length (or zoom) in creating an object image of a given size. Each detection provides

one such manifold, and by intersecting them (probabilistically) we reduce the uncer-

tainty on the camera parameters. Standard approaches for camera pose estimation use

either known objects (e.g. checkerboards) or exploit structure like the vanishing points

of lines in the scene, but these are not available in our scenes.

The Hough transform (HT) is a classic computer vision algorithm dating back to 1962

(Hough, 1962). It was originally proposed for detecting lines, but was then generali-

zed by Ballard (1981) to arbitrary templates. A classic Hough example would be the

evidence provided by a point xi in 2D about the parameters z of a straight line passing

through that point, and the combination of this information across different points to

provide evidence about straight lines in the data.

Let the set of voting elements {xi} be denoted by X . Stephens (1990) pointed out how

the HT can be made probabilistic by writing

p(z|X) =
p(z)p(X |z)

p(X)
=

p(z)
p(X)

n

∏
i=1

p(xi|z), (4.1)

assuming that the xi’s are conditionally independent given z. By taking logs of this

equation Stephens shows how terms involving log p(xi|z) can be added up, mirroring

the standard Hough space accumulator. If x is high dimensional (e.g. an image patch)

and z is low dimensional it makes more sense to model p(z|xi) rather than p(xi|z).
Applying Bayes’ theorem again to eq. 4.1 we obtain

p(z|X) ∝
∏

n
i=1 p(z|xi)

p(z)n−1 , (4.2)

ignoring terms involving p(X) or p(xi) which are fixed given the image evidence. This

argument in eq. 4.2 was given in Allan and Williams (2009, §3.5) and Barinova et al.

(2012). Gall et al. (2011) used random forests to also predict (in our notation) p(z|xi),

and were able to obtain good results for problems of object detection, tracking and

action detection. Their method makes predictions in Hough space for each xi as a set of

Gaussians at xi-dependent locations, and then uses a probabilistically incorrect method

of summing the predictive densities (rather than their logs); as explained in Allan and

Williams (2009, §3.5) this can be seen as an approximation due to robustification.

4.2. Probabilistic HoughNets 57

4.2 Probabilistic HoughNets

Figure 4.1: Left: The density plot predicted by a CNN given one voting element; the

dots are Gaussian means, ellipses show standard deviations; and the colour shows the

overall density. Right: combining multiple PHNs; green dot is the GT, red dot is the

MAP.

Figure 4.1 (left) illustrates a prediction in the Hough space given one voting element,

represented as a mixture of Gaussians; these predictions are then combined to give a

final predictive distribution for z. To obtain a point estimate we can then find its mode,

Maximum a Posteriori (MAP).

The Probabilistic HoughNet represents p(z|xi) using a mixture of Gaussians with the

means {µµµ j} arranged in a grid in Hough space:

p(z|xi) = ∑
j

c j(xi)N (z|µµµ j,ΣΣΣ), (4.3)

where j is an index over the grid, and the c j(xi)’s are x-dependent mixing coefficients.

These are estimated by using a softmax layer at the output of a deep convolutional

neural network, as in a mixture of experts (Jacobs et al., 1991), but where only the

mixing proportions but not the µµµ j’s or ΣΣΣ depend on x. We train the neural network

by maximizing the log-likelihood of the ground-truth instantiation parameters given a

voting element.

If the Hough space dimension d is high and there are N components per dimension in

the grid, then the softmax layer will have Nd outputs parametrized by a large number

58 Chapter 4. Probabilistic HoughNets

of weights, which could lead to overfitting. In this case one can make use of the chain

rule, e.g. splitting z into z1∪ z2 and then writing p(z|xi) = p(z1|xi)p(z2|z1,xi). In this

fashion the exponential scaling of the softmax outputs with d can be mitigated.

We use a grid-based representation of the {µ j}s in all dimensions in the experiments to

show how to deal with complex multimodal distributions, and to confirm the efficiency

of our method even when predicted distributions have a large number of components,

e.g. when a PHN would predict a 3-dimensional manifold in a higher dimensional

space. Instead of using a grid in Hough space as in eq. 4.2 it would be possible to use

a more general mixture of experts framework where the µµµ j’s and respective covariance

matrices depend on the input; this would likely require fewer experts but would make

the PHN networks much more complex and difficult to train.

An important aspect of the Hough transform is the ability to deal with outliers; this can

be handled by robustification, replacing p(z|xi) in eq. 4.2 with γp(z|xi)+(1− γ)p0(z)
for γ ∈ [0,1], where p0(z) is a broad prior over z-space, i.e. :

p(z|X) ∝
∏

n
i=1(γp(z|xi)+(1− γ)p0(z))

p(z)n−1 . (4.4)

The outputs from eq. 4.3 are combined as per eq. 4.4, and inference is carried out by

seeking the mode zMAP of log p(z|X) by using BFGS hill-climbing search. The details

are given in the next section.

4.2.1 Finding the MAP of the Joint Posterior:

The density p(z|X) in eq. 4.2 is a product of several densities that are each a Gaus-

sian Mixture Model (GMM). Although a product of two GMMs is still a GMM, the

resulting product cannot be computed directly (even for only a few observations) due

to the exponential scaling of the number of components. In the PHNs framework the

whole computation given the terms obtained from single PHNs is exact. We maintain

the functions p(z|xi) and p0(z), and do not create the mixture with O(Ndn) compo-

nents explicitly. For each observation i we obtain p(z|xi) from a PHN and we store

associated GMM coefficients. To search for zMAP, we can then evaluate the function at

any point and obtain the gradient using Automatic-Differentiation (AD). The deriva-

tive is with respect to only d variables, so it is quick to compute by AD. The gradient

4.2. Probabilistic HoughNets 59

may be also used for efficient sampling from p(z|X), such as Hamiltonian Monte Carlo

(Neal, 2010).

To search for zMAP, we perform the BFGS hill-climbing in the log-space, i.e. we max-

imize log p(z|X). We first find the maximal value of the target function at the locations

of all the Gaussians. We then start the hill-climbing multiple times, from all the Gaus-

sian centres at which the target function value is larger than a certain fraction of the

maximal value found initially.

4.2.2 Probabilistic Chain Rule within PHNs

In a case of a multidimensional grid-based GMM, it may be undesirable to make pre-

dictions directly in the d-dimensional Hough space, as this has O(Nd) mixture com-

ponents, where N is the average number of components per dimension. Assuming the

number of hidden units in the layer before the softmax one is on average U , the number

of weights in the softmax layer is O(UNd), which would likely lead to over-fitting.

Fortunately PHNs allow us to decompose a single PHN that models p(z|xi) into a num-

ber of simpler networks via the probabilistic chain rule. We decompose our network

which in a direct 3D case has O(UN3) weights into two networks with a GMM of

dimension 2 and 1 (e.g. 2D: height h and angle α, 1D: angle of view ω), so O(UN2 +

UN) = O(UN2) weights. The resulting networks are conditional, where one needs to

iterate through the grid of the variables that the network is conditioned on to create the

full prediction, the details of this decomposition-composition procedure are given in

the next two sections. In general we can decompose any grid-based PHN to a single

PHN for each dimension, leading to a total of O(dUN) weights in the last layers. Thus

using more but smaller networks we can obtain a GMM which if predicted directly

would lead to a network that would have too many weights compared to the dataset

size we have.

4.2.2.1 PHN Decomposition

We use the following decomposition of a PHN modelling p(z|xi), where z = z1∪ z2:

p(z|xi) = p(z1,z2|xi) = p(z1|z2,xi)p(z2|xi). (4.5)

60 Chapter 4. Probabilistic HoughNets

We note that we need a decomposition-composition procedure to produce the whole

PHN network, as we do not simply multiply the values, but create the whole density

that represents the product in the whole space. We decompose the full PHN H =

p(z|xi) into two PHNs:

H1(z1|z2,xi) = p(z1|z2,xi), (4.6)

H2(z2|xi) = p(z2|xi). (4.7)

H1 predicts the probabilistic vote conditioned on the observation and a Hough space

variable (or a set of variables) z2 given which there is a simpler solution.

4.2.2.2 PHN Composition

Suppose dim(H1) = d1 and dim(H2) = d2, with dim(H) = d = d1 + d2. We want to

compose the GMM obtained from H1 whose components are indexed by (iz1) and H2

whose components are indexed by (iz2) into a d-dimensional GMM represented by H

and indexed by (iz1, iz2). We can obtain H = H1⊗PHN H2 representing the density

p(z|xi) from these two models as follows: we iterate through the values in the z2

dimension at the positions of the components as defined by the grid, denoted by z2(iz2).

Then we evaluate H1 by conditioning on each of these values, obtaining Nz2 GMM

slices in the z1-space. We also predict GMM in the z2-space using H2. The GMM

mixing coefficients are given by:

H(iz1, iz2|xi) = H1(iz1 |xi,z2(iz2))H
2(iz2|xi), (4.8)

which directly represents a probability distribution in the desired grid, where each

component mean is at the location of respective indices and the covariance matrix is

the same as before the decomposition.

4.3 Exact Solution for the Camera Latent Variables

We use PHNs as per eq. 4.2 to find the most likely camera configuration. This section

analyses the solution for camera parameters given the view-dependent (projected) va-

riables of an observed object. This allows us to understand the expected shape of the

votes in the Hough space.

4.3. Exact Solution for the Camera Latent Variables 61

4.3.1 Motivation

Although the view-point at which objects are observed provide clues for the camera

parameters, one may notice that the mapping from observed object to camera para-

meters is not straightforward, as the view of an object is affected by its position in

the image frame. For example different sides of an object can be visible as shown

in Figure 4.2 (right) when using a standard pin-hole camera model with perspective,

even though the global rotation of each object in the scene frame is the same (left).

For a given focal length, we know how the view of a given object is affected due to

its position in the image frame. The shorter the focal length, the larger the deviation

of the viewpoint of the observed object. The view elevation angle at which an object

is visible provide clues about the camera elevation (camera tilt), while the size of the

object provide clues about the camera height. In the next section we derive a solution

for the camera parameters given the observed object.

Figure 4.2: Left: 3D scene (orthogonal view), right: differing appearances of identical

objects (blue pillars) at the same global rotation when using a pin-hole camera with

perspective.

4.3.2 Angle of View vs Focal Length

Figure 4.3 presents the scene projection diagram. The camera parametrization

is zcam = (α,h,ω): camera elevation, camera height, and angle of view, as described in

Section 3.2.2.1. In the figure one can see that the focal length f and the angle of view

(AoV) ω are related as follows: f = a0/(2tan(ω/2)), where a0 is the known sensor

size.

The main reason for choosing the AoV parametrization rather than the focal length is

62 Chapter 4. Probabilistic HoughNets

that it is easier to interpret, as the AoV is very related to the property of interest: the

zoom. The AoV does not depend on the sensor size, and AoV is easier to model as in

general the range is bounded by (0,180◦). The focal length is not bounded as its range

is (0,+∞), the viewpoint depends on the sensor size, the value is not easy to interpret

even if we know the sensor size. Therefore, we initially use the focal length as this

allows to derive the analytical solution, and then we express it using the AoV. Since

AoV is a monotonic function of the focal length, the 1D shape of the manifold still

holds.

4.3.3 Solution

y

z
pppplane

ppp

(0,h,0)

f a0

dyz
1

dyz
2

∆y1

∆y2

zview
1

(x1,0,z1) (x2,0,z2)

zview
2

α

α

ψview
1 ψview

2

∆ψ2
∆ψ1

ω

Figure 4.3: Different observed view elevations (ψview
1 , ψview

2) for two objects. The focal

length is denoted by f and the principal point by ppp. The sensor size is denoted by a0.

Figure 4.3 depicts camera parameters and several observed angles. The y-axis points

upwards, the objects are located on the x-z plane, where the x coordinate controls

left/right object positioning, and z coordinate controls the depth. The diagram is a

projection of the scene along the x-axis onto the y-z plane.

Importantly, we can derive the solution in the projected configuration and disregard va-

lues of the x-coordinates. This is due to several reasons outlined below. As the camera

elevation is defined as the rotation around the x-axis, hence all the elevation angles of

our interest lie also in the y-z plane. Due to the pin-hole camera properties and no

camera roll (in-plane) rotation, the projected object size does not change when shifting

an object along the x-axis. This also does not affect any of the depicted viewpoint

4.3. Exact Solution for the Camera Latent Variables 63

variables, as these are defined as the rotation around the camera’s x-axis, which is the

same as the global x-axis.

To derive the dependencies between object view and camera variables, we will first

define all additional variables used in Figure 4.3.

– The object contact point (o denotes the o-th object) in the 3D scene is given by

(xo,0,zo) .

– The view-dependent (projected) object variables are: deviation vector along y-

axis from the principal point ppp to the contact point in the image frame ∆y, view

elevation (ψview
o) and projection scale sview

o for each object o. As these can be

measured in the image space given a known shape and a constant size of an

object, these can be predicted, e.g. by a neural network.

– Deviation of the viewpoint elevation angle from the elevation angle at which an

object located in the centre would be observed is denoted by ∆ψo. This is defined

as the angle around the camera origin, between the principal point and the object

contact point. see Figure 4.3. This angle can be calculated using ∆y.

– The distance projected onto the y-z plane of the object o to the camera origin at

(0,h,0) is given by dyz
o .

– The depth of the object zview
o is the distance from the camera at (0,h,0) to the

projection of contact point (x0,0,zo) on the line (camera origin – principal point

p – pplane) and is denoted by zview
o = dyz

o cos∆ψo.

Since we assume a pin-hole camera, the actual object’s size is inversely proportional

to the depth of the object zview. However, as the focal length f is unknown, we can

directly predict only the scale of the projection sview = f
zview (Szeliski, 2010, page 57).

If the object size is not constant, this introduces the noise around the exact solution for

the mean object size. Below we present the relations between the camera and the view

variables. The relations between the angle variables can be easily seen in Figure 4.3.

First, we can note ∆ψo can be calculated from the f –∆yo triangle (o denotes the o-th

object):

∆ψo = arctan
∆yo

f
. (4.9)

The camera elevation angle is the view elevation of an object excluding the additional

influence of the viewpoint due to the elevation deviation. However, note ∆ψo rotation

64 Chapter 4. Probabilistic HoughNets

is anticlockwise, while the other angles, ψview
o and α, are clockwise. Therefore, we

multiply ∆ψo by −1 so as the usual sum of absolute angles holds as can be observed

in the diagram, thus:

α = ψ
view
o − (−1)∆ψo = ψ

view
o +∆ψo. (4.10)

From the triangle origin–camera–contact point (xo,0,zo) we have:

h = dyz
o sinψ

view
o . (4.11)

We know the formulas for object’s depth:

sview
o

def
=

f
zview

o
=⇒ zview

o =
f

sview
o

. (4.12)

But from the diagram in Figure 4.3 we also have that

zview
o = dyz

o cos∆ψo (4.13)

thus the distance and the camera height are given by

dyz
o =

zview
o

cos∆ψo
=

f
sview

o cos∆ψo
. (4.14)

Substituting eq. 4.14 and eq. 4.9 into eq. 4.11 we obtain

h = dyz
o sinψ

view
o =

f

sview
o cos(arctan ∆yo

f)
sinψ

view
o =

=
f
√

1+(∆yo
f)2

sview
o

sinψ
view
o =

√
f 2 +∆yo2

sview
o

sinψ
view
o . (4.15)

Assuming we know the object view variables (no-noise setup), the camera elevation

angle α and the camera height h for a single object, given the unknow focal length f

and other known variables, are given by:


α = ψ

view
o + arctan

∆yo

f
, (4.16)

h = sinψ
view
o

√
f 2 +∆yo2

sview
o

. (4.17)

Since f is a function of ω, i.e. f = a0/(2tan(ω/2)), where a0 is the known sensor size,

we obtain (where we can vary ω):
α = ψ

view
o + arctan

2∆yo tan ω

2
a0

, (4.18)

h =
sinψview

o
sview

o

√(
a0

2tan ω

2

)2

+∆yo
2. (4.19)

4.3. Exact Solution for the Camera Latent Variables 65

The equations above give us the solutions for the camera parameters that we aimed to

find. There are three variables and two equations, so possible solutions for an object of

the constant scale in the 3D scene are represented by a curve, as the focal length f (eq.

4.16, 4.17) or AoV ω (eq. 4.18, 4.19) is unknown. Hence, we need to aggregate the

solutions obtained from all objects to obtain a single prediction, and also to increase

the predictive accuracy.

Above we have assumed that objects are of constant size, thus the solution is a curve.

However, as we impose a prior on the scaling factor, we accept some variability in

object size. The predicted camera configuration will produce a likely scene, still main-

taining realistic object scales.

Figure 4.6 presents a few votes in the Hough space. From the top view (α× f coordi-

nates), each vote has an asymptote at α which value is equal to the estimated elevation

angle ψo (see eq. 4.16).

4.3.4 Practical Example

Below we compare two examples of the voting for prediction of camera latent variables

in the Hough space. Figure 4.5 presents a single scene configuration together with two

different cameras that produce the renders shown in Figure 4.4.

Image 1 Image 2

Figure 4.4: Renders of the scene using Camera 1 and Camera 2. The plates are all of

the same size.

The observed variables used for voting are: size sview, view elevation ψview, y-deviation

∆y. The deviation from the image centre ∆y is given as a fraction of the image height.

Note sview is proportional to the observed width (diameter) of a plate, and the value of

66 Chapter 4. Probabilistic HoughNets

Camera 2

Camera 1

Plate 1 Plate 2 Plate 3

Figure 4.5: A side view of the 3D scene.

sview and then the camera pose can be calculated due to a fixed and known 3D size of

each plate.

The plates are enumerated starting from the bottom of the image. Table 4.1 provides

values of the latent variables read out approximately from the rendered images.

Object variables, Image 1 variables, Image 2

Camera α = 30◦,h = 0.75, f = 35mm α = 20◦,h = 1.5, f = 70mm

Plate 1 ∆y =+0.00,

ψview = 30◦,

sview = 4.5

∆y =−0.25,

ψview = 25◦,

sview = 3.5

Plate 2 ∆y =+0.25,

ψview = 15◦,

sview = 2.5

∆y =+0.00,

ψview = 20◦,

sview = 2.5

Plate 3 ∆y =+0.35,

ψview = 10◦,

sview = 1.5

∆y =+0.17,

ψview = 15◦,

sview = 2.0

Table 4.1: Scene configuration (GT Camera) and measured view variables (approxi-

mate).

Figure 4.6 shows plots of the votes in the Hough space using variables from Table 4.1

within eq. 4.16 and 4.17, with artificial noise added. The votes intersect each other,

and very close the GT camera parameters, even though the values of the variables are

approximate. Note the camera elevation and height are estimated correctly, with all the

votes passing through the circle-mark representing the GT camera parameters.

4.4. Experiments 67

Image 1 Image 2

Figure 4.6: The voting in the Hough space. Camera ground-truth latent variables are

located at the circle-mark. Lines of each colour represent votes of each plate. They

represent votes at the detected distance and angle with the following ranges of the

errors, visualizing uncertainty: [−10%,+10%] of the camera height h, and [−2◦,2◦] of

the camera elevation angle α.

Conclusion: we expect the votes for the camera to be noisy 1-dimensional manifolds,

where the noise comes from the noise or errors in predictions and noise due to the

variable object size.

4.4 Experiments

We consider two cases: one with a single solution, and another with multiple solutions,

i.e. 2D and 3D cases. We refer to a ‘3D case’ when we consider predictions in (α,h,ω)-

space. When we know or have already predicted the camera AoV and predict in (α,h)-

space given the AoV, we refer to it as a ‘2D case’. They are of a different nature, as

the noise-free 2D solution is a point, while for 3D, the solution is a 1D manifold.

In this section we discuss the experimental set-up. First, we provide the details of

the Hough space and of the GMM within PHNs. We then introduce a re-projection

error used for the evaluation of the MAP, and provide details of computation of the

log-likelihood. Finally, we describe the configuration of neural networks and of the

68 Chapter 4. Probabilistic HoughNets

Figure 4.7: Left: Probabilistic HoughNets framework (see Section 4.4.5 for details). Gi-

ven the detected object, the input to a PHN is the image patch plus position (xview
o ,yview

o)

of the image patch and size sview
o (projection scale) of the object. The PHN consists of

VGG layers (fixed), and convolutional and fully connected layers trained on top. The

output are the mixing coefficients of the Gaussian mixture model. The density plots

represent predictions in (α,h)-space conditioned on ω; the dots are Gaussian means,

ellipses show standard deviations; Right: combining multiple PHNs; green dot is the

GT, red dot is the MAP.

training procedure.

4.4.1 The Hough Space Used in the Experiments

The size of the grid where GMM means are located that represent (α,h,ω)-space is

NαNhNω = 9×15×10, a total of 1350 components. The spacing between components

are (∆α,∆h,∆ω) = (10◦,10cm,4◦). The parameter γ (see Equation 4.4) of the robust

model was set to 0.50 and the prior is uniform in the Hough space. See Figure 4.7 for

the visualization of the approach for the 2D case.

We represent the camera LVs as mixture of Gaussians in 3D space, which allows us to

illustrate how PHNs can handle complex or multimodal distributions. In our case we

decompose the PHN using the chain rule (see sec. 4.2.2) into two PHNs: H1 predicts

p(α,h|xi,ω), as a GMM with means located in the grid of centres of size NαNh, and

H2 predicts p(ω|xi) with a grid of size Nω.

4.4. Experiments 69

Figure 4.8: A simple one-dimensional PHN composed of two Gaussians (in black co-

lour, with the mean at -1 and 1) for three different standard deviation scaling factors

β. The mixing proportions of the Gaussians are equal, together they sum up to the

magenta distribution. In the leftmost plot β = 0.4 does not create a mode between the

Gaussians, β = 0.5 produces a flat peak, β = 0.6 produces a distribution with the mode

between the two components.

The covariance matrices of the Gaussians for H1 and H2 are respectively:

ΣΣΣ1 = β
2diag(∆2

α,∆
2
h), (4.20)

ΣΣΣ2 = β
2
∆

2
ω. (4.21)

The standard deviation scaling factor β is a global single value applicable to all PHNs.

The β factor defines the standard deviation in a given dimension as a fraction of a

distance ∆ between Gaussian components, i.e. σ = β∆, thus:

β = σ/∆. (4.22)

Note β = 1 would correspond to the distance between the components on the grid,

and would produce distributions that are too blurred. Setting β to lower values, such

as 0.4, would prevent the GMM from obtaining modes between the components, see

Figure 4.8. We have found β = 0.6 to produce smooth distributions which are not

blurred. We can note that the borderline β to obtain a mode between the components

is approximately 0.5. Figure 4.8 visualizes only a one-dimensional case. The analysis

in Section 4.4.2 shows that β = 0.5 is the exact critical value for the centre point of a

Gaussian hypercube.

70 Chapter 4. Probabilistic HoughNets

4.4.2 Critical Value of β for Obtaining a Maximum

The analysis below provides the derivation for which β the local maximum is obtained.

This is examined at the centre point of a Gaussian hypercube.

We consider a Gaussian hypercube, composed of 2D D-dimensional spherical Gaus-

sians (ΣΣΣ = diag(σ2,σ2, ...,σ2)) located at µµµ = (±1,±1, ...,±1). Note for D = 1 this

results in two one-dimensional Gaussians, analogously to the set-up considered in Fi-

gure 4.8.

Let γ = 1/σ2, so ΣΣΣ
−1 = diag(γ,γ, ..,γ). The density and its first and second partial

derivatives are as follows:

p(x) = c
2D

∑
i=1

e−
γ

2 |x−µµµi|2, (4.23)

∂p
∂x j

=−c
2D

∑
i=1

γ(x j−µi j)e−
γ

2 |x−µµµi|2, (4.24)

∂2 p
∂x j∂xk

=

c∑
2D

i=1 γ2(x j−µi j)(xk−µik)e−
γ

2 |x−µµµi|2 for j 6= k,

c∑
2D

i=1(γ
2(x j−µi j)

2− γ)e−
γ

2 |x−µµµi|2 for j = k,
(4.25)

∂2 p
∂x j∂xk

∣∣∣
x=0

=

c∑
2D

i=1 γ2µi jµike−
γ

2 |µµµi|2 for j 6= k,

c∑
2D

i=1(γ
2µ2

i j− γ)e−
γ

2 |µµµi|2 for j = k.
(4.26)

Let ce−
γ

2 |µµµi|2 = a. Note that ∑
2D

i=1 µi jµik = 0 due to symmetry, and µ2
i j = 1, so:

∂2 p
∂x j∂xk

∣∣∣
x=0

=

0 for j 6= k,

a∑
2D

i=1 γ(γ−1) for j = k.
(4.27)

The Hessian matrix is diagonal with the same values on the diagonal, thus there is

always a minimum or maximum in the centre x = 0. The critical value of the inflection

is when γ(γ−1) = 0, i.e. for γ = 1. Thus the critical σ and β are as follows:

γ
def
= 1/σ

2 = 1 implies σ = 1, (4.28)

hence

β
def
= σ/∆ = σ/(1+1) = 1/2 = 0.5. (4.29)

Thus the critical β is equal 0.5 for D ≥ 1. Summing up, β higher than 0.5 should be

used for all PHNs of any dimension.

4.4. Experiments 71

4.4.3 Evaluation using Re-Projection Error

In addition to average log-likelihood of the camera parameters, we evaluate our camera

calibration using the re-projection error at the MAP prediction. This task is carried out

by placing a known object (often a checkerboard) with a set of K 3D points in the scene

at a known location, and comparing the actual locations of these points in the image to

those predicted by the estimated projection matrix.

Figure 4.9: Re-projection error, where the green checkerboard is the ground-truth, the

magenta one is the prediction, and the pink lines show the errors. The white background

is the image frame and the grey one lies outside it. Examples of re-projection error (from

left): 6.5% and 2.0% of the image width (for illustration only).

Since we know the projection matrix of both ground-truth camera, Pgt , and of the

predicted camera, P, we can place a checkerboard (virtually) in the scene, namely in

the front of the view with a maximum size that fits the ground-truth image. Thus we

know the exact positions of the grid-points in the world coordinates, W. We also know

the projection of the grid-points in the image frame using the ground-truth camera,

wgt = PgtW and the ones obtained using the camera predicted by PHNs, w = PW.

The re-projection error is simply the RMSE of a deviation of the checkerboard grid-

points in both images where wgt and W are fixed, i.e.:

E(P) =

√√√√ 1
K

K

∑
k=1
|wk−wgt

k |2. (4.30)

We express the re-projection error in the image frame units: the RMS deviation is given

in a percentage of the image frame width. Figure 4.9 shows the examples of overlaid

checkerboards using ground-truth and predicted cameras.

72 Chapter 4. Probabilistic HoughNets

4.4.4 Integration for Log-Likelihood Computation

To perform inference to find the MAP value of the joint posterior p(z|X) as in Equa-

tion 4.2 we do not need to find the normalizing constant. However, we need it to

compute the log-likelihood for the purposes of evaluating the framework.

We wish to compute the normalizing constant 1/Z(X) for the RHS of Equation 4.2.

We estimate Z(X) by numerical integration of the predicted density in the z-space.

The function was implemented in C to make the computations faster, and we experi-

mented with integral computation using classical quadrature. We found that in the 3D

case it was not converging at all in a reasonable time even for a single prediction, and it

would be much too slow to evaluate all test examples. This integration method would

be even slower for dimensions above 3. Therefore, we evaluate the 2D and 3D cases

integral using Monte Carlo integration by sampling from the Hough space.

One can sample uniformly in Hough space, but for faster convergence we use Impor-

tance Sampling MC integration, where the auxiliary density is obtained as follows: we

first evaluate the function on a hypercube centered around each Gaussian. We then de-

fine a d-dimensional histogram (normalized to sum to 1) with the weight in each cell

being mean value of the function around each Gaussian centre. This leads to sampling

a few orders of magnitude more frequently in the regions of a high density.

Importance Sampling (IS) results in a significant speed-up relative to

uniform sampling. We conducted an additional comparison for the 2D case, where

we can evaluate the ground-truth integral to a high precision using a Python method

scipy.integrate.dblquad that executes a quadrature from the Fortran library

QUADPACK. Figure 4.10 shows the relative error plotted against the number of function

evaluations on a log-log scale. We can note that for 1% relative error, we need to eva-

luate the function only 5k times when using IS, as opposed to around 500k in the

uniform approach. The slopes of the lines are close to −1
2 , as is expected for Monte

Carlo integration where the error decreases as N−
1
2 , where N is the number of function

evaluations. As can be seen from the plot, the error after the same number of function

evaluations is one order of magnitude lower for IS over uniform, and as the error de-

creases with a square root of the number of function evaluations, integration is two

orders of magnitude faster. This allows us to accurately estimate a single integral in a

few seconds, rather than minutes.

4.4. Experiments 73

Figure 4.10: Average error over the test set using a uniform sampling (red) and IS

(black) in the 2D case.

4.4.5 Neural Networks Set-up

Table 4.2 shows the network configurations and learning rates used for training. We

use all 13 convolutional layers of VGG-16 as the fixed core, and the set-up is the same

as in Section 3.4.2. Again, we concatenate the input to the first fully connected layer

with (xview
o ,yview

o ,sview
o) of a patch, and for the H1 network, also with the standardized

value of ω that it is conditioned on.

The networks are implemented in Lasagne/Theano, and trained using the Adam opti-

mization algorithm (Kingma and Ba, 2015) with the learning rate of 0.001. Both the

Adam optimizer and use of tanh activations appeared to be crucial for a proper con-

vergence. When keeping β = 0.6 fixed, training finds a local optimum where only a

subset of the Gaussians are activated, usually these near to a large number of training

points. A better convergence was obtained when the network was pre-trained using a

lower standard deviation scaling factor β (as used in eq. 4.20 and 4.21) to encourage

the network to activate all Gaussian components. During the first half of the training

we divide the standard deviations by two, thus we first set β = 0.3, and in the second

half of the training we use β = 0.6.

74 Chapter 4. Probabilistic HoughNets

Resolution (outgoing) PHNs

H1 H2

128×128×3 RGB Image

16×16×512 VGG-16 (all 13 conv. layers – fixed)

11×11×50 C-50-6 C-50-6

6×6×50 C-50-6 C-50-6

1×1×50 C-50-6 C-50-6

F-50 F-30

F-30 F-30

Softmax-135 Softmax-10

Table 4.2: The configurations of the PHN networks, these are 19 layers deep. Layer ty-

pes are: C – Convolutional, F – Fully connected, and Softmax. The layers are described

as follows: F - number of units; C - number of filters - filter size.

4.5 Results

We first provide illustrative examples in Section 4.5.1, with exemplary density plots

of predictions in the Hough space. We analyse the properties of the combinations of

predictions for both 2D and 3D cases.

Then we describe the set-up of the quantitative evaluation for the realistic synthetic

dataset in Section 4.5.2. To this end we introduce several baselines and CNN-based

comparators that make use of the same hidden layers architecture as the PHNs.

The main results are given in Section 4.5.3. We show that the PHN predictions outper-

form all the other approaches. Since all the methods use the same network architecture,

PHNs’ advantage lies in the method for combining of multiple probabilistic votes. Fi-

nally, in Section 4.5.4 we investigate in detail how the Single-PHN predictions and

their mean error (per image) compare with their Multi-PHNs combination.

4.5.1 Examples

2D case Figure 4.11 shows two example scenes, for each scene we show single

object predictions in the 2D Hough space, and the Multi-PHNs prediction (bottom right

4.5. Results 75

in each panel). Notice that in the Multi-PHNs plots the uncertainty has significantly

decreased compared to single observation plots, so the model works as desired. Even

in the cases of lower likelihood, the MAP is very close to the ground-truth. In the

bottom example note that the outlying prediction ‘Single 1’ (due to a false positive

detection of an object) does not corrupt the final result, due to the outlier model.

Figure 4.11: Two examples of PHNs prediction; the density sub-plots are in the (camera

elevation, camera height)-space. Each density sub-plot is the prediction for a single

observation, apart from the bottom-right sub-plot, which shows the joint density of the

multiple observations. The ground-truth is denoted by a green circle, the MAP by a

magenta circle.

3D case Figure 4.12 presents examples of prediction for the 3D case. We may notice

in the plots that predictions are significantly more accurate after observing all objects.

Note there is always a high density at the ground-truth. Sometimes a single camera

AoV cannot be determined and a prediction is the whole or a part of the manifold (top

row), then ground-truth may be farther from the MAP, but the MAP camera is still

located on the manifold, so it results in a similar image, just using a different AoV and

76 Chapter 4. Probabilistic HoughNets

camera pose (e.g. a camera located two times higher, but with two times larger zoom).

In the bottom row the object configurations more tightly constrain the posterior.

Figure 4.12: Examples of prediction. For the observed image (left), the plot in the

middle shows a randomly selected example of a prediction for a single observation, the

right plot shows the joint density with multiple observations. The density is represented

as a 3D Hinton plot: the space is divided into voxels and each cube lies in the centre of

a given voxel. The cube volume and colour-coding represents the amount of the density

mass within a single voxel. The ground-truth is denoted by a green ball located at the

intersection of green guiding-lines. For ‘Multi’, the magenta ball is the MAP.

Qualitative Examples for Real Images The examples of predictions for real images

are given in Chapter 3, in Figure 3.12 and Figure 3.13, for which we considered the

full 3D case set-up. Note the predicted view-points are very accurate, and include both

low and high camera elevation view-points, such as the ones shown in the right column

of Figure 3.13 (for instance see the first three rows).

4.5. Results 77

4.5.2 Quantitative Evaluation

We use the same training dataset of 7 thousand images as used in Chapter 3. We

perform a quantitative evaluation of PHNs on the same synthetic test set of two hundred

images. We evaluate the quality of the predictions via the average predictive log-

likelihood, and through the average re-projection error.

Baseline As a simple baseline (‘Baseline’) we use the prior density p0(z), and the

mean of z on the training set as a point estimate.

CNN predictor To demonstrate that object-based PHNs are superior to standard CNNs,

as a non-trivial comparison we use a CNN predictor which takes the whole image as

input and predicts z. This is based on the VGG-16 architecture using the same confi-

guration of all the hidden layers as the PHN network, where there are sigmoid outputs

(scaled to match the Hough space size) for each camera LV. We use the predicted va-

lues to evaluate the Re-projection error. To evaluate the log-likelihood for this CNN

p(z|X) is modelled as a full covariance Gaussian estimated from the error residuals,

robustified by including a term (1− γ)p(z) as we do for PHNs to avoid paying a high

penalty for outliers. We use separate CNNs and covariance matrices of error residuals

for 2D and 3D cases.

Object-based CNN predictor To demonstrate that PHNs are superior to CNNs even

if also applied in the per-object manner, we introduce a strong comparator that makes

predictions per object and aggregates the votes using the median function. The CNNs

hidden layers are again the same as for PHNs, and two separate networks are trained to

regress the parameters for 2D and 3D cases, and the median of the single predictions

(‘Single-Regression’) per variable is applied to aggregate the votes to produce a ‘Multi-

Regression’ prediction.

For these CNNs (also robustified), p(z|X) is modelled as a full covariance Gaussian in

2D and in 3D. Note for Single-Regression, the error residuals are of the errors made by

the Single-Regression. For Median-Regression the errors are lower, as these are obtai-

ned after the aggregation, hence with tighter covariance matrices. Figure 4.13 com-

pares single-Regression covariance matrix (of error residuals, left column) vs Multi-

Regression (right column). In both plots the Gaussian tries to cover the whole mani-

fold, for the Median case it is narrower.

78
C

hapter4.
P

robabilistic
H

oughN
ets

Case Evaluation metric Baseline CNN Single-Regr. Median-Regr. Single-PHN Multi-PHNs Multi better

2D
Log-likelihood −9.51 −8.36 −7.58 −6.96 −7.65 −6.18 94%

Re-projection err. 9.62 4.95 3.79 2.71 3.85 2.41 91%

3D
Log-likelihood −13.20 −12.79 −12.52 −12.35 −11.33 −10.18 77%

Re-projection err. 9.62 5.64 4.82 4.02 4.91 3.30 86%

Table 4.3: Results: average log-likelihood and re-projection error for Baseline, CNN, Single-Regr., Median-Regr., Single-PHN and Multi-PHNs.

Re-projection error is given in % of the image width. The last column shows for each evaluation metric the percentage of images where PHNs

predictions after observing multiple detections are better than the average of single PHN predictions.

A B C D

Figure 4.13: Covariance matrices for Single-Regr. (A) and Median-Regr. (B), and the robustified versions (C and D, respectively).

4.5. Results 79

4.5.3 Results: Comparison of the Methods

Table 4.3 shows the quantitative results of all the compared methods. For log likelihood

a higher value is better, while for re-projection error lower is better. For the Single-

Regression and Single-PHN columns the results are averaged over all detections in a

scene, as well as over scenes.

For both the 2D and 3D cases PHNs clearly make better predictions after observing

multiple detections. The last column “Multi better” shows for each evaluation metric

the percentage of images where PHN predictions after observing multiple detections

are better than the average of single PHN predictions.

Note that the Single-PHN method that processes a single detection outperforms the

CNN method that takes as input the whole image. The re-projection error (3D case) is

4.91 (Single-PHN) vs 5.64 (CNN), and is noticeably lower (3.30) given all the detecti-

ons.

PHNs are also better than the strongest comparator, Median-Regression, here the re-

projection error is approximately 11% lower for the 2D case, and 18% lower for the 3D

case. Note Single-PHN re-projection error results are very similar to Single-Regression

due to the same input and neural network architecture. Thus the PHNs’ advantage lies

in combining of multiple probabilistic votes. For log-likelihood, PHNs results are also

better than Median-Regression for 2D case, and significantly better for the 3D case.

4.5.4 Detailed PHNs Results

Figure 4.14 (log-likelihood) and Figure 4.15 (re-projection error) give a detailed com-

parison of Single-PHNs vs Multi-PHNs. These are presented for both the 2D (top) and

3D (bottom) cases.

Blue dots indicate the mean Single-PHN prediction for a given image, this is to be

compared with the Multi-PHN score (horizontal axis). For the log likelihood case

higher is better, so when the Multi-PHN wins the blue dots lie below the diagonal

line. For the re-projection error lower is better, so when the Multi-PHN wins the blue

dots lie above the diagonal line. For each observed image we show all Single-PHN

predictions (grey crosses) as well as their mean (blue dot) so that the variability can be

seen.

80 Chapter 4. Probabilistic HoughNets

Figure 4.14: PHNs predictions for 2D case (top) and 3D case (bottom), of the log-

likelihood (higher better, log-log axes). Multi-PHN wins when the blue dots lie below the

diagonal line.

4.5. Results 81

Figure 4.15: PHNs predictions for 2D case (top) and 3D case (bottom) of the re-

projection error (lower better, log-log axes). Multi-PHN wins when the blue dots lie

above the diagonal line.

82 Chapter 4. Probabilistic HoughNets

4.6 Discussion

In this chapter we introduced the Probabilistic HoughNets framework for combining

probabilistic votes to infer the camera parameters given the votes cast by the detected

objects, both for uni-modal and multi-modal cases. Each detection provides one vote

in the form of a noisy low-dimensional manifold in the Hough space, and by inter-

secting the votes probabilistically we reduce the uncertainty on the camera parameters.

Importantly, the way in which the detections cause voting in the Hough space is lear-

ned from data. An outlier model allows for exclusion of corrupted predictions so as

they do not interfere with the final result.

Probabilistic HoughNets by definition can cast multimodal votes, and we have de-

monstrated that the composition of these leads to an overall improvement in perfor-

mance. For example, as shown in Figure 4.15, the re-projection errors of the combined

predictions are usually lower than the corresponding error means of the single PHN

predictions. For the uni-modal 2D case 91% of the combined predictions are better,

and these are 86% for the multi-modal 3D case. The PHNs require extra computing

time for the inference (computing MAP), for the GMM of 1350 components used in

the experiments this is approximately 1 second per object (primarily for automatic-

differentiation within BFGS hill climbing). The inference time for a whole image

scales linearly with the number of the GMM components, and thus also linearly with

the number of the detected objects. For typical images with 6 objects, this is approxi-

mately 6 seconds (standard CPU, single core).

In Table 4.3 we demonstrate the better performance of the PHNs compared to other

methods. To this end we have performed a comparison with several CNN-based appro-

aches. We demonstrate that the PHNs outperform the strongest competitor, Median-

Regression. For the PHNs the re-projection error is approximately 11% lower for the

2D case, and 18% lower for the 3D case than for Median-Regression. Since all the

methods use the same network architecture, PHNs’ advantage lies in the method for

combining of multiple probabilistic votes.

Chapter 5

Learning Direct Optimization for

Scene Understanding

Given an initialization of a scene graph, its refinement typically involves computati-

onally expensive and inefficient search through the latent space. Since optimization

of the 3D scene corresponding to an image is a challenging task even for a few latent

variables (LVs), previous work for multi-object scenes considered only refinement of

the geometry, but not the appearance or illumination.

The standard way for the refinement is to measure the error E between the predicted

render and the observed image, and use an optimizer to minimize the error. Howe-

ver, it is unknown which error measure E would be most effective for simultaneously

addressing issues such as misaligned objects, occlusions, textures, etc.

To overcome these issues, we develop a framework called ‘Learning Direct Optimiza-

tion’ (LiDO) for optimization of the latent variables of a multi-object scene. Instead of

minimizing an error metric that compares observed image and the render, this optimi-

zation is driven by neural networks that make use of the auto-context in the form of a

current scene graph and its render to predict the LV update. This allows for a smarter

refinement, for example that is robust to occlusions, and can ignore the noise such as a

mismatch in texture while refining the object pose. Our experiments show that LiDO

generally produces better solutions in shorter time than standard optimizers, and that

it is better able to handle mismatch between the data generator and the fitted scene

model.

83

84 Chapter 5. Learning Direct Optimization for Scene Understanding

5.1 Introduction

We develop a Learning Direct Optimization method for the refinement of a latent vari-

able model that describes input image x. In our system we use initialization networks

similar to the ones in Chapter 3 to predict the starting configuration of the scene graph

z0 based on x, which also serves as the initialization for all the compared methods.

The representation of the LVs consists of global and object LVs and is of variable di-

mension, i.e. z = (zGlobal,zObject
1 , . . . ,zObject

P), thus initialization networks can initialize

an arbitrary number of objects.

Due to the interpretable representation, one could easily edit the scene, e.g. refine

object positions or their colours, or interact with objects, their properties and relations,

see Figure 5.1. Note that optimization of the 3D scene corresponding to an image is a

challenging task even for a few LVs.

(a) (b) (c) (d)

Figure 5.1: (a) Real input image, (b) the reconstructed 3D scene, (c) the scene under

modified illumination and (d) from a different viewpoint.

Given a current estimate of z we can render a prediction of the image g(z), which can

be compared to the image x. The standard way to proceed is then to measure the error

E(x,g(z)) between the two, and use an optimizer to minimize the error. In contrast, the

LiDO approach trains a Prediction Network to predict an update directly to correct z,

rather than minimizing the error with respect to z. The Learning Direct Optimization

approach is based on the idea that a comparison between x and g(z) can provide good

clues as to how z should be updated. We can train a network to predict an update for

z rather than requiring an error measure E to be defined in the image space, and then

minimizing it.

5.2. Learning Direct Optimization 85

The structure of this chapter is as follows: in Section 5.2 we explain LiDO and how

it contrasts to error-based optimization, and provide a list of our contributions. In

Section 5.3 we discuss related work. In Section 5.4 we describe the latent variables,

and the initialization networks in Section 5.5. Section 5.6 gives details of the expe-

rimental datasets. Section 5.7 provides the details of the set-up of error-based opti-

mization, and Section 5.8 gives the details of LiDO set-up and network architecture.

Section 5.9 describes the evaluation measures. Finally, the results are presented in

Section 5.10, with the discussion provided in Section 5.11.

5.2 Learning Direct Optimization

Figure 5.2 gives an overview of the Learning Direct Optimization framework.

Figure 5.2: Learning Direct Optimization: given the observed image x, the initialization

of the latent variables (LVs) z is obtained – then z, the predicted image g(z) and the

observed image x serve as the input to the LiDO Prediction Network. The LVs are then

updated according to the prediction and a new render is produced. The LVs are then

refined iteratively driven by the Prediction Network.

The LiDO method trains the Prediction Network on data where the current state z
does not match the ground truth zGT . This was obtained in two ways: (i) from the

86 Chapter 5. Learning Direct Optimization for Scene Understanding

initialization network where, based on x, z0 and g(z0), one can predict zGT , and (ii) by

perturbing zGT to produce z′, and learning to predict zGT given x, z′ and g(z′). Note

that the training data requirements for a Prediction Network are similar to those needed

to train the initialization networks, and reuse the same data generator, so it has minimal

marginal cost.

Given our initial prediction z0, a standard optimization would make steps based on

some error E where E(x,g(zt)) measures the error between the image x and the cur-

rent prediction g(zt). To perform the optimization, one can use a gradient-based opti-

mization (GBO). However, due to the difficulties in obtaining gradients from a rende-

rer, much work for minimizing E(x,g(z)) has used gradient-free local search methods

such a Simplex search, coordinate descent, genetic algorithms (Stevens and Beveridge,

2001), or the COBYLA algorithm (as used in Izadinia et al. 2017).

However, it is unknown which error measure E would be most effective for simul-

taneously addressing issues such as misaligned objects, occlusions, textures, etc. In

contrast, Learning Direct Optimization procedure takes as input x, zt , and the current

prediction g(zt), as shown in Figure 5.2, and is trained to predict zpred
t+1 , the true latent

variables corresponding to x, as described in Section 5.8.

The key insight is that comparison of x and the render g(zt) may yield much more

information than simply the value of the error measure E. For example, if x contains

a mug, and the prediction of zt has the overall size and position of the mug correct,

but the pose is incorrect so that the mug handle is predicted in the wrong place, a

comparison of the two images (e.g. by subtraction) will show up a characteristic pattern

of differences which can lead to a large move in z space. In contrast, if the handle

positions are far apart, there may be no gradient information pushing z in the correct

direction. Another problem is that the optimization may be misled when the observed

image contains noisy features in a form of object textures, shadows, etc., while the

LiDO Prediction Network can learn to ignore such distractions.

Our contributions are:

1. We develop a general framework for the joint refinement of all the LVs in

a multi-object scene, including the shape and appearance of the objects, illumi-

nation and camera variables, without the need to choose a specific error metric

E to measure of the mismatch between the input image and the predicted image.

2. We show that LiDO generally produces better solutions in shorter time and is

5.3. Related Work – Refinement via VIG 87

more stable than standard optimizers, since the z-update directly targets the op-

timal z rather than simply moving downhill.

3. We show that LiDO is better able to handle mismatch1 between the data gene-

rator and the fitted scene model, in terms of synthetic vs. real images mismatch,

object shape mismatch, and mismatch due to the texture and other nuisance va-

riables.

5.3 Related Work – Refinement via VIG

The shape and appearance refinement is a long-standing problem, see e.g. Cootes et al.

(2001) for refinement of a model defined in pixel space. For 3D models, the standard

practice for refinement of the initialized scene graph is to minimize some error function

E, where the reconstruction loss is based on a summary statistics of the image pixels.

Thus refinement can be carried out by sampling from or optimization of the posterior

on z. The error could, for example, measure the discrepancy in pixel space, or in

some other feature space like the representation obtained in higher layers of a neural

network (see e.g. Kulkarni et al. 2015c). In contrast, LiDO directly predicts updates

for all different kinds of LVs together, without the need to chose a specific error metric

E.

Refinement within the VIG paradigm has been considered by several works focusing

on the specific problem of face explanation. This is a significantly simpler problem for

optimization than multi-object scene explanation, as the face (a single object) is always

present in the centre of the image and can be modelled by a single deformable mesh.

Yildirim et al. (2015) use a pixel-based error measure when sampling parameters of

a 3D face model; and Schönborn et al. (2017) develop a sampling procedure over the

probabilistic parameters of the face shape and appearance model. Hu et al. (2017) split

the problem into simpler sub-tasks and sequentially optimize the pose, shape, light and

texture parameters.

For multiple objects the problem is much more challenging, even in 2D, as illustrated

by Jampani et al. (2015) who compare various compute-intensive MCMC methods

for the relatively simple problem of fitting multiple colourful 2D squares. For 3D

1“mismatch”: the observed data at the training time is different or simpler than the observations at
the test time.

88 Chapter 5. Learning Direct Optimization for Scene Understanding

objects, most of the methods match only the 3D geometry to the image, and this is also

achieved via slow sampling procedures. For instance Satkin et al. (2015) match 3D

CAD models based on a set of various similarity measures calculated using predicted

surface normals, detected edges, rendered object mask etc.; the IM2CAD method by

Izadinia et al. (2017) aligns object shapes to the observed image by minimizing the

distance in the VGG feature space; and Zou et al. (2019) optimize object poses to

fit to the depth channel input by enumerating a large number of object shapes and

poses. Note these methods optimize only the geometry, and none of them model the

appearance or illumination parameters (for visualizations, objects are given a colour in

a post-processing step).

Finally, some works consider toy synthetic scenes, but these approaches have only been

demonstrated for scenes containing known objects with fixed sizes and appearance

(e.g. Eslami et al. (2016) who consider three objects of a fixed colour, and Wu et al.

(2017a) who consider scenes with objects from the Minecraft game), and hence have

not demonstrated applicability to real images.

LiDO not only fits shapes and poses to the image, but makes use of a whole render of

a reconstructed 3D scene, and refines all scene graph LVs jointly. This idea of making

use of the current render of the scene, falls into the area of “auto context”, which

relates to feeding the output of a learning machine to the input to improve results and

make use of context information. This was studied e.g. by Tu and Bai (2009) who

used a mask of current pixel labelling to help to improve the segmentation. The recent

work by Manhardt et al. (2018) and the DeepIM method (Li et al., 2018b) describe

a special case of LiDO as applied to object 6D pose estimation (3D translation plus

3D rotation). In these papers a neural network makes iterative updates to the pose

parameters, based on the input image and a render of the current estimate, but only for

a known, specific object of a fixed size. In addition, LiDO can handle novel instances

at test time, allowing for variable object size, shape, and texture.

5.4 Latent Variables

Our work below considers high resolution scenes with a number of objects (from a

known set of object classes) on a ground plane (table-top). The rendered objects and

the ground plane have random noisy textures, and the background is a real indoor

5.4. Latent Variables 89

image. See Figure 5.3 for the diagram of the latent variables and example images.

The object LVs are as follows: for each object o its associated LVs are its class co,

position (xo,0,zo) on the ground plane, size so, angle of azimuthal rotation φo, shape

(1-of-K encoding) and colour (RGB).

Figure 5.3: Top: Diagram of the latent variables; bottom: examples from the Synthetic

dataset, featuring a variablity in the objects present, their poses, appearance, as well

as variable illumination and viewpoints.

The global LVs are as follows: ground plane RGB colour, camera LVs and illumina-

tion LVs. The camera is taken to be at height y = h above the origin of the (x,z) plane,

and to be looking at the ground plane with angle of elevation α, with fixed camera

intrinsic parameters. The illumination model is uniform lighting (LV: strength) plus a

directional source (LVs: strength, azimuth and elevation of the source).

The 1-out-of-K object shape encoding is a simple yet effective baseline. As the pre-

dictions are made per detected object and per object class, one could extend this to use

e.g. shape and texture morphable models like Blanz and Vetter (2003) or later work.

However, note that the contribution of our system is demonstrating strong performance

on optimizing multiple objects in a complex scene (plus camera, illumination), not just

one object.

90 Chapter 5. Learning Direct Optimization for Scene Understanding

5.5 Initialization Networks

Our approach makes use of the initialization networks to obtain z0. Existing methods

for initialization were unsuitable because these methods do not predict several of the

LVs that we consider, such as object colours, object contact points and illumination.

Therefore, we develop our own initialization networks.

The steps in obtaining an initial scene description z0 are:

1. Detect objects: class, contact point2 and size; extract 128× 128 pixels image

windows Px
0 from input image x at the contact points.

2. For each image window Px
0;p with p = 1, . . .P predict global LVs and object LVs:

z0;p = (zGlobal
0;p ,zObject

0;p) – global LVs are predicted by each object.

3. Aggregate votes for global LVs to obtain:

z0 = (zGlobal
0 ,zObject

0;1 , . . . ,zObject
0;P).

The above steps make use of the detector and LV initialization networks described

below, for each image windows are of size 128×128 pixels. All the convolutional

networks are trained on top of all the 13 convolutional layers of VGG-16 network

(Simonyan and Zisserman, 2015), so as to afford transfer to work on real images.

Object detector: The detector is trained to predict whether a particular object class

is present at a given location, together with object size. Trained object detectors are

run over the input image to produce a set of detections, which are then sparsified using

non-maximum suppression (NMS).

The detector is trained on 30,000 positive image windows with object contact point

centred (with small noise of ± 8 pixels added), and 90,000 negative images: 30,000

random image windows, 30,000 image windows with the centre nearby the contact

point of other objects, and 30,000 random crops from the ImageNet dataset (Russa-

kovsky et al., 2015). The detector is run on 10,000 images to produce the training

dataset for the initialization networks. Afterwards, we apply the LV initialization net-

works on another 10,000 images to produce the dataset for LiDO (the first source).

LV initialization networks: We extract an image window centred at each object de-

tection, and use this to predict the ground truth latent variables. The networks are

2To recall, the contact point is the origin of the object at which it is placed on the ground plane,
around which the azimuthal rotation is specified.

5.5. Initialization Networks 91

applied individually to each detected object window. All the objects predict their own

LVs as well as all global LVs. All the global LVs are trained/predicted per object, then

combined; for robustness, the aggregation is done using the median function 3.

The outputs of the above stages are assembled into a scene graph. The contact points

of the detected objects are back-projected into a 3D scene given the predicted camera

to obtain the 3D positions. The object scaling factors are obtained from the predicted

object size and the actual distance from the camera to the object after back-projection.

5.5.1 CNN Architectures of Detector and LV Initialization Networks

Table 5.1 shows the network configurations and learning rates used for training. We

use all 13 convolutional layers of VGG-16 as the core on 128 × 128 pixel input. We

use only the first three pooling layers, and the VGG weights are kept fixed. Since the

original pixel values are integers in [0,255], while the VGG expects zero mean pixel

intensity, we subtract the mean. The region outside the image frame is given as value 0.

VGG layer activations are ReLU, layers on top of VGG use tanh activations. We do not

use padding in our VGG layers. The fully connected layers of the detector networks

are implemented as filter 1×1 convolutional layers, so they can be efficiently applied

in a sliding window manner.

For azimuthal rotation, we predict the rotation discretized into 18 bins of 20 degrees

(the LiDO network predicts the updates in a similar manner, discretized into smaller,

1 degree bins). This allows to make multimodal predictions and thus the networks can

handle the symmetries. For example for a cube object, the network should predict 4

bins every 90-degrees with similar probability, initialize at one of these, and then refine

the remaining misalignment.

The implementation is in Python (Theano) and we use the Adam (Kingma and Ba,

2015) optimizer with L2 or categorical cross-entropy loss to train the networks. Each

3 Note here for all the global LVs we use the median function to aggregate the votes, also for the ca-
mera LVs for which we previously used PHNs in Chapter 4. This is because we no longer are interested
in a one-shot compute intensive inference, but instead consider an optimization task with an auxiliary
renderer that provides auto-context feedback. As shown in Table 4.3, in the “2D re-projection error”
row, the Median-Regression method is only slightly worse (error: 2.71 vs 2.41) for the unimodal case
that we consider here, and with more iterations, the refined camera can be more accurate. Therefore,
we use the much faster median aggregation method for all the global LVs, which we apply to produce a
large dataset of the initialization mistakes being made. We can also very efficiently calculate the global
LVs multiple times during all the iteration steps of the refinement.

92 Chapter 5. Learning Direct Optimization for Scene Understanding

Detector
Class Size

Input 128×128×3 (Image)

VGG-16 (all 13 convolutional layers)

3 × C-50-6 (separate per network)

Fd-200 Fd-200

Softmax-4 Sigm-1

LV Initialization Networks
Shape Azimuth (Ob/Lighting) Lighting Camera

Input 128×128×3 (Image)

VGG-16 (all 13 convolutional layers)

3 × C-50-6 (separate per network)

Fd-50 Fd-50 Fd-100 Fd-50

Softmax-6/15/8 Softmax-18 Sigm-3 Sigm-2

Learning rates

Class Size Shape Azimuth Lighting Camera

0.001 0.0002 0.001 0.0003 0.0001 0.0001

Table 5.1: The configurations of the detector (top) and LV initialization networks

(middle), and the learning rates (bottom). Layer description (where N denotes the num-

ber of units and K the filter size), is as follows: 1) Convolutional layer : C-N-K; 2) Fully

connected layer, with its input concatenated with the detector output (position of the de-

tection plus object size): Fd-N; 3) Sigmoid (fully connected) layer : Sigm-N; 4) Softmax

(fully connected) layer : Softmax-N. Colour networks (for objects and for ground plane)

are simple 3-layer CNNs with leaky rectify activations: Input, C-27-6 (stride 6, dropout

p = 0.5), Fd-40, F-40, Sigm-3; trained with 0.0001 learning rate.

5.6. Stochastic Scene Generator and Experimental Datasets 93

LV belongs to a specific LV-set responsible for a given property, and we train one LV

initialization network per global LV-set and one LV initialization network per each

object class (stapler, mug, banana) for object LVs. We use dropout in the detector

networks with p = 0.5 in all the 3 convolutional layers (on top of VGG ones), and after

the first one for the initialization networks.

5.6 Stochastic Scene Generator and Experimental Da-

tasets

This section present the details of the Stochastic Scene Generator (Section 5.6.1), the

training and test datasets (Sections 5.6.2, 5.6.3), and the quality of the initialization

(Section 5.6.4).

5.6.1 Stochastic Scene Generator

To obtain a suitable dataset, we use our Stochastic Scene Generator as described in

Section 3.2, extended to handle multiple object classes. The scene generation proce-

dure makes use of adjusted parameters ranges and an improved method for sampling

the colours. We outline below the details of the new dataset.

For each image we sample the global LVs and the LVs of up to 7 objects which lie on

the ground plane. We consider three object classes: mugs, bananas and staplers. For

each object we sample its class, shape (one-of-K = 6/15/8 shapes respectively4), colour,

rotation, and scaling factor. Since our ultimate goal is understanding of real images, the

synthetic images are generated with a rich realistic Blender5 renderer, where we have

added shadows, realistic backgrounds and textures on the objects. The textures serve

as a noise to allow LiDO to work with richer real images that may feature different

kinds of surface patterns, shadows and noise. Since we do not model the textures, the

mean effect of texture is absorbed into the ground truth (GT) colour. We define the

GT colour to be the one that the best matches the texture, i.e. the mean colour of the
4The shapes were obtained from ShapeNet: https://www.shapenet.org/; and then aligned in 3D

to have the same position, size, and rotation.
5https://www.blender.org/

https://www.shapenet.org/
https://www.blender.org/

94 Chapter 5. Learning Direct Optimization for Scene Understanding

texture. For example for the white object in black dots, the ground truth colour will be

light-grey.

We sample the camera height and elevation uniformly in the appropriate ranges: α ∈
[0◦,75◦], h∈ [5,75] cm, the angle of view is fixed and set to a typical value of 60◦. Illu-

mination is represented as uniform lighting plus a directional source, with the strength

of the uniform light ∈ [0,1], the strength of the directional light ∈ [0,2], with azi-

muth ∈ [0◦,360◦] and elevation ∈ [0◦,90◦] of the directional light. For each object

we sample its class (stapler, mug or banana), shape, colour, rotation, and scaling fac-

tor so that stapler length is ∈ [12,16]cm, mug diameter in ∈ [7,10]cm, banana length

∈ [15,20]cm.

Below we describe the process of sampling realistic colours for our scenes. Initially

we experimented with sampling from a uniform distribution but it often results in pas-

tel colours, close to gray. Therefore we use a collection of 17 predefined CSS/HTML

colours and sample a pair of them with a random mixing proportion. This samples a

variety of colours with frequent strong colours (where the RGB value is either close to

0 or 1), as these are common choices for everyday objects. Afterwards, we add a uni-

form noise of ±0.2 to the RGB coefficients and clip if necessary. We use this scheme

to sample colours of staplers and mugs, for bananas we fix one of the components to

be yellow, for ground plane colours we fix one of the components to be white so as to

obtain bright colours more frequently.

Background images are taken from the NYU Depth V2 dataset (Silberman et al., 2012).

In addition random textures are applied to objects by converting a set of textures to

greyscale and applying them at a random scaling on the surface via multiplication of

the initial colour and the texture intensity.

5.6.2 Training Datasets

We train the initialization networks on a dataset of 10,000 images with over 55,000

objects. To train the Prediction Network we use data from two sources. The first

(another 10,000 images and over 55,000 objects) is obtained from the z0 outputs of the

initialization networks. We paired the detected and GT objects based on the distance of

the object contact points to the closest one of the same class within the radius of 10%

of the image width (15% for real images since manual annotations are more noisy than

5.6. Stochastic Scene Generator and Experimental Datasets 95

the perfect synthetic ones). The second source was a dataset generated by adding a

small amount of noise to 10,000 GT images (over 55,000 objects) to allow LiDO to

deal with small errors in further iterations. The noise was uniform for the continuous

LVs: ± the median error made by the initialization networks per LV. We also replaced

each GT CAD shape by a random one to train LiDO to work well in the case of shape-

mismatch. Thus, the LiDO training dataset consisted of 110,000 object examples.

5.6.3 Test Datasets

For all the neural networks we used train-validation-test splits of the synthetic dataset,

using separate scenes for the Initialization Networks and LiDO Prediction Network.

Furthermore, we used a separate validation set for optimization tasks to choose the

hyper-parameters of the LiDO and baseline methods, plus a final optimization test set

to evaluate them (each of 200 images, with over 1k objects).

Figure 5.4: Two examples from the Real dataset (images and instance segmentation

masks).

As our aim is to understand real images, we apply the same methods to a dataset con-

sisting of 135 real images with over 750 objects total. The manual annotations are used

only for the evaluation, not for making the predictions. The real images were annota-

ted with object masks and contact points to allow quantitative testing of the methods’

performance, as the quantitative evaluation here can be done only in the pixel space.

We captured the real images to feature a number of objects of the considered classes at

a variety of lighting, viewpoint and object configuration conditions, see Figure 5.4. For

each object we annotated its class, instance mask, and the contact point using LabelMe

software (Russell et al., 2008). Our system renders objects on an infinite ground plane.

Since the ground plane is finite for real images, we use a GT ground plane mask that

is defined as the ground plane up to a horizontal line located at the contact point of

96 Chapter 5. Learning Direct Optimization for Scene Understanding

the farthest GT object. For real images we annotated the GT ground plane mask, since

sometimes the mask might not be the full plane.

5.6.4 Initialization Network Performance for the Test Datasets

For the three-class synthetic dataset, objects were accurately detected with 94.6% pre-

cision, 94.0% recall (94% of objects are detected, 94.6% of all detections are correct),

and for these 57% of the object shapes were predicted correctly. For real images, the

results were: 97.8% precision, 94.0% recall, showing that the initialization networks

worked similarly well for real images. All the methods that we compare start from

the same initialization with the same set of the detected objects, and unpaired objects

are treated as false positives/negatives. The set of the instantiated objects and their

shapes are kept fixed, as these are discrete variables which are not changed during

optimization with the above methods.

5.7 Experimental Set-up of Error-Based Optimization

We compare LiDO to two optimization methods: gradient-based optimization (GBO)

with the best performing optimizer, and the most effective gradient-free method which

was Simplex search (denoted Simp). Note that these baselines were selected as the

best-performing methods out of many tested. Note other VIG frameworks (IM2CAD,

3DParsing) do not optimize the appearance and illumination and are not applicable to

this domain. Since these are standard search methods which require a large number of

function evaluations, we use a very fast OpenGL renderer. LiDO was also configured

to use OpenGL as the internal renderer during optimization.

For error-based optimization, we compute the match between the actual and rendered

image pixels (RGB intensities being between 0 and 1) using a robustified Gaussian

likelihood model with standard deviation σ = 0.1 and inlier probability α = 0.8, as in

Moreno et al. (2016, eq. 3). The observed image IO and the rendered image IR(x) have

P pixels and are represented as a vector of a length 3P, with P values for each RGB

colour channel. Then, for each pixel-channel i, p(IO
i |z) is given by:

p(IO
i |z) = αN (IO

i ;IR
i (z),σ

2)+(1−α)U(IO
i). (5.1)

5.8. Experimental Set-up of Learning Direct Optimization 97

For GBO we use a differentiable OpenGL renderer6 based on OpenDR: Differentiable

Renderer (Loper and Black, 2014), extended to simplify rendering multiple objects.

The approximate derivatives of the likelihood computed by OpenDR are fed to an

optimizer. To facilitate refinement we use anti-aliasing with 8 samples per pixel to

make the gradients more accurate and the likelihood function smoother.

We performed experiments with several optimizers and most of them converged poorly

(e.g. L-BFGS-B). We found Truncated Newton Conjugate-Gradient (TNC) to conside-

rably outperform other gradient-based methods, with the Nonlinear Conjugate Gra-

dient optimizer7 being the only other one that usually converged well (yet worse than

TNC, so we use TNC for GBO).

For gradient-free methods, we found the Simplex (Nelder-Mead) optimizer worked

well and significantly better than COBYLA, Simplex also often performed better and

faster than GBO.

Setting proper bounds is crucial for proper optimization as the stepsize is scaled by

the distance between LV boundaries, hence for all the LVs we set the bounds to the

respective ranges as used in the scene generator.

Following the work of Moreno et al. (2016), we fit subsets of the search variables

sequentially. The LVs are fit in the following order: ground plane colour, object colours

(each object separately), object poses (each object separately), illumination and the

camera. We experimented with fitting each object’s LVs together, all the object LVs

together, and also all LVs together, but it worked a lot less well and overall slower,

because the number of variables is larger and likely the optimization landscape is thus

more complex.

5.8 Experimental Set-up of Learning Direct Optimiza-

tion

We ran the initialization networks on the synthetic dataset and took object detections

and the associated errors as the new dataset for training LiDO. For an image x with

ground truth zGT we obtained a set of image windows Px
0 extracted at the object de-

6https://github.com/polmorenoc/inversegraphics
7http://learning.eng.cam.ac.uk/carl/code/minimize

https://github.com/polmorenoc/inversegraphics
http://learning.eng.cam.ac.uk/carl/code/minimize

98 Chapter 5. Learning Direct Optimization for Scene Understanding

tections and the corresponding rendered image windows PR
0 from the render g(z0).

From each pair of image windows Px
0;p and PR

0;p, p = 1, . . . ,P and the corresponding

z0 the Prediction Network CNN is trained to predict the object-specific GT variables

zObject
GT ;p and the global GT variables zGlobal

GT . Example errors are that an object could be

larger, the camera located higher.

Figure 5.5: Architecture of the LiDO Prediction Network. Image input is processed by

CNNs per each detected object, this is followed by fully connected layers, denoted by

“F”. In addition each fully connected layer takes as input “z” – the current estimate of the

LVs. Each sub-network predicts the new configuration of each LV-set. The predicted

LVs can be then used to render an updated scene.

Figure 5.5 shows the diagram of the neural network architecture. The Prediction Net-

work takes as input the current estimate of zp, and images: both the observed and

the rendered image windows (128×128 pixels, down-sampled to 64 by 64 resolution),

plus their difference8. The RGB channels of the three images (observed, rendered, dif-

ference) are stacked together giving an input size of 64× 64× 9. This image input is

followed by a number of convolutional layers shared across all the LVs. Shared layers

are followed by LV-set specific convolutional layers, and finally a few fully-connected

layers, each concatenated with the current estimate of zp. For each object window, the

current estimate of zp (standardized) input consists of: object LVs (discrete class and

8Initially we performed experiments where the input did not include the image difference, and the
network was able to learn appropriate filters. However, providing the difference led to a much faster
learning, and eventually converged to a slightly more accurate configuration.

5.8. Experimental Set-up of Learning Direct Optimization 99

shape one-hot-encoded), global LVs (as predicted by the object, denoted GO), global

LVs (as used in the render after voting of all the objects, denoted GV), plus their dif-

ference GO−GV . All the LV values (current and outputted z) are standardized across

the dataset. The whole network for all the LVs is trained together.

Table 5.2 shows the detailed network configurations used for LiDO. The implementa-

tion is in Python (TensorFlow). Again, the region outside the image frame is given as

value 0. The [0,255] image dataset values had their mean subtracted and were divided

by 100. To allow convergence, the object pose is trained in the object’s current coor-

dinates/frame (to predict the change in object position and rotation from the current

value).

CNNs are trained together for all the LVs. We use an L1 loss (mean absolute error) plus

L2 loss (mean squared error) for all the continuous LVs (indexed by i), and categorical

cross-entropy for discrete ones (indexed by d, class indexed by c). We use the L1 loss

in addition to the L2 loss, as when making predictions multiple times during refinement

small errors aggregate, and L1 appropriately punishes small errors during training. To

calculate the overall network loss we sum up each (per each LV) L1+L2 loss and the

cross-entropy loss (for which we used a scaling factor s = 0.2):

Loss = ∑
i
(|zGT

i − zi|+(zGT
i − zi)

2)− s∑
d,c
[zc

d = zGT
d] ln p(zc

d) (5.2)

We use the Adam optimizer with learning rate 0.0003. We trained the Prediction Net-

work for 20 epochs, this took 15 minutes/epoch on a single GPU. Note that for LiDO

dataset we reuse the same scene generator, and that training time is no more than the

training time of the initialization networks.

Afterwards, we run the refinement for T iterations as summarized below (every itera-

tion extracts a new set of the image windows, Px and PR, taken from the input image

and the current render at the current estimate of the object contact points):

for t ∈ 0..(T −1):

1. Take image windows Px
t ,PR

t from the input image x and the render g(zt)

2. Predict zpred
t+1;p given each Px

t;p,PR
t;p,zt;p using the Prediction Network

(clip if outside of the range, e.g. colour not in [0,1]).

3. Update zt+1;p = zt;p +µt(z
pred
t+1;p− zt;p).

100 Chapter 5. Learning Direct Optimization for Scene Understanding

4. Aggregate global LVs to produce zt+1 (in the same manner as in Section 5.5).

Setting the step size µt = 1 would move from zt to zpred
t+1 , but we have found that in

the case of multiple updates, using a µt < 1 which decreases with t leads to better

performance than keeping µt fixed. We set µt = 1/(t +a). The hyper-parameter a = 2

was selected using the validation set split. In the experiments below we run the LiDO

iteration for a fixed number of T = 30 steps to show the convergence curve, but it

would be easy to use a termination condition |zt+1− zt |< ε.

LiDO Prediction Network
Position Size Azimuth Lighting Camera Colour (Ob/Gr)

Input 64×64×9 (2 images plus their difference, stacked)

C-32-3 (shared) C-32-3 (stride 2)

C*-64-3 (shared) C-64-3 (stride 2)

MaxPool-2 (shared)

C*-128-3 (shared) C*-128-3 (stride 2)

MaxPool-2 (shared)

C*-64-3 (separate per network)

MaxPool-2 (separate per network)

C-32-3 (separate per network)

3 × Fz-40 (separate per network) 3 × Fz-40

Fz-2 Fz-1 Softm.(Fz-360) Fz-5 Fz-2 Fz-3

Table 5.2: The configurations of the LiDO Prediction Network, the whole network is

trained together. All the LV values (current and outputted z) are standardized across

the dataset. Layer description (where N denotes the number of units and K the filter

size), is as follows: 1) Convolutional layer : C-N-K; 2) Fully connected layer: F-N; 3)

Fully connected layer, with its input concatenated with the current LVs z: Fz-N; 4) Max-

pooling layer : MaxPool-K; 5) Softmax output layer on top of a linear layer X : Softm.(X).

Non-colour networks: the first 5 layers are shared across all the 5 sub-networks, all the

sub-networks on top of them have the same set-up. Colour networks are simpler and

have fewer layers, and use ReLU activations, while non-colour networks use tanh acti-

vations. For lighting we predict: uniform component strength, directional component:

strength, elevation, sin(azimuth), cos(azimuth). We use dropout with p = 0.5 after the

convolutional layers denoted with *.

5.9. Experimental Evaluation Measures 101

When producing the OpenGL renders for the LiDO prediction, we needed to take

care because LiDO has been trained to predict z’s that specify a scene for the Blender

renderer. While the geometry LVs (objects present, their shape/poses, camera etc.) are

common for both the renderers, the optimal colours in OpenGL differ in brightness

to Blender, since the OpenGL renderer cannot produce shadows, and has to explain

shadowing (e.g. that mugs are dark inside when the light comes from the side) with

a lower colour brightness. To render an OpenGL image for the LiDO prediction with

Blender colour LVs, we adjust the brightness colour of each object and the ground

plane. We do so by scaling the RGB colour by the ratio of the means of brightness

calculated at the pixels of the predicted object mask, for LiDO’s OpenGL render and

the observed image. We can do this as it uses only the predicted masks, e.g. this would

be equivalent to the final iteration of minimizing the MSE w.r.t. the colour LVs.

5.9 Experimental Evaluation Measures

This section gives the details of the evaluation measures of our interest, in the latent

space (Section 5.9.1) and in the image space (Section 5.9.2).

5.9.1 Evaluation of the LVs

For the synthetic dataset, we evaluate the improvement in the LVs for all the methods.

We consider suitable evaluation measures specific for the seven different LV-sets, as

outlined below.

Object LVs: Object position error is a distance between object central contact points

in the image. Object size is the size of the projected object in the image frame, the

error is the relative size difference. For azimuthal rotation we measure the absolute

angular difference between the prediction and ground truth, but with wrap-around, so

the maximum error is 180◦. The error metric of the object colour is the RMSE of

normalized RGB components (computed as R/(R+G+B) etc.).

Global LVs: Ground plane colour is evaluated as for object colour above. The lighting

is projected onto a sphere and evaluated at 313 points uniformly-distributed on the

sphere, then normalized; the error is RMSE. To assess the camera error, we place a

(virtual) checkerboard in the scene, and compute the RMSE of the errors between the

102 Chapter 5. Learning Direct Optimization for Scene Understanding

GT and predicted positions of the grid points in the image, as described in Section

4.4.3.

The multiplicative interaction between illumination and colour introduces a problem

when evaluating them separately; by using the normalized metrics above we overcome

this issue. The joint result of both factors is directly available via pixel intensities (and

is compared via MSE).

5.9.2 Evaluation in the Image Space (2D Projection, Pixels)

We compare the observed and predicted images using the Intersection-over-Union

(IoU) of the predicted and GT masks (of objects and ground plane), and MSE of pixel

intensities calculated at the GT mask (of objects and ground plane). We can evaluate

these measures for both synthetic and real datasets. Note that the IoU of the ground

plane assesses differences in the present, missing and superfluous objects. The back-

ground (the part of the image not belonging to the ground plane or the object masks)

is excluded from the explained pixels. Note that each MSE is calculated at the same

pixels for all the methods, as these are calculated only at the GT masks.

5.10 Results

This section provides the results of all the methods: Section 5.10.1 presents the evalu-

ation in terms of the latent variables and shows illustrative examples for the synthetic

dataset; Section 5.10.2 presents the evaluation in the image space for the synthetic

dataset; and Section 5.10.3 provides the results and illustrative examples for the real

dataset.

We ran the methods long enough to allow convergence: 50 iterations for GBO, 100

iterations for Simplex, and 30 for LiDO, see Figure 5.6. All the times shown are for a

4-core CPU for all the methods, to make the comparison fair LiDO is also executed on

a CPU, including the CNNs9.

9Although the CNNs run on GPUs were a few times faster, this did not affect the overall speed
significantly since rendering and other modules take most of the time.

5.10. Results 103

0 25 50 75 100 125
Time [seconds / image]

0

2

E
rr

o
r

[p
ix

e
ls

]

Position

0 25 50 75 100 125
Time [seconds / image]

0.00

0.02

0.04

R
M

S
E

Object colour

0 25 50 75 100 125
Time [seconds / image]

0

5

E
rr

o
r

[%
]

Object size

0 25 50 75 100 125
Time [seconds / image]

0

5

10

E
rr

o
r

[d
e
g
re

e
s]

Azimuthal rotation

0 25 50 75 100 125
Time [seconds / image]

0.0

0.1

0.2

R
M

S
E

Illumination

0 25 50 75 100 125
Time [seconds / image]

0

1
R

e
-p

ro
j.

e
rr

o
r

[%
] Camera

0 25 50 75 100 125
Time [seconds / image]

0.00

0.02

R
M

S
E

Ground plane colour

0 25 50 75 100 125
Time [seconds / image]

0.0

2.5

5.0

7.5

10.0

E
rr

o
r

[d
e
g
re

e
s]

Init

GBO

Simp

LiDO

Azimuthal rotation

Figure 5.6: Median errors vs time in seconds (top: object LVs, bottom: global LVs). All

three methods (GBO, Simp, LiDO) start from the initialization error (Init) located at the

black dashed line. Note the rapid convergence of LiDO.

5.10.1 Results: Evaluation of the LVs on the Synthetic Dataset

Table 5.3 (left) shows the percentage improvement of the median error of each of the

methods (GBO, Simp, LiDO) over the median error of the initialization. For all seven

evaluation measures LiDO outperforms both GBO and Simp. For four out of seven

LV sets the LiDO improvements are at least two times higher than the competitors (on

104 Chapter 5. Learning Direct Optimization for Scene Understanding

Initialization Improvement[%] Impr. hard cases[%]

LVs name Err. Unit GBO Simp LiDO GBO Simp LiDO

Object position 3.23 pix 22.9 21.0 51.0* 76 71 92
Object colour 0.027 RMSE 14.0 12.4 59.1* 70 67 95
Object size 7.08 % 9.7 32.2 48.7* 72 70 87
Object azimuth 9.15 deg. 20.3 32.6 33.1 62 62 67
Illumination 0.23 RMSE 11.3 18.1 31.6* 75 80 86
Camera 1.47 r.e. 0.3 -1.3 20.7* 37 45 80
Ground colour 0.021 RMSE 68.2 42.4 73.6 80 66 92

Table 5.3: Results of the Initialization (left), “Improvement” (centre) and “Improved hard

cases” (right). Initialization: median errors as per the evaluation measures given in

Section 5.9.1, units are: pix – pixels, deg. – degrees, r.e – re-projection error;

Improvement: each value indicates how much (in %) the median error across observa-

tions was lower after the refinement compared to the median error of the initialization.

Ground truth would give 100% improvement, * denotes a statistically significantly better

method.

Improved hard cases: for “hard cases” we considered the worst 50% of the initializa-

tions, individually per each LV-set. We show percentage of the hard cases that have

been improved (see also plots in Figure 5.8).

illumination, camera, object: colour, position). We calculate all the different metrics

as in Section 5.9.1, e.g. deviation in pixels for object position or angle in degrees for

rotation. The absolute values of these errors are given in Figure 5.6 as per the y-axis

labels. However, since all the LVs are in different units, we compare the percentage

improvement over the initialization.

To assess the statistical significance we conduct a paired test on the errors derived from

each image (for global LVs) or object (for object LVs), using the Wilcoxon signed-rank

test, at the significance level 0.05. For these LiDO outperforms GBO for 6 out of 7

LVs, and Simp also for 6 out of 7 LVs. This is because GBO does well with ground-

plane colour since the objective it minimizes are the differences in pixel intensities

between the input image x and the render g(x), and Simp performs similarly to LiDO

for the azimuthal rotation, but much worse for all other LVs.

Figure 5.6 shows the evolution of the median errors over time for the seven error mea-

5.10. Results 105

Observed Initializat. GBO Simplex LiDO LiDO-R

Good initialization: given a good initialization all the methods usually converge

well, e.g. 4 leftmost objects, for the two rightmost objects (mug and banana) where

the initialized masks are less accurate, only LiDO fits the colours properly.

Textures and shadows: There are two staplers in the input image and the blue one

was not detected as it is hardly visible. For GBO and Simp the pink stapler converges

wrongly, and the same happens for the front mug, which enlarges to explain the

shadow. LiDO is robust to such distractors, note for the stapler and the front mug the

predicted CAD shapes are different than observed.

Figure 5.7: Example runs for Synthetic dataset, showing from left: the observed input

image, the initialization (OpenGL), and images after refinement for GBO, Simplex and

LiDO using OpenGL renderers, and LiDO using Blender renderer (LiDO-R). We overlay

black contours of the ground truth object masks on top of each OpenGL image to ease

the comparison.

sures; it is notable that LiDO obtains a lower error in much shorter time; for error-based

methods since we do iterations sequentially for each object, we report the time for each

iteration as the average time of reaching it.

Figure 5.7 shows example runs, showing both success and failure cases, see textual

descriptions under each image set. More examples of the fitting are given in Section

5.10.4.

For evaluating the robustness and convergence of the optimizers, the most interesting

cases are the ones for which the initialization is not accurate. We performed an ad-

ditional study to measure the performance for difficult cases. For such “hard cases”

we considered the worst 50% of the initializations, individually per each LV-set, these

ranged from average to poor initializations. Since we have 200 test images, for each

LV-set we used the worst 50% of initializations so as to keep the sample sizes suffi-

106 Chapter 5. Learning Direct Optimization for Scene Understanding

−10 −5 0 5 10

Position
GBO: 76%, Simp: 71%, LiDO: 92%

−0.2 −0.1 0.0 0.1 0.2

Object colour
GBO: 70%, Simp: 67%, LiDO: 95%

−0.4 −0.2 0.0 0.2 0.4

Object size
GBO: 72%, Simp: 70%, LiDO: 87%

−50 0 50

Azimuthal rotation
GBO: 62%, Simp: 62%, LiDO: 67%

−0.4 −0.2 0.0 0.2 0.4

Illumination
GBO: 75%, Simp: 80%, LiDO: 86%

−2 −1 0 1 2

Camera
GBO: 37%, Simp: 45%, LiDO: 80%

−0.10 −0.05 0.00 0.05 0.10

Ground plane colour
GBO: 80%, Simp: 66%, LiDO: 92%

0 25 50 75 100 125
Time [seconds / image]

0.0

2.5

5.0

7.5

10.0

E
rr

o
r

[d
e
g
re

e
s]

Init

GBO

Simp

LiDO

Azimuthal rotation

Figure 5.8: We show percentage of the hard cases that have been improved (top of

each sub-plot), and the diagram of the distribution of the differences of the initial and

final errors (einit − e f inal) of the methods for each of the seven LV-sets for hard cases

– kernel density estimate. Improved cases are on the right of the 0-line, the less mass

on the left the better. For all the LV-sets LiDO performs better than the baselines, note

LiDO usually has much less mass on the left side of the plot than the baselines.

ciently large, this led to 532 object LVs and 100 global LVs.

We calculate the percentage of the hard cases that are improved, these are shown in

Table 5.3 (right). LiDO performs well and much better than the other methods; for 5

out of 7 LV-sets more than 85% cases are improved. For GBO and Simp none of the

individual results exceeds 80%.

We can get a more fine-grained view of the performance by considering the distribu-

tion of the changes of the errors, see Figure 5.8. For each LV-set and for each method

5.10. Results 107

we show the kernel density estimate (KDE)10 of the distribution of the differences

∆∆∆ = einit − e f inal of the initial and final errors. Values on the right of the vertical line

indicate an improvement. For 6 out of 7 LV-sets, LiDO has a much lower amount of

mass on the left-hand-side than the baselines. For example, for the Position LVs it is

only 8% (100%− 92%), while these are 24% and 29% for GBO and Simp respecti-

vely. For the Camera LVs only LiDO makes noticeable improvements. For Azimuthal

rotation the performance of all the methods is similar.

5.10.2 Results: Image-Space Evaluation – Synthetic Dataset

Results for the Synthetic dataset for image-space measures are given in Table 5.4. To

allow an equal comparison of three optimizers, all three methods use the OpenGL

renderer.

Measure INIT GBO Simp LiDO

IoU [ob] 66.2 73.1 74.9 78.9*
↑

IoU [gr] 86.4 88.7 88.8 91.3*

MSE [ob] 54.1 29.2 26.4 21.8*
↓

MSE [gr] 34.1 12.8 13.6 11.9

Table 5.4: Results of the pixel evaluation for synthetic dataset. Mean IoU (in %) and

MSE (×103) for the objects [ob] and ground plane [gr]. The arrows indicate whether

higher or lower values are better. * denotes a statistically significantly better method,

using the Wilcoxon signed-rank test, at the significance level 0.05.

For all the measures LiDO outperforms the other methods, and particularly LiDO

works much better for IoU measures. Note that due to unrealisable textures and

shadows, the minimal (OpenGL GT) MSE errors are above 0, these are 11.7 for ob-

jects, and 8.4 for the ground plane.

10KDE is a smoothed histogram, usually using a Gaussian blur. For KDE kernel, we used Gaussian
with a standard deviation of ∆∆∆max/20 for object LVs and ∆∆∆max/10 for global LVs – the different values
due to the different sample sizes.

108 Chapter 5. Learning Direct Optimization for Scene Understanding

5.10.3 Results: Image-Space Evaluation – Real Dataset

Figure 5.9 shows example runs and explanatory text for real image examples. In gene-

ral LiDO obtains better results in a shorter test-time than the alternatives, and usually

converges to a better configuration. LiDO also has the advantage that it can be trained

to handle model mismatch, as shown in the real dataset experiments.

More examples are given in Section 5.10.5, and the video of the fitting at:

https://youtu.be/Axc0G8IggVU.

Observed Initializiat. GBO Simplex LiDO LiDO-R

The left-hand banana size/pose is wrong in the Init, only LiDO fits it properly, overall

good performance of all the methods, e.g. the left-hand mug obtains brown colour.

Difficult scene, here GBO and Simp diverge objects, LiDO works well (see the gray

stapler and the banana near the mugs).

All the methods update the colours and poses of most of the objects, yet LiDO is

much more accurate (for example, compare each of the four bananas). The colours

of LiDO of all the objects are well predicted (compare output of each method to the

observed image).

Figure 5.9: Example runs for Real dataset, the order is the same as in Figure 5.7. Also

note that for each image the camera viewpoint is initialized accurately, and how similar

the Observed and LiDO-R images are. Obtaining an exact match to the ground truth

outline may be impossible because we only have a fixed set of shapes to choose from,

none of which may match the actual object shape.

https://youtu.be/Axc0G8IggVU

5.10. Results 109

Results for Real Dataset are given in Table 5.5. Since real images are more noisy and

difficult, GBO and Simp work poorly for IoU (there is a very minor improvement for

objects, and no improvement for the ground plane). All the methods improve the pixel

colours (MSE), but note this is because the pixel match is an explicit error measure

for GBO and Simp. LiDO, which has been trained on synthetic data, transfers to work

better with real images for all four measures.

Measure INIT GBO Simp LiDO

IoU [ob] 60.9 63.2 61.5 71.4*
↑

IoU [gr] 87.6 87.3 86.1 91.0*

MSE [ob] 79.1 42.6 46.2 35.9*
↓

MSE [gr] 69.1 27.5 30.5 19.2*

Table 5.5: Results of the pixel evaluation for real dataset. Mean IoU (in %) and MSE

(×103) for the objects [ob] and ground plane [gr]. * denotes a statistically significantly

better method.

The results in Tables 5.4 and 5.5 afford a direct comparison of the optimizers, all using

the OpenGL renderer. However, we can also render LiDO predictions with its “native”

renderer Blender (shown as the LiDO-R column in Figures 5.7 and 5.9). We calculated

the MSE errors for Blender renderer (IoUs are the same for both renderers since only

the appearance changes). These MSE errors were similar to LiDO that used OpenGL

renderer (for Synthetic dataset: 21.6 [ob] and 11.3 [gr], for Real dataset: 40.9 [ob] and

23.0 [gr]).

Note the initialized CAD shapes for real images are well matched (see similar object

shapes in Figure 5.9), even though these shapes were never observed during training.

The objects and global LVs are then refined well. This was facilitated by introducing

shape mismatch in the second noisy dataset source of LiDO (see Section 5.6.2).

110 Chapter 5. Learning Direct Optimization for Scene Understanding

5.10.4 More Examples of Prediction for Synthetic Dataset

Observed Initializiat. GBO Simplex LiDO LiDO-R

Poor initialization: GBO and Simplex converge to wrong configurations of object

poses and colours, while LiDO is robust to initialization errors; note here the initiali-

zed object sizes are wrong and LiDO improves all the detected objects.

Typical input (1): There are 7 objects, 6 object converge properly for all the met-

hods, the initialized position of the bottom banana in wrong, all the methods fail to

fix it: GBO and Simplex corrupt the colour, LiDO maintains the yellow colour.

Typical input (2): All objects are initialized well and converge properly, except the

green banana for which the azimuthal rotation is wrong, all the methods improve the

pose. Note well predicted shadows in LiDO-R.

Strong textures and shadows: For GBO the blue stapler (middle) diverges, for

Simplex it becomes brown, LiDO is robust to such distractors: stapler pose/size im-

proves, both mugs become smaller with proper colours (also compare Observed and

LiDO-R).

Figure 5.10: Example runs for Synthetic dataset, showing from left: the observed input

image, the initialization (OpenGL), and images after refinement for GBO, Simplex and

LiDO using OpenGL renderers, and LiDO using Blender renderer (LiDO-R). We overlay

black contours of the ground truth object masks on top of each OpenGL image to ease

the comparison of object poses.

5.10. Results 111

5.10.5 More Examples of Prediction for Real Dataset

Observed Initializiat. GBO Simplex LiDO LiDO-R

GBO and Simplex corrupt the initialization, LiDO improves the poses and under-

stands the scene well.

All methods improve the colours, note double detection of the front banana (for the

Observed banana in the front, in the Initialization there are two bananas intersecting

each other) and different behaviours for this object.

All the methods improve the ground plane colour. Only LiDO accurately fits the

pose and the colour of the left-top banana; none of the methods perform well on the

switched-orientation banana on the right.

All the methods improve the object poses and colours, note the refinement behaviour

of the occluded black stapler.

GBO and Simplex make the Init worse: bananas are rotated, mugs have wrong co-

lours, LiDO improves the colours of mugs. Only LiDO refines the handle of the

orange mug, and none of the methods correctly identify the handle position of the

green mug.

Figure 5.11: Example runs for Real dataset, the order is the same as in Figure 5.10.

Also note how similar the Observed and LiDO-R images are.

112 Chapter 5. Learning Direct Optimization for Scene Understanding

5.11 Discussion

Above we have demonstrated LiDO, a full framework for the initialization and refi-

nement of a 3D representation of the scene from a single image. The main features

of LiDO are: the advantage of not requiring an error metric E to be defined in image

space, rapid convergence, and robust refinement in the presence of noise and distrac-

tors. LiDO is generally robust to issues that are common for error-based methods: the

updates can point in wrong direction when dealing with cluttered scenes and shadows

in observed images; difficulties can arise from an inability to exactly match the target

object with one of a different shape; and when predicted objects overlap the back-

ground or other objects. LiDO is generally robust to such problems as it directly learns

to optimize in the latent space. Our method is not limited to rigid objects, one could

use LiDO for e.g. multiple-human pose estimation, or hand-pose and appearance re-

construction.

One apparent limitation of LiDO is that we need to train an additional Prediction Net-

work in advance for a particular dataset. Incorporating neural networks requires extra

time for training, but allows for smarter LV updates as outlined above. Also, as shown

in Figure 5.6, LiDO is much faster at test-time than the competitors. This is because

each LiDO update requires only a single render of the scene, while standard optimi-

zers search over the error landscape and usually need several renders (e.g. within a line

search to choose the step-size) before accepting a new configuration.

Another potential limitation is a need for a synthetic training dataset. Although such

a dataset is required to train the LiDO Prediction Network, for any method one also

needs to use an initializer of the scene graph LVs. This means that: i) the initializer was

trained already on such dataset, and ii) a 3D graphics representation of a scene graph

LVs would be available. This representation and the dataset can be reused for LiDO,

e.g. by computing the initialization errors, or by adding noise to the ground truth LVs.

The advantages of LiDO mean that it could be a critical component in the development

of future vision-as-inverse-graphics systems.

Chapter 6

Conclusion and Future Work

Throughout this thesis we have employed the Vision-as-Inverse-Graphics paradigm,

which consists in inferring the 3D scene graph latent variables and then rendering these

to reconstruct the input image. This analysis-by-synthesis approach provides a much

more detailed explanation of the scene than standard bounding-boxes or pixel-level

segmentation – it predicts the underlying 3D scene given only a single image.

The 3D scene graph reconstruction is an attractive representation. It is physical and

interpretable, therefore enables interactions with the 3D scene, such as computation of

possible paths so as not to collide with the objects present in the scene. The methods

we have developed are designed to be applicable to a wide range of tasks and domains,

and are not limited to rigid objects; one could employ the VIG framework for e.g.

multiple-human pose estimation, or hand-pose and appearance reconstruction.

Our framework acts like an autoencoder, where the latent representation of the scene is

interpretable and is of variable dimension to match the number of the detected objects.

This representation is of a key importance as it can be useful if we wish to edit, refine,

or interpret the scene. It could be helpful for e.g. an industrial robot interacting with

a set of objects, and could facilitate subsequent reasoning methods such as the ones

dealing with the task of Visual Question Answering (Antol et al., 2015).

A large number of methods for 3D reconstruction use additional input: multi-image

input, video input, or an image with a depth channel. In contrast, throughout this

thesis we have emphasized that we tackle the most challenging vision problem, i.e.

of the rich scene explanation from a single image. Indeed, without a depth channel

we needed to embed in our systems prior knowledge about the objects in the world so

113

114 Chapter 6. Conclusion and Future Work

as to be able to infer a plausible 3D configuration. Another important aspect that we

considered consists in combining evidence from multiple cues to allow for inference

of a likely scene configuration.

The next section provides the summary of the contributions of this thesis, Section 6.2

provides self-critique of the work carried out in this thesis, while Section 6.3 discusses

possibilities for future work.

6.1 Summary of Contributions

In Chapter 3 we investigated how the recognition models can be used to infer the

scene graph given only a single RGB image. These models were trained using realistic

synthetic images and corresponding ground truth scene graphs, obtained from a rich

stochastic scene generator. In the proposed framework we incorporated auxiliary mo-

dules for object contact point and projection scale prediction, to allow the computation

of object poses and sizes in 3D scene coordinates, given the camera parameters. We

have shown how to successfully put all of the components together to create an inter-

pretable scene-graph representation of a 3D scene from a single image. Importantly,

the framework has been shown to work on both synthetic and real images.

In Chapter 4 we introduced the Probabilistic HoughNets framework for combining

probabilistic votes to infer the camera parameters given the votes cast by the detected

objects. Each detection provides one vote in the form of a noisy low-dimensional ma-

nifold in the Hough space, and by intersecting the votes probabilistically we reduce

the uncertainty on the camera parameters. Importantly, the way in which the detecti-

ons cause voting in the Hough space is learned from data. An outlier model allows

for exclusion of corrupted predictions so as they do not interfere with the final result.

Probabilistic HoughNets by definition can cast multimodal votes, and we have demon-

strated that the composition of these leads to an overall improvement in performance.

This is because the votes are combined by intersecting whole distributions, not by

aggregating point estimates.

In Chapter 5 we developed a framework called ‘Learning Direct Optimization’ (LiDO)

for optimization of the latent variables of a multi-object scene. Given an initialization

of a scene graph, its refinement typically involves computationally expensive and inef-

ficient search through the latent space. To overcome this issue, instead of minimizing

6.2. Critique 115

an error metric that compares observed image and the render, LiDO optimization is

driven by neural networks that make use of the auto-context in the form of a current

scene graph and its render to predict the update of the latent variables. Our experi-

ments showed that the LiDO method converges rapidly, as it does not need to perform

a search on the error landscape, produces better solutions than error-based competitors,

and is able to handle the mismatch between the data and the fitted scene model. We

applied LiDO to a realistic synthetic dataset, and showed also that the method trans-

fers to work well with real images. These advantages of LiDO mean that it could be a

critical component in the development of future vision-as-inverse-graphics systems.

6.2 Critique

In this section we discuss the decisions taken and possible alternatives. We outline

some weaknesses and limitations of the developed methods, and discuss how these

might be overcome.

Detector The initialization networks rely heavily on the object detector. We deve-

loped our own object detector which is trained to activate at the object contact points

to allow for accurate back-projection (see Section 3.3.1). The main reason for trai-

ning our own detector was that as at the time of developing the initialization networks

(2016) the accuracy of the existing detectors was low (approximately 30% overall),

e.g. approximately 0.6 precision and 0.5 recall on Microsoft COCO dataset1. In addi-

tion, the detectors trained on real images are strongly biased towards the typical object

appearances, and have difficulties in detecting objects at uncommon colour configura-

tions. In real images, the objects are also typically taken at the height of a person and

within a limited elevation range. In contrast, using SSG, we could train own detectors

for specific classes using larger class-specific datasets. Note the objects in our dataset

are observed at wide-ranging colour, viewpoint and illumination configurations, which

allows for more robust detection. Nevertheless, nowadays the state-of-the-art detec-

tors, such as Mask-RCNN (He et al., 2017), work well and these could be used to

detect the object bounding-boxes. The main advantage of using off-the-shelf detectors

is that these are already trained for a large number of classes, and do not require NMS

post-processing, which allows better handling of cluttered scenes. Then, as we do not

1http://cocodataset.org/#detection-leaderboard

http://cocodataset.org/#detection-leaderboard

116 Chapter 6. Conclusion and Future Work

use bounding-boxes, the prediction of the projection scale and the contact point could

be done within the LV initialization networks. Note the LV initialization networks may

use smaller datasets than those required by the detectors.

Renderers Preparing existing CAD models for OpenGL rendering required a lot of

manual work. The publicly available 3D datasets are typically used to generate voxels,

but are not directly suited for OpenGL rendering. This is due to various issues with

surface normals (reverted), and frequently some edge types are wrong – edges can be

either shared by adjacent faces, or be separate (duplicated) – the correct case depends

whether the surface of the object part should be smoothed (e.g. a sphere) or not (e.g. a

cube). To compare our method with OpenDR we needed to use OpenGL, but it would

be better to use advanced renderers (Blender etc.) that do not require such fixes. Note

our framework does not need to use OpenGL and can use any renderer.

PHNs The main limitation of PHNs is the dimensionality of the latent space, for

which we have considered 3 dimensions. With more dimensions the execution time

would be scaling similarly to the standard GHT approach that uses a grid of bins.

Since such scalability is exponential with the number of dimensions, this would limit

PHNs applicability to approximately 5 to 6 dimensions. However, this issue may be

overcome by either using a single Gaussian in some dimensions (that are known to be

uni-modal), or allowing the Gaussian mixture model to “float”, i.e. to predict the mean

and the variance of each of the Gaussians, instead of the grid structure currently used.

The advantage of PHNs is that the complexity scales linearly with the number of the

Gaussian components, not exponentially with the space dimension. Therefore, if PHNs

make use of a fixed number of “floating” components, the issue of the exponential

scaling with the number of the dimensions can be overcome.

LiDO We observed that LiDO converges better and fixes larger errors than the com-

petitors, yet still it may not fix very large errors, e.g. in object position or rotations.

This happens because such large errors are very rare in the training set. Possible solu-

tion would be to introduce a “large-z” dataset, analogously to the small-z one that we

have used for training. To obtain such a dataset, one could sample the initializations

uniformly in the whole domain of interest (e.g. for the initialization of the azimuthal

rotation sample 360 degrees uniformly).

6.3. Future Work 117

6.3 Future Work

In this section we focus on the strands of further research which are most related to the

frameworks developed in this thesis. We note, however, that several other directions

can be considered given the breadth of topics in computer vision.

Object shape representation One area for possible extension is the representation

of the shape of the objects. The contribution of our frameworks was to demonstrate

strong performance for handling multiple objects in a complex scene, plus camera and

illumination variables. However, since the predictions are made per detected object

and per object class, one could extend the 1-out-of-K object shape encoding to use

e.g. shape and texture morphable models like Blanz and Vetter (2003).

To investigate such a shape representation, in Appendix A we developed a parts-based

deformable generative shape model that can cover a wide range of object class shape

variability. This is done by specifying an object template and skeleton, which we

demonstrated for the teapot object class. Importantly, the whole deformation is imple-

mented to be automatically-differentiable. It is a standard practice to control a mesh,

of either fixed or variable shape, using a skeleton controlled by rotation parameters of

each bone, see for example the work by Loper et al. (2015). In contrast, our bones

are controlled by joint locations, and we specified methods for automatic computation

of bone rotation parameters. This allows for robust local gradient-based optimization

where the parametrization of the child bone joint locations are independent of the pa-

rent. Otherwise, the optimization might not succeed if e.g. the remaining bones fit the

observation well but not the parent one. In this case the fit w.r.t. the parent bone rota-

tion might lead to a local optimum as any rotation would unnecessarily move away all

the descendant bones. A related approach by Shi et al. (2007) also controls a mesh via

joints, but not in a differentiable manner. In addition, our approach allows for variable

shape via bone thickness and bone lengths, thus the whole deformation is controlled

only by the skeleton. The derivatives are then used to fit the template to a collection

of 3D mesh instances using a gradient-based optimizer. Importantly, such a skeleton-

based representation is interpretable, and could be used in VIG approaches. One may

use our model to explain an object by fitting its render to the observed image, or to

sample new object shapes for the purpose of generation of a large amount of synthetic

data.

118 Chapter 6. Conclusion and Future Work

On the other hand, voxel-based or volume-based approaches, such as the Occupancy

Network (Mescheder et al., 2019) are the best performing methods for 3D shape re-

construction, but these representations do not have notion of object parts and are not

morphable. The Occupancy Network predicts object boundaries as a function in the

3D space, then these can be materialized to a mesh with a chosen resolution. Exten-

ding this approach to be able to deform the object to fit image data, and with a notion

of shape interpretability such as object parts, would be of a great interest.

Object appearance representation Regarding appearance, we used single colour

objects, but multi-colour or textured objects would be more natural. Common ap-

proaches to appearance modelling consider multi-textured objects with textures being

different per object part, see e.g. Wang et al. (2016). The texture model can be lear-

ned using collections of images (typical texture collections include patterns such as

fabric, brick, marble, wood etc.), or be regressing a texture map. These approaches

can potentially deal with a variety of appearances, but usually work only for a single

deformable shape, such as a sphere, with a predefined mapping of the texture onto the

mesh. The approach by Oechsle et al. (2019) overcomes this issue and makes use of

a “texture field”, which models a texture in a function space from 3D space to colour.

This allows for the reconstruction of invisible areas for arbitrary shapes. The method

uses VAE and GAN networks, and at the test time the texture can be materialized from

multiple viewpoints (given a mesh). Another approach to texture modelling is to le-

arn how to copy the pixels. Kanazawa et al. (2018) predict the “texture flow”, which

maps from object surface to the image pixels defining from where to copy the colour.

Copying the pixels is a promising approach, as it can deal with arbitrary noise, such as

text, logos, drawings or other common fine-grained details. Note that the methods pre-

dicting the textures by default do not incorporate the notion of the illumination. This

means, for instance, that when one rotates the reconstructed object, it is illuminated

in a fixed manner. One could possibly overcome this problem by decomposing a lit

texture into illumination plus a canonical texture.

Learning object shape and appearance representation directly from real images

A crucial issue is related to the scalability of the object shape and appearance mo-

dels with the number of object classes. Usually the approaches for shape modelling

require 3D CAD objects of a given class, and thus can be developed only for the com-

6.3. Future Work 119

mon object classes, for which there are several instances covering a variety of possible

shapes. The variability of the appearance of such CAD models is very limited, and

often no appearance of the mesh is available. Ultimately, one would prefer to learn the

shape and appearance model directly from real images of such objects, without CAD

models. For example, a recent approach of Kanazawa et al. (2018) jointly learns the

object shape and texture from images, object mask and key-point annotations. Their

model is trained for the bird class so as the rendered object under the predicted camera

is similar to the observed image, including shape masks and key-points consistency.

The texture is modelled using a texture flow, so is based on copying the pixels from the

image to the mesh. The shape is represented as a deformed sphere, so it would be of a

great importance to extend this approach to learn a more complex shape representation

from real images, capable of dealing with objects with holes, such as the mug class.

Refinement of the presence/absence of objects In our experiments we assumed a

fixed set of predicted objects, as obtained from the initialization networks. This allo-

wed us to conduct a proper comparison of the optimization methods and the analysis

of the improvement in the latent variables for the same set of objects. For the initia-

lization, over-detection could be investigated, so as not to miss any correct but weak

detections. This means a much larger number of objects with a high ratio of false posi-

tives would be considered. One could perform verification of the presence or absence

of these objects – superfluous objects that do not match the input could be removed

from the initialization. Another approach would be to refine the set of instantiated ob-

jects iteratively. For each object at each iteration one could predict whether it should

be rendered, so that the object could alternate between visible and invisible states.

More complex physical configurations There is a wide range of possible exten-

sions of the scene graph representation that are beyond the scope of this thesis. For

richer object poses, one can consider an object support prediction, such as in the Ho-

listic 3D Parsing of Huang et al. (2018), where objects might lie on top of others.

More complex object poses could be allowed, such as an object lying on its side or

upside-down. Furthermore, one can add in-plane rotation to the camera configuration,

or consider a richer illumination set-up such as colourful illumination environment or

even additional light sources present “inside” the scene (such as light-bulbs).

120 Chapter 6. Conclusion and Future Work

Goodness of fit A separate topic for further research is how to assess the fit of

the outcome of the prediction or optimization. Once the objects are explained, one

could develop models to predict the errors that have been made. This can be done

by comparison of the observed and predicted images. Note such networks can use

a richer input, including the predicted object masks or depth channel. We call this an

assessment of the goodness of fit. This can be considered (i) at the level of the presence

or absence of objects, or (ii) for each latent variable associated with an object (or the

global latent variables).

The level of presence/absence evaluation would aim to answer questions such as: is the

object a false positive? Are there any unexplained areas? Is the object class correct?

One could consider neural networks that, given the input image and renders with and

without the object, assess which case is more likely. The goodness of fit could be

also evaluated per latent variable (e.g. to predict whether the object size is correct).

One could say that this is exactly what the LiDO Prediction Network is dealing with,

however, this is only one possible solution for the task of goodness of fit assessment.

In LiDO we have so far predicted the updates as a single value (except the rotation

via bins). When LiDO predicts no update, this does not necessarily imply a proper

convergence, but could also arise from the network being unsure whether to lower or

increase a given value. Having these predictions in the form of a possibly multimodal

posterior distribution for each latent variable, for example via PHNs, would make the

predictions more explainable. One could also use the MAP or a sample from this

distribution as the LiDO update. Moreover, for goodness of fit assessment one could

develop methods that not only predict the errors in the latent variables, but also the

value of the evaluation error measure, e.g. such as the Intersection over Union (shape

mismatch) or the re-projection error (camera calibration).

Appendix A

Modelling Shape Using a

Skeleton-Based 3D Deformable Mesh

A.1 Skeleton-Based 3D Deformable Mesh

One of the aspects of the VIG approach is a need to synthesise a range of possible

object shapes, both to generate synthetic scenes, as well as to understand the objects

present in the image and their shape and poses. The goal of this chapter is to obtain

a shape model of an object of a given class that is deformable and can model a wide

variety of object shapes. Our approach is based on a skeleton, like that which could

control e.g. a human pose, but is not limited to shapes that actually have a skeleton.

The deformation is automatically-differentiable and automatically computed wrt. joint

positions, which serve as control points. This allows us to perform various tasks that

make use of the gradient, such as optimization. Importantly, such a skeleton-based

representation is interpretable, as we can obtain properties of object parts or their frag-

ments from the skeleton pose, and can edit the pose or shape of a particular object

part.

Usually a skeleton is controlled by rotation parameters of each bone, see for example

the work on human pose by Loper et al. (2015). In contrast, our bones are controlled by

joint locations, and we specified methods for automatic computation of bone rotation

parameters. This allows for robust local gradient-based optimization where the para-

metrization of the child bone joint locations are independent of the parent. Otherwise,

the optimization might not succeed if e.g. the remaining bones fit the observation well

121

122 Appendix A. Modelling Shape Using a Skeleton-Based 3D Deformable Mesh

but not the parent one. In this case the fit w.r.t. the parent bone rotation might lead

to a local optimum as any rotation would unnecessarily move away all the descendant

bones.

Our work below considers modelling the shape of a teapot object. The teapot is com-

posed of different components (parts) like the spout, body and the handle, and each of

the components features a high variability of shape, size and pose. Therefore, a teapot

is a challenging class. Our deformable model is able to model the variability in each

of the components, while being controlled by only a small number of parameters. One

important aspect of our deformations is that the shapes can cover a large variety of

object part sizes as we allow for variable thickness of the parts. Such a model could

be used in the VIG approach, the shape recognition task would then be to infer the

parameters of the skeleton. To create a generative model of the objects, we need to

obtain the prior distribution for the model parameters from a dataset of mesh instan-

ces. Therefore, our first goal is to fit a mesh of the deformable model, controlled by a

skeleton, to different instances of the objects of the same class.

A.1.1 Introduction

To keep the number of parameters low, a mesh is deformed by a skeleton composed of a

small number of bones arranged in a structure of multiple trees (a forest), as visualized

in Figure A.1 (top). A skeleton has a small number of parameters compared to the

number of mesh vertices; these are the bone parameters, which are often limited to a

small set of allowable transformations (typically 3-5 parameters per bone). We aim to

infer the parameters of the bones for each of the given set of instances.

The deformation of a mesh is defined by the properties of the bones. A change of pose

of a bone, from its initial pose to the final one, defines an affine transformation. For

instance if a bone is rotated, all the vertices assigned to that bone are also rotated in the

same way, hence they follow the bone pose.

Figure A.1 presents a teapot in the undeformed pose which in graphics is called the

“rest pose” (top) and a teapot pose where the handle joints are translated (bottom).

The teapot is composed of three components: the body, the handle and the spout. Each

component is a tube. In case of the body, the tube ends in the shape of a teapot-top.

The start of the spout and handle tubes are connected to an internal part of the teapot.

A.1. Skeleton-Based 3D Deformable Mesh 123

Figure A.1: A deformable teapot composed of 16 bones (8 in the body, 4 in the spout,

6 in the handle). Top: rest pose, bottom: deformed handle.

The straightforward skeleton parametrization that consists of bone rotation parameters

wrt. parent allows for a simple sequential computation of the whole pose of the ske-

leton. However, it is undesirable when it comes to inference or manipulation, as the

bones parameters are then a complex function of all their ancestors. When one would

need to e.g. shift a particular fragment of object part downwards, this would require

not only to rotate the preceding bone, but also to rotate the next bones so as the further

parts do not shift as well. As shown in the bottom plot of Figure A.1, to keep the handle

bones horizontal after rotating the second bone of the handle, one needs to rotate the

third bone in an opposite direction. Placing the further bones at the initial locations

would require further manipulations.

Therefore, our deformation is defined by the positions of the joints of the skeleton.

Shifting a joint moves only the bones connected to this joint. In general, joints behave

like control points – we can move each joint independently of the others. A difficulty

that arises from this approach is that we need to define the specific functions to auto-

matically compute the bone rotations for different degrees of rotational freedom. We

124 Appendix A. Modelling Shape Using a Skeleton-Based 3D Deformable Mesh

keep the parameters and constraints relative – rotation is also always limited with re-

spect to its parent, so we can easily evaluate the angles of deformation compared to the

rest pose.

To allow smooth deformation of a mesh, each vertex position can be a result of a weig-

hted combination of transformations (coming from a few bones). Figure A.2 presents

an example of a teapot deformed using the skeleton and vertex weights.

Figure A.2: The deformable teapot with a skeleton.

The colours denote the weight of vertices assigned to the bone in the middle of the

body (red = 1.0, blue = 0.0). In the second picture the length of the middle bone was

increased by a factor of 2, while the thickness was decreased by a factor of 2. Since

the weights blend from one part to the others, the skeleton smoothly deforms the body.

The 3D mesh of the deformable object is modelled and prepared in Blender software.

We build a skeleton using the Blender’s skeleton object. One advantage of using Blen-

der for building of the skeleton is that we can set the computed vertex weights and then

visualize basic deformations by rotating the bones in Blender.

We then define our own computation of the deformation system for our specific pur-

pose, then enable the skeleton to control the deformation wrt. joint positions. We im-

plement the deformation in a special manner that makes the computation automatically-

differentiable, hence allows for obtaining of the gradient of the fit and shape optimiza-

tion.

It is worth mentioning that we do not deform a predefined shape of a fixed size as

usually done in Computer Graphics. For example in Shi et al. (2007) a deformable

mesh using bones is considered, also controlled by the joint positions, but not in a

differentiable manner. However, their model maintains the properties of the initial

A.1. Skeleton-Based 3D Deformable Mesh 125

shape (e.g. the length of arms and legs) by application of rules of rigidity, balance

and skin properties to obtain the final pose, while in our deformable model we allow

arbitrary deformations of the scale of each component (within constraints imposed on

the skeleton).

A.1.2 Notation

Figure A.3: A single bone.

The skeleton setting and possible transformations can be described by B bones and

their degrees of freedom. The skeleton is parametrized by θθθ, which consists of posi-

tions of the skeleton joints plus the scaling parameters of the thickness of B bones (in

two axes).

The initial values of the parameters are specified directly by the skeleton rest pose.

The rest pose parameters are denoted by θθθ0 and the deformable mesh vertices are

denoted by V0. The deformed mesh vertices V are obtained by modifying the rest

pose parameters θθθ0 and then the rest pose vertices V0 using modified parameters θθθ, i.e.

V =V (θθθ). The deformation function V applies an affine transformation (details given

in Equation A.1 and A.2), respectively to each of the vertices of the deformable mesh.

The b-th bone starts at a point Ob (O for origin) and points to the end point Eb, with

length lb =
∥∥Eb−Ob

∥∥, as presented in Figure A.3. The rest pose parameters are de-

noted with 0 subscript, e.g. Eb
0 is the initial position of the end of the b-th bone. If we

know the bone identity from the context, we can omit the b superscript index.

The non-negative weight of the b-th bone on the m-th vertex vm is denoted by

wb
m, b ∈ {1, . . . ,B}, m ∈ {1, . . . ,M}. The sum of the weights for a given vertex equals

one:

∑
b

wb
m = 1 ∀m, wb

m ≥ 0 ∀m∀b.

Each bone defines an affine transformation. However, when vertices belong to multiple

bones (with given weights), the location of the vertex given θθθ is a weighted sum of a

number of affine transformations, as described below.

126 Appendix A. Modelling Shape Using a Skeleton-Based 3D Deformable Mesh

Notation: if ÃAA is an affine transformation matrix in homogeneous coordinates, then by

A(xxx) we denote a function that performs the given transformation, i.e. transforms xxx to

homogeneous coordinates (x̃xx), and returns ÃAAx̃xx back in the usual coordinates. We denote

by ÃAAb the affine transformation of the b-th bone from its original to the final pose, and

analogously the corresponding transformation function by Ab(xxx).

The function for the affine transformation for vertex m parametrized by θθθ is a linear

combination of the affines according to the weights, and is given by:

Aθθθ
m(·) =

B

∑
b=1

wb
mAθθθ

b(·). (A.1)

Thus the final position of vertex m is given by applying the above transformation:

vm = Aθθθ
m(v0m), (A.2)

where v0m is the position of the m-th vertex before any deformation happens.

The computation of an affine matrix of a given bone is described in Section A.1.5.

A.1.3 Bone Coordinate Frames

We first define the bone axes: the scaling along the y-axis changes the bone length,

while changes along the x-axis and z-axis affect the thickness through the remaining

two directions (we follow the bone axes order used in Blender).

A pose of each bone is given within its “parent (coordinate) frame”, a new pose produ-

ces a new frame, called the “local (coordinate) frame”. Figure A.4 presents the details

of the coordinate frames. The scaling is performed along the chosen axes of the local

frame. The pose of the whole skeleton is computed sequentially from each root bone

to the leaves.

A.1.4 Details of the Skeleton Deformation Properties

A.1.4.1 Scaling

Scaling is performed directly using the scaling parameters sx and sz for the x-axis and

z-axis (controlling thickness of a bone). Scaling in the y-axis (the length of a bone) is

calculated from the distance of the bone joints.

A.1. Skeleton-Based 3D Deformable Mesh 127

Figure A.4: Bone frames.

The yellow root bone is not rotated, so its parent and local frames overlap. The green

bone has the same “parent frame” (in black), the origin is at the bone’s starting point.

The green bone, rotated by r1, produces a new frame, its “local frame” (in red colour).

This local frame is used as a parent frame of the red bone: again, the parent frame

axes are in black, local frame axes in red. Here the red bone rotation is r2 =−r1. Each

bone has a scale parameters: the green bone is of the default scale, while the red and

yellow bones are wider.

Scale parameters can be constrained to vary together in different manners. For in-

stance, if we want to allow scaling of both thickness parameters together, then s j
x = s j

z .

This can be the case e.g. for a car wheel, which should stay a cylinder, here s j
y would

control the wheels thickness. Another example is to constrain a set of bones (for in-

stance a chain of bones controlling a tube) to have the same scale for a set of bones, so

as the tube parts would be scaled together consistently.

A.1.4.2 0D and 1D Rotation

The simplest case of rotation is when the rotations are not allowed, e.g. for a teapot

body. Note one could model the rotation of the whole object to explain the object pose.

1D rotation happens in a usual way, i.e. the joints are moved within a 2D plane, for

example teapot spout or handle parts are parametrized using 1D rotations. The angle

between the bones directly maps to the bone rotation.

128 Appendix A. Modelling Shape Using a Skeleton-Based 3D Deformable Mesh

A.1.4.3 2D and 3D Rotation

Figure A.5: Twisting problem. A simple object and the deformation by twisting the child

bone (rotating around the y-axis) by 40, 120 and 170 degrees, respectively.

For some classes, e.g. a human arm, we would need more degrees of freedom (DOFs).

Usually, if a bone allows rotations in more directions, it can be rotated at least around

its x and z axes in the local frame. A sequence of non-zero rotations around these two

axes results in a rotation around the third one, i.e the y-axis, which we call a twist of

a bone. The twist is the roll in the roll-pitch-yaw angles. In such a case a part of the

mesh collapses, as presented in Figure A.5.

Figure A.6: Untwisted 2D bone rotation in 3D (from two different views for clarity,

black/red axes refer to the parent/local frames, in the analogous way as in Figure A.4).

The grey bone is rotated to its final pose, represented as a red bone. The axes in black

represent the parent frame, the axes in red are a new local coordinate frame. The bone

is rotated around the green axis (lying within the green rotation plane EEEOOOYYY).

A.1. Skeleton-Based 3D Deformable Mesh 129

Hence, for more degrees of freedom, we consider the following two cases.

• 2D: given the desired joint positions, the rotation is always kept untwisted. An

untwisted rotation to the end point EEE is a rotation around the axis perpendicular

to both the OOOEEE axis and the parent OOOYYY axis, passing through OOO. The example of

a green rotation axis and green EEEOOOYYY plane is presented in Figure A.6.

• 3D: twisting is allowed, but it has to be limited, although one may use several

bones to overcome the twisting problem for arbitrary rotations. An example can

be a human head: twisting of a neck might be allowed to around ±90 degrees,

relative to the shoulders. In this case the twist becomes an additional parameter

rtwist and is stored as the additional bone rotation parameter.

A.1.5 Determining the Affine Matrix of a Given Bone

Given all the skeleton parameters, we can find the transformation matrix of a given

bone. For a root bone we know the parent frame and current parameters, so we can

obtain the local frame and the transformation matrix. We compose the parent frame

rotation with a local one to obtain the parent frame for the next bone. In this recursive

approach we can compute the final rotations of all the bones in the global coordinates.

The bone frame rotations are stored using quaternions, which avoid the gimbal lock

problem (Kuipers, 1999). A unit quaternion is a unit length vector qqq=(q0,q1,q2,q3)=

(q0,qqq1:3), where q0 serves as a value to ensure a unit length, where the length of the

sub-vector qqq1:3 = aaa is between 0 and 1. Antipodal quaternions, qqq and −qqq, represent

the same rotation. It is simple to compose rotations by quaternion multiplication, and

the rotations composition of rotations is essential to compute skeletal deformation.

The computation of the affine of a given bone uses:

• The bone parameters: [OOO,EEE,OOO0,EEE0,sx,sz] – the bone joint start and end positi-

ons, initial joint start and end positions, size on the x-axis and z-axis.

• The parent bone parameters: [OOOp,EEE p,qqqp] – parent bone joints and rotation cau-

sed by the parent (i.e. parent frame). For roots, which do not have parents, we

set OOOp = OOO0,EEE p = EEE0,qqqp = (1,0,0,0), i.e. the bone rest pose parameters are

treated themselves as its parent, hence there is no inherited rotation for roots.

130 Appendix A. Modelling Shape Using a Skeleton-Based 3D Deformable Mesh

Translation caused by a given bone (all transformations are given in homogeneous

coordinates) is represented as:

T̃TT =


1 0 0 Ox−O0x

0 1 0 Oy−O0y

0 0 1 Oz−O0z

0 0 0 1

 .

Initial translation from the global origin, T̃TT 0, and its inverse T̃TT 0
−1

:

T̃TT 0 =


1 0 0 O0x

0 1 0 O0y

0 0 1 O0z

0 0 0 1

 , T̃TT 0
−1

=


1 0 0 −O0x

0 1 0 −O0y

0 0 1 −O0z

0 0 0 1

 .

Scaling matrix:

S̃SS =


sx 0 0 0

0 ‖EEE−OOO‖
‖EEE0−OOO0‖ 0 0

0 0 sz 0

0 0 0 1


For rotation matrices we use analogous notation to the one used for translation matri-

ces: RRR0 is an auxiliary rotation representing an initial bone pose, so using RRR0 and RRR0
−1

we can align it with the global frame to perform scaling. The rotation matrix RRR denotes

actual rotation caused by the given bone.

Below we describe the procedure for calculation of rotation matrix RRR. Let uuu and vvv be

the normalized vectors of the bone and its parent:

uuu =
EEE−OOO
‖EEE−OOO‖

,

vvv =
EEE p−OOOp

‖EEE p−OOOp‖
,

The formulas for obtaining and composing quaternions make use of vector operations,

for which we use standard notation, where “·” is the inner product, “×” is the cross

product. The unnormalized quaternion qqqlu of the local rotation from uuu to vvv within the

plane defined by uuu,vvv (2D rotation) is obtained using uuu,,,vvv in the following way:

qqqlu = (1+uuu ··· vvv;uuu××× vvv),

A.1. Skeleton-Based 3D Deformable Mesh 131

thus

qqqlu = (1+uxvx +uyvy +uzvz, uyvz−uzvy, uxvz−uzvx, uxvy−uyvx).

We work with normalized quaternions, thus normalized local rotation quaternion qqql is

given by:

qqql =
qqqlu∥∥qqqlu
∥∥ .

For 3D rotation, one would need to further rotate the local rotation by the quaternion

representing the twist angle rtwist , defined as follows:

qqqtwist = (cos(rtwist), 0, sin(rtwist), 0).

Composition of the local and the parent rotations: the parent frame rotations are com-

puted recursively from the root bones, hence the transformation of a given bone de-

pends on the parameters of its ancestors. The formula for the composition (product) of

quaternions is as follows:

qqq = qqqlqqqp = (ql
0,qqq

l
1:3)(q

p
0 ,qqq

p
1:3) = (ql

0,aaa
l)(qp

0 ,aaa
p)

= (ql
0qp

0 −aaal ·aaap, ql
0aaap +qp

0aaal +aaal×aaap).

The rotation matrix corresponding to a quaternion qqq is given by:

R̃RR(qqq) =


q2

0 +q2
1−q2

2−q2
3 2(q1q2−q0q3) 2(q1q3 +q0q2) 0

2(q1q2 +q0q3) q2
0−q2

1 +q2
2−q2

3 2(q2q3−q0q1) 0

2(q1q3−q0q2) 2(q2q3 +q0q1) q2
0−q2

1−q2
2 +q2

3 0

0 0 0 1

 .

To compute the whole affine transformation we first need to rotate the bone to align

with global axes and translate back to the global origin since the scaling happens along

the axes in a bone local coordinate frame. We use the above-mentioned inverse of

the initial rest pose rotation/translation, R̃RR0
−1
, T̃TT 0

−1
. After performing the scaling, we

apply T̃TT 0, R̃RR0 back. Note the sequence of transformations is applied from the last to

the first, e.g. ÃAA2ÃAA1x̃xx applies ÃAA1 then ÃAA2 to x̃xx, since ÃAA2ÃAA1x̃xx = ÃAA2(ÃAA1x̃xx). Thus the scaling

transformation is given by: T̃TT 0R̃RR0S̃SSR̃RR0
−1

T̃TT 0
−1

.

The above formula is a transformation that only performs the desired scaling transfor-

mation along the local axes. We then need to extend it by applying the current rotation

132 Appendix A. Modelling Shape Using a Skeleton-Based 3D Deformable Mesh

and current translation. This is done after applying each of the initial rotation and

translation transformations. Summing up, we perform inverse of translation and rota-

tion to align with the global axes and the origin, current scaling, initial rotation, current

rotation, initial translation back to the previous position and finally current translation,

as given by:

ÃAA = T̃TT T̃TT 0R̃RRR̃RR0S̃SSR̃RR0
−1

T̃TT 0
−1
.

A.1.6 Calculating the Vertex Weights

We assign a set of vertices to each bone which should be rigid wrt. translation and

rotation of a given bone, i.e. strictly move with the bone. Note such vertices can

still be stretched as these can be scaled in all the three axes. The larger the distance

between rigid parts, the smoother the shape deformations are. Some parts might be

more flexible than others, for example a human arm would be rigid along the bones,

while the teapot parts such as the handle should be flexible. Figure A.7 shows how the

specification of the rigid parts influences the deformations.

Figure A.7: Two cases of the same object and the skeleton with different rigid parts.

The white frames denote rigid vertices belonging to the two identical bones. On the

right is shown the same shape when the right bone is rotated by 90 degrees. The mesh

colours denote the influence of this bone on the given vertices (red = 1.0, blue = 0.0).

The deformation is interpolated between the rigid parts, so the top stick bends only in

the middle, while the bottom one bends through all its length.

A.1. Skeleton-Based 3D Deformable Mesh 133

Rigid vertices have a weight 1.0 assigned to a given bone. The input for the algorithm

that calculates the weights is a mesh with the skeleton and the assignment of rigid

vertices to each bone. The output are weights of all vertices. Vertices between rigid

parts are automatically assigned weights changing quadratically in a distance. The

distance is a distance through edges (the shortest path between a vertex to a rigid

vertex of a given bone), so as the vertices which are not connected but close to each

other do not move together.

The weights blend from one rigid part to the other one, allowing smooth transforma-

tions, where the weight is proportional to the inverse of the distance squared, and

normalized. For example consider a vertex which is between the rigid vertices of two

bones. If the distances to the rigid vertices are 1 and 2, the weights are 0.8 and 0.2

respectively (as 1
12 : 1

22 = 0.8 : 0.2). If the distance is the same, both weights are 0.5.

A vertex can be assigned (with a non-zero weight) to several bones if the rigid vertices

of these bones can be reached through a path consisting only of vertices not assigned to

any rigid part. The distance of the m-th vertex to the b-th bone is denoted by dist(m,b),

the set of bones reachable from the m-th vertex through edges that do not contain any

rigid vertices is denoted by R(m). The weight of the b-th bone on the vertex m-th is

given by:

wb
m =

1
dist(m,b)2

∑b∈R(m)
1

dist(m,b)2

.

A.1.7 Preparation of the Deformable Mesh

The mesh instances are kept in the .obj format, which is a standard format for triangu-

lated 3D meshes, while our own deformable mesh format called (.dm) is composed of

the single deformable mesh (also as .obj), skeleton and the weights. The preparation

process is as follows:

1. Prepare in Blender a 3D generic class mesh and its skeleton.

2. Select which vertices are rigid for each bone. Recalculate weights through as per

the algorithm in Section A.1.6. The main advantage of applying the weights to

the vertices in Blender interface is that we can use it to visualize the deformati-

ons, i.e. see what happens when a bone is rotated using the recalculated weights

and ensure that the shape is deformed correctly.

134 Appendix A. Modelling Shape Using a Skeleton-Based 3D Deformable Mesh

Figure A.8: The teapot generic mesh (orange) with the bones (grey) and their respective

rigid vertices located inside the boxes (blue).

3. Export the deformable model to the .dm.

Our deformable mesh creation process is simple and allows us to efficiently perform

any modifications. The rigid vertices are defined to be these which lie inside a blue

box of a given bone, as shown in Figure A.8. The correspondences bone-to-box are

obtained by setting matching object names, for example a bone Bone.005 has rigid

vertices in the box named Cube.005. This can be straightforwardly extended to a set

of boxes, e.g. a bone can influence two symmetric parts of plane wings. If we want to

change which vertices should be rigid for a given bone, we only have to move a single

box and the weights are recalculated.

A.2. Deformable Mesh Fitting 135

A.2 Deformable Mesh Fitting

A.2.1 Fitting a Shape Model to Data

The goal of the fitting is to obtain a mesh similar to a given instance. We then can

model the distribution of the skeleton parameters to sample new instances. As outlined

earlier, we perform the fitting by moving each joint independently, and also fit the

thickness of the bones, while their length is obtained from the joint positions.

For the teapot template mesh the number of vertices M equals 1095. The meshes of the

instances are often of a very high quality designed for realistic rendering, composed

of tens of thousands of vertices. Since the computation time scales with the product

of vertices number in both shapes, we aimed to keep it similar to M, yet slightly more

detailed so as not to lose important details such as thickness of a thin handle when

reducing the number of vertices. The vertex reduction is done by iteratively merging

pairs of nearby vertices with increasing minimal distance threshold. We found out

that approximately two thousand vertices provide a good shape approximation, and

automatically decreased the number of vertices in small steps until it is below 2200.

Notation: deformable mesh vertices are denoted by V = [v1, . . . ,vM] := V (θθθ), the in-

stance vertices (datapoints) are denoted by X = [x1, . . . ,xD]. The model used for the

fitting is a 3-dimensional Gaussian Mixture Model (GMM), which is a weighted sum

of M components of Gaussian densities:

p(xi|{w,µµµ,ΣΣΣ}) =
M

∑
i=1

wmN (xi|µµµm,ΣΣΣm). (A.3)

The component means are located at the vertices of the deformable mesh, so µµµ = V,

while instance vertices X are the datapoints. All component weights w are equal to
1
M . The covariance matrix is spherical, and is common for all the components. Hence

there is only one parameter σ (a radius equal to the Gaussian standard deviation) to be

chosen (ΣΣΣ = σ2III3).

The value of σ is set to be approximately a half of the distance between vertices. It

has to be sufficiently small to match correctly the surface of the components (e.g. the

spout tube sides), but not too small to avoid getting stuck in local minima (the density

on the whole surface should be high, not only in the vertices). Another difficulty is that

the distances between vertices vary even more when it is deformed. In the experiments

136 Appendix A. Modelling Shape Using a Skeleton-Based 3D Deformable Mesh

we set the object bounding-box volume to 30 units, which leads to approximately 3

to 4 units per object dimension, for which we used σ = 0.05. Hence σ is for example

approximately between 1
80 and 1

60 of the teapot height.

Thus, the density at the point xi is:

p(xi|θθθ) =
M

∑
m=1

1
M

N (xi|vm,σ
2III333). (A.4)

We assume that the datapoints are generated i.i.d. by the GMM:

p(X|θθθ) =
D

∏
d=1

p(xd|θθθ) =
D

∏
d=1

M

∑
m=1

1
M

N (xd|vm,σ
2III333). (A.5)

Maximizing the likelihood of the given model would produce a density that covers

the datapoints, however, there could be also areas of density far away from the data-

points, since the lack of the datapoints in not treated as evidence. The fitting should be

symmetric – the instance should cover the deformable mesh, and the deformable mesh

cover the instance, see Revow et al. (1996). Hence, we fit both the deformable mesh

to the instance and the instance to the deformable mesh. The second model is also a

GMM with the same covariance matrix where the component means are now located

at the vertices of the instance. This model is analogous to that above, i.e.:

p(V (θθθ)|X) =
M

∏
m=1

p(vm|X) =
M

∏
m=1

D

∑
d=1

1
D

N (vm|xd,σ
2III333). (A.6)

We again assume that both sets of vertices were generated independently. The log-

likelihood of both models are as follows:

`(θθθ) = log p(X|θθθ) =
D

∑
d=1

log
M

∑
m=1

1
M

N (xd|vm,σ
2III333). (A.7)

`(X) = log p(V (θθθ)|X) =
M

∑
m=1

log
D

∑
d=1

1
D

N (vm|xd,σ
2III333). (A.8)

The datapoints X are an approximation of the instance shape and their number can be

chosen. We let the model scale the influence of both likelihood terms of the likelihood

independently from the number of vertices chosen. The number of datapoints of the

instance, D, can vary, since we can run the algorithm with different levels of detail (also

each instance has a similar but different number of vertices after the pre-processing).

Therefore, we introduce a weighting factor λ which includes the ratio M
D of the number

A.2. Deformable Mesh Fitting 137

of the datapoints, making the likelihood of each model to have the same influence,

irrespective of the chosen D (M is constant for a given class).

For M = D we obtain M
D = 1, so the model for the equal numbers of vertices in both

meshes is symmetric. In addition, since the vertices cannot match exactly, we weight

the preference for having the whole instance covered with outlying vertices of the

deformable mesh than not covered at all, denoted by ω. We set ω = 2.0, which is a

preference for covering the whole instance, even with some outlying vertices, so:

λ = ω ·M
D
. (A.9)

We perform the MAP estimation by maximizing the joint log-posterior of vertices

being generated by both GMMs. The above model incorporates parameters needed

for fitting in general, and for a given class. For general parameters, we use only two

parameters: (σ,ω). Additional parameters are used within the log-prior probability of

the skeleton parameters, log p(θθθ), which is given in Equation A.11.

Finally, the log-posterior incorporating λ is:

θ̂θθ = argmax
θθθ

(
λ log p(X|θθθ)+ log p(θθθ)+ log p(V (θθθ)|X)

)
. (A.10)

Figure A.9 presents the results of the fitting with partial and full model, with overlaid

instance mask (transparent magenta). In the left plot we can notice that all the instance

vertices were explained, but often by significant stretching of the parts. For example

the spout intersects the whole teapot body so a part of the spout is visible near the

handle. Moreover, the end of the handle is outlying, while the top of the teapot is

reversed. The mesh in the right plot is deformed to match the instance properly while

maintaining the usual teapot shape.

A.2.2 Skeleton Parameters Priors

A.2.2.1 Class-General Part

To perform the fitting, we define how the mesh can be deformed by setting the degrees

of freedom of each bone: we choose a subset of the skeleton parameters that can be

changed. The rest of the parameters are constant (values defined by the skeleton). We

also define constraints on how the parameters can be changed, and a global translation

parameter which moves the whole deformable mesh.

138 Appendix A. Modelling Shape Using a Skeleton-Based 3D Deformable Mesh

Figure A.9: The deformable mesh fitted to the instance (transparent magenta mask)

without the second-way term and without the skeleton prior (left, maximizing Equation

A.7) and using the whole model (right, maximizing Equation A.10).

We aim to keep the bones rotation-free relative to their parent, penalising deformati-

ons from the rest pose. Rotation above 180 degrees is forbidden, but for the teapot

class the rotations above 90 degrees are also considered as strange and unlikely, as we

use several bones to approximate each object part. The rotation prior distribution is

common for all the bones, which is set to be Beta(αr,βr) = Beta(20,20), scaled to

the range [-180, 180] degrees. The mode is for 0 degrees, the pdf for 60 degrees is 10

times lower than for 0 degrees, for 90 degrees it is 200 times lower. The scaling factor

priors: Beta(αs,βs) = Beta(1.5,5.5) scaled to the range [0,10]. The mode for scaling

equals 1. These priors are applied independently to each of the three dimensions.

Note that to set the hyper-parameters of the Beta distributions above we had to consider

only one degree of freedom, since the mode is fixed. The mode is at the configuration

that is at the rest pose, so rotation-free and without extra scaling: 0 degrees for rotation,

scale 1 for scaling factors. We keep the above prior distributions common for all the

bones, while we model the actual strength of the prior using separate class-specific pa-

rameters, called bone stiffness: λr for rotations, and λs for scaling, which we describe

in the next section.

A.2. Deformable Mesh Fitting 139

A.2.2.2 Class-Specific Part: Teapot

The skeleton lies within a plane, so the joints are moved in 2D. Thus in our case

we allow for variable y-axis and z-axis positions of the joints and all of the scaling

parameters. In addition the teapot body joints lie on a vertical line – the body cannot

rotate.

The assumption of the data being generated independently by a large number of Gaus-

sian generators requires setting the weights of the priors. The stiffness values are

denoted by λr
b for rotation of the b-th bone by the angle αb relative to the parent, and

λb
s for the scaling factor of a given bone in each of the local axes (i.e. sb

x ,s
b
y ,s

b
z). We

assume that all the priors for parameters of each bone are independent, hence the full

log-prior probability is as follows:

log p(θθθ) =
B

∑
b=1

[
λ

b
r log p(αb)+λ

b
s ∑

d∈{x,y,z}
log p(sb

d)
]
. (A.11)

Table A.1 presents the values of the stiffness parameters chosen for the teapot bones.

The stiffness values were chosen manually by investigating the convergence outcomes

to produce reasonable fits, note that this was done for each object part independently,

so we could find the right parameters quickly. The stiffness of the body is large, since

the body bones cover a large number of vertices (the body cannot rotate, hence there

is no rotation prior). The stiffness of the spout is large as well, since the spout should

be quite straight. On the other hand, the handle has to be very flexible, able to easily

model a C-shaped handle requiring significant rotation of bones relative to the parent.

Therefore, only the handle root bone is stiff (so it does not rotate to align with the

teapot body), all the remaining bones are very flexible.

Object part (# of bones) λr λs

Body (8) - 400

Handle (6) 20 (root) | 2 (other) 40

Spout (4) 80 100

Table A.1: Teapot priors

The teapot class bone stiffness hyper-parameters.

140 Appendix A. Modelling Shape Using a Skeleton-Based 3D Deformable Mesh

A.2.3 Fitting Experiments

Fitting is performed by maximizing log-posterior (Equation A.10) using the

scipy.minimize L-BFGS-B method. The algorithm employs Automatic Differentia-

tion to evaluate exact gradients during optimization, which is superior to both symbolic

differentiation in terms of speed and capabilities of differentiating complex algorithm

executions, and numerical differentiation in terms of the accuracy.

Our dataset consists of 36 teapot examples that feature a high variability of object

shape, collected from free on-line 3D repositories such as 3DWarehouse1 and 3Dmdb2.

The orientation of teapot meshes was prepared to be the same. We use two different

initializations as we treat two types of handles as separate teapot classes, Type 1 is a

C-shaped handle, and Type 2 is a handle located over the top of the teapot. See Figure

A.11 for comparison of the two types. To perform the fitting, in general we would

require a dataset annotated with which object parts are present in the given instance so

as we know which parts we need to instantiate and fit to.

Initialization close to the actual shape is important, since the fitting will otherwise end

up in some local maximum where deformable teapot parts would not match the same

parts of the instance. The spout and the handle are initialized to their usual position.

Both the spout and the handle are shifted farther away so as they do not merge with the

teapot body of wider teapots at the beginning of the fitting process, see the first column

(initialization) in Figure A.10. The spout top is set to point upwards. The handle is

initialized to the half of its thickness so it can easier match detailed thin handles.

Fitting process:

1. Load the deformable model file and a given instance; set the equal size of both

meshes: the equal bounding boxes volumes. The centres of both bounding-boxes

are set to be the same.

2. Decrease the number of vertices in the instance.

3. Fit the deformable model to the 3D instance, stop when the gradient norm is

below a given threshold (typically after 50-100 iterations).

4. Export the skeleton parameters.

1https://3dwarehouse.sketchup.com
2https://3dmdb.com/

A.2. Deformable Mesh Fitting 141

Initialization 8th iteration 20th iteration Final fit

Figure A.10: Fitting iterations: the first frame is the initialization, after setting equal

volumes of the bounding-boxes. The next frames are at the 8, 20, and the final iteration.

Each row presents fitting of the deformable mesh (a black wireframe) to a given instance

(in purple). The first two rows present fitting of the teapot with C-shaped handle (Type

1), while the next two rows present the initialization where the teapot handle is located

at the top (Type 2).

Figure A.10 presents iterations of the fitting process for four different instances. The

deformable mesh is able to properly explain all the teapot parts of variable shapes

and poses. In the third row the initialized black model is not aligned well with the

given purple instance, but is able to first move to align the centres, then the bent spout

142 Appendix A. Modelling Shape Using a Skeleton-Based 3D Deformable Mesh

stretches properly, and the handle thickness increases to accurately fit to the given

shape.

More examples of the fitting procedure are given in the video at:

https://youtu.be/dQzWcx0lMFo

A.2.4 Implementation

We use Python for implementation, which is also in-built in Blender and the Blender

API is in Python as well. This means that one can write instructions directly in Blender

interface which is designed to perform any kind of operations that are available in

Blender using Python scripts. Such scripts are widely used to automate the work,

some examples are: a method that stochastically generates a grass mesh on an arbitrary

surface according to the parametrization of the grass blade shapes and poses, or the

method that generates a human mesh where one can vary parameters responsible for

different properties of the human body.

We use the Autograd package to perform automatic differentiation of the log-posterior.

Automatic differentiation can compute a derivative of the whole algorithm execution.

Firstly the value of a function in a given point is computed. Then, having known

the actual computation flow, including the chosen if-statements paths, number of loop

executions etc., the computation of the derivative of the value returned by the function

with respect to the function parameters can be performed. The gradient can be then

used to perform optimization.

Automatic differentiation can easily handle complex executions, as bone poses depend

on the parent frames, hence the whole deformation and differentiation is recursive from

the root bones to the leaves. Moreover, a given vertex position is a weighted average

of the affines of several bones, while the affines are obtained by calling recursively

several sub-functions. Note we have re-implemented several standard functions for

transformations and operations on quaternions to comply with the Autograd package

requirements.

One of the main difficulties to overcome was the issue that each fitting iteration con-

sists of computing approximately 5 million distance-pairs (2 × 2.2k × 1.1k), which

would not be an issue by itself, but the computation of the derivatives of these 5 million

distances wrt. the bone parameters in each iteration had a large impact on the speed.

https://youtu.be/dQzWcx0lMFo

A.2. Deformable Mesh Fitting 143

Therefore, the optimization of the execution time was crucial, it was possible to im-

plement it efficiently in pure Python by using the Numpy package broadcasting feature

(which executes internally the code in C) within the Autograd package methods. This

allowed to perform one fitting iteration in approximately 3 seconds on a standard CPU,

and the whole fitting to one instance in approximately 4 minutes.

A.2.5 Results

Figure A.11 below presents the results of the fitting of the deformable mesh for four

instances. For each pair, the left render is the instance, on the right the result of the

fitting. The skeleton of the deformable model is able to properly fit to very different

shapes, for example for bottom left pair it can properly model the much thicker middle

part of the handle, while for the bottom right pair the mesh properly explains the thin

and wide handle.

Figure A.11: Results of the fitting for four teapots, for each pair the left mesh is the

instance, and the right is the fitted deformable mesh. Top row: Type 1, bottom row:

Type 2.

144 Appendix A. Modelling Shape Using a Skeleton-Based 3D Deformable Mesh

A.3 Generative Model of Skeleton Parameters

A.3.1 Shape Model

Skeleton parameters are kept in a T -dimensional vector denoted by θθθ, where θθθ
P are

the joint parameters (joint positions in a given axis) and θθθ
S are the scaling parameters

(positive scaling factors of bones):

θθθ = (θθθP,θθθS), (A.12)

The training set of skeleton parameters is obtained from the fitting process described

in Section A.2. These are unconstrained parameters, i.e. the ones that are not kept

constant. For a given object class from the unconstrained parameters we can recover

the full skeleton parameter representation, so the deformable mesh vertices are given

by:

V =V (θθθ). (A.13)

The scaling factors are transformed to their logarithms using a function denoted by F ,

this is a function that takes θθθ as input and applies the logarithm only to the scaling

factors θθθ
S entries and the identity to θθθ

P entries. The logarithm is used to make the

domain of the scaling factors unbounded, this in particular allows to add Gaussian

noise to the scaling factors.

Afterwards we perform standardisation: for each entry the mean is subtracted and

divided by the standard deviation estimated using the dataset obtained during the fitting

process. The standardisation is obtained by application of a function denoted by S, i.e:

θ̃θθ = S(F(θθθ)), θ̃θθ ∈ RT , (A.14)

thus the deformable mesh vertices are given by:

V =V (F−1(S−1(θ̃θθ))). (A.15)

For the generative model of θ̃θθ we use Probabilistic Principal Component Analysis

(PPCA) by Tipping and Bishop (1999). The transformed parameters θ̃θθ are modelled

by K-component PPCA parametrized by (W ∈ RT×K,µµµ ∈ RT ,σ):

z∼N (0,IK), (A.16)

θ̃θθ∼N (Wz+µµµ,σ2IT). (A.17)

A.3. Generative Model of Skeleton Parameters 145

Figure A.12: Sampled teapots using PPCA that reveal a high shape variability, for Type

1 (top row) and Type 2 (bottom row).

We treat teapots with different types of handles as two distinct classes, and so use a

separate PPCA model for each class. The resulting data has T = 69 dimensions, while

the number of examples of two teapot types is 26 and 10. The number of components

is chosen so that PPCA explains at least 95% of the variance (K = 15 and K = 7,

respectively).

Sampling novel meshes consists of sampling θ̃θθ directly from the PPCA model. Figure

A.12 presents examples of the generated teapots. We can notice that the generated

teapot parts are of different shapes, and the model generalizes the shape well since the

sampled teapots are significantly different.

A.3.2 Object Completion

In the object completion experiments we are given a portion of a shape: the vertices

X, and must generate the most likely shape that fits to the given vertices and completes

parts that are not constrained.

In the previous section we described the generative model of the skeleton parameters.

Since we fit also to arbitrary shapes, we allow the model to move slightly so it can

fit properly even when the centre of the most likely teapot model is not located at the

global origin.

146 Appendix A. Modelling Shape Using a Skeleton-Based 3D Deformable Mesh

Figure A.13: Completion results (best fit – MAP). Green: a given partial shape, grey:

deformable mesh completion. In the first two columns the given shapes are fragments

of the sampled teapots; in the third column the shapes are arbitrary cubes.

We also allow the skeleton parameters to contain some level of an additional noise,

to better generalize the given object class, i.e. to fit to examples not seen before.

Therefore, a Gaussian global translation t and a Gaussian noise εεε are introduced:

t∼N (0,τ2I3), (A.18)

εεε∼N (0,ΣΣΣε), (A.19)

where τ= 1 and ΣΣΣε is a diagonal matrix with entries equal to extra hyper-parameters σ2
P

for joint positions parameters and σ2
S for log-scaling parameters, σP = 0.04, σS = 0.2.

The m-th deformable mesh vertex including the translation and the noise are given by:

Vm =V (F−1(S−1(θ̃θθ)+ εεε))m + t. (A.20)

The fit is the probability of the data X given deformable mesh vertices V using para-

meters θ̃θθ, analogous as in the fitting process:

log p(X|θ̃θθ) =
D

∑
d=1

log
M

∑
m=1

1
M

N (xd|vm,σ
2III333). (A.21)

A.3. Generative Model of Skeleton Parameters 147

The completion task log-posterior consists of the fit (weighted using

parameter λ = 20.0
D) and probability of θ̃θθ, εεε, t:

λp(X|θ̃θθ)+ log p(θ̃θθ)+ log p(εεε)+ log p(t). (A.22)

The completion is obtained by MAP optimization of the above equation using L-

BFGS-B, facilitated by the gradient obtained from the Automatic Differentiation. We

initialize the procedure at the mean teapot of the PPCA model. The log-posterior is

jointly optimized w.r.t. (zzz,εεε, t).

Some completion examples are shown in Figure A.13. We can notice that the mo-

del very accurately recovers the original teapots given the fragments of the sampled

teapots. For observations consisting of arbitrary cubes (see the rightmost column in

Figure A.13) the meshes of the generated teapots pass properly through all the con-

straints, e.g. in the top right example the teapot handle deforms to pass through the

four cubes.

A.3.3 Constrained Sampling

We also perform constrained sampling, which consists in sampling from the comple-

tion log-posterior, Equation A.22. To this end we employ the Hamiltonian Monte Carlo

algorithm (HMC, Neal 2010), which uses the gradient of the log-posterior density to

explore space more effectively. We initialize at the MAP completion result, so the

probability at the point of initialization is significantly higher than in the case of the

mean teapot. This omits a difficult process of searching for a region of high density by

HMC.

Generated constrained samples are presented in Figure A.14. We can notice that all

the teapot parts reveal some shape variability, especially for the unconstrained bottom

of the teapot base in the top row, while for the remaining parts the object surface still

is nearby the imposed constraints.

148 Appendix A. Modelling Shape Using a Skeleton-Based 3D Deformable Mesh

Figure A.14: Constrained sampling results using HMC, for two teapot types. Green: a

given shape, grey: deformable mesh.

A.4 Discussion

We have demonstrated a shape model that uses a skeleton representation, which we

have thoroughly investigated in various experiments for the teapot class object. Impor-

tantly, such a skeleton-based representation is interpretable, as we can obtain properties

of object parts or their fragments from the the skeleton pose, and we can edit it, e.g.

when one would model a human pose then one could change pose of a particular hand.

The deformation is differentiable, and hence allows to perform the model fitting and

other gradient-based procedures. This allowed us to obtain a generative model of the

shapes, as well as to perform other tasks such as object completion and shape sam-

pling. Such representation could be used in the VIG problems, where one may want to

explain an object by fitting its render to the observed image, by optimization of the de-

formable mesh parameters, either original parameters or via PPCA components. Such

skeleton-based model could be used for example for the purpose of 3D human hand

pose reconstruction. One could also sample new object shapes as demonstrated using

PPCA, together with random pose and size for the purpose of generation of a large

amount of synthetic data.

Bibliography

Ahuja, N. and Todorovic, S. (2008). Connected Segmentation Tree - A Joint Repre-

sentation of Region Layout and Hierarchy. In IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), pages 1–8.

Allan, M. and Williams, C. K. I. (2009). Object Localization using the Generative

Template of Features. Computer Vision and Image Understanding, 113:824–838.

Angel, E. (2003). Interactive Computer Graphics. Addison Wesley, third edition.

Antol, S., Agrawal, A., Lu, J., Mitchell, M., Batra, D., Lawrence Zitnick, C., and Pa-

rikh, D. (2015). VQA: Visual Question Answering. In Proceedings of International

Conference on Computer Vision (ICCV), pages 2425–2433.

Badrinarayanan, V., Kendall, A., and Cipolla, R. (2017). SegNet: A Deep Convolutio-

nal Encoder-Decoder Architecture for Image Segmentation. IEEE Transactions on

Pattern Analysis and Machine Intelligence (TPAMI), 39(12):2481–2495.

Ballard, D. H. (1981). Generalizing the Hough transform to detect arbitrary shapes.

Pattern Recognition, 13(2):111–122.

Bansal, A., Russell, B., and Gupta, A. (2016). Marr Revisited: 2D-3D Alignment via

Surface Normal Prediction. In IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pages 5965–5974.

Barinova, O., Lempitsky, V., and Kohli, P. (2012). On detection of multiple object

instances using Hough transforms. IEEE Transactions on Pattern Analysis and Ma-

chine Intelligence (TPAMI), 34(9):1773–1784.

Bazin, J. C., Seo, Y., Demonceaux, C., Vasseur, P., Ikeuchi, K., Kweon, I., and Polle-

feys, M. (2012). Globally optimal line clustering and vanishing point estimation in

149

150 Bibliography

Manhattan world. In IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), pages 638–645.

Blanz, V. and Vetter, T. (2003). Face Recognition Based on Fitting a 3D Morphable

Model. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI),

25(9):1063–1074.

Brock, A., Donahue, J., and Simonyan, K. (2019). Large Scale GAN Training for

High Fidelity Natural Image Synthesis. In 7th International Conference on Learning

Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.

Brooks, R. A., Creiner, R., and Binford, T. O. (1979). The ACRONYM Model-based

Vision System. In Proceedings of the 6th International Joint Conference on Artificial

Intelligence - Volume 1, pages 105–113.

Chen, X., Duan, Y., Houthooft, R., Schulman, J., Sutskever, I., and Abbeel, P. (2016).

InfoGAN: Interpretable Representation Learning by Information Maximizing Ge-

nerative Adversarial Nets. In Advances in Neural Information Processing Systems

29, pages 2172–2180.

Choi, W., Chao, Y.-W., Pantofaru, C., and Savarese, S. (2015). Indoor Scene Under-

standing with Geometric and Semantic Contexts. International Journal of Computer

Vision (IJCV), 112(2):204–220.

Cootes, T. F., Edwards, G. J., and Taylor, C. J. (2001). Active Appearance Mo-

dels. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI),

23(6):681–685.

Cootes, T. F., Taylor, C. J., Cooper, D. H., and Graham, J. (1995). Active Shape Mo-

dels - Their Training and Application. Computer Vision and Image Understanding,

61(1):38–59.

Dalal, N. and Triggs, B. (2005). Histograms of oriented gradients for human detection.

IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 1:886–893.

Davies, R. H., Twining, C. J., Cootes, T. F., Waterton, J. C., and Taylor, C. J. (2002).

3D Statistical Shape Models Using Direct Optimisation of Description Length. In

Proceedings of the European Conference on Computer Vision (ECCV), pages 3–20.

Springer.

Bibliography 151

Deserno, M. (2004). How to generate equidistributed points on the surface of a sphere.

Technical Report, Max-Planck-Institut fur Polymerforschung.

Dickinson, S. (2009). The Evolution of Object Categorization and the Challenge of

Image Abstraction. Object Categorization: Computer and Human Vision Perspecti-

ves.

Esalmi, S. M. A., Heess, N., Weber, T., Tassa, Y., Kavukcuoglu, K., and Hinton, G. E.

(2016). Attend, Infer, Repeat: Fast Scene Understanding with Generative Models.

In Advances in Neural Information Processing Systems 29, pages 3225–3233.

Eslami, S. A., Rezende, D. J., Besse, F., Viola, F., Morcos, A. S., Garnelo, M., Ru-

derman, A., Rusu, A. A., Danihelka, I., Gregor, K., et al. (2018). Neural Scene

Representation and Rendering. Science, 360(6394):1204–1210.

Eslami, S. M. A., Heess, N., Weber, T., Tassa, Y., Kavukcuoglu, K., and Hinton, G. E.

(2016). Attend, Infer, Repeat: Fast Scene Understanding with Generative Models.

In Advances in Neural Information Processing Systems 29.

Everingham, M., Van Gool, L., Williams, C. K. I., Winn, J., and Zisserman, A. (2010).

The PASCAL Visual Object Classes (VOC) challenge. International Journal of

Computer Vision (IJCV), 88(2):303–338.

Felzenszwalb, P. F., Girshick, R. B., McAllester, D., and Ramanan, D. (2010). Object

detection with discriminatively trained part-based models. IEEE Transactions on

Pattern Analysis and Machine Intelligence (TPAMI), 32(9):1627–1645.

Fergus, R., Perona, P., and Zisserman, A. (2003). Object class recognition by unsuper-

vised scale-invariant learning. IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 2:264–271.

Gall, J., Yao, A., Razavi, N., Van Gool, L., and Lempitsky, V. (2011). Hough Forests

for Object Detection, Tracking, and Action Recognition. IEEE Transactions on

Pattern Analysis and Machine Intelligence (TPAMI), 33(11):2188–2202.

Genova, K., Cole, F., Maschinot, A., Sarna, A., Vlasic, D., and Freeman, W. T. (2018).

Unsupervised Training for 3D Morphable Model Regression. In IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), pages 8377–8386.

Girshick, R. (2015). Fast R-CNN. In Proceedings of the 2015 IEEE International

Conference on Computer Vision, pages 1440–1448.

152 Bibliography

Grenander, U. (1976). Lectures in Pattern Theory: Vol. 1 Pattern Synthesis. Springer-

Verlag.

Grenander, U. (1978). Lectures in Pattern Theory: Vol. 2 Pattern Analysis. Springer-

Verlag.

Grimson, W. E. L. and Lozano-Perez, T. (1984). Model-based recognition and loca-

lization from sparse range or tactile data. The International Journal of Robotics

Research, 3(3):3–35.

Hariharan, B., Arbelaez, P., Girshick, R., and Malik, J. (2016). Object Instance Seg-

mentation and Fine-Grained Localization Using Hypercolumns. IEEE Transactions

on Pattern Analysis and Machine Intelligence (TPAMI), 39(4):627–639.

He, K., Gkioxari, G., Dollár, P., and Girshick, R. (2017). Mask R-CNN. In The IEEE

International Conference on Computer Vision (ICCV), pages 2961–2969.

He, X., Zemel, R. S., and Carreira-Perpiñán, M. Á. (2004). Multiscale conditional

random fields for image labeling. IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 2:695–703.

Higgins, I., Matthey, L., Pal, A., Burgess, C., Glorot, X., Botvinick, M., Mohamed,

S., and Lerchner, A. (2017). beta-VAE: Learning Basic Visual Concepts with a

Constrained Variational Framework. In 5th International Conference on Learning

Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track

Proceedings.

Hoiem, D., Efros, A. A., and Hebert, M. (2008). Putting objects in perspective. Inter-

national Journal of Computer Vision (IJCV), 80(1):3–15.

Hoiem, D., Stein, A. N., Efros, A. A., and Hebert, M. (2007). Recovering Occlu-

sion Boundaries from an Image. In Proceedings of the 2007 IEEE International

Conference on Computer Vision, pages 1–8.

Hosang, J., Benenson, R., and Schiele, B. (2016). A convnet for non-maximum sup-

pression. In German Conference on Pattern Recognition (GCPR), 2016.

Hough, P. V. C. (1962). Method and means for recognizing complex patterns. U.S.

Patent 3069654.

Hu, G., Yan, F., Kittler, J., Christmas, W., Chan, C. H., Feng, Z., and Huber, P. (2017).

Efficient 3D Morphable Face Model Fitting. Pattern Recognition, 67:366–379.

Bibliography 153

Huang, G. B., Mattar, M., Berg, T., and Learned-Miller, E. (2008). Labeled Faces in the

Wild: A Database for StudyingFace Recognition in Unconstrained Environments.

Huang, S., Qi, S., Zhu, Y., Xiao, Y., Xu, Y., and Zhu, S.-C. (2018). Holistic 3D

Scene Parsing and Reconstruction from a Single RGB Image. In Proceedings of the

European Conference on Computer Vision (ECCV), pages 187–203.

Izadinia, H., Shan, Q., and Seitz, S. M. (2017). IM2CAD. In IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), pages 5134–5143.

Jacobs, R. A., Jordan, M. I., Nowlan, S. J., and Hinton, G. E. (1991). Adaptive Mixtu-

res of Local Experts. Neural Computation, 3:79–87.

Jampani, V., Nowozin, S., Loper, M., and Gehler, P. V. (2015). The Informed Sampler:

A Discriminative Approach to Bayesian Inference in Generative Computer Vision

Models. Computer Vision and Image Understanding, 136:32–44.

Kalogerakis, E., Averkiou, M., Maji, S., and Chaudhuri, S. (2017). 3d shape segmen-

tation with projective convolutional networks. In IEEE Conference on Computer

Vision and Pattern Recognition (CVPR).

Kanazawa, A., Tulsiani, S., Efros, A. A., and Malik, J. (2018). Learning Category-

Specific Mesh Reconstruction from Image Collections. In Proceedings of the Euro-

pean Conference on Computer Vision (ECCV), pages 371–386.

Kar, A., Tulsiani, S., Carreira, J., and Malik, J. (2015). Amodal completion and size

constancy in natural scenes. In Proceedings of the 2015 IEEE International Confe-

rence on Computer Vision, pages 127–135.

Kendall, A., Grimes, M., and Cipolla, R. (2015). PoseNet: A convolutional network

for real-time 6-DOF camera relocalization. In Proceedings of the 2015 IEEE Inter-

national Conference on Computer Vision, pages 2938–2946.

Kim, H. and Mnih, A. (2018). Disentangling by Factorising. In Proceedings of the 35th

International Conference on Machine Learning, ICML 2018, Stockholmsmässan,

Stockholm, Sweden, July 10-15, 2018, pages 2654–2663.

Kingma, D. P. and Ba, J. (2015). Adam: A method for stochastic optimization. In 3rd

International Conference on Learning Representations, ICLR 2015, San Diego, CA,

USA, May 7-9, 2015, Conference Track Proceedings.

154 Bibliography

Kingma, D. P. and Welling, M. (2014). Auto-Encoding Variational Bayes. In Interna-

tional Conference on Learning Representations (ICLR).

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classification with

deep convolutional neural networks. In Advances in Neural Information Processing

Systems 25, pages 1097–1105.

Kuipers, J. B. (1999). Quaternions and rotation sequences, volume 66. Princeton

Univ. Press.

Kulkarni, T. D., Kohli, P., Tenenbaum, J. B., and Mansinghka, V. (2015a). Picture:

A probabilistic programming language for scene perception. In Proc CVPR, pages

4390–4399.

Kulkarni, T. D., Whitney, W. F., Kohli, P., and Tenenbaum, J. B. (2015b). Deep con-

volutional inverse graphics network. In Advances in Neural Information Processing

Systems 28, pages 2539–2547.

Kulkarni, T. D., Whitney, W. F., Kohli, P., and Tenenbaum, J. B. (2015c). Picture: A

probabilistic programming language for scene perception. In IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), pages 4390–4399.

LeCun, Y., Boser, B., Denker, J., Henderson, D., Howard, R., Hubbard, W., and Jac-

kel, L. (1990). Handwritten digit recognition with a back-propagation network. In

Advances in Neural Information Processing Systems 2, pages 396–404.

Lee, J.-K. and Yoon, K.-J. (2015). Real-time joint estimation of camera orientation and

vanishing points. In IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), pages 1866–1874.

Leibe, B., Leonardis, A., and Schiele, B. (2004). Combined Object Categorization

and Segmentation With An Implicit Shape Model. In ECCV workshop on statistical

learning in computer vision, pages 17–32.

Li, B., Dai, Y., and He, M. (2018a). Monocular Depth Estimation with Hierarchical

Fusion of Dilated CNNs and Soft-Weighted-Sum Inference. Pattern Recognition,

83:328–339.

Li, Y., Wang, G., Ji, X., Xiang, Y., and Fox, D. (2018b). DeepIM: Deep Iterative

Matching for 6D Pose Estimation. In Proceedings of the European Conference on

Computer Vision (ECCV), pages 683–698.

Bibliography 155

Liu, Z., Luo, P., Wang, X., and Tang, X. (2015). Deep Learning Face Attributes in the

Wild. In Proceedings of International Conference on Computer Vision (ICCV).

Loper, M., Mahmood, N., Romero, J., Pons-Moll, G., and Black, M. J. (2015). SMPL:

A Skinned Multi-Person Linear Model. ACM Trans. Graphics (Proc. SIGGRAPH

Asia), 34(6):248:1–248:16.

Loper, M. M. and Black, M. J. (2014). OpenDR: An Approximate Differentiable

Renderer. In Proceedings of the European Conference on Computer Vision (ECCV),

pages 154–169. Springer.

Lowe, D. G. (1999). Object recognition from local scale-invariant features. Internati-

onal Conference on Computer Vision, 1999, 2:1150–1157.

Manhardt, F., Kehl, W., Navab, N., and Tombari, F. (2018). Deep Model-Based 6D

Pose Refinement in RGB. In Proceedings of the European Conference on Computer

Vision (ECCV), pages 800–815.

Marr, D. and Nishihara, H. K. (1978). Representation and recognition of the spatial

organization of three-dimensional images. Proceedings of the Royal Society of Lon-

don, Series B, 200:269–294.

Mescheder, L., Oechsle, M., Niemeyer, M., Nowozin, S., and Geiger, A. (2019). Occu-

pancy Networks: Learning 3D Reconstruction in Function Space. In IEEE Confe-

rence on Computer Vision and Pattern Recognition (CVPR), pages 4460–4470.

Moreno, P., Williams, C. K. I., Nash, C., and Kohli, P. (2016). Overcoming Occlusion

with Inverse Graphics. In ECCV 2016 Workshops Proceedings Part III, pages 170–

185. Springer. LNCS 9915.

Nam, H. and Han, B. (2016). Learning Multi-Domain Convolutional Neural Networks

for Visual Tracking. In IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR), pages 4293–4302.

Neal, R. M. (2010). MCMC using Hamiltonian dynamics. Handbook of Markov Chain

Monte Carlo, 54:113–162.

Neubeck, A. and Van Gool, L. (2006). Efficient non-maximum suppression. In Procee-

dings of the 2006 IEEE Conference on Pattern Recognition, pages 850–855. IEEE.

Oechsle, M., Mescheder, L., Niemeyer, M., Strauss, T., and Geiger, A. (2019). Texture

156 Bibliography

Fields: Learning Texture Representations in Function Space. In The IEEE Interna-

tional Conference on Computer Vision (ICCV).

Ramamoorthi, R. (2006). Modeling Illumination Variation with Spherical Harmonics.

In Face Processing: Advanced Modeling Methods, pages 385–424. ACM.

Redmon, J., Divvala, S., Girshick, R., and Farhadi, A. (2016). You Only Look Once:

Unified, Real-Time Object Detection. In IEEE Conference on Computer Vision and

Pattern Recognition (CVPR).

Redmon, J. and Farhadi, A. (2017). YOLO9000: Better, Faster, Stronger. In IEEE Con-

ference on Computer Vision and Pattern Recognition (CVPR), pages 7263–7271.

Revow, M., Williams, C. K., and Hinton, G. E. (1996). Using Generative Models

for Handwritten Digit Recognition. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 18(6):592–606.

Romaszko, L., Williams, C. K. I., Moreno, P., and Kohli, P. (2017). Vision-as-Inverse-

Graphics: Obtaining a Rich 3D Explanation of a Scene from a Single Image. In

ICCV 2017 Geometry Meets Deep Learning Workshop, pages 851–859.

Romaszko, L., Williams, C. K. I., and Winn, J. (2020). Learning Direct Optimization

for Scene Understanding. Pattern Recognition.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Kar-

pathy, A., Khosla, A., Bernstein, M., Berg, A. C., and Fei-Fei, L. (2015). ImageNet

Large Scale Visual Recognition Challenge. International Journal of Computer Vi-

sion (IJCV), 115(3):211–252.

Russell, B. C., Torralba, A., Murphy, K. P., and Freeman, W. T. (2008). Labelme: A

database and web-based tool for image annotation. International Journal of Com-

puter Vision (IJCV), 77(1-3):157–173.

Satkin, S., Rashid, M., Lin, J., and Hebert, M. (2015). 3DNN: 3D Nearest Neighbor.

International Journal of Computer Vision (IJCV), 111(1):69–97.

Schönborn, S., Egger, B., Morel-Forster, A., and Vetter, T. (2017). Markov Chain

Monte Carlo for Automated Face Image Analysis. International Journal of Compu-

ter Vision (IJCV), 123(2):160–183.

Sharp, T., Keskin, C., Robertson, D., Taylor, J., Shotton, J., Kim, D., Rhemann, C.,

Leichter, I., Vinnikov, A., Wei, Y., et al. (2015). Accurate, robust, and flexible real-

Bibliography 157

time hand tracking. In Proceedings of the 33rd Annual ACM Conference on Human

Factors in Computing Systems, pages 3633–3642. ACM.

Shi, X., Zhou, K., Tong, Y., Desbrun, M., Bao, H., and Guo, B. (2007). Mesh Puppetry:

Cascading Optimization of Mesh Deformation with Inverse Kinematics. In ACM

SIGGRAPH 2007 Papers, SIGGRAPH ’07, New York, NY, USA. ACM.

Shotton, J., Fitzgibbon, A., Cook, M., Sharp, T., Finocchio, M., Moore, R., Kipman,

A., and Blake, A. (2011). Real-Time Human Pose Recognition in Parts from a

Single Depth Image. IEEE Conference on Computer Vision and Pattern Recognition

(CVPR).

Silberman, N., Hoiem, D., Kohli, P., and Fergus, R. (2012). Indoor Segmentation and

Support Inference from RGBD Images. In Proceedings of the European Conference

on Computer Vision (ECCV), pages 746–760.

Simonyan, K. and Zisserman, A. (2015). Very Deep Convolutional Networks for

Large-Scale Image Recognition. In International Conference on Learning Repre-

sentations (ICLR).

Song, S. and Xiao, J. (2014). Sliding shapes for 3d object detection in depth images. In

Proceedings of the 2014 European Conference on Computer Vision, pages 634–651.

Springer.

Stephens, R. S. (1990). A probabilistic approach to the Hough Transform. In Procee-

dings of the British Machine Vision Conference, (BMVC), pages 1–6.

Stevens, M. R. and Beveridge, J. R. (2001). Integrating Graphics and Vision for Object

Recognition. Kluwer Academic Publishers, Boston.

Su, H., Qi, C. R., Li, Y., and Guibas, L. J. (2015). Render for CNN: Viewpoint Esti-

mation in Images Using CNNs Trained With Rendered 3D Model Views. In Pro-

ceedings of the 2015 IEEE International Conference on Computer Vision.

Sun, X., Wu, J., Zhang, X., Zhang, Z., Zhang, C., Xue, T., Tenenbaum, J. B., and Free-

man, W. T. (2018). Pix3D: Dataset and Methods for Single-Image 3D Shape Mo-

deling. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR),

pages 2974–2983.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Van-

158 Bibliography

houcke, V., and Rabinovich, A. (2015). Going deeper with convolutions. In IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), pages 1–9.

Szeliski, R. (2010). Computer Vision: Algorithms and Applications. Springer-Verlag

New York, Inc., 1st edition.

Tan, T.-N., Sullivan, G. D., and Baker, K. D. (1998). Model-based localisation and

recognition of road vehicles. International Journal of Computer Vision (IJCV),

27(1):5–25.

Tipping, M. E. and Bishop, C. M. (1999). Probabilistic principal component analy-

sis. Journal of the Royal Statistical Society: Series B (Statistical Methodology),

61(3):611–622.

Torralba, A. (2003). Contextual priming for object detection. International Journal of

Computer Vision (IJCV), 53(2):169–191.

Tran, L. and Liu, X. (2018). Nonlinear 3D Face Morphable Model. In IEEE Confe-

rence on Computer Vision and Pattern Recognition (CVPR), pages 7346–7355.

Tu, Z. and Bai, X. (2009). Auto-Context and Its Application to High-Level Vision

Tasks and 3D Brain Image Segmentation. IEEE Transactions on Pattern Analysis

and Machine Intelligence (TPAMI), 32(10):1744–1757.

Tulsiani, S., Kar, A., Carreira, J., and Malik, J. (2016). Learning Category-Specific

Deformable 3D Models for Object Reconstruction. IEEE Transactions on Pattern

Analysis and Machine Intelligence (TPAMI).

Tulsiani, S., Zhou, T., Efros, A. A., and Malik, J. (2017). Multi-view Supervision

for Single-view Reconstruction via Differentiable Ray Consistency. In IEEE Con-

ference on Computer Vision and Pattern Recognition (CVPR), pages 2626–2634.

Uijlings, J. R., Van De Sande, K. E., Gevers, T., and Smeulders, A. W. (2013). Selective

Search for Object Recognition. International Journal of Computer Vision (IJCV),

104(2):154–171.

Van den Oord, A., Kalchbrenner, N., Espeholt, L., Vinyals, O., Graves, A., et al.

(2016). Conditional Image Generation with PixelCNN Decoders. In Advances in

Neural Information Processing Systems 29, pages 4790–4798.

Wang, T. Y., Su, H., Huang, Q., Huang, J., Guibas, L., and Mitra, N. J. (2016). Unsu-

Bibliography 159

pervised Texture Transfer from Images to Model Collections. ACM Trans. Graph.,

35(6):177:1–177:13.

Williams, C. K. I., Revow, M., and Hinton, G. E. (1997a). Instantiating deformable

models with a neural net. Computer Vision and Image Understanding, 68(1):120–

126.

Williams, C. K. I., Revow, M., and Hinton, G. E. (1997b). Instantiating deformable

models with a neural net. Computer Vision and Image Understanding, 68(1):120–

126.

Wu, J., Tenenbaum, J. B., and Kohli, P. (2017a). Neural Scene De-rendering. In IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), pages 699–707.

Wu, J., Wang, Y., Xue, T., Sun, X., Freeman, B., and Tenenbaum, J. (2017b). MarrNet:

3D Shape Reconstruction via 2.5D Sketches. In Advances in Neural Information

Processing Systems 30, pages 540–550.

Yao, S., Hsu, T.-M. H., Zhu, J.-Y., Wu, J., Torralba, A., Freeman, W. T., and Te-

nenbaum, J. B. (2018). 3D-Aware Scene Manipulation via Inverse Graphics. In

Advances in Neural Information Processing Systems 31.

Yildirim, I., Kulkarni, T. D., Freiwald, W. A., and Tenenbaum, J. B. (2015). Efficient

analysis-by-synthesis in vision: A computational framework, behavioral tests, and

comparison with neural representations. In Thirty-Seventh Annual Conference of the

Cognitive Science Society.

Yuille, A. and Kersten, D. (2006). Vision as Bayesian inference: analysis by synthesis?

Trends in Cognitive Science, 10(7):301–308.

Zeiler, M. D. and Fergus, R. (2014). Visualizing and understanding convolutional

networks. In Proceedings of the European Conference on Computer Vision (ECCV),

pages 818–833. Springer.

Zou, C., Guo, R., Li, Z., and Hoiem, D. (2019). Complete 3D scene parsing from an

RGBD image. International Journal of Computer Vision (IJCV), 127(2):143–162.

	Introduction
	Vision-as-Inverse-Graphics
	Thesis Outline
	Statement of the Contributions

	Background
	2D vs. 3D Representation
	Discriminative Models for Object Detection
	Generative Models for Image Reconstruction
	Vision as Inverse Graphics
	Single-Object Reconstruction in 3D
	Multi-Object Reconstruction in 3D
	Summary of the Methods for 3D Reconstruction via VIG

	Rich 3D Explanation of a Multi-Object Scene via Inverse Graphics
	Introduction
	Stochastic Scene Generator
	Overview
	Scene Graph: Global Latent Variables
	Camera
	Illumination
	Ground Plane

	Scene Graph: Object Latent Variables
	Sampling and Rendering Procedure

	Approach
	Detector
	Predictor Networks and Scene Graph
	Image Formation and Back-Projection
	Iterative Refinement

	Experimental Set-Up
	Mugs Dataset: Experimental Set-up
	CNNs Experimental set-up

	Results
	Detector
	Evaluation of Global LVs
	Evaluation of Object LVs
	Scene Understanding – Quantitative Results
	Scene Understanding – Qualitative Results
	Scene Understanding – Additional Results

	Discussion

	Probabilistic HoughNets
	Introduction
	Probabilistic HoughNets
	Finding the MAP of the Joint Posterior:
	Probabilistic Chain Rule within PHNs
	PHN Decomposition
	PHN Composition

	Exact Solution for the Camera Latent Variables
	Motivation
	Angle of View vs Focal Length
	Solution
	Practical Example

	Experiments
	The Hough Space Used in the Experiments
	Critical Value of for Obtaining a Maximum
	Evaluation using Re-Projection Error
	Integration for Log-Likelihood Computation
	Neural Networks Set-up

	Results
	Examples
	Quantitative Evaluation
	Results: Comparison of the Methods
	Detailed PHNs Results

	Discussion

	Learning Direct Optimization for Scene Understanding
	Introduction
	Learning Direct Optimization
	Related Work – Refinement via VIG
	Latent Variables
	Initialization Networks
	CNN Architectures of Detector and LV Initialization Networks

	Stochastic Scene Generator and Experimental Datasets
	Stochastic Scene Generator
	Training Datasets
	Test Datasets
	Initialization Network Performance for the Test Datasets

	Experimental Set-up of Error-Based Optimization
	Experimental Set-up of Learning Direct Optimization
	Experimental Evaluation Measures
	Evaluation of the LVs
	Evaluation in the Image Space (2D Projection, Pixels)

	Results
	Results: Evaluation of the LVs on the Synthetic Dataset
	Results: Image-Space Evaluation – Synthetic Dataset
	Results: Image-Space Evaluation – Real Dataset
	More Examples of Prediction for Synthetic Dataset
	More Examples of Prediction for Real Dataset

	Discussion

	Conclusion and Future Work
	Summary of Contributions
	Critique
	Future Work

	Modelling Shape Using a Skeleton-Based 3D Deformable Mesh
	Skeleton-Based 3D Deformable Mesh
	Introduction
	Notation
	Bone Coordinate Frames
	Details of the Skeleton Deformation Properties
	Scaling
	0D and 1D Rotation
	2D and 3D Rotation

	Determining the Affine Matrix of a Given Bone
	Calculating the Vertex Weights
	Preparation of the Deformable Mesh

	Deformable Mesh Fitting
	Fitting a Shape Model to Data
	Skeleton Parameters Priors
	Class-General Part
	Class-Specific Part: Teapot

	Fitting Experiments
	Implementation
	Results

	Generative Model of Skeleton Parameters
	Shape Model
	Object Completion
	Constrained Sampling

	Discussion

	Bibliography

