

This thesis has been submitted in fulfilment of the requirements for a postgraduate degree

(e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following

terms and conditions of use:

This work is protected by copyright and other intellectual property rights, which are

retained by the thesis author, unless otherwise stated.

A copy can be downloaded for personal non-commercial research or study, without

prior permission or charge.

This thesis cannot be reproduced or quoted extensively from without first obtaining

permission in writing from the author.

The content must not be changed in any way or sold commercially in any format or

medium without the formal permission of the author.

When referring to this work, full bibliographic details including the author, title,

awarding institution and date of the thesis must be given.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Archive

https://core.ac.uk/display/429717312?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Efficient Verification of

Universal and Intermediate

Quantum Computing

Theodoros Kapourniotis

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Doctor of Philosophy

Laboratory for Foundations of Computer Science

School of Informatics

University of Edinburgh

2016

Abstract
The promise of scalable quantum technology appears more realistic, after recent

advances in both theory and experiment. Assuming a quantum computer is developed,

the task of verifying the correctness of its outcome becomes crucial. Unfortunately, for

a system that involves many particles, predicting its evolution via classical simulation

becomes intractable. Moreover, verification of the outcome by computational methods,

i.e. involving a classical witness, is believed inefficient for the hardest problems solvable

by a quantum computer. A feasible alternative to verify quantum computation is via

cryptographic methods, where an untrusted prover has to convince a weak verifier for

the correctness of his outcome. This is the approach we take in this thesis.

In the most standard configuration the prover is capable of computing all polynomial-

time quantum circuits and the verifier is restricted to classical with very modest quantum

power. The goal of existing verification protocols is to reduce the quantum requirements

for the verifier - ideally making it purely classical - and reduce the communication

complexity. In Part II we propose a composition of two existing verification protocols

[Fitzsimons and Kashefi, 2012], [Aharonov et al., 2010] that achieves quadratic im-

provement in communication complexity, while keeping the quantum requirements for

the verifier modest. Along this result, several new techniques are proposed, including

the generalization of [Fitzsimons and Kashefi, 2012] to prime dimensions.

In Part III we discuss the idea of model-specific quantum verification, where the

prover is restricted to intermediate quantum power, i.e. between full-fledged quantum

and purely classical, thus more feasible experimentally. As a proof of principle we

propose a verification protocol for the One-Pure-Qubit computer [Knill and Laflamme,

1998], which tolerates noise and is capable of computing hard problems such as large

matrix trace estimation. The verification protocol is an adaptation of [Fitzsimons and

Kashefi, 2012] running on Measurement-Based Quantum Computing with newly proved

properties of the underlying resources.

Connections of quantum verification to other security primitives are considered in

Part IV. Authenticated quantum communication has been already proved to relate to

quantum verification. We expand this by proposing a quantum authentication protocol

derived from [Fitzsimons and Kashefi, 2012] and discuss implications to verification

with purely classical verifier.

Connections between quantum security primitives, namely blindness - prover does

not learn the computation -, and classical security are considered in Part V. We intro-

duce a protocol where a client with restricted classical resources computes blindly a

iii

universal classical gate with the help of an untrusted server, by adding modest quantum

capabilities to both client and server. This example of quantum-enhanced classical

security we prove to be a task classically impossible.

iv

Lay Summary

‘Quantum computers’ are an emerging technology aiming to extend the capabilities

of the current ‘classical’ computers. Instead of ‘bits’, which can be in the classical state

0 or 1, quantum computers manipulate ‘qubits’, quantum states that can be in 0 and 1

at the same time (called a ‘superposition’ of the two states). Only when we measure

the output of a quantum computer the state takes a definite classical value 0 or 1. In

general, a quantum computer consisting of N qubits will be internally in a superposition

of all the possible combinations of values for the N bits: there is a vast number of such

configurations, growing exponentially with N. This explains why it is difficult to mimic

(or ‘simulate’) the behaviour of a quantum computer with a classical computer.

We are concerned with the question that follows: If one cannot use a classical

computer or a small quantum computer to predict the behaviour of a large quantum

computer, how he will ever be sure that the large quantum computer is producing

the correct answers. For some problems, verifying the correctness of the outcome is

easy. For example, a task that a quantum computer can solve, as opposed to a classical

computer, is factoring big numbers. When we get the factors of a number as the output

of a quantum computer, we can check their correctness by simply multiplying them

together. Unfortunately, it is not always easy to verify the result of a complicated

quantum computation. A known technique to build a ‘verification protocol’, where

a device called the ‘verifier’ can verify the correct operation of a device called the

‘prover’, is by secretly interspersing small questions in the normal computation we

send to the quantum computer. These questions produce an easy to predict result and

therefore are used as traps to check the honesty of the quantum computer.

Our first contribution is to reduce the requirements for the verifier (the amount of

communication between her and the prover and the size of her quantum device), by

combining two existing protocols in a constructive composition that improves over

both and produces a series of side results. The second contribution is to propose a

verification protocol for a version of the quantum computer, called the one-pure-qubit

quantum computer, believed to be easier to build because it tolerates a significant

amount of noise. Inspired by the verification protocol, we propose a protocol for the

‘authentication’ of a quantum state when transmitted over an untrusted channel. Finally,

inspired by the techniques of hiding information inside a computation, we propose a

protocol to securely delegate a classical computation in a scenario that we prove would

be impossible classically, but becomes possible using a small quantum enhancement.

v

Acknowledgements

This work has been accomplished under the guidance and the continuous support

of my main supervisor Elham Kashefi. I am deeply thankful to her for giving me the

opportunities, devoting her time to share her wisdom and making me feel part of a wider

community. Most of all, she has been an invaluable mentor throughout all the good and

the hard times of these years.

I would like to thank the School of Informatics for providing the means and its

continuous support in order to produce my work. This research was supported by

the Mary and Armeane Choksi Postgraduate Scholarship, EPSRC and the School of

Informatics Graduate School. Summer school and conference support was provided by

SICSA and the LFCS Student Travel Fund.

My deepest gratitude goes to my co-supervisors, Vedran Dunjko who had the

patience to advise and correct my mistakes from the earliest stages and to Petros Wallden

for his guidance and crucial suggestions. To all my supervisors I owe the appreciation

to the scientific way of thinking and communicating. A big thank you to my closest

collaborators, Animesh Datta, with whom we had many exciting research meetings

and Einar Pius, who provided his precious help. Thank you to Joe Fitzsimons for the

very helpful discussions and for hosting me in the Centre for Quantum Technologies in

the National University of Singapore. I would like also to thank all my teachers in the

Informatics and especially Rahul Santhanam and Kousha Etessami for their suggestions

and supervision.

I am grateful to Damian Marham and other members of the quantum group in

Telecom ParisTech, Eleni Diamanti, Romain Allaume and researchers Anna Pappa and

Leonardo Disilvestro. Thank you for hosting me multiples times (when an important

part of the thesis was written) and giving me the opportunity to present and discuss

my work, which gave me confidence in my first steps. I would like to thank the

Simons Institute for the Theory of Computing for inviting me to their Quantum Games

workshop, where precious experience was attained.

I would like to extend my gratitude to my Phd- and office-mates for their support

and friendship over these years. Thank you to Andru Gheorghiu and Alistair Stewart,

the discussions with whom were both enjoyable and provided significant feedback. For

the same reasons, thank you to Michael Basios, Vladimir Nikishkin, Danel Ahman,

Weily Fu and Kristjan Liiva.

Last but not least I would like to thank my parents for their continuous support.

vi

Declaration

I declare that this thesis was composed by myself, that the work contained herein is my

own except where explicitly stated otherwise in the text, and that this work has not been

submitted for any other degree or professional qualification except as specified.

(Theodoros Kapourniotis)

vii

Table of Contents

I Introduction 1

1 Overview 3

1.1 General Preliminaries . 8

1.1.1 Quantum Computing and Density Operators 8

1.1.2 Circuit Model . 9

1.1.3 Measurement Based Quantum Computing 11

1.1.4 Computational Complexity Classes 13

1.2 Security Definitions . 14

1.2.1 Interactive Proofs . 16

1.3 Overview of Existing Techniques . 18

1.3.1 Three Roads to Verification 19

1.3.2 Other Protocols . 24

II Efficient Universal Quantum Verification 27

2 Overview 29

2.1 Main Results . 31

2.2 Preliminaries . 35

2.2.1 d-level Quantum Operations 35

2.2.2 Polynomial Quantum Error Correcting Code 36

2.2.3 Polynomial Verified Quantum Computing 38

3 Revisiting Verifiable Blind Quantum Computing 41

3.1 Verifiable Blind Quantum Computing with Quantum Output 42

3.1.1 The Role of Fault Tolerance 46

3.1.2 Dotted-Complete Graph and Trap Independence 48

3.2 A Refined Proof of Verifiability . 51

ix

3.2.1 Expanding the Prover’s Operation 53

3.2.2 Decomposing the Attack . 56

3.2.3 Reducing the Attacks to Pauli 58

3.2.4 Detection of the Pauli Attacks 64

4 Verifiable Blind Quantum Computing with Localised Output 69

4.1 Localisation Gadget and Protocol . 69

4.2 Verifiability of the Localisation Protocol 73

5 d-level Security 83

5.1 d-level Measurement-Based Quantum Computing 83

5.1.1 d-level Universal Graph States 85

5.2 d-level Blind Protocol . 91

5.3 d-level Verification Protocol . 97

5.3.1 Verifiability Proof in d-level 97

6 An Efficient Verification Protocol 103

6.1 Impossibility of Qubit to Qudit Translation 104

6.2 Composite Protocol . 106

6.2.1 Verifiability of the Composite Protocol 107

6.2.2 Alternative Composition with Toffoli Inputs 116

6.3 Noise and Abstract Security . 120

III Quantum-Intermediate Verification 123

7 Overview 125

7.1 Preliminaries . 127

7.2 Main Results . 128

8 One-Pure-Qubit Model Verification 135

8.1 Secure Computation with Restricted Purity 135

8.1.1 Blind One-Pure-Qubit Computation 138

8.1.2 Blindness Proof . 141

8.2 Verification of One-Pure-Qubit . 144

8.3 Verifiability Proof . 152

x

IV Verification and Quantum Security 163

9 Overview 165
9.1 Preliminaries and Related Work . 166

10 From Quantum Encryption to Verification 171
10.1 An Authentication Protocol . 171

10.2 A Recipe for Quantum Authentication 176

10.3 Authentication to Verification and Classical Impossibility 177

V Blindness and Classical Security 181

11 Overview 183
11.1 Main Results . 184

12 Secure-NAND 187
12.1 Secure NAND Protocols . 187

12.1.1 Preparing Client . 189

12.1.2 Measuring Client . 193

12.1.3 Bounce Protocol . 193

12.1.4 Single Qubit Protocols . 197

12.2 No-go Result . 198

12.2.1 Generalisation: QO2 . 202

12.2.2 Multi Rounds . 212

VI Conclusion 215

Bibliography 223

xi

List of Figures

1.1 Relations between quantum and classical complexity classes 4

1.2 Verifier - Prover model of delegated quantum computation 5

1.3 Qubit Brickwork state . 13

2.1 Verifiable Universal Blind Quantum Computing with quantum output 32

2.2 Generalized Toffoli gate decomposition 37

3.1 Raussendorf-Harrington-Goyal prime and dual lattice 47

3.2 Non-Clifford gate implementation in Raussendorf-Harrington-Goyal . 48

3.3 Dotted-complete graph . 49

3.4 Attack analysis in VUBQC . 55

4.1 VUBQC localising output gadget . 70

5.1 d-level J gate implementation . 86

5.2 d-level brickwork state . 87

5.3 Qudit gates in MBQC . 90

5.4 Qutrit gates in MBQC . 91

5.5 Qutrit brickwork state . 91

8.1 MBQC flow example . 136

8.2 One-pure-qubit verification technique 146

xiii

Part I

Introduction

1

Chapter 1

Overview

Quantum technology has recently seen a surge in development, both theoretically and

experimentally, and the promise of scalable quantum devices appears more realistic

than it was thought before. To provide a small sample, important developments in the

theoretical field include the introduction of efficient quantum surface codes [Fowler

et al., 2012], the demonstration of supremacy over classical of simple optical quantum

simulators [Aaronson and Arkhipov, 2011] and the advent of quantum machine learning

[Lloyd et al., 2014]. In the experimental field, among many recent exciting results

there is a multiple qubit superconducting computer [Kelly et al., 2015], a commercial

quantum processor which demonstrates quantum entanglement [Lanting et al., 2014]

and integrated photonic simulators [Spring et al., 2013].

An important challenge that arises when we increase the size of a quantum computer

is that it becomes hard to predict its correct outcome. Indeed, classical simulation of an

arbitrary quantum computer that runs in polynomial time requires classical exponential

time. If one cannot directly predict the outcome of a quantum computation, alternative

methods need to be considered. In classical complexity theory there exists an important

class of problems, Non-deterministic Polynomial time or NP, containing all the problems

that can be verified using a polynomial size classical string, usually called the witness,

by a classical computer running in polynomial time. Factoring is a problem that belongs

in this class, the witness being the factors themselves, and therefore one can verify

classically the correctness of a quantum computer running Shor’s algorithm [Shor,

1997]. However, the most common belief is that the class of problems, named Bounded-

error Quantum Polynomial time or BQP, that contains all problems decidable with

bounded error by a polynomial time quantum computer is not contained in NP (Figure

1.1). In other words, there exist problems in BQP, including the hardest problems of

3

4 Chapter 1. Overview

Figure 1.1: Suspected relations between some well-known classical and quantum

complexity classes. It is believed that problems solvable by a quantum computer (class

BQP) is not contained in the class NP of classically efficiently verifiable problems and

also NP is not believed to be contained in BQP.

the class, that are believed not to be classically efficiently verifiable using a classical

witness. An example of such a problem is approximating a knot invariant called the

Jones polynomial, which has many applications, from DNA folding to Topological

Quantum Field Theory (TQFT). Other problems that are candidates to demonstrate

quantum supremacy by a medium-size quantum computer and do not have known

generic verification techniques are quantum sampling problems, such as the scattering

of identical bosons through a linear optical network [Aaronson and Arkhipov, 2011].

In order to verify problems outside NP one can give up on determinism and apply

techniques of cryptography to get cryptographic verifiability. The basic setting in this

approach is that of a trusted and weak computationally verifier delegating a quantum

computation to an untrusted but powerful prover. The verifier is using a classical secret

key to encrypt her interaction with the prover and should be able to decide whether or

not the prover is returning the correct outcomes. More specifically, as depicted in Figure

1.2, the verifier (Alice) sends messages through a quantum and a classical channel to

the prover (Bob). These messages may contain an encryption of the input state and

an encryption of the description of the unitary to be applied to this input. Bob sends

messages to Alice which contain the outcomes of the computation, which Alice can

decrypt using her private key (or an update of her original private key). Alice accepts

or rejects the outcome depending on the outcomes of her tests. Assuming that Bob’s

deviation is within the laws of quantum mechanics, the verification protocol ensures

with high confidence that Alice will not accept an incorrect outcome. This problem is

also studied within the context of interactive proof systems, where one ideally would

like to have a purely classical verifier to verify a fully quantum prover. In Part I an

5

Figure 1.2: In delegated computation Alice (the verifier) has the task to compute the

output of unitary U applied on input |ψ〉 but not enough power to run the computation

herself, so she uses the services of untrusted but powerful Bob (the prover). Alice uses

a secret key k to encode the input |ψ〉 and the description of the unitary U so that she is

able to run secret tests on the prover and eventually decide on whether she accepts (A)

or rejects (R) his returned outcome.

overview of the definitions and the existing architectures used in verification will be

given.

The usual setting for quantum verification in the literature is with a prover capable

of computing any polynomial size quantum circuit (computational complexity class

BQP) and a verifier being universal classical but quantum restricted. Several verification

protocols have been proposed, with different requirements for the verifier - all aiming to

minimize the quantum preparation or quantum measurement requirements of the verifier

and the communication rounds between the prover and verifier. In this setting, it is still

open whether or not there exists a quantum verification protocol where the verifier is

purely classical. Two prominent and efficient protocols are the protocol proposed by

Fitzsimons and Kashefi (will be referred to as the FK protocol) [Fitzsimons and Kashefi,

2012], which benefits from the requirement of single state preparation for the verifier,

and the protocol proposed by Aharonov, Ben-Or and Eban (will be referred to as the

ABE protocol) [Aharonov et al., 2010], which benefits from linear round complexity. In

this thesis, we introduce a composite protocol, which includes elements of both the FK

and ABE protocols, that benefits from the single state preparation of the FK protocol

and the linear round complexity of the ABE protocol (as opposed to quadratic of the

FK). Therefore, this protocol is more efficient than each of its components when taken

as standalone protocols. This result is accompanied by a few side-results: techniques

that relate to the implementability and the composability of the original protocols. One

contribution is a new proof of verifiability of the FK protocol which demonstrates the

function of the protocol from a different viewpoint and is helpful when we consider both

6 Chapter 1. Overview

serial and parallel compositions of the protocol with itself or other protocols. Another

technique is the introduction of a gadget for the FK protocol that localizes the final

output of the computation to a fixed position at the prover’s side and thus is useful

again in the context of composition with a different (or the same) protocol. A final

contribution is the generalization of the FK protocol from 2n-dimensional systems to

dn-dimensional systems where d is an odd prime, which might be useful for future

implementations of the FK protocol, especially when novel techniques of d-level fault

tolerance are employed. Part II of the thesis contains these results that all relate to a

single universal quantum prover. These results have been published, as an extended

abstract and oral presentation, in 15th Asian Quantum Information Science Conference,

Seoul, 2015 [Kapourniotis et al., 2015].

Given the hardness of the engineering problem of building a fully-fledged quantum

computer, some intermediate steps are worth exploring. Quantum intermediate models

have been proposed, which drop some of the requirements of universal quantum compu-

tation, such as having pure quantum input, and are still interesting from a computational

perspective, being able to compute answers to problems considered hard classically.

In this thesis, we examine the applicability of the universal quantum verification tech-

niques in those models. The prover will be restricted to quantum intermediate power,

i.e. having characteristics that classify him between fully quantum and purely classical

and the verifier wants to delegate a classically hard problem which is not able to solve

by herself. A specific example of intermediate quantum power is the One-Pure-Qubit

(OPQ) model that solves the problem of estimating the trace of a large matrix when

given in a suitable polynomial representation [Knill and Laflamme, 1998] [Shepherd,

2006]. This model assumes that only one qubit of the input is prepared in a pure state

and the rest is maximally mixed. The OPQ computer will then be able to apply coher-

ently a polynomial-time quantum circuit. We propose a verification protocol for a OPQ

prover, where a restricted verifier, being able to prepare single qubits one by one and

send them to the prover, can verify the correctness of all outputs of OPQ computations.

Since all the known verification techniques are based on Measurement-Based models

of Quantum Computing (MBQC) and these models require, apart from the input, the

supply of auxiliary pure states to implement the gates, we slightly modify the definition

of OPQ to admit auxiliary states but keep the principle of limited purity over time.

A constructive proof is provided for the availability of resource states for MBQC in

this model of limited purity, which allows for the direct adaptation of the existing

techniques used in verification, which in this case are implemented in a serial fashion.

7

Part III of the thesis contains these results on intermediate quantum verification which

have been presented orally in Theory of Quantum Computation, Communication and

Cryptography, Singapore 2014 and published in its proceedings [Kapourniotis et al.,

2014].

Quantum verification appears to have some deep connections with other security

primitives, such as quantum blindness - the property of the prover not learning the input

and description of the computation [Broadbent et al., 2009]. Moreover, the property

of authenticated quantum communication, has already appeared in literature to be con-

nected to verification [Aharonov et al., 2010]. Authenticated quantum communication

has been proven to require quantum encryption - the property of the eavesdropper in a

quantum channel not learning the transmitted quantum message [Barnum et al., 2002].

We reinforce these connections by proposing a quantum authentication protocol that is

based on techniques used in quantum verification of [Fitzsimons and Kashefi, 2012]

with the viewpoint that these connections might provide an indication on how to resolve

of the (im)possibility problem for classical verifier quantum verification. Part IV is

dedicated to these results.

On the other hand, a connection is established between quantum blindness and

classical security, in the case a classically restricted client wants to delegate a universal

gate to a classically unrestricted server and the server must not learn the input. We prove

this task to be classically unobtainable and propose a protocol that achieves it by having

on both client and sever a very modest quantum capability - preparation or measurement

of single qubit states. This demonstrates, in the context of quantum-enhanced classical

computation, that quantum techniques might be exploitable for the sake of classical

security. Part V is dedicated to these results which have been published in the Journal

of Quantum Information and Computation [Dunjko et al., 2016].

The rest of Part I is an introduction to the basic elements needed for understanding

the rest of the thesis. In Sections 1.1.1 to 1.1.3 we establish the basic notation for

quantum computation in both the circuit and the measurement-based model. In Section

1.1.4 a minimal necessary exposition to computational complexity theory is given. We

proceed by introducing formally, in Section 1.2, quantum delegated computation and

verification. Section 1.3 contains an overview of the existing verification techniques

and protocols in literature, that will serve as a reference point to our techniques.

8 Chapter 1. Overview

1.1 General Preliminaries

Here are presented briefly some basic elements of quantum computation and quantum

information that will be useful for the rest of the thesis.

1.1.1 Quantum Computing and Density Operators

The state of a quantum system is represented by |ψ〉 ∈H , where H is a Hilbert space

and |||ψ〉||= 1. In this thesis we consider only systems of finite dimension N and, using

the standard convention, we fix the computational basis to be {| j〉}N−1
j=0 . Also, when N

is a power of 2 and j is in the binary representation, we speak about qubit systems.

Density operators is an alternative formalism to represent quantum systems, espe-

cially those whose state is not completely known. Suppose that a system is in one of the

states |ψi〉 ∈H , with index i, with probability pi. The corresponding density operator

or density matrix ρ ∈ L(H), where L(H) is the set of bounded operators in H , is:

ρ = ∑
i

pi|ψi〉〈ψi| (1.1)

There exists a simple test in order to find if an operator is a density operator [Nielsen

and Chuang, 2010]:

Lemma 1. An operator ρ in Hilbert space H is a density operator iff:

1. ρ has trace equal to one

2. ρ is a positive operator

A two dimensional density operator can be expressed in the standard basis of identity

I and Pauli matrices {X ≡

[
0 1

1 0

]
,Y ≡

[
0 −i

i 0

]
,Z ≡

[
1 0

0 −1

]
}:

ρ =
1
2
(I + r1X + r2Y + r3Z) (1.2)

where r ∈ R3. From positivity of ρ, r forms a unit sphere, called the Bloch sphere,

where all the pure states reside in the boundary, where ||r||= 1.

The basic principles of quantum mechanics can be expressed in the formalism of

density operators. If a system, originally in state described by density operator ρ, evolves

according to unitary transformation U , the final state of the system can be written as:

UρU†. Measurements of quantum systems can be represented in this formalism in the

1.1. General Preliminaries 9

following way: If we perform a measurement described by measurement operators Mm

on state ρ, the probability of getting result m is tr(M†
mMmρ) and the state will ‘collapse’

to MmρM†
m/tr(M†

mMmρ).

Another important operator used in describing composite quantum systems is the

reduced density operator. First we define the partial trace operation: Suppose we have

systems A and B. The partial trace over system B, denoted by trB is defined by:

trB(|a1〉〈a2|⊗ |b1〉〈b2|) = |a1〉〈a2|tr(|b1〉〈b2|) (1.3)

where |a1〉 and |a2〉 and |b1〉 and |b2〉 are any vectors in space of system A and B

respectively.

Then, the reduced density operator for system A is:

ρ
A = trB(ρ

AB) (1.4)

The reasoning behind using the reduced density operator for system A is that it

provides the correct measurement statistics for the measurements made on system A.

In the formalism of density matrices the most general quantum channel can be

described as a map E ∈ L(H)→ L(H) that is:

• linear

• complete positive, which means that it is positive and also all extensions E ⊗ I ,

where I is the identity map of arbitrary dimension, are positive

• trace preserving

Thus, a quantum channel is often described as a completely-positive trace-preserving

(CPTP) map. More information on quantum computing can be found in [Nielsen and

Chuang, 2010] and [Heinosaari and Ziman, 2008].

1.1.2 Circuit Model

In the circuit model the computation is described as a sequence of unitary transforma-

tions, which are the quantum analogues of classical logic gates. Measurements are

only taken at the end of the computation. Here, we represent unitary transformations as

matrices with respect to the computational basis {|0〉, |1〉}.
An important set of unitary transformations are the Pauli matrices. The set of Pauli

matrices together with multiplicative factors ±1, ±i, that is: {±I,±iI, ±X ,±iX ,±Y ,

10 Chapter 1. Overview

±iY,±Z,±iZ}, forms a group under matrix multiplication. The general Pauli group Pn

is defined to be the set of all the n-fold tensor products of the Pauli matrices together

with multiplicative factors ±1, ±i under the operation of matrix multiplication.

Another important group of unitary operators is the, so called, Clifford group ∗. The

general Clifford group Cn is defined to be the group that maps the general Pauli group

Pn to itself under algebraic conjugation: Cn ≡ {U |U†PnU ⊆ Pn}. Some important

members of the Clifford group are: the Hadamard gate H, the controlled-NOT or cX

and the phase gate S.

H ≡ 1√
2

[
1 1

1 −1

]
,cX ≡

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 ,S≡
[

1 0

0 i

]
(1.5)

Families of quantum gates that can be used to construct circuits that implement

any arbitrary unitary operator of any size exactly are said to be universal for quantum

computation. For example, the set that contains the cX gate and all single qubit gates is

universal for quantum computation. For practical reasons, however, we need to consider

discrete sets of gates. Therefore, we restrict our interest to families of gates that can be

used to construct circuits that approximate any arbitrary unitary operator. Those families

of quantum gates are said to be approximately universal for quantum computation.

Unless otherwise stated, we assume a quantum circuit to apply on a tensor product

of computational |0〉 states, also called the blank states. In the case of blank state input,

a circuit that consists of elements of the Pauli group and the the Clifford group followed

by measurements on the computational basis is not capable of performing universal

quantum computation. In fact, this circuit can be efficiently simulated by a classical

computer (Gottesman-Knill theorem, see [Nielsen and Chuang, 2010]). We introduce

two more gates, the phase π/8 gate T and the Toffoli gate, each of them being able to

supplement the Clifford group into constructing a universal set of gates:

∗defined in [Gottesman, 1998] and not related to the theory of Clifford algebras

1.1. General Preliminaries 11

T ≡

[
1 0

0 eiπ/4

]
,Toffoli≡

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0

(1.6)

We note that the gate T is a special instance of the general θ-rotation around axis Z,

represented as Z(θ)≡

[
1 0

0 eiθ

]
. Another useful gate is the SWAP≡

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

.

A universal set is composed by the gates: {H,T,cX ,S}. Note that phase gate S can

be constructed by π/8 gates, although it is usually contained in the set for convenience.

This is usually referred as the standard set of universal gates. An alternative is the set

composed of the gates: {H,Toffoli,cX ,S}. Note that cNOT gate can be constructed by

Toffoli gates, although it is usually contained in the set for convenience.

1.1.3 Measurement Based Quantum Computing

Another popular model for describing quantum computing is the Measurement-based

Quantum Computing (MBQC) or one-way quantum computer [R.Raussendorf and

H.J.Briegel, 2001]. This model is based on applying a sequence of measurement

operators on a sufficiently large quantum resource (which can be represented by a graph,

with qubits residing on the vertices), where each measurement can be adapted depending

on results of previous measurements. There are different (equivalent) formalisms to

describe MBQC operations. Here, we adapt the notation from [Danos et al., 2007].

A generic computation consists of a sequence of commands acting on qubits:

• Ni(|q〉): Prepare the single auxiliary qubit i in the state |q〉;

• Ei, j: Apply entangling operator cZ to qubits i and j;

• Mα
i : Measure qubit i in the basis { 1√

2
(|0〉+ eiα|1〉), 1√

2
(|0〉− eiα|1〉)} followed

by trace out the measured qubit. The result of measurement of qubit i is called

12 Chapter 1. Overview

result and is denoted by si;

• X s j
i ,Zs j

i : Apply a Pauli X or Z correction on qubit i depending on the result s j of

the measurement on the j-th qubit.

The corrections could be combined with measurements to perform ‘adaptive measure-

ments’ denoted as sz[Mα
i]

sx = M(−1)sx α+szπ
i . A computation is formally defined by the

choice of a finite set V of qubits, two not necessarily disjoint sets the input and the out-

put, I ⊂V and O⊂V determining the pattern inputs and outputs, and a finite sequence

of commands acting on V .

Definition 1. [Danos and Kashefi, 2006] A pattern is said to be runnable if

(R0) no command depends on an outcome not yet measured;

(R1) no command (except the preparation) acts on a measured or not yet prepared

qubit;

(R2) a qubit is measured (prepared) if and only if it is not an output (input).

The entangling commands Ei, j define an undirected graph over V referred to as

(G, I,O). Along with the pattern we define a partial order of measurements and a depen-

dency function D which is a partial function from OC to P IC
, where P denotes the power

set. Then, j ∈ Dx
i if j gets a Pauli X correction depending on the measurement outcome

of i and j ∈ Dz
i if j gets a Pauli Z correction depending on the measurement outcome

of i. In what follows, we will focus on patterns that realise (strongly) deterministic

computation, which means that the pattern implements a unitary on the input up to a

global phase. A sufficient condition on the geometry of the graph state to allow unitary

computation is given in [Danos and Kashefi, 2006],[Browne et al., 2007] and will be

used later in this thesis. In what follows, x∼ y denotes that x is adjacent to y in G.

Definition 2. [Danos and Kashefi, 2006] A flow (f ,�) for a geometry (G, I,O) consists

of a map f : Oc 7→ Ic and a partial order � over V such that for all x ∈ Oc

(F0) x∼ f (x);

(F1) x� f (x);

(F2) for all x,y : y 6= x,y∼ f (x) we have x� y .

1.1. General Preliminaries 13

Figure 1.3: Brickwork state: A universal resource state for Measurement Based Quantum

Computing with xy-plane measurements

An example of an open graph with a flow is given in Figure 1.3. In this graph,

the subset of vertices of the first column correspond to the input qubits I and the

subset of vertices of the final column correspond to the output qubits O. This graph

state has flow function f ((i, j)) = (i, j+1) and the following partial order for measur-

ing the qubits: {(1,1),(2,1), . . . ,(w,1)} ≺ {(1,2),(2,2), . . . ,(w,2)} ≺ . . . ≺ {(1,d−
1),(2,d−1), . . . ,(w,d−1)}, where w is the width and d is the depth of the graph. The

dependency functions for the corrections are: Dx
(i, j) = (i, j−1) for j > 1, else Dx

(i,1) = /0

and Dz
(i, j) = {(k, l− 1) : (k, l) ∼ (i, j), l ≤ j} for j > 2, else Dz

(i, j) = /0. This graph

state, named the brickwork state, since it is composed of repetitions of the same ’brick’

element, has some very useful properties, such as universality for MBQC computation

with only xy-plane measurements in the Bloch sphere, that will be presented later in

this thesis.

1.1.4 Computational Complexity Classes

We also need to introduce some definitions from both classical and quantum complexity

theory. First, we define the classical complexity class BPP (Bounded-error Probabilistic

Polynomial time):

Definition 3. A language L is in BPP if and only if there exists a probabilistic Turing

machine M, such that

1. M runs for polynomial time on all inputs.

2. For all x ∈ L, M accepts with probability ≥ 2/3.

3. For all x /∈ L, M accepts with probability ≤ 1/3.

Next, we define the quantum complexity class BQP (Bounded-error Quantum

Polynomial time):

14 Chapter 1. Overview

Definition 4. A language L is in BQP if and only if there exists a polynomial-time

uniform family of quantum circuits {Qn|n ∈ N}, such that

1. For all n ∈ N, Qn takes n qubits as input and outputs 1 bit

2. For all x ∈ L, Pr(Q|x|(x) = 1)≥ 2/3

3. For all x /∈ L, Pr(Q|x|(x) = 0)≥ 2/3

Finally, the classical complexity class NP (Non-deterministic Polynomial time) is

the set of decision problems solvable by a non-deterministic Turing machine that runs

in polynomial time, which means that there is an accepting computation path if a word

is in the language. Equivalently, it can be defined in the verifier model:

Definition 5. A language L is in NP if and only if there exist polynomials p and q, and

a deterministic Turing machine M (verifier), such that

1. For all x and y, the machine M runs in time p(|x|) on input (x,y).

2. For all x in L, there exists a string y (witness) of length q(|x|) such that M(x,y) =

1.

3. For all x not in L and all strings y of length q(|x|), M(x,y) = 0.

1.2 Security Definitions

In this thesis we consider verification in the context of delegated quantum computation.

There are three components in the model of delegated quantum computation: a compu-

tationally weak (compared to BQP) trusted verifier, a computationally powerful (but

quantum realistic, i.e. no more powerful than BQP) and untrusted quantum prover and a

secure channel, capable of establishing two-way quantum and classical communication

between the verifier and the prover. When an alternative model is considered (e.g.

multiple provers, see Section 1.3) this will be made explicit. The verifier is assigned

the task to run a quantum computation that is incapable to run on her own due to the

computational restrictions and therefore has to collaborate with the prover to get the

final output, which can be in general a quantum state (classical output can be seen as

a sub-case). Moreover, the verifier has access to a source of perfectly random binary

strings. The strategy for the verifier is to send to the prover an encrypted version of the

input and description of the computation, on which the prover will apply its operations

1.2. Security Definitions 15

and produce an encrypted version of the outcome. The verifier must be able to decide,

through a series of tests on the returned states, if she accepts or rejects these outcomes.

A security property that is defined in the delegated computing scenario and used

as a stepping stone in the construction of some verification protocols (e.g. [Fitzsimons

and Kashefi, 2012]) is blindness [Broadbent et al., 2009]. The verifier (Alice) wants

to delegate a computation to the prover (Bob) while hiding both the input and the

computation. Bob’s possible deviation is not constrained in any way.

Definition 6 (Perfect Blindness). Let P be a protocol for delegated computation: Alice’s

input is a description of a computation on a quantum input, which she needs to perform

with the aid of Bob and return the correct quantum output. Let ρAB denote the joint

initial state of Alice and Bob and σAB their joint state after the execution of the protocol,

when Bob is allowed to do any deviation from the correct operation during the execution

of P, averaged over all possible choices of random parameters by Alice. The protocol P

is perfectly blind if

∀ρAB ∈ L(HAB),∃E : L(HB)→ L(HB), s.t. TrA(σAB) = E(TrA(ρAB)) (1.7)

Intuitively this means that at the end Bob will get a system that depends only on his

private system and the choice of a deviation map that is independent of the input to the

protocol. We can also extend this to allow some information to leak (e.g. the size of the

computation) by making Bob’s deviation explicitly dependent on this information.

In the verification cryptographic setting Alice wants to delegate a quantum com-

putation to Bob and accept or reject the result depending on whether she thinks the

returned outcome is correct (in the quantum output case, it has high fidelity to the

correct output), or Bob has deviated †. This definition only concerns pure state inputs

and unitary computations. Also, Bob’s deviation is constrained only by the framework

of quantum mechanics. For a delegated computation protocol to be ε-secure, it has to

be correct and ε-verifiable. Correct means that when the deviation of Bob is the identity

operator, the protocol should produce the correct output and accept with probability 1.

ε-verifiable means that the probability of Alice accepting and the result being incorrect

is bounded by a small ε, more formally:

†In this work we will assume that the apparatuses of Alice and Bob are perfect. Without this
assumption on Bob, the protocol will also detect any errors which may stem from Bob’s faulty devices.

16 Chapter 1. Overview

Definition 7 (Verifiability). A protocol for delegated computation, which admits as

input |ψ〉 from a set of allowed quantum states and a polynomial description of a unitary

U from a set of allowed computations, is ε-verifiable (0≤ ε < 1) if for any choice of

Bob’s strategy j, it holds that for any allowed input:

Tr(∑
ν

p(ν)Pν
incorrectB j(ν))≤ ε (1.8)

where B j(ν) is the state of Alice’s system A at the end of the run of the protocol, for

choice of Alice’s random parameters ν and Bob’s strategy j. If Bob is honest we denote

this state by B0(ν). Let P⊥ be the projection onto the orthogonal complement of the the

correct quantum output U |ψ〉. Then,

Pν
incorrect = P⊥⊗|ACC〉〈ACC| (1.9)

where |ACC〉 is the accept state for the indicator that Alice sets at the end of the protocol.

In the case that U are selected from all possible computations in BQP, we call

this property universal verifiability. Typically, we can set the input state to the blank

state |0〉⊗n as we can use the first part of the computation to prepare the desired input.

Generalizations for mixed input exist, but one needs to be careful who is in possession

of the purification of the state. We will come back to this point in Part III.

1.2.1 Interactive Proofs

The concept of efficient verifiability can also be viewed from a complexity theoretical

perspective though the formalism of Interactive Proof (IP) systems. These are systems

consisting of a trusted verifier and an untrusted prover, which are allowed to interact, and

were first defined in the context of the computational complexity class IP ([Goldwasser

et al., 1985], [Babai, 1985]). We briefly make the connection to this formalism in this

section, but we keep the rest of the thesis within the context of computer security in

order to keep it as general as possible, e.g. to be able to discuss about scenarios, such

as the quantum output case, which are not directly translatable as classical complexity

classes. We begin we the definition of class IP, which was introduced as an extension of

the complexity class NP.

Definition 8. A language L is in IP if there is an Interactive Proof system, consisting

of a polynomial probabilistic verifier A and an unbounded prover B which allowed to

interact, such that

1.2. Security Definitions 17

1. For all x ∈ L given as input to (A,B), and for a certain (honest) B, A halts and

accepts with probability at least c = 2/3. (completeness)

2. For all x not in L given as input to (A,B), and any B, A accepts with probability

at most s = 1/3. (soundness)

By standard classical amplification techniques, the class will not be changed if we

replace the requirement by c− s≥ 1
nk for some k and sufficiently large n.

Since it is believed that there are problems in BQP that are not in NP it makes sense

to define an interactive proof with classical interaction between the verifier and the

prover for proving BQP problems. From the known result PSPACE=IP [Shamir, 1992]

and since BQP ⊆ PSPACE it follows that, for an unbounded prover, BQP has an IP.

However, we concentrate on the more realistic case of a bounded prover, in particular a

prover that is a quantum computer (i.e. can solve BQP problems).

First, the class QPIP is defined ([Aharonov et al., 2010], [Aharonov and Vazirani,

2012]) as:

Definition 9. A language L is in QPIP if there is an Interactive Proof system, consisting

of a polynomial probabilistic (BPP) verifier A and an BQP prover B which allowed to

interact, such that the same conditions of completeness and soundness as on class IP

hold.

Unfortunately, there is no protocol to demonstrate that BQP is in QPIP (the opposite

is trivial). QPIP* ([Aharonov et al., 2010], [Aharonov and Vazirani, 2012] - star notation

differs in the different papers) is another class that comes from adding to the verifier the

ability to prepare quantum states and send them through a quantum channel. Providing

this quantum enhancement to the verifier appears to be crucial for the existence of

verification protocols as we will observe shortly. Then, using these protocols one can

prove the weaker result, that BQP=QPIP*.

To sum up, by working with a QPIP*, we have a mostly classical verifier (BPP+the

ability to prepare quantum states) and a full quantum prover and we want to verify all

polynomial size quantum computations. In order to prove that there is a QPIP* for BQP

we consider classical input classical output verification protocols and prove that the gap

between completeness (probability of accepting a YES instance with honest prover) and

soundness (accepting a NO instance with any prover) is ≥ 1
poly(n) where n is the size

of the problem (the description of the computation in this case). Standard poly-time

classical amplification techniques involving repetition can be applied in the case Bob’s

18 Chapter 1. Overview

output is classical (Bob measures everything before sending the result to Alice so there

is no entanglement between the received systems of different rounds). In the case Bob’s

output is quantum, serial repetition is possible, because Alice can measure her system

before running the next round, but parallel repetition is not necessarily possible (in

some protocols, such as [Fitzsimons and Kashefi, 2012], parallel repetition is possible

since the parallel runs will be proven later to be separable systems for any possible

deviation of Bob if we average over random parameters). In the case Alice’s output

is quantum, classical majority voting is not an option but one can apply alternative

techniques involving quantum encoding to amplify the error probability, as we will

explain later.

1.3 Overview of Existing Techniques

Having established the notion of quantum delegated computation and the property of

verifiability, we present a general overview of the existing approaches. We include the

protocols that are the most efficient and most representative of their own categories, and

have come to our attention until the moment of writing this thesis.

An important categorizing factor between the protocols is the basic configuration of

the system. Most of the protocols are based in the single-verifier/single-prover/quantum-

channel configuration outlined in the previous sections. The verifier is a classical

computer with a simple constant size device that is able to perform some elementary

quantum operations (preparation or single gates or measurement) and the prover is

usually universal for quantum computation. Ideally one wants to have a purely classical

verifier, without any extra capabilities, to verify a quantum computer but whether or not

this is possible without extra assumptions is a long-standing open question [Aaronson,

2007]. Its importance relates to the ability of using the scientific method of laying out

an experiment and classically predicting and verifying its outcome in the limit of the

high complexity of quantum mechanics, as discussed in [Aharonov and Vazirani, 2012].

There is a second configuration considered in literature, where a single verifier has to

verify multiple provers that share scalable initial entanglement. There are protocols

that achieve this goal using techniques for testing quantum correlations, such as CHSH

games or self-testing, and have the property that the verifier is purely classical. However,

these protocols impose a strong assumption, that of non-communication between

the different provers during the execution of the protocol. Also, the communication

complexity of these protocols is much higher, compared to the single verifier-single

1.3. Overview of Existing Techniques 19

prover protocols.

In the protocols of the first category (single-verifier/single-prover) there are im-

portant differences in their approach to verification. We can separate to three broad

subcategories: the protocols based on some type of trapification of the delegated system

(e.g. [Fitzsimons and Kashefi, 2012]), the protocols that are based on some type of

quantum authentication scheme (e.g. [Aharonov et al., 2010]) and the protocols where

the verifier only tests quantum correlations on the states prepared by the prover (e.g.

[Hayashi and Morimae, 2015]). There also a difference in the use of hiding (encryption)

in each of these schemes. In Section 1.3.1, we present the basic approaches for the

single-verifier/single-prover category by outlining some representative protocols. These

protocols will be used as components to our optimized verification in Part II and will

also be relevant to the rest of the thesis. Later, in Section 1.3.2, we will give an overview

of the rest of the protocols, including the single-verifier/multiple-prover ones.

1.3.1 Three Roads to Verification

The first approach to verification is based on injecting and testing a subsystem of traps at

a random position among the qubits of the normal computation. The computation needs

to be hidden from the prover so that he cannot discover the position of the traps. The

second scheme is based on encoding the quantum input by a secretly randomized family

of error correcting codes with some covering properties (authentication schemes), and

checking if the system remains in the correct subspace after prover’s operation. The

hiding is on the input states so that the prover cannot retrieve the secret key used in

encoding. In this thesis we will focus more on these two approaches which, given the

differences in their structure, can be referred to as subsystem and subspace verification

correspondingly. The third scheme is based on the prover preparing of a large entangled

resource state and the verifier performing measurements on it to run the computation

and at the same time verify the resource by testing stabilizer correlations.

The three schemes have different assumptions of trust and different requirements

for the verifier and therefore are useful in different scenarios. In brief, the trap-based

verification and authentication-based verification are appropriate when we trust the

preparation devices, while the resource-testing is appropriate when we trust the mea-

surements. Between the first two, the existing trap-based protocols have the benefit

of having to prepare only single qubit states, while the existing authentication-based

protocols have the benefit of fewer rounds of communication between the verifier and

20 Chapter 1. Overview

the prover (number of rounds is equal to the Toffoli depth). In the next paragraphs we

overview a protocol from each scheme and give more details on the assumptions and

requirements.

1.3.1.1 Trap-based verification

Verifiable Universal Blind Quantum Computing (VUBQC) [Fitzsimons and Kashefi,

2012], or FK protocol from the names of the authors, is a trap-based protocol and will

be relevant to the optimizations we attempt in the next two parts of this thesis. It is

based on the pre-existing Universal Blind Quantum Computation protocol [Broadbent

et al., 2009]. The latter is a protocol for secure delegated quantum computation where

the server does not learn anything about the client’s input and computation (thus blind,

as defined earlier). The underlying model for both UBQC and VUBQC is a delegated

version of the Measurement-based quantum computing, where the verifier prepares

the single qubits composing the resource state and the measurement angles which

define the basis to measure, while the prover entangles and performs the measurements.

For blindness, verifier has to encrypt the quantum and classical states she sends to

the prover, with whom she has to interact during the execution of the computation to

be able to implement the adaptive measurements. For verification the verifier has to

add a trapification subsystem at a random position among the sent states, which gives

deterministic results for the measurements of the prover, thus can be checked to see if

the prover is honest. Since prover does not know when he measures the computation and

when he measures the trap he cannot cheat without getting caught with some probability.

A not very detailed description of the protocol is given here, while a formal protocol

with more explanation is given in Section 3.1, so that it can be used in our optimizations.

FK protocol (sketch) ‡

1. Alice has a description of a computation in the measurement-based quantum

computing (MBQC) model.

2. Alice embeds this MBQC computation in a different graph that has the following

property: A subsystem of isolated qubits (named traps) can be positioned uni-

formly at random between the normal computational qubits without corrupting

the flow. In order to isolate the traps, qubits in state |0〉 (named dummies) are

‡Protocol 8 in [Fitzsimons and Kashefi, 2012]).

1.3. Overview of Existing Techniques 21

placed as their neighbours and measured in the XY plane of the Bloch sphere so

that the effect of the entangling operations of Bob is cancelled.

3. Alice prepares all single qubits needed for the construction of the resource state

by Bob: Instead of preparing them as |+〉i qubits, she performs a random rotation

by angle θi ∈ A≡{0,π/4,2π/4, . . . ,7π/4} around Z axis. For the dummies Alice

instead applies a random X Pauli operation and a pre-rotation by Z on all their

neighbours to cancel this effect.

4. Bob receives the qubits one by one and entangles them (cZ) to construct the

entangled state, the structure of which is public.

5. Alice sends to Bob at each step i the measurement angle δi that encrypts the

computational angle φi (updated to φ′i based on the previous measurement re-

sults): δi = φ′i +θi + riπ. This effectively cancels the pre-rotation by θi (since it

commutes with cZ) and adds a bit flip on the outcome to hide the measurement

result.

6. Alice receives the measurement result and decrypts it by XOR-ing with ri.

7. For the isolated traps φi = 0 so that the measurement outcome depends only on ri

and is deterministic.

8. At the end Alice accepts the outcome returned by Bob if all traps give the correct

outcome.

9. To achieve exponentially small ε verifiability, Alice encodes the computation in

a fault tolerant MBQC pattern, using a QECC that detects log1/ε errors. This

procedure is explained in Section 3.1.1. The underlying idea is that, in order

to corrupt the computation, Bob has to corrupt at least log1/ε qubits, which

increases his probability of hitting a trap and get caught.

In order to pick a graph that has the desired property of hiding the trap without

interrupting the flow, the degree of each vertex becomes linear on the graph size.

The underlying graph state, named the dotted-complete graph and presented later, is

of quadratic size. Thus, the quantum requirement of Alice is to prepare and send

Õ(n2)×O(log(1/ε)) § single qubit states (the ε factor comes from the FT encoding)

§Notation Õ is a variant of O that ignores logarithmic factors, i.e. f (n) ∈ Õ(g(n)) means that
∃k : f (n) ∈ O(g(n) logk g(n)).

22 Chapter 1. Overview

and on-line classical communication of Õ(n2)×O(log(1/ε)), where n is the size of the

computation. The goal in Part II will be to reduce these requirements to linear on n

while keeping the modest requirements for the verifier preparation device.

1.3.1.2 Authentication-based verification

The second verification protocol, that will be used in our optimization in Part II, is the

Polynomial QAS-based verification [Aharonov et al., 2010] or ABE protocol from the

names of the authors. This protocol is based on the Quantum Authentication Schemes

(QAS) [Barnum et al., 2002] which are used to transmit quantum states through an

untrusted quantum channel and check the integrity of the received state (more on

authentication schemes in Part IV). The transmitter and receiver share a secret classical

key which is used for secret (encrypted) encoding and decoding of the quantum state.

The main idea of Polynomial QAS-based verification is that the quantum states sent

from the verifier to the prover in the delegated computation scenario are secretly encoded

by a polynomial QAS. A QAS uses a family of quantum codes, parametrised by a secret

key, that have the special covering property that any Pauli error on the state is detected

by all but an exponentially small number of members of the family. Then the prover

must apply the computation on the QAS-encoded state in a way that the output remains

in the valid subspace (up to an update on the secret key on the verifier side). The prover

cannot deviate and keep the state in the valid subspace if he does not know the secret key

of the QAS. An extra Pauli key is used to reduce all general attacks to Pauli operators.

Here, we give a short description of the protocol, while a more technical one is provided

in Section 2.2.3. It’s worthwhile to observe that this protocol, as it was the case in the

FK protocol, is defined in a model of computation that is based on measurement.

ABE protocol (sketch) ¶

1. Alice has a description of a computation in the Gate Teleportation model where the

non-Clifford operations, Toffoli gates in this case, are performed using auxiliary

states, Toffoli|++0〉 in this case (Toffoli states), computational basis measure-

ments and Clifford corrections depending on the measurement outcomes (the

principle is similar to MBQC, more details in Section 2.2.1). For the protocol to

work the computation must apply on qudits, i.e. d-level systems, where d is an

odd prime.

¶Protocol 4.2 in [Aharonov et al., 2010]

1.3. Overview of Existing Techniques 23

2. She encodes the input (typically the blank state plus the magic states) using

a polynomial-QECC code where the encoded states are superpositions of all

polynomials (in point-value representation) of degree ≤ p. She also applies a

random sign on each polynomial value, and keeps this key secret from Bob.

3. She applies an independent random Pauli operator on each of the physical states

of the QAS state and sends it to Bob.

4. Bob performs the computation while classically communicating with Alice to

implement the corrections needed after each measurement step. Alice updates

her secret keys accordingly.

5. Alice receives the final output, undoes the Pauli rotations and the sign key and

checks if the resulting state is encoded by a polynomial code of low degree. If

not, she rejects otherwise she accepts. This gives an ε-verifiable protocol with ε

exponentially small on p.

The quantum requirement for the verifier, which comes from the need to prepare se-

cretly encoded states, is to be able (by means of a fixed size universal quantum computer)

to prepare and send O(n) states of O(1/log(ε)) entangled qudits of O(1/log(ε))-level,

where n is the size of the computation. The classical communication requirement is

O(n)×O(log(1/ε)) rounds during the execution of the computation. The goal in Part

II is to use the techniques of this protocol as part of a composite construction to take

advantage of the linear (on the input) communication complexity.

1.3.1.3 Resource testing verification

In [Hayashi and Morimae, 2015] an alternative approach is taken to verification, where

the verifier has a single state measuring device instead of a preparing device and uses

it to apply the measurements needed to implement an MBQC computation. On the

other hand, the prover is the one who prepares, entangles and stores the quantum states.

Alice verifies that Bob keeps the correct state by checking the correlations of stabilizer

measurements. It can be seen therefore as a protocol for state certification for large

graph states. Also, the protocol provides hiding of the computation, since the Bob never

learns the measurement angles by the non-signalling principle. In terms of resources

Bob has to prepare O(n) states and send them to Alice one by one. Alice should be

able to apply a universal set of single qubit measurements. Quantum communication

24 Chapter 1. Overview

is on-line. Therefore, it requires preserving long distance entanglement between the

verifier and the prover during the computation.

1.3.2 Other Protocols

In [Aharonov et al., 2010], another protocol was proposed based on the principle of

QAS-based verification, this time with a verifier able to apply one-qubit and two-qubit

gates. This protocol is based on a random Clifford applied on the input before sending

it to the prover. The prover is used as an untrusted quantum storage device between the

operations applied by the verifier. Every time she wants to apply a quantum gate, she

asks for the corresponding encoded qubits (constant size), decodes them by applying

the Hermitian conjugate of the secret Clifford and measures each of the appended qubits

in the computational basis and aborts if she gets a 1. After, she applies the gate and

encodes the output qubits again with new secret Clifford operators. This process is

repeated until all gates have been applied. In terms of resources, the verifier needs to

be constant size (O(log1
ε
)) universal quantum computer and the prover a polynomial

size quantum memory. The dimension of the single quantum systems is not dependent

on ε, as it was in the case for the ABE protocol. Also, the verifier needs to exchange

with the prover during the execution of the protocol O(n)×O(log 1
ε
) quantum states.

From the description of the protocol, also one understands that it requires preserving

long distance entanglement between the verifier and the prover during the computation.

In the recent work of [Kashefi and Wallden, 2015], a modification of the trap-based

verification of the FK protocol is presented. In particular, the underlying graph, used as

the resource for both the computation and the traps, is simplified over the original FK

protocol. The graph used, named the triple dotted graph, since it is made of components

that are bipartitions of three qubits with a vertex (dot) injected in each edge, has the

desired property of hiding the trap without interrupting the flow. But, this graph has

also linear size on the computation since the degree of each vertex is constant which is

an improvement of the FK protocol. The requirement for the verifier is to prepare single

qubit states as in the original protocol. This result is comparable to our work, especially

with the composite protocol presented in Part II, in terms of complexity but has some

differences in both the construction (type of the graphs) and the depth complexity that

will be progressively discussed through the thesis.

Another protocol with a verifier that prepares auxiliary states, appeared recently

in [Broadbent, 2015] and is also comparable in efficiency to our work in Part II. This

1.3. Overview of Existing Techniques 25

protocol and the rest that follow in this section do not give an option to verify the

quantum output with exponentially low ε, as it was the case with the trap-based and

authentication-based protocols. The scope of this protocol and of the ones that follow is

to prove the existence of an interactive proof, therefore they are interested only in the

classical output. The main technique, here, is similar to trapification: in each run the

verifier chooses at random between running the actual computation or running a test to

detect the prover’s deviation. The protocol is such that the prover cannot distinguish

between the different cases and therefore cannot cheat without the risk of getting caught.

Alice has to prepare random state from the set A, same to the FK protocol, however she

needs a linear number of them. There is a constant size classical interaction for each

T or H gate therefore the overall classical communication is linear on n, where n is

the size of the computation. The prover should be able to perform universal Clifford

computation and Pauli measurements.

A different approach on verification is taken in [Reichardt et al., 2013], where a

purely classical verifier is able to verify two quantum provers which share entanglement

but are not allowed to communicate to each other. In this case the verifier, by being

able to interact only classically with the two computers, is able to verify whether or not

they share the correct initial state and they perform correctly the instructed operations

so that they jointly produce the correct outcome of the computation. Verifiability comes

from the fact that the verifier can perform CHSH games on the prover’s devices and

that the prover cannot have the incorrect state or perform the incorrect measurements

and win many games. The protocol is not practical because of the unrealistic number

of resources and rounds of communication needed (the number of states and rounds

of communication scale with O(nc), for some appropriate c ≥ 8192), however since

they are still polynomial it demonstrates the theoretical possibility of such a protocol to

exist. Also this result is a way to achieve device independence in quantum cryptography

(since the verifier is purely classical). Device independence is the concept that can be

attached to quantum security if the protocol remains secure even when the quantum

devices used are faulty. In the case of full device independence, the devices are totally

untrusted and can behave in any possible way. Moreover, the delegated computation

remains blind from the prover.

The protocol in [McKague, 2013] applies on a more distributed setting, where a

classical verifier delegates her computation to a polynomial number of untrusted quan-

tum devices. The assumptions are again that these quantum devices share entanglement

but are not allowed to communicate between them. During the protocol each quantum

26 Chapter 1. Overview

device is instructed to perform only one measurement and the correctness of the induced

states is checked by the verifier by a graph state self-test protocol. The authors prove a

tighter, compared to the existing, bound for the self-testing of graph states, where the

error scales polynomially on the number of test repetitions and therefore can be used

for a theoretically efficient protocol - the complexity is improved also compared to the

two prover protocol of [Reichardt et al., 2012], however it remains high (quantum states

and communication required is of O(n22)).

In [Gheorghiu et al., 2015] by combining techniques of the double-server verification

of [Reichardt et al., 2012] and the single-server trap-based verification of [Fitzsimons

and Kashefi, 2012] a composite protocol is presented which achieves device independent

verification with fewer resources. In particular, the verifier instructs an untrusted device

that is not allowed to communicate with the prover to prepare on the prover’s side the

quantum states needed for the execution of the single-server verification protocol. The

verifier is able to verify the final outcome of the two phases, without having to trust his

preparatory quantum device, thus achieves device independent verification. However,

since the full mechanism of the double-server verification protocol is not needed the

resources reduce significantly, yet still being high enough for a realistic implementation.

In [Hajdusek et al., 2015], simultaneously with [Gheorghiu et al., 2015], a similar

composition of the two mechanisms, of verified state preparation and trap-based verified

computation, is considered. Here the verified state preparation is achieved through

self-testing instead of state tomography. This achieves a device-independent protocol,

where the verifier has in his hands an untrusted quantum device that is teleporting states

to the prover but is not able to communicate with the prover directly so that it can

be tested by the self-testing procedure. The prover is able to run measurement-based

quantum computing in order to perform the trap-based protocol. This protocol gives

verifiability with resources reduced to O(n4).

A number of protocols exist that verify a state shared by many parties. E.g. in

[Pappa et al., 2012] a resource verification protocol is presented where GHZ states

are distributed to many parties by an untrusted device and the parties can verify the

existence of the GHZ state by trusting only their measurements.

Focusing on the blindness property only, several recent papers [Giovannetti et al.,

2013, Mantri et al., 2013, Perez-Delgado and Fitzsimons, 2014] have achieved better

than linear bound while compromising either unconditional security or the simplicity

of the verifier’s operation. We believe that it may be worthwhile to explore these new

blind techniques with the goal of designing more efficient verification protocols.

Part II

Efficient Universal Quantum

Verification

27

Chapter 2

Overview

The key element for constructing a practical verification protocol is to have a minimal

verifier, that will be easy to build and control. A practical verifier should have only very

limited quantum capabilities, in terms of the preparation, measurement or evolution

operations that she can apply, thus being far from a universal quantum computer. On

the other hand, such a protocol should be limited on the amount of classical and

quantum communication between verifier and prover, especially during runtime. These

requirements are important, not only from a theoretical viewpoint, as we will be

approaching the regime of a purely classical, non-interactive verifier, but also from a

practical viewpoint, since verifying the emerging quantum devices will be crucial for

the proof of their existence and potential. One can envision that, in the future, full scale

quantum computers will be available only in research institutes and thus the idea of

delegated quantum computing, or quantum cloud will become relevant.

There are two verification protocols, namely Verifiable Universal Blind Quantum

Computing (VUBQC) [Fitzsimons and Kashefi, 2012] and Polynomial QAS-based

verification [Aharonov et al., 2010], already outlined in the previous part, that have the

most modest, among the known protocols, requirements for the verifier. The first has

very modest preparation requirements, while the second has a lower communication

cost. In particular, as already stated in the previous part, in the FK protocol the verifier

is required to have the minimal quantum capacity of preparing single random qubits,

while due to the complexity of the underlying resource state necessary for the server’s

universal quantum computation, the communication overhead is quadratic in the input

size. In contrast, the ABE protocol enjoys only a linear overhead in the input size,

however, the cost is the verifier’s requirement of preparing highly entangled secretly

encoded states which scale with the security parameter. The main contribution of this

29

30 Chapter 2. Overview

part of the thesis is to show the best properties of the two approaches may be achieved,

by combining aspects of the two protocols. In doing so, we also prove several new

properties of these two protocols that could become useful for other purposes as well,

such as protocol implementability and composability.

The main idea is to use the verifiable computation of the FK protocol to prepare,

on the prover’s side, the inputs encoded by the randomized polynomial quantum error

correcting code (QECC) used in the quantum authentication scheme (QAS) of the ABE

protocol. In other words, the states the verifier would have to prepare and send in the

first step of the original ABE protocol. On these states the public logical circuit of

the ABE protocol is applied, and the output is tested to verify that it is in the correct

encoded subspace. If either the trapification (verification process of the FK protocol)

or decoding procedures (verification aspects of the ABE protocol) fails, the verifier

rejects. The partitioning of the underlying resource state used in the FK protocol into

smaller sub-states for each separable logical qudit leads to an improved communication

complexity of the composite protocol compared to the original FK protocol, while

maintaining the FK protocol’s preparation simplicity.

The main contributions of this part are:

• A refined modular proof of verification for the FK protocol, in which any deviation

of the prover can be written as a combination of the correct operation - that

disentangles the trap from the computational system - and a local attack on each

of the qubits of the held system, thus the system remains always disentangled

from the private system of the prover. This allows for both parallel and serial

composition of the FK protocol. Also, if we reduce our verification criterion to

have the correct output up to a CPTP map that is independent of the computation

- a scenario that arises in composite protocols such as ours - a modified version of

the FK protocol that uses an extra gadget graph, is proven suitable.

• An odd prime dimension adaptation of the FK protocol is presented, after building

odd prime dimension MBQC and MBQC blind protocol. A new bound on

verifiability is proven, which is better than the bound of 2-level systems.

• A composite FK-ABE verification protocol is given that reduces quantum and

classical communication complexity of FK from quadratic to linear, while keeping

modest quantum preparation requirement for the verifier. Also, an alternative

version of this protocol is proposed, when Toffoli states are available to the verifier,

2.1. Main Results 31

where the the delegated preparation of the encoded QAS states is a Clifford

computation and therefore can be done with one round of communication.

2.1 Main Results

A few results are proven prior to the construction of the composite protocol, which

might be useful in other contexts. We outline these results here, while a more detailed

presentation is given in the following chapters of this part of the thesis.

Since we use the FK protocol for the preparation of the QAS verifiable states, which

are quantum entangled states, the version of the FK protocol that is appropriate is the

one that admits quantum output. Moreover, we require an exponentially low probability

ε of failing to prepare a correct QAS verifiable state so that the composite protocol itself

has exponentially low failure probability. In the case of quantum output (as opposed to

classical output where on can apply classical amplification techniques, such as majority

vote) to amplify the probability we encode the computation using a quantum Fault

Tolerant (FT) scheme that forces the attacker to have a bigger footprint on his attack

and therefore increases his chances of getting caught by the trap (a technique described

in the original FK, see also Figure 2.1 and Section 3.1.1 for more details). In Chapter 3

we give an explicit description of an amplified FK protocol with quantum output, not

given in the original paper. Special care has been taken to provide a protocol where

Alice has the extra quantum requirement of applying Clifford gates for decoding the

final quantum output she receives from Bob. Crucially, in the composite protocol later,

this Clifford circuit can be delegated to Bob and therefore the requirement for Alice

will remain the single qubit preparation.

The verifiability of the amplified FK protocol with quantum output is also proven in

Chapter 3, formally stated as Theorem 1, the essence of which is given here:

Theorem 1. (sketch) FK protocol can be modified to admit quantum output and is

perfectly blind and ε-verifiable, where ε = 1
cp1 , where p1 is a parameter of the FT

procedure and c a constant that depends on the graph used. The extra requirement

compared to the original FK protocol is the ability of Alice to apply a decoding Clifford

circuit and Pauli measurements.

To prove this theorem an alternative approach is taken, compared to the proof of

verifiability in the original paper. The new technique reduces first any attack from

Bob to a convex combination of Pauli operators, using some of the randomness of the

32 Chapter 2. Overview

Figure 2.1: FK protocol with quantum output and verifiability amplification to exponentially

small ε. Alice delegates to Bob the blind execution of an MBQC pattern that contains

both a fault tolerant implementation of the computation using a QECC that detects

log1/ε errors and a set of traps mixed within. In order to corrupt the computation, Bob

has to corrupt at least log1/ε qubits which amplifies his probability of hitting a trap. Alice

has to decode the MBQC output layer herself, otherwise Bob would increase his chances

of cheating by attacking the decoded output.

protocol, so that the analysis for the traps and the FT procedure applies only for Pauli

attacks. This technique is useful when we need to write the state of the system at any

point during the operation of the protocol, not only at the end, as it is the case with the

composite protocol where the output is not returned to Alice. Also, it makes easier to

prove the following corollary:

Corollary 1. For a parallel composition of FK protocols with quantum output, where

each protocol uses an independent set of random variables having ε-verifiability indi-

vidually, the final aggregate quantum output of all protocols will also be ε-verifiable

when averaged over all parameters.

Towards building a full composite protocol, a number of intermediary protocols, or

variations of the FK protocol, are presented in Chapters 4 and 5. As mentioned before,

in the composite protocol the first phase is to prepare remotely on Bob’s side the state

needed for the execution of the ABE protocol. Bob then has to run a public logical

circuit on this state to perform the actual computation. Therefore, the output of the first

phase must be in a fixed position, known to Bob, and cannot contain any trap (in fact it

2.1. Main Results 33

could contain a trap, but revealing the position of it will make it useless for verification

purposes). In general, having the output at a fixed position will break the verifiability

property of the FK protocol, since it will reveal some information about the positions of

the traps in the previous layers. In Chapter 4, we give a version of the FK protocol that

uses a special output gadget to fix the output position without breaking verifiability, up

to a CPTP map on the output (since Bob can always replace the output with his private

system in this case). This property is stated in Theorem 2 in Chapter 4, a sketch of

which is given here:

Theorem 2. (sketch) The output of the FK protocol with the localising gadget after

decoding of the FT procedure and decrypting of the quantum one-time-pad and averaged

over all random parameters of Alice, is ε-verifiable equal to the correct output of the

computation |ψc〉 up to a CPTP-map where all Kraus operators are Pauli operators

and is independent of |ψc〉. Moreover, the output is at a fixed position on the graph,

independent of the random parameters.

If |ψc〉 is a QAS encoded state and is prepared by the localisation protocol as above

and then fed to the ABE protocol, the requirement that the deviation is independent

of the state (and therefore the secret parameters of the QAS) is enough to prove the

verifiability of the final output of the ABE protocol as we will see shortly.

Another variation of the FK protocol, presented in Chapter 5, is the d-level version

of the protocol, where d is an arbitrary odd prime dimension. This would be proven

useful for the composition of the FK protocol with d-level protocols, such as the ABE

protocol, but also can be useful in general for the implementability of the FK protocol,

especially with the appearance of more efficient d-level FT procedures [Watson et al.,

2015]. In Section 5.1 we present MBQC for d-level systems, using the same notation

of the FK protocol, blind MBQC for d-level systems and eventually a d-level of the FK

protocol, where Alice has to prepare single qudits and send them to Bob. A new bound,

that depends on d, is proven as Theorem 3 in Chapter 5 for the case of d-level systems.

It follows a sketch of this theorem.

Theorem 3. (sketch) There exists a d-level version of the FK protocol, up to the

existence of d-level topological codes, that is ε verifiable with ε = (1− (d−1)c′
d)p, for

graph parameter c′ < 1, FT parameter p and d odd prime.

For the d-level FK protocol with quantum output to exist, we conjecture the existence

of the qudit version of the fault tolerant QECC used in FK [Raussendorf et al., 2007] or

equivalent.

34 Chapter 2. Overview

We examined two different ways to build the composite protocol and found that

only the second is possible. Our first approach was to use 2-level (normal) FK protocol

to simulate the preparation of the d-level QAS verifiable state and translate the quantum

one-time-pad that comes naturally at the end of this phase (and we cannot reveal

it without breaking the FK protocol) to a d-level one-time-pad that will be used in

the ABE protocol phase. This translation we proved in Chapter 6 to be impossible

deterministically for d being an odd prime. Notice that the dimension d being a prime is

essential of the ABE protocol to get the field structure for the polynomials. The second

approach, which we followed, is to use the d-level FK protocol for the preparation of

the QAS verifiable state and directly use the output d-level one-time-pad as the Pauli

key of the ABE protocol.

The composite protocol is presented in Section 6.2, an outline of it given here:

FK-ABE composite protocol (sketch)

1. Alice and Bob execute a specified number of instances of the qudit analogue of

the FK protocol (that includes the localising gadget) to prepare in Bob’s system

each of the desired polynomial-QECC encoded state of the ABE protocol.

2. Bob applies the publicly known Clifford decoding circuit for the FT used in FK

protocol for probability amplification and Alice updates her one-time-pad keys.

3. Alice and Bob apply the polynomial-QECC logical circuit on the encoded states

following the steps of the ABE protocol. Alice updates her secret keys.

4. Bob sends the final measurement outcomes to Alice and Alice employs the

detection and decoding procedure of the randomised polynomial-QECC.

The composite protocol is proven to have the required properties of correctness and

verifiability, as described in Theorem 4 in Chapter 6 and sketched here.

Theorem 4. (sketch) The composite protocol is correct and ε-verifiable, with ε≤ ε1+ε2

where ε1 =
1

cp1 , ε2 =
1

2p2 where p1 and p2 are the QECC distance parameters of the

FK and ABE phase and c > 1 is a parameter of the FK phase which depends on the

structure of the graph used.

In terms of preparation requirements, in the composite protocol Alice needs to

prepare random single O(1/log(ε))-dimensional qudit states. To put this into context,

we remind that in the FK protocol the quantum requirement of Alice is to prepare single

2.2. Preliminaries 35

qubit states and in ABE protocol the quantum requirement of Alice is to prepare states

of O(1/log(ε)) entangled qudits of O(1/log(ε))-level.

In terms of communication complexity, the composite protocol requires classical

and quantum (O(1/log(ε))-level) communication with number of rounds that scales

in O(nPolylog(1
ε
)), where n is the size of the computation. In the FK protocol the

classical and quantum (qubit) communication was Õ(n2)×O(log(1/ε)), therefore the

composite protocol gives a quadratic improvement over FK in its scaling with n. In

the ABE protocol the communication cost is in O(nlog(1/ε)) of classical and quantum

states.

An alternative version of the composite protocol is also given, that reduces the round

complexity, but assumes the availability of (unencoded) Toffoli states. This version is

described in Section 6.2.2 and its verifiability is proven as Theorem 5 and outlined here:

Theorem 5. (sketch) There exists an alternative composite protocol, with extra Toffoli

inputs (or the ability to prepare them) for Alice, and gives the same verifiability with

the first composite protocol and at the same time has round complexity equal to the

Toffoli-depth of the delegated computation, where Toffoli-depth is the depth of the

computation if we consider only the subset of Toffoli gates composing it.

2.2 Preliminaries

In Section 2.2.1 follows a short exposition to d-level quantum computation that is

relevant only to this part of the thesis. In Section 2.2.2 the quantum error correcting

codes used in the QAS of the ABE protocol are described. In Section 2.2.3 the

ABE protocol is presented more formally than previously, so that it can be used as a

component to the composite protocol.

2.2.1 d-level Quantum Operations

First we describe the d-level generalized gates that will be useful in the following

constructions. All additions and multiplications in these definitions are performed

modulo d, unless otherwise stated. The generalized Pauli operators over Fd are defined

as: X |a〉 ≡ |a+1〉, Z|a〉 ≡ ωa
d|a〉, where ωd = e2πi/d is the primitive dth-root of unity.

The generalized Hadamard (or Fourier) gate F is defined as:

|a〉 7→ 1√
d

∑
b∈Fd

ω
ab
d |b〉.

36 Chapter 2. Overview

The cX is defined as: |a,b〉 7→ |a,a+b〉 and cZ as: |a,b〉 7→ ωab
d |a,b〉. The general-

ized phase gate S is defined as:

|a〉 7→ ω

(a+1)a
2

d |a〉

Another important family of Clifford gates are the permutations Sc, c ∈ Fd , defined

as:

|a〉 7→ |ca〉

The generalized Toffoli gate which complements the set of Clifford gates to provide

universality ([Howard and Vala, 2012], [Anwar, 2014]) is defined as: |a,b,c〉 7→ |a,b,c+
ab〉. An alternative to the Toffoli gate to complement Clifford gates for universality

is the family of ‘so-called’ generalized ‘π/8’ gates [Howard and Vala, 2012] one of

which, used in this paper, is defined as: T |a〉 ≡ ωa3

d |a〉 with the exception of qutrits

where T3|a〉 ≡ ω
(a3 mod 9)
9 |a〉.

An explicit construction for a universal set of gates for arbitrary number of qudits of

odd prime dimension that we will use in this part is the following: {Z,F,S,T,cX}. Gate

Z is not necessary to complete the set, since we can generate it from S and F for odd

prime dimensions, but we include it for convenience. The fact that this set is universal

comes directly from the following: From [Clark, 2006] (Theorem 2.3) we have that the

Clifford group can be generated by {F,S,cX}. Finally, by [Howard and Vala, 2012] we

have to add the T gate to the Clifford computations to get universality.

2.2.1.1 d-level Gate teleportation

The model of computation used in the ABE protocol ([Aharonov et al., 2010]), some-

times called the gate teleportation model, all Clifford gates are performed by applying

unitary operators, while the non-Clifford gates are performed by entangling with magic

non-Clifford states (Toffoli states in this occasion), measuring in the computational

basis and performing Clifford correction operators on the remaining states. See Figure

2.2 for the circuit that implements the generalized Toffoli.

2.2.2 Polynomial Quantum Error Correcting Code

The class of quantum error correcting codes used in the ABE protocol, is based on

polynomial error-correcting codes [Aharonov and Ben-Or, 2008]. By randomizing

2.2. Preliminaries 37

Figure 2.2: Implementation of generalized Toffoli (adapting from the qubit Toffoli in

[Nielsen and Chuang, 2010]).

these codes using a secret sign key one can acquire a Quantum Authentication Scheme

(QAS) [Barnum et al., 2002], usable by two parties who want to authenticate a quantum

state exchanged through a malicious quantum channel. A QAS scheme can be used as a

component for a secure quantum multiparty computation [Ben-Or et al., 2006], where

the property of self-duality of the the signed polynomial error-correcting codes makes

the protocol simpler. The signed polynomial error-correcting codes are suitable in the

context of verification of a single quantum prover as demonstrated in the ABE protocol,

due to some useful properties discussed later.

Specifically, the code operates over the field Fd , where d is prime and represents the

dimension of the quantum system. The code uses polynomials f (·) with coefficients

from Fd and with a maximum degree of p, where p is a parameter of the code. These

polynomials are evaluated at m distinct non-zero points from Fd: {a1 . . .am}. To be

able to choose m distinct non-zero points from Fd we impose the restriction: m ≤ d.

Moreover, we set m = 2p+1. Finally, the code uses a secret sign key that is a uniformly

randomly chosen string k←{±1}m.

Given a quantum state |a〉, where a ∈ Fd , we can encode it using the signed polyno-

mial error-correcting code:

|a〉 → 1√
qp ∑
{ f |deg(f)≤p, f (0)=a}

|(k1 f (a1), . . . ,km f (am)) mod d〉

where the mod d is taken element-wise in the label of the right-hand side ket.

To detect if there was any Pauli error in the transmitted codeword, the receiver

undoes the sign key (by applying a Clifford circuit), applies the syndrome measure-

ments and checks if the resulting string is the representation, at m distinct points, of

a polynomial of maximum degree p. If not, it aborts and declares the state invalid.

38 Chapter 2. Overview

The probability of accepting an incorrect state (when the channel applies an arbitrary

Pauli attack) is exponentially small on p. In order to acquire the same property for any

type of malicious attack, an extra quantum one-time-pad is added on top of the existing

randomization, as it is the case in the ABE protocol.

2.2.3 Polynomial Verified Quantum Computing

In the ABE protocol the input is encoded by Alice using the secretly randomised QAS

presented in Section 2.2.2 which has algebraic properties that allow for the secret

updating of the random key throughout the execution of the computation. Specifically,

all Clifford gates applied are transversal or semi-transversal which allows the sign key

on each qubit to remain the same. The non-Clifford gates are applied by state injection

and teleportation using Clifford gates and Pauli measurements. Since all gates are

Clifford the Pauli key commutes and is updated by the verifier who knows which gates

are applied. The QAS has also the covering properties that allow Alice to detect Bob

with high probability after decoding the final state. The computation performed on the

encoded input can be publicly announced without compromising the verifiability of the

protocol, thus the protocol does not provide blindness. A detailed description of the

protocol is given in Protocol 1.

Theorem 6. The ABE protocol is ε-verifiable where ε = 1
2p (based on Theorem 4.1

in [Aharonov et al., 2010] and ignoring the circuit error probability) where p is the

maximum degree of polynomials in the polynomial-QECC. The quantum requirement

of Alice is to prepare O(n) states of O(1/log(ε)) entangled qudits of O(1/log(ε))-

level and the communication requirement is O(n) states of O(log(1/ε)) entangled

qudits sent from Alice to Bob off-line and O(n)×O(log(1/ε)) bits of on-line classical

communication between Alice to Bob, where n is the size of the computation.

The degree p of polynomials used in the polynomial-QECC will be referred to as

the security parameter of the ABE protocol in the rest of this paper.

2.2. Preliminaries 39

Protocol 1 ABE protocol (Protocol 4.2 in [Aharonov et al., 2010])

Alice’s input. Description of a computation in the Gate Teleportation model based

on generalized Toffoli states of dimension d, an odd prime ≥ 2p+ 1, where p is a

parameter of the protocol that gives ε = 1
2p . The input is set to be the Fourier basis state

of n qudits: |+0〉⊗n, where |+0〉= 1√
d ∑a |a〉 but can also be an arbitrary quantum input.

The total number of gates is denoted by N and let t be the number of Toffoli gates of

the circuit.

Alice’s output. The result of measurement of the quantum output of the circuit and a

bit indicating if the result is accepted or not.

The protocol

1. Alice has to prepare a number of generalized Toffoli states, equal to the number

of Toffoli gates of the circuit.

2. Alice chooses a single random sign key k← {±1}m (where m is the size of a

codeword) that will be applied on all encoded inputs (including Toffoli states).

3. Alice chooses a random Pauli key r←{0, . . . ,d−1}2(n+3t)m that will be applied

on the physical qudits of the encoded input.

4. Alice has to encode both the inputs and the Toffoli states according to the polyno-

mial QECC described in Section 2.2.2, with polynomials of maximum degree p

and parametrized by k. Alice also applies a random generalized Pauli rotation on

all (n+3t)m physical qudits parametrized by r.

5. Alice sends all the quantum states to Bob though the quantum channel.

6. Alice and Bob perform the logical operators that correspond to the desired

computation on the encoded state. For each application of logical Toffoli gate,

Bob sends measurement results to Alice and Alice calculates the actual correction

to be performed. She then sends this classical information to Bob who performs

the corresponding correction. For this we need a classical on-line channel.

7. Bob measures the output qudits in the computational basis and returns the mea-

surement results to Alice.

8. Alice undoes the Pauli rotation and applies the detection and decoding procedure

of the signed polynomial QECC, which checks if the measurement results cor-

respond to ≤ p degree polynomial, and sets an indicator bit accordingly, which

shows if she accepts or rejects the result.

Chapter 3

Revisiting Verifiable Blind Quantum

Computing

Verifiable Universal Blind Quantum Computing protocol or FK protocol is given in

Section 3.1 in full detail so that it can be used later in the context of the composite

protocol. Moreover, this presentation of the protocol intends to clarify some aspects

of the original protocol. In the original paper the protocol is presented (Protocol 8,

p.35 [Fitzsimons and Kashefi, 2012] - also outlined in Section 1.3.1 of this thesis)

with Bob at the end of the protocol measuring the final output of the computation and

returning the result to Alice. In our presentation we assume the more interesting case

of Bob returning to Alice the quantum output of the computation, which Alice has to

decrypt and decode applying a quantum operation. Therefore, we explicitly describe the

encryption and encoding that the final returned state has and what are the requirements

for Alice to decrypt and decode it. Our intention while constructing this slight variation

of the protocol was to minimize these requirements for Alice. This will be crucial for

the composite protocol since the state that ABE protocol requires is a quantum state.

A second aspect to be clarified is the underlying fault tolerant procedure that is used

in FK protocol to amplify the verification probability. We provide a description of the

protocol which abstracts the fault Tolerant procedure from the rest of the description

and is generic enough to admit any FT procedure that has some specific properties that

we define. This is similar to what is described in Theorem 7.1 of the original paper,

while giving explicitly the description of the protocol involved. A similar approach we

take to abstract from the particular graph used to hide the traps.

In Section 3.2 a proof of verifiability of our version of the FK protocol is given,

which, as discussed before, takes a different approach at some of the steps of the original

41

42 Chapter 3. Revisiting Verifiable Blind Quantum Computing

proof and is used in the context of the composition of protocols later.

3.1 Verifiable Blind Quantum Computing with Quantum

Output

FK protocol with quantum output is given as Protocol 2. The difference from the

original (Protocol 8, p.35 [Fitzsimons and Kashefi, 2012]) is that we consider explicitly

the case of quantum output. The qubits that correspond to the output layer of the

MBQC pattern are denoted by the set O′ (prime here is used to differentiate between the

encoded output that Alice receives and the decoded output O that she produces). These

qubits are not measured by Bob; thus Alice never sends a measurement angle to Bob

that corresponds to these qubits. This makes the need for a pre-rotation in the XY plane

obsolete, at least for the needs of blindness. Let us consider each case separately. If the

output qubit is a dummy qubit then Alice prepares it in a random computational state

(and corrects its neighbours appropriately), as it was the case of the original protocol. If

the output qubit is a computational qubit (i.e. non-trap, non-dummy qubit), then it is

prepared in state |+θ〉 with θ = riπ for ri←R {0,1}. This is the minimal requirement

to maximally mix the state sent to Bob and therefore not reveal any information about

the quantum state sent. If the output qubit is a trap then Alice chooses θ = βi
π

2 + riπ

for ri,βi←R {0,1}. Effectively this is a |+〉 or a |+i〉 trap state, with extra Z Pauli that

maximally mixes it, as in the previous case. The need for the two different types of traps

will become evident in the course of the proof of verification, where we need to be able

to detect all Pauli attacks on the output, and therefore have a minimal selection of state

that will be affected by the attack and therefore detected. Note that we could choose the

output computational qubits and the traps to be of the set of 8 angles as it is the case

for the non-output qubits and still have the same properties (since our set of angles is a

sub-set of the 8 angles). But in this case, Alice would need to undo these pre-rotations

and to achieve this she would need operators that are outside of the Clifford group and

therefore considered harder to implement.

While each step of the Protocol 2 is expanded to all the technical detail, at the same

time we intentionally abstract from the specific FT procedure used for the amplification

of ε and from the specific graph used to get the uniform placement of the traps inside the

computation without interrupting the flow. In particular, for the FT procedure we ask to

be able to detect a fixed number of errors at any stage of the computation (including

3.1. Verifiable Blind Quantum Computing with Quantum Output 43

encoding, logical computation) and also to be compatible with the operations supported

by blindness (e.g. adaptive measurements only on the XY plane). For the graph we

require to have the property that we can divide its vertices to sets where each vertex

can be with equal probability a computational qubit or a trap. This implies that the

distribution of the traps is independent between the different sets. In fact, we can only

give graphs that approximate this behaviour, in the sense that we have this behaviour

only when we consider sub-graphs that are sufficient nevertheless for out attack analysis.

This complication together with the specific function of the dummies is discussed in

more detail in the Section 3.1.2 and in the proof of verifiability that follows in Section

3.2.

Protocol 2 Qubit Verifiable Universal Blind Quantum Computation (VUBQC) Protocol

with quantum output (FK protocol)

Alice’s input:

• Description of a unitary computation U in the MBQC model (or equivalent)

using a convenient underlying open graph state (G, I,O). The computation is

represented, for any vertex i ∈ G\O, as a measurement angle ϕi (together with

the set of X-dependences DX
i and Z-dependences DZ

i and a fixed partial order

of measuring depending on the graph structure). The input is set to the state of

n qubits: |+〉⊗n. Protocol can be extended to admit quantum input by applying

techniques described in the FK protocol.

Alice’s output:

• A system that contains the quantum output of the computation (U |+〉⊗n) and a

bit to indicate of Alice has accepted the output of the computation.

The protocol

1. Preprocessing 1: Alice translates the computation to a Fault Tolerant (FT) MBQC

pattern that can correct Pauli errors on p qubits. Let the updated open graph

be (G′, I′,O′), where |G| = m′ and |I′| = |O′| = n′. An example is the RHG

topological code of size m′=O(m log3 m)×O(log1/ε) where ε is the verification

error.

44 Chapter 3. Revisiting Verifiable Blind Quantum Computing

Protocol 2 Cont’d

2. Preprocessing 2: Alice embeds the encoded computation pattern into a suitable

graph which has the following property: There exist ordered X-Y plane measure-

ments that implement the encoded computation and each computational qubit

(including bridges) belongs to a constant size subset of qubits Si in which a trap

can be selected uniformly at any position. Break operations are implemented

by including computational basis qubits (dummies). The total number of qubits

of the final graph G′′ is N, with |I′′|= |O′′|= n′′ consisting of all Si that contain

qubits of the O′ system and the necessary traps/dummies. An example (up to the

independent errors assumption) is the dotted complete graph of size N = O(m′2).

3. Alice prepares the rotated qubits. For i = 1 to N:

(a) If qubit is a dummy: prepares |di〉, di←R {0,1}, otherwise:

(b) If qubit is not in O′′: prepares ∏ j∈NG(i)∩D Zd j |+θi〉, where |+θi〉 ≡
RZ(θi)

1√
2
(|0〉+ |1〉), θi←R {0, π

4 ,
π

2 , . . . ,
7π

4 }.

(c) If qubit is in O′′ and is not a trap: Same as previous step but with θi = riπ

for ri←R {0,1}.

(d) If qubit is in O′′ and is a trap: Same as previous step but with θ = βi
π

2 + riπ

for ri,βi←R {0,1}.

(e) She sends the qubit to Bob

4. Bob entangles the states according to the graph state by applying cZ gates.

3.1. Verifiable Blind Quantum Computing with Quantum Output 45

Protocol 2 Cont’d

5. Bob performs the rest of the computation using classical help from Alice. For i

which ranges over all qubits (respecting the order given by the flow), except the

qubits belonging to O′′:

(a) Alice computes the actual measurement angle φ′i using the dependences and

the previous measurement results (φ′i = 0 for dummy qudits).

(b) Alice chooses ri←R {0,1} and computes δi = φ′i +θi + riπ (for the case of

dummies a random θi is chosen).

(c) Alice transmits δi to Bob.

(d) Bob performs measurement Mδi
i on qubit i. Measurements on measurement

angle δi correspond to projective measurements on basis {Z jRZ(δi)
1√
2
(|0〉+

|1〉)}1
j=0.

(e) Bob transmits the result to Alice.

(f) Alice corrects the result by adding ri mod 2.

6. Bob returns the qubits of O′′ to Alice.

7. Alice measures traps and applies the final Pauli corrections on qubits of O′.

8. Alice applies the decoding procedure of the FT encoding to produce actual output

O.

9. Alice sets her indicator bit to accept if all trap tests where positive.

46 Chapter 3. Revisiting Verifiable Blind Quantum Computing

In the following Subsections 3.1.1 and 3.1.2 we will give a specific example of

a FT procedure and graph to be used, which are the same used in the original FK:

Raussendorf-Harrington-Goyal (RHG) topological FT [Raussendorf et al., 2007] and

dotted-complete graph introduced for the FK protocol. Specifically, without going into

the proof which is given in full in the original paper, we explain how the RHG code has

the required by the protocol properties. Also, we explain the independence property of

the trap placement in the case of the dotted complete and how this behaviour is only

achieved if the idea of independently detectable errors is introduced. In this way, we

aim to clarify the role of the specific parts of the original paper on VUBQC so that they

can be used without problem in the rest of this thesis.

3.1.1 The Role of Fault Tolerance

The condition, stated in the protocol, that is required from the fault tolerant procedure

for the probability amplification is that, if there is a Pauli operator attack on ≤ p qubits,

an error is detected during the detection/decoding procedure of Alice. For Bob to

succeed in his cheating, he has to attack on more than p positions in the graph, which

means that he is more likely to hit a trap, therefore the probability of corrupting the

computation and not getting caught becomes smaller (will be proven exponentially

small on p).

In the FK Protocol the FT procedure used is the topological encoding of Raussendorf-

Harrington-Goyal (RHG) proposed in [Raussendorf et al., 2007] (also explained in more

detail in [Fowler and Goyal, 2008]). The computation runs through a series of topologi-

cally protected cX , preparations and measurements in the X and Z eigenbasis together

with state distillation of XY -plane states |Y 〉= 1√
2
(|0〉+ i|1〉) and |A〉= 1√

2
(|0〉+e

π

4 i|1〉)
to complete a universal set of gates. The resource state is the 3-dimensional lattice state,

usually called RHG or Raussendorf lattice, depicted in figure 3.1.

In the original paper of the FK protocol, in Lemma 5, a particular selection of

parameters is given for the RHG FT procedure that the condition of the protocol

regarding FT is satisfied. Special care had to be taken that an error, in both the

topologically protected gates and during the distillation procedure of |Y 〉 and |A〉 states,

that is under the required threshold will be detected.

When writing the FT procedure as a MBQC pattern, special care has to be taken

so that we apply only operations allowed by MBQC. States |Y 〉 and |A〉 are handled

as quantum inputs (therefore a random rotation around the XY plane by θ is added for

3.1. Verifiable Blind Quantum Computing with Quantum Output 47

Figure 3.1: RHG prime and dual lattice (taken from [Fowler and Goyal, 2008]). The

second picture shows how the dual lattice is placed between 4 prime lattice blocks.

Logical qubits are represented by primal or dual defects (qubits measured in the Z basis).

Single qubit logical operations are chains connecting or rings encircling defects, while

cX can be produced by braiding primal and dual defects.

blindness) and their distillation circuit is part of the blind pattern that Bob executes.

Since all the qubits are sent from Alice to Bob at the beginning of the protocol the size

of the computation is fixed from the start. Distillation is a stochastic procedure and

therefore fixing the maximum size of operations allowed will have implications. In the

ideal case, when Alice prepares perfect states and Bob applies perfect operations the

correctness of the protocol will not be affected. In the ideal case again, soundness will

not be affected also: Since the only part of the distillation procedure used in this case

is the error detection procedure, when Bob corrupts the states the protocol will abort

immediately (except for the case Bob’s footprint is large enough which means that the

traps will be triggered with high probability). However, in a realistic noisy scenario the

correctness of the protocol will be affected, since there is a probability that after the

maximum allowed distillation rounds the state is still corrupted by noise. Soundness

will not be affected for the same reason as in the ideal case.

The RHG fault tolerant procedure requires Z measurements that are not allowed

in blind MBQC, but can be simulated by dummy qubits as explained in Section 1.3.1

and in more detail later in 3.1.2. The problem is that there are some Z measured

positions that are not known from the beginning of the protocol (when Alice creates the

pattern and sends the dummy qubits to Bob) but depend on measurements during Bob’s

48 Chapter 3. Revisiting Verifiable Blind Quantum Computing

Figure 3.2: Implementation of Uz and Ux gates in the RHG scheme (taken from

[Raussendorf et al., 2007]). Uz(π/8), which is T gate in our context, consumes a

|A〉 state and Uz(π/4), which is S gate in our context, consumes a |Y 〉 state (a). Accord-

ingly Ux(π/4) is a rotation around the X axis (Clifford gate) which consumes a |Y 〉 state

(b). Then the circuits are translated to defect chains in the RHG lattice (c) and (d), which

are implemented blindly in FK. All operations depicted are up to Pauli corrections.

runtime. These adaptive Z measurements are needed, in particular, for the T gate (π/8)

(Section 3 in [Raussendorf et al., 2007], also Figure 3.2 here). T gate is implemented

by teleporting state |A〉 and, depending on the measurement outcome, might require

an extra S gate correction which, in turn, is implemented by measuring a |Y 〉 state in

the Z basis (and some Pauli corrections). To overcome this obstacle, the authors of the

original FK protocol propose a fixed correction step after each T gate. This is the circuit

of Figure 3.2 (a), which can selectively implement an S gate or an identity depending on

whether we inject state |Y 〉 or |+〉. The selection of the state can be seen as an update

on the θ angle that encrypts the corresponding MBQC input state, and can be done by

classical on-line computation on Alice’s side. An alternative to this approach, to tackle

the problem of adaptive Z measurements, is to use the decorated lattice proposed in

[Morimae and Fujii, 2012].

3.1.2 Dotted-Complete Graph and Trap Independence

The second requirement has to do with the selection of the graph state on which we

embed the computation. This graph needs to be generic so that it hides the underlying

computation (only leaking an upper bound on the size) and convenient for placing the

3.1. Verifiable Blind Quantum Computing with Quantum Output 49

Figure 3.3: Dotted-complete graph as an example of resource state (taken from [Fitzsi-

mons and Kashefi, 2012]). There are two types of vertices, the ones coming from a

complete graph, P(G), and the ones that are injected on the edges, A(G). By appropri-

ate measurements and dummy qubit injections we can carve a computational graph, a

P(G)-vertice graph and a A(G)-vertice graph.

traps at random positions without interrupting the flow. More specifically we ask that

each qubit of the computation belongs to a constant size subset of qubits Si (which we

can reveal to Bob without breaking the proof of verification) in which a trap can be at

any position with uniform probability. In the original paper the dotted-complete graph

is given to satisfy this condition (up to a subtlety that we will examine right after).

The dotted-complete graph, depicted in Figure 3.3, has two types of vertices: A(G),

with degree 2, and P(G), with degree n−1, where n is the size of the graph. This graph

has the proven (in [Fitzsimons and Kashefi, 2012]) property that, if of large enough

dimension, by measuring the A(G) vertices we can produce a graph suitable for doing

universal measurement based quantum computation. At the same time we can get a

sub-graph of isolated traps on the P(G) vertices (called white traps). By measuring

qubits on P(G) vertices we can get isolated traps on the A(G) vertices (called black

traps).

To understand the procedure of carving out a sub-graph by XY plane measurements

we need to explain two types of operations. The first type is bridge operators: Y

basis measurements followed by a Pauli correction on neighbours depending on the

measurement result. In particular, in every vertex i of degree 2 that we want to remove

and join its neighbours by an new edge, we inject state |+θi〉, as it was the case for

the normal qubits, and measure them in the {|+π/2+θi+riπ〉, |−π/2+θi+riπ〉} basis (i.e.

φ = π/2 in this case and there are no corrections). Let si being the corrected outcome

50 Chapter 3. Revisiting Verifiable Blind Quantum Computing

of this measurement. Depending on si, an extra S (si=0) or S† (si=1) correction has to

be applied in calculating the measurement angle of each of the neighbours of i. Note

that a Pauli attack on a bridging qubit will give a wrong correction to its neighbours and

this, being equivalent to an attack on the computational graph, will be detected by the

FT procedure, if the threshold of the total number of errors is low enough.

The second type is break operators (which have already been outlined in previous

sections): In every vertex i we want to remove (together with the entangling operation

with its neighbours), instead of injecting a |+θi〉 state in the graph at position i, as it was

the case for normal vertices, we inject dummy state |di〉 for di chosen independently and

uniformly at random from {0,1} and measure them in the {|+θi+riπ〉, |−θi+riπ〉} basis

(i.e. φ = 0 in this case and there are no corrections). Note that θi can be an arbitrary

angle since the measurement does not have any effect on the rest of the system and

the measurement outcome is discarded, but we choose θi to be uniform from the set

of eight angles so that we randomize δi (and therefore the position of the dummies).

Also, before sending each state to the prover, we apply on each of its neighbours Pauli

operation Zdi so that it will cancel the effect that the prover’s entangling operation will

have on that neighbour.

3.1.2.1 Independently detectable errors

The subtle point, when examining the possibilities for dividing all qubits in sets Si

and positioning a trap among the qubits that belong to each set, is that there will be

some dependence in the position of the trap between some particular sets. In particular,

selecting a P(G) qubit to be white trap, means that all its A(G) neighbours are excluded

from being black traps (they have to be dummies to isolate the white traps). Also, after

one fixes the positions of the computational qubits on the P(G) vertices, this fixes the

positions of the bridge and break qubits on the A(G) vertices that create the required

computational sub-graph, which means that these qubits cannot be black traps. A new

concept, the idea of independently detectable errors is introduced in the original FK

paper, to deal with this problem. In particular, one needs to consider not the whole graph

in the trap analysis, but only a subset of vertices that correspond to a set of errors that

are independently detected by the FT procedure. The independently detectable errors

are the Pauli errors that can corrupt the computation and each one has a distinct effect

on the syndrome measurements, as opposed to errors that are detected simultaneously

by the same error vector. A formal definition of independently detectable errors in

given in [Fitzsimons and Kashefi, 2012], Definition 7.5. In short these are the tensor

3.2. A Refined Proof of Verifiability 51

products of Pauli operators that: (1) flip measurement results on the measured qubits

of corrupt output qubits and (2) for an attack on qubit i ∈ A(G) we map this attack as

two attacks on each of its P(G) neighbours j,k ∈ NG(i) and consider a subset of tensor

attack elements that (after doing this mapping) contains each P(G) vertex only once.

For the FT procedure used there is a bound on the number of independently errors that

can be perfectly corrected by the code, which is proven (in [Fitzsimons and Kashefi,

2012], Corollary 7.6) for the RHG encoding to be p′ = 2p/5 (the number is smaller

than p because some single qubit attacks effectively correspond to two qubit attacks as

we saw).

For example, when there is an error on qubit i ∈ A(G) and, at the same time, on its

two P(G) neighbours j,k ∈ NG(i), we will consider in our independently detectable

attacks qubit i or qubits j,k but not both. The interesting property of tensor products of

attacks that cause independently detectable errors is that the probability of coinciding

with a trap is independent in each position (in our example we avoid considering the

probabilities of having traps in position i, j,k which will be dependent on each other).

Note that this analysis for the attacks is done for the whole graph G and before we

partition it into the computational, dummy and trap sub-graphs. If we can detect a

certain number of independently detectable attacks in total, we can certainly detect the

smaller number of attacks that occur on the computational sub-graph. We should keep

this intuition of the corresponding part of the verification proof.

3.2 A Refined Proof of Verifiability

A proof of verification is given here, that differs from the original proof in certain

aspects, the importance of which will be progressively understood in the sections to

follow. The main extra property of this proof is that we are able to write the state even

if we interrupt the protocol at some specific intermediate stages and ask Bob to return

the output of the computation, excluding traps and dummies, and have Alice decrypt

and decode this output. In the context of the composite protocol this property is crucial

since the circuit of ABE protocol has to apply on the computational qubits, while Alice

has no access to any output traps. Our proof is also more modular than the original one.

Also from our proof we get that the parallel composition of FK protocols is possible

as a corollary. Finally, since we show that the trap qubit remains disentangled for any

possible deviation of Bob, we provide intuition on the concept of independent security

[Dunjko et al., 2014], where the detection procedure (that depends only on the trap

52 Chapter 3. Revisiting Verifiable Blind Quantum Computing

system) is independent on the particular computation that is delegated.

Let us restate the main theorem, which we will prove in this section:

Theorem 1. Protocol 2 is perfectly blind and ε-verifiable where ε = 1
cp1 where p1

is the number of errors detectable by the QECC used for amplification and some

constant c > 1. The quantum requirement of Alice is to prepare and send single qubit

states and apply the Clifford decoding circuit for the QECC used, together with Pauli

measurements. The communication requirement is Õ(n2)×O(log(1/ε)) separable

single qubit states sent from Alice to Bob off-line and Õ(n2)×O(log(1/ε)) bits of

on-line classical communication between Alice to Bob, where n is the size of the

computation.

Proof of blindness is the same as the proof of Theorem 12 in [Fitzsimons and Kashefi,

2012]. The proof of verifiability (originally the proof of Theorem 13 in [Fitzsimons and

Kashefi, 2012], but re-proven here using the rewritten version of the protocol and the

new proof technique) will roughly follow the following steps:

• Express the state at the end of the protocol as a function of the correct operation

and the most generic attack.

• Decompose the attack to the Pauli basis.

• Average over the random parameters of the Pauli encoding to reduce the attack to

a convex combination of Pauli attacks.

• Break the sum over the Pauli attacks to those who are detected by the FT procedure

and those who are not detected and for the latter calculate the probability of not

hitting a trap, averaging over all trap positions.

The third step is the main difference from the original proof and is the one that

allows us to study the attack on the computational output separately from the attack on

the output traps. The technique we use to reduce the attack to a convex combination of

Pauli operators by averaging over the quantum one-time-pad is often called the Pauli

twirl. It is useful in the context of unitary t-designs [Dankert et al., 2009] and in other

verification proofs [Aharonov et al., 2010]. In our case we average over the Pauli Z

rotation that comes from the random r parameters of the protocol and commutes with

the honest computation, to twirl the attack operator (a random Pauli X rotation is not

needed in the protocol because of the special structure of the MBQC graph state, as we

see in the proof).

3.2. A Refined Proof of Verifiability 53

Also, in the fourth step we clarify the role of Alice’s decoding of the returned state

at the end of the protocol.

This proof has also the structure that helps proving Corollary 1 that states that

the parallel composition of ε-verifiable FK protocols with quantum output is also an

ε-verifiable protocol. Proof intuition can be gained from observing Equation 3.20 later

in this proof and the fact that we can write the attack as a conjugation by a tensor

product of local operators (Pauli+identity). The full proof is part of the proof of the

composite protocol, where many runs of the FK protocol are run in parallel to verifiably

prepare the encoded states needed for the ABE verification.

3.2.1 Expanding the Prover’s Operation

Single index notation is followed to enumerate the qubits participating in the graph

where N is the total number of qubits. Also, remember that n′′ is the number of qubits

that are returned from Bob to Alice at his last step in the protocol.

To represent the state of the protocol it is convenient to introduce first some extra

notation. Vector ν is used to represent all random secret parameters chosen by Alice

throughout the execution of protocol, including β = {βi}, r = {ri}, θ = {θi}, d = {di}
and positions of traps t = {ti}. Parameter p(ν) gives the probability of a particular

choice of random secret parameters. Summing over a vector (e.g. ∑r) means that we

sum over all possible choices for the elements of that vector (e.g. all possible bit-strings

of size N for r).

For convenience we name the subsystems of the joint Alice-Bob system:

• System M is the union of qubits G′ \O′ and the necessary bridge qubits which

are introduced when embedding G′ in G′′ (and are also measured by Bob). This

system will be called the system of the measured computational qubits.

• System D contains all dummy qubits.

• System T contains all trap qubits.

• System O′′ is the quantum system returned by Bob to Alice.

• System ∆ is the system of the measurement angles send by Alice to Bob, where

each angle is represented by three qubits in the computational basis.

• System B is Bob’s private system, assumed to be initially in the blank state.

54 Chapter 3. Revisiting Verifiable Blind Quantum Computing

Each measurement performed at Step 5d of the protocol is mathematically de-

composed into a unitary part and a Pauli Z projective measurement. Without loss of

generality we can represent any dishonest behaviour of Bob at any step as applying the

correct unitary operator and then an arbitrary unitary attack operator that applies on all

the states received up to this step and his own private subsystem.

The output of Alice after all steps of the protocol are applied, averaged over all

random parameters ν and for all possible measurement outcomes b = {bi} with the

corresponding probability, is:

ρout =

TrB,M ,∆,D(∑
b

∑
ν

p(ν)D(C|bN−n′′〉〈bN−n′′ |UN−n′′HN−n′′RN−n′′(|δN−n′′〉〈δN−n′′ |

⊗ . . .⊗|b1〉〈b1|U1H1R1(|δ1〉〈δ1|⊗EG|M〉〈M|⊗ |0〉〈0|⊗BEG)R
†
1H1U†

1 |b1〉〈b1|)

. . .)R†
N−n′′HN−n′′U

†
N−n′′ |bN−n′′〉〈bN−n′′ |C†)) (3.1)

where:

• |M(θ,d, t)〉 is the state that Bob receives after Step 3 of the protocol (input,

auxiliary qubits, dummy qubits).

• EG is the global entangling operator that Bob applies at Step 4 of the protocol.

• |δi(θ,r,b)〉〈δi(θ,r,b)| is the density matrix of the measurement angle that Alice

sends to Bob at iteration i of Step 5 of the protocol, which is composed of three

computational basis states (δi(θi,r,b) can take 8 possible values). These states

will be used by Bob to control his rotations on the graph state. In the calculation

of δ’s by Alice there is an implicit error correction procedure that comes from the

FT encoding of the computation (this will be used as an extra property at a later

stage of the proof).

• Ri(δi) is a controlled unitary rotation of qubit i around z-axis by angle δi.

• Hi is a Hadamard gate applied on qubit i.

• Ui is the unitary attack of Bob with index i and applies on qubits ≥ i, private

Bob’s system and all measurement angles.

• C(r,b) includes the Pauli correction CO′ that Alice performs to system O′ ac-

cording to the flow dependences and the post-processing on the trap system:

3.2. A Refined Proof of Verifiability 55

Figure 3.4: Analysis of attacks in the qubit VUBQC with quantum output protocol. Part

inside dashed box is applied by Alice. Dummy qubits and trap qubits on returned system

are discarded and measured respectively by Alice.

corrections HtiS
†βti
ti Z

rti
ti and a Pauli Z measurement for output traps ti and correc-

tions Z
rti
ti for measurement results sent from Bob for non-output traps ti.

• D is a CPTP-map that represents the decoding procedure of Alice for the quantum

output system O′.

We commute to the left (right) all projectors |bi〉〈bi| of the left (right) hand side of

|M〉〈M| by observing that the operators they commute with do not apply on the same

qubits. We commute to the left (right), and just before the |bi〉〈bi|’s, all attack unitary

operators Ui of the left (right) hand side of |M〉〈M| by observing that the measurement

angle density matrices |δ j〉〈δ j| that they commute with have indices j ≥ i and therefore

the attack does not apply on them. The commutation of the attack operators with

the rest of the operators will change the attack operators to different ones but these

crucially do not depend on any of the protocol parameters. We merge all commuted

and updated attack operators into a new unitary U that applies on the whole of the

system just before the measurements. We commute to the right (left) all measurement

angle density matrices |δi〉〈δi| of the left (right) hand side of |M〉〈M| by observing that

the only operators that apply on the measurement angles are the controlled rotation

operators R j but always have index j ≤ i. We get (see also Figure 3.4):

56 Chapter 3. Revisiting Verifiable Blind Quantum Computing

ρout = TrB,M ,∆,D(∑
b

∑
ν

p(ν)D(C|b〉〈b|U(HN−n′′RN−n′′(.) . . .H1R1(.)EG(

|M〉〈M|⊗ |δ〉〈δ|)EGR1(.)
†H1 . . .RN−n′′(.)

†HN−n′′⊗|0〉〈0|⊗B)U†|b〉〈b|C†)) (3.2)

where U is a unitary attack operator that is chosen by Bob and applies on all graph

qubits, private Bob’s system and all measurement angles.

The trap system is not entangled with the rest when the honest computation is

applied. We can separate the terms that apply on the trap system. Applying the

entangling operators between the traps and their neighbours, which are always dummy

qubits does not have any effect on the trap other than undoing the pre-rotation of the

trap (in the case that the dummy is selected to be |1〉). Moreover, applying HtiRti(δti) on

each of the traps at positions ti that belong to the measured system, where δti = θti +rtiπ,

results in getting states |rti〉.
Therefore, it holds:

P (|M〉〈M|⊗ |δ〉〈δ|)P † = P ′(|M′〉〈M′|⊗ |δ〉〈δ|)P ′†
⊗

i

|ηti〉〈ηti| (3.3)

where

• |ηti〉 ≡ |rti〉 if ti points to a trap measured by Bob and is ZriSβi|+ti〉 if ti points to

a trap measured by Alice.

• P = HN−n′RN−n′(.) . . .HtiRti(.) . . .H1R1(.)EG is the correct unitary operation in

Figure 3.4.

• P ′ = HN−n′RN−n′(.) . . .H1R1(.)E ′G, which is produced from P by omitting all

operations applied on traps (E ′G is produced from EG by omitting all entangling

operators between traps and their neighbours)

• |M′〉 is produced from |M〉 by omitting the trap qubits.

3.2.2 Decomposing the Attack

In the next step we express the output state with Bob’s private system traced out and his

attack decomposed to the Pauli basis. We use the following general property:

3.2. A Refined Proof of Verifiability 57

For any unitary U and n-qubit state ρ, there holds:

TrB(U(ρ⊗|0〉〈0|B)U†) = ∑
k,u,u′

ak,ua∗k,u′PuρPu′ (3.4)

where

• ak,u are complex numbers, with ∑k,u |ak,u|2 = 1.

• Pu (and Pu′) ranges over all possible tensor products of Pauli+Identity operators

(Pauli basis) on n qubits.

One way to prove the above expression is the following: by tracing out B, the effect

of unitary U is a CPTP-map on the remaining system. This CPTP-map is decomposed

into a sum of conjugations by (Kraus) operators Ek. Each operator Ek and its Hermitian

conjugate E†
k are decomposed into the Pauli basis. The equation ∑k,u |ak,u|2 = 1 derives

from the completeness relation between the operators: ∑k E†
k Ek = I.

In the following we apply Equation 3.4 in order to trace out B from the state in

Equation 3.2 and at the same time apply Equation 3.3 to separate the traps from the rest

of the system. We use notation Pu|i to point to the i-th tensor element (single qubit Pauli

operator or identity) of the operator Pu (tensor product of Pauli or identity operators).

ρout = TrM ,∆,D(∑
b

∑
ν

p(ν) ∑
k,u,u′

ak,ua∗k,u′D(CO′|b′〉〈b′|Pu|i:∀ j,i6=t j

(P ′(|M′〉〈M′|⊗ |δ〉〈δ|)P ′†)Pu′|i:∀ j,i 6=t j |b
′〉〈b′|C†

O′)⊗
i

QtiPu|ti|ηti〉〈ηti|Pu′|tiQ
†
ti) (3.5)

where

• ak,u are complex numbers, with ∑k,u |ak,u|2 = 1.

• Pu (and Pu′) ranges over all possible tensor products of Pauli+Identity operators

(Pauli basis) applying on the resource state G′′ and measurement angle system ∆.

• b′ is the vector that is generated from b by removing elements {bti}.

• Qti ≡ X
rti
ti |bti〉〈bti| if ti /∈ O′′ and Qti ≡ |bti〉〈bti|HtiS

†βti
ti Z

rti
ti if ti ∈ O′′, represents

the measurements and corrections on the trap.

58 Chapter 3. Revisiting Verifiable Blind Quantum Computing

Trivially we can trace over terms |b′〉〈b′|:

ρout = Tr∆,D(∑
b

∑
ν

p(ν) ∑
k,u,u′

ak,ua∗k,u′D(CO′〈b′|Pu|i:∀ j,i 6=t j

(P ′(|M′〉〈M′|⊗ |δ〉〈δ|)P ′†)Pu′|i:∀ j,i 6=t j |b
′〉C†

O′)⊗
i

QtiPu|ti|ηti〉〈ηti|Pu′|tiQ
†
ti) (3.6)

3.2.3 Reducing the Attacks to Pauli

In this part of the proof the attack of Bob will be reduced to a convex combination of

Pauli+identity operators, by summing over all random parameters except the random

trap positions. This means cancelling the cross terms in Equation 3.6: each term of the

sum containing Pu and Pu′ where u 6= u′ has to be eliminated so that only terms with

Pu = Pu′ = P†
u remain - a mixture of conjugations by Pauli+identity operators, each

with real coefficient ak,ua∗k,u = |ak,u|2, where ∑k,u |ak,u|2 = 1. Note that in the original

proof of the FK protocol they also eliminate the cross attack terms at some stage, but

to achieve this they reduce the state of Alice (except the trap) to identity, which is

undesired here - the reasons will be made clear later.

The process of eliminating the cross terms will take a few steps in which the

following lemma, proven in [Dankert et al., 2009], will be useful:

Lemma 2. (Operator Pauli Twirling)

∑
i

PiQPiρPiQ′Pi = 0, if Q 6= Q′ (3.7)

where ρ is a matrix, Q, Q′ are two arbitrary tensor products of Pauli+identity oper-

ators of the same dimension, and {Pi} is the set of all tensor products of Pauli+identity

operators of dimension same as Q and Q′.

Eliminating cross-terms on system ∆: By observing that Ri(.)(|δi〉⊗ |ψ〉i), where

Ri is controlled by the three qubit state |δi〉 and applies on state |ψ〉i, is equivalent

mathematically to |δi〉⊗Ri(δi)|ψ〉, where Ri(δi) is a single qubit gate (since |δi〉 is by

definition always a classical state), we can rewrite operator P ′ as:

P ′ = HN−n′′RN−n′′(δN−n′′) . . .H1R1(δ1)E ′G

3.2. A Refined Proof of Verifiability 59

Or,

= HN−n′′RN−n′′(φ
′
N−n′′+θN−n′′+ rN−n′′π) . . .H1R1(φ

′
1 +θ1 + r1π)E ′G

= HN−n′RN−n′′(φ
′
N−n′′+ rN−n′′π) . . .H1R1(φ

′
1 + r1π)E ′G

RN−n′′(θN−n′′) . . .RN−n′′(θi)

≡ P ′′RN−n′′(θN−n′′) . . .RN−n′′(θi) (3.8)

Operations RN−n′′(θN−n′′) . . .RN−n′′(θi) applied to state |M′〉 cancel the pre-rotations

by the θ’s (or have no effect in the case of dummies) and the state is updated to a state

which does not depend on θ, which we will denote by |M′′〉.
Now that we have eliminated all dependences on θ except from system ∆ (states

|δ〉), we can sum over θ to get the maximally mixed state for system ∆ and in Equation

3.6 the terms Pu|∆
1

2|∆|
IPu′|∆. Remember that the ∆ system is traced out. Terms where

Pu|∆ = Pu′|∆ have trace 1 and where Pu|∆ 6= Pu′|∆ have trace 0, since all Pauli operators

except identity are traceless. Therefore, we can ignore the attack cross terms applied on

the system which holds the measurement angles.

Eliminating cross-terms on dummy system D: Part of the entangling E ′G is applied

between the dummy qubits and their computational neighbours with the effect of

cancelling the pre-rotation of the latter when di = 1 (the dummy is in state |1〉). Let

us denote E ′′G the remaining entangling operators. The remaining unitary part of the

protocol applied on the dummy system is single qubit unitary operators applied on each

dummy i ∈ D:

∑
di,ri

HiRi(riπ)|di〉〈di|Ri(riπ)Hi) =
1
2

I (3.9)

Again, Tr(Pu|D
1

2|D|
IPu′|D) is 1 for Pu|D = Pu′|D and 0 for Pu|D 6= Pu′|D so we can

ignore the cross terms of the attack applying on the dummy qubits. Let |M(3)〉 denote

state |M′′〉 after the entangling between dummies and their computational neighbours is

applied and omitting the dummy qubits.

Eliminating the cross-terms on computational system M ×O′: The next step is an

iteration over all qubits i of the computational graph (G′+bridges) and using summation

over each ri to twirl the attack operator on qubit f (i) respectively, where f is the flow

function. We begin from qubits of system O′ and follow the reverse measuring order.

For the qubits of G′ we distinguish between three types of qubits depending on their

position and we apply a different technique for each one:

60 Chapter 3. Revisiting Verifiable Blind Quantum Computing

• Qubit i ∈ O′: We assume that E ′′G does contain entangling operators among the

output qubits in our computational graph (e.g. take G′ to be the brickwork graph).

We extract stabilizer Z
r f−1(i)

f−1(i)X
r f−1(i)
i from our graph E ′′G|M(3)〉. This cancels de-

pendence on r f−1(i) on the protocol unitary operation applied on qubit f−1(i)

(changing it from H f−1(i)R f−1(i)(φ
′
f−1(i)+ r f−1(i)π) to H f−1(i)R f−1(i)(φ

′
f−1(i))) and

allows as to sum over r f−1(i) and ri to get property for qubit i (using Lemma 2):

∑
r f−1(i),ri

Z
b f−1(j∼i)+r f−1(j∼i)
i X

b f−1(i)+r f−1(i)
i Zri

i Pu|iX
r f−1(i)
i Zri

i E ′′G(|M(4)〉〈M(4)|)

E ′′GZri
i X

r f−1(i)
i Pu′|iZ

ri
i X

b f−1(i)+r f−1(i)
i Z

b f−1(j∼i)+r f−1(j∼i)
i = 0 if Pu|i 6= Pu′|i(3.10)

where |M(4)〉 comes from |M(3)〉 by extracting Zri
i from the output states.

Note that for the terms that remain (Pu|i =Pu′|i) operations that depend on r f−1(i),ri

can be eliminated by looking at their commutation properties with Pu|i thus

eliminating all dependences from r f−1(i),ri in the formula. However, operations

Z
r f−1(j∼i)
i and all the b corrections remain.

• Qubit i /∈ (O′∪ I): We extract stabilizer Z
r f−1(i)

f−1(i)X
r f−1(i)
i Z

r f−1(i)

j∼i, j 6= f−1(i) from graph

state E ′′G|M(4)〉. This cancels dependence on r f−1(i) on the unitary operation

applied on qubit f−1(i) and on the unitary operation applied on qubits { j ∼ i, j 6=
f−1(i)} (in case { j∼ i, j 6= f−1(i)} are output qubits their attack cross terms have

already been cancelled and therefore terms Z
r f−1(i)

j∼i, j 6= f−1(i) commute with the attack

and cancel with the final corrections - this is why following reverse measuring

order is crucial). By summing the elements that still depend on r f−1(i):

∑
r f−1(i)

〈bi|Pu|iHiRi(φ
′
i)

X
r f−1(i)
i E ′′G(|M(4)〉〈M(4)|)E ′′GX

r f−1(i)
i Ri(φ

′
i)

†HiPu′|i|bi〉 (3.11)

where φ′i = (−1)b f−1(i)+r f−1(i)φi +(b f−1(j∼i, j 6= f (i))+ r f−1(j∼i, j 6= f (i)))π.

We commute X
r f−1(i)
i with Ri(φ

′
i+ riπ) and Hi and also extract a Z

r f−1(i)
i from both

〈bi| and |bi〉 without affecting the state:

3.2. A Refined Proof of Verifiability 61

∑
r f−1(i)

〈bi|Z
r f−1(i)
i Pu|iZ

r f−1(i)
i HiRi(φ

′′
i)

E ′′G(|M(4)〉〈M(4)|)E ′′GRi(φ
′′
i)

†HiZ
r f−1(i)
i Pu′|iZ

r f−1(i)
i |bi〉 (3.12)

where φ′′i = (−1)b f−1(i)φi +(b f−1(j∼i, j 6= f (i))+ r f−1(j∼i, j 6= f (i)))π.

To apply Lemma 2 we also need the random X elements. These are acquired

by the following mathematical trick: We extract stabilizer Zr′i
i X r′i

f (i)Z
r′i
j∼ f (i), j 6=i for

r′i←R {0,1} from graph state E ′′G|M(4)〉 and at the same time changing variable

b̂i ← bi + r′i everywhere. The new terms cancel everywhere (again following

reverse measurement order is crucial) except at qubit i so that we get:

∑
r f−1(i),r

′
i

〈b̂i|X r′iZ
r f−1(i)
i Pu|iZ

r f−1(i)
i X r′iHiRi(φ

′′
i)E

′′
G(|M(4)〉〈M(4)|)E ′′G

Ri(φ
′′
i)

†HiX r′iZ
r f−1(i)
i Pu′|iZ

r f−1(i)
i X r′i |b̂i〉= 0 if Pu|i 6= Pu′|i (3.13)

• Qubit i ∈ I: We assume that E ′′G does not contain entangling operators be-

tween the input qubits (e.g. brickwork graph). Let us employ the follow-

ing mathematical trick to generate the random Z elements: Extract stabilizer

X zi
i Zzi

f (i) from graph E ′′G|M(4)〉, where zi←R {0,1}. Commuting with the rotation

on system i: Ri(φi)X
zi
i = X zi

i Ri((−1)ziφi), up to a phase which gets cancelled

when you commute on both sides. On system f (i): R f (i)((−1)biφ f (i))Z
zi
f (i) =

R f (i)((−1)bi(φ f (i)+ ziπ)). For any choice of attack Pu|i (Pu′|i) from Bob, it imple-

ments operation J(φ f (i)+ ziπ)J((−1)ziφi)|+〉i (〈+|iJ((−1)ziφi)
†J(φ f (i)+ ziπ)

†),

up to a sign flip of φ f (i) depending on the attack, which is equivalent up to a

global phase to operation J(φ f (i))J(φi)|+〉i(〈+|iJ(φi)
†J(φ f (i))

†), up to the same

sign flip on φ f (i), so that we can replace the angles with the latter. Also, we can

extract Zzi from 〈bi| and from |bi〉.

Let us also employ the same trick for generating the random X elements as we

did in the previous step, using parameters xi←R {0,1} and then apply Lemma 2

to get:

∑
xi,zi

〈bi|XxiZziPu|iZ
ziXxiHiRi(φi)

E ′′G(|M(4)〉〈M(4)|)E ′′GRi(φi)
†HiXxiZziPu′|iZ

ziXxi|bi〉= 0 if Pu|i 6= Pu′|i (3.14)

62 Chapter 3. Revisiting Verifiable Blind Quantum Computing

There are also the qubits of the computational system that are bridges:

• Qubit i is a bridge: E ′′G entangles i with two qubits from G′, j : (j, i) ∈ G′′.

To create the random Z elements we pick r′i ←R {0,1} and extract stabilizer

X r′i
i ∏ j Zr′i

j from graph state E ′′G|M(4)〉. Commuting with the rotations: For sys-

tem i, where measurement angle φ is always fixed to π/2, Ri(π/2+πri)X
r′i
i =

X r′i
i Ri((−1)r′iπ/2+πri) = X r′i

i Ri(π/2+πr′i +πri), up to a phase which gets can-

celled when you commute on both sides. For each neighbour j: R j(φ
(3)
j +π/2+

π(bi + ri))Z
r′i
j = R j(φ

(3)
j +π/2+π(bi + ri)+πr′i), where φ

(3)
j = (−1)b f−1(j)φ j +

b f−1(k∼ j,k 6= f (j))π. For any choice of attack Pu|i (Pu′|i) from Bob, the operation

applied is equivalent to replacing the rotation of i with Ri(π/2+πri) and of neigh-

bours j with R j(φ
(3)
j +π/2+π(bi + ri)), thus eliminating all other dependences

on r′i except on the generated Pauli element. Also, we can extract Zr′i from 〈bi|
and from |bi〉.

To generate the random X elements we extract a Zri from Ri(π/2+πri) and also

change variable b̂← bi + ri to cancel any dependence on ri on neighbours j, thus

being able to apply Lemma 2 on i:

∑
ri,r′i

〈b̂i|X riZr′iPu|iZ
r′iX riHiRi(π/2)

E ′′G(|M(4)〉〈M(4)|)E ′′GRi(π/2)†HiX riZr′iPu′|iZ
r′iX ri|b̂i〉= 0 if Pu|i 6= Pu′|i (3.15)

Eliminating the cross-terms on system T : For the trap qubits we have two cases

depending on their position:

• For positions ti in the measured system we have states:

∑
rti ,bti

|bti + rti〉〈bti|Pu|ti|rti〉〈rti|Pu′|ti|bti〉〈bti + rti| (3.16)

By changing variable b̂ti ← bti + rti

∑
rti ,b̂ti

|b̂ti〉〈b̂ti|X rti Pu|tiX
rti |0〉〈0|X rti Pu′|tiX

rti |b̂ti〉〈b̂ti|

= ∑
rti ,r

′
t1
,b̂ti

|b̂ti〉〈b̂ti|Z
r′ti X rti Pu|tiX

rti Zr′ti |0〉〈0|Zr′ti X rti Pu′|tiX
rti Zr′ti |b̂ti〉〈b̂ti|

= 0 if Pu|ti 6= Pu′|ti (3.17)

3.2. A Refined Proof of Verifiability 63

• For positions ti in the returned system:

∑
rti ,bti

|bti〉〈bti|HS†βti Zrti Pu|tiZ
rti Sβti |+ti〉〈+ti|S†βti Zrti Pu′|tiZ

rti Sβti H|bti〉〈bti| (3.18)

Let Pu|ti = XuxZuz and Pu′|ti = Xu′xZu′z . A simplified version of Lemma 2 is:

∑
i

ZiXqZi
ρZiXq′Zi = 0, if q 6= q′ (3.19)

where ρ is a 2×2 matrix, q, q′, i are bits. Therefore, applying Equation 3.19 on

state in 3.18 it becomes:

= ∑
bti

|bti〉〈bti|HS†βti XuxZuzSβti |+ti〉〈+ti|S†βti Zu′zXuxSβti H|bti〉〈bti|

Notice that index ux on the attack is the same on both sides.

Similarly to the previous cases, we add an extra random operation which does

not affect the state and depends on r′ti ←R {0,1} :

= ∑
r′ti ,bti

|bti〉〈bti|HX r′ti S†βti XuxZuzSβti X r′ti |+〉〈+|X r′ti S†βti Zu′zXuxSβti X r′ti H|bti〉〈bti|

= (−1)βti ux ∑
r′ti ,bti

|bti〉〈bti|HX r′ti ZβtiuxXuxZuzX r′ti |+〉〈+|X r′ti Zu′zXuxZβtiuxX r′ti H|bti〉〈bti|

= (−1)βti ux ∑
r′ti ,bti

|bti〉〈bti|HZβtiuxXuxX r′ti ZuzX r′ti |+〉〈+|X r′ti Zu′zX r′ti XuxZβtiuxH|bti〉〈bti|

Using a similarly simplified version of Lemma 2 as in Equation 3.19 but for the

case of Pauli X twirl:

= (−1)βti ux ∑
bti

|bti〉〈bti|HZβtiuxXux ∑
r′ti

(X r′ti ZuzX r′ti |+ti〉〈+ti|X
r′ti Zu′zX r′ti)

XuxZβtiuxH|bti〉〈bti|= 0 if uz 6= u′z

64 Chapter 3. Revisiting Verifiable Blind Quantum Computing

Eventually, tackling every case separately, we have managed to eliminate all terms

where u 6= u′, which gives:

ρout = ∑
b

∑
t,{βti :ti>N−n′′}

p(t,{βti : ti > N−n′′})∑
k,u
|ak,u|2D(C′O′〈b

′|Pu|{i:i/∈T,∆,D}

(P (3)(|M(4)〉〈M(4)|)P (3)†)Pu|{i:i/∈T,∆,D}|b′〉C′†O′)
⊗

i

Q′tiPu|ti|η
′
ti〉〈η

′
ti|Pu|tiQ

′†
ti (3.20)

where

• |M(4)〉 is the tensor product of |+〉 for all qubits of system M ×O′.

• P (3) is the unitary that contains E ′′G for M ×O′ and HiRi((−1)b f−1(i)φi

+b f−1(j∼i, j 6= f (i))π) operators for all qubits of system M .

• C′ are the remaining Pauli corrections on the output system O′ (after eliminating

the r’s) and depend only on b.

• |η′ti〉 is |0ti〉 if ti points to a trap measured by Bob (ti ≤ N−n′′) and is Sβi|+ti〉 if ti
points to a trap returned and measured by Alice (ti > N−n′′).

• Q′ti is |bti〉〈bti| if ti points to a trap measured by Bob, and is |bti〉〈bti|HtiS
†βti
ti if ti is

part of the returned system.

3.2.4 Detection of the Pauli Attacks

The strategy will be to split the sum over the attack operators Pu in Equation 3.20 into

the operators which are perfectly correctable during the FT procedure or do not have

any effect on the output and the rest, the latter having a significant footprint to be caught

by the trapification procedure with high probability.

Let us split ρout in Equation 3.20 into a sum of two terms: σ1 and σ2. The first term,

σ1 contains all terms u which correspond to attacks correctable or having no effect at all

(Pauli Z attacks on Pauli Z measured qubits). Specifically, u ∈ S1 is the set of indices

which correspond to attacks Pu with the following property:

We map the overall attack operator Pu to an operator that contains the maximum

number of independently detectable errors (see Section 3.1.2). Then, the latter attack

operator must have altogether ≤ p′ Pauli tensor elements Pu|i that corrupt the computa-

tion: for i≤ n′′ Pauli X or Y and for i > n′′ non-identity (therefore Pauli X or Y or Z).

Then, we have term:

3.2. A Refined Proof of Verifiability 65

σ1 =

∑
b

∑
t,{βti :ti>N−n′′}

p(t,{βti : ti > N−n′′}) ∑
k,u∈S1

|ak,u|2D(C′O′〈b
′|Pu|{i:i/∈T,∆,D}

(P (3)(|M(4)〉〈M(4)|)P (3)†)Pu|{i:i/∈T,∆,D}|b′〉C′†O′)
⊗

i

Q′tiPu|ti|η
′
ti〉〈η

′
ti|Pu|tiQ

′†
ti

= p′|ψc〉〈ψc|⊗ |ACC〉〈ACC|+ p′′|ψc〉〈ψc|⊗ |REJ〉〈REJ| (3.21)

where

• p′, p′′ are probabilities with p′+ p′′ = ∑k,u∈S1 |ak,u|2 and they come from separat-

ing the attacks that leave all traps untouched and the rest.

• |ACC〉〈ACC| is the state where all trap qubits are |0〉〈0| and |REJ〉〈REJ| denotes

any state that at least one trap is |1〉〈1|.

• |ψc〉〈ψc| is the correct state for the output system O.

The second term of the sum, σ2, contains the remaining indices u, say u ∈ S2, which

correspond to attacks that can corrupt the computation even after the error correction.

These are attacks Pu of the following kind: when considering only the independently

detectable errors there are > p
′ total elements in the tensor product which are Pauli X

or Y on measured qubits and Pauli X or Y or Z on returned qubits.

Let P⊥ be the projection to the orthogonal space to the correct output state:

P⊥ = I−|ψc〉〈ψc| (3.22)

where |ψc〉=U |+〉⊗n, U being the target unitary computation (the description of

which is given to Alice at the beginning of the protocol).

We calculate the ‘bad’ probability pbad (sub-normalized) that the state σ2 collapses

to the ‘incorrect’ subspace and no trap is activated, therefore Alice accepting.

pbad = Tr(∑
b

∑
t,{βti :ti>N−n′′}

p(t,{βti : ti > N−n′′})P⊥
⊗

i

|0〉ti〈0|ti(∑
k,u∈S2

|ak,u|2

D(C′O′〈b
′|Pu|{i:i/∈T,∆,D}(P (3)(|M(4)〉〈M(4)|)P (3)†)Pu|{i:i/∈T,∆,D}|b′〉C′†O′)⊗

i

Q′tiPu|ti|η
′
ti〉〈η

′
ti|Pu|tiQ

′†
ti)) (3.23)

Tracing out everything except the trap terms:

66 Chapter 3. Revisiting Verifiable Blind Quantum Computing

≤ Tr(∑
b

∑
t,{βti :ti>N−n′′}

p(t,{βti : ti > N−n′′}) ∑
k,u∈S2

|ak,u|2
⊗

i

|0〉ti〈0|tiQ′tiPu|ti

|η′ti〉〈η
′
ti|Pu|tiQ

′†
ti) (3.24)

Let us clarify a subtle point. Term ∑t means ∑t1 . . .∑t|t| , where ∑t1 is the summation

of each trap position ti over the set of possible positions which we have denoted by

Si. For the dotted-complete graph, it is not possible to get an independent uniform

distribution for ti’s simultaneously for all i (if we select one qubit to be a trap this will

affect the selection of the next trap). What we actually do is to consider only a subset

of vertices of the total graph that correspond to independently detectable errors in Pu

(therefore the subset we consider every time depends on u). For the rest of the vertices

we can set the attack operators to the identity without decreasing the total trace of the

expression above. For each qubit j where the independently detectable errors apply,

belonging to set Si, we have two desirable properties: (1) attack Pu| j will affect the trap if

it coincides with it and therefore reduce the trace of the above expression (will give trace

0 when it coincides with a non-output trap and trace 1
2 averaged over β when it coincides

with an output trap) and (2) for all possible selection of trap positions {tl : ∀l 6= i} that

(for the Sl’ that there are errors) coincide with independently detectable errors of u we

have p(ti = j|{tl})≥ c′, where c′ is independent of the particular selection and is equal

to 1
maxi(|Si|) (in the case of dotted complete graph c′ = 1

9). This comes as a consequence

of Definition 7.5 in [Fitzsimons and Kashefi, 2012]. The second property means, in

other words, that the terms
⊗

i |0〉ti〈0|tiQ′tiPu|ti|η
′
ti〉〈η

′
ti|Pu|tiQ

′†
ti that have trace < 1 in the

above summation have a lower bound in their probabilities (taking the marginal over

the trap positions in Sl’s that there are no independently detectable errors) and therefore

set an upper bound in the overall expression.

Separating Si’s that contain qubits measured by Bob and those that contain qubits

returned to Alice:

= ∑
k,u∈S2

|ak,u|2 ∑
{ti:ti≤N−n′′}

p({ti : ti ≤ N−n′′})|〈0|tiPu|ti|0〉ti|
2

∑
{ti,βti :ti>N−n′′}

p({ti,βti : ti > N−n′′}|{ti : ti ≤ N−n′′})|〈+|tiS†βti Pu|tiS
βti |+〉ti|2 (3.25)

For each i where Si contains qubits of the measured by Bob system and each

attack with index u we denote by wu,i the number of positions in Si on which acts

3.2. A Refined Proof of Verifiability 67

an independently detectable error element (Pauli X or Y) of Pu. For each i where Si

contains returned qubits and each attack with index u we denote by wu,i the number of

positions in Si on which acts an independently detectable error element (Pauli X or Y or

Z) of Pu. By the above assumption for the lower bound in the probabilities of having

traps at the positions of the independent detectable errors:

≤ ∑
k,u∈S2

|ak,u|2 ∏
i:∀ j∈Si, j≤N−n′′

(1− c′wu,i)) ∏
i:∀ j∈Si, j>N−n′′

(1− 1
2

c′wu,i) (3.26)

Or,

≤ ∑
k,u∈S2

|ak,u|2 ∏
i
(1− c′

2
(wu,i)) (3.27)

Or, from the fact that wu,i is non-negative integer:

≤ ∑
k,u∈S2

|ak,u|2 ∏
i
(1− c′

2
)wu,i)

= ∑
k,u∈S2

|ak,u|2(1−
c′

2
)∑i(wu,i) (3.28)

From the fact that for every u ∈ S2 the total footprint ∑i(wu,i) of independently

detectable errors in Pu is > p
′:

≤ ∑
k,u∈S2

|ak,u|2(1−
c′

2
)p
′

(3.29)

Therefore (sub-normalized) state σ2 can be written as:

σ2 ≈√
(1− c′

2)
p′

p(∑
k,u∈S2

|ak,u|2)|ψc〉〈ψc|⊗ |ACC〉〈ACC|

+(1− p)(∑
k,u∈S2

|ak,u|2)ρ⊗|REJ〉〈REJ| (3.30)

for some probability p and density matrix ρ. Or,

σ2 ≈(1− c′
2)
p′ p1|ψc〉〈ψc|⊗ |ACC〉〈ACC|+ p2ρ⊗|REJ〉〈REJ| (3.31)

where

68 Chapter 3. Revisiting Verifiable Blind Quantum Computing

• p1 + p2 = ∑k,u∈S2 |ak,u|2

• ρ is a density matrix.

Summing the terms σ1 and σ2, Theorem 1 is satisfied with ε = (1− c′
2)
p
′
.

Chapter 4

Verifiable Blind Quantum Computing

with Localised Output

4.1 Localisation Gadget and Protocol

In this section we give an explicit description of the version of the FK protocol which

localises the position of the output on Bob’s side, called the localising verification

protocol. For any choice of random variables, including the positioning of the traps on

the graph that describes the resource state, the position of the qubits that contain the

output of the delegated computation becomes fixed and known to both Alice and Bob -

this is achieved by running blindly an extra output gadget graph. Blindness of the FK

protocol is retained, while for verifiability, since there are no traps on the output to be

tested, we have to relax the requirement for the output state to be ε close to the correct

output up to an arbitrary CPTP map. Crucially, for our composition in the composite

protocol, this CPTP map should be fixed for a choice of Bob’s deviation and should not

depend on the particular computation which is delegated.

In more technical terms, the main difference from the original FK protocol is the

modification of the graph state by appending on the output a certain number of gadget

states, one of which is depicted in Figure 4.1. Specifically, one gadget is attached on

each subset Sγ of the output of the FK protocol graph (system to be normally returned to

Alice). In the dotted-complete graph construction of the FK protocol, all output qubits

belong to the set of P(G) qubits and by construction they contain an equal number of

trap qubits, dummy qubits and qubits participating in the actual computation and are

in fact that outputs of this computation. Following the same construction of the FK

69

70 Chapter 4. Verifiable Blind Quantum Computing with Localised Output

Figure 4.1: Single gadget state attached to a subset Sγ (represented by dashed circles)

of the output of the normal graph used in the FK protocol. The number of branches

depends on |Sγ|. Only one of the qubits of the first row of the gadget is a non-dummy

state allowing to teleport blindly the actual output to the bottom qubit.

protocol we choose the sets Sγ such that each set contains one trap qubit, one dummy

qubit and one computational qubit (therefore the size of all output sets Sγ is 3). The

main idea is that if Bob learns the sets Sγ, which he does in our case because we place a

gadget on top of each Sγ, there is always a trap that can take any position in the set Sγ.

The scheme can generalize to other constructions with different sizes of Sγ by increasing

the size of the gadget.

The goal of the gadget system is to teleport only the computational qubit to the

fixed vertex at the bottom of each gadget. Therefore the first layer of the gadget qubits

(in Figure 4.1 the first row of solid circles, that are connected directly to the existing

graph of the FK protocol) contains |Sγ|−1 dummy qubits which isolate the trap and

the dummies of the output Sγ from the bottom qubit. The computational qubit and the

gadget qubit that is connected to it are both measured with φ = 0 so that the effective

computation is identity and the qubit is teleported to the bottom of the gadget. The

gadget structure is such (one gadget per Sγ and symmetric) that they can be added

without breaking the uniformity of the positioning of the traps in the FK protocol graph.

The steps of the localising protocol are given in Protocol 3.

4.1. Localisation Gadget and Protocol 71

Protocol 3 Localising Verification Protocol (based on the FK protocol)

Alice’s input. Description of a computation in the MBQC model (or equivalent) using

a convenient underlying open graph state (G, I,O). The computation is represented, for

any qubit i ∈ G\O, as a measurement angle ϕi (together with the set of X-dependences

DX
i and Z-dependences DZ

i and a fixed partial order of measuring depending on the

graph structure). The input is set to be the Hadamard basis state of n qubits: |+〉⊗n.

Protocol can be extended to admit external quantum input by applying the techniques

described in the FK protocol.

Bob’s output. A quantum state that contains the encoded and one time padded quantum

output of the computation.

The protocol

1. Preprocessing 1. Alice translates the computation to a Fault Tolerant (FT) MBQC

pattern that can detect p errors. Let the updated open graph be (G′, I′,O′), where

|G|= m′ and |I′|= |O′|= n′.

2. Preprocessing 2. Alice embeds the encoded computation pattern into a suitable

graph G′′ which has the following property: There exists a fixed order of mea-

surement which respects the computational flow and each computational qubit

belongs to a constant size subset of qubits Sγ in which a trap can be at any position

with uniformly random probability. An example (up to the assumption that we

consider only independently detectable errors) is the dotted complete graph of

size O(m′2).

3. Preprocessing 3. Alice attaches a gadget graph (Figure 4.1) on each subset Sγ of

qubits of the output system of the previous step’s graph (G′′). Let the new graph,

that contains all gadgets, be denoted by G′′′. The effect of these extra graphs is

that they fix the position of system O′. Since we attach a constant number of

qubits for every qubit of the output system, the total number of qubits of G′′′ is

N = O(m′2).

72 Chapter 4. Verifiable Blind Quantum Computing with Localised Output

Protocol 3 Cont’d

4. Alice prepares the rotated qubits. For i = 1 to N:

(a) If qubit is a dummy: prepares |di〉, di←R {0,1} (where←R means chosen

uniformly at random from).

(b) If qubit is not dummy and not in O′: prepares ∏ j∈NG(i)∩D Zd j |+θi〉, where

|+θi〉 ≡ 1√
2
(|0〉+ eiθi|1〉), θi←R {0,π/4,2π/4, . . . ,7π/4}.

(c) If qubit is not a dummy and is in O′: Same as previous step but θ is fixed to

0 and an extra Zri rotation is applied where ri is a random bit.

(d) She sends the qubit to Bob.

5. Bob entangles the states according to the graph state by applying cZ gates.

6. Bob performs the rest of the computation using classical help from Alice. For i

which ranges over all qubits (respecting the flow) except system O′:

(a) Alice computes the actual measurement angle φ′i using the dependences and

the previous measurement results (φi = 0 for dummies and traps).

(b) Alice chooses a random bit ri and computes δi = φ′i +θi +πri.

(c) Alice transmits δi to Bob.

(d) Bob performs measurement Mδi
i on qubit i.

(e) Bob transmits the result to Alice.

(f) Alice flips the result if ri = 1, otherwise does nothing.

7. Alice sets her indicator bit to accept if all trap tests where successful.

8. Bob’s system will contain the output qubits O′ placed at a fixed position on the

graph.

4.2. Verifiability of the Localisation Protocol 73

4.2 Verifiability of the Localisation Protocol

The following theorem is an alternative way to express verifiability and is indeed

equivalent to the standard definition using the projectors [Dunjko et al., 2014], up to the

final attack on the state (which is crucially independent on the computation). We prefer

this notation here as we are interested in the form of the state that will be later used in

the composite protocol.

Theorem 2. The output of Protocol 3 when decoded for the FT procedure and decrypted

for the quantum one-time-pad (assuming that these are done honestly by Bob or are

done by Alice), averaged over all random parameters of Alice, denoted as ν, is of the

following form:

∑
ν

ρ
ν
out ≈ε paccE(|ψc〉〈ψc|)⊗|ACC〉〈ACC|

+(1− pacc)ρ
′⊗|REJ〉〈REJ|

where ε = 1
cp for some c > 1 and p parameter of FT, pacc is a probability, |ψc〉 is

the correct output of the computation, E is a CPTP-map where all Kraus operators are

Pauli operators and is independent of |ψc〉 and ρ′ is a normalized state.

The proof of Theorem 2, is given below. The proof is similar to the proof in Section

3.2 with some notable differences:

• As before, we decompose the attack operators into the Pauli basis, which are

tensor products of Pauli+identity operators on the overall state of Bob (tracing

out his private subsystem). We can split each tensor product into two smaller

tensor products, one that applies on the trapified system, which is the normal

graph G′′′, and one that applies on the non-trapified system, that is the gadgets

and measurement angles. Due to blindness on both G′′′ and the gadget we can

reduce both attacks to Pauli attacks, say Pu and Pv respectively.

• For Pu we do the standard analysis: errors with weight less than a certain bound

can be corrected and for the rest there is an exponentially high probability of

hitting at least one trap.

• For Pv we rewrite these attacks as attacks on the output qubits by commuting

with the gadget computation (which crucially does not depend on the actual

74 Chapter 4. Verifiable Blind Quantum Computing with Localised Output

computation). Moreover, since the gadget computation is Clifford the final attack

is still a Pauli attack. Therefore, the only attacks that remain on the output after

we do the trap analysis are these attacks that do not depend on the computation,

as we wanted.

Proof. Single index notation is followed to enumerate the qubits participating in the

graph where N is the total number of qubits and the last n′ qubits are the encoded output

qubits (system O′).

Extra notation has to be introduced first. Vector ν is used to represent all random

secret parameters chosen by Alice throughout the execution of protocol, including

r = {ri}, θ = {θi}, d = {di} and positions of traps t = {ti}. Parameter p(ν) gives the

probability of a particular choice of random secret parameters. Summing over a vector

(e.g. ∑r) means that we sum over all possible choices for the elements of that vector

(e.g. all possible bit-strings of size N for r).

For convenience we name the subsystems of the joint Alice-Bob system:

• System M is the union of all the non-dummy, non-trap qubits of G′′ (therefore

includes all the necessary bridge qubits introduced when embedding G′ in G′′) and

the non-dummy qubits of the first layer of each gadget (the ones that are measured

by Bob) introduced when embedding G′′ into G′′′. Therefore M contains all the

qubits of the graph state that are measured and participate in the computation. We

call them measured computational qubits.

• System D contains all dummy qubits.

• System T contains all trap qubits (here all of them are measured by Bob).

• System O′ is the encoded output system at fixed position. These are all the qubits

of the second layer of each gadget (the ones that are not measured by Bob).

• System ∆ is the system of the measurement angles send by Alice to Bob, where

each angle is represented by three qubits in the computational basis.

• System B is Bob’s private system, assumed to be initially in the blank state.

Each measurement performed at Step 6d of the protocol is analysed into a unitary

part and a Pauli Z measurement. Without loss of generality we can represent any

dishonest behaviour of Bob at any step as applying the correct unitary operators and

then an arbitrary unitary attack operator.

4.2. Verifiability of the Localisation Protocol 75

In order to prove the theorem argument we need to consider the state of the protocol

after the extra steps of Alice receiving system O′ and applying the output Pauli cor-

rections CO′ and decoding map D for the FT QECC. The output that Alice holds after

these extra steps, averaged over random parameters and for all measurement outcomes

with the corresponding probabilities, is:

ρout =

TrB,M ,∆,D(∑
b

∑
ν

p(ν)D(C|bN−n′〉〈bN−n′|UN−n′HN−n′RN−n′(|δN−n′〉〈δN−n′|⊗ . . .

. . . |b1〉〈b1|U1H1R1(|δ1〉〈δ1|⊗EG|M〉〈M|⊗ |0〉〈0|⊗BEG)R
†
1H1U†

1 |b1〉〈b1| . . .

)R†
N−n′HN−n′U

†
N−n′|bN−n′〉〈bN−n′|C†)) (4.1)

where:

• |M(θ,d, t)〉 is the state that Bob receives after Step 4 of the protocol (input,

auxiliary qubits, dummy qubits).

• EG is the global entangling operator that Bob applies at step 5 of the protocol.

• δ(θ,r,b) is the vector of δi(θ,r,b) which are measurement angles that Alice sends

to Bob at iteration i of step 6 of the protocol.

• Ri(δi) is a controlled unitary rotation of qubit i around z-axis by angle δi.

• Hi is a Hadamard gate applied on qubit i.

• Ui is the unitary attack of Bob with index i and applies on qubits ≥ i, private

Bob’s system and all measurement angles.

• C(r,b) includes the Pauli correction CO′ that Alice performs to the output system

O′ and the Zrti corrections on the trap measurement results.

• D is the map that Alice applies to decoding O′ for the QECC used in the fault

tolerant procedure.

By commuting all measurement angles (trivially) and all attack unitary operators

(by observing that they trivially commute with all measurements ≤ i) and merge them

into a new unitary U that applies on the whole of the system we get (see also Figure

3.4):

76 Chapter 4. Verifiable Blind Quantum Computing with Localised Output

ρout = TrB,M ,∆,D(∑
b

∑
ν

p(ν)D(C|b〉〈b|U(HN−n′RN−n′(.) . . .H1R1(.)EG(

|M〉〈M|⊗ |δ〉〈δ|)EGR1(.)
†H1 . . .RN−n′(.)

†HN−n′⊗|0〉〈0|⊗B)U†|b〉〈b|C†)) (4.2)

where U is a unitary attack operator that is chosen by Bob and applies on all graph

G′′′ qubits, private Bob’s system and all measurement angles.

The trap system is not entangled with the rest when the honest computation is

applied. We can separate the terms that apply on the trap (remember that the trap is

placed among the measured qubits). Applying the entangling operators between the

traps and their neighbours, which are always dummy qubits does not have any effect

other than undoing the pre-rotation of the trap (for the case the dummy is selected to be

|1〉). Applying HtRt(δt) on each trap, where δt = θt + rtπ, results in getting state |rt〉.
Therefore, it holds that:

P (|M〉〈M|⊗ |δ〉〈δ|)P † = P ′(|M′〉〈M′|⊗ |δ〉〈δ|)P ′†
⊗

i

|rti〉〈rti| (4.3)

where

• P = HN−n′RN−n′(.) . . .HtiRti(.) . . .H1R1(.)EG is the correct unitary operation in

Figure 3.4.

• P ′ = HN−n′RN−n′(.) . . .H1R1(.)E ′G, which is produced from P by omitting all

operations applied on traps (E ′G is produced from EG by omitting all entangling

operators between traps and their neighbours)

• |M′〉 is produced from |M〉 by omitting the trap qubits.

In the next step we express the output state with Bob’s private system traced out and

his attack decomposed in the Pauli basis. We will use again the general property for

tracing out Bob’s private system and decomposing to the Pauli basis (all tensor products

of Pauli+identity operators) given in Equation 3.4.

Applying this property to the state in Equation 4.2, by tracing out system B, and at

the same time applying Equation 4.3 to separate the traps we get the following form.

Again, Pu|i is the i-th Pauli or identity element of Pu (tensor product of Pauli+identities

with index u).

4.2. Verifiability of the Localisation Protocol 77

ρout = TrM ,∆,D(∑
b

∑
ν

p(ν) ∑
k,u,v,u′,v′

ak,u,va∗k,u′,v′D(CO′|b′〉〈b′|Pu|i:∀ j,i 6=t j ⊗Pv

(P ′(|M′〉〈M′|⊗ |δ〉〈δ|)P ′†)Pu′|i:∀ j,i6=t j ⊗Pv′|b′〉〈b′|C†
O′)⊗

i

|bti + rti〉〈bti|Pu|ti|rti〉〈rti|Pu′|ti|bti〉〈bti + rti|) (4.4)

where

• ak,u,v are complex numbers, with ∑k,u,v |ak,u,v|2 = 1.

• Pu (and Pu′) ranges over all tensor products of Pauli+identity operators and applies

on the system that is trapified: all qubits of graph G′′. Note that all these systems

are measured by Bob.

• Pv (and Pv′) ranges over all tensor products of Pauli+identity operators and applies

on the system that is not trapified: all qubits of the gadget systems, i.e. all systems

added when embedding G′′ to G′′′, and the measurement angle system ∆.

• b′ is the vector that is generated from b by removing elements {bti}.

Trivially we can trace over terms |b′〉〈b′|:

ρout = Tr∆,D(∑
b

∑
ν

p(ν) ∑
k,u,v,u′,v′

ak,u,va∗k,u′,v′D(CO′〈b′|Pu|i:∀ j,i6=t j ⊗Pv

(P ′(|M′〉〈M′|⊗ |δ〉〈δ|)P ′†)Pu′|i:∀ j,i6=t j ⊗Pv′|b′〉C†
O′)⊗

i

|bti + rti〉〈bti|Pu|ti|rti〉〈rti|Pu′|ti|bti〉〈bti + rti|) (4.5)

In the next part of the proof the attack of Bob will be reduced to a convex combina-

tion of Pauli+identity operators, consuming all random parameters except the random

position of the traps to cancel the cross Pauli+identity terms that are not the same (i.e.

where u 6= u′ and where v 6= v′). This follows exactly the same steps as in the proof of

normal VUBQC with quantum output except the following step:

Eliminating cross-terms on the trap system T : Since all trap qubits ti are measured

and in graph G′′ we have only one case:

∑
rti ,bti

|bti + rti〉〈bti|Pu|ti|rti〉〈rti|Pu′|ti|bti〉〈bti + rti| (4.6)

78 Chapter 4. Verifiable Blind Quantum Computing with Localised Output

By changing variable b̂ti ← bti + rti

∑
rti ,b̂ti

|b̂ti〉〈b̂ti|X rti Pu|tiX
rti |0〉〈0|X rti Pu′|tiX

rti |b̂ti〉〈b̂ti|

= ∑
rti ,r

′
t1
,b̂ti

|b̂ti〉〈b̂ti|Z
r′ti X rti Pu|tiX

rti Zr′ti |0〉〈0|Zr′ti X rti Pu′|tiX
rti Zr′ti |b̂ti〉〈b̂ti|

= 0 if Pu|ti 6= Pu′|ti (4.7)

Thus, tackling each case separately, we have zeroed all terms where u 6= u′ and

v 6= v′ which gives:

ρout = ∑
b

∑
t

p(t) ∑
k,u,v
|ak,u,v|2D(C′O′〈b

′|Pu|{i:i/∈T,D}⊗Pv|{i:i/∈∆,D}

(P (3)(|M(4)〉〈M(4)|)P (3)†)Pu|{i:i/∈T,D}⊗Pv|{i:i/∈∆,D}|b′〉C′†O′)
⊗

i

Pu|ti|0〉〈0|Pu|ti (4.8)

where

• |M(4)〉 is the tensor product of |+〉 for all qubits of system M ×O′.

• P (3) is the unitary that contains E ′′G for M ×O′ and HiRi((−1)b f−1(i)φi

+b f−1(j∼i, j 6= f (i))π) operators for all qubits of system M .

• C′ are the remaining Pauli corrections on the output system O′ (after eliminating

the r’s) and depend only on b.

We split the sum over the attack operators Pu (those applying on the trapified system)

in Equation 4.8 into two sums: a sum over the operators Pu which are perfectly corrected

by the FT QECC and the sum of the rest of the operators Pu (which are not corrected

but have a significant footprint to be caught by the trapification procedure with high

probability).

More formally, restricting the summation in Equation 4.8 to u ∈ S1 which have the

following property: if we map each attack Pu to the corresponding attack that contains

the maximum number of independently detectable errors, the latter will contain ≤ p′

tensor elements which are Pauli X or Y , we have state:

σ1 = ∑
b

∑
t

p(t) ∑
k,u∈S1,v

|ak,u,v|2D(C′O′〈b
′|Pu|{i:i/∈T,D}⊗Pv|{i:i/∈∆,D}

(P (3)(|M(4)〉〈M(4)|)P (3)†)Pu|{i:i/∈T,D}⊗Pv|{i:i/∈∆,D}|b′〉C′†O′)
⊗

i

Pu|ti|0〉〈0|Pu|ti (4.9)

4.2. Verifiability of the Localisation Protocol 79

Let the tensor elements of each attack Pv|{i:i/∈∆,D} on the gadget system be separated

to those applying on set of measured gadget qubits G′′′ \ (O′∪G′′) (first layer of each

gadget), say Pv1 , and those who apply on the output system O′ (second layer of each

gadget), say Pv2 .

Any single qubit Pauli operator can be analysed into a X and a Z component. For

each qubit i of the first layer of each gadget, the X-component of attack Pv1|i, denoted

by P′v1|i, can be replaced by a P′v1|i attack on output system O′ (since its only effect is

to flip the Pauli X corrections of the output) while the Z-component of attack Pv1|i can

be ignored since it does not have any effect on the state. This way, every Pauli attack

Pv = Pv1 ⊗Pv2 on the gadgets can be reduced to a Pauli attack P′v1
Pv2 applying only

on the output system O′, without catching any dependence on the actual computation

(independence of attack from the computation is a property of the theorem we want to

prove and will be useful in the composite construction later). This analysis was easy in

our case, where we have only one layer of measurements in the gadget, however one

might wonder what happens if there are more untrapified measurement layers (thus Pv

can potentially flip the outcomes of many layers of measurement). If these layers of

measurement correspond to Clifford computation (therefore angles from the restricted

set of {0,π/2,π,3π/2}), then the attack can indeed be rewritten as a Pauli operator on

the output system O′ but the new operator will potentially have a dependence on the

computation performed (i.e. the computational measurement angles). If the operation

performed by these layer, however, does not contain any secret, we can tolerate this

dependence and continue with the subsequent analysis (this property will be better

understood later in the analysis of the composite protocol and it variations).

Commuting the output Pauli attacks P′v1
Pv2 with the decoding operator D (fixed

Clifford computation and Pauli measurements) updates them to a different Pauli operator

P′′v1
P′v2

:

= ∑
b

∑
t

p(t) ∑
k,u∈S1,v

|ak,u,v|2P′′v1
P′v2

D(C′O′〈b
′|Pu|{i:i/∈T,D}

P (3)(|M(4)〉〈M(4)|)P (3)†Pu|{i:i/∈T,D}|b′〉C′†O′)P
′
v2

P′′v1

⊗
i

Pu|ti|0〉〈0|Pu|ti (4.10)

Since Pu ∈ S1, attack Pu|{i:i/∈T,D} will be perfectly corrected by the FT QECC (which

means that calculations of b’s will be correct at each layer and the final decoding

procedure D will produce the correct output).

By separating the terms in which the attack leaves all traps untouched and the rest

80 Chapter 4. Verifiable Blind Quantum Computing with Localised Output

and tracing out O′ \O we get:

σ1 = ∑
i

p′iPi|ψc〉〈ψc|Pi⊗|ACC〉〈ACC|+∑
j

p′′j Pj|ψc〉〈ψc|Pj⊗|REJ〉〈REJ| (4.11)

where

• Pi (Pj) range over all general Pauli operators on the output system O.

• p′i, p′′i are probabilities with ∑i(p′i + p′′i) = ∑k,u∈S1,v |ak,u,v|2 .

• |ACC〉〈ACC| is the state where all trap qubits are |0〉〈0| and |REJ〉〈REJ| denotes

any state that at least one trap is |1〉〈1|.

• |ψc〉〈ψc| is the correct state for the output system O, which crucially is placed on

a fixed position which does not depend on the selection of the trap positions (t)

(since the position of O′ was also fixed due to the structure of the gadget and the

decoding circuit is fixed).

We examine the rest of the u terms of the summation in Equation 4.8: for these

terms, denoted by u ∈ S2, it holds that the independently detectable errors of Pu are

> p
′, where the corresponding tensor elements are Pauli X or Pauli Y .

Let P⊥ be the projection to the orthogonal space to the correct output state:

P⊥ = I−|ψc〉〈ψc| (4.12)

We calculate the ‘bad’ (sub-normalized) probability pbad the state collapses to the

‘incorrect’ subspace and no trap is activated.

pbad =

Tr(∑
t

p(t)P⊥
⊗

i

|0〉ti〈0|ti(∑
b

∑
k,u∈S2,v

|ak,u,v|2D(C′O′〈b
′|Pu|{i:i/∈T,D}⊗Pv|{i:i/∈∆,D}

(P (3)(|M(4)〉〈M(4)|)P (3)†)Pu|{i:i/∈T,D}⊗Pv|{i:i/∈∆,D}|b′〉C′†O′)
⊗

i

Pu|ti|0〉ti〈0|tiPu|ti)(4.13)

Tracing out P⊥(∑b D(C′O′〈b
′|Pu|{i:i/∈T,D}⊗Pv|{i:i/∈∆,D}(P (3)(|M(4)〉〈M(4)|)P (3)†)

Pu|{i:i/∈T,D}⊗Pv|{i:i/∈∆,D}|b′〉C′†O′), we have:

≤ Tr(∑
t

p(t)|0〉ti〈0|ti ∑
k,u∈S2,v

|ak,u,v|2
⊗

i

Pu|ti|0〉ti〈0|tiPu|ti (4.14)

4.2. Verifiability of the Localisation Protocol 81

Or:

= ∑
k,u∈S2,v

|ak,u,v|2 ∑
ti

p(ti)|〈0|tiPu|ti|0〉ti|
2 . . .∑

t1
p(t1|tk:k 6=1)|〈0|t1Pu|t1|0〉t1|

2 (4.15)

Each ti takes values from set Si and let its maximum size (∀i) be 1
c′ . For each attack

indexed by u, let us denote by wu,i the number of positions j in Si on which acts an

independently detectable element of Pu. Also, we have the fact that all positions in

G′′ can be trapified and the fact that for each j ∈ Si with an independently detectable

error and for all possible selections of trap positions {tl : ∀l 6= i} that coincide with

independently detectable errors of u we have p(ti = j|{tl}) ≥ c′. Doing the same

analysis as in the proof of Section 3.2 we have:

≤ ∑
k,u∈S2,v

|ak,u,v|2
|t|

∏
i=1

(1− c′wu,i) (4.16)

Or, from the fact that wu,i is non-negative integer:

≤ ∑
k,u∈S2,v

|ak,u,v|2
|t|

∏
i=1

(1− c′)wu,i

= ∑
k,u∈S2,v

|ak,u,v|2(1− c′)∑
|t|
i=1 wu,i (4.17)

Since u ∈ S2, it follows that the total footprint ∑
|t|
i=1 wu,i of attack Pu is > p

′.

≤ ∑
k,u∈S2,v

|ak,u,v|2(1− c′)p
′

(4.18)

Therefore (sub-normalized) state can be written as:

σ2 ≈ε p1|ψc〉〈ψc|⊗ |ACC〉〈ACC|+ p2ρ⊗|REJ〉〈REJ| (4.19)

where

• ε =
√

(1− c′)p′

• p1 + p2 = ∑k,u∈S2,v |ak,u,v|2

• ρ is a density matrix.

Summing the terms σ1 and σ2, Theorem 2 is satisfied with ε =
√

(1− c′)p′ .

Chapter 5

d-level Security

Here we adapt Verifiable Universal Blind Quantum Computing (FK) protocol, which is a

protocol for qubit systems, to odd prime d-level systems. The benefits are twofold. First,

this construction can be easily composed with the ABE Protocol, which requires systems

of dimension d ≥ 3 to be secure, and as we prove later, this is the only (deterministic)

way to compose the two protocols if the system is not returned to the verifier. Second,

the existence of efficient fault tolerant schemes in the d-level systems [Watson et al.,

2015] is a reason to consider d-level systems for computation and therefore verification.

In the following Sections we present the d-level version of the FK protocol, based on

d-level Blind QC, both using a d-level formalism of MBQC analogous to the qubit

MBQC. The main difference from 2-level verification is the different bound we acquire

for verifiability: depending on the levels d of the system and for protocol parameters

p
′ and c′, verifiability for quantum output becomes ε = (1− (d−1)c′

d)p
′
, as opposed to

ε = (1− c′
2)
p
′
in the 2-level. This small improvement is due to the availability of more

stabilizer states to choose for the type of the output trap, so when averaging over the

types of the trap any Pauli attack is more likely to anti-commute with the trap stabilizer

and get caught.

5.1 d-level Measurement-Based Quantum Computing

Measurement-based Quantum Computing (MBQC) on d-level systems has been studied

in [Zhou et al., 2003] and [Hall, 2005]. Here we present a formalism for d-level MBQC

that is the d-level analogue of the formalism presented in Section 1.1.3 and used in

blind protocols such as in [Broadbent et al., 2009]. Based on this formalism, in Section

5.1.1 we provide the d-level analogue of the brickwork states (universal MBQC using

83

84 Chapter 5. d-level Security

only XY-plane measurements), while in Section 5.3 we give the methods to ‘carve’

any graph out of a generic one by using the d-level analogues of the bridge and break

operators.

The resource state can again be represented by an undirected graph (G, I,O), with

qudits placed on the vertices and entangling operators (generalized cZ) applied whenever

the two vertices are connected by an edge. Not that in the d-level case there is not only

one but a family of entangling operators cZk,k ∈ {1, . . .d−1}, where k defines what we

call here the level of entanglement. All qudits /∈ I are prepared in the |+0〉 ≡ 1√
d ∑

d−1
j | j〉

state. All qudits /∈ O are measured in basis {Rz(a)F†|k〉}k ({|k〉}k represents the

standard computational basis, where k ∈ {0, . . . ,q− 1}), which we will denote by

Ma. To implement a unitary on an arbitrary input, placed on I, space-time dependent

generalized measurements and Pauli corrections are applied on qudits according to a

given measurement pattern. One can specify the dependent generalized measurements

and corrections in many different ways (e.g. [Zhou et al., 2003] and [Hall, 2005]). Here,

we use the idea of the flow (see Section 1.1.3 for 2-level case).

In particular, together with graph (G, I,O) and a specific set of measurements {ai},
we define a partial order and dependency functions Dx which is a partial function from

OC to IC and Dz which is a partial function from OC to P IC
, where P denotes the power

set. Then, j ∈ Dx
i means that j gets a Pauli X correction raised to the power of the

measurement outcome of i. The choice of Dx
i is restricted such that the level of the

entanglement operator between i and Dx
i is 1. Also, j ∈ Dz

i means that j gets a Pauli Z

correction raised to the power of the measurement outcome of i times the level of the

entanglement operator that has been applied between j and Dx
i in the construction of

the graph. The definition of the flow, which is sufficient condition for a graph to be used

for unitary computation (up to global phase) and helps to define Dx and Dz, is the same

as in the 2-level case (see Definition 2) with the extra property that i and f (i) have level

of entanglement 1. One can easily generalize by allowing for X corrections that depend

on the level between i and f (i) and thus make the flow depend only on the connectivity

of the graph, but this is beyond the scope of our construction. The d-level version of a

basic theorem (Theorem 1 in [Danos and Kashefi, 2006]) will be:

Theorem 7. Let us have a measurement pattern on an open graph state (G, I,O) with

flow (f ,�) and measurement angles a rewritten as:

Pa =
�

∏
i∈Oc

(
X si

f (i) ∏
{k:k∼ f (i),k 6=i}

Zsie(k, f (i))
k Mai

i

)
EGNIc

5.1. d-level Measurement-Based Quantum Computing 85

where e(k, f (i)) is the level of the entanglement operator applied between k and

f (i) in EG. The above pattern is runnable and implements the following unitary

UG,I,O,a = 2|O
c|/2

(
∏
i∈Oc
〈+ai|i

)
EGNIc (5.1)

where EG and NIc represent the global entangling operator and global preparation

respectively.

Proof. Deriving the first equation from the second and using the idea of anachronical

patterns, i.e. that mathematically we can write each projector as a measurement and a

correction before the measurement:

〈+ai|i = Mai
i Zsi

i (5.2)

we have:

∏
i∈Oc

Mai
i Zsi

i EGNIc (5.3)

Extracting d-level stabilizers from EG:

∏
i∈Oc

Mai
i Zsi

i (X
si
f (i) ∏
{k:k∼ f (i)}

Zsie(k, f (i))
k)EGNIc

∏
i∈Oc

(
X si

f (i) ∏
{k:k∼ f (i),k 6=i}

Zsie(k, f (i))
k Mai

i

)
EGNIc (5.4)

which is easy to check that is runnable as it was in the 2-level case.

5.1.1 d-level Universal Graph States

First we show that a patterns of the form given in Theorem 7 can perform universal

unitary computation. Let us define generalized gate J as:

J(a) = FRz(a)

where a = (a0, . . . ,aq−1) and Rz(a) =
q−1

∑
i=0

eiai|i〉〈i|

In Figure 5.1 it is shown how we can implement a J gate using two qudits. The

following property was used:

86 Chapter 5. d-level Security

Figure 5.1: Starting from the dit teleportation circuit in (a) we show how to derive the

measurement pattern for the J gate.

Lemma 3. It holds that:

(I⊗F)cZ(I⊗F†) = cX (5.5)

Proof.

(I⊗F)cZ(I⊗F†)

= ∑
a,b,c

ω
bc|a,c〉〈a,b|∑

a,b
ω

ab|a,b〉〈a,b| ∑
a,b,c

ω
−bc|a,c〉〈a,b|

= ∑
a,b,c

ω
bc|a,c〉〈a,b| ∑

a,b,c
ω

ac−bc|a,c〉〈a,b|

= ∑
a,b,c,d

ω
ac−bc+cd|a,d〉〈a,b|

= ∑
a,b,d

(
∑
c

ω
c(a−b+d)

)
|a,d〉〈a,b|

The term inside parentheses is equal to 1 when a−b+d = 0⇔ d = b−a and equal

to 0 in all other cases. Thus we can rewrite the formula:

= ∑
a,b
|a,b−a〉〈a,b|= cX (5.6)

Gate J together with cZ operators we can implement gates of a universal set as it

was the case in the 2-level MBQC.

In the original UBQC protocol all computations are performed on the brickwork

state. This state has the property that we can implement any universal computation

5.1. d-level Measurement-Based Quantum Computing 87

by performing only XY -plane measurements. We give the steps to construct the graph

that corresponds to one possible generalization of the brickwork state, also depicted in

Figure 5.2:

Definition 10 (d-level Brickwork State Graph). The d-level Brickwork State Graph

is a special graph that is composed of two different sets of edges: the grey edges and

the black edges. These edges will represent different entanglement operators during

the construction of the d-level brickwork state. In particular grey edges represent

entanglement operator cZ, while black edges represent entanglement operator cZd−2.

To construct the graph:

1. Assign to each vertex an index (i, j), where 1≤ i≤ n is the row and 1≤ j ≤ m is

the column.

2. For each row i and for all 1≤ j ≤m−1 connect vertices (i, j) and (i, j+1) with

an edge.

3. For each column j ≡ (5 mod 25) and each odd row i connect vertices (i, j) and

(i+1, j) with a grey edge, vertices (i, j+4) and (i+1, j+4) with a gray edge

and also vertices (i, j+8) and (i+1, j+8) with a black edge.

4. For each column j≡ (17 mod 25) and each even row i connect vertices (i, j) and

(i+1, j) with a grey edge, vertices (i, j+4) and (i+1, j+4) with a grey edge

and also vertices (i, j+8) and (i+1, j+8) with a black edge.

An interesting property of d-level gates, that, as we will see later, is the basic

reason that the ’brick’ component in the d-level brickwork state does not scale with the

dimension d is the following:

Figure 5.2: Qudit brickwork state where the ‘brick’ component is identified by a grey

rectangle. Grey lines represent entanglement operator cZ, while black lines represent

entanglement operator cZd−2, where d is the level of the system

88 Chapter 5. d-level Security

Lemma 4. It holds that:

FFF = F† (5.7)

Proof.

q−1

∑
a,b=0

ω
ba|b〉〈a|

q−1

∑
a,b=0

ω
ba|b〉〈a|

q−1

∑
a,b=0

ω
ba|b〉〈a|

=
q−1

∑
a,b=0

ω
ba|b〉〈a|

q−1

∑
a,b,c=0

ω
cb+ba|c〉〈a|

=
q−1

∑
a,b,c,d=0

ω
dc+cb+ba|d〉〈a|

=
q−1

∑
a,d=0

ω
−da

(
q−1

∑
b,c=0

ω
dc+cb+ba+da

)
|d〉〈a|

=
q−1

∑
a,d=0

ω
−da

(
q−1

∑
b,c=0

ω
b(c+a)+dc+da

)
|d〉〈a|

=
q−1

∑
a,d=0

ω
−da

(
1+ ∑

b,c6=−a
ω

b(c+a)+dc+da

)
|d〉〈a|

=
q−1

∑
a,d=0

ω
−da|d〉〈a|= F† (5.8)

We show the universality of the d-level brickwork graph by constructing the mea-

surement patterns of a universal set of gates, {Z,F,S,T,cX}, (see Section 2.2.1 for the

explanation of why they are universal). Another gate, which we denote by D, is used to

facilitate our construction and is defined as:

D =
q−1

∑
j=0

ω
j2
2 | j〉〈 j|,d > 2 (5.9)

A series of lemmas are needed to be able to arrive to our universal pattern construc-

tion.

Lemma 5. The following holds:

∃k : ω
kDFDF†D = F (5.10)

5.1. d-level Measurement-Based Quantum Computing 89

Proof.

q−1

∑
j=0

ω
j2
2 | j〉〈 j|

q−1

∑
j,k=0

ω
jk|k〉〈 j|

q−1

∑
j=0

ω
j2
2 | j〉〈 j|

q−1

∑
j,k=0

ω
− jk|k〉〈 j|

q−1

∑
j=0

ω
j2
2 | j〉〈 j|

=
q−1

∑
j=0

ω
j2
2 | j〉〈 j|

q−1

∑
j,k=0

ω
jk|k〉〈 j|

q−1

∑
j=0

ω
j2
2 | j〉〈 j|

q−1

∑
j,k=0

ω
j2
2 − jk|k〉〈 j|

=
q−1

∑
j=0

ω
j2
2 | j〉〈 j|

q−1

∑
j,k=0

ω
jk|k〉〈 j|

q−1

∑
j,k=0

ω
k2
2 + j2

2 − jk|k〉〈 j|

=
q−1

∑
j=0

ω
j2
2 | j〉〈 j|

q−1

∑
j,k,l=0

ω
kl+ k2

2 + j2
2 − jk|l〉〈 j|

=
q−1

∑
j,k,l=0

ω
l2
2 +kl+ k2

2 + j2
2 − jk|l〉〈 j|

=
q−1

∑
j,k,l=0

ω
k2
2 +k(l− j)+ (l− j)2

2 +l j|l〉〈 j|

=
q−1

∑
j,k,l=0

ω
1
2 (k+l− j)2+l j|l〉〈 j|

=
q−1

∑
j,l=0

ω
l j

(
q−1

∑
k=0

ω
1
2 (k+l− j)2

)
|l〉〈 j|

=
q−1

∑
j,l=0

ω
l j

(
q−1

∑
k=0

ω
1
2 k2

)
|l〉〈 j|

=
q−1

∑
j,l=0

ω
l j|l〉〈 j|= F (5.11)

Lemma 6. It also holds that:

∃k : ω
kD†FD†F†D† = F† (5.12)

Lemma 7. Also:

cZ†(I⊗S†)cX(S†⊗S) = cX (5.13)

90 Chapter 5. d-level Security

Proof.

∑
a,b

ω
−ab|a,b〉〈a,b|∑

a,b
ω
− b(b+1)

2 |a,b〉〈a,b|∑
a,b
|a,b−a〉〈a,b|

∑
a,b

ω
−a(a+1)+b(b+1)

2 |a,b〉〈a,b|

= ∑
a,b

ω
−a(b−a)− (b−a)(b−a+1)

2 +
−a(a+1)+b(b+1)

2 |a,b−a〉〈a,b|

= ∑
a,b
|a,b−a〉〈a,b| (5.14)

In order to show how to implement all gates of this set we first represent the ‘brick’

element in the circuit model notation and then we find the proper J gates for each case.

The circuits used to construct each gate are given in Figure 5.3. All gates are in the form

of a diagonal followed by a Fourier gate thus can directly be implemented by J gates

with the appropriate parameters. An example for the parameters to use for a universal

set of qutrit gates is given in 5.4 where qutrit brickwork state is used, depicted in Figure

5.5.

Figure 5.3: Decomposition for the quantum gates (a) T (b) S (c) F (d) cX

5.2. d-level Blind Protocol 91

Figure 5.4: Decomposition in J(a) gates for qutrit gates: (a) T : a = (0,2π/9,16π/9)

(b) S: a = (0,6π/9,0) (c) F : a = (0,12π/9,12π/9) (d) cX : a = (0,12π/9,0),b =

(0,12π/9,6π/9),c = (0,6π/9,6π/9),d = (0,12π/9,12π/9),e = (0,6π/9,12π/9)

Figure 5.5: Example: brickwork state for d=3 (qutrit). The single ‘brick’ elements are

highlighted.

5.2 d-level Blind Protocol

The idea for constructing a blind protocol in d-level system delegated computation is

similar to 2-level systems. Again verifier has to provide isolated single system states that

have a secret quantum encryption, in this case states UE |+0〉, where |+0〉 ≡ 1√
d ∑

d−1
j | j〉

and UE ≡ T γiSβiZαi is a unitary that depends on secret parameters α,β,γ∈Fd (exception

T gate for qutrits). This encryption does not correspond to all possible combinations

of rotations of the relative phases by multiples of a constant angle, as it was in the

case in 2-level blindness - this would have been unnecessary and too much to ask from

the verifier because we only need to implement (and thus hide) the particular set of

92 Chapter 5. d-level Security

universal gates (which are gates that belong to the 3-rd level of the Clifford hierarchy as

introduced in [Gottesman and Chuang, 1999]).

Prover entangles the received states by applying generalized cZ gates on the qudits

corresponding to the connected vertices in the graph representing the resource. This

entangled resource state must be universal so that we do not reveal anything about

the computation, except an upper bound on the size. One can use a cluster state and

simulate the Z measurement using dummy qudits, which are qudits prepared in the

computational basis, or use a resource that does not require Z measurements, such as

the brickwork state in the 2-level system. In Figure 5.5 we present the analogue of the

brickwork state for the qutrit (3-level) system.

Then, computation proceeds in rounds, where the verifier sends measurement vectors

to the prover who uses them to determine the measurement to apply on the qudits and

returns the result to the verifier to be used for the corrections of the next round of

measurements. This is analogous to the 2-level case: the measurement vectors play the

role of the measurement angles. Measurement vectors ϕ determine measurements in

the {UE |+i〉}i basis, which gives universality for odd prime dimensions (see previous

Section for more details):

A measurement in {0,0,0} implements an F gate. Diagonal gates Zα,Sβ,T γ can be

implemented by the corresponding measurement vector {α,β,γ}, followed by a F gate.

cX can be implemented by using cZ gates of the graph together with F gates.

The order of measurements and the corrections are dictated by the flow which

is exactly the same as in 2-level case. Corrections are implemented by updating the

measurement vectors: correction by Zz is {α,β,γ}← {α+ z,β,γ} and correction by Xx

is {α,β,γ}← {α+ xβ+3γx(x−1),β+6xγ,γ}. All operations are modulo d with the

exception being the qutrit as explained earlier. These corrections can be easily verified

by using the following commutation equations.

SβXx = XxZxβSβ T γXx = XxZ3γx(x−1)S6γxT γ (5.15)

Thus correctness of the protocol comes from the fact that gates UE commute with

generalized cZ and Z rotations on measurements are corrected by addition operation on

the result.

Theorem 8. Protocol 4 is perfectly blind, leaking only an upper bound on the size of

the computation.

5.2. d-level Blind Protocol 93

Protocol 4 Qudit Universal Blind Quantum Computing (UBQC) Protocol (based on

qubit UBQC)

Alice’s input:

• Description of a computation in the MBQC model (or equivalent) using a con-

venient universal underlying open graph state (G, I,O). The computation is

represented, for any vertex i ∈ G\O, as a measurement vector ϕi (together with

the set of X-dependences DX
i and Z-dependences DZ

i and a fixed partial order of

measuring depending on the graph structure). The input is set to the state of n

qudits: |+0〉⊗n. Protocol can be extended to admit quantum input by applying

techniques described in the UBQC protocol.

Alice’s output:

• A quantum state that contains the quantum output of the computation.

The protocol

1. Alice prepares the rotated qudits. For i = 1 to N:

(a) She prepares |+θi〉 ≡ T γiSβiZαi 1√
d
(|0〉 + . . . + |d − 1〉), where θi =

(αi,βi,γi)
T ,αi,βi,γi←R Fd .

(b) If qubit is in O: Same as in previous step if we want to have a composable

with itself protocol (but will require Alice to undo the pre-rotation on the

output qubits by applying non-Clifford gates), or Alice prepares state |+0〉.

(c) She sends the qudit to Bob

94 Chapter 5. d-level Security

Protocol 4 Cont’d

2. Bob entangles the states according to the graph state by applying generalized cZ

gates.

3. Bob performs the rest of the computation using classical help from Alice. For i

which ranges over all qudits (respecting the order given by the flow), except the

qudits of the O system:

(a) Alice computes the actual measurement vector φ′i = (α′i,β
′
i,γ
′
i)

T using the

dependences and the previous measurement results.

(b) Alice chooses ri←R Fd and computes δi = φ′i +θi +(ri,0,0)T .

(c) Alice transmits δi to Bob.

(d) Bob performs measurement Mδi
i on qubit i. Measurements on measurement

vector δi = (α′′i ,β
′′
i ,γ
′′
i)

T ∈ F3
d correspond to generalized measurements on

basis {Z jT γ′′i Sβ′′i Zα′′i 1√
d
(|0〉+ . . .+ |d−1〉)}d−1

j=0 .

(e) Bob transmits the result to Alice.

(f) Alice corrects the result by adding ri mod d.

4. Bob returns the output system O to Bob.

5. Alice applies the final Pauli corrections (and possibly undoes pre-rotations by

θi, i ∈ O) and outputs O.

5.2. d-level Blind Protocol 95

Proof. We write the state of Bob system at every stage of the computation:

Step 1: Alice sends to Bob the auxiliary qubits and the first measurement vector

and Bob’s state becomes (ignoring his private system), averaged over random secret

parameters:

∑
θ1...θN ,r1

p(θ1 . . .θN ,r1)|φ1 +θ1 +(r1,0,0)T 〉〈φ1 +θ1 +(r1,0,0)T |

⊗N
i=1|+0,θi〉〈+0,θi|

= ∑
θ1,r1

p(θ1,r1)|φ1 +θ1 +(r1,0,0)T 〉〈φ1 +θ1 +(r1,0,0)T |⊗ |+0,θ1〉〈+0,θ1|

⊗N
i=1 ∑

θi

p(θi)|+0,θi〉〈+0,θi|

Defining θ
′
1 = θ1 +(r1,0,0)T (and noticing that it takes the same values as θ1) :

= ∑
θ
′
1,r1

p(θ′1,r1)|φ1 +θ
′
1〉〈φ1 +θ

′
1|⊗Zr1|+0,θ′1

〉〈+0,θ′1
|Zr1⊗N

i=1 ∑
θi

p(θi)|+0,θi〉〈+0,θi|

Summing first over r1 and then over θ
′
1 we get the maximally mixed state for qudit

1 and its corresponding measurement vector.

Step N: Alice has also sent all measurement vectors for qudits up to i and Bob has

applied an arbitrary CPTP-map attack and returned measurement result bi after each

step 1≤ i≤ N. For any fixed choice of bi’s:

∑
θ1,...,θN ,
r1,...,rN

p(θ1, . . . ,θN ,r1, . . . ,rN)EN |φ′N +θN +(rN ,0,0)T 〉〈φ′N +θN +(rN ,0,0)T |⊗ . . .

⊗E1(|φ1 +θ1 +(r1,0,0)T 〉〈φ1 +θ1 +(r1,0,0)T |⊗N
i=1 |+0,θi〉〈+0,θi|) . . .)

And commuting all Ei’s trivially and merging them to a global E :

∑
θ1,...,θN ,
r1,...,rN

p(θ1, . . . ,θN ,r1, . . . ,rN)E(|φ′N +θN +(rN ,0,0)T 〉〈φ′N +θN +(rN ,0,0)T |⊗ . . .

⊗|φ1 +θ1 +(r1,0,0)T 〉〈φ1 +θ1 +(r1,0,0)T |⊗N
i=1 |+0,θi〉〈+0,θi|)

Changing variables: θ
′
i = θi +(ri,0,0)T for all i and rearranging the terms:

96 Chapter 5. d-level Security

∑
θ
′
1,...,θ

′
N ,r1,...,rN

p(θ′1, . . . ,θ
′
N ,r1, . . . ,rN)E(|φ′N +θ

′
N〉〈φ′N +θ

′
N |⊗ZrN |+0,θ′N

〉〈+0,θ′N
|ZrN ⊗ . . .

⊗|φ1 +θ
′
1〉〈φ1 +θ

′
1|⊗Zr1|+0,θ′1

〉〈+0,θ′1
|Zr1)

Notice that each φ
′
i depends on some of {r j : j < i}. Thus, we can start by summing

over rN which appears only in the terms ZrN , thus taking the maximally mixed state

for qudit N. Then we can sum over θ
′
N to get the maximally mixed state for the

measurement vector of qudit N. Iteratively, following the inverse arithmetic order we

sum over all random parameters taking the maximally mixed state as output.

We can add Bob’s prior knowledge to the above proof as a probability distribution

over all secret measurement vectors φi,∀i and notice that there is the same distribution

at the end of the protocol (method described in [Dunjko, 2012].

Lemma 8. Protocol 4 where all measurement vectors have only Clifford elements

(∀i,ci = 0) requires no classical communication and the measurements can be performed

in one step.

Proof. It suffices to prove the following statement which means that all Pauli X cor-

rections can be written as Pauli Z corrections, which can all be performed on the final

output returned to Alice.

∀C : diagonal Clifford operator,∀ j ∈ Fq,∀m1 ∈ Fq,∃m2 ∈ Fq :

Xm1C|+ j〉= Zm2C|+ j〉

This is true because:

C†Xm1C|+ j〉=C†Zm2C|+ j〉 ⇔

Zm′2Xm′1 |+ j〉=C†Zm2C|+ j〉 ⇔

Zm′2

(
q−1

∑
i=0

ω
(i−m′1) j|i〉

)
=C†Zm2C|+ j〉 ⇔

Zm′2

(
ω
−m′1 j

q−1

∑
i=0

ω
i j|i〉

)
=C†Zm2C|+ j〉 ⇔

5.3. d-level Verification Protocol 97

ω
−m′1 jZm′2|+ j〉=C†Zm2C|+ j〉

This is true up to a global phase for some m′2 since C is a diagonal Clifford, thus

C†Zm2C maps always to a diagonal Pauli.

5.3 d-level Verification Protocol

The main idea of the d-level VUBQC is the same as in 2-level system VUBQC. We

hide the position of the traps by implementing a blind version of the computation

and randomize the dummy qudits (which in this case are states of the generalized

computational basis). Also, bridge qudits work in a similar way to bridge qubits. We list

the d-level VUBQC in Protocol 5 without mentioning the specific graph or FT encoding

used. Also we consider the version where we amplify the failure probability, to cover

the case of quantum output, as usual.

Correctness coming from correctness of d-level UBQC and the pre-corrections for

the neighbours of the d-level dummies.

The resources needed for Alice are to prepare and send single qudit states and

apply the d-level Clifford decoding circuit for the QECC used, together with Pauli

measurements. The communication requirement is Õ(n2)×O(log(1/ε)) separable

single qudit states sent from Alice to Bob off-line and Õ(n2)×O(log(1/ε)) dits (d-

level classical systems) of on-line classical communication between Alice to Bob, where

n is the size of the computation. The comparison with 2-level verification is that while

the number of rounds of communication remains the same, each round carries log2d

bits of information about the computation instead of one.

5.3.1 Verifiability Proof in d-level

Theorem 3. Protocol 5 is ε verifiable with ε = (1− (d−1)c′
d)p, for some c′ < 1 that

depends on the graph, p is a parameter of FT and d the levels of the system with d an

odd prime. Protocol 5 assumes the existence of the qudit version of the fault tolerant

QECC used in FK [Raussendorf et al., 2007] or equivalent.

98 Chapter 5. d-level Security

Protocol 5 Qudit Verifiable Universal Blind Quantum Computation (VUBQC) Protocol

with quantum output (based on FK)

Alice’s input:

• Description of a computation in the MBQC model (or equivalent) using a con-

venient underlying open graph state (G, I,O). The computation is represented,

for any vertex i ∈ G \O, as a measurement vector ϕi (together with the set of

X-dependences DX
i and Z-dependences DZ

i and a fixed partial order of measur-

ing depending on the graph structure). The input is set to the state of n qudits:

|+0〉⊗n. Protocol can be extended to admit quantum input by applying techniques

described in the FK protocol.

Alice’s output:

• A system that contains the quantum output of the computation and a bit to indicate

of Alice has accepted the output of the computation.

The protocol

1. Preprocessing 1: Alice translates the computation to a Fault Tolerant (FT) MBQC

pattern that can correct errors on p qudits. Let the updated open graph be

(G′, I′,O′), where |G|= m′ and |I|= |O|= n′.

2. Preprocessing 2: Alice embeds the encoded computation pattern into a suitable

graph which has the following property: There exists a fixed order of measurement

which respects the computational flow and each computational qudit belongs to

a constant size subset of qudits Sγ in which a trap can be at any position with

uniform random probability. The total number of qudits of the final graph is N.

An example is the dotted complete graph of size N = O(m′2).

3. Alice prepares the rotated qudits. For i = 1 to N:

(a) If qudit is a dummy: prepares |di〉, di←R Fd .

(b) If qudit is not dummy and not in O′: prepares ∏ j∈NG(i)∩D Zd j |+θi〉, where

|+θi〉 ≡ T γiSβiZαi 1√
2
(|0〉+ . . .+ |d−1〉), θi = (αi,βi,γi)

T ,αi,βi,γi←R Fd .

(c) If qudit is not a dummy and is in O′ and is not a trap: Same as previous step

but with θ = (ri,0,0)T ,ri←R Fd .

(d) If qudit is not a dummy and is in O′ and is a trap: Same as previous step but

with θ = (ri,βi,0)T ,ri,βi←R Fd .

(e) She sends the qudit to Bob

5.3. d-level Verification Protocol 99

Protocol 5 Cont’d

4. Bob entangles the states according to the graph state by applying generalized cZ

gates.

5. Bob performs the rest of the computation using classical help from Alice. For i

which ranges over all qudits (respecting the order given by the flow), except the

qudits belonging to sets Sγ which contain qudits of the O′ system:

(a) Alice computes the actual measurement vector φ′i = (α′i,β
′
i,γ
′
i)

T using the de-

pendences and the previous measurement results (φ′i = (0,0,0)T for dummy

qudits).

(b) Alice chooses ri←R Fd and computes δi = φ′i +θi +(ri,0,0)T .

(c) Alice transmits δi to Bob.

(d) Bob performs measurement Mδi
i on qudit i. Measurements on measurement

vector δi = (α′′i ,β
′′
i ,γ
′′
i)

T ∈ F3
d correspond to generalized measurements on

basis {Z jT γ′′i Sβ′′i Zα′′i 1√
d
(|0〉+ . . .+ |d−1〉)}d−1

j=0 .

(e) Bob transmits the result to Alice.

(f) Alice corrects the result by adding ri mod d.

6. Bob returns the qudits of all the sets Sγ that contain the output system O′ to Bob.

7. Alice applies the final Pauli corrections on qudits of O′.

8. Alice applies the decoding procedure of the FT encoding to produce actual output

O.

9. Alice sets her indicator bit to accept if all trap tests where positive including the

test on the traps of the returned system.

100 Chapter 5. d-level Security

Proof. Everything is the same to the proof of Theorem 1 up to the point that we write

the state as:

= ∑
k,u∈S2

|ak,u|2 ∑
{ti:ti≤N−n′′}

p({ti : ti ≤ N−n′′})|〈0|tiPu|ti|0〉ti|
2)

∑
{ti,βti :ti>N−n′′}

p({ti,βti : ti > N−n′′}|{ti : ti ≤ N−n′′})

|〈+0|tiS†βti Pu|tiS
βti |+0〉ti|2) (5.16)

where βti take uniform random values from Fd and Pu are tensor products of gener-

alized Pauli+identity operators (generalized Pauli basis). Let us remind the reader that

indices u ∈ S2 denote attacks that cannot be corrected by the FT QECC procedure (but

will have an effect on the traps).

For attack with index u and each i where Si contains qudits of the measured by Bob

system, we denote by wu,i the number of positions in Si that the independently detectable

reduction of the attack Pu|ti has a non-zero generalized Pauli X component when written

in the X iZ j decomposition (i.e. i is non-zero in this decomposition). For attack u and i

where Si contains returned qudits we denote by wu,i the number of positions in Si that

the independently detectable reduction of the attack Pu|ti is non-identity or equivalently

has in the X iZ j decomposition either i or j (or both) are non-zero. For attacks with

indices u ∈ S2 by definition: ∑i(wu,i) > p
′ where p′ is the number of independently

detectable errors of the qudit FT QECC. Also, for each j ∈ Si with an independently

detectable error and for all possible selections of trap positions {tl : ∀l 6= i} that (for the

Sl’ that there are errors) coincide with independently detectable errors of u we have

p(ti = j|{tl})≥ c′.

Also we use the following property, which is easy to verify:

∀ti,Pu|ti 6= I : ∑
βti

|〈+0|tiS†βti Pu|tiS
βti |+0〉ti|2 ≤ 1 (5.17)

Using all the above:

≤ ∑
k,u∈S2

|ak,u|2 ∏
{i:∀ j∈Si, j≤n′′}

(c′(
1
c′
−wu,i))

∏
{i:∀ j∈Si, j>n′′}

(
c′

d
|ak,u|2(d

1
c′
− (d−1)wu,i))

5.3. d-level Verification Protocol 101

Or,

≤ ∑
k,u∈S2

|ak,u|2 ∏
i
(1− (d−1)c′

d
wu,i)

≤ ∑
k,u∈S2

|ak,u|2 ∏
i
(1− (d−1)c′

d
)wu,i

= ∑
k,u∈S2

|ak,u|2(1−
(d−1)c′

d
)∑i(wu,i)

≤ ∑
k,u∈S2

|ak,u|2(1−
(d−1)c′

d
)p
′

(5.18)

Therefore state can be written as:

σ2 ≈ε p1|ψc〉〈ψc|⊗ |ACC〉〈ACC|+ p2ρ⊗|REJ〉〈REJ| (5.19)

where

• ε = (1− (d−1)c′
d)p

′

• p1 + p2 = ∑k,u∈S2 |ak,u|2

• ρ is a density matrix.

Summing the terms σ1 and σ2, Theorem 3 is satisfied with ε = (1− (d−1)c′
d)p

′
.

Chapter 6

An Efficient Verification Protocol

As mentioned before, the main idea for the composite protocol is that Bob uses the

FK protocol to secretly prepare the polynomial-QAS encoded state used in the ABE

protocol. Bob uses the localizing version of the FK protocol so he does not have to

return the state to Alice, but rather he applies the polynomial-code logical circuit to

implement the actual computation on the encoded state. In this composition of the

localizing protocol with the ABE protocol we had to resolve a few issues which prevent

a straightforward composition of the protocols.

Firstly, the state that Bob holds is encoded by the QECC used for the amplification

of the detection probability in the FK protocol. In order to apply the logical circuit of

the ABE protocol on this state, Alice needs to ask Bob to decode the first QECC, which

from a verifiability perspective may seem problematic. Fortunately, the QECC of the

FK protocol is based on a stabiliser code with a Clifford decoding circuit [Raussendorf

et al., 2007]. The decoding circuit is publicly known and there is no need for any

communication between Alice and Bob. An honest Bob performs the operators and

Alice simply updates her quantum one-time-padding secret keys accordingly. Hence, no

information is leaked on the secret keys, and also uniformity of the keys is preserved.

Secondly, the ABE protocol requires quantum states of prime dimension d where

d > 2, whereas the original FK protocol uses qubits. To resolve this, we use the

analogue of the localizing FK protocol which can use systems of any dimension while

preserving all the security properties. The resources requirement for Alice is the ability

of preparing random single qudit states and the overall communication complexity

remains the same as the original FK protocol. We also examine the possibility of using

the qubit version of the localizing FK protocol for Bob to prepare a state which can be

translated to d-levels by a direct mapping of the basis. At the same time, we need to

103

104 Chapter 6. An Efficient Verification Protocol

investigate if the qubit one-time-pad that the output state always has on Bob’s side, with

a key hidden from Bob, can be translated to a qudit one-time-pad by local operations on

Alice’s side, without leaking any information to Bob. The no-go result, presented in 5.1

prevents any attempt to deterministically implement this translation of the one-time-pad.

Therefore, we revert to our original approach to use the d-level version of the localizing

FK protocol.

Thirdly, since the computation we use from the ABE protocol is based on gate

teleportation, there is a constant number of rounds of classical communication between

Alice and Bob per non-Clifford gate teleportation. We prove, however, that this commu-

nication does not leak any of the secret parameters of the trapification phase, crucial for

the security of the composite protocol.

Finally, we prove that, since the detection and decoding procedure that Alice applies

to the returned state of the ABE protocol is a CPTP map, the resulting state of the

overall protocol is ε-close to the final state of the ABE protocol. Thus this state is also

verifiable.

The above comprise tools sufficient to build a composite ε-verifiable protocol,

however, this protocol would not yet give any improvement in terms of complexity

over the existing protocols. To achieve this, we partition the underlying entangled state

necessary for the FK protocol phase of the composite protocol into smaller separable

sub-states, each used for the preparing of a polynomial-QECC encoded input state for

the ABE protocol. Since the quadratic round complexity of the FK protocol comes from

the complex structure of the overall required underlying resource state, simplifying the

state for the purposes of this composition (observing that the polynomial-QECC encoded

logical inputs are separable) succeeds in reducing the communication complexity. This

modification does not violate the verification properties of the FK protocol since the

fact that the states are separate is public knowledge and the detection and encoding

procedures for each of the separate states can be done locally.

The steps which are essential for the construction of this protocol can potentially be

used for constructing different composite schemes.

6.1 Impossibility of Qubit to Qudit Translation

Theorem 9. It is impossible to have a deterministic translation (isometry) from a qubit

system to a qudit system that spans all states of the qudit system and moreover translates

a known full qubit one-time-pad to a full qudit one-time-pad, when the dimension of

6.1. Impossibility of Qubit to Qudit Translation 105

the qudit system is an odd prime. (Impossibility of composing qubit and qudit security

protocols without returning the state to Alice to update the one-time-pad)

Proof. We require a basis translation of a qubit system of dimension 2n to a system

of dimension d, where 2n ≥ d. This basis translation is represented by function g :

{0, . . . ,2n−1}→ {0, . . . ,d−1}, which needs to be surjective to be able to prepare any

arbitrary state in the qudit space.

Moreover, the state in qubit space has a full quantum one-time-pad, which also

needs to be translated from the qubit description to the qudit description. For the rest

we consider only the Pauli X pad of the system, and we prove that it is impossible to

achieve this translation and still have a full Pauli X qudit one-time-pad, even before

considering the Pauli Z pad.

A Pauli X quantum one-time-pad on the qubit system is general Pauli Xx1 , where

x1 ∈ {0, . . . ,2n−1}, applied on the state. By definition of general qubit Pauli X :

For any basis state |b1〉, b1 ∈ {0, . . . ,2n−1}: Xx1|b1〉= |∑n−1
i=0 2i(xi

1⊕bi
1)〉.

where xi
1,b

i
1 are the i-th digits in the binary representation of x1,b1, and the addition

is modulo two. Let us define: h(x,b) ≡ ∑
n−1
i=0 2i(xi

1⊕ bi
1). For a fixed b1 it defines a

bijection h(·,b1) (in other words, for a fixed b1 there is always a unique x1 that gives

any value h(x,b)). It is trivial to see that the following property holds:

h(x1,h(x1,b1)) = b1 (6.1)

In the qudit system a Pauli X one-time-pad is a generalized Pauli Xx2 on the state,

where x2 ∈ {0, . . . ,d−1}. Generalized Pauli X is defined as:

∀|b2〉 where b2 ∈ {0, . . . ,d−1}: Xx2|b2〉= |b2 + x2 mod d〉.
Let f : {0, . . . ,2n−1}→ {0, . . . ,d−1} represent the function that translates the X

one-time-pad key from the qubit to the qudit representation.

To have a consistent one-time pad, for all basis b1 and all keys x1:

g(h(b1,x1)) = g(b1)+ f (x1) mod d

This can be rewritten as:

f (x1) = g(h(b1,x1))−g(b1) mod d (6.2)

This equation should hold for any b1 (the translation of the one-time-pad f should

be independent of b1) and thus it should hold also for b2 = h(x,b1), i.e.

106 Chapter 6. An Efficient Verification Protocol

f (x) = [g(h(x,h(x,b1)))−g(h(x,b1))] mod d

= [g(h(x,b2))−g(b2)] mod d

f (x) = [g(b1)−g(h(x,b1))] mod d (6.3)

From Equations (6.2) and (6.3) we see that

2[g(h(x,b1))−g(b1)] mod d = 0 (6.4)

Given that d and 2 are coprimes by assumption (d,2) = 1 it follows that

g(b1) = g(h(x,b1))

f (x) = 0 (6.5)

Recall that g has range within d. Moreover, since for every b1,b2 there exists x such

that b2 = h(x,b1) it follows

g(b2)−g(b1) = 0 for every b1,b2

g(x) = constant function (6.6)

This means that neither f (x) nor g(x) are surjective, which was the requirement to

be able to prepare any arbitrary input.

6.2 Composite Protocol

The proposed FK-ABE composite protocol combines all the techniques discussed so

far, including the partitioning of the high complexity resource state of the FK protocol

to sub-graphs, each used for the preparation of a separate encoded state for the ABE

protocol, thus reducing the quantum and classical communication complexity.

The protocol, described here as Protocol 6, is based on a d-level version of Protocol

3, for d odd prime, which corresponds to the following changes (see also Chapter 5 for

more detail):

• The state is entangled by applying generalized cZ gates.

6.2. Composite Protocol 107

• Alice’s states |+θi〉 are replaced by states T ciSbiZai 1√
d
(|0〉+ . . .+ |d−1〉), where

T are generalized ‘π/8’ gates, S generalized phase gates, Z generalized Pauli Z

gates and ai,bi,ci←R Fd (except qutrits, where T gate is replaced by T3 gate and

ci←R F9).

• Dummy states are generalized computational basis states |di〉, di←R Fd

• Measurements on vector (a′i,b
′
i,c
′
i) ∈ F3

d correspond to generalized measurements

on basis {Z jT c′iSb′iZa′i 1√
d
(|0〉+ . . .+ |d− 1〉)}d−1

j=0 . Measurements vectors are

corrected to incorporate generalized Pauli X and Z corrections according to flow

dependencies.

• Alice cancels the pre-rotation by adding (ai,bi,ci) on her (corrected) measurement

vector. In the measurement vector she sends to Bob, extra term (ri,0,0)T , ri←R

Fd is added to randomize the output of Bob’s measurement. She corrects the

measurement result she receives from Bob by adding ri.

• The output gadget has the necessary number of layers to teleport the encoded

output at a fixed position. Since the computation in the gadget is Clifford and it

does not contain any part of the secret, the proof technique we have developed

goes through.

Correctness of the d-level version of the FK protocol follows the same argument

of the correctness of qubit case, applying d-level MBQC and noticing that the d-level

dummy qudits have the same effect as in the qubit case. Universality comes from

the fact that we are able to perform a universal set of gates for d-level computation:

{cX ,F,S,T,Z}, with the special case of qutrits where T becomes T3.

6.2.1 Verifiability of the Composite Protocol

Protocol 6 is ε-verifiable with the proof given later in this section.

Theorem 4. The composite protocol is correct and ε-verifiable, with ε≤ ε1 + ε2 where

ε1 =
1

cp1 , ε2 =
1

2p2 where p1 and p2 are the QECC distance parameters of the FK and

ABE phase and c > 1 is a parameter of the FK phase which depends on the structure of

the graph used.

108 Chapter 6. An Efficient Verification Protocol

Protocol 6 Composite Verifiable Quantum Computation

Alice’s input. Description of a computation in the Gate Teleportation model based

on generalized Toffoli states. The input is set to be the Fourier basis state of n qudits:

|+0〉⊗n, where |+0〉= 1√
d ∑a |a〉. The total number of gates is denoted by t. The total

number of Toffoli gates is denoted by t ′. Protocol can be extended to admit arbitrary

quantum input using the same methods as in the FK protocol.

Alice’s output. The result of measurement of the quantum output of the circuit and a

bit indicating if the result is accepted or not.

The protocol

1. Alice chooses a single random sign key (of size equal to the size of a codeword)

that will be used to encode all inputs (including Toffoli states) according to the

signed-polynomial QECC.

2. A d-level fault tolerant QECC is selected for amplification of the detection

probability of the FK protocol.

3. Alice prepares for the delegation of the preparation of the necessary Toffoli states

and the encoding of both the inputs and the Toffoli states according to the ABE

protocol QECC, randomized by the selected sign key. For each encoded state

she selects a separate graph state that is the d-level version of the graph G′′′

(trapified graph+output gadget) described in Protocol 3. Therefore, the size of

each sub-graph depends only on the security parameters of the protocol and not

on the size of the computation t. Let the union of all these sub-graphs be denoted

by G(4) and its size N = O(n)×O(t ′).

4. Bob (interacting with Alice) encodes all inputs and Toffoli states by executing

Protocol 3 adapted for d-level systems. The output of Bob is encoded by the

QECC used for amplification of the FK protocol and the final quantum one time

pad, which depends on the secret parameters of the FK protocol and will referred

to as the Pauli key. Alice holds an indicator bit set on accept or reject depending

on the outcome of the traps.

6.2. Composite Protocol 109

Protocol 6 Cont’d

5. Bob applies the Clifford circuit for decoding the QECC used for amplification

of the FK protocol and Alice updates her Pauli keys accordingly. This requires

some extra randomized single qudits sent from Alice to Bob so that the output is

encrypted with a uniform key.

6. Alice and Bob perform the logical operators that correspond to the desired

computation on the encoded by polynomial QECC state as described in the ABE

protocol. For each application of logical Toffoli gate, Bob sends measurement

results to Alice and Alice calculates the actual correction to be performed on the

state and sends it to Bob who performs it (see Figure 2.2). No new randomness is

introduced at this stage.

7. Bob measures the output qudits in the computational basis and returns the mea-

surement results to Alice.

8. Alice applies the detection and decoding procedure of the signed polynomial

QECC and sets a second indicator bit accordingly.

9. Alice accepts if both indicator bits of the FK and ABE protocol phase of the

protocol are set to accept, otherwise she rejects.

110 Chapter 6. An Efficient Verification Protocol

Finally, we consider the resources. In the FK-ABE composite protocol the quan-

tum requirement for Alice is to prepare single qudit states of the form T ciSbiZai|+0〉,
for ai,bi,ci ←R Fd , where d is an odd prime. The dimension d of each system is

O(1/log(ε)). Alice has to send to Bob, at the beginning of the protocol before getting

the computation description, O(nPolylog(1
ε
)) separable single qudit states, where n is

the size of the computation. After, Alice and Bob have to exchange only classical infor-

mation in O(nPolylog(1
ε
)) rounds, where each round includes a constant size message

sent from Bob to Alice and a constant size message from Alice to Bob.

The proof is similar to the proof of the localising protocol, modified for d-level

systems, except some notable differences:

• We analyse all the separate runs of FK (for the encoding of each ABE state) as

one run of FK on a graph that is partitioned into identical sub-graphs and we

prove that even if this structure is known to Bob, we get the same bound for

verifiability, which depends on the FT encoding parameters and graph properties

of a sub-graph.

• Since Bob has to perform an extra MBQC pattern to decode of the FT code used

in the FK phase, Alice will provide him an extra system of |+0〉’s rotated by a

random generalized Pauli Z, a rotation which is used in the proof to reduce the

attack on this extra system to a Pauli attack. Intuitively, these extra rotations are

effectively one-time-padding the state even after the decoding operations with an

independent pad on each qudit.

• In the ABE phase Alice has to provide to Bob a system of corrections for the

implementation of the Toffoli gates. We reduce this system to the maximally

mixed state, thus effectively providing no extra information of Bob (and again

reducing the attack on this system to a Pauli attack).

• Since the detection procedure of the ABE phase is contractive (it is a CPTP-map)

it cannot increase the failure probability of the first phase. Moreover, Alice has

a second indicator bit to detect any Pauli attack that comes from the first or

the second phase of the protocol applying on the correct encoded state by the

randomized polynomial code.

Proof. Single index notation is followed to enumerate the qubits participating in the

graph G(4) where N is the total number of qudits and the last n′ qudits are the encoded

6.2. Composite Protocol 111

output qudits (system O′ consisting of the qudits of the output layer of all the gadgets

of all the sub-graphs).

Extra notation has to be introduced first. Vector ν is used to represent all random

secret parameters, except the random sign key, chosen by Alice throughout the execution

of protocol, including r = {ri} (there are also O(n′) extra r’s used to encrypt the qudits

sent for the decoding of the FK QECC), θ = {θi}, d = {di} and positions of traps

t = {ti}. Parameter p(ν) gives the probability of a particular choice of random secret

parameters. Summing over a vector (e.g. ∑r) means that we sum over all possible

choices for the elements of that vector (e.g. all possible dit-strings of size N+O(n′) for

r).

For convenience we denote the subsystems of the joint Alice-Bob system:

• System M is the union of all the non-dummy, non-trap qudits of G′′’s (therefore

includes all the necessary bridge qudits introduced when embedding G′ in G′′)

and the non-dummy qudits of the first layers of each gadget (the ones that are

used to teleport the state to the fixed position in the final layer of the gadget)

introduced when embedding G′′ into G′′′. Therefore M contains all the qudits of

the graph state G(4) that are measured and participate in the computation. We call

them measured computational qudits.

• System D contains all dummy qudits of G(4).

• System T contains all trap qudits of G(4) (here all of them are measured by Bob).

• System O′ is the encoded output system at fixed position in G(4). These are all the

qudits of the last layer of each gadget (the ones that are not measured by Bob).

• System ∆ is the system of the measurement angles send by Alice to Bob, where

each angle is represented by three qudits in the computational basis.

• System B is Bob’s private system, assumed to be initially in the blank state.

• System MA of auxiliary decoding qudits.

• System L contains all the corrections send from Alice to Bob during the ABE

phase.

Each measurement performed at Step 6d of the FK protocol component is analysed

into a unitary part and a generalized Pauli Z measurement. Without loss of generality

112 Chapter 6. An Efficient Verification Protocol

we can represent any dishonest behaviour of Bob at any step as applying the correct

unitary operators and then an arbitrary unitary attack operator.

For any run of Protocol 6, for any choice of Alice’s input computation (therefore for

any choice of sign keys used in the ABE protocol phase), the output that Alice has at

the end of the protocol before applying the ABE detection procedure, averaged over all

random parameters except the sign key and for all measurement outcomes (b in graph

G(4)+decoding and b̃ in the ABE phase) with the corresponding probabilities, is:

ρout = TrB,M ,∆,D,L(∑
b,b̃

∑
ν

p(ν)C′′(|b〉〈b|⊗ |b̃〉〈b̃|UC (D(FN−n′RN−n′(.) . . .

F1R1(.)EG(|M〉〈M|⊗ |δ〉〈δ|)EGR1(.)
†F†

1 . . .RN−n′(.)
†F†

N−n′⊗|0〉〈0|
⊗B

⊗|MA〉〈MA|)D†⊗ |̃r〉〈̃r|)C †U†|b〉〈b|⊗ |b̃〉〈b̃|)C′′) (6.7)

where:

• Ri(δi) corresponds the diagonal generalized Clifford operation T ciSbiZai con-

trolled by the state of vector δi.

• Fi is the Fourier gate applied on qubit i.

• |MA〉 =
⊗

i>N Zri|+〉 is the auxiliary system sent from Alice to Bob for the

implementation of the decoding/detection procedure by means of a unitary D.

These are qubits chosen are random from the qudit Hadamard basis (mixed state

from Bob’s perspective) and Alice needs to update the Pauli key of the final

decoded output accordingly by using the commutation relations of Pauli operators

with the Clifford circuit D .

• D is the Clifford unitary used to decode the output O′ of the FK protocol phase

which is encoded by the QECC used by the FK protocol. The decoding is applied

by Bob (as opposed to Alice in the case of normal FK) and let the decoded state

be contained in system O which is a subsystem of systems O′ and the system of

qudits |MA〉.

• |b̃〉〈b̃| implement the measurements for the Toffoli gates at the ABE protocol

phase and apply on some of the qubits of system O (see Figure 2.2), which

depicts the implementation of Toffoli gate with Toffoli state, Clifford operators

and Pauli Z measurements and the corrections, which have to be performed by

6.2. Composite Protocol 113

Bob depending on his communication with Alice, are the Clifford operators in

the dashed boxes).

• r̃(r, b̃) is the classical bit string (system L) that Alice sends to Bob for the

corrections of the Toffoli part of the ABE protocol.

• C (̃r) is the Clifford part of the ABE protocol phase that implements the public

polynomial-QECC logical circuit on system O.

• C′′(r,b) contains the Pauli correction C′′O′,MA
that Alice performs to the final

returned system, that takes into account the updates of the keys due to the appli-

cation of circuits D and C . C′′ also contains the corrections to trap measurement

results.

• U represents global Bob’s attack that in this case applies also to system of qudits

|MA〉 and system L .

Alice’s output can be rewritten, by decomposing the attack to the Pauli basis, tracing

out system B and applying the honest computation on system T to separate it, as:

ρout = TrM ,∆,D,L(∑
b,b̃

∑
ν

p(ν) ∑
k,u,v,u′,v′

ak,u,va∗k,u′,v′C
′′
O′,MA

(|b′〉〈b′|⊗ |b̃〉〈b̃|Pu|i:∀ j,i 6=t j

⊗PvC (D(P ′(|M′〉〈M′|⊗ |δ〉〈δ|)P ′†⊗|MA〉〈MA|)D†⊗ |̃r〉〈̃r|)C †Pu′|i:∀ j,i 6=t j

⊗Pv′|b′〉〈b′|⊗ |b̃〉〈b̃|)C′′†O′,MA

⊗
i

|bti + rti〉〈bti|Pu|ti|rti〉〈rti|Pu′|ti|bti〉〈bti + rti|))(6.8)

where

• ak,u,v are complex numbers, with ∑k,u,v |ak,u,v|2 = 1.

• Pu (and Pu′) ranges over all tensor products of d-level Pauli+identity operators

and applies on the system that is trapified (all G′′’s).

• Pv (and Pv′) ranges over all tensor products of d-level Pauli+identity operators

and applies on the system that is not trapified (gadget systems ×MA×∆×L).

• Pu|i is the i-th generalized tensor element of Pu (similarly for Pv).

• b′ is the vector that is generated from b by removing elements {bti}.

114 Chapter 6. An Efficient Verification Protocol

The next step will be to eliminate all terms where u 6= u′ and v 6= v′. We notice that

we can extract a random logical Pauli Zr′1⊗Zr′2⊗Zr′3 from state |000〉 that is used to

prepare the Toffoli gate (Figure 2.2) and notice that all dependences on (r′1,r
′
2,r
′
3) cancel

in all systems except system L . Then, summing over (r′1,r
′
2,r
′
3) gives the maximally

mixed state for system L and thus taking the trace of it cancels all cross terms of the

corresponding attack. However, the dependence on r̃ remains on C .

For the system of auxiliary decoding qudits |MA〉, random rotations Zri can be used

to twirl the attacks on this system.

The rest of the arguments for the elimination of the cross attack terms follow the

corresponding part of the proof of Theorem 2. We only need to notice that when the r’s

in the measurement angles commute with D and C they cancel the dependence of C on

r’s and they can be used to twirl the attack on the output.

Thus, state ρout can be rewritten to eliminate all attack cross terms that are different.

ρout = ∑
b,b̃

∑
t

p(t) ∑
k,u,v
|ak,u,v|2

C(3)
O′ (〈b

′|⊗ |b̃〉〈b̃|Pu|{i:i/∈T,D}⊗Pv|{i:i/∈∆,D,L}(C ′D(P (3)(|M(4)〉〈M(4)|)P (3)†⊗

|M′A〉〈M′A|)D†C
′†)Pu|{i:i/∈T,D}⊗Pv|{i:i/∈∆,D,L}|b′〉⊗ |b̃〉〈b̃|)C

(3)†
O′

⊗
i

Pu|ti|0〉〈0|Pu|ti (6.9)

where

• |M(4)〉 is the tensor product of |+0〉 for all qudits of system M ×O′.

• P (3) is the unitary that contains E ′G for M ×O′ and FiRi(φ
′
i(b f−1(i),b f−1(j ∼

i, j 6= f (i))) operators for all qudits of system M .

• |M′A〉 is the tensor product of |+0〉 for all qudits of system of auxiliary qudits used

in the decoding procedure.

• C ′(b̃) is the Clifford part of the ABE protocol phase that implements the public

polynomial-QECC logical circuit on system O and depends only on the measure-

ment outcomes b̃ of the ABE phase.

• C(3)
O′ are the corrections on the output of the ABE protocol phase (after eliminating

the r’s) and depend on b′ and b̃.

6.2. Composite Protocol 115

Restricting the summation to u ∈ S1 where S1 is the set of tensor products of d-level

Pauli+identity operators that when we map to the operator with maximum independently

detectable errors for the whole graph G(4) contain ≤ p1 tensor elements which have

a generalized Pauli X component when written in the X iZ j decomposition (where

p1 is the number of independent detectable errors of the code used in the FK phase)

and applying the same steps as in the corresponding part of the proof of Theorem 2

(observing that the gadget again is a Clifford MBQC and thus we can rewrite the attack

on the gadget as an attack on the output), the state becomes:

σ1 = ∑
b

∑
t

p(t) ∑
k,u∈S1,v

|ak,u,v|2C(3)
O′ P′′v1

P′v2
(C(3)

O′ |ψ
′
c〉〈ψ′c|C

(3)
O′)P

′
v2

P′′v1
C(3)

O′)⊗
i

Pu|ti|0〉〈0|Pu|ti (6.10)

The fact that the graph is partitioned into sub-graphs, to encode the different logical

states to be used in the ABE protocol phase does not change the above statement

because a global attack with footprint ≤ p1 will necessarily have footprint ≤ p1 in each

sub-graph. We can also eliminate C(3)
O′ by commuting with the Pauli attack operators.

By separating the terms that leave all traps untouched and the rest we get:

σ1 = ∑
i

p′iPi|ψ′c〉〈ψ′c|Pi⊗|ACC1〉〈ACC1|+∑
j

p′′j Pj|ψ′c〉〈ψ′c|Pj⊗|REJ1〉〈REJ1|(6.11)

where

• Pi (Pj) range over all tensor products of d-level Pauli+identity operators on the

final returned system.

• p′i , p′′i are probabilities with ∑i(p′i + p′′i) = ∑k,u∈S1,v |ak,u,v|2 .

• |ACC1〉〈ACC1| is the state where all trap qubits are |0〉〈0| and |REJ1〉〈REJ1|
denotes any state that at least one trap is |1〉〈1|.

• |ψ′c〉〈ψ′c| is the state, encoded by the signed polynomial QECC, after the correct

computation of the ABE protocol phase is performed and undoing the Pauli key.

The rest of the terms of the summation in the state ρout (u ∈ S2) are considered.

Let P⊥ be the projection to the orthogonal space to the correct output state:

P⊥ = I−|ψ′c〉〈ψ′c| (6.12)

116 Chapter 6. An Efficient Verification Protocol

We calculate the ‘bad’ probability pbad the state collapses to the ‘incorrect’ subspace

and no trap is activated.

pbad = Tr(∑
b,b̃

∑
t

p(t)

P⊥
⊗

i

|0〉ti〈0|ti ∑
k,u∈S2,v

|ak,u,v|2C(3)
O′ (〈b

′|⊗ |b̃〉〈b̃|Pu|{i:i/∈T,D}⊗Pv|{i:i/∈∆,D,L}

(C ′D(P (3)(|M(4)〉〈M(4)|)P (3)†⊗|M′A〉〈M′A|)D†C
′†)Pu|{i:i/∈T,D}⊗Pv|{i:i/∈∆,D,L}

|b′〉⊗ |b̃〉〈b̃|)C(3)†
O′

⊗
i

Pu|ti|0〉〈0|Pu|ti) (6.13)

Tracing out everything except the trap system:

≤ Tr(∑
t

p(t)|0〉ti〈0|ti ∑
k,u∈S2,v

|ak,u,v|2
⊗

i

Pu|ti|0〉ti〈0|tiPu|ti) (6.14)

The rest is the same to the corresponding part in the proof of Theorem 2 (having a

d-level system does not affect the result in the case of no output traps, as it is the case

here) giving the final state:

σ2 ≈√(1−c′)p1 p1|ψ′c〉〈ψ′c|⊗ |ACC1〉〈ACC1|+ p2ρ⊗|REJ1〉〈REJ1| (6.15)

where p1 + p2 = ∑k,u∈S2,v |ak,u,v|2 and ρ is a density matrix.

By summing the states σ1 and σ2 and by contractivity of the ABE protocol detection

procedure that Alice applies to check if the state is in the valid space of the signed

polynomial QECC, Theorem 4 is satisfied with ε1 =
√
(1− c′)p1 and ε2 = (1/2)p2 .

6.2.2 Alternative Composition with Toffoli Inputs

An alternative version of the composite protocol could be considered if we modify the

restrictions imposed on the verifier. In particular the verifier must be a preparation-

only device (as before) that can generate single qudit states UE |+0〉 and encrypted

generalized Toffoli states of the form UE,1⊗UE,2⊗UE,3|Toffoli〉, where UE ,UE,i are

single qudit gates classically controlled by the random keys and will be given explicitly

later. This verifier is not yet capable of universal computation because she does not have

memory and quantum measurement capabilities. The important difference in using this

6.2. Composite Protocol 117

verifier comes from the fact that the encoding phase, which prepares the verifiable states

on which the ABE Protocol applies on and has to be delegated to the prover, is now a

Clifford computation. The question is, do we still need the verifiable blind protocol

or the blind protocol in the preparation of the verifiable encoded states is enough to

get global verifiability. In the latter case we could simplify the graph, using a planar

graph used in the blind protocol such as the brickwork state. The intuitive reason that

this simplification might be possible is that in the case of the Clifford circuit, any Pauli

attack at any time step of the computation can be written as a Pauli attack on the output

of the computation, which is one the requirements for the protocol to work.

Unfortunately, there is a reason why this simplification does not work. When we

rewrite the Pauli attacks before any measurement as Pauli attacks on the quantum

output, the correction operators will depend in general on the underlying computation.

In the case of the composite protocol this computation is different for any choice of the

random sign key, therefore the attack at the output will, in general, depend on the secret

and verification of it is not possible.

We give the description of the protocol in Protocol 7, and a proof that this protocol

is correct and verifiable. The benefit of this protocol is that the MBQC part of the

delegated computation is Clifford and therefore can be run in one round. The Toffoli-

depth of the overall delegated computation gives us the total communication round

complexity. Toffoli-depth represents the depth of our computation in the circuit model

if we count only the Toffoli gates. Similarly, the more usual T -depth represents the

depth of the T or π/8 gates in the circuit representation.

Other directions to simplify the original composite protocol might take into con-

sideration the fact that the preparation of the verifiable states is a known computation

(varies only for the choices of the random key), therefore there might be a more efficient

way of placing the traps, simplifying the underlying graph used.

Theorem 5. Protocol 7 is ε-verifiable. The round complexity of Protocol 7 is the Toffoli-

depth n′ of the delegated computation which corresponds to cn′ T -gate depth, for some

small constant c.

118 Chapter 6. An Efficient Verification Protocol

Protocol 7 Composite Verifiable Quantum Computation with Toffoli inputs

Alice’s input. Description of a computation in the Gate Teleportation model based

on generalized Toffoli states. The input is set to be the Fourier basis state of n qudits:

|+0〉⊗n, where |+0〉 = 1√
d ∑a |a〉. The total number of gates is denoted by t and the

number of Toffoli gates within them is t ′. Protocol can be extended to admit arbitrary

quantum input using the same methods as in the FK protocol.

Alice’s output. The result of measurement of the quantum output of the circuit and a

bit indicating if the result is accepted or not.

The protocol

1. Alice chooses a single random sign key (of size equal to the size of a codeword)

that will be used to encode all inputs (including Toffoli states) according to the

signed-polynomial QECC.

2. Alice has to prepare a number of generalized Toffoli states, equal to the number

of Toffoli gates of the circuit and apply the following operation on them:

XxiZ(θi)⊗Xxi+1Z(θi+1)⊗Xxi+2Z(θi+2)|Toffoli〉 (6.16)

where xi,xi+1,xi+2←R {0,1}3 and i = [1,3t ′]. Also Alice adapts the computation

so that she corrects for the X pad, by adjusting for each i the measurement angle

of the first layer qudit to (−1)xiφ and of the second layer qudit to φ+ xiπ.

3. Alice prepares for the delegation of the encoding of both the inputs and the Toffoli

states. The encoding will be according to the ABE protocol QECC randomized

by the selected sign key. For each encoded state she selects a separate graph state

that is a dotted-complete state.

4. Bob (interacting with Alice) encodes all inputs (including Toffoli states) by

executing d-level VUBQC with localizing gadget. The output of Bob is encoded

only by the final quantum one time pad, which depends on the secret parameters

of the FK protocol and will referred to as the Pauli key.

5. Bob applies the Clifford circuit for decoding the QECC used for amplification of

the FK protocol and Alice updates her Pauli keys accordingly.

6.2. Composite Protocol 119

Protocol 7 Cont’d

6. Alice and Bob perform the logical operators that correspond to the desired

computation on the encoded by polynomial QECC state as described in the ABE

protocol. For each application of logical Toffoli gate, Bob sends measurement

results to Alice and Alice calculates the actual correction to be performed on the

state and sends it to Bob who performs it.

7. Bob measures the output qudits in the computational basis and returns the mea-

surement results to Alice.

8. Alice applies the detection and decoding procedure of the signed polynomial

QECC and sets a second indicator bit accordingly.

9. Alice accepts if both indicator bits of the FK and ABE protocol phase of the

protocol are set to accept, otherwise she rejects.

Proof. The proof of Theorem 5 follows the same steps of the proof of Theorem 4 with

the only difference being that some of the inputs for the FK phase sent from Alice to

Bob are encrypted generalized Toffoli states (as opposed to single qudit rotated states).

In particular the set of random parameters ν now includes extra random parameters

{xi} for i = [1,3t ′] used for the Pauli X random rotation of the Toffoli inputs. The total

quantum state |M〉〈M| sent by Alice to Bob will include the system of t ′ encrypted

Toffoli states. Finally, the measurement angles of system ∆ need to be modified so that

the first two layers of computation cancel the Pauli X rotation, and therefore ∆ depends

also on {xi}.

All the steps of the proof will be the same except the twirling of the input Toffoli

qudits which consumes the parameters {xi}. Therefore, when we want to cancel the

cross attack terms (u 6= u′) in the computational graph and in particular:

Qubit i ∈ I and part of a Toffoli state: We assume that E ′′G does not contain entangling

operators between the input qubits (e.g. brickwork graph). We can extract Xxi from

|M(4)〉 (〈M(4)|), having the remaining state represented by |M(5)〉 (〈M(5)|). Commuting,

on both sides, Xxi with E ′′G will give a Zxi correction on qudit f (i) which will undo the

pre-existing xiπ correction on measurement angle φ f (i) of the f (i) system. On system i

again, commuting Xxi with Ri((−1)xiφi) (due to the pre-existing correction) will undo

the (−1)xi correction and then commuting with Hi will change it to Zxi . Now the only

120 Chapter 6. An Efficient Verification Protocol

dependence on xi is on the random Z element we have commuted to the point before

the attack.

Let us also employ the following trick for generating the random X elements: We

extract stabilizer Zr′i
i X r′i

f (i)Z
r′i
j∼ f (i), j 6=i for r′i ←R {0,1} from graph state E ′′G|M(5)〉 and

at the same time changing variable b̂i ← bi + r′i everywhere. The new terms cancel

everywhere except at qubit i so that we get:

∑
r′i,xi

〈bi|X r′iZxiPu|iZ
xiX r′iHiRi(φi)

E ′′G(|M(5)〉〈M(5)|)E ′′GRi(φi)
†HiX r′iZxiPu′|iZ

xiX r′i |bi〉= 0 if Pu|i 6= Pu′|i (6.17)

The rest is exactly the same (except for replacing all |M(4)〉 by |M(5)〉) as in the

proof of Theorem 4.

6.3 Noise and Abstract Security

Real implementations of any verification protocol should take into account the effect

of noise. We emphasise, once more, that the fault tolerance discussed so far in all

the trap-based protocols is not used to tackle the noise but to amplify the verification

probability, by forcing the adversary to attack more physical qub(d)its. But the noise

will be present in any implementation, in the form of a noisy quantum preparation

device of the verifier, a noisy quantum channel between the verifier and the prover and

the errors that are introduced by the prover’s devices at each step of the computation

(entangling, measurement). This will have an effect in both the correctness and the

verifiability probability of the protocol.

The existence of noise necessitates the use of an extra layer of fault tolerance in the

execution of the protocol. This can be achieved in the same way fault tolerance was

implemented for probability amplification and described in Section 3.1.1; a topological

code and an extra correction step after each T gate to deal with the adaptive measure-

ments. An alternative method to perform blindly the adaptive Z measurements can be

found in [Morimae and Fujii, 2012] where the authors use a modified - decorated by

extra vertices - RHG lattice on prover’s side. Note that in all cases the verifier is the

party who does the classical processing for the error correction, by using the prover’s

measurement results. In [Chien et al., 2013] the authors consider the capability of being

6.3. Noise and Abstract Security 121

able to correct the errors on qubits during transmission from verifier to prover (e.g.

useful when many repeaters mediate the transmission). This is achieved by having

the verifier use the Steane code to prepare the logical |+θ〉L states and the prover to

apply the corresponding logical circuit ∗. Note that these fault tolerant implementations

are provided for the blind-only protocols, but can be readily adapted for verification

protocols, up to the following implication discussed in [Gheorghiu et al., 2015].

Errors will inevitably affect the traps which are single qubits; this can be counter-

acted by two techniques, one can allow some threshold of acceptance of erroneous trap

measurements and therefore boost correctness of the protocol (but deteriorate verifiabil-

ity). A second technique will be to encode both the computation, the dummy qubits and

the traps (therefore the whole of the dotted-complete state) using the same topological

code and consequently boost both correctness and verifiability. These techniques can be

used in our composite protocol, in particular for the FK part of it. For the ABE part we

can use the fault tolerant implementation proposed for it in the original paper: the prover

adds his own encoding on the received states together with purification techniques that

assume extra classical communication complexity.

A crucial property of any security protocol is to be able to use it in a larger context

(e.g. in conjunction with other security protocols) and still trust its security properties

will remain intact. In this thesis we provided one such composition, in the form of the

Composite Verification protocol, and shown how the composite protocols retain their

properties. A more systematic way of dealing with the issue of composability is studied

in the context of abstract cryptography (AC) [Dunjko et al., 2014]. To demonstrate the

need of such a construction, imagine that at the end of the protocol prover learns whether

verifier has accepted or rejected the final output. Then, if the verification procedure

depends on the input, learning the indicator bit might reveal something about the input,

thus break the blindness property of the protocol. In [Dunjko et al., 2014] the notion of

independent verifiability is defined, which requires the ability to find a CPTP map for

the prover that can generate a state where, if we trace out verifier’s private system, this

state is ε-close to a state where the prover has learned the indicator bit. Therefore, if

prover can produce the indicator bit himself, clearly learning it does not add anything

new to his knowledge. Some protocols, such as FK, have been demonstrated to satisfy

this stronger notion of verifiability. Also, in [Dunjko et al., 2014] it is proven that if a

protocol is blind and independent verifiable, then it is (composable) blind-verifiable.

∗An alternative version assigns the task of preparing the logical qubits to prover who sends 8 of them
to verifier who has to chose one at random and send it back to prover, thus having a simpler verifier

122 Chapter 6. An Efficient Verification Protocol

An alternative, but equivalent in power, composability framework is Universal

Composability (UC), introduced by [Unruh, 2010]. The QAS-based protocols are

proven to be composable [Broadbent et al., 2012] according to the UC framework.

Since all the protocols we use in our construction are proven to be composable in one

framework or the other, we believe that the same should hold for the composite protocol,

but, at the moment, this is left as a topic for future work.

Part III

Quantum-Intermediate Verification

123

Chapter 7

Overview

The physical realisation of quantum information processing requires the fulfilment of

the five criteria collated by DiVincenzo [DiVincenzo, 2000]. While enormous progress

had been made in realising them since, we are still some way from constructing a

universal quantum computer. This raises the question whether quantum advantages in

computation are possible without fulfilling one or more of DiVincenzo’s criteria. From

a more foundational perspective, the computational power of the intermediate models of

quantum computation are of great value and interest in understanding the computational

complexity of physical systems. Several such models are known, including fermionic

quantum computation [Bravyi and Kitaev, 2002], instantaneous quantum computation

[Bremner et al., 2010], permutational quantum computation [Jordan, 2010], and boson

sampling [Aaronson and Arkhipov, 2011].

These models of quantum intermediate computation are considered easier to imple-

ment, yet their verification problem has not attracted much attention. In approaches

such as [Aaronson and Arkhipov, 2014] or [Shepherd and Bremner, 2009], the issue

of distinguishing between the output of a boson sampling device or an instantaneous

quantum computer and a classical device has been tackled. In this thesis, however, we

are interested in verifying that the output produced by the device is the correct output.

As it was the case with the universal quantum computer, there exist some problems

solvable by quantum intermediate computers that are believed to be outside NP, and

therefore not efficiently verifiable using a witness. On the other hand, the correctness of

the output of Shor’s factoring algorithm [Shor, 1997] can be checked efficiently on a

classical machine. In this part of the thesis we consider a verifier close to classical and a

prover able to solve all problems in a quantum intermediate model A. We will therefore

employ general techniques to verify the result of any problem belonging in this class A.

125

126 Chapter 7. Overview

One of the earliest restricted models of quantum computation was proposed by Knill

and Laflamme, named ‘Deterministic Quantum Computation with One quantum bit

(DQC1)’, also referred to as the one pure qubit model [Knill and Laflamme, 1998]. It

addresses the challenge of DiVincenzo’s first criterion, that of preparing a pure quantum

input state, usually the state of n separate qubits in the computational basis state zero.

Instead, in the DQC1 model, only one qubit is prepared in a pure state (computational

basis zero state) and the rest of the input qubits exist in the maximally mixed state. This

model corresponds to a noisier, more feasible experimental setting and was initially

motivated by liquid-state NMR proposals for quantum computing. The DQC1 model

was shown to be capable of estimating the coefficients of the Pauli operator expansion

efficiently. Following this, Shepherd defined the complexity class ‘Bounded-error

Quantum 1-pure-qubit Polynomial-time (BQ1P)’, to capture the power of the DQC1

model [Shepherd, 2006], and proved that a special case of Pauli operator expansion, the

problem of estimating the normalised trace of a unitary matrix to be complete for this

class. This problem, and others that can be reduced to it, such as the estimation of the

value of the Jones polynomial, is interesting from a complexity theoretical point of view

since it has no known efficient classical algorithm. Moreover, they are not known to

belong to the class NP, therefore the problem of verifying the correctness of the result is

non-trivial. The estimation of fidelity decay in chaos, the estimation of the value of the

Jones and other knot-invariant polynomial at the fifth root of unity for the trace closure

of knots, partition functions of spin models, enumeration of quadratically signed weight

enumerators and other interesting problems can be reduced to the estimation of the

normalised trace of a unitary matrix. For more on such connections, see Ref. [Datta

and Shaji, 2011].

The approach of the Verifiable Universal Blind Quantum Computing [Fitzsimons

and Kashefi, 2012], already presented in this thesis, is based on a blind protocol where

the verifier is able to prepare single qubits. In this part, we take the same approach

towards verification by first adapting this existing protocol for blind computing to

the DQC1 model. Thus, the first goal is to define what it means to have a DQC1

computation in the MBQC setting. Fixing the input state to almost maximally mixed as

it is done in the circuit picture of the DQC1 model does not suffice since the required

auxiliary qubits for MBQC could potentially increase the number of pure qubits in the

system by more than a logarithmic amount ∗. This adaptation is necessary as currently

∗Increasing the number of pure qubits in the input to the order of logarithmic in the size of the
computation is shown not to add extra power to the one pure qubit complexity class [Shepherd, 2006].

7.1. Preliminaries 127

all the optimal schemes [Aharonov et al., 2010, Broadbent et al., 2009, Dunjko et al.,

2012, Morimae et al., 2015, Barz et al., 2012, Morimae and Fujii, 2012, Morimae, 2012,

Morimae and Fujii, 2013, Sueki et al., 2013, Mantri et al., 2013, Giovannetti et al.,

2013] for the blind computation exploit the possibility of adaptive computation based

on the measurement, a freedom not allowed in the original DQC1 model. The main

results presented in this Part are the following:

• We introduce a new definition of DQC1 computation within the MBQC frame-

work, called the DQC1-MBQC model †, which captures the essential property of

its original definition in the circuit model. Moreover, we show that the original

definition of complexity class BQ1P is contained in DQC1-MBQC, where the

latter is able to capture the process where new qubits are introduced or traced out

during the execution of the computation.

• We provide a sufficient condition for a graph state (underlying resource for an

MBQC computation [Hein et al., 2004]) to be usable within DQC1-MBQC. A

direct consequence of this is that the universal blind protocol, which satisfies

this condition, can be directly adapted to the setting where the server is a DQC1-

MBQC machine and the client is able to send one single qubits at a time.

• Building on the blind protocol and adapting the methods presented in [Fitzsimons

and Kashefi, 2012] (FK protocol), a verification protocol for the class DQC1-

MBQC is given, where the probability of the client being forced to accept an

incorrect result can be adjusted by setting the security parameter of the model.

Since the FK protocol does not satisfy the sufficient condition and hence not

runnable in the DQC1-MBQC, an alternative method is presented which also

leads to different complexity results.

7.1 Preliminaries

We define the class BQ1P formally as introduced by Shepherd [Shepherd, 2006], so

that we can later recast it into the MBQC framework.

Definition 11 (Bounded-error Quantum 1-pure-qubit Polynomial-time complexity class

). [Shepherd, 2006] BQ1P is defined using a bounded-error uniform family of quantum

†We use a different acronym than DQC1 to emphasis the structural distinction with the standard
DQC1 model.

128 Chapter 7. Overview

circuits – DQC1. A DQC1 circuit takes as input a classical string x, of size n, which

encodes a fixed choice of unitary operators applied on a standard input state |0〉〈0|⊗
Iw−1/2w−1. The width of the circuit w is polynomially bounded in n. Let Qn(x) be the

result of measuring the first qubit of the final state of a DQC1 circuit. A language in

BQ1P is defined by the following rule:

∀a ∈ L : Pr(Qn(a) = 1)≥ 1
2
+

1
2q(n)

(7.1)

∀a /∈ L : Pr(Qn(a) = 1)≤ 1
2
− 1

2q(n)
(7.2)

for some polynomially bounded q(n).

In the same paper a problem named Trace Estimation is given and proven to be

complete for this class (under classical logspace reductions). Trace Estimation it is a

decision problem which takes as input a unitary in a polynomial-size description in

the form of a circuit. Given the promise that the real part of the trace of a unitary is

polynomially bounded away from zero we need to decide whether the sign of the real

part of the trace of the matrix is positive. There is yet no known efficient classical

algorithm to solve this problem, which makes the one-pure-qubit computer a candidate

to demonstrate quantum supremacy.

7.2 Main Results

An essential physical property of DQC1 that we mean to preserve in DQC1-MBQC is

its limited purity. To capture this we introduce the purity parameter:

π(ρ) = log2 (Tr(ρ2))+d, (7.3)

where d is the logarithm of the dimension of the state ρ. For a DQC1 circuit with k

pure qubits, at each state of the computation the value of purity parameter π for that

state remains constant equal to k. In fact, Shepherd showed that the class BQ1P is

not extended by increasing the number of pure input qubits logarithmically. Thus, a

purity that does not scale too rapidly with the problem size still remains in the same

complexity class.

A characterisation of MBQC patterns compatible with the idea of the DQC1 model

as introduced above is presented next. Any MBQC pattern is called DQC1-MBQC

when there exists a runnable rewriting of this pattern such that after every elementary

operation (for any possible branching of the pattern) the purity parameter π does not

7.2. Main Results 129

increase over a fixed constant. We assume that the system at the beginning has only the

input state and at the end has only the output state.

We define a new complexity class that captures the idea of one pure qubit computa-

tion in the MBQC model. This complexity class, that we name DQC1-MBQC, can be

based on any universal DQC1-MBQC resource pattern, which is defined analogously

to the DQC1 circuits [Shepherd, 2006] as a pattern that can be adapted to execute any

DQC1-MBQC pattern of polynomial size. A particular example of such a resource,

as we will present later, can be built using the brickwork state of [Broadbent et al.,

2009] designed for the purpose of universal blind quantum computing. The input to

a universal pattern is the description of a computation as a measurement angle vector

and is used to classically control the measurements of the MBQC pattern. The quantum

input of the open graph is always fixed to a state that has a constant number of pure

qubits and the rest of the state is the maximally mixed state, in correspondence to the

DQC1 model.

Definition 12. A language in DQC1-MBQC complexity class is defined based on a

universal DQC1-MBQC resource pattern Pα that takes as input an angle vector α of

size n and is applied on the quantum state |+〉〈+|⊗ Iw−1/2w−1, w ∈ O(n). A word α

belongs to the language depending of the probabilities of the measurement outcome

(Rn(α)) of the first output qubit of pattern Pα which are defined identically to Definition

11:

∀a ∈ L : Pr(Rn(α) = 1)≥ 1
2
+

1
2r(n)

(7.4)

∀a /∈ L : Pr(Rn(α) = 1)≤ 1
2
− 1

2r(n)
(7.5)

for some polynomially bounded r(n).

Corollary 2. BQ1P ⊆ DQC1-MQBC.

Proof. Any circuit description using a fixed set of gates can be efficiently translated

into a measurement pattern applicable on the brickwork state. A specific example

of translating each gate from the universal set {Hadamard, π/8, c-NOT} to a ‘brick’

element of the brickwork state is given in [Broadbent et al., 2009]. The quantum

input state in the resulting measurement pattern is in the almost-maximally-mixed state,

therefore the pattern is a valid DQC1-MBQC pattern.

Definition 13. An MBQC pattern is a DQC1-MBQC pattern if there is a runnable

sequence of commands where for every elementary command and measurement outcome,

130 Chapter 7. Overview

there exists a fixed constant value c such that the overall quantum state of the system

(ρi with dimension di) after the ith operation satisfies the following relation

π(ρi)< π(ρin)+ c, (7.6)

where ρin is the quantum input of the pattern with dimension din, which is fixed to be

the product of cin (constant) pure qubits in state |+〉 and a maximally mixed state of

din− cin qubits.

The above definition captures the essence of DQC1 in that it maintains a low purity,

high entropy state in MBQC, in contrast to DiVincenzo’s first criterion. Regarding

implementation, the difference from the original DQC1 is that in DQC1-MBQC you

need to be able to inject or trace out qubits during the execution of the computation. We

derive a sufficient condition (that is also constructive) for the open graph state leading to

DQC1-MBQC, capturing the universal blind quantum computing protocol as a special

case. However, a general characterisation and further structural link with determinism

in MBQC [Danos and Kashefi, 2006, Browne et al., 2007, Mhalla et al., 2014] is left as

an open question for future work.

Theorem 10. Any measurement pattern on an open graph state (G, I,O) with flow

(f ,�) (as defined in Definition 2) and measurement angles α where either |I|= |O| or

the flow function is surjective and all auxiliary preparations are on the (X−Y) plane

represents a DQC1-MBQC pattern.

The full details and the proof of this theorem is provided in Section 8.1.

A direct consequence of Theorem 10 is that the Universal Blind Computing Protocol

(UBQC) introduced in [Broadbent et al., 2009] can be easily adapted to fit within the

DQC1-MBQC class, since it is based on an MBQC pattern on a graph state with

surjective flow.

In the blind cryptographic setting a client (Alice) wants to delegate the execution

of an MBQC pattern to a more powerful server (Bob) and hide the information at the

same time. The UBQC protocol is based on the separation of the classical and quantum

operations when running an MBQC pattern. The client prepares some randomly rotated

quantum states and sends them to the server and from this point on the server executes

the quantum operations on them (entangling according to the graph and measuring) and

the client calculates the measurement angles for the server and corrects the measurement

outcomes she receives (to undo the randomness and get the correct result).

7.2. Main Results 131

To define blindness formally (see Definition 6) we allow Bob to deviate from the

normal execution in any possible way, and this is captured by modelling his behaviour

during the protocol by an arbitrary CPTP map. The main requirement for blindness is

that for any input and averaged over all possible choices of parameters by Alice, Bob’s

final state can always be written as a fixed CPTP map applied on his initial state, thus

not offering any new knowledge to him.

To adapt the original UBQC protocol into the DQC1-MBQC setting we change the

order of the operations so that the client does not send all the qubits to the server at the

beginning, but during the execution of the pattern, following a rewriting of the pattern

that is consistent with the purity requirement. The details are described in Section 8.1.1.

Alice is considered weak because, even though she can prepare a polynomial number of

pure qubits overall, she cannot store more than one pure qubit at any time, while Bob is

more powerful because he has also the capacity to perform unitary computation and

measurements.

Theorem 11. There exists a blind protocol for any DQC1-MBQC computation where

the client is restricted to BPP and the ability to prepare single qubits and the server is

within DQC1-MBQC.

In the verification cryptographic setting a client (Alice) wants to delegate a quantum

computation to a more powerful server (Bob) and accept if the result is correct or reject

if the result is incorrect (server is behaving dishonestly). The main idea of the original

protocol of [Fitzsimons and Kashefi, 2012] is to test Bob’s honesty by hiding a trap

qubit among the others in the resource state sent to him by Alice. Blindness means

that Bob cannot learn the position of the trap, nor its state. During the execution of

the pattern Bob is asked to measure this trap qubit and report the result to Alice. If

Bob is honest this measurement gives a deterministic result, which can be verified by

Alice. Bob being dishonest means that Alice will receive the wrong result with no-zero

probability. Depending on that result, Alice accepts or rejects the final output received

by Bob.

To define verifiability formally in the case of OPQ (building on Definition 7) we

need to establish an important difference with the original protocol [Fitzsimons and

Kashefi, 2012]: In a DQC1-MBQC pattern the quantum input is in a mixed state as

opposed to a pure state. Reverting to the original definition that was presented in

Section 1.2 we need to add an extra reference system R, that is used to purify the mixed

input that exists in Alice’s private system A. The assumption is that Bob does not learn

132 Chapter 7. Overview

anything about the reference system (ex. Alice is provided with the quantum input from

a third trusted party which also holds the purification). Bob is allowed to choose any

possible cheating strategy and our goal is to minimise the probability of Alice accepting

the incorrect output of the computation at the end of the protocol. Similarly to the

original definition:

Definition 14. A protocol for delegated computation is ε-verifiable (0≤ ε < 1) if for

any choice of Bob’s strategy j, it holds that for any input of Alice:

Tr(∑
ν

p(ν)Pν
incorrectB j(ν))≤ ε (7.7)

where B j(ν) is the state of Alice’s system A together with the purification system R at

the end of the run of the protocol, for choice of Alice’s random parameters ν and Bob’s

strategy j. If Bob is honest we denote this state by B0(ν). Let P⊥ be the projection onto

the orthogonal complement of the the correct purified quantum output. Then,

Pν
incorrect = P⊥⊗|ηνc

t 〉〈η
νc
t | (7.8)

where |ηνc
t 〉 is a state that indicates if Alice accept or reject the result.

A verification protocol should also be correct, which means that in case Bob is

honest Alice’s state at the end of the run of the protocol is the correct output of the

computation and an extra qubit set in the accept state (this property is also referred to as

completeness).

In the FK protocol, in order to adjust the parameter ε to any arbitrary value between

0 and 1 (a technique called probability amplification), one needs to add polynomially

many trap qubits within the MBQC pattern. Specifically, adding polynomially many

traps and incorporating the pattern into a fault tolerance scheme that corrects d errors,

gives parameter ε exponentially small on d. Adding polynomially many traps, following

the same scheme as the FK protocol, creates a pattern that is not a DQC1-MBQC pattern.

This is because the trap positions need to be random and there is always a chance that

all the traps gather in the same layer of the MBQC computation (traps do not participate

in teleportation steps therefore do not preserve purity as we will see later). Therefore to

achieve an amplification of the error probability we need to develop a modified trapping

scheme.

In Section 8.2 we give a verification protocol for DQC1-MBQC problems where,

instead of running the pattern once, s computations of the same size are run in series,

one being the actual computation and the others being trap computations. A similar

7.2. Main Results 133

approach is also considered for the restricted setting of the photonic implementation

of the FK protocol [Barz et al., 2013] and a verification protocol of the entanglement

states [Pappa et al., 2012]. In our setting each trap computation contains an isolated

trap injected in a random position between the qubits of the pattern. We prove that in

this verification protocol the server is within DQC1-MBQC complexity class, while

the client is within BPP together with single qubit preparations (as in the original FK

protocol). Moreover in this verification protocol we achieve the goal of probability

amplification by choosing the appropriate value for parameter s.

Theorem 12. There exists a correct ε-verifiable protocol where the client is restricted

to BPP and the ability to prepare single qubits and the server is within DQC1-MBQC.

Using O(sm) qubits and O(sm) time steps, where m is the size of the input computation,

we have:

ε =
2m
s

(7.9)

Therefore, in order to have constant failure probability ε one needs to run s = O(m)

trap+actual computations, meaning that the overall communication complexity will be

quadratic on the input size. This is worse than our linear complexity protocol of Chapter

6, but it comes as a result of not being able to keep a polynomial number of pure qubits

at the same time in DQC1-MBQC.

Chapter 8

One-Pure-Qubit Model Verification

8.1 Secure Computation with Restricted Purity

In this section we give a constructive proof of our main theorem for DQC1-MBQC and

show how to construct a blind protocol as a consequence. The first step for proving

Theorem 10 is the following rewriting scheme for patterns with flow.

Lemma 9. Any measurement pattern on an open graph state (G, I,O) with flow (f ,�)
(as defined in Definition 2) and measurement angles a where either |I|= |O| or the flow

function is surjective can be rewritten as

Pa = ∏
i∈O

XSx
i

i ZSz
i

i

�

∏
i∈Oc

(
Sz

i [Mai
i]

Sx
i

(
∏

{k:k∼i,k�i}
Ei,k

)
N f (i)(|+〉)

)
(8.1)

where Sx
i = s f−1(i) for i ∈ Ic, else Sx

i = 0 and Sz
i = ∑{k:k∈Ic,k∼i,i6= f−1(k)} s f−1(k) mod 2.

The above pattern is runnable and implements the following unitary

UG,I,O,a = 2|O
c|/2

(
∏
i∈Oc
〈+ai|i

)
EGNIc (8.2)

where EG and NIc represent the global entangling operator and global preparation

respectively.

Proof. First we need to prove that Pa is runnable (cf. Definition 1). For condition (R0)

we make the following observations: At step i, for i ∈ Ic, we need the result s f−1(i)

which is generated at step f−1(i), where f−1(i)≺ i from flow condition (F1). We also

need the results s f−1(k), for {k : k ∈ Ic,k ∼ i, i 6= f−1(k)}, which are generated at step

f−1(k), where f−1(k)≺ i from flow condition (F2). Thus, condition (R0) is satisfied

(see Figure 8.1 for a particular example). For condition (R1) we make the following

135

136 Chapter 8. One-Pure-Qubit Model Verification

observations: At step i, for i ∈ Oc, the entangling operator and measurement operator

act on qubit i which either belongs in the set of inputs I or is created at step f−1(i),

where f−1(i) ≺ i from flow condition (F1). Entangling operator acts also on qubits

{k : k∼ i,k� i}. If k = f (i) then qubit k is created at the same step (i) by operator N f (i).

If k 6= f (i) then qubit k is either an input or it is created at step f−1(k), and we have

by flow condition (F2): i is a neighbour of k and i 6= f−1(k), thus f−1(k)≺ i (Figure

8.1). Final correction operators act on qubits that belong to the set of outputs O, which

either belong also to the set of inputs I or are created at steps { f−1(i) : i ∈ O}, where

∀i ∈ O \ I, f−1(i) ≺ i from flow condition (F1). In addition, they have not yet been

measured since i /∈ OC. Thus, condition (R1) is satisfied. It is easy to see that condition

(R2) is satisfied.

Figure 8.1: Qubit i gets an X correction from k2 and Z corrections from f−1(k2) and

f−1(k1). Qubits on the left of the dashed line are in the past of i. Qubit k1 is created at

timestep f−1(k1) which is before timestep i from flow condition (F2).

Next we prove that the pattern of Equation 8.1 is implementing the unitary operation

of Equation 8.2 when applied on an open graph with the properties described above.

Since condition (R1) is satisfied, all preparation operators trivially commute with all

previous operators

Pa = ∏
i∈O

XSx
i

i ZSz
i

i

�

∏
i∈Oc

(
Sz

i [Mai
i]

Sx
i

(
∏

{k:k∼i,k�i}
Ei,k

))
NIc

Each entangling operator commutes with all previous measurements since it is applied

on qubits with indices � i.

Pa = ∏
i∈O

XSx
i

i ZSz
i

i

�

∏
i∈Oc

(
Sz

i [Mai
i]

Sx
i

)
EGNIc

We can decompose the conditional measurements into simple measurements and cor-

rections

Pa = ∏
i∈O

XSx
i

i ZSz
i

i

�

∏
i∈Oc

(
Mai

i XSx
i

i ZSz
i

i

)
EGNIc

8.1. Secure Computation with Restricted Purity 137

By rearranging the order of correction operators we take

Pa =
�

∏
i∈Oc

(
X si

f (i) ∏
{k:k∼ f (i),k 6=i}

Zsi
k Mai

i

)
EGNIc

The above equation implements the unitary operation presented in the lemma (Equation

8.2) as proved in [Danos and Kashefi, 2006].

Next, we notice that there exist many universal families of open graph states sat-

isfying the requirements of the above lemma. One such example is the brickwork

graph state originally defined in [Broadbent et al., 2009] and already presented here

in Section 1.1.3. We remind the reader of its properties: In this graph state (Figure

1.3), the subset of vertices of the first column correspond to the input qubits I and

the subset of vertices of the final column correspond to the output qubits O. This

graph state has flow function f ((i, j)) = (i, j+1) and the following partial order for

measuring the qubits: {(1,1),(2,1), . . . ,(w,1)} ≺ {(1,2),(2,2), . . . ,(w,2)} ≺ . . . ≺
{(1,d− 1),(2,d− 1), . . . ,(w,d− 1)}, where w is the width and d is the depth of the

graph and hence from Lemma 9 we obtain the following corollary.

Corollary 3. Any computation over the brickwork open graph state G with qubit index

(i≤ w, j ≤ d) can be rewritten as follows.

Pa =
w

∏
i=1

X
Sx
(i,d)

(i,d) Z
Sz
(i,d)

(i,d)

d−1

∏
j=1

w

∏
i=1

Sz
(i, j)
[
M

a(i, j)
(i, j)

]
Sx
(i, j)

 ∏
{k,l:(k,l)∼(i, j),

k≥i,l≥ j}

E(i, j),(k,l)

N(i, j+1) (8.3)

where Sx
(i, j) = s(i, j−1) for j > 1, else Sx

(i,1) = 0

and Sz
(i, j) = ∑{k,l:(k,l)∼(i, j),l≤ j} s(k,l−1) mod 2 for j > 2, else Sz

(i, j) = 0.

We show that patterns defined in Lemma 9 are within the framework of Definition

13 hence obtaining a sufficient condition for DQC1-MBQC.

Lemma 10. Any measurement pattern that can be rewritten in the form of Equation 8.1

represents a DQC1-MBQC pattern.

Proof. A first general observation about the purity parameter π is that adding a new

pure qubit σ to state ρ means that π increases by unity

πρ⊗σ = log2 Tr((ρ⊗σ)2)+d +1 = log2 Tr(ρ2)Tr(σ2)+d +1 = πρ +1.

Additionally, applying any unitary U does not change the purity parameter π of the

system since Tr((UρU†)2) = Tr(ρ2) and dimension remains the same.

138 Chapter 8. One-Pure-Qubit Model Verification

Returning to Equation 8.1, we notice that for every step i ∈ Oc of the product the

total computation performed corresponds mathematically to the following: On the qubit

tagged with position i, a J(a′i) unitary gate is applied (where a′i is an angle that depends

on ai and previous measurement results) up to a specific Pauli correction (depending on

the known measurement result) and some specific Pauli corrections on its entangled

neighbours (again depending on the measurement result). At the end the qubit is tagged

with position f (i) (where f is the flow function). Since this mathematically equivalent

computation is a unitary and the dimension of the system remains the same (there is

only a change of position tags) we conclude that each step i ∈ Oc does not increase the

purity parameter of the system. To finish the proof, we need to ensure that the individual

operations within each step i ∈ Oc and for i ∈ O do not increase the purity parameter by

more than a constant (and since there is only a constant number of operations within

each step this does not increase the purity at any point more than constant). This is

true since all these operations apply on (or add or trace over) a constant number of

qubits.∗

From the above Theorem 10 follows directly.

8.1.1 Blind One-Pure-Qubit Computation

Building on this result, we can translate the UBQC protocol of [Broadbent et al.,

2009] (and in fact many other existing protocols) to allow the blind execution of any

DQC1-MBQC computation, where the server is restricted to DQC1-MBQC complexity

class. The UBQC protocol is based on the brickwork graph state described above.

Alice prepares all the qubits of the graph state, adding a random rotation around the

(X ,Y) plane to each one of them: |+θi〉, where θi is chosen at random from the set

A = {0,π/4,π/2,3π/4,π,5π/5,3π/2,7π/4} and sends them to Bob, who entangles

them according to the graph. The protocol then follows the partial order given by the

flow: Alice calculates the corrected measurement angle α′i for each qubit using previous

measurement results according to the flow dependences. She sends to Bob measurement

angle δi = α′i +θi + riπ, using an extra random bit ri. Bob measures according to δi,

reports the result back to Alice who corrects it by XOR-ing with ri. In the case of

∗Assuming that the graph input has purity one, the purity parameter of the state of the system at
any point reaches a maximum of two, so DQC2-MBQC would have been a more accurate name for our
class. In terms of complexity this is not relevant since by [Shepherd, 2006] increasing the pure qubits
to logarithmic does not give more computational power. Two qubits seem necessary because MBQC is
based on teleportation using an auxiliary state.

8.1. Secure Computation with Restricted Purity 139

quantum output, the final layer is sent to Alice and is also corrected according to the

flow dependences by applying the corresponding Pauli operators.

Since the brickwork graph state satisfies the requirements of Theorem 10 we can

adapt the Universal Blind Quantum Computing protocol by making Alice and Bob

follow the order of Equation 8.3 and operate on input |+〉〈+|⊗ Iw−1/2w−1. A detailed

description is given in Protocol 8.

Theorem 13. Protocol 8 is correct.

Proof. Correctness comes from the fact that what Alice and Bob jointly compute is

mathematically equivalent to performing the pattern of Equation 8.3 on input |+〉〈+|⊗
Iw−1/2w−1. The argument is the same as in the original universal blind quantum

computing protocol [Broadbent et al., 2009] repeated here for completeness. Firstly,

since entangling operators commute with Rz operators, preparing the pure qubits in a

rotated state does not change the underlying graph state; only the phase of each qubit is

locally changed, and it is as if Bob had performed the Rz rotation after the entanglement.

Secondly, since a measurement in the |+a〉, |−a〉 basis on a state |φ〉 is the same as a

measurement in the |+a+θ〉, |−a+θ〉 basis on Rz(θ)|φ〉, and since δ = a′+ θ+πr , if

r = 0, Bob’s measurement has the same effect as Alice’s target measurement; if r = 1,

all Alice needs to do is flip the outcome.

Note that Protocol 8 can be trivially simplified by omitting all the measurements

that are applied on maximally mixed states (i.e. all measurements applied on qubits in

rows 2 to w from the beginning of the computation until each one is entangled with a

non-maximally mixed qubit). However, this does not give any substantial improvement

in the complexity of the protocol.

Theorem 14. Protocol 8 is blind.

(Proof Sketch). A detailed proof is provided in the next section. Intuitively, rotation by

angle θi, j serves the purpose of hiding the actual measurement angle, while rotation

by ri, jπ hides the result of measuring the quantum state. This proof is consistent with

definition of blindness based on the relation of Bob’s system to Alice’s system which

takes into account prior knowledge of the secret and is a good indicator that blindness

can be composable [Dunjko et al., 2014].

140 Chapter 8. One-Pure-Qubit Model Verification

Protocol 8 Blind BQ1P protocol

Alice’s input:

• A vector of angles a = (a1,1, . . . ,aw,d), where ai, j comes from the set A =

{0,π/4,2π/4, . . . ,7π/4}, that when plugged in the measurement pattern Pa of

Equation 8.3 applied on the brickwork state, implements the desired computation.

This computation is applied on a fixed input state |+〉〈+|⊗ Iw−1/2w−1.

Alice’s output:

• The top output qubit (qubit in position (1,d)).

The protocol

1. Alice picks a random angle θ1,1 ∈ A, prepares one pure qubit in state Rz(θ1,1)|+〉
and sends it to Bob who tags it as qubit (1,1).

2. Bob prepares the rest of input state (qubits (2,1), . . . ,(w,1)) in the maximally

mixed state Iw−1/2w−1.

3. Alice and Bob execute the rest of the computation in rounds. For j = 1 to d−1

and for i = 1 to w

(a) Alice’s preparation

i. Alice picks a random angle θi, j+1 ∈ A.

ii. Alice prepares one pure qubit in state Rz(θi, j+1)|+〉.

iii. Alice sends it to Bob. Bob tags it as qubit (i, j+1).

(b) Entanglement and measurement

i. Bob performs the entangling operator(s):

∏
{k,l:(k,l)∼(i, j),k≥i,l≥ j}

E(i, j),(k,l)

ii. Bob performs the rest of the computation using classical help from

Alice:

A. Alice computes the corrected measurement angle a′i, j =

(−1)Sx
i, jai, j +Sz

i, jπ.

B. Alice chooses a random bit ri, j and computes δi, j = a′i, j + θi, j +

ri, jπ.

C. Alice transmits δi, j to Bob.

8.1. Secure Computation with Restricted Purity 141

Protocol 8 Cont’d

3. (b) ii. D. Bob performs operation Mδi, j
i, j which measures and traces over the

qubit (i, j) and retrieves result bi, j.

E. Bob transmits bi, j to Alice.

F. Alice updates the result to si, j = bi, j + ri, j mod 2.

4. Bob sends to Alice the final layer of qubits, Alice performs the required correc-

tions and outputs the result.

Regarding the complexity of the protocol, Alice needs to pick a polynomially large

number of random bits and perform polynomially large number of modulo additions

that is to say Alice classical computation is restricted to the class BPP. Alice’s quantum

requirement is only to prepare single qubits, she has access to no quantum memory

or quantum operation. Therefore assuming BQ1P 6⊂ BPP suggests Alice’s quantum

power is more restricted than BQ1P and hence DQC1-MBQC. On the other hand, Bob

performs a pattern of the form given in Equation 8.3, with the difference that instead

of preparing the pure qubits himself, he receives the pure qubits through the quantum

channel that connects him with Alice. Also, the qubits are not prepared in state |+〉, but

in some state on the (X ,Y) plane, but this doesn’t alter the reasoning in the complexity

proofs. Thus, Bob has computational power that is within the DQC1-MBQC complexity

class according to the Corollary 3 and Theorem 10.

8.1.2 Blindness Proof

In this proof of blindness for Protocol 8 we use techniques developed in [Dunjko, 2012].

The basic difference from the proof of [Dunjko, 2012] arises from the different order

in which Bob receives the states from Alice. Nevertheless, after commuting all CPTP

maps into a single operator at the end, the methodology for proving blindness is the

same as in the original proof. We give the full proof here for the sake of clarity.

To prove the property of blindness, we do not separate Alice’s system into a classical

and a quantum part but we consider the whole of Alice’s system as quantum. This is

a reasonable assumption since a classical system can be viewed as a special case of a

quantum system. Therefore, by proving blindness for the more general case we also

prove blindness for the special case.

142 Chapter 8. One-Pure-Qubit Model Verification

For the sake of clarity, we use single indexing for all the qubits of the resource state.

The total number of qubits is denoted by m and the number of qubits in a single column

of the brickwork state is denoted by n.

Our goal will be to explicitly write the state σB = TrA(σAB) that Bob holds at the

end of the execution of the protocol. To achieve this we express Bob’s behaviour at each

step i of the protocol as a collection of completely-positive trace-preserving (CPTP)

maps Ebi
i , each for every possible classical response bi from Bob to Alice.

At step 1 of the main loop of the protocol Bob has already been given the top

input qubit at position 1 (position (1,1) in the protocol notation) and the qubit at

position f (1) = 1+n (position (1,2) in the protocol notation) together with the angle

for measuring qubit 1 (angle can be represented as a quantum state composed of 3

qubits). State TrA(ρAB) represents Bob’s state before the protocol begins and can, in

general, be dependent on Alice’s secret measurement angles. The state of Bob averaged

over all possible choices of Alice and possible classical responses from Bob, after step

1 is:

∑
b1,r1,θ1,θ1+n

Eb1
1

(
|δθ1,r1

1 〉〈δθ1,r1
1 |⊗ |+θ1+n〉〈+θ1+n|⊗ |+θ1〉〈+θ1|⊗TrA(ρAB)

)
Note the all binary parameters in sums range over 0 and 1, ex. ∑b1 stands for ∑

1
b1=0

and all angles range over the 8 possible values in A.

We can write the state of Bob after step 2 of the main iteration as:

∑
b2,b1,r2,r1,θ2+n,θ1+n,θ2,θ1

Eb2
2

(
|δθ2,r2

2 〉〈δθ2,r2
2 |⊗ |+θ2+n〉〈+θ2+n|

⊗Eb1
1

(
|δθ1,r1

1 〉〈δθ1,r1
1 |⊗ |+θ1+n〉〈+θ1+n|⊗ |+θ1〉〈+θ1|⊗TrA(ρAB)

))
Following this analysis, after the last step of the iteration Bob’s state will be:

σB = ∑
b≤m−n,

r≤m−n,θ≤m

Ebm−n
m−n

(
|δb<m−n,r≤m−n,θm−n

m−n 〉〈δb<m−n,r≤m−n,θm−n
m−n |⊗ |+θm〉〈+θm |

⊗ . . .⊗Eb2
2

(
|δθ2,r2

2 〉〈δθ2,r2
2 |⊗ |+θ2+n〉〈+θ2+n|

⊗Eb1
1

(
|δθ1,r1

1 〉〈δθ1,r1
1 |⊗ |+θ1+n〉〈+θ1+n|⊗ |+θ1〉〈+θ1|⊗TrA(ρAB)

))
. . .
)

Notation b<m−n stands for all the elements of b with index less than m−n.

8.1. Secure Computation with Restricted Purity 143

Collecting all CPTP maps by commuting them with systems which they do not

apply on into a single operator E and rearranging the terms of the tensor product inside

gives:

= ∑
b≤m−n,

r≤m−n,θ≤m

Eb≤m−n
(m⊗

i=m−n

|+θi〉〈+θi|
m−n−1⊗
i=n+1

(|δb<i,r≤i,θi
i 〉〈δb<i,r≤i,θi

i |⊗ |+θi〉〈+θi|)

n⊗
i=2

(|δθi,ri
i 〉〈δθi,ri

i |)⊗|δθ1,r1
1 〉〈δθ1,r1

1 |⊗ |+θ1〉〈+θ1|⊗TrA(ρAB)
)

We introduce the controlled unitary:

U = ∏
n+1≤i≤m−n−1,i=1

Zi(−δi)

and rewrite the state as:

∑
b≤m−n,

r≤m−n,θ≤m

Eb≤m−n
(

U†U
m⊗

i=m−n

|+θi〉〈+θi|
m−n−1⊗
i=n+1

(|δb<i,r≤i,θi
i 〉〈δb<i,r≤i,θi

i |⊗ |+θi〉〈+θi|)

n⊗
i=2

(|δθi,ri
i 〉〈δθi,ri

i |)⊗|δθ1,r1
1 〉〈δθ1,r1

1 |⊗ |+θ1〉〈+θ1|U
†U⊗TrA(ρAB)

)
After applying the innermost unitary and absorbing the outermost into the CPTP-

map we have:

∑
b≤m−n,

r≤m−n,θ≤m

E ′b≤m−n
(m⊗

i=m−n

|+θi〉〈+θi|

m−n−1⊗
i=n+1

(
|δb<i,r≤i,θi

i 〉〈δb<i,r≤i,θi
i |⊗ |+

−a
′ b<i,r<i
i −riπ

〉〈+
−a
′ b<i,r<i
i −riπ

|
)

n⊗
i=2

(
|δθi,ri

i 〉〈δθi,ri
i |

)
⊗|δθ1,r1

1 〉〈δθ1,r1
1 |⊗ |+−a′1−r1π〉〈+−a′1−r1π|⊗TrA(ρAB)

)
It is essential for the proof that each term with index i in the tensor products depends

only on parameters with index ≤ i. This allows to break the summations over r≤m−n

and θ≤m and calculate them iteratively from left to right, given the following:

∑
θi

|+θi〉〈+θi|=
I1

2

144 Chapter 8. One-Pure-Qubit Model Verification

where In =
⊗

n I. Also,

∑
ri,θi

|δr≤i,θi
i 〉〈δr≤i,θi

i |⊗ |+
−a
′ r<i
i −riπ

〉〈+
−a
′ r<i
i −riπ

|

= ∑
ri

(
∑
θi

(
|a
′ r<i
i +θi + riπ〉〈a

′ r<i
i +θi + riπ|

)
⊗|+

−a
′ r<i
i −riπ

〉〈+
−a
′ r<i
i −riπ

|
)

= ∑
ri

I3

23 ⊗|+−a
′ r<i
i −riπ

〉〈+
−a
′ r<i
i −riπ

|

=
I4

24

and

∑
ri,θi

|δθi,ri
i 〉〈δθi,ri

i |= I3

23

This procedure will produce the state:

σB = E ′
(

I4m−4n+1

24m−4n+1 ⊗TrA(ρAB)

)
= E ′′(TrA(ρAB))

where E ′′ is some CPTP map. Therefore Definition 6 is satisfied.

8.2 Verification of One-Pure-Qubit

We remind the basic properties of the FK protocol. The FK protocol is based on

the ability to hide a trap qubit inside the graph state while not affecting the correct

execution of the pattern. Both the trap qubit and the qubits which participate in the

actual computation are prepared in the (X ,Y) plane of the Bloch sphere. To keep

them disentangled, some qubits (called dummy) prepared in the computational basis

{|0〉, |1〉}, are injected between them. Being able to choose between the two states is

essential for blindness (Theorem 4 in [Fitzsimons and Kashefi, 2012]). In particular, if a

dummy qubit is in state |0〉, applying the entangling operator cZ between this qubit and

a qubit prepared on the (X ,Y) plane has no effect. If a dummy qubit is in state |1〉 then

applying cZ will introduce a Pauli Z rotation on the qubit prepared on the (X ,Y) plane.

This effect can be cancelled by Alice in advance, by introducing a Pauli Z rotation on

all the neighbours of |1〉’s when preparing the initial state.

In the simplest version of the FK protocol, a single trap, prepared in state |+θt 〉,
where θ is chosen at random from the angles set A (defined above) and placed at

8.2. Verification of One-Pure-Qubit 145

position t, chosen at random between all the vertices of the open graph state (G, I,O).

During the execution of the pattern, if t /∈ O, Bob is asked to measure qubit t with angle

θt + rπ and return the classical result bt to Alice. If bt = rt Alice sets an indicator bit

to state acc (which means that this computation is accepted), otherwise she sets it to

re j (computation is rejected). If t ∈ O, Alice herself measures the trap qubit and sets

the indicator qubit accordingly. This version of the protocol is proven to be correct and

ε-verifiable, with ε = (m−1)/m, where m is the size of the computation.

A generalisation of this technique which allows for arbitrary selection of parameter

ε is also presented in [Fitzsimons and Kashefi, 2012]. By allowing for a polynomial

number of traps to be injected in the graph state and adapting the computation inside a

fault tolerant scheme with parameter d one can have ε inversely exponential to d. The

question is whether this amplification method can also be used to design a verification

protocol for DQC1-MBQC with arbitrary small ε. Unfortunately the underlying graph

state used by this protocol does not have flow and not all qubits are prepared in the

(X ,Y) plane, so that one cannot apply Theorem 10 to get a compatible rewriting of

the pattern. Moreover, having the requirement that we should be able to place every

trap qubit (which is a pure qubit) at any position in the graph, means that there exist

patterns that will never be possible to be rewritten to satisfy the purity requirement.

This leads us to seek a different approach for probability amplification for verification

in the DQC1-MBQC model.

Instead of placing a polynomial number of isolated traps within the same graph,

which is also used to perform the actual computation, we utilise s isolated brickwork

subgraphs, one used for the computation and the rest being trap subgraphs (see Figure

8.2). Thus, at the beginning of the protocol, Alice chooses random parameter tg, which

denotes which graph will be the computational subgraph, and for each of the remaining

trap subgraphs i, she chooses a random position ti to hide one isolated trap. The rest

of each trap subgraph will be a trivial computation (all measurement angles set to 0)

on a totally mixed state, and a selected set of dummy qubits are placed to isolate this

computation from the trap. Computation subgraph and trap subgraphs are of the same

size, and by taking advantage of the blindness of the protocol, Bob cannot distinguish

between them. Therefore, to be able to cheat, he needs to deviate from the correct

operation only during the execution on the computational subgraph and never deviate

while operating on any of the traps. This gives the desirable ε parameter that will be

proved later. The full description of protocol is given in Protocol 9. Each isolated pattern

k is executed separately and according to the DCQ1-MBQC rewriting on the brickwork

146 Chapter 8. One-Pure-Qubit Model Verification

Figure 8.2: Let G′ be the graph which consists of s isolated brickwork graphs (each

denoted as G′i), each of the same dimensions required for the desired computation. An

example construction with s = 3 and one trap per graph together with a small brickwork

state for computation is given above. Black vertices correspond to auxiliary qubits

prepared on the (X−Y) plane or mixed state when they are inputs (inside square), star

vertices correspond to trap qubits and white vertices to auxiliary qubits prepared in the

computational basis. Edges represent entangling operators, dashed where entangling

has no effect (except of local rotations).

state given in Equation 8.3 in the blind setting. Pre-rotations on the neighbours of

dummy qubits guarantee that the computation is not affected by the choice of dummies

as described before.

Protocol 9 Verifiable DQC1-MBQC protocol with s−1 trap computations

Alice’s input:

• An angle vector a = (a1,1, . . . ,aw,d−1), where ai, j comes from the set A =

{0,π/4,2π/4, . . . ,7π/4}, that, when plugged in the measurement pattern Pa of

Equation 8.3 on the brickwork open graph state G of dimension (w,d) and flow

(f ,�), it implements the desired computation on fixed input |+〉〈+|⊗ Iw−1/2w−1.

Alice’s output:

• The top output qubit of G (qubit in position (1,d) in G) together with a 1-bit,

named acc, that indicates if the result is accepted or not.

8.2. Verification of One-Pure-Qubit 147

Protocol 9 (cont’d)

The protocol

• Preparation steps. Alice picks tg at random from {1, . . . ,s}. Let G′ be the

graph which consists of s isolated brickwork graphs, each of the dimension the

same as G. Then the tg-th isolated graph (named G′tg) will be the computational

subgraph for this run of the protocol.

• Alice maps the measurement angles of the computational subgraph G′tg to angles

of graph G: a′Gtg\Otg
= a and appropriately set the dependency sets Sx and Sz for

all the vertices of G′tg (according to the standard flow), while for the rest of the

vertices (graph G′ \G′tg) the sets Sx and Sz are empty.

• For k = 1 to s except tg:

1. Alice chooses one random vertex tk = (tx, ty)k among all vertices of G′k for

placing the trap.

2. By G′k’s geometry, vertex (tx, ty) may be connected by a vertical edge to

vertex (t ′x, ty), where t ′x represents either tx +1 or tx−1. We add in D (set of

dummies) all vertices of rows tx, t ′x (if it exists) of G′k, except the trap itself.

3. All elements of a′Gk
are mapped to 0.

• Alice chooses random variables θG′\D, each uniformly at random from A.

• Alice chooses random variables rG′ and dD, each ∈R {0,1}.

• For k = 1 to s:

1. Initial step. If k = tg then: Let (1,1)k be the position of the top input qubit

in G′k. Alice prepares the following states and sends them to Bob:

{(1,1)k} |+θ(1,1)k
〉

∀(i,1)k /∈ {(1,1)k} I/2

Otherwise: Alice prepares the following states and sends them to Bob:

∀(i,1)k ∈ D |d(i,1)k
〉

(i,1)k = tk ∏{m,l:(m,l)k∼(i,1)k,(m,l)k∈D}Zd(m,l)k |+θ(i,1)k
〉

∀(i,1)k /∈ {D, tk} I/2

148 Chapter 8. One-Pure-Qubit Model Verification

Protocol 9 (cont’d)

2. Main Iteration. For j = 1 to d−1, for i = 1 to w:

(a) Alice’s preparation

i. Alice prepares one pure qubit in one of the following states, de-

pending on (i, j+1)k:

(i, j+1)k ∈ D |d(i, j+1)k
〉

(i, j+1)k /∈ D ∏{m,l:(m,l)k∼(i, j+1)k,(m,l)k∈D}Zd(m,l)k |+θ(i, j+1)k
〉

ii. Alice sends it to Bob. Bob labels it as qubit (i, j+1)k.

(b) Entanglement and measurement

i. Bob performs the entangling operator(s):

∏
{m,l:(m,l)k∼(i, j)k,m≥i,l≥ j}

E(i, j)k,(m,l)k

ii. Bob performs the rest of the computation using classical help from

Alice:

A. Alice computes the corrected measurement angle a′′(i, j)k
=

(−1)
Sx
(i, j)k a′(i, j)k

+Sz
(i, j)k

π.

B. Alice computes actual measurement angle δ(i, j)k
= a′′(i, j)k

+

θ(i, j)k
+ r(i, j)k

π.

C. Alice transmits δ(i, j)k
to Bob.

D. Bob performs operation M
δ(i, j)k
(i, j)k

which measures and traces over

the qubit (i, j)k and retrieves result b(i, j)k
.

E. Bob transmits b(i, j)k
to Alice.

F. Alice updates the result to s(i, j)k
= b(i, j)k

+ r(i, j)k
mod 2.

3. Bob sends the final layer to Alice and Alice applies the final corrections if

needed (only in round tg).

4. If the trap qubit is within the qubits received, Alice measures it with angle

δtk = θtk + rtkπ to obtain btk . Also, Alice discards all qubits received by Bob

in this round except qubit (1,d)tg .

• Alice outputs qubit in position (1,d)tg and sets bit acc to 1 if btk = rtk for all k.

8.2. Verification of One-Pure-Qubit 149

To prove the complexity of the protocol we need to notice that although the graph

used satisfies the conditions of Theorem 10, the existence of the dummy qubits prepared

in the computational basis creates the need of a new proof.

Theorem 15. The computational power of Bob in Protocol 9 is within DQC1-MBQC.

Proof. Note that the s patterns are executed in series and Bob does not keep any qubits

between executions. The inputs to these patterns are almost maximally mixed, in

accordance with the purity requirement and this ‘mixedness’ propagates through both

computational and trap subgraphs. For the computational subgraph (which is not

entangled with the rest) the reasoning of the proof of Theorem 10 applies, since this

subgraph satisfies the sufficient conditions and no dummy qubits are used. In the case

of a trap subgraph k consider first those operations that apply on the isolated trap and

dummy subgraph only. Then for each step (i, j)k of the main iteration of the protocol

(where (i, j)k is a trap or a dummy) a new pure qubit is sent to Bob, which increases

the purity parameter by 1. Entangling will not have any effect on the purity parameter.

While the measurement does not increase the purity of the qubit since it was already

pure (dummy or trap remain always pure through the computation), and tracing out the

resulting qubit will decrease the purity by 1. Thus, the whole step will not change the

purity. On the other hand, for the remaining operations the reasoning of the proof of

Theorem 10 goes through, since this subgraph satisfies the sufficient conditions. Also

operations that apply on both subgraphs are all unitary therefore they do not affect

purity.

Using the definition of verifiability given in Definition 14 we prove the main theorem

for the existence of a correct and verifiable DQC1-MBQC protocol (Theorem 12). The

full proof is given in the next section, while here we describe the main steps.

Proof of Theorem 12 (Sketch). Correctness of Protocol 9 comes from the fact that the

computational subgraph is disentangled from the rest of the computation and if Bob

performs the predefined operations, from the correctness of the blind protocol Alice will

receive the correct output. Also, in this case, (and since the traps are corrected to cancel

the effect of their entanglement with their neighbouring dummies) the measurement of

the traps will give the expected result and Alice will accept the computation.

The proof of verifiability follows the same general methodology of the proof of

the original FK protocol [Fitzsimons and Kashefi, 2012], except the last part which

contains the counting arguments. For the rest we use single indexing for the qubits,

150 Chapter 8. One-Pure-Qubit Model Verification

where subgraph G′i consists of m qubits indexed (i−1)+1 to im. Consequently, the

total number of qubits in the protocol is sm. Parameter n represents the size of the input

of each subgraph (parameter w in the protocol).

Based on Definition 14 we need to bound the probability of the (purified) output

collapsing onto the wrong subspace and accepting that result. To explicitly write the

final state B j(ν) we need to define the following notations. Alice’s chosen random

parameters are denoted collectively by ν, a subset of those are related to the traps: νT

including tg, tk’s and θtk’s for k ∈ {1, . . . ,s} \ tg. Also νC = {ν \νT}. The projection

onto the correct state for each trap tk is denoted by |ηνT
tk 〉, where |ηνT

tk 〉= |+θtk
〉 when

tk ∈ Ok and |ηνT
tk 〉 = |rtk〉 otherwise (since the trap has been already measured). Cr

denotes the Pauli operators that map the output state of the computational subgraph

to the correct one. cr is used to compactly deal with the fact that in the protocol each

measured qubit i is decrypted by XOR-ing them with ri, except for the trap qubits

which remain uncorrected: ∀k : (cr)tk = 0. ρMν
k

denotes the density matrix representing

the total quantum state received by Bob from Alice for each round k of the protocol.

A special case is the tkth round where ρMν
k

represents the total state received by Bob

together with its purification (not known to Bob). The classical information received by

Bob at each elementary step i (measurement angles) are represented by |δi〉’s.

We allow Bob to have an arbitrary deviation strategy j, at each elementary step i

which is represented as CPTP map E j
i , followed by a Pauli Z measurement of qubit

i (since Bob has to produce a classical bit at each step and return it to Alice), which

is represented by taking the sum over projectors on the computational basis |bi〉, for

bi ∈ {0,1}. All measurement operators can be commuted to the end of the computation

and all CPTP maps can be gathered to a single map E j after Bob has received everything

from Alice, so that the failure probability can be written as:

pincorrect = ∑
b′,ν

p(ν)Tr(P⊥
s⊗

k=1

|ηνT
tk 〉〈η

νT
tk |

Cb′,νC |b′+ cr〉〈b′|E j

(
s⊗

k=1

m−n⊗
i=1

|δb′,ν
(k−1)m+i〉〈δ

b′,ν
(k−1)m+i|⊗ρMν

k

)
|b′〉〈b′+ cr|Cb′,νC†)

Our strategy will be to rewrite this probability by introducing the correct execution of the

protocol before the attack, on each subgraph k: Pk =
⊗m−n

i=1 (H(k−1)m+iZ(k−1)m+i(δ(k−1)m+i))EG′k
and at the same time decomposing the attack to the Pauli basis, using general Paulis

8.2. Verification of One-Pure-Qubit 151

σi,k applying on qubits (k−1)m+1≤ γ≤ km for each k.

pincorrect = ∑
b′,ν,v,i, j

αviα
∗
v j p(ν)Tr(P⊥

s⊗
k=1

|ηνT
tk 〉〈η

νT
tk |C

b′,νC |b′+ cr〉〈b′|

s⊗
k=1

(σi,k

(
Pk

m−n⊗
i=1

|δb′,ν
(k−1)m+i〉〈δ

b′,ν
(k−1)m+i|⊗ρMν

k
P †

k

)
σ j,k)|b′〉〈b′+ cr|Cb′,νC†

This way we can characterise which Pauli attacks give non-zero failure probability

when the final state is projected on the correct one. For convenience we introduce the

following sets for an arbitrary Pauli σi,k:

Ai,k = {γ s.t. σi|γ = I and (k−1)m+1≤ γ≤ km}

Bi,k = {γ s.t. σi|γ = X and (k−1)m+1≤ γ≤ km}

Ci,k = {γ s.t. σi|γ = Y and (k−1)m+1≤ γ≤ km}

Di,k = {γ s.t. σi|γ = Z and (k−1)m+1≤ γ≤ km}

We use the superscript O to denote subsets subject to the constraint km≥ γ≥ km−n+1.

For an arbitrary tg, the only attacks that give the corresponding term of the sum not

equal to zero: are those that (i) produce an incorrect measurement result for qubits

(tg− 1)m+ 1 ≤ γ ≤ tgm− n or (ii) operate non-trivially on qubits tgm− n < γ ≤ tgm.

We denote this condition by i ∈ Ei,tg and j ∈ E j,tg: |Bi,tg|+ |Ci,tg|+ |DO
i,tg| ≥ 1 and

|B j,tg|+ |C j,tg|+ |DO
j,tg| ≥ 1.

The next step will be to characterise which attacks of these subsets remain undetected

by the trap mechanism and try to find an upper bound on their contribution to the failure

probability. By applying blindness and observing that only the terms where σi,k = σ j,k

contribute we obtain the following upper bound (details in the next section):

pincorrect ≤∑
tg

∑
v,i∈Ei,tg

|αvi|2 p(tg) ∏
k={1,...,s}\tg

(∑
km−n<tk≤km,

θtk

p(tk,θtk)(〈+θtk
|σi|tk |+θtk

〉)2

+ ∑
(k−1)m<tk≤km−n,

rtk

p(tk,rtk)(〈rtk |σi|tk |rtk〉)
2)

The rest is based on a counting argument using ∀k, |Ai,k|+ |Bi,k|+ |Ci,k|+ |Di,k|= m.

152 Chapter 8. One-Pure-Qubit Model Verification

pincorrect ≤∑
tg

∑
v,i∈Ei,tg

|αvi|2
1
s ∏

k={1,...,s}\tg

1
2m

(2|Ai,k|+ |BO
i,k|+ |C

O
i,k|+2|Di,k \DO

i,k|)

≤∑
tg

∑
v,i∈Ei,tg

|αvi|2
1
s ∏

k={1,...,s}\tg

1
2m

(2m−|Bi,k|− |Ci,k|− |DO
i,k|)

We denote the product term ∏k={1,2,3,...,s}\z
1

2m(2m−|Bi,k|− |Ci,k|− |DO
i,k|) as Pi,z.

We also denote each set {E∗i,1∩E∗i,2∩ . . .∩E∗i,s}, where each term E∗i,w is either Ei,w or

its complement, EC
i,w, depending on whether the w-th value of a binary vector y (size s)

is 1 or 0 respectively, as Wi,y. Let the function #y give the number of positions i such

that yi=1.

=
1
s
(

s

∑
k=1

∑
{y:#y=k}

∑
i∈Wi,y,v

(|αvi|2 ∑
{z:yz=1}

Pi,z))

The condition i ∈Wi,y means that the following conditions hold together: {|Bi,w|+
|Ci,w|+ |DO

i,w| ≥ 1 : yw = 1},{|Bi,w|+ |Ci,w|+ |DO
i,w|= 0 : yw = 0}.

≤ 1
s
(

s

∑
k=1

∑
{y:#y=k}

∑
i∈Wi,y,v

|αvi|2k
(

2m−1
2m

)k−1

) =
1
s
(

s

∑
k=1

ckk
(

2m−1
2m

)k−1

)

where ck = ∑{y:#y=k}∑i∈Wi,y,v |αvi|2.

An upper bound on the above expression is:

pincorrect <
2m
s

(8.4)

8.3 Verifiability Proof

In this section we give the full proof of Theorem 12, the sketch of which proof was

given in the previous section. The same notation is followed.

The first step is to write the state of Alice’s system at the end of the execution of

the protocol for fixed Bob’s behaviour j and choices of Alice ν. We have utilised the

fact that all measurements can be moved to the end. Also, we have commuted all Bob’s

operations to the end (before the measurements) merging them to a single CPTP map.

The state of Alice is:

8.3. Verifiability Proof 153

B j(ν) = ∑
b
⊗s

i=k|+θtk+btk π〉〈+θtk+btk π|Cb,νC |b+ cr〉〈b|

E j

(
s⊗

k=1

m−n⊗
i=1

|δb,ν
(k−1)m+i〉〈δ

b,ν
(k−1)m+i|⊗ρMν

k

)
|b〉〈b+cr|Cb,νC†⊗s

i=k |+θtk+btk π〉〈+θtk+btk π|

where |+θtk+btk π〉〈+θtk+btk π| are used to define Alice’s measurement of the traps

which are part of the output state of each round k (if they exist).

To bound the failure probability, observe that projectors orthogonal to |ηνT
tk 〉’s vanish,

thus we have (where b′ = {bi}i 6=t1...ts):

pincorrect = ∑
b′,ν

p(ν)Tr(P⊥
s⊗

k=1

|ηνT
tk 〉〈η

νT
tk |

Cb′,νC |b′+ cr〉〈b′|E j

(
s⊗

k=1

m−n⊗
i=1

|δb′,ν
(k−1)m+i〉〈δ

b′,ν
(k−1)m+i|⊗ρMν

k

)
|b′〉〈b′+ cr|Cb′,νC†)

We introduce the following unitary, which characterises the correct operation on

each subgraph k: Pk =
⊗m−n

i=1 (H(k−1)m+iZ(k−1)m+i(δ(k−1)m+i))EG′k
.

We can rewrite the failure probability, introducing P †
k Pk’s on both sides of the

quantum state of the system before the attack, and absorbing the outermost unitaries

into the updated CPTP map E ′ j:

pincorrect = ∑
b′,ν

p(ν)Tr(P⊥
s⊗

k=1

|ηνT
tk 〉〈η

νT
tk |C

b′,νC

|b′+ cr〉〈b′|E ′ j
(

s⊗
k=1

(Pk

m−n⊗
i=1

|δb′,ν
(k−1)m+i〉〈δ

b′,ν
(k−1)m+i|⊗ρMν

k
P †

k)

)
|b′〉〈b′+ cr|Cb′,νC†)

We decompose E ′ j using the following facts: There exist some matrices {χv}
of dimension s(4m− 3n)× s(4m− 3n), with ∑v χvχ†

v = I such that for every density

operator ρ: E ′ j(ρ) = ∑v χvρχ†
v . Also, each χv can be decomposed to the Pauli basis:

χv = ∑i αviσi, with ∑v,i αviα
∗
vi = 1. Setting σi,k to be the part of σi that applies on the

qubits (k−1)m+1≤ γ≤ km.

pincorrect = ∑
b′,ν,v,i, j

αviα
∗
v j p(ν)Tr(P⊥

s⊗
k=1

|ηνT
tk 〉〈η

νT
tk |C

b′,νC

|b′+cr〉〈b′|
s⊗

k=1

(σi,k

(
Pk

m−n⊗
i=1

|δb′,ν
(k−1)m+i〉〈δ

b′,ν
(k−1)m+i|⊗ρMν

k
P †

k

)
σ j,k)|b′〉〈b′+cr|Cb′,νC†

154 Chapter 8. One-Pure-Qubit Model Verification

Without loss of generality we can assume that σi, σ j do not change the δ’s.

For an arbitrary tg, the only attacks that give the corresponding term of the sum not

equal to zero:

P⊥(Cb′,νC |b′〉〈b′+ cr|σi,tg

(Ptg

m−n⊗
i=1

|δb′,ν
(tg−1)m+i〉〈δ

b′,ν
(tg−1)m+i|⊗ρMν

tg
P †

tg)σ j,tg|b′〉〈b′+ cr|Cb′,νC†) 6= 0

are those that (i) produce an incorrect measurement result for qubits (tg−1)m+1≤
γ ≤ tgm− n or (ii) operate non-trivially on qubits tgm− n < γ ≤ tgm. We denote this

condition by i ∈ Ei,tg and j ∈ E j,tg .

We can rewrite the probability by eliminating P⊥ (observing that it applies to a

positive operator) and Cb′,νC (by the cyclical property of the trace):

pincorrect ≤ ∑
ν,v,i∈Ei,tg , j∈E j,tg

αviα
∗
v j p(ν)

s

∏
k=1

Tr(|ηνT
tk 〉〈η

νT
tk |

|b′〉〈b′+ cr|σi,k

(
Pk

m−n⊗
i=1

|δb′,ν
(k−1)m+i〉〈δ

b′,ν
(k−1)m+i|⊗ρMν

k
P †

k

)
σ j,k)

We extract a trace over R from ρMν
tg

. And extract the sums over νC,k’s from the

general sum, where νC,k is the subset of random parameters νC that are used for the

computation of round r:

= ∑
νT ,v,i∈Ei,tg , j∈E j,tg

αviα
∗
v j p(νT)

s

∏
k=1

Tr(|ηνT
tk 〉〈η

νT
tk |

|b′〉〈b′+ cr|σi,k

(
Pk ∑

νC,k

(p(νC,k)
m−n⊗
i=1

|δb′,ν
(k−1)m+i〉〈δ

b′,ν
(k−1)m+i|⊗TrR(ρMν

k
))P †

k

)
σ j,k)

To take advantage of the blindness property we use the following lemma where the

proof is given later.

Lemma 11 (Blindness (excluding the traps)).

∀k, ∑
νC,k

p(νC,k)
m−n⊗
i=1

|δb′,ν
(k−1)m+i〉〈δ

b′,ν
(k−1)m+i|⊗TrR(ρMν

k
)

=
Itk
k

Tr(Itk
k)
⊗|δθtk ,rtk

tk 〉〈δθtk ,rtk
tk |⊗ |+θtk

〉〈+θtk
|

8.3. Verifiability Proof 155

If k 6= tg, Itk
k =

⊗
4m−3n−1 I when km− n < tk ≤ km and Itk

k =
⊗

4m−3n−4 I when

(k−1)m < tk ≤ km−n . And if k = tg, Itk
k =

⊗
4m−3n I.

Lemma 11 allows us to simplify the big sum above based on the position of the

traps. We also sum over b′ since there are no longer any dependencies on it in the sum,

obtaining:

= ∑
tg,v,i∈Ei,tg , j∈E j,tg

αviα
∗
v j p(tg)

s

∏
k=1

Tr(

∑
km−n<tk≤km,

θtk

p(tk,θtk)|+θtk
〉〈+θtk

|σi,k(
I

Tr(I)
⊗|+θtk

〉〈+θtk
|)σ j,k

+ ∑
(k−1)m<tk≤km−n,

rtk

p(tk,rtk)|rtk〉〈rtk |σi,k(
I

Tr(I)
⊗|rtk〉〈rtk |)σ j,k)

where I =
⊗

4m−3n−1 I when k 6= tg. And I =
⊗

4m−3n I when k = tg.

Note that ∑θtk
Tr(|+θtk

〉〈+θtk
|σi,k(

I
Tr(I) ⊗ |+θtk

〉〈+θtk
|)σ j,k) is zero if σi,k 6= σ j,k.

The same is true for ∑rtk
Tr(|rtk〉〈rtk |σi,k(

I
Tr(I) ⊗|rtk〉〈rtk |)σ j,k). Therefore we can only

keep those terms where σi,k = σ j,k and the failure probability becomes:

= ∑
tg

∑
v,i∈Ei,tg

|αvi|2 p(tg) ∏
k={1,...,s}\tg

(∑
km−n<tk≤km,

θtk

p(tk,θtk)(〈+θtk
|σi|tk |+θtk

〉)2

+ ∑
(k−1)m<tk≤km−n,

rtk

p(tk,rtk)(〈rtk |σi|tk |rtk〉)
2)

The rest of the proof is based on a counting argument. For convenience we introduce

the following sets for an arbitrary Pauli σi,k:

Ai,k = {γ s.t. σi|γ = I and (k−1)m+1≤ γ≤ km}

Bi,k = {γ s.t. σi|γ = X and (k−1)m+1≤ γ≤ km}

Ci,k = {γ s.t. σi|γ = Y and (k−1)m+1≤ γ≤ km}

Di,k = {γ s.t. σi|γ = Z and (k−1)m+1≤ γ≤ km}

and use the superscript O to denote subsets subject to the constraint km ≥ γ ≥
km−n+1.

156 Chapter 8. One-Pure-Qubit Model Verification

The failure probability is then:

= ∑
tg

∑
v,i∈Ei,tg

|αvi|2
1
s ∏

k={1,...,s}\tg
((

1
8m

(8|AO
i,k|+4|BO

i,k|+4|CO
i,k|)+

1
2m

(2|Ai,k \AO
i,k|+2|Di,k \DO

i,k|))

Merging the terms:

= ∑
tg

∑
v,i∈Ei,tg

|αvi|2
1
s ∏

k={1,...,s}\tg

1
2m

(2|Ai,k|+ |BO
i,k|+ |C

O
i,k|+2|Di,k \DO

i,k|)

Using the fact that for every k, |Ai,k|+ |Bi,k|+ |Ci,k|+ |Di,k|= m:

≤∑
tg

∑
v,i∈Ei,tg

|αvi|2
1
s ∏

k={1,...,s}\tg

1
2m

(2m−|Bi,k|− |Ci,k|− |DO
i,k|)

The conditions i ∈ Ei,tg that we obtained at the first part of the proof are translated

to |Bi,tg|+ |Ci,tg|+ |DO
i,tg| ≥ 1. In order to be able to use these conditions we need to

rewrite the formula. First we expand it:

=
1
s
(∑

v,i∈Ei,1

|αvi|2 ∏
k={2,3,...,s}

1
2m

(2m−|Bi,k|− |Ci,k|− |DO
i,k|)

+ ∑
v,i∈Ei,2

|αvi|2 ∏
k={1,3,4,...,s}

1
2m

(2m−|Bi,k|− |Ci,k|− |DO
i,k|)

. . .+ ∑
v,i∈Ei,d

|αvi|2 ∏
k={1,2,...,s−1}

1
2m

(2m−|Bi,k|− |Ci,k|− |DO
i,k|))

We denote the product term ∏k={1,2,3,...,s}\z
1

2m(2m−|Bi,k|− |Ci,k|− |DO
i,k|) as Pi,z.

We also denote each set {E∗i,1∩E∗i,2∩ . . .∩E∗i,s}, where each term E∗i,w is either Ei,w or

its complement, EC
i,w, depending on whether the w-th value of a binary vector y (size s)

is 1 or 0 respectively, as Wi,y. Then we have:

=
1
s
(∑

y\(0...0)
∑

i∈Wi,y,v
(|αvi|2 ∑

{z:yz=1}
Pi,z))

Let the function #y give the number of positions i such that yi=1.

=
1
s
(

s

∑
k=1

∑
{y:#y=k}

∑
i∈Wi,y,v

(|αvi|2 ∑
{z:yz=1}

Pi,z))

8.3. Verifiability Proof 157

We separately consider the following term for any arbitrary y with #y = r.

∑
i∈Wi,y

(|αvi|2 ∑
{z:yz=1}

Pi,z)

The condition i ∈Wi,y means that the following conditions hold together: {|Bi,w|+
|Ci,w|+ |DO

i,w| ≥ 1 : yw = 1},{|Bi,w|+ |Ci,w|+ |DO
i,w|= 0 : yw = 0}. We expand:

= ∑
i∈Wi,y

(|αvi|2 ∑
{z:yz=1}

∏
k={1,2,3,...,s}\z

1
2m

(2m−|Bi,k|− |Ci,k|− |DO
i,k|)

= ∑
i∈Wi,y

(|αvi|2 ∑
{z:yz=1}

∏
{k:yk=1,k 6=z}

1
2m

(2m−|Bi,k|− |Ci,k|− |DO
i,k|)

∏
{k:yk=0}

1
2m

(2m−|Bi,k|− |Ci,k|− |DO
i,k|)

And by using the above conditions:

≤ ∑
i∈Wi,y

(|αvi|2 ∑
{z:yz=1}

∏
{k:yk=1,k 6=z}

1
2m

(2m−1) ∏
{k:yk=0}

1
2m

(2m)

= ∑
i∈Wi,y

(|αvi|2 ∑
{z:yz=1}

(
2m−1

2m

)r−1

= ∑
i∈Wi,y

|αvi|2r
(

2m−1
2m

)r−1

Thus, the bound of our failure probability will be:

pincorrect ≤
1
s
(

s

∑
k=1

∑
{y:#y=k}

∑
i∈Wi,y,v

|αvi|2k
(

2m−1
2m

)k−1

)

=
1
s
(

s

∑
k=1

k
(

2m−1
2m

)k−1

∑
{y:#y=k}

∑
i∈Wi,y,v

|αvi|2)

=
1
s
(

s

∑
k=1

ckk
(

2m−1
2m

)k−1

)

where ck = ∑{y:#y=k}∑i∈Wi,y,v |αvi|2

subject to conditions:

s

∑
k=1

ck ≤ 1 (8.5)

158 Chapter 8. One-Pure-Qubit Model Verification

and

∀k : ck ≥ 0 (8.6)

Proof of Lemma 11. First we define state |qi〉 as:

i ∈ D |qi〉 ≡ |di〉

i /∈ D |qi〉 ≡ (∏
{ j: j∼i, j∈D}

Zd j)|+θi〉

By substituting ρMν
k
’s and taking the trace over R:

If k 6= tg the state becomes:

∑
νC,k

p(νC,k)(
km⊗

i=km−n+1

|qi〉〈qi|
km−n⊗

i=(k−1)m+n+1

(
|δb′,ν

i 〉〈δ
b′,ν
i |⊗ |q

ν
i 〉〈qν

i |
)

2⊗
i=1

(
|δb′,ν

pi,k
〉〈δb′,ν

pi,k
|⊗ |qν

pi,k
〉〈qν

pi,k
|
)
⊗ I4(n−2)/24(n−2))

where |qν
pi,k
〉 denote the first layer pure qubits (a maximum of two) of the k-th

graph state, used as padding (dummies) or trap and their positions are defined as:

1+(k−1)m≤ {p1,k, p2,k} ≤ n+(k−1)m.

Otherwise, if k = tg the state becomes:

∑
νC,k

p(νC,k)(

tgm⊗
i=tgm−n+1

|qi〉〈qi|
tgm−n⊗

i=(tg−1)m+n+1

(
|δb′,ν

i 〉〈δ
b′,ν
i |⊗ |q

ν
i 〉〈qν

i |
)

⊗|δθu,ru
u 〉〈δθu,ru

u |⊗ |qθu
u 〉〈qθu

u |⊗ I4(w−1)/24(w−1))

where u = (tg−1)m+1 is the position of the single pure qubit of the input to the

DQC1-MBQC computation.

An implicit assumption was that all δ’s that are used to implement the measurements

of maximally mixed inputs are maximally mixed states themselves, without any loss of

generality.

We define a new controlled unitary:

P ′k =

(
∏

{i:i/∈D,(k−1)m+1≤i≤km−n}
Zi(−δi)

)
∏

{i:i/∈Dk}
∏

{ j: j∼i, j∈Dk}
Zi(d j) (8.7)

8.3. Verifiability Proof 159

where Dk denotes the set of dummies of subgraph G′k.

Using this unitary we rewrite the state. If k 6= tg it becomes:

∑
νCk

p(νC,k)P ′
†P ′(

km⊗
i=km−n+1

|qi〉〈qi|
km−n⊗

i=(k−1)m+n+1

(
|δb′,ν

i 〉〈δ
b′,ν
i |⊗ |q

ν
i 〉〈qν

i |
)

2⊗
i=1

(
|δb′,ν

pi,k
〉〈δb′,ν

pi,k
|⊗ |qν

pi,k
〉〈qν

pi,k
|
)
⊗ I4(n−2)/24(n−2))P ′†P ′

Otherwise:

∑
νC,k

p(νC,k)P ′
†P ′

tgm⊗
i=tgm−n+1

|qi〉〈qi|
tgm−n⊗

i=(tg−1)m+n+1

(
|δb′,ν

i 〉〈δ
b′,ν
i |⊗ |q

ν
i 〉〈qν

i |
)

⊗|δθu,ru
u 〉〈δθu,ru

u |⊗ |qθu
u 〉〈qθu

u |⊗ I4(w−1)/24(w−1))P ′†P ′

After applying the innermost unitary, if k 6= tg:

∑
νC,k

p(νC,k)P ′
†
(

km⊗
i=km−n+1

|q′i〉〈q′i|
km−n⊗

i=(k−1)m+n+1

(
|δb′,ν

i 〉〈δ
b′,ν
i |⊗ |q

′ν
i 〉〈q

′ν
i |
)

2⊗
i=1

(
|δb′,ν

pi,k
〉〈δb′,ν

pi,k
|⊗ |q

′ν
pi,k
〉〈q

′ν
pi,k
|
)
⊗ I4(n−2)/24(n−2))P ′

where state |q′i〉 is defined as:

i ∈ D |q′i〉 ≡ |di〉

i /∈ D,∀k : km≥ i≥ km−n+1 |q′i〉 ≡ |+θi〉

i /∈ D,∀k : km−n≥ i≥ (k−1)m+1 |q′i〉 ≡ |+−a
′′ b′,r<i
i −riπ

〉

Otherwise, if k = tg:

∑
νC,k

p(νC,k)P ′
†
(

tgm⊗
i=tgm−n+1

|q′i〉〈q′i|
tgm−n⊗

i=(tg−1)m+n+1

(
|δb′,ν

i 〉〈δ
b′,ν
i |⊗ |q

′ν
i 〉〈q

′ν
i |
)

⊗|δθu,ru
u 〉〈δθu,ru

u |⊗ |q
′θu
u 〉〈q

′θu
u |⊗ I4(w−1)/24(w−1))P ′

160 Chapter 8. One-Pure-Qubit Model Verification

It is essential for the proof that each term with index i in the tensor product depends

only on parameters with index ≤ i and the term with index (tg−1)m+1 (input qubit)

and the trap qubit and its measurement angle (if it is not an output) depend only on their

own parameters. This allows to break the summations and calculate them iteratively

from left to right, given the following:

∑
di

p(di)|di〉〈di|=
I
2

∑
θi

p(θi)|+θi〉〈+θi|=
I
2

∑
θi,ri,di

p(θi,ri,di)|δb′,ν
i 〉〈δ

b′,ν
i |⊗ |di〉〈di|=

I4

24

∑
θi,ri

p(θi,ri)|δb′,ν
i 〉〈δ

b′,ν
i |⊗ |+−a

′′ b′,r<i
i −riπ

〉〈+
−a
′′ b′,r<i
i −riπ

|

= ∑
ri

p(ri)

(
∑
θi

p(θi)|a
′′ b′,r<i
i +θi + riπ〉〈a

′′ b′,r<i
i +θi + riπ|

)
⊗|+

−a
′′ b′,r<i
i −riπ

〉〈+
−a
′′ b′,r<i
i −riπ

|

= ∑
ri

p(ri)
I3

23 ⊗|+−a
′′ b′,r<i
i −riπ

〉〈+
−a
′′ b′,r<i
i −riπ

|

=
I4

24

where In =
⊗

n I. The last step was possible because each corrected computation

angle a′′i depends only on past r’s.

And finally (for u = (tg−1)m+1),

∑
θu,ru

p(θu,ru)|δθu,ru
u 〉〈δθu,ru

u |⊗ |+−a′u−ruπ
〉〈+−a′u−ruπ

|

= ∑
ru

p(ru)

(
∑
θu

p(θu)|a
′
u +θu + ruπ〉〈a

′
i +θu + ruπ|

)
⊗|+−a′u−ruπ

〉〈+−a′u−ruπ
|

=
I4

24

For k 6= tg, if km≥ tk ≥ km−n+1 the above procedure will eventually give:

8.3. Verifiability Proof 161

P ′†(
I4m−3n−1

24m−3n−1 ⊗|+θtk
〉〈+θtk

|)P ′

=
I4m−3n−1

24m−3n−1 ⊗|+θtk
〉〈+θtk

|

If km−n≥ tk ≥ (k−1)m+1 the above procedure will eventually give:

P ′†(
I4m−3n−4

24m−3n−4 ⊗|δ
νT
tk 〉〈δ

νT
tk |⊗ |+rtk π〉〈+rtk π|)P ′

=
I4m−3n−4

24m−3n−4 ⊗|δ
νT
tk 〉〈δ

νT
tk |⊗ |+θtk

〉〈+θtk
|

And for k = tg the result will be:
⊗

4m−3n I, which concludes the proof.

Part IV

Verification and Quantum Security

163

Chapter 9

Overview

Looking at the bigger picture, quantum verification can be seen as a member in the

family of quantum security primitives, i.e. primitives that intend to secure the commu-

nication and manipulation of quantum information (as opposed to quantum protocols

used to promote classical security). Starting with an insecure quantum channel, one

wants to encrypt a state before transmitting it so that no eavesdropper gains any new

information about the state. The next step, is to take measures against malleability, i.e.

the possibility of the adversary who controls the channel to change the encrypted state

so that it encodes a different message. This is achieved by quantum authentication,

where some extra elements added on top of encryption allow the receiver to decide if

it accepts or rejects the state it receives. Verification can be seen as the authentication

of a state that has gone through a transformation and the receiver has to decide if the

final output is the correct output of the computation. An extra property in the delegated

computation scenario, which does not necessarily assume verification, is the property

of blindness, where the prover does not learn anything about the transmitted state and

the computation to be performed - thus state and computation should be encrypted.

The goal of this part is to study the relations of these primitives, and use them to

derive new results or point to possibly helpful directions. In particular, taking the same

approach as in [Barnum et al., 2002], which studies the relation between encryption and

authentication, and in [Aharonov et al., 2010], which provides a verification protocol

based on authentication, we build the verification protocol of [Fitzsimons and Kashefi,

2012] out of the primitives of encryption (and blindness) and authentication. We pose

the question of what are the necessary ingredients to build the simplest verification

protocol and finally we try to make connections to the impossibility of classical verifier

question, which is still unanswered and central to the field.

165

166 Chapter 9. Overview

The main contributions of this part are:

• Providing a protocol that enables the authentication of a quantum state that is

transmitted through an untrusted quantum channel, given that the two end parties

share a secret classical key. This protocol is based on the idea of trapification,

as in [Fitzsimons and Kashefi, 2012], and quantum encoding. Note that these

results where proven independently in [Broadbent et al., 2012] but with a different

motivation.

• Drawing the roadmap on the sufficient and the necessary steps for building a

verification protocol and relate to the classical verifier (im)possibility question

which is our motivation.

9.1 Preliminaries and Related Work

Before studying their relations, we need to provide the formal definitions of the security

primitives we consider in this part.

Quantum encryption and quantum blindness are two security primitives that relate to

the secrecy or confidentiality of information in the presence of an adversary. A quantum

encryption scheme is defined in the context of insecure quantum channels, where one

party (Alice) wants to communicate a quantum state to another party (Bob) and needs

to keep the transmitted state hidden from any possible eavesdropper (Eve) [Barnum

et al., 2002].

Definition 15. An encryption scheme with error ε for quantum states hides information

so that if ρ0 and ρ1 are any two distinct encrypted states, then the trace distance

D(ρ0−ρ1) =
1
2Tr|ρ0−ρ1| ≤ ε

Notice that this definition considers approximate encryption, with perfect secrecy

(perfect encryption) being the case when ε = 0.

Quantum blindness is defined in the context of insecure delegated quantum comput-

ing. We already gave the definition of perfect blindness in Section 1.2, and discussed it

extensively in the previous parts. If we want to compare it with quantum encryption, we

can imagine that Alice sends to a channel an encrypted quantum state and an encrypted

description of a transformation. The untrusted channel (now Bob) is able to apply the

transformation to the state without learning anything about the original (decrypted) state

and the original (decrypted) transformation applied on it. Notice that such a protocol

9.1. Preliminaries and Related Work 167

might require many rounds of interaction between Alice and Bob and the requirement

is that no round leaks any of the confidential information. Approximate blindness can

be defined similarly to the definition of perfect blindness:

Definition 16 (Approximate Blindness). Let P be a protocol for delegated computation:

Alice’s input is a description of a computation on a quantum input, which she needs to

perform with the aid of Bob and return the correct quantum output. Let ρAB denote the

joint initial state of Alice and Bob and σAB their joint state after the execution of the

protocol, when Bob is allowed to do any deviation from the correct operation during

the execution of P, averaged over all possible choices of random parameters by Alice.

The protocol P is ε-blind if

∀ρAB ∈ L(HAB),∃E : L(HB)→ L(HB), s.t. TrA(σAB)≈ε E(TrA(ρAB)) (9.1)

Quantum Authentication is defined using the following scheme [Barnum et al.,

2002]:

Definition 17. A quantum authentication scheme (QAS) is a pair of polynomial time

quantum algorithms A and B together with a set of classical keys K such that:

• A takes as input an m-qubit message system M and a classical key k ∈ K and

outputs a transmitted system T of m+ t qubits.

• B takes as input the (possibly altered) transmitted system T and the classical key

k and outputs two systems: an m-qubit message state M′, and a single qubit V

which indicates acceptance or rejection. The classical basis states of V are called

|ACC〉, |REJ〉 by convention.

For any fixed key k, we denote the corresponding super-operators by Ak and Bk.

A QAS should have the following property [Barnum et al., 2002]:

Definition 18. A QAS is secure with error ε for a state |ψ〉 if it satisfies:

Completeness: ∀k ∈K : Bk(Ak(|ψ〉〈ψ|)) = |ψ〉〈ψ|⊗ |ACC〉〈ACC|
Soundness: For all CPTP-maps O which represent adversary’s intervention:

Tr

(
Pgood ∑

k
p(k)Bk(O(Ak(|ψ〉〈ψ|)))

)
≥ 1− ε

where Pgood is the projection into the desired (‘good’) subspace :

168 Chapter 9. Overview

Pgood = |ψ〉〈ψ|⊗ IV +(IM−|ψ〉〈ψ|)⊗|REJ〉〈REJ|

A QAS is secure with error ε if it is secure with error ε for all states |ψ〉.

Equivalently we could define soundness using the ‘bad’ projector (Pbad = I−Pgood =

(IM−|ψ〉〈ψ|)⊗|ACC〉〈ACC|) and demand it is small.

Also, it is important to clarify that if we ask the condition to be ‘the probability

of the state collapsing into the incorrect subspace when the state is accepted, is low’

(therefore making the probability conditional) this would make such a protocol much

harder to construct. The security of the existing protocols will always be broken by an

attacker who always replaces the state by a random state, i.e the state seen by Alice is

the maximally mixed state. Then - for the existing protocols that we study - there will

always be some probability that the state is accepted and, when it is accepted, the state

will collapse with a fixed (not bounded by ε) probability into the incorrect subspace. ∗

Verification, already defined in Section 1.2, can be seen as an extension of QAS in

the delegated computing scenario, were the untrusted ‘channel’ is also able to perform

a computation on the state transmitted, and the receiver (which could be the same as the

sender in this case, so that there is no need for classical secret key distribution) is able to

tell if the state received is the correct transformed one. It is important here to emphasise

the different ‘flavours’ of verification definitions, depending on whether the input is

quantum or classical and whether the output is quantum or classical. For example, the

question of a classical verifier protocol has no clear meaning if we consider a protocol

that admits an arbitrary quantum input, which is unknown to the verifier. In that case the

verifier will have to measure the state and therefore lose some of the information before

transmitting it to the prover. In the case of a classical input verification protocol, without

loss of generality we can assume that the unencrypted input to the computation is the

blank state |0〉⊗m. It is important to stress that when we speak about classical or quantum

input we speak only about the input to the computation that is to be delegated and not

about any auxiliary states send by Alice to Bob to accommodate this computation (e.g.

in MBQC the |+〉 states of the subgraph G\ I).

A known result, proved in [Barnum et al., 2002], is the relation between quantum

authentication and encryption. Quoting from this paper:

∗For example in the trap-based authentication scheme, when the attacker replaces the state by the
maximally mixed state and we condition on the traps being accepted the rest of the state is still in the
maximally mixed state therefore the conditional probability of failure cannot be bounded by an arbitrary
ε

9.1. Preliminaries and Related Work 169

For classical information, authentication and encryption can be considered com-

pletely separately, but in this section we will show that quantum information is different.

While quantum states can be encrypted without any form of authentication, the converse

is not true: any scheme which guarantees authenticity must also encrypt the quantum

state almost perfectly.

More formally [Barnum et al., 2002]:

Theorem 16. A Quantum Authentication scheme with error ε is an encryption scheme

with error at most 4ε1/6.

Proof intuition for the above theorem comes from considering the following extreme

case. Let ρ|0〉 and ρ|1〉 be the density operators of the encodings of the computational

basis states of an input qubit according to the authentication scheme. Let ρ|0〉 and ρ|1〉 be

perfectly distinguishable quantum states which is the opposite end to perfect encryption.

Since, when proving soundness of a QAS, the prover is able to apply any possible

attack, he might apply the following attack unitary: the basis elements of the support

of ρ|1〉 get a −1 phase, while the orthogonal elements (which include the support of

ρ|0〉) remain unchanged. Due to linearity, this attack will transform the encoding of the

state |0〉+ |1〉 to the encoding of the state |0〉− |1〉, thus the detection will find no error

and the decoding will give an incorrect state. The analogous attack is not possible in

classical state authentication. After a series of lemmas, they prove that there are similar

attacks on states that are not perfectly distinguishable, but not totally indistinguishable,

and therefore prove the theorem.

Another interesting result that relates quantum blindness with a classical impossibil-

ity statement comes from [Morimae and Koshiba, 2014]:

Theorem 17. If a classical input delegated quantum computing protocol, which uses

affine encryption, can give perfect blindness then BQP⊆ BPP.

Notice that for a classical input blind protocol, since we assume the input to be

the blank state, we need to hide only the description of the transformation, which is a

classical state. The assumption is that this description is encrypted by a classical affine

encryption, e.g. a classical one-time-pad.

Finally, it is important to mention that all definitions of security seen in this chapter

(and in fact in the whole of this thesis) fall to the category of information theoretical

security. One can consider also computational theoretical security, where the security

depends on the computational restrictions imposed on the adversary, and derive different

results.

Chapter 10

From Quantum Encryption to

Verification

We start this chapter by building an authentication protocol that is inspired by the

FK protocol. We use the same trapification technique, i.e. placing a number of traps

between the normal qubits that contain the information to be transmitted. First we

present a protocol with a single trap and later we place more traps and employ a QECC

encoding for probability amplification.

10.1 An Authentication Protocol

In Protocol 10 the description of a QAS protocol based on traps is given. It applies

to the context of secure communication: Alice sends a state to Bob and if state was

unaltered Bob receives the correct state and if the state was altered (in any possible

way) Bob declares correct an incorrect state with low probability.

Protocol 10 Trap-based QAS

Alice’s input. A quantum state |ψ〉 of size n = m−1 qubits.

Bob’s output. A quantum state (which should be |ψ〉 for an honest protocol) and an

indicator bit for the acceptance or rejection of the output.

The protocol

1. Alice selects a random quantum one-time padding key (x,z) ∈R {0,1}2m.

171

172 Chapter 10. From Quantum Encryption to Verification

Protocol 10 Cont’d

2. Alice selects a random position 1≤ t ≤m for placing the trap and one random bit

to select the stabilizer of the trap between X or Y (or any pair of non-commuting

stabilizers ex. X and Z)

3. Alice produces the ‘logical’ state by adding the trap qubit |η〉〈η| and applying

the Pauli padding Px,z to the whole state of size m.

4. Alice sends state to Bob

5. We assume that Bob learns from Alice via a secure classical channel the following

parameters: quantum one-time padding key, random position and type of the trap.

6. Bob undoes the Pauli padding using the same key.

7. Bob does a stabilizer measurement on the trap (depending on the choice of

parameters) and if the result is 1 (or equivalently the error vector is zero) he

accepts otherwise he rejects.

Theorem 18. Protocol 10 is a QAS with ε = 2m−1
2m

Proof. Since the declaration of the correctness of the state depends only on the trap

measurement we can write the failure probability as the probability of the trap measure-

ment giving 1 (state declared correct) and the state being corrupted (collapsing to the

orthogonal subspace after measurement), averaged over all keys:

pfail = ∑
x,z,t,η

p(x,z, t,η)

Tr(|η〉〈η|t⊗ (I−|ψ〉〈ψ|)(Px,zE(Px,z(|η〉〈η|t⊗|ψ〉〈ψ|)Px,z)Px,z)) (10.1)

where E is an arbitrary CPTP-map modelling the channel. p(x,z, t,η) is the proba-

bility of choosing a particular set of parameters (all are drawn from uniform random

distribution).

Writing the channel operator in the Pauli basis Pm:

10.1. An Authentication Protocol 173

= ∑
x,z,t,η

p(x,z, t,η)

Tr

(
|η〉〈η|t⊗ (I−|ψ〉〈ψ|)(∑

i, j
αi, jPx,zPiPx,z(|η〉〈η|t⊗|ψ〉〈ψ|)Px,zP jPx,z)

)
(10.2)

where Pi, P j take all possible values from Pm and each term has complex coefficient

αi, j.

We can use the Pauli twirling lemma given as Lemma 2, which states that a random

Pauli rotation converts the channel attack to a mixture of Pauli attacks (not a uniform

random mixture, but some mixture of Pauli operators). After the lemma is applied we

have:

= ∑
t,η

p(t,η)Tr

(
|η〉〈η|t⊗ (I−|ψ〉〈ψ|)(∑

i
αiPi(|η〉〈η|t⊗|ψ〉〈ψ|)Pi)

)
(10.3)

where Pi takes all possible values from Pm. Elements {αi} are real numbers which

depend on E and sum up to 1.

We can eliminate the all identity ‘attacks’ (say with index i = 0) from the sum

because in this case the state is always (for any t) projected to its orthogonal subspace

giving probability 0:

= ∑
t,η

p(t,η)Tr

(
|η〉〈η|t⊗ (I−|ψ〉〈ψ|)(∑

i\0
αiPi(|η〉〈η|t⊗|ψ〉〈ψ|)Pi)

)

= ∑
i\0

αi

(
∑
t,η

p(t,η)Tr
(
|η〉〈η|t⊗ (I−|ψ〉〈ψ|)(Pi(|η〉〈η|t⊗|ψ〉〈ψ|)Pi)

))
(10.4)

Since any (non-identity) Pauli attack is possible we need to examine each possible

attack separately and find a common maximum. This will determine the upper bound

since the formula contains a convex combination of attack terms.

We observe that every (non-identity) Pauli attack will be caught by at least one

stabilizer measurement in the sum over t,η: A (non-identity) Pauli attack will have at

least one X , Y or Z at one position, say t ′. This will be ‘caught’ respectively by Y , X

or Y (and X)-stabilized traps when t = t ′ (ex. 〈+|Z|+〉2 = 0). Given that we have 2m

equiprobable elements in the sum, a maximum for any attack is always 2m−1
2m , which

gives the global upper bound for the failure probability.

174 Chapter 10. From Quantum Encryption to Verification

Therefore the single trap protocol is a valid QAS with completeness 1 and soundness
2m−1

2m . Of course, a practically useful QAS should have a better soundness bound.

From the above one can easily see that the random keys related to the position and

the choice of stabilizer for the trap are necessary for the protocol to work, since we

need to detect (at least) any Pauli attack at any position for the detection procedure to

work for any type of channel (thus giving a QAS). The use of Pauli key is justified by

the need to eliminate complex coefficients αi, j and the cross terms Pi, Pj so that we can

study the attack as a convex combination of unitary terms. By Theorem 16 it follows

that some level of encryption is indeed a necessary element of any QAS protocol.

It is worthwhile mentioning that the same bound is true even when the adversary

has some prior knowledge of the state, because the proof works for any possible attack

by the adversary that is independent of the secret keys.

Another version of the trap-based QAS is presented in Protocol 11, where the error

probability is amplified to exponential on a security parameter d.

Protocol 11 Amplified Trap-based QAS

Alice’s input. A quantum state |ψ〉 of size n qubits.

Bob’s output. A quantum state (which should be |ψ〉 for an honest protocol) and an

indicator bit for the acceptance or rejection of the output.

The protocol

1. The protocol is parametrized by a QECC that detects d errors.

2. Alice selects a random quantum one-time padding key (x,z) ∈R {0,1}2m.

3. Alice selects a set T of random positions 1≤ t ≤ m for placing the N traps and

one random bit for each trap to select the stabilizer the trap between Pauli X and

Y (or any pair of non-commuting stabilizers ex. X and Z)

4. Alice encodes the quantum input of size n using this particular QECC into a

codeword of size m′.

5. Alice produces the final state by adding the N trap qubits |η〉〈η|t at random

positions and applying the Pauli padding Px,z to whole state of size m = m′+N.

10.1. An Authentication Protocol 175

Protocol 11 Cont’d

6. Alice sends state to Bob

7. Bob undoes the Pauli padding using the same key (we assume that Bob knows all

keys from before).

8. Bob applies a syndrome measurement on the m′ qubits and aborts if an error is

detected. (or corrects the error)

9. Bob does stabilizer measurement on the traps (depending on the choice of param-

eters) and if the result is 1 (or equivalently the error vector is zero) he accepts

otherwise he rejects.

Theorem 19. Protocol 11 is a QAS with ε = (1− N
2m)

d

Proof. Since the declaration of the correctness of the state depends only on the trap mea-

surement we can write the error probability as the probability of the trap measurement

giving 1 and the state being corrupted, as before, averaged over all keys:

pfail = ∑
x,z,T,η

p(x,z,T,η)

Tr(⊗t∈T |η〉〈η|t⊗ (I−|ψ〉〈ψ|)D(Px,zE(Px,z(⊗t∈T |η〉〈η|t⊗|Ψ〉〈Ψ|)Px,z)Px,z))(10.5)

where E is an arbitrary CPTP-map modelling the channel. Term p(x,z, t,η) is the

probability of choosing a particular set of parameters (all are drawn from a uniform

random distribution). State |Ψ〉〈Ψ| is the encoding of the state |ψ〉〈ψ| transmitted,

according to the specific QECC. Map D is a CPTP-map that represents the decoding

procedure for the QECC.

We can use the Pauli twirling lemma again to get:

= ∑
k

∑
T,η

p(T,η)

Tr

(
⊗t∈T |η〉〈η|t⊗ (I−|ψ〉〈ψ|)D(∑

i
αi,kPi(⊗t∈T |η〉〈η|t⊗|Ψ〉〈Ψ|)Pi)

)
(10.6)

where Pi takes all possible values from Pm.

Analysis of attacks: Assuming that the decoding procedure D will reconstruct the

correct state |ψ〉〈ψ| unless the footprint of the Pauli error is bigger that d, we can

176 Chapter 10. From Quantum Encryption to Verification

eliminate all Pi’s that contain more or equal than m−d identities. We denote this set of

Pauli operators as E.

= ∑
k

∑
i∈E

αi,k(
∑
T,η

p(T,η)Tr
(
⊗t∈T |η〉〈η|t⊗ (I−|ψ〉〈ψ|)(Pi(⊗t∈T |η〉〈η|t⊗|Ψ〉〈Ψ|)Pi)

))
(10.7)

The above can be simplified to:

= ∑
k

∑
i∈E

αi,k

(
∑
T,η

p(T,η)Tr
(
⊗t∈T (〈η|tPi|t |η〉t)2

))
(10.8)

We continue by breaking the whole state (of size m) into N partitions of the same

size (m/N), each one containing a single trap.

= ∑
k

∑
i∈E

αi,k

(
Tr

(
⊗N

γ=1(∑
tγ,η

p(tγ,η)〈η|tγPi|tγ|η〉tγ)2

))
(10.9)

A common upper bound for the elements of the inner summation is 2m/N−wi,γ
2m/N =

1− Nwi,γ
2m , where wi,γ is the number of non-identity elements of Pi|tγ :

= ∑
k

∑
i∈E

αi,k

N

∏
γ=1

(1−
Nwi,γ

2m
)

≤∑
k

∑
i∈E

αi,k

N

∏
γ=1

(1− N
2m

)wi,γ

= ∑
k

∑
i∈E

αi,k(1−
N
2m

)∑
N
γ=1 wi,γ

= ∑
k

∑
i∈E

αi,k(1−
N
2m

)wi

≤∑
k

∑
i∈E

αi,k(1−
N
2m

)d

≤ (1− N
2m

)d

10.2 A Recipe for Quantum Authentication

By looking in the structure of the trap-based QAS and the polynomial QAS on which

the ABE verification protocol is based we trace some common properties. These might

10.3. Authentication to Verification and Classical Impossibility 177

imply the existence of a more general methodology for constructing a QAS such as:

1. Encode the quantum message to enable a random channel error detection proce-

dure. In the trap-based QAS protocol we insert an extra trap subsystem which

is measured to detect an error. This is indeed an encoding of the state, since the

transmitted system contains the original system and some overhead (the trap) used

for error detection - e.g. a random phase flip channel will always be detected with

some fixed probability by a |+〉 trap qubit padded at the end of the message. In

polynomial QAS protocol we encode the message using the quantum polynomial

code.

2. Randomise the encoding to enable detection of arbitrary (adversarial) Pauli errors.

In the trap-based QAS protocol this corresponds to the random position and type

of the trap. In the polynomial QAS protocol it is the random sign key for the

values of the polynomial. One other example of such randomized families of

codes are the family of purity testing codes in [Barnum et al., 2002] which are

used to purify shared EPR pairs.

3. Encrypt the encoded state by a quantum one-time-padding to enable detection

of arbitrary (adversarial) errors. This is performed in both trap-based QAS and

polynomial QAS protocols. It emerges naturally in the QAS in [Barnum et al.,

2002] from the Pauli corrections that follow the teleportation of the state from

Alice to Bob using the EPR pairs.

It is worthwhile mentioning that in the field of quantum error correction it suffices to

be able to correct Pauli errors to correct any type of error (based on a linearity argument).

This is not the case here, since we always need the extra encryption to detect adversarial

non-Pauli errors by reducing them to Pauli errors by the encryption.

10.3 Authentication to Verification and Classical Impos-

sibility

We argue how we can go from the QAS to the verification protocol in the case of both

FK and ABE protocols.

In the FK protocol we add the extra element of blindness. This happens for the

following reason: Alice asks Bob to measure the qubits following the MBQC pattern,

178 Chapter 10. From Quantum Encryption to Verification

and since some of them are trap measurements, all the measurement angles need to be

hidden so that Bob cannot distinguish between the case of measuring a trap or a normal

qubit and cheat selectively (and also should not know what was the type of the trap).

Blindness of the measurement angles is achieved by rotating them by a random angle,

thus effectively applying a classical full one-time-pad on the bits that describe the angles.

Crucially, to cancel this rotation we need to pre-rotate all the quantum states (input

and auxiliary qubits) that Alice sends to Bob, thus the necessity of a quantum verifier.

Also, the quantum state that Bob holds at any step of the execution of the protocol is

encrypted with a quantum one-time-pad. This comes from the following facts: firstly,

in the case of quantum input, the input qubits are quantumly one-time-padded when

sent to Bob. Secondly, a quantum one-time-pad is kept at any step of the protocol by

the random Z rotations on the measurement angles (parameter ri) effectively creating a

random Pauli X rotation after the teleportation on the target qubit. Finally, in the case

of quantum output, the auxiliary |+〉 qubits that are sent to Bob are randomly Z rotated

which adds to the one-time pad of the final state. Alice needs always to keep track of

the current Pauli corrections that undo the quantum one-time-pad.

In the ABE protocol blindness of computation is not necessary, since the measure-

ment angles of Bob are always fixed. Crucially, the states that Bob receives, should

be already secretly encoded by the QAS so Alice has to have a constant size quantum

computer. The state remains quantumly one-time-padded at any step of the computation

since all the input and the auxiliary states used are quantumly one-time padded with

independent keys. However, the keys change after applying the logical operations, and

Alice needs to keep track of these changes, as it is also the case in the FK protocol.

In both FK and ABE protocols, the randomization of the encoding, type and position

of the trap in the FK protocol or sign key in the ABE protocol, are not affected by the

computation. Thus the state at any stage of the protocols can be seen as a QAS state

and Alice (being both the sender and the receiver of the state) can check if the state is

encoded in the correct code space.

Having seen a way of constructing a verification protocol, starting from the princi-

ples of encryption and, in the case of the FK protocol, blindness we turn our attention in

the backwards direction, i.e. what are the necessary elements in a verification protocol.

We start by the observation that a verification protocol with quantum input and

quantum output must necessarily ‘contain’ a QAS scheme and consequently a quantum

encryption scheme.

Lemma 12. Any quantum-input / quantum-output ε-verifiable protocol is also a Quan-

10.3. Authentication to Verification and Classical Impossibility 179

tum Authentication scheme with error ε and a quantum encryption with error at most

4ε1/6.

Proof. The simulation is straightforward. Alice encodes the quantum input according to

the verification protocol and sends it through an untrusted quantum channel to another

trusted party say, Bob, with whom Alice has shared the secret key of the verification

(verification assumes the existence of secure classical channels). Bob applies the

decoding procedure for the verification protocol with the correct key and accepts or

rejects the output. The untrusted channel can apply any CPTP-map and by the properties

of any verification protocol where the delegated computation is the identity and the

attack of the untrusted prover is the attack of the channel, the probability of the state

sent from Alice to Bob to be corrupted and Bob accepting is bounded by ε. The second

implication follows from Theorem 16.

Is it true that any verification protocol contains a blind protocol? If it was the case

then by Theorem 17 we would make a big step towards the much sought result of

impossibility of classical verifier. However, this is not the case for some verification

protocols - we already have an example on a non-blind verification protocol, the ABE

protocol.

A short discussion follows for the possible next steps towards the classical verifier

impossibility result. A common element of all existing verification protocols with a

preparing verifier and BQP prover is that encryption is always a random Pauli rotation

(quantum one-time-pad) and that the computation is always based on a measurement-

based model (Clifford unitary operators and single qubit measurements, which allows

the Pauli encryption to ‘propagate’ until the end of the computation).

Let us assume that there is a verification protocol with a classical verifier and

with only classical interaction with the single prover. Also this verification protocol is

universal, i.e. can verify any problem in BQP with failure probability bounded by ε. The

computation of the prover can be written, as usual, as the honest computation, which

must be a poly-time quantum circuit or equivalent model of quantum computation since

BQP is believed not to be classically simulable, and any possible quantum deviation at

any computational step. Then, if the state is distinguishable at any step, Bob will be able

to apply an (−1) phase attack of the kind mentioned in the proof sketch of Theorem

16 and produce a different encoded state that can potentially lead to an incorrect, but

undetectable by the verification procedure, output. The question is whether classical

encryption, introduced by the restricted computationally devices of the verifier, is

180 Chapter 10. From Quantum Encryption to Verification

enough to make the internal state of Bob indistinguishable at any step, for any universal

quantum computation, and thus avert this kind of attack. We think that the study of

such encryption techniques, moving further from the standard Pauli rotations used

in all single prover protocols so far, can provide an insight in the existence or not of

classical verifier verification schemes. This, however, cannot preclude the existence

of verification techniques that do not use an error detection procedure as a final step.

Also, one needs to consider verification schemes with a weaker verifier, e.g. with the

ability to prepare a logarithmic number of qubits. We think that these questions may be

relevant to further exploration of this topic.

Part V

Blindness and Classical Security

181

Chapter 11

Overview

In this part we turn our attention from solving a quantum security task to solving a

classical security task by using quantum means. The principle of secure delegated

computation, where a remote device computes on encrypted data without decrypting

them first [Rivest et al., 1978], has been applied succesfully in the classical setting (e.g.

in secure multi party computation [Yao, 1982, Goldwasser, 1997] or fully homomorphic

encryption [Gentry, 2009]). However, one can envision that adapting the techniques

of quantum blind computation, by introducing some modest quantum enhancement on

the client-server system, may lead to improvement in the classical setting. The idea

of utilizing quantum means to achieve classical security has already proved successful

[Bennett, 1984]. The goal here is to provide a protocol, that demonstrates a novel usage

of quantum, and uses quantum devices already available in scientific or commercial

labs. Blindness can also be seen as a stepping stone for verifiability, and while the latter

will not be considered in this part of the thesis, this extension is left as an open question.

By restricting the task to classical computation only, we derive a family of protocols

for unconditionally secure delegation of any classical computation to a remote server

that has access to basic quantum devices. Concretely, we present how a client with

access to a non-universal classical gate (e.g. parity gate) could securely delegate the

computation of a universal gate (e.g. NAND gate) to an untrusted server with capability

of manipulating a single qubit. We note that, in this part, the security of the protocol

pertains to the privacy, or confidentiality, or blindness of the protocol - we require that

no information about the clients input leaks to the server.

The main contributions of this part are:

• A family of protocols (called Secure-NAND) to blindly calculate a NAND gate,

with the client classically restricted to XOR operations and random bit generation

183

184 Chapter 11. Overview

and quantumly restricted to manipulation of either a 3-qubit state (GHZ) or a

single qubit state. Also, a proof is given for the impossibility of achieving the

same task when the devices are purely classical.

• A no-go result for a quantum off-line version of the Secure-NAND. In fact, in

all Secure-NAND protocols the state of the qubits that the client sends to the

server depends on the inputs of the client, i.e. the classical bit that are the input to

NAND. This is in contrast to protocols for secure delegated quantum computation,

presented in the previous parts, where the quantum state is independent of the

input and description of the computation.

This part of the thesis was published in [Dunjko et al., 2016] as joint work with

Vedran Dunjko and Elham Kashefi and is contained here with the permission of the main

author of the paper Vedran Dunjko. All authors contributed equally in the construction

of the protocols and the classical impossibility result (Theorem 20), all presented in

Section 12.1 of this thesis. The optimality results for our protocols presented in Section

12.2 are predominantly work of Vedran Dunjko and the author of this thesis contributed

in providing feedback in the form of comments.

11.1 Main Results

The general idea behind our protocol for the secure computation of the universal NAND

gate is based on the following simple fact presented for the first time in [Anders and

Browne, 2009] which was further utilised for a multi-party cryptographic setting in

[Loukopoulos and Browne, 2010], the role of contextuality in computational speedup

in [Raussendorf, 2013b] and the relation of entangled quantum states and multi-party

computational games in [Hoban et al., 2011]. Let M0 to denote a Pauli-X measurement

and M1 a Pauli-Y , then the three qubit measurement Ma ⊗ Mb ⊗ Ma⊕b of the GHZ

state (denoted here as |Ψ〉= 1/
√

2(|001〉− |110〉)) computes NAND(a,b) (see more

details in Section 11.1). We then show how instead of switching the measurements

(based on the input a and b) one can simply apply the pre-rotation operation based on

a, b and a⊕b to the GHZ state and then the Pauli-X measurements of all three qubits

achieve the same task. This will allow us to achieve a client-server scenario where the

client effectively chooses the measurement basis by this pre-rotation while hiding his

secret input bits (a and b). The next step for obtaining the full security property is the

application of an additional random Z gates to hide the outcome computed by the server.

11.1. Main Results 185

These hiding steps leads to the necessity of quantum communication (as we prove next)

and as a result we can replace the requirement of GHZ state with sequential rotation

and one final measurement on a single qubit state as well. In other words, if we denote

the π/2 rotation along the Z axis by S then we prove that the local operators of the form

S†a⊕b
SbSa|+〉 (11.1)

encode the input of the client in the resource state, |+〉, while permitting the server to

perform the other operations required to compute the NAND gate. Here, for any unitary

U and bit x, with Ux we denote the identity 1 (for x = 0) and U (for x = 1). Since all

the information of the client is encoded in the phase of the states, additional randomly

chosen Z gates achieve a full one-time pad of the client’s information, which can easily

be decoded by the client by a bit-flip (for details see Section 12.1.4). Here we present

specific protocols based on various manipulations of the single qubit |+〉 and three

qubits entangled GHZ state, however one could easily adapt these protocols to cover

various encodings necessary for the specific noise model or available resources within

a particular implementation platform as we have recently done for an experimental

demonstration of our protocol in an optical setting [Barz et al., 2015].

The actual setting of our protocols (a restricted client with XOR gate only), on

its own, is not a realistic set up. The potential advantage of the employment of such

quantum scheme in a classical secure multi-party protocol for reducing the overall

overhead should be explored elsewhere. However, one could think of our protocols as a

game scenario that exhibits the power of quantum communication. It is straightforward

to prove that purely classical players (i.e. a classical protocol with classical client and

server) could not win deterministically the game of computing securely the NAND of

encoded input bits (Theorem 20). The proof is based on a reduction to the impossibility

of computing non-linear function (e.g NAND) with linear function (e.g Parity) given

a generic advice string∗. On the other hand to prove having pre-shared quantum

correlation or equivalently using offline quantum communication (quantum states

independent of classical inputs) will also not lead to a winning strategy, a completely

different proof technique had to to be developed (Theorems 21 and 22). Through a

series of lemmas we show any quantum offline protocol for secure delegated NAND

computing could be reduced to a simple protocol with one round only where the

classical communication will be necessarily dependent on the client’s secret inputs.

Then the correctness criteria for a deterministic secure NAND computation is proven
∗By a generic advice string we mean any string which does not depend on the input bits.

186 Chapter 11. Overview

to be equivalent to perfect discrimination of the classical encoded messages and hence

the leakage of client’s secret. To the best of our knowledge this is the first time that a

security game manifests the structural difference between static pre-shared correlation

versus a dynamic quantum communication.†

†While obviously quantum communication could be achieved using shared entanglement and classical
communication, however the restricted client in our set up could not employ teleportation. This is in fact
chosen so that to highlight the differences.

Chapter 12

Secure-NAND

12.1 Secure NAND Protocols

There are three types of protocols that we introduce here, to address various implemen-

tation scenarios. These families achieve the same goal and differ only in the required

quantum gadgets of the client. Following the construction steps explained in the intro-

duction, in the first family of the protocols, it is assumed that client can create or have

secure access to some simple (few qubits) entangled states. On the other hand, in the

second family it is assumed that the client is able to measure the flying qubit that it

receives through an untrusted channel to perform its desired universal computation. In

the third setting, the client needs only to have the capacity to perform simple single

qubit rotations. Importantly, in all three scenarios the classical computation of the client

is restricted to XOR operations. For all of our SecureNAND protocols will always

assume that the client is honest, and behaves as specified by the protocols. In our setting,

the server is the untrusted party. However, we will require and that the protocols are

correct - yield correct outputs in the case of an honest server. This property corresponds

to completeness in the terminology of interactive proof systems, whereas we do not

require soundness (verifiability, in the context of delegated computing).

Aside from correctness, regarding the guarantees for the honest client, we require

the protocols are secure, specifically that they reveal no information about the client’s

input (aside from the input’s size) to the server. This property, also known as blindness,

is defined formally as follows.

Definition 19. We will say any SecureNAND protocol is secure (also referred as blind)

if the quantum states sent during the execution of the protocol from the client to the

server, once averaged over the client’s internal secret parameters, do not depend on the

187

188 Chapter 12. Secure-NAND

secret input bits to the client i.e. the inputs to the NAND gate which is to be computed

in a secure delegated fashion. In other words, the averaged states sent by the client are

the same for any choice of the inputs.

In other words, the system the server receives from the client could have been

generated by the server without receiving any information from the client.

We first prove that it is impossible to achieve the similar task of secure delegated

computing of our protocols by removing the quantum requirement.

Theorem 20. No classical protocol, in which the client is restricted to XOR computa-

tions can delegate deterministically computation of NAND to a server while keeping the

blindness.

Proof. We prove this result first for the case of two rounds of communication, and

no initial shared randomness. Any such protocol will have the following three stages:

client’s encoding, server’s computation, and client’s decoding.

client’s encoding. In this stage, the only thing the client can do is to compute C1(a,b,−→x),

where a,b are the input bits, −→x is a random bit string (of any length) and C1 is a

computation which can be implemented using only XOR gates. However, the state

C1(a,b,−→x) must be independent from a and b to maintain blindness when averaged

over all −→x .

server’s computation. The only thing the server can do is to apply some computable

function S on C1(a,b,−→x), thus returning S(C1(a,b,−→x)).

client’s decoding. The only thing the client can do is to run some function C2, on all the

data he has, which is implementable using XOR gates only:

C2(a,b,−→x ,S(C1(a,b,−→x))) = NAND(a,b) (correctness)

and the output must (deterministically) be the NAND of the inputs.

Let c = C1(a′,b′,
−→
x′) be some constant the client may send to the server. Then,

because of blindness it must hold that for all a,b there must exist −→x (a,b), which

depends on a,b such that

C1(a,b,−→x (a,b)) = c.

To see this, note that if the client could send c, but not for some inputs a′′ and b′′,

then upon receiving c the server learns something about the input, namely that it is not

a′′,b′′, which violates blindness. Note also that since all the computations the client

12.1. Secure NAND Protocols 189

can perform use only XOR gates (and without the loss of generality, reversible), the

client can compute −→x (a,b) given a,b using only XOR operations. But then, by the

correctness of the protocol we have that

C2(a,b,−→x (a,b),S(c)) = NAND(a,b) (correctness).

But S(c) is constant as well. This implies that given a fixed string S(c) the client can

compute the NAND of any input using just XOR gates, which is not possible.

This argument can be further generalized to a setting with shared randomness and

many rounds of communication. It is easy to see that the randomness cannot help as

the protocol must be deterministic (hence work for any sampling of the joint random

variable), whereas using multiple rounds (all of which must be independent of the

input, from the viewpoint of the server) just yields a longer constant string (analogous

to S(c)) using which the client can compute the NAND on her own, which is again

impossible.

We proceed now with constructing the family of quantum protocols for the same

task. While the simplest protocol is demonstrated last, we present the sequence of

adapting the GHZ game as shown in [Anders and Browne, 2009] to a security scenario

to present a simple security and correctness proof. Then with each new family we

reduce the client’s requirement while maintaining the same properties.

12.1.1 Preparing Client

In Protocol 12 the client generates a GHZ state of 3 qubits which are rotated depending

on the values of the inputs a,b, a⊕b and a random bit r. Qubits are sent through an

untrusted quantum channel from client to server who applies a Pauli-X measurement on

the qubits and sends the classical result to the client via an untrusted classical channel.

The client produces the final output by applying classical XOR gates between the

received classical bits and the random bit. In what follows we denote a random selection

of an element of a set by ∈R.

We will say any SecureNAND protocol is correct if for every run of the protocol

where both players are honest (adhere to the protocol) and for all inputs a,b we have

out = ¬(a∧b) = 1⊕ (ab)

This definition will be used for all the presented protocols in this chapter. Throughout

this chapter we will be using the notation for the logical and between two bits a,b as

a∧b and ab interchangeably.

190 Chapter 12. Secure-NAND

Protocol 12 Entangled-based Preparing client SecureNAND

• Input (to client): two bits a,b

• Output (from client): ¬(a∧b)

• The Protocol:

– client’s round

1. r ∈R {0,1}
2. client generates

|Ψ′〉= Zr
1

(
S†

1

)a(
S†

2

)b(
S†

3

)a⊕b
|Ψ〉

and sends it to the server.

– server’s round

1. server measures the qubits 1,2 and 3, with respect to the observables

X1,X2, and X3, obtaining outcomes b1,b2 and b3, respectively.

2. server sends b1,b2,b3 to client

– client’s round

1. client computes

out = b1⊕b2⊕b3⊕ r (12.1)

2. client outputs out.

12.1. Secure NAND Protocols 191

Lemma 13. Protocol 12 is correct.

Proof. First note that the protocol is correct if the following eigenstate equality is true

for all binary variables a,b,r

X1X2X3|Ψ′〉= (−1)1⊕ab⊕r|Ψ′〉 (12.2)

as this equality guarantees that the parity of the outcomes of stabiliser measurements of

server (in basis X1X2X3) equals 1⊕ab⊕ r which implies client will decode the correct

outcome in Equation 12.1 of Protocol 12. For simplicity define the following notion for

Pauli observable

Pi =
{

X if i=0
Y if i=1

we then have the following commutation relations ∀ b,r ∈ {0,1}

PbZr = (−1)rZrPb

PbSr = (−1)(b⊕1)rSrPb⊕r

Pb (S†)r
= (−1)br (S†)r Pb⊕r

and in particular

X
(
S†)r

=
(
S†)r Pr

and hence as stated in [Anders and Browne, 2009] we obtain that ∀ a,b ∈ {0,1}

Pa
1 Pb

2 Pa⊕b
3 |Ψ〉= (−1)(1⊕ab)|Ψ〉

We proceed to show that Equation (12.2) holds:

X1X2X3|Ψ′〉 = X1X2X3Zr
1

(
S†

1

)a(
S†

2

)b(
S†

3

)a⊕b
|Ψ〉

=
[
X1Zr

1

(
S†

1

)a]
1

[
X2

(
S†

2

)b
]

2

[
X3

(
S†

3

)a⊕b
]

3
|Ψ〉

= (−1)r
[
Zr

1

(
S†

1

)a
Pa

1

]
1

[(
S†

2

)b
Pb

2

]
2

[(
S†

3

)a⊕b
Pa⊕b

3

]
3
|Ψ〉

= (−1)rZr
1

(
S†

1

)a(
S†

2

)b(
S†

3

)a⊕b
Pa

1 Pb
2 Pa⊕b

3 |Ψ〉

= (−1)1⊕ab⊕rZr
1

(
S†

1

)a(
S†

2

)b(
S†

3

)a⊕b
|Ψ〉= (−1)1⊕ab⊕r|Ψ′〉

In the derivation above we have simply used the trivial commutativity of operators

acting on disjoint subsystems. So the Lemma holds.

Next, we prove the blindness of this protocol

192 Chapter 12. Secure-NAND

In the remainder of this chapter we will use the following short-hand notation:

X := |X〉〈X |

for all labels X . This is a non-standard notation used here for the sake of brevity.

Lemma 14. Protocol 12 is blind.

Proof. For fixed input bits a and b the state the server receives from the client can be

written as

ρS = ∑
r

1
2

Zr
1ηZr

1 (12.3)

where

η =
(

S†
1

)a(
S†

2

)b(
S†

3

)a⊕b
|Ψ〉〈Ψ|(S1)

a(S2)
b(S3)

a⊕b

Note that η can be written as S|Ψ〉〈Ψ|S†, where

S =
(

S†
1

)a(
S†

2

)b(
S†

3

)a⊕b

The operator S does not depend on the ri variables, and is diagonal in the computational

basis so it commutes with Pauli Z operators and hence we have

ρS = S
(

∑r
1
2

Zr
1|Ψ〉〈Ψ|Zr

1

)
S†

The operator ∑r
1
2

Zr
1|Ψ〉〈Ψ|Zr

1 can explicitly be written as

1
2

(
1
2
(|001〉〈001|+ |110〉〈110|− |001〉〈110|− |110〉〈001|)+

1
2
(|001〉〈001|+ |110〉〈110|+ |001〉〈110|+ |110〉〈001|)

)

which in our notation is equal to
1
2

(
001 + 110

)
. Hence the operator is diagonal in

the computational basis, and again commutes with S so we get:

ρs =

(
∑r

1
2

Zr
1|Ψ〉〈Ψ|Zr

1

)
SS† =

1
2

(
001 + 110

)
This state is independent from a and b and the lemma is proved.

12.1. Secure NAND Protocols 193

Protocol 13 Entangled-based Measuring client SecureNAND

• Input (to client): two bits a,b

• Output (from client): ¬(a∧b)

• The Protocol:

– server’s round

1. The server prepares the state |Ψ〉 and sends it to the client

– client’s round

1. The client computes c = a⊕ b, measures the qubits 1,2 and 3, with

respect to the observables Pa,Pb, and Pc, obtaining outcomes b1,b2

and b3, respectively.

2. client computes

out = b1⊕b2⊕b3 (12.4)

3. client outputs out.

12.1.2 Measuring Client

In Protocol 13 server generates a GHZ state of 3 qubits. The qubits are sent through an

untrusted quantum channel from the server to the client. The client applies a Pauli-X or

Pauli-Y measurement on the qubits depending on the classical inputs a and b and their

classical XOR and produces the final output by applying classical XOR gates between

the measurement outputs.

Lemma 15. Protocol 13 is blind and correct.

Proof. The correctness of this protocol follows directly from the result in [Anders

and Browne, 2009]. The blindness of the protocol trivially follows from the fact that

no information is sent from the client to the server, thus the protocol is blind in all

no-signalling theories (including standard Quantum Mechanics).

12.1.3 Bounce Protocol

In Protocol 14 we reduce the requirements on the client side, which no longer has to

measure or prepare states, but rather only modify locally the GHZ state of 3 qubits

194 Chapter 12. Secure-NAND

prepared by the server. The client applies single-qubit quantum operators depending

on the values of the inputs a,b, a⊕b and 3 classical random bits. The client sends the

rotated qubits to the server via an untrusted quantum channel. The server applies a

Pauli-X measurement on the qubits and sends the classical result to the client via an

untrusted classical channel. The client produces the final output by applying classical

XOR gates between the received classical bits and the random bits.

Protocol 14 Entangled-based Bounce SecureNAND

• Input (to client): two bits a,b

• Output (from client): ¬(a∧b)

• The Protocol:

– server’s round

1. The server prepares the state |Ψ〉 and sends it to the client

– client’s round

1. client receives the state |Ψ〉 from the server.

2. client generates r1,r2,r3 ∈R {0,1}
3. client modifies the state |Ψ〉 to |Ψ′〉 as follows

|Ψ′〉= Zr1
1 Zr2

2 Zr3
3

(
S†

1

)a(
S†

2

)b(
S†

3

)a⊕b
|Ψ〉

and sends it to the server.

– server’s round

1. server measures the qubits 1,2 and 3, with respect to the observables

X1,X2, and X3, obtaining outcomes b1,b2 and b3, respectively.

2. server sends b1,b2,b3 to client

– client’s round

1. client computes

out = b1⊕b2⊕b3⊕ r1⊕ r2⊕ r3. (12.5)

2. client outputs out.

Lemma 16. Protocol 14 is correct.

12.1. Secure NAND Protocols 195

Proof. The correctness is directly obtained from Lemma 13 on the correctness of

Protocol 12. To see this note that the states the server performs the measurements on

are identical in the two protocols, up to the existence of possible Zr2
2 and Zr3

3 rotations

on the second and third qubit. Since we have

XZr = (−1)rZrX ,and

Y Zr = (−1)rZrY,

these rotations cause an additional (multiplicative) phase of (−1)r2⊕r3 . But this is

compensated for in the modified decoding of the client (see Equation 12.5 in Protocol

14) so the output is correct in this protocol as well.

Lemma 17. Protocol 14 is blind.

Proof. For fixed input a and b the final state server obtains in the protocol can be written

as

ρ
f in
S = ∑r1,r2,r3

1
8
(
Zr1

1 Zr2
2 Zr3

3 ⊗1S
)

η
(
Zr1

1 Zr2
3 Zr3

3 ⊗1S
)

with

η =

((
S†

1

)a(
S†

2

)b(
S†

3

)a⊕b
⊗1S

)
ρinit

S

(
(S1)

a(S2)
b(S3)

a⊕b⊗1S

)
where ρinit

S is any state the malevolent server could have initially prepared. In the

expression above, we have made no assumptions on the dimensionality of the initial

state the server may have prepared, and we only assume that the local operations of the

client are correct, single qubit operations, acting on three distinct qubits.

Note further that the actions of the client are only on a subsystem of the whole

system in the state ρinit
S , signifying that the server might have prepared an entangled

state, and sent only a subsystem to the client to be modified, while keeping the remainder

of the system. To simplify the state we could commute the Z operators with the phase

S† operators since the parameters of the phase operators do not depend on ri values.

Introducing the shorthand

S =

((
S†

1

)a(
S†

2

)b(
S†

3

)a⊕b
⊗1S

)
we can rewrite the state of the server’s system as

ρ
f in
S = (S⊗1S)∑r1,r2,r3

1
8
(
Zr1

1 Zr2
2 Zr3

3 ⊗1S
)

ρinit
S

(
Zr1

1 Zr2
3 Zr3

3 ⊗1S
)(

S†⊗1S
)

196 Chapter 12. Secure-NAND

The state ρinit
S has two partitions - the partition corresponding to the subsystem the

server sends to the client, and the subsystem he keeps. Thus ρinit
S can be written (in the

Pauli operator basis) as

∑i, j αi, j σi︸︷︷︸
C

⊗ σ j︸︷︷︸
S′

where C denotes the subsystem sent to the client, and S′ the subsystem kept by the server,

and σi and σ j denote general Pauli operators acting on the two respective subsystems.

Next, we have the following derivation:

∑r1,r2,r3

1
8
(
Zr1

1 Zr2
2 Zr3

3 ⊗1S
)

ρinit
S

(
Zr1

1 Zr2
3 Zr3

3 ⊗1S
)

= ∑r1,r2,r3

1
8
(
Zr1

1 Zr2
2 Zr3

3 ⊗1S
)

∑i, j αi, j σi︸︷︷︸
C

⊗ σ j︸︷︷︸
S′

(
Zr1

1 Zr2
3 Zr3

3 ⊗1S
)

=
1
8

∑i, j αi, j
(
∑r1,r2,r3 Zr1

1 Zr2
2 Zr3

3 σiZ
r1
1 Zr2

3 Zr3
3
)
⊗σ j

Note that since both X and Y anticommute with Z, the expression

∑
r1,r2,r3

Zr1
1 Zr2

2 Zr3
3 σiZ

r1
1 Zr2

3 Zr3
3

is non-zero only if all the single qubit operators making up σi are either Z or identity,

and in both cases diagonal in the computational basis. Thus, we can write the final

expression of the derivation above as

∑i, j α′i, jσ
′
i⊗σ j

where σ′i is diagonal in the computational basis. So, overall, for the state of the server’s

system we have

(S⊗1S)∑r1,r2,r3

1
8
(
Zr1

1 Zr2
2 Zr3

3 ⊗1S
)

ρinit
S

(
Zr1

1 Zr2
3 Zr3

3 ⊗1S
)(

S†⊗1S
)

= (S⊗1S)∑i, j α′i, jσ
′
i⊗σ j

(
S†⊗1S

)
= ∑i, j α′i, j (S⊗1S)σ′i⊗σ j

(
S†⊗1S

)
and since σ′i commute with S we get:

∑i, j α′i, jσ
′
iSS†⊗σ j = ∑i, j α′i, jσ

′
i⊗σ j

Since α′i, j is independent from a and b, this state is independent from a and b and the

lemma is proved.

12.1. Secure NAND Protocols 197

Protocol 15 Single Qubit Bounce SecureNAND

• Input (to client): two bits a,b

• Output (from client): ¬(a∧b)

• The Protocol:

– server’s round

1. The server prepares the state |+〉 and sends it to the client

– client’s round

1. client receives the state |+〉 from the server.

2. client generates r ∈R {0,1}
3. client modifies the state |+〉 to |Ψ〉 as follows

|Ψ〉= ZrSaSb(S†)a⊕b|+〉

and sends it to the server.

– server’s round

1. The server measures the qubit with respect to the X basis, obtaining the

outcome s

2. server sends s to client

– client’s round

1. client computes

out = s⊕ r⊕1 (12.6)

2. client outputs out.

12.1.4 Single Qubit Protocols

Here, we give variants of a new class of secure NAND protocols which only require

single qubit manipulations. Similarly to the variants we have given for the GHZ-based

protocols, the single qubit protocol can also be modified to a client preparation or a

measuring client protocol. In the former, it is the client which would prepare the initial

|+〉 state, whereas in the measuring client protocol, the client would perform the final

198 Chapter 12. Secure-NAND

measurements. Similar to the entangled-based scenario, all variations of protocols are

blind and correct as a simple consequence of the Single Qubit Bounce SecureNAND

protocol (that we describe next).

In Protocol 15, the server generates a single qubit state (|+〉) and sends it via an

untrusted quantum channel to the client who applies a series of single qubit rotation

operator depending on the values of the inputs a, b, a⊕ b, and a classical random

bit. The client sends the rotated qubit to the server via untrusted quantum channel.

Sever applies a Pauli-X measurement on the qubit and sends the classical result to

the client via an untrusted classical channel. The client produces the final output by

applying classical XOR gates between the received classical bit and the random bit and

constant bit 1. The correctness and blindness are directly obtained from the proof for

the entangled-based protocols. To see the correctness note that if the server was honest,

it is a straightforward calculation to see the state of the qubit the server receives is

ZrZa∧b|+〉

Then the result of the measurement performed by the server is s = r⊕a∧b, and the

decoding produces out = 1⊕a∧b as required. To see the security, note that the most

general strategy of the server is to prepare a bipartite state π1,2 and send the first

subsystem to the client. Then the state of the server system (up to a normalisation

factor), once the client performed his round is

∑r
(
ZrZa∧b⊗12

)
π1,2

(
ZrZa∧b⊗12

)
= ∑r′

(
Zr′⊗12

)
π1,2

(
Zr′⊗12

)
where r′ = r⊕ a∧ b. Since r is distributed uniformly at random, so is r′ so the state

above does not depend on a or b.

12.2 No-go Result

The main contribution of this chapter is to prove the optimality of the quantum protocols

of the last section. We prove that it is impossible to achieve the similar task of the secure

delegated NAND computing if one attempts to remove any quantum communication.

Next we show that the communicated quantum states must also depend on the classical

input of the client as it is done in our protocols. More precisely, we will show that any

quantum protocol where a XOR-restricted client computes NAND(a,b), by initially

sending a quantum state ρ to the server, followed by classical communication only, can

be perfectly blind and perfectly correct only if the state ρ depends on the input bits

12.2. No-go Result 199

a,b of the client. The protocols without this dependence, so where all the quantum

communication can be done independently from the input of the client (hence can be

done before the client decides on her input bits), we call quantum off-line protocols.

Thus, we show that a blind quantum-offline protocol with a XOR-restricted client is

not possible ∗. We begin by addressing protocols with two rounds of communication

between the client and the server. By round we refer to an instance of either the client

sending a message to the server, or the server sending a message to the client. Since

the last message, for it to have any meaning, must come from the server, the order of

the two rounds is client→ server, followed by server→ client. The generic description

of a potential secure NAND quantum offline protocol with two rounds is given later

in Protocol 7. In order to prove the impossibility of obtaining such a protocol we

prove several lemmas proving first the impossibility of a particular class of somehow

‘minimal’ NAND quantum offline protocols (see Protocol 16 and 17 below). Following

this, we present the reduction between these protocols i.e. if a generic protocol of type

Protocol 18 is possible then so is the minimal protocol, hence proving the impossibility

of obtaining any offline quantum protocol. Finally, we extend our argument to the

multi-rounds scenario.

These types of protocols are intimately linked to the composability of secure NAND

computations in a larger computation †. Note that since, for the second layer of any

computation, the client does not know the inputs in advance (since she cannot compute

them herself) but knows the encryption of the outputs in advance, thus, quantum offline

protocols are necessary and probably sufficient for the composition of NANDs in a

larger computation, without requiring additional run-time the multi-round scenarios

communication. The case where run-time communication is allowed will be studied

presently. Note also that it does not matter what function, which in tandem with XOR

and NOT gates forms a universal set, we use. For simplicity, here we focus on AND. To

shorten our expressions, in this section we will be predominantly use ab to denote a∧b

the logical AND operator of two bits a and b.

The simple quantum offline secure AND computation with two rounds of commu-

nication (Simple AND QO2, Protocol 16) is the most natural first attempt, which is

inspired by information-theoretic considerations - since the client’s input is two bits a

∗Note, in contrast, that the blind quantum computing protocol in [Broadbent et al., 2009] is quantum-
offline, as the initial qubits the client sends are chosen uniformly at random. However, in this protocol,
the computing power of the client is beyond just XOR gates.

† We do not explicitly address the security issues of composability of our protocols. However, note
that our obtained lower bounds on what is possible implies also that the impossibility results will also
hold true in any composable security setting.

200 Chapter 12. Secure-NAND

and b, hence the quantum state encodes two bits of x and y. Therefore, to hide the two

bits in the quantum state, additional randomness of two bits r1 and r2 is needed.

Protocol 16 Simple SecureAND QO2
The functionality of the Small AND protocol:

• Input (to the client): two bits a,b

• Output (from the client): (a∧b)

• The Protocol:

– client’s round

1. client generates a quantum state ρ
x,y
r1,r2 , characterized by random bits

x,y,r1,r2 and sends it to the server.

2. client receives her input bits a,b.

3. client computes mc = (x⊕a,y⊕b) and sends it to the server.

– Cerver’s round

1. server performs a (generalized) measurement of ρ
x,y
r1,r2 , parametrized by

mc. He obtains the outcome ms and sends it to the client.

– client’s round

1. client computes out = ms⊕ r1⊕ r2.

2. client outputs out.

Recall that the correctness of these protocols are defined by requesting out = ab,

and blindness is defined by the equation

∑x m(a,b) ⊗ρx = η ∀a,b,

where a,b are the input bits, m(a,b) the classical message which may depend on the

input, ρx a quantum state which depends on some random parameters x (but may also

depend on a,b), and η is a positive-semidefinite operator, independent from a,b. For

simplicity, we are omitting any normalisation factors, so η may be of non-unit trace.

Lemma 18. No Simple SecureAND QO2 can be correct and blind.

Proof. As in any Simple SecureAND QO2 protocol the client sends two classical bits

of information to the server (here denoted a′,b′), without the loss of generality, we may

12.2. No-go Result 201

assume that the message the server returns to the client is a single bit measurement

outcome of one of four (generalised) measurements (one for each message (a′,b′))

which we denote Ma′,b′(ρ
x,y
r1,r2). The correctness of the protocol entails that

Ma′,b′(ρ
x,y
r1,r2) = (a′⊕ x)(b′⊕ y)⊕ r1⊕ r2

For clarity we briefly comment on the equation above. Since, for message (a′,b′) the

server performs a generalised two-outcome measurement, this measurement can be

represented by the POVM elements Π
a′,b′
0 ,Πa′,b′

1 (which are positive operators summing

to the identity), corresponding to outcomes 0 and 1, respectively. Then the equation

above means that

Tr(Πa′,b′

(a′⊕x)(b′⊕y)⊕r1⊕r2
ρ

x,y
r1,r2) = 1

Then, by taking r = r1⊕ r2 and defining ρ
x,y
r = 1/2(ρx,y

0,r +ρ
x,y
1,1⊕r) we get, by linearity,

that

Ma′,b′(ρ
x,y
r) = (a′⊕ x)(b′⊕ y)⊕ r,

or equivalently,

Tr(Πa′,b′

(a′⊕x)(b′⊕y)⊕rρ
x,y
r) = 1

and also that

Tr(Πa′,b′

(a′⊕x)(b′⊕y)⊕rρ
x,y
r⊕1) = 0

The two equations above immediately entail that ρ
x,y
r and ρ

x,y
r⊕1 must be (mixtures of

mutually) orthogonal states, which we denote as

ρ
x,y
r ⊥ρ

x,y
r⊕1

But, more generally, the equations above imply that two states ρ
x,y
r and ρ

x′,y′

r′ must be

in orthogonal subspaces, whenever any of the sub/superscripts differ. To see this, we

will consider the remaining cases separately. First, assume that r = r′, but x 6= x′ and/or

y 6= y′. Then if we set a′ = x⊕1 and b′ = y⊕1 we see that

Ma′,b′(ρ
x,y
r) = (a′⊕ x)(b′⊕ y)⊕ r = 1⊕ r

but

Ma′,b′(ρ
x′,y′
r) = (a′⊕ x′)(b′⊕ y′)⊕ r = r

so the outcomes deterministically differ, meaning that the two states must be in orthog-

onal subspaces. We have already seen that the same conclusion follows if r 6= r′, and

202 Chapter 12. Secure-NAND

x = x′ and y = y′. The next case is when r 6= r′, and either x 6= x′ or y 6= y′ (but one is an

equality). Assume that x = x′, y 6= y′ and r = 0. Then if we set a′ = x = x′ we see that

Mx,b′(ρ
x,y
0) = (x⊕ x)(b′⊕ y) = 0

and

Mx,b′(ρ
x,y′
1) = (x⊕ x′)(b′⊕ y′)⊕1 = 1

Similarly, if r = 1 we get opposite results, and if x 6= x′ and y = y′ we get the same by

setting b′ = y = y′. Finally, we must consider the case when all the parameters differ.

First, assume r = 0, then by setting a′ = x and b′ = 1⊕ y we get

Ma′,b′(ρ
x,y
0) = (x⊕ x)(b′⊕ y) = 0

Ma′,b′(ρ
x′,y′
1) = (x⊕ x′)(1⊕ y⊕ y′)⊕1 = 1

since y 6= y′, if r = 1 then the first equation above would yield 1, and the last would

yield 0, since 1⊕ y⊕ y′ = 0. Thus we can conclude that the states {ρx,y
r }x,y,r are all in

orthogonal subspaces. But this means, in particular, that the states 1/4(∑r1,r2 ρ
x,y
r1,r2) are

in orthogonal subspaces for all x,y which implies that there exists a measurement which

perfectly reveals x and y given any ρ
x,y
r1,r2 . Thus, the server can perfectly learn x and y

and, given the classical message of the client, the inputs of the client, and the protocol

is not blind.

In the above proof we have quickly concluded that the two bits r1,r2 are superfluous

and one will suffice (which is intuitive as only one random bit is needed to one-time pad

the one bit outcome). This gives us the definition of the next general family of protocols

(Small AND QO2, Protocol 17) as we describe below and will refer to later.

Lemma 19. No small SecureAND QO2 can be correct and blind.

Proof. Obvious from the proof of impossibility of simple AND QO2, where we have

actually reduced simple to small protocols.

12.2.1 Generalisation: QO2

In order to prove a reduction between the general case of Protocol 18 and the simple

scenario of Protocol 17 we start with a supposedly given blind and correct QO2 protocol

and iteratively construct a blind correct small QO2, using a sequence of claims which

define increasingly simpler protocols.

12.2. No-go Result 203

Protocol 17 Small SecureAND QO2
The functionality of the Small AND protocol:

• Input (to the client): two bits a,b

• Output (from the client): (a∧b)

• The Protocol:

– client’s round

1. client generates a quantum state ρ
x,y
r , characterized by random bits

x,y,r and sends it to the server.

2. client receives her input bits a,b.

3. client computes mc = (x⊕a,y⊕b) and sends it to the server.

– server’s round

1. server performs a (generalized) measurement of ρ
x,y
r , parametrized by

mc. He obtains the outcome ms and sends it to the client

– client’s round

1. client computes out = ms⊕ r.

2. client outputs out.

Theorem 21. If there exists a blind, correct SecureAND QO2 then there exists a blind

correct Small SecureAND QO2.

The objects which appear in the protocol (which differ from the objects in the small

QO2) are as follows:

ρx, with x = (x1, . . . ,xn) − the quantum state parametrized by n bits

mc = XORE(a,b,x) − the m bit message from the client

ms, the k bit message from the server

ab = out = XORD(a,b,x,ms) − the calculation of the output

204 Chapter 12. Secure-NAND

Protocol 18 SecureAND QO2
The functionality of the AND protocol:

• Input (to the client): two bits a,b

• Output (from the client): (a∧b)

• The Protocol:

– client’s round

1. client generates a quantum state ρx, characterised by a sequence of

random parameters x = (x1, . . . ,xn), and sends it to the server.

2. client receives her input bits a,b (the client could have had her bits all

along. It is however the defining property of quantum-offline protocols

that the parameters x are independent from a,b).

3. client computes an XOR-computable function

mc = XORE(a,b,x)

(E for encryption) of the input and the random parameters. Note that

it would be superfluous for the client to generate additional random

values at this stage - they could be part of x, without influencing the

state the client generates.

4. client sends mc to the server.

– server’s round

1. server performs a (generalized) measurement of ρx, parametrized by

mc. He obtains the outcome ms and sends it to the client.

– client’s round

1. client computes an XOR-computable function

out = XORD(a,b,x,ms)

(D for decryption).

2. client outputs out.

12.2. No-go Result 205

Lemma 20. Nothing is gained from using multi-bit ms.

Proof. Note that since the client is restricted to computing XOR operations, we can

dissect

XORD(a,b,x,ms)

and see that it must be of the form

XORD(a,b,x,ms) = XOR′D(a,b,x)⊕
⊕

j∈I⊆[k][ms] j,

where [ms] j is the jth bit of the k-bit message ms. That is, it is a mod 2 addition of

something which does not depend on the server’s message, and the mod 2 addition of

some of the bits of the message responded by the server. Since the form of the message

(i.e the explicitly description of the function XORD) is public, being in the protocol

description, the protocol remains secure and correct if the server himself computes the

bit
⊕

j∈I⊆[k][ms] j, and returns this to the client. Thus, for every correct, blind QO2 there

exists a correct blind QO21 where the server’s message comprises only one bit. The

remainder of the claims assumes we are dealing with a QO21 protocol.

Lemma 21. No random parameters which do not appear in the encryption or decryption

are needed.

Proof. Let S ⊂ [n] be a subset of indices of the random parameters which appear in

either encryption (as variables of XORE) or decryption (XORD), and let S′ = [n]\S be

the subset which does not appear. Then, by exchanging the state ρx with the state

(ρ′)x′ = ∑
x j| j∈S′

1
2|S′|

ρ
x

in a QO21 protocol it is easy to see we again obtain a protocol (which we refer to as

QO22) which is correct and blind. In QO22 protocols, all the random parameters appear

either in the decryption or encryption. The remainder of the claims assumes we are

dealing with a QO22 protocol.

Lemma 22. No more than one random parameter which appears only in the decryption

is needed.

Proof. Let SD\E ⊂ [n] be the set of indices of random parameters which appear only

in the decryption, that is, as a variable of the function XORD. Without the loss of

generality, we will assume that the last k indices are such. Then XORD(a,b,x,ms) (due

to the restrictions on the client) can be written as:

206 Chapter 12. Secure-NAND

XORD(a,b,x,ms) = XOR′D(a,b,ms,x1 . . . ,xn−k)⊕ xn−k+1⊕·· ·⊕ xn,

Then, by exchanging the state ρx with the state

(ρ′)x1,...,xN−k,x = ∑x j| j∈SD\E
s.t.
⊕ jx j=x

1

2|SD\E |−1 ρx

in a QO22 protocol we again obtain a protocol (which we refer to as QO23) which is

correct and blind. Blindness is trivial, as the sum over all the random parameters for the

state ρx yields the same density operator as the sum over all random parameters for the

state (ρ′)x1,...,xn−k,x (and no message correlated to the summed up random parameters

is sent from the client to the server). Correctness holds as the correctness of the

(original) QO22 protocol only depended on the parity of the k random parameters, and

the construction above preserves this.

In QO23 protocols, at most one random parameter appears in the decryption only.

The remainder of the claims assumes we are dealing with a QO23 protocol.

Lemma 23. The client’s input bits a and b do not need to appear in the decryption

function.

Proof. In general the decryption function of the client (for QO23) protocols attains the

form
XORD(a,b,x,ms) = XOR′D(a,b,ms)⊕

⊕
j∈SE∩D

x j⊕ xn or

XORD(a,b,x,ms) = XOR′D(a,b,ms)⊕
⊕

j∈SE∩D
x j

where SE∩D is the set of indices of random parameters which appear in both the

decryption and encryption function, and xn may appear only in the decryption function.

Here, we have assumed without the loss of generality that it is the last random parameter

that (possibly) appears only in the decryption function. First, we show that at least one

random parameter must appear in the decryption, meaning that either xn must appear or

SE∩D is non-empty (or both). Assume this is not the case. Then we have

XORD(a,b,x,ms) = XOR′D(a,b,ms)

and this must be equal to ab by the correctness of the protocol. But, due to the

restrictions of the client we have

XOR′D(a,b,ms) = XOR′′D(a,b)⊕ms = ab or

XOR′D(a,b,ms) = XOR′′D(a,b) = ab

12.2. No-go Result 207

The latter is not possible as no function computable using only XOR can yield the

output ab, so

XOR′D(a,b,ms) = XOR′′D(a,b)⊕ms = ab⇔
ms = ab⊕XOR′′D(a,b).

The function XOR′′D(a,b) can only be one of six functions, which are such that

either a or b appear in the decryption:

XOR′′D(a,b) = a; XOR′′D(a,b) = 1⊕a

XOR′′D(a,b) = b; XOR′′D(a,b) = 1⊕b;

XOR′′D(a,b) = a⊕b; XOR′′D(a,b) = 1⊕a⊕b.

But, for all of these functions we have that ab⊕XOR′′D(a,b) is correlated to a,b, hence

not blind. For example a⊕b⊕ab = a∨b, so if the server obtains ms = 0 this means

a = b = 0. Thus, for the protocol to be blind, at least one random parameter must appear

in the decryption.

Let j be the index of this random parameter. Then x j either appears or does

not appear in the encryption. First assume x j appears in the encryption, and let

XOR′′D(a,b) = a. Then by modifying XORD in such a way that it no longer depends

on a (by substituting XOR′′D(a,b) with 0 in the definition of XORD) and by modify-

ing the encryption function in such a way that all instances of x j are substituted with

x j⊕XOR′′D(a,b), we obtain a new protocol, in which the inputs a,b no longer appear

in the decryption function. This protocol is correct, as the initial protocol was correct

for all possible inputs and random variables, and all we have done is a substitution of

variables. Since, from the perspective of the server, both x j⊕XOR′′D(a,b) and x j are

equally distributed (uniformly at random), the protocol is blind as well.

Consider now the case where x j does not appear in the encryption (thus no random

parameters appearing in the encryption appear in the decryption), and let XOR′′D(a,b)

be the function which appears in the evaluation of the decryption, and is not constant.

Then, we need to modify the messages the client sends, and the measurement the server

does. Let mc be the message the client sends in the original protocol. Then, in the

modified protocol, the client will send the message (mc,XOR′′D(a,b)⊕ y), where y is

a new random bit. The server will perform the same measurement as in the original

protocol, as defined by mc but will output mnew
s = moriginal

s ⊕XOR′′D(a,b)⊕ y. Note

that this process can be viewed as a redefinition of the measurement the server does.

the client decrypts almost the same as in the original protocol, altered by substituting

208 Chapter 12. Secure-NAND

XOR′′D(a,b) with 0, and by XORing with y . So we have:

The original decryption in original protocol :

out = XOR′′D(a,b)⊕moriginal
s ⊕ x j

The new decryption in new protocol :

0⊕mnew
s ⊕ x j⊕ y = moriginal

s ⊕XOR′′D(a,b)⊕ y⊕ x j⊕ y = out.

Thus, the new protocol is also correct. To see that it is blind, note that the only piece

of additional information given to the server, relative to the original protocol is the bit

XOR′′D(a,b)⊕ y. However, since y is chosen uniformly at random, this reveals no extra

information so the protocol is blind as well.

Thus for every QO23 blind correct protocol, there exists a blind correct QO24

protocol where the inputs of the client do not appear in the decryption function.

To summarise, to this point we have shown that we only need to consider protocols

in which the server’s output is a single bit, at most one random parameter which appears

in the decryption (but not in encryption) is used, and the decryption function does not

take the inputs of the client as parameters. Additionally, we have shown that we only

need the random parameters which appear either in encryption or decryption. Next,

we deal with the size of the client’s messages, and the number of required random

parameters appearing in the encryption.

Consider the encryption, and the generated quantum state in the protocol:

mc = XORE(a,b,x) − the m bit message from the client

ρx, f or x = (x1, . . . ,xn) − the quantum state parametrized by n bits.

and let (mc) j denote the jth bit of the m bit message mc.

Lemma 24. No single isolated random variables are needed.

Proof. Assume that, for some j and k we have, (mc) j = xk. Then, the protocol reveals

xk. But this means that if we fix xk = 0 (that is, by dropping that random parameter from

the protocol) we yield again a blind correct protocol (with one less random parameter).

We get the same if the negation of xk appears. By repeating this, we obtain a protocol for

which no part of the message is equal to a single random parameter, or its negation.

Lemma 25. No arbitrary XOR functions of random variables are needed.

Proof. Next, assume that for some j and k, l we have, (mc) j = xk⊕ xl . Then, we can

introduce the variable xk,l = xk⊕ xl , and substitute all instances of xl in the protocol

with xk,l ⊕ xl . This again yields a correct blind protocol, with the same number of

12.2. No-go Result 209

random parameters as the original protocol. However, the modified protocol has the new

variable xk,l appearing in (mc) j isolated, so it (by the argument in the last paragraph) be

dropped from the protocol.

We can perform analogous substitutions whenever arbitrary XOR functions of

random parameters appear in isolation: for a function b⊕ xk1⊕·· ·⊕ xkp we can define

the substituting variable xb
k1,...,kp

= b⊕ xk1⊕·· ·⊕ xkp , and substitute all instances of xk1

with xb
k1,...,kp

⊕ b⊕ xk2 ⊕ ·· ·xkp . Thus we retain exactly the same number of random

parameters, but xb
k1,...,kp

now appears in isolation. So, this variable can be dropped.

Thus, for any QO24 protocol, there exists a protocol (blind and correct) where no

functions of random parameters appear in isolation in mc.

Thus, each entry of mc is of the form XOR(a,b,x1, . . .xn), where this function is

not constant in a or b (or both). However, it is clear that this function cannot be constant

in all the random parameters x as otherwise the protocol would not be blind.

We can now complete the main proof of the impossibility of quantum offline protocol

by showing how the redundancies could be removed.

Proof of Theorem 21. Define

(mc) j = XOR(a,b)⊕
⊕

k∈S j⊆[N] xk

(mc)k 6= j = XOR(a,b)⊕
⊕

k∈Sk⊆[N] xk

Then, the XOR of those two entries reveals the XOR of the random parameters with

indices in the intersection S j∩Sk. Let

x̃ =
⊕

k∈S j⊆[N] xk⊕
⊕

k∈Sk⊆[N] xk =
⊕

k∈Sk∩S j⊆[N] xl

Then the original protocol is equally blind as the protocol (we will call it MOD1 for

modification 1) in which the message element (mc)k is substituted with x̃ and the server,

upon the receipt of the message redefines (mc)k := (mc) j⊕ x.

For simplicity, assume that Sk ∩S j = {1,2, . . . l}. If we further modify MOD1 to

MOD2 by substituting all instances of x1 in this protocol with x̃⊕ x2 . . .xl we obtain a

protocol in which x̃ is a randomly chosen variable, and note that it appears isolated in

message element (mc)k. Thus, it can by the arguments we presented earlier, be dropped

from the protocol, by setting it to zero. Note that analogous transformations of the

protocol can be done if the XOR functions on two positions differ by a bit flip.

Hence, we only need to consider protocols where each function of a,b in the

message of the client appears only once, where functions which differ by a bit flip can

210 Chapter 12. Secure-NAND

be considered duplicates as well. There are only three XOR computable non-constant

functions of two binary parameters, up to a bit flip:

XOR(a,b) = a, XOR(a,b) = b, XOR(a,b) = a⊕b

Thus, the message the client sends to the server, without the loss of generality, is of the

form:

mc = (a⊕
⊕

k∈S1⊆[n] xk,b⊕
⊕

k∈S2⊆[n] xk,a⊕b⊕
⊕

k∈S3⊆[n] xk)

Now, we can eliminate any single one of the three, and for our purposes of reduction to

the small QO2 protocol, we will eliminate the last one. Note that

(mc)3 = (mc)1⊕ (mc)2⊕
⊕

k∈S1⊆[n] xk⊕
⊕

k∈S2⊆[N] xk⊕
⊕

k∈S3⊆[N] xk,

and that the server can obtain

x̃ =
⊕

k∈S1⊆[n] xk⊕
⊕

k∈S2⊆[n] xk⊕
⊕

k∈S3⊆[n] xk

by XORing the three bits of the client’s message. Thus, similarly to the approach we

used earlier, the protocol can be further modified in such a way that x̃ is given as the

third bit of the message. Furthermore, by substitution, the third bit can be eliminated

as well. Thus we obtain the third modification of the protocol, in which the client’s

message is of the form

mc = (a⊕
⊕

k∈S1⊆[n] xk,b⊕
⊕

k∈S2⊆[n] xk)

with S1∪S2 = [n]. Note S1 6= S2 as otherwise the protocol would not be blind. Let SDE

be the subset of indices of the random parameters which appear in the decryption and

encryption. Then all the random parameters in S1 \ (S2∪ SDE) can be substituted by

only one random parameter x̃1 which is the mod 2 sum of random parameters indexed

in S1 \ (S2∪SDE). Additionally, the quantum state the client sends to the server needs

to be averaged over all states where the mod 2 sum of random parameters indexed in

S1 \ (S2∪SDE) is zero (for x̃1 = 0) and for the case it is one (for x̃1 = 1). The same can

be done for all the random parameters in S2 \ (S1∪SDE), generating the single random

parameter ỹ1 appearing only in (mc)2. The indices in SDE must appear either in S1 or in

S2. Let p1 . . . pq be the set which appears in both. Then we can substitute these random

parameters with one p̃ = p1⊕·· ·⊕ pq by again modifying the state the client sends to

the server, by averaging over those states for which p = 0 or p = 1. Similarly can be

12.2. No-go Result 211

done for those indices in SDE which appear only in (mc)1 (same for (mc)2) resulting in

one random parameter x̃2 (ỹ2). Thus we obtain the protocol in which the client sends

mc = (a⊕ x̃1⊕ x̃2⊕ p,b⊕ ỹ1⊕ ỹ2⊕ p)

and the decryption is given with:

out = ms⊕ x̃2⊕ ỹ2⊕ p⊕ r

where r was the random parameter not appearing in the encryption, and the quantum

state is parametrized with:

ρx̃1,x̃2,ỹ1,ỹ2,p,r

We will refer to such protocols as QO25 protocols. Note that

Mα,β(ρx̃1,x̃2,ỹ1,ỹ2,p,r) = (α⊕ x̃1⊕ x̃2⊕ p)(β⊕ ỹ1⊕ ỹ2⊕ p)⊕ x̃2⊕ ỹ2⊕ p⊕ r

and equivalently that

Mα,β(ρx̃′1,x̃
′
2,ỹ
′
1,ỹ2,p′,r′) = (α⊕ x̃′1⊕ x̃′2⊕ p′)(β⊕ ỹ′1⊕ ỹ′2⊕ p′)⊕ x̃′2⊕ ỹ′2⊕ p′⊕ r′.

Therefore we obtain the following relation:

Mα,β(ρx̃1,x̃2,ỹ1,ỹ2,p,r) = Mα,β(ρx̃′1,x̃
′
2,ỹ
′
1,ỹ
′
2,p
′,r′) i f

x̃1⊕ x̃2⊕ p = x̃′1⊕ x̃′2⊕ p′, and

ỹ1⊕ ỹ2⊕ p = ỹ′1⊕ ỹ′2⊕ p′ and

x̃2⊕ ỹ2⊕ p⊕ r = x̃′2⊕ ỹ′2⊕ p′⊕ r′.

Since the state ρ is parametrized by 6 independent parameters and we have three

independent equations, this implies that there are 8 differing equivalency classes (as

defined by the three equalities) over the set of all possible random parameters. The

equivalency classes can be represented by three bits c1,c2,c3 as follows:

(c1,c2,c3)≡ {(x̃1, x̃2, ỹ1, ỹ2, p,r)|x̃1⊕ x̃2⊕ p = c1

ỹ1⊕ ỹ2⊕ p = c2, x̃2⊕ ỹ2⊕ p⊕ r = c3}

We can then define the states ρ, averaged per equivalency class:

ρc1,c2,c3 = 1/8∑(x̃1,x̃2,ỹ1,ỹ2,p,r)∈(c1,c2,c3)ρx̃1,x̃2,ỹ1,ỹ2,p,r

Note that the first bit of the message the client sends to the server in QO25 is given

with (a⊕ x1⊕ x2⊕ p) which is equal to c1. Similarly, the second bit (b⊕ y1⊕ y2⊕ p)

212 Chapter 12. Secure-NAND

is equal to c2. The decryption is given with out = ms⊕ x2⊕ y2⊕ p⊕ r which is equal

to ms⊕ c3. This gives us a protocol in which the client sends

mc = (a⊕ c1,b⊕ c2)

and the decryption is given with:

out = ms⊕ c3

where c3 was the random parameter not appearing in the encryption, and the quantum

state is parametrized with:

ρc1,c2,c3

This protocol is correct by construction, and it is also blind as the classical messages

the client sends are the same as in the QO25 protocol, and the quantum state is averaged

over the degrees of freedom which do not appear in the abbreviated protocol - but then

the averaging over the remaining free parameters yields the same state on the server’s

side as in the QO25 protocol. Thus it is blind as well.

But this is also a small QO2 protocol. Thus, symbolically, we have shown:

∃QO2→∃QO21→∃QO22→∃QO23→∃QO24→∃QO25→∃ small QO2

which implies the proof of the main theorem since we have already proven no small

QO2 protocol exists.

12.2.2 Multi Rounds

In the definition of QO2 protocols, we have explicitly demanded that client and server

use only two rounds of classical communication to achieve the desired functionality.

That is, after the quantum offline preparation stage, client sends one classical message

to server, to which server responds. This offers the possibility that including multiple

rounds of classical communication may circumvent the no-go result of Theorem 21.

Now we show that this is not the case. To develop the proper intuition, first consider

the very first possible extension - that the protocol ends with client sending an extra

message to server. This trivially cannot help, as client’s output then cannot depend

on whatever server does. Next consider the case where client is allowed to send an

additional message to server, to which server responds. To clarify this case, we shall

use the notation of Protocol SecureAND QO2. Consider the client’s round in protocol

12.2. No-go Result 213

SecureAND QO2 in which the client computes the output out. In the most general

setting of a 4 round, instead of computing an output, client stores server’s message

ms, computes some XORE2 function of ms a,b and perhaps new random parameters,

which she then forwards back to server. Denote this message m2
c . Note that the function

XORE2 is specified by the protocol (that is, it is known to server), and that it can only

be a combination of XOR functions and negations of its arguments. It can also be a

multi-bit XOR function: if m2
c = (y1, . . . ,yk) is a k− bit message, each bit yl is of the

form XORE2l(a,b,ms,x,r) (where r are random bits), where some of the arguments

may appear with a negation, or may not appear at all. Then each bit yl of m2
c can be

written as

XORE2l(a,b,ms,x,r) = XORE2′l
(a,b,x,r)⊕XORE2′′l

(ms) (12.7)

where we have just separated the function into parts which depend on ms an which

do not. We can do this since all operations that client can do, commute. Now, since

the server knows all the component functions and ms, and since the protocol is by

assumption blind, the part XORE2′l
(a,b,x,r) must be independent from a,b, when

averaged over x and r, otherwise it would reveal information to server. We emphasize

two properties of XORE2′l
(a,b,x,r). First it does not depend on ms, and second it does

not reveal anything about the input. Hence, client could have sent XORE2′l
(a,b,x,r) as

a part of mc, and the protocol would be extended by having server compute

XORE2l(a,b,ms,x,r) = XORE2′l
(a,b,x,r)⊕XORE2′′l

(ms) (12.8)

himself, after his measurement, without jeopardizing blindess or correctness. This

shows that any 4 round blind and correct quantum offline protocol can be reduced to

a two round protocol. However, this argument trivially generalizes: in an 2n round

protocol, at client’s kth interaction step, any computation client does on server’s prior

responses, the inputs and random parameters, can be split into parts which depend

on server’s input and those which do not. Since server knows his responses, and the

protocol is blind, the parts which do not depend on server’s input cannot reveal any

information about client’s inputs, and also (by definition) do not depend on server’s

responses. Hence, client could have sent all of them in the first round of communication,

and delegate the computations to server while maintaining security and correctness.

This shows that any blind and correct, quantum off-line, n−round SecureAND protocol

(denoted QOn) implies the existence of QO2. Since we have shown that the latter is

impossible, so are QOn protocols. This proves our ultimate no-go result.

214 Chapter 12. Secure-NAND

Theorem 22. Blind, correct quantum-offline, n−round SecureAND protocols are im-

possible for every number of rounds n.

Part VI

Conclusion

215

217

Efficient Universal Verification Two verification protocols have been built by com-

posing elements from existing protocols and achieve a reduction in the overall com-

plexity. After our work was published in [Kapourniotis et al., 2015] a few protocols

appeared ([Kashefi and Wallden, 2015], [Hayashi and Morimae, 2015], [Broadbent,

2015]) with comparable performance. In Table 12.1 we summarise the resources needed

for the protocols presented in this thesis: The first five protocols in the table are existing

ones and the last two are the new ones we introduced. Our approach offers classical

round complexity which scales linearly with the depth of the Toffoli gates and requires

single or three qudit preparation (having a universal or a Clifford prover respectively).

Most importantly it demonstrates the potential for the composition of existing protocols

into protocols that benefit from more than one approaches to verification. Compared to

[Kashefi and Wallden, 2015], which is also linear on the size of the computation, we

need qudits instead of qubits, but our scaling of communication rounds is with respect

to the Toffoli depth instead of the total depth of the computation. Compared to [Hayashi

and Morimae, 2015] we have different trust assumptions (trusted preparation instead of

measurement). Compared to [Broadbent, 2015] we have the extra feature of verifying

the quantum output instead of the classical output, with exponentially low ε, and also

our communication rounds scale with the Toffoli depth.

Further exploration could include the following topics:

• All approaches are based on the principle of adaptive measurement and injection

of auxiliary states. This results to protocols that require as many steps of interac-

tion between the verifier and the prover as the rounds of measurement, which in

turn depends on the non-Clifford elements, in the best case. Further reduction

of the round complexity is a desired property. Also, extension of verification to

models without adaptive quantum measurement will be a great advance in our

understanding.

• Verifiability has been presented in this thesis as a property unconditional to the

computational power of the prover. In fact, all the approaches presented are

secure against unbounded provers. Computationally secure soundness might be

an interesting property to investigate, especially in combination to post-quantum

cryptography, i.e. methods that are secure against computational bounded quan-

tum adversaries. It is possible that such an approach can help in reducing the

∗(log 1
ε
)-level systems

†not offering verification of quantum output with exponentially small ε

218

Protocol Verifier Prover V↔ P

Poly-QAS

[Aharonov et al., 2010] Prep. O(log 1
ε
) ∗ Clifford ∗ O(N′) ∗

Trap-based (dot.-compl.)

[Fitzsimons and Kashefi, 2012] Prep. Single Universal O(N2)

Trap-based (triple-dot.)

[Kashefi and Wallden, 2015] Prep. Single Universal O(N)

Auxiliary states

[Broadbent, 2015] Prep. Single Clifford O(N) †

Measuring verifier

[Hayashi and Morimae, 2015] Meas. Single Entangl. + Q. mem. O(N) †

Composite 1 (Protocol 6) Prep. Single ∗ Universal ∗ O(N′) ∗

Composite 2 (Protocol 7) |Toffoli > ∗ Clifford ∗ O(N′) ∗

Table 12.1: Resource comparison for single verifier / single prover protocols. We list

the resources for the verifier (size of systems to be prepared and sent), the resources

for the prover (universal computation, Clifford computation or just quantum memory)

and the number of classical (or quantum in the case of the measuring verifier) on-line

rounds between the verifier and the prover. Notice that the delegated computation is any

computation in BQP even in the case of a Clifford prover. The delegated computation

has depth N and Toffoli-depth N′

resources for verification.

• Instead of verifying the correctness of a quantum computation, one might want

to verify the existence of genuine quantum properties on the prover, such as

quantum entanglement. Our definitions of verification do not cover this need,

and it is possible that the existing protocols can already provide such properties

(e.g. [Aharonov et al., 2010] offers a method to verify if the prover has quantum

memory).

• The topic of fault tolerance of the verification protocols was not covered in much

detail and is indeed essential when it comes to implementability. Both the FK

protocols and the ABE protocols claim to have a fault tolerant implementation,

however further study is needed to understand the complexity of these approaches.

• In a more abstract sense, verification of a quantum information processing device

219

by a nearly classical device is related to the falsifiability of quantum mechanics

in general [Aharonov and Vazirani, 2012]. Specifically, we are concerned with

the case that we have no information about the misbehaviour of a quantum object

other than it follows the laws of quantum mechanics and we want to be able to

verify or falsify our predictions. Since simulation of the outcome is not efficient,

verifiability in the sense presented here may be a possible way to avoid this

bottleneck.

Intermediate model verification We presented a verification scheme for a member

of the so-called intermediate quantum models, i.e. models of quantum computing

considered to have limited power compared to the full quantum computer but still

solve problems not known to have an efficient classical algorithm. In particular, we

adapted the approach of universal trap-based verification to a modified version of the

one-pure-qubit model, which preserves the same underlying principle of restricted

purity. As purity we have defined the number of pure qubits that one needs to use to

evolve unitarily the state to the particular one. The need for this modification was due to

the dependence of all existing approaches on adaptive measurement and state injection.

Such modifications can be applicable to other intermediate models, such as the model

of instantaneous quantum computation.

Further study would be beneficial in the following open questions:

1. Other models of intermediate quantum computation have been identified as strong

candidates to demonstrate experimentally quantum supremacy over classical

computation. An example is the boson sampling model, which is believed to

contain problems (up to plausible classical complexity assumptions) that are hard

classically [Aaronson and Arkhipov, 2011]. Moreover, these models exhibit the

potential to be used as quantum simulators [Huh et al., 2015] and therefore their

verification is crucial. The topic of boson sampling verification is considered

from the viewpoint of verifying quantum supremacy in [Aaronson and Arkhipov,

2014].

2. Further study in the implementability of different versions of the one-pure-qubit

model (e.g. [Liu et al., 2015]) and the application of the current verification

methods. These methods have been shown to strongly rely on properties of

quantum resource states and further characterization is needed.

220

Secure-NAND The problem of secure quantumly enhanced delegated classical compu-

tation was considered, in the setting of a client with minimal computational capabilities.

In particular, the client we consider is, on the classical side, restricted only to XOR

operations and random bit generation. This is arguably a minimal setting for the client

where security can be obtained - XOR gates and random bits suffice for a one-time pad

of the classical information of the client, and, at least for the simpler task of transmitting

of confidential information, both are necessary. We contributed towards the construction

of a family of such protocols that can enable such a client to compute the NAND gate

on two bits (which is necessary for universal classical computation), inspired by the

results in [Anders and Browne, 2009]. The simplest protocol only requires the client to

prepare a single qubit state - however, the state of the qubit depends on the inputs of the

client. That is, the required quantum state cannot be prepared before the input is known

to the client, and thus the protocol is not quantum-offline. The task, of computing a

classical NAND gate securely on a remote server by using only XOR computations was

proven to be impossible for purely classical devices.

Some other directions are of interest:

• Universal delegated computation over encrypted data is considered a difficult

problem. It is only recently that computationally secure solutions have been

found for this general problem (fully homomorphic encryption) [Gentry, 2009],

and thus far, the proposed protocols are still impractical. It is thus conceivable

that hybrid approaches to secure delegated computation may be possible, raising

the security (or reducing the complexity) of classical schemes, at the price of a

small amount of quantum capabilities.

• In our setting, the client takes advantage of the freedom of a single-qubit system to

be in a coherent superposition of two states (achieved in the temporal sequence of

gates the client applies), to obtain the outcome of the computation. Alternatively,

in the GHZ-based settings, it is the entanglement which helps achieve the required

input-output correlations obtained by measurements on three distinct qubits. This

opens up the question of what fundamental properties or resources of quantum

theory allow for the shown enhancement. Indeed, our demonstration of the

potential power of quantum communication in the setting with a limited-client

and untrusted-server seems to be closely related to the work of [Raussendorf,

2013a] on the power of contextuality. In the latter it was shown that a necessary

resource for a multi-party quantum computation of any non-linear function where

221

each party could only perform classical linear gates (such as XOR) together with

local quantum operations is contextuality. Further work in [Hoban et al., 2011]

studies the optimality of non-local resources, e.g. generalized GHZ states, in

winning multi-party quantum computation games in a related setting.

Bibliography

Scott Aaronson. The scott aaronson 25.00$ prize. http://www.scottaaronson.com/blog/

?p=284. accessed: Jan. 30 2015. 2007.

Scott Aaronson and Alex Arkhipov. The computational complexity of linear optics.

In Proceedings of the forty-third annual ACM symposium on Theory of computing,

pages 333–342. ACM, 2011.

Scott Aaronson and Alex Arkhipov. Bosonsampling is far from uniform. Quantum Info.

Comput., 14(15-16):1383–1423, November 2014. ISSN 1533-7146.

Dorit Aharonov and Michael Ben-Or. Fault-tolerant quantum computation with constant

error rate. SIAM Journal on Computing, 38(4):1207–1282, 2008.

Dorit Aharonov and Umesh Vazirani. Is Quantum Mechanics Falsifiable? A computa-

tional perspective on the foundations of Quantum Mechanics. June, 2012.

Dorit Aharonov, Michael Ben-Or, and Elad Eban. Interactive proofs for quantum

computations. In Proceedings of Innovations in Computer Science 2010, ICS2010,

pages 453–, 2010.

Janet Anders and Dan E Browne. Computational power of correlations. Physical

Review Letters, 102(5):050502, 2009.

Hussain Anwar. Towards Fault-Tolerant Quantum Computation with Higher-

Dimensional Systems. PhD thesis, UCL (University College London), 2014.

László Babai. Trading group theory for randomness. In Proceedings of the seventeenth

annual ACM symposium on Theory of computing, pages 421–429. ACM, 1985.

Howard Barnum, Claude Crepeau, Daniel Gottesman, Adam Smith, and Alain Tapp.

Authentication of quantum messages. In Foundations of Computer Science, 2002.

Proceedings. The 43rd Annual IEEE Symposium on, pages 449–458. IEEE, 2002.

223

224 Bibliography

S. Barz, V. Dunjko, F. Schlederer, M. Moore, E. Kashefi, and I. A. Walmsley. Secure

delegated classical computing exploiting coherence. arXiv:1501.06730, 2015.

Stefanie Barz, Elham Kashefi, Anne Broadbent, Joseph F Fitzsimons, Anton Zeilinger,

and Philip Walther. Demonstration of blind quantum computing. Science, 335(6066):

303–308, 2012.

Stefanie Barz, Joseph F Fitzsimons, Elham Kashefi, and Philip Walther. Experimental

verification of quantum computation. Nature Physics, 9(11):727–731, 2013.

Michael Ben-Or, Claude Crepeau, Daniel Gottesman, Avinatan Hassidim, and Adam

Smith. Secure multiparty quantum computation with (only) a strict honest majority.

In Foundations of Computer Science, 2006. FOCS’06. 47th Annual IEEE Symposium

on, pages 249–260. IEEE, 2006.

CH Bennett. Quantum cryptography: Public key distribution and coin tossing. In

International Conference on Computer System and Signal Processing, IEEE, 1984,

pages 175–179, 1984.

Sergey B Bravyi and Alexei Yu Kitaev. Fermionic quantum computation. Annals of

Physics, 298(1):210–226, 2002.

Michael J Bremner, Richard Jozsa, and Dan J Shepherd. Classical simulation of

commuting quantum computations implies collapse of the polynomial hierarchy.

In Proceedings of the Royal Society of London A: Mathematical, Physical and

Engineering Sciences, page rspa20100301. The Royal Society, 2010.

Anne Broadbent. How to verify a quantum computation. arXiv preprint

arXiv:1509.09180, 2015.

Anne Broadbent, Joseph Fitzsimons, and Elham Kashefi. Universal blind quantum

computation. In Foundations of Computer Science, 2009. FOCS’09. 50th Annual

IEEE Symposium on, pages 517–526. IEEE, 2009.

Anne Broadbent, Gus Gutoski, and Douglas Stebila. Quantum one-time programs.

arXiv preprint arXiv:1211.1080, 2012.

Daniel E Browne, Elham Kashefi, Mehdi Mhalla, and Simon Perdrix. Generalized

flow and determinism in measurement-based quantum computation. New Journal of

Physics, 9(8):250, 2007.

Bibliography 225

Chia-Hung Chien, Rodney Van Meter, and Sy-Yen Kuo. Fault-tolerant operations for

universal blind quantum computation. arXiv preprint arXiv:1306.3664, 2013.

Sean Clark. Valence bond solid formalism for d-level one-way quantum computation.

Journal of Physics A: Mathematical and General, 39(11):2701, 2006.

Christoph Dankert, Richard Cleve, Joseph Emerson, and Etera Livine. Exact and

approximate unitary 2-designs and their application to fidelity estimation. Physical

Review A, 80(1):012304, 2009.

Vincent Danos and Elham Kashefi. Determinism in the one-way model. Physical

Review A, 74(5):052310, 2006.

Vincent Danos, Elham Kashefi, and Prakash Panangaden. The measurement calculus.

Journal of the ACM (JACM), 54(2):8, 2007.

Animesh Datta and Anil Shaji. Quantum discord and quantum computing - an appraisal.

International Journal of Quantum Information, 9(07n08):1787–1805, 2011.

David P DiVincenzo. The physical implementation of quantum computation.

Fortschritte der Physik, 48(9-11):771–783, 2000.

Vedran Dunjko. Ideal quantum protocols in the non-ideal physical world. PhD Thesis,

Heriot-Watt University, 2012.

Vedran Dunjko, Elham Kashefi, and Anthony Leverrier. Blind quantum computing

with weak coherent pulses. Physical Review Letters, 108(20), 2012. doi: 10.1103/

PhysRevLett.108.200502. 16 pages, 1 figure.

Vedran Dunjko, Joseph F Fitzsimons, Christopher Portmann, and Renato Renner. Com-

posable security of delegated quantum computation. In Advances in Cryptology–

ASIACRYPT 2014, pages 406–425. Springer, 2014.

Vedran Dunjko, Theodoros Kapourniotis, and Elham Kashefi. Quantum-enhanced

secure delegated classical computing. Quant. Inf. Comput., 16(01, 02), 2016.

Joseph F Fitzsimons and Elham Kashefi. Unconditionally verifiable blind computation.

arXiv preprint arXiv:1203.5217, 2012.

Austin G Fowler and Kovid Goyal. Topological cluster state quantum computing. arXiv

preprint arXiv:0805.3202, 2008.

226 Bibliography

Austin G Fowler, Matteo Mariantoni, John M Martinis, and Andrew N Cleland. Surface

codes: Towards practical large-scale quantum computation. Physical Review A, 86

(3):032324, 2012.

C. Gentry. Fully homomorphic encryption using ideal lattices. In STOC, 2009.

Alexandru Gheorghiu, Elham Kashefi, and Petros Wallden. Robustness and device inde-

pendence of verifiable blind quantum computing. arXiv preprint arXiv:1502.02571,

2015.

Vittorio Giovannetti, Lorenzo Maccone, Tomoyuki Morimae, and Terry G Rudolph.

Efficient universal blind quantum computation. Physical review letters, 111(23):

230501, 2013.

S. Goldwasser. Multi party computations: past and present. In PODC, 1997.

Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of

interactive proof-systems. In Proceedings of the seventeenth annual ACM symposium

on Theory of computing, pages 291–304. ACM, 1985.

Daniel Gottesman. The heisenberg representation of quantum computers. arXiv preprint

quant-ph/9807006, 1998.

Daniel Gottesman and Isaac L Chuang. Demonstrating the viability of universal

quantum computation using teleportation and single-qubit operations. Nature, 402

(6760):390–393, 1999.

Michal Hajdusek, Carlos A Perez-Delgado, and Joseph F Fitzsimons. Device-

independent verifiable blind quantum computation. arXiv preprint arXiv:1502.02563,

2015.

William Hall. Cluster state quantum computation for many-level systems. arXiv preprint

quant-ph/0512130, 2005.

Masahito Hayashi and Tomoyuki Morimae. Verifiable measurement-only blind quantum

computing with stabilizer testing. arXiv preprint arXiv:1505.07535, 2015.

M. Hein, J. Eisert, and H. J. Briegel. Multi-party entanglement in graph states. Physical

Review A, 69, 2004. quant-ph/0307130.

Bibliography 227

Teiko Heinosaari and Mario Ziman. Guide to mathematical concepts of quantum theory.

Acta Physica Slovaca, 58:487–674, 2008.

M. J. Hoban, E. T. Campbell, K. Loukopoulos, and D. E. Browne. Non-adaptive

measurement-based quantum computation and multi-party bell inequalities. New Jour-

nal of Physics, 13(2):023014, 2011. URL http://stacks.iop.org/1367-2630/

13/i=2/a=023014.

Mark Howard and Jiri Vala. Qudit versions of the qubit pi/8 gate. Physical Review A,

86(2):022316, 2012.

Joonsuk Huh, Gian Giacomo Guerreschi, Borja Peropadre, Jarrod R McClean, and Alán

Aspuru-Guzik. Boson sampling for molecular vibronic spectra. Nature Photonics,

2015.

Stephen P Jordan. Permutational quantum computing. Quantum Information and

Computation, 10(5-6):470–497, 2010.

Theodoros Kapourniotis, Elham Kashefi, and Animesh Datta. Blindness and verification

of quantum computation with one pure qubit. In 9th Conference on the Theory of

Quantum Computation, Communication and Cryptography (TQC 2014), in Leibniz

International Proceedings in Informatics, volume 27, pages 176–204, 2014.

Theodoros Kapourniotis, Vedran Dunjko, and Elham Kashefi. On optimising quantum

communication in verifiable quantum computing. Extended abstract, Proceedings of

the 15th Asian Quantum Information Science Conference (AQIS), 2015.

Elham Kashefi and Petros Wallden. Optimised resource construction for verifiable

quantum computation. arXiv preprint arXiv:1510.07408, 2015.

J Kelly, R Barends, AG Fowler, A Megrant, E Jeffrey, TC White, D Sank, JY Mutus,

B Campbell, Yu Chen, et al. State preservation by repetitive error detection in a

superconducting quantum circuit. Nature, 519(7541):66–69, 2015.

Emanuel Knill and Raymond Laflamme. Power of one bit of quantum information.

Physical Review Letters, 81(25):5672, 1998.

T Lanting, AJ Przybysz, A Yu Smirnov, FM Spedalieri, MH Amin, AJ Berkley, R Harris,

F Altomare, S Boixo, P Bunyk, et al. Entanglement in a quantum annealing processor.

Physical Review X, 4(2):021041, 2014.

http://stacks.iop.org/1367-2630/13/i=2/a=023014
http://stacks.iop.org/1367-2630/13/i=2/a=023014

228 Bibliography

Nana Liu, Jayne Thompson, Christian Weedbrook, Seth Lloyd, Vlatko Vedral, Mile

Gu, and Kavan Modi. The power of one qumode. arXiv preprint arXiv:1510.04758,

2015.

Seth Lloyd, Masoud Mohseni, and Patrick Rebentrost. Quantum principal component

analysis. Nature Physics, 10(9):631–633, 2014.

K. Loukopoulos and D. E. Browne. Secure multiparty computation with a dishonest

majority via quantum means. Phys. Rev. A, 81, 2010.

Atul Mantri, Carlos A Perez-Delgado, and Joseph F Fitzsimons. Optimal blind quantum

computation. Physical review letters, 111(23):230502, 2013.

Matthew McKague. Interactive proofs for BQP via self-tested graph states, 2013.

arXiv:1309.5675.

Mehdi Mhalla, Mio Murao, Simon Perdrix, Masato Someya, and Peter S Turner. Which

graph states are useful for quantum information processing? In Theory of Quantum

Computation, Communication, and Cryptography, pages 174–187. Springer, 2014.

Tomoyuki Morimae. Continuous-variable blind quantum computation. Physical review

letters, 109(23):230502, 2012.

Tomoyuki Morimae and Keisuke Fujii. Blind topological measurement-based quantum

computation. Nature communications, 3:1036, 2012.

Tomoyuki Morimae and Keisuke Fujii. Blind quantum computation protocol in which

alice only makes measurements. Physical Review A, 87(5):050301, 2013.

Tomoyuki Morimae and Takeshi Koshiba. Impossibility of secure cloud quantum

computing for classical client. arXiv preprint arXiv:1407.1636, 2014.

Tomoyuki Morimae, Vedran Dunjko, and Elham Kashefi. Ground state blind quantum

computation on aklt state. Quantum information & computation, 15(3&4):0200–0234,

2015.

Michael A Nielsen and Isaac L Chuang. Quantum computation and quantum informa-

tion. Cambridge university press, 2010.

Anna Pappa, André Chailloux, Stephanie Wehner, Eleni Diamanti, and Iordanis Kereni-

dis. Multipartite entanglement verification resistant against dishonest parties. Physical

review letters, 108(26):260502, 2012.

Bibliography 229

Carlos A Perez-Delgado and Joseph F Fitzsimons. Overcoming efficiency constraints

on blind quantum computation. arXiv preprint arXiv:1411.4777, 2014.

R. Raussendorf. Contextuality in measurement-based quantum computation. Physical

Review A, 88(2), 2013a.

R. Raussendorf. Contextuality in measurement-based quantum computation. Physical

Review A, 88(2), 2013b.

Robert Raussendorf, Jim Harrington, and Kovid Goyal. Topological fault-tolerance in

cluster state quantum computation. New Journal of Physics, 9(6):199, 2007.

Ben W Reichardt, Falk Unger, and Umesh Vazirani. Classical command of quantum

systems via rigidity of chsh games. arXiv preprint arXiv:1209.0449, 2012.

Ben W Reichardt, Falk Unger, and Umesh Vazirani. Classical command of quantum

systems. Nature, 496(7446):456–460, 2013.

R. Rivest, L. Adleman, and M. Dertouzos. On data banks and privacy homomorphisms.

Found. Secure Computation, 1978.

R.Raussendorf and H.J.Briegel. A one-way quantum computer. Physical Review Letters,

86:5188, 2001.

Adi Shamir. Ip= pspace. Journal of the ACM (JACM), 39(4):869–877, 1992.

Dan Shepherd. Computation with unitaries and one pure qubit. arXiv preprint quant-

ph/0608132, 2006.

Dan Shepherd and Michael J Bremner. Temporally unstructured quantum computation.

In Proceedings of the Royal Society of London A: Mathematical, Physical and

Engineering Sciences, volume 465, pages 1413–1439. The Royal Society, 2009.

Peter W Shor. Polynomial-time algorithms for prime factorization and discrete log-

arithms on a quantum computer. SIAM journal on computing, 26(5):1484–1509,

1997.

Justin B Spring, Benjamin J Metcalf, Peter C Humphreys, W Steven Kolthammer,

Xian-Min Jin, Marco Barbieri, Animesh Datta, Nicholas Thomas-Peter, Nathan K

Langford, Dmytro Kundys, et al. Boson sampling on a photonic chip. Science, 339

(6121):798–801, 2013.

230 Bibliography

Takahiro Sueki, Takeshi Koshiba, and Tomoyuki Morimae. Ancilla-driven universal

blind quantum computation. Physical Review A, 87(6):060301, 2013.

Dominique Unruh. Universally composable quantum multi-party computation. In

Advances in Cryptology–EUROCRYPT 2010, pages 486–505. Springer, 2010.

Fern HE Watson, Earl T Campbell, Hussain Anwar, and Dan E Browne. Qudit color

codes and gauge color codes in all spatial dimensions. Physical Review A, 92(2):

022312, 2015.

Andrew C. Yao. Protocols for secure computations. In FOCS, 1982.

DL Zhou, B Zeng, Z Xu, and CP Sun. Quantum computation based on d-level cluster

state. Physical Review A, 68(6):062303, 2003.

	cover sheet
	thesis_kapourniotis
	I Introduction
	Overview
	General Preliminaries
	Quantum Computing and Density Operators
	Circuit Model
	Measurement Based Quantum Computing
	Computational Complexity Classes

	Security Definitions
	Interactive Proofs

	Overview of Existing Techniques
	Three Roads to Verification
	Other Protocols

	II Efficient Universal Quantum Verification
	Overview
	Main Results
	Preliminaries
	d-level Quantum Operations
	Polynomial Quantum Error Correcting Code
	Polynomial Verified Quantum Computing

	Revisiting Verifiable Blind Quantum Computing
	Verifiable Blind Quantum Computing with Quantum Output
	The Role of Fault Tolerance
	Dotted-Complete Graph and Trap Independence

	A Refined Proof of Verifiability
	Expanding the Prover's Operation
	Decomposing the Attack
	Reducing the Attacks to Pauli
	Detection of the Pauli Attacks

	Verifiable Blind Quantum Computing with Localised Output
	Localisation Gadget and Protocol
	Verifiability of the Localisation Protocol

	d-level Security
	d-level Measurement-Based Quantum Computing
	d-level Universal Graph States

	d-level Blind Protocol
	d-level Verification Protocol
	Verifiability Proof in d-level

	An Efficient Verification Protocol
	Impossibility of Qubit to Qudit Translation
	Composite Protocol
	Verifiability of the Composite Protocol
	Alternative Composition with Toffoli Inputs

	Noise and Abstract Security

	III Quantum-Intermediate Verification
	Overview
	Preliminaries
	Main Results

	One-Pure-Qubit Model Verification
	Secure Computation with Restricted Purity
	Blind One-Pure-Qubit Computation
	Blindness Proof

	Verification of One-Pure-Qubit
	Verifiability Proof

	IV Verification and Quantum Security
	Overview
	Preliminaries and Related Work

	From Quantum Encryption to Verification
	An Authentication Protocol
	A Recipe for Quantum Authentication
	Authentication to Verification and Classical Impossibility

	V Blindness and Classical Security
	Overview
	Main Results

	Secure-NAND
	Secure NAND Protocols
	Preparing Client
	Measuring Client
	Bounce Protocol
	Single Qubit Protocols

	No-go Result
	Generalisation: QO2
	Multi Rounds

	VI Conclusion
	Bibliography

