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ABSTRACT

Clostridium difficile is an important cause of antibiotic-associated diarrhoea in the

developed world. Antibiotics, especially broad-spectrum agents, predispose the

patient to C. difficile disease through depletion of the protective bowel flora and
antibiotics have also been shown to affect the toxin production of C. difficile.
The aims of this thesis were to investigate the antibiotic susceptibility patterns of C.
difficile with relation to the S-type of the isolates over a period of 18 months. The

relationship of sub-MIC antibiotics and the growth and toxin production of C.

difficile had not been extensively studied and so this relationship was investigated

using ELISA for toxin A, RT-PCR for the transcription profile and analysis of total
cell protein using 2D gel electrophoresis and MALDI-TOF mass spectrometry.

Detailed growth curves were performed on strains NCTC 11223, the sequenced
strain 630 and an endemic isolate 338a. Toxin A was shown to be produced upon

entry to stationary phase in agreement with other studies. OD6oo was found to be a

good predictor of growth phase and allowed this measurement to be used for

subsequent experiments.
MICs were performed on 186 random isolates of C. difficile collected during an 18-
month epidemiological study to investigate the patterns of sensitivity to six different
antibiotics. No evidence of resistance was seen to the two treatment antibiotics and

all strains were resistant to cefoxitin (MlCs 64-256pg/ml), the antibiotic used in most

selective media. Most strains (98.9%) had intermediate resistance or were resistant to

ceftriaxone. The MIC50 and MIC90 of the strains to amoxycillin and clindamycin
were very close (8 and 16 for amoxycillin and 16 for clindamycin) but the range of
MICs was great. Clindamycin resistance was common with 67% of strains resistant

(MICs of > 8pg/ml), 25% with intermediate resistance (MIC >4pg/ml) and only 8%
sensitive (MICs of <2gg/ml). Twelve isolates from six different patients had very

high resistance to clindamycin with MICs >128pg/ml. Multiple isolates from the
same patient, taken at different times, showed changes in susceptibility patterns over

time. The only major change in susceptibility over the time period was in

clindamycin resistance; some strains appearing to become more resistant while
others became less resistant. No differences were apparent in the MIC50 and MIC90
of the different S-types of C. difficile identified, although some S-types were present
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in very small numbers. No links between antibiotics prescribed and susceptibility

patterns were found.
Three strains (NCTC 11223, strain 630 and endemic isolate 338a) were cultured in
sub-lethal concentrations of the six antibiotics (1/2, 1/4 and 1/8 of the MIC) over 104

hours and growth and toxin A measured three times a day. The effects varied
between strain and antibiotic. The most common effect on the growth of the strains
was to increase the initial lag period by ca. 4h compared to the antibiotic-free
controls though the clindamycin resistant strain NCTC 11223, (MIC >512pg/ml)
showed no lag whatsoever in comparison to the controls when grown in this
antibiotic. The most common effect on toxin A production was in the onset of toxin
elaboration. Normally toxin began to appear in low levels in early stationary phase
before accumulating to high levels by the start of decline. In the presence of sub-MIC
antibiotics this onset appeared before that of the antibiotic-free controls. This effect
was seen with metronidazole, amoxycillin and clindamycin, rarely with vancomycin
and never with cefoxitin. Results suggest a very complex relationship between the
effects of growth and toxin production, which is strain dependent.
RT-PCR was used to analyse transcripts (toxins, groEL, tcdC, tcdC and 16S RNA)
with and without the presence of sub-MIC antibiotics. There was a major problem
with DNA contamination which was eventually solved but very little RNA was

extracted using the Qiagen kit. Throughout this work only transcripts from the 16S
RNA genes were clearly seen though the sensitivity was improved by using the RT

Sensiscript enzyme.

The protein profile of strain 630 in the presence and absence of ceftriaxone was

studied using proteomics. 2D gels, MALDI-TOF analysis and a C. difficile
MASCOT database were utilised to identify proteins from total cell extracts of strain
630. No differences were found between the protein profiles with and without
ceftriaxone but 40 spots were picked from the gels for further identification. The C.

difficile S-layer proteins were identified along with GroEL and GroES, acetyl Co-A

dehydrogenase, NADH oxidase and proteins from the electron transport system. This
work has provided essential information on successful procedures for proteomic

analysis in C. difficile and the MASCOT database will be invaluable for further
studies.
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INTRODUCTION

1.1 History and description of Clostridium difficile

Clostridium difficile is a Gram-positive, spore-forming bacillus. It forms sub-

terminal spores and its dimensions are ca. lpm by 3 pm. It is an obligate anaerobe

and is the most common cause of nosocomial antibiotic-associated diarrhoea (AAD).

It was first encountered in 1935 as a commensal in the faeces of healthy infants (Hall

& O'Toole, 1935) and received its name because in the beginning it was slow and

difficult to grow. In 1969 it was reported in a study by Hammarstrom and colleagues

to be involved in the formation of anti-colon autoantibodies in germ-free rats. Rats

monocontaminated with C. difficile developed antibodies to a colon polysaccharide

likely resulting from a break in tolerance caused by administration of the bacterium.

It emerged as a problem in the late 1970s when it became implicated as the cause of

AAD and pseudomembranous colitis (PMC) after broad-spectrum antibiotic use

(Tedesco et al., 1974). The frequent association of AAD with the antibiotic

clindamycin gave rise to the term clindamycin-associated diarrhoea. In 1978, C.

difficile was identified as the source of a cytotoxin found in the stools of patients

with PMC (Bartlett et al., 1978; Larson et al., 1978) which led to increased interest

in the organism. Since then C. difficile disease (CDD) has emerged as a major

problem in hospitals and long-term care facilities with an increase in patient

morbidity and mortality. Acquisition of C. difficile often leads to extended hospital

stays while the patient recovers, which results in increased costs on the hospital. One

estimate is that in an average sized hospital 100 cases of C. difficile infection can be
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expected each year with an extra annual cost of £400,000 and 2100 lost bed days

(Spencer 1998a). The cost of treatment per individual patient may reach four

thousand pounds (Shek et al., 2000). The length of stay and the associated costs due

to C. difficile disease in the United States was estimated at over $1.1 billion per year

by Kyne et al. (2002).

1.2 C. difficile disease

C. difficile is involved in a spectrum of disease ranging from mild, self-limiting

diarrhoea through severe diarrhoea to PMC with toxic megacolon or perforation

(Borriello, 1998).

The most common form of CDD is a mild, antibiotic-associated illness characterised

by watery diarrhoea containing mucus but no blood and the absence of systemic

symptoms. This self-limiting form of the disease generally resolves itself upon

cessation of the antibiotic regime. It is thought that 20% of mild diarrhoea associated

with antibiotics is caused by C. difficile (Kelly & LaMont, 1998).

Asymptomatic carriage of C. difficile is extremely common within hospitals and

long-term care facilities. Asymptomatic carriers and contaminated surfaces appear to

act as a reservoir for C. difficile. Epidemiological studies within hospitals indicate a

high level of carriage, symptomatic and asymptomatic, in the patient population.

McCoubrey et al. (2003) found a carriage rate of 30% within two geriatric wards and

McFarlane et al., (1989) found a similar figure of 26% within a general medical

ward.

C. difficile also causes a more serious type of AAD in the form of colitis without

pseudomembrane formation. This is characterised by abdominal pain, malaise,
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anorexia, nausea and watery diarrhoea. The patients may also present with

dehydration and a mild fever.

Pseudomembrane formation is a characteristic manifestation of full-blown C. difficile

colitis. The pseudomembranes appear as yellowish plaques, 2-10mm in diameter, and

are formed from mucin and fibrin which interlace the polymorphonuclear leukocytes

present as part of the inflammatory response (Borriello, 1990). C. difficile is the

aetiological agent of PMC with the organism being cultured in 95-100% of cases.

Fulminant colitis is the most serious of all forms of CDD and occurs in only 3% of

cases (Kelly & LaMont, 1998). Serious complications such as perforation of the

colon and death occur more often with this form of CDD than all the others. Patients

with fulminant colitis may suffer severe abdominal pain, high fever, diarrhoea, chills

and severe leukocytosis (up to 40000 white blood cells/pl) (Kelly & LaMont, 1998).

Table 1.1 below shows the incidence of C. difficile within groups of patients. This

table has been adapted from the review by Kelly and LaMont (1998).

Table 1.1 Incidence of C. difficile in different populations

Subject population C. difficile positive
Pseudomembranous colitis 95-100%

Antibiotic-associated diarrhoea 10-30%

Hospital in-patients 20%

Healthy adults 0-3%

Healthy neonates and infants 25-80%

As mentioned previously C. difficile is the aetiological agent of PMC which is a

serious form of CDD. Various studies, including one carried out in our lab, have
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shown a carriage rate of ca. 15-30% in hospital in-patients. This is unsurprising as

these patients are in contact with contaminated surfaces and both symptomatic and

asymptomatic carriers of the organism. It has been estimated that 10-30% of AAD is

caused by C. difficile. Studies on healthy adults within the population estimate a

carriage rate of 0-3% but this rises to 4.2-15.3% in one study of Japanese individuals

(Kato et al., 2001). The reasons for this are unclear but dietary factors are likely to

affect the composition of the bowel flora.

1.3 Risk factors for C. difficile disease

The main risk factors for developing C. difficile disease are: (i) use of broad-

spectrum antibiotic agents to disrupt the colonic microflora; (ii) age and immune

status of the host; (iii) presence of the host in an environment where spores are

prevalent; (iv) virulence of the infecting strain (Borriello, 1998). Other risk factors

include the presence and severity of underlying disease, anti-ulcer medications,

nasogastric tubes and the administration of multiple antibiotics (Bignardi, 1998). The

role of antibiotics in CDD will be discussed at length later in this Introduction due to

its importance as a risk factor. The prevalence of CDD in elderly patients is

interesting and it is likely that this relates to the state of their immune system

compared to healthy adults. Decreasing levels of antibodies due to increasing age

appears to be involved in this general susceptibility. These elderly patients often have

underlying disease which further affects the immune system. There is also some

evidence that they have a less protective normal flora which allows C. difficile entry

into this niche (Hopkins et al., 2002). The last risk factor, mentioned above, is due to

the existence of non-toxigenic strains which are not associated with disease and the

fact that some toxigenic strains appear to be more prevalent and possibly more



virulent than others (Wilcox & Fawley, 2000). Strains with very different levels of

toxin production have been described including VPI 10463 which is regarded as

extremely virulent in the hamster model and produces high levels of both toxins. The

three strains used in this study produce different levels of toxin A (see Chapter 3)

which would naturally affect the ability of these strains to cause disease due to the

fact that CDD is mediated by release of the toxins into the colon. There are now over

20 toxinotypes (Rupnik et al., 2003), which may reflect very different levels of

production including the loss of one or two toxins. Any difference in their ability to

cause disease is not well characterised.

The course of the disease can be summarised by Figure 1.1 adapted from Kelly and

LaMont (1998).

ANTIBIOTIC THERAPY!

u

ALTERATION OF COLONIC MICROFLORA

u

iC difficile EXPOSURE & COLONISATION

u

RELEASE OF TOXIN A & TOXIN B

u

COLONIC MUCOSAL INJURY AND INFLAMMATION

Figure 1.1 Pathogenesis of C. difficile diarrhoea and colitis.
This flow diagram shows the progression of the disease caused by toxigenic strains of C.

difficile.

This figure illustrates the most important stages of the process of setting up CDD.

Antibiotic therapy leads to the depletion of the protective healthy flora and allows
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acquisition and overgrowth of C. difficile. Once C. difficile is established the two

toxins can be released to cause mucosal injury and disease.

1.4 Gut flora and colonisation resistance

When broad-spectrum antibiotics are administered to patients their action seriously

depletes the normal gut flora. Subsequently the numbers of viable bacteria in the

colon decrease to such an extent that the factors that prevent C. difficile growth (as

yet not clearly defined) are removed (Larson & Welch, 1993). "Colonisation

resistance" is no longer apparent. If C. difficile is present it can survive this onslaught

due to its resistance, natural and acquired, to many of these antibiotics and the

survival capacity of spores. If the organism is sensitive to the antibiotic, as is the case

with amoxycillin, it can survive in the gut through the formation of spores. Once the

antibiotic levels drop the spores germinate and cause disease. C. difficile can now

proliferate, either from endogenous spores or an exogenous source. As C. difficile

causes disease when the normal flora of the colon is disrupted, antibiotics become

the most important and easily alterable risk factor. Starr et al. (1997) have shown that

by limiting the use of cefotaxime, one of the most common precipitating antibiotics,

the incidence of C. difficile disease was drastically reduced even in patients not

receiving cefotaxime. So, altering the use of cefotaxime not only removed a major

risk to the patients but also built up a form of host immunity (seen also in measles

epidemiology) which prevented the spread of C. difficile. The risk of cefotaxime

therapy (and that of its active metabolite desacetylcefotaxime) has been elegantly

shown recently through the use of a triple-stage chemostat model of the human gut

(Freeman et al., 2003). A stable mixture of C. difficile and the normal gut flora were

analysed before and after the addition of cefotaxime and its metabolite. As expected
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decreases in bacterial counts (notably bifidobacteria and bacteriodes), proliferation of

C. difficile and subsequent increases in cytotoxin levels were observed.

The normal colonic flora of healthy adults and infants has been shown by Borriello

and Barclay (1986) to be capable of preventing colonisation by C. difficile. This

phenomenon is dependent on the presence of viable organisms; faecal filtrates are

not inhibitory to C. difficile growth (Borriello & Barclay, 1986; Larson & Welch,

1993). The faecal flora of infants was shown to be inhibitory to C. difficile growth by

Yamamoto-Osaki et al. (1994) in continuous culture. Addition of a mixture of amino

acids depleted from the medium resulted in an increase in C. difficile numbers. They

suggested that depletion of amino acids from the medium (used by the normal flora)

may be responsible for the inhibition of C. difficile rather than any inhibitors

produced by the flora. There are many theories in regard to the actual mechanism by

which colonisation resistance operates. Perhaps the most accepted is that the gut flora

of the healthy colon out-competes C. difficile for nutrients, including amino acids,

and space.

The bacteria responsible for this inhibition of C. difficile colonisation have not been

fully characterised but candidates include the lactic acid bacteria Lactobacillus spp.,

Bifidobacterium spp. and the most common inhabitant of the colon, Bacteriodes spp.

(Rolfe et al., 1981; Rolfe, 2000). The importance of the lactic acid bacteria is

apparent in the flora differences between breast-fed and bottle-fed infants. Borriello

and Barclay (1986) found the faeces of breast-fed infants to be significantly more

inhibitory to C. difficile growth than the faeces of bottle-fed infants. Duffy et al.

(1999) states that feeding infants breast milk leads to the proliferation of lactic-acid

bacteria whereas feeding them formula leads to a proliferation of coliforms. Breast
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milk contains unique factors, yV-acetylglucosamine-containing oligosaccharides,

which stimulate the growth of these lactic-acid bacteria (Duffy et al., 1999). An early

study by Cooperstock et al. (1983) found that infants who were fed on formula milk

were four times more likely (62 versus 16%) to be colonised by C. difficile than

breast-fed infants. Human breast milk, in addition to its role in the proliferation of

lactic acid bacteria, contains secretory IgA (slgA) which has been shown to inhibit

toxin A binding to hamster epithelium (Dallas & Rolfe, 1998). The secretory

component found in breast milk also has an inhibitory effect on toxin A binding

(Dallas & Rolfe, 1998). The fact that breast-fed faeces is significantly more

inhibitory to C. difficile highlights the possible role of the lactic acid bacteria in

colonisation resistance. However, many in-vitro studies using the lactic-acid bacteria

have shown them to be less inhibitory than the more complex mix of bacteria found

in healthy adult faeces (Fuller, 1991).

It is extremely important that the factors and organisms contributing to colonisation

resistance be elucidated to give us a greater understanding of the disease and its

outcome. It is also important to find out which bacterial species or products have an

inhibitory effect on C. difficile to further the field of pre- and probiotics as an

alternative treatment for C. difficile diarrhoea and colitis. Probiotics are already used

to treat C. difficile disease utilising organisms such as Saccharomyces boulardii and

Lactobacillus GG with varying degrees of success. Alternatives to the treatment

antibiotics vancomycin and metronidazole are required due to the high incidence of

recurrence of symptoms (5-24%) once therapy stops (Wilcox et al., 1998).
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1.5 Toxins A and B description and mode of action

C. difficile causes damage through its two high molecular weight exotoxins which

are some of the biggest bacterial toxins known. Toxin A is an enterotoxin with a

predicted molecular weight of 308kDa and toxin B is a cytotoxin with a predicted

molecular weight of 270kDa (Dupuy & Sonenshein, 1998). Toxin A also has

cytotoxic properties but toxin B exceeds this cytotoxicity by an estimated factor of

10-1000 (100-1000 - Hundsberger et al., 1997; 10 - Riegler et al., 1995). The toxins

damage the colonic mucosa by glycosylating small GTP-binding proteins from the

Rho subfamily (Dillon et al., 1995; Just et al., 1995a; Just et al., 1995b). The

carboxy terminal domain of toxin A binds to carbohydrate moieties on the surface of

the mucosal epithelium. It is predicted that after the tight junctions are disrupted on

the damaged cell, the toxin B receptor becomes exposed leading to both toxins being

endocytosed via coated pits (Karlsson et al., 1999). They then are free to glycosylate

GTPases at Threonine 37 rendering them inactive. This leads to the depolymerisation

of actin filaments, disruption of the cytoskeleton, cell rounding and cell death (Dillon

et al., 1995; Just et al., 1995a; Just et al., 1995b). Intoxicated cells show a retraction

of cell processes and cell rounding caused by a loss of F-actin and an increase in G-

actin. The breakdown of the actin cytoskeleton and the inability of the modified Rho

proteins to regulate tight junction complexes leads to increased colonic permeability

and subsequent watery diarrhoea (Nusrat etal., 2001).

Toxin A has been shown to be a potent activator and chemoattractant for human

leukocytes (Knoop et al., 1993). In addition to its direct cytotoxic action toxin A

also affects neurons in the enteric nervous system and induces them to release

substance P (Castagliuolo et al., 1997). Recruitment of neutrophils is then thought to
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follow through substance P activation of mast cells. This recruitment leads to

increased intestinal secretion and mucosal inflammation (Wershil et al1998)

Pseudomembranes are formed by sloughed epithelial cells, leukocytes and fibrin

(Knoop etal1993). The mucosal surface underneath this pseudomembrane contains

petechial lesions and ulcerations of the mucosa consisting of epithelial necrosis and a

marked leukocyte infiltration of the lamina propria (Knoop etal., 1993).

Figure 1.2 Pseudomembrane formation
This figure shows a section of colon affected by PMC. The arrow points to the
pseudomembranous plaques which can measure up to 2cm in diameter. Taken from Sanders
at http: //radio logv. uchc. edu/code/444. htm

Another interesting property of toxin A is its role in adherence. Borriello et al.

(1988) showed poorly virulent or avirulent non-toxigenic C. difficile strains adhered

less well than highly virulent C. difficile. Another experiment from this study showed

that co-administration of toxin A with a non-toxigenic strain resulted in improved
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adherence of that strain. It is clear that toxin A affects adhesion of C. difficile directly

or mediated through the damage it causes to the mucosal epithelium.

1.6 The Pathogenicity Locus (PaLoc) or Toxigenic Element

The toxins are encoded on a chromosomal genetic unit of 19.6kb that is called the

toxigenic element (Hammond el al., 1995) or the Pathogenicity Locus (PaLoc)

(Braun el al., 1996). Figure 1.3 shows the layout of the element in diagrammatical

form. This 19.6kb section on the C. difficile genome is present only in toxigenic

strains; replaced in non-toxigenic strains by a section of 115 base pairs (Braun el al.,

1996; Cohen el al., 2000b). This element is conserved even in strains of very

different toxigenicity (Hammond el al., 1997). In addition to the toxin genes this

region contains three accessory genes (Hunusberger el al., 1997). Outside the PaLoc

there resides a few interesting sequences upstream and downstream which may be

important in pathogenicity. Braun el al. (1996) showed that the PaLoc is integrated

into one site on the chromosome in a unidirectional orientation. They also found the

borders of the PaLoc to be almost perfectly conserved in all the toxigenic strains.

This defines the PaLoc as a distinct genetic element.

Analysis of the PaLoc by Braun el al. (1996) did not identify any plasmid-, phage- or

transposon-like elements. They also found no characteristic inverted repeats which

are common at the borders of mobile genetic elements. Potential tRNA genes, which

are often used as integration sites for mobile genetic elements, were also absent.

From this it can be concluded that PaLoc by itself is not a mobile genetic element.
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Figure 1.3 The Pathogenicity Locus of C. difficile.
Figure 1.3 shows the genes present in the PaLoc. The arrows represent the direction the

genes are transcribed and included is their size in base pairs. The stem loop structures are

also shown. The stem loop between tcdA and tcdC acts as a bidirectional transcription
terminator. The alternative terminology is shown here in the order of the above figure.

txel(tcdD), toxB(icdB), txe2(tcdE), toxA(tcdA), txe3(tcdC). Adapted from Braun el al. 1996.

1.6.1 The toxin genes

The toxin genes are located within 1.4kb of one another (Hammond & Johnson,

1995). Toxin A, the enterotoxin, is 309kDa in size and is coded for by tcdA. Toxin B,

the cytotoxin, is 270kDa in size and is coded by tcdB. tcdA consists of 8133 base

pairs and tcdB of 7098 base pairs. Sequencing by von Eichel Strieber et al. (1992)

showed 48% identity between the two toxin genes and a further 15% similarity of

amino acids. It was postulated that the genes had arisen by gene duplication. This

theory is likely as the proteins also share a number of structural features. These

include a putative nucleotide binding site, a central hydrophobic region, four

conserved cysteines and a long series of repeating units at their carboxyl ends

(putative receptor) (von Eichel Strieber et al., 1992). The genes are consecutive and

transcribed in the same direction (Hammond et al., 1997).

1.6.2 The accessory genes

The accessory genes are tcdC, tcdD and tcdE and what is known about their

functions is described below. Where a definitive function is unknown putative ones

are proposed. As can be seen in Figure 1.3, tcdD and E are transcribed in the same
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direction as the two toxin genes. tcdC is transcribed in the opposite direction. Below,

the putative functions of these accessory proteins.

tcdC

The product of this gene is thought to be involved in a negative regulatory function

primarily due to the fact that when it is transcribed, the other gene transcripts of the

PaLoc are at low levels (Hundsberger et al1997). tcdC is an open reading frame of

695 base pairs (bp) and its resulting protein, TcdC, is composed of polar amino acids

which make it highly acidic. It also contains stretches of repetitive amino acids at

various lengths. After a database search to find similarities between TcdC and other

proteins, Hundsberger el al. (1997) found no match for TcdC. Spigaglia and

Mastrantonio (2002) carried out a molecular analysis on the PaLoc of 51 strains of C.

difficile to look for polymorphisms in the accessory proteins. Within the toxigenic

strains 25% contained polymorphisms in the tcdC gene. No correlation between

disease severity and variant TcdC strains was found though it is possible that changes

in this protein would affect toxin production. For example, they found 1 allele with a

nonsense mutation that reduced the TcdC protein from 232 to 61 amino acids. Lack

of a functional protein may lead to abrogated repression of the toxin genes. This may

be a partial explanation for the differences in virulence common between the strains

of C. difficile.

tcdD

The tcdD gene (552bp) encodes TcdD, a protein of ~22kDa, which was postulated to

be a positive regulator of the transcription of the toxin genes (Hundsberger et al.,

1997; Moncrief et al., 1997). It is a protein of basic nature and has a helix-turn-helix

motif. This is a typical attribute of DNA-binding bacterial response regulators
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(Moncrief et al., 1997). It also has an unusually high content of lysine residues

within its C-terminal region (Moncrief et al., 1997). Its function was further

investigated by a database search by Moncrief et al. (1997) who found 27.2%

sequence identity (41.3% similarity) with UviA, a putative positive regulator of

bacteriocin production in Clostridium perfringens. It also had 21.8% sequence

identity (41.9% similarity) with ORF-22 (open reading frame-22), a putative positive

regulator of botulinum neurotoxin. When Moncrief et al. (1997) expressed tcdD in E.

coli with the toxin genes they found that when it was expressed in trans, the

expression of toxin A increased 500-fold and toxin B increased 800-fold. This

confirmed their hypothesis that tcdD is involved in the positive regulation of toxin

production. Recent discoveries by Mani and Dupuy (2001) and Mani et al. (2002)

have shown it to be an alternative sigma factor that confers on C. difficile RNA

polymerase the ability to recognise the tcdA and tcdB promoters. Three things

suggested that TcdD was a sigma factor and not a positive regulator. The fact that it

is unable to bind to the toxin promoters; that it interacts directly with the core of

RNA polymerase and upon binding to RNA polymerase allows it to recognise the

toxin promoters. TcdD also stimulates its own synthesis and responds to

environmental stimuli. Toxin expression is affected by various environmental stimuli

including growth phase, amino acids, antibiotics and the presence of a rapidly

metabolised carbon source (see section 1.8). Karlsson et al. (2003) have also shown

tcdD and the toxins to be controlled by temperature with low levels at 22°C and

42°C and maximum levels at 37°C. Mani et al. (2001) demonstrated TcdD

production to be upregulated upon the entrance to stationary phase and repressed in
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the presence ofglucose; mirroring the effect on toxin production.

tcdE

tcdE is an open reading frame of 501 bp intergenic to the two toxin genes. It is

located 122bp downstream from the tcdB stop codon and 727bp upstream from the

start codon of tcdA (Hammond and Johnson, 1995). The putative protein encoded is

of 166 amino acids and has a predicted molecular weight of 19kDa. Predictions

suggest the protein is membrane spanning, highly hydrophobic with a hydrophobic

N-terminus and a highly charged C-terminus. Hundsberger el al. (1997) showed tcdE

to be polycistronically transcribed along with tcdD and the toxin genes suggesting an

important role for this protein in C. difficile toxin production or release. It was

thought that a role in the release of toxin was possible due to the lack of any signal

peptide on the toxins. Tan et al. (2001) tested this hypothesis and found evidence of

holin function in TcdE. Holin proteins are cytolytic proteins produced by

bacteriophages that cause lysis in the infected cell to facilitate release of the new

phage. Transformation experiments using Escherichia coli showed that when tcdE

was expressed it led to a decrease in culture turbidity which could be seen as lysis of

the cells. Electron microscope pictures of E. coli expressing tcdE clearly showed

disruption of the membrane illustrated by numerous membrane folds and a merging

of the cytosol and periplasm in places. They failed to visualise or purify TcdE and so

further studies are underway but the results achieved present a good case for the

holin function of this protein.

1.6.3 Upstream of the PaLoc

3.2kb of the upstream nucleotide sequence and 5.2kb of the downstream were

analysed in the paper by Braun et al. (1996). Upstream of the toxin B gene was cdu2,
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cdu2\ cdul and tcdD. Another ORF was discovered (cdu3) but this was not

examined any further as they only had the sequence for 238bp of the 3' end. All the

ORFs were orientated in the same direction as the tcdB gene. Downstream of the

toxin A gene, five ORFs were identified- tcdC and cddl-4. All the ORFs were

orientated in the opposite direction to tcdA apart from cddl.

Figure 1.4 shows this region in diagrammatical form.

Figure 1.4 Upstream of the PaLoc

Figure 1.4 shows the region upstream of the PaLoc including tcdD of the PaLoc. The arrows

show the direction the genes are transcribed. The gene sizes are given in base pairs. In non-

toxigenic strains there is a stem loop structure present after cdul that is likely the

transcription terminator for this gene. In toxigenic strains this is where the PaLoc integrates.

Adapted from Braun et al. 1996.

cdul is a gene of 378 base pairs and the promoter is homologous to the consensus

sequences of promoters described by Rood and Cole (1991) for Gram-positive

bacteria (Braun et al., 1996). Cdul, the product of the cdul gene, showed a high

similarity to repressor proteins described for some Gram-positive bacteria. Cdul and

three of these repressor proteins showed 50% similarity (13.1% identity) to one

another (Braun et al., 1996) with Cdul showing the most similarity to Penl, a (3-

lactamase repressor of Bacillus licheniformis. Mecl, a methicillinase repressor, and

Blal, a P-lactamase repressor, from Staphylococcus aureus, were the other two. The

proteins are especially similar in the DNA binding domain and their N-terminal

PaLoc

cdul
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regions which contain basic lysine residues. These residues may facilitate a protein-

DNA binding function. Due to the similarity of Cdul to these proteins, it is tempting

to speculate that it has a DNA binding character and is involved in some form of as

yet unexplained regulation.

cdu2 and cdu2'

cdn2 is a gene of 939 base pairs. Its promoter is also similar to that of Gram-positive

bacteria. Cdu2 has 48% similarity to NapA, a Na+/H+ antiporter of Enterococcus

hirae. NapA has 12 membrane-spanning domains and using the algorithm of Klein,

Braun et al. (1996) were able to determine that Cdu2 had 11. When they searched

cdu2\ an ORF of 192bp downstream of cdu2, they found an additional putative

membrane-spanning domain. If these two proteins can functionally link then it would

represent a functional protein of 376 amino acids similar to NapA which has 383.

When Braun et al. (1996) fused these two amino acid sequences together it increased

the relatedness between NapA and the fusion protein by 51%. Other similarities

between the proteins include the hydrophobicity and the p/. Cdu2' has no promoter

sequence and this suggests co-regulation of the two genes. All of these findings

suggest that Cdu2 and Cdu2' form a functional protein that acts as a Na -transporter

in C. difficile.
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1.6.4 Downstream of the PaLoc

Figure 1.5 represents the downstream region of the PaLoc.

PaLoc

Figure 1.5 The downstream region of the PaLoc.

Figure 1.5 shows the genes downstream of the PaLoc including tcdC. A stem loop structure

is also shown. The arrows represent the direction of transcription and the length of the genes

in base pairs is given. Adapted from Braun et al. 1996.

cddl

cddl is 243 base pairs in length. The predicted amino acid sequence of the protein

showed no similarity to any others in the database at that time.

cdd2-4

These three ORFs are situated within a few base pairs of each other. Their lengths

are 735, 759 and 903 base pairs respectively. The organisation of the genes suggests

a functional linkage between them. No promoter could be found for the three genes

but it is not unusual for promoters to be situated far from the ORF, perhaps further

upstream from the sequence determined so far. Cdd4 was found to have 56.2%

similarity (43.2% identity) to the putative permease (BcrA) ofBacillus licheniformis

bacitracin-resistance ABC transporter (Braun et al.y 1996). BcrA is part of a family

of ATP-binding proteins which have been found in a number of transport systems.

Walker A and B, two motifs thought to form a nucleotide binding pocket, are highly

conserved among these ATP-binding proteins and are also conserved in Cdd4. As
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well as BcrA, the bacitracin-resistance ABC transporter contains two hydrophobic

proteins (BcrB and C) which are presumed to form a diffusion channel. cdd2 and

cdd3 both encode hydrophobic proteins which according to the algorithm of Klein

predicted six membrane-spanning domains in each protein. The two proteins could

form 12 such domains through the membrane to form a channel like those in other

bacterial transport systems. Cdd2 has 38.9% similarity (19.7% identity) with BcrB

and Cdd3 has 34.5% similarity (13.8% identity) with BcrC. These similarities are

high for membrane-spanning domains as it is common for them to differ greatly in

their primary structures (Braun et al., 1996).

All these findings strongly suggest that cdd2-4 encode an ABC transporter in C.

difficile. ABC transporters have many different substrates and functions including the

expulsion of antibiotics and the secretion of various virulence factors.

The role of these genes up- and downstream from the PaLoc and their potential role

in virulence and pathogenicity may explain why the PaLoc is always integrated

where it is.

1.7 Transcription and regulation of the PaLoc

Hundsberger et al. (1997), using a semi-quantitative reverse transcriptase PCR,

showed that all five open reading frames within the PaLoc were transcribed. They

also found growth-phase dependence in the transcription patterns of this element.

During early exponential phase high tcdC. transcripts were present and transcripts of

the other genes were low. This situation was reversed in the late exponential and

stationary phase with low levels of tcdC mRNA and high levels of the other four

gene transcripts at this stage. This gave further credence to the thought that TcdC has

some kind of negative regulatory function.
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Hundsberger et al. (1997) and Hammond et al. (1997) both support the theory that

the toxin genes are transcribed both polycistronically and monocistronically as they

found that when the PaLoc was transcribed, a 17.5kb transcript that hybridised with

probes for tcdA, B, D and E was present. Individual transcripts which hybridised with

only one of the probes were also found. The 17.5kb transcript is thought to be

processed to individual transcripts. The processing first makes the toxin A transcript

available leaving behind an 8.1kb section which hybridises with B and D or B and E.

Further processing then yields the individual mRNAs. This can be seen in Figure 1.6.

17.5kb
D/B/E/A

A immediately processed

D or E removed first.

I
8.1 kb
D/B/E

7.4kb
B

700bp
D

lkb
E

Figure 1.6 Processing of the 17.5kb transcript.
The 17.5kb transcript is produced and the toxin A mRNA is immediately processed to leave
an 8.lkb transcript that hybridises with probes from tcdD, tcdB and tcdE. Further processing
follows with D or E being removed from the transcript. Finally the individual transcripts of
the genes are produced. Adapted from Hundsberger et al. 1997.

1.7.1 Promoters

Primer extension analysis by Hundsberger et al. (1997) suggested that in the late

exponential phase (and the stationary phase) the two toxin genes are transcribed
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using their own promoters. In the early exponential phase when high levels of tcdC

transcripts are present, the 17.5kb read-through fragment is transcribed at low levels.

Dupuy and Sonenshein (1998) agree as they found lower numbers of the large,

17.5kb fragment suggesting that it is not responsible for the majority of toxin

transcripts. Primer extension by Hammond et al. (1997) showed a transcriptional

initiation site 236bp upstream of the translational start codon for tcdD. This sequence

contained promoter sequences TATTTT and TATGTC corresponding to the -10 and

-35 regions. The sequence and the spacing compares well with a consensus

clostridial promoter proposed by Young et al. (1989). Upstream of the promoter for

the PaLoc (-40 to -60) is a region rich in AT and A stretches which are seen in many

Gram-positive promoters. Several E. coli promoters contain these stretches which

function as binding-sites for the a subunit of RNA polymerase. This region is likely

to be the promoter for the 17.5kb transcript.

Hundsberger et al. (1997) attempted to locate the promoter sequences for the genes

of the PaLoc in their 5' untranslated regions. All of the putative promoters for the

genes of the PaLoc fit well with the promoters for other clostridial genes. One of

their' characteristics is long spacing between the transcription and translation

initiation sites (Hundsberger et al., 1997). Using primer extension analysis of tcdA

and B to find their transcription initiation sites and their promoters showed that the

proposed promoter sequences match well with the actual sequences. The -35 and -10

boxes of the predicted tcdC,D and E promoters match well with the actual sequences

of the tcdA and tcdB promoters. This suggests that the proposed tcdC, D and E

promoters will be relatively accurate. The predicted promoter of tcdD has an

interesting perfect 26bp palindrome covering the -35 region. The promoters-
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predicted or deduced- contain other features like Gram-positive promoters. They

have A clusters at positions -41 to -45 and conserved nucleotides next to the -35 and

-10 boxes. All the promoters apart from ptcdC have a -35 box identical to that of

ultraviolet-inducible promoters found in the C. perfringens bacteriocin locus. This

raises questions as to how the stationary phase genes (tcdA,B,D,E) are affected by

environmental stress.

1.7.2 Transcription terminators

Von Eichel-Streiber et al. (1990), demonstrated the presence of a stem loop structure

between tcdB and tcdE that they surmised may function as a transcription terminator.

This however cannot be the case as the presence of readthrough transcripts between

the genes have been found by many. A second stem loop structure is present between

tcdA and tcdC. As there is no readthrough mRNA species between tcdA and tcdC

using tcdC or tcdA promoters, the stem loop structure between these two genes

possibly serves as a bi-directional transcription terminator (Hundsberger et al.,

1997).

In non-toxigenic strains the 19.6kb PaLoc is replaced by a region of 115bp (Braun et

al., 1996). This region displays no similarity to any sequence within the PaLoc or the

database. It does not form an ORF but it contains a stem loop of 20bp and a loop of

12 unpaired bases located 12 bases downstream of cdul. In non-toxigenic strains this

loop may function as a transcription terminator ofcdul. In toxigenic strains this stem

loop is lost which could lead to a lack of termination of cdul. This may be important

in the regulation of the PaLoc and result in a polar effect on tcdD, the alternative

sigma factor of the toxin genes and the next ORF upstream of cdul. The stem loop
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may also act as a recognition site for the integration of the PaLoc element (Braun et

al., 1996).

1.8 Environmental effects on C. difficile and the PaLoc

Various studies over the years have sought to elucidate the conditions which have an

effect on the production of the two toxins. This was done primarily to seek

understanding of the disease process and the virulence of the organism as a whole.

Many conditions have been shown to affect toxin production in C. difficile. These

include growth phase which has already been mentioned, temperature, fermentable

carbon sources, amino acids, biotin concentration and sub-inhibitory concentrations

of antibiotics.

Growth phase

The growth phase effect on toxin production has already been discussed. Toxin first

appears during late exponential and peaks in stationary phase with high levels

present throughout decline. However, a study by Karlsson et al. (1999), using

different defined and complex media, found no dramatic effect on the rate of toxin

production at different growth rates and phases. Observations from the majority of

groups disagree with these findings as toxin clearly starts to appear with the onset of

stationary phase. The relevance of this finding in vivo is unclear, as the classical

growth states exist less precisely.

Temperature

Onderdonk et al. (1979) showed that an increase in temperature from 37°C to 45°C

resulted in a 100-1000-fold increase in toxin production. No change in the viable cell

density or spore formation was seen with this increase. The stress of a temperature

increase will activate the heat stress response and if the toxin promoters are sensitive



to such a response then it is likely that toxin production is affected. The onset of an

inflammatory reaction to the administration of antibiotics, the initial factor in the

disease, may result in an increase in temperature which could result in an in-vivo

effect on toxin levels. Onderdonk et al. (1979) showed a small change in the caecal

temperature of hamsters given antibiotics, which if it occurs in humans could be

important in the progression of disease.

Oxidation-reduction potential

Onderdonk et al. (1979) changed the Eh of a continuous culture experiment from

-360mV to +100mV. This caused a 10-100-fold increase in toxin production,

measured by cytotoxicity assay. The effect occurred very quickly (4hrs) after the

increase in Eh suggesting that it was due to a change in the release of the toxins from

the cell. The Eh is important in the proton motive gradient and any changes would be

expected to affect membrane transport and permeability.

Sub-inhibitory concentrations of antibiotics

There has been little work done in this area and the studies that exist often disagree.

Onderdonk et al. (1979) added sub-inhibitory concentrations of vancomycin,

penicillin and clindamycin to their continuous culture set-up and reported that

vancomycin and penicillin, but not clindamycin increased the levels of toxin

produced. Vancomycin and penicillin at 0.1|j.g/ml caused 100-1000-fold increases in

toxin, measured by cytotoxicity assay. Clindamycin at 0.5pg/ml caused no increase

in toxin levels. This agreed with the results of Bare et al. (1992) who found no

increase in toxin production when they treated C. difficile with clindamycin. They

did not use any other antibiotics in their study. The paper by Honda et al. (1983) did

find an effect with sub-inhibitory concentrations of clindamycin. They found
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clindamycin (at lpg/ml) and cephaloridine (at 1.25jj.g/ml) to stimulate cytotoxin and

enterotoxin production. Tetracycline had no effect in this study. As well as their

undisputed effect on the protective bowel flora, antibiotics may cause an increase in

temperature in the host intestine which may in turn affect toxin production of C.

difficile. More work is needed in this area to clarify the effect of sub-inhibitory

antibiotics on C. difficile.

Studies in other bacteria have shown various effects caused by sub-inhibitory

concentrations of antibiotics. Braga et al. (2000) showed sub-MIC concentrations of

cefodizime to decrease the virulence ofE. coli by interfering with bacterial adhesion

to human epithelial cells. This was thought to occur by interfering with the physio-

chemical characteristics of the bacterial cell surface. A later study by Braga et al.

(2001) found the adhesiveness of S. aureus to be affected through the inhibition of

expression of adhesins on the cell surface. Dal Sasso et al. (2003) showed the

adhesiveness of both E. coli and S. aureus to be decreased by sub-MIC

concentrations of gemifloxacin. Levner etal. (1977) demonstrated enterotoxigenic E.

coli or Vibrio cholerae grown in the presence of the antibiotic lincomycin, an

inhibitor of protein synthesis, to produce elevated levels of heat-labile enterotoxin (E.

coli) or choleragen (V cholerae). The appearance of filamentous forms of bacteria

have often been reported (Lorian, 1993; own observations) demonstrating the

ultrastructure effects caused by sub-inhibitory concentrations of antibiotics. Coyle et

al. (2003) showed that concentrations of clindamycin and linezolid, alone and in

combination with penicillin, reduced the early release of streptococcal pyrogenic

exotoxin A: a problem in severe Streptococcus pyogenes infection. Linezolid was

also shown to decrease virulence factors in S. aureus, affecting a- and 5-haemolysin
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and in S. pyogenes, streptolysin 0 and DNase (Gemmel & Ford, 2002). Sub¬

inhibitory concentrations of f3-lactams and other cell wall antibiotics were shown by

Nichterlein et al. (1996) to reduce the production of listeriolysin in Listeria

monocytogenes in concentrations which did not affect growth and would therefore

not induce morphological changes in the bacteria. Ohlsen et al. (1998) investigated

the effects of sub-inhibitory concentrations of 31 antibiotics on the expression of the

S. aureus alpha-toxin gene (hla) and found the ^-lactams to strongly induce its

expression and clindamycin to completely inhibit its expression.

Glucose concentration

Dupuy and Sonenshein (1998) found the presence of excess glucose in culture media

to repress toxin expression and production though growth in this situation was

enhanced as expected. Other fermentable carbon sources, such as fructose, had the

same effect. Non-fermentable carbon sources, such as starch or sucrose, had no effect

on toxin production or growth. This suggested that toxin production was controlled

by catabolite repression. Karlsson et al. (1999) agreed with these results though they

found the opposite effect in a defined medium. In the defined medium, glucose-

starvation produced lower toxin levels instead of enhanced ones. This decreased the

case for catabolite repression as a regulator of toxin production. Their explanation for

this, if not catabolite repression, was that perhaps glucose starvation leads to

consumption of amino acids and the resultant shortage of amino acids signals the

induction of toxin synthesis. This suggested that starvation for, or metabolism of,

certain amino acids rather than glucose is coupled to toxin production and regulation.
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Biotin concentration

Yamakawa et al. (1996) studied the effect of biotin concentration on the production

of toxins. Biotin is a vitamin which is essential for growth in C. difficile and other

bacteria. They found that in a biotin-limited medium, bacterial growth was decreased

as expected but toxin production was greatly increased. This increase in toxin levels

was due to an increase in de-novo production of toxin rather than an increase in the

release of toxin from the cell. This was found using data gathered from sonicated cell

extracts and culture supernatant. Biotin is a prosthetic group in certain carboxylation-

catalysing enzymes so perhaps this is important in the role it plays in toxin

expression. These biotin-containing enzymes may produce metabolic intermediates

that play a role in regulation of toxin production. This effect occurred in all toxigenic

strains tested suggesting that it is a conserved phenomenon in these isolates. Biotin is

produced by the natural flora of the intestine, and the disruption of these in antibiotic

therapy may be important in setting up this effect and therefore the onset of disease.

The successful use of bacteriotherapy in some cases may be due partly to the

reinstatement of biotin in the intestine. Karlsson et al. (1999) also studied the effects

of biotin-limitation on toxin expression and achieved results that agreed with

Yamakawa et al. (1996). They postulated that this occurred because biotin is

required for most C02-fixation reactions, for example the first step of fatty acid

synthesis where acetyl-CoA is converted to malonyl-CoA by acetyl-CoA

carboxylase. In E. coli fatty acid and protein synthesis are coupled and may be co-

ordinately regulated. The toxin genes may be uncoupled from this regulation and are

therefore able to be expressed. As well as the upregulation of toxin production during

biotin-limitation, Karlsson et al. (1999) found several 22kDa proteins to be
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upregulated. Although no mention of TcdD was made, this is the size of the putative

positive regulator of toxin expression and is a possible candidate for the identity of

this protein.

Follow-up experiments by Yamakawa et al. (1998) showed that adding biotin to

biotin-limited media inhibited the enhanced toxin production originally caused by

low levels of biotin. This is important as biotin therapy may be an option in the

treatment of CDD. They also found that by adding asparagine, glutamic acid or

glutamine at a concentration of lOmM they could achieve similar toxin-inhibiting

properties as biotin. Lysine was also found to inhibit toxin production and it also

inhibited growth of the organism.

Amino acid concentrations

In the Yamakawa et al. (1998) paper mentioned before, the inhibitory effects of

asparagine, glutamic acid, glutamine and lysine were studied and found to be

inhibitory to toxin production. Karlsson et al. (1999) found that addition of nine

amino acids (cysteine, glycine, isoleucine, leucine, methionine, proline, threonine,

tryptophan and valine) downregulated toxin production. The follow-up study

(Karlsson et al., 2000) showed seven of the amino acids to exhibit moderate

suppression of toxins and proline and particularly cysteine to greatly affect toxin

production. When Ikeda et al. (1998) increased the concentrations of histadine,

methionine, valine, isoleucine, proline and leucine, toxin A and B production

increased 6.9-fold and 32-fold respectively. An increase in isoleucine concentration

produced the most marked effect. The effect of these amino acids, especially

isoleucine, leads to the possibility that products in the metabolic pathways of these
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amino acids may play a role in triggering the regulatory genes involved in toxin

production.

Bicarbonate concentration

Karlsson et al. (1999) observed that elevating the bicarbonate concentration in the

medium increased toxin levels by 10-fold. An explanation for this may be that this is

likely to affect several biosynthetic reactions including biotin-dependent

carboxylation. In some bacteria carboxylation is coupled to amino acid anabolism

which in turn may be linked to toxin expression.

In all of these areas more work is needed to elucidate the role of media as different

groups using different media produce different results. In 1992, Kamiya et al., found

a correlation between cytotoxin production and sporulation although in non-toxigenic

strains the lack of the PaLoc does not mean that they cannot sporulate. It may be that

the stresses that cause the organism to produce toxin also have an effect on

sporulation. They both occur during the stationary phase so this is the most likely

explanation. More work is needed to qualify the situations that affect the regulation

of the PaLoc genes.

1.9 Other virulence factors

S-layer proteins

C. difficile has on its outer surface a crystalline array of two glycoproteins which

make up the S-layer. They were first described by Kawata et al. (1984) who reported

the presence of two proteins of differing molecular weights. These different sized

proteins each form a lattice which superimpose on one another to form the complete
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S-layer. The inner lattice is hexagonally arranged and is thicker than the outer,

squarely arranged lattice (Cerquetti et al., 2000).

Many Gram positive and Gram negative organisms possess an S-layer and they have

many different functions. They can function as protective coats, barriers to

antibiotics and other toxic substances and be involved in adhesion. In members of the

Archaea they are often the only layer outwith the plasma membrane and are involved

in cell shape and division (Sleytr & Beveridge, 1999).

The high MW protein of the S-layer ranges in size from 42-56kDa and there is much

cross-reactivity between strains in this protein. The lower MW protein ranges in size

from 36-45kDa and is more immunogenic and unrelated between different C.

difficile strains (Cerquetti et al., 1992). The proteins are easily stripped from the cell

by different methods including urea, EDTA and guanidine hydrochloride. The

guanidine hydrochloride method is used in our laboratory to type C. difficile using

the MW of the proteins. The most common isolate found in Edinburgh and the UK

has the designation 5236 which is the sizes in MW of the proteins when they are run

on an SDS gel after extraction with guanidine hydrochloride.

Calabi et al. (2001) found the gene that encodes the S-layer proteins and discovered

that they are both derived from one ORF {sipA) which undergoes post-translation

modification to form two distinct proteins. The post-translational processing first

involves the removal of a signal peptide followed by cleavage of the protein to form

the two functional S-layer proteins. They are extremely abundant in terms of total

cell protein and must confer an important function as they are so expensive for the

cell to produce. The precursor protein SlpA contains a C-terminal highly conserved

anchoring domain to attach the protein to the cell surface (Karjalainen et al., 2001).
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The most obvious suggestion for a role for S-layer proteins was in adherence to the

gut mucosa due to the fact that they are the most abundant proteins on the surface of

the cell. Calabi et al. (2002) demonstrated the S-layer proteins binding to the surface

epithelium and subjacent lamina propria of the human and mouse digestive tract.

They also discovered that C. difficile adhered to Hep-2 cells and that this adherence

was inhibited with the addition of antibodies to the high MW protein. The use of

purified recombinant S-layer proteins led to the discovery that the binding was

mediated by the high MW protein. Potential ligands were collagen I, thrombospondin

and vitronectin but no binding was seen with collagen IV, fibronectin or laminin.

These results demonstrate that the role of the S-layer in C. difficile is in adherence of

the bacterium to the gut mucosal tissues and therefore plays an important part in the

virulence of this organism.

Flagella

Flagella are important virulence factors in many species where their role in motility,

adherence and invasion of the bacterium is an essential part of their ability to cause

disease. Delmee et al. (1990) reported that C. difficile serogroups Al-12, G and K

possess flagella on their surface. Figure 1.7 shows an electron micrograph of C.

difficile and its flagella.
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Figure 1.7 Flagella of C. difficile
This figure shows C. difficile and its flagella negatively stained with phosphotungstic acid.
Picture courtesy of IR Poxton.

Almost all cases of PMC are caused by serogroups A, C or H. Serogroup A always

possesses flagella, C never has them and H sometimes has them (Delmee et al.,

1990). The lack of flagella in other virulent serogroups seems to suggest that flagella

are not an essential virulence factor and that adherence of C. difficile to the intestinal

mucosa is not dependent on flagella. However, flagella do seem to be able to play

some part in the adhesion of C. difficile to the mucosal tissue as Tasteyre et al.

(2001) showed two flagellar proteins (FliC and FliD) and crude flagellar extracts to

bind to in-vitro mouse caecal mucus. In a non-flagellated strain the association with

the mouse cells was 10-fold lower than in the flagellated strain. Although obviously
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not essential for the virulence or adhesion of C. difficile the possession of flagella

may add to the virulence of a toxigenic C. difficile strain.

Fimbriae

Fimbriae are commonly involved in virulence as they can mediate adherence of the

organism to its environment and undergo phase variation to avoid immune

recognition. Borriello et al. (1988) investigated the presence of fimbriae in fifteen

strains of C. difficile to attempt to elucidate the "colonisation factor" of this

organism. Five out of the fifteen strains possessed fimbriae but there was no

correlation between the presence or absence of these structures and the virulence

(toxigenic status) of the isolates. It appears that fimbriae have no part in the virulence

of C. difficile.

Hydrolytic enzymes

Seddon et al. (1990) investigated the presence of tissue degradative enzymes in C.

difficile as they believed that they may contribute to the tissue damage seen in CDD.

There was no direct correlation between toxigenic status, virulence or hydrolytic

enzyme production but they found some level of hydrolytic enzyme activity in all

strains investigated with some evidence for a higher level of activity in highly

virulent strains. In vivo, these enzymes would facilitate the release of nutrients from

the cells potentially adding to the fitness of C. difficile.

Capsule

Dailey et al. (1987) demonstrated the anti-phagocytic properties of C. difficile to

polymorphonuclear leukocytes and it was suggested that the organism may possess a

capsule. Capsules are well known virulence determinants and commonly impart anti¬

phagocytic and immune evasion properties on the bacterium. Davies and Borriello
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(1990) tested 15 strains of C. difficile for the presence of a capsule. All 15 strains (9

toxigenic and 5 non-toxigenic) were shown to have one. As all 15 strains possessed a

capsule it was decided that it had no correlation with the virulence of the isolate. The

role of the capsule in disease is unclear as no non-capsulated mutants have been

discovered or made to test it.

Other toxic factors

Some strains of C. difficile also possess an ADP-ribosylating toxin termed CDT (C.

difficile toxin). This binary toxin is homologous to the iota toxin of C. perfringens

and, the C2 toxin of Clostridium botulinum types C and D and Clostridium

spriroforme toxin (Perelle et al., 1997). All these toxins contain two independent

protein chains that do not link either covalently or non-covalently. The binding

component (MW of43kDa in C. difficile CD196; Popoff et al., 1988) associates with

the cell surface and induces the internalisation of the enzymatic component

(predicted MW 98kDa; Perelle et al., 1997). The enzymatic component then

catalyses the ADP-ribosylation of actin which leads to the disorganisation of the

cytoskeleton. The gene for this component, cdtA, was cloned and sequenced by

Perelle et al. (1997) from CD 196 and showed 84.6% identity with the enzymatic

component of the C. perfringens iota toxin. The binding component of CD 196 was

also sequenced and demonstrated 84.1% identity to the binding component of the

iota toxin (Perelle et al., 1997). The CDT toxin was first described by Popoff et al.

(1988) during screening of various C. difficile isolates for ADP-ribosyltransferase

activity. The strain CD 196 was isolated from a 28-year-old woman who had

developed CDD and PMC after amoxycillin treatment (Popoff et al., 1988). Stubbs et

al. (2000) tested 170 representative strains of C. difficile from the Anaerobe

50



Reference Unit (ARU), Cardiff, to look for the presence of the binary toxin. Fifty-

nine of these strains contained the binary toxin, confirmed by immunoblotting and

ADP-ribosyltransferase assay. It was calculated that 6.4% of C. difficile strains

referred to the ARU contain the binary toxin. The role of the binary toxin in

virulence is unclear, as the majority of virulent strains do not possess it. It is

conceivable however, that this toxin could act synergistically with toxins A and B

which may further exacerbate the cellular damage common in CDD to the detriment

of the patient. Braun et al. (2000) analysed 17 equine C. difficile isolates, 41 canine

isolates and 4 feline isolates for the presence of the cdtA gene. None of the feline or

canine isolates contained CDT but 4 of the equine isolates did. They found no

association between presence of the toxin and disease severity.

Another, less characterised toxin, has been described by Justus et al. (1982). This

toxic substance altered motility and the electrical potential of the ligated rabbit

intestine. No further reports of this toxin have surfaced.

1.10 Associated antibiotics

Risks of antibiotics

The close relationship between antibiotics and CDD has been the object of many

studies over the years. The first antibiotic clearly associated with precipitating CDD

was clindamycin in the late 1970s; to such a degree that it led to the term

clindamycin-associated diarrhoea. Clindamycin is now considered such a risk factor

that it is rarely used in the hospital environment because of its association with the

disease. Antibiotics implicated most frequently with AAD include amoxycillin, co-

amoxyclav, clindamycin and the cephalosporins (especially third generation)

(Bignardi, 1998; Spencer, 1998b). These antibiotics have been shown to increase risk



of AAD by 10-70 times more than agents with narrow spectrums (Gorbach, 1999).

One early study by Aronsson el al. (1985) found that 1st and 2nd generation

cephalosporins (3rd generation cephalosporins were not yet licensed in Sweden) were

implicated in CDD 40 times more than narrow-spectrum penicillins. Nelson et al.

(1994), Golledge et al. (1989), Anand et al. (1994) and Cartmill et al. (1994) also

found the extended-spectrum cephalosporins to be the most important risk factor for

developing CDD.

The most problematic antibiotics in terms of precipitating CDD appear to greatly

affect the large numbers of anaerobes, especially Bacteroides spp., in the gut. The 3rd

generation cephalosporin ceftriaxone is largely excreted by the biliary tract and can

therefore easily alter the flora of the bowel (Spencer, 1998b). Cefotaxime, another 3rd

generation cephalosporin, and its metabolite desacetylcefotaxime act synergistically

together against Bacteroides fragilis and other Bacteroides spp., important

components of the healthy human flora (Spencer, 1998b).

In a prospective study by Starr et al. (2003) in two geriatric wards ceftriaxone was

the only specific antibiotic to increase the risk of colonisation with C. difficile.

Patients receiving other cephalosporins (not ceftriaxone) and non-cephalosporins

were also more at risk of colonisation. For the conversion of culture-positive to

toxin-positive patients receiving amoxycillin and cephalosporins (other than

ceftriaxone) were most at risk. Antibiotics considered a risk factor for the overall

conversion from culture-negative to toxin-positive were non-cephalosporins,

amoxycillin and cephalosporins other than ceftriaxone.

52



Table 1.2 Antibiotics and risk of CDD

Frequency of Association with CDD Antibiotic
Common Clindamycin

Cephalosporins - especially 3rd generation

Amoxycillin

Ampicillin
Less common Chloramphenicol

Erythromycin and other macrolides
Penicillins e.g. anti-pseudomonal and ureido-

Tetracyclines

Trimethoprim sulphamethoxazole

Quinolones
Rare Bacitracin

Parenteral aminoglycosides
Parenteral metronidazole

Parenteral vancomycin

Rifampin

Sulphonamides

Teicoplanin

This table was adapted from Mylonakis et al. (2001) and Bignardi (1998) and shows the

frequency with which different antibiotics are associated with precipitating CDD.

Ampicillin and amoxycillin are also commonly responsible for inducing CDD.

Bartlett et al. (1981) found that ampicillin, clindamycin and cephalosporins

accounted for 80% of the cases of CDD. Silva et al. (1984) found ampicillin to be the

most important risk factor with it being implicated in 41 out of 130 cases. Antibiotics

less frequently implicated in CDD are listed in Table 1.2 above. Anand et al. (1994),

de Lalla et al. (1989), Tedesco et al. (1974) and Larson et al. (1977) all agree that

anti-pseudomonal penicillins are less commonly responsible for inducing CDD.

Anand et al. (1994) found the ureidopenicillins to have a low propensity to
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predispose to CDD. They found that after the administration of 62000 doses of

ticarcillin-clavulanate, there were no reported cases of CDD. The 4-fluoroquinolones

are also rarely the causal agent of CDD despite large amounts of these agents being

used in clinical practice. There is also a suggestion that ciprofloxacin is not

bacteriocidal under anaerobic conditions which may mean that it is less disruptive to

the flora of the bowel (Smith, 1988). Three reported cases of CDD apparently caused

by ciprofloxacin were reported following episodes of salmonellosis which may have

contributed or have been the predisposing factor (Spencer, 1998b). In another

reported case the patient had received co-trimoxazole (common in inducing CDD)

five weeks previous which may have predisposed for this episode (Spencer, 1998b).

Golledge et al. (1992) investigated 213 patients receiving ciprofloxacin. Twenty-nine

were being treated with ciprofloxacin for diarrhoea and 15 developed diarrhoea while

on ciprofloxacin. None were culture positive for C. difficile.

Restrictive antibiotic policies

One cephalosporin, cefotaxime, was discovered in a study by Starr etal. (1997) to be

an easily alterable risk factor. Cessation of cefotaxime use led to a marked decrease

in the cases of CDD over and above the expected amount. It seemed that the

restricted use of this antibiotic not only reduced number of cases of CDD but also

protected patients not taking cefotaxime who would have picked up the organism

while in the affected wards. It appeared that a reduction in cases of CDD led to

reduced numbers of spores contaminating the environment which in turn protected

other patients in a "herd immunity fashion", common in measles epidemiology.

Reduction in the prescribing of third-generation cephalosporins resulted in a

significant decrease in cases of CDD from 65 C. difficile positive patients per

54



100,000 to 20 patients per 100,000 in hospitals in Western Australia (Thomas et al.,

2002). McNulty et al. (1997) reduced their cefuroxime use in an elderly care unit by

90% and the cases of CDD dropped by a half and they have had small numbers of

cases ever since. Ludlum et al. (1999) used a restrictive antibiotic policy in an

elderly medicine department within a 900-bed teaching hospital in Cambridge.

Restrictive use of injectable cephalosporins (usage down by 92%) resulted in a

halving of the cases of CDD. The increase in costs was more than offset by the

release of hospital beds previously taken up by patients with CDD.

1.11 Proteomics

The discipline of proteomics utilising 2D-gel electrophoresis has been around for

decades but it has become more accessible due to the commercial availability of

standardised equipment, precast gels and image analysis. Proteomics is used to

analyse complex biological systems and is extremely adaptable and useful due to its

global approach. Individual proteins expressed can be analysed and studied within

the context of total protein produced by the cell. This allows patterns of expression

e.g. co-ordinate expression to be studied, and any differences analysed between

environmental conditions.

A typical proteomic set-up has three stages; sample preparation, separation of

proteins (isoelectric point (IEP) and MW) and the identification of individual protein

spots using mass spectrometry or N-terminal sequencing. The key to a good 2D gel is

a complete, reproducible sample preparation. For example, if using total cell protein

complete lysis of the cells is paramount to achieving the true picture of proteins

produced. The next stage is the separation of proteins according to their IEP using

gel strips containing an immobilised pH gradient. In the past this step was associated

55



with many problems as reproducibility of the pH gradient was extremely difficult

with hand poured gels. These strips are now precast and are much more comparable

even from different batches. In the 2nd dimension the proteins are run from the pH

strip onto a SDS gel and separated according to their MW. Different environmental

conditions can be compared to one another and spots of interest can be picked from

the gel for further analysis.

Matrix-assisted laser desorption/ionization time of flight (MALDI-TOF) mass

spectrometry is the most common tool in identifying these proteins though N-

terminal sequencing is also used for proteins that cannot be identified using MALDI-

TOF. With MALDI-TOF spectrometry the proteins are trypsin digested and added to

a suitable matrix (which confers a charge and allows them to "fly") before being

processed through the machine. The peptides form a pattern of peaks that can then be

compared to patterns from other proteins in a database. A percentage probability for

the protein is given and a match may be found if this protein has been analysed

before. One problem with 2D gel electrophoresis is that some proteins, especially

hydrophobic and membrane proteins, do not separate or run well on these gels. Some

estimates suggest that as little as 10% proteins can be visualised in this way. Low

abundance and very large or very small proteins are also not seen. Even with silver

staining low abundance proteins are very difficult to visualise.

Proteomic methods are especially useful in an organism for which detailed genomic

studies are not yet available. Homology of the separated proteins with proteins from

other species allows a prediction in the absence of a homologous sequence database.
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1.12 Treatment of C. difficile diarrhoea

1.12.1 Antibiotic therapy and recurrences

The first step in the treatment of CDD is, where possible, the cessation of the

offending antibiotic and supportive therapy with electrolyte and fluid replacement.

Antiperistaltic drugs should, if possible, be stopped as they can worsen or hide the

severity of disease. In patients who require antibiotics for treatment of a specific

affliction a switch to lower risk antibiotics is preferred. This often leads to the natural

recovery of the patient. In the case of frail or elderly patients treatment is often given

immediately on emergence of symptoms to reduce the risk of complications. The two

agents used in the treatment of CDD are vancomycin, and now more commonly,

metronidazole. An oral course of either antibiotic for a period of 7-10 days is normal

for uncomplicated CDD. Both antibiotics have similar performance in the treatment

of CDD but metronidazole is the agent of choice because it's cheaper, has fewer side

effects and is not implicated in the selection of glycopeptide-resistant enterococci.

Few reports of decreased susceptibility to these therapeutic agents have been

reported (Barbut et al., 1999; Pelaez el al, 2002; Johnson el al., 2000; Brazier el al.,

2001). The majority of strains with reported decreased susceptibility to

metronidazole have been non-toxigenic and are therefore considered clinically

insignificant (Barbut et al., 1999; Johnson et al., 2000; Brazier et al., 2001). A study

by Pelaez et al. (2002) found a resistance rate of 6.3% to metronidazole taking the

breakpoint as 1 bpg/ml (there were no isolates with an MIC of 8pg/ml). A decreased

susceptibility to vancomycin (MICs between 8-16|ng/ml) was also found. No

serotyping or ribotyping was carried out on these strains to give an idea of the

clinical significance of these isolates though the clonal relatedness of the strains was
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tested using Random Amplification of Polymorphic DNA (RAPD) and there was

high levels of diversity between the isolates. This group did not investigate the toxin

status of these strains which would be obviously important in relation to human

disease. The Anaerobe Reference Laboratory in Cardiff reported in 2001 (Brazier et

al., 2001) the first UK isolate with a MIC to metronidazole of 16pg/ml. When typed

this isolate was found to belong to PCR ribotype 010, a non-toxigenic group.

Interestingly, three isolates from Paris tested by this group had similar MICs and

were also non-toxigenic PCR ribotype 010s. Another study reporting decreased

susceptibility to metronidazole in horses found 19% of equine isolates had MICs to

metronidazole of 8-32|iig/ml (Jang et al., 1997) but these strains were not made

available for confirmation suggesting they may have been falsely resistant (IR

Poxton, personal communication). Barbut et al. (1999) found six isolates of C.

difficile with MICs ranging from 8 - 32pg/ml to metronidazole though five out of

these six were of the non-toxigenic serogroup D and therefore of little clinical

importance. They found no evidence of decreased susceptibility to vancomycin.

The majority of patients respond well to treatment though there is a significant

problem with recurrence of symptoms. It is estimated that up to 20% of patients

suffer a recurrence of CDD after the cessation of the treatment antibiotic. The

administration of another course of the treatment antibiotics often exacerbates the

situation by further diminishing the bowel flora. Recurrences are thought to occur

when the faecal levels of vancomycin/metronidazole fall (through the decrease in

diarrhoea- levels are higher in liquid stools) which then allows the germination of

spores in the gut and a further episode of CDD. One UK study showed that up to

37% of patients require an additional course of antibiotics due to symptom
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recurrence (Wilcox et al., 1996). These relapses may be due to a re-emergence of the

initial C. difficile strain or the reinfection with another. A large study by Wilcox et

al. (1998) showed that 56% of clinical recurrences are due to infections with

different strains. Recurrences and re-infections are notoriously difficult to treat and

have led to the search for alternative therapies for CDD. Other antibiotics have been

examined namely bacitracin (Young et al., 1985), fusidic acid (Cronberg et al., 1984;

Wenisch et al., 1996) and teicoplanin (Wenisch et al., 1996), with or without

vancomycin or metronidazole but the trials were small and there was no significant

benefit to the patient over the established regime.

1.12.2 Alternative treatments for CDD

Alternative therapies that have been explored for the treatment of CDD and

recurrences include biotherapy in the form of probiotics or faecal enemas,

immunotherapy and the use of soluble anionic polymers. Many studies and double

blind clinical trials have focused on the use of probiotics to limit the severity and

length of symptoms.

Probiotics and biotherapy

Saccharomyces bonlardii has been extensively studied in relation to the prevention

and treatment of CDD with mixed results. An early study in hamsters showed that

administration of S. boulardii protected them against clindamycin-induced death

(Toothaker & Elmer, 1984). One early human study looking at prevention of CDD

showed that patients on antibiotics and receiving S. boulardii were less likely to

develop diarrhoea. In patients who developed CDD however, diarrhoea was not

significantly reduced (Surawicz et al., 1989). A later study by the same authors

followed 193 patients receiving (3-lactams and administered, within 72 hours of
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antibiotic therapy, S. boulardii or placebo to these patients (McFarland et al., 1995).

In the group receiving S. boulardii, AAD was significantly reduced (7.2% as

opposed to 16.6%) in the placebo group. Another study, by Lewis et al. (1998),

found no protective effect by S. botdardii in elderly patients; the patient group most

associated with CDD. In relation to the treatment of CDD one large double-blind

placebo-controlled trial by McFarland et al. (1994) using 124 patients, supplemented

the standard therapy with or without S. boulardii. Administration of S. boulardii did

not prevent recurrences of diarrhoea but patients receiving S. boulardii had fewer of

these recurrent episodes than the placebo group. However, a follow-up study by the

same group (Surawicz et al., 2000) showed a beneficial effect only in combination

with high-dose vancomycin therapy. S. boulardii has been shown to inhibit toxin A

binding to rat ileum (Pothoulakis et al., 1993). A follow-up study identified a

protease released by S. boulardii as the cause of this inhibition and it was shown to

inhibit toxins A and B in human colonic mucosa and prevented toxin A enteritis in

rats (Castagliuolo et al., 1999). This protease digests the toxin A molecule and its

brush border membrane receptor. This appears to be partly responsible for the

protective effect seen in some studies. S. boulardii-fed mice challenged with toxoid

A demonstrated a 4.4 fold increase in intestinal anti-toxin a IgA. This effect on slgA

was also seen in the study by Qamar et al. (2001) using toxin A in mice to stimulate

the immune response. This potential stimulatory effect of S. boulardii may also

contribute to its protective effect. Clearly however, the efficacy of S. boulardii to

prevent or treat CDD is still debated and the safety issues involved only complicate

this further.
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The use of S. boulardii in patients, both immunocompromised and

immunocompetent, is a cause of much debate not least because some question the

difference between S. boulardii and the invasive, virulent forms of Saccharomyces

cerevisiae. McCullogh et al. (1998) were unable to distinguish between the strains

genetically and found S. boulardii to be an asporogenous strain ofS. cerevisiae. Two

S. boidardii strains were tested in CD-I and DBA/2N mouse models of systemic

disease and showed intermediate virulence compared with virulent and avirulent

strains ofS. cerevisiae. Several reports of fungaemia reported in patients receiving S.

botdardii further highlights the concerns of using this organism as a biotherapeutic

agent.

Other probiotic organisms have been evaluated for the treatment or prevention of

CDD including various Lactobacillus spp., Bifidobacterium bifidum and

Enterococcus faecium. Many of these studies have failed to produce a statistically

significant difference between administration of the probiotic or placebo and many of

the promising studies were in very small groups (Alaverez-Olmos & Oberhelman,

2001).

An interesting study by Sambol et al. (2002) demonstrated that hamsters colonised

with non-toxigenic isolates of C. difficile were protected from infection with

toxigenic, disease-producing isolates. The problem of using this type of therapy will

always be the difficulty in establishing the non-toxigenic strains in sufficient

numbers to confer protection.

The administration of yoghurt or faecal enemas has been utilised to facilitate the

recovery of patients with CDD. Bhaskarabhatla et al. (2001) reported the use of

yoghurt containing L. acidophilus administered alongside antibiotics to reduce the



incidence of CDD with successful results. Patients ingesting yoghurt had

significantly fewer cases of CDD compared to the control group. Bowden et al.

(1981) used a faecal transplant from a healthy donor to treat 16 patients with PMC

with no ill effects and good recovery. Persky et al reported in 2000 a successful

treatment of CDD of lavage followed by administration of a donated stool to all

segments of the colon. Synthetic faecal enemas, which are more acceptable to the

patient, have been used with some success. Tvede and Rask-Madsen (1989) used a

mixture of 10 faecal organisms and administered them after vancomycin therapy

which led to a rapid loss of C. difficile and recovery of symptoms. Enemas are,

however, very difficult and unpleasant to administer and receive and this

undoubtedly reduces the likelihood of them being commonly used and accepted in

the hospital environment.

Immunoglobulin and others

Animal studies have indicated that antibodies to the C. difficile toxins have a

protective role in toxin neutralisation. In a study by Warny et al. (1994) the faecal

IgA antitoxin A levels were significantly higher in patients who had had one episode

of CDAD than in patients who had suffered repeated episodes whose titres were

similar to the control group. Eight of the twenty-five non-immunocompromised

patients who had CDAD for more than two weeks had faecal IgG levels significantly

lower than in patients who had had CDAD for shorter periods. Accordingly, serum

IgG and slgA levels were lower in patients presenting with diarrhoea for more than

two weeks or in those who suffered from relapses. Individuals who develop an

efficient antibody response may be more likely to become asymptomatic carriers and

the failure to produce this protective response appears to predispose to further
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episodes of CDAD (Kyne et al., 2000; Kyne et al., 2001). Serum and mucosal

antibodies specific to either or both of the C. difficile toxins are found in

approximately two thirds of the healthy adult population, but the neutralising activity

of the antibodies declines with an increasing age. This decline in activity could partly

explain the higher incidence of CDD in elderly patients and the differences in

antibody responses between individuals could account for the difference in severity

of C. difficile disease including asymptomatic carriers. The correlation between

higher antibody titres and self-limiting disease and production of neutralising

antibodies coincides with the resolution of symptoms. High antibody responses in

asymptomatic carriers indicate that the humoral immune response may confer

protection and that a lower titre predisposes to severe disease (Kelly, 1996).

The apparent importance of antibody in CDD has led to number of small-scale

studies looking at passive immunisation in addition to the standard treatment for

CDD. Animal studies implied that the presence of toxin A specific antibodies confers

protection from disease (Kim et al., 1987; Libby et al., 1982; Corthier et al., 1991).

Clindamycin-treated C. difficile-exposed hamsters were protected prophylactically

with bovine colostral immunoglobulin in a study by Lyerly et al. (1991). Oral

administration of this preparation also resulted in neutralising antitoxin activity in

human faeces. Salcedo et al. (1997) reported the successful IV immunoglobulin

treatment of two patients with severe PMC who were unresponsive to antibiotics.

Four patients with recurrent CDAD were successfully treated with IV

immunoglobulin which resulted in the recovery of the patients and no further

episodes of CDD (Beales, 2002). Six children with chronic relapsing C. difficile

colitis were found to have lower levels of anti-toxin A IgG than in healthy children
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and adults (Leung et ah, 1991). Five of these children were administered IV IgG

resulting in clinical resolution of symptoms. Salcedo et al. (1997) reported that many

commercial immunoglobulin preparations contain significant levels of anti-C.

difficile antibodies leading to the possibility of these being administered in cases of

recurrent or severe CDD. The few success cases reported in the literature need to be

expanded for the role of immunoglobulin to be elucidated but it may well be an

treatment option in cases of non-respondance to the conventional treatment.

A formalin-inactivated C. difficile vaccine was investigated in hamsters (Torres et

al., 1995). Results suggested that optimal protection from death and diarrhoea caused

by C. difficile was achieved with parenteral and mucosal administration of the

vaccine. The safety and immunogenicity of a C. difficile toxin A and B vaccine was

investigated by Kotloff et al. (2001). The vaccine was shown to be immunogenic

with the best responses arising from the toxoids conjugated to alum rather than the

response generated from soluble toxoids. The vaccine was well tolerated by the

healthy volunteers with side effects mild and occasional. The vaccine is being further

developed for prophylactic use. Ward et al. (1999a) investigated the immunogenicity

of two toxin A fusion proteins in mice. Parts of the toxin A molecule were bound to

an N-terminal polyhistidine tag or to the non-toxic binding domain of tetanus toxin.

Significant levels of serum anti-toxin A antibodies were produced and were further

increased and mucosal antibodies seen with the addition of a mucosal adjuvant in the

form of E. coli heat-labile toxin (LT). Coadministration of toxin A-tetanus vaccine

with a reduced toxicity LT adjuvant generated significant serum and mucosal

antibodies with neutralising activity. Ward et al. (1999b) also investigated an

attenuated (aromatic mutant) Salmonella enterica serovar Typhimurium vaccine
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which expressed a toxin A non-toxic domain. Anti-toxin A serum and mucosal

antibodies were increased and the serum from immunised mice was found to

neutralise toxin A cytotoxicity.

The use of a soluble anionic polymer (GT160-246) was developed and tested for

neutralisation properties against toxins A and B (Kurtz et al., 2001). The results were

very promising with protection of C. difficile-infected hamsters but during a phase 2

clinical trial the research was abandoned (personal communication, I.R. Poxton).

1.13 Typing of C. difficile

Over the years many methods have been used to distinguish between C. difficile

strains. Before the advent or availability of genomic techniques typing schemes were

based on phenotypic characteristics. Resistance patterns (Burdon et al., 1982),

combined use of plasmid analysis, immunoelectrophoresis of extracellular antigens

and antibiograms (Wust et al., 1982) and bacteriocin and bacteriophage analysis (Sell

et al., 1983) were some of the early attempts to distinguish between strains. Other

methods included immunochemical analysis of EDTA extracts (Poxton et al., 1984)

and PAGE separation of [35S]methionine incorporated cellular proteins (Tabaqchali

et al., 1984). The realisation of serotyping by Delmee et al. (1985) set the gold

standard for typing of C. difficile over the next few years with its eventual ability to

distinguish between 19 serogroups. A successful method developed in the

Department of Medical Microbiology, Edinburgh University, involves analysing the

surface layer proteins of C. difficile and is quick and extremely reproducible. The S-

layer proteins are stripped from the cell by guanidine hydrochloride and separated on

an SDS-polyacrylamide gel. The MW of the proteins are used to distinguish between

types. The UK endemic isolate possesses S-layer proteins of MW 52kDa and 36kDa
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and is given the designation 5236 (McCoubrey et al., 2001). This typing system

correlates well to PCR ribotyping (McCoubrey et al., 2002).

Molecular methods based on the genome of the isolate are generally regarded as

superior to phenotypic typing methods as they are not subject to change from growth

medium or phase variation (not applicable in S-typing as S-layer proteins are stable).

Restriction endonuclease analysis (REA) uses restriction enzymes to cut the entire

genome into fragments which are then separated on a gel to produce a fingerprint.

This method is highly discriminatory and reproducible but it is also extremely

labour-intensive and technically demanding. Restriction fragment length

polymorphism (RFLP) is another genomic method that initially starts with restriction

enzyme digestion. The fragments are separated on a gel, southern blotted and

hybridised with specific probes to analyse polymorphisms of the restriction sites.

This method is less labour- and time-intensive but it is also less discriminatory

(Brazier, 2001). Pulsed field gel electrophoresis (PFGE) is considered by many to the

most optimum typing method for C. difficile. Chromosomal digests are prepared with

an infrequent cutting enzyme such as Smal, Kspl, SacW or Nnd which produce 10-20

fragments which represents the majority of the genome (Cohen et al., 2000a). The

technique is very sensitive but there are some important drawbacks to using this

typing method. The major drawback to this technique is the problem with DNA

degradation which renders many isolates untypeable. The untypeable strains were

proven to be of PCR ribotype 001/serogroup G, the endemic UK isolate (Fawley &

Wilcox, 2002). The technique is also cumbersome (with the need for agarose plugs

etc.), time-consuming and expensive (especially for the equipment). So although this
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method is extremely discriminatory and reproducible the time and cost constraints

mean that it is used predominantly in typing studies.

The remaining methods utilise PCR to distinguish between isolates. Arbitrarily

primed PCR (AP-PCR) and random amplified PCR (RAPD) both allow the detection

of polymorphisms using primers with no known homology to the target genome. AP-

PCR uses a single oligonucleotide primer and RAPD usually uses two short (ca. 10

nucleotides) primers (Brazier, 2001). AP-PCR correlates well with other methods, is

rapid, easy and reproducible. It is also cost-effective but there are some drawbacks.

The PCR reaction is extremely sensitive to changes in reagents, machines or

conditions, which makes it very difficult to compare results between different

laboratories (Brazier, 2001). RAPD is very cost effective, easy, quick and

reproducible and is commonly used because of this. PCR ribotyping uses specific

primers to the 16S-23S spacer region in C. difficile. This region is highly

heterogenous in its sequence and in the number of copies the cell carries. The PCR is

very stable and is not dependent on the amount of material present. This method is

routinely used in the Anaerobe Reference Unit (ARU) in Cardiff and is easy,

reproducible and cost-effective (Brazier, 2001). This method correlates well to other

typing schemes and is considered the best method for the routine typing of C.

difficile. A typing scheme developed by Rupnik et al. (1998) distinguishes between

toxigenic C. difficile by the polymorphisms within the PaLoc. To date 20 toxinotypes

have been found and it is a relatively simple and effective technique. The method

correlates well to serotyping, PFGE and excellent correlation to PCR ribotyping

(Rupnik et al., 2001).
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There remains difficulties in the typing of C. difficile as there is no unified approach

to typing nor is there considerable consensus between laboratories.
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AIMS

> To study the growth of C. difficile with respect to viable, total and spore counts

and their relationship to OD6oo with the view to using OD as a growth phase

predictor.

> To investigate the relationship of growth phase and toxin production using a

semi-quantitative toxin A ELISA.

> To study the MICs of six different antibiotics in randomly chosen clinical isolates

and to utilise the available patient and strain data to look for resistance trends.

> To use sub-inhibitory concentrations of six different antibiotics in modified

growth curves to investigate the effect on growth and toxin A production in three

C. difficile isolates.

> To analyse mRNA transcripts (tcdA, tcdB, tcdC, tcdD, groEL and 16S RNA) in

sub-MIC and control growth curves to see if they mirror the effect seen in toxin

production.

> To develop a protocol for the proteomic study of C. difficile incorporating sample

preparation, 2D analysis, MALDI-TOF analysis of peptides and the utilisation of

a new C. difficile MASCOT database. To use this validated protocol to study the

proteomic profile of C. difficile 630 in the presence and absence of the third

generation cephalosporin ceftriaxone.
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CHAPTER 2 MATERIALS AND METHODS

2.1 Growth curves

2.1.1 Growth curves set-up

The growth curves were performed in Anaerobic Investigation Medium (AIM) over a

period of five days. Preliminary work had shown that overnight cultures (ca. 18 hrs)

yielded good growth with few spores and would be a suitable inoculum when

diluted. To pinpoint the onset of stationary phase readings were taken every four

hours for 32 hours. Once this was established the important time points could be

determined and the sampling times modified.

2.1.2 C. difficile strains

Three strains of C. difficile were chosen for this work. The reference strain NCTC

11223 (National Centre for Type Cultures) was chosen as it is commonly used in

research and because it is easily available. The genome of C. difficile 630 has

recently been sequenced and so this strain was a natural choice. During a recent

epidemiological study of geriatric patients in the Royal Victoria Hospital

(Edinburgh), an endemic strain emerged accounting for 78% of all C. difficile

collected (McCoubrey, 2002). The number given to this strain was 338a.

Approximately 30pl (a standard loopfiil) was added to 3ml of pre-reduced AIM from

the stock culture in cooked meat broth (CMB; see Appendix 1 for recipes) and

incubated overnight at 37°C in the anaerobic cabinet. This yielded approximately 108

bacteria/ml. Purity of the cultures was checked by Gram stain and retrospectively

checked by incubation anaerobically and aerobically for 48 hours on Columbia blood

agar. The total bacteria count was calculated using a 0.1mm Thoma counting

chamber. Once the number of cells in the starter culture had been deduced the culture
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was diluted to give approximately 5 X 104 cells/ml. Adding 1ml of this to the 99ml

of AIM gave an inoculum of approximately 500 cells/ml. Later experiments used a

larger inoculation to ensure minimal loss of cells during transfer.

2.1.3 Viable counts

Viable counts were carried out using the Miles and Misra technique. Samples were

diluted ten-fold as necessary and 5 X 20pl drops were plated onto pre-reduced

Columbia blood agar. These were incubated anaerobically for 48 hours.

2.1.4 Total counts

Total counts were carried out using a 0.1mm Thoma counting chamber. They were

either counted immediately or fixed in 0.2% formaldehyde for later.

2.1.5 Spore counts

The samples for the spore counts were from the same dilution set as was used for the

viable counts. The samples were placed in an 80°C waterbath for 20 minutes to kill

off any vegetative cells. Five drops of 20pl were added to a Columbia blood agar

plate and incubated for five days anaerobically before being counted.

2.1.6 Optical density (600nm)

Optical density was measured using 1ml of sample at 600nm against a media blank.

2.1.7 Toxin testing with the Techlab™ C. difficile toxin A kit

The 1ml sample used to measure the OD was spun down at 13000g for two minutes

to remove the bacteria. This was frozen at -20°C until required. The supernatants

collected over the week were thawed and lOOpl diluted 1 in 2 in the buffer provided.

A volume of 100p.l of this used in the assay according to the manufacturers

instructions. To allow for any degradation of toxin over time in the freezer, the
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samples were assayed two weeks after the experiment had finished. This ensured that

this effect never became a major factor. As with all ELlSAs one can only truly

compare the results within one plate so each experiment was carried out on one

ELISA plate.

2.2 Minimum inhibitory concentrations (MICs)
(Using the National Committee for Clinical Laboratory Standards (1997). Methods
for antimicrobial susceptibility testing of anaerobic bacteria.)

MICs were carried out using the agar dilution protocol in the NCCLS guidelines for

Antimicrobial Susceptibility Testing of Anaerobes (NCCLS 1997). The isolates were

sub-cultured from spores in cooked meat broth into pre-reduced (80% N2, 10% H2

and 10% CO2 at 37°C) thioglycollate medium (Sigma T-9032) enriched with 5pg/ml

haemin, lpg/ml vitamin K( and lmg/ml NaHCCL and incubated overnight

anaerobically at 37°C. This yielded approximately 1 x 108 bacteria/ml. Purity of the

cultures was checked by Gram stain and retrospectively checked by incubation

anaerobically and aerobically for 48 hours on Columbia blood agar (Oxoid CM331

with 5% horse blood). The cultures (l-2pl) were spotted onto Brucella Agar (Oxoid

CM169) supplemented with 5% defibrinated sheep blood, 5pg/ml haemin and

1 pg/ml vitamin Kt using a multi-point inoculator.

The concentrations used in the study were vancomycin (Sigma V2002, 8-

0.125pg/ml), metronidazole (Sigma Ml 547, 8-0.125pg/ml), amoxycillin (Sigma

A8523, 64-lpg/ml), clindamycin (Sigma C5269, 128-2p.g/ml), cefoxitin (Sigma

C4786, 256-8|u.g/ml) and ceftriaxone (Sigma C5793, 256-8p.g/ml). For each plate

used, controls were added and as an additional control 3 or 4 strains which had
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already been tested. In total 1/3 of the strains in the study were tested two or three

times.

MIC50 and MIC90 were calculated by pasting the MICs for all the strains into an

Excel spreadsheet and sorted into ascending order using the sort function. The MIC50

was taken as the MIC of the strain that was halfway (50%) between the lowest and

highest value. Similarly the MIC90 was taken as the MIC that would inhibit 90% of

the strains tested.

2.3 S-layer typing

2.3.1 Growth of C. difficile for S-layer extraction

Starter cultures of C. difficile were set-up using 1ml of pre-reduced AIM. A loopful

(ca. 30(0.1) from a CMB stock culture was added to the media and incubated

anaerobically overnight at 37°C. The following day purity was checked by wet and

Gram film; and retrospectively by plating anaerobically and aerobically on Columbia

blood agar. This starter culture was then used to inoculate 4ml of pre-reduced

Proteose Peptone Yeast medium (PPY) which was incubated overnight at 37°C.

2.3.2 Guanidine hydrochloride extraction of S-layer proteins

The purity of the cultures was checked as before and the starter culture plates

checked for classic C. difficile colony morphology and smell. The cultures were

centrifuged at 3000rpm for 20 minutes and the pellets resuspended in 4ml of PBS.

This was centrifuged for 20 minutes at 3000rpm and the pellets again resuspended in

4ml PBS. The PBS wash was repeated once more and the pellet well drained. The

pellet was resuspended in 0.3ml of 5M guanidine hydrochloride and transferred to an

eppendorf and shaken at room temperature for 2 hours. This was microcentrifuged
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for 2 minutes at 13000rpm and the supernatant collected. The microcentrifugation

was repeated and the supernatant transferred to a clean eppendorf and stored at -

20°C.

2.3.3 Visualisation of extracted S-layer proteins (SDS-PAGE)

The S-layer extracted proteins were dialysed overnight against water to remove any

excess salt in the dialysis membrane (MW cut-off 10000 kDa). The S-layer protein

extracts (ca. lmg/ml) were added to an equal volume of double strength sample

buffer and the proteins denatured in a 100°C boiling bath for 3 minutes. Forty pi of

each mixture was run on a 10% gel using buffers described by Laemmli (1970), and

the technique described by Hancock and Poxton (1988). A MW marker (Invitrogen

Mark 12) was added according to the manufacturers instructions. See Appendix i for

all buffers used.

2.3.4 Coomassie staining of the S-layer gels

The SDS gels were stained using Coomassie blue as described by Hancock and

Poxton (1988). Details of the stains are given in Appendix 1.

2.4 Chelex DNA extraction

The DNA from the clindamycin-resistant strains was extracted using the procedure

described by de Lamballarie et al. (1992). A starter culture of C. difficile was plated

onto pre-reduced Fastidious Anaerobe Agar (FAA) and incubated anaerobically

overnight. Ten big colonies from the FAA plates were emulsified into lOOgl of a 5%

chelex suspension. This was boiled for 10 minutes and then spun down for 2 minutes

at 13000rpm. The supernatant was removed and frozen (-20°C) in small aliquots for

future use.
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2.5 Polymerase Chain Reaction (PCR) for ermB

The primers and conditions were taken from the paper by Farrow et al. (2001).

Primers 6604 and 4120 have the following sequence;

6604 5'-TAA GAG TGT GTT GAT AGT GC-3'

4120 5'-TCA ATA GAC GTT ACC TGT TTA C-3'

The reaction mix was as follows;

Buffer (Roche)

dNTPs (1 25mM)

Primers (1 Opmol)

Taq (Invitrogen, Cat no. 18038-026)

Template DNA

Pyogen-free H20

The temperatures for the PCR were;

1 cycle 95°C 3 min

1 cycle 70°C 1 min

30 cycles 95°C 1 min

30 cycles 50°C 2 min
30 cycles 72°C 3 min
1 cycle 50°C 2 min
1 cycle 72°C 5min

HOLD AT 4°C

2.6 Visualisation of PCR products

Ten p.1 of the PCR product containing 10% gel loading buffer (Sigma G-2526) was

run on a 0.8% agarose (Sigma A-9539) gel containing lpl of ethidium bromide. The

buffer used was TAE (Appendix 1).

lOpl

4pl of stock

2|al of working solution

0.5pl (2.5 units)

lOjil

to lOOpl
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2.7 Sub-Inhibitory Growth Curves

2.7.1 Set-up

Three strains were used in this work. The reference strain 11223, the sequenced

strain 630 and a locally endemic strain termed 338a. Strains were grown from spores

stored in cooked meat broth: Anaerobic Investigation Medium (AIM) with cooked

meat particles (Brown et al., 1996). A loopful (ca.30|j.l) was added to 3ml of pre-

reduced AIM and incubated anaerobically overnight (80% H2, 10% N2, 10% C02 at

37°C). Appropriate purity checks were carried out on the starter cultures before use

and they were then used to inoculate 30ml of AIM containing 1/2, 1/4 and 1/8 of the

MIC to the particular antibiotic. The inoculum was 106 bacteria/ml and 0.3ml of a

108/ml starter culture (AIM overnight) was diluted 1/100 when added to the medium.

The MICs garnered from Chapter 4 were used as a guideline. Antibiotics were

prepared in sterile distilled water as 100X solutions with reference to the highest

concentration required. Doubling dilutions were made in sterile distilled water and

one volume of antibiotic was added to 100 volumes of broth.

2.7.2 Sampling

Each experiment was sampled 3 times a day for five days. In case of errors on the

day two concentrations up and down from the desired concentrations were added and

then discarded retrospectively (after 24-48 hours). A sample of 1ml was removed at

each time point and the OD read at 600nm and the supernatant (13000g for 2

minutes) stored at -20°C for later toxin analysis.
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2.7.3 Toxin analysis

Toxin A levels were assayed by ELISA with a ToxA kit (Techlab, Virginia, USA)

according to the manufacturer's instructions. Prior to assay, 1 OOfj.1 of each sample

was diluted in lOOpl of the buffer provided, and lOOpl of this was used in the assay.

The plates were read at a dual wavelength of 450/620nm. The maximum OD value of

the assay was 3.0 up to which OD was linear in respect to control toxin

concentration. No further dilutions of supernates were made. Results (OD values)

were plotted against time to evaluate when toxin was being elaborated and to show

differences between antibiotic-free and antibiotic-containing cultures.

2.8 Effects of antibiotics on the secreted protein profile of

C. difficile

A starter culture of strains 11223, 338a and 630 were set-up in 3ml of pre-reduced

defined medium (DM; Karasawa et a/., 1995; see Appendix 1). This was incubated

anaerobically overnight at 37°C and used to inoculate 30ml of DM with or without

antibiotics. The same set-up used in the sub-MIC growth was followed here. This

was to keep things as much the same as possible. Two important points in the growth

curve were decided upon; late log and early stationary phase. Two ODs representing

these points were used to determine when the experiment could be sampled. An

OD6oo of 0.6 was found through preliminary work to represent late log whereas an

absorbance of 0.75 was used to represent early stationary phase. A volume of 5ml

was removed at each point and the bacteria removed through centrifugation. The

sample was then dialysed against distilled water (MW cut-off of 10,000Da) for 2

days to remove all the components of the medium. This was an important step as the

medium not only contained salts but amino acids which would react in the protein
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assay. Removing the amino acids would allow the accurate concentration of protein

produced by the C. difficile to be deduced. After 2 days a protein assay was

performed and the sample ffeeze-dried to concentrate the protein. From the assay

values one could work out the amount of protein required to run on a SDS-PAGE.

This sample was visualised on a 10% gel and stained with silver. Differences

between antibiotic-free controls and antibiotic-containing experiments could be

made.

2.9 RNA extractions
(Rneasy handbook, Qiagen (2001))

2.9.1 Preparation for RNA extractions
(Protect Bacteria Reagent Handbook, Qiagen (2001))

Samples for extraction were prepared using the Protect Bacteria reagent (Cat. no.

76506) from Qiagen. This allows the pellet to be stored at -70°C for up to 1 month

prior to the extraction step. One part of the Protect bacteria reagent was added to 2

parts of the culture. This was centrifuged at lOOOOrpm for 2 minutes to remove the

supernatant. The pellet could then be stored at -70°C until required (for up to 1

month).

2.9.2 RNeasy extraction

The RNeasy mini kit (Cat. no. 74104) was used. The protocol in the RNeasy

handbook for RNA extraction from bacteria was followed. The pellets were thawed

on ice and RNase-free reagents and equipment were used at all times. The procedure

was carried out in an RNA clean room.
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2.9.3 DNA digestion

The RNeasy handbook states that DNA is effectively removed by the column with no

need for a DNA removal step. If required a DNA digestion can be carried out on the

column as part of the RNA extraction process (RNase-ffee DNase Set (Cat. no.

79254)). This proved inadequate and an alternative method was provided by Qiagen.

The volume of RNA eluted from the column (30-50pl) was made up to 80pl with

RNase-ffee water. To this 1 Ojul of buffer RD1 was added along with 2pil of the

DNase enzyme. This was incubated for 20 minutes at room temperature and then

lOp.1 of 140mM EDTA was added to inactivate the DNase. Incubation in a 65°C

waterbath for 5 minutes removed the EDTA and the sample was now ready for use.

The RNA was quantified using spectrophotometry at 260nm.

2.9.4 Reverse Transcriptase PCR

The Qiagen Omniscript RT-PCR kit was used (Cat. no. 205111). The protocol found

in the RNeasy Elandbook was followed. The Qiagen Sensiscript (Cat. no. 205211)

was also used; again according to the handbook instructions.

2.10 PCR for tcdA, tcdB and 16S RNA

Five microlitres of the cDNA generated from the RT reaction were used in the PCR.

The primers for toxins A and B were taken from the papers by Tang et al. (1994) and

Gumerlock et al. (1993). The primers for the 16S RNA region were designed using

the 16S sequence of strain 630.

toxin A 602bp

YT28 5'GCATGATAAGGC AAC ACAGTGG3'

YT29 5' GAG TAA GTT CCT CCT GCT CCA TCA A 3'
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toxin B 399bp

YT18

YT17

5' GTG TAA CCT ACT TTC ATA ACA CCA G 3'

5' GGT GGA GCT TCA ATT GGA GAG 3'

16SRNA 250bp

16S for 5' GGC TAG CGT TAT CCG GAT TTA CTG 3'

16S rev 5' ATC TAA TCC TGT TTG CTC CCC ACG 3'

The reaction mix was as follows;

Buffer (Invitrogen)

dNTPs (1.25mM)

Primers (1 Opmol)

MgCh (Invitrogen)

Taq (Invitrogen, Cat no. 18038-026)

Template DNA

Pyogen-free H20

The temperatures for the PCR were;

1 cycle

40 cycles
40 cycles

40 cycles

1 cycle

94°C

94°C

55°C

72°C

72°C

4 min

45 sec

30 sec

45 sec

10 min

HOLD AT 4°C.

5ptl

2pil of stock

1 p.1 of working solution

3p.l

0.2p.l (1 unit)

5pil

to 50pil

2.11 PCR for tcdC, tcdD and groEL

The primers for tcdC and tcdD were taken from the paper by Braun et al. (1996). The

primers for groEL were taken from the paper by Hennequin et al. (2001).
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tcdC 345bp

tcdCfor 5' GCA CCT CAT CAC CAT CTT CAA 3'

tcdC rev 5' TGA AGA CCA TGA GGA GGT CAT 3'

IcdD 300bp

tcdD for 5' AAA AGC GAT GCT ATT ATA GTC AAA 3'

tcdD rev 5' CCT TAT TAA CAG CTT GTC TAG AT 3'

groEL 350bp

groEL for 5' GCT GAA GAT GTA GAA GGT GAA G 3'

groEL rev 5' TAC AAC AGC TAC TCC TCC AGC 3'

The reaction mix from section 2.10 was used and the temperature cycles are shown

as follows;

1 cycle 94°C 4 min

40 cycles 94°C 45 sec

40 cycles 53°C 30 sec

40 cycles 72°C 45 sec

1 cycle 72°C 10 min

HOLD AT 4°C.

This is the same as section 2.10 except for the annealing temperature. The melting

point of the primers for groEL was lower than the other primer sets so it was

necessary to drop this temperature. This set of PCR conditions also worked for the

other 5 primer sets and so from this point on these temperatures were used for all

cDNA PCRs.
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2.12 Visualisation of PCR products

Ten p.1 of the PCR product containing 10% gel loading buffer (Sigma G-2526) was

run on a 2% agarose (Sigma A-9539) gel containing lpl of ethidium bromide. TAE

buffer was used.

2.13 2D gel electrophoresis

2.13.1 Sample Preparation

Strain 630 was grown from spores overnight in AIM to produce a starter culture.

Purity was checked as before. This starter culture was used to inoculate the

appropriate volume of AIM to produce the cells for the 2D work. This was then

grown overnight under anaerobic conditions as before. For the experiments

containing sub-MIC antibiotics the AIM contained the concentration of the antibiotic

correlating to 1/2, 1/4 and 1/8 the MIC. To ensure the correct concentrations were

achieved, 2 concentrations up and down from the predicted MIC were included and

extras discarded retrospectively. The overnight culture was centrifuged for 2 minutes

at 13000g using a microcentrifuge. The cells were kept on ice at all times and

washed three times in ice-cold PBS to remove media components and salts. To each

pellet 200|li1 of lysis buffer (see Appendix 1) was added and the sample vortexed for

30 minutes at room temperature. Three rounds of 10-second tip sonication followed

(50% output) to ensure complete lysis of the cells. The sample was then processed

through the Amersham Clean-up Kit (Amersham Biosciences 80-6484-51). This

precipitates the proteins and removes the salts. The resulting pellet was then

rehydrated directly into rehydration buffer (see Appendix 1) The sample was then

ready for addition onto the appropriate IPG strip. If protein quantification was

required the pellet resulting from the clean-up kit could be rehydrated into lysis
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buffer and samples removed (typically 2 X lOpl) for analysis. Upon quantification

the appropriate volume of protein in lysis buffer could then be added to rehydration

buffer (+ 10pl of the appropriate IPG buffer and lOpl of 280mg/ml dithiothreitol

(DTT)) and subsequently used in the 2D gel experiment.

2.13.2 1st Dimension

The samples could be treated in two ways for the separation of the proteins in the 1st

dimension. They could be added straight to the coffin and placed directly into the

IPGPhor for ca. 24h. This included an overnight rehydration of the strip before the

voltage was stepped up for the actual separation. The alternative method was to

apply the sample and rehydrate the IPG strip overnight in a reswelling tray (no

temperature control or voltage). The strip was then transferred to a coffin the next

morning and run throughout the day. Both methods were used throughout this work.

The IPG strips used in this work were 7cm pH 3-10 linear (17-6001-11), 13cm pH 3-

10 non-linear (17-6001-15) and 18cm pH 3-10 non-linear (17-1235-01) all from

Amersham Biosciences. Once the 1st dimension separation was complete the gel strip

was frozen (-70°C) in a suitable container (petri dish, falcon tube, universal) until

required for the 2nd dimension.

2.13.3 2nd Dimension

The IPG strips were prepared for the 2nd dimension separation by immersion in SDS

equilibration buffer (see Appendix 1). SDS equilibration buffer plus DTT (200mg

DTT per 20ml) was added to the strips and they were shaken for 15 minutes. This

was then replaced with SDS equilibration buffer plus IAA (800mg per 20ml) for a

further 15 minutes. The buffer was decanted and the strips carefully blotted to

remove excess liquid. The strips were placed on a 12.5% gel (250 x 110 x 0.5,
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Amersham Biosciences 80-1261-01) or a 12-14% gel (245 * 180 x 0.5, Amersham

Biosciences 17-1236-01) and run on a MultiPhor II system with buffer strips

(Amersham Biosciences 17-1342-01) and Mark 12 MW marker (10pl on a paper

square). The proteins were run out of the strip for 30 minutes at 600V / 20mA / 40W.

The strips and the MW marker paper was then removed and the cathode buffer strip

moved to where they had been. The gel was then run for ca. 90 minutes at 600V /

40mA / 40W until the dye front had just disappeared under the anode buffer strip.

The gel was then removed to a suitable container for staining.

2.13.4 Colloidal Coomassie Blue

The gel was placed in the fixative solution (40% methanol, 10% acetic acid) for 90

minutes. This was decanted and 400ml of colloidal coomassie blue (Genomic

solutions 80-0216 or 80-0017) and left overnight. Several washes of destain (25%

methanol) were then added to achieve a clear picture for scanning and analysis. See

Appendix 1 for the recipes.

2.14 MALD1-TOF Mass Spectrometry

2.14.1 Trypsin Digestion of 2D Protein Spots

Protein spots of interest were excised from the gel and cut into small pieces of ca. 1-

2mm in diameter and placed into a clean, sterile eppendorf. The spots were covered

with lOOmM ammonium bicarbonate/50% acetonitrile and left for 15 min at room

temperature on a vortex. The supernatant was carefully removed and the previous

step was repeated at least three times until the stain was completely removed from

the gel pieces. After the stain was gone they were covered in 100% acetonitrile for

10 min to dehydrate. The supernatant was removed and the pieces left to dry at room

temperature for 20 min to remove the excess acetonitrile. The gel pieces were then
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covered with lOp.1 of sequencing grade modified trypsin (Promega V5111) in 25mM

ammonium bicarbonate and left at room temperature for 15 min. If the gel pieces had

rehydrated to above the solution level then 25mM ammonium bicarbonate was added

to recover the pieces. They were left in a 37°C incubator (not a waterbath) for at least

16 hours.

2.14.2 MALDI-TOF

CHCA was resuspended in 400pl of 50% acetonitrile/0.1% TFA and 0.5p.l of this

was used with 0.5pl of the trypsin digest in the mass spectrometer.

2.15 C. difficile MASCOT database

The sequence of strain 630 was kindly donated by the Sanger Centre for the

development of a MASCOT database. The MASCOT database predicts open reading

frames and then predicts the products of these open reading frames. The peptide

fragments were used to search the database to find a match for the proteins garnered

from the 2D gels.
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CHAPTER 3 Growth curves of Clostridium difficile

AIMS

1. To obtain accurate growth curves for C. difficile with respect to viable, total,

spore counts and optical density (OD6oo)

2. To analyse the relationship between cell counts (viable, total and spore) and

optical density with the view to using only OD6oo in future work.

3. To investigate the production of toxin in relation to growth phase.

It was necessary at the beginning of this project to establish accurate growth curves

for C. difficile. The relationship of cell counts (viable, total) to OD6oo was crucial in

investigating the use of OD6oo as a measure of growth phase. Elucidating the pattern

of toxin production under these conditions was essential for the work to be carried

out in the rest of this thesis. Toxins A and B were known to be produced after ca. 24h

of culture but accurate timings using this medium were not available. This was

essential for future work as well as fundamental for understanding growth phase and

toxin production.

RESULTS

3.1 Growth curves set-up and strains

The growth curves were carried out in Anaerobic Investigation Medium (AIM) over

a period of five days. Preliminary work had shown that overnight cultures (ca. 18h)

yielded good growth with few spores. To pinpoint the onset of stationary phase
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readings were taken every 4h for 32h. Once this was established the important time

points could be determined and the sampling times modified in future experiments.

Three strains of C. difficile were chosen for this work. The reference strain NCTC

11223 (National Centre for Type Cultures) was chosen as it is commonly used in

research and because it is easily available. The genome of C. difficile 630 has

recently been fully sequenced and so this strain was included. During a recent

epidemiological study of geriatric patients in the Royal Victoria Hospital

(Edinburgh), an endemic strain (S-type 5236) emerged accounting for 78% of all C.

difficile isolates collected (McCoubrey, 2002). A representative of this group, termed

338a, was chosen for use in the growth curves study. All three strains produce both

toxin A and toxin B

3.2 Growth curves set 1

This first set of growth curves was carried out every 4h for the first 36h. This was

important to catch the onset of stationary phase. Strains 338a and 630 were used

3.2.1 Growth of C. difficile

Figure 3.1 shows the OD60o, viable, total and spore counts for strains 338a and 630.

Toxin production will be discussed for these growth curves with Figure 3.2. In both

strains the late log/early stationary phase boundary occurred between 12 and 14h.

Stationary phase lasted for ca. 16h before the cells went into decline. Cell

concentrations calculated by viable and total counts correlated well to one another as

can be seen in Figure 3.1. The OD readings gave a good measure of growth phase

except when the cells were in log phase. The OD600 values only become readable at a

concentration of ca. 106 cells/ml. This leads to a short delay of ca. 4h where the

phase of the culture is indeterminable and appears at a earlier stage than the viable
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and total counts until the cultures reach stationary phase. After this point OD is a

good indicator for the growth phase of the cultures. The levels of the OD values and

viable counts drop off into decline unlike the total counts, which remain high due to

the counting of both viable and ghost cells. During this first set of growth curves

spore counts (see Materials and Methods for protocol) were measured using the same

dilutions as used for the viable counts. This was a mistake as this led to the low

number of spores being missed at the lower time points when few spores were

expected Due to this error the number of spores could only be counted once they

reached ca. 104 cells/ml. From this data however, it is apparent that strain 338a

produced greater numbers of spores than strain 630. In strain 338a the spore numbers

peaked at ca. 5 X 106/ml with strain 630 peaking at ca. 105/ml.
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Figure 3.1 Growth curves

This figure shows the growth of the two strains. This was measured using viable and total
counts and optical density (OD). The spore counts were also measured and are shown here.
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Figure 3.2 Growth curve including toxin production

This graph shows the same growth curve as Figure 3.1 but without OD and including toxin A

production.
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3.2.2 Growth and toxin A production

Figure 3.2 shows the viable, total and spore counts and the toxin production of

strains 338a and 630. As is clear from the graphs, strain 338a began to produce

reasonable levels of toxin A before strain 630. By 16h measurable toxin was clearly

seen in this strain. Slight increases in toxin levels were seen in strain 630 but by 32h

very little toxin A had been produced. By 48h, the next time point measured, greater

levels of toxin A were present. A common feature of toxin production in these strains

was that sometime between 32h and 48h toxin A levels reached and exceeded the

limits of the assay.

3.3 Growth curves sets 2 and 3

The growth curves were repeated twice more with a few modifications. The

inoculum used was 10000 cells/ml instead of 100 cells/ml to decrease error and the

long early-log phase period seen with a lower inoculum. All three strains were used

on these occasions and based on the data obtained from the previous experiment the

sampling times were modified. No samples were taken between 14h and 25h as this

period had been shown to represent the bulk of stationary phase and missing out

these time points was deemed possible. The long early-log phase period seen in the

previous experiment was decreased slightly and this was taken into consideration

when deciding on sampling times. Error bars, although they contain too few data,

were included to give an idea of the variation between the two experiments.

3.3.1 Growth of C. difficile

Figure 3.3 again shows the relationship between viable and total counts and OD6oo

As in Figure 3.1 optical density is accurate for predicting growth phase, except for

the apparent delay of ca. 4h where the phase cannot be determined until the culture
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reaches a density of 106 cells/ml. As in the previous set viable and total counts

correlate well especially during log and stationary phase. Once the cultures go into

decline it becomes more difficult to get accurate total counts due to the presence of

debris and ghost cells which are difficult to count. The OD values again mirror the

viable counts into decline which will correlate with the lysing of cells and the

production of spores. The difference in sporulation between the strains is less marked

than in the previous set. In the first set ofgrowth curves strain 338a produced ca. 106

spores/ml and strain 630 ca. 105/ml. The second set of growth curves show all 3

strains producing ca. 105 spores/ml.
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3.3.2 Growth and toxin A production

Figure 3 .4 shows the growth and toxin production of the three strains for two experiments.

Whereas the growth profiles of the strains varies little, toxin production between the strains

is different. The most striking difference is the levels of toxin produced. Strain 11223 toxin

levels rarely exceed the limits of the assay but strains 338a and 630 commonly exceed it by

ca. 48h. The time toxin is first produced also differs between strains. Strain 338a produces

toxin first with it appearing at 12h and rising sharply from then on. Toxin A in strain 630

appears at ca. 24h and in strain 11223 at ca. 36h.
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3.4 Discussion

These experiments were essential in clarifying the growth curves in C. difficile. The

relationship between toxin production and growth phase is extremely important and

it was necessary to know at what point toxin was being released. The data shown (as

well as the preliminary data not shown) highlight the fact that growth pattern of the

three strains are similar. They all enter stationary phase by 12-16h and the cell/ml

concentration peaks at ca. 108/ml. All three go into decline at ca. 36h with the viable

cell count and OD levels falling while the total count remains high, picking up ghost

cells and viable bacteria. The initial set of growth curves showed strain 338a to

produce more spores (ca. 5 X 106/ml) than strain 630 (ca. 105/ml). This fitted in well

with the knowledge that strain 338a is endemic in hospitals and so would

unsurprisingly produce high numbers of spores to facilitate its survival. However,

during the next two sets of growth curves strain 338a produced the same number of

spores as 11223 and 630 (ca. lOVml). Before this work was undertaken it was

thought that strain 11223 produced few spores. This work has shown this not to be

the case. If 11223 had produced fewer spores then it would have been interesting as

this would have fit in with the theory of Kamiya el at. (1992) concerning a link

between sporulation and toxin production. Addition of a sporulation inhibitor to a C.

difficile culture resulted in a decrease in cytotoxin production as well as the expected

decrease in sporulation. This suggested that the two were closely related. However, it

is not an exclusive relationship as non-sporulating strains still produce toxins though

it may suggest that they are under the same sort of regulation.

It was clear from this work that toxin A production began in early stationary phase

and carried on and accumulated by the end of stationary phase. This onset has also
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been seen by others both in the toxin transcripts and in the production of the toxins.

Production of the toxins at this point in the growth phase has been reported by

Haslam et al. (1986), Ketley et al. (1984), Osgood et al. (1993) and Dupuy &

Sonenshein (1998). Transcription of the toxin genes at this point has been

demonstrated by Hundsberger et al. (1997), Dupuy & Sonenshein (1998), Hammond

et al. (1997), Moncrief et al. (1997), Mani & Dupuy (2001) and Mani et al. (2002).

The last two papers have both shown the onset of the transcript for the tcdD gene

(the alternative sigma factor) to mirror that of toxin transcripts.

Why strains differ in their levels and timing of toxin production is poorly understood

but one paper by Spigaglia and Mastrantonio (2002) showed strains with variants of

TcdC, the putative negative regulator of toxin production. The pattern of disease

severity associated with these strains showed no correlation between the mutations in

TcdC and the virulence of the strain. It is conceivable that changes in this protein

would affect toxin production. For example, they found one nonsense mutation

which reduced the TcdC protein from 232 to 61 amino acids. Lack of a functional

protein may lead to abrogated repression of the toxin genes. This may be a partial

explanation for the differences common between strains of C. difficile. PCR would

show if the strains used in this work differed in tcdC. Levels of toxin production was

not studied in these strains which may have given a idea of the effects of containing a

mutation in this gene.

This work has clearly shown that production of toxin A in the three strains differed in

the time it began and the levels of toxin A achieved. However, the pattern of growth

phase dependence of toxin production was the same in all three strains with it
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beginning in early stationary phase and reaching the highest levels of toxin when the

strains were heading towards decline.

This work also demonstrated the usefulness and relative accuracy of using OD6oo as a

tool to predict the growth phase of the culture. After the initial delay of ca. 4h behind

the viable and total counts the OD600 values followed the same pattern and timings as

the viable and total counts curves. This delay was likely due to the differences

generated when using different scales (linear for OD and log for cell counts) and the

lack of sensitivity until a density of ca. 106 cells/ml is reached. OD600 values were

also useful in predicting the onset of decline and sporulation as the values decreased

as the viable count decreased and the spore count increased. As most of the

subsequent work in this thesis would require accurate and immediate predictions of

late log and early stationary phase boundaries then the use of OD600 was more than

adequate to fulfil this role. The ease of using OD600 over viable and total counts in

both time (allows immediate count estimates) and resources allowed many more time

points to be sampled in the subsequent experiments.
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CHAPTER 4 Minimum Inhibitory Concentrations

AIMS

1. To obtain current information on the sensitivity (as MICs) of a representative

number of strains to a variety of precipitating and treatment antibiotics during an

18-month epidemiological study.

2. To look for any differences in resistance profiles between S-types.

3. To use repeat samples to relate antibiotic susceptibility within isolates from

individual patients over time and to look for evidence of infections with more

than one strain of C. difficile.

4. To confirm the presence of the ermB gene in strains demonstrating high-level

resistance to macrolide, lincosamide, streptogramin B (MLS) antibiotics i.e.

clindamycin in this study.

The epidemiological study funded by the Chief Scientist Office, Scottish Executive,

was already underway at the start of this work. Over the course of the study over

1000 faecal samples (from 390 patients) were collected from two geriatric wards at

the Royal Victoria Hospital in Edinburgh. One hundred of these patients tested

positive for C. difficile by culture and up to six isolates from each positive faecal

sample were collected. More than one faecal sample from many patients was taken

during the 18 months as they were readmitted to the hospital, had a

recurrence/reinfection or simply carried C. difficile for a long period of time.

Normally one isolate from each faecal sample was typed by detecting its S-layer

proteins. A database was set-up to include the patients' details including their age,

sex, antibiotic regimes and underlying illness along with the information collected
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about the strains. Isolates were chosen at random to carry out MICs and the results

related to strain and patient data present in the database. Randomly-chosen isolates

from 90 patients were tested.

RESULTS

4.1 Minimum Inhibitory Concentrations

4.1.1 MIC set-up and strain data

The agar dilution protocol from the NCCLS (1997) was followed to establish the

MICs of the strains to six different antibiotics. The antibiotics selected for this study

were not meant to be extensive, but representative: the two agents used for treatment

of C. difficile associated disease, vancomycin and metronidazole, and four of the

agents with known association with CDD, amoxycillin, clindamycin, ceftriaxone and

cefoxitin; the latter is also used in the CCEY selective medium at 8p.g/ml.

Cefotaxime would have been a wiser choice of antibiotic instead of cefoxitin as it is

commonly implicated in CDD but this antibiotic was included as it is one of the

agents used in the selective medium. The addition of cefotaxime would have yielded

more clinically useful results due to its propensity to cause disease and its

widespread use. The non-treatment agents other than cefoxitin were chosen because

they are common precipitating agents of CDD - they have poor in-vitro activity

against C. difficile. The concentrations used in the study were vancomycin (8-

0.125|ag/ml), metronidazole (8-0.125|j.g/ml), amoxycillin (64-lpg/ml), clindamycin

(128-2|a.g/ml), cefoxitin (256-8pg/ml) and ceftriaxone (256-8pg/ml). These ranges

were chosen using results and guidance from the following papers; Barbut et al.
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(1999), Bianchini (1999), Ednie et al. (1997), Freeman & Wilcox (2001), Goldstein

et al. (1999); Hoellman et al. (1998), Jang el al. (1997), Jamal et al. (2002), Jang et

al. (1997), Johnson et al. (1999), Johnson et al. (2000), Marchese et al. (2000), Nord

(1996), Poliane et al. (2000), Sanchezes/. (1999), Spangler et a/. (1994), Wilcox et

al. (2000).

4.1.2 MICs to 186 strains

In total 186 representative isolates were investigated. Table 4.1 shows the ranges of

MICs among the isolates for the six antibiotics used, together with MIC50 and MIC90

data, and where known the break points for the antibiotics. The two antibiotics used

for treatment (vancomycin and metronidazole) both showed a narrow range between

0.5 and 4pg/ml. Cefoxitin, the antibiotic used in the selective medium (at 8pg/ml),

showed a range of MICs from 64-256pg/ml. The other three precipitating antibiotics

all showed a wider range of MICs.

Table 4.1 Range of MIC values from 186 isolates.

ANTIBIOTIC MIC RANGE in pg/ml MIC50 MIC90 BREAKPOINT

Vancomycin 0.5-4 1 2 8

Metronidazole 0.5-4 1 2 8

Amoxycillin <1-16 4 4 ?

Clindamycin <2->128 8 16 8

Cefoxitin 64-256 256 256 64

Ceftriaxone 16-256 64 64 64
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The MIC50 and the MIC90 for the six antibiotics used were either the same or two-fold

different. This highlights the closeness in sensitivity of the majority of isolates.

MIC50 and the MIC90 for vancomycin and metronidazole were low (2pg/ml) and only

five strains (2.7%) had a MIC of 4pg/ml to vancomycin and two (1.1%) had a MIC

of 4pg/ml to metronidazole. None of the isolates tested were resistant to the two

treatment agents for CDD. Both the MIC50 and the MIC90 values for amoxycillin

were 4pg/ml. This shows that even though the range of MICs to this antibiotic was

relatively broad (<l-16pg/ml) the majority of the isolates had very similar

sensitivity. Clindamycin produced a large range of sensitivities within the tested

isolates (<2 - >128pg/ml). For this antibiotic MIC50 and the MIC90 values were

8pg/ml and I6pg/ml respectively. The NCCLS breakpoint for clindamycin resistance

is >8pg/ml thus 66.7% (n=124) of isolates were resistant to clindamycin, 24.7%

(n=46) had intermediate resistance (MIC= 4pg/ml) and the rest were sensitive.

Twelve C. difficile isolates with MICs to clindamycin of >128pg/ml from six

patients were found. The MIC50 and MIC90 of cefoxitin were the same at 256pg/ml.

The NCCLS (1997) guidelines state that MICs of 64pg/ml or higher are resistant to

cefoxitin therefore none of the 186 isolates tested was sensitive. According to the

NCCLS guidelines MICs of >64pg/ml are resistant to ceftriaxone. Isolates had

MIC50 and the MIC90 values of 64pg/ml to ceftriaxone. Thirty-three strains (17.7%)

had intermediate resistance to ceftriaxone at 32pg/ml (NCCLS). Only two strains

(1.1%) were sensitive with MICs of 16pg/ml.
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4.2 S-layer types and sensitivities

Of the 186 strains included in the collection for MIC determinations 145 had been

phenotyped by analysis of their S-layer proteins on SDS-PAGE and included in the

database. To complete the set it was decided to S-type the remaining 41 strains. Two

strains could not be recovered so 39 strains were successfully typed resulting in 184

of the 186 strains (98.9%) being S-typed. Figures 4.1-3 show the S-layer proteins

from the 39 strains. Table 4.2 shows these results along with the MIC90 of the

different S-types. Most strains (76.6%; n=T41) belonged to the common S-type 5236,

with most of the others being S-type 5242 (13.6%; n=25). Of the remainder 2.7%

(n=5) were S-type 5140, 2.2% (n=4) S-type 5438, 1.6% (n=3) S-type 5046, with

single isolates of S-types 5739 and 5043. Four strains collected were non-typeable:

they did not show the typical two major S-layer bands on SDS-PAGE.
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Figure 4.1 C. difficile S-layer types
Lanes 1 and 19 contain the Mark 12 MW marker; lanes 2-4, 6-16 and 18 contain strains with

the S-type 5236. The strain in lane 5 has an S-type of 5242 and lane 17 of 5046.
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Figure 4.2 C. difficile S-layer types
Lanes 2 and 20 contain the MW marker. Lanes 4-5, 7-10, 13-14, 17 and 19 all contain the S-

type 5236. Lanes 1, 3 and 6 contain strains with S-type 5242. Strains of S-type 5046 can be
found in lanes 11 and 12. Lane 15 contains S-type 5043 and 2 untypeable strains are in lanes
16 and 18.
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Figure 4.3 C. difficile S-layer types
Lanes 2 and 11 contain the MW marker. Lanes 4-9 contain strains of S-type 5236. Lane 10
contains the type strain 11223 which has a slightly different S-type of 5335.
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Table 4.2 Variation in MICs among different S-types

S-type %of MIC range in pg/ml (MIC90)
pop(n)

Van Met Amox Clin Cefo Cefi
AD 100(184) 0.5-4(2) 0.254(2) <1-16(4) <2->128(16) 64-256(256) 16-256(64)

5236 76.6 (141) 14(2) 0.5-2(2) <1-16(4) <2—>128(16) 64-256(256) 16-64(64)

5242 13.6(25) 14(4) 0.54(2) <1-8(8) <2-16(8) 64-256(128) 32-64(64)

5140 2.7(5) 1-2(2) 0.25-1(1) 14(4) 4-16(16) 64-128(128) 32-64(64)

5438 2.2(4) 1-2(2) 0.5-1 (1) 24(4) 4-16(16) 64-256(256) 32-64(64)

5046 1.6(3) 2 1 2 >128 64 16

5043 0.5(1) 2 2 4 <2 64 32

5739 0.5(1) 1 1 2 8 128 32

0* 2.2(4) 2 1 24(4) <2-8(8) 64 32

* = Non-typeable

There was a degree of variation in sensitivity to antibiotics depending to which S-

type the isolate belonged. This is summarised in Table 4.2. The common S-type 5236

had a large range of MICs and there were no differences in the overall pattern

between this and the total population. However the less common S-types did show

some variations, in particular with respect to clindamycin sensitivity. Three of the

non-typeable strains were extremely sensitive to clindamycin with MICs of <2pg/ml

and had lower than average MICs to cefoxitin and ceftriaxone at 64pg/ml and

32p.g/ml respectively. Three strains of S-type 5046 were found during this work and

they were all highly resistant to clindamycin with MICs of >128pg/ml.
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4.3 Repeat samples and MICs over time

Forty patients were sampled more than once, with some up to 10 times. From those

whose strains were S-typed 80% of patients (32/40) retained the same S-type

throughout the study while 20% (8/40) definitely harboured different S-types over

time, with one patient having three different types at different times. Isolates from 36

patients exhibited changing patterns of sensitivity to one or more of the six

antibiotics. While some of these changes related to change of S-type, others did not.

Typical changes in isolates that were all of the same S-type were no greater than 2-4-

fold different and were therefore of little interest. However some major changes

occurred but only in sensitivity to clindamycin. One noteworthy example of this was

an isolate with a MIC to clindamycin of 8pg/ml. Two subsequent samples taken from

the same patient 13 and 15 days later each produced a highly clindamycin-resistant

strain with a MIC of >128pg/ml. The isolates from these samples were all S-type

5236. Another example of changing clindamycin sensitivity was in a patient who

also harboured isolates of S-type 5236. The first sample produced an isolate with a

MIC of >128pg/ml. A month later another sample contained a strain with a MIC of

16p.g/ml followed three days later by one with a MIC to clindamycin of 8ug/ml.

Neither of these patients was on clindamycin or any other macrolide. No significant

changes in MIC of the patients' isolates were found to the other five antibiotics.

No clear patterns emerged from the data to suggest any link between prescribed

antibiotics and specific sensitivities. For example patients on amoxycillin showed no

propensity to produce isolates more resistant to that agent.
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Overall 97% of the total isolates produced toxin (by the TechlabIM A+B kit).

However there was no correlation between toxin production and antibiotic

susceptibility or indeed S-type.

4.4 Clindamycin resistance and ermB

Twelve isolates were found to have a high level of resistance to clindamycin during

this study. Strains with this high level resistance carry the Macrolide, Lincosamide,

Streptogramin B (MLS) resistance determinant which contains the ermB gene

(Farrow et al2000). This encodes an RNA methyltransferase which alters the

antibiotic target site by modifying the 23 S rRNA molecule (Farrow et al., 2000). The

12 isolates were tested for this gene as was the type strain 11223 and the sequenced

strain 630 which also have high level resistance to this antibiotic.

PCR for clindamycin resistant isolates

The primers were taken from the paper by Farrow et al. (2001) with a product size of

493 base pairs. Table 4.3 shows the isolates tested and their product sizes in base

pairs. The sequenced strain 630 was used as the positive control as the ermB gene

from this strain was used as a template for the primers (Farrow et al., 2001;

Accession number - AF109075). The reference strain 11223 is clindamycin resistant

and so was expected to have the ermB gene. Strain 338a is a representative of the

"endemic" UK isolate (ca. 80% of isolates collected; McCoubrey, 2002) and has no

resistance to clindamycin and was used as a negative control. As is clear from the

subject numbers associated with these isolates, some of them were isolated from the

same patient. Patient 81 produced four stool samples over eight months and all

samples contained clindamycin-resistant isolates of S-type 5236. An interesting thing

to note is that the first isolate from this patient was found in a stool sample collected
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in October 1999 and it was toxin positive. The three subsequent samples, two

collected in February 2000 and the final in May 2000, produced non-toxigenic

isolates. The size of the product resulting from the ermB PCR is the same at 493bp

for all four isolates. The two different product sizes for the ermB gene have been

reported before in Farrow et al. (2001) so this was not unexpected. Clindamycin

resistance was found in isolates of S-types 5236 and 5046. Strain 11223 is one of the

positive controls for ermB and has S layer proteins of sizes ca. 53 and 35kDa. The

gel picture resulting from the PCR for ermB is shown in Figure 4.4.

Table 4.3 Clindamycin resistance and ermB

Strain Product size
in base pairs

S-type Subject
number

Toxin

producer?
630 493 5236 NA Yes

11223 493 5335 NA Yes

338a -ve 5236 93 Yes

1124a 320 5046 688 No

1082a 493 5236 654 Yes

1076a 493 5236 654 Yes

1041a 493 5236 585 Yes

748a 320 5236 402 No

668a 320 5236 361 Yes

628b 320 5046 337 No

625b 320 5046 325 No

363b 493 5236 81 No

269b 493 5236 81 No

261a 493 5236 81 No

223 a 493 5236 81 Yes
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Figure 4.4 PCR gel picture for ermB gene.

This gel picture shows the PCR products from the 12 clindamycin-resistant isolates. Lane 1
contains the lOObp MW marker. Lanes 2 and 3 contain the positive controls 630 and 11223
and lane 4 the negative control from the endemic strain 338a. Lanes 5-16 contain the

following isolates; 5) 1124a, 6) 1082a, 7) 1076a, 8) 1041a, 9) 748a, 10) 668a, 11) 628b,

12) 625b, 13) 363b, 14) 269b, 15) 261a, 16) 223a. Two product sizes are clearly seen, 320bp
and 493bp.

4.5 Discussion

This 18-month study has investigated the susceptibility of C. difficile isolates to a

range of antibiotics associated with development of CDAD, together with the two

antibiotics used in therapy of the disease. Overall there was good correlation of

sensitivities with those found in other studies (Ackermann et al., 2003a and b;

Alonso et al., 2001; Barbut et al., 1999; Brazier et al., 2001; Ednie et al., 1997;

Freeman & Wilcox, 2001; Goldstein et al., 1999; Hoellman et al., 1998; Jamal et al.,
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2002; Jang et al., 1997; Johnson el al., 1999; Johnson et al., 2000; Marchese e/ al.,

2000; Marks & Kather, 2003; Nord, 1996; Noren e/ a/., 2002; Pelaez et al., 2002;

Poliane e/ al., 2000; Sanchez et al., 1999; Spangler et al., 1994; Wilcox et al., 2000).

There was no evidence of any resistance occurring to vancomycin or metronidazole,

the treatment agents. However, such strains, especially human isolates, are still

extremely rare (Brazier et al., 2001). Five strains (2.7%) had a slightly reduced

susceptibility to vancomycin of 4 pg/ml. This low level of reduced susceptibility has

also been reported by others (Pelaez et al., 2002), also in small numbers. There was

general resistance to the cephalosporin and cephamycin antibiotics, but not to the

other beta-lactam amoxycillin. Resistance to clindamycin was common despite its

infrequent use. In summary this shows that increased colonisation with C. difficile

and subsequent disease may well be due to acquisition of resistant strains of the

bacterium, but, as has been shown frequently in the past, other mechanisms must be

operating as demonstrated by the apparent sensitivity to amoxycillin. The formation

of spores by C. difficile allow the bacterium to survive in the presence of antibiotics

until the levels fall and the spores can germinate. Amoxycillin is a widely used

antibiotic both in the hospital environment and in the community and is one of the

most common precipitating antibiotics (Freeman and Wilcox, 1999).

Isolates showed a wide range of sensitivities to clindamycin with MICs varying from

<2pg/ml to >128pg/ml. C. difficile appears to be inherently resistant to the

cephalosporin and cephamycin antibiotics as the majority of isolates had MICs to

these agents of >32pg/ml (NCCLS, 1997). Strains resistant to clindamycin have been

widely reported and some have been involved in epidemics (Johnson et al., 1999).
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Recently Fawley et al. (2003) have suggested that clindamycin resistance be used to

further separate the endemic PCR ribotype 001 strains. Clindamycin usage has

decreased dramatically due to its involvement in the precipitation of C. difficile

diarrhoea. There is now little selective pressure for clindamycin resistance. The usual

mechanisms by which clindamycin resistance is conferred also mediates resistance to

other macrolide, lincosamide and streptogramin B antibiotics: this is known as the

MLS resistance determinant (Mullany et al., 1996; Farrow et al., 2001). The MLS

determinant is the major mechanism of multiple resistance among Gram-positive

anaerobes (Noren et al., 2002). The gene responsible (ermB in C. difficile 630)

encodes a 23 S ribosomal RNA methylase that modifies the target site for the

antibiotic. The gene is 99% homologous to the ermB gene from Clostridium

perfringens but unlike this gene it is not located on a plasmid (pIP402) but on a

mobilisable non-conjugative transposon Tn5398 (Farrow et al., 2001). All the

clindamycin-resistant strains tested were confirmed to contain this ermB gene though

the product sizes differed. As is seen in Table 4.3 some strains produced a gene

product of 320bp and others the expected product of 493bp. In the paper by Farrow

et al. (2001), the source of the primers, two product sizes were also seen and this was

due to the lack of a leader sequence in some strains. This is a further difference

between the strains suggesting that the transposons may be from a different source.

Sequencing the amplified products of ermB would confirm whether the difference in

size was in fact due to the lack of a leader sequence as described in Farrow et al.

(2001).
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C. difficile possesses an outer cell coat termed the S-layer consisting of two

polypeptides that form a regular crystalline array over the surface of the cell (Kawata

et al., 1984). The most common S-type in this study was 5236. The number

corresponds to the molecular masses in kilodaltons of the two major polypeptides

found on the cell surface. Out of all strains tested so far the molecular mass of the

larger of the two proteins varies from 45-64kDa with the smaller ranging from 25-

40kDa (Poxton et al., 1999). S-layer typing is a quick and easy method of

phenotyping and appears to correspond well with other typing techniques including

ribotyping and serotyping (McCoubrey and Poxton, 2001). Toxigenic S-type 5236 is

the same as PCR ribotype 001 (McCoubrey, 2002) which is the most common PCR

ribotype (55%) in the UK (Stubbs et al., 1999). The S-layer is a putative virulence

factor that appears to have a role in adhesion of the bacterium to the host mucosal

surface. Calabi et al. (2002) demonstrated this adhesion to gastrointestinal tissues

mediated mainly by the high molecular weight S-layer protein. It may also have a

role in immune evasion or impermeability to certain compounds-including

antibiotics. Three of the four non-typeable strains appeared to be more sensitive to

clindamycin, cefoxitin and ceftriaxone. They appear to have only one band but this

may be two bands of the same or similar size. Though no firm conclusions can be

made especially when this pattern was rare, it may be speculated that as they appear

to lack a typical S-layer pattern on the gels they are more sensitive to some

antibiotics (their membrane may be more permeable to antibiotics?). However,

overall there were no obvious correlations between S-type and resistance to

antibiotics.
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Multiple isolates were obtained from 40 patients, and for some patients as many as

10 were available. These isolates permitted assessment of sensitivity patterns over

time and within and between S-types. In the majority of cases isolates did not change

either in S-type or in sensitivity pattern. The isolates from some patients did change

in antibiotic sensitivity and in the S-type suggesting that there had been re-infection

with a different strain, or possibly emergence of a minor strain from an initially

mixed infection. In patients whose isolate did not change in S-type, resistance to

clindamycin was the only significant difference observed. Resistance to clindamycin

typically resides on a transposon, Tn539# (Mullany et a/., 1996; Farrow et cil., 2001)

which could transfer between strains. It is feasible that the strain acquired this

resistance determinant, or that the patient was reinfected with a clindamycin-resistant

strain of the same, predominant S-type. In the patient whose strain appeared to lose

clindamycin resistance it is possible that the resistance determinant was lost. More

likely is the explanation that the patient had picked up another 5236 S-type that

lacked the clindamycin-resistance determinant. In the patients who produced same-

type isolates with changing resistance it would be interesting to use another typing

method (sero- or ribotyping) to try and identify sub-types which may explain the

sensitivity changes. There was no direct evidence that resistance to clindamycin was

selected in strains despite the use of macrolides in many patients during the study.

The presence of wide-spread use of clindamycin may be required for this type of

selection but as clindamycin is so associated with the precipitation of CDD this

situation is now extremely rare.
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CHAPTER 5 The effect of sub-inhibitory concentrations of

antibiotics

AIMS

1. To investigate the effects of sub-inhibitory concentrations of antibiotics on the

growth of C. difficile.

2. To investigate toxin production in C. difficile in the presence/absence of sub-MIC

antibiotics.

3. To compare effects between different antibiotics and different strains.

The effects of sub-inhibitory concentrations of antibiotics on the growth and toxin

production of C. difficile have been studied little over the years. Early studies by

Onderdonk et al. (1979) and Honda et al. (1983) discovered a possible role for

certain antibiotics in the potentiation of toxin production. Onderdonk et al. (1979)

found vancomycin and penicillin to affect cytotoxin production and Honda et al.

(1983) found clindamycin and cephaloridine to affect cytotoxin and enterotoxin

production. This work was undertaken to attempt to clarify the relationship of

antibiotics and the growth and toxin production of C. difficile.

RESULTS

Three strains of C. difficile were used in this study: NCTC 11223, strain 630

(recently sequenced) and strain 338a a local endemic strain collected during a recent

epidemiology study (McCoubrey, 2002). Strain 338a is of S-type 5236 (PGR

ribotype 001) and was present in 78% of cases of C. difficile diarrhoea in a geriatric

unit in the Royal Victoria Hospital, Edinburgh (McCoubrey, 2003). The antibiotics
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chosen for the study were vancomycin (Sigma V2002) and metronidazole (Sigma

Ml 547), two agents used for treatment of C. difficile associated disease, and four of

the agents associated with precipitating C. difficile disease: amoxycillin (Sigma

A8523); clindamycin (Sigma C5269); cefoxitin (Sigma C4786) and ceftriaxone

(Sigma C5793). These are the same antibiotics used previously in the MIC chapter.

The minimum inhibitory concentrations (MICs) of the six antibiotics for these strains

were determined by broth macrodilution (NCCLS, 1997) and are shown in Table 1.

The concentration of antibiotics used in this study corresponded to 1/2, 1/4 and 1/8 of

the MIC except in the case of clindamycin with strain 11223. This strain was highly

resistant and 512pg/ml, the highest concentration achievable in the study, allowed

growth of this strain.

5.1 Growth and toxin production - controls

In preliminary experiments and in Chapter 3, OD6oo values reflected viable counts

and were therefore used to assess bacterial growth. Figure 5.1 shows the growth

curves and toxin levels for the untreated controls of each strain. Values represent

means (with standard errors) of six replicates grown on six different occasions and as

can be seen growth varied little between strains. Each strain was clearly in log phase

by 8h and stationary phase began by ca. 24h. Decline was then apparent from 32h

with the OD stabilising by ca. 56h. However, toxin production differed between

strains, both in how much and when it was produced relative to growth. Strain

11223 produced less toxin A than strains 338a and 630. Toxin A production by strain

11223 rarely exceeded the measurable levels of the assay (OD60o 3.0), whereas

higher values (>3.0) were obtained with strains 338a and 630. A notable difference

was the point in the growth phase at which each strain produced toxin. Strain 338a
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produced toxin during stationary phase (by 24h), which preceded toxin production by

both 11223 and 630 in late stationary phase and early decline. This further correlated

with the times required to produce comparable levels of toxin i.e. 24, 32 and 48h for

338a, 630 and 11223, respectively. Levels of toxin A in strains 338a and 630

generally reached maximum readable levels by 48h.

Table 5.1 MICs of the three strains.

Minimum Inhibitory Concentration (mg/L)

Strain Van Met Amox Clind Cefo Ceft

11223 2 1 8 >512 256 64

338a 1 1 4 4 256 64

630 2 1 4 256 256 128
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Figure 5.1 Control growth for the 3 strains.

These graphs show the controls used in the sub-MIC work. They represent the strains grown

without antibiotics six times with standard error.
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5.2 Effects of sub-MJC antibiotics on growth

The effects of sub-MIC levels of antibiotics on bacterial growth were very similar

between antibiotics and strains. Sub-inhibitory concentrations of antibiotics tended to

delay the growth of the bacteria - increasing the lag period, especially at the highest

concentration (1/2 the MIC) of antibiotic. All three strains with every concentration

of antibiotic showed a lag in growth compared to the control with one exception.

This exception was strain 11223 with clindamycin. This highly resistant strain

showed no growth lag whatsoever even at the highest concentration of antibiotic.

With strain 11223 it was impossible to get the true 1/2 MIC as it grew at the highest

achievable experimental concentration of 512mg/L. For the other combinations the

growth lags were often a few hours though some were up to 24 hours.

5.3 Effects of sub-MIC antibiotics on toxin production

Figure 5.2 shows the three strains grown in vancomycin. As shown in Table 5.2

vancomycin only produced two examples of bringing forward onset of toxin

production. The first example was at 1/8 MIC with strain 11223. There was a lag in

growth of ca. 4h but toxin still appeared before the antibiotic-free control. In this

case the levels of toxin produced were greater than the control as well as being

produced quicker. The other example was strain 630 grown in 1/2 MIC. This showed

a significant growth lag of ca. 24h but the toxin was produced very quickly after

growth was first measurable.
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Figure 5.2 Strains with sub-MIC levels of vancomycin.
These graphs show the strains grown with sub-MIC concentrations of vancomycin.
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Figure 5 .3 shows the strains grown in the presence of metronidazole. In strain 11223

there was a growth lag with all three sub-MIC concentrations of metronidazole but in

all cases the toxin was produced before the control (comparable levels in the control

is 24h away). Strain 338a showed a similar pattern. When grown with 1/4 and 1/8

MIC of metronidazole toxin A was again produced before the control even with a lag

in growth. In the graph this appeared as though toxin was being produced as soon as

measurable (ca. 106 cells/ml) growth was seen. The concentration of 1/2 MIC in this

strain produced a long lag of ca. 24h though soon after growth was seen toxin also

appeared. Strain 630 shows the same profde as 338a. Concentrations of 1/4 and 1/8

produced a lag but the toxin still appeared before the control. Again there was a long

lag with 1/2 MIC with toxin A appearing soon after growth was measurable.
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Figure 5.4 shows the results of the sub-MIC experiment with amoxycillin. All three

concentrations of amoxycillin with strain 11223 produced a growth lag of ca. 4h and

a shift forward in toxin A production. Toxin A appeared before the controls at every

concentration but the most marked effect occurred at 1/8 MIC with it being produced

almost as soon as growth was measurable. Toxin in the presence of 1/4 MIC

appeared next followed by 1/2 MIC. Strains 338a and 630 show the same pattern

when grown in amoxycillin with 1/2 MIC producing a significant lag of ca. 24h and

the two other concentrations a short lag (ca. 4h). Toxin A appeared before the

control in all three concentrations for both strains.
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Figure 5.5 shows the results of the strains grown with clindamycin. It should be

noted that strain 11223 is highly resistant to clindamycin (MIC of >512p.g/ml) and

for this strain only; the sub-MICs were not truly 1/2, 1/4 and 1/8, but fractions of

512p.g/ml. When these sub-MIC levels of clindamycin were added, growth of C.

difficile was not noticeably affected (Figure 5.5), but toxin production was affected.

Compared to the antibiotic-free control the toxin was elaborated sooner and reached

higher levels than in the absence of clindamycin. Thus this antibiotic potentiated

toxin production by both acceleration and enhancement of production. The other two

strains showed a significant lag of ca. 24h with 1/2 MIC and ca. 8h with 1/4 and 1/8

MIC. Strain 630 also contains the Macrolide, Lincosamide and Streptogramin B

(MLS) resistance determinant and has a MIC of 512pg/ml though the sub-inhibitory

concentrations had a more pronounced effect on this strain than on 11223. The effect

of clindamycin on toxin production also differed between 338a and 630 compared

with 11223. The situation was less clear in these two strains. Strain 338a in the

presence of 1/2 MIC produced toxin very quickly after growth was detected. In 630

the toxin was produced later and there was no clear effect at this concentration. With

1/4 and 1/8 MIC in both strains toxin was produced earlier than expected and in the

case of 630 before the controls even with a lag in growth.
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125



Figure 5.6 represents the strains grown in the presence of sub-inhibitory

concentrations of cefoxitin. This 2nd generation cephalosporin (cephamycin)

produced a lag in growth at every concentration with every strain. Each strain

cultured with cefoxitin (at every concentration) showed an apparent inhibition in

toxin production. In the case of 11223 the toxin levels did not reach the levels of the

control and with strains 338a and 630 the levels remained within the measurable

levels of the assay.

Figure 5.7 shows the strains grown with ceftriaxone. At 1/2 MIC with 11223 this

antibiotic produced a growth lag of ca. 12h but no subsequent lag in toxin

production. The other two concentrations had no effect on growth or toxin. Strain

338a at 1/2 MIC showed a growth lag of ca. 8h that produced a corresponding lag in

toxin production. Ceftriaxone showed no obvious effect on toxin production in strain

338a. Strain 630 with 1/4 MIC of ceftriaxone produced a lag of ca. 8h but the toxin

still appeared slightly before the controls.
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Figure 5.7 Strains with sub-MIC levels of ceftriaxone
The figure shows the strains grown in the presence of sub-MIC ceftriaxone.



The effects on toxin production for all strains and antibiotics are summarised in

Table 5.2. For toxin production, three general consequences were evident: toxin level

was increased; toxin was produced earlier; or toxin level was unaffected or reduced.

The most common effect on toxin production was the shift forward of the onset to a

point earlier in the growth phase. Even with a lag in growth some strains produced

toxin earlier than the control with some antibiotics. As shown in the table there were

four occasions where toxin A was produced sooner and reached greater levels than

the control This effect may in practice be more common but due to the high toxin

levels in strains 338a and 630 exceeding the maximum of the assay these levels

could not be measured. As is clear from the table some antibiotics were more likely

to cause effects on toxin production than others.

Metronidazole, amoxycillin and clindamycin commonly caused these effects.

Vancomycin, ceftriaxone and cefoxitin rarely affected toxin production.
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Table 5.2 Summary of effects on toxin.

Antibiotic and effect on toxin (T)

Strain Van Met Amox Clind Cefo Ceft

11223

1/2 E E + E E

1/4 E E + E -

1/8 + E E E + E -

338a

1/2 - E E -

1/4 E E E -

1/8 E E E -

630

1/2 E E - -

1/4 E E E E

1/8 E E E -

- = no effect or reduced, E = elaborated sooner, + = toxin level increased

1/2, 1/4 and 1/8 are the concentrations which correspond to 1/2, 1/4 and 1/8 of the MIC
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5.4 Discussion

For C. difficile there is a clear relationship between disease and antibiotic usage such

that antibiotics are most often a prerequisite for the disease. Broad-spectrum agents

especially have been shown to predispose to C. difficile infection through depletion

of the patient's normal protective bowel microbiota. The equilibrium of the gut,

when disturbed, leaves the patient open to opportunistic infection possibly through

the newfound availability of binding sites and nutrients. Thus suppression of

colonisation resistance by antibiotics facilitates colonisation and promotes disease.

Hence C. difficile is the commonest cause of nosocomial, antibiotic-associated

diarrhoea.

It has been proposed that antibiotics may promote CDAD not solely by modulating

commensal microorganisms, but also by physiological effects that affect

pathogenicity (Lorian & Gemmell, 1994). Several early reports (Onderdonk et al.,

1979; Honda et al., 1983) suggested that certain antibiotics potentiated production of

toxins A and/or B, the main recognised virulence factors of C. difficile. Furthermore,

antibiotics have been shown to affect the expression of virulence factors in other

species including Escherichia coli, Vibrio cholerae and various staphylococci

(Levner et al., 1977; Yoh et al., 1983 & Lorian et al., 1971). Determining the effect

of antibiotics on virulence factor expression in an organism for which antibiotics are

important triggers of disease is therefore crucial. This work focused on the effect of

sub-inhibitory concentrations of six antibiotics, including those that precipitate the

disease and those used for treatment, on the production of toxin A by three strains of

C. difficile.
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This study has clearly shown that there is heterogeneity between strains in respect to

growth, MICs and the toxin levels that are produced. A common effect on the

bacteria in the presence of antibiotics was the slowing of growth in comparison to the

controls. They took longer than the controls to reach stationary phase at all three sub-

MIC concentrations or just at the higher concentrations of antibiotics. In addition to

slower growth the bacteria sometimes failed to achieve the same OD that the controls

had reached. This was seen in many cases with the strains cultured with cefoxitin.

Even with sub-inhibitory concentrations it would still be expected that they have an

affect on the bacterial systems, including growth. Strain 11223 is highly clindamycin

resistant (MIC >512i_ig/ml) and the growth of this strain was not affected at all in the

presence of this antibiotic. An explanation for this may be that it is so well adapted to

this agent that it can function and grow as normal. This strain contains the macrolide,

lincosamide and streptogramin B resistance determinant (MLS) that contains the

ermB gene (encodes an RNA methyltransferase) which makes it resistant to these

antibiotics (see Chapter 4.4). Strain 630 also carries the ermB gene (Farrow et a/.,

2001) but it has a slightly lower MIC of 512pg/ml and its growth is affected by all

three sub-MIC concentrations of clindamycin. The reasons for this are uncertain but

heterogeneity between strains was common during this work.

As can be seen in table 5.2 and figures 5.2-5.7, the sub-MIC concentrations of

antibiotics can cause quicker elaboration of toxin A compared to the antibiotic-free

control. Antibiotics, even at sub-MIC concentrations, can be expected to cause stress

on the bacteria. Bacteria under stress switch on a catalogue of genes and it is possible

that the toxin promoters are affected by it. To support this, TcdD, the alternative
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sigma factor of the toxin genes, shows similarity to UviA the UV-inducible regulator

from Clostridium botulinum (Mani & Dupuy, 2001). Onderdonk el al. (1979)

showed that the stress of increased temperature led to greater cytotoxin production.

In the same paper they demonstrated an increase in toxin in the presence of sub¬

inhibitory concentrations of vancomycin and penicillin. Karlsson et al. (2003) also

showed temperature as a controlling factor for toxin and TcdD expression. It has

been shown by Hennequin et al. (2001) that C. difficile cultured in the presence of

antibiotics produces greater levels of GroEL, a chaperone from the heat shock

protein 60 (Hsp60) family. The examples all serve to suggest that the toxin

promoters can respond to multiple environmental stresses. Inducing this stress

response may enable C. difficile to survive the gut environment better after

colonisation as GroEL functions as a 58kDa surface adhesin. This adhesin could help

C. difficile to colonise the recently vacated binding sites left by the depletion of the

normal gut flora.

Type strain 11223 produces lower levels of toxin than the sequenced strain 630 and

the 'endemic' strain 338a. During the course of the experiments the 11223 samples

almost never exceeded the limits of the ELISA plate reader (>3.0). The other two

strains commonly reached levels greater than 3 .0 after ca. 48 hours of growth. It was

desirable to look at the trends of toxin production and this was achievable by

comparing the OD values of the antibiotic-free control and the strain in the presence

of antibiotics. Differences in toxin production are not well understood though a

recent paper by Spigaglia and Mastrantonio (2002) showed strains with variants of

TcdC, the putative negative regulator of toxin production. No correlation between

133



disease severity and variant TcdC strains was found, though it is possible that

changes in this protein would affect toxin production. For example, they found one

nonsense mutation which reduced the TcdC protein from 232 to 61 amino acids.

Lack of a functional protein may lead to abrogated repression of the toxin genes.

This may be an explanation for the differences common between strains of C.

difficile. PCR would show if the strains used in this work differed in tcdC.

In addition to the disruption of the barrier flora in C. difficile disease, antibiotics also

appear to increase the stress response in the bacteria. For example, upregulation of

the adhesin GroEL may increase the virulence of the infecting C. difficile by aiding

its utilisation of the new niche. The reason for producing toxins in the gut is unclear

but as they are upregulated during glucose starvation their purpose may be to cause

cell disruption for the acquisition of nutrients (Dupuy & Sonenshein, 1998).
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CHAPTER 6 Sub-MIC effects on PaLoc and groEL mRNA

AIMS

1. To look for toxin transcripts in total RNA extracted using the Qiagen RNA

extraction kit.

2. To attempt to detect toxin transcripts in conditions (sub-MIC antibiotics) which

demonstrated an increase in toxin A in Chapter 5.

3. To investigate message levels of the alternative sigma factor (tcdD) and putative

negative regulator (tcdC).

4. To investigate the theory that sub-MICs cause increased toxin production through

a stress response by looking for transcript levels of the stress protein GroEL

After the interesting results garnered from Chapter 5 with the effect of sub-inhibitory

antibiotics on toxin A production it was decided to attempt to analyse toxin

transcripts under these conditions. Sub-inhibitory concentrations of clindamycin

produced a remarkable effect on the growth and toxin production in strain 11223.

The growth of this highly clindamycin-resistant strain (MIC >512fj.g/ml) was

unaffected even at the highest concentration of antibiotic (512|_ig/ml) unlike the other

strains used in the study (sequenced strain 630 and locally endemic strain 338a)

which experienced a lag in growth. This was likely due to the fact that this strain was

so highly resistant to this antibiotic. The effect on toxin production was also

interesting in that it caused the elaboration of toxin A earlier than 11223 grown

without antibiotics. There was also more toxin A produced in sub-inhibitory

antibiotic conditions (measured by EL1SA) than in antibiotic-free controls. It was
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this clear-cut effect on toxin A that led to this strain being chosen for the RT-PCR

study.

C. difficile produces toxins A and B upon entry to stationary phase and others have

shown the toxin transcripts to be transcribed in the highest amounts in late log and

early stationary phase.

Colleagues within the department had successfully used the Qiagen RNA extraction

kit to look at mRNA transcripts in eukaryotic cells. It was considered easy to use and

yielded good concentrations of RNA.

RESULTS

6.1 Toxin transcripts from strain 11223

The first step was to look for the toxin transcripts in control-growth C. difficile

before moving on to the analysis of different conditions. This would clarify the best

time points and procedures to use before moving on to investigate different

environmental conditions.

Strain 11223 was grown to stationary phase (20h & 24h) in AIM under anaerobic

conditions and two parts (2ml) of Qiagen Protect Bacteria Reagent was added to one

part (1ml) C. difficile culture. The protect reagent stops the degradation of the RNA

prior to extraction and is especially good for protecting mRNA species which have

very short half lives. This also allows the mRNA profile at that time to be "frozen"

and remain unaffected until the start of the extraction process. The resulting pellet

can be stored for up to one month at -70°C without significant degradation. RNA

was extracted from the two pellets (20h and 24h) using the Qiagen RNA extraction

kit according to the manufacturer's instructions but with the addition of an on-
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column DNase step. The Qiagen extraction column is designed to prevent DNA

contamination of the extracted RNA but a colleague recommended the inclusion of a

DNA digestion step as she regularly encountered problems with contamination.

cDNA was synthesised using Qiagen Omniscipt Reverse Transcriptase (RT) with

appropriate negative controls minus the RT enzyme. The cDNA produced was used

in PCR reactions with three different primer sets. Primers for the two toxin genes

(Braun et al., 1996) and a control set specific to C. difficile 16S RNA were used.

Figure 6.1 shows the gel resulting from this PCR and it is clear that DNA

contamination is present in the negative control of the 24h sample (lane 8).

Figure 6.1 Preliminary RT-PCR
Lanes 1-4 contain samples taken at 20 hours and lanes 5-8 from 24 hours. Strain 11223 was

used. Lanes 1 and 5 used toxin A primers; lanes 2 and 6 primers for toxin B; lanes 3 and 7
16S RNA primers (positive control) and lanes 4 and 8 negative controls using toxin A
primers but no RT enzyme during the cDNA step.
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The negative controls in lanes four and eight should be free of product as no RT

enzyme was added, preventing any conversion of RNA into cDNA. If no RT enzyme

is present then anything that reacts in the PCR has to have arisen from contaminating

DNA. The contamination of the extracted RNA occurred even with the addition of

the DNA removal step; a step which the Qiagen handbook says is optional. Only one

out of the two samples contained DNA and it was thought that this may be an

anomaly. Smears were also seen on this gel (24h sample) with the primers for toxin

B and 16S. This may be due to RNA degradation within this sample and hereafter

precautions and increased care was taken when handling the RNA and cDNA. Two

further RT-PCRs were carried out using this RNA but the same results were found

each time. Despite these flaws it was decided to go ahead and grow strain 11223 in

the presence of clindamycin (an antibiotic which produced in this strain a marked

effect on toxin A in Chapter 5). The RT-PCR experiment would be performed on

these samples to analyse any difference in transcript levels (toxins A, B and 16S

RNA) between controls and C. difficile 11223 grown with sub-MIC clindamycin.

6.2 Strain 11223, clindamycin and DNA

Strain 11223 with 1/2, 1/4 and 1/8 MICs of clindamycin was grown as in Chapter 5

to try to achieve continuity between experiments. Again as in Chapter 5 due to the

highly resistant nature of this strain true MIC could not be achieved. A concentration

of 512p.g/ml was the highest concentration achievable in this study and strain 11223

grew at this concentration with ease. The samples were prepared as before with one

part culture and two parts Protect reagent. Extra care was taken during the RNA

extraction process to ensure that the protocol was religiously followed (application of

reagents etc. directly to membrane, stringent RNase-free solutions and equipment).
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This was to increase the likelihood of yielding good quality RNA for the subsequent

steps of the experiment. RNA was extracted from the resulting pellets (with the on-

column DNase step) and processed through the RT-PCR. The results were not good.

The resulting gel showed all eight negative controls to contain very prominent bands

where they should have been free of DNA. It was decided to run a PCR using the

supposedly DNA-ffee RNA to look for contaminating DNA.

«»#• 4MP 250bp

MW 123456789

Figure 6.2 DNA contamination of RNA
This gel shows the extent to which the extracted RNA was contaminated with DNA. Lanes
1-8 contain RNA samples and lane 9 is a positive control. The primer set used was 16S
RNA

This gel clearly shows how much DNA was present in the RNA extracts. Many of

the negative controls contain as strong a band as the positive control in lane 9.

Clearly DNA was going to be a problem with this kit and procedure. At this point

Qiagen were contacted to help in solving this problem. They provided an alternative
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DNA removal step (see Materials and Methods for protocol) which involved

digesting the DNA after RNA extraction and not during extraction on-column. The

negative controls that contained DNA were treated using this protocol and 5pl used

in a PCR reaction. This time no bands were seen in the negative controls but no

bands were seen in the RT-PCR reactions either. No transcripts had been amplified

though the DNA had been effectively removed. This protocol was used hereafter for

every RNA extraction in place of the on-column DNA digestion.

This RNA was now free of DNA contamination but upon quantification it was

revealed that very little RNA was present in the samples. The RNA was quantified

using spectrometry (at 260nm) according to a Qiagen protocol (Qiagen bench guide).

On average a yield of 50-150ng RNA was found in the extracted RNA samples. This

is very low in comparison to Bacillus subtilis, which Qiagen states as producing a

yield of 33pg on average. Despite this low RNA yield the extracts were tested using

all three primer sets (toxin A, toxin B and 16S) and the resulting gel is seen in Figure

6.4. The only bands on this gel other than the positive controls appear in lanes 10-13

which contain the 16S RNA transcripts. No toxin transcripts were seen at all.
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MW 1 2 34 5678 9 10 1112 13 14 15 16 17 18 MW

Figure 6.4 toxA, toxB and 16S
Lanes 1-4 contain samples from 1/2, 1/4, 1/8 MIC and control with the primers for toxA.
Lanes 5-8 the same with toxB primers and lanes 9-12 16S RNA primers. The positive
controls are found in lanes 13-17. toxA primers produce a product of 602bp and toxB and 16S
RNA products of 399bp and 250bp respectively.

6.3 Strain 11223, clindamycin and Sensiscript

Due to this low yield it was decided that a more sensitive reverse transcriptase would

likely produce a better result. The Qiagen Sensiscript enzyme is suited for RT

reactions using <50ng. A new experiment sampling strain 11223 in the presence of

clindamycin was needed as the RNA from the previous experiments had all been

used. At this point the lysozyme concentration was increased at the start of the

protocol to ensure complete lysis of the cell and release of RNA (from 50mg/ml to

lOOmg/ml). As an extra precaution the RNA samples were passed through a

Qiashredder to help remove debris and to break down DNA to help facilitate its

141



removal from the column. This was done as it was thought that the low RNA yield

may have been partly due to poor release of RNA from the cells. This extracted RNA

was DNase treated as before using the alternative protocol supplied by Qiagen. Upon

quantification the RNA concentration was again low, between 50-150ng, as in the

previous samples. The toxin primer sets were used here along with the 16S RNA

primer set. Again no toxin transcripts were seen though the bands corresponding to

the 16S RNA were clearer using Sensiscript than they were when Omniscript was

used. Several more RT-PCR's were performed with a cDNA step extended to one

hour to try to increase the likelihood of a positive result. Despite this lack of toxin

transcripts it was decided to expand the targets to look for other gene transcripts that

may be important in virulence.

6.4 tcdC, tcdD and groEL

New primer sets were ordered for the putative negative regulator of the PaLoc tcdC,

and the alternative sigma factor tcdD (Mani & Dupuy, 2001). Primers for the stress

protein gene groEL (Hennequin et al., 2001) were also ordered. It was hoped that a

difference in the tcdD transcripts alongside the toxin mRNA would be seen. Primers

for tcdC were included, as higher levels of transcripts for this gene are usually

present when the toxin mRNAs are low (Hundsberger et al., 1997). As discussed in

Chapter 5 the effect of antibiotics may be stress-related so transcripts for groEL was

investigated to try to corroborate this theory. The same RNA that was used in section

6.3 was also used here in a PCR reaction with the three new primer sets and the

control set of 16S. The gel in Figure 6.5 shows the results for this PCR.
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tcdD mhup
300bp 16S

A
250bp

Lanes 5 10 15 16171819

Figure 6.5 tcdC, tcdD, groEL and 16S
Lanes 5, 10 and 15 contain the positive controls for genes tcdC, tcdD and groEL

respectively. No negative controls are shown on this gel as they were already shown to be
clear of DNA on a separate gel. Lanes 1-4, 6-9,11-14 and 16-19 contain samples (1/2, 1/4,
1/8 and control) and the primer sets tcdC, tcdD, groEL and 16S respectively. Again the

negative controls had been certified DNA-ffee on a separate gel.

It is obvious from this gel that no transcripts of tcdC, tcdD or groEL genes were

seen. The last four lanes of the gel contain cDNA resulting from an RT reaction with

primers for 16S RNA. These are shown clearly as before when the Sensiscript

enzyme was used for the first time (gel not shown) and this is likely due to the

increased sensitivity of Sensiscript. Two more cDNA steps were performed but still

no transcripts for genes other than 16S RNA were seen.
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6.5 Discussion

It was hoped at the start of this work to see the toxin effect found in Chapter 5

mirrored in the toxin mRNA. That is, to see toxin transcripts in the antibiotic-

containing experiments appear before mRNA in the controls. Despite the

development involved in this work with the use of different primers, DNA digestion

and the increase in sensitivity offered by Sensiscript, the only transcripts seen were

those of 16S RNA. This was extremely disappointing as it would have been valuable

to analyse the transcripts in different conditions even if a difference in these

transcripts was not apparent. It can only be concluded that the levels of transcripts to

toxins A and B, tcdC, tcdD and groEL are considerably lower than those of 16S

RNA. Ribosomal mRNA is extremely prevelent in the bacterial cell and so the

relative ease with which this is seen was unsurprising. The production of toxins by C.

difficile is costly to cell in terms of energy output. The half-life of the toxin mRNA is

perhaps quite short which would make the mRNA inherently unstable. The low

concentration of RNA extracted using the Qiagen kit was also disappointing. In

Bacillus subti/is, another Gram positive spore-former, vastly greater yields of RNA

are extracted using the kit (55gg - Qiagen handbook) for the same number of

bacterial cells (109 cells). A number of protocols were offered by Qiagen to test the

efficacy of the kit and my handling of it. One of these was to use a sample with a

known concentration of RNA and to process it through the extraction kit and DNA

digestion to see if there was any loss in yield at the end. If the yield of RNA

decreased after passage through the kit then it would indicate a loss of RNA at some

point in the protocol. Unfortunately time was of the essence and this work, after

months of development, was abandoned to allow time for other work.
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It would have been interesting to look at mRNA transcripts using an alternative

extraction, DNA digestion and RT-PCR method as RNA studies in C. difficile have

been successfully done by others. The extraction steps in other protocols have the

added benefit of being able to use larger volumes of culture - Qiagen could only

accommodate a maximum of 109 cells in their mini-kit. This may allow the RT

enzyme to pick up RNA from genes other than 16S RNA. A number of groups have

successfully looked at mRNA transcripts from various genes in C. difficile. Many

utilised the Trizol reagent from Gibco BRL, formerly Life Technologies, now

incorporated into Invitrogen. This reagent contains phenol and guanidine

hydrochloride for extraction of RNA. Song et al. (1999) and Dupuy and Sonenshein

(1998) both used this reagent and they went on to successfully study C. difficile

RNA. Calabi et al. (2001) used Tri reagent from Sigma which contains acid:phenol

and the RNA is precipitated with ethanol. Another group that incorporated an ethanol

precipitation in their methodology was Hennequin el al (2001). They pelleted the

cells with Bentone Rheological additive: phenol SDS. The aqueous phase was

recovered and extracted three times with phenol: chloroform and the precipitation

with ethanol followed. In the paper by Hundsberger et al. (2001 it was demonstrated

that tcdC transcripts are present during exponential phase and toxin transcripts

appear in stationary phase. They showed that mRNA transcripts for the toxin genes

and the accessory proteins tcdD and tcdli appeared in late log - early stationary

phase. The times chosen for this work were 20 hours and 24 hours which represent

early stationary phase in this strain and in these conditions. The toxin transcripts,

although not visualised using RT-PCR, should have been present at this time. The

transcripts for the stress protein GroEL should also have been present as they are
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seen during the stress response and also during normal cell growth. We had hoped to

see these transcripts increase in the experiment containing antibiotics compared to

control conditions. Hennequin et al. (2001) managed to find mRNA transcripts of

groEL so it should have been possible in this work.

One type of method that has successfully analysed mRNA transcripts is the use of

RNA protection assays. This allows the digestion of unwanted RNA leaving only

the mRNA desired for the particular study. If this method had been tried in this work

it may have proved successful, as it would have increased the likelihood of the small

numbers of mRNA transcripts being transformed into cDNA and subsequently

amplified.

The conclusions from these experiments must be that there are significantly lower

levels of transcripts of (oxA, toxB, tcdC, tcdD and groEL than of 16S RNA. This

undoubtedly led to the difficulty in analysing these messages and ultimately led to

the unsuccessful outcome. In hindsight it would have been better to choose an

established protocol for extraction and analysis of mRNA in C. difficile. The

availability of the Qiagen kit and the presence of departmental expertise in its use led

to this method being used. Perhaps if an established method had been used then this

would have determined a different outcome.
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CHAPTER 7 Proteomic study of total cell protein of C. difficile

AIMS

1. To establish a working protocol for the preparation of whole cell extracts of C.

difficile 630 for two-dimensional (2D) gel electrophoresis.

2. To elucidate the pattern of proteins produced under standard laboratory growth

conditions.

3. To compare protein profiles under control conditions and during exposure to sub¬

inhibitory concentrations of ceftriaxone.

4. To investigate protein spots on the 2D gels, including any that differ between

conditions, and to attempt to identify them using matrix-assisted laser

desorption/ionization -time of flight (MALDI-TOF) mass spectrometry and a C.

difficile MASCOT database.

After the effects seen on toxin A in the presence of sub-inhibitory concentrations of

antibiotics (Chapter 5) it was important to investigate the broader physiological

effects antibiotics may have on C. difficile. Preliminary work had already shown sub¬

inhibitory concentrations of antibiotics to have no effect on the S-layer proteins of

the bacterium, in a change in mass or in the amount produced. The secreted protein

profile was studied using ID-PAGE but it was difficult to analyse the complex

pattern with one-dimensional separation. A proteomic study using 2D gel

electrophoresis and MALDI-TOF was required to get an accurate and more complete

picture of the total cell protein profile of C. difficile. Total cell protein extracts were

used as they would give an overall picture of the profile of proteins from this
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bacterium. It was expected that using total cell extracts would produce a complex

picture of the proteins produced in this strain. In the studies by Karlsson et al. (1999)

and Mukerhjee et al. (2002) they found ca. 500 proteins mostly with pis between 4

and 7 in their samples.

Sample preparation is arguably the most important step in 2D gel electrophoresis. If

the sample preparation is complete and reproducible then the separation stages

become routine. Many different methods have been employed for the extraction of

proteins for 2D electrophoresis. The presence of spores in Clostridia require a more

vigorous method of cell disruption to ensure complete lysis and recovery of proteins.

Tip sonication was successfully used in the study by Sinchaikul et al. 2002 to study

cold shock in Bacillus stearothermophilus and by Schaffer et al. (2002) to study

solventogenesis in Clostridium acetobutylicum. The initial method used in this work

did not include a sonication step but had previously been successful with

mycobacteria so it was a useful starting point with C. difficile.

RESULTS

7.1 Preliminary set 1

C. difficile was cultured in AIM in volumes of 5ml, 10ml and 20ml and grown for 18

hours to early stationary phase (OD6oo~ 0.8). The pellets were washed three times in

ice-cold PBS to remove the medium contaminants. The cultures and pellets were

kept on ice to reduce the risk of protein degradation. The pellets resulting from 5 and

10ml were resuspended in 200pl of lysis buffer (see Appendix 1) and an additional

200pl of lysis buffer was added to the 20ml pellet to ensure complete lysis. Although

this method has been used successfully for mycobacteria after 30 minutes of
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vortexing there was a great amount of insoluble material still visible in all three

samples. Further disruption (10 minutes) in a sonic bath was added into the protocol

to aid the lysis of the cells. After this step there was still a great amount of insoluble

material present and the samples were centrifuged and the supernatant (lOOgil; 5, 10

& 20ml pellets) processed through the Amersham Clean-up kit (Amersham

Biosciences 80-6484-51). The precipitated proteins recovered from the Clean-up kit

were resuspended directly into rehydration buffer (see Appendix 1) and 125pi of

each used to rehydrate 7cm pH 3-10 linear IPG strips (Amersham Biosciences 17-

6001-11). The strips were focused to 40000 volt hours. These strips were placed on a

small 2D gel (250 x 110 x 0.5, Amersham Biosciences 80-1261-01) and the proteins

separated according to their MW using the Amersham Biosciences MultiPhor II

system. Figure 7.1 shows the resulting gel stained with colloidal coomassie blue.

MW in
kDa
116.3

97.4
66.3
55.4

36.5
31.0

21.5

14.4
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66.3
53.0

36.5
31.0

21.5

14.4

Figure 7.1 Preliminary sample preparation
This figure shows the three protein samples resulting from 5ml (a), 10ml (b) & 20ml (c)

pellets, focused on 7cm 3-10 linear IPG strips and run on a small 2D gel. The gels were

stained with Coomassie blue and the MW marker used was Mark 12 (Invitrogen LC5677).
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These preparatory experiments were necessary to establish the proteomic pattern of

C. difficile and determine the volumes of C. difficile culture required. As is clear

from the figure, the pattern and quantity of proteins on the gels were visually similar

between all three samples. It appeared that the sample preparation protocol was

saturated by the size of pellets used since so much insoluble material remained after

the lysis and sonication steps. From this it was clear that less material would be

required in future experiments.

All three gels contained two large protein spots at ca. 46 and 36kDa which are likely

to correspond to the S-layer proteins. The S-layer proteins are extremely abundant on

the cell surface and are also the two major bands on ID gels. On ID gels using

guanadine hydrochloride-extracted proteins the upper S-layer protein appears as ca.

52kDa. Others have shown using urea extracts the higher MW S-layer in this strain

to be of ca. 46kDa. The extraction process appears to have some effect on the size or

migration of this protein. Due to the saturation found by using large volumes of

culture it is possible that incomplete solubilisation of total cell protein had occurred

on this occasion. The next preliminary experiment was set-up using smaller pellets to

try to alleviate this problem.

7.2 Preliminary set 2

For these experiments C. difficile was again grown in AIM for 18 hours but in

smaller volumes of lml, 2ml and 3ml. The pellets from these were used in the

sample preparation with one difference from the first set. After witnessing the

amount of insoluble material in the previous preparations more vigorous cell

disruption was employed (three rounds of tip sonication of 10s @ 50% output). After

sonication there was little or no insoluble material left in the sample. These samples
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after passage through the Clean-up kit were focused on 13cm non-linear pH 3-10

strips. This strip contains a pH range of 3-10 but it focuses on the range between 4

and 7 which covers the majority of isoelectric points of proteins. The IPG strips were

again focused to 40000 volt hours on a small 2D gel. Figure 7.2a- c show these gels

stained with colloidal coomassie blue.

I
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MW in
kDa

66.3
55.4

36.5
31.0

21.5

14.4

Figure 7.2a C difficile protein extractions from 1ml of culture
The proteins extracted from 1ml of culture were focused on a 13cm IPG strip and separated
on a small gel.
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Figure 7.2b C. difficile protein extractions from 2ml of culture
The proteins extracted from 2ml of culture were focused on a 13cm IPG strip and separated
on a small gel.
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Figure 7.2c C. difficile protein extractions from 3ml of culture
The proteins extracted from 3ml of culture were focused on a 13cm IPG strip and separated

on a small gel.
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These gels again show the two large spots, which are the putative S-layer proteins,

but as there was less protein in these samples these proteins no longer masked the

lower abundance spots around them. Figure 7.2a using the pellet from 1ml culture

clearly shows the majority of proteins and is ideal for identifying spots around the

putative S-layer proteins. Figures 7.2b and c, the gels from the 2ml and 3ml pellets

respectively, show a few more of the low abundance proteins but the larger protein

loading has begun to mask the proteins around the putative S-layer spots. This set of

gels clearly showed that the sample preparation had been successful as the same

pattern of spots was seen each time from different experiments. One way of ensuring

that the two large spots would not mask the lower abundance ones of similar size/p/

was to use a longer IPG strip and a bigger gel to ensure maximum separation. The

experimental set-up was now ready to begin a comparison of environmental

conditions using the optimum conditions listed below.

> Protein extraction from 1ml of culture.

> Vigorous disruption of cells using tip sonication.

> 18cm IPG strips for maximum separation of proteins in the 1st dimension.

> Large 12-14% gels for maximum 2nd dimension migration of proteins.

7.3 Effect of sub-inhibitory concentrations of ceftriaxone on

C difficile 630

7.3.1 Growth set-up and preliminary gels

The combination of sub-inhibitory concentrations of ceftriaxone on strain 630 was

chosen for proteome analysis. From the sub-MIC growth curves (Chapter 5), this

antibiotic had profound effects on the growth and toxin A production of this strain.
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For instance, a ceftriaxone concentration of 1/4 MIC produced a lag in growth and an

increase in toxin A production. Typically, conditions which affect growth, in this

case ceftriaxone, would be expected to result in stress on the bacteria which may in

turn affect the protein profile.

The experimental proceedure for the growth of C. difficile in the presence of sub¬

inhibitory concentrations of ceftriaxone was as described in Chapter 5. In brief,

bacteria were grown to an OD6oo of 0.8 which represents the start of stationary phase

in these conditions. The experiment was carried out in triplicate to try to achieve

reproducibility and a valid protein profile under each condition. Although ceftriaxone

at concentrations of 1/2, 1/4 and 1/8 MIC were sampled only the experiments at 1/2

MIC were used for the proteomic study as this produced the greatest effect on the

growth of C. difficile in Chapter 5. To check the sample integrity and the profiles of

the triplicate experiments two small 12.5% gels were run with each experimental

condition focused on a 7cm, pH 3-10 non-linear strip (3 X controls and 3 X sub-

MIC). These are seen in Figures 7.3a and b.

154



MW
in

ikDa
97.4
66.3
55.5

36.5
31.0

*

21.5

14.4

Figure 7.3a Controls from triplicate experiment
Three triplicate antibiotic-free controls from sub-MIC experiment separated on 7cm pH 3-10

strips.
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Figure 7.3b Sub-MIC ceftriaxone in triplicate
This figure shows the sub-MIC pellets from three experiments.

Figure 7.3a shows the three triplicate control experiments. As is clear from the gel

the pattern appears visually similar to samples from control-growth C. difficile 630 in

previous experiments. Figure 7.3b shows the gels resulting from the growth in

triplicate of C. difficile in the presence of 1/2 MIC ceftriaxone. The important thing
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to note with these gels are that the proteins are not degraded or streaky and the three

separate experiments show the same pattern - likely a valid proteome profile. At first

analysis no visable differences between the two sets of conditions was seen.

The integrity of the samples had been established and the experiment proceeded with

a comparison of control growth and growth in the presence of ceftriaxone.

7.3.2 Sub-MIC vs. controls

The next stage of the development was to separate these samples further on 18cm

strips and larger 2D gels to get a more complete proteome picture for each

experiment (control vs. sub-MIC ceftriaxone).

The same control and sub-ceftriaxone (1/2 MIC) samples used for gels 7.3a and b

were examined in this experiment. To achieve better 1st dimensional separation of the

proteins 18cm IPG strips were used, focusing until they reached 46000 volt hours.

They were then separated on large 12-14% gels (245 x 180 x 0.5, Amersham

Biosciences 17-1236-01). Figures 7.4a-c show the triplicate controls and as is clear

from the gels they show a similar pattern and are also similar to the previous gels.

Figure 7.5a-c show the samples from C. difficile grown with 1/2 the MIC. These gels

are visually similar to each other, confirming the reproducibility of the experiment.
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Figure 7.4a Control 1
This figure shows the pellet from 3ml of culture from experimental control 1.
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Figure 7.4b Control 2
This figure shows the pellet from 3ml of culture from experimental control 2.
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Figure 7.4c Control 3
This figure shows the pellet from 3ml ofculture from experimental control 3.
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Figure 7.5a Sub-ceftriaxone 1
This figure shows the pellet from 3ml of culture from sub-ceftriaxone experiment 1.
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Figure 7.5b Sub-ceftriaxone 2
This figure shows the pellet from 3ml of culture from sub-ceftriaxone experiment 2.
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Figure 7.12 Sub-ceftriaxone 3
This figure shows the pellet from 3ml of culture from sub-ceftriaxone experiment 3.
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Visual analysis of the two condition sets showed no obvious difference in protein

profile between them. What was apparent from these gels was that the majority of

proteins focused in a narrow pH range - between 4 and 7 - a situation mirrored in the

study by Karlsson et al. (1999).

7.4 Trypsin digests and MALDI-TOF

Twenty representative protein spots from all six gels were selected for identification

of peptides using matrix-assisted laser desorption/ionization -time of flight (MALDI-

TOF) analysis. For control samples protein spots were numbered 1-20 (see Figure

7.6) and equivalent protein spots from the sub-ceftriaxone gels were designated 21-

40 and all 40 spots digested with trypsin (see Materials and Methods). The predicted

peptide masses for each spot were entered into the Swiss prot database as an initial

search for a protein match.
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Figure 7.6 Proteins spots used in MALDI-TOF analysis.
The spots shown demonstrate the proteins excised from the gels and used in the proteomic

analysis. Spots 1-20 were picked from the three control gels and 20 corresponding spots (21-

40) from the sub-ceftriaxone gels.

C. difficile MASCOT database

To aid valid identification of these proteins it was crucial to gain access to a

homologous database for C. difficile. The genome for strain 630 was kindly donated

to Moredun Research Institute by the Wellcome Trust Sanger centre. The C. difficile

MASCOT database was produced at Moredun from the genome of strain 630.

Mascot is a powerful search engine which uses mass spectrometry data to identify

proteins from primary sequence databases. Mass spectrometry data (peptide mass)

from trypsin-digested protein spots was entered into the relevant protein database;

heterologous (in this work NCBInr, SwissProt) or homologous (C. difficile) and this

data used to identify the proteins. The experimental mass values are compared with
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calculated peptide mass, obtained by applying cleavage rules (trypsin cut sites) to the

entries in the database. NCBInr is a comprehensive, non-identical protein database.

The entries have been compiled from many sources including GenBank and SWISS-

PROT. SwissProt is a high quality, curated protein database which contains a

minimal level of redundancy. Detailed information on the application of MALDI-

TOF and MASCOT databases can be found at http://www.matrixscience.com.

The results of these searches are given in MOWSE scores. To get a MOWSE score

an algorithm is applied which estimates the probability that the experimental mass

data matches the theoretical (Pappin et al., 1993). Each calculated value which falls

within a given mass tolerance of an experimental value counts as a match.

Probability Based Mowse scoring incorporates the probability of such matches

occurring and allows the user a degree of certainty in the match

(http.V/www.matrixscience.com). High-scoring matches are more likely to be true

matches. Matches using mass values (either peptide masses or MS/MS fragment ion

masses) are always handled on a probabilistic basis. The total score is the absolute

probability that the observed match is a random event. For a further explanation of

MOWSE and probability scores see http://www.matrixscience.com.

Table 7.1 shows the outcome of these searches.
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Table
7.1

Homologous
and

heterologous
identifications

of

protein
spots.

SpotNumber
ID

Mowse
scoreCdiff/NCBInr/Sprot

No.peptidesmatched

PredictedMW
(kDa)

ExperimentalMW
(kDa)

Predicted
pi

ExperimentalPi

1

S-layer
protein

112/104

28

75.5

46

4.78

4.6

21

S-layer
protein

167/167

22

76

46

4.76

4.6

2

S-layer
protein

99/153

23

38.3

36

4.97

4.9

22

S-layer
protein

135/192

20

38.3

36

4.97

4.9

3

S-layer
precursor

protein

89/89

17

76

70

4.76

4.7

23

S-layer
precursor

protein

168/168

26

76

70

4.76

4.7

4

DNAk

homologue
104

18

66.5

65

4.76

4.75

24

DNAk

homologue
162

22

66.5

65

4.76

4.75

5

GroEL

158/158/139
23/23/16
57.7

57

4.74

4.8

25

GroEL

'>6/108/146
15/16/

57.7

57

4.74

4.8

7

Electron
transport

flav

homologue
62

13

37.3

38

5.03

4.95

8

Electron
transport

flav

homologue
78

10

37.3

38

5.03

5

28

Electron
transport

flav

homologue
55

10

37.3

38

5.03

5

9

Electron
transport

flav

homologue
56

10

36.2

38

5.11

5.1

29

Electron
transport

flav

homologue
104

14

36.2

38

5.11

5.1
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SpotNumber
ID

Mowse
scoreCdiff/NCBInr/Sprot

No.peptidesmatched

PredictedMW
(kDa)

ExperimentalMW
(kDa)

Predicted
pi

ExperimentalPi

10

Acyl-CoA
dehyd.

73

12

41.5

40

5.89

6.5

30

Acyl-CoA
dehyd.

90

12

41.5

40

5.89

6.5

11

Acyl-CoA
dehyd.

114

16

41.4

42

5.71

5.8

31

Acyl-CoA
dehyd.

131

16

41.4

42

5.71

5.8

12

Acyl-CoA
dehyd.

84

12

43.3

42

5.56

5.4

32

Acyl-CoA
dehyd.

123

18

43.3

42

5.56

5.4

13

Hypotheticalprotein
y

155

21

45

44

5.12

5.1

33

Hypotheticalprotein
y

144

20

45

44

5.12

5.1

14

S-layer
homologue
106

18

66.4

66

6.2

6.1

34

S-layer
homologue
53

14

66.4

66

6.2

6.1

16

lOkDa

chaperonin
(GroES)

68/67

5/4

10.2

12

5.09

5.0

36

lOkDa

chaperonin
(GroES)

89/76/95

7/6/6

10.2

12

5.09

5.0

17

NADH
oxidase

95

14

59

58

5.49

5.5

37

NADH
oxidase

128

18

59

58

5.49

5.5

18

NADH
oxidase

125

16

59

58

5.49

5.55

38

NADH
oxidase

144

18

59

58

5.49

5.55

19

N

ADH
oxidase

55

9

59

58

5.49

5.6

39

NADH
oxidase

136

4

59

58

5.49

5.6
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As is clear from the table the majority of protein spots were identified to a degree of

certainty (significant MOWSE scores) by the databases. The C. difficile MASCOT

database produced the majority of hits which was unsurprising as it was generated

using the sequence of strain 630. Few spots generated no significant hits. Pairs 6 and

26, 15 and 35 and 20 and 40 were unidentified by all three databases as was spot 27

(whose corresponding spot on the control gel was identified as a protein from the

electron transport system). Many spots were shown to match to the same protein.

Spots 1, 21, 2, 22, 3, 23, 14 and 34 were all shown to be S-layer proteins or

precursors. Spots 7, 8 and 9 and 28 and 29 were matched with proteins from the

electron transport system. The group of spots 17, 18 and 19, and 37, 38 and 39

scored hits for the protein NADH hydrogenase. Other proteins identified included a

Dnak homologue, GroEL and GroES. The S-layer proteins were identified as N-

acetylmuramoyl-L-alanine amidase (from Bacillus subtilis) in the C. difficile

MASCOT database. Calabi et al. (2001) have previously shown the S-layer proteins

to have weak homology to these proteins so the matched peptides from this amidase

were used in a BLAST peptide search. Mukerhjee et al. (2002) have also shown slpA

to have homology to this amidase. Short peptide fragments (shown below) that

matched the A-acetylmuramoyl-L-alanine amidase were used in the BLAST search

to try to get an identification.

DLKDYVDDLKTYNNTYSNWTVAGEDRIETAIELSSKYYNSDDKNAITDK

and

DAAAEKLYNLVNTQLDKLGDGDYVDFSVDYNLENKIITNQADAEAIVTKLNSLNEKT

LIDIATKDTFGMVSK
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These fragments and similar fragments for all proteins identified by the C. difficile

database as being A-acetylmuramoyl-L-alanine amidase (Spots 1, 21, 2, 22, 3, 23, 14

& 34) were all shown to match C. difficile S-layer proteins in the NCBI database.

Interestingly the matched peptides from the upper S-layer protein (spot 1, 21) match

the latter half of the JV-acetylmuramoyl-L-alanine amidase protein and the lower MW

S-layer protein (spot 2, 22) matches the first half of the protein. This is shown below

using spots 1 and 2 as examples.

Spot 1 (46kDa S-layer protein)

Match to: 3252562 Score: 112 Expect: 3e-08
-/V-acetylmuramoyl-L-ala 2.66e-23 CWLB BACSU

Nominal mass (Mr): 76087; Calculated pi value: 4.76
NCBI BLAST search of 3252562 against nr
Unformatted sequence string for pasting into other applications

Fixed modifications: Carbamidomethyl (C)
Cleavage by Trypsin: cuts C-term side ofKR unless next residue is P
Number of mass values searched: 60
Number of mass values matched: 23

Sequence Coverage: 28%

Matched peptides shown in Sold Red

1 mnkkniaiam sgltvlasaa pvfaattgtq gytvvkndwk kavkqlqdgl
51 kdnsigkitv sfndgwgev apksankkad rdaaaeklyn lvntqldklg

101 dgdyvdfsvd ynlenkiitn qadaeaivtk lnslnektli diatkdtfgm

151 vsktqdsegk nvaatkalkv kdvatfglks ggsedtgyw emkagavedk

201 ygkvgdstag iainlpstgl eyagkgttid fnktlkvdvt ggstpsavav

251 sgfvtkddtd laksgtinvr vinakeesid idassytsae nlakryvfdp

301 deiseaykai valqndgies nlvqlvngky qvifypegkr letksandti

351 asqdtpakvv 1 kan tvlkdlik dyvddektyn ntysnvvtva gedkietaie

401 lsskyynsdd KNAITDKAVN divlvgstsi vdglvaspla sektaplllt

451 SKDKLDSSVK SEIKRVMNLK sdtg1ntskk VYLAGGVNSI SKDVENELKN

501 mglkvtrlsg edryetslai adeigldndk afwggtgla damsiapvas

551 QLKDGDATPI vwdgkakei SDDAKSFLGT sdvdiiggkn SVSKEIEESI

601 DSATGKTPDR isgddrqatn AEVLKEDDYF tdgewnyfv AKDGSTKEDQ
651 L.VDAXiAAAF1 AGKFKEBFAP 11latdtl.ss UQNVAVSKAV pkjjggtnjuvy
701 vgkgiassvi NKMKDLLDM
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Spot 2 (36kDa S-layer protein)

Match to: 3252562 Score: 99 Expect: 5.8e-07
iV-acetylmuramoyl-L-ala 2.66e-23 CWLB BACSU

Nominal mass (Mr): 76087; Calculated pi value: 4.76
NCBI BLAST search of 3252562 against nr
Unformatted sequence string for pasting into other applications

Fixed modifications: Carbamidomethyl (C)
Cleavage by Trypsin: cuts C-term side ofKR unless next residue is P
Number of mass values searched: 60
Number of mass values matched: 23

Sequence Coverage: 29%

Matched peptides shown in Jold Red

1 MNKKNIAIAM SGLTVLASAA PVFAATTGTQ GYTVVKNDWK KAVKQLQDGL
51 KDNSIGKITV SFNDGWGEV APKSANKKAD RDAAAEKLYN LVNTQLDKLG

101 DGDYVDFSVD YNL.ENKIITN QADAEAIVTK. 1 .NSI iNKKTI ■ I I) I A'I'KU'PFGM

151 VSKTQDSEGK NVAAT KALKV KDVATFGLKS GGSEDTGYW EMKAGAVEDK

201 YGKVGDSTAG IAINLPSTGL EYAGKGTT1D FNKTLKVDVT GGSTPSAVAV

251 SGFVTKDDTD LAKSGTINVR V1NAKEESID IDASSYTSAE N1AKHYVFDP

301 DEISEAYKAI VALQNDGIES NLVQLVNGKY QVIFYPEGKR LETKSANDTI

351 ASQDTPAKW IKANKLKDLK DYVDDLKTYN NTYSNWTVA GEDRIETAIE

401 LSSKYYNSDD KNAITDKAVN DIVLVGSTSI VDGLVASPLA SEKTAPLLLT

451 SKDKLDSSVK SEIKRVMNLK SDTGINTSKK VYLAGGVNSI SKDVENELKN

501 MGLKVTRLSG EDRYETSLAI ADEIGLDNDK AFWGGTGLA DAMSIAPVAS

551 QLKDGDATPI VWDGKAKEI SDDAKSFLGT SDVDIIGGKN SVSKEIEESI

601 DSATGKTPDR ISGDDRQATN AEVLKEDDYF TDGEWNYFV AKDGSTKEDQ
651 LVDALAAAPI AGRFKESPAP IILATDTLSS DQNVAVSKAV PKDGGTNLVQ
701 VGKGIASSVI NKMKDLLDM

This is likely due to the fact that the S-layer proteins are the product of one gene

(slpA) which is then processed to become two proteins.

7.5 Discussion

In Chapter five of this thesis sub-inhibitory concentrations of ceftriaxone were shown

to affect the growth and toxin A production of C. difficile strain 630. A concentration

of 1/2 MIC produced a lag in growth and also caused toxin A to be elaborated before

toxin A in the control experiment. Due to this effect on growth and toxin production
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in this strain these conditions were chosen to analyse 2D protein profiles. The use of

2D analysis coupled with identification of proteins using MALDI-TOF mass

spectrometry would allow an insight into the broader physiological effects of

antibiotics at sub-inhibitory levels.

The proteomic approach with C. difficile was based on evidence of reproducible

sample preparation protocols in mycobacteria and various Gram positive bacteria.

The addition of the sonication step was to aid the lysis of the cells. Although no

obvious difference was apparent between the control conditions and cells grown with

sub-MIC ceftriaxone this work demonstrated an easy, reproducible sample

preparation and identification of a number of proteins for future experiments. It was

interesting to note that 2D gels run by Karlsson et al. (1999) and Mukherjee et al.

(2002) demonstrated a similar pattern of proteins to those found in this work. In

strain 630 they also showed the putative S-layer proteins to have similar MW and pi

as found in this work. They also demonstrated the S-layer proteins to be the most

abundant spots present on the gels. Further investigation by this group showed that

the N-terminal regions of these proteins matched the S-layer ORF.

In the study by Karlsson et al. (1999) they used proteomics to analyse the

suppression of toxin production by amino acids. They also used stationary phase

cells and they prepared the protein extracts using pellets from 10ml of culture.

Approximately 500 proteins mostly with pis ranging between 4 and 7 were identified

in both defined medium and in Peptone Yeast Extract medium. During biotin

limitation when the toxin levels were upregulated (discussed in section 1.8) they
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found several 22kDa proteins with pis ranging from 5 to 5.5 also upregulated.

Several proteins (60-100kDa, pis 5-7) were downregulated in the presence of excess

amino acids or glucose in PY and defined medium.

In the follow-up study by Mukherjee et al. (2002) they analysed the proteins released

during high toxin production. As in the previous study they discovered that limiting

nutrient levels caused in increase in toxin production. In strain VPI 10463 they found

that a toxin output of 50% was present with minimal lysis or spore formation proving

that toxins are not released by this manner as had been previously proposed (Kamiya

et al., 1992). During this period of increased toxin production they discovered a

47kDa protein to be released with similar kinetics. It was also down-regulated with

the addition of glucose to the medium as are the toxins. It matched an ORF in the C.

difficile database and its C-terminus showed weak similarity to the outer-membrane

efflux proteins of Gram -ve bacteria. A 40kDa protein which showed homology to

XkdK encoded by the prophage PBSX in B. subtilis was located on a segment of the

C. difficile chromosome that contained several ORFs homologous to those for PBSX.

XkdK is apparently exported through a holin-like protein. C. difficile possesses a

protein with holin-like properties in the form of TcdE, found in the Pathogenicity

Locus and upregulated along with the toxins and TcdD (see Chapter 1.6.2). The

PBSX prophage is induced by the SOS response though neither the toxins or the

homologue showed altered levels after the addition of mitomycin C.

As in this work the most abundant proteins seen in the 2D gels by Mukherjee et al.

(2002) were the putative S-layer proteins. The putative S-layers from VPI 10463 (50



and 36kDa) showed no homology to any in the strain 630 database though the 36kDa

protein showed partial homology to the S-layer protein SplA. The gene segment

containing slpA comprises secA and several additional genes similar to slpA. SipA

and slpA-Wkz ORFs contained parts with significant homology to A-acetylmuramoyl-

L-alanine amidase (CwlB/LytC) and amidase enhancer protein (LytB) from B.

subtilis. They all contained a typical Sec-dependent signal peptide and the predicted

cleavage site in the 630 SlpA was identical to that found in the extra-cellular form.

Other serogroups were tested for the slpA gene and all strains apart from A, A5 and

S4 produced one major product of 2900bp though the product of serogroup H was

slightly larger. Upon digestion of the PCR fragments with &willA and ifoff each

serogroup yielded a different pattern demonstrating the heterogeneity of the S-layer

genes.

During this work the higher S-layer protein migrated to ca. 46kDa on the gel. On ID

gels with guanidine hydrochloride-extracted surface proteins the weight appears as

ca. 52kDa. The reasons for this are unclear but it is likely that gel conditions or

different methods of S-layer extraction play a part. Urea, high salt, low-pH and

EDTA extractions all show the higher MW S-layer protein of strain 630 to be of ca.

46kDa (Calabi et a/., 2001). It is unclear why the guanidine hydrochloride-extraction

causes this difference in mobility of the higher MW S-layer protein and not the lower

MW protein.

The spots chosen for MALDI analysis included the S-layer proteins but also protein

spots chosen at random. Spots of the same size (but different pis) were chosen to
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investigate the presence of post-translational modifications. Other spots were chosen

because they were abundant and represented a selection of different MWs and pis..

The S-layer proteins were all identified by the NCBInr database as C. difficile S-

layer proteins or through a match with the S-layer precursor protein. A 72kDa spot

which generated a hit as an S-layer protein was seen on the gels and identified by the

databases. Cerquetti et al. in 1992 investigated the 36kDa S-layer protein of strain

C253 and found the native form of this protein (found using gel filtration) to have a

MW of 72kDa which was unaffected by EDTA or SDS in the column. They

hypothesised that it was a homodimeric form of the 36kDa protein. The other

possibility for an identification of this protein in this work is as the S-layer precursor

protein which was previously reported by Takeoka et al. (1991). For some reason the

C. difficile database identified the S-layer proteins as A-acetylmuramoyl-L-alanine

amidase from B. subtilis. Calabi et al. (2001) and Mukerhjee et at. (2002) have

already noted this homology to the B. subtilis protein. Further annotation to the C.

difficile database may result in the database recongising these proteins as S-layers

ahead of A-acetylmuramoyl-L-alanine.

Of the spots that generated significant hits with the databases there was some

evidence of the presence of post-translational modification in some of them. Spots 7,

8 and 9 on the control gels and 28 and 29 on the sub-MIC gels were all identified as

proteins from the electron transport system (spot 27 was not a significant hit). These

proteins all appeared at ca. 38kDa with pis of ca. 4.95, 5 and 5.1. Spots 7 and 27

were very difficult to pick from the gels due to their proximity to other proteins

including the lower S-layer protein. This may be why spot 27 was not identified - it
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may not have been picked 'cleanly'. A group of spots with a greater difference in

their pis was spots 10, 11 and 12 and 30, 31 and 32 (at 6.5, 5.8 and 5.4 respectively).

These spots all generated hits for the protein acyl-CoA-dehydrogenase. Spots 17, 18

and 19 and 37, 38 and 39 were all matched to an NADH oxidase by the C. difficile

database - another possibiltiy for post-translational modification ofproteins.

GroEL and GroES from the heat shock protein 60 (Hsp60) family of molecular

chaperones were identified during this work. GroEL was identified as C. difficile

GroEL by all three databases and GroES by all three for spot 56 and by the C.

difficile and Swiss prot databases for spot 16. Proteins from this family of chaperones

are often upregulated by stress (which possibly includes sub-MIC antibiotics) though

no difference was seen during this work.

Spot 4 and 24 both scored significant hits for Dnak, a protein from the Hsp70 family

of molecular chaperones.

Spots 13 and 33 scored well for an E. coli hypothetical protein y. This protein may

no longer be hypothetical in E. coli as C. difficile appears to possess a homologue.

This increases the possibility of it being a translated protein in E. coli.

Few pairs of spots generated no significant hits with the databases. Spot 27 has

already been discussed and as its corresponding spot on the control gel was matched

then it is likely that it was contaminated with other proteins or perhaps there was too

little of the protein for the MALDI analysis. Spots 6 and 26, 15 and 35 and 20 and 40
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remain unidentified. Further annotations and development of the C. difficile

MASCOT database should enable further identifications in the future.

The outcome of this work has been to validate the procedures for proteomic analysis

in C. difficile. There is now a clear framework present for analysing the protein

profile in this organism and future work should include further comparison of

conditions including different antibiotics and strains. It would be valuable to analyse

different membrane fractions and secreted proteins as this would allow lower

abundance proteins to be visualised and not masked by the high abundance proteins

found in total cell extracts. The proteins identified in this work have been involved in

many important cellular functions and so it is unsurprising that they appear to have

been unaffected by the presence of ceftriaxone. Including different methods of

sample preparation (membrane extracts, cytosolic protein fractions) may yield lower

abundance proteins which are affected by sub-inhibitory concentrations of

antibiotics.
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CONCLUSIONS

C. difficile is a major problem in the developed world and is the cause of significant

numbers of cases of diarrhoea and colitis among predominantly elderly patients.

Antibiotics are the main risk factor for C. difficile disease in that they are most often

a prerequisite for acquisition of the disease. Broad-spectrum antibiotics especially

affect the normal gut flora leading to abrogation of colonisation resistance. The

disappearance of the protective flora allows C. difficile access to this niche where

they colonise and produce two high molecular weight exotoxins, A and B. The toxins

glycosylate proteins of the Rho family and disrupt the actin cytoskeleton leading to

cell rounding and cell death. This effect on the gut mucosa leads to diarrhoea and in

some cases the more severe manifestation of pseudomembranous colitis. Only C.

difficile strains which possess the toxins (one or both) cause disease. In the United

Kingdom one strain (PCR ribotype 001, S-type 5236) is responsible for the majority

of nosocomial cases of CDD and colonisation with C. difficile (55% - Stubbs et al.,

1999 (PCR ribotype 001); 73% - McCoubrey et al., 2003 (S-type 5236).

In this study patient data and stool samples had been collected from two geriatric

wards in the Royal Victoria Hospital in Edinburgh as part of a Scottish Office

epidemiology study. Isolates from positive stool samples were typed according to the

molecular weights of the two S-layer proteins. One isolate from each stool sample

was tested for their antibiotic susceptibilities to six antibiotics and this data analysed

in context to patient and strain data already available. It was clear that no resistance

was found in any strain to the two treatment antibiotics vancomycin and

metronidazole. This was unsurprising as reports of resistance to these agents is rare
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or unsubstantiated. As expected, all strains were resistant to cefoxitin, one of the

agents used in the C. difficile selective medium. The majority of isolates were

resistant or had intermediate resistance to ceftriaxone, a third generation

cephalosporin common in precipitating CDD. The range of MICs to amoxicillin and

clindamycin was great but MIC50 and MIC90 values were similar (8 & 16p.g/ml for

amoxicillin and 16 & 16pg/ml for clindamycin). Twelve isolates from six patients

contained the ermB gene which encodes high-level clindamycin resistance

(>128pg/ml). This has been proposed as a way to further divide the PCR ribotype

001 group of isolates (Fawley et al., 2003) and these isolates have been responsible

for outbreaks of CDD (Johnson et al., 1999; Noren et al., 2002).

S-layer typing is a quick and easy method of phenotyping and appears to correspond

well with other typing techniques including ribotyping and serotyping (McCoubrey

and Poxton, 2001). In this study 76.6% of the isolates were of the type 5236.

Toxigenic S-type 5236 correlates well to PCR ribotype 001 (McCoubrey, 2002)

which is also the most common PCR ribotype (55%) in the UK as a whole (Stubbs et

al., 1999). The S-layer is a putative virulence factor that appears to have a role in

adhesion of the bacterium to the host mucosal surface. Calabi et al. (2002)

demonstrated this adhesion to gastrointestinal tissues mediated mainly by the high

molecular weight S-layer protein. S-type 5236 had a large range of MICs to the six

antibiotics and there were no differences in the overall pattern between this strain and

that of the total population. In the less abundant S-types the sensitivity patterns to the

antibiotics were not significantly different from one another or the whole population

suggesting that the S-layer proteins do not affect the sensitivity of the strains to

antibiotics. In the untypeable isolates (n=4) three of them were extremely sensitive to
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clindamycin (MIC>2pg/ml) but as the number was so small no conclusions can be

drawn from this.

During this study many patients were sampled more than once due to long stays in

hospital, readmission or the presence of diarrhoea. This allowed a comparison of the

isolate profiles over a period of time. Isolates from 36 patients exhibited changing

patterns of sensitivity to one or more of the six antibiotics. While some of these

changes related to change of S-type, others did not. Typical changes in isolates that

were all of the same S-type were no greater than 2-4-fold different and were

therefore of little interest. Two patients however, produced isolates with differing

clindamycin resistance at different times. The isolates were all of S-type 5236 and

the changes would have probably occurred with the loss or reinfection with a

clindamycin resistant clone rather than the loss or acquisition of the ermB resistance

determinant.

Among the data collected during the epidemiological study was the antibiotics

prescribed to the patients during their stay and any prescribed in the community. No

links between antibiotics prescribed and susceptibility patterns were found.

At the beginning of this study it was necessary to understand the relationship of

growth (measured using viable, total and spore counts), OD6oo, and the production of

toxin. Detailed growth curves on strains NCTC 11223, the sequenced strain 630 and

an endemic isolate 338a showed toxin A to be produced upon entry to stationary

phase in agreement with other studies. OD6oo was found to be a good predictor of

growth phase with discrepancy only at the very beginning of log phase before the

culture turbidity reached 0.6. Until this point the ODgoo lags behind the viable and
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total counts by ca. 2 h. As the entry to stationary phase was to be the most important

stage for this work, and the OD6oo was sufficient for this prediction then it allowed

this measurement to be used for subsequent experiments. Toxin A production varied

greatly between the strains. Endemic strain 338a produced toxin A first, followed by

strain 630 and then strain 11223. The levels of strain 11223 were also lower than

those of 630 and 338a in that they rarely exceeded the tolerance of the ELISA assay.

This work has clearly shown that production of toxin A in the three strains differed in

the time it began and the levels of toxin A achieved. However, the pattern of growth

phase dependence of toxin production was the same in all three strains with it

beginning in early stationary phase and reaching the highest levels of toxin when the

strains were heading towards decline.

Three strains (NCTC 11223, strain 630 and endemic isolate 338a) were cultured in

sub-lethal concentrations of the six antibiotics (1/2, 1/4 and 1/8 of the MIC) over 104

hours and growth and toxin A measured three times a day. The effects varied

between strain and antibiotic. The most common effect on the growth of the strains

was to increase the initial lag period by ca. 4h compared to the antibiotic-free

controls though the clindamycin resistant strain NCTC 11223, (MIC >512pg/ml)

showed no lag whatsoever in comparison to the controls when grown in this

antibiotic. An explanation for this may be that it is so well adapted to this agent that

it can function and grow as normal. This strain contains the macrolide, lincosamide

and streptogramin B resistance determinant (MLS) that contains the ermB gene

(encodes an RNA methyltransferase) which makes it resistant to these antibiotics.

Strain 630 also carries the ermB gene (Farrow el a/., 2001) but it has a slightly lower
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MIC of 512jig/ml and its growth was affected by all three sub-MIC concentrations of

clindamycin. The reasons for this are uncertain but heterogeneity between strains

was common during this work. The most common effect on toxin A production was

in the onset of toxin elaboration. Normally toxin began to appear in low levels in

early stationary phase before accumulating to high levels by the start of decline. In

the presence of sub-MIC antibiotics this onset appeared before that of the antibiotic-

free controls. This effect was seen with metronidazole, amoxycillin and clindamycin,

rarely with vancomycin and never with cefoxitin. Results suggest a very complex

relationship between the effects of growth and toxin production, which is strain

dependent. This study has clearly shown that there is heterogeneity between strains

in respect to growth, MICs and the toxin levels that are produced. This effect on

growth an toxin A production may be a result of stress. Bacteria under stress switch

on a catalogue of genes and it is possible that the toxin promoters are affected by it.

To support this, TcdD, the alternative sigma factor of the toxin genes, shows

similarity to UviA the UV-inducible regulator from Clostridium botulinum (Mani &

Dupuy, 2001). Onderdonk et al. (1979) showed that the stress of increased

temperature led to greater cytotoxin production. In the same paper they demonstrated

an increase in toxin in the presence of sub-inhibitory concentrations of vancomycin

and penicillin. Karlsson et al. (2003) also showed temperature as a controlling factor

for toxin and TcdD expression. It has been shown by Hennequin et al. (2001) that C.

difficile cultured in the presence of antibiotics produces greater levels of GroEL, a

chaperone from the heat shock protein 60 (Hsp60) family. The examples all serve to

suggest that the toxin promoters can respond to multiple environmental stresses.

Inducing this stress response may enable C. difficile to survive the gut environment
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better after colonisation as GroEL functions as a 58kDa surface adhesin. This

adhesin may help C. difficile to colonise the recently vacated binding sites left by the

depletion of the normal gut flora.

mRNA transcripts of the two toxin genes, tcdC, tcdD and groEL were investigated in

the presence and absence of sub-MIC clindamycin to see if the potentiation of toxin

A production was mirrored in the toxin transcripts. During the sub-MIC study sub¬

inhibitory concentrations of clindamycin resulted in a shift forward and increase in

toxin A production. RNA concentrations garnered from the Qiagen RNA extraction

kit were disappointing and although message levels were enhanced by the use of a

more sensitive reverse transcriptase, only mRNA from the positive control - 16S

RNA - was seen during this work. Many problems were encountered and overcome

with regards to DNA contamination of the RNA extracts. An additional DNase step

was added into the protocol which effectively removed the contaminating DNA but

resulted in a further dilution of already low levels of RNA. An alternative extraction

method, using a protocol shown to be successful in C. difficile, would likely increase

the possibility of success in this area.

The protein profile of strain 630 in the presence and absence of ceftriaxone was

studied using proteomics. Strain 630 has recently been sequenced and was kindly

donated by the Sanger Centre to Moredun Research Institute for the production of a

MASCOT database. The combination of strain 630 and ceftriaxone in Chapter 5

produced a growth lag of ca. 4 h and a shift forward in toxin A production compared

to the controls. 2D gels, MALDI-TOF analysis and a C. difficile MASCOT database
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were utilised to identify proteins from total cell extracts of strain 630. No differences

were found between the protein profiles with and without ceftriaxone but 40 spots

were picked from the gels for further identification. The C. difficile S-layer proteins

were identified along with GroEL and GroES, acetyl Co-A dehydrogenase, NADH

oxidase and proteins from the electron transport system. This work has provided

essential information on successful procedures for proteomic analysis in C. difficile

and the MASCOT database will be invaluable for further studies.
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Appendix 1

APPENDIX 1

Culture media and preparations

All culture media was autoclaved at 121°C for 15 minutes before the addition of

blood or supplements unless otherwise stated.

Columbia blood agar with 5% horse blood (1L)

Columbia agar base (OXOID CM331, Basingstoke, Hampshire) 39g

Defibrinated horse blood 50ml

Anaerobic Investigation Medium (AIM) (1L)

Proteose peptone (OXOID L85, Basingstoke, Hampshire) 20g

Yeast extract (OXOID L21, Basingstoke, Hampshire) 5g

Trypticase (BBL 11921, MD, USA) 5g

NaCl 5g

Cysteine HC1 (3.75% aqueous solution) 20ml

Na2C03 (2% aqueous solution) 20ml

Haemin + menadione (1 mg/1) See below for recipe 20ml

Distilled water 940ml

Adjust to pH 7.1 and make volume up to 1 litre with distilled water.

Haemin + Menadione

(Barnes & Impey, 1971)

Mix equal parts of haemin (500mg/L) and menadione (lOOmg/L) and store in the

dark at 4°C. See below for recipes.
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Haemin (500mg/L)

Dissolve 50mg haematin HC1 (BDH) in 1 M NaOH solution in a bijou bottle

overnight. Make up to 100ml with distilled water. Store at 4°C.

Menadione (lOOmg/L)

Dissolve lOmg menadione (Sigma) in 2ml ethanol in a bijou bottle in the dark

overnight. Make up to 100ml with distilled water. Store in the dark at 4°C.

Enriched thioglycollate medium (1L)

Sigma thioglycollate medium (FTG) T9032 (St Louis, USA) 29.8g

Hemin stock solution (5mg/ml) (see below for recipe). 1ml

Vitamin Ki working solution (lmg/ml) (see below for recipe). 1ml

NaHCCL stock solution (lOmg/ml) to every 5ml of sterile medium. 0.25ml

Hemin stock solution (5mg/ml)

Dissolve 0.5g in 10ml of 1M/L NaOH

Bring volume to 100ml with distilled water and sterilise (121°C for 15 minutes).

Store at 4°C.

Add 1ml to 1 litre of medium.

Vitamin Kj stock solution and working solution (lOmg/ml and

lmg/ml respectively)

Add 0.2ml of vitamin Ki to 20ml of 95% ethanol. Store at 4°C in a dark bottle.

Prepare the working solution (lmg/ml) by adding 1ml of the stock solution to 9ml of

distilled water. Store at 4°C in a dark bottle for no longer than a month.

Add 1ml of the working solution to 1 litre of medium to achieve lpg/ml.
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NaHCC>3 stock solution (lOmg/ml)

Dissolve 2g of NaHC03 in 100ml distilled water.

Sterilise by filtration and store at 4°C.

Add 0.25ml to 5ml of sterile medium.

Brain heart infusion/ Proteose peptone yeast broth
(Brettle eta!., 1982)

Brain heart infusion broth (OXOID) 37g

Proteose peptone (OXOID) lOg

Distilled water 1000ml

Proteose peptone/ Yeast extract broth
(Deacon etal., 1978- adapted by Poxton etal., 1984)

Proteose peptone (OXOID) 20g

Yeast extract (OXOID) lOg

NaCl 5g

Cysteine HCL 750mg

Na2C03 400mg

Haemin (250pl/L) & Menadione (100pg/L) solution 20ml

Nutrient broth (1L)

Nutrient broth (OXOID CM1, Basingstoke, Hampshire) 13g

Fastidious Anaerobe Agar with 5% blood (1L)

Anaerobe agar base (Bioconnections 143-2832)

Defibrinated horse blood

46g

50ml
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0.85% saline (physiological) (100ml)

Sodium chloride 0.85g

Supplemented Brucella Blood Agar (1L)
(NCCLS, 1997)

Brucella Medium Base (OXOID CM 169) 45g

Hemin stock solution (5mg/l) 1ml

Vitamin Ki stock solution (lmg/1) lml

Sterilise at 121°C for 15 minutes.

Cool to 50°C and dispense 17ml into sterile glass universals and keep at 4°C until

required (within 1 month).

Laked sheep blood

Freeze the defibrinated sheep blood below -20°C.

Thaw rapidly at 35°C in a waterbath. Store in the fridge for up to 1 month if not

being used immediately.

Before addition to the medium, gently invert to ensure a uniform suspension.

Cooked meat broth (CMB)
(Collee & Marr, 1996)

Add 4ml of AIM to 3-4 particles of cooked meat (see below for preparation details).

Autoclave at 121 °C for 15 minutes.
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Cooked meat particles

Remove all fatty tissues from ca. 500g of fresh sheep or bull heart or beef Mince and

add 500ml of distilled water containing 1.5ml of 1M NaOH solution and simmer for

20 minutes. Drain off the liquid and dry the particles at 60°C. Store at -20°C.

Defined Medium (Karasawa et al., 1995)

Once the components are dissolved they are sterilised through a 0.25pm pore filter

(Whatman 6780-2502) and kept at 4°C.

Amino acids mg/L

Arginine (IDH 194626) 100

Cysteine (IDH 101444) 500

Glycine (BDH 284586N) 100

Histidine (IDH 101954) 100

Isoleucine (IDH 194689) 100

Leucine (IDH 194694) 1000

Methionine (IDH 194707) 100

Proline (IDH 194728) 800

Threonine (IDH 194753) 100

Tryptophan (IDH 194758) 100

Valine (IDH 194769) 100

Vitamins Pg/L

Biotin 10

Pantothenate 1000

Pyridoxine 100
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Salts and glucose mg/L

kh2po4 300

Na2HP04 1500

NaCl 900

NaHC03 5000

(NH4)2S04 40

CaCl2.2H20 26

MgCl2.6H20 20

MnCl2.4H20 10

FeS04.7H20 4

CoC12.6H20 1

POLYACRYLAMIDE GEL ELECTROPHORESIS (PAGE)

BUFFERS (Laemmli, 1970)

Double strength separating gel buffer (0.75M TrisHCI, pH 8.8, 0.2%

sodium lauryl (dodecyl) sulphate (SDS))

Tris (hydroxymethyl) methlyamine (BDH analar) 90.885g

Sodium lauryl sulphate (SDS) (BDH analar) 2g

Pyrogen-free water 1000ml

Dissolve the tris in 800ml of pyrogen-free water and adjust pH to 8.8 with 5M and

1M hydrochloric acid. Add the SDS and make up to 1000ml with pyrogen-free

water.
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Double strength stacking gel buffer (0.25M TrisHCl, pH 6.8, 0.2%

SDS)

Tris (hydroxymethyl) methlyamine (BDH analar) 15.142g

Sodium lauryl sulphate (SDS) (BDH analar) lg

Pyrogen-free water 500ml

Dissolve the tris in 400ml of pyrogen-free water and adjust pH to 6.8 with 5M and

1M hydrochloric acid. Add the SDS and make up to 500ml with pyrogen-free water.

SDS PAGE electrode buffer (0.025M Tris, 0.192M glycine, 0.1%

SDS, pH 8.3)

Tris (hydroxymethyl) methlyamine (BDH analar) 6.057g

Glycine (BDH analar) 28.827g

Sodium lauryl sulphate (SDS) (BDH analar) 2g

Pyrogen-free water 2000ml

Dissolve the tris and the glycine in 1800ml of pyrogen-free water and check pH is

8.3. minor adjustments may be made with 1M NaOH. Add the SDS and make up to

2000ml with pyrogen-ffee water.

Sample buffer (Double strength) (0.125m Tris/HCl, pH 6.8, 4% SDS,

20% glycerol, 2% mercaptoethanol, 0.002% bromophenol blue)

Tris (hydroxymethyl) methlyamine (BDH) 1.514g

Sodium lauryl sulphate (SDS) (BDH) 4g

Glycerol (BDH analar) (= 20% v/v glycerol) 25.2g

2-mercaptoethanol (BDH) 2ml

Bromophenol blue (0.05% aq. sol.) (BDH) 4ml
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Pyrogen-free water 100ml

Dissolve the Tris in 60ml pyrogen-free water and adjust to pH 6.8 with 1M HC1. Add

the SDS. Add the bromophenol blue to the glycerol in a flask and transfer the Tris-

HC1/SDS solution to it. Add the 2-mercaptoethanol and make up to 100ml. Store

aliquots in the dark at -20°C.

SILVER STAIN FOR PROTEIN REAGENTS

Prefix A (50% methanol, 10% acetic acid

Methanol (BDH GPR) 1000ml

Glacial acetic acid (BDH) 200ml

Distilled water 800ml

Prefix B (5% methanol, 7% acetic acid)

Methanol (BDH GPR) 100ml

Glacial acetic acid (BDH) 140ml

Distilled water 1760ml

10% glutaraldehyde

Glutaraldehyde (50% sol. BDH) 200ml

Distilled water 800ml

Dithiothreitol (5mg/L)

Ditiothreitol l-2mg

Distilled water 100-200ml

Use immediately.

Ammoniacal silver nitrate

Ammonia solution (BDH, SG 0.88) 1.4ml

Sodium hydroxide solution (BDH, 0.36%) 21ml



Appendix 1
Silver nitrate solution (BDH) 4ml

Developer (0.005% citric acid in 0.019% formaldehyde solution)

Citric acid (BDH) lOmg

Formaldehyde solution (BDH, 38-40% sol.) 100pl

Distilled water 200ml

COOMASSIE STAINING FOR PAGE GELS

(Hancock and Poxton, 1988)

All the stains were made up in 2L volumes.

Coomassie 1

Coomassie brilliant blue R-250 lg

Propan-2-ol (GPR) 500ml

Acetic acid (Analar) 200ml

Distilled water 1300ml

Coomassie 2

Coomassie brilliant blue R-250 lOOmg

Propan-2-ol (GPR) 200ml

Acetic acid (Analar) 200ml

Distilled water 1600ml

Coomassie 3

Coomassie brilliant blue R-250 48mg

Acetic acid (Analar) 200ml

Distilled water 1800ml

Coomassie 4

Methanol (GPR) 800ml
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Acetic acid (Analar) 200ml

Distilled water 1000ml

Coomassie 5

Acetic acid (Analar) 200ml

Distilled water 1800ml

TAE buffer (500ml at 10X)

This buffer is made up as a 1 OX solution and diluted when required.

Tris(hydroxymethyl)methylamine (BDH 103156X) 24.22g

Ethylenediamine-tetraacetic acid (EDTA) (Sigma E-6635) 3.72g

Add 500ml of distilled water and adjust pH to 8.0 using 30% acetic acid.

REAGENTS FOR PROTEIN ASSAY USING FOLIN AND
CIOCALTEUSREAGENT

(Lowry et al1951)

Sodium carbonate (12.5% w/v)

Anhydrous Na2C03 62.5g

Distilled water 500ml

Copper sulphate (0.1% w/v)

CUSO4.5H2O lOOmg

Distilled water 100ml

Folin and Ciocalteu phenol reagent (BDH 19058)

Bovine serum albumin (2g/L)
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REAGENTS FOR 2D GEL ELECTROPHORESIS

Lysis buffer (8M urea, 4% CHAPS, 40mM Tris)

Urea (BDH 102904W) 19.2g

CHAPS (Sigma C9426) 1.6g

Tris base (Promega H5131) 0.194g

Protease Inhibitor Cocktail 4 tablets

Dissolve in deionised water (dH20) and make up to 40ml final volume with dH20.

Rehydration solution (8M urea, 2% CHAPS, Bromophenol blue)

Urea (BDH 102904W) 24g

CHAPS (Sigma C9426) lg

Bromophenol Blue trace

Dissolve in dH20 and make up to 50ml final volume with dH20. Aliquot into 1ml

volumes and store at -20°C.

SDS Equilibration Buffer (50mM Tris-HCl, pH 8.8, 6M Urea, 2%

SDS, Bromophenol blue)

Tris-HCl, pH8.8 50ml of 1,5M stock

Urea 360.35g

Glycerol 345 ml

SDS 20g

Bromophenol Blue (0.002%) 2ml of 1% stock

Deionised water up to 1000ml

Aliquot into 40ml volumes and store at -20°C.



Strain

Subject no.

S-type

Toxin A+B

van

mz

amox

clind

cefo

ceft

1205b

5236

pos

1191a

785

5236

pos

1

1

2

8

128

64

1174a

785

5236

pos

1

1

2

4

128

64

1162a

549

5236

pos

1

1

2

4

128

64

1159a

560

5236

pos

1

1

2

4

128

64

1103a

560

5242

pos

1

0.5

2

4

128

64

1085a

560

5236

pos

1

0.5

2

4

128

64

1011a

560

5242

pos

1

1

2

4

128

64

989b

560

5438

pos

1

1

2

16

256

64

959a

560

5236

pos

1

1

2

4

128

64

845b

560

5236

pos

1

1

4

8

256

64

1154a

657

5236

pos

1

0.5

2

4

128

64

1130a

657

5236

pos

2

2

16

256

64

1149

704

5236

pos

1

0.5

2

4

128

64

1127a

685

5140

pos

1

1

4

4

128

64

1124a

688

5046

neg

2

1

2

>128

64

16

1107a

699

5242

pos

4

2

4

8

128

64

1082a

654

5236

pos

2

0.5

4

>128

128

64

1076a

654

5236

pos

2

1

4

>128

256

64

1060

654

5236

pos

2

2

4

8

128

64

1072

665

5242

pos

4

2

8

8

128

64

1056a

516

5236

pos

1

1

1

4

128

64

1043a

557

5236

pos

1

1

1

8

128

64

1041a

585

5236

pos

2

1

8

>128

128

64

Appendix2-Patientandstraindata(symptomandtoxinstatus,S-type,MIC).



Strain

Subject no.

S-type

Toxin A+B

van

mz

amox

clind

cefo

ceft

1030a

604

5242

pos

4

2

8

4

128

64

961a

604

5242

pos

1

0.5

2

8

64

32

1020a

627

5236

pos

1

1

4

4

256

64

990a

627

5236

pos

1

1

2

4

128

64

996a

596

5242

pos

1

1

1

8

64

32

992d

469

5438

pos

1

0.5

2

16

64

32

988a

610

5242

pos

1

4

8

4

128

64

982

597

5140

pos

0.5

2

16

64

32

969b

597

5140

pos

1

1

2

8

64

32

967a

597

5140

pos

1

0.5

2

8

64

32

981b

553

5236

pos

1

0.5

2

8

256

64

965a

553

5236

pos

1

0.5

2

4

128

64

973a

591

5236

pos

2

2

<1

16

128

64

972a

609

5242

pos

1

1

1

8

64

32

964a

609

5242

pos

1

1

2

8

64

32

960a

567

5242

pos

1

1

4

8

128

64

945a

567

5236

pos

1

1

2

8

128

64

926

567

5236

pos

2

1

2

8

256

64

958a

603

5242

pos

4

2

4

8

128

64

936

577

5140

pos

2

0.25

1

4

64

32

935

515

5236

pos

1

1

2

16

256

64

934a

562

5236

pos

2

0.5

2

4

64

32

918b

579

5242

pos

1

4

4

4

128

64

896b

537

5236

pos

2

1

4

16

256

64

Appendix2-Patientandstraindata(symptomandtoxinstatus,S-type,MIC).



Strain

Subject no.

S-type

Toxin A+B

van

mz

amox

clind

cefo

ceft

859b

472

5236

pos

1

1

4

16

256

64

836a

474

5236

pos

2

2

4

16

256

64

816b

468

5236

neg

1

1

4

16

64

64

804c

378

5438

pos

2

1

4

4

64

32

803a

458

5438

pos

2

1

4

4

128

32

797b

467

5236

pos

1

1

2

4

256

64

793b

368

5236

pos

1

1

4

8

128

64

788b

368

5236

pos

2

2

<1

16

128

64

751a

368

5236

pos

2

2

<1

16

128

64

791a

361

5236

pos

1

2

4

16

256

64

754a

361

5236

pos

1

1

2

16

256

64

681a

361

5236

pos

2

2

4

4

256

64

668a

361

5236

pos

2

1

2

>128

64

16

790c

354

5236

pos

1

2

4

16

256

64

785a

354

5236

pos

2

2

4

8

256

64

780b

398

5236

pos

2

2

4

16

256

64

779b

427

5236

pos

2

1

4

16

256

64

778b

449

5242

pos

1

0.5

<1

8

64

32

767

346

5236

pos

1

1

2

8

256

64

758

426

5236

pos

1

1

4

8

128

32

753a

347

5236

pos

2

2

4

16

256

64

750a

409

5236

pos

2

2

4

16

256

64

749a

411

5236

pos

2

2

4

16

256

64

712a

411

5236

pos

2

2

4

16

256

64

748a

402

5236

neg

2

1

2

>128

64

32

Appendix2-Patientandstraindata(symptomandtoxinstatus,S-type,MIC).



Strain

Subject no.

S-type

Toxin A+B

van

mz

amox

clind

cefo

ceft

711b

402

5236

pos

2

1

4

8

128

32

708b

366

5236

pos

2

2

4

16

256

64

702a

366

5236

pos

2

2

4

16

256

64

679a

366

5242

pos

2

2

4

16

256

64

705a

367

5242

pos

1

1

1

4

64

32

697b

367

5236

pos

2

1

2

8

64

32

669a

367

5236

pos

2

1

4

16

64

32

563a

367

5242

pos

1

1

1

8

64

64

659b

367

5242

pos

2

1

2

8

64

32

532a

449

5242

pos

1

0.5

<1

4

64

64

703

345

5236

pos

2

2

4

16

256

64

666a

206

5236

pos

2

2

4

16

256

64

665a

251

5236

pos

2

2

4

16

256

64

633b

251

5236

pos

2

2

4

16

256

64

622

251

5236

pos

2

2

4

8

256

64

605a

251

5236

pos

2

2

4

16

256

64

566c

251

5236

pos

1

1

2

8

256

64

561a

251

5236

pos

1

2

4

16

256

64

554c

251

5236

pos

1

1

2

16

256

64

661a

316

5236

pos

2

2

4

16

256

64

638b

316

5236

pos

2

2

4

16

256

64

643a

303

5236

pos

2

2

4

16

256

64

628b

337

5046

neg

2

1

2

>128

64

32

625b

325

5046

neg

2

1

2

>128

64

32

623a

170

5236

pos

2

2

4

4

256

64

Appendix2-Patientandstraindata(symptomandtoxinstatus,S-type,MIC).



Strain

Subject no.

S-type

Toxin A+B

van

mz

amox

clind

cefo

ceft

580f

170

5236

pos

1

2

4

4

256

64

564a

170

5236

pos

1

1

2

16

256

64

518a

170

5236

pos

1

2

2

8

256

64

414a

170

5236

pos

2

2

4

8

256

64

621

18

5236

pos

2

2

4

16

256

64

565a

18

5236

pos

2

2

4

8

256

64

247a

18

5236

pos

2

2

4

4

256

64

222a

18

5236

neg/pos*

1

2

4

4

256

64

602a

76

5236

pos

2

2

4

8

256

64

495a

76

5236

pos

1

1

2

8

256

64

485

76

5236

pos

1

1

4

8

256

64

439a

76

5236

pos

1

2

4

8

256

64

401b

76

5236

neg

1

2

4

8

256

64

386a

76

5236

pos

1

2

4

8

256

64

362a

76

5236

pos

2

2

4

8

256

64

348a

76

5236

pos

2

2

4

8

256

64

253a

76

5236

pos

1

2

4

4

256

64

224a

76

5236

pos

1

1

4

4

256

64

589a

93

5236

pos

1

1

2

8

256

64

545a

93

5236

pos

2

1

4

16

256

64

530a

93

5236

pos

1

2

2

16

256

64

501a

93

5236

pos

2

2

4

16

256

64

487

93

5236

pos

1

1

2

16

256

64

381a

93

5236

pos

2

2

4

8

256

64

360a

93

5236

pos

2

2

4

8

256

64

Appendix2-Patientandstraindata(symptomandtoxinstatus,S-type,MIC).



Strain

Subject no.

S-type

Toxin A+B

van

mz

amox

clind

cefo

ceft

344b

93

5236

pos

1

2

4

2

256

64

338a

93

5236

pos

1

1

2

2

256

64

588a

254

5236

pos

1

1

2

8

256

64

568a

233

5236

pos

1

1

4

16

256

64

551a

233

5236

pos

2

1

4

16

256

64

520a

233

5236

pos

2

2

4

16

256

64

541a

240

5739

pos

1

1

2

8

128

32

528a

250

5236

pos

2

1

2

4

64

32

524a

151

5236

pos

1

1

4

8

256

64

359b

151

5043

pos

2

2

4

<2

64

32

511a

201

5242

pos

1

1

2

8

128

64

473a

201

5242

pos

1

2

4

<2

128

64

484

205

5236

pos

1

0.5

2

4

256

64

483a

182

5236

pos

4

2

4

16

256

64

480a

144

5236

pos

2

2

4

4

256

64

461a

144

5236

pos

1

2

4

8

256

64

419a

144

5236

pos

2

2

4

8

256

64

366a

144

5236

pos

2

2

4

16

256

64

467a

103

5236

pos

1

1

8

<2

64

64

394b

103

5236

pos

1

1

16

<2

64

64

316a

103

5236

pos

1

1

4

2

128

64

447a

163

5236

pos

1

1

4

<2

256

64

445c

84

0

pos

2

1

4

8

64

32

391a

84

5236

pos

2

2

4

8

256

64

364a

84

5236

pos

2

1

4

8

256

64

Appendix2-Patientandstraindata(symptomandtoxinstatus,S-type,MIC).



Strain

Subject no.

S-type

Toxin A+B

van

mz

amox

clind

cefo

ceft

336b

84

5236

pos

1

2

4

4

256

64

322b

84

5236

pos

1

2

2

4

256

64

444a

119

5236

pos

1

2

2

8

256

64

440a

49

5236

pos

2

2

4

8

256

64

433a

49

5236

pos

2

2

4

8

256

64

277b

49

0

pos

2

1

2

<2

64

32

244a

49

0

pos

2

1

4

<2

64

32

218a

49

0

pos

2

1

2

<2

64

32

431b

137

5236

pos

2

2

4

8

256

64

332b

137

5046

pos

1

2

2

8

256

64

428

147

5236

pos

1

2

4

8

256

64

385

147

5236

pos

1

1

4

8

256

64

399a

172

5236

pos

1

1

16

2

128

64

392a

82

5236

pos

1

2

4

8

256

64

371a

82

5236

pos

2

2

4

16

256

64

375a

143

5236

pos

2

2

4

8

256

64

370a

68

5236

pos

2

2

4

8

256

64

369b

5236

pos

2

2

4

16

256

64

363b

81

5236

neg

2

2

8

128

64

64

269b

81

5236

neg

1

0.5

4

>128

64

64

261a

81

5236

neg

1

1

8

128

64

32

223a

81

5236

pos

1

1

4

>128

64

64

357a

138

5236

pos

1

2

4

4

256

64

346a

61

5236

pos

1

2

2

4

256

64

257a

61

5236

pos

2

1

2

4

256

64

Appendix2-Patientandstraindata(symptomandtoxinstatus,S-type,MIC).



-type 5236 5236 5236 5242 5236 5242 5438 5236 5236 "5236 5236 5236 5236 5236 5242 5242 5236 5236 5140 5140 5140 5236 5236 5242 5242 5242 5236 5236

sampledateprocessdatevanmzamoxclindcefoceftantibioticsatsampletime 13/11/0014/11/00112812864co-am 07/11/0008/11/001124128640 26/10/0027/10/00112412864co-am,tri 02/10/0004/10/0010.52412864co-am 18/09/0022/09/0010.52412864co-am 12/08/0021/08/00112412864co-am 05/08/0008/08/001121625664co-am 24/07/0026/07/00112412864co-am 114825664?
27/10/0027/10/0010524128640 13/10/0013/10/0022216256640 19/09/0022/09/0020.54>12812864oral,cephs 17/09/00214>12825664oral,cephs 04/09/0005/09/00224812864oral 25/07/0026/07/0010.52864320 23/08/0024/08/004284128640 21/08/00114425664co-am 07/08/0008/08/00112412864co-am 31/07/0002/08/0020521664320 27/07/0028/07/00112864320 23/07/0026/07/0010.52864320 31/07/0002/08/0010.52825664co-am 21/07/0026/07/0010.52412864co-am 27/07/0028/07/00111864320 23/07/0026/07/00112864320 25/07/0026/07/00114812864mac 12/07/0012/07/00112812864mac 28/06/0004/07/00212825664mac Appendix3-Patientrepeatsamplesandantibioticregimeatsampledate.



Strain

sub.no.S-type
sampledateprocessdate
van

mz

amox

clind

cefo

ceft

antibioticsatsampletime

793b

368

5236

13/03/00

15/03/00

1

1

4

8

128

64

quins

788b

368

5236

03/03/00

10/03/00

2

2

<1

16

128

64

quins

751a

368

5236

22/02/00

24/02/00

2

2

<1

16

128

64

quins

791a

361

5236

04/03/00

10/03/00

1

2

4

16

256

64

754a

361

5236

24/02/00

25/02/00

1

1

2

16

256

64

oral,amox,co-am

681a

361

5236

27/02/00

28/02/00

2

2

4

4

256

64

oral,amox,co-am

668a

361

5236

23/01/00

26/01/00

2

1

2

>128

64

16

amox

785a

354

5236

06/03/00

10/03/00

2

2

4

8

256

64

co-am,paren,oral,macro

790c

354

5236

04/03/00

10/03/00

1

2

4

16

256

64

co-am,paren,oral,macro

778b

449

5242

05/03/00

10/03/00

1

0.5

<1

8

64

32

0

532a

449

5242

11/11/99

15/11/99

1

0.5

<1

4

64

64

0

749a

411

5236

22/02/00

24/02/00

2

2

4

16

256

64

quins,co-am

712a

411

5236

09/02/00

11/02/00

2

2

4

16

256

64

quins

748a

402

5236

21/02/00

22/02/00

2

1

2

>128

64

32

amox,mac,pens,paren,oral

711b

402

5236

07/02/00

11/02/00

2

1

4

8

128

32

0

708b

366

5236

07/02/00

11/02/00

2

2

4

16

256

64

mac,co-am,oral

702a

366

5236

07/02/00

07/02/00

2

2

4

16

256

64

mac,co-am,oral

679a

366

5242

28/01/00

28/01/00

2

2

4

16

256

64

mac

705a

367

5242

07/02/00

07/02/00

1

1

1

4

64

32

0

697b

367

5236

04/02/00

07/02/00

2

1

2

8

64

32

0

669a

367

5236

24/01/00

28/01/00

2

1

4

16

64

32

0

659b

367

5242

18/01/00

19/01/00

2

1

2

8

64

32

0

563a

367

5242

1

1

1

8

64

64

0

665a

251

5236

22/01/00

26/01/00

2

2

4

16

256

64

co-am,mac,oral,ceft,paren,cephs

633b

251

5236

10/01/00

13/01/00

2

2

4

16

256

64

co-am,mac,oral,ceft,paren,cephs

622

251

5236

06/01/00

07/01/00

2

2

4

8

256

64

co-am,mac,oral,ceft,paren,cephs

605a

251

5236

09/12/99

10/12/99

2

2

4

16

256

64

co-am,mac,oral

566c

251

5236

22/11/99

24/11/99

1

1

2

8

256

64

co-am,mac

561a

251

5236

1

2

4

16

256

64

co-am,mac

554c

251

5236

18/11/99

19/11/99

1

1

2

16

256

64

co-am,mac

Appendix3-Patientrepeatsamplesandantibioticregimeatsampledale.



-type 5236 5236 5236 5236 5236 5236 5236 5236 5236 5236 5236 5236 5236 5236 5236 5236 5236 5236 5236 5236 5236 5236 5236 5236 5236 5236 5236 5236 5236 5236

sampledateprocessdatevanmzamoxclindcefoceftantibioticsatsampletime 19/01/00

21/01/00

2

2

4

16

256

64

mac,cephs

11/01/00

14/01/00

2

2

4

16

256

64

mac

07/01/00

10/01/00

2

2

4

4

256

64

oral,mac

29/11/99

30/11/99

1

2

4

4

256

64

oral,mac

1

1

2

16

256

64

oral+-mac

01/11/99

03/11/99

1

2

2

8

256

64

oral

21/09/99

22/09/99

2

2

4

8

256

64

oral

06/01/00

07/01/00

2

2

4

16

256

64

quins

24/11/99

24/11/99

2

2

4

8

256

64

quins

28/07/99

28/07/99

2

2

4

4

256

64

quins

20/07/99

20/07/99

1

2

4

4

256

64

quins

06/12/99

07/12/99

2

2

4

8

256

64

co-am,pens,quins,oral,amox,pens

18/10/99

20/10/99

1

1

2

8

256

64

co-am,pens,quins,oral,amox

14/10/99

15/10/99

1

1

4

8

256

64

co-am,pens,quins,oral,amox

28/09/99

29/09/99

1

2

4

8

256

64

co-am,pens,quins,oral

15/09/99

19/09/99

1

2

4

8

256

64

co-am,pens,quins,oral

09/09/99

10/09/99

1

2

4

8

256

64

co-am,pens,quins

30/08/99

01/09/99

2

2

4

8

256

64

co-am,pens,quins

25/08/99

25/08/99

2

2

4

8

256

64

co-am,pens,quins

30/07/99

30/07/99

1

2

4

4

256

64

co-am,pens

21/07/99

21/07/99

1

1

4

4

256

64

co-am,pens

30/11/99

01/12/99

1

1

2

8

256

64

quins,co-am,amox,oral

12/11/99

17/11/99

2

1

4

16

256

64

quins,co-am,amox,oral

11/11/99

12/11/99

1

2

2

16

256

64

quins,co-am,amox,oral

19/10/99

20/10/99

2

2

4

16

256

64

quins,co-am,amox,oral

14/10/99

15/10/99

1

1

2

16

256

64

quins,co-am,amox,oral

08/09/99

09/09/99

2

2

4

8

256

64

quins,co-am,amox,oral

31/08/99

31/08/99

2

2

4

8

256

64

quins,co-am,amox,oral

23/08/99

25/08/99

1

2

4

2

256

64

quins,co-am,amox

23/08/99

23/08/99

1

1

2

2

256

64

quins,co-am,amox

Appendix3-Patientrepeatsamplesandantibioticregimeatsampledate.



Strain

sub.no.S-type
sampledateprocessdate
van

mz

amox

clind

cefo

ceft

antibioticsatsampletime

568a

233

5236

22/11/99

24/11/99

1

1

4

16

256

64

oral,co-am,mac,quins,paren

551a

233

5236

16/11/99

17/11/99

2

1

4

16

256

64

oral,co-am,mac,quins,paren

520a

233

5236

02/11/99

03/11/99

2

2

4

16

256

64

oral,co-am,mac,quins,paren

524a

151

5236

05/11/99

09/11/99

1

1

4

8

256

64

co-am

359b

151

5043

28/08/99

31/08/99

2

2

4

<2

64

32

co-am

511a

201

5242

25/10/99

26/10/99

1

1

2

8

128

64

co-am

473a

201

5242

09/10/99

13/10/99

1

2

4

<2

128

64

co-am

480a

144

5236

14/10/99

14/10/99

2

2

4

4

256

64

tri,amox,macro,oral

461a

144

5236

04/10/99

07/10/99

1

2

4

8

256

64

tri,amox,macro,oral

419a

144

5236

21/09/99

22/09/99

2

2

4

8

256

64

tri,amox,macro,oral

366a

144

5236

31/08/99

01/09/99

2

2

4

16

256

64

tri,amox,macro,oral

467a

103

5236

12/10/99

13/10/99

1

1

8

<2

64

64

co-am

394b

103

5236

13/09/99

15/09/99

1

1

16

<2

64

64

co-am

316a

103

5236

16/08/99

17/08/99

1

1

4

2

128

64

0

445c

84

0

01/10/99

04/10/99

2

1

4

8

64

32

am,mac,oral,quin,ceft,ceph,co-am

391a

84

5236

11/09/99

13/09/99

2

2

4

8

256

64

am,mac,oral,quin,ceft,ceph,co-am

364a

84

5236

30/08/99

01/09/99

2

1

4

8

256

64

amox,mac,oral,quins,ceft,cephs

336b

84

5236

19/08/99

23/08/99

1

2

4

4

256

64

amox,mac,oral,quins

322b

84

5236

17/08/99

17/08/99

1

2

2

4

256

64

amox,mac,oral,quins

440a

49

5236

29/09/99

29/09/99

2

2

4

8

256

64

oral

433a

49

5236

25/09/99

29/09/99

2

2

4

8

256

64

oral

277b

49

0

04/08/99

04/08/99

2

1

2

<2

64

32

0

244a

49

0

26/07/99

28/07/99

2

1

4

<2

64

32

0

218a

49

0

20/07/99

20/07/99

2

1

2

<2

64

32

0

431b

137

5236

28/09/99

29/09/99

2

2

4

8

256

64

co-am

332b

137

5046

20/08/99

23/08/99

1

2

2

8

256

64

0

428

147

5236

29/09/99

29/09/99

1

2

4

8

256

64

quins,oral,ceft

385

147

5236

09/09/99

10/09/99

1

1

4

8

256

64

392a

82

5236

13/09/99

13/09/99

1

2

4

8

256

64

mac,co-am,quins,ceft,paren,cephs

371a

82

5236

05/09/99

06/09/99

2

2

4

16

256

64

mac,co-am,quins,ceft,paren,cephs

Appendix3-Patientrepeatsamplesandantibioticregimeatsampledate.



-type 5236 5236 5236 5236 5236 5236 5242 5242 5242 5236 5236 5236 5236 5236

sampledateprocessdatevanmzamoxclindcefoceftantibioticsatsampletime 30/08/9901/09/992281286464mac 02/08/9903/08/9910.54>1286464mac 30/07/9902/08/991181286432mac 21/07/9921/07/99114>1286464mac 24/08/9925/08/991224256640 31/07/9902/08/992124256640 08/08/9909/08/9911286432co-am 27/07/9928/07/9910.5<1<26432co-am 14/07/9915/07/9911<146432co-am 04/08/9904/08/99224425664oral 26/07/9928/07/99112<225664oral 03/08/9903/08/99224425664co-am,quins 30/07/9902/08/99124425664co-am,quins 14/07/9915/07/99212256640 14/07/9915/07/991224256640 Appendix3-Patientrepeatsamplesandantibioticregimeatsampledate.
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Changes in sensitivity patterns to selected
antibiotics in Clostridium difficile in geriatric
in-patients over an 1 8-month period
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Clostridium difficile-associated disease continues to be a major problem in hospitals and long-term
care facilities throughout the developed world. Administration of certain antibiotics such as

amoxycillin, oral cephalosporins and clindamycin is associated with the greatest risk of developing
C. difficile disease. The two antibiotics used for treatment of C. difficile disease are vancomycin and
metronidazole, to which there is currently very little resistance. Randomly selected isolates (186)
from 90 patients being investigated during an 18-month epidemiological study into the disease were
tested for their susceptibility to vancomycin, metronidazole, amoxycillin, clindamycin, cefoxitin and
ceftriaxone by the NCCLS agar dilution method. There was a narrow range of MIC for the two
treatment agents (vancomycin and metronidazole), from 0-5 to 4 pg ml-1, with no evidence of
resistance. All strains were resistant to cefoxitin (MIC 64-256 pg ml-1), the antibiotic used in most
selective media. All strains were of similar sensitivity to amoxycillin (MICgo = 4 pg ml-1). Most
strains were resistant to ceftriaxone (MIC & 64 pg ml-1) or of intermediate resistance (MIC
3= 32 pg ml-1), with only two sensitive strains (MIC 1 6 pg ml-1). Clindamycin resistance was
common, with 67 % of strains resistant (MIC 8 pg ml-1), 25 % with intermediate resistance (MIC
& 4 pg ml-1) and only 8% sensitive (MIC =£ 2 pg ml-1). Twelve isolates from six different patients
had very high resistance to clindamycin (MIC 3 1 28 pg ml-1). Multiple isolates from the same

patient, taken at different times, showed changes in susceptibility patterns overtime. The only major
change in susceptibility over the time-period was in clindamycin resistance; some strains appeared
to become more resistant while others became less resistant. No differences were seen in the MIC50

Received 29 July 2002 and MICgo of the different S-types of C. difficile identified, although some S-types were present in
Accepted 6 December 2002 very small numbers. There was no correlation between the antibiotics prescribed and susceptibility.

INTRODUCTION

Clostridium difficile is an important cause of nosocomial,
antibiotic-associated diarrhoea (AAD) and pseudomembra¬
nous colitis. Its clinical manifestations range from asympto¬
matic carriage to severe diarrhoea and pseudomembranous
colitis with toxic megacolon. Although it was first described
in 1935, as a commensal in the gut flora of infants, it was
implicated in antibiotic-associated colitis in the 1970s
(Tedesco et al., 1974; Bartlett et ai, 1978). C. difficile is
prevalent in hospitals and long-term care facilities and
increases costs to health services for the care of infected

patients as well as in isolation and infection-control proce¬
dures (Spencer, 1998).

Disease is generally thought to occur after depletion of the
patient's normal protective bowel microbiota following use

of broad-spectrum antibiotics (Borriello & Barclay, 1986;
Larson 8c Welch, 1993). This state leaves the patient vulner¬
able to overgrowth by C. difficile that is already in the patient
in small numbers (endogenous) or, more commonly, from
another patient or the environment (exogenous). The third-
generation cephalosporins, clindamycin and amoxycillin are
associated with the greatest risk for developing AAD because
of their widespread use in the hospital as well as the
community, but almost all antibiotics can cause the disease
(Mylonakis et al., 2001).

The antibiotics used to treat C. difficile diarrhoea are
vancomycin and metronidazole, with metronidazole being
the drug ofchoice because it has fewer side-effects, is cheaper
and is not associated with selection of vancomycin-resistant
enterococci (Wilcox & Dave, 2001). Few reports have
appeared of decreased susceptibility to these therapeutic
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agents (Barbut et al., 1999; Johnson et al., 2000; Brazier et al.,
2001; Pelaez et al., 2002). The majority of strains with
reported decreased susceptibility to metronidazole have been
non-toxigenic and are therefore considered clinically insig¬
nificant (Barbut et al., 1999; Johnson et al., 2000; Brazier et
al., 2001).

The aims of this study were to obtain current information on
the sensitivity (as MICs) of a sample of C. difficile isolates to a
variety of precipitating and treatment antibiotics during the
18-month period of a major epidemiological study. It also
investigated the patterns of susceptibility in relationship to
phenotype (S-type) and antibiotics prescribed. This work
was not meant to be a comprehensive study ofsusceptibility.
When more than one isolate was taken from a patient, they
were used to determine changes in sensitivity patterns over
time. Another paper (to be published elsewhere) will contain
the demographical information together with computer
modelling.

METHODS

C. difficile isolates and characterization of S-types. Isolates were
obtained through an 18-month epidemiological study (July 1999—
December 2000) during which over 1000 faecal samples were taken from
390 patients, of whom 100 were culture-positive. The study was unable
to determine whether C. difficile was acquired from the hospital or the
community environment, as it was difficult to guarantee that a stool
sample was taken immediately on admission to the ward. Stool samples
were taken at least once during a patient's stay and weekly if possible.
Patient data and stool samples were collected by a research nurse in
wards 5 and 6 (care-for-the-elderly wards) of the Royal Victoria
Hospital in Edinburgh. Full demographical details including patient
age, antibiotic usage and health are to be published elsewhere. However,
briefly, 1003 specimens were taken from 390 patients: mean age 82-5, SD
7-3, 65 % female, with 44 % being transferred from another hospital
ward.

The stool samples were processed on cefoxitin/cycloserine/egg-yolk
(CCEY) selective agar (Brazier, 1993). The isolates were identified by
characteristic colony morphology, smell and appearance on a Gram
film. From over 500 isolates (with up to six from a sample), a subset of
186 from 90 patients was randomly selected for study of antibiotic-
sensitivity patterns. These included multiple isolates from 38 patients.
Subcultures were stored in cooked meat+anaerobic investigation
medium (AIM; Brown et al., 1996) for maintenance.

One isolate from each sample was S-typed using guanidine hydro¬
chloride to extract their S-layer proteins followed by analysis on SDS-
PAGE (McCoubrey 8< Poxton, 2001). Where multiple isolates were
available, differences were observed in the S-types present. Isolates were
also tested for toxin production using Techlab Tox A+B EL1SA kits. All
the data collected were stored in a Microsoft Access database. Only one
isolate from each sample was used for MIC determinations.

Antibiotics and MIC determinations. Details of all antibiotics used
in the treatment of these patients were available in the database. The
antibiotics selected for this study (all from Sigma) were not meant to be
extensive, but representative: the two agents used for treatment of
C. difficile-associated disease, vancomycin (concentrations used
8-0-125 pg ml-1) and metronidazole (8-0-125 pg ml-1), and four of
the agents with known association with C. difficile disease, amoxycillin
(64-1 pg ml-1), clindamycin (128-2 pg ml-1), ceftriaxone (256—
8 pgml-1) and cefoxitin (256-8 pgml-1); the latter is also used in

the CCEY selective medium, at 8 pg ml-1. The non-treatment agents
were chosen because they are the most common precipitating agents of
C. difficile diarrhoea -they have poor in vitro activity against C. difficile.
MICs were determined using the agar dilution protocol in the NCCLS
guidelines (NCCLS, 1997). The isolates were subcultured from spores in
cooked-meat broth into pre-reduced (80% N2, 10% H2, 10% C02 at
37 °C) thioglycollate medium (Sigma) enriched with 5 pg haemin, 1 pg
vitamin fC and 1 mg NaHC03 ml-1 and incubated overnight anaero-
bically at 37 °C. This yielded approximately 1X108 bacteria ml-1. Purity
of the cultures was checked by Gram stain and was checked retro¬
spectively by anaerobic and aerobic incubation for 48 h on Columbia
blood agar (Oxoid; supplemented with 5 % horse blood). Aliquots (1 -2
pi) of the cultures were spotted onto Brucella agar (Oxoid) supple¬
mented with 5 % defibrinated sheep blood, 5 pg haemin ml-1 and 1 pg
vitamin Ki ml-1 using a multi-point inoculator.

MIC50 and MIC90 were calculated by pasting all the MICs for each strain
into an Excel spreadsheet and sorting into ascending order. The MIC50
was taken as the MIC that was the median value. Of 186 isolates, this was

cell 93. Similarly, the MIC90 was the value found in row 168 (90% of
186) and represented the concentration of antibiotic that would inhibit
90 % of the isolates tested.

RESULTS

MICs

In total, 186 representative isolates were investigated. Table 1
shows the ranges of MICs among the isolates for the six
antibiotics used, together with MIC50 and MIC90 values and,
where known, the break-points for the antibiotics. The two
antibiotics used for treatment (vancomycin and metronida¬
zole) both showed a narrow range, between 0-5 and 4 pg ml-1.
Cefoxitin, the antibiotic used in the selective medium (at
8 pg ml-1), showed a range of MICs from 64 to 256 pg ml-1.
The other three precipitating antibiotics all showed a wider
range of MICs.

The MIC50 and MIC90 for the six antibiotics used were either
the same or twofold different. This highlights the closeness in
sensitivity of the majority of isolates. The MIC50 and MIC90
for vancomycin and metronidazole were low (2 pg ml-1),
and only five strains (2-7%) had an MIC of 4 pg ml-1 to
vancomycin and two (1-1 %) had an MIC of 4 pg ml-1 to
metronidazole. None of the isolates tested was resistant to the
two treatment agents for C. difficile diarrhoea. Both the
MIC50 and MIC90 values for amoxycillin were 4 pgml-1.
This shows that, even though the range of MICs to this
antibiotic was relatively broad (=S 1-16 pg ml-1), the ma¬
jority of the isolates had very similar sensitivity. Clindamycin
produced a range of sensitivities within the tested isolates
(=£ 2 to > 128 pg ml-1). For this antibiotic, the MIC50 and
MIC90 values were respectively 8 and 16 pgml-1. The
NCCLS break-point for clindamycin resistance is
3= 8 pg ml-1; therefore, 66-7 % (n = 124) ofthe isolates were
resistant to clindamycin, 24-7% (n = 46) had intermediate
resistance (MIC 4 pgml-1) and the rest were sensitive.
Twelve C. difficile isolates with MICs to clindamycin of
3= 128 pgml-1 from six patients were found. The MIC50 and
MIC90 of cefoxitin were the same, at 256 pgml-1. The
NCCLS guidelines state that MICs of 3 64 pg ml-1 indicate
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Table 1. Range of MIC values from 186 isolates

Antibiotic MIC range

(ffg ml-1)
MIC50 MIC90 Break-point

Vancomycin 0-5-4 1 2 8

Metronidazole 0-5-4 1 2 8

Amoxycillin =5 1-16 4 4 ?

Clindamycin =5 2-> 128 8 16 8

Cefoxitin 64-256 256 256 64

Ceftriaxone 16-256 64 64 64

resistance to cefoxitin (NCCLS, 1997); therefore, none of the
186 isolates tested was sensitive. According to the NCCLS
guidelines, MICs of 5s64pgml_1 indicate resistance to
ceftriaxone. Isolates had MIC50 and MIC90 values of
64jigmC1 to ceftriaxone. Thirty-three strains (17-7%)
had intermediate resistance to ceftriaxone, with MICs of
32 pg ml-1 (NCCLS, 1997). Only two strains (1-1 %) were
sensitive, with MICs of 16 pg ml-1.

Relationship of S-layer types to MICs
Of the 186 strains included in the collection for MIC

determinations, 145 were phenotyped by analysis of their
S-layer proteins on SDS-PAGE. Most strains (76-5 %;
n = 111) belonged to the common S-type 5236, with most
of the others being S-type 5242 (14-5 %; n — 21). Of the
remainder, 3-4 % (n = 5) were S-type 5140 and 2-8 % (n = 4)
were S-type 5438, with single isolates of S-types 5941 and
5144. Two strains collected were non-typable: they did not
show the typical two major S-layer bands on SDS-PAGE.
There was a degree of variation in sensitivity to antibiotics
depending on the S-type of the isolate (Table 2). The
common S-type 5236 had a large range of MICs, and there
was no difference in overall pattern between this and the total
population. However, the less common S-types did show
some variations, in particular in respect to clindamycin
sensitivity. Both of the non-typable strains were extremely

sensitive to clindamycin, with MICs of «£ 2 pg ml-1, and had
below-average MICs to cefoxitin and ceftriaxone, respec¬
tively 64 and 32 pg ml-1.

Repeat samples and changes in antibiotic-
sensitivity patterns over time

Thirty-eight patients were sampled more than once, with
some being sampled up to 10 times. Of those S-typed, at least
50 % (19/38) retained the same S-type throughout the study,
while 13 % (5/38) definitely harboured different S-types over
time, with one patient having three different types at different
times. Isolates from 19 patients exhibited changing patterns
ofsensitivity to one or more of the six antibiotics. While some
of these changes related to changes of S-type, others did not.
Typical changes in isolates that were all of the same S-type
were no more than two- to fourfold differences in MIC.
However, some major changes occurred in sensitivity to
clindamycin. One noteworthy example of this was an isolate
with an MIC to clindamycin of 8 pg ml-1. Two subsequent
samples taken from the same patient 13 and 15 days later each
produced a highly clindamycin-resistant strain, with an MIC
of > 128 pg mH1. The isolates from these samples were all S-
type 5236. Another example of changing clindamycin sensi¬
tivity was in a patient who also harboured isolates of S-type
5236. The first sample produced an isolate with an MIC of
> 128 pg ml-1. A month later, another sample contained a

Table 2. Variation in MICs among different S-types

Abbreviations: Van, vancomycin; Met, metronidazole; Amox, amoxycillin; Clin, clindamycin; Cefo, cefoxitin; Ceft, ceftriaxone. NT, Not typable.

S-type Isolates [% («)] MIC [range (MIC90)] (pg ml~ ')

Van Met Amox Clin Cefo Ceft

All 100 (145) 0-5-4 (2) 0-25-4 (2) 1-16 (4) =5 2-> 128 (16) 64-256 (256) 16-256 (64)
5236 76-5 (111) 1-4(2) 0-5-2 (2) 1-16 (4) =5 2-> 128 (16) 64-256 (256) 16-64 (64)
5242 14-5 (21) 1-4(2) 0-5-4 (2) 1-8(8) =52-16 (8) 64-128 (128) 32-64 (64)
5140 3-4 (5) 1-2(2) 0-25-1 (1) 1-4 (4) 4-16 (16) 64-128 (128) 32-64 (64)
5438 2-8 (4) 1-2(2) 0-5-1 (1) 2-4 (4) 4-16 (16) 64-256 (256) 32-64 (64)
5144 0-7(1) 2 1 2 > 128 64 16

5941 0-7(1) 1 1 2 8 128 32

NT 1-4 (2) 2 1 2-4 (4) =5 2 64 32
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strain with an MIC of 16 pg ml-1 followed, 3 days later, by
one with an MIC to clindamycin of 8 pg ml-1. Neither of
these patients was on clindamycin or any other macrolide.
No significant changes in the MIC of the patients' isolates
were found to the other five antibiotics.

No clear patterns emerged from the data to suggest any link
between prescribed antibiotics and specific sensitivities. For
example, patients on amoxycillin showed no propensity to
produce isolates more resistant to that agent.

Overall, 97% of the total isolates produced toxin (by the
Techlab A+B kit). However, there was no correlation be¬
tween toxin production and antibiotic susceptibility or,
indeed, S-type.

DISCUSSION

This 18-month study has investigated the susceptibility of
C. difficile isolates to a range of antibiotics associated with
development of C. difficile-associated diarrhoea, together
with the two antibiotics used in therapy of the disease. There
was no evidence of any resistance to vancomycin or
metronidazole, the treatment agents. However, such strains,
especially human isolates, are still extremely rare (Brazier et
al., 2001). Five strains (2-7 %) had slightly reduced suscept¬
ibility to vancomycin, with MICs of4 pg ml"1. This low level
of reduced susceptibility has also been reported by others
(Pelaez etal, 2002), also in small numbers. There was general
resistance to the cephalosporin and cephamycin antibiotics,
but not to the other beta-lactam amoxycillin. Resistance to
clindamycin was common, despite its infrequent use. In
summary, this shows that increased colonization with C.
difficile and subsequent disease may well be due to acquisi¬
tion of resistant strains of the bacterium, but, as has been
shown frequently in the past, other mechanisms must also be
operating, as demonstrated by the apparent sensitivity to
amoxycillin. Amoxycillin is used widely, both in the hospital
environment and in the community, and is one of the most
common precipitating antibiotics (Freeman & Wilcox,
1999).

Isolates showed a wide range of sensitivities to clindamycin,
with MICs varying from ^ 2 to > 128pgml_1. Strains
resistant to clindamycin have been widely reported, and
some have been involved in epidemics (Johnson etal., 1999).
Clindamycin usage has decreased dramatically because of its
involvement in the precipitation of C. difficile diarrhoea.
There is now little selective pressure for clindamycin resis¬
tance. The usual mechanisms by which clindamycin resis¬
tance is conferred also mediate resistance to other macrolide,
lincosamide and streptogramin B antibiotics: this is known as
the MLS resistance determinant (Mullany et al., 1996; Farrow
et al., 2001). The MLS determinant is the major mechanism
of multiple resistance among Gram-positive anaerobes
(Noren et al., 2002). The gene responsible (ertnB in C.
difficile 630) encodes a 23S rRNA methylase that modifies the
target site for the antibiotic. The sequence is 99 % similar to
that of the ermB gene from Clostridium perfringens but,

unlike this gene, it is not located on a plasmid (pIP402) but
on a mobilizable, non-conjugative transposon, Tn5398
(Farrow et al., 2001). Whether the C. difficile isolates tested
in this study have this gene has not yet been confirmed
through PCR, though no other mechanism for such high-
level resistance has been described in this species. C. difficile
appears to be inherently resistant to the cephalosporin and
cephamycin antibiotics, as the majority of isolates had MICs
to these agents of 2= 32 pg ml-1 (NCCLS, 1997).

C. difficile possesses an outer cell coat, termed the S-layer,
consisting of two polypeptides that form a regular crystalline
array over the surface of the cell (Kawata et al., 1984). The
most common S-type in this study was 5236 (the number
corresponds to the molecular masses in kDa of the two major
polypeptides found on the cell surface). Of all strains tested
so far, the molecular mass of the larger of the two proteins
varies from 45 to 64 kDa, with the smaller ranging from 25 to
40 kDa (Poxton et al., 1999). S-Iayer typing is a quick and
easy method of phenotyping and appears to correspond well
with other typing techniques, including ribotyping and
serotyping (McCoubrey & Poxton, 2001). Toxigenic S-type
5236 is the same as ribotype 001 (McCoubrey, 2002), which is
the most common ribotype in the UK (Stubbs et al., 1999).
The S-layer is a putative virulence factor that may have a role
in adhesion of the bacterium to the host mucosal surface. It

may also have a role in immune evasion or impermeability to
certain compounds, including antibiotics. The two non-
typable strains appeared to be more sensitive to clindamycin,
cefoxitin and ceftriaxone. Though no firm conclusions can
be made, especially when this pattern was rare, it may be
speculated that, as they appear to lack a typical S-layer, they
are more sensitive to some antibiotics. However, overall,
there were no obvious correlations between S-type and
resistance to antibiotics.

Multiple isolates were obtained from 37 patients and, for
some patients, as many as 10 were available. These isolates
permitted assessment of sensitivity patterns over time and
within and between S-types. In the majority of cases, isolates
did not change either in S-type or in sensitivity pattern. The
isolates from some patients did change in antibiotic sensi¬
tivity and/or in S-type, suggesting that there had been
reinfection with a different strain or, possibly, the emergence
of a minor strain from an initially mixed infection. In
patients whose isolate did not change in S-type, resistance
to clindamycin was the only significant difference observed.
Resistance to clindamycin typically resides on a transposon,
Tn5398 (Mullany et al., 1996; Farrow et al., 2001), which
could transfer between strains. It is feasible that the strain

acquired this resistance determinant or that the patient was
reinfected with a clindamycin-resistant strain of the same,
predominant S-type. In the patient whose strain appeared to
lose clindamycin resistance, it is possible that the resistance
determinant was lost. More likely is the explanation that the
patient had picked up another S-type 5236 strain that lacked
the clindamycin-resistance determinant. In the patients who
produced same-type isolates with changing resistance, it
would be interesting to use another typing method (sero- or
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ribotyping) in order to try to identify subtypes, which may
explain the sensitivity changes. There was no direct evidence
that resistance to clindamycin was selected in strains, despite
the use of macrolides in many patients during the study.
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Effects on growth and toxin A production of sub-MIC concentrations of six different antibiotics were

investigated in three strains of Clostridium difficile: reference strain NCTC 1 1 223, a fully sequenced
strain (630) and a locally endemic isolate (strain 338a). The antibiotics chosen for investigation were
the agents used to treat C. difficile-associated disease (CDAD), i.e. vancomycin and metronidazole,
and four antibiotics that are commonly involved in precipitating CDAD (amoxycillin, clindamycin,
cefoxitin and ceftriaxone). Strains were cultured in sublethal concentrations of antibiotics (1 /2, 114
and 1 /8 MIC) over 1 04 h and growth and toxin A production were measured three times a day.
Effects varied between strain and antibiotic. The most common effect on growth of the strains was to
increase the initial lag period by approximately 4 h, compared with antibiotic-free controls; however,
strain NCTC 1 1 223, which has high-level clindamycin resistance (s= 51 2 pg ml 1), showed no lag
whatsoever in comparison with the controls when grown in this antibiotic. The most common effect
on production of toxin A was in the onset of toxin elaboration. Normally, toxins began to appear at low
levels in the early stationary phase, before accumulating to high levels by the start of decline. In the
presence of sub-MIC antibiotics, this onset appeared before that of the antibiotic-free controls. This
effect was seen with metronidazole, amoxycillin and clindamycin, rarely with vancomycin and never
with cefoxitin. These results suggest a very complex, strain-dependent relationship between the
effects of growth and toxin production.

INTRODUCTION

Clostridium difficile is the most common cause of antibiotic-
associated diarrhoea and is the aetiological agent of
pseudomembranous colitis. This Gram-positive, obligately
anaerobic spore-former causes a wide spectrum of disease,
ranging from mild, self-limiting diarrhoea to serious diar¬
rhoea and, in some cases, complications such as pseudo-
membrane formation, toxic megacolon and peritonitis. The
main bacterial factors that are recognized in C. difficile-
associated disease (CDAD) are two high-molecular-mass
toxins, A and B. Once released onto the gut mucosa, they act
in concert to produce the characteristic pathology and
symptoms. Antibiotics have a prominent role in C. difficile
disease: it is hypothesized that depletion of bowel microbiota
by antibiotics leads to the elimination of any resistance to
colonization by C. difficile (Farrell & LaMont, 2000). Broad-
spectrum agents, such as clindamycin, amoxycillin and
third-generation cephalosporins, are associated with the
greatest risk of developing C. difficile diarrhoea, although
almost all antibiotics have been implicated at one time or
another (Mylonakis et id., 2001).

Abbreviation: CDAD, Clostridium difficile-associated disease.

Toxin production is affected by environmental factors that
include temperature, glucose concentration, biotin limita¬
tion and amino acid concentration (Onderdonk et id., 1979;
Honda et ai, 1983; Bare et til., 1992; Yamakawa et ni, 1996;
Dupuy & Sonenshein, 1998; Ikeda et id., 1998; Karlsson et til.,
1999). Studies have shown that subinhibitory levels of
antibiotics have an effect on the production of toxin:
Onderdonk et ul. (1979) found that subinhibitory concen¬
trations of vancomycin and penicillin increased toxin pro¬
duction by C. difficile and Honda et id. (1983) found that
clindamycin and cephaloridine increased the production of
toxin A. Other antibiotics may also affect this process. The
aim of this study was to investigate and clarify' the effect of
antibiotics on growth and production of toxin A by C.
difficile. Six different antibiotics -including agents that either
precipitate CDAD or are used for its treatment - and three
different strains of C difficile were investigated.

METHODS

Strains of C. difficile. Three strains of C difficile were used in this
study: NCTC 1 1223, strain 630 (fully sequenced) and strain 338a {a local
endemic strain that was collected during a recent epidemiology study).
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Strain 338a is of S-type 5236 (ribotype 1) and was present in 78% of
cases of C. difficile diarrhoea in a geriatric unit in the Royal Victoria
Hospital, Edinburgh (McCoubrey e't al., 2003). Strains were grown from
spores stored in cooked meat broth (anaerobic investigation medium
(AIM) with cooked meat particles (Brown el al., 1996)]. A loopful
(approx. 30 pi) was added to 3 ml pre-reduced AIM and incubated
anaerobicallvovernight (80% PL, !0% N>, 10% CO, at 37°C) to yield
approximately 10s cells ml Appropriate purity checks were carried
out on starter cultures before use.

Antibiotics. Antibiotics chosen for the study were vancomycin (V2002;
Sigma) and metronidazole {Ml547; Sigma), two agents that are used for
the treatment of CDAD, and four agents that are associated with
precipitation of the disease: amoxycillin {A8523; Sigma); clindamycin
(C5269; Sigma); cefoxitin (C4786; Sigma) and ceftriaxone (0.5793;
Sigma). Second-generation cephalosporins (including cefoxitin) are
less commonly associated with C. difficile disease, although they still
possess good anti-anaerobe activity. Cefoxitin, present in the selective
medium at 8 mg I 1, was chosen for comparison with the third-
generation cephalosporin ceftriaxone. MICs of these strains to the six
antibiotics were determined by broth macrodilution (National Com¬
mittee for Clinical Laboratory Standards, 1997) and are shown in Table
1. Concentrations ofantibiotics used in this study corresponded to 1/2,
1/4 and 1/8 of the MIC, except in the case of clindamycin with strain
NCTC 1 1223. This strain was highly resistant and 512pgmlthe
highest concentration achievable in the study, allowed growth of this
strain. Antibiotics were prepared in sterile distilled water as 100X
solutions with reference to the highest concentration required. Dou¬
bling dilutions were made in sterile distilled water and 1 vol. antibiotic
was added to 100 vols broth.

Growth curves and toxin production. Preliminary growth curves
were determined to relate optical density {ODf,w)) to viable counts and
toxin A production (by semi-quantitative analysis -see below) over a
period of 104 h. To ensure that three sub-MIC concentrations of
antibiotics were used for each strain, four additional concentrations of
antibiotic were used, two above and two below the predicted MIC, to
allow for any minor differences in MIC. Where necessary, the extra
determinations were discarded retrospectively. An antibiotic-free con¬
trol was used for each strain for comparison. An inoculum of 106 cells
ml 1 was used and growth (ODmo) was measured three times a day at 0,
4 and 8 h for 5 days. A 1 ml sample was removed for OD measurement.
After measuring the OD, the sample was transferred to a 3 ml Eppendorf
tube, centrifuged for 2 rnin at 13 000gand the supernate was transferred
to a fresh Eppendorf tube and stored at — 20°C for toxin analysis.

Toxin A ELISA. Toxin A levels were assayed by EL.ISA with a ToxA kit
(Techlab) according to the manufacturer's instructions. Prior to assay,
100 pi ofeach sample was diluted in 100 pi of the buffer provided; 100 p!
of this dilution was used in the assay. Plates were read at a wavelength of
450 nm, with automatic subtraction of the 620 nm value. The maximum

Table 1. MICs of the six antibiotics

Abbreviations: Van, vancomycin; Met, metronidazole; Amos, amoxy¬
cillin; Clind, clindamycin; Cefo, cefoxitin; Ccft, ceftriaxone.

Strain MIC (mg l-1)

Van Met Amox Clind Cefo Ceft

NCTC 11223 "> 1 8 >512 256 64

338a 1 1 4 4 256 64

630 i 1 4 512 256 128

OD value of the assay was 3-0, up to which OD was linear with respect to
control toxin concentration. No further dilutions of supernates were
made. Results (OD values) were plotted against time to evaluate when
toxin was being elaborated and to show differences between antibiotic-
free and -containing cultures.

RESULTS AND DISCUSSION

Growth curves and toxin production

In preliminary experiments, both viable counts and ODmk)
values were measured and these confirmed that over the

time-period of the experiment, the values mirrored one
another. Subsequently, bacterial growth was assessed by
ODftoo only. Fig. 1 shows growth curves and toxin levels for
untreated controls of each strain. Values represent means
(with standard errors) of six replicates grown on six different
occasions; there was little variation in growth between
strains. Each strain was clearly in the exponential phase by
8 h and in the stationary phase by 24 h. Decline was then
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Fig. 1. Mean growth and toxin production of the strains over 104
hours: (a) strain NCTC 1 1223; (b) strain 338a; (c) strain 630. •.
Growth; O, toxin A production. Mean and SE were calculated from six
different experiments. A reading of 30 is the maximum value for the
toxin assay.
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apparent from 32 h, with the OD stabilizing by approxi¬
mately 56 h. However, toxin production differed between
strains, in both amount and timing of production relative to
growth. Strain NCTC 11223 produced less toxin A than
strains 338a and 630; toxin A production by strain NCTC
11223 rarely exceeded the measurable level of the assay
(OD450, 3-0), whereas higher values (>3-0) were obtained
with strains 338a and 630. A notable difference was the point
in the growth phase at which each strain produced toxin:
strain 338a produced toxin during the stationary phase (by
24 h), which preceded toxin production by both strains
NCTC 11223 and 630 (in late stationary phase). This further
correlated with the time required to produce comparable
levels of toxin A, i.e. 24, 32 and 48 h for strains 338a, 630 and
NCTC 11223, respectively. Levels of toxin A in strains 338a
and 630 generally reached maximum readable levels by
approximately 52 h.

Effects of antibiotics on growth and toxin A
production

The effects of sub-MIC levels of antibiotics on bacterial

growth and toxin production varied with both antibiotic and
strain. Examples of the effects of antibiotics on the kinetics of
growth and toxin production are shown in Fig. 2(a-d). These

were selected to show the range of variation in phenotype
following sub-MIC antibiotic treatment. Effects on toxin
production for all strains and antibiotics are summarized in
Table 2. Subinhibitory concentrations of antibiotics tended
to delay the growth of the bacteria by increasing the lag
period, especially at the highest concentration of antibiotic
(1/2 MIC) (strain NCTC 1 1223 in the presence of clindamy¬
cin was an exception to this and is described later). For toxin
production, three general consequences were evident: toxin
level was increased (+), toxin was produced earlier (E) or
toxin level was unaffected or reduced ( ).

It should be noted that strain NCTC 1 1223 is highly resistant
to clindamycin (MIC >512 jig ml"') and for this strain
only, the sub-MICs are not truly 1/2, 1/4 and 1/8, but are
fractions of 512 |xg ml !. When these sub-MIC levels of
clindamycin were added, growth of C. difficile was not
affected (Fig. 2a), but toxin production was affected notice¬
ably. Compared with the antibiotic-free control, toxin was
elaborated sooner and reached higher levels than in the
absence of clindamycin. Thus, this antibiotic potentiated
toxin production by both acceleration and enhancement of
production.

Strain 630 grown with amoxycillin is shown in Fig. 2(h). Sub-
MICs resulted in an increased lag period and for 1/2 MIC,
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Fig. 2. Growth and toxin production by: (a) strain NCTC 1 1223 with clindamycin; (b) strain 630 with amoxycillin; (c) strain 338a with
cefoxitin; and (d) strain 630 with metronidazole. Controls from Fig. 1 are also shown on these graphs. Closed symbols, growth; open
symbols, toxin A. Circles, controls; squares, 1/2 MIC; triangles, 1/4 MIC; inverted triangles, 1/8 MIC.
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Table 2. Summary of effects on toxin production

1/2, 1/4 and 1/8 are the concentrations that correspond to 1/2, 1/4 and
1/8 of the MIC. Abbreviations: Van, vancomycin; Met, metronidazole;
Amox, amoxycillin; Clind, clindamycin; Cefo, cefoxitin; Ceft, ceftriax¬
one; -, no effect; F„ elaborated sooner; +, toxin level increased.

toxin was produced as soon as growth was measurable, rather
than later in the growth cycle. When compared to the
control, toxin produced by this strain with 1/2 MIC was
elaborated at the same time as by the strain without
amoxycillin. This effect was less dramatic with the other
two concentrations of amoxycillin. Even with a lag in growth,
toxin was produced before the control for 1/4 and 1/8 MICs
of amoxycillin.

Fig. 2(c) shows the results for strain 338a cultured with
cefoxitin; antibiotic appears to inhibit toxin production. The
growth rate in 1/2 and 1/4 MICs was lower than that of the
control. At 1/2 MIC, there was a lag of approximately 24 h
compared with the control, with toxin levels reaching maxi¬
mum after 48-72 h.

A final example of the effect of sub-MIC amounts of
antibiotic is shown in Fig. 2(d), which depicts strain 630
with metronidazole. This was similar to those for strain 338a
with amoxycillin (results not shown), where toxin appeared
to be elaborated before the control, even though growth was
delayed.
For C. difficile, there is a clear relationship between disease
and antibiotic usage, such that antibiotics are often a
prerequisite for the disease. Broad-spectrum agents have
been shown to particularly predispose to C. difficile infection,
through depletion of the patient's normal protective bowel
microbiota. The equilibrium of the gut, when disturbed,
leaves the patient open to opportunistic infection, possibly
via the newfound availability of binding sites and nutrients.
Thus, suppression of colonization resistance by antibiotics
facilitates colonization and promotes disease. Hence, C.
difficile is the most common cause of nosocomial antibio¬
tic-associated diarrhoea.

It has been proposed that antibiotics may promote CDAD
not solely by modulating commensal micro-organisms, but
also by physiological effects that influence pathogenicity
(Lorian & Gemmell, 1994). Several early reports (Onderdonk
et al., 1979; Honda et al., 1983) suggested that certain
antibiotics potentiated the production of toxins A and/or
B, the main recognized virulence factors of C. difficile.
Furthermore, antibiotics have been shown to affect the
expression of virulence factors in other species, including
Escherichia coli, Vibrio cholerae and various staphylococci
(Levner et al., 1977; Lorian, 1971; Yoh et al., 1983).
Determining the effect of antibiotics on virulence factor
expression in an organism for which antibiotics are impor¬
tant triggers of disease is therefore crucial. Our work has
focused on the effect of subinhibitory concentrations of six
antibiotics, including those that precipitate disease and those
used for treatment, on the growth and production of toxin A
by three strains of C. difficile.

This study has shown clearly that there is heterogeneity
between strains with respect to growth, MICs and toxin levels
that are produced. A common effect on the bacterial strains
in the presence of antibiotics was the slowing of growth in
comparison with the controls; they took longer than the
controls to reach stationary phase, either at all three sub-MIC
concentrations, or just at the higher concentrations, of
antibiotics. In addition to slower growth, the bacteria some¬
times failed to achieve the OD that the controls reached. This
was seen in many cases with strains cultured with cefoxitin.
Even with subinhibitory concentrations, it would still be
expected that antibiotics would have an effect on bacterial
systems, including growth. Strain NCTC 11223 is highly
clindamycin-resistant and the growth of this strain was not at
all affected in the presence of this antibiotic. An explanation
for this may be that this strain is so well-adapted to this agent
that it can function and grow as normal. This strain contains
the macrolide, lincosamide and streptogramin B resistance
determinant (MLS) that contains the crmB gene (encoding
an RNA methyltransferase), which makes it resistant to these
antibiotics (L. J. Drummond, unpublished data). Strain 630
also carries the ertnB gene (Farrow et al., 2001), but it has a
slightly lower MIC of 512 pg ml" ' and its growth is affected
by all three sub-MIC concentrations of clindamycin. The
reasons for this are uncertain, but heterogeneity between
strains was common during this work.

As can be seen in Table 2 and Fig. 2(a, b and d), sub-MIC
concentrations of antibiotics can cause quicker elaboration
of toxin A when compared with the antibiotic-free control.
Antibiotics, even at sub-MIC concentrations, can be ex¬

pected to cause stress to the bacteria. Bacteria under stress
'switch on' a catalogue of genes, by which the toxin
promoters may be affected. To support this, TcdD - the
putative positive regulator of toxin genes - shows similarity
to UviA, the UV-inducible regulator from Clostridium
botulinum (Mani & Dupuv, 2001). Onderdonk et al. (1979)
showed that the stress of increased temperature led to greater
cytotoxin production. In the same paper, the authors
demonstrated an increase in toxin in the presence of

Strain Effect on toxin production

Van Met Amox Clind Cefo Ceft

NCTC 11223:

1/2 - E - +, E - E

1/4 - E E +, E - -

1/8 + . E E E +, E - -

338a:

1/2 - E E - E

1/4 - E E E - E

1/8 - E - E - -

630:

1/2 E E - - -

1/4 - E E E - E

1/8 - E E E - -
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subinhibitory concentrations of vancomycin and penicillin.
Karlsson et al. (2003) also showed temperature to be a
controlling factor for toxin and TcdD expression. It has been
shown by Hennequin et al. (2001) that C. difficile cultured in
the presence ofantibiotics produces greater levels ofGroEL, a
chaperonc from the heat-shock protein 60 (Hsp60) family.
These examples all serve to suggest that toxin promoters can
respond to multiple environmental stresses. Inducing this
stress response may enable C. difficile to survive the gut
environment, as GroEL functions as a 58 kl)a surface adhesin
that may help C. difficile to colonize recently vacated binding
sites left by the depletion of normal gut flora.

Reference strain NCTC 11223 produces lower levels of toxin
than the fully sequenced strain (630) and the 'endemic' strain
(338a). During the course of the experiments, samples of
strain NCTC 11223 rarely exceeded the limits of the EI.ISA
plate reader (>3), whereas the other two strains commonly
reached levels >3 after approximately 48 h growth. It was
desirable to look at the trends of toxin production; this was
achievable by comparing the OD values of the antibiotic-free
control and the strain in the presence of antibiotics.
Differences in toxin production are not well understood,
although Spigaglia & Manstrantonio (2002) demonstrated
strains with variants of TcdC, the putative negative regulator
of toxin production. No correlation between disease severity
and variant TcdC strains was found, although it is possible
that changes in this protein would affect toxin production.
For example, they found one allele with a nonsense mutation
that reduced the TcdC protein from 232 to 61 aa. Lack of
functional protein may lead to abrogated repression of the
toxin genes. This may be an explanation for the differences
that are common between strains of C. difficile. PCR-based
analysis would show whether the strains used differed in their
tcdC alleles.

In addition to disruption of the barrier flora in C. difficile
disease, antibiotics also appear to increase the stress response
in the bacteria. For example, upregulation of the adhesin
GroEL may increase the virulence of the infecting C. difficile
by aiding its utilization of the new niche. The reason for
producing toxins in the gut is unclear but, as they are
upregulated during glucose starvation, their purpose may
be to cause cell disruption for the acquisition of nutrients
(Dupuy & Sonenshein, 1998).

The results presented here show that there is no consistent
relationship between antibiotics and growth or toxin pro¬
duction by C. difficile. Antibiotics that are considered to be
important for precipitation of the disease appear to have
different effects on different strains; this is also true for
antibiotics used for treatment, so the relationship appears to
be much more complicated than thought previously. The
effects of subinhibitory levels of precipitating agents on
colonic flora may well allow the overgrowth of C. difficile
and may also have a significant effect on the rate and/or level
of toxins produced once colonization occurs. The impact of
this in the patient is unclear, but production of higher levels
of toxin earlier in the disease could prove to be detrimental.

Perhaps the most important aspect of this study is the clear
demonstration of variation in the response of strains to the
same antibiotic. This may have important implications for
the virulence potential of different strains.

ACKNOWLEDGEMENTS

L. I. D. is the holder of an MRC studentship.

REFERENCES

Bare, M.C., Depitre, C„ Corthier, G., Collignon, A., Su, W. J. & Bourlioux,
P. (1992). Effects of antibiotics and other drugs on toxin production in
Clostridium difficile in vitro and in vivo. Antimicrob Agents Chemother
36, 1332-1335.

Brown, R., Collee, J. G. & Poxton, I. R. (1 996). In Mackie and McCartney
Practical Medical Microbiology, 14th edn, pp. 507-511. Edited by J. G.
Collee, A. G. Eraser, B. P. Marmion & A. Simmons. Edinburgh:
Churchill Livingstone.
Dupuy, B. & Sonenshein, A. L. (1998). Regulated transcription of
Clostridium difficile toxin genes. Mol Microbiol 27, 107-120.
Farrell, R. J. & LaMont, J. T. (2000). Pathogenesis and clinical
manifestations of Clostridium difficile diarrhea and colitis. Curr Top
Microbiol Immunol 250, 109-125.

Farrow, K. A., Lyras, D. & Rood, J. I. (2001). Genomic analysis of the
erythromycin resistance element Tn5398 from Clostridium difficile.
Microbiology 147, 2717-2728.
Hennequin, C., Collignon, A. & Karjalainen, T. (2001). Analysis of
expression of GroEL (Hsp60) of Clostridium difficile in response to
stress. Microb Pathog 31, 255-260.
Honda, T., Hernadez, I., Katoh, T. & Miwatani, T. (1983). Stimulation of
enterotoxin production of Clostridium difficile by antibiotics. Lancet i,
655.

Ikeda, D., Karasawa, T., Yamakawa, K., Tanaka, R., Namiki, M. &
Nakamura, S. (1998). Effect of isoleucine on toxin production
by Clostridium difficile in a defined medium. Zentbl llakterioI 287,
375-386.

Karlsson, S., Burman, L. G. & Akerlund, T. (1999). Suppression of toxin
production in Clostridium difficile VPI 10463 by amino acids. Micro
biology 145, 1683-1693.
Karlsson, S., Dupuy, B., Mukherjee, K., Norin, E., Burman, L. G. &
Akerlund, T. (2003). Expression of Clostridium difficile toxins A and B
and their sigma factor TcdD is controlled by temperature. Infect Immun
71, 1784-1793.

Levner, M., Wiener, F. P. & Rubin, B. A. (1977). Induction of Escherichia
coli and Vibrio cholerae enterotoxins by an inhibitor ofprotein synthesis.
Infect Immun 15, 132-137.

Lorian, V. (1971). Effect of antibiotics on staphylococcal hemolysin
production. Appl Microbiol 22, 106-109.
Lorian, V. & Gemmell, C. (1994). Effect of low antibiotic concentrations
on ultrastructure, virulence and susceptibility to immunodefences. In
Antibiotics and Laboratory Medicine, 3rd edn, pp. 493-555. Edited by V.
Lorian. Baltimore: Williams 8c Wilkins.

Mani, N. & Dupuy, B. (2001). Regulation of toxin synthesis in
Clostridium difficile by an alternative RNA polymerase sigma factor.
Proc Nat! Acad Sci U S A 98, 5844-5849.

McCoubrey, J., Starr, J., Martin, H. & Poxton, I. R. (2003). Clostridium
difficile in a geriatric unit: a prospective epidemiological study employ¬
ing a novel S-laycr typing method. I Med Microbiol 52, 573-578.
Mylonakis, E., Ryan, E. T. & Calderwood, S. B. (2001). Clostridium
difficile-associated diarrhea: a review. Arch Intern Med 161, 525-533.

http://jmm.sgmjournals.org 1037



L. J. Drummond. D. G. E. Smith and I. R. Poxton

National Committee for Clinical Laboratory Standards (1997). Meth¬
odsfor Antimicrobial Susceptibility Testing ofAnaerobic Bacteria, 4th edn.
Approved standard, NCCLS publication no. M1I-A4. Villanova, PA:
NCCL.S.

Onderdonk, A. B., Lowe, B. R. & Bartlett, J. G. (1979). Effect of
environmental stress on Clostridium difficile toxin levels during con¬
tinuous cultivation. Appl Environ Microbiol 38, 637-641.

Spigaglia, P. & Mastrantonio, P. (2002). Molecular analysis of the

pathogenicity locus and polymorphism in the putative negative
regulator of toxin production (TcdC) among Clostridium difficile
clinical isolates. ] Clin Microbiol 40, 3470-3475.

Yamakawa, K., Karasawa, T., Ikoma, S. & Nakamura, S. (1996).
Enhancement of Clostridium difficile toxin production in biotin-limited
conditions. J Med Microbiol 44, 111-114.

Yoh, M., Yamamoto, K., Honda, T., Takeda, Y. & Miwatani, T. (1983).
Effects of lincomycin and tetracycline on production and properties
of enterotoxins of enterotoxigenic Escherichia coli. Infect Immun 42,
778-782.

1038 Journal of Medical Microbiology 52


