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Abstract

Molecular dynamics techniques are used to explore metals at an atomic level. The

focus of the studies is the effects of irradiation on a metallic system. Ion surface

bombardment effects, bulk cascades and interaction with voids and bubbles in

bulk are studied.

In the first section a study of a copper 〈110〉 surface being bombarded by

low energy argon ions is conducted. Molecular dynamics simulations were

used to study the surface impact crater formation and the damage caused in

the surrounding area. Another group had previously performed experimental

measurements on the same system. The simulation data is compared to

experiment, in order to validate the molecular dynamics technique. Additionally,

information about the formation of the craters at time scales inaccessible to

experiment can be gained.

In the next section bulk radiation induced cascades in BCC iron are considered.

Cascades of energy 1 keV, 2 keV, and 5 keV are initiated in the bulk of the

material and the damage yields studied. Cascades are also studied in proximity

to voids and helium bubbles in the bulk. The damage formation processes and

damage yields in these cascades is analysed. A mechanism that allowed voids

to be ballistically moved by the cascade was observed. To further explore this

an object kinetic Monte Carlo model was written to simulate the effects of this

motion on the diffusion of the voids.

The final section is a study of transition metals as alloying elements in BCC

iron. This system is of interest as it would be a model for various steels used

in construction and shielding. A set of potentials describing iron with low

concentrations of transition metals has previously been developed by a different
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group. These potentials were implemented in the molecular dynamics code. The

equilibrium properties of various alloys are explored by implementing a Metropolis

algorithm to minimise the Gibbs free energy of the system. Various binary

and tertiary alloys are analysed and compared with experimental values in the

literature. The attraction of the elements to voids present in the system is also

studied.
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Chapter 1

Introduction

This thesis discusses some of the effects of radiation damage on metals. Metals

used as shielding for fusion reactors undergo 14 MeV neutron bombardment at

high temperature. The flux of radiation can affect the material properties by

causing swelling and hardening[1]. These effects are linked to nano-scale changes

in the irradiated material, which are due to the atomic displacement cascades

that neutron bombardment induces. When close to the surface, cascades can

form craters and surface diffusing defects. In the bulk, point defects such as

interstitials and vacancies are formed.

These defects can undergo complicated interactions over time such as clustering

behaviour, attraction to defect sinks or coupling to certain atomic types in the

metal. Radiation induced swelling arises from void formation in the material[2]:

vacancies cluster together forming voids while the excess interstitials diffuse to

surfaces. Radiation bombardment can also cause transmutation of elements

producing helium in the lattice[3, 4]. For materials near to fusion sources

implantation of helium is also an issue[5]. The helium diffuses rapidly to grain

boundaries[6] or interacts with the voids forming bubbles[7], which can have

effects on the materials properties. Pinning interactions of the voids[8] and

bubbles[9] with dislocations in the material leads to hardening.

The fluxes of defects can also be involved in radiation induced segregation[10, 11].

There are fluxes of defects towards absorbing sinks in the system. If a defect has

an affinity for a certain type of atom it can induce concentration changes in the
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alloy by dragging the atoms with them, leading to segregation of alloying elements

to defect sinks[12]. The changes in local concentration of the alloy can affect its

properties and induce precipitation behaviour. These precipitates have pinning

effects on dislocations[13], hardening the material.

To explore such phenomena at a nano-scale, computational models can be used.

To fully model the material, the atomic nuclei along with all of their electrons

and interactions between them must be modelled in a fully quantum mechanical

way. Density functional theory (DFT) attempts to model the electron density

using a set of wave-functions. This method has been successfully used to model

several aspects of radiation damage[14], although the technique is too expensive

to consider larger scale phenomena, or long term dynamics.

In light of this, several approximations are developed that aim to capture

the essential physics while reducing the computational cost. In molecular

dynamics (MD) simulations only the atomic nuclei are directly simulated. The

effects of the electrons are approximated through the use of empirical potentials.

These models attempt to account for the coulomb effects and band energies of the

electrons in metallic substances, using a functional form fitted to experimental

or DFT data[15, 16]. Other potentials include properties such as magnetism[17],

which can be significant for certain alloys. MD allows greater number of atoms

and simulations lengths than DFT, allowing phenomena to be explored that are

not accessible to DFT and sometimes not accessible to experiment.

MD is still computationally expensive. While it gives a detailed atomic view of

the phenomena, larger length and time scales are often required for comparison

to experiments, or predictions about the lifetime of a material. Various coarse-

graining methods exist, that can allow some non-critical information to be lost,

while retaining the important physics for the relevant length and time scales

involved. Once such type of model is kinetic Monte Carlo (KMC). It can be

implemented in such a way as to ignore on lattice atoms and their vibrations,

leaving only the defects to evolve. The effects of the lattice vibrations is included

probabilistically, in the transition rates of the defects from one state to another.

This allows greatly increased length and time scales to be explored.

This thesis explores some of the effects of radiation damage using MD and KMC

techniques. Surface damage and the subsequent diffusion of the defects produced
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1.1. Structure of Thesis

is studied using MD. The interaction of radiation cascades with voids and bubbles

is also explored. The evolution of the damage formed and interaction processes,

for both the surface and bulk damage, is explored using Monte Carlo methods.

The properties of mixed alloys are considered, as well as their segregation

properties in the presence of voids, and the effects of radiation cascades on their

composition.

1.1 Structure of Thesis

Chapter 2 gives details of a varient of the verlet algorithm that was developed.

The method allows two diffrent time steps to be used in the system, which is of

particular use when the kinetic energy of the system is not evenly distributed in

the simulation cell.

Chapter 3 studies surface bombardment of copper with argon ions. The results

are compared directly to data from another groups experiment in order to validate

the simulations.

Chapter 4 describes the interactions of voids and bubbles in iron with radiation

induced cascades. These are explored through both molecular dynamics (MD)

and object kinetic Monte Carlo (OKMC) simulations.

Chapter 5 explores the properties of a potential set for iron-based transition-

metal alloys. The properties of some binary alloys under irradiation simulations

are studied. The effects of slowly varying the composition of tertiary alloys is

also analysed.

Finally, chapter 6 summarises the conclusions of the thesis.
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Chapter 2

Spatially Varying Time Step

2.1 Verlet Algorithm

The Verlet algorithm is a widely used dynamics integrator in molecular dynamics

(MD) simulations. The algorithm updates each particle in the system discretising

the motion into temporal steps of size ∆t. The positions are updated assuming

that there is a constant acceleration over the time step:

~x(t+ ∆t) = ~x(t) + ~v(t)∆t+
1

2
~a(t)∆t2

The change in velocity is taken as the average of the acceleration during the time

step:

~v(t+ ∆t) = ~v(t) +
~a(t) + ~a(t+ ∆t)

2
∆t

From these equations the basic velocity Verlet algorithm can be stated as:

1) ~v(t+ 1
2
∆t) = ~v(t) + 1

2
~a(t)∆t

2) ~x(t+ ∆t) = ~x(t) + ~v(t+ 1
2
∆t)∆t

3) Calculate ~a(t+ ∆t) using ~x(t+ ∆t)

4



2.2. Varying Time Step

4) ~v(t+ ∆t) = ~v(t+ 1
2
∆t) + 1

2
~a(t+ ∆t)∆t

The Verlet algorithm is time reversible, which leads to the cancellation of all

odd powers of error for the integration. This makes the local error in the Verlet

algorithm one order of magnitude higher than may be expected. An expression

for the position based on two previous positions can be derived by taking the

Taylor expansions of x around t, for two points equidistant in time from point

t:

~x(t+ ∆t) = ~x(t) + ~v(t)∆t+
~a(t)∆t2

2
+
~a′(t)∆t3

6
+O(4)

~x(t−∆t) = ~x(t)− ~v(t)∆t+
~a(t)∆t2

2
− ~a

′(t)∆t3

6
+O(4)

Summing these terms gives an expression for the position at t+ ∆t that is fourth

order in error:

~x(t+ ∆t) = 2~x(t)− ~x(t−∆t) + 2~a(t)∆t2 +O(4)

This shows that including linear changes in acceleration in the position update

equation would not improve the algorithm, meaning the position update is locally

fourth order in error.

2.2 Varying Time Step

The time step used for the Verlet algorithm is an important quantity for

tuning the efficiency of the simulation. Too large a step gives inaccuracies

in the trajectories and violates energy conservation, too small a step leads to

unnecessary calculations. During cascades the velocities of particles are initially

very high until the cascades’ energy dissipates. This means that the optimal time

step at the start of the simulation is very different from that at the end of the

simulation.

The criteria for accuracy during simulation is that the curvature of the accel-
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2.2. Varying Time Step

eration over a time step is negligible, that is d4x
dt4

is small. This is because the

algorithm explicitly accounts for acceleration, and linear changes in acceleration

are eliminated due to the time reversibility of the algorithm. Strictly, this criteria

could be achieved by calculating the gradient for every particle at every iteration

of the integrator. The maximum gradient found would then be used to define a

maximum distance that could safely be moved along that trajectory. From this

distance and the particles velocity a time step could then be calculated.

However, such a procedure would be computationally expensive to implement.

Instead, a simpler approach can be taken by picking a distance that will satisfy

the maximum curvature of acceleration and using it in all situations. This

circumvents the need to calculate gradients for all particles. For a given particle

a time can be calculated from the particle’s velocity and the maximum allowed

distance.

Since consecutive checks of the allowed time step will yield similar answers, it is

only necessary to perform this procedure every few hundred steps, which further

reduces the computational overhead. If only the velocity is taken into account,

the fastest particles in the system tend to have widely fluctuating velocities, as

elastic collisions convert kinetic energy to potential energy and back. To smooth

this effect, and so damp fluctuations in the time step, the particle’s energy was

studied instead of its velocity. The energy was taken as the kinetic energy plus

any potential energy above the average, E = KE + PE − 〈PE〉

By assuming that all the energy is kinetic a maximum velocity can be calcu-

lated:

v =
√

2E/m

Where E is the energy, including potential energy, and m is the mass of the

particle that has this energy. Computing this for all particles will yield the

maximum velocity in the system. The velocity is converted to a time by picking a

maximum distance that may be moved per iteration. In this case one thousandth

of the atomic cell was used:

6



2.3. Spatially Varying Time Step

t =
a0

1000

√
m

2E
(2.1)

This value of t is the proposed time step. During simulations the time step is

calculated every 100 steps and updated with the following rules: that it is not less

than the current time step, and that it is no more than 10% greater. If it is greater

than 10% the time step is increased by 10% only. These rules reduce fluctuations

in the time step and allow it to smoothly go towards the system’s equilibrium

value. This process is repeated until the time step reaches the equilibrium value

for the system, which is typically set at 1 fs, after which the standard Verlet

algorithm is used.

2.3 Spatially Varying Time Step

During cascades the energy starts off localised around the primary knock-on atom

(pka) and then spreads through the lattice. With the varying time step method,

the motion of all atoms is integrated using the small time step needed for the

fastest atoms. This is clearly inefficient as the atoms far from the cascade could

be integrated at a much larger time step.

This inefficiency can be removed with an algorithm that allows different time

steps in different regions of the system. One problem introduced by such an

algorithm is dealing with the interactions at and across the boundary between

time regions. The other issue is extrapolating the positions in the longer time

step region, so that these atoms can still be moved on the shorter time step cycles.

An algorithm that addresses these issues is explained below.

The algorithm splits the system into two parts. One which contains the high

energy atoms, and another low energy region. The algorithm allows only two

regions in its current form, although it could be extended to allow more. The

regions will be referred to as the “hot” and “cold” regions, where the hot region

encompasses the cascade. The time steps associated with the regions will be

referred to as the hot time step, tH , and the cold time step, tC . Between these

regions is a buffer region that accounts for the force interactions that cross regions.

As the cascade progresses, spreading its energy through the system, the hot region

7



2.4. Detecting Energetic Regions

is adapted to contain the cascade.

The time step of the system is set to that of the hot region, and a full force

calculation always occurs for the hot region. A full force calculation is only

performed in the cold region every R = tH/tC steps. In between these full

updates, the forces acting on the atoms are extrapolated from past data, requiring

the cold regions time step to be an integer multiple of the hot time step.

2.4 Detecting Energetic Regions

The method used to detect and adapt the hot energetic region of the system is

detailed below. The total energy for each atom is calculated (potential + kinetic

energy). If the energy is above a certain threshold it is considered to be in the

hot region. The threshold energy is set based on the value of the cold time step.

Due to the nature of the algorithm the cold time step can not be arbitrarily larger

than the hot time step. In practise the maximum ratio between them is limited

to about 22:1 (explained later in ch. 2.7).

This gives a natural way to pick the energy thresholding: a hot time step is

chosen to satisfy the most energetic atoms in the system. The cold time step is

calculated by multiplying the hot time step by the ratio of the time steps, tHR.

For a given cold time step the highest energy atoms that can be accommodated

in this region can be found be rearranging eq. 2.1. The equation can be solved for

EC , the cold energy threshold using mm, the minimum mass in the system:

EC =
mm

2

(
a0

1000tC

)2

The assignment of regions is only done every 500 to 1000 cycles. Due to this,

atoms near to a hot atom are also considered to be in the hot region. This

prevents an energetic atom from moving, or passing substantial energy, out of

the region. Since the variable time step algorithm ensures that an atom will not

move much more than one lattice spacing in this time, a threshold distance of 7

angstroms was sufficient to account for the motion and ranged interaction of the

hot atoms.
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2.5. Cross-Region Buffering

2.5 Cross-Region Buffering

After the hot region has been detected a buffer region is placed surrounding it.

Any atom in the cold region, that is within interaction distance of an atom in the

hot region, is included in a buffer region. The interaction distance is a property of

the exact potential used. For screened metallic potentials this distance is typically

only two or three times the lattice parameters.

To calculate forces in the the buffer region, some extrapolated forces are used as

well as some current force data. All interactions between a hot atom and buffer

atoms are calculated every cycle. Interactions between buffer atoms or between

buffer atoms and cold atoms are only calculated every tC ; extrapolated forces

are used in-between updates. This accounts for the motion of atoms in the hot

region changing the forces in the buffer region. Since hot atoms feel all atoms

around themselves the buffer atoms must be receptive to force from hot atoms to

conserve Newton’s third law.

It does not account for the secondary effects of these changes altering the forces

between buffer atoms. This effect is expected to be small as the boundary of the

hot region is placed so that there is already a buffer of nearly cold atoms at the

edge of the hot region. The double buffering of padding the hot region, as well

as maintaining a buffer region, is necessary for the stability of the algorithm. It

is not overly computationally expensive, as forces internal to the outer buffer are

not calculated every time step.

2.6 Force Extrapolation Method

The algorithm requires that every particle in the system moves on every update

cycle. If atoms were only moved on their full update cycles (i.e. every tH and

tC respectively) violations of Newton’s third law, and energy conservation, would

arise near to boundaries. Since the correct forces are only known every tC in

the cold region, but required every tH , they must be extrapolated from past

data.

Various extrapolation methods were considered. Linear extrapolation from two
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2.6. Force Extrapolation Method

previous data points was found to be insufficient. A method of parabolic fits

using three previous points was adopted. Using the most recent points (t −
tH , t− 2tH , t− 3tH) did not sufficiently conserve the trajectories of the particles.

This is because the previous points may all be estimated points for ratios of time

steps larger than 3. The parabolic method develops a growing instability in such

cases as the next estimate increases the error made in the previous step.

For stability it was required that at least two full calculation points were used.

Letting R = tC/tH be the ratio of time steps in the system and n = (1,R-1) be

the step number between full updates on the Rth cycles. On the nth step the

points t−ntH , t− tC −ntH and t− tC − 2ntH are used for the estimate, as shown

in fig. 2.1. Explicitly, these are the last two full updates of the cold region as

well as the extrapolated point that is n steps before the first full update. The

same two tC reference points are used for R steps, along with an estimated point

that moves backwards in time by tH every time the current point to be estimated

moves forward by tH . After R cycles of this a full update of the cold region is

performed, giving a new data point for future extrapolations.

Such an extrapolation is symmetric in terms of the time spacing of the points

and the type of points used. The time reversibility of the extrapolation turned

out to be an important criteria for stability as it should obey the symmetries of

the Verlet algorithm.

Solving for a parabolic fit to three points with the temporal separation given

above (using method of simultaneous equations), it can be shown that the force

at time t, which is n steps after the last full update, is given by:

F (t) = c1F (t− ntH) + c2F (t− ntH − tC) + c3F (t− 2ntH − tc) (2.2)

c1 = a(r + 1)

c2 = −c1

c3 = (r + 1)(ar − 1)
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Figure 2.1 : Diagram of the force estimation procedure used in the spatially varying
Verlet algorithm. The curved line is the correct force. Dots represent correct
measurements of the force every tC. The vertical lines represent points that must
be extrapolated and are tH apart, with R = tC/tH = 4. The force at time tE is
estimated using points 2tC, tC and the estimated point tEo.

r =
R

n
a =

(r + 2)

(r2 + r)

R =
tC
tH

n ∈ Z, 1 ≤ n < R

2.7 Efficiency of Algorithm

A limiting factor in the efficiency of the algorithm is that the parabolic

extrapolation requires several cycles to be run fully at tH to gain data to

extrapolate from. In its current form this requires 2RtH full force calculation

time steps to be run before a reliable extrapolation can begin. This is enough

data to get two points tC apart as well as several points before the first tC point

to extrapolate symmetrically from. During normal operation a full calculation is

only required every R steps, so larger R increases the efficiency of the algorithm.

However, it also increases the set up time, and this set up must be done every

time the regions are updated, typically every 1000 steps. This means there is an

optimum value for R. The runtime can be expressed as:
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2.7. Efficiency of Algorithm

tK = (2R +
K

R
)tL + (K − 2R− K

R
)tS

tL = xtS

Where tK is the runtime to complete K cycles, K is the update period of the

regions. tL is the time taken for a full force update, tS is the time taken for a

partial update, and x is the ratio between these.

Minimising tK w.r.t. R and locating the minima, we find the optimal ratio

between the hot and cold time steps for a given update period, K:

R =

√
K

2

Note that this number does not depend on x. For the typical update period of

K=1000 this gives R=22 as the optimal value.

The time to run K steps at optimal ratio then becomes:

tK
tL

= (2
√

2K)(1− 1

x
) +

K

x

To determine how much faster this is compared to running every step at tL (i.e.

always full force update) we must estimate a value for x. tL is the full force

calculation time and scales as the number of force pairs in the system:

tL = tfNz

Where N is the number of atoms in the system and z is the number of interacting

neighbours per atom. tf is the time to calculate the force between two atoms. tL

has a fixed value for a given system size, tS will change as the cascade evolves

and so the larger x is the more time is saved. tS depends on the number of bonds

fully calculated in the hot region, as well as the partial calculations in the buffer

region.
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2.7. Efficiency of Algorithm

tS = zNHtf + (N −NH)tp

Where NH is the number of atoms in the hot region. tp is the cost of extrapolating

the force using eq. 2.2 for a given atom. These values are stored after summing

the contributions from all relevant neighbours and so there is no z in this term.

tp is expected to be much less than ztf but is still included as (N −NH) may be

large.

x =
tL
tS

=
tfNz

zNHtf + (N −NH)tp

This approximates to x ' N/NH if the parabolic fit is negligible compared to the

force calculations.

The theoretical speed-up of the force algorithm is then:

tKfull
tK

=
K

(2
√

2K)(1− 1
x
) + K

x

=
1√

8
K

(
1− NH

N

)
+ NH

N

Where tKfull is the runtime for K steps of the full force update algorithm. In the

limit where only a small fraction of the system is in the hot region NH/N goes

to 0 and the speed up factor goes to 11 times. This sets an upper bound on the

efficiency of the algorithm. The factor limiting the maximum efficiency under

these assumptions is the initialisation time, constraining R to be 22.

In real applications NH/N will not be vanishingly small and the efficiency gain

will be less. However, the largest speed-up will be gained at the start of the

cascade when the smallest time step must be used, this is a useful time to be able

to accelerate the simulation’s progress. Some gains will be made throughout the

cascade: fig. 2.2 shows the theoretical speed-up against the fraction of the system

involved in the cascade. Speed-up is seen even for large fractions of the system

in the hot region.

The actual run time of the simulations also includes time spent in other areas of

the code. Although the speed-up is only on the force calculation this is a major

fraction of the run time.

13
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Figure 2.2 : Speed-up of the force calculation using the region based model
compared to the standard model vs. the fraction of the system in the hot region.
Most speed-up is gained for low fractions, although even relatively large cascades
experience improved run times.

2.8 Performance Measurments

Performance tests on a system of 250 000 atoms show that the ratio of tL to tS

depends on the fraction of the system in the hot region as well as the number

of cores used. The dependence on number of cores stems from the runtime

for tS steps being so short that the serial fraction of the code quickly becomes

important (approaching the limit of Amdahl’s Law). Although the algorithm is

fully parallel, the serial fractions in other parts of the code give the appearance of

poor scalability. This effect would be less noticeable for larger systems. tL scales

properly with number of cores as the serial fraction is negligible (at least for low

numbers of cores). For a single core with no atoms in the hot region x = 15, while

for 4 cores x = 9. For very large systems x should remain at 15 with increasing

cores, as the serial fraction of the short time step will be negligible.

The initial cascade phase of a 20 keV pka in a box of 250 000 atoms was simulated

using 4 cores. Fig. 2.3 shows the wall-clock time elapsed for simulations using

traditional and modified algorithms. The system sees a three-fold decrease in run

time over the first 40 000 steps of the simulation. After this the energy diffusion

starts to limit the effectiveness of the modified algorithm. For clarity a graph of

14
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Figure 2.3 : Graph showing the wall-clock time time elapsed versus number of
simulation steps. The system is a 20 keV cascade in iron using Finnis-Sinclair
type potentials. The line shows the run time for a system with variable time
stepping, but the same time step in all parts of the box. The algorithm is
approximately 4 times faster over the first 35 thousand steps. After this a
significant fraction of the system is in the hot region and the speed-up starts to
diminish. Some speed-up is however gained over the whole course of the cascade.

speed-up is provided, where speed-up is the ratio of run times of the traditional

variable time step algorithm to the modified algorithm (see fig. 2.4). The initial

speed up is 5-fold in terms of wall-clock time elapsed.

The speed-up for the algorithm vs. the fraction of the system involved in the

cascade is shown in fig. 2.5. The value is well below the theoretical maximum

for two main reasons: the theoretical model does not include the time taken for

force extrapolations. The time includes all parts of the code, not just the force

calculation. Additionally, the time spent outside the force calculation will be

equal for both algorithms so will reduce the speedup. A speed-up of greater than

3 times is still seen for up to a 20% of the system in the hot region: enough to

contain a fairly large cascade.
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Figure 2.4 : Graph showing the traditional run time (no spatial time stepping)
divided by the run time of the current algorithm. The system is a 20 keV
cascade in iron using Finnis-Sinclair type potentials. Significant speed-up is seen
particularly in the early parts of the cascade process. The speed-up falls as the
energy diffuses, increasing the size of the hot region.
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Figure 2.5 : Speed-up against fraction of system in hot region for a 20 keV cascade
in iron using Finnis-Sinclair type potentials. The dotted line shows the theoretical
speed-up which negates time spent in serial parts of the code as well as the cost
of extrapolation. The lines tend to converge at higher values.
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2.9 Example Cascade

Fig. 2.6 shows a 20 keV cascade being simulated using the more efficient

algorithm. Fig. 2.6.a) and b) show only atoms included in the hot region.

Image a) shows the initial stage of the cascade where the pka deposits substantial

energy to several lattice atoms in a short amount of time. A time step of

0.003 fs is needed due to the high velocities involved. Already the energy has

been distributed such that the highest energy atom in the system has 3.4 keV

of energy. Only 1.4% of the sample is in the hot region, allowing significant

speed-up.

Image b) shows the peak volume of the cascade. By this stage 14% of the sample

is in the hot region and the energy has become dispersed between many atoms.

The maximum energy in the system has dropped to 5 eV.

Image c) shows the system after most of the damage has annealed. By this stage

there is no large energy imbalance in the system and the spatial time stepping is

not needed.

Image d) shows a final defect yield for the system.

Another simulation is calculated for a 50 keV cascade in a box of half a million

atoms on four processor cores. Fig. 2.7 shows the progress of the cascade, only the

atoms in the hot region are included in the images. As the cascade evolves it can

be seen that the hot region becomes several sub-regions, this poses no problem

to the algorithm as it does not require a continuous region. These regions join up

as the energy spreads through the system. In the last image shown, fig. 2.7 d),

the cascade still only covers 5% of the box, allowing the algorithm to function

efficiently. Table 2.1 shows the state of the cascade at the points when the four

images were captured.

Table 2.1 : Statistics of cascade shown in fig.2.7

image Emax (keV) tH (fs) NH/N (%)

a 45.5 0.0007 0.05
b 35.4 0.0008 0.12
c 19.7 0.001 0.5
d 1.2 0.005 4.9
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Figure 2.6 : Progress of a 20 keV cascade, in iron using Finnis-Sinclair type
potentials, with the spatial time step algorithm. a) shows the initial stage of the
cascade b) shows the peak volume of the cascade. In both these images only atoms
in the hot region are displayed. c) shows the recovery of the lattice, here the whole
box is being simulated at the same time step, atoms above a certain energy are
shown. d) shows the defects detected in the final configuration. Large dots are
vacancies, small dots are interstitials.
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Figure 2.7 : A 50 keV cascade in iron using Finnis-Sinclair type potentials, run
with the spatial time stepping algorithm, is shown at 4 stages. The high energy
region around the cascade is automatically detected and shown as black dots in the
image. The cold region is omitted for clarity. Images are taken after simulation
time of: a) 2 fs b) 20 fs c) 51 fs d) 98 fs. They show the progress of the early part
of the cascade. The pka initially deposits energy at several discrete sites. The
sub-cascades triggered from this eventually overlap.
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2.10 Possible Improvements

As already mentioned, the limiting factor to the efficiency of the algorithm is the

constraint placed on R = tC/tH by the initialisation cost of the extrapolation

procedure. Whenever the regions are updated, 2R full cycles must be calculated

to allow the parabolic extrapolation steps to be executed. This overhead could be

reduced by starting off with a low value of R just after the region update. Using

points extrapolated from small R, the ratio could then be increased to larger R.

This method could be repeated to allow large values of R to be reached without

the overhead of having to run 2R + K/R cycles.

To use such an iterative method we must first carefully define the stability criteria

we will use to remain consistent with the current algorithm. Let the time values

of the extrapolation points be a,b,and c with c being the most recent point. The

stability criteria used for the extrapolation are as follows: two full calculation

points must be used as point b and c, and that the distance between b and c

must be greater than the distance between c and the estimated value.

Let Fn be the step number on which we perform the nth full force calculation.

For example if we only perform a full force calculation every second cycle then

F4 = 8. Requiring that two of the points are fully calculated points, is the same

as requiring that the nth term in the sequence is produced using two previous

terms from the same sequence. To satisfy the stated stability criteria, we can use

for point Fn, c = Fn−1 , 2b <= c , and a > 0.

The sequence of increases that obeys these criteria is given (after a few terms) by

Fn = Fn−1 +Fn−3. This series is similar to the Fibonacci sequence and the value

of the ratio of consecutive terms tends to 1.46. Each iteration of this algorithm

only requires one additional full force calculation but increases R by a factor of

1.46. This essentially removes the constraints on R: it is always beneficial to

increase R, at least from the point of view of balancing initialisation time against

run time. It takes 18 iterations of this algorithm to reach 1000 time steps, the

typical value of K. This is substantially less then the number of full calculations

used in the previous method K/R+2R = 89.

Although this method removes the balance between set up cost and running cost

that constrained R previously, R should still not be set arbitrarily large for other
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considerations. The larger R is, the lower the energy threshold for being in the

cold region becomes, increasing the ratio NH/N which strongly effects the run

time.

2.11 Conclusion

In conclusion, a reliable algorithm for accelerating cascade simulations has been

developed. It significantly reduces the simulation run time by only using small

time-steps near to the high energy cascade region. Under typical conditions it is

3 times faster than traditional Verlet integration.
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Chapter 3

Ion Bombardment of Copper

Surfaces

3.1 Introduction

In this chapter, simulation results of ion bombardment of a copper (110) surface

are compared to scanning tunnelling microscopy (STM) experimental results

(performed by Lane et al.[18]). Validating theoretical models by comparison

to experiment is critical in gaining confidence in the model. Often the models

used can simulate on time and length scales not typically available to experiment,

such as angstroms and femtosecond scales. Comparing the long term results of

such simulations to experiment, can not only validate the final result but also

give additional insight and confidence in the short-scale mechanisms.

The comparison in this chapter is two-fold in purpose. The foremost goal is to

reproduce the yield and distribution of surface damage observed in experiment

in order to increase confidence in the simulation techniques used. Secondly, the

mechanisms of damage formation on length scales not accessible to experiment

can be studied, especially since the experimental technique is only sensitive to

surface damage, where as simulations can be fully three dimensional. Assuming

the final distributions match well, there can be some confidence in the mechanisms

observed, even although they are not accessible to experiment (assuming the

model to be physically based as is the case with the methods used).
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In order to access experimental time scales a multi-scale approach was necessary.

The experimental results are on equivalent distance scales to the simulations

(angstroms) but the time scales are disparate. The initial bombardment is

simulated using molecular dynamics (MD), which gives the initial yield of surface

defects. MD typically models on up to the nanosecond scale, while experiment

results were on the second scale as there was a delay between bombardment and

measurement of the sample. To resolve this issue, the MD data was used as

input into a kinetic Monte Carlo (KMC) model. This allows defects to diffuse

and cluster on the second time scale, giving a distribution that can be directly

compared to experiment.

Questions to be answered about the experimental data include: How the damage

is formed, if there is any sub-surface damage, and to explain the slight excess of

adatoms (surface interstitials) as compared to surface vacancies.

3.2 Literature Review

Ion bombardment is a common technique in experimental physics, as well as

in manufacturing techniques such as field ion beam (FIB) milling, ion etching

and ion implantation techniques. It allows materials to be modified in ways not

easily achievable by other methods[19]. Additionally, undesired exposure to ion

sources can damage the surface, and a clear understanding of this process is

required to find damage reduction mechanisms. There has been much work, both

experimentally and theoretically, in understanding the processes that occur when

a surface is ion bombarded.

Numerous experimental studies of ion bombardment, across a broad range

of materials, exhibit crater like impact sites. Cratering behaviour has been

observed by STM in Xe ion impact of Pt(111) surfaces, with formation of a

centralised crater surrounded by a ridge of adatoms[20], with adatom yield far

in excess of binary collision model predictions. Ion impacts have also been

studied experimentally in complex materials such as InGaAs thin films on GaAs

substrates by atomic force microscopy (AFM)[21]. For each ion impact they

observe the formation of a single crater with an adatom-rich periphery.
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Ion bombardment of Si with a thin SiO2 layer has been observed by STM[22].

This study observed crater formation at the interface between the silicon and

its oxide layer, showing that the damage mechanisms can also be applied to

internal surfaces. Ti surfaces have been studied experimentally by scanning

electron microscopy (SEM), revealing crater formation[23] . SEM measurements

of bombarded refractory metal alloys, reveal craters with multi-ring structures

surrounding them[24]. These studies exhibit the wealth of materials that exhibit

this behaviour as well as the range of experimental methods that can be used to

analyse these defect formations.

There is an equally broad range of simulation work modelling the experi-

mental phenomena. The accuracy of the technique and potentials used is of

critical importance in reproducing experimental effects both qualitatively and

quantitatively. Crater formation has been studied by MD with Lennard-Jones

potentials[25]. Lennard-Jones potentials are considered to be an oversimplified

description of a material: they are not material specific, they have low stacking

fault energies and the vacancy formation energy tends to be too high[26].

However, if the correct behaviour can be exemplified by these simple potentials, it

shows more complex approaches to be unnecessary. They study oblique impacts

of a surface by ions and record the trend with varying impact angle. The

trend is found to match predictions of a thermal spike model[27] although the

quantitative yield can not be compared as the potential was not tuned to a specific

material.

Averback et al.[28] studied damage formation mechanisms for a 10 keV Au ion

bombarding an Au surface using empirical potentials. Their molecular dynamics

simulations reveal the formation of adatoms above a disordered vacancy-rich

region of the bulk. A model is proposed to explain the results in terms of viscous

flow of a melt region. They assume energy is deposited evenly over a cylindrical

track around the ion path in the solid. Heat diffusing radially outwards from this

track melts a cylindrical segment of the material. The change in density, due

to the melting, exerts an outward pressure on the surrounding lattice (assuming

the liquid phase is greater in volume than the crystalline phase: this is not the

case in substances such as Si and Ge[29]). The elasticity of the surrounding

crystalline lattice contains the melt region on all sides apart from the open surface,

therefore the liquid can viscously flow to the surface in order to alleviate the
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pressure. They note that defects produced by this method exceed the amount

that may be expected from the Kinchin-Pease equation. This is due to the damage

being flow based, and not linked to threshold displacements which is assumed in

Kinchin-Pease equation. This model should be relevant in materials with low

melt temperatures such as Cu, Au, and GaAs.

This model is further developed by Ghaly et al.[30]. They note that as the melt

region recrystallises, the vacancies are pushed back into the liquid phase as they

have higher free energy in the lattice than in the liquid. This will result in

the vacancies being clustered into a smaller region near the centre of the melt

zone. Three possible mechanisms for cascade surface damage are identified in

the study: linear cascade ejection events, viscous flow of the melt region, and

micro-explosions. Micro-explosions refers to subsurface cascades that ballistically

rupture the surface layers, forcing atoms from the surface layer to be sputtered

or become adatoms.

All three effects may be seen in a given material, although the frequency and

importance of each effect may differ depending on the bombardment type and

material properties. The main factors determining the type of damage are the

cohesive properties of the lattice as well as the energy density deposited by the ion

at the surface. Disperse energy densities led to linear cascade events displacing

surface atoms ballistically. At higher energy densities the damage formation is

attributed to the viscous flow mechanism. The flow mechanism tended to produce

a lot of damage in the form of one continuous cluster of adatoms. The vacancies

left behind in the bulk could collapse into a dislocation loop. For high energy

densities close to the surface, the micro-explosion mechanism could produce deep

craters in the substance.

The above model is applied to a Pt system to directly compare results with

STM data from another study[31]. They find qualitative similarity between the

studies. Quantitatively, the adatom yield is overestimated by a factor of 2, after

taking into account possible diffusive recombination events the adatom yield is

still overestimated by 60%. It is suggested that this is due to the lack of phonon-

electron coupling which gives too long a cooling period.

26



3.3. Method

3.3 Method

The effects of argon ion bombardment on a (110) copper surface is investigated

by Molecular Dynamics simulations. 250 000 copper atoms were set up in FCC

configuration with a (110) surface in the z axis. The system was thermostated to

144 K and allowed to equilibrate for 10 ps.

The copper atoms were described by a Finnis-Sinclair potential, fitted to the

properties of copper[32], which has previously been used for surface[33] and

radiation[34] studies. It was considered if the argon potential should account

for the ionic nature of the particle. Studies of Auger neutralisation effects show

high neutralisation rates of incident ions. In particular a study of He+ shallow

angle bombardment of Ag shows a very high neutralisation rate, even though the

contact time will be relatively small[35]. This suggests that high angle (close to

perpendicular) impacts with greater penetration and contact time will rapidly

neutralise the ion. Due to this the argon was described using only a pairwise

potential as it has a closed outer shell. The same pair potential was used for Ar-

Cu as for Cu-Cu, as argon has the same electronic core as copper. The correct

atomic number is used for the ZBL[36] core repulsion term.

To initiate the bombardment event an argon atom was placed a few lattice

spacings above the free surface. This atom was given 0.5 keV of kinetic energy

towards the surface within a tolerance of 5◦. The system is evolved by a variable

time step Verlet algorithm explained in ch. 2.2. This allows the initial impact,

resulting cascade and final defects after the thermal peak has dissipated to be

studied.

This set up was chosen due to its similarity to the experimental study performed[18],

which will allow comparison of the simulation results directly with experiment.

Defects and clusters in the system were analysed by the method explained in

ch. 3.4

Constant volume periodic boundary conditions were used along the x and y axis,

with a free surface on the z axis. The choice of boundary conditions for the

simulation cell must be made carefully. Open surfaces in the system lead to non-

bulk like behaviours in certain regions and so are undesirable in directions that

should appear continuous. The sample may also expand or contract accordingly.
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Periodic conditions represent the bulk well but give rise to image interactions.

These interactions can be minimised by picking large system dimensions at the

expense of computation time. In practice a balance between system dimension

and image interaction is chosen to keep interaction to a minimum.

The main interaction in the cascade systems is through wave propagation out

from the cascade. Considering waves at the speed of sound in the medium an

image-interaction time can be gained. For a typical system the interaction time is

around 1 ps and so still during the lifetime of the cascade. These waves tend to be

low energy compared to the cascade region and so their effects are not expected

to modify the results significantly.

3.4 Defect Analysis

A Java program was written to analyse the defects in a crystalline system. The

main scope of the program is to detect vacancies and interstitials and their

distribution. Extra functionality was added to the program to allow it to also

track the displacement of atoms.

Two methods were considered for detecting defects in the system. The simplest

involves the comparison of the final configuration with a perfect lattice, normally

the quenched input configuration. The number of atoms in the Wigner-Seitz

volume around each initial lattice site is counted. If this number is 0 there is a

vacancy, 1 for a normal site and greater than one for interstitials. This method

can yield inaccuracies in position if the final system has drifted from the initial

position (i.e. the centre of mass has changed). This is normally easy to adjust

for by aligning the centre of masses of both systems, and checking that on-lattice

atoms align in the initial and final systems.

The second method involves automatically detecting the lattice from the final

configuration file. The nearest neighbours of an atom are detected, and the

vectors to each calculated. This is repeated for several atoms in a region, and

the vectors checked for consistency. If the vectors are consistent they can be

used to step out a lattice over the system. This lattice may then be used for

comparison with the final configuration to find defects as before. The advantage
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of this method is that it allows for skews, stretches and thermal expansion of the

lattice that may have developed during the simulation. It would also be possible

to use the method to analyse a system composed of multiple grains by fitting a

lattice to each region (this use is not explored currently).

For the present simulations the simpler comparison method was found to be

sufficient, so was used for this study. The second lattice fitting method was also

implemented in the code and gave similar results to the simpler method. After

detecting the defects, close interstitial-vacancy pairs were eliminated: opposing

defects in neighbouring cells were assumed to either be caused by thermal

fluctuations or to have a short lifetime and so were eliminated.

For efficiency the atoms are split into a link-cell based arrangement. The system

is split into spatial cells using a three dimensional grid that has spacing related

to the interaction radii and typically includes several neighbour cells. Atoms

with coordinates inside a cell are listed as a member of that cell. Now instead of

searching the whole system for neighbours of an atom, it is sufficient to search a

33 block of cells, centred on the atom’s current cell. This means that neighbour

searches no longer scale with the size of the system, rather with the fixed volume

of the 33 cells.

Additional code was added to track changes in the lattice configuration. Of

interest were the displacement vectors for atoms that have changed site. This is

simple to calculate given the initial and final configurations. Atoms that have

changed their nearest neighbours are also tracked. This separates out correlated

motion of whole regions from ballistic or diffusive re-ordering events. Such atoms

can be detected by comparing the initial and final neighbour lists of a given

atom.

After the point defects are detected, clusters of like defects are identified. Defects

at up to second nearest neighbour distance to each other were considered to be

clustered. The code produces the size and frequency distribution of the clusters of

each type (vacancy or interstitial). For the presence of a secondary element, such

as helium, the clustering properties are also detected, as well as the properties of

combined clusters, i.e. helium-vacancy clustering.

Although the algorithm was designed to analyse cascade debris, the code is general
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enough to study other phenomena. Slip plains and dislocation motion can be

detected using the code that detects changes of neighbour. This code eliminates

correlated motion and so only highlights the atoms either side of the slip. The

lattice fitting part of the code could be used for detecting the position, orientation

and extent of regions in a polycrystalline substance.

3.4.1 Thermostating

Thermostating in cascade simulations must be done with care. Without a

thermostat the system will be heated to a final temperature greater than the

initial equilibration temperature by the energy of the pka. This is due to the

finite size of the samples used and the lack of electronic heat transport. In real

materials long range phonons and electronic excitations quickly dissipate heat

away from energetic regions.

For a large enough system, with low electronic heat transport, this heating can

be considered acceptable as the temperature change decreases with system size,

being vibrationally transferred to the rest of the sample. However, for a copper

system the thermal conductivity is quite high when compared to materials such as

iron; 80 and 401 W/(m.K) for iron and copper at room temperature respectively.

In this case it was decided that the effects of energy transport out of the cascade

region by electrons and phonons would be significant.

The Nosé-Hoover thermostat was used[37]. Nosé-Hoover applies thermostating

through a frictional drag on the particles. For out-of-equilibrium radiation

damage in metals this approach is better than, for example, a Langevin

thermostat which applies random external forces. Particles with energies above

5 eV were excluded from the thermostating. The thermostating was only updated

every 1 fs, so that the time step chosen would not affect the thermostating values.

The argon atom is not included in the thermostat. It is neutral and so does not

strongly couple to electronic transfer.

Energy is transferred from the argon atom to the copper lattice through ballistic

collisions driven by core electronic repulsion. The copper atoms surrounding the

ion track become highly excited, leaving their lattice sites and causing further

collisions. These collisions are not thermostated: the Nosé-Hoover algorithm
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is designed for lattice vibrations and so would too strongly penalise ballistic

motion.

Once the energy spreads enough for the ballistic phase to end, the excess kinetic

energy translates into increased vibrational properties of the atoms. At this stage

the atoms are included in the thermostating. Thermostating was initiated when

all particles in the system have less than 5 eV of kinetic energy. This value is well

below the atomic threshold displacement energies in copper of Ed[110]=18 eV to

Ed[111]=29 eV[38] ensuring the system is in the vibrational regime.

The thermostat was scaled to reflect the thermal conductance of the substance.

Fourier’s law of heat conduction can be stated as:

q = KA∆T/x

Where q is the heat transfer rate, K is the thermal conductivity, ∆T is the

temperature difference across the sample, A is the heat transfer area, and x is

the thickness of the material. For a cubic block of material A/x=x. The excess

energy in the system is:

E =
3

2
Nk∆T

Therefore, the characteristic time for heat transfer in the system is:

t =
E

q
=

3Nk

2Kx

This gives a characteristic time of 0.16 ps for heat to flow out of the system. This

is used to set the softness of the Nosé-Hoover thermostat.

3.4.2 Barrier Calculation

Energy barriers for adatom motion on the (110) surface were calculated in order

to explore the surface energetics and diffusion paths. An adatom at a stable

point on a (110) surface sees a rectangular lattice of atoms surrounding itself
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with stable adatom sites being the centre of the rectangles. The environment is

asymmetric with easier motion along channels than across them, where [110] is

along the channels and [001] is across the channels (fig. 3.1).

The energetic barriers to interstitial site hopping were calculated by comparing

relaxed energies in the system. The fully relaxed energy, with the interstitial

at a minima and no constraints, was taken as a reference point. The nudged

elastic band method[39] was then implemented in the code to find the peak of

the energy barrier. This technique moves the adatom along a line adjoining two

stable interstitial sites, subject to constraints; the component of the interstitials

motion parallel to the path is constrained to stop it relaxing back to the minima,

while the components of motion perpendicular to the path are free to relax. The

surrounding lattice is also allowed to relax but not to translate. The energy

barrier at 0 K can be taken as the difference between the peak energy found

along the path and the fully relaxed state. This yielded a 0.33 eV energy barrier

for along channel hopping and 1.17 eV for across channel hopping.

The barriers were verified by a secondary method using dynamic simulations.

High temperature MD was simulated and the hopping rates of isolated adatoms

were recorded. From the jump rate and the oscillation period, the probability of

a successful jump can be calculated. By rearranging the Arrhenius equation the

energy barrier can be found:

E = −kT ln| τosc
2τint
| (3.1)

Where τosc is the oscillation period of the interstitial, and τint is the jump

frequency. This yields a value of 0.304(12) eV for the along channel hopping,

which is close to the static barrier calculation. The two methods seem in good

enough agreement to show the validity of the approaches. The dynamic barrier

would be expected to be slightly lower: the barrier height varies with thermal

fluctuations and the average will be weighted to the lower values as they allow a

much greater number of hops.

The dynamic method also showed an interesting mechanism for diffusing across

channel which may have been missed if only the static calculations were

performed. An interstitial may cross to another channel by replacing one of the
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corner atoms surrounding it, resulting in a diagonal move as shown in fig. 3.1.

The barrier for this is estimated to be 0.42 eV, as calculated using the dynamic

method and eq. 3.1. This is significantly lower than the direct cross channel

hopping barrier.

Additional energetics were calculated by the nudged elastic band method to

explore clustering behaviour. Energetics were calculated for the dissociation of

a single adatom from a surface cluster. The results are summarised in fig. 3.2.

Interstitials in adjacent surface channels have little effect on the motion in an

adjacent channel: as can be seen in the top right panel of fig. 3.2, the barrier

to diffusion along channel is only increased by 0.05 eV when an interstitial is

present in the next channel. The top left panel shows that interstitials in the

same channel have stronger binding, almost doubling the along channel diffusion

barrier. Averaged over the configurations, the presence of a neighbouring adatom

in the same channel increases the diffusion barrier by 0.32 eV along channel and

0.12 eV across channel.

Figure 3.1 : Diagram of replacement mechanism, which allows cross-channel
diffusion on a (110) copper surface. An adatom displaces a surface lattice atom,
taking its place and forming a new adatom.

3.5 Results

90 cascade simulations were performed varying the angle to the surface of the

argon’s trajectory within 5◦ and varying the point on the surface that the

argon ion is aimed at. This study looks at: the final yield of defects, the

clustering of defects, the path of the argon atom, and the formation process

of the damage.
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Figure 3.2 : Shows the surface diffusion barriers from static calculation for
adatoms and small clusters on a (110) copper surface. [1 1̄ 0 ] is along the surface
channels, [001] is across the channels. The barriers given are for the movement
of a single adatom along the direction shown (not the whole cluster) until the
saddle point is reached; the adatom is free to relax away or toward the surface.
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3.5.1 Damage Formation

The yield and distribution of defects resulting from various cascades, as well as

the formation process of the damage, is analysed. The number of lattice defects

was tracked during a cascade. The defects were detected by the method explained

in ch. 3.4. This number includes unstable pairs caused by melting and collisions.

In this regime the definition of a defect is ambiguous and is used only as a means

of tracking cascade progress. However, the defect count after the cascade has

settled is a meaningful measure of damage. A typical graph of the defect yield

during a cascade is shown in fig. 3.3. The thermal peak occurs at around 1 ps

and the damage is mostly settled (at least on the ps scale) by 2-3 ps. Runs were

continued for another 5 ps during which at most one defect pair recombined,

showing the stability of the configuration on the pico-second scale.
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Figure 3.3 : Graph of the time evolution of the number of defect pairs in the
system for a 0.5 keV Argon atom bombarding a copper surface. Peak damage is
after 1 ps, with recovery by 2 ps.

The yield and distribution of the final cascade damage was analysed. Fig. 3.7

shows the typical final distribution for a near surface cascade. Analysing the

full data set reveals that 11.9(10) Frenkel pairs were formed per cascade, of

which 10.3(8) produce adatoms. The other atoms evaporating or (rarely) forming

subsurface interstitials. 72(3)% of the vacancies formed were in the single crater,

the others were predominantly subsurface. The Ar atom was ejected from the

system 41(6)% of the time.

A strong correlation was found between the penetration depth of the pka and

the damage formed by the cascade, as shown in fig. 3.4. The deeper the pka
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penetrates, the less damage there seems to be (including bulk damage). Deeper

collisions are caused by channelling between lattice planes, while shallow collisions

tend to be caused by a more direct impact with a surface atom. The channelled

collisions undergo several collisions with atoms along the channel’s sides, which

spreads the energy over a larger volume. A lower energy density will lead to fewer

defects. Additionally, the energy is deposited further from the surface, reducing

the cascade-surface interaction.

During a cascade, atoms tend to be pushed outwards from the impact site, before

being pushed back towards their original site by the surrounding lattice. Near

the surface this recoil is not present, as there are no atoms to push the displaced

atoms back onto their sites, and so surfaces tend to allow easier interstitial

formation. Therefore, shallower cascades will be expected to produce more surface

damage as long as the displacement wave moving out from the cascade reaches

the surface.
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Figure 3.4 : Number of Frenkel pairs (NF) produced vs. ln of the penetration depth
(d), defined as the lowest point reached by the Ar ion below the average position
of the surface layer, for 0.5 keV bombardment of a (110) copper surface. The
anomalous very low values of d correspond to bouncing off the surface and are
excluded from the fit line. d=23.3(2)exp[0.074(5)NF].
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3.5.2 Impact Craters

The crater formation process is analysed in this section. To study the flow

of atoms during the cascade, first nearest neighbours were calculated for each

atom both before and after the cascade. This information was used to identify

atoms that have switched at least two new nearest neighbours during the cascade

process. A plot of the displacement trajectories for such atoms is shown in

fig. 3.5.

There is more order to the diagram than might be expected if the cascade were

thought of as locally melting the region. Atoms move towards the surface by

a series of replacement collision chains. This draws matter from the bottom of

the crater, where the atoms displaced downwards by the pka are exerting most

pressure, up along the sides of the crater. Adatoms are formed fairly early on in

the simulations, due to replacement collision chains terminating on the surface.

The thermal spike phase is not strongly influential in the formation process.

3.5.3 Stress Waves

To further the study of the interactions during the cascades the atomic stress

was calculated and tracked during the simulations. Atom stress can be defined

by[40]:

σαβi =
1

Ωi

(
1

2

∑
j

fαijr
β
ij −Miv

α
i v

β
i

)

Where fij, is the force on atom i due to atom j and rij is the vector joining sites

i and j. Ωi is the atomic volume and the sum is over all neighbours of i. Mi is

the mass of atom i and vi its velocity. The far right term is linked to the kinetic

energy of the atoms.

By calculating the atomic stresses during the cascade, stress waves can be

identified in the system. These waves seem to be a mechanism for dissipating the

cascade energy rapidly through the lattice without mass transport. They tend

to follow close-packed planes and are prevalent parallel to the surface layer. The
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Figure 3.5 : The relationship between initial and final positions of atoms after
a typical surface cascade. The system was a 0.5 keV Ar bombardment of a
(110) copper surface. Black squares indicate atoms which have at least two near
neighbours different from the initial state. Red lines link the initial position of
atoms to their final position. The top 3 images are the x, y, and z projections for
the whole system, showing the displacement trajectories of the atoms. The lower
images are magnified views of the crater. They show a systematic structure to the
displacements rather than the disordered pattern one might expect from localized
melting. Correlated motion of matter can be seen moving along the sides of the
crater towards the surface.
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wave propagation is shown in fig. 3.6. The wavefront propagates at 23 x 103 ms−1,

well into the hypersonic regime (speed of sound in copper is 4760 ms−1[41]).

Previous models have been proposed, invoking hypersonic wave fronts to explain

high spluttering rates in copper/argon collisions. In these models, due to

Carter[42] and later Webb[43], the wavefront propagation is tracked by measuring

ejection times and locations in simulations. By averaging over many cascades they

can produce a wavefront from the data. The wave expands cylindrically around

the ion track at a rate of 17.6 x 103 ms−1. This localised expanding cylindrical

wave front could be the trigger of the more channelled phenomenon observed

here. In their study the energy of the Ar is 10 times that of the present study

and the surface plane is (001). The difference in velocities between the models is

likely due to the change in crystallographic plane.

Figure 3.6 : Shown are four images of the stress in the lattice during a cascade.
The system was a 0.5 keV Ar bombardment of a (110) copper surface. Blue circles
show positive stresses, red circles show negative stresses. The size of the circle
represents the trace of the stress matrix. The arrow marks the wavefront position.
a) 60 fs: Stress wave is seen to start propagating. b) 90 fs: Wave continues along
plane. There is no mass transport and atoms stay close to their original sites. c)
120 fs: A negative stress region can be seen just behind the wave front. d) 170 fs:
Wave still propagating. The wave’s disturbance has pushed a particle from the
second row of atoms up to the surface level. Such events may be a mechanism
for distant adatom formation and is marked with an arrow and asterisk(*) in the
diagram.
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3.5.4 Comparison to Experiment

The final damage and distribution is carefully compared to experimental results.

Experimental data was gathered and analysed by P. D. Lane and R. J. Cole[18]

to quantify the surface defects and their distribution. They analysed 30 images

of ion bombardment sites, taken from a scanning tunnelling microscopy (STM)

experiment performed by their group. The present author was not directly

involved in this part of the analysis.

On average there were 10.4(6) adatoms per event and 9.2(3) vacancies in the

experimental data. This counts only defects directly on the surface as STM is

limited to this region. The clustering of the defects can also be analysed from

the images. Typically a centralised vacancy cluster was observed surrounded by

islands of adatoms. Some typical STM images are shown in fig. 3.8. There is

qualitative similarity between the STM images and simulation images (fig. 3.7),

with both showing a centralised vacancy cluster surrounded by adatom clusters.

The simulation data shows the conical shape of the crater, which is not apparent

from the STM analysis.

Comparing the data to experiment must be done with care as the number of

Frenkel pairs produced is not the same as the number of adatoms that will be

observed. Differences arise because interstitials can be formed subsurface where

the STM technique used will not detect them. Additionally the MD simulations

showed that the impact could eject atoms from the system, a process known

as sputtering. Another issue complicating the comparison is the sampling bias

introduced by the image analysis technique used by the experimental group. The

analysis technique used by the experimental group involved selecting individual

impact images by hand, from the STM data. This will bias towards higher yield

impacts: as small cascades that do not form clear craters and adatoms are less

likely to be analysed. As can be seen from the STM images, fig. 3.8, the data

is approaching the limits of resolution of the images. A better approach would

have been to count all defects over as large a surface area as possible, and then

divide by the number of ion impacts expected in that area for the given beam

fluence.

The issues of evaporation and subsurface damage can be directly accounted for by
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analysis of the defects produced in the MD. This is taken into account by filtering

the defects formed by height, only allowing a small range of values relating to

the top layer of the crystal, so that only surface damage is counted. Adjusting

for the sample bias in the experiment requires a threshold to be picked for what

size of cascades would be visible in the STM. The eventual threshold decided

on, after discussion with the experimental group, was that at least one cluster

of 3 adatoms would need to be present to ensure detection. The data with only

surface defects included and adjusted for STM visibility, will be referred to as the

filtered data.

Fig. 3.9 shows a comparison between the experimental and simulation data, split

by frequency of different sizes of clusters. The full simulation data set, as well

as the filtered data set, are compared. The experimental distribution shows a

peak around 4-5 adatom cluster size. The simulation data sets show much more

small clusters of size less than 3 than is seen in experiment. The filtered data has

a slight reduction in small clusters, but still a large abundance as compared to

experiment.

Fig 3.10 shows the cumulative yield of adatoms summed over the various cluster

sizes. The full simulation data set has a total of 10.3(8) adatoms which is in good

agreement with the experimental value of 10.4(6). However, this is not the correct

data to compare with as it contains cascades that are too small to be reliably

detected by the STM. The total sum of adatoms per cascade for the filtered data

is 12.6(8), 2.2(10) adatoms higher than observed experimentally.

To summarise, the filtered simulation data, when compared to experiment, shows

more small clusters and a higher yield of adatoms. The observational threshold

is assumed to be correct as a higher threshold would give discrepancies in the

total damage. The distribution discrepancy is most likely due to the different

time scales. The simulations lasted several picoseconds, enough time for the

energy of the cascade to dissipate. However, the experimental images were taken

around 30 minutes after the bombardment, possibly allowing the atoms time to

diffuse.
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Figure 3.7 : Typical distribution of final defects, for a high-yield collision of
0.5 keV Ar ion with a copper (110) surface, viewed from above the (110) surface
(top) and a perpendicular slice (1̄10) (bottom); shown are vacancies (red squares)
and interstitials (blue circles, with shaded halo). A background shading was added
to highlight the six clusters of sizes 17, 2, 1, 1, 1, and 1.

Figure 3.8 : STM images of craters above cascades (courtesy of P.Lane); all
images are 44 nm. The vacancies (dark) lie in the center of the crater and
the interstitials form a surrounding halo. The number of vacancies/adatoms are
calculated by dividing the total area occupied by vacancies/adatoms around the
impact site by the area of the unit cell.
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Figure 3.9 : Shown is the yield of adatoms per cascade, separated by cluster size,
for a 0.5 keV Ar ion striking a (110) copper surface. Filtering is applied to remove
data that would not be observed by the STM image analysis techniques used. The
black solid line is the experimental values for adatom clusters per cascade. The
dashed line with crosses is the unfiltered data. The dashed line with asterisks is
the data filtered so that only cascades with at least one adatom cluster of 3 atoms
are counted. The filter decreases the yield of smaller clusters and emphasises the
larger cascades.
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Figure 3.10 : The cumulative yield of interstitial clusters split by cluster size is
shown. The cascades were a 0.5 keV Ar ion striking a (110) copper surface. The
black solid line is the experimental values for adatom clusters per cascade. The
dashed line with crosses is the unfiltered data. The dashed line with asterisks is
the data filtered so that only cascades with at least one adatom cluster of 3 atoms
are counted.
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3.6 KMC Surface Model

To explore the effects of diffusion on longer time scales, a KMC-based surface

hopping model was written. This model uses a similar construction to the

object kinetic Monte Carlo model described in ch. 4.7.1. The model accounted

for nearest neighbour diffusion and binding, using the barrier data in fig. 3.2.

Hops along and across channel were allowed, taking into account the neighbour

binding effects at first nearest neighbour. The mechanism for diagonal cross

channel diffusion (fig.3.1) by replacement of a lattice atom is also included in the

model.

The simulations allow annihilation events between vacancies and adatoms. The

adatom is bounded by 4 surface atoms; when one of these is a vacancy annihilation

is assumed to occur. Since the crater had a conical shape it may be possible for an

adatom to diffuse further into the crater and so re-open the surface site. That is,

a vacancy site may be able to absorb more than one adatom. However, the crater

tended to be shallow and rapidly tapered (fig. 3.7). Due to this the mechanism

was not included in the model and each vacancy was completely annihilated by

one adatom.

The defect configuration in the KMC model was initialised using final cluster

distributions from the MD simulations. The system was evolved at 144 K for 30

minutes of simulation time to match the delay in measurement of the experimental

data. After simulating the diffusion, the data was filtered to remove any cascades

that did not produce at least one cluster of 3 adatoms as these would not be

detected in the experimental analysis. The filtered distribution of clusters formed

can be compared directly to the experimental distribution (fig. 3.11). It can be

seen that there is no longer a large excess of single defects in the simulation

data, as was the case with the previous distribution from the MD data (fig. 3.9).

However, the distribution of the KMC data is still slightly skewed towards smaller

clusters, as compared to experiment.

The cumulative distribution is shown in fig. 3.12. It can be seen that the total

yield of adatoms is less than in experiment. After the KMC there are 8.5 adatoms

and 7.4 vacancies per cascade. These are both lower that the experimental values

of 10.4(6) adatoms and 9.2(3) vacancies. Both show an excess of adatoms by just
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over one adatom per cascade.

The KMC seems to produce a much closer distribution of clusters, and a similar

yield distribution up to around adatom clusters of size 8. There is a lack of larger

adatom clusters in the KMC data, as well as a slightly decreased yield. A possible

explanation for this could be the weak cross channel binding energy predicted by

the MD barrier calculations and used in the KMC. If this binding is higher in

reality, it would produce a greater yield of larger clusters. An increase in this

binding would also increase yield as more defects would be bound in clusters,

reducing the number of recombination events.

An alternative explanation is that there is more sample bias in the experimental

technique than is accounted for by requiring a cluster size of 3. Varying this filter

increases the yield of adatoms in the simulation data noticeably, as small clusters

are removed from the data set.
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Figure 3.11 : The yield of adatoms per cascade, separated by cluster size, for a
0.5 keV Ar ion striking a (110) copper surface. The solid line is the experimental
data. The dashed line is from the computational data, after running a KMC
algorithm.
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Figure 3.12 : The cumulative distribution of adatoms, summed over cluster sizes
The solid line is the experimental data. The dashed line is from the computational,
after running a KMC algorithm for bombardment of a (110) copper surface and
the subsequent diffusion. The computational data is filtered to match what would
be visible in the experimental analysis.

3.7 Conclusions

The original MD data shows a small excess of adatoms and surface vacancies when

compared to the STM data. The distribution of the surface clusters is heavily

weighted towards much smaller clusters compared with the STM distribution.

Running KMC simulations on the MD data affects both the yield and distribution

of surface damage. The yield becomes slightly smaller than the experimental

value, although retains a good ratio of adatoms to surface vacancies. The

clustering of defects becomes much closer to the experimental distribution after

the KMC simulations.

Sub-surface interstitials are rare, although interstitials are lost by high speed

ejection from the surface. The vacancies formed tend to be close to the surface

and clustered into a single crater. Since the cluster has a conical shape sub-

surface, some vacancies are not observed by the STM imaging. The simulations

seem to balance these different loss effects well, giving a similar difference between

the number of visible interstitials and vacancies. The experimental observation

of more adatoms than vacancies can therefore be explained by the combination

of these factors: the number of adatoms ejected from the system is outweighed

by the unobserved vacancies in the conical crater, giving an excess of adatoms

overall.
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Study of the argon atom’s trajectory revealed a strong inverse correlation between

penetration depth and damage to the lattice. When the cascade overlaps the

surface, they interact strongly to cause craters and adatom clusters. The

interaction appears more directed than may be obtained from a local melt region.

Replacement-collisions chains orient preferentially towards the surface to alleviate

the compression at the bottom of the crater, while taking advantage of the

depletion region above this for easier motion.

Study of the atomic stress reveals stress waves propagating along sub-surface close

packed planes. These transport heat from the cascade region to the surrounding

lattice.
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Chapter 4

Mobility of Bubbles and Voids

Under Irradiation

4.1 Introduction

This chapter studies the interaction of radiation cascades with voids and bubbles

in iron. Both molecular dynamics (MD) and object kinetic Monte Carlo (OKMC)

techniques are used to study the phenomenon on different time scales. During

the MD simulations a mechanism of interaction between voids and cascades is

identified. The long term diffusion of clusters of defects is not on a compatible

time scale with radiation cascade simulations for most reasonable temperatures.

This exemplifies the need for a multi-scale simulation approach, in order to

access time and distance scales comparable to experiment. To explore how

this mechanism interacts with other processes in the system it is implemented

in an OKMC model. This allows the time-scale gap to be resolved, so that

cascades debris can be introduced into a sample that is running on diffusive time

scales.

The formation of voids and bubbles is discussed below. Under neutron irradiation

voids will form and grow in iron. Vacancies in iron are self-attractive[44] even

for small clusters. They can migrate at high temperatures, allowing clusters to

nucleate. Radiation cascades can also nucleate vacancy clusters at their cores.

Although in the case of α-Fe the nucleated clusters tend to be dispersed vacancies

48



4.1. Introduction

at second neighbour distance or more[45], instead of voids or vacancy dislocation

loops. Some simulations[46] of high energy bombardments show collapse to

vacancy loops, although the effect is still uncommon.

Models show that compact voids can form from the subsequent migration of the

loose vacancy clusters[47]. For larger clusters single vacancies can be absorbed

with energetic gains equivalent to the formation energy of the vacancy as the

surface area of the void is relatively unaffected[14]. The formation and growth of

voids leads to radiation swelling of the material[2]. This effect is due to the bias

sink absorption of interstitials loops by dislocations as compared to absorption of

voids. This results in an overall flow of vacancies into neutral sinks such as voids,

while interstitials are preferentially incorporated into the dislocation network,

swelling the material[2].

Bubbles are voids filled with a gas such as helium. Helium is present in the lattice

through implantation and transmutation events in the presence of radiation

sources such as fusion reactors. Expected concentrations of helium in fusion

shielding is 2000 appm[5]. Studies suggest a formation of helium in cascades at a

rate of 10 appm/dpa[3] for fusion conditions. Helium is self-trapping, attractive

to vacancies and has a high diffusion rate in α-iron[44, 9, 48]. This leads to

bubble formation as the helium clusters in the voids to reduce the repulsion

effects in the lattice. Bubble formation has been observed experimentally,

for example Edmondson[7] observes bubble formation by transmission electron

microscopy(TEM) and atomic probe tomography (APT) in nanostructured

ferritic alloys. They observe helium bubbles to occur in bulk as well as at grain

boundaries and dislocations.

Both voids[8] and bubbles[9] can pin dislocations leading to hardening of the

material. The growth and dynamics of voids and bubbles can have macroscopic

effects on the material such as hardening and swelling. This makes their

study of particular importance in determining the lifetime of the material under

irradiation.
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4.2 Literature Review

A study of very low energy cascades of just a few eV impacting on voids has

been performed by Dubinko[49]. It showed that very low doses can lead to

the dissolution of voids by focusons striking them. Focusons transfer energy

along closed packed planes without interstitial transport. Upon striking a void

the atom at the terminus of the focuson may be injected into the void, leaving

a vacancy at the initial starting point of the focuson. This is consistent with

experimental observation[50] that the voids can be reduced in size by irradiation

under favourable conditions.

At higher energy Pu[51] et al. studied stability of helium bubbles of different

densities struck by radiation cascades. They find that the stability of the bubble

depends on its He/vac ratio. Clusters with significantly more He than vacancies

tend to absorb vacancies from the cascade. Conversely, clusters with a low density

of He tend to lose vacancies during the cascade, approaching the stable ratio of

near 1:1.

Simulations by Parfitt and Grimes[52] study the behaviour of helium bubbles in

uranium dioxide under radiation induced cascades. An atom close to the bubble

is given 10 keV of energy, to simulate a radiation event, and the resulting cascade

observed. They find that where the hot ’melt’ region of the cascade overlaps

the bubble, there is an increased chance of helium gas being emitted into the

region. As the melt region cools the helium is trapped in the lattice. Their

study concludes that this emission is mostly not ballistic, but rather is due to the

disorder of the bubble walls allowing low energy diffusion paths into the lattice.

Some ballistic emission of gas is also observed at shorter time scales, although

most of the gas remains confined to the bubble. They expect the mechanism

of increased surface diffusion, due to the melt region, to be dominant for larger

bubbles.

Further properties of helium in iron during cascades (but not in the presence

of voids or bubbles) have been obtained by Lucas[53] et al. They find that the

presence of substitutional helium tends to reduce the number of Frenkel pairs

produced. Interstitial He increases lattice stress and favours the formation of self

interstitial atoms (SIA) as well as stabilising SIA clusters. They observe increased
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diffusion of helium at high temperature, which aids bubble formation.

An interesting mechanism for interstitial cluster formation during cascades in

pure α-Fe has been observed by Calder[54] et al. They find that some cascades

emit particles moving faster then the cascade wave front, which cause secondary

cascades ahead of the main one. Collision of the high density primary wave with

the core of the secondary cascades can lead to nucleation sites for interstitial

clusters. This effect is attributed to atoms being forcefully pushed into the

secondary cascade’s low density core region.

Under irradiation voids in iron can form lattices[55]. This effect has been

reproduced by Heinisch[56] et al. in KMC simulations. Their study uses clusters

of crowdions formed by irradiation and moving mostly one dimensionally along

close-packed planes to explain the alignment. Voids off the lattice are exposed

to a greater flux of crowdions and so tend to shrink, whereas voids on-lattice are

shielding each other along the close packed planes. The simulations do produce a

void lattice successfully although the lattice does not show the same refinement

as experimentally observed.

4.3 Juslin Fe-He Potential

To model bubbles and other behaviour of helium in iron, an appropriate potential

is required. The commonly used Wilson[57] Fe-He potential has erroneous

energies for both the substitutional and interstitial energies of helium in an

iron lattice. It also predicts the most stable interstitial site to be octahedral,

while DFT predicts tetrahedral. Juslin’s[58] paper addresses the problems with

the Wilson Fe-He potential by deriving a new pair-wise potential. Seletskaia[59]

previously developed Fe-He potential with pair and many body terms fitted to

the Finnis-Sinclair Fe-Fe potential[15] but Juslin argues this is an unnecessary use

of calculation as the same results can be obtained using a pair potential.

One issue with cross-potentials is that when fitting a choice of Fe-Fe potential

must be made and any flaws in the Fe-Fe potential may end up being compensated

for in the cross-potential. Juslin develops a potential based on the screened

coulomb potential compatible with the Ackland-Mendelev[60] Fe-Fe potential,
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the Seletskaia paper used the older Finnis-Sinclair potential for Fe-Fe.

For short distances DFT data obtained by modelling a Fe-He dimer is used to fit

the potential. This part of the potential is only sampled in the high-energy early

phase of the cascade. The main part of the potential is a screened coulomb

potential with a cubic spline to the short range potential. The potential is

smoothly truncated at long distance; its full form is given below:

f(r) =


DMOL− potential r ≤ r1

p3r
3 + p2r

2 + p1r + p0 r1 ≤ r ≤ r2

(a+ b
r
)e−crfc(r) r ≥ r2

(4.1)

The function fc(r) smoothly cuts the function off around the cut-off radius.

The parameters of the potential (available in Juslin’s paper[58]) were fitted by

comparing relaxed DFT data to relaxed MD simulation. The parameters were

fitted largely numerically although were tweaked by hand to emphasise certain

features. The exact details of the Fe-Fe potential effect their simulation results,

especially the stiffness of the Fe. Since most Fe-Fe potentials are fitted to the

elasticity of iron this should not be a major issue, and their potential should work

with other Fe-Fe potentials.

They test the potential along with the Ackland-Mendalev Fe-Fe potential. The

tetrahedral helium interstitial site energy, 4.39 eV, is found to be more stable than

the octahedral site, 4.51 eV, using this potential. These numbers closely match

the Willaime[44] DFT results of 4.39 eV and 4.57 eV respectively. The tetrahedral

diffusion energies are well reproduced by the potential. A study of the vacancy

diffusion energy is conducted and compared to the Willaime data using the HeV2

complex diffusion method. The potential reproduces the diffusion well, with the

differences being small compared to the barrier heights. The only discrepancy is a

flattening of one of the migration peaks by 0.4 eV, which will increase the vacancy

migration rates. The study is repeated using the Dudarev[61] Fe-Fe potential and

the Finnis-Sinclair potential. Similar results are obtained in both cases with the

main discrepancy being a dip in the tetrahedral helium diffusion when combined

with the Finnis-Sinclair potential. The barrier drops below the starting energies

at the centre of the diffusion making the tetrahedral site unstable.
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The Juslin potential provides a fairly reliable way of incorporating helium

into iron MD simulations, especially when coupled with the Ackland-Medelev

potential. It only has pair wise terms and so is quick to calculate. The

diffusion rates for interstitials as well as their stabilities in different sites are well

reproduced. Vacancy diffusion shows some discrepancies but the overall shape

and height of the energy barrier is comparable to DFT.

4.4 Method

A study of the interaction of radiation cascades with voids and bubbles present

in the system was conducted. Either a void or a bubble was placed at the centre

of the system. A cascade was then started in the vicinity of the defect cluster

and the interaction observed.

4.4.1 Forming Voids and Bubbles

This section explains the method used to produce stable voids and bubbles in the

lattice. Starting with a BCC quenched iron lattice at T = 0K, a single atom was

removed near the centre of the system. The system was again quenched and the

atom with the highest potential energy removed. Iterating this process produces

a stable void with faceted sides aligned to stable lattice directions. Stability was

confirmed by running MD, with the sample at 900 K for 20 ps.

Bubbles were produced by placing helium atoms on to the vacant sites in the void.

The system is then quenched using low temperature MD with a high thermostat

value to limit the velocity of the helium atoms. Once the helium has reached

a stable configuration the system may be thermally equilibrated with standard

thermostating.

4.4.2 Cascade Centre and Volume

The code described in sec. 3.4 was used to estimate the radiation-cascade’s centre

and volume. Initially a list of particles that have changed nearest neighbour is
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generated. This list of particles will contain atoms involved in replacement-

collision chains as well as the core “melted” region caused by the cascade.

Filtering the changed neighbour list further to only include members that have

at least 3 neighbours that have also changed neighbour, eliminates detection of

replacement-collision chains. This allows a reasonable estimate of the cascade

melt volume to be made. The centre of mass of this list is taken as the centre of

the cascade and the radius is estimated by assuming the volume is spherical.

4.4.3 Cascade Set-up

The molecular dynamics study used a version of moldy [62] modified for variable

time step cascade simulations, as detailed in ch 2.2. The Ackland-Mendelev[60]

embedded atom potential was used for Fe-Fe interactions. The Juslin pair

potential[58] was used for Fe-He and the Beck[63] pair potential for He-He. The

Beck He-He potential as well as the iron potential was splined to the ZBL[36]

universal potential at short range. The Juslin potential did not require a spline

as it already incorporates a strong repulsion at short distance.

Cascades were initiated by giving an iron atom, the pka, near to the defect cluster

substantial kinetic energy at the beginning of the simulations. Cascade energies

of 1, 2.5 and 5 keV were considered. For 1 and 2.5 keV cascades a box dimension

of 40 a3
0 (128 000 atoms) was used, with 65 a3

0 (549 250 atoms) for 5 keV. The

box used periodic boundaries and constant volume, with dimensions initially set

to the equilibrated spacing of the lattice. An an NVE ensemble was used.

Cascades were mostly started with direction close to the 111 direction at a

range of distances from the defect cluster. Simulations were typically at close

to 0K but some studies at different angles and temperatures were also produced.

The final defects production and clustering is analysed by the method explained

in sec. 3.4.
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4.5 Results

Simulations of a void or bubble interacting with a cascade in a periodic cubic box

of α-Fe were performed under various conditions. Most cascades were created

using a pka initiated in the 〈111〉 direction towards the defect cluster, with a

slight deviation to avoid perfect replacement-collision chains. This high symmetry

direction was chosen in order to localise the cascade and give easily comparable

data across different simulations.

To explore if the effects observed are dependant on the crystal alignment some

cascades were also performed in the 〈311〉 direction and in random directions.

Simulations were performed at 1, 2.5 and 5 keV on voids/bubbles of size 30

and 100, with the bubbles at ratio 1:1 for vacancy:helium. One set of data is

also performed at 300 K to explore temperature effects. The various simulations

along with their damage yields are summarised in table 4.1. More indepth results

split by angle of impact and temperature are shown in tables 4.2 and 4.3.

The results do not depend strongly on direction: the angle has little effect on the

cascade radius or the Frenkel pair production. Results along the 〈311〉 direction

were found to be consistent with similar studies of the 〈111〉 direction. The

radii and damage production of the cascades was also consistent across randomly

launched trajectories. For 300 K simulations little change was seen in the results

apart from a slight reduction of Frenkel pairs, and so further temperature studies

were not pursued, although higher temperatures may have more effect. The radius

of the cascade was observed to be similar across all runs at the same energy. The

radius is similar for a void or a bubble present in the vicinity.

The cascades tend to reduce the void size slightly when overlapping it. This effect

becomes more pronounced for larger voids or higher energies. Bubbles are much

less effected and overall show a slight growth during bombardment. Almost all

the helium remains confined in the bubble for the energies studied. The presence

of a bubble increase the yield of Frenkel pairs slightly as compared with cascades

in the presence of a void.
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Table 4.1 : The Frenkel pair count, Nf , and cascade radius, rc, for various
simulations of bulk cascades in iron with Finnis-Sinclair type potentials. E is
the pka energy.

E (keV) rc (Å) type Nf

1 7.3 void 5.5
1 7.2 bubble 6.2

2.5 10.8 void 11.2
5 15.1 void 16.7
5 15.3 bubble 19.1

4.5.1 Movement

Interestingly, some of the simulations show that the void is moved by several

angstroms, even although there are not many extra vacancies formed in the

lattice. The cascade displaces atoms around itself creating a density “wave”

moving spherically outwards, with a depleted region at its core. Normally in a

perfect lattice this “wave” will collapse back as the energy dissipates, cancelling

with the depleted region at its core.

However, when in a suitable geometry with a pre-existing void, a more complex

mechanism may take place. The density “wave” injects atoms into the pre-

existing void, where they find sites to occupy and so do not return as the wave

collapses back. This results in the original void being filled, and a new void

of equal size stabilising at the cascade core. This process is equivalent to the

diffusion of a void by several lattice spacings. This behaviour was reproducible

for voids under all conditions considered, providing the cascade overlaps the void.

Figure 4.1 shows the diffusion process.

Figures 4.2 & 4.3 show the distance to the pka starting position from the centre

of the void against the distance moved by the centre of the void. It can be seen

that the mechanism has a minimum and maximum radius. The cascade will

typically centre a few lattice spacings from the starting position of the pka. At

very short distances the pka can pass directly through the void, which is why there

is a minimum interaction threshold for pka distance. The maximum interaction

distance is set by the cascade radius, as the cascade must envelop the void to

fully interact. Data suggests interaction thresholds of 12 Å and 25 Å with peak
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Table 4.2 : Table of cascade results in the presence of a void for bulk cascades
in iron with Finnis-Sinclair type potentials. “Simulations” is the number of
simulations performed for each configuration. E (keV ) is the initial energy of the
pka and “defect-size” is the initial size of the void. Nf is the number of Frenkel
pairs formed. Vvoid is the number of vacancies in the void after the cascade. rc
is the radius of the cascade. Set up describes the initial trajectory of the pka,
T = 0 K unless otherwise stated. The values presented are averaged over the
simulations.

E (keV) set up simulations defect-size Nf Vvoid rc (Å)

1 〈111〉 17 30 5.3 28.8 7.1
1 random 48 30 5.8 29.8 7.2
1 〈311〉 10 30 5.9 29.6 7.5
1 〈111〉, T=300 K 14 30 4.6 28.1 7.6

2.5 〈111〉 12 30 14.2 30.8 11.0
2.5 random 16 30 9.9 26.8 10.6
2.5 〈111〉 9 100 9.4 89.6 10.9
5 〈111〉 12 30 18.8 27.9 15.2
5 〈111〉 16 100 14.6 84.3 15.1

interactions around 18 Å at 1 keV (Fig. 4.2). For 2.5 keV the interaction starts

at 18 Å goes until 40 Å and has peak at 31 Å. For 5 keV the interaction starts

around 12 Å ends at 38 Å and has peak interaction at 31 Å (Fig. 4.3). However,

these figures also include the travelled distance of the pka, as the starting position

of the pka is not the centre of the cascade.

For 1 keV cascades on bubbles of size 30 almost no motion of the cluster is

observed even for high cascade overlap. The slight movement seen (Fig. 4.2)

is due to the side of the bubble nearest the cascade absorbing a few vacancies,

shifting the centre of the cluster. On average the bubble grew by around one

vacancy and almost all the helium remained clustered in it.

Similar results were observed for a 5 keV cascade impacting a bubble of size 100.

Fig. 4.5.b shows a typical bubble after impact. The helium reduces the mobility

of the cluster (Fig. 4.3) and the helium remains clustered in the bubble. Cascade

radius is unaffected, although the number of Frenkel pairs formed seems to

increase slightly (table 4.1). Occasional shrinkage by up to 5 vacancies is observed

at longer distance due to interstitial absorption from the cascade periphery.

For a void of size 100 impacted at 5 keV significant movement of the void towards

the cascade was observed (Fig. 4.3). Void size tended to decrease slightly on
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Table 4.3 : Table of cascade results in the presence of a bubble for bulk cascades
in iron with Finnis-Sinclair type potentials. “Simulations” is the number of
simulations performed for each configuration. E (keV ) is the initial energy of
the pka. “He:vac bubble” is the initial helium and vacancy content of the bubble,
the vacancy content is simply the number of missing iron atoms. Nf is the number
of Frenkel pairs formed. The final location of the helium is categorised as follows:
Hebub is the helium remaining in the bubble, Hesub is substitutional in the lattice,
and Heint is interstitial in the lattice. rc is the radius of the cascade. Vbub is the
number of vacancies in the bubble after the cascade. Set up describes the initial
trajectory of the pka, T = 0 K for all runs. The values presented are averaged
over the simulations.

E (keV) set up simulations He:vac bubble Nf Vbub Hebub Hesub Heint rc (Å)

1 〈111〉 14 29:30 6.5 31.1 28.3 0.6 0.1 7.4
1 random 46 29:30 6.1 30.2 28.9 0.1 0 7.1
5 〈111〉 12 100:100 19.1 102.2 100 0 0 15.3

average to 84 vacancies. This change is partly due to the void being split by partial

interactions as shown in Fig. 4.5.a, which occurred in 3 simulations. Ignoring the

split samples, void size tends to be around 88 after cascade interaction.

The data for the 5 keV bombardment of a void is also represented in figure 4.4.

The motion of the void is plotted against the distance between the initial void

and the cascades centre of mass. The vectors are projected along the 〈111〉
direction, which is the initial launch direction of the pka. The void is seen to

move towards the cascade centre. The negative values on the x-axis are a result

of the pka moving through the void and starting a cascade on its far side. When

the cascade significantly overlaps the void, strong interaction can be seen.

4.6 Conclusion

The MD shows that the presence of a bubble slightly increases the yield of

interstitials. Bubbles are not strongly effected by cascades, with most of the

helium remaining inside the bubble. Voids interact more strongly and tend to

shrink slightly when on the periphery of a cascade.

A mechanism has been observed that can move voids by several lattice spacings

when overlapped by a cascade. This mechanism operates by ballistically injecting

atoms into the void, leaving a depleted region at the cascade core. The mechanism
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Figure 4.1 : The mechanism for cascade induced void movement is shown above
for a 5 keV collision with a 100 vacancy void in iron with Finnis-Sinclair type
potentials. The dark blue dot represents the starting positions of the cascades,
orange dots are vacancies, light blue dots are interstitials or filled vacancies. Small
black dots represent the atoms that have moved in the cascade. Non-defective
atoms are omitted and the full box size is not shown. Top left: Void and pka
positions and pka direction shown after 2 fs. Top right: Wave of displaced atoms
starts to form and expand at 76 fs. Bottom left: Full extent of wave, encompasses
the void, injecting atoms into its core at 260 fs. Bottom right: Wave collapses
back, but atoms are trapped in void, leaving a depletion at cascade core by around
1 ps (image taken at 5 ps for clarity). Note that an initial vacancy filled with an
atom is shown as interstitial here, when more conventionally it would be termed
a normal site. This was done to clearly show the filling of the void with normal
sites.
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Figure 4.2 : Graph showing movement of void, ∆ d cluster, (filled squares) and
bubble (empty triangles) vs. distance to pka, d, for a 30 defect cluster hit at
1 keV in iron with Finnis-Sinclair type potentials. It can be seen that the void
can move significantly towards the pka site for certain cascade distances. The
presence of helium in the void greatly damps this effect.

 0

 2

 4

 6

 8

 10

 12

 0  10  20  30  40  50  60  70

∆d
 c

lu
st

er
 (

an
gs

tr
om

s)

d (angstroms)

Figure 4.3 : Graph showing movement of void, ∆dcluster, (filled squares) and
bubble (empty triangles) vs. distance to pka, d, for a 100 defect cluster hit at
5 keV in iron with Finnis-Sinclair type potentials. It can be seen that the void
can move significantly towards the pka site for certain cascade distances. The
presence of helium in the void greatly damps this effect. The effect is much more
pronounced than at 1 keV.
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Figure 4.4 : Graph shows the movement of the void vs. the distance between the
initial void and the cascade centre. The data is projected along the 〈111〉 vector,
which is the initial vector of the pka. va is the final void CoM, vb is the initial void
CoM and, CCOM is the cascade centre of mass. cascades are performed on a 100
vacancy-void using a 5 keV pka in iron with Finnis-Sinclair type potentials. All
pka’s start on the same side of the void, the negative values on the x-axis result
from the pka travelling through the void and starting a cascade on the opposite
side.

Figure 4.5 : a) (left): Cascade radius overlaps half the void leading to partial filling
and splitting of the void. Half the void is unaffected, and now forms a smaller
void. A second void is formed at the depleted cascade core, as several atoms from
the cascade are now trapped in the near side of the old void, preventing their
return. The shaded red region represents atoms that have been displaced by the
cascade, and is related to the cascade radius. Other colours used are the same as
in fig. 4.1. b) (right): Typical final state of a 5 keV cascade impacting 100 helium
bubble in a 100 vacancy void in iron with Finnis-Sinclair type potentials. Helium
remains clustered in the void.
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does not move bubbles as the gas prevents the injection of atoms. The interaction

is thresholded by the cascade radius and so becomes more significant at higher

energies. The initial direction of the pka does not effect the interaction. In

the following section the motion of voids, due to the mechanism identified, is

compared to the rate of cluster diffusion using an OKMC code.

4.7 OKMC Model

4.7.1 Overview of the Algorithm

An object kinetic Monte Carlo (OKMC) code was written to simulate the

accumulation of radiation damage in iron, focusing on void mobility during the

process. Such algorithms use probabilities of certain changes occurring in the

system to evolve the system in time. Included in the simulation are radiation

cascade events, point defects, and clusters of interstitials or vacancies. Defect

clusters of opposite types can absorb or annihilate each other. Small clusters of

both types are mobile during the simulation. Thermal dissociation events allow

clusters to emit single defects. The code was implemented using object orientated

Java programming, which fitted the structure of the simulation well. Although

the code could have executed faster in Fortran or similar languages, Java was

chosen for its readability and extendibility.

In standard kinetic Monte Carlo the system is modelled dynamically by looking

at the transitions available in the system. The transitions may be assigned

a probability of occurring at a certain temperature based on the Arrhenius’

equation. An event is picked based on its relative probability to occur and is

executed. Such a method is much faster than MD as the individual motion

of atoms are (typically) not tracked, and only the defects are modelled. The

transition in MD are linked to thermal oscillations overcoming potential barriers.

In KMC it is equivalent to skipping all the failed attempts at barrier hopping and

directly evolving the system to the next successful transition.

In object kinetic Monte Carlo conglomerates of defects are treated as single

objects. These objects are treated similar to the single defects, but with their

own transition rates. These rates represent the correlated motion of many defects,
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which in some cases would not be possible to model with single defect transition

rates. Additionally this method is far more efficient than standard KMC as fewer

defects need to be considered.

The well known algorithm used for (object) kinetic Monte Carlo given be-

low:

1) List all transitions available to the system, along with the rate for each. Rates

are typically given as ri = e−βEb/τ , where τ is the oscillation period of the atoms.

τ was set to 155 fs. Eb is the energy barrier for the transition and β = 1/kT

2) Calculate the cumulative rates: Ri =
∑i

j=1 rj for i equals 1 to N. N is the

number of possible events in the system and RN is the total cumulative rate.

3) Pick a transition to perform with probability equal to ri/RN . This can be

achieved efficiently by picking a random number p = (0,1] and then finding the

cumulative rate that satisfies Ri−1 < pRN ≤ Ri.

4) perform event i.

5) update the time by ∆t where ∆t = R−1
N ln(s−1) where s is a random number

s = (0,1]

6) repeat from step 1.

Boundary conditions for periodic systems, open systems and a system with a

surface in one direction were implemented.

The various factors considered in this code are detailed in the following

sections.

4.7.2 Barriers

The energetic barriers were taken from Bjorkas[64] and are listed in table 4.4.

Most of the values used in table 4.4 come from Fu[47]. In this model

vacancy/interstitial clusters larger than 4 defects are considered immobile. This

assumption is partly validated in the Fu[47] paper as their simulations match

experimental data, reproducing resistivity recovery measurements.

The barriers for interstitial cluster diffusion can be seen to increase with size. It
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is also of note that V3 has lower migration barrier than V2 or V1. The various

pathways for such migrations are explored in Fu’s paper.

Table 4.4 : Model parameters: Table of migration energy, Em, and dissociation
energy, Ed, of point defects from clusters. En

d = E1
m+En

b : the dissociation energy
for cluster size n, is the point defect migration energy, E1

m, plus the cluster binding
energy for a cluster of size n, En

b . Binding energy is defined as the energy to
remove one defect from the cluster. Eb2 is the binding energy of a cluster with
two defects, EV

b2 = 0.30 and EI
b2 = 0.80 eV. Formation energies: EV

f = 2.07 and

EI
f = 3.77 eV. All diffusion is 3D. g(n) = n2/3−(n−1)2/3

22/3−1
[64]

Type Em (eV) Ed (eV)

V 0.67
V2 0.62 0.97
V3 0.35 1.04
V4 0.48 1.29

Vn, n > 4 immobile En=1
m + EV

f + (EV
b2 − EV

f )g(n)
I 0.34
I2 0.42 1.14
I3 0.43 1.26
I4 0.43 1.26

In, n > 4 immobile En=1
m + EI

f + (EI
b2 − EI

f )g(n)

4.7.3 Dissociations

Dissociation of single point defects from clusters was allowed in the simulation.

The rate of dissociation for a given cluster was multiplied by the size of the

cluster to represent the multiple possible events. The rate of such diffusion can

be estimated by[65]:

Ed = Em + Ef + (Eb2 − Ef )
N2/3 − (N − 1)2/3

N2/3 − 1

Where Ed is the energy barrier for a single point defect to dissociate from a

cluster. Em is the migration energy of a single defect of the type considered. The

dissociation energy is the point defect migration energy plus the cluster binding

energy. Eb2 is the binding energy of a cluster of two defects. Binding energy is
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defined as the energy to remove one defect from the cluster. Ef is the formation

energy of a point defect in a perfect lattice. N is the size of the cluster.

This formula was used for clusters of 5 or bigger, smaller clusters used pre-

set values taken from Fu[47]. Dissociation events move the centre of mass of

the cluster away from the new point defect. Dissociation is assumed to be

isotropic.

The model approximates clusters as spherical when considering interaction

distances and dissociation events. While this is a reasonable approximation for

voids it would be more accurate to treat interstitial clusters as a disc. The

dissociation rates go with the number of defects in the cluster. More realistic

would be to only allow dissociation from surface vacancies on the spherical voids

and circumference defects on the interstitial discs. The current approximation

was made for simplicity of modelling.

4.7.4 Interactions

If a defect diffuses to within a certain distance of another, the defects are combined

or annihilated based on their types and sizes. To be explicit, like clusters may

absorb each other and opposing clusters (i.e. an interstitial cluster meeting a

vacancy cluster) can annihilate each other. For absorption the size of the largest

cluster is increased by the smaller cluster. The centre of mass of the coalesced

cluster is updated to reflect that the matter will mostly connect to the side nearest

to the point of coalescence. For incomplete annihilation events the remaining

cluster is moved away from the point of collision, as defects will be predominantly

annihilated on one side of the cluster.

In each case, the small cluster is moved along the vector connecting the centre

of masses until its CoM rests on the surface of the large cluster. A size weighted

average of the clusters positions is then taken, and the large cluster is moved

towards/away from the impact site in the case of absorption/annihilation. The

small cluster object is then removed from the simulation. The displacement vector

for the large cluster is given by:

65



4.7. OKMC Model

∆x = r̂abra
nb

na + nb

Where ‘a’ is the larger cluster, r̂ab is the unit vector joining the centre of masses,

r is the particle radius and n is the particle size. These update rules allow the

clusters with n > 4 to still move in the simulation by absorbing or annihilating

defects. The clusters are also moved by dissociation of point defects from the

cluster.

The capture radii of clusters follows the model in the Ortiz[65] et. al. study:

rIn,Vn = ZIn,Vn

((
3nΩ

4π

)1/3

+ r0

)

Where rIn,Vn are the capture radius for interstitial and vacancy clusters respec-

tively. n is the number of defects in the cluster. ZI = 1.15 is the bias factor

accounting for the increased strain field observed for interstitials. Ω is the atomic

volume and r0 = 3.3 Å.

4.7.5 Optimisations

A large efficiency gain on this algorithm can be made by only updating the event

list (step 1 of algorithm in sec. 4.7.1) when needed. In general if a particle diffuses

without interacting with a cluster, the event list is unchanged. Additionally, if

a particle does interact only a small part of the event list and cumulative rates

must be recalculated: those events to do with the current cluster and the cluster

it interacts with.

After moving a particle it must be checked to find whether it is within a certain

interaction distance of other clusters. This is an O(N2) operation, where N is

the number of objects in the system. This could be made more efficient by using

a spatial link cell scheme. That is, breaking the system into spatial domains and

assigning each object to the domain that it is currently in. Now to check for close

objects you need only check your current domain and the surrounding domains

instead of the whole system, an O(N) operation. However, the full check was not
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deemed computationally expensive enough to justify implementing this approach.

For larger system sizes this would start to become important. Distance squared

was compared to the threshold values squared to save performing expensive square

root operations when checking closeness to other clusters.

Dissociation events are treated as only one event per cluster, with the rate

multiplied by the cluster size. When performing an event a random direction

is picked for the particle to dissociate in. This is more efficient than generating

an event per defect in the cluster.

4.7.6 Cascades

Cascades were introduced into the system with a rate calculated from the chosen

dpa per second. This was calculated as:

cascades[s−1Å
−3

] =
Ndpas−1

10EV

That is, the number of cascades per second per cubic angstrom is related to N, the

number of atoms, dpas−1 the displacements per atom per second, E, the energy

in keV, and V, the volume in angstroms. This follows from an estimate of the

number of displacements per cascade in Was[66], estimated as 10E, where E is

the cascade energy in keV.

Cascades are introduced into the system at the above rate, by picking a random

point in space at which the cascades will occur. The radius of the cascade is

estimated as a function of energy:

r =
√

0.044E + 8.9

where E is cascade energy in eV and r is in Å.

The yield per cascade is estimated from:

N = 5.67(E)0.779

Where N is the number of Frenkel pairs formed and E is the cascade energy in
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keV. These empirical formulas are based on the results of MD simulations at 1,

2.5 and 5 keV.

An even number of interstitial and vacancy point defects are introduced into the

system inside of the cascade radius. Final MD defect configurations tend to have

a vacancy rich core surrounded by interstitials. To represent this the vacancies

were placed randomly in a region up to half the cascade radius. Interstitials

were randomly placed in the outer region. Since several of the defects placed will

be within interaction radius of each other, they rapidly interact, forming stable

interstitial clusters and a void core.

4.7.7 Void-Cascade Interaction

A new mechanism was added to the model based on the results of the molecular

dynamics study (sec. 4.5.1). If the cascade volume overlaps with a void, the void

is moved to the centre of the cascade. The void is not changed in size and no new

point defects are added to the system. This represents atoms being forced into

the void and creating a new void at the cascade core as observed in MD. This

allows ballistic motion of the voids, which when considered over long time scales

and many interactions can be thought of as a diffusion mechanism.

4.7.8 Diffusion

From the average displacement of a cluster and time between displacements the

diffusion can be estimated as:

D =
1

6
(x̄)2 Γ̄

Where x̄ is the average distance moved and Γ̄ is the average number of jumps per

unit time. Separate data can be kept for the displacements due to different types

of event. This allows separate diffusion rates to be associated with the different

factors that displace the clusters in the system.
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4.8 OKMC Results

4.8.1 Input Parameters

The Simulation takes several input values: the dimensions of the sample,

temperature, cascade energy, dpa rate, and the boundary conditions. Initial

defect clusters may also be added.

Studies were performed with the following default values: Temperature of 500 K,

dpa/s of 1x10-6, cubic cell of 100 Å and cascade energy of 10 keV on a void of

100 vacancies. Periodic boundaries were typically used.

4.8.2 Analysis

The standard set up for the simulations was a void of 100 vacancies at the centre

of an initially clean sample with periodic boundaries. Cascades are introduced

into the sample and the defects allowed to diffuse and interact. The diffusion

of the central void due to various factors is tracked. The diffusion caused by

the absorption and emission of defects will be referred to as standard diffusion.

The other diffusion mechanism is due to the ballistic motion of the void during

cascades.

Simulations were repeated with the void-cascade interaction mechanism enabled

and disabled. Simulations are also repeated with either periodic boundaries or

absorbing boundaries. Periodic boundaries represent an infinite lattice of voids.

The absorbing boundaries could be thought of as representing the presence of

other defect sinks at a certain radius from the void, such as grain boundaries or

dislocations.

All results are averaged over ten runs. The effects of varying the input parameters

are considered in the following sections.
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4.8.3 Box Dimensions

Fig. 4.6 shows the effects of the system volume on the diffusion rate with

absorbing boundaries in place. Fig. 4.6 [left] shows the diffusion, with no void-

cascade interaction implemented, is strongly dependent on the system volume.

For random walking point defects the capture area of the central void can be

approximated as half the distance from the void surface to the edge of the system.

Increasing the system size increases the capture volume of the void, and so the

number of defects impacting it. Since interstitials are more mobile than vacancies,

this leads to a shrinkage of the void by impacting point defects. Due to this, the

mobility of the void increases as its centre of mass can be shifted more easily.

Fig. 4.6 [right] shows that the void-cascade induced diffusion also has a

dependence on system size, although this effect saturates faster than for the

standard case. Void shrinkage is observed as the volume is increased. Since the

void-cascade interaction is geometrically based, a smaller void is more likely to be

encompassed in the cascade and so interacts more, increasing the diffusion.

Fig. 4.7 is similar to fig. 4.6 but with periodic boundaries instead of absorbing

boundaries. Fig. 4.7 [left] suggests a trend of increasing diffusion with system

dimension. The effect is less pronounced than with the absorbing boundaries

as the increase is 2 fold over the range considered instead of 18 fold. Changing

the system size in a periodic lattice is equivalent to changing the spacing in the

void lattice. This changes the amount of long and short range diffusing particles

that impact the void. For the smallest system, almost all cascades make defects

in close vicinity to the void. For larger systems long range diffusion takes place

changing the dynamics of the system.

Fig. 4.7 [right] shows very little trend for the void-cascade induced diffusion.

Any variance in points is well within error. The size of the void is much less

affected by small system dimensions for periodic boundaries than for absorbing

boundaries. The vacancy enrichment seen with the absorbing boundaries is no

longer an issue.
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Figure 4.6 : Simulations with absorbing cell walls. [left] Diffusion constant vs.
system volume with no void-cascade interaction. [right] Diffusion constant vs.
system volume with void-cascade interaction
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Figure 4.7 : Simulations with periodic boundaries. [left] Diffusion constant vs.
system volume with no void-cascade interaction. [right] Diffusion constant vs.
system volume with void-cascade interaction
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4.8.4 Cascade Energy

The effects of cascade energy on diffusion of the void is studied. Since the dpa

rate is fixed, increasing the cascade energy results in a decrease in the frequency

of the cascades. Fig. 4.8 shows the effects of energy with absorbing boundaries.

Fig. 4.8 [left] shows that without the cascade-void interaction, increasing energy

of cascade decreases the diffusion. Small cascades produce smaller clusters that

are more likely to be mobile, when compared to the large clusters formed in

higher energy cascades. Having several small cascades gives more free defects in

the system than one large cascade, for an equivelent amount of dpa. This leads to

more impacts of defects on the void, increasing diffusion for lower energies.

Fig. 4.8 [right] shows diffusion when the void-cascade interaction is allowed.

Diffusion is increased by cascade energy. The two factors that affect diffusion here

are the frequency of interaction with the central void and the distance moved when

an interaction occurs. Increasing cascade energy increases the cascade radius,

and so the average distance moved in an interaction is increased. It also increases

the chance of interaction, as overlap with the void is more likely. These effects

outweigh the decrease in frequency of cascades with energy.

Fig. 4.9 shows the effects of varying energy on a system with periodic boundaries.

The trends are similar to the absorbing case, although the rate of standard

diffusion is a bit higher due to there being more free defects in the system, as the

walls do not absorb them.

4.8.5 Temperature

The effect of temperature on the diffusion of the void is studied. Fig. 4.10 shows

the effects of temperature with absorbing boundaries. Fig. 4.10 [left] shows that

without the cascade-void interaction, increasing temperature increases diffusion.

This is due to greater mobility of small defect clusters, increasing the number

of interactions with the void. Fig. 4.10 [right] shows that with cascade-void

interaction accounted for, there is actually a decrease in diffusion at higher

temperature. This decrease is due to growth of the void at higher temperature,

as vacancy clusters in the vacancy-enriched sample become mobile.
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Figure 4.8 : Simulations with absorbing cell walls. [left] Diffusion constant vs.
energy of pka with no void-cascade interaction. [right] Diffusion constant vs.
energy of pka with void-cascade interaction
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Figure 4.10 : Simulations with absorbing cell walls. [left] Diffusion constant
vs. temperature with no void-cascade interaction. [right] Diffusion constant vs.
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Figure 4.11 : Simulations with periodic boundaries. [left] Diffusion constant
vs. temperature with no void-cascade interaction. [right] Diffusion constant vs.
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Fig. 4.11 shows the effects of temperature with periodic boundaries. Fig. 4.11 [left]

shows that without the cascade-void interaction, increasing temperature increases

diffusion as in the absorbing boundary case. Fig. 4.11 [right] shows that the

cascade-void interaction is not temperature dependant when periodic boundaries

are present.

4.8.6 DPA

Fig. 4.12 Shows the effects of varying dpa/s on the diffusion of the void, [left]

is with absorbing boundaries, [right] is with periodic boundaries. The diffusion

increases linearly with dpa/s. The increase is similar for both types of boundary

conditions. Since dpa/s effects both the diffusion rates equally, it is not influential
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Figure 4.12 : Log-Log plot of Diffusion constant vs. dpa/s with void-cascade-
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in defining which rate will dominate. The cascade debris has mostly equilibrated

by the time the next cascade is introduced even for high dpa rates, and so

rescaling dpa/s has no effect other than to linearly change the time between

interactions.

4.9 Conclusions

The interaction of cascades with voids and bubbles has been studied in MD

simulations. For overlap of the cascade with a void, the void is observed to be

moved by a ballistic insertion of atoms into the original void. This leaves a new

void at the cascade core. The presence of helium in the void is shown to suppress

this mechanism by resisting the insertion of matter.

The mechanism was implemented in an OKMC code to compare it to diffusive

rates in the system. The main mechanism compared to was the motion of voids

due to absorption and emission of point defects or defect clusters. The ballistic

motion of the void due to interaction with the cascade is shown to be greater

than the other diffusive mechanism across most parameters. The exception to

this is for energies below around 2.5 keV which is too low for significant cascade

overlap with the voids, and the ballistic mechanism ceases to act.
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Chapter 5

Alloy of Transition Metals in

Iron

5.1 Introduction

This chapter studies a set of potentials for multi-component transition metal

alloys with iron as the dominant element. Useful steels contain many elements,

with the ratio of components strongly affecting the properties of the material.

The structure of the material can undergo significant changes under irradiation,

such as various precipitation behaviours which can lead to embrittlement[67, 1].

Fluxes of radiation induced defects in the system induce radiation induced

segregation (RIS)[12], locally changing the concentration of elements in the alloy.

Having a set of potentials that can model such complex behaviours is critical to

progressing the simulation of multi-component steels. Although a set of potentials

that models the exact properties of all the elements involved would be of great

use, this is hard to achieve.

It is also of use to have a range of well understood potentials that are known

to exhibit certain properties. This study focuses on a set of rescaled iron

potentials[68] that has been fitted to the properties of transition metals. Although

the potentials don’t produce all the interaction of these elements correctly, there

is still merit in studying the range of phenomena that can arise from such models.

Such a set of potentials allows a wide range of phenomena to be explored.
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This study focuses on identifying the properties of the potentials and their

interaction with other elements in an iron lattice. Additionally studies of changing

alloy concentrations are carried out, which can model changes in concentration

due to diffusion or RIS. The interaction of multi-component alloys with voids in

the system is also studied.

5.2 Literature Review

The modelling of transition metal alloys has been approached by many simulation

methods using several different types of potentials. Some of these approaches are

discussed below. DFT studies of transition metals produce results that compare

favourably to experiment[69, 70, 71]. However, DFT is prohibitively expensive

for large systems. This leads to a series of approximation schemes which attempt

to capture the essential physics, while reducing the computational cost.

Tight binding models of transition metals have been developed as an attempt

to improve on the run time of DFT calculations. McEniry et al.[72] develop

a set of potentials for transition metal alloys of Fe, Cr and Mn. This method

still explicitly treats the electrons in the system, unlike in empirical potentials. A

reduced basis set is used for speed: only one basis function per angular momentum

component is used. Although no ideal basis set is possible for all structures of an

element, an optimal set can be found for a given structure. Using the minimal

basis, it is possible to simulate the properties of the pure elements as well as their

binary alloys. The technique, while more accurate, is significantly slower than

using empirical potentials.

Marville et al.[73] applies Finnis-Sinclair type potentials to Mo, Ta and W in

order to study metallic cluster properties. They successfully reproduce structural

properties of bulk crystals, surface geometries, and the expected contraction of

the surface layers, showing the effectiveness of Finnis-Sinclair type potentials on

these systems.

Cox et al.[74] models surfaces of Cu, Ag and Au using Murrell-Mottram[75]

potentials truncated at 3 body interactions. They focus on modelling the various

plane surfaces of each crystal, successfully reproducing the changes in lattice
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spacing. The type of potential used is slower than EAM as it scales with N3,

instead ofN2. However this potential can work well for Monte Carlo or Metropolis

calculations, as only the energy of the moved atom must be recalculated. For

EAM potentials the multi-atom density term means many atomic energies need

to be recalculated every time an atom is moved.

Genetic algorithm[76] techniques have been used to locate the global structural

minima for small clusters using Morse pair-potentials. The technique is based

on generating candidate structures followed by combination and mutation of

successful structures to find the minimum energy solution. This technique has

also been successfully applied to the optimisation of Cu-Au clusters[77] using

Gupta empirical potentials[78].

Cheng et al.[79] perform Monte Carlo simulations of Ag-Cu-Au clusters using

using Gupta empirical potentials[78], which are based on the tight-binding model

second-moment approximation (TB-SMA). They find segregation of the Cu to

the core of the cluster, while Ag moves to the surface. Gupta potentials have

been applied to other multi-component cluster simulations, such as a study[80]

of Ag-Pd and Ag-Cu clusters.

5.3 Method

5.3.1 Rescaled Finnis-Sinclair Potentials

This section contains a brief description of the assumption that EAM is based

on followed by an explanation of the rescaling algorithm used. The cohesion

energy in metals is linked to the d-band density of states (DoS)[78]. Several

properties of the system are only sensitive to the mean and width of the density

of states, and not its exact details[81]. Based on this, cohesion models have been

developed using the band width. The mean will tend to zero for pure systems.

The bandwidth is related to the square root of the second moment of the DoS[82].

The band is approximated as rectangular, with centre µ1 and width
√
µ2, in both

the Finnis-Sinclair and EAM type potentials, where µ are the moments of the

DoS. The kth moment of the density of states is related to all possible closed
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paths of k steps, which in turn is related to the hopping integrals of the tight

binding model[83].

The embedded atom method (EAM) is often used as a basis for empirical

potentials in MD simulations. A set of EAM potentials for modelling iron and

its interaction with dilute transition metals is discussed below. Potential energy

in the EAM model is given by[16]:

U(rab) =
∑
a,a>b

V Xa,Xb(rab) +
∑
a

FXa(ρa)

ρa =
∑
b 6=a

φXa,Xb(rab)

where a and b are atoms, Xi is the species of atom i, V is the species dependant

pair potential, and F is the species dependent embedding function. ρ represents

the local electronic density and is the sum of a pair-wise function φ, which is

species dependant. The functional form of F (ρ) is taken as −
√

(ρ) in Finnis-

Sinclair type models.

The iron interactions were modelled using the Ackland iron potential[84]. The

other transition metals were modelled by the Hepburn[68] rescaled iron potentials.

This set of potentials is designed for dilute concentration of transition metals in

iron, and provides potentials for atomic numbers 22-29, 40-47 and 72-79, which

gives 23 non-iron elements (listed in table 5.3.1). The non-iron transition metals

will be referred to as the alloying element.

The rescaling is done as follows:

V Fe,X(pX1 r) = pX2 V
Fe,Fe(r)

φFe,X(pX3 r) = pX4 φ
Fe,Fe(r)

Where the various p’s are species dependant empirical rescaling parameters.

Hepburn supplies potentials for Fe-X where X is an alloying element, as well as
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potentials for X-X alloy-alloy interactions. For this study additional potentials

for inter-alloy interaction were needed. The pair potential between alloy X and

Y was estimated as:

VXY =
1

2
(VXX + VY Y )

and the density based term as:

φXY =
√
φXXφY Y

Which follows a common approximation scheme for cross-potentials used in the

literature[85, 86, 87].

Table 5.1 : Elements studied with period and group numbered.
group 4 5 6 7 8 9 10 11

period 4 Ti22 V 23 Cr24 Mn25 Fe26 Co27 Ni28 Cu29

period 5 Zr40 Nb41 Mo42 Tc43 Ru44 Rh45 Pd46 Ag47

period 6 Hf 72 Ta73 W 74 Re75 Os76 Ir77 Pt78 Au79

5.3.2 Standard Metropolis Algorithm

The Metropolis algorithm was implemented to find arrangement of atoms that

minimises the Gibbs energy of the system. Below is the standard implementation

of the metropolis Monte Carlo method with varying atomic types[88]. In this

implementation the total number of particles, the temperature and pressure are

fixed. The details of the standard algorithm are as follows:

i) Displacement of the atoms. Every atom is displaced by a small random

vector, whose magnitude is less than a chosen threshold. For small displacement

thresholds there is a greater probability to accept the new configuration, although

the number of iterations needed to relax the system increases. The value of the

displacement threshold must be picked carefully for efficiency of the algorithm.

The configuration is accepted with probability:
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Paccept = Pnew/Pold = e−β∆U

Where ∆U is the potential energy difference. If the probability ratio is greater

than one (i.e. the energy decreases) then the transition is always accepted, as

with all rates in this model.

ii) The type of a single atom in the box is changed with probability:

Paccept = Pnew/Pold = e−β(∆U−∆µ)

where ∆µ is the chemical potential difference between the two atomic types.

iii) Two atoms of different types are spatially switched. The acceptance criteria

is identical to that in step i).

iv) The box dimensions are changed and accepted with probability:

Paccept = e−β(∆U+P∆V−NkT∆lnV )

Iterating these steps will converge the system towards a local minima in the Gibbs

energy. The global minima can be located by converging the systems energy from

different starting configurations.

5.3.3 Metropolis-MD Algorithm

For this study a hybrid Metropolis-MD algorithm was used, with the equilibration

process performed by MD. Details of the algorithm are given below. Initially the

system is allowed to equilibrate for 40 ps to a given temperature using the Nosé-

Hoover thermostat.

i) The system is relaxed using MD in the NPT ensemble for 100 fs. Atomic

positions fluctuate locally and the box dimensions are allowed to relax to maintain

the correct pressure (0 GPa).

ii) A pair of atoms, of different species, are randomly chosen and interchanged.

If the energy decreases the change is kept. If the energy increases it is kept with
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probability e−β∆E, where ∆E is the potential energy difference between the final

and initial states.

iii) (optional) An atom is chosen at random and its species is changed to another

allowed species. The acceptance criteria is the same as step ii). In this step the

energy after the change is adjusted, before comparing to the previous energy, to

take into account the energy bias towards a certain species. The adjustment is by

the difference in energy of an iron lattices containing one of the original element,

EX , subtracted from the energy of a pure iron lattice containing one of the new

element, EY , with both systems equilibrated at 0 K. This removes bias towards

any particular atomic type for isolated defects at equilibrium, leaving only the

desired elemental bias that arises from stresses or interactions between different

impurities. The energy can then be further adjusted by a chemical potential µ in

order to favour a certain element.

∆E → ∆E − EY + EX

iv) The cycle is repeated from stage i.

Equilibration was detected in terms of the slope of the averaged energy graph.

The energy was recorded every 1000 MD steps and then averaged every 40

samples. Equilibrium required that the last 3 points output were within a

temperature dependent threshold (calculated from the fluctuations in potential

energy at equilibrium). This graph will flatten when the transitions are between

near-equal energy states, or when the transition rate becomes very slow.

For runs at 0 K an extra equilibration step is added before measuring the energy

in step ii. After the switch the atoms may relax for 100 fs before the energy

is measured. This helps reduce the lattice stress from the switch, leading to a

higher accept rate.

To verify compatibility of this equilibration approach with the standard metropo-

lis algorithm the fluctuations in system energy are explored. A relaxed system

of atoms is equilibrated to a given temperature using MD. The distribution of

potential energies as the system fluctuates is recorded, using either standard MD

or metropolis events (stage ii of standard metropolis algorithm) to evolve the

system. Fig. 5.1 Shows the energy distribution of both methods to be similar
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Gaussian distributions.
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Figure 5.1 : Comparison of energies explored by Monte Carlo and molecular
dynamics techniques at equilibrium, for an iron system with Finnis-Sinclair
potentials. The distributions are similar.

5.3.4 Clustering

The final configurations of the iron lattice containing various alloying elements

was primarily analysed in terms of clustering. Clustering was defined by the

abundance of like alloy atoms at a certain neighbour separation from each other.

Cross-alloy attractions were calculated by the abundance of element X at a given

neighbour separation from Y. When normalised by the number of atoms of a

given type in the system this gives a number, f, between 0 and 1 that represents

the self or cross-correlation of the alloy. For alloys types X and Y, the correlation

at c nearest neighbour distance is defined by:

fXYc =
1

NXNc

∑
i={X}

∑
j={nc}

δ(X,Tj)


Where T is the type of atom j, nc represents the set of neighbours to an atom at

a given neighbour distance c, and δ is the Kronecker delta function. NX is the

number of atoms of type X and Nc is the number of neighbours an atom has at

nearest neighbour distance c. Even for a perfect cluster, f can not reach the value

of 1 due to surface area effects.
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5.3.5 Simulation Set-up

A small sample cell of 2000 atoms is initiated in the α-iron configuration. A

random selection of the atoms is then replaced with a different element until a

certain percentage of foreign element is reached. The general procedure used

was to take the random alloy and thermally equilibrate it for 10 ps using MD,

with periodic constant pressure boundary conditions. The configuration of the

alloy was then allowed to evolve under the Metropolis-MD algorithm (explained

in sec. 5.3.3). This algorithm changes the configuration of the atoms to minimise

the Gibbs energy.

The distribution of the alloy as well as any change to the box dimensions was then

analysed. This procedure can be repeated at various concentrations of alloy and

temperature to explore the clustering properties of the alloy. The interaction of

the alloy with a void was also studied. A void of 200 vacancies was created in the

centre of the simulation box by the same procedure described in sec. 4.4.1. The

metropolis-MD algorithm was then used to explore the attraction of elements to

the voids surface.

5.4 Results: Binary Alloys

5.4.1 Nearest Neighbour Distance

Initially the properties of a single substitutional alloying atom in a perfect BCC

iron lattice were explored. The nearest neighbour spacing as compared to that

in pure iron is shown in fig. 5.2. Each row (period) has a similar trend in size

mismatch. There is a larger spacing towards the edge of the group with the

minima occurring in the same column (group) as iron in the higher periods. Only

Cr24, Mn25 and Co27 show a contraction of the distance by 0.005, 0.002 and

0.006 Å respectively. Periods 5 and 6 show similar spacing trends, and are all

oversized compared with period 4 elements.
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Figure 5.2 : A single alloying element, modelled by the rescaled iron potentials, is
embedded in a perfect BCC lattice and quenched at 0 K and 0 GPa. The alloying
elements first nearest neighbour distance is plotted relative to the equilibrium iron
spacing. The value is negative if the bond is shorter than in pure iron.

5.4.2 Bonding Energy

For Finnis-Sinclair potentials the bonding energy can not be directly defined in

a pair wise manner, due to the density based terms that involve summing over

all neighbours. However, the cohesion energy can be re-written as:

Ecoh = −
∑
i

√
ρi ρi =

∑
j

φij

Ecoh = −
∑
i

∑
j φij√
ρi

Ecoh =
1

2

∑
i

∑
j

φij

[
1

−√ρi
+

1

−√ρj

]

Where j may not equal i. φij is the pair-wise embedding term and ρx is the

density around atom x, calculated from the sum of φij for atoms surrounding x.

This allows a bonding energy to be expressed:

Eij = vij + φij

[
1

−√ρi
+

1

−√ρj

]
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Where vij is the pair potential contribution. The cohesion term can be made

truly pair-wise if ρi and ρj are approximated by their equilibrium value ρ0. In

the present work the correct values of ρi and ρj are used.

Figure 5.3 shows the bonding energy between an iron atom and the various

transition metals. It can be seen that the iron-alloy bonds are stronger than the

iron-iron bonds for all elements, apart from Mn which is +0.27 eV less bound.

The bonding is tighter in the higher period groups. There is a decrease in bond

strength towards the edge of period 5 and 6. This is perhaps correlated with the

size mismatch trends, which tend to have greater mismatch at the edges of the

period group.
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Figure 5.3 : Graph showing the 1 n.n. bonding energy between an alloying atom
and an iron atom, using the rescaled iron potentials. The graph is split by period
of the transition metals.

5.4.3 Binary Alloy

The equilibrium distribution of a single alloying element at concentration 2.5%

and temperature of 0 K is studied. The Metropolis-MD algorithm is run until

equilibrium is reached. The clustering behaviour was studied by looking at the

neighbour correlation at various distances and the results are shown in table 5.2.

15 of the 23 elements studied show repulsive or neutral self-attraction across first,

second and third n.n. distances. 5 elements (Mn, Cu, Ag, Os, Au) show strong

attraction at 1 n.n. leading to clustering, which is reflected at first second and

third neighbour distance. The remaining three (Co, Ni and Pd) show strong
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attraction at 2 n.n.

Of the 5 elements that form tight clusters, only 4 of them have attractive alloy-

alloy dimers. The clustering of Mn is driven by gains in the embedding energy,

while the other 3 (all group 11) are driven to cluster by the pair potential.

Counter-intuitively Os does not have attraction for dimers, yet still clusters.

To further explore the clustering of Os, the trimer formation energy was measured.

This was defined as the energy to add a single atom at 1 n.n. to a dimer. The

trimer formation energy is attractive (-0.05 eV). However, the dimer formation

energy is repulsive (0.06 eV) and clustering occurs even at 0 K. The dimer

formation is also repulsive at 2 n.n. (0.04 eV) and strongly repulsive (0.19 eV)

at 3 n.n. distance. This high value allows dimers to be formed in the system by

metropolis jumps from the 3 n.n. state to the 1 or 2 n.n. state, which lowers the

energy. Therefore, Os 1 n.n. dimers can form in the system if the initial random

distribution contains any 1 n.n. or 3 n.n. pairs of alloying atoms. Once there

are dimers, trimer formation becomes favourable, and clusters can grow on these

nucleation sites.

5.4.4 Vacancy Binding

The binding of alloying elements to both single vacancies and to voids was

considered. The binding energy is defined as the system energy for the atom

at 1 n.n. to a vacancy, with the energy for a system with well separated atom

and vacancy subtracted. Negative energy is attraction to the vacancy in this

definition. The binding energies for an alloying element at 1 n.n. to a vacancy

are displayed in fig. 5.4. Almost all the elements show attraction to a vacancy

at 1 n.n. except V and Co. This is likely due to most of the elements being

oversized in iron, and so they may release part of the strain field by approaching

a vacancy.

Figure 5.5 explores how the bonding energetics are related to the vacancy binding

energies. When the alloying element, X, is moved next to the vacancy, one 1 n.n.

Fe-X bond is destroyed, while one 1 n.n. Fe-Fe bond is created. The figure

compares the energetics due to the formed and annihilated bond, to the actual

binding energy of the vacancy. It can be seen that the change in 1 n.n. bonding
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is not the dominant effect in the vacancy binding. In terms of 1 n.n. bonding,

it would be beneficial to have the alloy and vacancy separated (except Mn which

is attractive). The stress relieved by moving the defect to the vacancy is the

dominant factor in the attractive vacancy-binding energy.

The interaction of the alloy with a void was also studied. A stable faceted-void

of 200 vacancies was created by iteratively removing the highest energy atom in

a quenched lattice (as explained in sec. 4.4.1). Alloy atoms are then randomly

placed on the remaining lattice sites before equilibrating to a given temperature.

Sites on the surface of the void and close to it can be identified by examining the

potential energy of the atoms. Distinct jumps in the energy landscape as number

of nearest neighbour change allow identification of such sites, as shown in fig. 5.6.

After using this method to generate a list of first nearest neighbours to the void,

second nearest neighbours can be obtained by finding the closest atoms to the

first nearest neighbours.

The Metropolis-MD algorithm was run in the presence of the void, with 2.5%

alloying element at 0 K. The Void-alloy attraction was measured by counting the

number of alloying atoms present at 1st and 2nd nearest neighbour distance from

the voids surface. This number was normalised by the total number of alloy atoms

in the system. All of the alloying elements show strong interaction at either first

or second nearest neighbour to the void, as can be seen in table 5.2.

For periods 5 and 6 the preference for first or second neighbour site is correlated

with the lattice size mismatch of the element (fig. 5.2). The elements at the edge

of each period prefer 1 n.n., where as those in the centre prefer 2 n.n. sites to

the void. For these groups the lattice mismatch seems to be the main driving

factor. Larger lattice mismatch corresponds to greater lattice strain which can

be relieved by vicinity to the void. For lesser lattice mismatch the alloy balances

the loss of binding next to the void against the gains from reduced stress by

occupying 2 n.n. sites. The attraction for period 4 elements seems to follow a

different trend, not correlated to the lattice mismatch. There is strong attraction

at 1 n.n. to the void across the group with the exception of Ti and V.
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Figure 5.4 : Graph showing the binding energy of a single transition metal atom to
a vacancy in pure iron, as modelled by the rescaled iron potentials. The energy is
defined as the system energy for the atom at 1 n.n. to a vacancy with the energy
for a well separated atom and vacancy subtracted.
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Figure 5.5 : graph shows: [solid line] the bonding strength of Fe-X subtracted from
the bonding strength of Fe-Fe, as modelled by the rescaled iron potentials. Where
both bonds are at 1 n.n. and X is one of the alloying transition metals. [dotted
line] shows the vacancy binding energy data from fig. 5.4 for comparison.
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Figure 5.6 : Shows the energy distribution of atoms in a quenched sample
containing a void in iron. The plateau (approx. 1 - 120) is related to atoms
on the voids surface The next long plateau (approx. 130 - 190) is related to atoms
along the edges of the voids faceted faces. The two small regions are various
anomalies including corner atoms.
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Table 5.2 : Table detailing the properties of 2.5% of a single alloying element
in α-iron, equilibrated at 0 K. “n.n. Dist” is the nearest neighbour distance
around a single substitutional alloy atom as compared to the equilibrium iron
spacing. The formation energy for a dimer of each element in pure iron is
shown for 1st and 2nd neighbour distance. Energetically favourable dimers have
negative energy and are coloured blue. Correlation (see sec. 5.3.4) refers to the
percentage chance of finding an alloying atom at 1st, 2nd and 3rd nearest neighbour
distance from another. Due to finite size surface effects, these number can not be
100%. Attraction or the alloy to a void of 200 vacancies is also measured. The
percentages of the alloy found at 1st and 2nd nearest neighbour distance to the void
is displayed. For both the clustering and void study, a result of 2.5% represents
a neutral system where the alloying element is neither attracted or repelled. A
result of less than 2.5% represents a repulsion and is coloured green, greater than
this represents attraction and is coloured blue.

Dimer Formation Correlations Void Attraction
Atm. Num. 1 n.n. 2 n.n. corr 1 n.n. corr 2 n.n. corr 3 n.n. 1 n.n. 2 n.n.

22Ti 0.29 0.07 0 0 3 16 81
23V 0.28 0.08 0 0 0 0 98
24Cr 0.24 0.12 0 0 3 98 0
25Mn -0.07 -0.07 45 38 18 95 2
27Co 0.05 -0.02 0 49 24 79 20
28Ni 0.01 -0.07 26 32 18 99 1
29Cu -0.21 -0.18 68 49 42 90 9
40Zr 0.41 0.06 0 1 2 84 16
41Nb 0.45 0.11 0 0 1 21 73
42Mo 0.32 0.09 0 1 3 18 77
43Tc 0.08 0.03 0 2 0 15 84
44Ru 0.06 -0.01 0 5 0 12 86
45Rh 0.14 0.01 0 2 0 90 8
46Pd 0.01 -0.11 10 26 4 99 0
47Ag -0.29 -0.27 56 49 30 99 0
72Hf 0.48 0.08 0 2 2 85 13
73Ta 0.50 0.08 0 1 3 4 93
74W 0.39 0.10 0 0 2 6 92
75Re 0.20 0.13 0 0 2 16 81
76Os 0.06 0.04 56 49 31 7 40
77Ir 0.23 0.10 0 1 0 58 27
78Pt 0.25 0.06 0 1 0 93 4
79Au -0.02 -0.11 57 59 32 98 0
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5.4.5 Phase diagrams

The properties of the system with one alloying element was studied by running the

Metropolis-MD algorithm on samples of varying temperature and concentration.

A temperature ranges of 0 to 1500 K was considered and a concentration range

of 1 to 20%. Initially 16 even spaced samples were taken in this phase space, in

a 4 by 4 grid. Based on the results of these, further samples were taken to define

any trends seen in the data. The samples produced under various conditions were

studied for phase transitions by measuring: ordering of the alloy at 1st, 2nd and 3rd

nearest neighbour and changes or asymmetries in the box dimensions. The types

of behaviours present are summarised in table 5.4.5 and discussed below.

Of the 23 diagrams produced (one for each alloying element) 13 of the diagrams

show no significant change over the phase-space. Ti, V, Cr, Zr, Nb, Mo, Tc, and

Hf show no correlation of the alloy across the range. Cu, Ag, Os and Au (mostly

group 11 elements) show tight clustering across the range. Although Co shows

2 n.n. ordering at 0 K this order is destroyed by even low temperatures so the

diagram was explored no further.

The remaining 10 alloying elements were studied in more detail. These samples

were studied for sharp changes in correlation or box dimensions. Boundary

lines were placed by finding the steepest gradient between sample points. If

the change was within what would be expected from background fluctuations it

was ignored.

Figures 5.7 to 5.18 show diagrams for the 11 elements that exhibit transitions.

Table 5.4 gives more information on the regions present.

Broadly, there are two types of transitions in the diagrams: concentration

driven and temperature driven. Concentration driven transitions tend to be a

sharp change in a system property across all temperature ranges at a certain

concentration. This behaviour is exhibited by Rh (fig. 5.11), Ta (fig. 5.14),

W (fig. 5.15), Re (fig. 5.16), Ir (fig. 5.17), and Pt (fig. 5.18). In all of these

concentration driven transition, apart from Ta, the transition is from disordered

to tight cluster formation with increasing concentration. Ta showed a transition

to 2 n.n. ordering.

The remaining 4 elements show temperature driven phase transitions: Mn (fig. 5.7),
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Ni (fig. 5.8 & 5.9), Ru (fig. 5.10), and Pd (fig. 5.12 & 5.13). Mn and Ru

show the simplest transitions. Clustering behaviours is destroyed with increasing

temperature. Denser concentrations require higher temperatures to become

disordered.

Ni and Pd initially show similar transition trends to that of Mn and Pd. However

at higher concentrations the transition temperature begins to decrease again. In

the case of Ni this effect is linked to a change in the underlying box dimensions

(fig. 5.9) which favours growth of an elongated 111 precipitate. beyond a

concentration of around 10% the box becomes elongated along a single axis,

deviating from its initial cubic dimensions. Beyond this change the transition

temperature for the disordered phase decreases. Pd also shows a skewing of

the box dimensions beyond certain concentrations and temperatures (fig. 5.13)

favouring a precipitate orientated in the 100 direction.

Table 5.3 : Elements marked by phase transition type, for a range of
concentrations up to 20% and temperatures up to 1500 K. T is temperature driven,
C is concentration driven, and A is always clustered. Uncoloured elements are
always disordered.

group 4 5 6 7 8 9 10 11
T T A

period 4 Ti22 V 23 Cr24 Mn25 Fe26 Co27 Ni28 Cu29

T C T A
period 5 Zr40 Nb41 Mo42 Tc43 Ru44 Rh45 Pd46 Ag47

C C C A C C A
period 6 Hf 72 Ta73 W 74 Re75 Os76 Ir77 Pt78 Au79
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Table 5.4 : Summary of phase diagrams for concentrations up to 20% and
temperatures up to 1500 K. interactions are categorised at first second and third
nearest neighbour (n.n.) as repulsive (R), Neutral (N), slightly attractive (SA),
and attractive (A).

Atomic Num. 1 n.n. 2 n.n. 3 n.n. comments
22 R R N Disordered apart from small correlation at 3 n.n. at high concentration
23 R R N/A Disordered, apart 3 n.n. attraction at high concentration and low temp.
24 R R N/A Disordered, apart from 3 n.n.

attraction at high concentration and low temp.
25.i A A A Clustered phase at low temperature
25.ii SA SA N Entropy driven phase transition to smaller clusters,

sharp at low concentrations
27 R SA N Disordered
28.i N SA R Disordered
28.ii A A A Clusters are extended along the 111 direction,

break up at low c by entropy, high c by box distortion
29 A A A Always clustered , cell elongates
40 R N/SA N Mostly disordered, slight 2 n.n. correlation at high concentration
41 R R/N N Mostly disordered, slight 2 n.n. correlation at high concentration
42 R R/SA N Mostly disordered, slight 2 n.n. correlation at high concentration
43 N/A N/A N Disordered
44.i N N N Clusters broken by temperature
44.ii A A A Clusters present, entropically destroyed
45.i R SA R Mostly disordered at for concentrations below 10%
45.ii A A R Concentration driven change to small clusters
46.i N SA R Mostly disordered
46.ii A A A Clusters elongated in 100 direction, favouring 2 n.n attraction
47 A A A Plates form in 100 plane elongating the cell, 1 and 2 n.n. correlation is strongest
72 R N/SA N Mostly disordered
73.i R R/N N Disordered
73.ii R A A Concentration driven clustering favouring 2 and 3 n.n. correlation
74.i R R A Mostly disordered
74.ii A A A Spherical cluster form, box elongates
75.i R R N Disordered
75.ii A A A Spherical clusters, sharp onset in 1, 2 and 3 n.n. correlation
76 SA SA N Clusters across the range
77.i R SA R Mostly disordered, some slight 2 n.n. correlations
77.ii A A A Several small compact clusters form
78.i R N R Disordered
78.ii A A A Tight clusters elongated in 100 direction, box also elongates
79 A A A Tight clusters
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Figure 5.7 : Mn: phase diagram for 1 n.n. self-attraction in Mn. A value of 1,
indicated by light squares, represents strong self-attraction (clustering). A value
of 0, indicated by dark squares, represents repulsion of the alloying element from
itself. The line marks the position of phase change. Numbers in brackets refer to
the phases marked in table 5.4.5. A single cluster (25.i) (below line on graph), is
broken into several smaller clusters (25.ii) (above line on graph) with increasing
temperature.
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Figure 5.8 : Ni: format the same as fig. 5.7. Shows the first nearest
neighbour correlation for Ni. Clustering present at low temperature and medium
concentration (28.ii).
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Figure 5.9 : Ni: format the same as fig. 5.7. Shows the elongation of the box along
one axis by plotting the longest axis of the box minus the shortest, in angstroms.
This onset of box elongation is linked to the phase transition.
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Figure 5.10 : Ru: format the same as fig. 5.7. Shows the first nearest neighbour
correlation for Ru. Clustered phase at low temperature (44.i), entropically
destroyed (44.ii).
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Figure 5.11 : Rh: format the same as fig. 5.7. Shows the first nearest neighbour
correlation for Rh. Concentration driven phases transition from solute (45.i) to
small precipitate clustering (45.ii).
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Figure 5.12 : Pd: format the same as fig. 5.7. Shows the first nearest neighbour
correlation for Pd. Region of low temperature and medium concentration shows
clustering (Pd.ii).
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Figure 5.13 : Pd: format the same as fig. 5.7. Shows the elongation of the
box along one axis by plotting the longest axis of the box minus the shortest,
in angstroms. This onset of box elongation is linked to the phase transition.
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Figure 5.14 : Ta: format the same as fig. 5.7. Shows the second nearest neighbour
correlation for Ta. The alloy is disordered at low concentration. At higher
concentration correlation in the second and third nearest neighbours becomes
apparent. Signifying the onset of second nearest neighbour clustering (73.ii).
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Figure 5.15 : W: format the same as fig. 5.7. Shows the first nearest neighbour
correlation for W. Undergoes a concentration driven phase transition from
disordered at low concentration (black dots, 74.i) , to clustering at higher
concentration (white dots, 74.ii)
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Figure 5.16 : Re: format the same as fig. 5.7. Shows the first nearest neighbour
correlation for Re. Undergoes a concentration driven phase transition from
disordered at low concentration (black dots, 75.i) , to clustering at higher
concentration (white dots, 75.ii)
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Figure 5.17 : Ir: format the same as fig. 5.7. Shows the first nearest neighbour
correlation for Ir. undergoes a phase concentration driven phase transition from
disordered (black dots, 77.i) , to several small clusters (white dots, 77.ii) at higher
concentration.
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Figure 5.18 : Pt: format the same as fig. 5.7. Shows the first nearest neighbour
correlation for Pt. undergoes a concentration driven phase transition from
disordered at low concentration (black dots, 78.i) , to clustering at higher
concentration (white dots, 78.ii)
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5.5 Results: Tertiary Alloys

2.5% of two different alloying elements (5% alloy total) were randomly added to a

BCC iron lattice at 0 K. The Metropolis-MD algorithm was then run to minimise

the Gibbs energy of the system, for the given configuration. The interaction of the

elements can be categorised by the change in their self-attraction along with the

cross-elemental attraction. There are 253 ways to add two elements to the system,

all of which were simulated. There are too many cases to talk about individually

and so only the alloys with interesting properties will be discussed.

The data was analysed by studying changes in self-attraction at up to 3 n.n.

as compared to the correlation in the binary alloys. That is, the percentage

correlation of a given element as measured in the binary samples (shown table 5.2)

is subtracted from the correlation of the same element in the tertiary samples.

A change of less than 1 +
√
corr was ignored, where corr is the percentage self-

correlation at a particular neighbour distance in the binary alloy. Additionally

cross-correlation of less than 5% was considered insignificant.

With these filters, 83 of the samples can be said not to interact significantly: each

element retains its original self-attraction properties, with little cross-interaction.

This predominately arose from mixing two elements that were not self-attractive

(64 cases). Mixing two self attractive alloys always produced some form of

change.

In some cases even when there was no significant cross-interaction, the properties

of the individual elements are still changed (88 cases). Of these cases, the most

likely event is for one element to increase its self-attraction while the other is

unaffected (59 cases).

The strongest changes seen were mostly from mixing a repulsive alloy with an

attractive one, resulting in the complete dissolution of the attractive clusters.

This could happen with or without a cross-attraction between the alloys. That

is, the clusters can absorb the new element, or be destroyed by it leaving no

clustering of any type. The largest changes are observed in samples containing

Au which strongly clusters in the single component case.

Tables 5.5 and 5.6 show the effects of the alloying components. Table 5.5 shows
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5.5. Results: Tertiary Alloys

the self-correlation of each element in the presence of each of the other elements.

Changes in the correlation down the columns show how that particular element

is influenced by the element in the relevant row. It can be seen that six elements

(Mn, Ni, Cu, Ag, Os, and Au) strongly cluster at 1 n.n. in the presence of most

other elements. Exceptions to this can be seen, such as V strongly destroying Ni

clusters.

It can also be seen from the rows of the table, that the presence of a strongly

clustering element often induced clustering in the secondary element. For

example, when Ag is present in the system, several elements that normally prefer

not to cluster start to show correlations. Typically this is associated with cross-

correlations between the elements (see table 5.6). Cross-correlations only occur

when one of the six strongly clustering elements is present in the system. These

six elements tend to react strongly with each other.
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5.5. Results: Tertiary Alloys

5.5.1 Tertiary Alloy with Void

For the sample containing the void as well as two alloying elements, the

competition of attraction to the void as well as cross-interaction of the elements is

studied. The 1 n.n. and 2 n.n. attraction to the void is shown in tables 5.7 and 5.8

respectively.

The cases of two elements that prefer 1 n.n. void sites being mixed is studied,

78 cases in total. Most of the time (64 cases) one of the elements will be reduced

at 1 n.n. to the void, but will show some increased preference for 2 n.n. to the

void. The second element will typically show some reduction at 1 n.n. distance

as well.

The results for two elements that both prefer 1 n.n. sites to the void are further

analysed in fig. 5.19. Two distinct areas are seen in the figure, due to the

size difference between period 4 elements and period 5 or 6 elements. The

size difference does not seem to be a major factor, with the strongest trend

being the difference in vacancy attraction. This shows that interactions between

the competing alloying elements is not the main driving force, as the vacancy

attraction is the dominant factor. The samples in general show an overall decrease

in coating of the void compared to what might be expected from the combination

of the single samples. This is due to the cross-interaction not being strong between

the elements (see table 5.9), and so one element will bind to the void, repelling

the other. There is enough sites for both elements to be present on the voids

surface, 50 atoms of each alloy with 190 sites at 1 n.n. to the void, but this is

rarely seen.

Cases where two elements both prefer to be at 2 n.n. to the void were also studied,

45 cases in total. In general, both show a decrease in occupation at 2 n.n. to

the void despite there being sufficient room for both alloys. There is almost no

1 n.n. cross correlation between the alloys and the atoms never increase their

concentration at 1 n.n. to the void.

Lastly samples where one element prefers 1 n.n. to the void and another prefers

2 n.n. to the void are studied, 130 cases in total. Typically the element that

prefers 2 n.n. is repelled into the bulk, while the element that prefers 1 n.n.

remains, with a slight reduction in concentration.
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Figure 5.19 : The graph shows the competition between alloying elements in iron
that both prefer to be at 1 n.n. to the void in a mixed sample. The difference (A-
B) in vacancy binding energy of the two elements is plotted against the difference
(A-B) in 1 n.n. distance in the lattice. The data points are colour coded according
to which element showed a relative increase in void coverage at 1 n.n. to the void.
Taking (%A-%AS)-(%B-%BS) where %A and %B refer to the percentage of alloy
next to the void in the mixed sample, %AS and %AS referring to the alloy next to
the void in the unmixed samples. If the quantity is positive, signifying an increase
in element A at the void, the data point is coloured black. Otherwise the point is
white, signifying an increase in element B at the void.
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5.5. Results: Tertiary Alloys
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5.6. Changing Composition

5.6 Changing Composition

A system containing 2.5% of a single alloy element is prepared by running

metropolis and thermal equilibration routines. A second element is then slowly

added to the first until 2.5% of the second element is present. On each addition

of an new alloy atom the metropolis algorithm is allowed to re-equilibrate the

system for a sufficient amount of time. The rate of adding atoms is ensured to be

low enough by re-running at half the rate and showing results to be consistent.

This model could be thought of as a model for a secondary alloy slowly diffusing

into a region and changing its composition. The simulations were performed

thermostated to 600 K at 0 GPa.

The self correlation of the original element and the added element is calculated

for each composition, as well as the cross-correlation. The correlation results from

the second half of each metropolis run are averaged over, to give better statistics

at each composition. Five iron based tertiary alloys were considered, with alloying

elements: Os-Cu, Re-Cu, Ru-Cu, Ta-Mn, and Os-Re. The systems were picked

for their strong cross-interactions. The results are discussed below.

5.6.1 Strukturbericht Classifications

The following analysis refers to two strukturbericht lattices: B1 and B2 (shown

in fig. 5.20). Both structures are binary mixtures of an equal ratio of two species

of atom. B1 is equivalent to fcc with a secondary element place on each side and

centrally. B2 is equivalent to bcc with the central atom replaced by a different

species.

Figure 5.20 : Diagram of strukturbericht lattices B1 and B2.
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5.6. Changing Composition

5.6.2 Results

Os was slowly added to a sample already containing Cu. The changes to the

correlations of the elements is shown in fig. 5.21. Cu clusters are gradually

destroyed by the addition of Os. A single precipitate of Cu and Os with B2

structure is eventually formed.

The results for Re being added to a system already containing 2.5% Cu are

shown in fig. 5.22. The Cu clusters 1st n.n. correlation is reduced as Re is slowly

absorbed by the clusters. Eventually forming a single precipitate of Cu and Re

with B2 structure. The results are similar to those for Os-Cu.

The results for Ru being added to a system already containing 2.5% Cu are shown

in fig. 5.23. The Cu remains tightly clustered, with no mixing of the Ru. The Ru

is attracted to the surface of the cluster, but does not entirely plate it due to its

self-repulsion. 60% of the Ru is on the surface of the Cu cluster, while the rest is

unclustered in the lattice.

The results for Ta being added to a system containing 2.5% Mn are shown at

1 n.n. in fig. 5.24 and 2 n.n. in fig. 5.25. The Mn clusters slowly absorbs the Ta

creating a B1 lattice at 2 n.n. distance (first neighbours to the alloy being iron).

The deconstruction of the initial Mn clusters is rapid and almost complete with

only 1% Ta added to the system.

The results for Os being added to a system containing 2.5% Re are shown in

fig. 5.26. Initially the Re is spread through the sample with no clustering. As Os

is added neither element shows self or cross-correlations. After about 0.9% Os is

added the system exhibits a sudden transition to a mixed cluster of Re and Os.

The cluster contains small plates of each element and is compact.

It can be seen that introducing secondary elements into the system can strongly

affect the clustering properties of the original system in various manners.
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Figure 5.21 : Shows first nearest neighbour correlation for a sample of iron
containing 2.5% Cu while Os is slowly added. Maximum correlation is denoted
as 1 on this scale. The copper clusters 1st n.n. correlation is reduced as Os is
slowly absorbed by the clusters, eventually forming a single precipitate of Cu and
Os with B2 structure.
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Figure 5.22 : Shows first nearest neighbour correlation for a sample of iron
containing 2.5% Cu while Re is slowly added. Maximum correlation is denoted
as 1 on this scale. The copper clusters 1st n.n. correlation is reduced as Re is
slowly absorbed by the clusters, eventually forming a single precipitate of Cu and
Re with B2 structure.
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5.6. Changing Composition
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Figure 5.23 : Shows first nearest neighbour correlation for a sample of iron
containing 2.5% Cu while Ru is slowly added. The copper remains tightly
clustered, with Ru being attracted to the clusters surface. Maximum correlation
is denoted as 1 on this scale.
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Figure 5.24 : Shows first nearest neighbour correlation for a sample of iron
containing 2.5% Mn while Ta is slowly added. Maximum correlation is denoted
as 1 on this scale.
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Figure 5.25 : Shows second nearest neighbour correlation for a sample of iron
containing 2.5% Mn while Ta is slowly added. Maximum correlation is denoted
as 1 on this scale. The second neighbour self correlation is destroyed, while the
second nearest neighbour cross-correlation increases. This is indicative of a second
nearest neighbour cubic lattice forming, with alternating element types (2 n.n. B1
lattice in the strukturbericht classification).
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Figure 5.26 : Shows first nearest neighbour correlation for a sample of iron
containing 2.5% Re while Os is slowly added. Maximum correlation is denoted as
1 on this scale. Initially the Re is spread through the sample with no clustering.
After about 0.9% Os is added the system exhibits mixed clusters of Re and Os.
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5.7. Radiation Induced Precipitation

5.7 Radiation Induced Precipitation

5.7.1 Introduction

Often alloys exist in out-of-equilibrium configurations achieved by rapid quench-

ing of the molten alloy. For a phase transition to occur it must be energetically

favourable as well as having sufficient kinetic energy in the system to make the

change probable. Rapid quenching limits the time in which both conditions

are met, making the transition unlikely. Alloys that would otherwise exist as

precipitates in the metallic lattice can be forced into a mixed state, with varying

properties by careful manufacturing techniques[89, 90]. This current study looks

at how radiation cascades affects out-of-equilibrium alloys and if cascades can

directly cause radiation-induced segregation(RIS) or if this effect is only due to

the subsequent diffusion of defects.

Radiation induced segregation is linked to the coupling of defect fluxes to specific

alloying elements, inducing changes in local elemental concentrations[12]. This

effect was first observed as solute segregation to voids in electron irradiated

samples[10] and has more recently been studied by atomic probe tomogra-

phy (APT) techniques[11]. Segregation can enrich or deplete certain elements

at grain boundaries[91], dislocation[92], and voids[10] under both electron and

neutron irradiation. These effects are explained by the defect fluxes in the

system having preferential attraction to a certain alloy component[12]. Fluxes of

vacancies and voids will occur around absorbing sinks such as grain boundaries

etc. Coupling of these fluxes to specific elements gives the behaviours observed.

TEM study of electron irradiated samples reveal that precipitate can also form

without correlation to sinks for point defects[93]. As the precipitating element

must be self-attractive, small clusters act as sinks for further precipitation.

This present study looks at additional effects of preferential motion of defect

atoms during the cascade phase, to study any segregation effects that are not

directly due to diffusion.
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5.7. Radiation Induced Precipitation

5.7.2 Method

The effects of repeated radiation cascades on a 2-component alloy are studied.

5% of an alloying element is placed randomly into the α-iron lattice consisting of

303 unit cells of 54 000 atoms. The system was then thermally equilibrated

to 500 K using constant pressure boundary conditions. After equilibration

10 keV cascades were introduced into the system consecutively. Constant volume

boundary conditions were used for the bombardment phase as cascades cause

large fluctuations in pressure. The system was thermostated back to 500 K after

each cascade had dissipated. Cascades were introduced by picking an atom in the

system at random and giving it additional velocity equivalent to 10 keV of kinetic

energy in a random direction. For efficiency the spatially varying time-step model

is used to simulate the cascades (see sec. 2.3).

The number of Frenkel pairs is calculated after each cascade has dissipated. These

are measured with the technique described in sec. 3.4. The clustering is tracked

by measuring the correlation of alloying elemental at 1st, 2nd and 3rd nearest

neighbour distance, as described in sec. 5.3.4.

5.7.3 Results

The three group 11 transition metals, Cu, Ag, and Au, were studied due to their

tendency to self-cluster. All three elements exhibit nucleation of small clusters

during repeated bombardment. Graphs of this tendency are shown: Cu (fig. 5.27),

Ag (fig. 5.28), Au (fig. 5.29). Cu nucleates dimers at 1 n.n., Ag at 1st and 2nd n.n.

and Au at 2 n.n.

This clustering occurs on the pico-second scale, and is not a long term diffusion

effect, but rather due to rearrangements in the melt region of the cascade. These

results show that precipitation of alloying elements to small cluster nucleation

sites can be aided by bombardment melt regions. The clusters do not become

large over the times studied, but could act as nucleation points for further cluster

growth. The increase in 1 n.n. correlation per cascade for Cu and Ag is 0.07%

and 0.05% respectively. The Au sample shows enhancement at 2 n.n. at a rate

of 0.06% per cascade.
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5.7. Radiation Induced Precipitation

The cumulative damage is also studied in these simulations, as shown in fig. 5.30.

The damage formation rate per cascade, falls off as point-defect density increases.

This is due to faster re-combination rates, especially in the cascade melt region.

Fluctuations are large, and the overall effect of the later cascades can be to create

or annihilate up to ∼20 new defect pairs (fig. 5.31). The fraction of interstitials

that are of the alloying element is tracked. There is a depletion of alloy interstitials

from the 5% that may be expected. Cu has 4.7% alloying interstitials, with 1.0%

for Ag and 1.4% for Au. This is likely a size effect, with the smaller particles

being more likely to be repelled to interstitial sites during the recrystallization of

the melt region.

Os was also studied as it is a self-clustering element in iron. However it did not

achieve any significant correlation, due to the barriers to nucleation of this element

(discussed in sec. 5.4.3). Additionally 3 samples that undergo concentration

induced phase transitions to self-clustering behaviour were studied; Rh, Re, and

Ta. The 5% alloy concentration is below the transition threshold for all 3 alloys.

They were studied to see if disruption in the crystal, such as strain from point

defects, may provide an alternative root to self clustering under bombardment.

Of the three samples studied there was no significant clustering.

5.7.4 Conclusions: Radiation Induced Precipitation

Three out-of-equilibrium alloys that have a preference for precipitation at

equilibrium were studied. The alloying element increases its self-correlation

under bombardment. These enriched regions could act as initial sites for further

precipitate growth. Alloys that only prefer equilibrium precipitation behaviour

at higher concentrations were also studied. They were not observed to strongly

change in correlation.
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Figure 5.27 : Graph of 1st, 2nd and 3rd nearest neighbour self correlation for 5%
Cu in iron under repeated 10 keV bombardment at 500 K. Values above or below
5% represent enhanced and depleted interactions respectively. A tendency towards
forming small 1 n.n. clusters is observed under heavy bombardment.
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Figure 5.28 : Graph of 1st, 2nd and 3rd nearest neighbour self correlation for 5%
Ag in iron under repeated 10 keV bombardment at 500 K. Values above or below
5% represent enhanced and depleted interactions respectively. The sample shows
clusters form with both 1st and 2nd n.n. interaction under heavy bombardment.
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Figure 5.29 : Graph of 1st, 2nd and 3rd nearest neighbour self correlation for 5%
Au in iron under repeated 10 keV bombardment at 500 K Values above or below
5% represent enhanced and depleted interactions respectively. A tendency towards
forming small 2 n.n. clusters is observed under heavy bombardment.
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Figure 5.30 : Graph of the number of Frenkel pairs in the system against number of
cascades. The system tends to an equilibrium number of defects as high densities
of free interstitials and vacancies lead to higher recombination rates, especially in
the melt region of cascades. This graph is for 5% Ag although is typical of the
Frenkel pair trends in the Cu and Au studies.
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Figure 5.31 : Graph of the number of Frenkel pairs per cascade in the system
against number of cascades. This graph is for 5% Ag although is typical of the
Frenkel pair trends in the Cu and Au studies.

5.8 Conclusions

The properties of binary and tertiary alloys have been explored. The alloy

clustering, as temperature and concentration are varied, is explored for the binary

alloys. Both concentration and temperature driven transitions between clustered

and disordered phases are identified. The attraction of alloying elements to a

void was also explored, showing that all alloying elements preferred vicinity to

the void. Attraction at 1 n.n. or 2 n.n. to the void is preferred based mainly on

size mismatch of the element in the lattice: reduction of lattice strain by being

close to the void is balanced against the loss of bonding energy.

Clustering in tertiary alloys was measured. The behaviour was shown to centre

around the 6 strongly clustering elements and their interactions. Mixing two

elements that prefer disordered state in the binary alloy, never produced a non-

disordered tertiary alloy. Mixing an alloy that prefers to be disordered in the

binary system with one that prefers to be clustered, can yield complex behaviour:

either destroying the clusters present or being absorbed into them.

The competition of the elements to sit close to the void is studied in tertiary

alloys. The results can be analysed simply in terms of vacancy binding energies,

with other interactions being of secondary consideration. When two elements

that prefer 1 n.n. sites to the void are present, the one with strongest vacancy

binding energy tends to bind preferentially to the void. The second element
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5.8. Conclusions

typically shows a decrease in 1 n.n. void attraction and is forced to 2 n.n distance.

Elements that prefer 1 n.n. sites will typically remain there, repelling elements

that prefer 2 n.n.

Several studies were performed of the changes to precipitates in iron, due to the

introduction of a third element. The introduction is done slowly so as to study

the nature of the the transitions. The absorption of the third element into the

clusters was a common trend. Also observed was the plating of the cluster by the

new element. In one case a non-precipitating binary alloy is induced to precipitate

to mixed clusters by the introduction of a third element. The transitions were

fairly gradual apart from in the case of inducing clustering, which had a sharp

concentration based onset.

Out-of-equilibrium alloys that have a preference for precipitation at equilib-

rium were studied. The alloying element increases its self-correlation under

bombardment. This mechanism could be related to the initial nucleation of

precipitates.

Due to the complexities of modelling transition metals, a simple rescaling method

is unlikely to capture all the intricacies of the alloys behaviour. To quantify how

well the potentials act it would be necessary to compare to experiment or to DFT.

DFT typically has far less assumptions and so greatly improved accuracy over

empirical-rescaled potentials. Although DFT is too computationally expensive to

perform large scale studies with, small samples could be compared for effects such

as atomic volume and defect stabilities as predicted in the mixed alloys by both

methods. Future work on this would be beneficial to quantifying which features

the rescaled method is most likely to reproduce correctly. Such data would be of

use in refining and improving the re-scaling approach.
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Chapter 6

Conclusion

A variant on the Verlet algorithm was developed in chapter 2, which allows

two different time steps to be used simultaneously during a simulation. The

development of more efficient algorithms such as this, is essential to allowing

larger simulations to be performed, or more data to be gained quickly. This

type of algorithm is of use for cascade simulations, where the kinetic energy is

not evenly distributed in the simulation cell. The algorithm is demonstrated

to accelerate cascades by around a factor of 3 or more, depending on the exact

system set-up.

In chapter 3, the surface bombardment of copper with argon ions was studied. As

well as providing insight into the mechanisms involved in the damage formation,

the study also helps to validate the MD and KMC techniques used, by directly

comparing the results to experimental data. This is important in ensuring the

reliability of the assumptions made in the simulation models. Combining KMC

and MD approaches allows both the damage formation and subsequent diffusion of

defects to be studied. The distribution and yield of clusters compares favourably

to experiment.

When a cascade overlaps the surface it strongly interacts, forming craters and

adatom clusters. The interaction appears more directed than may be obtained

from a local melt region model. Replacement-collisions chains orient preferentially

towards the surface to alleviate the compression at the bottom of the crater, while

taking advantage of the depletion region above this for easier motion.
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In chapter 4 the interaction of cascades with voids and bubbles has been studied,

also using a multi-scale approach of MD and OKMC models. The MD simulations

reveals a ballistic motion of voids when overlapped by the cascade. The presence

of helium in the void is shown to suppress this mechanism by resisting the

insertion of matter.

The void movement mechanism was implemented in an OKMC code to compare

to diffusive rates in the system. The main mechanism compared to was the motion

of voids due to absorption and emission of point defects or defect clusters. The

ballistic motion of the void due to interaction with the cascade is shown to be

greater than the other diffusive mechanism across most parameters (for cascade

energies greater than 2.5 keV).

In chapter 5, a Metropolis method is used to explore the properties of binary

and tertiary alloys. Exploration of a potential set that gives transition metal like

behaviour, can be of use in understanding the possible mechanisms that can occur

on the nano-scale in complex alloys. The alloy clustering, as temperature and

concentration are varied, is explored for the binary alloys. The general trends of

clustering and void interaction are detailed for binary and tertiary alloys, focusing

on precipitation and void surface coating behaviours.

Several studies were performed of the changes to precipitates in iron, due to the

gradual introduction of a third element. The exact dynamic pathways are not

followed, instead using metropolis techniques. These simulations give information

on the tendencies of various alloys to undergo precipitation changes as the local

concentrations are changed by various effects.

Out-of-equilibrium alloys that have a preference for precipitation at equilibrium

were studied under radiation bombardment using MD. The alloying element

increases its self-correlation under bombardment, possibly forming nucleation

sites for further precipitation. There seems to be a tendency of the alloy to

try to approach its equilibrium state under bombardment.
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6.1. Future Work

6.1 Future Work

Radiation damage is triggered by cascade phenomena which are on the nano-

metre and femto-second scale. However, the properties of the material are

required on macroscopic scales and over time frames of years. Bridging this gap

requires the use of several different simulation methods, each on different length

and time-scales. Approximating between scales requires careful assumptions that

will not lose important data. Of interest would be the development of more

coupled models of radiation damage, perhaps allowing automatic coarsening of

the system in uninteresting areas. Equally of interest would be methods to

approximate coarsened objects as atomic entities for when objects approach

within interaction range of each other.

Further development of hybrid MD-continuum models would be one approach to

this. Regions far from strong interactions are modelled as elastic displacement

waves instead of individual atoms. This technique has already been used to

implement boundary conditions for simulations, although the interface was not

dynamic[94, 95]. Development of a model with dynamic shifting of the atomic

regime to only capture the necessary regions would be of use in increasing

simulation efficiency.
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