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Abstract
This thesis investigates the central issues underlying graph analysis, namely, scalability

and quality.

We first study the incremental problems for graph queries, which aim to compute

the changes to the old query answer, in response to the updates to the input graph.

The incremental problem is called bounded if its cost is decided by the sizes of the

query and the changes only. No matter how desirable, however, our first results are

negative: for common graph queries such as graph traversal, connectivity, keyword

search and pattern matching, their incremental problems are unbounded. In light of

the negative results, we propose two new characterizations for the effectiveness of

incremental computation, and show that the incremental computations above can still

be effectively conducted, by either reducing the computations on big graphs to small

data, or incrementalizing batch algorithms by minimizing unnecessary recomputation.

We next study the problems with regards to improving the quality of the graphs.

To uniquely identify entities represented by vertices in a graph, we propose a class of

keys that are recursively defined in terms of graph patterns, and are interpreted with

subgraph isomorphism. As an application, we study the entity matching problem,

which is to find all pairs of entities in a graph that are identified by a given set of

keys. Although the problem is proved to be intractable, and cannot be parallelized in

logarithmic rounds, we provide two parallel scalable algorithms for it.

In addition, to catch numeric inconsistencies in real-life graphs, we extend graph

functional dependencies with linear arithmetic expressions and comparison predicates,

referred to as NGDs. Indeed, NGDs strike a balance between expressivity and complex-

ity, since if we allow non-linear arithmetic expressions, even of degree at most 2, the

satisfiability and implication problems become undecidable. A localizable incremental

algorithm is developed to detect errors using NGDs, where the cost is determined by

small neighbors of nodes in the updates instead of the entire graph.

Finally, a rule-based method to clean graphs is proposed. We extend graph entity

dependencies (GEDs) as data quality rules. Given a graph, a set of GEDs and a block of

ground truth, we fix violations of GEDs in the graph by combining data repairing and

object identification. The method finds certain fixes to errors detected by GEDs, i.e.,

as long as the GEDs and the ground truth are correct, the fixes are assured correct as

their logical consequences. Several fundamental results underlying the method are es-

tablished, and an algorithm is developed to implement the method. We also parallelize

the method and guarantee to reduce its running time with the increase of processors.
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Lay Summary

Graphs are becoming more and more pervasive in various domains. As an example,

it has been recognized that social network and knowledge base analysis should be

incorporated into search engines, whose principal goal has been to help people find

what they are looking for. Social networks produce an immense amount of data about

what people like and knowledge bases provide semantic relations among objects. It is

natural to improve searches by capitalizing on these graph-structured data. However,

to incorporate graph data into search engines, techniques must be in place to address

the following.

(1) How to efficiently conduct graph analysis? Social graphs typically have millions

of nodes and billions of edges. Moreover, graph queries are expensive on large graphs,

and worse still, real-life graphs are constantly changed. These call for revisions of

graph querying and new techniques to cope with the sheer size of graph data.

(2) How to improve the quality of search results? Search engines often return irrele-

vant, duplicated or spam results. The scale of the problem is already severe, and the

incorporation of graph data would only make it worse if the graphs are dirty them-

selves. These highlight the need for new techniques to improve the quality of graphs.

In response to the need, in this thesis, we develop a set of techniques in the area

of graph data management. More specifically, we investigate the effectiveness of in-

cremental graph computations, which helps to reduce computations on possibly big

graph to small changes. In addition, we propose a class of keys for graphs. Extend-

ing conventional keys for relations and XML, these keys find applications in object

identification, knowledge fusion and social network reconciliation. Furthermore, an-

other class of graph dependencies is studied, referred to as NGDs, to catch semantic

inconsistencies with numeric values involved. Indeed, such numeric errors are com-

monly found in knowledge bases and social networks. We finally present a technique

to clean graphs, i.e., fixing erroneous attribute values and resolving duplicate entities,

by employing a set of data quality rules defined on graphs.

iv



Acknowledgements

First of all, I would like to thank my supervisors, Professor Wenfei Fan at the Uni-

versity of Edinburgh and Professor Wei Li at Beihang University, without whom this

thesis would not have been possible. Thanks, Wenfei, for your faith in me, for your

advice on research, career, and life in general during the past unforgettable years. Your

insights, wide and deep knowledge, and passion on science have always been a source

of inspiration to me. I appreciate every discussion we had that always helped me over-

come difficulties, gave me motivation to keep working on challenging problems. I

am very grateful to Professor Li for encouraging me to do a PhD at the University of

Edinburgh, which is indeed an awesome study and research experience.

I would like to thank Professor Floris Geerts and Professor Andreas Pieris for

agreeing to be on my examination committee and for providing useful suggestions.

I would also like to express my heartfelt gratitude to the collaborators, including

Yang Cao, Xin Luna Dong, Zhe Fan, Chunming Hu, Jiaxin Jiang, Xueli Liu, Ping Lu,

Yinghui Wu, Jingbo Xu, Wenyuan Yu, Bohan Zhang, and Zeyu Zheng, for their advice

and help. I feel so lucky that I had a chance to work with these brilliant researchers.

I could not wish for a better research environment than the Laboratory for Founda-

tions of Computer Science. I would like to thank Professor Peter Buneman for setting

up the Database Group and our lab director Professor Kousha Etessami who supported

me to participate in conferences. I would also like to thank all the labmates. Every dis-

cussion we had during the seminars and lunch time are my most valuable memories.

A very special thanks goes to Jennifer McBurnie, David Morcom, Jack Rowberry,

and Pamela Wood, for their help and support on my life in Edinburgh.

Last but not least, I would like to give my sincere thanks to my parents, for their

unconditional love and tremendous support.

v



Declaration

I declare that this thesis was composed by myself, that the work contained herein is

my own except where explicitly stated otherwise in the text, and that this work has not

been submitted for any other degree or professional qualification except as specified.

(Chao Tian)

vi



Table of Contents

1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Contributions and Thesis Organization . . . . . . . . . . . . . . . . . 3

1.3 State of the Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3.1 Graph Computations and View Maintenance . . . . . . . . . 8

1.3.2 Data Dependencies . . . . . . . . . . . . . . . . . . . . . . . 9

1.3.3 Data Cleaning . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Incremental Graph Computations: Impossibility and Possibility 17

2.1 Incremental Graph Computations . . . . . . . . . . . . . . . . . . . . 18

2.1.1 Graph Queries . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1.2 Incremental Query Answering . . . . . . . . . . . . . . . . . 20

2.2 Bounded Incremental Problems: Undoable . . . . . . . . . . . . . . . 21

2.3 Localizable Incremental Computations . . . . . . . . . . . . . . . . . 29

2.3.1 Locality of Incremental Computations . . . . . . . . . . . . . 29

2.3.2 Localizable Incremental Algorithms for KWS . . . . . . . . . 30

2.3.3 Localizable Incremental Algorithms for ISO . . . . . . . . . 37

2.4 Relatively Bounded Incrementalization . . . . . . . . . . . . . . . . . 38

2.4.1 Relative Boundedness . . . . . . . . . . . . . . . . . . . . . 38

2.4.2 Incrementalization for RPQ . . . . . . . . . . . . . . . . . . 39

2.4.3 Incrementalization for SCC . . . . . . . . . . . . . . . . . . 44

2.5 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 51

3 Keys For Graphs 59

3.1 Specifying Keys with Graph Patterns . . . . . . . . . . . . . . . . . . 61

3.1.1 Graphs and Graph Pattern Matching . . . . . . . . . . . . . . 61

3.1.2 Keys for Graphs . . . . . . . . . . . . . . . . . . . . . . . . 64

vii



3.2 The Entity Matching Problem . . . . . . . . . . . . . . . . . . . . . 66

3.2.1 Entity Matching with Keys . . . . . . . . . . . . . . . . . . . 66

3.2.2 The Complexity of Entity Matching . . . . . . . . . . . . . . 68

3.2.3 Recursion and Parallelization . . . . . . . . . . . . . . . . . 70

3.3 A MapReduce Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 75

3.3.1 Algorithm and Parallel Scalability . . . . . . . . . . . . . . . 75

3.3.2 Optimization Strategies . . . . . . . . . . . . . . . . . . . . . 81

3.4 A Vertex-Centric Algorithm . . . . . . . . . . . . . . . . . . . . . . 83

3.4.1 Algorithm and Parallel Scalability . . . . . . . . . . . . . . . 84

3.4.2 Optimization Strategies . . . . . . . . . . . . . . . . . . . . . 89

3.5 Experimental Study . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4 Catching Numeric Inconsistencies in Graphs 97
4.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.2 Numeric Graph Dependencies . . . . . . . . . . . . . . . . . . . . . 100

4.3 Fundamental Problems for NGDs . . . . . . . . . . . . . . . . . . . 103

4.4 Detecting Errors with NGDs . . . . . . . . . . . . . . . . . . . . . . 125

4.4.1 Detecting Inconsistencies in Graphs . . . . . . . . . . . . . . 125

4.4.2 Incremental Error Detection . . . . . . . . . . . . . . . . . . 126

4.5 Incremental Detection Algorithms . . . . . . . . . . . . . . . . . . . 130

4.5.1 Performance Guarantees . . . . . . . . . . . . . . . . . . . . 130

4.5.2 A Sequential Localizable Algorithm . . . . . . . . . . . . . . 131

4.5.3 A Parallel Scalable Algorithm . . . . . . . . . . . . . . . . . 134

4.5.4 Handling disconnected patterns . . . . . . . . . . . . . . . . 140

4.6 Experimental Study . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

5 Cleaning Graphs with Certainty 149
5.1 GEDs as Data Quality Rules . . . . . . . . . . . . . . . . . . . . . . 151

5.1.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . 151

5.1.2 Graph Entity Dependencies . . . . . . . . . . . . . . . . . . 152

5.2 Certain Fixes with the Chase . . . . . . . . . . . . . . . . . . . . . . 156

5.2.1 The Chase Revised . . . . . . . . . . . . . . . . . . . . . . . 156

5.2.2 A Method for Cleaning Graphs . . . . . . . . . . . . . . . . . 163

5.3 Fundamental Problems . . . . . . . . . . . . . . . . . . . . . . . . . 164

5.4 Deducing Certain Fixes . . . . . . . . . . . . . . . . . . . . . . . . . 172

5.5 A Parallel Scalable Algorithm . . . . . . . . . . . . . . . . . . . . . 178

viii



5.5.1 Parallel Scalability . . . . . . . . . . . . . . . . . . . . . . . 178

5.5.2 Parallelizing Algorithm Clean . . . . . . . . . . . . . . . . . 179

5.6 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 183

6 Conclusion and Future Work 191
6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

Bibliography 195

ix





Chapter 1

Introduction

It has been recognised that graphs are an important source of big data, and the quest for

analyzing graphs arises from different aspects, e.g., knowledge discovery, transporta-

tion networks, mobile networks, social marketing, computer vision, and intelligence

analysis. To make practical use of big graphs, however, we have to cope with (1) their

quantity (volume), and (2) their quality (velocity) as well. In light of these, this thesis

investigates various issues in analyzing graphs, ranging from querying big graphs to

improving data quality.

1.1 Background

(1) Incremental graph computations. For a class Q of graph queries, the incremental

problem aims to find an algorithm T∆ that, given a query Q ∈ Q , a graph G, query

answers Q(G) and updates ∆G to G as input, computes changes ∆O to Q(G) such that

Q(G⊕∆G) = Q(G)⊕∆O.

Here S⊕∆S denotes applying updates ∆S to S, when S is either graph G or query result

Q(G). That is, T∆ answers Q in response to ∆G by computing changes to the (old)

output Q(G). We refer to T∆ as an incremental algorithm for Q , in contrast to batch

algorithms T that given Q, G and ∆G, recompute Q(G⊕∆G) starting from scratch.

The need for incremental computations is evident. Real-life graphs G are of-

ten big, e.g., the social graph of Facebook has billions of nodes and trillions of

edges [GBDS14]. Graph queries are expensive, e.g., subgraph isomorphism is NP-

complete (cf. [Pap94]). Moreover, real-life graphs are constantly changed. It is often

too costly to recompute Q(G⊕∆G) starting from scratch in response to frequent ∆G.

1



2 Chapter 1. Introduction

These highlight the need for incremental algorithms T∆: we use a batch algorithm T
to compute Q(G) once, and then employ incremental T∆ to compute changes ∆O to

Q(G) in response to ∆G. The rationale behind this is that in the real world, changes

are typically small, e.g., less than 5% on the entire Web in a week [NCO04]. When ∆G

is small, ∆O is often also small, and is much less costly to compute than Q(G⊕∆G),

by making use of previous computation Q(G). In addition, incremental computations

are crucial to parallel query processing [FWW14a] that partitions a big G, partially

evaluates queries on the fragments at different processors, treats messages among the

processors as updates, and conducts iterative computations incrementally to reduce the

cost. But can we ensure that the incremental T∆ is more efficient than the batch T ?

(2) Identifying entities. Keys provide an invariant connection between a real-

world entity and its representation in a database. They are fundamental to relational

databases: data models, conceptual design, and prevention of update anomalies. They

are found in almost every database textbook. Keys have also been extensively studied

for XML (e.g., [BDF+01]), and are part of XML Schema (W3C). They are instrumen-

tal in XML data transformation (publishing, shredding) and cleaning.

For all the reasons that keys are essential to relations and XML, keys are also

needed for graphs in identifying entities. The need is evident when relations are rep-

resented as graphs [ARS09, BG07, RDG11, MAS14], and for citations of “digital

objects” of graph structures [BS10]. They are also important to emerging applica-

tions such as knowledge fusion and knowledge base expansion [DGH+14, DMG+14,

PKS+10], to deduplicate entities and to fuse information from different sources that

refers to the same entity. Another application is social network reconciliation, to recon-

cile user accounts across multiple social networks [KL14]. However, keys for graphs

are more challenging than conventional keys.

(3) Catching and fixing inconsistencies. A variety of dependencies have recently

been studied for graphs [LMS08, FWX16, CP12, ACP10, YH11, HZZ14, FL17,

CFP+14]. These dependencies are often defined in terms of graph patterns, and aim to

capture inconsistencies among entities in a graph. They are useful in, e.g., knowledge

acquisition, knowledge base enrichment, and spam detection in social networks.

However, semantic inconsistencies in real-life graphs often involve numeric values.

To catch such errors, arithmetic calculation and comparison predicates are often a must.

These expressions are, unfortunately, not supported by existing graph dependencies.

In addition, although these dependencies can detect errors commonly found in real-
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life graphs, they do not tell us how to fix the errors.

1.2 Contributions and Thesis Organization

The following contributes are made in this thesis.

• The effectiveness of incremental graph computations is studied in Chapter 2.

– We show that no bounded incremental algorithms exist for RPQ (regular

path queries), SCC (strongly connected components), and KWS (keyword

search) (Section 2.2), i.e., their costs cannot be expressed as polynomial

functions in the sizes of the queries and the changes to the inputs and out-

puts. We establish these impossibility results either by elementary proofs

or by reductions from incremental graph problems that are already known

unbounded. To the best of our knowledge, this work gives the first proofs

by reductions for unbounded graph incremental computations.

– We characterize localizable incremental computations and relative bound-

edness in Sections 2.3 and 2.4, respectively. We show that the incremental

computations above are either localizable (KWS and ISO (subgraph iso-

morphism)) or relatively bounded (RPQ and SCC). That is, while these

incremental computations are unbounded, they can still be effectively con-

ducted with performance guarantees.

– As a proof of concept, we develop localized incremental algorithms for

KWS and ISO (Section 2.3), and bounded incremental algorithms for RPQ

and SCC relative to their batch algorithms (Section 2.4). We also develop

optimization techniques for processing batch updates. These extend the

small library of existing incremental graph algorithms that have perfor-

mance guarantees.

• Chapter 3 investigates keys for graphs, from specifications and semantics to ap-

plications.

– We propose a class of keys for graphs (Section 3.1). We define keys in

terms of graph patterns, to specify topological constraints and value bind-

ings needed for identifying entities. Moreover, keys may be recursively

defined: to identify a pair of entities, we may need to decide whether some

other entities can be identified. We interpret keys by means of graph pattern

matching via subgraph isomorphism. These make such keys more expres-

sive than our familiar keys for relations and XML.
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– We study entity matching, an essential application of keys for graphs (Sec-

tion 3.2). Given a graph G and a set Σ of keys for graphs, entity matching

is to find all pairs of entities (vertices) in G that can be identified by keys

in Σ. We formalize the problem by revising the chase [AHV95] studied

in the classical dependency theory. While entity matching is in PTIME

(polynomial time) for relations and XML with traditional keys, we show

that its decision problem is NP-complete for graphs. Worse still, recur-

sively defined keys pose new challenges. We show that entity matching

does not have the polynomial-fringe property (PFP) [ABC+11], and can-

not be solved in logarithmic parallel computation rounds. Nonetheless, we

show that entity matching is within reach in practice, by providing parallel

scalable algorithms.

– We develop a MapReduce algorithm for entity matching (Section 3.3). As

opposed to subgraph isomorphism, entity matching with recursively de-

fined keys requires a fixpoint computation, and in each round, multiple

isomorphism checking for each entity pair. We show that the algorithm is

parallel scalable, i.e., its worst-case time complexity is O(t(|G|, |Σ|)/p),

where t(,) is a function in |G| and |Σ|, and p is the number of processors

used. It guarantees to take proportionally less time with the increase of

p, which is not warranted by many parallel algorithms. We also develop

optimization methods to process recursively defined keys.

– We give another algorithm in the vertex-centric asynchronous model of

[LGK+12] (Section 3.4). This algorithm not only checks different en-

tity pairs in parallel, but also inspects different mappings in parallel when

checking each entity pair, via asynchronous message passing. It reduces

unnecessary costs inherent to the I/O bound and the synchronization policy

(“blocking” of stragglers) of MapReduce. We show that the algorithm is

also parallel scalable. Moreover, we propose optimization techniques to

reduce message passing.

• The numeric graph dependency is introduced in Chapter 4, for detecting numeric

errors.

– We propose a class of numeric graph dependencies, referred to as NGDs

(Section 4.2). NGDs are a combination of (a) a pattern Q to identify en-

tities by graph homomorphism, and (b) an attribute dependency X → Y

on the entities identified. They extend graph functional dependencies
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(GFDs [FWX16, FL17]) by supporting linear arithmetic expressions and

built-in comparison predicates =, 6=,<,≤,>,≥. We show that NGDs are

able to catch numeric inconsistencies commonly found in real-life graphs.

Moreover, they subsume GFDs [FWX16, FL17] and relational conditional

functional dependencies (CFDs [FGJK08]) as special cases. Thus they are

able to capture all inconsistencies that can be detected by GFDs and CFDs,

besides numeric errors that are beyond the capacity of GFDs and CFDs.

– We study two classical problems for reasoning about NGDs (Section 4.3),

in which the satisfiability problem is to decide whether a given set Σ of

NGDs has a model i.e., a graph satisfying Σ, and the implication problem is

to decide whether a set Σ of NGDs entails another NGD ϕ, i.e., for all graphs

G that satisfy Σ, G also satisfies ϕ. (a) We show that the increased expres-

sive power of NGDs comes with a price. Their satisfiability and implica-

tion problems become Σ
p
2-complete and Π

p
2-complete, as opposed to coNP-

complete and NP-complete for GFDs, respectively [FWX16, FL17]. The

complexity bounds are robust: they remain Σ
p
2-hard and Π

p
2-hard, respec-

tively, even when only equality = is used, in the absence of 6=,<,≤,>,≥,

or when no arithmetic operations are used at all. These tell us that unless

P = NP, it is harder to reason about NGDs than about GFDs. (b) We also

show that if we expand NGDs by allowing non-linear arithmetic expres-

sions, then both problems become undecidable, even when the degree of

the arithmetic expressions is at most 2, and even in the absence of compar-

ison predicates 6=,<,≤,>,≥. The undecidability results justify the choice

of linear arithmetic expressions. That is, NGDs strike a balance between

expressivity and complexity when arithmetic and comparison are a must.

– We develop techniques for detecting inconsistencies in real-life graphs, nu-

meric or not, by employing NGDs as data quality rules (Sections 4.4 and

4.5). (a) We show that the validation problem is coNP-complete for NGDs,

to decide whether a given graph satisfies a set of NGDs. The complexity is

the same as for GFDs [FWX16, FL17]. That is, NGDs do not complicate

the process of error detection. Better still, the parallel algorithms devel-

oped in [FWX16] for detecting errors with GFDs can be readily extended

to NGDs, retaining the same complexity. (b) In light of this, we focus

on incremental inconsistency detection in graphs, a problem that has not

been studied by previous work, to the best of our knowledge (Section 4.4).
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Given a graph G and a set Σ of NGDs, suppose that we have already identi-

fied a set Vio(Σ,G) of violations of Σ in G, i.e., entities in G that violate at

least one NGD in Σ. We want to find changes ∆Vio to Vio(Σ,G), such that

Vio(Σ,G⊕∆G) = Vio(Σ,G)⊕∆Vio, where X ⊕∆X denotes X updated by

∆X . Thus we can use (an extension of) the batch algorithms of [FWX16]

to compute Vio(Σ,G) once, and then incrementally compute changes ∆Vio

in response to ∆G. (c) While desirable, the incremental detection problem

is nontrivial. We show that the problem is also coNP-complete, even when

both graphs G and updates ∆G have constant sizes (Section 4.4).

– In response to the practical need, we develop two algorithms for incremen-

tal error detection with NGDs (Section 4.5), which make incremental error

detection feasible in large-scale graphs. One is a sequential localizable

algorithm IncDect. It incrementalizes subgraph search by update-driven

evaluation. Its cost is determined by the dΣ-neighbors of nodes in ∆G,

where dΣ is the maximum diameter of the patterns in Σ [FHT17]. In prac-

tice, Σ is much smaller than G, and so is dΣ. It reduces the computations on

a (possibly big) graph G to smaller dΣ-neighbors of those nodes in ∆G. The

other one is a parallel algorithm PIncDect. We show that it is parallel scal-

able relative to IncDect: its cost is O(t(|G|, |Σ|, |∆G|)/p), where p is the

number of processors used, and t(|G|, |Σ|, |∆G|) is the cost of IncDect. That

is, PIncDect guarantees to reduce running time when more processors are

used. We propose a hybrid strategy to split skewed work units and dynam-

ically balance workload, based on cost estimation, to balance computation

and communication.

• Finally, Chapter 5 proposes a rule-based method, referred to as Analogist, to

generate certain fixes to semantic inconsistencies in graphs, from fundamental

results to practical algorithms.

– We propose a class of data quality rules (Section 5.1). We extend graph

entity dependencies (GEDs) of [FL17] such that we can simultaneously (a)

repair data, i.e., fix attribute values, by using graph functional dependen-

cies [FWX16] along the same lines as conditional functional dependencies

(CFDs [FGJK08]) for repairing relations, (b) identify objects, i.e., deter-

mine whether two vertices in a graph refer to the same entity, by using

recursively defined keys of Chapter 3, and moreover, (c) deduce entities

that do not match to reduce false positives, by adding a form of forbidding
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constraints with inequality.

– Employing GEDs, we propose Analogist, a method to clean graphs with

certain fixes (Section 5.2). Given a graph G, a set Σ of GEDs and a block Γ

of ground truth (confirmed attribute values and entity matches), Analogist

finds fixes to the violations of Σ in G by chasing G with (Σ,Γ). We show

that Analogist is Church-Rosser, i.e., the chase converges at the same set

of fixes regardless of the order of GEDs applied. Moreover, its fixes are

certain, as logical consequences of Σ and Γ. That is, the fixes are assured

correct as long as the rules of Σ and ground truth of Γ are correct. It in-

tegrates data repairing and object identification in the same process. It

propagates changes to correlated and co-occurred entities in G.

– We settle three fundamental problems for graph cleaning with certain fixes

(Section 5.3). (a) The consistency problem is to determine whether Σ and

Γ have no conflict, i.e., the set of rules and ground truth are not dirty them-

selves. (b) The certain fix problem is to decide whether a fix can be found

by the chase. (c) The coverage problem is to decide whether Σ and Γ suf-

fice to fix all violations of Σ in G, and yield a unique repaired graph that

satisfies Σ. We establish the combined complexity and data complexity of

these problems, ranging over PTIME (polynomial time), coNP-complete,

and NP-complete and PNP
|| -complete, comparable to or slightly harder than

their counterparts for cleaning relations with certain fixes [FLM+12].

– We develop an algorithm Clean to implement Analogist (Section 5.4).

While the chase is Church-Rosser, the order of rules applied has big im-

pact on the efficiency of the method. We propose two strategies to make

the method practical: (a) precedence graphs on GEDs to determine the or-

der of rules applied, and (b) incremental expansion of certain fixes. These

substantially reduce redundant computations, notably the costly graph ho-

momorphism checking.

– We develop a parallel algorithm PClean to clean large-scale graphs with

certainty (Section 5.5). We show that PClean is parallel scalable relative

to Clean [KRS90]. It adopts a workload partition strategy to evenly dis-

tribute the work of each chase step across available processors. Hence the

method is able to scale with large real-life graphs G, since we can add more

processors when G grows big.
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Remark. It is worth mentioning that (partial) results in Chapter 2 have been pub-

lished in [FHT17], and results in Chapter 3 are published in [FFTD15]. The results in

Chapters 4 and 5 are taken from two submitted papers under review.

1.3 State of the Art

The proposed work in this thesis is fundamentally different from previous approaches,

which are categorized as follows.

1.3.1 Graph Computations and View Maintenance

Bounded incremental algorithms. Proposed in [TR81], the notion was studied for

graph algorithms in [RR96a, RR96b, FWW13]. A number of incremental algorithms

have been developed for graphs [ZGM98, RR96a, RR96b, Sah07, BCN08, SNS09,

FWW13, RZ04, HK97, Lac13, HKM+12] (see [DEGI10] for a survey). However,

their costs are typically studied in terms of amortized analysis for averaged operation

time of a sequence of unit updates to G, not in the size of changes that is inherent to

the incremental problem itself. To the best of our knowledge, bounded algorithms are

only in place for the shortest path problems, single-source or all pairs, with positive

lengths [RR96a, RR96b]. It is known that the incremental problem is unbounded for

subgraph isomorphism ISO [FWW13], and for single-source reachability to all vertices

(SSRP under unit edge deletions, but bounded under unit insertions) [RR96a].

As the notion of boundedness is often too strong, a weaker standard was introduced

in [FWW13], based on a notion of affected area AFF∀. Intuitively, AFF∀ covers not

only changes ∆O, but also data that is necessarily checked to detect ∆O by all incre-

mental algorithms for Q , encoded in auxiliary structures. An incremental algorithm is

semi-bounded [FWW13] if (a) its cost can be expressed as a polynomial in |AFF∀|, |Q|
and |∆G|, and (b) the size of the auxiliary structure is bounded by a polynomial in |G|.
The incremental problem for graph simulation is shown semi-bounded [FWW13].

The work in Chapter 2 differs from the prior work in the following. (a) We establish

new unboundedness results for RPQ, SCC and KWS, and a new form of reductions

as proof techniques. (b) We propose measures for the effectiveness of incremental

graph algorithms. In contrast to [RR96a, RR96b, FWW13], localizable algorithms are

characterized by dQ-neighbors of ∆G instead of ∆O or AFF∀. Relative boundedness is

defined in terms of the affected area AFF relative to a specific algorithm T , as opposed
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to AFF∀ for all incremental algorithms for Q (semi-boundedness). (c) We develop

incremental algorithms for RPQ, SCC, KWS and ISO with performance guarantees

under the new measures, although they are unbounded.

Locality of graph computations. There have been batch algorithms that capitalize on

the data locality of queries, for (parallel) subgraph isomorphism (e.g., [FWW14b,

FWX16]). Incoop [BWR+11], a generic MapReduce framework for incremental com-

putations, also makes use of the locality of previously computed results in its schedul-

ing algorithm to prevent straggling. To the best of our knowledge, the study of local-

izable incremental algorithms in Chapters 2 and 4 is the first effort to characterize the

effectiveness of incremental algorithms in terms of locality.

Relative boundedness. There has also been work on incrementalizing batch algorithms,

notably self-adjusting computations [Aca05, Bha15]. The idea is to track the depen-

dencies between data and function calls as a dynamic dependency graph [ABH02],

upon which functions that are affected by the changes in the input can be identified and

recomputed. Memorization [PT89] is used to record and reuse the results of function

calls when possible. It is a general-purpose, language-centric technique for programs

to automatically respond to modifications to their data. In contrast, relative bounded-

ness (Chapter 2) is to characterize whether it is feasible to incrementalize a given batch

algorithm T with cost measured in the size of affected area AFF inspected by T , not

in terms of function calls.

View maintenance. Related is also view maintenance for updating materialized views,

which has been studied for relational data [GMS93, GJM96, CGL+96], object-oriented

databases [KR98], and semi-structured data modeled as graph [ZGM98, AMR+98].

Various methods have been proposed, e.g., an algebraic approach of [BGMS13] for

XML views and the use of key constraints [GJM96] for relations. However, few of

them have provable performance guarantees, and fewer can be applied to graph queries.

In particular, the techniques of [ZGM98, AMR+98] are developed for views specified

as selection paths, and do not apply to graph queries studied in this thesis. In contrast,

in Chapter 2, we study the boundedness of incremental graph problems and provide

algorithms that are localizable or relatively bounded.

1.3.2 Data Dependencies

Keys. Relational keys are defined over a relation schema in terms of a set of at-

tributes [AHV95]. XML keys are specified in terms of path expressions in the absence
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of schema [BDF+01].

In contrast to traditional keys, keys for graphs (Chapter 3) (a) are defined in terms of

graph patterns, specifying constraints on both topological structure and value bindings,

in the absence of schema; (b) they are interpreted based on graph pattern matching,

with both value equality and node identity; and (c) they can be recursively defined.

These keys are useful in emerging applications besides their traditional use.

To the best of our knowledge, the only prior work on keys for graphs is [PSS13],

which specifies keys for RDF data in terms of a combination of object properties and

data properties defined over OWL ontology. Such keys differ from keys of this work in

that they (a) cannot be recursively defined, (b) do not enforce topological constraints

imposed by graph patterns, and (c) adopt the unique name assumption via URIs, which

is often too strong for entity matching.

Dependencies for graphs. Dependencies have been studied for RDF [LMS08, ACP10,

CP12, YH11, HZZ14, FFTD15], and for generic graphs [FWX16, FL17]. They are

used to (1) map relations to RDF [CFP+14, LMS08], (2) detect erroneous triples in

RDF graphs [YH11, HZZ14] and inconsistencies in property graphs [FWX16], (3)

identify objects [FFTD15], (4) repair vertex labels [SCYC14], and (5) enrich knowl-

edge bases with association rules [GTHS13]. This line of work started from [LMS08].

It extends RDF vocabulary to define keys, foreign keys and functional dependencies

(FDs). Using triple patterns with variables, [ACP10, CP12] interpret FDs with triple

embedding and homomorphism. Based on value-clustered property, a class of FDs was

also formulated in [YH11] with path patterns; these FDs were extended in [HZZ14] to

support CFDs. [GTHS13, CGWJ16] study a class of first-order Horn clause on binary

predicates as soft constraints to facilitate knowledge base reasoning, expansion and

cleaning.

Closer to this work are graph functional dependencies (GFDs) studied for general

property graphs [FWX16, FL17]. GFDs are formulated in [FWX16] in terms of (a) a

graph pattern Q that is interpreted via subgraph isomorphism, and (b) an extension of

an FD that is imposed on the entities identified by Q, carrying constant and variable

literals. GFDs subsume relational CFDs [FGJK08] when tuples are represented as

nodes in a graph. GFDs are extended to graph entity dependencies (GEDs) in [FL17],

by supporting literals with node identities to express keys of [FFTD15]. GEDs subsume

GFDs, and interpret graph pattern matching in terms of graph homomorphism.

This work defines NGDs (Chapter 4) by extending GFDs, and interprets pattern
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matching by graph homomorphism following [FL17]. It differs from [FWX16, FL17]

in the following. (a) Unlike GFDs and GEDs, NGDs support both arithmetic opera-

tions and comparison predicates. (b) We settle fundamental problems (satisfiability,

implication and validation) for NGDs. We show that their satisfiability and implica-

tion problems are Σ
p
2-complete and Π

p
2-complete, respectively, while these problems

are NP-complete and coNP-complete for GFDs and GEDs. (c) We develop (parallel)

incremental error detection algorithms with performance guarantees. As far as we

know, no prior work has studied dependencies for capturing numeric errors in graphs,

established their complexity, or developed incremental error detection algorithms for

graphs, sequential or parallel.

In addition, we adopt the GEDs of [FL17] in Chapter 5 because (a) GEDs can ex-

press GFDs of [FWX16] and (recursively defined) keys of Chapter 3, and allow us to

support data repairing and object identification; and (b) GEDs are defined for general

property graphs, not limited to RDF. We extend the GEDs of [FL17] by supporting neg-

ative rules with inequality. As observed in [FLM+11, ARS09], negative rules improve

the accuracy of object identification by reducing false positives.

Dependencies on numeric data. The need for detecting numeric errors has long been

recognized, and several dependency classes have been studied for relational data for

this purpose [BBFL08, FFP10, FPL+01, GKK+09, KSSV09, RSSS98, FFG14, SC11].

Metric functional dependencies [KSSV09] and sequential dependencies [GKK+09]

extend FDs by supporting (numeric) metrics and intervals on ordered data, respec-

tively. Differential dependencies [SC11] constrain distances of numeric attribute val-

ues among different tuples. However, none of these dependency classes supports arith-

metic operations. Beyond these, aggregation constraints are defined in terms of ag-

gregate functions (e.g., max, min, sum, avg, count) [RSSS98, BBFL08]. However, it

is undecidable to decide whether a set of aggregation constraints is satisfiable. There

has also been work on repairing numeric data using constraints defined in terms of

aggregate functions [FFP10] and disjunctive logic programming [FPL+01]. Their sat-

isfiability and implication problems are open, and the complexity is suspected high. An

extension of CFDs was studied for relations in [FFG14], which supports linear arith-

metic expressions and built-in predicates like we do in NGDs. Unfortunately, none of

these numeric constraints is applicable to graph-structured data.

To the best of our knowledge, NGDs (Chapter 4) are among the first effort to incor-

porate arithmetic expressions into graph dependencies. In contrast to the prior numeric
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constraints studied for relations, NGDs are a combination of a topological constraint

defined in terms of pattern matching, and an attribute dependency defined with linear

arithmetic expressions and built-in comparison predicates.

1.3.3 Data Cleaning

Entity resolution. Entity resolution (a.k.a. entity matching, record linkage, etc.) is to

identify records that refer to the same real-world entity. There has been a host of work

on the topic, following iterative clustering [BGMG+07, MAS14], learning-based

[RDG11, KTR12a], rule-based methods [FGJ+11, ARS09] (see [Chr12, GM12] for

surveys).

Keys for graphs (Chapter 3) yield a declarative and deterministic method to pro-

vide an invariant connection between vertices and the real-world entities they repre-

sent, and fall in the rule-based approach. Prior rule-based methods mostly focus on

relational data; this work is to define a primary form of constraints for graphs, namely,

keys. The quality of matches identified by keys highly depends on keys discovered and

used, although keys help us reduce false positives. We defer the topic of key discovery

to future work, and focus primarily on the efficiency of applying such constraints.

One branch of entity resolution, called collective entity resolution [BG07, DHM05,

RDG11], is to jointly determine entities for co-occurring references and propagate

similarities of entities. Analogous to datalog rules [ARS09], keys for graphs extend

this approach by providing recursively defined rules, based on graph pattern match-

ing. This work addresses some of the emerging challenges highlighted in [GM12],

by targeting graphs when data is “more linked”, and by providing parallel scalable

algorithms for “larger datasets”. A topic for future work is to combine our approach

with learning-based and similarity propagation methods [GM12], and thus to find high-

quality keys and improve the quality of linkage results.

Finally, we remark that entity resolution is just one of the applications for

keys for graphs, besides, e.g., digital citations [BS10] and knowledge base expan-

sion [DGH+14].

Data cleaning. Error detection and cleaning algorithms have been developed for rela-

tions [FLTY12, VCSM14, PSC+15] (see [FG12] for a survey), RDF [SSW09, WP14,

KWA+14] and general property graphs [FWX16, SCYC14]. There have been heuris-

tic methods to find repairs with minimum costs to fix violations of FDs [BFFR05]

and CFDs [CFG+07]. [FLTY12] studies (incremental) detection of violations of
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CFDs [FGJK08] in horizontally or vertically partitioned relations. GDR [YEN+11]

incorporates user feedback into automated repairing. QFix [WMW17] repairs pred-

icates in restricted relational SPC queries, instead of data, in response to anoma-

lous updates in OLTP. Rule-based methods and machine learning are combined in

[PSC+15] to ensure that the cleaned data differs minimally, in terms of both the dis-

tance from the original data, and the statistical distortion from an ideal relation. Based

on CFDs [FGJK08] and matching dependencies [FGJ+11], [FLM+11] unifies entity

resolution and data repairing to clean relations. Repairing relations with certain fixes

is studied in [FLM+12] with master data. Based on relational FDs, a continuous frame-

work is developed in [VCSM14] to clean data that may change, using FDs that may

also evolve. Consistency checking in RDF data is conducted by logical reasoning on

existing and newly extracted knowledge [SSW09], or by unsupervised detection of nu-

merical outliers [WP14]. [KWA+14] detects errors in RDF data through test cases that

are represented as SPARQL queries.

On graphs, [SCYC14] fixes vertex labels to make graphs satisfy neighborhood con-

straints, which allow only certain label pairs to appear on adjacent nodes. Batch algo-

rithms are proposed in [FWX16] for catching violations of GFDs in graphs that are

either replicated or fragmented across multiple processors. Collective graph identifi-

cation [JLG16] infers “true” hidden graphs from the given observed networks (treated

as “ground truth”), formulated as a probabilistic inference problem. It involves iden-

tifying observations that correspond to the same entity (entity resolution), inferring

the existence of edges (link prediction) and inferring hidden labels of nodes (node la-

beling). Unsupervised clustering is studied for entity idnetification in bibliographic

datasets [BG06].

Different from the prior work, in Chapter 4, (1) we provide incremental error de-

tection algorithms that are localizable [FHT17] and relatively parallel scalable; as far

as we know, none of the previous error detection algorithms is parallel scalable except

the batch ones of [FWX16, FFTD15]; and (2) we propose a hybrid dynamic strategy

to achieve relative parallel scalability. The strategy balances the workload at run time,

at two levels: (a) it makes use of cost estimation to split and distribute stragglers, i.e.,

work units that take much longer than the others, and (b) it monitors the status of

processors and reassigns work units from a busy processor to those with a light load.

While (b) is along the same lines as work stealing and shedding [HCD+16, BL99], we

find that it does not work very well alone unless in combination with (a).

Incremental detection of NGD violations is more intriguing than conventional
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graph pattern matching: we have to compute violations that are newly introduced or

removed by updates only. As a consequence, previous algorithms for parallel pattern

matching, e.g., [HAR11, LQLC15], cannot be applied directly in this context.

Moreover, to the best of our knowledge, this work is also the first effort to clean

graphs with certain fixes (Chapter 5). (a) As opposed to [FFTD15, BG06], we sup-

port both data repairing and object identification. We aim to fix inconsistencies among

attribute values of different entities, beyond node labeling [SCYC14] that is regarded

as a task of collective classification of entities in [JLG16]. The method of [JLG16]

targets hidden graph inference rather than graph cleaning, and is complementary to

this work. While [FL17] studies chase of graphs, it does not consider graph clean-

ing. (b) In contrast to [FLM+12], we define certain fixes as the result of chase and

logical consequences of GEDs and ground truth; moreover, we support object iden-

tification in addition to repairing. As suggested by the experience of relational data

cleaning [FLM+11], we interleave object identification and data repairing to improve

the accuracy of both. However, the methods of [FLM+11, FLM+12] are not able to

fix inconsistencies that involve correlated or co-occurred entities. In fact, the prior

methods for cleaning relations are not directly applicable to graphs. For instance, the

repairing methods based on FDs and CFDs are not able to repair inconsistencies that

involve (unboundedly many) interconnected entities. (c) We make the first efforts to

settle fundamental problems underlying graph cleaning, such as the complexity of cer-

tain fix and coverage.

Parallel algorithms. Parallel algorithms have been developed for entity resolu-

tion [KTR12b, AM17, FFTD15, CIK16], in which the technique of distributed block-

ing is widely used to reduce the search space. BigDansing [KIJ+15] repairs relations

on top of MapReduce-like frameworks. There has also been work on error detection in

distributed relations [FGMM10] with CFDs, and in fragmented graphs [FWX16] using

GFDs.

Our algorithms in Chapter 3 differ from previous ones in the following. (a) Entity

matching is far more intriguing than conventional subgraph isomorphism, and the prior

algorithms [KLCL13, GG14, SWW+12, RvRH+14] cannot be applied to entity match-

ing. (b) For the same reasons, entity matching is more involved than record matching

of [BGMG+07, KTR12a, MAS14, RDG11] to identify tuples in relations, and than

the task of [HNST12] that does not enforce topological constraints in the matching

process. (c) We propose optimization strategies that have not been studied before.
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Related to this work are also parallel algorithms for evaluating datalog [ABC+11,

SPSL13], which deal with recursive computation. However, entity matching with keys

(Chapter 3) requires to identify bijective functions for subgraph isomorphism, which

are more challenging to compute than relations in datalog. Worse still, we show that

entity linking does not have PFP [ABC+11], and is harder to be parallelized than, e.g.,

transitive closures.

Moreover, none of existing approaches targets fixing inconsistencies in graphs. In

Chapter 5, we present a simple partition strategy to balance the workload in graph

cleaning, and guarantee relative parallel scalability that has not been accomplished by

previous data cleaning methods.





Chapter 2

Incremental Graph Computations:

Impossibility and Possibility

This chapter studies both the possibilities and impossibilities for the effectiveness of

incremental graph computations.

As remarked in Chapter 1, incremental graph computations is desirable for query-

ing real-life graphs. However, when ∆G is small and G is big, can we guarantee that

it is more efficient to compute ∆O with incremental algorithm T∆ than to recompute

Q(G⊕∆G) with batch algorithm T ? A traditional characterization is by means of a no-

tion of boundedness proposed in [TR81] and extended to graphs in [RR96a, FWW13].

It measures the cost of T∆ in |CHANGED| = |∆G|+ |∆O|, the size of the changes in

the input and output. We say that T∆ is bounded if its cost can be expressed as a poly-

nomial function of |CHANGED| and |Q|. The incremental problem for Q is bounded

if there exists a bounded T∆ for Q , and is unbounded otherwise.

Bounded T∆ allows us to reduce the incremental computations on big graphs to

small graphs. Its cost is determined by |CHANGED| and query size |Q|, rather than

by the size |G| of the entire G. In the real world, |Q| is typically small; moreover,

|CHANGED| represents the updating cost that is inherent to the incremental problem

itself, and is often much smaller than |G|. Hence bounded T∆ warrants efficient incre-

mental computation no matter how big G is.

Undoable. No matter how desirable, we show that the incremental problem for Q is

unbounded when Q ranges over graph traversal (RPQ, regular path queries), strongly

connected components (SCC) and keyword search (KWS). The negative results hold

when ∆G consists of a single edge deletion or insertion. Add to it the unboundedness of

17
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graph pattern matching via subgraph isomorphism (ISO) [FWW13]. For these common

queries, a bounded incremental algorithm is beyond reach. That is, by the standard of

boundedness, incremental graph algorithms seem not very helpful.

Doable. The situation is not so hopeless. The boundedness of [TR81, RR96a,

FWW13] is often too strong to evaluate incremental algorithms. To characterize the

effectiveness of real-life incremental algorithms, we propose two alternative measures.

(1) Localizable computations. We say that the incremental problem for Q is localiz-

able if there exists an incremental algorithm T∆ such that for Q ∈ Q , G and ∆G, its

cost is determined by |Q| and the dQ-neighbors of nodes in ∆G, where dQ is decided

by |Q| only. In practice, Q is typically small, and so is dQ. Hence it allows us to reduce

the computations on (big) G to small dQ-neighbors of ∆G.

We show that the incremental problems for KWS and ISO are localizable, although

they are unbounded.

(2) Relative boundedness. We often want to incrementalize a batch algorithm T for Q .

For a query Q ∈ Q and a graph G, we denote by G(T ,Q) the part of data in G inspected

by T when computing Q(G). Given updates ∆G to G, denote by AFF the difference

between (G⊕∆G)(T ,Q) and G(T ,Q).

An incremental algorithm T∆ for Q is bounded relative to T if its cost is a poly-

nomial in |∆G|, |Q| and |AFF|. Intuitively, AFF indicates the necessary cost for incre-

mentalizing T , and T∆ incurs this minimum cost, not measured in |G|.
We show that RPQ and SCC are relatively bounded, i.e., it is possible to incremen-

talize their popular batch algorithms T and minimize unnecessary recomputation of

T .

2.1 Incremental Graph Computations

We first present graph queries studied in this chapter, and then formulate their incre-

mental problems.

We start with basic notations.

We consider directed graphs G, represented as (V,E, l), where (1) V is a finite set

of nodes; (2) E ⊆V ×V is a set of edges in which (v,v′) denotes an edge from v to v′,

and (3) each node v in V carries l(v), indicating its label and content, as found in social

networks and property graphs.
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If (v,w) is edge in E, we refer to node w as a successor of v, and to node v as a

predecessor of w.

Graph Gs = (Vs,Es, ls) is a subgraph of G if Vs ⊆ V , Es ⊆ E, and for each node

v ∈Vs, ls(v) = l(v).

Subgraph Gs is induced by Vs if Es consists of all the edges in G such that their

endpoints are both in Vs.

2.1.1 Graph Queries

We study the following four classes of graph queries.

RPQ. Consider directed graphs G = (V,E, l) over a finite alphabet Σ of labels defined

on the nodes in V . A path ρ from v0 to vn in G is a list (v0, . . . ,vn), where for i ∈
[0,n−1], (vi,vi+1) is an edge in G. The length of path ρ is n.

A regular path query Q is a regular expression as follows:

Q ::= ε | α | Q ·Q | Q+Q | Q∗.

Here (a) ε denotes an empty path; (b) α is a label from Σ; (c) · and + are concatenation

and union operators, respectively; and (d) Q∗ indicates zero or more occurrences of Q.

We use L(Q) to denote the regular language defined by Q, i.e., the set of all strings

that can be parsed by Q. For a path ρ = (v0, . . . ,vn) in G, we use l(ρ) to denote the

labels l(v0) · · · l(vn) of the nodes on ρ. A match of Q in G is a pair (v,w) of nodes such

that there exists a path ρ from v to w having l(ρ) ∈ L(Q). RPQ is stated as follows.

◦ Input: A directed graph G and a regular path query Q.

◦ Output: The set Q(G) of all matches of Q in G.

It takes O(|V ||E||Q|2 log2 |Q|) time to compute Q(G) by using NFA (nondeterministic

finite automaton) [MW95, HSW01], where |Q| is the number of occurrences of labels

from Σ in Q [HSW01].

SCC. A subgraph Gs of a directed graph G is a strongly connected component of G if

it is (a) strongly connected, i.e., for any pair (v,v′) of nodes in Gs, there is a path from

v to v′ and vice versa, and (b) maximum, i.e., adding any node or edge to Gs makes it

no longer strongly connected.

We use SCC(G) to denote the set of all strongly connected components of G. The

SCC problem is stated as follows.

◦ Input: A directed graph G.

◦ Output: SCC(G).
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It is known that SCC is in O(|V |+ |E|) time [Tar72].

KWS. We consider keyword search with distinct roots in the same setting

of [QYC+14]. A keyword query Q is of the form (k1, . . . ,km), where each ki is a

keyword. Given a directed graph G and a bound b, a match to Q in G at node r is a

tree T (r, p1, . . . , pm) such that (a) T is a subgraph of G, and r is the root of T , (b) for

each i ∈ [1,m], pi is a node in T such that l(pi) = ki, i.e., it matches keyword ki, (c)

dist(r, pi) ≤ b, and (d) the sum Σi∈[1,m]dist(r, pi) is the smallest among all such trees.

Here for a pair (r,s) of nodes, dist(r,s) denotes the shortest distance from r to s, i.e.,

the length of a shortest path from r to s. KWS is as follows.

◦ Input: A directed graph G, a keyword query Q = (k1, . . . ,km), and a positive

integer b.

◦ Output: The set Q(G) of all matches to Q at node r in G within b hops, for r

ranging over all nodes in G.

It can be computed in O(m(|V |log|V |+ |E|)) time (cf. [YQC10]).

ISO. A pattern query Q is a connected graph (VQ,EQ, lQ), in which VQ and EQ are the

set of pattern nodes and directed edges, respectively, and each node u in VQ has a label

lQ(u).

A match of Q in G is a subgraph Gs of G that is isomorphic to Q, i.e., there exists

a bijective function h from VQ to the set of nodes of Gs such that (a) for each node

u ∈ VQ, lQ(u) = l(h(u)), and (b) (u,u′) is an edge in Q iff (h(u),h(u′)) is an edge in

Gs. The answer Q(G) to Q in G is the set of all matches of Q in G. ISO is stated as

follows.

◦ Input: A directed graph G and a pattern Q.

◦ Output: The set Q(G) of all matches of Q in G.

It is NP-complete to decide whether Q(G) is empty (cf. [Pap94]).

2.1.2 Incremental Query Answering

We next formalize incremental computation problems.

Updates. We consider w.l.o.g. the following unit updates:

◦ edge insertion: (insert e), possibly with new nodes, and

◦ edge deletion: (delete e).

A batch update ∆G to graph G is a sequence of unit updates.

Incremental problem. For a class Q of graph queries, the incremental problem is
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symbols notations

G a (directed) graph (V,E, l)

Q a query in a query class Q
Q(G) the answers to query Q in graph G

∆G updates to graph G (edge insertions, deletions)

G⊕∆G the graph obtained by updating G with ∆G

∆O updates to old output Q(G) in response to ∆G

T a batch algorithm for a query class Q
T∆ an incremental algorithm for Q

AFF changes to the area inspected by a batch algorithm T
|G| the size of G; similarly for |∆G|, |Q|

dist(s, t) the shortest distance from node s to t

Gd(v) the d-neighbor of node v in G

Table 2.1: Notations in Chapter 2: graphs and queries

stated as follows.

◦ Input: Graph G, query Q ∈ Q , old output Q(G), and updates ∆G to the input

graph G.

◦ Output: Updates ∆O to the output such that

Q(G⊕∆G) = Q(G)⊕∆O.

We study the problem for RPQ, SCC, KWS and ISO.

The notations used in this chapter are summarized in Table 2.1.

2.2 Bounded Incremental Problems: Undoable

This section shows the following impossibility results.

Theorem 2.1: The incremental problem is unbounded for

◦ regular path queries (RPQ),

◦ strongly connected components (SCC), and

◦ keyword search (KWS),

even under a unit edge deletion and a unit edge deletion. 2

Together with the unboundedness of ISO [FWW13], Theorem 2.1 tells us that it is
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impossible to find bounded incremental algorithms for all the graph query classes pre-

sented in Section 2.1. The negative results are rather robust: the incremental problems

are already unbounded under unit updates.

Before we give a proof, we first review the notion of boundedness of [RR96a,

FWW13], and introduce a form of ∆-reductions.

Boundedness. An incremental algorithm T∆ for a graph query class Q is bounded if

its cost can be expressed as a polynomial of |CHANGED| and |Q|, where |CHANGED|
= |∆G| + |∆O|. Following [RR96a, FWW13], we require T∆ to be locally persistent.

Such T∆ may use (a) auxiliary structures associated with each node v of G, to keep

track of intermediate results at v, and (b) pointers to its successors and predecessors.

However, no global auxiliary information is allowed, such as pointers to nodes other

than its neighbors; similarly for edges. The algorithm starts an update from the nodes

or edges involved in ∆G, and traverses G following the edges of G. The choice of which

edge to follow depends only on the information accumulated in the current processing

of G since global information from prior passes is not maintained.

Reductions. We now introduce ∆-reduction. Consider two classes of graph queries Q1

and Q2. For i ∈ [1,2], we represent an instance of (the computational problem for) Qi

as Ii = (Qi,Gi), where Qi ∈ Qi and Gi is a graph.

A ∆-reduction from Q1 to Q2 is a triple ( f , fi, fo) of functions such that for each

instance I1 = (Q1,G1) of Q1,

(1) f (I1) is an instance I2 = (Q2,G2) of Q2; and

(2) for all updates ∆G1 to G1,

(a) fi(∆G1) computes updates ∆G2 to G2; and

(b) fo(∆O2) computes ∆O1, where ∆Oi denotes updates to Qi(Gi) in response

to ∆Gi for i ∈ [1,2],

in polynomial-time (PTIME) in |∆G1|+ |∆O1| and |Q1|.

Intuitively, f maps the instances of Q1 to Q2; fi maps input updates ∆G1 to ∆G2,

and fo maps output updates O2 back to O1, both in PTIME in the size of Q1 and

changes in the input and output of instance (Q1,G1), where (Q2,G2) corresponds to

(Q1,G1) via function f . Hence if Q2 has a bounded incremental algorithm, then so

does Q1. Equivalently, if Q1 is unbounded, neither is Q2. That is, ∆-reduction preserves

boundedness.

Lemma 2.2: If there exists a ∆-reduction from Q1 to Q2 and if the incremental problem
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for Q2 is bounded, then the incremental problem for Q1 is also bounded. 2

Proof of Lemma 2.2. Assume that there exists a bounded incremental algorithm T∆ for

Q2. We show that a bounded incremental algorithm T ′
∆

for Q1 can be built from T∆ and

the ∆-reduction ( f , fi, fo) from Q1 to Q2. Given an instance I1 = (Q1,G1) of Q1, we

first compute a corresponding instance f (I1) = (Q2,G2) of Q2. Then for each update

∆G1 to G1, T ′
∆

transforms it to fi(∆G1) and invokes the bounded incremental algorithm

T∆ on G2, Q2, Q2(G2) and fi(∆G1) to obtain ∆O2, i.e., the corresponding changes to

Q2(G2). Thereafter, it transforms the updates ∆O2 back to ∆O1 leveraging function fo.

As ( f , fi, fo) is a ∆-reduction, it concludes that fo(∆O2) = ∆O1, where ∆O1 denotes

the updates to Q1(G1) in response to ∆G1, and T ′
∆

takes PTIME in |∆G1|+ |∆O1| and

|Q1| to compute ∆O1, i.e., T ′
∆

is a bounded incremental algorithm for Q1. From this

Lemma 2.2 follows. 2

Proof of Theorem 2.1. Based on ∆-reduction, we give nontrivial proofs for RPQ, SCC,

and KWS one by one, which reveal the challenges to the development of incremental

algorithms. For each query class, we need to give two proofs: one under a unit edge

deletion, and the other under a unit insertion. Indeed, a problem may be unbounded

under deletions (resp. insertions) but be bounded under insertions (resp. deletions).

An example is SSRP, the single-source reachability problem to all vertices. It is to

decide, given a graph G and a node vs in G, whether there exists a path from vs to vt

for all nodes vt in G. It is known that SSRP is unbounded under unit edge deletions

but bounded under unit edge insertions [RR96a].

RPQ. We consider first edge deletions, and then insertions.

(1) Deletions. We prove the unboundedness of the incremental problem for RPQ under

a unit edge deletion by ∆-reduction from the single source reachability problem to all

vertices (SSRP). Given a graph G = (V,E, l) and a node vs ∈ V , SSRP is to decide

whether node vi is reachable from vs for all vi ∈V . The answer is expressed as Boolean

value r(vi) associated with vi. The incremental problem for SSRP is unbounded under

unit edge deletions [RR96a].

Given an instance I1 of SSRP, i.e., a graph G1 = (V1,E1, l1) and a distinguished

node vs in G1, we construct an instance I2 of RPQ, i.e., a graph G2 = (V2,E2, l2) and

a regular path query Q2, by using function f such that the reachability r(vi) from vs

to vi in G1 changes in response to ∆G1 iff (if and only if) there exists a corresponding

change in the output of Q2 on G2 in response to ∆G2, where input and output updates



24 Chapter 2. Incremental Graph Computations: Impossibility and Possibility

v1

v2

v2n

vn-1

vn+1

vn

...

...

u1

u2

u2n

un-1

un+1

un

...

...

w

�2

�2

(�3)

(�1) (�1)

(�1) (�1)

(�1) (�1)

(�2) (�2)

(�2) (�2)

(�2) (�2)

e2
e1

Figure 2.1: Unboundedness for RPQ and SCC

of the two instances are mapped by functions fi and fo, respectively (see Section 2.2).

More specifically, G2 is constructed from G1 with each node vi replaced by v′i. All

the edges in G1 remain unchanged, i.e., (v′i,v
′
j) ∈ E2 iff (vi,v j) ∈ E1. Furthermore,

l2(v′i) = α1 when v′i = v′s, and l2(v′i) = α2 otherwise, where v′s corresponds to source

node vs in G1. Query Q2 is defined as α1 ·(α2)
∗. Then one can verify that vi is reachable

from vs in G1 iff the node pair (v′s,v
′
i) is a match of Q2 in G2. Indeed, the source node

of each match in Q2(G2) must be v′s since all paths having label α1 originate from v′s.

Given delete(vi,v j) in ∆G1, function fi returns corresponding (v′i,v
′
j) to be deleted

from G2, i.e., ∆G2 = fi(∆G1). Then the changes ∆O2 to Q2(G2) consist of node pairs

(v′s,v
′
i) removed. Clearly, v′i is no longer reachable from v′s in G2 and vi is not reachable

from vs in G1; hence ∆O1 is the set of such r(vi) changed from true to false, which can

be computed by fo(∆O2) directly. Thus, a one-to-one mapping between the changes

of I1 and I2 is obtained via linear-time functions fi and fo.

Putting these together, ( f , fi, fo) is a ∆-reduction and RPQ is unbounded under a

unit edge deletion by Lemma 2.2.

(2) Insertions. We next show that RPQ is unbounded under a unit edge insertion by

contradiction. Consider graph G shown in Fig. 2.1 (excluding dotted edges), which

consists of two cycles (v1,v2), . . . , (v2n−1,v2n), (v2n,v1) and (u1,u2), . . . , (u2n−1,u2n),

(u2n,u1), and an edge (v1,w). Each node vi in G has label α1 for i ∈ [1,2n], while ui is

labeled α2. Node w is labeled α3 that is distinct from α1 and α2. Query Q is defined

as α1 · (α1)
∗ ·α2 · (α2)

∗ ·α3. Denote by ∆1 the insertion of e1 = (vn,un), and by ∆2 the

insertion of e2 = (u1,v1). Let graph G1 = G⊕∆1, G2 = G⊕∆2 and G3 = G1⊕∆2.

One can verify that Q(G) = Q(G1) = Q(G2) = /0, while Q(G3) = {(vi,w) | i ∈ [1,2n]}.

Assume by contradiction that there exists a bounded incremental algorithm T∆ for

RPQ under a unit edge insertion. Then T∆(G,Q,Q(G),∆1) and T∆(G,Q,Q(G),∆2) are
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both in O(1) time since only a unit update is applied to G and none of the outputs is

affected for the fixed query Q. We next show that this leads to contradiction.

Let Ts(G,∆G) denote the sequence of nodes visited in executing

T∆(G,Q,Q(G),∆G), referred to as its trace. Observe that T∆(G,Q,Q(G),∆2)

and T∆(G1,Q,Q(G1),∆2) must behave differently as the outputs of these two are dif-

ferent, in which T∆(G1,Q,Q(G1),∆2) computes Q(G3) exactly. This can happen only

if Ts(G,∆2) and Ts(G1,∆2) contain some node associated with different information in

G and G1 as T∆ traverses the graph from the nodes involved in ∆2, i.e., u1 or v1. Since

G1 is obtained by applying ∆1 to G, these nodes must be included in Ts(G,∆1) with

information updated. Observe that if a node v in G is visited during the execution of

a locally persistent algorithm T∆ to process ∆G, then each node on some undirected

path from the position of ∆G to v is also inspected by T∆. Denote by vd the the first

node having different information in Ts(G,∆2) and Ts(G1,∆2). Then Ts(G,∆1) and

Ts(G,∆2) include all the nodes on an undirected path from the position of ∆1 to that

of ∆2 through vd . However, the length of this path is O(n), which contradicts the

assumption that T∆(G,Q,Q(G),∆1) and T∆(G,Q,Q(G),∆2) both take constant time.

SCC. To comply with locally persistent algorithm, we define the output of SCC by

using SCC(v) for each node v in G, where SCC(v) is the minimum id of the nodes that

are in the same strongly connected component as v.

(1) Deletions. We show that the incremental problem for SCC is unbounded under

a unit edge deletion also by ∆-reduction from SSRP. Given an instance I1 of SSRP

consisting of a graph G1 = (V1,E1, l1) and a source node vs ∈ V1, function f is to

construct an SCC instance I2 of a graph G2 = (V2,E2, l2) such that the reachability

from vs to vi changes in G1 iff SCC(v′i) in G2 changes, in response to any edge deletion

∆G1 to G1 and its corresponding update ∆G2 to G2. Here v′i denotes the corresponding

node of vi in G2, which is determined by function f . More specifically, function f

constructs graph G2 as follows.

(a) Function f generates G2 such that each node vi ∈V1 is mapped to v′i in V2, and each

edge (vi,v j) in E1 is mapped to (v′i,v
′
j) in E2. It maps the distinguished vs in G1 to v′s

with the minimum node id 1 in G2.

(b) If Gsi is a strongly connected component of G1 excluding node vs, then function f

adds a node ui together with the edges (ui,v′j) and (v′j,ui) to G2 for each node v j in Gsi .

(c) All the nodes v′i added to G2 in (a) are directly connected to v′s, i.e., (v′i,v
′
s) is
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included in E2 by f for each such v′i.

Function fi encodes unit delete(vi,v j) in ∆G1 as the deletion ∆G2 of (v′i,v
′
j) in G2

if v j 6= vs, otherwise ∆G2 is empty. Then ∆O2 of SCC on G2⊕∆G2 only contains some

node v′i or ui having SCC(v′i) (resp. SCC(ui)) changed to a larger integer from 1. To

see this, observe the following.

(a) A node vi is reachable from vs in G1⊕∆G1 if and only if v′i and v′s are in the same

strongly connected component in G2⊕∆G2, i.e., SCC(v′i) = SCC(v′s). This is because

there exists an edge (v′i,v
′
s) in G2 that will never be deleted.

(b) For each set of nodes within a strongly connected component Gsi in G1 excluding

vs, their corresponding nodes are still in the same strongly connected component of

G2⊕∆G2 together with another node ui. This is because edges adjacent to ui will not

be affected by ∆G1 via function fi.

Therefore, changes ∆O2 only contain some node v′i or ui that are separated from the

strongly connected component containing v′s, which has id 1 since v′s has the minimum

id in G2. Conversely, the corresponding vi of such v′i in G1 is no longer reachable from

vs, which represents ∆O1 and can be obtained by a liner-time function fo. Obviously

fi and fo are both one-to-one. Thus f , fi and fo make a ∆-reduction from SSRP, and

SCC is unbounded under unit edge deletions.

(2) Insertions. We next show that the incremental problem for SCC is also unbounded

under unit edge insertions. We use the same G, ∆1, ∆2, G1, G2 and G3 as shown

in Fig. 2.1, defined in the proof for RPQ above. It can be verified that SCC(G) =

SCC(G1) = SCC(G2), where {vi |i ∈ [1,2n]}, {ui |i ∈ [1,2n]} and {w} constitute the

node set of three strongly connected components. However, the first two are combined

in G3, i.e., O(n) amount of SCC(v) values in G3 are different from their counterparts

in G.

Assume by contradiction that there exists a bounded incremental algorithm

T∆. Then T∆(G,SCC,SCC(G),∆1) and T∆(G,SCC,SCC(G),∆2) both take constant

time as |∆1| = |∆2| = 1, and compared with SCC(G), SCC(G1) and SCC(G2)

remain unchanged. Consider the executions of T∆(G,SCC,SCC(G),∆2) and

T∆(G1,SCC,SCC(G1),∆2) that behave differently. Since G1 is the same as G except

the insertion of edge e1, the different behaviors of T∆ on G and G1 when processing

∆2 can only be triggered if the traces Ts(G,∆2) and Ts(G1,∆2) contain some node as-

sociated with different information in G and G1, respectively. This could happen only
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if these nodes are contained in the trace Ts(G,∆1) with information updated during the

processing of ∆1 on G. As T∆(G,SCC,SCC(G),∆1) is in O(1) time, Ts(G,∆1) includes

a constant number of nodes.

Now we construct a graph G′1 from G1 by skipping the nodes in Ts(G,∆1). More

specifically, for each node vi in Ts(G,∆1), we add an edge (vi−1,vi+1) and leave out

vi along with the edges adjacent to it. Note that (v2n,v2) and (v2n−1,v1) are used for

removing v1 and v2n, respectively, edges e1 and (v1,w) are also adjusted accordingly

when removing vn or v1. The removal of ui is processed similarly. The information

residing at each node remains unchanged. Note that G′1 is not empty when n is suffi-

ciently large. Denote by G′3 the graph G′1⊕∆2. It follows that T∆(G,SCC,SCC(G),∆2)

and T∆(G′1,SCC,SCC(G′1),∆2) should behave the same, as the information in G and

G′1 are not different enough to trigger different actions of T∆. However, the outputs

SCC(G2) and SCC(G′3) are different, in which only two connected components are in

G′3 while G2 has three. Thus a contradiction.

KWS. We now study the incremental problem of KWS.

(1) Insertions. We first prove that the incremental problem for KWS is unbounded

under a unit edge insertion by ∆-reduction from ISO. It is known that the incremental

problem for ISO remains unbounded under unit edge insertions [FWW13] when the

pattern query Q is a tree.

The ∆-reduction ( f , fi, fo) is defined as follows.

(a) Given an instance I1 = (Q1,G1) of ISO, where Q1 is a tree rooted at node r, f com-

putes an instance I2 = ((Q2,b),G2) of KWS such that subgraph Gs is a match of Q1 in

G1 iff G′s is a match to Q2 in G2 bounded by b, where G′s is the corresponding subgraph

of Gs in G2. More specifically, we assume that all the nodes in Q1 = (VQ1 ,EQ1, lQ1)

have distinct labels, without affecting the correctness of the proof in [FWW13]. We

define Q2 as the collection of node labels in Q1, i.e., Q2 = {lQ1(v) | v ∈ VQ1}. The

bound b for Q2 is the longest shortest distance from root r to other nodes in Q1,

i.e., b = maxv∈VQ1
dist(r,v). Each node v in G1 = (VG1,EG1, lG1) is mapped to v′ in

G2 = (VG2,EG2, lG2), and lG1(v) = lG2(v
′). For each edge (vi,v j) in G1, (v′i,v

′
j) is in-

cluded to EG2 if and only if there exists an edge (ui,u j) in Q1 such that lQ1(ui) = lG1(vi)

and lQ1(u j) = lG1(v j).

(b) We map insert(vi,v j) in ∆G1 to insert(v′i,v
′
j) to G2 using function fi if and only

if there exists an edge (ui,u j) in Q1 such that lQ1(ui) = lG1(vi) and lQ1(u j) = lG1(v j).
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Figure 2.2: Unboundedness for KWS

Graph G2 remain unchanged under other cases.

(c) Observe that edge insertion can only lead to new matches generated for both the

two problems. Hence function fo computes ∆O1 for a given ∆O2 that consists of new

matches in Q2(G2⊕∆G2). More specifically, each new match G′s in ∆O2 is transformed

to a new match Gs of Q1 in G1⊕∆G1, where Gs is composed of the corresponding

nodes of those in G′s with the edges connecting them in G1⊕∆G1.

We next prove that functions fo and fi are one-to-one. First suppose that Gs is

a match in Q1(G1⊕∆G1). Denote by G′s the corresponding subgraph in G2⊕∆G2.

Observe that (i) all keywords from Q2 are covered by the node labels in G′s as Q2 is

obtained by using the labels in Q1; and (ii) the sum of distances from root r′ of G′s to

those nodes containing keywords in G′s is minimum among such trees rooted at r′; this

is because the structure of the matches in Q2(G2⊕∆G2) with bound b is restricted by

that of Q1(G1⊕∆G2), and hence any change to it will lead to v′i unreachable from r′

for some node v′i matching keyword ki in G′s; this can formally be proved by induction

on the size of Q1. Conversely, if G′s is a match to Q2 in G2⊕∆G2, then one can verify

that Gs is in Q1(G1⊕∆G1) also by induction on the size of Q1.

Moreover, fo and fi take linear time in |∆G1|+ |∆O1| and |Q1|, since fo is a simple

one-to-one mapping and fi cheeks the labels in Q1 for ∆G1. Hence ( f , fi, fo) is indeed

a ∆-reduction from ISO, and KWS is unbounded in this case.

(2) Deletions. We show that the incremental problem for KWS is also unbounded under

a unit edge deletion. Consider an instance of KWS shown in Fig. 2.2, where Q is a list

(k0, . . . ,k6) of 7 keywords. Graph G = (V,E, l) consists of two paths (v0,v1, . . . ,v2n)

and (v0,v2n+1, . . . ,v4n) of length 2n, and there are two edges e3 = (v4n,vn) and e4 =

(v2n,v3n) connecting them. Node vi∗n carries label ki for i ∈ [0,4], l(vn−1) = k5 and

l(v3n−1) = k6. Other nodes in V carry label k′ that does not occur in Q. Bound b is

defined as 3n. Denote by ∆1 the deletion of edge e1 =(vn−1,vn), and by ∆2 the deletion

of e2 = (v3n−1,v3n). We define graph G1 = G⊕∆1, G2 = G⊕∆2 and G3 = G1⊕∆2.
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It can be verified that Q(G) has a single tree rooted at v0, which can be obtained

from G by removing two edges e3 and e4. The matches Q(G1) and Q(G2) can be

constructed from Q(G) with edge e1 replaced by e3 and e2 replaced by e4 respectively,

and hence the size of the differences between Q(G) and Q(G1) or Q(G2) is 2. However,

Q(G3) = /0, i.e., these exist changes of O(n) size compared to Q(G).

Assume by contradiction that there exists a bounded incremental algorithm T∆ for

KWS under a unit edge deletion. Then T∆(G,Q,Q(G),∆1) and T∆(G,Q,Q(G),∆2)

both take O(1) time as the changes to the inputs and outputs are constants and |Q| =
7. Consider the executions of T∆(G,Q,Q(G),∆2) and T∆(G1,Q,Q(G1),∆2), having

different outputs. The different behaviors of T∆ on G and G1 when processing ∆2 can

be caused only if their corresponding traces Ts(G,∆2) and Ts(G1,∆2) contain some

node associated with different information in G and G1, respectively. Since graph G1

is the same as G except the deletion of edge e1, these nodes are contained in trace

Ts(G,∆1) with information updated during the processing of ∆1 on G.

Denote by vd the first node associated with different data in Ts(G,∆2) and

Ts(G1,∆2), which is also contained in Ts(G,∆1). Then the nodes on some undirected

path from the position of e1 to vd must be visited during the execution of locally per-

sistent algorithm T∆ to process ∆1 on G. On the other hand, vd must also be inspected

when processing ∆2 on G1 and G; hence all the nodes on an undirected path from the

position of e1 to that of e2 should be inspected by T∆ to process ∆1 and ∆2 on G. The

length of this path is O(n), which contracts the assumption that the two updates could

both be processed in constant time. 2

2.3 Localizable Incremental Computations

Not all is lost. Despite Theorem 2.1, there exist efficient incremental algorithms for

RPQ, SCC, KWS and ISO with performance guarantees under new characterizations

for the effectiveness of incremental algorithms. In this section we introduce one of the

standards, namely, localizable incremental computations. We first present the notion

(Section 2.3.1). We then show that the incremental problems for KWS and ISO are

localizable (Section 2.3.2 and 2.3.3, respectively).

2.3.1 Locality of Incremental Computations

We start with a few notations. (a) In a graph G, we say that a node v′ is within d hops

of v if dist(v,v′) ≤ d by taking G as an undirected graph. (b) We denote by Vd(v) the
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set of all nodes in G that are within d hops of v. (c) The d-neighbor Gd(v) of v is the

subgraph of G induced by Vd(v), in which the set of edges is denoted by Ed(v).

Consider a graph query class Q . An incremental algorithm T∆ for Q is localizable

if its cost is determined only by |Q| and the sizes of the dQ-neighbors of those nodes

on the edges of ∆G, where dQ is determined by the query size |Q|.
The incremental problem for Q is called localizable if there exists a localizable

incremental algorithm for Q .

Intuitively, if T∆ is localizable, it can compute ∆O by inspecting only GdQ(v), i.e.,

nodes within dQ hops of nodes v in ∆G. In practice, GdQ(v) is often small. Indeed,

(a) Q is typically small; e.g., 98% of real-life pattern queries have radius 1, and 1.8%

have radius 2 [GFMPdlF11]; hence so is dQ; and (b) real-life graphs are often sparse;

for instance, the average node degree is 14.3 in social graphs [BW13]. Hence, T∆ can

reduce the computations on possibly big G to small GdQ(v).

The main results of this section are as follows.

Theorem 2.3: The incremental problem is localizable for KWS and ISO under batch

updates. 2

That is, while the incremental problems for KWS and ISO are unbounded, we can

still effectively conduct their incremental computations by making big graphs “small”.

As a constructive proof of Theorem 2.3, we next develop localizable incremental

algorithms for KWS. The incremental algorithms for ISO are similar and are outlined

in Section 2.3.3.

2.3.2 Localizable Incremental Algorithms for KWS

We first provide localizable algorithms for KWS under unit edge insertions and dele-

tions. We then develop a localizable incremental algorithm for KWS to process batch

updates.

Data structures. We start with an auxiliary structure. Recall that a KWS query con-

sists of a list Q = (k1, . . . ,km) of keywords and an integer bound b. For each node

v in graph G, we maintain a keyword-distance list kdist(v). Its entries are of the

form (keyword,dist,next), where dist is the shortest distance from v to a node la-

beled keyword in Q, and next indicates the node on this shortest path next to v. A

single shortest path is selected with a predefined order in case of a tie. Hence each

root uniquely determines a match if it exists. During the traversal of G, kdist(·)’s
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Algorithm: IncKWS+

Input: A graph G with kdist(·), keyword query Q and bound b,

matches Q(G), and an edge (v,w) to be inserted.

Output: The updated matches Q(G⊕∆G) and kdist lists.

1. for each ki in Q with

kdist(w)[ki].dist < min(kdist(v)[ki].dist−1,b) do

2. kdist(v)[ki].dist := kdist(w)[ki].dist+1;

3. kdist(v)[ki].next := w; queue qi := nil; qi.enqueue(v);

4. while qi is not empty do

5. node u := qi.dequeue();

6. for each predecessor u′ of u such that

kdist(u)[ki].dist < min(kdist(u′)[ki].dist−1,b) do

7. kdist(u′)[ki].dist := kdist(u)[ki].dist+1;

8. kdist(u′)[ki].next := u; qi.enqueue(u′);

9. for each u′′1 and u′′2 involved in a changed kdist(u)[ki].next do

10. replace (u,u′′1) with (u,u′′2) in all the matches of Q(G) or

add matches to Q(G⊕∆G) by including (u,u′′2);

11. return Q(G⊕∆G) (including revised Q(G)) and kdist(·);

Figure 2.3: Algorithm IncKWS+

are updated, and Q(G) is generated using these lists. Such keyword-distance lists

are obtained after the execution of a batch algorithm. Indeed, existing batch ap-

proaches [HWYY07, BHN+02, KPC+05] for KWS traverse G to find shortest paths

from nodes to others matching keywords in Q. While they vary in search and indexing

strategies, they all maintain something like kdist(·).

(1) Unit insertions. Inserting an edge to graph G may shorten the shortest distances

from nodes to those matching keywords in Q, which is reflected as changes to dist and

next in the keyword-distance lists on G. Based on this, we present an incremental algo-

rithm, referred to as IncKWS+ and shown in Fig. 2.3, to process unit edge insertions.

Given ∆G consisting of insert(v,w), IncKWS+ inspects whether it inflicts any

change to shortest paths of existing matches; if so, it propagates the changes, revises

kdist(v) entries for affected nodes v and updates the matches accordingly. It proceeds
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Figure 2.4: Example graph and matches of KWS

until no more revision is needed. The search is confined in the b-neighbors of nodes in

∆G, and hence localizable, where b is the bound in the KWS query. This is achieved

by updating kdist(·) only when there exists some shortest path of length within bound

b being affected.

More specifically, IncKWS+ first checks whether (v,w) is on a shorter path within

the bound b from v to nodes labeled ki in Q (line 1). If so, kdist(v) is adjusted by updat-

ing dist and next (lines 2-3). IncKWS+ then propagates the change to the ancestors of

v if their kdist(·) entries are no longer valid, and updates the entries accordingly (lines

4-8). An FIFO (first-in-first-out) queue qi is used to control the propagation, following

BFS (breadth-first-search). Each time when a node u is dequeued from qi (line 5), the

predecessors of u are inspected to check whether u triggers updated shortest path from

them within bound b, followed by updating their kdist entries if needed (lines 6-8).

These predecessors may be inserted into queue qi for further checking (line 8).

After revising the data structures, IncKWS+ computes Q(G⊕∆G) based on the

changes to next in kdist(·) (lines 9-10), either by replacing some edges in existing

matches, or by including new matches not in Q(G). Note that all such affected edges

are inside the 2b-neighbors of ∆G.

Example 2.1: Figure 2.4 gives a graph G (with all solid edges and dotted e2, e5).

Consider a KWS query Q = (a,d) and bound 2. Two trees Tb2 and Td2 in Q(G) are

shown in Fig. 2.4 (with solid edges only), rooted at b2 and d2, respectively.

When edge e1 is added to G, denote by G1 the graph after the insertion. IncKWS+

finds that the shortest distance from b2 to nodes matching d in G1 is reduced to 1

from 2. Thus it updates the entries in kdist(b2)[d] and propagates the change to b2’s

predecessors c2 and d2. The propagation stops at c2 since the shortest distance from
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it to d nodes already reaches bound 2. The values of 〈dist,next〉 in keyword-distance

lists on G are updated, as shown below.

IncKWS+ before insertion after insertion

kdist(b2)[d] 〈2,b4〉 〈1,d1〉
kdist(c2)[d] 〈⊥,nil〉 〈2,b2〉

Then IncKWS+ revises Tb2 by replacing the path starting with edge (b2,b4) by

(b2,d1) to get T ′b2
in Q(G1), and a new match Tc2 (solid edges in Fig. 2.4) is added to

Q(G1). 2

Correctness & complexity. IncKWS+ updates kdist(·) correctly: it revises only entries

in which dist values are decreased, and checks all affected entries by propagating the

changes. From this the correctness of IncKWS+ follows.

IncKWS+ is in O(m(|Vb(w)|+ |Eb(w)|)+ |Vb(w)||E2b(w)|) time. Updating kdist(·)
takes O(m(|Vb(w)|+ |Eb(w)|)) time in total (lines 1-8), where m is the number of

keywords in Q. Observe the following: (a) each node with updated kdist is verified

at most m times, one for each keyword ki in Q to check the shortest path to nodes

labeled ki; and (b) only the data in Gb(w) is inspected since change propagation stops

as soon as the shortest distance exceeds b (lines 1, 6), i.e., kdist(·) is partially updated

for matches within bound b. Updating Q(G) (lines 9-10) takes O(|Vb(w)||E2b(w)|)
time since the roots of the affected matches are within b hops of w, and their edges

to be adjusted are at most 2b hops away from w. Therefore, algorithm IncKWS+ is

localizable.

(2) Unit deletions. The incremental algorithm for processing unit delete(v,w) is shown

in Fig. 2.5, denoted by IncKWS−. In contrast to edge insertions, some shortest dis-

tances in kdist lists may be increased by delete(v,w). As a result, matches in Q(G) will

be changed or even removed. The main idea of IncKWS− is to identify those entries

in kdist(·) that are affected by ∆G, and compute changes to dist and next. Similar to

IncKWS+, updating kdist(·)’s is confined within the b-neighbors of ∆G by inspecting

only those distances no longer than b. The identification and computation are separated

into two phases in IncKWS−.

After consulting whether (v,w) is on a shortest path from v to some node labeled

keyword ki within bound b (line 1), IncKWS− propagates the change to v’s prede-

cessors if needed with the help of a stack ai, and each predecessor that may have an

updated shortest path to nodes matching ki is marked affected w.r.t. ki (lines 3-6). The
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Algorithm: IncKWS−

Input: G with kdist(·), Q, b, Q(G) as in IncKWS+, and delete(v,w).

Output: The updated matches Q(G⊕∆G) and kdist lists.

1. for each ki in Q with w = kdist(v)[ki].next

and kdist(w)[ki]< b do

2. queue qi := nil; stack ai := nil; ai.push(v); mark v affected;

3. while ai is not empty do

4. node u := ai.pop();

5. for each predecessor u′ of u that u = kdist(u′)[ki].next

and kdist(u′)[ki]≤ b do

6. ai.push(u′); mark u′ affected;

7. for each affected node u do

8. compute dist and next for kdist(u)[ki] based on those

u’s successors that are not affected;

9. qi.insert(u,kdist(u)[ki].dist);

10. while qi is not empty do

11. (u,d) := qi.pull min();

12. for each predecessor u′ of u with

d < min(kdist(u′)[ki].dist−1,b) do

13. kdist(u′)[ki].dist := d +1; kdist(u′)[ki].next := u;

14. qi.decrease(u′,kdist(u′)[ki].dist);

15.for each u′′1 and u′′2 involved in a changed kdist(u)[ki].next do

16. replace (u,u′′1) with (u,u′′2) in all the matches of Q(G) or

remove matches from Q(G) by excluding (u,u′′1);

17.return Q(G⊕∆G) (updated Q(G) above) and kdist(·);

Figure 2.5: Algorithm IncKWS−

propagation is similar to that of IncKWS+, by inspecting next values in kdist(·)’s, and

is conducted in b-neighbors of v. Then the potential dist and next values for kdist on

those affected nodes are computed based on their successors that are not affected w.r.t.

ki (line 8), and affected nodes with their potential dist values (as the keys) are inserted

into a priority queue qi (line 9) to compute the exact dist values later. Indeed, the exact

values of dist and next may depend on the affected successors, whose values also need
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to be determined.

The exact values of dist and next are computed in the second phase of IncKWS−

(lines 10-14). For node u with minimum dist that is removed from qi (line 11),

IncKWS− checks whether it leads to a new shortest path within bound b originated

from predecessor u′ of u, as described for IncKWS+ (line 12). If so, dist and next in

kdist(u′)[ki] are updated (line 13), and the key of u′ in qi is decreased (line 14).

The process continues until qi becomes empty. Matches in Q(G) are updated using

the latest kdist(·) lists (lines 15-16).

Example 2.2: Recall Q, G1 and Q(G1) from Example 2.1. Suppose that e2 is now

removed from G1. This makes the shortest path from c2 to a2 in Tc2 split, and IncKWS−

marks node c2 affected with keyword a. Since the shortest distance from successor b2

of c2 to nodes matching a equals the bound 2, IncKWS− concludes that node c2 cannot

be the root of a match, and removes Tc2 of Example 2.1 from Q(G1). 2

Correctness & complexity. The correctness of IncKWS− is verified just like for

IncKWS+, except that the exact values of kdist(v) may depend on multiple affected

successors of v.

IncKWS− runs in O(m(|Vb(w)| log |Vb(w)| + |Eb(w)|) + |Vb(w)||E2b(w)|) time,

including O(|Vb(w)||E2b(w)|) for updating matches in Q(G) in addition to the cost

for computing changes to kdist(·)’s. Its first phase (lines 1-9) takes O(m(|Vb(w)|+
|Eb(w)|)) time since only the affected shortest paths of length bounded by b are iden-

tified. Its second phase (lines 10-14) takes O(m(|Vb(w)| log |Vb(w)|+ |Eb(w)|)) time,

the same as computing b-bounded shortest path from each affected node to a single

sink, i.e., nodes labeled a specific keyword from Q, within the b-neighbors of updated

(u,v).

(3) Batch updates. We next give an incremental algorithm, denoted by IncKWS (not

shown), to process batch updates ∆G = (∆G+,∆G−), where ∆G+ and ∆G− denote

edge insertions and deletions, respectively. We assume w.l.o.g. that there exist no

delete e in ∆G− and insert e in ∆G+ for the same edge e, which can be easily de-

tected.

Given batch updates ∆G, IncKWS inspects whether each unit edge deletion and

insertion causes any change to existing matches, i.e., whether some of existing shortest

paths become invalid and new shortest paths within bound b have to be generated;

if so, it propagates the changes and updates entries of keyword-distance lists of those
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affected nodes. The algorithm updates the same entry at most once even if it is affected

by multiple updates in ∆G, by interleaving different change propagation with the help

of a global data structure to accommodate the effects of different unit updates. It works

in three phases, as outlined below.

(a) IncKWS first identifies the affected nodes w.r.t. each keyword ki in Q due to ∆G−

within the b-neighbors of ∆G−, and computes their potential dist and next values, using

the same strategy of IncKWS−. Here all the affected nodes w.r.t. ki and their potential

dist values are inserted into a single priority queue qi to further compute exact values.

(b) The algorithm then checks whether each insert(v,w) leads to the creation of a

shorter path within bound b when neither v nor w is affected w.r.t. ki by ∆G−. In-

sertions with affected nodes are not considered since dist value at w may no longer be

correct due to ∆G−, or this edge has already been inspected to compute potential dist

value for node v. If so, dist and next values are updated for the keyword-distance list

on v. Unlike IncKWS+ that propagates this change to ancestors of v directly, it inserts

node v and the updated dist value into queue qi to interleave insert(v,w) with other

updates in ∆G when computing exact values.

(c) After these, IncKWS computes exact next and dist values of kdist(·), in the same

way as we do in IncKWS− by making use of queue qi. Note that all potential changes

to kdist(·) caused by ∆G, including both deletions and insertions, are collected into

the same qi; in this way the algorithm guarantees that the exact value, i.e., shortest

distance, is decided at most once for each entry affected. Matches in Q(G) are updated

accordingly within the 2b-neighbors of ∆G at last.

Example 2.3: Consider Q and G of Example 2.1, and batch updates ∆G that insert

edges e1,e3,e4 and delete e2 and e5.

Given these, algorithm IncKWS first identifies the affected nodes c1 and c2 w.r.t. a,

and finds that the potential value of the corresponding dist already exceeds the bound

2. Then it processes insertions; e.g., the insertion of e3 leads to decreased shortest

distance from b2 to a nodes, and the change is propagated to b2’s predecessor c2 to

compute the exact value of kdist(c2)[a], i.e., IncKWS interleaves the insertion of e3

and deletion of e2 to decide the exact shortest distance from c2 to a nodes. The other

updates are handled similarly. Based on these, it replaces the two branches of Tb2 with

(b2,a1) and (b2,d1), respectively, and adds match Tb4 in Figure 2.4. A new match T ′c2

is also included in Q(G⊕∆G), where path (c2,b3,a2) in Tc2 of Example 2.1 is replaced
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by (c2,b2,a1). 2

Correctness & complexity. For the correctness of IncKWS, observe the following. (a)

Each node that is affected w.r.t. keyword ki by any unit update in ∆G is inspected. (b)

The dist values for these nodes are monotonically increasing and correctly computed,

similar to its counterpart in IncKWS−.

IncKWS is in O(m(|Vb(∆G)| log |Vb(∆G)|+ |Eb(∆G)|)+ |Vb(∆G)||E2b(∆G)|) time,

where Vb(∆G) (resp. Eb(∆G)) denote the nodes (resp. edges) of the union of b-

neighbors of nodes involved in ∆G. Note that the final value of each affected node

w.r.t. any keyword ki is determined once by using the global priority queue qi. The

complexity analysis is similar to that of IncKWS−, except that here the 2b-neighbors

of all the nodes involved in ∆G are possibly accessed for updating the matches and

kdist(·)’s.

Since the costs of IncKWS+, IncKWS− and IncKWS are determined by m and

the size of 2b-neighbors of nodes involved in ∆G for a given bound b, they are all

localizable.

Remark. Although the incremental algorithms for KWS are developed for a constant

b, they can be readily extended to cope with b that varies. More specifically, when

change propagation stops at node v due to the restriction of bound b, we can annotate

v as a “breakpoint” w.r.t. b, and the set of all such breakpoints is stored as a “snapshot”

of graph G w.r.t. b. When given a larger b′, the snapshot of G w.r.t. b is firstly restored

and each breakpoint is regarded as a unit update, either insertion or deletion, to the

data graph, i.e., as input to the incremental algorithm with b′ in addition to ∆G, from

where the change propagation continues. In this way, KWS queries with different b

values can be answered using the same data structure, i.e., keyword-distance list that

is consistently updated. Indeed, we only need to store the snapshot of G w.r.t. the

maximum b that is encountered.

2.3.3 Localizable Incremental Algorithms for ISO

Recall that given a pattern query Q and a graph G, ISO is to compute the set Q(G)

of all matches of Q in G, i.e., all subgraphs of G that are isomorphic to Q. Observe

that the deletion of an edge e may cause the removal of matches that include e from

Q(G). Conversely, insertion of e = (v,w) may add new matches to Q(G) and all these

matches are within GdQ(v) and GdQ(w), where dQ is the length of the longest shortest
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path between any two nodes in Q when taken as undirected graph, i.e., the diameter of

Q.

Based on this, we outline a localizable incremental algorithm, denoted by IncISO,

for ISO under batch updates (not shown). It works as follows. (1) Collect the set

∆G− of all edge deletions in ∆G. For each edge deletion of e, remove those matches

including e from Q(G), by inspecting the dQ-neighbors of the two nodes on e, where dQ

is the diameter of Q. (2) For the rest of updates in ∆G, i.e., edge insertions ∆G+, extract

the union of dQ-neighbors of the nodes involved in these edge insertions, denoted by

GdQ(∆G+). (3) Invoke an existing batch algorithm (e.g.,VF2 [CFSV04]) for ISO to

compute Q(GdQ(∆G+)) all together rather than one by one, and add those matches to

Q(G) that are not in Q(G).

Obviously, the cost of IncISO can be expressed as a function of |Q| and |GdQ(∆G)|,
instead of the size |G| of the entire graph G. In other words, IncISO is localizable, and

hence so is ISO. Note that GdQ(∆G) also includes the dQ-neighbors of nodes involved

in edge deletions.

Putting this together with the algorithms presented in Sections 2.3.2, we complete

the proof of Theorem 2.3.

In our experimental study, we compare IncISO with another algorithm IncISOn,

which applies the batch algorithm on dQ-neighbor of each update one by one.

2.4 Relatively Bounded Incrementalization

We next introduce relative boundedness, another alternative characterization for the ef-

fectiveness of incremental computations. We first formalize the notion in Section 2.4.1.

We then develop relatively bounded incremental algorithms for RPQ and SCC in Sec-

tions 2.4.2 and 2.4.3, respectively.

2.4.1 Relative Boundedness

Consider a batch algorithm T for a query class Q that is proven effective and being

widely used in practice. For a query Q ∈ Q and a graph G, we denote by G(T ,Q) the

data inspected by T when computing Q(G), including data in G and possibly auxiliary

structures used by T . For updates ∆G to G, we denote by AFF the difference between

(G⊕∆G)(T ,Q) and G(T ,Q), i.e., the difference in the data inspected by T for computing

Q(G⊕∆G) and for Q(G).
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An incremental algorithm T∆ for Q is bounded relative to T if its cost can be

expressed as a polynomial function in |∆G|, |Q| and |AFF| for Q ∈ Q , graph G and

updates ∆G. Note that the changes ∆O to Q(G) are included in AFF.

Intuitively, we only incrementalize batch algorithms T ’s that have been verified

effective. As batch algorithms have been studied for decades for graphs, a number of

such algorithms are in place. When incrementalizing such algorithms, relative bound-

edness is to characterize the effectiveness of the incrementalization, i.e., whether it

minimizes unnecessary recomputation in response to updates ∆G. It suffices to de-

velop T∆ bounded relatively to one of such T ’s.

Note that for a class Q of graph queries, one can find localizable incremental algo-

rithms only if Q has the data locality, i.e., to decide whether v is in the answer Q(G) to

a query Q, it suffices to inspect the dQ-neighbor of v. However, many graph queries do

not have the data locality, e.g., RPQ and SCC. For such queries, we can explore rela-

tively bounded incremental algorithms. Moreover, even when Q has the data locality,

we want to find incremental algorithms that are both localizable and bounded relative

to a practical batch algorithm of Q . Such algorithms are particularly needed for large

queries Q (i.e., when diameter dQ of Q is large).

We should remark that there are other alternative effectiveness characterizations for

incremental graph algorithms, e.g., a classification in terms of incremental complexity.

We focus on localizability and relative boundedness in this chapter since they are easy

to verify and use in practice.

The main results of this section are as follows.

Theorem 2.4: There are bounded incremental algorithms for RPQ and SCC relative

to their batch counterparts. 2

As a proof, we present relatively bounded algorithms for RPQ and SCC. As will be

seen in Section 2.5, these algorithms are effective although none of the query classes

is bounded.

2.4.2 Incrementalization for RPQ

We start with RPQ. Given a regular path query Q and a graph G, it is to compute the

set Q(G) of matches of Q in G, i.e., pairs (v,w) of nodes in G such that v can reach w

by following a path in the regular language defined by Q.

We incrementalize a batch algorithm RPQNFA [HSW01, MW95] for RPQ. We first
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Figure 2.6: NFA MQ and intersection graph of MQ, G

review RPQNFA and identify its AFF. We then give a bounded incremental algorithm

relative to RPQNFA.

Batch algorithm. Algorithm RPQNFA consists of two phases. Given Q and G, it first

translates Q into an NFA MQ (nondeterministic finite automaton) [HSW01], and then

computes Q(G) by traversing graph G based on the automaton MQ [MW95]. Its time

complexity is O(|V ||E||Q|2 log2 |Q|).
More specifically, MQ = (S,Σ,δ,s0,F), where S is a finite set of states, Σ is the

alphabet, δ is the transition function that maps S×Σ to the set of subsets of S, s0 ∈ S

is the initial state, and F ⊆ S is the set of accepting states. There are other methods

for constructing NFA, e.g., the one based on partial derivatives [Ant96]. We adopt

the algorithm of [HSW01] since it constructs smaller NFA than [Ant96] and takes less

time.

After MQ is in place, the second phase starts, traversing the intersection graph

GI = (VI,EI, lI) of G and MQ [MW95]. Here VI =V×S, lI(v,s) = l(v), EI ⊆VI×VI and

((v,s),(v′,s′)) is in EI if and only if (v,v′) ∈ E and s′ ∈ δ(s, l(v′)). RPQNFA conducts

BFS from each node in GI . Each node v in G is marked with a set v.pmark(·) of

markings, where v.pmark(u) is a set of states s in S, indicating that there exists a path ρ

from u to v in G such that (u,s0) reaches (v,s) following the corresponding path ρI of

ρ in GI . When node v is visited in state s, only the successor v′ of v with δ(s, l(v′)) 6= /0

are inspected in G. The markings prevent a node from being visited more than once in

the same state. It includes (u,v) in Q(G) if v.pmark(u)∩F 6= /0, i.e., there exist state

s ∈ v.pmark(u) and a path ρI from (u,s0) to (v,s) such that lI(ρI) ∈ L(Q).

Example 2.4: Consider an RPQ query Q= c ·(b ·a+c)∗ ·c over the graph G of Fig. 2.4.

Its NFA MQ and a fragment of the intersection graph GI of G and MQ are shown in

Fig. 2.6 (excluding dotted edge ((b2,s2),(a1,s1))).

RPQNFA traverses GI and marks the nodes in G with states of MQ. Note that there

exist paths from (c1,s0) to (c2,s3) and from (c2,s0) to (c2,s3) in GI; thus the accepting
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state s3 is included in markings c2.pmark(c1) and c2.pmark(c2). Therefore, (c1,c2)

and (c2,c2) are returned by RPQNFA. 2

Auxiliary structures. The marking v.pmarke(u) is of the form (state,dist,cpre,mpre),

where (a) dist is the shortest distance from (u,s0) to (v,state) in GI , (b) (v′,s′) is

contained in v.pmarke(u)[s].cpre if there exists an entry in v′.pmarke(u) for state s′

such that s ∈ δ(s′, l(v)) and (v′,v) is in G, i.e., v.pmarke(u)[s].cpre stores predeces-

sors of node (v,s) in GI that are on a path starting from (u,s0); and (c) (v′,s′) is

in v.pmarke(u)[s].mpre if v′.pmarke(u)[s′].dist+ 1 = v.pmarke[s].dist, i.e., mpre keeps

track of those predecessors on shortest paths. The auxiliary information is computed

by RPQNFA without increasing its complexity.

Characterization of AFF. We identify AFF, i.e., the difference between G(RPQNFA,Q)

and (G⊕∆G)(RPQNFA,Q), as changes to the markings. Indeed, the markings are the data

that RPQNFA necessarily inspects, since updates to markings trigger different behaviors

of RPQNFA when computing Q(G⊕∆G) and Q(G). For instance, a change to dist in

v.pmarke(u)[s] indicates that (v,s) is reached in BFS through a different path from

(u,s0) and state s is included in v.pmark(u) in RPQNFA at a different level of the BFS

tree.

Incremental algorithm. Based on markings, we develop incremental algorithms for

RPQ that are bounded relative to RPQNFA. The boundedness is accomplished by up-

dating markings only when necessary, i.e., when there exists corresponding differ-

ence between the data inspected by RPQNFA. For unit edge deletions and insertions,

the algorithms are similar to their counterparts for KWS (Section 2.3.2), guided by

changes to dist. Below we just present an algorithm for processing batch updates

∆G = (∆G+,∆G−).

The algorithm is denoted as IncRPQ and shown in Fig. 2.7. It first invokes

procedure identAff (not shown) to identify a set affs of (v,u,s) triples, where

v.pmarke(u)[s].dist is no longer valid due to edge deletions ∆G− (line 1). Sim-

ilar to how IncKWS− identifies affected entries of keyword-distance lists (Sec-

tion 2.3.2), identAff checks the values of mpre and cpre in markings. For

example, if v.pmarke(u)[s].mpre becomes empty, it checks whether (v,s) is in

v′.pmarke(u)[s′].mpre for each successor v′ of v and s′ ∈ δ(s, l(v′)). If so, (v,s) is

removed, and identAff continues to check the successors of v′. Transition function δ of

MQ is needed here to decide the states of markings. After these, IncRPQ updates the
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Algorithm: IncRPQ

Input: A graph G with pmarke(·), regular path query Q and

NFA MQ, matches Q(G), and batch updates (∆G+,∆G−).

Output: The updated matches Q(G⊕∆G) and markings pmarke(·).

1. set affs := identAff(G,pmarke(·),∆G−); queue q := nil;

2. for each (v,u,s) in affs do

3. update dist, mpre for v.pmarke(u)[s] based on its cpre;

4. q.insert((v,u,s),v.pmarke(u)[s].dist);

5. for each edge insertion of (v,w) in ∆G+ do

6. if edge (v,w) leads to a smaller w.pmarke(u)[s].dist for

node u and state s and (v,u,s) is not in affs then

7. update dist, mpre, cpre for w.pmarke(u)[s];

8. q.insert((w,u,s),w.pmarke(u)[s].dist);

9. update pmarke(·) based on queue q and NFA MQ;

10. update Q(G) to get Q(G⊕∆G);

11. return Q(G⊕∆G) and pmarke(·);

Figure 2.7: Algorithm IncRPQ

corresponding (potential) dist values of triples in affs based on the current cpre, i.e., the

remaining candidate predecessors after removing affected entries. These triples with

new dist values are inserted into priority queue q (lines 2-4) for computing exact values

of the markings later on.

Thereafter, IncRPQ processes insertions in ∆G+ by checking whether they yield

smaller dist values in some markings (lines 5-6), and update them accordingly (line 7).

Again, the updated triples are added to queue q (line 8). IncRPQ determines exact

markings based on queue q (line 9) following a monotonically increasing order of

updated dist, similar to IncKWS, while NFA MQ is used to guide the propagation. By

grouping updated triples in queue q, the algorithm reduces redundant computations

when processing ∆G.

Finally, given the updated markings, Q(G⊕∆G) is computed by taking new pairs

of nodes marked with accepting states in F and removing invalid ones from Q(G) (line

10). Algorithm IncRPQ returns Q(G⊕∆G) and revised markings for future processing
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of subsequent updates (line 11).

Example 2.5: Recall batch updates ∆G to G from Example 2.3. These inflict the dele-

tion of ((c2,s1),(b3,s2)) and insertion of ((b2,s2),(a1,s1)) to the intersection graph

GI of Example 2.4. IncRPQ first finds that triple (b3,c2,s2) is affected by the deletion.

The change is propagated to the decedents of (b3,s2) in GI , and potential values of

〈dist,mpre〉 for affected entries are computed. After these, it decides exact values after

processing insertions; some are shown below.

IncRPQ before updates after updates

b3.pmarke(c2)[s2] 〈2,{(c2,s1)}〉 〈⊥,nil〉
a2.pmarke(c2)[s1] 〈3,{(b3,s2)}〉 〈⊥,nil〉
c2.pmarke(c2)[s3] 〈4,{(a2,s1)}〉 〈5,{(c1,s1)}〉
c1.pmarke(c2)[s3] 〈⊥,nil〉 〈4,{(a1,s1)}〉
c1.pmarke(c1)[s3] 〈⊥,nil〉 〈5,{(a1,s1)}〉

Note that although the previous path from (c2,s0) to (c2,s3) is split due to edge

deletion, accepting state s3 remains in marking c2.pmarke(c2) since another path con-

necting these two nodes in GI is formed as a result of insertions. Indeed, IncRPQ

combines the processes for the two updates, i.e., delete(c2,b3) and insert(b2,a1) to

compute exact value of c2.pmarke(c2)[s3]. Based on the exact values, it adds (c2,c1)

and (c1,c1) to obtain Q(G⊕∆G), as accepting state s3 is included in the corresponding

markings. 2

Correctness & complexity. One can verify that IncRPQ correctly updates markings by

induction on the number of changed entries. IncRPQ is in O(|AFF| log |AFF|) time.

Indeed, (a) affected triples are added to set affs and queue q at most once by BFS

traversal; (b) each of procedure identAff (line 1), computing potential values (lines

2-4) and processing edge insertions (lines 5-8) takes O(|AFF|) time by using MQ and

cpre, where to compute potential values, O(|AFF|) predecessors are processed directly

via cpre, without inspecting the entire neighbors; and (c) computing the latest values

of markings (line 9) needs O(|AFF| log |AFF|) time by using heaps for queue q, just

like fixing dist values for affected nodes in IncKWS (Section 2.3.2). Note that |Q| is

counted in |AFF|. All these steps have costs bounded by a function of |AFF|. Hence

IncRPQ is bounded relative to RPQNFA.
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2.4.3 Incrementalization for SCC

We next investigate the incremental problem for SCC. Given a graph G, it is to compute

SCC(G), i.e., the set of all strongly connected components in G. In the sequel we

abbreviate a strongly connected component as an scc.

We incrementalize Tarjan’s algorithm [Tar72] for SCC. We refer to the batch al-

gorithm as Tarjan. Below we first review the basic idea of Tarjan, and identify its

AFF.

Batch algorithm. Tarjan traverses a directed graph G via repeated DFS (depth-first

search) to generate a spanning forest F , such that each scc corresponds to a subtree of a

tree T in F with a designated root. It reduces SCC to finding the roots of corresponding

subtrees in F .

More specifically, each node v in G is assigned a unique integer v.num, denoting

the order of v visited in the traversal. The edges of G fall into four classes by DFS:

(a) tree arcs that lead to nodes not yet discovered during the traversal of G; (b) fronds

that run from descendants to their ancestors in a tree T ; (c) reverse fronds that are

from ancestors to descendants in a tree; and (d) cross-links that run from one subtree to

another. In addition, v.lowlink is maintained for each node v, representing the smallest

num of the node that is in the same scc as v and is reachable by traversing zero or more

tree arcs followed by at most one frond or cross-link. It determines whether node v is

the root of the subtree corresponding to an scc by checking whether v.lowlink = v.num,

and if so, generates the scc accordingly. It uses a stack to store nodes that have been

reached during DFS but have not been placed in an scc. A node remains on the stack

after it has been visited if and only if there exists a path in G from it to some node

earlier on the stack (see [Tar72] for details).

Example 2.6: Figure 2.8 depicts the DFS forest F obtained by applying Tarjan on

graph G of Fig. 2.4. Each node is annotated with its (num, lowlink). There are four

scc’s. The corresponding contracted graph Gc (see below) is also shown in Fig. 2.8

(solid edges), where node i refers to scci in G. 2

Auxiliary structures. To incrementalize Tarjan, we maintain the values of num and

lowlink of each node after traversing G, and annotate each edge with the type that it

falls into. Besides, a contracted graph Gc of G is constructed by contracting each scc

into a single node. The graph Gc maintains a counter for the number of cross-links

from one node (i.e., scc) to another. Each node v in Gc has a topological rank r(v),
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Figure 2.8: DFS forest of G and contracted graphs

initially the order of the scc to which v corresponds in the output sequence of Tarjan.

Indeed, the topological sorting of scc’s is a byproduct of Tarjan as nodes of each scc

are popped from the stack recursively. These auxiliary structures can be computed by

slightly revising Tarjan without increasing its complexity or changing its logic.

It is shown that r(v) > r(v′) if (v,v′) is a cross-link in Gc [Tar72], an invariant

property on which we will capitalize.

Characterization of AFF. The affected area AFF includes the following: (a) changes

to lowlink and num of nodes when computing SCC(G⊕∆G), since accurate lowlink

and num values determine the correctness of Tarjan; (b) v’s successors for each node v

whose v.lowlink changes, since the lowlink value of v is determined by comparing with

lowlink or num of its successors; and (c) the neighbors of v for each node v whose v.num

changes, since these neighbors are affected in this case and are necessarily checked by

Tarjan.

We next give bounded incremental algorithms relative to Tarjan, under unit inser-

tions, deletions, and batch updates.

(1) Unit insertions. Inserting an edge may result in combining two or more scc’s into a

single one. This happens if and only if a cycle is formed with the corresponding nodes

of these scc’s in the contracted graph after the insertion.

Employing the contracted graph Gc, we propose incremental algorithm IncSCC+,

shown in Fig. 2.9, to process unit insertion of edge (v,w). Intuitively, IncSCC+ checks

whether (v,w) inflicts a cycle in Gc by leveraging the topological ranks assigned

on nodes in Gc, and combines some of the scc’s in SCC(G) when necessary to get

SCC(G⊕∆G). It separates different types of (v,w), and makes use of topological ranks

based on the invariant property mentioned above. Relatively boundedness is guaran-

teed since every change to the rank of an scc inspected by the algorithm corresponds
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Algorithm: IncSCC+

Input: A graph G with num(·), lowlink(·), contracted graph Gc,

SCC(G) and an edge (v,w) to be inserted.

Output: SCC(G⊕∆G) and updated num(·), lowlink(·) and Gc.

1. if v and w are within the same scc (tree) T then

2. T := T ⊕∆G; update num(·), lowlink(·) for T ;

3. if r(scc(v))> r(scc(w)) then update Gc;

4. if r(scc(v))< r(scc(w)) then

5. affr := DFSf(Gc,w,r(scc(v))); affl := DFSb(Gc,v,r(scc(w)));

6. if Tarjan(affl∪affr,v) has non-singleton cycle C then

7. merge the corresponding components of nodes in C;

8. update num(·), lowlink(·) for the new component;

9. else reallocRank(affl,affr);

10. return SCC(G⊕∆G) and updated num(·), lowlink(·), and Gc;

Figure 2.9: Algorithm IncSCC+

to a change of lowlink or num, and thus is in AFF.

More specifically, if v and w are within the same scc T , then nothing changes for

the other scc’s. In this case, IncSCC+ only applies ∆G to T to get SCC(G⊕ ∆G),

and computes the changes to num and lowlink, by applying Tarjan on the changed

parts (lines 1-2). Otherwise consider the topological ranks of scc(v) and scc(w) in Gc,

where scc(v) (resp. scc(w)) refers to the corresponding scc node to which v (resp. w)

belongs. Consider the following cases.

(a) If r(scc(v))> r(scc(w)), then no new scc is generated, and IncSCC+ only updates

the graph Gc by inserting edge (scc(v),scc(w)) or increasing the counter of edges

connecting their corresponding scc’s (line 3). As the order of topological ranks in Gc is

not affected in this case, it concludes that graph Gc is still acyclic and SCC(G⊕∆G) =

SCC(G).

(b) If r(scc(w)) > r(scc(v)), i.e., if the order of these two ranks becomes “incorrect”,

IncSCC+ identifies the affected area affl and affr, two subgraphs of Gc induced by

nodes whose ranks are no longer valid, through a bi-directional search. It invokes pro-
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cedure DFSf to conduct a forward DFS traversal from w to find nodes with topological

ranks greater than that of v, followed by a backward traversal DFSb from v to find

nodes having ranks less than that of w (lines 4-5). If a cycle C is formed in the af-

fected area after edge insertion, the corresponding scc’s of the nodes in C are merged

into one to obtain SCC(G⊕∆G); this is followed by updating num and lowlink values

in the new scc (lines 6-8). Otherwise, although the output is unaffected, it reallocates

the topological ranks of nodes in the affected area such that r(v) > r(v′) when (v,v′)

is in Gc, using procedure reallocRank (not shown) (line 9), i.e., the relationship of

topological ranks in Gc still holds after reallocation. Procedure reallocRank sorts the

previous ranks of those nodes in affl and affr, and reassigns them in an ascending order,

first affr and then affl. Indeed, nodes in affr should have lower ranks than those in affl

due to the edge insertion. The order on the ranks within affr and affl is unchanged.

Example 2.7: Continuing with Example 2.6, consider insertion of edge e4 = (b4,b3)

into G. Observe that the topological ranks r(scc(b4))< r(scc(b3)) in Gc; thus IncSCC+

identifies the affected area that consists of nodes 1 and 2 and forms a cycle. Then scc1

and scc2 are merged to get the output. 2

Correctness & complexity. The correctness of IncSCC+ is warranted by the following

properties: (a) scc’s are merged in response to an edge insertion if and only if they

form a cycle in the contracted graph; and (b) the topological ranks of the nodes on any

path in Gc decrease monotonically.

IncSCC+ is in O(|AFF| log |AFF|) time. The cost for updating lowlink and num by

Tarjan on the affected parts of each scc is O(|AFF|). Besides this, it only visits those

nodes in the contracted graph with updated ranks, and their neighbors (line 5). The

number of nodes visited does not exceed |AFF| since there must be changes to num

and lowlink values in the scc’s that they refer to. Cycle detection (line 6) is done in

O(|AFF|) time and rank reallocation (line 9) takes O(|AFF| log |AFF|) time via sorting

by using heaps. Hence IncSCC+ is bounded relative to Tarjan.

(2) Unit deletions. When edge (v,w) is deleted from G, an scc may be split into

multiple ones. However, the output is unchanged if v still reaches w after the deletion.

We give an incremental algorithm for SCC under unit deletions, denoted by IncSCC−

(Fig. 2.10). Intuitively, it examines the reachability from v to w by using num and

lowlink maintained, and computes new scc’s in SCC(G⊕∆G) when v no longer reaches

w within the same scc. The reachability checking is done as a byproduct of change
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Algorithm: IncSCC−

Input: A graph G with num(·), lowlink(·), contracted graph Gc,

SCC(G) and an edge (v,w) to be deleted.

Output: SCC(G⊕∆G) and updated num(·), lowlink(·) and Gc.

1. if scc(v) 6= scc(w) then update Gc if needed;

2. if (v,w) is a reverse frond within a tree T then T := T ⊕∆G;

3. if (v,w) is a frond or cross-link within a tree T then

4. if chkReach(T,∆G,v) then T := T ⊕∆G;

5. else replace T with Tarjan(T ⊕∆G,T.root); update Gc;

6. if (v,w) is a tree arc within a tree T then

7. if chkReach(T,∆G,v) and w is discovered in

updateDFS(e,T ) for a selected edge e then T := T ⊕∆G;

8. else replace T with Tarjan(T ⊕∆G,T.root); update Gc;

9. return SCC(G⊕∆G) and updated num(·), lowlink(·), and Gc;

Figure 2.10: Algorithm IncSCC−

propagation to num and lowlink, from which relatively boundedness is obtained.

As shown in Figure 2.10, to delete an edge (v,w), algorithm IncSCC− first checks

whether the two endpoints belong to different components, and updates the contracted

graph Gc if needed, i.e., deletion of an edge or decrement the counter in Gc (line 1).

Then it distinguishes the following cases based on the type of (v,w) within an scc (tree)

T to check whether v still reaches w after edge deletion.

(a) Reverse frond (line 2). In this case, IncSCC− just deletes the edge from T and

SCC(G⊕∆G) is obtained immediately without further operations.

(b) Frond or cross-link (lines 3-5). Procedure chkReach (see below) is invoked by

IncSCC− to decide whether v still reaches the root r of T after edge deletion, from

which it determines the reachability from v to w, and updates T if so, or replaces T

with newly computed scc’s in SCC(G⊕∆G).

(c) Tree arc (lines 6-8). Algorithm IncSCC− also checks the reachability from v to the

root of T . Note that node v could no longer reach w even if the answer is positive.

Hence it conducts a DFS traversal (procedure updateDFS, not shown) starting from a
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selected edge (v′,w) if it exists, or from (v′,w′), where w′ is a descendant of w while

v′ is not in T , and v′ has the largest num of such edges; it updates the num and lowlink

values in T ⊕∆G as in Tarjan (lines 6-7). If w is encountered in this process, then root

r still reaches w and so does v; in this case only tree T is updated (line 7). Otherwise

new scc’s in SCC(G⊕∆G) are generated by using Tarjan on the affected scc (line 8).

Procedure chkReach. We next show how to check the reachability from node v to the

root of tree T after deleting an edge (v,w) adjacent to it. The checking is done as a

byproduct of the propagation of changes to lowlink values of v’s ancestors in T . More

specifically, when lowlink(v) equals num(w) (frond or cross-link) or lowlink(w) (tree

arc), procedure chkReach computes the new value of lowlink(v) based on its successors

other than w, and this change is propagated to its ancestors using a strategy similar to

that adopted by IncKWS− (Section 2.3.2). Once it encounters a node v′ with updated

lowlink(v′) such that num(v′) = lowlink(v′), it concludes that v no longer reaches the

root in T ⊕∆G.

Example 2.8: Consider deleting edge e5 = (c1,a1) from G of Fig. 2.4, which is a

frond in scc3 (see Example 2.6). Since the lowlink value of c1 increases to 3 and equals

its num after deletion, procedure chkReach concludes that c1 no longer reaches root

a1 of scc3. In light of this, IncSCC− computes new scc’s on affected scc3 to update

the output, i.e., scc3 is split into three components. The contracted graph G′c after the

deletion is also shown in Fig. 2.8 (solid edges). 2

Correctness & complexity. (1) The correctness of IncSCC− is warranted by the fol-

lowing. (a) The output remains unaffected if v still reaches w after deleting (v,w). (b)

Reverse fronds have no impact on the reachability. (c) If num(v′) = lowlink(v′) while

v′ is not the root of a tree, then v′ no longer reaches the root, which is also the invariant

property of algorithm Tarjan. (2) IncSCC− runs in O(|AFF|) time, and is thus bounded

relative to Tarjan. It only visits nodes that either are in new scc’s, or have updated num

or lowlink values and their neighbors by procedures chkReach and updateDFS, at most

once. All these nodes are covered by AFF. Moreover, each node visited is involved

in value comparison for constant times. Updating contracted graph Gc is also done

within O(|AFF|) time. Therefore, IncSCC− is bounded relative to Tarjan under unit

edge deletion.

(3) Batch updates. We now present algorithm IncSCC to process ∆G = (∆G+,∆G−),

shown in Fig. 2.11. It handles multiple updates in groups instead of one by one, to
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Algorithm: IncSCC

Input: A graph G with num(·), lowlink(·), contracted graph Gc,

SCC(G) and batch updates (∆G+,∆G−).

Output: SCC(G⊕∆G) and updated num(·), lowlink(·) and Gc.

1. for each scc in SCC(G) do

2. iteratively update num(·), lowlink(·) for each intra-component

update involved in scc;

3. if there is node v no longer reaches w in scc then

4. replace scc with Tarjan(scc,scc.root); update Gc;

5. update Gc for remaining inter-component edge deletions;

6. identify affected area aff on Gc for inter-component insertions;

7. for each non-singleton cycle C in Tarjan(aff,v) do

8. merge the components corresponding to C;

9. update num(·), lowlink(·) for the new component;

10. reallocate topological ranks to nodes in aff;

11. return SCC(G⊕∆G) and updated num(·), lowlink(·), and Gc;

Figure 2.11: Algorithm IncSCC

reduce redundant cost. IncSCC consists of two steps.

(a) IncSCC first processes intra-component updates, where the endpoints of an updated

edge are in the same scc. All updates to the same scc are grouped and processed

together. It starts with edge insertions, and adjusts values of num and lowlink following

IncSCC+. Inserted edges are processed following a descending order determined by

the num values of their source nodes. Then, following the same processing order,

IncSCC− is invoked to handle deletions grouped together, to reduce redundant updates

to num and lowlink values. After these, Tarjan is called on the affected scc’s at most

once to generate new scc’s in SCC(G⊕∆G).

(b) IncSCC then handles inter-component updates, for edge updates in which the end-

points fall in different scc’s. After updating Gc with deletions, forward and backward

traversals are performed to find the affected areas for all inter-component insertions,

similar to IncSCC+. However, IncSCC stores these areas in a global structure aff, and
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checks the existence of cycles formed by nodes from this global affected area, in-

stead of processing unit updates one by one. Components are merged, and num(·) and

lowlink(·) are revised, along the same lines as IncSCC+ to get SCC(G⊕∆G).

Finally, topological ranks are reallocated if needed, and SCC(G⊕∆G) is returned

(see Fig. 2.11).

Example 2.9: Consider batch updates ∆G of Example 2.3. The intra-component dele-

tions of e2 and e5 are firstly handled. Since e2 = (c2,b3) is a reverse frond in scc2,

IncSCC just deletes it from scc2. Deletion of e5 is processed as described in Exam-

ple 2.8. Thereafter, the remaining three inter-component insertions in ∆G are handled

by retrieving the affected area on contracted graph G′c. Note that nodes 1 to 5 are cov-

ered by affected area aff that constitutes an scc in G′c, hence all the previous scc’s in

SCC(G) except scc4 (d2) are merged to obtain SCC(G⊕∆G) in IncSCC. 2

Correctness & complexity. The correctness of IncSCC follows from the correctness

of IncSCC+ and IncSCC−. IncSCC takes O(|AFF|(|∆G|+ log |AFF|)) time. Indeed,

processing intra-component updates needs O(|∆G||AFF|) time since each update to

the auxiliary structures in AFF is checked at most |∆G| times; and handling inter-

component updates takes O(|∆G||AFF|+ |AFF| log |AFF|) time, where each node with

updated ranks in Gc is accessed by at most |∆G| different bi-directional searches; the

time for final rank reallocation is in O(|AFF| log |AFF|) as all such nodes are collected

in aff. Thus IncSCC is bounded relative to Tarjan.

2.5 Experimental Evaluation

Using real-life and synthetic data, we conducted three sets of experiments to evalu-

ate the impacts of (1) the size |∆G| of batch updates; (2) the complexity of queries

Q for KWS, RPQ and ISO (see below); and (3) the size |G| of graphs on our incre-

mental algorithms, compared with their batch counterparts and some existing dynamic

algorithms.

Experimental setting. We used the following datasets.

Graphs. We used two real-life graphs: (a) DBpedia, a knowledge graph [DBp] with 4.3

million nodes, 40.3 million edges and 495 labels; and (b) LiveJournal (liveJ in short),

a social network [SNA] with 4.9 million nodes, 68.5 million edges and 100 labels. We

also designed a generator to produce synthetic graphs G, controlled by the number of
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nodes |V | (up to 50 million) and number of edges |E| (up to 100 million), with labels

drawn from an alphabet Σ of 100 symbols.

Updates ∆G are randomly generated for real-life and synthetic data, controlled by size

|∆G| and a ratio ρ of edge insertions to deletions. We use ρ= 1 unless stated otherwise,

i.e., the size of the data graphs G remain stable.

Query generators. We randomly generated 30 queries of KWS, RPQ and ISO with

labels drawn from the graphs. More specifically, (1) KWS queries are controlled by the

number m of keywords and bound b; (2) RPQ queries are controlled by the size (recall

size |Q| of a regular path query from Section 2.1.1) and the numbers of occurrences

of ·, + and Kleene ∗; and (3) ISO queries are controlled by the number of nodes |VQ|,
the number of edges |EQ| and the diameter dQ, i.e., the length of longest shortest path

between any two nodes in Q when taken as an undirected graph.

Algorithms. We implemented the following algorithms, all in Java. (1) Incremental al-

gorithms (a) IncKWS (Section 2.3.2), IncRPQ (Section 2.4.2), IncSCC (Section 2.4.3)

and IncISO (Section 2.3.3); (b) IncKWSn, IncRPQn, IncSCCn and IncISOn, which pro-

cess unit updates in batch ∆G one by one by calling their algorithms for unit up-

dates developed in this work; (c) DynSCC that combines the incremental algorithm

in [HKM+12] to process insertions and decremental algorithm in [Lac13] for dele-

tions. (2) Batch algorithms BLINKS [HWYY07] for KWS, RPQNFA for RPQ, Tarjan

for SCC, and VF2 [CFSV04] for ISO.

We did the experiments on an Amazon EC2 r3.4xlarge instance, powered by Intel

Xeon processor with 2.3GHz, with 122 GB memory and 320GB SSD storage. Each

experiment was run 5 times and the average is reported here.

Experimental results. We next report our findings.

Exp-1: Impact of |∆G|. We first evaluated the impact of |∆G| on the performance

of IncKWS, IncRPQ, IncSCC and IncISO, compared with (a) their batch counterparts,

and (b) incremental IncKWSn, IncRPQn, IncSCCn and IncISOn, and DynSCC for SCC.

We conducted the experiments (a) on real-life graphs by varying |∆G| from 2.2M to

17.6M in 2.2M increments over DBpedia and from 3.7M to 29.6M in 4M increments

over liveJ, which account for 5% to 40% of each graph; and (b) synthetic G with

|G| = (50M,100M) by varying |∆G| from 7.5M to 60M in 7.5M increments, i.e., 5%

to 40% of |G|, for SCC; the results for KWS, RPQ and ISO on synthetic graphs are

consistent with their counterparts on real-life graphs, and hence are not reported here.



2.5. Experimental Evaluation 53

0

20

40

60

80

100

5% 10% 15% 20% 25% 30% 35% 40%

T
im

e
 (

se
c
o
n
d
s)

IncKWS
IncKWSn
BLINKS

(a) Varying ∆G, KWS (DBpedia)

0

100

200

300

400

5% 10% 15% 20% 25% 30% 35% 40%

T
im

e
 (

se
c
o
n
d
s)

IncKWS
IncKWSn
BLINKS

(b) Varying ∆G, KWS (liveJ)

0

100

200

300

400

500

600

5% 10% 15% 20% 25% 30% 35% 40%

T
im

e
 (

se
c
o
n
d
s)

IncRPQ
IncRPQn
RPQNFA

(c) Varying ∆G, RPQ (DBpedia)

0

300

600

900

1200

1500

5% 10% 15% 20% 25% 30% 35% 40%

T
im

e
 (

se
c
o
n
d
s)

IncRPQ
IncRPQn
RPQNFA

(d) Varying ∆G, RPQ (liveJ)

Figure 2.12: Effectiveness of incremental graph computations (KWS and RPQ)

(1) KWS. Fixing m = 3 and b = 2, we report the performance of IncKWS on DBpedia

and liveJ in Figures 2.12(a) and 2.12(b), respectively. We find the following. (a)

IncKWS outperforms BLINKS from 6.3 times to 2.8 times over DBpedia, and from

7.3 times to 2 times over liveJ, when |∆G| varies from 5% to 20% of |G|. In fact,

IncKWS does better than BLINKS when |∆G| is up to 35% and 30% of |G|, respec-

tively. These verify the effectiveness of localizable incremental algorithm IncKWS.

(b) IncKWS is from 1.6 to 2 and 1.3 to 1.7 times faster than IncKWSn in the same set-

ting. This validates the effectiveness of our optimization strategies on batch updates.

(c) The larger |∆G| is, the slower IncKWS and IncKWSn are, as expected. However,

when |∆G| increases, the gap between the performance of IncKWS and IncKWSn gets

larger, which is more evident on liveJ. That is, IncKWS scales better with |∆G|. In

contrast, BLINKS is indifferent to |∆G|. (d) IncKWS is efficient: it takes 12 and 32

seconds over DBpedia and liveJ, respectively, when |∆G| is 10% of |G|, as opposed to

61 and 146 seconds by BLINKS. (e) The ratio ρ of insertions to deletions in ∆G has no

impact on the performance of IncKWS, by varying ρ while keeping |∆G| unchanged

(not shown).
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Figure 2.13: Effectiveness of incremental graph computations (SCC and ISO)

(2) RPQ. We then evaluated the relatively bounded algorithm IncRPQ. Fixing |Q|= 4,

Figures 2.12(c) and 2.12(d) show that (a) IncRPQ is from 8.6 to 3.2 times faster than

RPQNFA on DBpedia, and from 12.7 to 4.1 times faster on liveJ, when |∆G| varies

from 5% to 20% of |G|. (b) IncRPQ consistently does better than IncRPQn. The

improvement is on average 2.3 times when |∆G| is about 15% of |G|. (c) IncRPQ

scales better with |∆G| than IncRPQn, especially when |∆G| is large. (d) IncRPQ is

insensitive to ρ.

(3) SCC. Figures 2.13(a), 2.13(b) and 2.13(c) report the performance for SCC over
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DBpedia, liveJ and synthetic graphs, respectively. We find the following. (a) IncSCC

is from 8 to 1.5, 2.3 to 1.2, and 7.7 to 1.7 times faster than Tarjan over DBpedia, liveJ

and synthetic graphs, respectively, when |∆G| varies from 5% to 25% of |G|. These

verify the effectiveness of incrementalizing batch algorithm Tarjan. It is from 1.7 to

2.6, 1.9 to 2.1, and 1.4 to 2.2 times faster than IncSCCn in the same setting. (b)

IncSCC performs better than DynSCC. For instance, IncSCC is on average 2.1 times

faster than DynSCC when |∆G| varies from 5% to 15% of |G| over synthetic graphs.

In particular, DynSCC does not do well with small |∆G| due to its additional cost for

maintaining dynamic data structures even when the output remains stable. (c) IncSCC

works better on DBpedia than on liveJ since there are large scc’s in liveJ, which take

up to 77% of |G|, and need to be split in response to ∆G. (d) IncSCC is insensitive to

ρ, similar to IncKWS and IncRPQ.

(4) ISO. Fixing |Q| = (4,6,2), i.e., pattern queries with 4 nodes, 6 edges and diam-

eter 2, we evaluated localizable IncISO. As shown in Figures 2.13(d) and 2.13(e) on

DBpedia and liveJ, respectively, (a) IncISO behaves better than VF2 and IncISOn when

|∆G| is no more than 25% of |G|; it is from 5.6 to 1.8 times faster than VF2 and from

2.4 to 2.6 times faster than IncISOn, respectively, for |∆G| from 5% to 25% of |G|.
(b) The gap between the performance of IncISO and IncISOn gets larger when |∆G|
grows. (c) IncISO and IncISOn take longer to process edge insertions than deletions for

the same |∆G|. This is because matches to be removed can be directly identified and

hence, IncISO is faster for deletions. We also find that IncISO is insensitive to ρ.

(5) Unit updates. Using the same set of queries, we also evaluated the performance of

these algorithms on processing unit updates, which consist of either a unit insertion

or a unit edge deletion. As expected, the improvements of incremental algorithms are

substantial. More specifically, IncKWS, IncRPQ, IncSCC and IncISO outperform their

batch counterparts by 89 times, 221 times, 37 times, and 393 times on average, respec-

tively (not shown). Moreover, IncSCC is 5.7 times faster than DynSCC on average.

Exp-2: Query complexity. We next evaluated the impact of queries Q, by varying

different parameters of Q. We focused on KWS, RPQ and ISO, as SCC has a constant

query. We fixed |∆G|= 4.4M, i.e., 10% of |G|, and used DBpedia.

(1) KWS. We varied (m,b) from (2,1) to (6,5) for KWS queries. As shown in Fig-

ure 2.14(a), (a) the larger (m,b) is, the longer time is taken by all the algorithms, as

expected. (b) IncKWS performs well on real-life queries. For queries with 4 keywords

and bound 3, it takes 17 seconds over DBpedia, as opposed to 44 seconds by BLINKS.
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Figure 2.14: Efficiency of incremental graph computations

It works better on sparse DBpedia than on liveJ (not shown). (c) IncKWS outperforms

the other algorithms, consistent with Fig. 2.12(a).

(2) RPQ. Varying |Q| from 3 to 7, the results in Fig. 2.14(b) tell us the following.

(a) IncRPQ is efficient: it returns answers within 190 seconds for all the queries, as

opposed to 1080 seconds by RPQNFA and 326 seconds by IncRPQn. (b) The occur-

rences of Kleene ∗ have little impact on all the algorithms, as the size of NFA MQ only

depends on the number of node labels in Q. (c) IncRPQ outperforms RPQNFA and

IncRPQn on all the queries; this is consistent with Fig. 2.12(c).

(3) ISO. Varying |Q| = (|VQ|, |EQ|,dQ) from (3,5,1) to (7, 9, 5), we evaluated the

impact of pattern queries. Figure 2.14(c) shows that all algorithms take longer over

larger |Q|, as expected. However, (a) IncISO outperforms VF2 and IncISOn in all the

cases, for the same reasons given above. (b) IncISO does well: it takes 290 seconds

when |Q| = (5,7,3), but VF2 and IncISOn take 1160 and 570 seconds, respectively.

Exp-3: Impact of |G|. We finally evaluated the impact of |G| using synthetic graphs.

Fixing |∆G| = 15M and using the same set of queries tested in Exp-1, we varied |G|
with scale factors from 0.2 to 1. Figures 2.15(a), 2.15(b), 2.15(c) and 2.15(d) report
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Figure 2.15: Scalability of incremental graph computations

the performance for KWS, RPQ, SCC and ISO, respectively. Observe the following.

(a) All the incremental algorithms are less sensitive to |G| compared with their batch

counterparts. (b) Incremental algorithms scales well with |G| and are feasible on large

graphs.

Summary. From the experiments we find the following. (1) Incremental algorithms,

either localizable or relatively bounded, are more effective than their batch counterparts

in response to updates. When |∆G| varies from 5% to 20% of |G| for the three full-size

graphs G, IncKWS, IncRPQ, IncSCC and IncISO outperform BLINKS, RPQNFA, Tarjan

and VF2 from 6.9 to 2.4 times, 11.6 to 2.8 times, 3.4 to 1.7 times, and 7.9 to 2 times

on average, respectively. They outperform the batch algorithms even when |∆G| is up

to 30%, 35%, 25% and 25% of |G|, respectively. (2) Incremental algorithms scale well

with |G| and are feasible on real-life graphs when ∆G is small, as commonly found

in practice. For instance, IncKWS, IncRPQ, IncSCC and IncISO take 9, 42, 7 and 113

seconds, respectively, when updates account for 5% of DBpedia, as opposed to 62,

355, 54 and 427 seconds by their batch counterparts. (3) Our optimization strategies

for batch updates effectively improve the performance by 1.6 times on average.





Chapter 3

Keys For Graphs

This chapter proposes keys for graphs, a declarative approach to provide the invariant

connection between vertices in graphs and the real-world entities they refer to. We

start with an example that demonstrates keys in graph structured data.

Example 3.1: We illustrate keys for graphs by using examples taken from various

domains in knowledge bases. Note that require exact match in the examples for sim-

plicity; however, we can easily relax the constraints to similarity match.

Music. Consider a knowledge base G1 consisting of triples (s, p,o), indicating subject,

predicate and object, respectively; e.g., (album, recorded by,artist) says that an album

is recorded by an artist. It is modeled as a graph in which s and o are nodes, connected

by an edge from s to o labeled p.

One might think that name is a key for album. However, this is not the case. For

instance, there are different albums recorded by the Beatles and John Farnham with

the same name “Anthology 2” in Freebase. Indeed, the name of an album x uniquely

identifies x only among all albums recorded by the same artist. Alternatively, an album

can be identified by its name and its year of initial release. These yield two keys for

albums: An album can be uniquely identified by

Q1: its name and its primary recording artist, or

Q2: its name and its year of initial release.

For the same reason, an artist may not be identified by its name. Indeed, there

are 6 artists or bands named “Everest”. Nonetheless, a key for artist can be given by

incorporating one of the albums that the artist recorded.

Q3: An artist can be identified by the name, and the album he or she recorded.

These keys are depicted as graph patterns Q1(x), Q2(x) and Q3(x) in Fig. 3.1,

59
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Figure 3.1: Keys for graphs as graph patterns

respectively, where x denotes an entity of a particular type to be identified. Intuitively,

Q1(x) says that if two album entities x1 and x2 have the same name and are recorded by

the same artist, then x1 and x2 must be the same album; similarly for Q2(x) and Q3(x).

In contrast to keys for relations and XML, keys for graphs specify topological

constraints with a graph pattern. Such keys (a) may consider not only value equality

based on value bindings of properties, e.g., name in Q1, but also node identity, e.g.,

the identity of artist node in Q1; and (b) can be recursively defined, e.g., to identify an

album entity x, we may need to identify its primary artist y, while to identify an artist

entity y, we need to identify one of its albums x.

Business. As another example, consider the domain for businesses. Typically we can

identify a company in the US by its name and head-quarter location. However, there is

often business merging and splitting, and very commonly the child company may carry

the same name of the parent company without moving the head-quarter (e.g.,AT&T and

SBC merged in 2005 and the new company carried the name of AT&T). To distinguish

the parent company and the child company in this case, we need to encode the parent-

child relationship in the key. That leads to the following two keys to identify companies

in a knowledge base G2, the former for the case of merging and the latter for splitting.

Q4: A company merged from a parent company of the same name can be identified

by the company name and the other parent company.

Q5: A company split from a parent company of the same name can be identified by

the company name and another child company after splitting.

These keys demonstrate another departure from traditional keys: (a) Q4 and Q5 are

directed acyclic graphs (DAG), as shown in Fig. 3.1; and (b) they include properties of

different entities, e.g., Q4(x) for company incorporates both the name of the company
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and the name of its parent company.

Address. To identify a street in the UK, one can use:

Q6: A street in the UK can be identified by its zip code.

This key does not hold for streets in, e.g., the US. As shown in Fig. 3.1, Q6 is specified

with a constant as a condition. This is another departure from conventional keys. 2

Keys for graphs are a departure from conventional keys. To make practical use

of such keys, several questions have to be answered. How should we define keys for

graphs, from syntax to semantics? What is the complexity of identifying entities with

keys? Is there any scalable algorithm to identify entities with keys in big graphs?

We contend that these keys provide an analogy of traditional keys for graph-

structured data. Like relational and XML keys, they specify the semantics of the data

and remain invariant regardless of changes to the data. They are important to not only

traditional use of keys but also several emerging applications. Moreover, entity match-

ing permits parallel scalable algorithms and is feasible in big graphs.

We focus on definition and application of keys in this chapter, and defer the study of

key discovery by, e.g., path-identification [LMC11] or communication theory [Guh14],

to future work.

3.1 Specifying Keys with Graph Patterns

In this section, we formally define keys for graphs.

3.1.1 Graphs and Graph Pattern Matching

We start with (RDF) graphs, patterns and pattern matching.

(RDF) Graphs. Assume a set E of entities, a set D of values, a set P of predicates

(labels), and a set Θ of types. Each entity e in E has a unique ID and a type in Θ.

An (RDF) graph G is a set of triples t = (s, p,o), where subject s is an entity in E ,

p is a predicate in P , and object o is either an entity in E or a value d in D . It can be

represented as a directed edge-labeled graph (V,E), also denoted by G, such that (a) V

is the set of nodes consisting of s and o for each triple t = (s, p,o); and (b) there is an

edge in E from s to o labeled p for each triple t = (s, p,o).

We consider two types of equality:
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(a) node identity on E : e1 ⇔ e2, if entities e1 and e2 have the same ID, i.e., they

refer to the same entity; and

(b) value equality on D: d1 = d2 if they are the same value.

In G, e1 and e2 are represented as the same node if e1⇔ e2; similarly for values d1 and

d2 if d1 = d2.

Example 3.2: Two (RDF) graphs G1 and G2 are shown in Fig. 3.2. (1) Graph G1

represents a fragment of a knowledge base consisting of artists and their albums. For

instance, in triple (art1, name of, “The Beatles”), subject art1 is an entity of type artist,

and object “The Beatles” is a value; in G1, both are represented as nodes, and the triple

is presented as an edge labeled name of from art1 to “The Beatles”.

(2) Graph G2 depicts a set of triples for companies. It tells us that, e.g., “AT&T” (com4

of type company) has parent companies “AT&T” (com1) and “SBC” (com3). 2

Graph patterns. A graph pattern Q(x) is a set of triples (sQ, pQ,oQ), where sQ is a

variable z, oQ is either a value d or a variable z, and pQ is a predicate in P . Here z

has one of three forms: (a) entity variable y, to map to an entity, (b) value variable

y∗, to map to a value, and (c) wildcard y, to map to an entity. Here sQ can be either y

or y, while oQ can be y, y∗ or y. Entity variables and wildcard carry a type, denoting

the type of entities they represent. In particular, x is a designated variable in Q(x),

denoting an entity.

As will be seen shortly when we define keys, we enforce node identity (⇔) on

variables y, and value equality (=) on y∗; for a wildcard y, we just require the existence

of an entity with the type of y without checking its node ID or value. Value d in Q(x)

indicates a value binding condition.

A graph pattern can also be represented as a graph such that two variables are
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represented as the same node if they have the same name of y, y∗ or y; similarly for

values d. We assume w.l.o.g. that Q(x) is connected, i.e., there exists an undirected

path between x and each node in Q(x).

Example 3.3: Six graph patterns are depicted in Fig. 3.1. For in-

stance, Q4(x) represents triples (x,name of, name∗), ( company,name of, name∗),
( company,parent of,x) and (company, parent of, x). Here x is the designated vari-

able (type company), name∗ is a value variable, company is an entity variable and

company is a wildcard for company. In Q6, “UK” is a constant value (i.e., d) as a

condition. 2

A valuation of Q(x) in a set S of triples is a mapping ν from Q(x) to S that preserves

values in D and predicates in P , and maps variables y and y to entities of the same

type. More specifically, for each triple (sQ, pQ,oQ) in Q(x), there exists (s, p,o) in S,

written as (sQ, pQ,oQ) 7→ν (s, p,o) or simply (sQ, pQ,oQ) 7→ (s, p,o), where

(a) ν(sQ) = s, p = pQ, ν(oQ) = o;

(b) o is an entity if oQ is a variable y or y; it is a value if oQ is y∗, and o = d if oQ is

a value d; and

(c) entities s and sQ have the same type; similarly for entities o and oQ if oQ is y or

y.

We say that ν is a bijection if ν is one-to-one and onto.

Graph pattern matching. Consider a graph G and an entity e in G. We say that G

matches Q(x) at e if there exist a set S of triples in G and a valuation ν of Q(x) in S

such that ν(x) = e, and ν is a bijection between Q(x) and S. We refer to S as a match

of Q(x) in G at e under ν.

Intuitively, ν is an isomorphism from Q(x) to S when Q(x) and S are depicted as

graphs. That is, we adopt subgraph isomorphism for the semantics of graph pattern

matching.

Example 3.4: Consider Q4(x) of Fig. 3.1, G2 of Fig. 3.2, and a set S1 of triples in

G2: {(com1,name of, “AT&T”), (com4,name of, “AT&T”), (com1,parent of, com4),

(com3, parent of, com4)}. Then S1 is a match of Q4(x) in G2 at com4, which maps

variable x to com4, name∗ to “AT&T”, wildcard company to com1, and company to

com3. 2
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Figure 3.3: The semantics of keys for graphs

3.1.2 Keys for Graphs

Keys. A key for entities of type τ is a graph pattern Q(x), where x is a designated entity

variable of type τ.

Intuitively, it says that in a graph G, for entities e of type τ, the conditions specified

in Q(x) uniquely identify e. For example, Q1 and Q2 of Example 3.1 are keys for

album, Q3 is a key for artist, and Q4 and Q5 are keys for company.

To give the semantics of keys, we use the following notion. Consider matches

S1 and S2 of Q(x) at e1 and e2 in G under ν1 and ν2, respectively. We say that S1

coincides with S2, denoted by S1(e1)∼=Q S2(e2), if a bijection µ between S1 and S2 can

be derived from ν1 and ν2, preserving node identity and value equality. That is, for

each (sQ, pQ,oQ) in Q(x) such that (sQ, pQ,oQ) 7→ν1 (s1, p1,o1) and (sQ, pQ,oQ) 7→ν2

(s2, p2,o2), it satisfies conditions:

(a) if sQ is a variable y that is distinct from x, then s1⇔ s2; similarly for oQ; and

(b) if oQ is a variable y∗, then o1 = o2.

When sQ is a wildcard y, we do not require that s1⇔ s2, i.e., s1 and s2 may be distinct

entities; similarly for oQ.

We say that G satisfies key Q(x), denoted by G |= Q(x), if for all entities e1 and e2

in G, if there exist matches S1 and S2 of Q(x) such that S1(e1)∼=Q S2(e2), then e1⇔ e2.

Based on graph patterns, we next define keys for graphs.

As shown in Fig. 3.3, the key says that if there exist S1 and S2 verifying that e1 and

e2 satisfy the conditions of Q(x), respectively, and if S1(e1)∼=Q S2(e2), then e1 and e2

must have the same ID, i.e., they are the same entity.

Example 3.5: Continuing with Example 3.4, one can see that G2 6|= Q4(x). Consider

S1 of Example 3.4, and a match S2 of Q4(x) at com5: {(com2, name of, “AT&T”),

(com5,name of, “AT&T”), (com2,parent of,com5), (com3,parent of,com5)}. Then
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Symbols Notations

E , P , D entities, predicates and data values, respectively

G, Q(x) (RDF) graph and graph pattern, respectively

e1⇔ e2 node identity

d1 = d2 value equality

y, y∗, y variables for entities, values and wildcards, resp.

7→ν, 7→ mapping from (sQ, pQ,oQ) to (s, p,o)

S1(e1)∼=Q S2(e2) match S1 at e1 coincides with S2 at e2

G |= Q(x) G satisfies key Q(x)

(G,Σ) |= (e1,e2) entities e1 and e2 are identified by keys in Σ

|G|, |Q(x)| the size of graph G and Q(x)

d(Q,x) the radius of Q(x)

Table 3.1: Notations in Chapter 3

S1(com4) ∼=Q4 S2(com5) but com4 and com5 are distinct entities in G2. Thus either

com4 or com5 is a duplicate.

Similarly in G1, either alb1 or alb2 is a duplicate (violation of Q2), and either art1 or

art2 is a duplicate (by Q3). However, these are not very obvious since keys for album

and artist are defined by mutual recursion. 2

We say that a key Q(x) is recursively-defined if it contains some variables y other

than x, and is value-based otherwise. Intuitively, when Q(x) is recursive, e1 ⇔ e2

depends on whether e⇔ e′ for some other entities e and e′ can be identified by variable

y, which involves node identity that is determined by using (possibly other) keys. In

contrast, when Q(x) is value-based, it decides whether e1⇔ e2 simply based on value

equality on relevant triples in S1 and S2.

Example 3.6: Keys Q1, Q3, Q4 and Q5 depicted in Fig. 3.1 are all recursive, while Q2

and Q6 are value-based. 2

Remark. (1) For simplicity, we focus on keys defined in terms of value equality

and node identity. Nonetheless, the results of this chapter remain intact when sim-

ilarity predicates are used along the same lines as value equality. (2) Relational

keys [AHV95] and XML keys [BDF+01] can be readily expressed as value-based keys

with patterns of a form of trees.
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We will also use the following notations: (1) |G| (resp. |Q|) denotes the number

of triples in G (resp. Q(x)); (2) for a set Σ of keys, |Σ| = ∑Q(x)∈Σ |Q| and ||Σ|| is its

cardinality; and (3) the radius of Q(x), denoted by d(Q,x), is the longest distance

between x and any node in Q(x) when Q(x) is treated as an undirected graph, ignoring

the edge direction.

The notations of this chapter are summarized in Table 3.1.

3.2 The Entity Matching Problem

In the rest of the chapter we focus on entity matching, an important application of keys.

We formalize the problem (Section 3.2.1) and establish its complexity (Section 3.2.2).

Moreover, we show that in the presence of recursively defined keys, entity matching is

hard to be parallelized (Section 3.2.3).

3.2.1 Entity Matching with Keys

Example 3.5 shows that G2 6|=Q4(x), since S1(com4)∼=Q4 S2(com5) but com4 and com5

are distinct. However, key Q4(x) tells us that com4 and com5 refer to the same entity

and should be identified. To formalize this, we revise the classical chase [AHV95] by

using keys as rules for entities in graphs.

Chase revisited. Consider a set Σ of keys and a graph G. We use Eq to denote the

equivalence relation of a set of pairs (e,e′) of entities in G of the same type that have

been identified by keys in Σ, i.e., Eq is reflexive, symmetric and transitive. We denote

by Eq0 the node identity relation⇔, i.e., the set of pairs (e,e) for all entities e in G.

Consider a key Q(x) ∈ Σ and matches S1 and S2 of Q(x) at e1 and e2 in G under

valuations ν1 and ν2, respectively. We define S1(e1) ∼=Eq
Q S2(e2) by using Eq instead

of relation⇔ in the definition of S1(e1) ∼=Q S2(e2). More specifically, for each triple

(sQ, pQ,oQ) in Q, if (sQ, pQ,oQ) 7→ν1 (s1, p1,o1) and (sQ, pQ,oQ) 7→ν2 (s2, p2,o2), then

(a) if sQ is a variable y distinct from x, then (s1,s2) ∈ Eq (instead of s1 ⇔ s2);

similarly for oQ; and

(b) if oQ is a variable y∗, then o1 = o2.

We define a chase step of G by Σ at Eq as

Eq→(e1,e2) Eq′,

where (e1,e2) is a pair of entities in G such that (a) (e1,e2) 6∈ Eq, (b) there exist a
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key Q(x) in Σ and matches S1 and S2 of Q(x) at e1 and e2, respectively, such that

S1(e1)∼=Eq
Q S2(e2); and (c) Eq′ is the equivalence relation of Eq∪{(e1,e2)}.

Intuitively, when e1 and e2 are identified by using a key in Σ, Eq is expanded to

Eq′ by including (e1,e2). For instance, in G1, Eq0 →(alb1,alb2) Eq1, where Eq1 is the

extension of node identity relation⇔ in G1 by including (alb1,alb2).

A chasing sequence of G by Σ is a sequence

Eq0,Eq1, . . . ,Eqk,

such that for all i ∈ [0,k− 1], there exists a pair (e1,e2) of entities in G, where

Eqi→(e1,e2) Eqi+1. The sequence is terminal if no chase step by Σ is defined at Eqk.

We refer to Eqk as the result of the chasing sequence.

Chasing of keys has the Church-Rosser property:

Proposition 3.1: For any set Σ of keys and graph G, all terminal chasing sequences of

G by Σ are finite and have the same result, regardless of how the keys are applied. 2

Proof:Consider a set Σ of keys and a graph G. Let E be the set of entities in G. Then

any terminal chasing sequence of G by Σ is no longer than |E |2, by the definition of

chasing sequences. Hence the sequence is finite.

Assume by contradiction that there exist two terminal chasing sequences S =

(Eq0, . . . ,Eqk) and S′ = (Eq′0, . . . ,Eq′l) of G by Σ that have different results. Assume

w.l.o.g. that (e1,e2) is a pair of entities that is in Eqk but not in Eq′l , and let (e1,e2) first

appear in Eqi+1, i.e., Eqi→(e1,e2) Eqi+1 by applying a key Q(x) in Σ. Then Eqi ⊆ Eq′l
by the assumption. As a result, Eq′l can be further expanded by applying Q(x) to iden-

tify e1 and e2 by using the pairs in Eqi ⊆ Eq′l that have been already identified, by the

definition of chasing steps. This contradicts to the assumption that S2 is terminal. 2

We denote by chase(G,Σ) the result of a terminal chasing sequence of G by Σ. By

Proposition 3.1, this notion is well-defined. We say that entities e1 and e2 in G are

identified by Σ, denoted by (G,Σ) |= (e1,e2), if (e1,e2) ∈ chase(G,Σ).

Example 3.7: Let Σ1 = {Q1(x), Q2(x),Q3(x)} from Fig. 3.1, and Σ2 = {Q4(x),Q5(x)}.
Then in G1 of Fig. 3.2, (G1,Σ1) |= (alb1,alb2) by applying Q2(x), since alb1 and

alb2 have the same name “Anthology 2” and were initially released in “1996”. This

is followed by (G1,Σ1) |= (art1,art2) by applying Q3(x) to entities {art1,alb1} and

{art2,alb2}. Note that art1 and art2 are identified after we identify alb1 and alb2. This

is because in contrast to Q2(x), Q3(x) is recursively defined: it has an entity variable

album. That is, recursively defined keys impose dependency on entities.
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In graph G2 of Figure 3.2, from the discussion above it follows that (G2,Σ2) |=
(com4,com5) by Q4(x). Similarly, (G2,Σ2) |= (com1,com2) by applying Q5(x) to

{com1,com0,com3} and {com2,com0,com3}. Note that nodes com4 and com5 can

be identified before we identify nodes com1 and com2, since the wildcard company in

Q4(x) does not require com1⇔ com2. This is why we separate entity variable y from

wildcard y. 2

Problem. The entity matching problem is stated as follows.

◦ Input: A set Σ of keys, and a graph G.

◦ Output: chase(G,Σ).

3.2.2 The Complexity of Entity Matching

Given a set of keys on a relation R, it is in PTIME to find all pairs of tuples in R that

are identified by the keys. In contrast, the entity matching problem is nontrivial. To

see this, consider its decision problem, also referred to as entity matching, which is to

determine, given Σ, G and a pair (e1,e2) of entities in G, whether (G,Σ) |= (e1,e2).

Theorem 3.2: Entity matching is NP-complete. 2

Proof:The lower bound follows from Lemma 3.3 (to be shown later).

To prove the membership in NP, we present an NP-algorithm for the entity match-

ing problem. In order to do it, we use the following notions. Given a graph G, a set

Σ of keys and two entities e1 and e2, if (G,Σ) |= (e1,e2), then there exists a key Q(x)

such that (e1,e2) is included in Eq by applying Q(x). As a result, there must exist a

proof tree T(G,Q(x),e1,e2) accordingly as follows:

(1) each node u in T(G,Q(x),e1,e2) is labeled with (ei,e j,Qk(x),Si,S j,νi,ν j), which

encodes that Si (resp. S j) is a match of Qk(x) at ei (resp. e j) under valuation νi

(resp. ν j);

(2) the root r of T(G,Q(x),e1,e2) is labeled with (e1,e2,Q(x),S1,S2,ν1,ν2);

(3) for each node u of T(G,Q(x),e1,e2) that is labeled with (ei,e j,Qk(x),Si,S j,νi,ν j)

and ei < e j, there are q edges (u,u1), . . . ,(u,uq), where each ul is labeled with

(el
i,e

l
j,Q

l
k(x),S

l
i ,S

l
j,ν

l
i,ν

l
j), if and only if there are q entity variables y1, . . . ,yq in

Q(x) other than x, and νi(yl) = el
i and ν j(yl) = el

j; that is, whether (ei,e j) ∈ Eq

depends on whether (el
i,e

l
j) ∈ Eq for all l ∈ [1,q];

(4) for each leaf node v labeled with (em,en,Qw(x),Sm,Sn,νm,νn), either (a) Qw(x)
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is a value-based key, or (b) em⇔ en.

Intuitively, T(G,Q(x),e1,e2) encodes a set Ee1,e2 of pairs of entities in G such that (e1,e2)∈
chase(G,Σ) if each pair of entities in Ee1,e2 can also be identified by Σ. Moreover, for

each node u of T(G,Q(x),e1,e2) that is labeled with (ei,e j,Qk(x),Si,S j,νi,ν j), the sub-tree

T u
(G,Q(x),e1,e2)

of T(G,Q(x),e1,e2) taking u as root corresponds to the set Eei,e j .

Note that there may be more than one nodes labeled with the same pair of two

entities (e,e′) in G. In this case, when deciding whether (G,Σ) |= (e1,e2), e and e′

are checked multiple times whether (e,e′) ∈ Eq. That means in T(G,Q(x),e1,e2), there are

redundant sub-trees with roots (e,e′) and can be deleted. We next introduce a notion

of proof graph PGT that is constructed from T(G,Q(x),e1,e2), where PGT encodes the set

Ee1,e2 given above and there do not exist two distinct nodes in PGT that are labeled

with the same pair of entities. More specifically, we construct PGT as follows. For

two nodes u and u′ in T(G,Q(x),e1,e2) that are labeled with (ei,e j,Qk(x),Si,S j,νi,ν j) and

(ei,e j,Qk(x)′,S′i,S
′
j,ν
′
i,ν
′
j), respectively, i.e., u and v are labeled with the same pair of

entities (ei,e j), considering the following two cases:

(i) if u and u′ are connected by a path u→ u1 → . . .→ uk → u′ in T(G,Q(x),e1,e2),

where k ≥ 0, we define a procedure Fc that replace the subgraph T u
(G,Q(x),e1,e2)

with T u′
(G,Q(x),e1,e2)

; and

(ii) if u and u′ are not connected and the level of u is less than or equal to the level

of u′, we define a procedure Fnc that add an edge from the parent of u′ to u and

delete the sub-tree T u′
(G,Q(x),e1,e2)

.

We first use procedure Fc to treat all pair of nodes of T(G,Q(x),e1,e2) in case (i) until no

such pair of nodes exists; and then use Fnc to handle all pair of nodes in case (ii), and

finally get proof graph PGT . Obviously, PGT encodes the set Ee1,e2 given above, and

there does not exist two distinct nodes which are labeled with the same pair of entities.

Note that PGT is a directed acyclic graph (DAG).

We next give the NP-algorithm which works as follows.

1. Guess a DAG G f with no more than N2 nodes, where N is the number of entities

in G, and for each node u, guess a pair of entities ei,e j in G, a pattern Qk(x) in

Σ, two subgraphs Si and S j that have the same size with Qk(x), two mappings νi

and ν j from Qk(x) to S1 and S2, respectively.

2. Staring from the nodes without out-edges, for each node u, where ei < e j, check

if Si and S j are two matches of Qk(x) under νi and ν j at ei and e j, respectively,

and Si(ei)∼=Eq
Qk

S j(e j). If so, return “yes”; otherwise reject the guess and go back

to step 1.
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As discussed above, we only need to consider such DAG G f with no more than N2

nodes. Moreover, step 2 is in PTIME. Thus the algorithm is in NP. 2

One might think that non-recursive keys would make our lives easier. Unfortu-

nately, this simple case already embeds the subgraph isomorphism problem, which is

NP-complete (cf. [GJ79]) and can be reduced to the simple case.

Lemma 3.3: The entity matching problem remains NP-hard even when Σ consists of a

single value-based key Q(x), and when graph G is a DAG (directed acyclic graph). 2

Proof:We show the NP-hardness by reduction from the subgraph isomorphism prob-

lem for directed graph. Given two directed graph G = (VG,EG) and H = (VH ,EH), it

is to decide whether G contains a subgraph G′ isomorphic to H, i.e., a subset VG′ ⊆VG

and a subset EG′ ⊆ EG such that |VG′| = |VH |, |EG′| = |EH |, and there exists a one-

to-one function f : VH → VG′ satisfying (u,v) ∈ EH if and only if ( f (u), f (v)) ∈ EG′ .

It’s known that the subgraph isomorphism problem for directed graph is NP-complete,

even when G is a acyclic directed graph (DAG) and H is a directed tree (cf. [GJ79]).

Given a DAG G and a tree H, we assume w.l.o.g. that there exists no isolated

nodes in G or H, i.e., for each node u in G (resp. H), there exists at least one edge

(u,v) or (v,u) in G (resp. H). We define a graph G0, a pair (e1,e2) of entities in

G0, a key Q(x), and we show that G contains a subgraph G′ isomorphic to H if and

only if (G0,{Q(x)}) |= (e1,e2). More specifically, G0 contains all triples (u, p,v) if

(u,v) ∈ EG, as well as those triples (e1, p,u) and (e2, p,u) for each u in VG; Q(x)

contains all triples ( u, p, v) if (u,v) ∈ EH and (x, p, r) where r is the root of H. Note

that u, v, e1 and e2 are entities of the same type θ, and u, v are wildcards of type θ as

well. Obviously, Q(x) is a value-based key (tree).

Assume that G contains a subgraph G′ = (V ′,E ′) isomorphic to H. Then G′ is a

tree. Let S1 (resp. S2) contain all triples (u, p,v) if (u,v) ∈ EG′ , as well as a triple

(e1, p,r) (resp. (e2, p,r)), where r is the root of G′. Obviously, S1 and S2 are matches

of Q(x) in G0 at e1 and e2, respectively, and S1 ∼=Q S2, i.e., (G0,{Q(x)}) |= (e1,e2).

Conversely, if e1 and e2 can be identified by {Q(x)}, i.e., there must exist matches S1

and S2 of Q(x) in G0 at e1 and e2 respectively. Let G′ consist of all edges (u,v) if

(u, p,v) is in S1 and u 6= e1. Clearly, G′ is a subgraph of G isomorphic to H. 2

3.2.3 Recursion and Parallelization

Recursively defined keys introduce challenges beyond subgraph isomorphism. As a

result, it is hard to find an efficient parallel algorithm for entity matching. To see
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this, recall that a datalog program has the polynomial fringe property (PFP) if all true

facts have a proof tree such that the number of its leaves is polynomial in the data

size (cf. [ABC+11]). It is known that datalog programs with PFP can be processed in

polylog parallel computation rounds via recursive doubling, i.e., in logkN rounds for a

constant k, where N is the size of the input data. We say that a problem has PFP if it

has an algorithm with PFP. It is also known that transitive closure (TC), for instance,

has PFP. As a result, TC can be computed in logarithmic MapReduce rounds.

Unfortunately, entity matching is harder than TC. Recursively defined keys impose

dependency on the order of entities to be processed. This leads to chains C of depen-

dent entity pairs such that to identify a pair (e1,e2) in C, we have to either wait for pairs

preceding (e1,e2) in C to be identified, or incur exponentially many possible matches.

In contrast, TC can be computed “partially” in PTIME.

Theorem 3.4: Entity matching (1) has no PFP, and (2) cannot be parallelized in log-

arithmic rounds, even on trees. 2

Proof:We prove Theorem 3.4(1) by giving a counterexample, where a set Σc of keys

and a graph Gc are constructed as follows. Note that Gc is a tree.

(1) The set Σc consists of two recursive keys Q1(x) and Q2(x), and a value-based

key Q3(x). Let Q1(x) contain three triples (x, p1,y1), (x, p2,y2) and ( y, p1,x),

Q2(x) also contain three triples ( y, p1,y1) and (y1, p2,y2) and ( y, p2,x) while

Q3(x) is defined as {(x, p3, y)}.
(2) Then we build a tree Gc with (4n + 3) entities, e, e0, e1, . . . e2n, e′0, e′1

. . . e′2n. For each i ∈ [1,2n− 5], we add triples (ei, p1,ei+2), (ei, p2,ei+3),

(e′i, p1,e′i+2) and (e′i, p2,e′i+3) if i is an odd number. The tree Gc also includes

triples (e0, p1,e1), (e0, p2,e2), (e2n−3, p3,e2n−1), (e2n−2, p3,e2n), (e′0, p1,e′1),

(e′0, p2,e′2), (e
′
2n−3, p3,e′2n−1), (e

′
2n−2, p3,e′2n), (e, p1,e0) and (e, p1,e′0). Note

that all the entity variables and wildcards in Σc and entities in Gc are of the same

type.

We depict Σc and Gc in Fig. 3.4(a) and 3.4(b), respectively. Note that all the entities in

Gc and entity variables in Σc are of the same type.

Assume that entity matching has the polynomial fringe property. Then for each

entity pair identified by a set of keys, there must exist a proof tree (see the proof

of Theorem 3.2) such that the number of its leaves is polynomial in the size of the

graph. From Σc and Gc defined above we can conclude that (e0,e′0) ∈ chase(Gc,Σc).

It can also be verified that the proof tree of (Gc,Σc) |= (e0,e′0) has the form depicted
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Figure 3.4: Counterexample of PFP on trees

in Fig. 3.4(c) and this tree is the only proof tree to identify e0 and e′0. To simplify

the discussion, each node in the proof tree is denoted by its corresponding entity pair.

Intuitively, to identify e0 and e′0, all the entity pairs (ei,e′i), where i ∈ [0,2n], must be

checked. Moreover, each recursive key has two entity variables, and only two entity

pairs are newly checked when the proof tree grows by a new level. Putting these

together, the proof tree is a complete binary tree of depth (n+1), and its size and the

number of its leaves are both exponential in n ,which contradicts the assumption.

Next we prove Theorem 3.4(2) by reduction from the Monotone Circuit Value prob-

lem [AP93], in which we are given a Boolean circuit consisting of a directed acyclic

graph, whose nodes are INPUT, AND and OR gates. The INPUT gates have zero

in-degree while AND and OR gates both of in-degree two. A gate in the circuit is

designated to be the OUTPUT gate. The problem is to determine the value of the

OUTPUT gate, i.e.,true or false. It is known that this problem is P-complete, even if

all gates have out-degree two or less (cf. [AP93]). Given an instance C (we assume

w.l.o.g. that all the gates in C have out-degree one) of the Boolean circuit, we construct

a tree G as follows.

◦ Suppose there are n gates in C, i.e., g1, . . . gn. We associate the output value of a

gate gl with a pair (el,e′l) of entities in G such that the output of gl is true if and
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Figure 3.5: Reduction from Monotone Circuit Value

only if (el,e′l) can be identified by a set Σ′c of keys.

◦ Each AND gate is encoded by two sets of triples, each has cardinality 8. For

AND gate gi, we add triples (ei, p1,ei1), (ei, p2,ei2), (ei1, p1,e j), (ei1, p2,ei3),

(ei2, p2,ek), (ei2, p1,ei4), (ei3, p4,ei5), (ei4, p4,ei6) and another similar 8 triples

except that each e is replaced by e′. Note that (e j,e′j) and (ek,e′k) corresponds to

some other gates g j and gk, i.e., the input value of gate gi.

◦ Each OR gate is encoded by two sets of triples, each has cardinality 10. For

OR gate gi, we add triples (ei, p1,ei1), (ei, p2,ei2), (ei1, p1,e j), (ei1, p2,ei3),

(ei2, p2,ek), (ei2, p1,ei4), (ei3, p4,ei5), (ei4, p4,ei6), (ei, p3,ei7), (ei7, p4,ei8) and

another similar 10 triples except that each e is replaced by e′.Note that (e j,e′j)

and (ek,e′k) corresponds to some other gates g j and gk, i.e., the input value of

gate gi.

◦ Each INPUT gate with value true is encoded by two sets of triples, each has

cardinality 1. For INPUT gate gi with value true, we add triples (ei, p4,ei1) and

(e′i, p4,e′i1). Note that we don’t extend G for INPUT gate of false.
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◦ The set Σ′c consists of three recursively defined keys Q′1(x), Q′2(x), Q′3(x) and a

value-based key Q′4(x). Let Q′1(x) contain two triples (x, p1,y1) and (x, p2,y2),

Q′2(x) have two triples (x, p1,y1) and (x, p3,y2), Q′3(x) contain two triples

(x, p2,y1) and (x, p3,y2), while Q′4(x) is defined as {(x, p4, y)}.
The gates and their corresponding triples in G are depicted in Fig. 3.5(a) and Σ′c

is shown in Fig. 3.5(b). Intuitively, G is constructed by connecting multiple sets of

triples shown in Fig. 3.5(a) by using their subscripts (i.e., i, j,k), and it is easy to add

some dummy nodes to make G a tree since the circuit C is a DAG and each gate has

out-degree one. Note that all the entities in G and entity variables and wildcards in Σ′c
are of the same type.

Then one can verify that the output value of gate gl is true if and only if the en-

tity pair (el,e′l) can be identified by Σ′c, i.e., (G,Σ′c) |= (ei,e′i). Moreover, since G is

constructed by connecting multiple copies of the fixed triples in Fig. 3.5(a), we can

generate many indexed copies of the fixed triples in Fig. 3.5(a) and identify appropri-

ate structure of G by using C, which involves basic manipulation of indices, and easy to

be performed in O(log|C|) space, which means the reduction is a log-space reduction.

As monotone circuit value problem cannot be done in logarithmic rounds, neither can

entity matching. 2

When G is a tree, entity matching is tractable, as opposed to Lemma 3.3. However,

it remains hard to be parallelized, as we have shown in Theorem 3.4.

Proposition 3.5: On trees, entity matching is in PTIME. 2

Proof:Given a tree G and a set Σ of keys, we propose a PTIME algorithm which works

as follows.

1. For each pair (e1,e2) of entities of the same type, construct a product graph

Gp = (Vp,Ep) of Gd
1 and Gd

2 (d-neighbors of entity e1 and e2 respectively, see

Section 3.3), where each node in Vp is a pair (s1,s2) taken from Gd
1 and Gd

2

respectively and (1) s1 and s2 are entities of the same type or s1 = s2 = d, (2)

((s1,s2), p,(o1,o2))∈Ep if and only if (s1, p,o1)∈Gd
1 and (s2, p,o2)∈Gd

2 . Note

that condition (2) ensures Gp is also a tree. We use L to denote the set of all Gp.

2. Eq is used to keep track of entity pairs identified by Σ, initially it stores the set

of pairs (e,e) for each entity e in G.

3. For each tree Q(x)∈ Σ and Gp ∈ L, compute subgraph isomorphism on Q(x) and

Gp, if there exists matches S1 and S2 (which are derived from the mapping) such

that S1(e1) ∼=Eq
Q S2(e2) (see Section 3.2), then add (e1,e2) to Eq and compute
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transitive closure of Eq .

4. repeat step 3 until Eq no longer grows.

It is obvious that step 1 and 2 can be done in O(|G|4), and the size of L is polynomial

in the size of G. Moreover subgraph isomorphism for trees can be solved in PTIME

(cf. [GJ79]), and step 2 is conducted at most ||L|| times since at least one pair is iden-

tified in each round. Putting these together, the algorithm is in PTIME. 2

Parallel scalability. Not all is lost. Despite Theorems 3.2 and 3.4, we will show that

there are effective parallel algorithms for entity matching. To assess the effectiveness

of parallel algorithms, we introduce a simple notion.

We say that an algorithm A for entity matching is parallel scalable if its worst-case

time complexity is O(t(|G|, |Σ|)/p), where p is the number of processors used by A ,

and t is a function in |G| and |Σ|, the size of the input. We assume w.l.o.g. that p� |G|
as commonly found in practice.

This suffices. For if A is parallel scalable, then for given G and Σ, the more pro-

cessors are used (i.e., the larger p is), the less time A takes. Indeed, t(,) is independent

of p. Hence entity matching is feasible in big G by increasing p. Many parallel algo-

rithms do not have provable guarantee for speedup no matter how many processors are

added.

3.3 A MapReduce Algorithm

We show that entity matching is feasible in big graphs.

Theorem 3.6: There exist parallel scalable algorithms in MapReduce for entity match-

ing. 2

As a proof, we present a parallel scalable algorithm in Section 3.3.1, followed by

optimization strategies in Section 3.3.2.

3.3.1 Algorithm and Parallel Scalability

The algorithm, referred to as EMMR and shown in Fig. 3.6, takes as input a graph G and

a set Σ of keys. It returns Chase(G,Σ), the set of all pairs (e1,e2) if (G,Σ) |= (e1,e2).

As opposed to subgraph isomorphism algorithms, EMMR has to compute the tran-

sitive closure (TC) of relation Eq, in which each step involves two subgraph iso-

morphism checks. By Theorem 3.4, this cannot be done in logarithmic rounds.
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Driver: DriverMR

Input: Graph G and a set Σ of keys.

Output: chase(G,Σ).

1. construct candidate set L and d-neighbor Gd for each e in L;

2. initialize a set Eq := {(e,e) | e ∈ G};
3. repeat

4. call MapEM; ReduceEM;

/* initially MapEM((e1,e2),(false)) for each (e1,e2) ∈ L */

5. until Eq no longer changes;

6. return Eq;

Mapper: MapEM

Input: A key/value pair ((e1,e2), (Flag)).

Output: Intermediate key/value pairs.

1. if Flag = true or (Gd
1 ∪Gd

2 ,Eq,Σ) |= (e1,e2) then

2. emit ((e1),(e1,e2, true)); emit ((e2),(e1,e2, true));

3. else emit ((e1),(e1,e2, false));

Reducer: ReduceEM

Input: A list of key/value pairs ((e), ([v1,v2, · · · ])).
Output: Key/value pairs ((e1,e2), (Flag)).

1. initialize Eq(e) and L(e) with /0;

2. for each vi in [v1,v2, · · · ] do

3. if vi = (e1,e2, true) then Eq(e) := Eq(e)∪{(e1,e2)};
4. if vi = (e1,e2, false) then L(e) := L(e)∪{(e1,e2)};
5. Eq := Eq∪Eq(e);

6. for each (e1,e2) by joining pairs in Eq(e) and Eq, (e1,e2) 6∈ Eq do

7. emit ((e1,e2),(true)); Eq := Eq∪{(e1,e2)};
8. for each (e1,e2) ∈ L(e) and (e1,e2) 6∈ Eq do

9. emit ((e1,e2),(false));

Figure 3.6: Algorithm EMMR
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Nonetheless, EMMR combines isomorphism checking and TC computation into the

same MapReduce process. It ensures parallel scalability by leveraging the data locality

of subgraph isomorphism (see below). Better still, it checks whether (G,Σ) |= (e1,e2)

without enumerating all isomorphic mappings, unlike conventional algorithms.

EMMR starts with a set Eq consisting of (e,e) for all entities e in G, and a set L

of candidates, i.e., all entity pairs (e1,e2) having the same type on which at least one

key in Σ is defined. We say that a key Q(x) is defined on e if x and e have the same

type. For all (e1,e2) ∈ L, it checks whether (e1,e2) is in Eq, or (G,Σ) |= (e1,e2),

in parallel. If so, it adds (e1,e2) to Eq, and incrementally extends the TC of Eq.

Note that (G,Σ) |= (e1,e2) once (e1,e2) can be identified by one key in Σ, no matter

how many keys are defined on it. The process iterates until Eq no longer grows, i.e.,

chase(G,Σ) = Eq. It takes at most |Eq| rounds of iterations.

To reduce the cost of checking whether (G,Σ) |= (e1,e2), EMMR capitalizes on the

following notions.

(1) The d-neighbor Gd of entity e. Let d be the maximum radius of those keys Q(x)

in Σ that are defined on e, and Vd be the set of nodes in G that are within d-hops of e.

The d-neighbor of e is the subgraph of G induced by Vd , consisting of nodes in Vd and

edges of G connecting them.

To check (G,Σ) |=(e1,e2), EMMR inspects the d-neighbors (Gd
1 , Gd

2) of (e1,e2), not

the entire G. Indeed, one can verify the data locality: (G,Σ) |= (e1,e2) iff (Gd
1∪Gd

2,Σ)

|= (e1,e2).

We check (Gd
1 ∪Gd

2,Σ) |= (e1,e2) by using Eq computed so far (see Section 3.2),

denoted by (Gd
1 ∪Gd

2,Eq,Σ) |= (e1,e2).

(2) Transitivity closure (TC). EMMR computes the TC of Eq with the following rule:

if (e1,e′1), (e2,e′2) and (e′1,e
′
2) are in Eq, then so is (e1,e2); similarly for (e′1,e1) and

(e′2,e2).

Algorithm. We now present the details of EMMR. It is controlled by a non-MapReduce

driver DriverMR. DriverMR first identifies candidate set L (line 1). For each entity e

appearing in L, it constructs d-neighbors Gd also in MapReduce, by revising breadth-

first search starting from e, with bound d. To avoid the cost of shipping invariant input

data in MapReduce, these d-neighbors Gd and the set Σ of keys are cached physically

in the local disk of processors, along the same lines as Haloop [BHBE10]. In addition,

it stores a “global variable” Eq in HDFS, to keep track of entity pairs identified by Σ,

initially the set of pairs (e,e) for all e in G (line 2).
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It then triggers MapEM with key/value pairs ((e1,e2), (false)) for all (e1,e2) ∈ L

(line 4), with (e1,e2) as its key. MapReduce functions MapEM and ReduceEM then

iterate to expand Eq. DriverMR terminates the process when there is no change to Eq

(line 5), and return Eq as chase(G,Σ) (line 6).

Mapper. Given a key/value pair ((e1,e2), (Flag)), MapEM first checks whether Flag =

true (i.e., (e1,e2)∈ Eq) or (Gd
1∪Gd

2, Eq, Σ) |= (e1,e2) (line 1) by invoking a procedure

EvalMR (to be presented shortly). If so, MapEM emits value (e1,e2, true) with keys e1

and e2, for computing TC (line 2). Otherwise, it emits value (e1,e2, false) with key e1

only (line 3), indicating the result of checking in this round.

Reducer. The input to ReduceEM is (e, list), where list includes all newly identified

and un-identified pairs, and are collected in Eq(e) and L(e), respectively (lines 1-4).

ReduceEM then adds Eq(e) to Eq (line 5) and joins pairs in Eq(e) and Eq (line 6),

to compute TC following the rule we have seen earlier. For those newly joined pairs

(e1,e2) not in Eq, ReduceEM emits ((e1,e2), true) to expand TC in the next round, and

Eq is updated by including (e1,e2) (line 7). For each (e1,e2) in L(e) but not in Eq

(line 8-9), ((e1,e2),(false)) is emitted for checking in the next round. Note that for

each pair (e1,e2) ∈ Eq, if (e1,e2) is not newly identified in this round, (e1,e2) is no

longer in the process.

One can verify the following by induction on the length of chasing sequences for

(G,Σ) |= (e1,e2) (see Section 3.2).

Proposition 3.7: If (G,Σ) |= (e1,e2), then (e1,e2) is identified by EMMR following the

shortest chasing sequence. 2

Proof:We prove it by induction on the length l of the shortest chasing sequence. The

case when l = 1 is trivial, as EMMR checks all the candidate pairs in parallel in the first

round and all pairs identified in this step will not be checked further. Now assume that

the proposition holds when l < k. For l = k, suppose that there exists a shortest chasing

sequence of length k to identify (e1,e2), i.e., Eq0, Eq1, . . . , Eqk. Then it can be verified

that all the entity pairs in Eqk−1 have been identified by EMMR before the chasing

step Eqk−1→(e1,e2) Eqk as these entity pairs have shortest chasing steps of length less

than k. And EMMR repeatedly checks this chasing step as long as some entity pairs in

Eqk−1 on which (e1,e2) depends are newly identified. From which we can conclude

that EMMR identifies (e1,e2) following the shortest chasing sequence. 2

Example 3.8: Algorithm EMMR works on G1 and Σ1 of Example 3.7 as follows.



3.3. A MapReduce Algorithm 79

DriverMR triggers MapEM with ((albi,alb j), (false)) and ((arti,art j), (false)), where

i, j ∈ [1,3], i < j. Note that d = 1 for Q1, Q2 and Q3 of Fig. 3.1.

Round 1. MapEM identifies alb1 and alb2 with key Q2(x) by procedure EvalMR.

ReduceEM adds (alb1,alb2) to Eq, and joins it with Eq. They emit key/value pairs

as follows.

MapEM Emitted pairs ReduceEM Emitted pairs

(alb1, alb2)
((alb1), (alb1,alb2, T))

((alb2), (alb1,alb2, T))
alb1 ((alb1,alb3), (F))

(alb1, alb3) ((alb1), (alb1,alb3, F)) alb2 ((alb2,alb3), (F))

(alb2, alb3) ((alb2), (alb2,alb3, F))

(art1, art2) ((art1), (art1,art2, F)) art1
((art1,art2), (F))

((art1,art3), (F))

(art1, art3) ((art1), (art1,art3, F)) art2 ((art2,art3), (F))

(art2, art3) ((art2), (art2,art3, F))

Round 2. MapEM identifies (art1,art2) by key Q3(x), and ReduceEM updates Eq. Note

that no key/value pair for (alb1,alb2) is in this round since it is in Eq already.

MapEM Emitted pairs ReduceEM Emitted pairs

(alb1, alb3) ((alb1), (alb1,alb3, F)) alb1 ((alb1,alb3), (F))

(alb2, alb3) ((alb2), (alb2,alb3, F)) alb2 ((alb2,alb3), (F))

(art1, art2)
((art1), (art1,art2, T))

((art2), (art1,art2, T))
art1 ((art1,art3), (F))

(art1, art3) ((art1), (art1,art3, F)) art2 ((art2,art3), (F))

(art2, art3) ((art2), (art2,art3, F))

Round 3. There is no newly identified entity pair, and Eq is not updated; DriverMR thus

terminates the process, and returns chase(G1,Σ1) with (alb1,alb2) and (art1,art2). 2

Procedure EvalMR. We next show how to check (Gd
1∪Gd

2,Eq,Σ) |= (e1,e2) with a key

Q(x) in Σ, in MapEM. A naive method is to first enumerate all matches of Q(x) at e1

in Gd
1 and e2 in Gd

2 by using a subgraph isomorphism algorithm (e.g., VF2 [CFSV04],

TurboIso [HLL13]), and then check whether any those matches coincide (see Sec-

tion 3.1). This involves two calls for a subgraph isomorphism algorithm, each of ex-

ponential cost. In other words, it is not practical to conduct the checking by using any

existing algorithm.
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To reduce the cost, we propose algorithm EvalMR that combines the two processes

of computing (isomorphic) mappings into a single process, and allows early termina-

tion, i.e., EvalMR terminates as soon as (e1,e2) is identified.

EvalMR conducts search guided by Q(x), to instantiate nodes in Q(x) with candidate

pairs (s1,s2) in (Gd
1,G

d
2). We use a vector m to record the instantiation, combining

mappings ν1 and ν2 from variables or values of Q(x) to entities or values in Gd
1 and

Gd
2 , respectively, and mapping µ for coinciding the two (see Section 3.1). For each node

sQ in Q(x), (a) either m[sQ] = (s1,s2) when s1 = ν1(sQ), s2 = ν2(sQ), and s1 = µ(s2);

(b) or m[sQ] =⊥ if sQ has no match yet.

(1) Initialization. More specifically, EvalMR initializes m with m[x] = (e1,e2) and

m[sQ] =⊥ for all the rest. It then instantiates nodes of m one by one, as follows.

(2) Feasibility checking. To extend m with m[sQ] = (s1,s2), it checks the following

feasibility conditions.

(1) Injective: s1 and s2 do not appear in m already.

(2) Equality: (a) if sQ is y, then (s1,s2) ∈ Eq; (b) if sQ is y∗, then s1 = s2 (values);

(c) if sQ is y, then s1 and s2 are entities of the same type; and (d) if sQ is d, then

s1 = s2 = d (values).

(3) Guided expansion: for all triples (sQ, pQ,oQ) ∈ Q(x), if oQ is already instan-

tiated, i.e., m[oQ] = (o1,o2), then (s1, pQ, o1) ∈ Gd
1 and (s2, pQ, o2) ∈ Gd

2;

similarly for all triples (s′Q, pQ,sQ) in Q(x).

EvalMR sets m[sQ] = (s1,s2) if all feasibility conditions are satisfied. Otherwise, it

backtracks with other instantiation. Intuitively, m encodes a partial injective mapping

from nodes in Q(x) to candidate pairs in (Gd
1,G

d
2).

(3) Verification. When m is fully instantiated, i.e., it contains no ⊥, EvalMR concludes

that (Gd
1 ∪Gd

2,Eq,{Q(x)}) |= (e1,e2) and returns true. It returns falseif m cannot be

fully instantiated. This is correct since the feasibility conditions check all “nodes” and

“edges” in Q(x).

Lemma 3.8: (G,{Q(x)}) |= (e1,e2) if and only if m can be fully instantiated by

EvalMR, using key Q(x). 2

Proof:When m is fully instantiated, (G,{Q(x)}) |= (e1,e2) is assured by the following.

(1) By the feasibility checking EMMR adopts, ν1 (resp. ν2) is a valuation of Q(x)

in the set S1 (resp. S2) of triples that m encodes, in which S1 and S2 can be easily

constructed by combining m with the corresponding predicates and values in Q(x). (2)

The injective condition enforces ν1 and ν2 to be bijections. (3) The equality condition
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coincides with the semantic of keys defined in Section 3.1, i.e., S1(e1) ∼=Q S2(e2).

From these it follows that (e1,e2) is identified by Q(x). Conversely, if e1 and e2 are

identified by Q(x), then all the feasibility checking steps are satisfied if m is expanded

by selecting the images of sQ in S1 and S2 respectively, where sQ is a variable in Q(x).

This will proceed until m is fully instantiated. 2

When Σ contains multiple keys, EvalMR identifies common sub-structures of keys

along the same lines as [LKDL12]. It terminates once there exists a key Q(x) that

identifies (e1,e2).

Example 3.9: Continuing with Example 3.8, EvalMR identifies art1 and art2 with Q3(x)

in round 2, after alb1 and alb2 are identified by Q2(x) in round 1. It initializes m[x]

= (art1,art2), and extends m with m[name∗] = (“The Beatles”, “The Beatles”), and

m[album] = (alb1,alb2) after feasibility check. As m is fully instantiated, EvalMR re-

turns true. 2

Parallel scalability. To complete the proof of Theorem 3.6, we show that EMMR is

parallel scalable. Let Gd
m be the largest d-neighbor of all entities in G, where d is deter-

mined by the radius of keys in Σ defined on each entity, and p be the number of proces-

sors used. Then for each round of EMMR, MapEM takes at most O(t(|Gd
m|, |Σ|)|L|/p)

time, and ReduceEM takes O(|Eq|2/p) time, where t(|Gd
m|, |Σ|) is the cost of EvalMR.

Moreover, at most O(|Eq|) rounds are needed since in each round, at least one pair

is identified. Furthermore, DriverMR constructs all Gd’s in O((|Gd
m||L|+ |Σ|)/p) time.

Putting these together, EMMR is parallel scalable.

3.3.2 Optimization Strategies

From the analysis above, we can see that the cost of algorithm EMMR is dominated by

(a) the length of L, (b) the size of d-neighbors, and (c) redundant MapReduce compu-

tation. Below we study optimization strategies to reduce the cost.

Reducing L. Each (e1,e2) ∈ L involves (repeated) isomorphism checking. Thus we

filter those pairs that cannot be identified as follows. Given a key Q(x), we say

that (e1,e2) can be paired by Q(x) if there exists a ternary relation PQ on nodes of

(Gd
1,G

d
2,Q(x)) such that (1) (e1,e2,x) ∈ PQ, (2) for each triple (s1,s2,sQ) ∈ PQ, (a) s1

and s2 are entities with same type if sQ is y or y, s1 = s2 if sQ is y∗, or s1 = s2 = d if

sQ = d; and (b) for each (sQ, pQ, oQ) ∈ Q(x), there exist (s1, pQ, o1) in Gd
1 and (s2,

pQ, o2) in Gd
2 such that (sQ, pQ, oQ) 7→ (s1, pQ, o1), (sQ, pQ, oQ) 7→ (s2, pQ, o2),
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and (o1,o2,oQ) ∈ PQ; similarly for (s′Q, pQ, sQ) ∈ Q(x). We refer to PQ as a pairing

relation of Q at (e1,e2).

One can verify that pairing is a necessary condition for (e1,e2) to be identified by

key Q(x). Hence we include in L only those pairs that are paired by some key Q(x)∈ Σ.

Proposition 3.9: For any pair (e1,e2), (a) if e1 and e2 cannot be paired by any key in Σ,

then (G,Σ) 6|= (e1,e2); and (b) if (e1,e2) can be paired by a key Q(x), then there exists

a unique maximum pairing relation PQ of Q(x) at (e1,e2), and PQ can be computed in

O(|Q||Gd
1||Gd

2|) time. 2

Proof:(a) It suffices to prove that if (G,Σ) |= (e1,e2), then e1 and e2 can be paired by

some key in Σ. Assume that (e1,e2) is included in Eq by applying a key Q(x) in Σ, i.e.,

there exist matches S1 and S2 of Q(x) at e1 and e2 in G under ν1 and ν2, respectively,

such that S1(e1)∼=Eq
Q S2(e2). It can be verified that (e1,e2) can be paired by Q(x) with

the ternary relation PQ built as follows: (1) (e1,e2,x)∈ PQ, and (2) for each sQ in Q(x),

(ν1(sQ),ν2(sQ),sQ) ∈ PQ, similarly for each oQ in Q(x). Indeed, all the conditions of

the semantics of PQ are satisfied as ν1 and ν2 are valuations of Q(x) in S1 and S2,

respectively, and there also exists a bijection µ between S1 and S2, mapping ν1(sQ) to

ν2(sQ) and preserving value equality.

(b) We first show that if (e1,e2) can be paired by Q with ternary relations PQ
1 and

PQ
2 respectively, then (e1,e2) can also be paired with relation PQ

1 ∪ PQ
2 . Obviously

the conditions (1) and (2)(a) of the semantics of PQ are still satisfied by PQ
1 ∪ PQ

2 .

Moreover, since no triple in PQ
1 and PQ

2 is removed, the existential semantics of (2)(b)

and (2)(c) also hold. Therefore there exists a maximum pairing relation PQ, which

is the union of all pairing relation of Q(x) at (e1,e2). We then prove the uniqueness

by contradiction. Assume that there exist two distinct maximum pairing relation PQ
1

and PQ
2 . Then PQ

1 ∪PQ
2 is a pairing relation larger than both PQ

1 and PQ
2 , which is a

contradiction.

Next we show that it is in cubic-time to compute PQ. Firstly a product graph

Gp = (Vp,Ep) of Gd
1 and Gd

2 is built, where each node in Vp is a pair (s1,s2) taken

from Gd
1 and Gd

2 respectively and (1) s1 and s2 are entities of the same type or s1 =

s2 = d, (2) (e1,e2) ∈ Vp, (3) ((s1,s2), p,(o1,o2)) ∈ Ep if and only if (s1, p,o1) ∈ Gd
1

and (s2, p,o2) ∈ Gd
2 . The computation of Gp can be done in O(|EGd

1
||EGd

2
|) time and

|Vp|= O(|VGd
1
||VGd

2
|), |Ep|= O(|EGd

1
||EGd

2
|). After that we compute a maximum match

relation M of Q(x) on Gp based on the semantic of dual simulation, where x in Q(x) is
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mapped to (e1,e2), y and y are mapped to entity pairs of the same type and y∗ could be

mapped to any value pair. For each sQ in Q(x) that is mapped to (s1,s2) in M, we add a

triple (s1,s2,sQ) to PQ, similarly for oQ. By leveraging the graph simulation algorithm,

this step can be done in O((|VQ|+ |EQ|)(|Vp|+ |Ep|) time. Thus it has a complexity

bound of O((|VQ|+ |EQ|)(|VGd
1
||VGd

2
|+ |EGd

1
||EGd

2
|)). 2

Reducing (Gd
1,G

d
2). For each (e1,e2) ∈ L, we reduce (Gd

1,G
d
2) such that they are

subgraphs induced by those nodes that are in the maximum pairing relation PQ at

(e1,e2) by some key Q(x) of Σ. Extending Proposition 3.9, one can verify that (G,Σ) |=
(e1,e2) if and only if (e1,e2) can be identified by keys in (Gd

1,G
d
2) constructed in this

way.

Reducing redundant MapReduce computation. We develop two optimization strate-

gies by leveraging the dependency imposed by recursively defined keys. We say that a

pair (e1,e2) depends on (e′1,e
′
2) if (e′1,e

′
2) is (a) in d-neighbors of (e1,e2); and (b) has

the same type as y, where y is a variable in a recursive key in Σ defined on (e1,e2).

Entity dependency. DriverMR collects a set L0 with pairs (e1,e2) ∈ L, such that only

value-based keys in Σ are defined on. DriverMR triggers MapEM with pairs in L0 only,

instead of the entire L. In each MapReduce round, a new pair (e′1,e
′
2) is emitted only

when (e′1,e
′
2) depends on (e1,e2), and if (e1,e2) has been already proceeded.

Incremental checking. We revise MapEM such that (Gd
1 ∪Gd

2,Eq,Σ) |= (e1,e2) is

checked only in the first round or when some pairs (e′1,e
′
2) on which (e1,e2) depends

are identified in the last round, to reduce the expensive checking. This is done by

adding a flag Changed to the pairs in Eq.

3.4 A Vertex-Centric Algorithm

The performance of algorithm EMMR is hampered by (1) the maintenance of global

variable Eq; and (2) stragglers in each round that may hold up the process of a

chain of entity pairs on which dependencies are imposed by recursively defined keys.

Such costs are inherent to the I/O bound property and the synchronization policy of

MapReduce.

To reduce the costs, we develop an algorithm for entity matching in the vertex-

centric model of [LGK+12]. As opposed to MapReduce, [LGK+12] is based on a ver-

tex program that is executed in parallel on each vertex, and interacts with the neighbors

of the vertex via asynchronous message passing. There is no need for a global variable
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Eq, or for synchronizing the computation into rounds. We show the following.

Theorem 3.10: There exist parallel scalable algorithms in the vertex-centric model

of [LGK+12] for entity matching. 2

As a proof, we present such an algorithm (Section 3.4.1), and develop optimization

strategies (Section 3.4.2).

3.4.1 Algorithm and Parallel Scalability

The algorithm, referred to as EMVC, computes Chase(G,Σ) when given a graph G and a

set Σ of keys. It works as follows. Let L be the set of candidate pairs to be checked. For

all (e1,e2)∈ L, it checks whether (G,Σ) |=(e1,e2). Similar to EMMR, EMVC adds a pair

(e1,e2) to Eq once it is identified by any key in Σ, and it checks all pairs in L in parallel.

In contrast to EMMR, EMVC follows asynchronous message passing [LGK+12]. To

determine whether (G,Σ) |= (e1,e2), it checks different instantiations of nodes in a

key in parallel with multiple messages, for all keys defined on (e1,e2).

When (G,Σ) |= (e1,e2) is confirmed, EMVC notifies those pairs (s1,s2) ∈ L that

depend on (e1,e2) by sending messages, so that (G,Σ) |= (s1,s2) is checked “incre-

mentally”. The transitive closure (TC) of Eq is computed by message propagation at

the same time. The process proceeds until no messages are active and Eq can no longer

be changed.

The key ideas behind EMVC include guided search for verifying (G,Σ) |= (e1,e2)

and expansion of TC based on the dependency of entities, both via asynchronous mes-

sage passing. To facilitate message passing, EMVC uses the following.

Product graph. Given G and Σ, EMVC constructs a product graph Gp = (Vp,Ep),

where each node in Vp is either (a) a pair (o1,o2) of entities or values that can be

paired (see Proposition 3.9); or (b) a pair (e,e) of entities only if e is paired with

another entity in Vp. There is an edge ((s1,s2), p, (o1,o2)) in Ep from node (s1,s2) to

(o1,o2) if (a) (s1, p,o1) and (s2, p,o2) are both in G; (b) (o1,o2) depends on (s1,s2)

(see Section 3.3.2); here p is a special label dep; or (c) o1⇔ o2, and o1⇔ s1 or o1⇔ s2;

p is labeled as tc in this case.

Intuitively, Gp encodes the topology of G, the dependency on entities w.r.t. Σ via

dep edges, and the transitive closure of Eq via tc edges. We do not include (e,e) in Gp

if e is not in L, i.e., if e is not to be paired with another entity or if no key in Σ is defined

on e. In our experiments, we find that |Gp|= 2.7∗ |G| on average, much smaller than
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|G|2.

For each (e1,e2) in Gp, a Boolean Flag(e1,e2) is used to indicate whether (e1,e2)∈
Eq, initially false unless e1⇔ e2.

Traversal order. For each key Q(x) in Σ, EMVC defines a sorted list PQ of triples in

Q(x) such that (a) all nodes in Q(x) appear in some triples in PQ, and (b) it encodes a

“tour” of nodes in Q(x), starting from x and ending at x.

Intuitively, EMVC propagates messages guided by PQ. Together with feasibility

checking to be seen shortly, a complete tour that starts from (e1,e2) guided by PQ

guarantees that (e1,e2) can be identified by Q(x). There are multiple orders for a tour

of Q(x). However, finding an optimum order with a shortest tour is NP-complete, by

reduction from Chinese Postman Problem (cf. [GJ79]). In light of this, EMVC uses a

greedy algorithm to decide PQ.

Algorithm. EMVC first constructs Gp as above. Then at each node (e1,e2) in Vp,

if a value-based key in Σ is defined on it, it triggers procedure EvalVC for subgraph

isomorphism checking, propagates messages to activate other nodes in Vp guided by

traversal order, and computes the TC of Eq. EMVC terminates when no messages are

active, and it returns Eq of all pairs (e1,e2) with Flag(e1,e2) = true, as chase(G,Σ).

Procedure EvalVC. At each node (s1,s2) in Gp, the actions of EMVC are summarized

in EvalVC, shown in Fig. 3.7.

(1) Initial message. When EvalVC is activated at a node (s1,s2) in Gp, for each key

Q(x) ∈ Σ defined on (s1,s2), an initial message mQ(s1,s2) is created (lines 1-2, (1),

Fig. 3.7), with mQ(s1,s2)[x] = (s1,s2) and mQ(s1,s2)[sQ] = ⊥ for all other nodes in

Q(x). The message is a vector that encodes a partial injective mapping from nodes in

Q(x) to nodes in Gp, similar to those used by procedure EvalMR (Section 3.3.1).

Then guided by the first triple (x, pQ,oQ) (or (sQ, pQ,x)) of PQ, a copy of mQ(e1,e2)

is “forked” to propagate to each neighbor (o1,o2) of (s1,s2), following edge ((s1,s2),

pQ, (o1,o2)) in Gp (line 3), for feasibility check (see (4) below).

(2) Early cancellation. Upon receiving a message mQ(e1,e2) at (s1,s2), (s1,s2) first

checks whether Flag(e1,e2) is true, by sending a message to (e1,e2), whose ID is in

mQ(e1,e2). If so, EvalVC stops the propagation of mQ(e1,e2) (lines 1-2, (2), Fig. 3.7),

since (e1,e2) is already identified.

(3) Verification. If Flag(e1,e2) is false, but mQ(e1,e2) is fully instantiated, i.e., it does

not contain ⊥, and moreover, if (e1,e2) is (s1,s2), i.e., mQ(e1,e2) has completed its
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Algorithm EvalVC /* Executed at each node (s1,s2) */

(1) Initial messages at (s1,s2)

1. for each key Q(x) ∈ Σ defined on (s1,s2) do

2. create an initial message mQ(s1,s2);

3. propagate mQ(s1,s2) guided by order PQ;

(2) Upon receiving a message mQ(e1,e2) following (sQ, pQ,oQ)

1. if Flag(e1,e2) = truethen

2. stop propagating mQ(e1,e2); return;

3. if mQ(e1,e2) is fully instantiated and (e1,e2) = (s1,s2) then

4. Flag(e1,e2) := true; compute dependency and TC; return;

5. if either mQ(e1,e2)[sQ] or mQ(e1,e2)[oQ] is ⊥ then

6. if mQ(e1,e2) satisfies all feasibility conditions at (s1,s2) then

7. extend mQ(e1,e2) by instantiating a node with (s1,s2);

8. else drop mQ(e1,e2); return;

9. propagate mQ(e1,e2) guided by order PQ;

(3) Compute dependency and TC when Flag(e1,e2) becomes true

1. if ((e1,e2),dep,(s1,s2)) ∈ Gp, and Flag(s1,s2) = false then

2. propagate increment message mQ′(s1,s2) for each Q′(x) of Σ;

3. if ((e1,e2), tc,(s1,s2)) ∈ Gp then

4. compute transitive closure of Eq;

Figure 3.7: Algorithm EvalVC

propagation and is sent back to (e1,e2), guaranteed by the guided order PQ, then we

can conclude that (G,{Q(x)}) |= (e1,e2) (see Lemma 3.11 below). Hence Flag(e1,e2)

is set true, (e1,e2) notifies nodes that depend on (e1,e2) following edges labeled dep,

and activates those nodes following edges labeled tc, to compute the TC of Eq (lines 3-

4, see (6) and (7) below).

(4) Feasibility checking. Otherwise, assume that mQ(e1,e2) is sent to (s1,s2) following

triple (sQ, pQ,oQ) in PQ. If mQ(e1,e2)[sQ] = ⊥ (similarly for mQ(e1,e2)[oQ] = ⊥),

EvalVC checks whether mQ(e1,e2)[sQ] can be instantiated with (s1,s2) (lines 5-6) based

on the same feasibility conditions of EvalMR (injective, equality and guided expansion;

Section 3.3.1), except that when sQ is a variable y, it requires Flag(s1,s2) = true. If
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it does not pass the check, mQ(e1,e2) is dropped (line 8), as mQ(e1,e2) cannot be

expanded. Otherwise EvalVC sets mQ(e1,e2)[sQ] = (s1,s2) (line 7).

(5) Guided propagation. Now, both mQ(e1,e2)[sQ] and mQ(e1,e2)[oQ] are instantiated.

Then (s1,s2) propagates message mQ(e1,e2) guided by the next triple (s′Q, p′Q,o
′
Q) in

PQ, i.e., the successor of (sQ, pQ,oQ) in PQ (line 9). Assuming that mQ(e1,e2)[s′Q] =

(s1,s2) (the case is similar if mQ(e1,e2)[o′Q] = (s1,s2)), EvalVC does the following.

(a) If mQ(e1,e2)[o′Q] = (o1,o2), i.e., message mQ(e1,e2) has already been instanti-

ated with (o1,o2), then mQ(e1,e2) is sent “back” to (o1,o2) directly.

(b) If mQ(e1,e2)[o′Q] = ⊥, a copy of mQ(e1,e2) is propagated to each neighbor

(o1,o2) of (s1,s2), following edge ((s1,s2), pQ,(o1,o2)) in Gp. If no such neigh-

bor exists, mQ(e1,e2) is dropped.

One can verify that mQ(e1,e2) is propagated only within the d-neighbor of (e1,e2)

in Gp as it is guided by PQ.

(6) Dependency. When Flag(e1,e2) is set true, EvalVC notifies all nodes (s1,s2) that de-

pend on (e1,e2), by following edge ((e1,e2),dep,(s1,s2)) (see (3) above). Then EvalVC

is activated at (s1,s2). It checks whether Flag(s1,s2) is false(line 1, (3), Fig. 3.7). If

so, EvalVC triggers increment messages mQ′(s1,s2) for each Q′(x) defined on (s1,s2),

with mQ′(s1,s2)[x] = (s1,s2), mQ′(s1,s2)[y] = (e1,e2) and mQ′(s1,s2)[zQ] =⊥ for other

nodes in Q′(x), where y is a variable in Q′(x) with the same type of (e1,e2) (line 2).

These messages are propagated in the same way as above.

(7) Transitive closure. When Flag(e1,e2) is true, (s1,s2) is notified if ((e1,e2), tc,

(s1,s2))∈Gp. Assume w.l.o.g. that (s1,s2)= (e1,e1). Then at (e1,e1), (e1,e2) is joined

with (e1,e), when either (a) e⇔ e1 or (b) ((e1,e), tc, (e1,e1)) ∈ Gp and Flag(e1,e) =

true; it sets Flag(e2,e) = true. The newly identified nodes conduct the same process

following tc edges, to further compute the TC (lines 3-4, (3), Fig. 3.7).

The correctness of EvalVC is warranted by the following.

Lemma 3.11: (G,{Q(x)}) |= (e1,e2) if and only if there exists a message mQ(e1,e2)

that can be fully instantiated by algorithm EvalVC; and the message is propagated at

most 2|Q| times. 2

Proof:The if and only if condition follows from Lemma 3.8. By induction on |Q|, we

show that the message is propagated at most 2|Q| times. The case when |Q| = 1 is

trivial, as PQ contains a single triple and mQ(e1,e2) is propagated at most twice, once

forward and then backward to (e1,e2). Assume the proposition holds when |Q| = k.



88 Chapter 3. Keys For Graphs

year∗

x

name∗

(album)

Q2(x)

(alb1, alb2)

(“A2”, “A2”) (“1996”, “1996”)

(art1, art2)

dep

Gp1

1

2 3

4

tc

(alb1, alb1)

t1

t2 t3

t4

“A2” for “Anthology 2”

(alb1, alb3)
tc

(alb2, alb2)

tc

Figure 3.8: Message propagation in EvalVC

For |Q′|= k+1, assume w.l.o.g. that (sQ′, pQ′,oQ′) is newly added to Q′, then it can be

verified that compared with PQ, the length of PQ′ is incremented at most by two, i.e.,

(sQ′, pQ′,oQ′) and (oQ′, pQ′,sQ′) are included in PQ′ , and the connectivity of Q(x) and

Q′(x) warranties the correctness of PQ′ . From which we conclude that the propagation

of mQ′(e1,e2) is also enlarged by at most two steps comparing to that of mQ(e1,e2).

Thus the proof of Lemma 3.11. 2

Example 3.10: We show how EMVC works on G1 and Σ1 of Example 3.7. A (partial)

product graph Gp1 of G1 is shown in Fig. 3.8, where (art1,art2) depends on (alb1,alb2).

For Q2, the order PQ2 is [t1, t2, t3, t4], where t1 and t2 are (x,name of,name∗)+/−,

and t3 and t4 are (x, release year, year∗)+/−, respectively; here + and − indicate for-

ward and backward traversal, respectively. At (alb1,alb2), EvalVC constructs initial

message mQ2 for Q2(x), where mQ2[x] = (alb1,alb2), and ⊥ for the other nodes. As

shown in Fig. 3.8, it propagates m as follows, guided by PQ2 .

Node (mQ2 visits) Feasibility checking PQ2

(“A2”, “A2”) mQ2[name∗] = (“A2”, “A2”) t2
(alb1,alb2) mQ2[x] is instantiated t3

(“1996”, “1996”) mQ2[year∗] = (“1996”, “1996”) t4
(alb1,alb2) Flag(alb1,alb2) = true

When mQ2 is sent back to (alb1,alb2), it is fully instantiated, and Flag(alb1,alb2)

is set true. EvalVC then notifies node (art1,art2) via edge labeled dep, triggers an

increment message mQ3 for Q3(x) there, and identifies (art1,art2) along the same lines.

While some other nodes are notified by following tc edges for computing TC, no new

entity pairs are derived. At this point, no message is in transit, and EMVC returns all

entity pairs with Flag = true. 2

Parallel scalability. We show that algorithm EMVC is parallel scalable. The total

amount of computation by EMVC is at most O(t(|Gd
p|, |Σ|)|L||Eq|), where Gd

p is the
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maximum d-neighbor of entity pairs in Gp, Eq is the set of entity pairs identified by

EMVC, and O(t(|Gd
p|, |Σ|)) is the time for checking (G,Σ) |= (e1,e2) via message pass-

ing. Indeed, each pair may be checked |Eq| times in the worst case, triggered by

increment messages, due to the dependency on the nodes of Gp imposed by recur-

sively defined keys in Σ. Assume that the work is distributed evenly across p pro-

cessors, i.e., the resources of an idle node are re-allocated to process other nodes as

conducted in the vertex-centric model [LGK+12], and that p� |G|. Then EMVC is in

O(t(|Gd
p|, |Σ|)|L||Eq|/p) time.

From this and Lemma 3.11, Theorem 3.10 follows.

3.4.2 Optimization Strategies

Procedure EvalVC may fork excessive messages and incur redundant computation. To

reduce the cost, we adopt prior optimization techniques [LKDL12] to extract common

sub-structures of keys in Σ. In addition, we present another two strategies to reduce

excessive messages.

Bounded messages. To check (G, {Q(x)}) |= (s1,s2), EvalVC generates at most k

messages, for a (user-defined) constant k. To do this, we revise EvalVC as follows.

(1) When EvalVC is activated at (s1,s2), a variable KQ(s1,s2) is defined to keep track

of the number of copies of mQ(s1,s2) that are active, initially 1 for the initial message.

(2) Suppose that mQ(e1,e2)[sQ] is instantiated with (s1,s2) (while mQ(e1,e2)[oQ] =⊥).

EvalVC propagates mQ(e1,e2) guided by a triple (sQ, pQ,oQ) in PQ as follows.

◦ If KQ(e1,e2)< k, for each edge ((s1,s2), pQ,(o1,o2)) in Gp that is yet unmarked

with (sQ, pQ,oQ) for mQ(e1,e2), a new copy of mQ(e1,e2) is propagated to

(o1,o2), and KQ(e1,e2) is increased by 1, until KQ(e1,e2) = k or all unmarked

edges are covered.

◦ Otherwise (if there is no budget for new copies), mQ(e1,e2) is propagated fol-

lowing an unmarked edge ((s1,s2), pQ,(o1,o2)), without forking new copies.

Those edges ((s1,s2), pQ,(o1,o2)) that message mQ(e1,e2) follows are marked with

(sQ, pQ,oQ) for mQ(e1,e2), to avoid repeated checking. The process is similar if

mQ(e1,e2)[oQ] = (s1,s2) and mQ(e1,e2)[sQ] =⊥.

(3) When there are no nodes to propagate, or the feasibility conditions are not satisfied,

mQ(e1,e2) will backtrack to check other instantiation, instead of being dropped.

In this way, to check whether (G,Σ) |= (e1,e2), at most O(k||Σ|||Eq|) messages are
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Figure 3.9: Keys defined on DBpedia

generated and propagated.

Prioritized propagation. When EvalVC picks an unmarked edge to propagate message

mQ(e1,e2) from (s1,s2), it selects an edge with the highest potential that can make

mQ(e1,e2) fully instantiated. This is estimated based on the number of neighbors of

(o1,o2) that have the same types and values as those variables in mQ(e1,e2) to be

instantiated. Such information is collected when constructing Gp.

3.5 Experimental Study

Using real-life and synthetic graphs, we conducted three sets of experiments on EMMR

and EMVC to evaluate the impacts of (1) the number p of processors used; (2) the size

of graph G; and (3) the complexity of keys Σ (see below). The results verify that the

algorithms are parallel scalable and can efficiently identify entities in reasonably large

graphs.

Experimental setting. We used two real-life graphs: (a) Google+ [GXH+12] (Google

in short), a social network with 2.6 million nodes and 17.5 million edges (relation-

ships such as friend), where 30 types of entities are determined by its node attributes,

e.g., major, university, place and employer; and (b) DBpedia [DBp], a knowledge base

with 4.3 million nodes and 40.3 million links, including 495 types of entities.

We also developed a generator to produce synthetic graphs G, controlled by the

number of entities E and data values D . Predicates P and entity types Θ were drawn

from an alphabet L of 6000 labels. The size of G is up to 95 million entities (100

million nodes) and 500 million edges.

Key generator. We generated keys Σ controlled by the maximum radius d and the

length c of longest dependency chains from recursively defined keys in Σ. (1) We

constructed 30 and 100 keys for Google and DBpedia, respectively, with attributes and

predicates from the data graphs. Some keys for DBpedia are shown in Fig. 3.9. (2) For
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synthetic graphs, we randomly generated 500 keys for different types of entities in Θ,

with values from D and predicates from P .

Algorithms. We implemented the following algorithms: (1) MapReduce algorithms

on Hadoop 1.2.1: (a) EMMR of Section 3.3.1, (b) EMVF2
MR , which replaces EvalMR of

EMMR with VF2 [CFSV04] by enumerating all matches without early termination; (c)

EMOpt
MR , a revision of EMMR by supporting the optimization strategies of Section 3.3.2.

(2) Vertex-centric algorithms on GraphLab [LGK+12]: (a) EMVC of Section 3.4.1, and

(b) EMOpt
VC , which optimizes EMVC by using k = 4 messages and prioritized message

propagation strategy (Section 3.4.2). Conventional algorithms for subgraph isomor-

phism algorithms and entity resolution do not work on entity matching and graphs,

respectively, and hence, cannot be compared with.

Distributed sites. We deployed the graphs, keys and algorithms on p∈ [4,20] machines

of Amazon EC2 Compute-Optimized Instance c4.4xlarge. Each experiment was run 3

times and the average is reported here.

Experimental results. We next report our findings. In all the experiments, we used

30, 100 and 500 keys for Google, DBpedia and Synthetic respectively.

Exp-1: Varying p. Fixing c = 2 and d = 2, we first evaluated the parallel scal-

ability of these algorithms by varying p from 4 to 20. The results are reported

in Figures 3.10(a), 3.10(b) and 3.10(c), for Google, DBpedia and Synthetic (fixing

G = (100M, 500M)), respectively, in which we use logarithmic scale for the y-axis.

We find the following.

Parallel scalability. On a given graph, these algorithms took less time proportional to

the increase of processors. For instance, EMOpt
VC (resp. EMOpt

MR ) are 4.8, 4.7 and 5 times

faster (resp. 4.6, 4.7 and 4.8) when p increases from 4 to 20 on Google, DBpedia and

Synthetic, respectively. We find that EMOpt
VC scales the best among all the algorithms:

it takes 2.4 seconds to identify all entities in Google with 20 processors.

We also experimented with p up to 32. The results are consistent with Fig-

ures 3.10(a), 3.10(b) and 3.10(c): the algorithms are 1.5 times faster than the setting

with p = 20 on average. These experimentally verify Theorems 3.6 and 3.10, i.e., our

algorithms are parallel scalable, despite Theorems 3.2 and 3.4.

MapReduce vs. vertex-centric. Algorithm EMVC outperforms all the MapReduce algo-

rithms, even EMOpt
MR . It is at least 12.1, 10.9 and 13.5 times faster on Google, DBpedia

and Synthetic, respectively. For instance, it takes 5.8 seconds on Google when p = 12,
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Figure 3.10: Scalability of entity matching

while EMOpt
MR takes 70 seconds. This verifies that EMVC reduces the inherent costs of

the I/O bound and the synchronization policy of MapReduce.

We developed and evaluated EMOpt
MR and EMMR because of the prevalent use of the

MapReduce framework. Moreover, EMOpt
MR may be advantageous to EMVC when EMVC

requires a product graph much larger than G (see Section 3.4 and below).

Effectiveness of optimization. (1) EMMR is 1.5, 1.9 and 1.4 times faster than EMVF2
MR

on average on Google, DBpedia and Synthetic, respectively. This verifies the effec-

tiveness of procedure EvalMR (Section 3.3.1) that employs guided expansion and early
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Datasets
Candidate Matches

Confirmed Matches
EMOpt

VC EMOpt
MR

Google 24500 11760 1620

DBpedia 22615 15380 1357

Synthetic 20000 11000 1000

Table 3.2: Candidate matches vs. confirmed matches

termination for subgraph isomorphism checking.

(2) Compared with EMMR, EMOpt
MR is at least 3.2, 2.9 and 3 times faster on Google,

DBpedia and Synthetic, respectively. These verify the effectiveness of our optimiza-

tion strategies: on average, (a) L is reduced 52%, 38% and 45%, (b) Gd is 2.5, 1.7

and 2.1 times smaller; and (c) it reduces 23%, 15% and 20% of redundant subgraph

isomorphism checking in each MapReduce round by leveraging dependency and in-

cremental checking, on the three datasets, respectively.

(3) Compared with EMVC, EMOpt
VC is 1.5 times faster on average when k = 4 on Google;

similarly for DBpedia and Synthetic. These verify the effectiveness of bounded mes-

sages and prioritized message propagation (Section 3.4.2).

Table 3.2 shows the numbers of candidate and confirmed matches checked by

EMOpt
VC and EMOpt

MR in the three datasets.

Exp-2: Varying |G|. Fixing p = 4, c = 2 and d = 2, we varied |G| with scale factors

from 0.2 to 1 for Google, DBpedia and Synthetic. As shown in Figures 3.10(d), 3.10(e)

and 3.10(f), (1) all the algorithms take longer on larger |G|, as expected; (2) EMOpt
VC

performs the best among all of them, and EMOpt
MR outperforms the other MapReduce

algorithms; these are consistent with the results of Exp-1; (3) for product graphs Gp

used by EMVC and EMOpt
VC , |Gp| = 2.7 ∗ |G| on average, which is much smaller than

|G|2; and (4) EMOpt
MR and EMOpt

VC are reasonably efficient: when G = (40M,200M) for

Synthetic, they take 68 and 3.6 seconds respectively, with 4 processors; the results are

similar on Google and DBpedia.

Exp-3: Varying Σ. Finally, we evaluated the impact of Σ, by varying the longest chain

c and maximum radius d in Σ.

Varying c. Fixing p = 4 and d = 2, we varied c from 1 to 5. As shown in
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Figure 3.11: Efficiency of entity matching

Figures 3.11(a), 3.11(c) and 3.11(e) for Google, DBpedia and Synthetic (|G| =
(100M,500M)), respectively, (1) all the algorithms take longer on larger c, (2) the

number of MapReduce rounds increases from 2 to 9, for all MapReduce algorithms;

and (3) EMVC and EMOpt
VC are less sensitive to c; this is because by asynchronous mes-

sage passing, these algorithms do not separate computation into “rounds” and avoid

the “blocking” of stragglers in each MapReduce round.

Varying d. Fixing p = 4 and c = 2, we varied d from 1 to 5. As reported

in Figures 3.11(b), 3.11(d) and 3.11(f) for Google, DBpedia and Synthetic
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(|G| = (100M,500M)), respectively, (1) d is a major factor for the costs: all the

algorithms take longer on larger d; and (2) the pairing strategy is effective as the

d-neighbors of EMOpt
MR are 60%, 42%, 53% smaller than those of EMMR, and it makes

EMOpt
MR 4.8, 3.7 and 4.2 times faster than EMMR on average, when d = 3, on the three

graphs, respectively. We find that keys often have a small radius in real life. This is

analogous to real-life SPARQL queries: 98% of them have radius 1, and 1.8% have

radius 2 [GFMPdlF11].

Summary. We find the following. (1) Our algorithms scale well with the increase

of processors: EMMR, EMVC, EMOpt
MR and EMOpt

VC are 4.8,4.8,4.7 and 4.9 times faster

on average when p increases from 4 to 20. (2) Our algorithms perform well on large

graphs and complex Σ: on graphs with G = (100M,500M), Σ with 500 keys, c = 2,

d = 2, EMOpt
MR and EMOpt

VC take 27 and 1.5 seconds on average with 20 processors,

respectively. (3) Our optimization techniques are effective: EMOpt
MR and EMOpt

VC are 3

and 1.5 times faster than EMMR and EMVC on average, and EMOpt
MR is 4.8 times faster

than EMVF2
MR . (4) EMVC and EMOpt

VC perform better than EMMR and EMOpt
MR by reducing

unnecessary costs inherent to MapReduce.





Chapter 4

Catching Numeric Inconsistencies in

Graphs

Numeric inconsistencies are common in real-life knowledge bases and social networks.

To catch such errors, in this chapter, we propose to extend graph functional dependen-

cies with linear arithmetic expressions and comparison predicates, referred to as NGDs.

Example 4.1: Consider the following inconsistencies taken from real-life knowledge

bases and social graphs.

(1) Yago. It is recorded that an institute BBC Trust was created in 2007 but destroyed

in 1946, as shown in graph G1 of Fig. 4.1. To detect this, we need to check whether

wasDestroyedOnDate - wasCreatedOndate ≥ c for a constant c. However, neither

arithmetic operator − nor comparison predicate ≥ is supported by existing proposals

for graph dependencies.

(2) Yago. A village Bhonpur in India is claimed to have 600 females and 722 males,

but its total population is 1572 (see G2 of Fig. 4.1). To catch this, we need an arithmetic

equation femalePopulation + malePopulation = populationTotal.

(3) DBpedia. There are two cities, Corona and Downey, in California. Based on

the 2014 population census, it is known that Corona has a larger population than

Downey. However, Downey is ranked ahead of Corona in population (11th vs. 33rd;

see G3 of Fig. 4.1). The inconsistency should be checked by using a condition that

x.population < y.population implies x.populationRank > y.populationRank, where x

and y denote places.

(4) Twitter. Suppose that two accounts refer to the same company. If the two substan-

97
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Figure 4.1: Numeric inconsistencies in real-life graphs

tially differ in the numbers of their followers and followings, then the one with less

followers and followings is likely to be a fake account [Mur]. To specify this rule,

we need a condition a ∗ (x.follower− y.follower)+ b ∗ (x.following− y.following) > c,

for accounts x and y, and constants a,b and c. The condition is specified by both

arithmetic expressions and comparison predicate. It helps us find, e.g., fake account

NatWest Help in G4. 2

The example raises several questions. How should we extend graph dependencies

to catch numeric errors? Does the extension make it harder to reason about the depen-

dencies? Can we strike a balance between the expressive power and complexity? Can

we uniformly catch inconsistencies in real-life graphs, numeric or not?

We contend that NGDs and the algorithms developed in this chapter yield a

promising tool for catching semantic inconsistencies in graphs, numeric or not.

4.1 Preliminaries

We first review basic notations that are needed for defining NGDs. Assume an alphabet

Γ of (node and edge) labels.

Graphs. We consider directed graphs G = (V,E,L,FA), where (1) V is a finite set of
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nodes; (2) E ⊆V ×V is a set of edges, in which (v,v′) denotes an edge from node v to

v′; (3) each node v in V (resp. edge e in E) carries label L(v) (resp. L(e)) in Γ, and (4)

for each node v, FA(v) is a tuple (A1 = a1, . . . ,An = an) such that Ai 6= A j if i 6= j, where

ai is a constant, and Ai is an attribute of v, written as v.Ai = ai, carrying the content of

v such as properties, keywords and blogs as found in property graphs.

We will use two notions of subgraphs. A graph G′ = (V ′,E ′,L′,F ′A) is a subgraph

of G = (V,E,L,FA), denoted by G′ ⊆ G, if V ′ ⊆ V , E ′ ⊆ E, and for each node v ∈ V ′,

L′(v) = L(v) and F ′A(v) = FA(v); similarly for each edge e ∈ E ′, L′(e) = L(e).

A subgraph G′ is induced by a set V ′ of nodes if V ′ ⊆ V and E ′ consists of all the

edges in E whose endpoints are both in V ′.

Graph patterns. A graph pattern is a directed graph Q[x̄] = (VQ, EQ, LQ, µ), where (1)

VQ (resp. EQ) is a set of pattern nodes (resp. edges), (2) LQ is a function that assigns a

label LQ(u) (resp. LQ(e)) in Γ to each pattern node u ∈VQ (resp. edge e ∈ EQ), (3) x̄ is

a list of distinct variables; and (4) µ is a bijective mapping from x̄ to VQ, i.e., it assigns

a distinct variable to each node v in VQ.

For x ∈ x̄, we use µ(x) and x interchangeably when it is clear in the context. We

allow wildcard ‘ ’ as a special label in Q[x̄].

Example 4.2: Four graph patterns are shown in Fig. 4.2. Here Q1 depicts an
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entity x connected to date y and z with edges labeled wasCreatedOndate and

wasDestroyedOndate, respectively. Node x is labeled ‘ ’, denoting arbitrary entities

regardless of their labels. In G1 of Fig.4.1, x is mapped to BBC Trust. Similarly,

Q2–Q4 can be interpreted by referencing their counterparts in Fig. 4.1. 2

Pattern matching. We adopt the homomorphism semantics of matching follow-

ing [FL17, ACP10, CP12]. A match of pattern Q[x̄] in graph G is a mapping h from Q

to G such that (a) for each node u ∈VQ, LQ(u) = L(h(u)); and (b) for each e = (u,u′)

in Q, e′ = (h(u),h(u′)) is an edge in G and LQ(e) = L(e′). Here LQ(u) = L(h(u)) if

LQ(u) is ‘ ’, i.e., wildcard matches any label to indicate generic entities.

We denote the match as a vector h(x̄), consisting of h(x) for all x ∈ x̄, in the same

order as x̄. Intuitively, x̄ is a list of entities to be identified by Q, and h(x̄) is such an

instantiation in G.

4.2 Numeric Graph Dependencies

We extend the GFDs of [FWX16, FL17] to incorporate arithmetic expressions and

built-in predicates. We start with basic notations.

Literals. Consider a graph pattern Q[x̄]. A term of Q[x̄] is either an integer c or an

integer “variable” x.A, where x ∈ x̄ and A is an attribute (note that attributes are not

specified in Q).

A linear arithmetic expression e of Q[x̄] is defined as

e ::= t | |e| | e+ e | e− e | c× e | e÷ c

where t is a term, c is an integer, and |e| is the absolute value of e. We consider

linear expression e, i.e., its degree is at most 1, where the degree of e is the sum of the

exponents of its variables (e.g., x.A).

For instance, all the arithmetic expressions given in Example 4.1 are linear. As will

be seen in Section 4.3, we adopt linear e to strike a balance between the expressive

power and complexity.

A literal l of Q[x̄] is of the form e1⊗ e2, where e1 and e2 are linear arithmetic

expressions of Q[x̄], and ⊗ is one of the built-in comparison operators =, 6=,<,≤,>
and ≥.

NGDs. A numeric graph dependency, denoted by NGD, is of the form Q[x̄](X → Y ),

where
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◦ Q[x̄] is a graph pattern, called the pattern of ϕ; and

◦ X and Y are (possibly empty) sets of of literals of Q[x̄].

Intuitively, NGD ϕ is a combination of (a) a topological constraint Q, to identify

entities in a graph, and (b) an attribute dependency X → Y , defined with linear arith-

metic expressions connected with built-in predicates, to be enforced on the entities

identified by Q.

NGDs extend GFDs of [FWX16, FL17] by supporting

(a) linear arithmetic expressions with +,−,×,÷ and | · |, and

(b) comparisons with built-in predicates =, 6=,<,≤,>,≥.

In other words, GFDs of [FWX16, FL17] are a special case of NGDs when literals are

restricted to terms connected with equality ‘=’ only, i.e., literals of the form x.A = c or

x.A = x.B.

Example 4.3: To catch those errors spotted in Example 4.1, we define the following

NGDs, in terms of the patterns depicted in Fig. 4.2.

(1) Yago. NGD ϕ1 = Q1[x,y,z]( /0→ z.val− y.val ≥ c). Here X is empty set /0 and Y

includes a single literal. From Q1 of Fig. 4.2, we can see that x,y and z denote an entity,

the date when it was created and the date when it was destroyed, respectively; val is an

attribute for the integer values of y and z in days (not shown in Q1); and c is a constant

integer. It states that an entity cannot be destroyed within c days of its creation. It

catches the error in G1 of Fig. 4.1.

(2) Yago. NGD ϕ2 = Q2[w,x,y,z]( /0→ y.val+ z.val = w.val). The NGD says that in any

area x, its total population w.val should equal the sum of its female population y.val

and its male population z.val. It catches the inconsistency in graph G2.

(3) DBPedia. NGD ϕ3 = Q3[x̄](m1.val < m2.val→ n1.val > n2.val), where x̄ includes

x and y in the same area z. It states that if the population m1.val of x is less than the

population m2.val of y in the same census w, then the populationRank n1.val of x is

behind the populationRank n2.val of y. It captures the inconsistency in G3.

(4) Twitter. NGD ϕ4 = Q4[x̄]({s1.val = 1,a∗ (m1.val−m2.val)+b∗ (n1.val−n2.val)>

c}→ s2.val = 0). Here x̄ includes variables x and y referring to two accounts about the

same company w, where x (resp. y) has n1.val (resp. n2.val) followers and is following

m1.val (resp. m2.val) people; and x (resp. y) has status s1.val (resp. s2.val) indicating

whether account x (resp. y) is real. Integers a and b specify the weights of following
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and followers, respectively; and c is the threshold for their difference (see Example 4.1).

This NGD states that if the gap between the followers and followings of a real account

x and account y exceeds c, then the chances are that y is fake. It catches NatWest Help

in G4 as a fake account. 2

As shown in [FL17], GFDs can express (a) conditional functional dependencies

(CFDs [FGJK08]) and (b) equality generating dependencies (EGDs) [AHV95] when

relational tuples are represented as vertices in a graph. Since NGDs subsume GFDs,

NGDs can also express CFD and EGDs. In particular, NGDs support constant bindings

of CFDs [FGJK08], which have proven useful in detecting errors in relations [FG12].

Hence, NGDs can catch non-numeric inconsistencies that GFDs and CFDs can detect,

in addition to numeric errors.

Semantics. Consider a match h(x̄) of Q in a graph G.

We say that match h(x̄) satisfies a literal l = e1⊗ e2 of Q[x̄] if (a) for each term

x.A in l, node v = h(x) carries attribute A, and (b) h(e1)⊗ h(e2), where h(ei) denotes

the arithmetic expression obtained from ei by substituting h(x) for each x in ei for i ∈
[1,2]; here h(e1)⊗h(e2) is interpreted following the standard semantics of arithmetic

operations and build-in predicates.

For instance, for e1 > e2, where e1 is x.A+ x.B and e2 is 3, h(x) satisfies e1 > e2

if (a) node v = h(x) carries attributes A and B, and (b) the value of v.A+ v.B is greater

than 3.

For a set Z of literals, we write h(x̄) |= Z if h(x̄) satisfies all literals in Z, i.e., their

conjunction. We write h(x̄) |= X → Y if h(x̄) |= X implies h(x̄) |= Y , i.e., if h(x̄) |= X ,

then h(x̄) |= Y .

A graph G satisfies NGD ϕ = Q[x̄](X → Y ), denoted by G |= ϕ, if for all matches

h(x̄) of Q in G, h(x̄) |= X → Y . Graph G satisfies a set Σ of NGDs, denoted by G |= Σ,

if for all NGDs ϕ ∈ Σ, G |= ϕ.

Intuitively, to check whether G |= ϕ, we need to examine all matches h(x̄) of Q in

G. We check whether h(x̄) |=Y if h(x̄) is a match of Q and it satisfies the precondition

X .

Example 4.4: Consider G1 of Fig. 4.1 and NGD ϕ1 of Example 4.3. Then G1 6|= ϕ1,

since there exists a match h(x,y,z): x 7→ BBC Trust, y 7→ 2007-#-# and z 7→ 1946-08-

28, such that h(y).val > h(z).val, i.e., h(x,y,z) 6|= Y . That is, h(x,y,z) denotes entities

that make a violation of ϕ1 in G1. Similarly, G2 6|= ϕ2, G3 6|= ϕ3 and G4 6|= ϕ4. 2
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symbols notations

G graph (V,E,L,FA)

Q[x̄] graph pattern (VQ, EQ, LQ, µ)

ϕ,Σ NGD ϕ = Q[x̄](X → Y ), Σ is a set of NGDs

h(x̄) |= X → Y a match h(x̄) of Q satisfies X → Y

G |= Σ graph G satisfies a set Σ of NGDs

Σ |= ϕ Σ implies another NGD ϕ

Table 4.1: Notations in Chapter 4

The notations adopted in this chapter are summarized in Table 4.1.

4.3 Fundamental Problems for NGDs

We next study two fundamental problems associated with NGDs. The main conclusion

of this section is that the presence of either linear arithmetic expressions or built-in

predicates necessarily makes these problems harder unless P = NP. Nonetheless, NGDs

pay a minimum price for supporting both arithmetic and comparison, striking a balance

between the complexity and expressivity.

Problems. We first state the two problems.

(1) Satisfiability. We consider two notions of satisfiability.

A set Σ of NGDs is satisfiable if there exists a graph G such that (a) G |= Σ, and

(b) there exists an NGD Q[x̄](X → Y ) in Σ such that Q has a match in G. Intuitively,

condition (b) is to ensure that the NGDs can be applied to nonempty graphs.

We say that Σ is strongly satisfiable if there exists a graph G such that (a) G |=
Σ, and (b) for each NGD Q[x̄](X → Y ) in Σ, there exists a match hQ(x̄) of Q in G.

Intuitively, condition (b) requires that all graph patterns in Σ find a model in G, to

ensure that the NGDs in Σ do not conflict with each other.

The satisfiability problem for NGDs is to decide, given a set Σ of NGDs, whether

Σ is satisfiable. The strong satisfiability problem is to decide whether Σ is strongly

satisfiable.

There exist NGDs that are satisfiable when they are taken separately; however,

when put together, they are not, i.e., there exist no nonempty graph G that satisfies all



104 Chapter 4. Catching Numeric Inconsistencies in Graphs

of them.

Example 4.5: Consider a set Σ consisting of two NGDs: ϕ5 = Q[x]( /0 → x.A =

6∧ x.B = 6) and ϕ6 = Q[x]( /0→ x.A+ x.B = 11), where Q has a single node x la-

beled ‘ ’. One can verify that there exist graphs that satisfy ϕ5 and ϕ6 when taken

separately. However, they are not satisfiable when put together as Σ. Indeed, the val-

ues of attributes A and B on each node must be 6 as required by ϕ5, while their sum is

required to be 11 by ϕ6, which is impossible.

As another example, consider NGDs ϕ7 = Q[x](x.A ≤ 3 → x.B > 6), ϕ8 =

Q[x](x.A > 3→ x.B > 6), and ϕ9 = Q[x]( /0→ x.B < 6∧ x.A 6= 0). Then there ex-

ists no graph that satisfies all these three NGDs simultaneously. For if such a graph

exists, then each node has attribute B with value less than 6 by ϕ9, while by ϕ7 and ϕ8,

it must take a B-attribute of value larger than 6. 2

These show that the presence of either linear arithmetic expressions or built-in

comparison predicates beyond equality makes the satisfiability analysis more intrigu-

ing than that of GFDs [FWX16, FL17].

(2) Implication. A set Σ of NGDs implies another NGD ϕ, denoted by Σ |= ϕ, if for all

graphs G, if G |= Σ, then G |= ϕ. That is, the NGD ϕ is a logical consequence of the

set Σ of NGDs.

The implication problem for NGDs is to determine, given a set Σ of NGDs and

another NGD ϕ, whether Σ |= ϕ.

As remarked in Section 1.2, the practical need for studying these problems is evi-

dent, besides theoretical interest, for determining whether data quality rules discovered

from possibly dirty data are sensible, and for optimizing data quality rules, among other

things.

Complexity. We next settle the complexity of these problems. The proofs of the

results below are quite involved.

Recall that the satisfiability problem for relational functional dependencies (FDs)

is trivial, i.e., for any set Σ of FDs over a relation schema R, there always exists a

nonempty database instance of R that satisfies Σ [FG12]. Moreover, the implication

problem for FDs is in linear-time (cf. [AHV95]). It is known that the satisfiability

and implication problems for GFDs are coNP-complete and NP-complete [FWX16],

respectively. These are comparable to their counterparts for relational CFDs, which are

NP-complete and coNP-complete, respectively [FGJK08]. In contrast, NGDs make our
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lives harder.

Theorem 4.1: For NGDs, (a) the satisfiability problem and strong satisfiability prob-

lems are both Σ
p
2-complete, and (b) the implication problem is Π

p
2-complete. 2

Here Σ
p
2 is the class of decision problems that are solvable in NP by calling an

NP oracle, i.e., Σ
p
2 = NPNP. It is considered more intriguing than NP unless P =

NP. Similarly, Π
p
2 = coNPNP, which is also above NP in the polynomial hierarchy

(see [Pap94] for details).

Proof:We show that the satisfiability, strong satisfiability and implication problems are

Σ
p
2-complete, Σ

p
2-complete and Π

p
2-complete for NGDs, respectively, one by one.

The satisfiability problem for NGDs. The proof is involved. We first show that the

satisfiability problem for NGDs has a small model property, based on which we then

give an Σ
p
2 algorithm to check whether a set Σ of NGDs is satisfiable. We prove that

the problem is Σ
p
2-hard at last.

The small model property. We show that if a set Σ of NGDs is satisfiable, then Σ has

a model GΣ of size at most 3(|Σ|+ 1)5, i.e., a graph GΣ such that GΣ |= Σ, |GΣ| ≤
3(|Σ|+1)5 and Q has a match in GΣ for some ϕ = Q[x̄](X → Y ) in Σ.

By the definition of satisfiability, for any satisfiable set Σ, there exists a graph

G = (V,E,L,FA) such that G |= Σ and Q has a match hϕ in G for some NGD ϕ =

Q[x̄](X → Y ) in Σ. Based on match hϕ, we construct graph GΣ in two steps. (a) We

first deduce a subgraph Gϕ of G such that Gϕ has at most |Σ| nodes, by using the

topological structure derived from hϕ. (b) We then revise the attribute values in Gϕ to

obtain the model GΣ of Σ such that |GΣ| ≤ 3(|Σ|+1)5, in which each attribute value is

of bounded length.

(a) We deduce Gϕ as the subgraph of G “induced” by match hϕ, which includes those

nodes and edges that are mapped from Q. That is, Gϕ = (Vϕ,Eϕ,Lϕ,F
ϕ

A ), where

• Vϕ = {hϕ(x) | x ∈ x̄}, where x̄ refers to the list of distinct variables in NGD

ϕ = Q[x̄](X → Y );

• Eϕ = {(hϕ(x1),hϕ(x2)) | (µ(x1),µ(x2)) ∈ EQ}, where EQ is the set of edges in

pattern Q[x̄];

• Lϕ is such defined that Lϕ(v) = L(v) for v∈Vϕ, and Lϕ(e) = L(e) for e∈ Eϕ; and

• we define Fϕ

A by taking attributes that only appear in Σ; more specifically, for
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each NGD ϕ′ = Q′[x̄′](X ′→Y ′) in Σ, match hϕ′ of Q′ in Gϕ, and integer variable

x′.A that appears in the literals of X ′, Fϕ

A (v′).A = FA(v′).A, where v′ = hϕ′(x′);

moreover, if hϕ′(x̄′) |=X ′, then Fϕ

A (v′).A=FA(v′).A for each integer variable x′.A

that appears in Y ′, where v′ = hϕ′(x′).

This is well-defined since G |= Σ. From this we have that Gϕ |= Σ, |Vϕ| ≤ |Σ|, and each

node in Gϕ has at most |Σ| attributes. Note that the labels and attribute values in Gϕ

may be of size exponential in |Σ| as they are copied from G.

(b) We revise Gϕ to get GΣ. We revise the labels and values of attributes in Gϕ to

eliminate those unboundedly large ones only. We first replace all labels in Gϕ that are

not in Σ with a single label lΣ of size at most |Σ| that does not occur in Σ. Indeed, since

we only check whether two labels are equal, we can replace all the labels l1, . . . , lm that

do not appear in Σ with label lΣ. Since l1, . . . , lm can only match the wildcard ‘ ’ , we

can verify that for any pattern Q in Σ, h is a match of Q in Gϕ if and only if h is a match

of Q in GΣ. That is, all the matches of pattens from Σ in Gϕ remain unchanged after

the label replacement by the definition of graph pattern matching. Hence the graph still

satisfies Σ.

It remains to revise the values of attributes. The main challenge is to ensure that

GΣ |= Σ after the values are changed. We “normalize” the attributes by solving an

integer linear programming problem LΣ : Dȳ≤ b̄ constructed from graph Gϕ, where D

is an integral m× n coefficient matrix and b̄ an integral m-component vector. Denote

by A1, . . . , An the attributes that appear in Gϕ. We show that the size of graph GΣ

derived from Gϕ by replacing the value of each Ai with a corresponding ci for i ∈ [1,n]

is at most 3(|Σ|+ 1)5 and GΣ |= Σ, where (c1, . . . , cn) is a feasible solution to LΣ of

length polynomial in |Σ|. The linear programming instance LΣ is constructed in three

steps: (i) identify the set S of instantiated literals “enforced” on Gϕ by Σ; (ii) eliminate

the absolute value operator | · | in S; (iii) transform the instantiated literals in S into

inequality constraints of the form ei ≤ bi (see below).

Firstly, a set S of instantiated literals enforced by Σ on Gϕ is identified, which in-

cludes all instantiated literals that are needed to verify whether Gϕ |= Σ. More specif-

ically, for each NGD ϕ′ = Q′[x̄′](X ′→ Y ′) in Σ, match hϕ′ of Q′ in Gϕ, and literal l in

X ′, we add hϕ′(l) to S, where hϕ′(l) refers to the instantiated literal of l by substituting

hϕ′(x) for every variable x in l. The instantiated literal hϕ′(l) is also included in S for

each l in Y ′ when hϕ(x̄′) |= X .

Secondly, to comply with linear programming, we remove absolute value operator
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| · | from the instantiated literals in S. For each expression |e| that occurs in S, if e is

evaluated to be non-negative, then we replace |e| by e, and add a literal −e ≤ 0 to S;

otherwise, |e| is substituted by −e, and a literal e+1 ≤ 0 is added to S. Note that the

value of expression e can be directly evaluated after identifying S.

Finally, we transform each instantiated literal in S to the required form ei ≤ bi of

inequality constraints. To this end, we aim to eliminate built-in operators =, 6=,<,>,≥
which are not allowed, while preserving the satisfiability of the comparison conditions

enforced by instantiated literals on Gϕ. That is, the corresponding inequality constraint

of each instantiated literal h(l) in S is decided by whether Gϕ |= h(l). For instance,

consider an instantiated literal h(l) = (v.A ≤ 3). Then it is transformed to −v.A+1 ≤
−3 if Gϕ 6|= h(l), i.e., v.A > 3 in Gϕ, and remains unchanged otherwise. Note that Gϕ

satisfies all inequality constraints after the transformation, while this is consistent with

the satisfiability of the original instantiated literals on it.

To simply the discussion, depending on the satisfiability of each instantiated literal

h(l) = e1⊗ e2 on Gϕ, i.e., whether Gϕ |= h(l), we first transform h(l) into the form of

e′1 ≤ e′2, where e′2 is not enforced to be an integer, as follows.

h(l) Gϕ |= h(l) Gϕ 6|= h(l)

e1 = e2 e1 ≤ e2 and e2 ≤ e1
e1 +1≤ e2 if e1 < e2,

otherwise e2 +1≤ e1

e1 6= e2
e1 +1≤ e2 if e1 < e2,

otherwise e2 +1≤ e1
e1 ≤ e2 and e2 ≤ e1

e1 < e2 e1 +1≤ e2 e2 ≤ e1

e1 ≤ e2 e1 ≤ e2 e2 +1≤ e1

e1 > e2 e2 +1≤ e1 e1 ≤ e2

e1 ≥ e2 e2 ≤ e1 e1 +1≤ e2

Now all instantiated literals in S are in the form of e1≤ e2. We then transform them

into the required form of ei ≤ bi by using standard arithmetic transformations to move

constant to the right-hand-side and remove division operator ÷. This completes the

construction of S.

The set of instantiated literals in S can be regarded as a linear integer programming

problem instance LΣ : Dȳ≤ b̄ after the transformation above. Here variables y1, . . . ,yn

in ȳ correspond to the attributes in Gϕ, i.e., Ai, for each i ∈ [1,n]. One can verify

that the satisfiability of the comparison conditions enforced by the original literals in
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S before transformation are preserved in LΣ on Gϕ. We construct graph GΣ from Gϕ

by using some feasible solution (c1, . . . ,cn) to LΣ of bounded length polynomial in

|Σ|. More specifically, the value of each Ai in Gϕ is normalized with the answer to the

corresponding variable expression of Ai in LΣ, i.e., the instantiation of Ai for i ∈ [1,n]

with (c1, . . . ,cn).

We now prove the existence of such solutions to LΣ that are of size polynomial in

|Σ|. It is known that if linear programming LΣ : Dȳ ≤ b̄ has an n-component integral

solution, then it has one solution (c1, . . . ,cn) with ci ≤ (n+ 1)M for each i ∈ [1,n],

where M refers to the maximal absolute value of the determinants of the square sub-

matrices of [D, b̄], and [D, b̄] denotes the augmentation matrix of Dȳ ≤ b̄ [CGST86].

One can verify that M ≤ (2|Σ|(|Σ|2 + 1))|Σ|
2+1 since the number of variables in LΣ

is at most |Σ|2, i.e., n ≤ |Σ|2, and each value in [D, b̄] is no larger than 2|Σ|. More-

over, the attribute values in Gϕ constitute a feasible solution to LΣ by the definition

of LΣ. Hence such solution (c1, . . . ,cn) of bounded size always exists, in which each

||ci|| ≤ log2(2
|Σ|3+|Σ|(|Σ|2 + 1)|Σ|

2+2) ≤ 3(|Σ|+ 1)3 for i ∈ [1,n], and ||ci|| refers to the

size of integer ci.

We next show that GΣ is a model of bounded size.

We prove that GΣ is a model of Σ by contradiction. Suppose that GΣ 6|= Σ. Then

there exist some NGD ϕ′ = Q′[x̄′](X ′ → Y ′) and match hϕ′ of Q′ in GΣ such that

hϕ′ |= X ′ and hϕ′ 6|= Y ′. By the definition of GΣ, hϕ′ is also a match of Q′ in Gϕ.

Suppose that hϕ′ |= X ′ in Gϕ. Then hϕ′ |= Y ′ and the instantiated hϕ′(l) also exists in

set S for any literal l in Y ′. Since (c1, . . . ,cn) is a feasible solution to LΣ and the satisfi-

ability of comparison conditions enforced by original literals in S are preserved in LΣ,

it also satisfies all the corresponding instantiated literals in Y ′. Hence hϕ′ |= Y ′ in GΣ,

a contradiction. One might think that it is possible hϕ′ 6|= X ′ in Gϕ, since GΣ and Gϕ

carry different attribute values. In this case, there exist some literal l = e1⊗ e2 in X ′

such that hϕ′ 6|= l in Gϕ. We assume w.l.o.g. that l is in the form of e1 < e2; the other

cases can be proved similarly. By the definition of LΣ, there exists a corresponding ex-

pression e2 ≤ e1 in LΣ. As (c1, . . . ,cn) is a feasible solution to LΣ, e2 ≤ e1 is satisfied.

Then hϕ′ |= e2 ≤ e1 in GΣ follows, which contradicts to assumption that hϕ′ |= X ′ in

GΣ.

Finally, we show that |GΣ| ≤ 3(|Σ|+1)5. To see this, observe the following. (i) GΣ

has at most |Σ| many nodes and edges, since they are inherited from their counterparts

in Gϕ. (ii) There are at most |Σ| many labels whose size is bounded by |Σ|2 in GΣ, as
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unboundedly large ones are replaced by lΣ of length bounded by |Σ|. (iii) The total size

of attribute values in GΣ is at most 3|Σ|2(|Σ|+1)3. Putting these together, the size |GΣ|
of GΣ is at most 3(|Σ|+1)5.

Upper bound. Based on the small model property, we give an Σ
p
2 algorithm to check

whether a given set Σ of NGDs is satisfiable. The algorithm works as follows.

(1) Guess a graph G = (V,E,L,FA) such that |G| ≤ 3(|Σ|+1)5, guess an NGD ϕ =

Q[x̄](X → Y ) in Σ, and guess a mapping hϕ from VQ to V , where VQ is the set of

nodes in Q.

(2) Check whether hϕ is a match of Q in G; if so, continue; otherwise, reject the

current guess.

(3) Check whether G |= Σ; if so, return true; otherwise, reject current guess.

The correctness of the algorithm follows from the small model property. For its

complexity, step (2) is in PTIME, step (3) is in coNP (see the proof of Corollary 4.4 to

be given shortly). Therefore, the algorithm is in Σ
p
2 and so is the satisfiability problem

for NGDs.

Lower bound. We show that the satisfiability problem for NGDs is Σ
p
2-hard by re-

duction from the generalized subset sum problem, denoted by GSSP, which is Σ
p
2-

complete [SU02]. GSSP is to decide, given an m-component vector ū1, an n-

component vector ū2 of integers, and an integer w, whether ∃v̄1∀v̄2(ūT
1 · v̄1 + ūT

2 · v̄2 6=
w). Here v̄1 (resp. v̄2) denotes an m-component (resp. n-component) vector of Boolean

values, i.e., 0 or 1, ūT
1 (resp. ūT

2 ) is the transpose of ū1 (resp. ū2), and ūT
1 · v̄1 (resp.

ūT
2 · v̄2) refers to the inner product of ū1 and v̄1 (resp. ū2 and v̄2).

Given ū1 = (u1, . . . ,um), ū2 = (u′1, . . . ,u
′
n) and w, we construct a set Σ of NGDs

such that Σ is satisfiable if and only if ∃v̄1∀v̄2(ūT
1 · v̄1+ ūT

2 · v̄2 6= w) holds. We use three

NGDs that share the same graph pattern to encode GSSP. The first two are to encode

the possible vectors v̄1 and v̄2, respectively, while the third one is to encode the given

vectors ū1 and ū2, and to check whether ∃v̄1∀v̄2(ūT
1 · v̄1+ ūT

2 · v̄2 6= w) holds. To encode

the existential semantic of vector v̄1, we use an NGD to ensure that there are m nodes

carrying A-attributes with Boolean values. The encoding of the universal semantic of

vector v̄2 is accomplished by using wildcards in the graph pattern to arbitrarily match

two nodes with value 0 and 1, respectively, of another attribute B.

Based on these considerations, we define the common graph pattern and the set Σ

of three NGDs as follows.

(1) The pattern Q[x1, . . . ,xm,y0,y1,z1, . . . ,zn,z] = (VQ,EQ,LQ,µ) shared by all NGDs in
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Σ is defined as:

• VQ = {vi | i ∈ [1,m]}∪{v′0,v′1,v′2}∪{v′′i | i ∈ [1,n]};
• EQ = /0;

• LQ(vi) = τi for i ∈ [1,m], LQ(v′0) = γ0, LQ(v′1) = γ1, LQ(v′′i ) = ‘ ’ for i ∈ [1,n],

LQ(v′2) = χ; and

• µ(xi) = vi for i∈ [1,m], µ(y0) = v′0, µ(y1) = v′1, µ(zi) = v′′i for i∈ [1,n], µ(z) = v′2.

That is, Q consists of m+n+3 isolated nodes, in which n nodes are labeled wildcard

‘ ’ that can match any label, and the other m+3 nodes carry distinct labels.

(2) The first NGD of Σ encodes the Boolean values of v̄1, and is defined as ϕ1 =

Q[x1, . . . ,xm,y0,y1,z1, . . . ,zn,z]( /0→ (|2× x1.A−1|= 1)∧ . . .∧ (|2× xm.A−1|= 1)).

Intuitively, it assures that there are m nodes having A-attributes with Boolean val-

ues.

(3) The second NGD of Σ is defined as ϕ2 = Q[x1, . . . ,xm,y0,y1,z1, . . . ,zn,z]( /0 →
(y0.B = 0)∧ (y1.B = 1)∧ (z.C = 1)), which assures that two distinct nodes carrying

distinct Boolean values 0 and 1 for their B-attributes, respectively. It also enforces the

value of C-attribute to be 1.

(4) The third NGD ϕ3 encodes vectors ū1 and ū2; it is defined as ϕ3 =

Q[x1, . . . ,xm,y0,y1,z1, . . . ,zn,z]((|2× z1.B−1|= 1)∧ . . .∧ (|2× zn.B−1|= 1)∧ (A′+
B′ = w)→ (z.C = 2)), where A′ = x1.A ·u1 + . . .+ xm.A ·um, and B′ = z1.B ·u′1 + . . .+

zn.B ·u′n.

Intuitively, ϕ3 is also used for checking whether ∃v̄1∀v̄2(ūT
1 · v̄1 + ūT

2 · v̄2 6= w). To see

this, observe that (a) the Boolean values of instantiated x1.A, . . . , xm.A can be assigned

to v̄1 when Σ has a model G, since Q must have a match in G; (b) variables z1, . . . ,zn can

be mapped to nodes labeled γ1 or γ2 in an arbitrary way by the definition of wildcard

‘ ’; moreover, there exist two such nodes having B-attributes with distinct values 0 and

1, respectively, as assured by ϕ2; therefore, the instantiated z1.B, . . . ,zn.B for all the

matches of Q can be regarded as the set of all n-component vectors of Boolean values

that encode the universal semantic of v̄2; (c) the instantiated z.C is enforced to be 1

by ϕ2 and contradicts to z.C = 2 when the condition A′+B′ = w in ϕ3 holds, which

indeed encodes the negation of ∃v̄1∀v̄2(ūT
1 · v̄1 + ūT

2 · v̄2 6= w).

We next prove that Σ is satisfiable if and only if ∃v̄1∀v̄2(ūT
1 · v̄1+ ūT

2 · v̄2 6= w) holds

for given ū1 and ū2.
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(⇒) First assume that Σ is satisfiable. Then there exists a graph G such that G |= Σ,

and Q has a match hQ in G. Based on the match hQ, we define the Boolean vector

v̄1 = (hQ(x1).A, . . . ,hQ(xm).A). This is well-defined since G |= ϕ1, which ensures that

hQ(xi) carries A-attribute of Boolean value for each i ∈ [1,m].

It remains to prove that ∀v̄2(ūT
1 · v̄1 + ūT

2 · v̄2 6= w) for the vector v̄1 defined above.

Suppose by contradiction that there exists a Boolean vector v̄2 = (t ′1, . . . , t
′
n) such that

ūT
1 · v̄1 + ūT

2 · v̄2 = w. We show that there must also exists another match h′Q of Q in G

such that h′Q 6|= Σ, and hence yields a contradiction to G |= Σ above. Here the match h′Q
is constructed from the match hQ and the Boolean vector v̄2 by mapping each variable

zi to the two distinct nodes hQ(y0) and hQ(y1) according to the value of t ′i in v̄2 for

i ∈ [1,n]. More specifically, h′Q is such defined that (a) h′Q(xi) = hQ(xi) for i ∈ [1,m],

(b) h′Q(y0) = hQ(y0), h′Q(y1) = hQ(y1), h′Q(z) = hQ(z), and (c) h′Q(zi) = hQ(y0) if t ′i of

v̄2 is 0, and otherwise h′Q(zi) = hQ(y1). One can verify that h′Q is also a match of Q

in G since variable zi (for i ∈ [1,n]) can be mapped to any node, including hQ(y0) and

hQ(y1), by its associated label of wildcard ‘ ’.

It is easy to see that h′Q(z).C = 1 since G |=ϕ2. Moreover, h′Q(z).C = 2, a contradic-

tion, because (a) h′Q(zi).B(i ∈ [1,n]), i.e., hQ(y0).B or hQ(y1).B, is a Boolean value that

equals t ′i of v̄2, which is guaranteed by ϕ2 and the construction of h′Q, (b) h′Q(A
′+B′) =

w holds, i.e., h′Q(x1).A ·u1+ . . .+h′Q(xm).A ·um+h′Q(z1).B ·u′1+ . . .+h′Q(zn).B ·u′n =w,

by the assumption of v̄2, and (c) G |=ϕ3. Therefore, ∃v̄1∀v̄2(ūT
1 · v̄1+ ūT

2 · v̄2 6=w) holds.

(⇐) Conversely, assume that ∃v̄1∀v̄2(ūT
1 · v̄1+ ūT

2 · v̄2 6= w) holds. Based on such a vec-

tor v̄1 = (s′1, . . . ,s
′
m), we construct a model G of Σ, and hence show that Σ is satisfiable.

We define G = (V,E,L,FA) as follows:

• V = {vM
1 , . . . ,vM

m ,vN
0 ,v

N
1 ,v

T};
• E = /0;

• L(vM
i ) = τi for i ∈ [1,m], L(vN

0 ) = γ0, L(vN
1 ) = γ1, L(vT ) = χ; and

• FA(vM
i ).A = s′i for i ∈ [1,m], FA(vN

0 ).B = 0, FA(vN
1 ).B = 1, and FA(vT ).C = 1.

We next show that G is a model of Σ. Observe the following. (a) By the definition

of G, it is easy to see that Q has a match h in G and h(xi).A = s′i for i ∈ [1,m]. (b) Since

for each node vM
i (i ∈ [1,m]) labeled τi in G, FA(vM

i ).A is a Boolean value, FA(vN
0 ).B =

0, FA(vN
1 ).B = 1, and FA(vT ).C = 1 for the nodes labeled γ0, γ1 and τ, respectively,

we have that G |= ϕ1 and G |= ϕ2. It remains to show that G |= ϕ3. Suppose by

contradiction that G 6|= ϕ3. Then there exists a match hQ of Q in G such that hQ |=
(|2× z1.B−1|= 1)∧ . . .∧ (|2× zn.B−1|= 1)∧ (A′+B′ = w). Based on hQ, we show
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that there exists an n-component Boolean vector v̄2 such that ūT
1 · v̄1+ ūT

2 · v̄2 =w, which

contradicts to the assumption that ∃v̄1∀v̄2(ūT
1 · v̄1+ ūT

2 · v̄2 6=w). More specifically, v̄2 =

(t ′1, . . . , t
′
n) is such defined that t ′i = hQ(zi).B for i∈ [1,n]. Since hQ |= |2×zi.B−1|= 1,

we know that hQ(zi).B is a Boolean value and thus can be assigned to t ′i for i ∈ [1,n].

Moreover, it can be verified that ūT
1 · v̄1 + ūT

2 · v̄2 = w for the v̄2 such defined since

hQ |= (A′+B′ = w), hence a contradiction.

The strong satisfiability problem for NGDs. We show that the strong satisfiability

problem is also Σ
p
2-complete.

Similar to the proof for the satisfiability problem given above, we first show that

the strong satisfiability problem for NGDs has a small model property, based on which

we then give an Σ
p
2 algorithm to check whether a set Σ of NGDs is strongly satisfiable.

After this, we finally prove that the strong satisfiability problem is Σ
p
2-hard.

The small model property. We show that if a set Σ of NGDs is strongly satisfiable, then

Σ has a model GΣ of size no larger than 3(|Σ|+ 1)5. That is, there exists a graph GΣ

such that GΣ |= Σ, |GΣ| ≤ 3(|Σ|+1)5 and every pattern in Σ has a match in GΣ. By the

definition of strong satisfiability, if Σ is strongly satisfiable, then there exists a graph

G= (V,E,L,FA) such that G |= Σ and for each pattern Q in Σ, there exists a match hQ in

G. Based on these matches, we construct the graph GΣ as follows. (a) We first deduce

a subgraph G′ of G such that G′ has at most |Σ| nodes. (b) We then revise the attribute

values and the labels in G′ to obtain the model GΣ of Σ such that |GΣ| ≤ 3(|Σ|+1)5, in

which each attribute value is of bounded length.

(a) We deduce G′ as the subgraph of G “induced” by the matches of patterns in Σ, i.e.,

G′ = (V ′,E ′,L′,F ′A), where

• V ′ = {hQ(x̄) | Q[x̄](X→Y ) ∈ Σ}, where hQ is the match of Q in G; note that this

step is different from its counterpart for the satisfiability problem above;

• E ′ = {(hQ(v1),hQ(v2)) | (v1,v2) ∈ EQ,Q[x̄](X → Y ) ∈ Σ}, where EQ is the set

of edges in pattern Q[x̄], and hQ is the match of the Q in G;

• L′ is such defined that for v ∈ V ′ (resp. e = (v1,v2) ∈ E ′), L′(v) = L(v) (resp.

L′(e) = L(e)); and

• we define F ′A by taking attributes that only appear in Σ; more specifically, for

each NGD ϕ′ = Q′[x̄′](X ′→Y ′) in Σ, match hϕ′ of Q′ in Gϕ, and integer variable

x′.A that appears in the literals of X ′, Fϕ

A (v′).A = FA(v′).A, where v′ = hϕ′(x′);

moreover, if hϕ′(x̄′) |=X ′, then Fϕ

A (v′).A=FA(v′).A for each integer variable x′.A

that appears in Y ′, where v′ = hϕ′(x′).
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This is well-defined since G |= Σ. From this we have that G′ |= Σ, |V ′| ≤ |Σ|, and each

node in G′ has at most |Σ| attributes. Note that the labels and attribute values in G′ may

be of size exponential in |Σ| as they are copied from G.

(b) Similar to the counterpart in the proof for the satisfiability problem above, we can

normalize G′ to get GΣ such that GΣ |= Σ and |GΣ| ≤ 3(|Σ|+1)5.

Upper bound. Based on the small model property, we give an Σ
p
2 algorithm to check

whether a given set Σ of NGDs is strongly satisfiable, which works as follows.

(1) Guess a graph G = (V,E,L,FA) such that |G| ≤ 3(|Σ|+ 1)5, and for each NGD

ϕ = Q[x̄](X → Y ) in Σ, guess a mapping hϕ from VQ to V , where VQ is the set of

nodes in Q.

(2) Check whether hϕ is a match of Q in G for each NGD ϕ = Q[x̄](X → Y ) in Σ; if

so, continue; otherwise, reject the current guess.

(3) Check whether G |= Σ; if so, return true; otherwise, reject current guess.

The correctness of the algorithm is assured by the small model property. For its

complexity, step (2) is in PTIME, step (3) is in coNP (see the proof of Corollary 4.4

to be given shortly). Therefore, the algorithm is in Σ
p
2 and so is the strong satisfiability

problem for NGDs.

Lower bound. We show that the strong satisfiability problem for NGDs is Σ
p
2-hard

also by reduction from GSSP. Given ū1 = (u1, . . . ,um), ū2 = (u′1, . . . ,u
′
n) and w, we

construct a set Σ of NGDs such that Σ is strongly satisfiable if and only if ∃v̄1∀v̄2(ūT
1 ·

v̄1 + ūT
2 · v̄2 6= w) holds. The set Σ of NGDs is the same as its counterpart defined in

the proof of the satisfiability problem. Since all the NGDs in Σ have the same pattern

Q, one can verify that Σ is satisfiable if and only if it is strongly satisfiable. Thus, the

lower bound proof for NGD satisfiability can be directly used to prove the same lower

bound for strong satisfiability.

The implication problem for NGDs. We now study the implication problem. Similar

to the satisfiability problem, we first establish a small model property, and then use it to

prove the upper bound. After these, we show that the implication problem is Π
p
2-hard

for NGDs.

The small model property. We prove the following: given a set Σ of NGDs and an

NGD ϕ = Q[x̄](X → Y ), if Σ 6|= ϕ, then there exists a graph G(Σ,ϕ) such that |G(Σ,ϕ)| ≤
3(|Σ|+ |ϕ|+1)5, G(Σ,ϕ) |= Σ and G(Σ,ϕ) 6|= ϕ.

If Σ 6|= ϕ, then there exists a graph G = (V,E,L,FA) such that G |= Σ, but G 6|= ϕ.
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By G 6|= ϕ, there exists a match h of Q in G such that h(x̄) |= X , but h(x̄) 6|= Y . Based

on h, we build G(Σ,ϕ) as follows. (1) We first deduce a subgraph Gϕ of G from h, such

that Gϕ has at most |ϕ| nodes. (2) We then normalize the labels and attribute values

in Gϕ to deduce G(Σ,ϕ) such that |G(Σ,ϕ)| ≤ 3(|Σ|+ |ϕ|+ 1)5, i.e., G(Σ,ϕ) has bounded

size. Moreover, we show that G(Σ,ϕ) |= Σ and G(Σ,ϕ) 6|= ϕ. The construction of G(Σ,ϕ)

is similar to its counterpart given above for the satisfiability problem.

(1) We define Gϕ as the subgraph of G “induced” by match h. Denote by Q[x̄] =

(VQ,EQ,LQ,µ) the graph pattern of ϕ. The graph Gϕ = (Vϕ,Eϕ,Lϕ,F
ϕ

A ) is defined as

follows:

• Vϕ = {h(v) | v ∈VQ}, i.e., it includes those nodes mapped from Q via h;

• Eϕ = {(h(v),h(v′)) | (v,v′) ∈ EQ}, i.e., it also includes those edges mapped from

Q;

• the function Lϕ is such defined that Lϕ(v)= L(v) for each v∈Vϕ, and L(e)= L(e)

for each e ∈ Eϕ;

• Fϕ

A is defined in the same way as its counterpart for satisfiability by in-

cluding attributes that appears in Σ and ϕ; more specifically, for each NGD

ϕ1 = Q1[x̄1](X1 → Y1) in Σ∪ {ϕ}, and match hQ1 of Q1 in Gϕ (if exists), if

hQ1(x̄1) |= X1, then Fϕ

A (v1).A is defined and takes the value of FA(v1).A for each

x.A that appears in the literals of X1 and Y1, where v1 = hQ1(x); if hQ1(x̄1) 6|= X1,

then only attributes that appear in literals of X1 are defined and take the corre-

sponding values from G.

The graph Gϕ is well-defined since Fϕ

A (·) inherits values from FA(·). Moreover, one

can verify that |Vϕ| ≤ |ϕ|, each node in Gϕ has at most |Σ|+ |ϕ| many attributes, and

Gϕ |= Σ but Gϕ 6|= ϕ by the definition of Gϕ.

(2) We normalize those unboundedly large labels and attribute values in Gϕ to construct

G(Σ,ϕ) along the same lines as its counterpart in the satisfiability proof. Labels not in

Σ are replaced by a single label of size bounded by |Σ|+ |ϕ|, and the value of each

attribute in Gϕ is replaced by a bounded-length solution to its corresponding variable

in the linear programming problem L(Σ,ϕ) constructed from Gϕ. The only difference

is that besides Σ, we also use instantiated literals enforced by ϕ on Gϕ in constructing

L(Σ,ϕ).

We next show that G(Σ,ϕ) witnesses Σ 6|= ϕ, i.e., G(Σ,ϕ) |= Σ but G(Σ,ϕ) 6|= ϕ, of size

at most 3(|Σ|+ |ϕ|+1)5.
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Indeed, G(Σ,ϕ) |= Σ can be verified along the same lines as its counterpart in the

proof for the satisfiability problem. Thus we just prove that G(Σ,ϕ) 6|= ϕ by contradic-

tion. Assume that G(Σ,ϕ) |= ϕ. Then by the construction of G(Σ,ϕ), we have that h |= X

and h |= Y in G(Σ,ϕ) for the match h that was used in constructing Gϕ. Since h |= X

while h 6|= Y in Gϕ, there exists some literal l = e1⊗ e2 in Y such that h 6|= l in Gϕ.

Moreover, the instantiated literal of l is involved in constructing the linear program-

ming L(Σ,ϕ). We assume w.l.o.g. that l is in the form of e1 > e2; the other cases can be

proved similarly. By the definition of L(Σ,ϕ), there exists a corresponding expression

e1 ≤ e2 in L(Σ,ϕ), which is also satisfied by any feasible solution to LΣ,ϕ. It follows that

h 6|= e2 > e1 in G(Σ,ϕ) as the value normalization based on solving L(Σ,ϕ) preserves the

comparison conditions enforced by any original instantiated literal in Gϕ. It contradicts

to the assumption that h |= Y in G(Σ,ϕ).

We now show that |G(Σ,ϕ)| ≤ 3(|Σ|+ |ϕ|+1)5. Observe the following. (i) G(Σ,ϕ) has

at most |ϕ| many nodes and edges, since G(Σ,ϕ) uses the same sets of nodes and edges

of Gϕ. (ii) There are at most |ϕ| many labels in G(Σ,ϕ); their total size is bounded by

|ϕ|(|Σ|+ |ϕ|) as the ones not in Σ are normalized with a unified label of length bounded

by |Σ|+ |ϕ|. (iii) The size of each attribute value in G(Σ,ϕ) is at most 3(|Σ|+ |ϕ|+1)3;

this can be verified along the same lines as that in the proof of satisfiability, leveraging

the property of the bounded-length solution to linear programming. (iv) The total size

of attribute values in G(Σ,ϕ) is bounded by 3|ϕ|(|Σ|+ |ϕ|)(|Σ|+ |ϕ|+ 1)3 since each

node carries at most |Σ|+ |ϕ| attributes. Putting these together, the size |G(Σ,ϕ)| of

G(Σ,ϕ) is at most 3(|Σ|+ |ϕ|+1)5.

Upper bound. Based on the small model property, we develop an Σ
p
2 algorithm that

given a set Σ of NGDs and an NGD ϕ = Q[x̄](X → Y ), checks whether Σ 6|= ϕ, as

follows.

(1) Guess a graph G = (V,E,L,FA) such that |G| ≤ 3(|Σ|+ |ϕ|+1)5, and a mapping

hϕ from VQ to V , where VQ denotes the set of nodes in Q.

(2) Check whether hϕ is a match of Q in G; if so, continue; otherwise, reject current

guess.

(3) Check whether hϕ(x̄) |= X and hϕ(x̄) 6|= Y ; if so, continue; otherwise, reject cur-

rent guess.

(4) Check whether G |= Σ; if so, return true; otherwise, reject current guess.

The correctness of the algorithm is assured by the small model property. For its

complexity, step (2) is in PTIME, by the definition of matches. Step (3) is also in
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PTIME, since |X |+ |Y | ≤ |ϕ|. Step (4) is in coNP (see the proof of Corollary 4.4 for

the validation problem). Thus, the algorithm is in Σ
p
2 , and the implication problem for

NGDs is in Π
p
2 .

Lower bound. We show that the implication problem is Π
p
2-hard by reduction from

the complement of the GSSP (see GSSP in the proof of the satisfiability problem).

Given two integer vectors ū1 = (u1, . . . ,um) and ū2 = (u′1, . . . ,u
′
n), and another integer

w, we construct a set Σ of NGDs and another NGD ϕ such that Σ 6|= ϕ if and only if

∃v̄1∀v̄2(ūT
1 · v̄1 + ūT

2 · v̄2 6= w). That is, we find a graph G “witnessing” Σ 6|= ϕ when the

condition in GSSP does not hold.

We borrow some constructions from the lower bound proof for NGD satisfiabil-

ity. Recall the graph pattern Q[x1, . . . ,xm,y0,y1,z1, . . . ,zn,z] and the third NGD ϕ3

given there. We define Σ = {ϕ3}, which encodes the two given vectors ū1 and

ū2 and checks whether ∀v̄2(ūT
1 · v̄1 + ūT

2 · v̄2 6= w). The other NGD ϕ is defined

as ϕ = Q[x1, . . . ,xm,y0,y1,z1, . . . ,zn,z]((|2× x1.A− 1| = 1)∧ . . .∧ (|2× xm.A− 1| =
1)∧ (y0.B = 0)∧ (y1.B = 1)→ (z.C = 2)), to encode the possible vectors v̄1 and v̄2,

where the pattern Q of ϕ is the same as that of ϕ3.

Observe that ϕ ensures that for any match h of Q in some graph G, if h(xi).A is

a Boolean value for i ∈ [1,m], h(y0).B = 0, and h(y1).B = 1, then h(z).C must be 2.

In addition, we can deduce 2n many matches of Q in G for a given h by changing

h(zi)(i ∈ [1,n]) to h(y0) or h(y1) arbitrarily. Moreover, for each such deduced match

h′, if h′(A′+B′) = w holds, i.e., h′(x1).A ·u1+ . . .+h′(xm).A ·um+h′(z1).B ·u′1+ . . .+

h′(zn).B ·u′n = w, then h′(z).C = 2, i.e., h(z).C = 2, as assured by ϕ3 of Σ.

Based on these observations, we establish the relationship between the implication

problem for the NGDs Σ and ϕ constructed above and the GSSP. We next show that

Σ 6|= ϕ if and only if ∃v̄1∀v̄2(ūT
1 · v̄1 + ūT

2 · v̄2 6= w) holds.

(⇒) First assume that Σ 6|= ϕ. We show that there exists an m-component vector v̄1 =

(s′1, . . . ,s
′
m) such that ∀v̄2(ūT

1 · v̄1 + ūT
2 · v̄2 6= w). By Σ 6|= ϕ, there exists a graph G

such that G |= Σ but G 6|= ϕ. Since G 6|= ϕ, there exists a match h of Q in G such

that h |= (|2×x1.A−1|= 1)∧ . . .∧ (|2×xm.A−1|= 1)∧ (y0.B = 0)∧ (y1.B = 1) and

h 6|= z.C = 2. Based on h, we define the Boolean vector v̄1 such that s′i = h(xi).A for

i ∈ [1,m]. This is well defined as h(xi).A has value 0 or 1.

It remains to show that ∀v̄2(ūT
1 · v̄1 + ūT

2 · v̄2 6= w). Assume by contradiction that

there exists a Boolean vector v̄2 = (t ′1, . . . t
′
n) such that ūT

1 · v̄1 + ūT
2 · v̄2 = w. Then we
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show that h(z).C must be 2, which contradicts to h 6|= z.C = 2 as argued above. To see

this, it suffices to apply ϕ3 of Σ. That is, we construct a match h′ of Q in G such that

h′(z) = h(z) and h′ |= (|2× z1.B−1|= 1)∧ . . .∧ (|2× zn.B−1|= 1)∧ (A′+B′ = w).

For if it holds, then h′(z).C = h(z).C = 2 by G |= Σ. The match h′ is constructed as

follows, (a) h′(xi) = h(xi) for i∈ [1,m]; (b) h′(y0) = h(y0), h′(y1) = h(y1), h′(z) = h(z);

and (c) h′(zi) = h(y0) when t ′i = 0, or h′(zi) = h(y1) when t ′i = 1 for i∈ [1,n]. Since zi’s

are labeled wildcards that match any label, h′ is also a match of Q in G. It is easy to

see that |2×h′(zi).B−1|= 1 for i ∈ [1,n] as h(y0).B = 0 and h(y1).B = 1, and h′(zi).B

takes the value from them. Moreover, one can verify that h′ |= A′+B′ = w by the

construction of h′ and the assumption for v̄1 and v̄2 defined above. This leads to both

h(z).C = 2 and h(z).C 6= 2, a contradiction.

(⇐) Conversely, assume that ∃v̄1∀v̄2(ūT
1 · v̄1 + ūT

2 · v̄2 6= w). Let v̄1 = (s′1, . . . ,s
′
m) be

such a vector. Based on v̄1, we construct a graph G such that G |= Σ but G 6|= ϕ, i.e., G

“witness” Σ 6|=ϕ. Graph G is almost the same as the pattern Q= (VQ,EQ,LQ,µ), except

that it carries attributes. More specifically, G = (V,E,L,FA) is defined as follows:

• V = {v | v∈VQ,LQ(v) 6= ‘ ’}, consisting of those nodes in VQ that are not labeled

wildcard;

• E = EQ, the same set of edges as in Q;

• L(v) = LQ(v) for each v ∈V ; and

• FA is such defined that FA(v).A = s′i if L(v) = τi for i ∈ [1,m], FA(v).B = 0 if

L(v) = γ0, FA(v).B = 1 if L(v) = γ1, and FA(v).C = 1 if L(v) = χ.

One can verify that G 6|= ϕ as Q has a match in G, node labeled τi in G carries

Boolean attribute A, and the only node labeled χ in G is carries B-attribute 1 instead of

2.

It remains to show that G |= Σ. Assume by contradiction that G 6|= Σ. Then there

exists a match h of Q in G such that h |= A′+B′ = w and h |= |2× zi.B−1|= 1 for i ∈
[1,n]. That is, h(A′+B′)= h(x1).A ·u1+ . . .+h(xm).A ·um+h(z1).B ·u′1+ . . .+h(zn).B ·
u′n = w. We now define an n-component Boolean vector v̄2 = (h(z1).B, . . . ,h(zn).B);

this is well-defined since h(zi).B’s are Boolean values. By the definition of graph

G and match h, we have that h(xi).A = s′i for i ∈ [1,m]. Hence one can verify that

h(A′+ B′) = ūT
1 · v̄1 + ūT

2 · v̄2. Thus, ūT
1 · v̄1 + ūT

2 · v̄2 = w, which contradicts to the

assumption that ∀v̄2(ūT
1 · v̄1 + ūT

2 · v̄2 6= w). 2

One might think that the complexity comes from interactions between arithmetic

operations and comparison predicates. This is not the case: the lower bounds still hold
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when either arithmetic expressions or built-in predicates are present, not necessarily

both.

Corollary 4.2: For NGDs, the satisfiability, strong satisfiability and implication prob-

lems remain Σ
p
2-complete, Σ

p
2-complete and Π

p
2-complete, respectively, even in the ab-

sence of either (a) arithmetic operations, or (b) predicates 6=,<,≤,>,≥. 2

Proof:(a) We first show that the satisfiability, strong satisfiability and implication

problems remain Σ
p
2-complete, Σ

p
2-complete and Π

p
2-complete, respectively, for NGDs

without arithmetic operations. For the upper bound, the three algorithms given in the

proof of Theorem 4.1 are still in Σ
p
2 as it is still in PTIME to check whether (i) a given

mapping h is a match of Q in G; and (ii) h |= X and h 6|= Y .

The lower bounds for the strong satisfiability and implication problems follow im-

mediately from their counterparts for graph denial constraints (GDCs) without id lit-

erals [FL17], which are essentially the same as NGDs in the absence of arithmetic

operations. Indeed, the strong satisfiability and implication problems for such GDCs

are already shown Σ
p
2-complete and Π

p
2-complete, respectively [FL17].

It remains to show the lower bound for the satisfiability problem for NGDs without

arithmetic operations. We prove the Σ
p
2-hardness by reduction from the strong satisfi-

ability problem of GDCs without the id literals, which remains Σ
p
2-complete (see the

proof of [FL17]).

Given a set Σ1 of GDCs without the id literals, we construct a set Σ of NGDs such

that Σ1 is strongly satisfiable if and only if Σ is satisfiable. Suppose that Σ1 consists

of the following n GDCs (without the id literals): ϕ′1 = Q1[x̄1](X1 → Y1), . . . , ϕ′n =

Qn[x̄n](Xn→ Yn). We construct n NGDs in the absence of arithmetic operations such

that these NGDs share the same pattern Q, which is a combination of Q1, . . . , Qn.

Meanwhile, for each ϕ′i = Qi[x̄i](Xi → Yi) in Σ1, Σ includes one NGD such that the

constraint Xi→Yi is also enforced only on Qi in Q. More specifically, Σ is constructed

as follows.

(1) The graph pattern Q[x̄1, . . . , x̄n] = (VQ,EQ,LQ,µ) that are shared by all NGDs in

Σ is such defined that

• VQ =VQ1 ∪ . . .∪VQn , where VQi is the set of nodes in ϕ′i (i ∈ [1,n]);

• EQ = EQ1 ∪ . . .∪EQn , where EQi is the set of edges in ϕ′i (i ∈ [1,n]);

• LQ(v) = LQi(v) if v ∈ VQi , where LQi is the labeling function in ϕ′i (i ∈
[1,n]); and
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• µ(xi)= µQi(v) if v∈VQi , where µQi is the mapping function in ϕ′i (i∈ [1,n]).
Intuitively, Q is the disjoint union of Q1, . . . ,Qn, where Qi and Q j are disjoint

for all i, j ∈ [1,n] and i 6= j.

(2) For each ϕ′i = Qi[x̄i](Xi→ Yi) in Σ1, Σ includes NGD ϕi = Q[x̄](Xi→ Yi). Note

that since we require that Qi and Q j are disjoint for all i, j ∈ [1,n] and i 6= j,

Xi→ Yi is also the constraint on the nodes in Qi.

We next show that these make a reduction, i.e., Σ1 is strongly satisfiable if and only

if Σ is satisfiable.

(⇒) Suppose that Σ1 is strongly satisfiable, and that G is such a model of Σ1. Then

G |= Σ1, and there exists a match of Qi in G for all i ∈ [1,n]. We prove that G also

witnesses the satisfiability of Σ. First observe that because Q contains Q1, . . . , Qn, and

there exists a match of Qi in G for any i ∈ [1,n], we can verify that Q has a match in G.

We next prove that G |= Σ by contradiction. If G 6|= Σ, then there exist an NGD

ϕi = Q[x̄](Xi→Yi) in Σ and a match h of Q in G such that h(x̄) |= Xi, but h(x̄) 6|=Yi. By

the definition of Σ, there exists a corresponding GDC ϕ′i = Qi[x̄i](Xi→ Yi) in Σ1. We

will show that G 6|= ϕ′i, which contradicts to G |= Σ1. Hence G |= Σ.

We now prove that G 6|= ϕ′i. By the definition of Q, we can deduce a match hi of

Qi in G as follows: for each x ∈ VQi , hi(x) = h(x). Here VQi is the set of nodes in Qi.

Because Xi and Yi are literals defined on vertexes in x̄i, from h(x̄) |= Xi and h(x̄) 6|= Yi,

we know that hi(x̄) |= Xi and hi(x̄) 6|= Yi. That is, hi 6|= (Xi→ Yi). Therefore, G 6|= ϕ′i.

(⇐) Suppose that Σ is satisfiable, and that G is such a model of Σ. Then G |= Σ, and

there exists a match h of Q in G. We show that G witnesses the strong satisfiability of

Σ1. As argued above, there exists a match of Qi in G for any i ∈ [1,n]. It remains to

show that G |= Σ1.

We prove that G |= Σ1 by contradiction. If G 6|= Σ1, then there exist a GDC ϕ′i =

Qi[x̄i](Xi→ Yi) and a match h1 of Qi in G such that h1(x̄i) |= Xi, but h1(x̄i) 6|= Yi. By

the definition of Σ, ϕi = Q[x̄](Xi→Yi) is an NGD in Σ. It suffices to show that G 6|= ϕi.

For if it holds, then it contradicts to the assumption that G |= Σ.

We now prove that G 6|= ϕi. By the definition of Q, we can deduce a match h2

of Q in G as follows: when x ∈ VQi , h2(x) = h1(x); otherwise, h2(x) = h(x). Here

VQi is the set of nodes in Qi, and h is the match deduced from the assumption that

G |= Σ. Because Xi and Yi are literals defined on the vertexes in x̄i, from h1(x̄i) |= Xi

and h1(x̄i) 6|= Yi, we know that h2(x̄) |= Xi and h2(x̄) 6|= Yi. That is, h2 6|= (Xi → Yi).
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Therefore, G 6|= ϕi.

(b) We next show that the satisfiability, strong satisfiability, and implication problems

are Σ
p
2-complete, Σ

p
2-complete and Π

p
2-complete, respectively, for NGDs in the absence

of comparison predicates. To see the lower bound, observe that the encoding used in

the lower bound proof of Theorem 4.1 does not use any comparison predicates for

NGDs, i.e., the only built-in predicate involved is =. The upper bounds can be verified

along the same lines as in (a) above. 2

Undecidability. One might want to support arithmetic expressions that are not neces-

sarily linear, defined as

e ::= t | |e| | e+ e | e− e | e× e | e÷ e.

That is, e is built up from terms by closing them under arithmetic operators, not neces-

sarily of degree at most 1. A literal is defined as e1⊗ e2 as before, where e1 and e2 are

arithmetic expressions of Q[x̄], and ⊗ is one of =, 6=,<,≤,>,≥.

This extension, however, makes the static analyses undecidable, even for NGDs

with literals of a bounded degree. The undecidability justifies our choice of linear

arithmetic expressions for NGDs.

Theorem 4.3: The satisfiability, strong satisfiability and implication problems become

undecidable for NGDs extended with non-linear arithmetic expressions, even when

◦ no arithmetic expressions in the NGDs have degree above 2,

◦ and none of 6=,<,≤,>,≥ predicate is present. 2

Proof:We show that the satisfiability, strong satisfiability and implication problems

become undecidable for NGDs extended with non-linear arithmetic expressions, re-

spectively, one by one.

Satisfiability. We show that the satisfiability problem becomes undecidable for NGDs

extended with non-linear expressions of degree at most 2, even when only built-in

predicate = is present. It is verified by reduction from the Hilbert’s 10th problem,

denoted by HTP, which is undecidable [Mat93, Jon80]. HTP is to decide, given a

polynomial Diophantine equation in the form of
n
∑

i=1
aiy

n1,i
1 . . .ynm,i

m = 0, where a1, . . . ,an

are integer coefficients and n1,i, . . . ,nm,i are non-negative integer exponents for each

i ∈ [1,n], whether there exists a feasible solution of integers for (y1, . . . ,ym).

Given a Diophantine equation
n
∑

i=1
aiy

n1,i
1 . . .ynm,i

m = 0, we construct a set Σ of ex-

tended NGDs such that Σ is satisfiable if and only the Diophantine equation has a solu-
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tion of integers. We encode the semantics of polynomials in the Diophantine equation

in a recursive manner by using literals of a single NGD with built-in predicate = only,

and none of the arithmetic expressions has degree above 2.

We start by illustrating the idea of recursive encoding with an example. Con-

sider a polynomial of 3y1y5
2 to be encoded. We first use a literal with integer vari-

able x1
0.A to encode the coefficient 3, i.e., x1

0.A = 3. We then encode the exponenti-

ation y1 and y5
2. The former is simply expressed by another integer variable x1

1,1.A,

while the latter is encoded recursively leveraging three literals x5
2,4.A = x2

2,2.A×x3
2,3.A,

x3
2,3.A = x2

2,2.A× x1
2,1.A, and x2

2,2.A = x1
2,1.A× x1

2,1.A. That is, we encode y5
2 by de-

composing it into two exponentiation y3
2 and y2

2 of smaller exponents, which are also

encoded as literals with the associated integer variables x3
2,3.A and x2

2,2.A, respectively.

Indeed, each exponentiation of y j
i has a corresponding integer variable x j

i,k.A (if ex-

ists) in the encoding. Having processed the coefficient and distinct exponentiation,

we finally encode the whole polynomial, also following a recursive strategy. Given a

polynomial, we decompose it into a sub-expression followed by an suffix of single ex-

ponentiation, and encode these two separately. For instance, we encode 3y1y5
2 with two

literals x′1,2.A = x′1,1.A× x5
2,4.A and x′1,1.A = x1

0.A× x1
1,1.A, i.e., 3y1y5

2 is split into sub-

expression 3y1 and suffix y5
2, which are expressed by x′1,1.A and x5

2,4.A, respectively.

Putting these together, the 3y1y5
2 is expressed as the integer variable x′1,2.A eventually.

Formally, for each polynomial aiy
n1,i
1 . . .ynm,i

m (i∈ [1,n]) in the given equation, (1) co-

efficient ai is encoded by a single literal xi
0 = ai; (2) each exponentiation yn j,i

j ( j∈ [1,m])

is encoded in terms of the encoding of exponentiation ybn j,i/2c
j and ydn j,i/2e

j recursively

with a literal in the form of xn j,i
j,k .A = xbn j,i/2c

j,l .A× xdn j,i/2e
j,p .A; and (3) the whole poly-

nomial aiy
n1,i
1 . . .ynm,i

m is recursively encoded through the encoding of sub-expression

aiy
n1,i
1 . . .ynm−1,i

m−1 and exponentiation ynm,i
m with a literal x′i,m.A = x′i,m−1.A×xnm,i

m,k .A, where

x′i,m−1.A denotes the corresponding integer variable of the sub-expression. One can

verify that each exponentiation yn j,i
j can be encoded by using at most 2dlog2 n j,ie liter-

als, and the encoding of a whole polynomial needs m literals. Thus the total size of the

encoding is polynomial in that of the given equation, yielding a PTIME reduction.

Based on the recursive encoding, we construct an extended NGD ϕ = Q[x̄]( /0→
(Z1∧Z2)), where Z1 includes those literals for encoding the polynomials of the given

equation as described above, and Z2 checks the existence of integer solutions to the

equation. Let Σ consists of ϕ only. More specifically, ϕ is defined as follows.

• The graph pattern Q[x1
0, . . . ,x

n
0,x

N1,1
1,1 , . . . ,x

NKi,1
1,Ki

, . . . ,xN1,m
m,1 , . . . ,xNKm,m

m,Km
,x′1,1, . . . ,x

′
1,m,
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. . . ,x′n,1, . . . ,x
′
n,m,x

′′] = (VQ,EQ,LQ,µ) is such defined that

- VQ = {vi
0 | i ∈ [1,n]}∪{vN j,i

i, j | i ∈ [1,m], j ∈ [1,Ki]}∪{v′i, j | i ∈ [1,n], j ∈
[1,m]}∪{v′′}, where Ki refers to the number of variables introduced to en-

code all the exponentiation of base yi in the equation for each i ∈ [1,m],

N j,i’s (i ∈ [1,m], j ∈ [1,Ki]) indicate their exponents, i.e., xN j,i
i, j is the corre-

sponding integer variable of exponentiation yN j,i
i in the recursive encoding;

note that N j,i < N j′,i when j < j′, and that moreover, the nodes in Q[x̄]

are split into four groups to encode the coefficients, the exponentiation, the

polynomials, and the equation, respectively;

- EQ = /0, i.e., Q[x̄] consists of isolated nodes;

- LQ is such defined that nodes in VQ are associated with distinct labels; and

- for each i ∈ [1,n], µ(xi
0) = vi

0; for each i ∈ [1,m] and j ∈ [1,Ki], µ(xN j,i
i, j ) =

vN j,i
i, j ; for each i ∈ [1,n] and j ∈ [1,m], µ(x′i, j) = v′i, j and µ(x′′) = v′′, which

maps variables from x̄ to VQ;

• Z1 is the conjunction of all literals introduced for recursively encoding the

polynomials of the equation, e.g., xi
0.A = ai to encode coefficient, xN j,i

i, j .A =

xbN j,i/2c
i,l .A× xdN j,i/2e

i,p .A to encode exponentiation, and x′i, j.A = x′i, j−1.A× xn j,i
j,k .A

to encode the polynomial; and

• Z2 is given as (x′′.A = x′1,m.A+x′2,m.A+ . . .+x′n,m.A)∧ (x′′.A = 0), i.e., the equa-

tion is expressed as x′′.A = 0.

Observe that ϕ ensures the instantiation of integer variables, i.e., values of attribute

A, must satisfy all the literals enforced by the recursive encoding, and it forms a feasi-

ble solution to the given Diophantine equation by the definition of Z2. Based on this,

we next show that Σ is satisfiable if and only if
n
∑

i=1
aiy

n1,i
1 . . .ynm,i

m = 0 has an integer

solution.

(⇒) First assume that Σ is satisfiable. Then there exists a graph G such that G |= Σ

and Q has a match h in Q. We next show that (h(x1
1,1).A, . . . ,h(x

1
m,1).A) is a feasible

integer solution to the given Diophantine equation
n
∑

i=1
aiy

n1,i
1 . . .ynm,i

m = 0. Assume by

contradiction that (h(x1
1,1).A, . . . ,h(x

1
m,1).A) is not a feasible solution to the equation.

Then
n
∑

i=1
ai(h(x1

1,1).A)
n1,i . . .(h(x1

m,1).A)
nm,i 6= 0. Since h |= ( /0→ (Z1 ∧Z2)), we have

that h(x′′).A = h(x′1,m).A+ . . .+h(x′n,m).A =
n
∑

i=1
ai(h(x1

1,1).A)
n1,i . . .(h(x1

m,1).A)
nm,i = 0,

a contradiction to the assumption. This can be verified by repeatedly substituting

h(x′i, j).A by h(x′i, j−1).A× h(xn j,i
j,k ).A, h(xN j,i

i, j ).A by h(xbN j,i/2c
i,l ).A× h(xdN j,i/2e

i,p ).A, and
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h(xi
0.A) by ai, respectively, until only ai’s and h(x1

j,1).A’s are left. This is well-defined

as h satisfies all the literals in Z1 that are introduced to recursively encode the com-

putation of polynomials. Thus (h(x1
1,1).A, . . . ,h(x

1
m,1).A) makes a solution to the Dio-

phantine equation.

(⇐) Conversely, assume that
n
∑

i=1
aiy

n1,i
1 . . .ynm,i

m = 0 has a solution (b1, . . . ,bm) of inte-

gers. Based on this solution, we build a graph G such that G |= Σ and there exists a

match of Q in G. We define graph G = (V,E,L,FA) as follows:

• V =VQ, E = EQ and L = LQ, i.e., it takes the same nodes, edges and labels as in

the graph pattern Q;

• FA is such defined that

− for each i ∈ [1,n], FA(vi
0).A = ai;

− for each i ∈ [1,m] and each j ∈ [1,Ki], FA(v
N j,i
i, j ).A = bN j,i

i ;

− for each i ∈ [1,n] and each j ∈ [1,m], FA(v′i, j).A = aib
n1,i
1 . . .bn j,i

j ; and

− FA(v′′).A =
n
∑

i=1
aib

n1,i
1 . . .bnm,i

m .

Intuitively, G is the same as the graph pattern Q except the associated attributes,

which are assigned values of the coefficients, exponentiation, polynomials and sum

of polynomials in the given equation when variables are instantiated by the feasible

solution (b1, . . . ,bm). Since G has the same topological structure as that in Q, and all

nodes carry distinct labels, we know that there only exists a single match h of Q in G.

It remains to show that h |= ( /0→ Z1∩Z2). Suppose by contradiction that there exists

a literal l in Z1 or Z2 such that h 6|= l. Observe the following. (a) By the definition

of FA, we have that FA(vi
0.A) = ai, FA(v

N j,i
i, j ).A = FA(v

bN j,i/2c
i,l ).A×FA(v

dN j,i/2e
i,p ).A and

FA(v′i, j).A = FA(v′i, j−1).A×FA(v
n j,i
j,k ).A. Hence h satisfies all the literals in Z1. (b) Since

FA(v′′).A = FA(v′i,m).A+ . . .+FA(v′n,m), we have that h |= (x′′.A = x′1,m.A+ x′2,m.A+

. . .+ x′n,m.A). Hence, the only literal that is not satisfied by h is x′′.A = 0. As a result,

FA(v′′).A =
n
∑

i=1
aib

n1,i
1 . . .bnm,i

m 6= 0, contradicting to the assumption that (b1, . . . ,bm) is a

feasible solution to the Diophantine equation.

Strong satisfiability. The proof for the satisfiability problem above also suffices to

verify the undecidability of the strong satisfiability problem, since the set Σ used in the

reduction there consists of a single extended NGD. Hence, the satisfiability and strong

satisfiability of Σ coincide.

Implication. We show that the implication problem for extended NGDs is undecidable

by reduction from the complement of HTP (see HTP in the proof of the satisfiability
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problem). Given a Diophantine equation
n
∑

i=1
aiy

n1,i
1 . . .ynm,i

m = 0, we construct a set Σ

of extended NGDs, and another extended NGD ϕ1 such that Σ 6|= ϕ1 if and only if
n
∑

i=1
aiy

n1,i
1 . . .ynm,i

m = 0 has an integer solution.

Recall the graph pattern Q and the extended NGD ϕ = Q[x̄]( /0→ (Z1∧Z2)) defined

in the proof of the satisfiability problem above. We define Σ = {ϕ2} = {Q[x̄]( /0→
(Z1 ∧ Z′2))}, where Z′2 is obtained from Z2 by removing literal x′′.A = 0, to encode

the computation of polynomials in the equation as in the proof for satisfiability, and

ϕ1 = Q[x̄](x′′.A = 0→ x′′.B = 1) to check the existence of solutions to the equation.

We next show that Σ 6|= ϕ1 if and only if
n
∑

i=1
aiy

n1,i
1 . . .ynm,i

m = 0 has an integer solution.

(⇒) First suppose that Σ 6|= ϕ1. We show that there exists an integer solution

(b1, . . . ,bm) to the Diophantine equation
n
∑

i=1
aiy

n1,i
1 . . .ynm,i

m = 0. By Σ 6|= ϕ1, there ex-

ists a graph G such that G |= Σ but G 6|= ϕ1. Since G 6|= ϕ1, there exists a match h of

Q in G such that h(x′′).A = 0 and h(x′′).B 6= 1. Based on h, we define (b1, . . . ,bm)

such that bi = h(x1
i,1).A for each i ∈ [1,m]. It remains to show that (b1, . . . ,bm) is

a feasible solution to the equation. Assume by contradiction that (b1, . . . ,bm) is not

an integer solution. Then
n
∑

i=1
ai(h(x1

1,1).A)
n1,i . . .(h(x1

m,1).A)
nm,i 6= 0. Since ϕ1 and ϕ2

share the same graph pattern Q and G |= Σ, we have that h |= (Z1 ∧ Z′2). Therefore,

h(x′′).A = h(x′1,m).A+ . . .+h(x′n,m).A. Moreover, since h satisfies all the literals in Z1,

one can verify that h(x′′).A also equals
n
∑

i=1
ai(h(x1

1,1).A)
n1,i . . .(h(x1

m,1).A)
nm,i by apply-

ing the rules of recursive encoding, i.e., literals in Z1, to express h(x′′).A by ai’s and

h(x1
i,1).A’s only for i ∈ [1,n] and j ∈ [1,m]. Then h(x′′.A) 6= 0 by the assumption that

(b1, . . . ,bm) = (h(x1
1,1).A, . . . ,h(x

1
m,1).A) is not a feasible solution. It contradicts to that

h(x′′).A = 0 as argued above. Therefore,
n
∑

i=1
aiy

n1,i
1 . . .ynm,i

m = 0 has a feasible integer

solution of (h(x1
1,1).A, . . . ,h(x

1
m,1).A).

(⇐) Conversely, suppose that
n
∑

i=1
aiy

n1,i
1 . . .ynm,i

m = 0 has an integer solution (b1, . . . ,bm).

We construct a graph G′ such that G′ |= Σ, but G′ 6|= ϕ1. Recall the graph G =

(V,E,L,F ′A) constructed in the proof of the satisfiability problem above. Graph

G′ = (V,E,L,F ′A) is the same as G except that an additional B-attribute value 2 is asso-

ciated with node v′′, i.e., F ′A(v
′′).B = 2. Since G |= ϕ (see the proof of the satisfiability

problem) and ϕ2 is obtained from ϕ by removing one literal, G′ |= ϕ2, i.e., G′ |= Σ.

Moreover, by the construction of G′, we have that there exists only one match h of

Q in G. It remains to show that G′ 6|= ϕ1, i.e., h 6|= ϕ1. Assume by contradiction that
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h |= ϕ1. Then h(x′′).A 6= 0 since h(x′′).B = F ′A(v
′′).B = 2. However, h(x′′).A must be 0

as argued in the proof of the satisfiability problem, hence a contradiction. Therefore,

G′ 6|= ϕ1. 2

4.4 Detecting Errors with NGDs

We have seen that NGDs provide uniform rules for capturing inconsistencies in graphs,

numeric or not (Section 4.2). We next study error detection in graphs by using NGDs

as data quality rules.

4.4.1 Detecting Inconsistencies in Graphs

To state the error detection problem, we borrow the following notations

from [FWX16]. Given an NGD ϕ = Q[x̄](X → Y ) and a graph G, we say that a match

h(x̄) of Q in G is a violation of ϕ if Gh 6|= ϕ, where Gh is the subgraph induced by h(x̄).

For a set Σ of NGDs, we denote by Vio(Σ,G) the set of all violations of NGDs in G,

i.e., h(x̄) ∈ Vio(Σ,G) if there exists an NGD ϕ in Σ such that h(x̄) is a violation of ϕ in

G. That is, h(x̄) violates at least one NGD in Σ.

The error detection problem is stated as follows.

◦ Input: A set Σ of NGDs and a graph G.

◦ Output: The set Vio(Σ,G) of violations.

That is, when NGDs in Σ are used as data quality rules, it is to find the set Vio(Σ,G) of

all inconsistent entities in G.

The problem is nontrivial. Its decision version is the validation problem to decide,

given a set Σ of NGDs and a graph G, whether G |= Σ, i.e., whether Vio(Σ,G) = /0.

It is known that the validation problem for GFDs is coNP-complete [FWX16]. The

good news is that the problem gets no harder for NGDs, despite their increased expres-

sive power.

Corollary 4.4: The validation problem for NGDs remains coNP-complete. 2

Proof:Here we only show that the validation problem for NGDs is in coNP. Since

NGDs subsume GFDs, and the validation problem for GFDs is coNP-complete, the

lower bound follows.

Upper bound. We use the following NP algorithm to check, given a graph G and a set

Σ of NGDs, whether G 6|= Σ.
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(1) Guess an NGD ϕ = Q[x̄](X → Y ) in Σ, and a mapping h from Q to G.

(2) Check whether h is a match of Q in G; if so, continue; otherwise, reject the

current guess.

(3) Check whether h(x̄) |= X but h(x̄) 6|= Y ; if so, return true; otherwise, reject the

current guess.

The correctness of the algorithm follows from the semantics of NGDs. For its com-

plexity, step (2) is in PTIME. Step (3) is also in PTIME since |X |+ |Y | ≤ |Σ|. Thus the

algorithm is in NP, and the validation problem is in coNP. 2

Using GFDs as data quality rules, parallel algorithms have been developed for error

detection [FWX16]. The algorithms are parallel scalable, i.e., they guarantee to reduce

the running time of a yardstick sequential algorithm when more processors are used

(see Section 4.5.1). Hence the algorithms can scale with real-life graphs by adding re-

sources when the graphs grow big. The experimental study of [FWX16] has validated

the parallel scalability and efficiency of the algorithms.

A close examination of the algorithms of [FWX16] reveals that the algorithms can

be readily extended to NGDs. Indeed, for the algorithms to work with NGDs on a

graph G that is fragmented and distributed across different processors, the only change

involves local checking of NGDs in each fragment of G, by adding arithmetic and

comparison calculations; the generation of matches of graph patterns, which dominates

the cost of the algorithms, remains unchanged. The workload estimation and balancing

strategies of [FWX16] remain intact for NGDs. These strategies make the algorithms

parallel scalable. As a result, the algorithms remain parallel scalable when they employ

NGDs instead of GFDs.

Hence there are parallel scalable algorithms to uniformly detect semantic inconsis-

tencies in graphs, numeric or not, with NGDs.

4.4.2 Incremental Error Detection

Error detection is costly in large G, and real-life graphs are frequently updated. This

highlights the need for studying incremental error detection: we compute Vio(Σ,G)

once, and then incrementally compute Vio(Σ,G⊕∆G) in response to updates ∆G to

G. This is more efficient than recomputing Vio(Σ,G⊕∆G) starting from scratch when

∆G is small, as often found in practice.

We formalize the problem as follows. We consider batch update ∆G consisting

of a sequence of insertions and deletions of edges, which can simulate modification.
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Denote by

∆Vio+(Σ,G,∆G) = Vio(Σ,G⊕∆G)\Vio(Σ,G),

∆Vio−(Σ,G,∆G) = Vio(Σ,G)\Vio(Σ,G⊕∆G),

∆Vio(Σ,G,∆G) = (∆Vio+(Σ,G,∆G),∆Vio−(Σ,G,∆G)),

new errors introduced by ∆G, removed by ∆G and their combination, respectively. The

incremental error detection problem is:

◦ Input: Graph G, NGDs Σ, and batch update ∆G to G.

◦ Output: The changes ∆Vio(Σ,G,∆G) to Vio(Σ,G).

We do not require Vio(Σ,G) as part of the input, since the set may be exponential in

size and is costly to store.

It is not surprising that the problem is nontrivial. Its decision problem is to decide

whether ∆Vio(Σ,G,∆G) = /0.

Theorem 4.5: It is coNP-complete to decide, given a set Σ of NGDs, a graph G and

a batch update ∆G, whether ∆Vio(Σ,G,∆G) is empty, even when both G and ∆G have

constant sizes. 2

Proof:We next show that it is coNP-complete to decide whether ∆Vio(Σ,G,∆G) = /0,

even if G and ∆G have constant sizes.

Upper bound. We provide an NP algorithm to check, given a set Σ of NGDs, a graph

G, and batch update ∆G, whether ∆Vio(Σ,G,∆G) is not empty, as follows.

(1) Guess two NGDs ϕ1 = Q1[x̄1](X1→ Y1) and ϕ2 = Q2[x̄2](X2→ Y2) in Σ, a map-

ping h1 of Q1 in G, and a mapping h2 of Q2 in G⊕∆G;

(2) Check whether (a) h1 is a match of Q1 in G, h1(x̄1) |= X1, h1(x̄1) 6|= Y1, and (b)

h1 is not a match in G⊕∆G; if so, return true; otherwise, continue;

(3) Check whether (a) h2 is a match of Q2 in G⊕∆G, h2(x̄2) |= X2, h2(x̄2) 6|=Y2, and

(b) h2 is not a match in G; if so, return true; otherwise, reject the guess.

The correctness of the algorithm follows from the definition of ∆Vio(Σ,G,∆G);

more specifically, steps (2) and (3) take care of edge deletions and insertions, respec-

tively.

For its complexity, steps (2) and (3) are both in PTIME since |X1|+ |Y1| ≤ |Σ| and

|X2|+ |Y2| ≤ |Σ|. Therefore, the algorithm is in NP, and as a result, the incremental

error detection problem for NGDs is in coNP.



128 Chapter 4. Catching Numeric Inconsistencies in Graphs

Lower bound. We show that it is coNP-hard to decide whether ∆Vio(Σ,G,∆G) is

empty, even when both G and ∆G are of constant sizes. It is verified by reduc-

tion from the complement of the 3-colorability problem, which is known to be NP-

complete [Pap94]. The 3-colorability problem is to decide, given an undirected graph

G, whether there exists a proper 3-coloring γ of G such that for each edge (u,v) in G,

γ(u) 6= γ(v). It is known that the problem is still NP-complete when G1 is a connected

graph [GJS76].

Given an undirected connected graph G, we construct a graph G′, a set Σ′ of NGDs

and a batch update ∆G′, such that ∆Vio(Σ′,G′,∆G′) is not empty if and only if G has a

proper 3-coloring. Intuitively, G′ is used to encode all possible proper 3-colors, and Σ′

is used to encode the structure of G and verify possible 3-colorings, while we also use

an extra node vn+1 and edges directing to it in Σ to ensure that ∆Vio(Σ′,G′,∆G′) is not

empty. More specifically, the graph G′ = (V ′,E ′,L′,F ′A) is defined as follows:

• V ′ = {v′1,v′2,v′3,v′4}; here each node in {v′1,v′2,v′3} represents a color;

• E ′ = {(v′1,v′2),(v′2,v′1),(v′2,v′3),(v′3,v′2),(v′3,v′1),(v′1,v′3)}, these edges make

v′1,v
′
2, and v′3 forming a 3-clique;

• L′(v′1) = r, L′(v′2) = g, and L′(v′3) = b for three colors; L′(v′4) = χ; and for each

edge e ∈ E ′, L′(e) =‘a’;

• F ′A(v
′
1).A = 1, F ′A(v

′
2).A = 1, F ′A(v

′
3).A = 1, and F ′A(v

′
4).A = 1.

The set Σ consists of a singe NGD ϕ = Q[x1, . . . ,xn,xn+1]( /0→ (x1.A = 3)), where

n= |V | and the graph pattern Q[x1, . . . ,xn,xn+1] = (VQ,EQ,LQ,µ) is defined as follows:

• VQ =V ∪{vn+1}, i.e., it takes the same set of nodes as G, and an extra node vn+1;

• EQ = {(u,v),(v,u) | (u,v) ∈ E}∪{(v,vn+1) | v ∈ V}, i.e., each undirected edge

(u,v) in G is encoded with two directed edges (u,v) and (v,u), and all nodes in

V have an edge directed to vn+1;

• each node vi in V is labeled wildcard: LQ(vi) = ‘ ’, and L′(vn+1) = χ; and for

each edge e ∈ EQ, LQ(e) =‘a’;

• for each node vi(i ∈ [1,n]) in VQ, µ(xi) = vi.

The batch update ∆G′ is defined as three edge insertions of (v′1,v
′
4),(v

′
2,v
′
4), and (v′3,v

′
4)

in G′.

Note that both G′ and ∆G′ are of constant sizes. We next show that this makes a

reduction, i.e., ∆Vio(Σ′,G′,∆G′) is not empty if and only if G has a proper 3-coloring.

It suffices to prove that G′⊕∆G′ 6|= Σ′, i.e., Vio(Σ′,G′⊕∆G′) is not empty if and only

if G has a proper 3-coloring. Indeed, Vio(Σ′,G′) is empty before edge insertions as
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Q′ does not have any match in G′. To see this, observe that (a) all nodes in Q′ are

connected to vn+1 except itself, which are labeled χ, and (b) there is no edge directing

to v′4, which is the only node labeled χ, i.e., the only possible match of vn+1, in G′.

In the following, we show that Vio(Σ′,G′⊕∆G′) is not empty if and only if G has

a proper 3-coloring.

(⇒) First assume that Vio(Σ′,G′⊕∆G′) is not empty. Then there exists a match h of

Q in G′⊕∆G′ such that h 6|= x1.A = 3. Based on h, we construct a 3-coloring γ of G

as follows: for each node v ∈V , γ(v) = L′(h(v)). This is well-defined by the semantic

of graph pattern matching. It remains to show that γ(u) 6= γ(v) for each edge (u,v) in

G, i.e., γ is indeed a proper 3-coloring of G. Assume by contradiction that there exists

an edge (v1,v2) in G such that γ(v1) = γ(v2). Then L′(h(v1)) = L′(h(v2)). Since nodes

in G′ are labeled 3 distinct labels, we have that h(v1) = h(v2). However, based on the

definition of graph pattern matching, h(v1) and h(v2) must not be the same as there

should be an edge from h(v1) to h(v2) in G′, a contradiction. Therefore, γ is a proper

3-coloring of G.

(⇐) Conversely, assume that G has a proper 3-coloring γ. We assume w.l.o.g. that the

3 colors are r, g and b. It suffices to show that there exists a match h of Q in G′⊕∆G′

such that h 6|= Σ. We define h(v) = L′(−1)(γ(v)) for each v ∈ V , where L′(−1) is the

inverse function of L′ in G′; and h(vn+1) = v′4. This is well-defined as L′ is a bijection.

Since all A-attributes in G′⊕∆G′ are assigned 1, if h is a match of Q in G′⊕∆G′, we

have that h 6|= Σ. For all nodes in V have outgoing edges, all nodes in V are mapped

to v′1,v
′
2, and v′3. It remains to show that h(u) 6= h(v) for each edge (u,v) ∈ EQ with

u,v∈V . For if it holds, h is a match of Q in G′⊕∆G′, and hence that Vio(Σ′,G′⊕∆G′)

is not empty. Assume by contradiction that there exists an edge (v1,v2) ∈ EQ with

u,v ∈ V such that h(v1) = h(v2). By the definition of h, we have that γ(v1) = γ(v2),

which contradicts to the assumption that γ is a proper 3-coloring of G since v1 and v2

are connected in G. 2

In the rest of the chapter we focus on (parallel) algorithms for incrementally detect-

ing semantic inconsistencies in graphs, by using NGDs. The algorithms complement

the batch algorithms of [FWX16], for NGDs used as data quality rules. As remarked

earlier in Section 1.3, we are not aware of prior work on incremental error detection in

graphs.
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4.5 Incremental Detection Algorithms

Despite the challenges noted in Theorem 4.5, we develop two practical algorithms to

incrementally detect errors in graphs with NGDs. We show that the algorithms have

certain performance guarantees.

We first review the performance guarantees (Section 4.5.1). We then present a

sequential incremental error detection algorithm (Section 4.5.2), followed by a parallel

algorithm (Section 4.5.3).

To simplify the discussion, we focus on NGDs defined with graph patterns Q that

are connected, i.e., there exists a path between any two vertices in Q when Q is treated

as an undirected graph. As will be seen in Section 4.5.4, the algorithms can be readily

extended to process NGDs that are defined with possibly disconnected patterns.

4.5.1 Performance Guarantees

We first review two characterizations of the effectiveness of (parallel) incremental error

detection algorithms.

(1) Locality. The first criterion was introduced in [FHT17]. We borrow the following

notations from [FHT17]. (a) In a graph G, we say that a node v′ is within d hops of

v if dist(v,v′) ≤ d by taking G as an undirected graph, where dist(v,v′) is the shortest

distance between v and v′ in G. (b) We denote by Vd(v) the set of all nodes in G that

are within d hops of v. (c) The d-neighbor of v, denoted by Gd(v), is the subgraph of

G induced by Vd(v) (see Section 4.1).

The diameter dQ of a pattern Q is the minimum dist(v,v′) for all nodes v and v′

in Q. For a set Σ of NGDs, the diameter dΣ of Σ is the maximum diameter dQ for all

patterns Q that appear in Σ.

An incremental error detection algorithm A is localizable if given a set Σ of NGDs,

a graph G, and a batch update ∆G to G, its cost is determined only by the size |Σ| of

NGDs and the sizes of the dΣ-neighbors of those nodes on the edges of ∆G [FHT17].

Intuitively, a localizable A can compute ∆Vio(G,Σ,∆G) by inspecting only GdΣ
(v),

i.e., nodes and edges within dΣ hops of those nodes v that appear in ∆G. In practice,

GdΣ
(v) is often small. Indeed, (a) Q is typically small; e.g., 98% of real-life patterns

have radius 1, and 1.8% have radius 2 [GFMPdlF11]; since pattern verification is a

crucial step in rule mining [GTHS13], practical queries indicate reasonable patterns in
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NGDs; hence dΣ is typically small in practice; and (b) real-life graphs are often sparse;

for instance, the average node degree is 14.3 in social graphs [BW13]. Hence, A can

reduce the computations on possibly big graph G to smaller GdΣ
(v).

(2) Parallel scalability. The second criterion is adapted from [KRS90], which

has been widely used in practice to characterize the effectiveness of parallel algo-

rithms. Consider a sequential algorithm A for incremental error detection, with cost

t(|G|, |Σ|, |∆G|) measured in the sizes of graph G, Σ of NGDs and batch update ∆G.

A parallel algorithm Ap for incremental error detection is said to be parallel scal-

able relative to yardstick A if its parallel running time by using p processors can be

expressed as follows:

T (|G|, |Σ|, |∆G|, p) = Õ
(t(|G|, |Σ|, |∆G|)

p

)
,

where the notation Õ hides log(p) factors (see, e.g., [WZ13]), and p� |G|, i.e., the

number of processors is much smaller than real-life graphs G, as commonly found in

the real world.

Intuitively, parallel scalability measures speedup over sequential algorithms by par-

allelization. It is a relative measure w.r.t. a yardstick algorithm A . A parallel scalable

Ap “linearly” reduces the running time of A when p increases. Hence a parallel scal-

able algorithm is able to scale with large G by adding processors as needed. It makes

incremental error detection feasible by increasing p.

4.5.2 A Sequential Localizable Algorithm

We first develop an exact algorithm, denoted by IncDect. Given a set Σ of NGDs,

a graph G and a batch update ∆G, IncDect computes ∆Vio(Σ,G,∆G) with a single

processor, i.e., it is a sequential algorithm. It incrementalizes subgraph matching al-

gorithms by following update-driven evaluation, and checks dependencies with arith-

metic. We show that algorithm IncDect is localizable.

Subgraph matching. We start by reviewing the general framework of subgraph

matching, denoted as Matchn.

A number of subgraph matching algorithms have been developed for graphs. As in-

dicated in [LHKL12], most of these algorithms follow a backtracking-based procedure

Matchn. Given a pattern Q and a graph G, Matchn first identifies a set C(u) of candidate

matches for each pattern node u in Q. Then its main subroutine SubMatchn is recur-

sively invoked to expand partial solution M, by matching one pattern node of Q with a
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node of G in each round, where M is a set of node pairs (u,v) indicating that v matches

pattern node u. Note that subgraph homomorphism algorithms [FHK07, Rza14] can

also be characterized by the generic Matchn and SubMatchn.

More specifically, given a partial solution M, SubMatchn selects a pattern node u

from Q that is not yet matched, and refines C(u) following certain matching order se-

lection and pruning strategies. For each refined candidate v in C(u), it checks whether

v can make a valid match of u by inspecting the correspondence between edges con-

necting u and already matched pattern nodes and those edges connecting v and nodes

in M. The qualified node pair (u,v) is added to M, and SubMatchn is called recursively

for further expansion, until all the pattern nodes of Q are matched. The partial solution

M is restored when SubMatchn backtracks.

Algorithm. IncDect incrementalizes batch algorithm Matchn to process G, Σ and

∆G = (∆G+,∆G−), where ∆G+ and ∆G− include insert(v,v′) and delete(v,v′), respec-

tively. (1) It starts with ∆Vio+(Σ,G,∆G) = /0 and ∆Vio−(Σ,G,∆G) = /0. (2) For each

NGD ϕ = Q[x̄](X → Y ) in Σ, it invokes a procedure IncMatch revised from Matchn

to expand ∆Vio+(Σ,G,∆G) (resp. ∆Vio−(Σ,G,∆G)) with those matches h(x̄) of Q in

G⊕ ∆G (resp. G) such that (a) h(u) = v and h(u′) = v′ for some (u,u′) ∈ EQ and

insert(v,v′) in ∆G+ (resp. delete(v,v′) in ∆G−), and (b) h(x̄) 6|= X → Y . Here the

pattern Q[x̄] in NGD ϕ is (VQ, EQ, LQ, µ) (see Section 4.1).

Intuitively, edge insertions may introduce new violations and hence expand

∆Vio+(Σ,G,∆G), but do not remove existing violations from Vio(Σ,G,∆G); on the

other hand, deletions expand ∆Vio−(Σ,G,∆G) only. IncMatch computes the violations

of each NGD ϕ that are newly added (resp. removed); this is done by identifying those

matches of Q[x̄] that have some nodes connected by edges involved in ∆G+ (resp. ∆G−)

and violating the attribute dependency X → Y . We assume w.l.o.g. that no insert e and

delete e in ∆G are about the same edge e, which can be easily detected.

Procedure IncMatch. We next give details of IncMatch and its subroutine

IncSubMatch for processing NGD Q[x̄](X → Y ). Following update-driven evaluation,

we extend Matchn and SubMatchn to conduct (1) initial partial solution selection; (2)

candidates filtering; and (3) arithmetic and comparison calculations.

(1) Given pattern Q, IncMatch first finds out whether each edge (v,v′) in ∆G is a can-

didate match of some pattern edge (u,u′) in Q, i.e., LQ(u) = L(v), LQ(u′) = LQ(v′)

and LQ(u,u′) = L(v,v′). This is in contrast to Matchn that searches candidate matches
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in the entire graph G. If (v,v′) makes a candidate, this match forms an initial partial

solution hup(u,u′) = (v,v′), referred to as an update pivot of Q triggered by unit update

of edge (v,v′). IncMatch then expands hup(u,u′) by recursively invoking IncSubMatch

as in Matchn to compute update-driven violations h(x̄).

(2) In each call, IncSubMatch searches candidates from the neighbors of those nodes

that are already in a partial solution, starting from the update pivot. Each time

IncSubMatch picks a pattern node that is connected to some already matched ones.

For a match h(x̄) of Q to be included in ∆Vio+(Σ,G,∆G) (a) it must be expanded from

a pivot triggered by insertion, and (b) there exist no v and v′ in h(x̄) such that h(u) = v

and h(u′) = v′ for any (u,u′)∈ EQ while delete(v,v′) is in ∆G−. Therefore, it leaves out

edges in ∆G− when retrieving candidates to expand the solutions from update pivots

triggered by edge insertions. Similarly, it does not consider edges insert(v,v′) in ∆G+

when expanding ∆Vio−(Σ,G,∆G).

As an optimization strategy, IncMatch marks the combination of multiple update

pivots in partial solutions to prevent the same match from being enumerated more than

once.

(3) The validation of literals with linear arithmetic expressions is performed by apply-

ing candidate pruning in IncSubMatch. More specifically, it evaluates a literal l of Q[x̄]

in X as long as all variables in l are instantiated, i.e., every variable that occurs in l is

already matched or is being matched by the candidates under process, and prunes each

candidate when l is evaluated to be false. Literals in Y are handled similarly except

that those candidate matches contributing to true evaluations are pruned. Indeed, only

matches h(x̄) that satisfy h(x̄) |= X and h(x̄) 6|= Y are returned as violation.

Finally, those matches expanded from update pivots triggered by edge insertions

(resp. deletions) and violating X → Y , referred to as update-driven violations, are re-

turned by IncMatch and added to ∆Vio+(Σ,G,∆G) (resp. ∆Vio−(Σ,G,∆G)) by algo-

rithm IncDect.

Example 4.6: Suppose that the edge (NatWest Help,1) labeled status is deleted from

G4 of Fig. 4.1. Given NGD ϕ4 of Example 4.3, IncDect calls IncMatch to detect update-

driven violations. It first finds that the deleted edge is a candidate match of pattern

edge (x,s1) in Q4. That is, an update pivot hup(x,s1) = (NatWest Help,1) of Q4 is

built. IncMatch then expands hup(x,s1) recursively by inspecting the neighbors of

candidate matches until all pattern nodes of Q4 are matched. For instance, node 22000
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in G4 is the only candidate match for m1. Finally, it returns violation hup(x̄) that

includes all the nodes of G4, where NatWest Help is found a fake account. This is

an update-driven violation to be removed. Note that there is another update pivot

h′up(y,s2) = (NatWest Help,1) triggered by the deletion. However, this partial solution

does not yield any violation as a∗ (m1.val−m2.val)+b∗ (n1.val−n2.val)> c in ϕ4 is

evaluated false when expanding h′up(y,s2) in IncMatch.

Besides delete(NatWest Help,1), suppose that four edges are inserted into G4 to

indicate that another account NatWest Help1 has 1 following and 2 followers, and

refers to company NatWest with status 1. Given this batch update, IncDect computes

the same violation to be removed as above. Indeed, there are no newly introduced

violations since all matches expanded from update pivots triggered by edge insertions

are pruned by literal validation. 2

Analysis. The correctness of IncDect is warranted by the following. The violations in

∆Vio+(Σ,G,∆G) (resp. ∆Vio−(Σ,G,∆G)) are matches of Q in G⊕∆G (resp. G) that

contain inserted (resp. deleted) edges of ∆G and violate dependency X → Y for an

NGD Q[x̄](X → Y ) in Σ, i.e., update-driven violations found by IncMatch.

Algorithm IncDect runs in O(|Σ||GdΣ
(∆G)||Σ|) time in the worst case, where

GdΣ
(∆G) denotes the union of dΣ-neighbors of nodes involved in ∆G. Hence it is

localizable. Indeed, observe the following. (a) The computation performed by each

invocation of procedure IncMatch is confined in the dΣ-neighbors of an unit update

in ∆G, since partial solutions are expanded by accessing the neighbors only. (b) The

cost of checking linear arithmetic expressions is subsumed by the cost of candidate

selection in the matching process.

4.5.3 A Parallel Scalable Algorithm

Algorithm IncDect takes exponential time in the worst case. It is costly if Σ or ∆G is

large, or G is dense. This motivates us to develop algorithm PIncDect that is parallel

scalable relative to IncDect, to reduce response time by adding more processors when

needed.

Overview. Algorithm PIncDect works with p processors S1, . . . , Sp on a graph G

that is partitioned via edge-cut [AR06] or vertex-cut [KC12]; the fragments of G are

distributed across p processors. In a nutshell, PIncDect first finds update pivots of pat-

terns in Σ triggered by unit updates, and distributes these partial solutions as work units
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to p processors. Then each processor handles its workload and identifies violations in

parallel, driven by updates like in IncDect.

However, there are two challenges. (1) The dΣ-neighbor of a node may reside in

different fragments. (2) The workloads of some processors may be skewed, since (a)

the workload assignment may be unbalanced; and (b) some work unit may take much

longer, e.g., when accessing a large dΣ-neighbor. Note that work stealing and shedding

[HCD+16, BL99] do not solve (b) by re-assigning work units.

To cope with this, PIncDect does the following. It finds and distributes the can-

didate neighborhood of each update pivot. Then all the processors interact with each

other asynchronously to expand and verify partial solutions, by accessing the candi-

date neighborhoods only. To reduce skewness, PIncDect (a) splits and parallelizes

the work unit of filtering and verifying a candidate, based on cost estimation, and (b)

periodically redistributes the partial solutions (work units) to be expanded from busy

processors to those with light loads. This makes PIncDect parallel scalable relative to

IncDect.

Candidate neighborhood. Similar to IncDect, initially PIncDect checks whether each

unit update insert(v,v′) or delete(v,v′) in ∆G triggers an update pivot, i.e., partial solu-

tion hup(u,u′) = (v,v′) for some pattern nodes u and u′ in Q from Σ, at each processor.

It then identifies the dQu-neighbor of node v in G⊕∆G+, referred to as the candidate

neighborhood NC(hup(u,u′)) for hup(u,u′). Here dQu denotes the length of the longest

shortest path between u and other nodes in Q. When v is involved in multiple update

pivots, only the union of their neighborhoods is extracted. Multiple processors coordi-

nate to extract such a neighborhood when it is fragmented, by notifying each other the

remaining size of the region to be identified via messages passed through “borders”,

e.g., crossing edges in edge cut [AR06] or entry and exit nodes in vertex cut [KC12].

All processors broadcast the data extracted such that the union NC(∆G,Σ) of can-

didate neighborhoods for update pivots is replicated at each processor. We find that

NC(∆G,Σ) is often much smaller than G when ∆G and Σ are small, as found in prac-

tice.

Moreover, for each node v in NC(∆G,Σ), PIncDect evenly “partitions” its adjacency

list v.adj across processors by annotating local partition (instead of physically breaking

it up). At each processor Si, its partition of v.adj is referred to as a partial copy v.adji,

which is disjoint from v.adj j for i 6= j. The update pivots are also evenly partitioned

into p disjoint sets. Each Si maintains one set BVioi as its workload. A partial solution
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to be expanded is a work unit.

Parallel validation. Processors Si expands partial solutions to find update-driven vi-

olations in parallel. For each partial solution in BVioi, Si expands it by matching a

pattern node that is not matched yet, until a complete violation is found. This is done

by candidate filtering followed by verification. It adopts a hybrid processing strategy

to split and parallelize skewed work units. Algorithm PIncDect also periodically bal-

ances workloads across p processors, to reduce skewed workloads with a large number

of work units.

We next give the insights of the two steps for expanding partial solutions, which

dominate the cost of algorithm PIncDect.

Candidate filtering. Consider hup(u0, . . . ,uk) ∈ BVioi, a partial solution for Q of NGD

Q[x̄](X → Y ) to be expanded at processor Si, where u j is a pattern node in Q that is

already matched for j ∈ [0,k]. The next pattern node to be matched is uk+1 such that

uk+1 is connected to ur in Q, where r ∈ [0,k]. The candidates for uk+1 are selected

from the neighbors of hup(ur), just like in procedure IncSubMatch (Section 4.5.2).

Here PIncDect estimates the sequential cost as |hup(ur).adj|, and the parallel cost as

C · (k+1)+ |hup(ur).adj|/p,

for expanding the partial solution by matching uk+1, where hup(ur) denotes the match

of pattern node ur, C is a constant referred to as the parameter of communication la-

tency, and C · (k+1) denotes the broadcasting cost. It conducts expansion at processor

Si directly by inspecting candidates from hup(ur).adj, if the sequential cost is less than

the parallel one. Otherwise, hup(u0, . . . ,uk) is broadcast to all the processors, and is

expanded in parallel by checking the partial copy hup(ur).adj j reserved at each S j for

j ∈ [1, p]. This allows us to reduce a skewed work unit with large adjacency lists.

Verification. After hup(u0, . . . ,uk) is expanded with uk+1 at processor Si, PIncDect

checks the edges between the candidate match hup(uk+1) and other matches hup(u0),

. . . , hup(uk), to verify that the expansion yields a valid partial solution. It may split the

verification work based on the size of the adjacency list. Here the sequential cost is

estimated as |hup(uk+1).adj| and the parallel cost is

C · (k+2)+ |hup(uk+1).adj|/p.

If the parallel cost is smaller, it broadcasts hup(u0, . . . ,uk,uk+1) to check at all proces-

sors S j by using their partial copy hup(uk+1).adj j; the results of checking are sent back

to Si to decide the qualification of the partial solution. If qualified, it is added to BVioi

at Si for further expansion, unless it makes a complete match of Q.
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Algorithm: PIncDect

Input: A fragmented graph G across p processors S1, . . . Sp,

a set Σ of NGDs, and a batch update ∆G.

Output: The set ∆Vio(Σ,G,∆G) of violations.

1. annotate the edges involved in ∆G;

2. for each unit update of (v,v′) in ∆G and pattern edge (u,u′) in

Q of NGD ψ = Q[x̄](X → Y ) ∈ Σ having LQ(u) = L(v),

LQ(u′) = L(v), and LQ(u,u′) = L(v,v′) do

3. construct update pivot hup(u,u′) = (v,v′);

4. identify the dQu-neighbor of v;

5. construct NC(∆G,Σ) in parallel and replicate it at all processors;

6. evenly partition adjacency lists and work units across p processors;

7. invoke PIncMatch(BVioi) at processor Si for all i ∈ [1, p];

8. repeat

9. periodically balance workload across p processors at interval intvl;

10. until all Si’s return Vioi;

11. ∆Vio(Σ,G,∆G) :=
⋃

i Vioi;

12. return ∆Vio(Σ,G,∆G);

Figure 4.3: Algorithm PIncDect

Workload balancing. The workload of a processor Si is skewed if BVioi contains far

more work units than the others at the same time. This happens even if we start with

evenly distributed update pivots, as different partial solutions may trigger radically

different number of new work units. We define the skewness of Si as ||BVioi||
avgt∈[1,p]||BViot || .

To cope with this, PIncDect checks the skewness of processors at a time interval

intvl (45 seconds in our experiments). If the skewness of Si exceeds a threshold η

(η = 3 in our experiments), PIncDect evenly distributes the work units in BVioi to

those processors S j’s having skewness below η′ (η′ = 0.7 in experiments), extending

BVio j’s. We allow processors to send and receive work units at any time, without

being blocked by synchronization barriers.

Algorithm. Putting these together, we present the main driver of algorithm PIncDect

in Fig. 4.3. It first identifies the candidate neighborhood for each update pivot triggered

by unit updates in ∆G and Σ (lines 2-4), and replicates the union of all candidate
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Procedure PIncMatch /* executed at each worker Si in parallel*/

Input: Workload BVioi.

Output: The set Vioi of local violations.

1. Vioi := /0;

2. while there exists a partial solution to be expanded do

3. for each hup(u0, . . . ,uk) ∈ BVioi by matching uk+1

with neighbors of hup(ur) do

4. if |hup(ur).adj| ≤C(k+1)+ |hup(ur).adj|/p then

5. expand hup(u0, . . . ,uk) at Si;

6. else broadcast hup(u0, . . . ,uk) and expand it in parallel;

7. for each hup(u0, . . . ,uk,uk+1) to be verified at Si do

8. if |hup(uk+1).adj| ≤C(k+2)+ |hup(uk+1).adj|/p then

9. verify hup(u0, . . . ,uk+1) at Si;

10. else broadcast hup(u0, . . . ,uk+1) and verify it in parallel;

11. if hup(u0, . . . ,uk,uk+1) is a valid partial solution then

12. if it is a complete match then add it to Vioi;

13. else add it to BVioi;

14. return Vioi;

Figure 4.4: Procedure PIncMatch

neighborhoods at all processors (line 5). The update pivots are also evenly distributed

(line 6). Then PIncDect invokes procedure PIncMatch (shwon in Fig. 4.4) at each

processor Si with initial workload BVioi, in parallel for i∈ [1, p] (line 7). It periodically

balances workload (line 9), until all processors complete their work (line 10). At this

point, PIncDect collects local violations Vioi’s from all processors. The union of all

Vioi’s is ∆Vio(Σ,G,∆G) (line 11) and is returned (line 12).

At each processor Si, procedure PIncMatch expands a partial solution by filtering

candidate matches (lines 3-6), followed by verification (lines 7-10). Both steps split

skewed work units by applying the hybrid processing strategy based on cost estima-

tion, as described earlier. The local violations Vioi and workload BVioi are updated

accordingly (lines 11-13). It returns Vioi when no work units remain in BVioi, i.e.,

when Si finishes its workload (line 14).

Example 4.7: Consider a graph G revised from G4 of Fig. 4.1 by including additional
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98 accounts NatWest Helpi for i ∈ [1,98], where each NatWest Helpi has 1 follow-

ing and 2 followers, and it refers to company NatWest with status 1. Assume that G

is fragmented across 4 processors. Recall NGD ϕ4 and delete(NatWest Help,1) from

Example 4.6. After generating update pivot hup(x,s1) as in Example 4.6, algorithm

PIncDect identifies in parallel NC(hup(x,s1)), which is the 3-neighbor of node NatWest

Help. This subgraph is replicated at all 4 processors. Moreover, the adjacency lists are

evenly “partitioned” by annotating partial copies. For instance, each processor main-

tains a partial copy of 25 nodes (i.e., accounts) for the adjacency list of the company

node NatWest. Then it expands hup(x,s1) to find update-driven violations.

Suppose that a partial solution hup(x,s1,m1,n1,w) is to be expanded at processor

S j, where w is mapped to NatWest, and the next pattern node to be matched is y. Then

this partial solution is broadcast by S j, and PIncDect expands it in parallel at each pro-

cessor by mapping y to NatWest Helpi for some i ∈ [1,98] or NatWest Help, using the

partial copies maintained for the adjacency list of NatWest. Here the estimated parallel

cost 30 is less than the sequential cost 100; thus parallel computation is favored.

Now consider a partial solution of hup(x,s1,m1,n1,w,y) to be expanded at proces-

sor S j. Algorithm PIncDect expands it locally at S j with the entire adjacency list of

hup(y), since the size of hup(y).adj, i.e., sequential cost of 4, is less than the estimated

parallel cost.

Finally, a total of 99 violations are identified and added to ∆Vio−(Σ,G,∆G), in

which NatWest Helpi and NatWest Help are validated to be fake accounts for each

i ∈ [1,98]. 2

Theorem 4.6: PIncDect is parallel scalable relative to IncDect. 2

Proof: We show that with p processors, algorithm PIncDect runs in

Õ(|Σ||GdΣ
(∆G)||Σ|/p) time, where p < |GdΣ

(∆G)|. Obviously, identifying the

candidate neighborhoods for update pivots triggered by ∆G and Σ takes Õ(|GdΣ
(∆G)|)

time. We next analyze the cost for parallel expansion of partial solutions. The

work units (partial solutions) are dynamically balanced across p processors.

The total time for candidate filtering in processing partial solutions of size k

is at most Nk(k + 1)(Ck + |GdΣ
(∆G)|/p), and their verification needs at most

Nk+1(C(k + 1) + |GdΣ
(∆G)|/p)) time, where Nk denotes the number of partial

matches of size k. Moreover, it inspects partial solutions with size at most |VΣ| − 1,

where VΣ denotes the set of all pattern nodes in Σ. Hence parallel expansion
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takes at most ∑
|VΣ|−1
k=2

(
Nk(k + 1)(Ck +

|GdΣ
(∆G)|
p ) + Nk+1(C(k + 1) +

|GdΣ
(∆G)|
p )

)
<

∑
|Σ|−1
k=1 2C|Σ||GdΣ

(∆G)|k(|Σ| +
|GdΣ

(∆G)|
p ) <

4C|Σ|(1−|GdΣ
(∆G)||Σ|−1)|GdΣ

(∆G)|2
(1−|GdΣ

(∆G)|)p =

Õ(
|Σ||GdΣ

(∆G)||Σ|
p ) time, which dominates the cost of PIncDect. This verifies the

parallel scalability of algorithm PIncDect relative to sequential IncDect. 2

4.5.4 Handling disconnected patterns

We show that the sequential algorithm IncDect and parallel algorithm PIncDect in

Section 4.5 can be easily extended to detect violations of NGDs with disconnected

patterns.

Semi-locality. Locality is sometimes too strong to evaluate incremental algorithms. We

next introduce a weaker notion, semi-locality, by incorporating auxiliary information.

We say an incremental error detection algorithm A is semi-localizable if given a

set Σ of NGDs, a graph G, updates ∆G, and in addition, auxiliary structure AUX that

has size polynomial in |G| and |Σ| and is distributed over a set VAUX of nodes in G, its

cost can be expressed by |Σ| and the sizes of dΣ-neighbors of nodes involved in ∆G and

VAUX.

We start with the auxiliary structure used by IncDect.

Auxiliary structure. For each disconnected pattern Q = (Q1, . . . ,Qm) in Σ, where

Qi’s are the (maximum) connected components in Q for i ∈ [1,m], we maintain a set

of match pivots for every Qi. Each match pivot for Qi in G is a triple ((u,u′),(v,v′),N)

stored at v or v′ indicating that (v,v′) in G is a confirmed match of (u,u′) from Qi, and

is included in N different matches of Qi in G in total. All match pivots for Qi share

the same pattern edge (u,u′). The number N is obtained when validating NGDs of Σ

in the batch process, using e.g., algorithms of [FWX16]. Thus it is guaranteed that the

size of all match pivots maintained on G for disconnected patterns in Σ is bounded by

O(|Σ||G|).
We next extend sequential IncDect and parallel PIncDect to cope with disconnected

patterns by using match pivots. Intuitively, both are revised by incorporating the com-

bination of matches of distinct connected components.

Sequential algorithm. We extend procedure IncMatch of IncDect to process discon-

nected patterns. More specifically, for each NGD ϕ = Q[x̄](X → Y ) in Σ with dis-

connected pattern Q = (Q1, . . .Qm), IncMatch first identifies update-driven matches of

each connected Qi as described in Section 4.5.2. If such update-driven matches exist,
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it continues to find prior matches of other Q j’s ( j 6= i), starting from the match pivots

for Q j in G, also along the same lines as for connected patterns. The prior matches

are computed without inspecting any edge involved in ∆G, i.e., nodes that connected

by annotated edges are pruned from the candidates in IncSubMatch. Then IncMatch

constructs the matches of Q by combining each update-driven match of Qi with (a)

prior matches, or (b) other update-driven matches of the same type, i.e., both triggered

by edge insertion or deletion, of Q j’s ( j 6= i). IncMatch evaluates those literals of

Q[x̄] having variables from multiple components of Q to find those violating X → Y .

These matches are included in ∆Vio+(Σ,G,∆G) and ∆Vio−(Σ,G,∆G) accordingly, i.e.,

triggered by insertions and deletions, at last.

Parallel algorithm. Algorithm PIncDect first finds the update-driven matches of each

(maximum) connected component as in Section 4.5.3, and then discovers the prior

matches in case of the existence of update-driven matches, starting from match pivots.

It identifies the candidate neighborhood for each match pivot, followed by parallel

expansion as in processing connected ones to obtain these prior matches. For each

disconnected pattern Q = (Q1, . . . ,Qm) of NGD ϕ in Σ, PIncDect replicates the update-

driven matches and prior matches computed for Qi (i ∈ [1,m]), i.e., partial solutions of

Q, by broadcasting. These partial solutions are maintained using sorted arrays. Then

all processors combine the matches of distinct connected components in parallel to

compute the violations of ϕ along the same lines as in the sequential counterpart.

Since the number of matches for each connected component is already known, the

computation workload can be evenly partitioned by combining partial solutions with

certain indices in the arrays at each processor S j, where the indices are decided by the

predefined order on the p processors. More specifically, the indices {idi | i ∈ [1,m]} of

each combination of partial solutions processed by S j satisfy
m−1
∑

i=1
(idi ·

m
∏

s=i+1
NQs)+ idm

mod p = j, where NQs denotes the number of matches of connected Qs for s ∈ [1,m]

and p is the number of processors available. Each group of indices can be com-

puted efficiently as the productions need to be computed only once for all possible

combinations after broadcasting the partial solutions. Finally, the quantified com-

binations triggered by insertions (resp. deletions) are included in ∆Vio+(Σ,G,∆G)

(resp. ∆Vio−(Σ,G,∆G)).

Both algorithms above apply a “lazy” strategy that prior matches are enumerated

only when necessary, i.e., there exist update-driven matches for some connected com-

ponent.
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Example 4.8: Consider a graph G′ derived from G of Example 4.7 by removing the

company node “NatWest, Help” along with all the edges adjacent to it. Consider an

NGD ϕ′4 revised from ϕ4 of Example 4.3 by dropping the pattern node w and its adja-

cent edges from Q4, while keeping the attribute dependency of ϕ4 unchanged. Denote

by Q′4 the graph pattern of ϕ′4, and denote by Q1
4 and Q2

4 the connected components

of Q′4 having nodes x and y, respectively. Suppose that 297 edges are inserted into G′

to express that account “NatWest Helpi” has 22000 followings, 75900 followers with

status 1 for each i ∈ [0,98], making updates ∆G′.

Given ∆G′, IncDect first finds that each introduced account and its proper-

ties constitute an update-driven match of Q1
4. Therefore, it continues to identify

prior matches of Q2
4 using the match pivots maintained. For instance, each triple

((y,m2),(NatWest Helpi,1),1) for i ∈ [1,98] is a match pivot of Q2
4. There are also

99 prior matches of Q2
4 computed by IncDect, in which y is mapped to the company

node “NatWest Helpi” (i∈ [1,98]) and “NatWest Help”. These prior matches are com-

bined with the 99 update-driven matches at last. Since there exists a literal that has

variables from the 2 components, validation of this expression is conducted after the

combination. The qualified 99×99 = 9801 pairs are indeed the violations introduced

by ∆G′.

Now consider PIncDect. As opposed to sequential IncDect, PIncDect combines

this two sets of matches in parallel. Assume that there are 9 processors available

and the update-driven and prior matches are sorted according to the subscripts of the

company nodes. Here node “NatWest Help” is assigned a subscript of 0. Then each

processor Sk (k ∈ [0,8]) outputs only 1089 violations, where each pair contains com-

pany nodes “NatWest Helpi” and “NatWest Help j” such that 99i+ j mod 9 = k for

i, j ∈ [0,98]. 2

Analysis. (1) Algorithms IncDect and PIncDect correctly compute Vio(Σ,G,∆G)

since each possible violation for NGDs with disconcerted patterns, i.e., combination

of matches of distinct connected components, is identified and checked. (2) The time

complexity of IncDect is O(|Σ||GdΣ
(∆G∪VPM(Σ,G))||Σ|) if there are NGDs with dis-

connected patterns in Σ, where PM(Σ,G) refers to the set of match pivots in G for

connected components of patterns from Σ, and is distributed over VPM(Σ,G). Indeed,

computing prior matches is also done within the dΣ-neighbors of some match pivot via

procedure IncMatch. Therefore, IncDect is semi-localizable. (3) Algorithm PIncDect

runs in Õ(|Σ||GdΣ
(∆G∪VPM(Σ,G))||Σ|/p) time with p processors when processing dis-
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connected patterns. Hence it is parallel scalable relative to IncDect. To see this,

(a) one can verify along the same lines as in Section 4.5.3 that discovering matches

of distinct connected components needs at most Õ(ts(|G|, |Σ|, |∆G|)/p) time, where

ts(|G|, |Σ|, |∆G|) refers to the corresponding time consumed by IncDect, and (b) the

dominating cost of combining matches is evenly partitioned.

Incremental maintenance. To facilitate the computation of prior matches, match

pivots of each connected component are maintained dynamically. Initially they are

obtained by extracting the results, i.e., matches of individual connected components,

after executing batch algorithm on G. Thereafter, the counter N of each match pivot in-

creases (resp. decreases) when the incremental algorithms find update-driven matches

triggered by edge insertion (resp. deletion) containing it, upon which they also decide

the addition and removal of match pivots for subsequent processing.

4.6 Experimental Study

Using real-life and synthetic graphs, we conducted four sets of experiments to evaluate

the impact of (a) the size |∆G| of updates; (b) the size |G| of graphs; (c) the complexity

of sets Σ of NGDs; and (d) the number p of processors, and the parameters C and intvl

for workload balancing on our (parallel) incremental algorithm.

Experimental setting. We used three real-life graphs: (a) DBpedia [DBp], a knowl-

edge base with 28 million entities of 200 types and 33.4 million edges of 160 types;

(b) YAGO2, an extended knowledge graph of YAGO [SKW07] with 3.5 million nodes

of 13 types and 7.35 million edges of 36 types; and (c) Pokec [Pok], a social network

with 1.63 million nodes of 269 types and 30.6 million links of 11 types.

We also generated synthetic graphs G (Synthetic) with labels and attributes drawn

from an alphabet L of 500 symbols and values from a set of 2000 integers. It is

controlled by the numbers of nodes |V | and edges |E|, up to 80 million and 100 million,

respectively.

NGDs. We generated a set Σ of 100 meaningful NGDs for each graph. Attributes were

drawn from the real-life data for DBpedia, YAGO2 and Pokec, and from L for synthetic

graphs.

∆G. Updates ∆G to graph G are randomly generated, controlled by the size |∆G| and a

ratio γ of edge insertions to deletions. The ratio γ is 1 unless stated otherwise, i.e., the
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size |G| remains unchanged.

Algorithms. In Java, we implemented (1) sequential IncDect (Section 4.5.2) vs. Dect,

a batch error detection algorithm with NGDs, extended from the algorithm for

GFDs [FWX16]; (2) parallel PIncDect (Section 4.5.3) vs. PDect, an extension of the

parallel batch detection algorithm in [FWX16] to NGDs; and (3) parallel PIncDectns,

PIncDectnb and PIncDectNO, variants of PIncDect with no work unit splitting, no

workload balancing, and neither of the two, respectively.

We deployed the algorithms on a cluster of up to 20 machines, each with 32GB

DDR4 RAM and two 1.90GHz Intel(R) Xeon(R) E5-2609 CPU, running 64-bit Cen-

tOS7 with Linux kernel 3.10.0. Each experiment was run 5 times and the average is

reported here.

Experimental results. We next report our findings. The graphs are fragmented using

METIS [Met]. We took Synthetic G with 40 million nodes and 60 million edges as

default. We fixed the latency parameter C = 60, interval intvl = 45s, and the number of

processors p = 8 for parallel algorithms unless stated otherwise.

Exp-1: Effectiveness of incremental error detection. We first evaluated the incre-

mental algorithms against their batch counterparts. Fixing ||Σ|| = 50 and dΣ = 5, we

varied the size |∆G| of updates from 5% up to 40% in 5% increments. The results

are reported in Figures 4.5(a)–4.5(d) over DBpedia, YAGO2, Pokec and Synthetic G,

respectively (y-axis in logarithmic scale). We find the following.

(a) When |∆G| varies from 5% to 25% of |G|, IncDect is 8.8 to 1.7 (resp. 8.5 to 2.6,

9.8 to 2.6, and 6.6 to 1.7) times faster than Dect over the four graphs, respectively;

PIncDect outperforms PDect by 5.6 to 1.6 (resp. 9.8 to 1.8, 9.4 to 2.5, and 5.6 to 1.6)

times. PIncDect and IncDect beat their batch counterparts even when |∆G| is 33% of

|G|. These justify the need for incremental error detection.

(b) On average, PIncDect outperforms PIncDectns, PIncDectnb and PIncDectNO by

1.29, 1.33 and 1.61 times on DBpedia (resp. 1.31, 1.43, 1.81 on YAGO2, 1.33, 1.45,

1.81 on Pokec, and 1.27, 1.36, 1.5 on Synthetic) in the same setting. This verifies the

effectiveness of our hybrid workload balancing strategy. It also suggests that workload

balancing should be combined with work unit splitting.

(c) The larger |∆G| is, the slower all incremental algorithms are, while the batch al-

gorithms Dect and PDect are indifferent to |∆G|, as expected. In all cases, PIncDect
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Figure 4.5: Performance evaluation
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performs the best.

(d) Incremental error detection is feasible in practice: PIncDect takes 693s on DBpedia

when |∆G| is 25% of |G|, and IncDect takes 5840s, as opposed to 1121s (resp. 9878s)

by PDect (resp. Dect).

(e) All incremental algorithms are insensitive to the ratio γ of edge insertions to dele-

tions, which is verified by varying γ (not shown).

Exp-2: Impact of |G|. We evaluated the impact of |G| using synthetic graphs. Fix-

ing |∆G| as 15% of |G| and using the same NGDs as in Exp-1, we varied |G| from

(10M,20M) to (80M,100M). As shown in Fig. 4.5(e), (a) all the algorithms take longer

on larger G, as expected, (b) incremental algorithms are less sensitive to |G| than their

batch counterparts, and (c) PIncDect does the best among all.

The results over real-life graphs are consistent (not shown).

Exp-3: Complexity of NGDs. We also evaluated the impact of the complexity of sets

Σ of NGDs. We fixed |∆G|= 15%|G|.

Varying ||Σ||. Fixing dΣ = 5, we varied ||Σ|| from 50 to 100 (our industry collaborator

uses 95 rules [Bai17]). As shown in Figures 4.5(f) and 4.5(g) on DBpedia and YAGO2,

respectively, we can see that (a) the more NGDs are in Σ, the longer is taken by all the

algorithms, as expected, and (b) PIncDect and IncDect scale well with ||Σ||.
The results on Pokec and Synthetic are consistent (not shown).

Varying dΣ. Fixing ||Σ||= 50, we varied dΣ from 2 to 6 (up to 36 edges). Figures 4.5(h)

and 4.6(a) show that all algorithms take longer over larger dΣ on DBpedia and Pokec,

respectively. This is consistent with our analysis that the costs of our localizable in-

cremental algorithms increase when dΣ gets larger. Nonetheless, PIncDect is feasible

with real-life NGDs, e.g., it takes 489s on DBpedia when dΣ = 6, as opposed to 1197s

by PDect and 7532s by Dect.

The results on YAGO2 and Synthetic are consistent (not shown).

Exp-4: Scalability of parallel algorithms. Using the same NGDs as in Exp-1 and

fixing |∆G|= 15%|G| for all the graphs, we finally evaluated the scalability of parallel

algorithm PIncDect vs. PDect, PIncDectns, PIncDectnb and PIncDectNO, by varying

the number p of processors, the parameter C of latency, and interval intvl.

Varying p. Fixing C = 60 and intvl = 45s, we varied p from 4 to 20. As shown in Fig-

ures 4.6(b), 4.6(c), 4.6(d) and 4.6(e) over DBpedia, YAGO2, Pokec and Synthetic, re-
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Figure 4.6: Performance evaluation (cont.)
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spectively, when p changes from 4 to 20, (a) PIncDect and PDect perform much better

and are on average 3.7 and 3.8 times faster than IncDect and Dect, respectively, and (b)

PIncDect consistently outperforms PDect, PIncDectns, PIncDectnb and PIncDectNO:

on average it is 2.47 to 3.14, 1.32 to 1.37, 1.44 to 1.53, and 1.53 to 1.72 times better,

respectively.

These also verify the effectiveness of the hybrid workload partition strategy. It

improves PIncDectNO from 1.53 to 1.72 times. Moreover, work unit splitting or work-

load balancing alone does not work very well, as verified by the gap between the

performance of PIncDect and that of PIncDectns and PIncDectnb, respectively.

Varying C. Fixing p = 8 and intvl = 45s, we evaluated the impact of latency parameter

on PIncDect and PIncDectnb by tuning C from 20 to 100 in 20 increments. As shown in

Figures 4.6(f) and 4.6(g) over Pokec and Synthetic, PIncDect performs the best when C

is 80 and 60, respectively, taking 198s and 283s. On one hand, PIncDect favors parallel

computation with smaller C to split work units; on the other hand, PIncDect has a bias

towards local computation with larger latency C to reduce the communication cost.

The results on DBpedia and YAGO2 are consistent (not shown).

Varying intvl. Fixing p = 8 and C = 60, we varied intvl from 15s to 65s in 15s in-

crements, to evaluate impact of intervals for monitoring workloads on PIncDect and

PIncDectns. As shown in Figure 4.6(h) on YAGO2, the “optimal” intvl is 45s for

PIncDect. Similar to latency C, while smaller intvl helps workload balancing, it incurs

more communication cost. Hence we need to strike a balance.

The results on Pokec, DBpedia and Synthetic are consistent.

Summary. We find the following. (1) Our incremental error detection algorithms

scale well with |∆G|, |G|, ||Σ|| and dΣ. Algorithms IncDect and PIncDect outperform

the batch algorithm Dect from 6.7 to 2.1 times and from 52 to 13 times on average,

respectively, when |∆G| varies from 5% to 25% of |G| over real-file and synthetic

graphs. They perform better even when |∆G| is up to 33% of |G|. (2) The incremental

algorithms are much less sensitive to |G| than the batch algorithms, and are able to

deal with large-scale graphs. (3) Better still, parallel PIncDect scales well with the

number p of processors used: its runtime is improved by 3.7 times on average when p

increases from 4 to 20. (4) Algorithms IncDect and PIncDect are feasible in practice:

on real-life graphs, they take 1659s and 130s on average (with p = 20), respectively.

(5) The hybrid workload balancing strategy is effective: it improves the performance

of PIncDect by 1.73 times on average and works well with large p.



Chapter 5

Cleaning Graphs with Certainty

We have seen in Chapters 3 and 4 that dependencies such as keys and NGDs can be

used as data quality rules to tell us whether the graphs are dirty or clean, i.e., whether

there exists duplicate entities or semantic inconsistencies. However, they cannot be

used directly to fix the errors. To see this, consider the following example.

Example 5.1: A fraction of DBpedia is depicted as graph G in Fig. 5.1. It shows two

football clubs f1 and f2, both named Arsenal, along with their stadiums (s1-s4) and the

football leagues (c1-c2) that they play in. Each node in G denotes an entity with type

labeled in brackets and carries a tuple of attributes. It is known that

ϕ1: a football club cannot participate in two (domestic) football leagues of different

countries; and

ϕ2: if a stadium is used as a venue of one football league, and is owned by a

football club that plays in the same league, then the stadium and the league must

be in the same country.

These two rules detect inconsistencies among the values of attribute country in G for

(a) football leagues c1 and c2 (by ϕ1); and (b) stadium s3 and football league c2 (by

ϕ2). However, they do not tell us which attribute is wrong and to what value it should

be updated. Worse still, incorrect fixes may even introduce new errors, e.g., changing

c2.country to “Argentina” by taking c1.country adds a new violation of ϕ2 by football

league c2 and stadium s4. 2

The example raises the following questions. Is there a systematic method to clean

a graph, i.e., to generate fixes to errors in graphs detected by dependencies? Moreover,

can we ensure the fixes to be certain, i.e., guaranteed correct? While there has been

work on cleaning relations (e.g., [BFFR05, CFG+07, PSC+15, YEN+11, FLM+12,

149
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Figure 5.1: A labeled directed graph

FLM+11]), no prior work has studied how to clean graphs with correctness guarantee.

It is more challenging to clean graphs than relations. Cleaning a graph requires not

only modifications to its attribute values but also changes to its topological structures.

Worse yet, real-life graphs are typically semi-structured and schemaless.

This chapter answers these questions. We propose a rule-based method Analogist

to clean graphs by combining object identification and data repairing. More specifi-

cally, we extend graph entity dependencies (GEDs) as data quality rules, and Analogist

leverages GEDs to find certain fixes to the violations detected, based on a given set of

ground truth (confirmed attribute values and entity matches).

Example 5.2: A block Γ of ground truth for G is underlined in Fig. 5.1, e.g., the names

of football leagues and stadiums, which are verified by, e.g., domain experts or crowd-

sourcing. Consider the rules ϕ1 and ϕ2 of Example 5.1 and the following keys for

identifying entities:

ϕ3: a stadium can be identified by its attribute value of capacity and the id of its

architect (entity); and

ϕ4: two football leagues refer to the same one if they have the same name and

country attribute values.

Given the rules and Γ, Analogist fixes the inconsistencies of Example 5.1 as fol-

lows. (a) It first identifies stadiums s1 and s2 by ϕ3 since they have the same capacity

and architect that are asserted correct by Γ. (b) As a result, the country value of s1 is

enriched by taking “England” from s2, which is assured correct by Γ. (c) This correct

value is then propagated to c1.country via rule ϕ2, and one step further to c2.country
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by ϕ1, i.e., country of “England” is confirmed correct for both leagues c1 and c2. (d)

It next identifies c1 and c2 by using ϕ4 and the confirmed values of country above. (e)

Finally, ϕ2 tells us to correct s3.country by taking the value of c2.country.

Analogist interleaves data repairing and object identification: identifying s1 and

s2 in step (a) helps it correct the country values of s1, c1 and c2 in steps (b) and (c),

which in turn allows Analogist to identify c1 and c2 in step (d), followed by repairing

in step (e). 2

To the best of our knowledge, this work is the first effort to clean graph-structured

data with certain fixes, from foundation to (parallel) algorithms. As confirmed by our

industry collaborators [Bai17], rule-based methods account for 90% of the industry

effort for data cleaning in practice. Our empirical study suggests that the method is

promising for cleaning large-scale real-life graphs.

5.1 GEDs as Data Quality Rules

We extend GEDs defined in [FL17] as data quality rules.

5.1.1 Preliminaries

We first review basic notations of data graphs, patterns and graph pattern matching.

Assume three countably infinite sets Θ, ϒ and U , denoting (node and edge) labels,

attributes and constant values, respectively.

Data Graphs. We consider directed graphs G = (V,E,L,FA), where (a) V is a finite

set of nodes, and each node v ∈ V carries a label L(v) ∈ Θ, (b) E ⊆ V ×V is a finite

set of edges, in which e = (v,v′) is an edge from node v to v′, e is identified by an edge

id, and carries a label L(e) ∈ Θ; (c) each node v ∈ V carries a tuple FA(v) = (A1 =

a1, . . . ,An = an) of attributes of a finite arity, where Ai ∈ ϒ and ai ∈ U , written as

v.Ai = ai, and Ai 6= A j if i 6= j. In particular, each v has a special attribute id denoting

its node identity.

That is, we consider finite directed graphs in which nodes and edges are labeled.

Each node v carries v.id and attributes for, e.g., properties, keywords and rating, as in

property graphs.

Patterns. A graph pattern is a graph Q[x̄] = (VQ, EQ, LQ), where (1) VQ (resp. EQ) is a

finite set of pattern nodes (resp. edges); (2) LQ is a function that assigns a label LQ(u)
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(resp. LQ(e)) to each node u ∈ VQ (resp. edge e ∈ EQ); and (3) x̄ denotes the nodes in

VQ as a list of distinct variables. Labels LQ(u) and LQ(e) are drawn from alphabet Θ.

Moreover, we allow wildcard ‘ ’ as a special label in Q.

Graph pattern matching. We say that a label ι matches ι′, denoted by ι� ι′, if either

(a) both ι and ι′ are in Θ and ι = ι′, or (b) ι′ ∈Θ and ι is ‘ ’, i.e., wildcard matches any

label in Θ.

A match of pattern Q[x̄] in graph G is a homomorphism h from Q to G such that (a)

for each node u ∈ VQ, LQ(u) � L(h(u)); and (b) for each edge e = (u,u′) in Q, there

exists an edge e′ = (h(u),h(u′)) in G such that LQ(e)� L(e′), “preserving” edges and

labels.

We denote the match as a vector h(x̄) if it is clear from the context, where h(x̄)

consists of h(x) for all variables x ∈ x̄. Intuitively, h(x̄) is a list of entities identified by

pattern Q in graph G.

5.1.2 Graph Entity Dependencies

We now introduce an extension of the GEDs of [FL17], also referred to as GEDs, by

supporting limited negation in terms of inequality.

A graph entity dependency (GED) is defined as ϕ = Q[x̄](X → Y ), where Q[x̄] is a

graph pattern, and X and Y are (possibly empty) sets of literals of x̄. A literal of x̄ is

one of the following: for x,y ∈ x̄,

(a) constant literal x.A = c or x.A 6= c, where c is a constant, and A is an attribute in

ϒ that is not id;

(b) variable literal x.A = y.B or x.A 6= y.B, where A and B are attributes in ϒ that are

not id; or

(c) id literal x.id = y.id or x.id 6= y.id.

We refer to x.A = c, x.A = y.B, x.id = y.id as equality literals; and x.A 6= c, x.A 6=
y.B, x.id 6= y.id as inequality literals. We refer to Q[x̄] and X → Y as the pattern and

constraint of ϕ, respectively.

Intuitively, GED ϕ is a combination of (1) a pattern Q, to identify entities in a graph,

and (2) an attribute constraint X → Y that extends functional dependencies (FDs), to

be applied to the entities identified by Q. Constant literals x.A = c enforce constant

bindings like in CFDs [FGJK08], which have proven useful in data cleaning. An id

literal x.id = y.id states that x and y denote the same node (entity).



5.1. GEDs as Data Quality Rules 153

y

z

x
(league) (league)

(football club)

member member 

Q1

y

z

x
(stadium) (league)

(football club)

owned member 

Q2 Q3

x'

y

x

(architect)

designed

(stadium) (stadium)

designed

y'
(architect)

Q4

x'

y

x

(football club)

owned

(stadium) (stadium)

owned

y'
(football club)

Q5

x
(league)

y
(league)

Q6

x
(stadium)

y
(stadium)

venue of

Figure 5.2: Graph patterns of GEDs

In contrast to [FL17], GEDs support inequality literals x.A 6= c, x.A 6= y.B and x.id 6=
y.id. These allow us to reduce false positives in object identification, i.e., entities that

do not match. For example, if x and y are male and female, respectively, then x and y

may not be identified to be the same person, i.e., x.id 6= y.id.

Example 5.3: Recall the data quality rules ϕ1–ϕ4 introduced in Examples 5.1 and 5.2.

These rules can be expressed as GEDs by using the graph patterns shown in Fig. 5.2 as

follows.

(1) ϕ1 = Q1[x,y,z]( /0→ x.country = y.country). It states that if a football club z is a

member of two (domestic) leagues x and y, then x and y must be based in the same

country. Here X is /0.

(2) ϕ2 = Q2[x,y,z]( /0→ x.country = y.country). It says that if a football club z partic-

ipates in a league y, z has a home ground stadium x and if x is used as a venue for y,

then x and y must be in the same country. Here Q2 is a cyclic pattern.

(3) ϕ3 = Q3[x,x′,y,y′](X3→ x.id = x′.id), where X3 consists of id literal y.id = y′.id and

variable literal x.capacity = x′.capacity. It says that stadiums x and x′ can be identified

by their capacity attributes and the ids of their architects y and y′.

(4) ϕ4 = Q4[x,y](X4 → x.id = y.id), where X4 = {x.name = y.name,x.country =

y.country}. It states that league entities x and y can be identified by their name and

country attributes.

We define a set Σ = {ϕi | i ∈ [1,6]}∪{ϕ′5} by including three GEDs below, which

are also defined with the patterns in Fig. 5.2:
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(5) ϕ5 = Q5[x,x′,y,y′](X5 → x.id = x′.id), where X5 = {y.id = y′.id,x.opened =

x′.opened}. It says that a stadium can be identified by its date opened and the id of

its owner (football club).

(6) ϕ′5 =Q5[x,x′,y,y′](X ′5→ y.id= y′.id), where X ′5 = {x.id= x′.id, y.name= y′.name}.
Conversely, each football club is uniquely identified by its name and the id of its

stadium.

(7) ϕ6 = Q6[x,y](X6 → x.id 6= y.id), where X6 = {x.status = “working”,y.status =

“demolished”}. It states that two stadium entities x and y cannot refer to the same

one when they have status of “working” and “demolished”, respectively.

Note that ϕ5 and ϕ′5 are recursively defined: to identify stadiums, we check the

identities of their football club’s, and vice versa. 2

Semantics. Consider a GED ϕ = Q[x̄](X → Y ), a match h(x̄) of Q in a graph G, and a

literal l of x̄. We say that h(x̄) satisfies l, denoted by h(x̄) |= l, if (a) when l is x.A = c,

attribute A exists at node v = h(x), and v.A = c; (b) when l is x.A = y.B, attributes

A and B exist at v = h(x) and v′ = h(y), respectively, and v.A = v′.B; and (c) when l

is x.id = y.id, h(x) and h(y) denote the same node; hence, they have the same set of

attributes and edges. Similarly we define h(x̄) |= l when l is an inequality literal, e.g.,

when l is x.A 6= c, h(x̄) |= l if attribute A exists at v = h(x), and v.A 6= c.

We write h(x̄) |= X if h(x̄) satisfies all literals in X . In particular, if X is /0, then

h(x̄) |=X for any match h(x̄) of Q in G; similarly for h(x̄) |=Y . We write h(x̄) |=X→Y

if h(x̄) |= X implies h(x̄) |= Y .

A graph G satisfies GED ϕ, denoted by G |= ϕ, if for all matches h(x̄) of Q in G,

h(x̄) |= X → Y . A graph G satisfies a set Σ of GEDs if for all ϕ ∈ Σ, G |= ϕ, i.e., G

satisfies every GED in Σ.

Example 5.4: Recall graph G of Fig. 5.1 and the GEDs of Example 5.3. Here G |= ϕ6,

since s4 and s2, the only stadiums having status attributes, have different id’s. Simi-

larly, G satisfies ϕ4, ϕ5 and ϕ′5. In contrast, G 6|= ϕ1, as h(x).country 6= h(y).country at

match h : x 7→ c1, y 7→ c2 and z 7→ f1. Similarly, G 6|= ϕ2 and G 6|= ϕ3. 2

Special cases. We highlight the following special cases of GEDs.

(1) GFDs. Following [FWX16], we refer to GEDs without id literals as GFDs, i.e.,

Q[x̄](X → Y ) in which neither X nor Y contains x.id = y.id or x.id 6= y.id. In Exam-
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ple 5.3, ϕ1 and ϕ2 are GFDs.

As shown in [FL17], GFDs extend CFDs, which are widely used in repairing rela-

tional data [FG12]. GFDs support data repairing by correcting attribute values along

the same lines as CFDs, e.g., ϕ1 and ϕ2 can correct the country values of c1, c2, and s3

in G of Fig. 5.1.

(2) Keys. We say that a pattern Q2[ȳ] is a copy of Q1[x̄] via an isomorphism f : x̄ 7→ ȳ

if Q2[ȳ] is Q1[x̄] with variables renamed by f . That is, let Q1[x̄] = (VQ1,EQ1,LQ1) and

Q2[ȳ] = (VQ2,EQ2,LQ2). Then for each x∈ x̄, LQ1(x) = LQ2( f (x)); and e= (x1,x2) is an

edge in EQ1 if and only if e′ = ( f (x1), f (x2)) is an edge in EQ2 , and LQ1(e) = LQ2(e′).

We assume w.l.o.g. that x̄ and ȳ are disjoint.

A key is a GED of the form Q[z̄](X → x0.id = y0.id), where (a) Q[z̄] is composed of

patterns Q1[x̄] and Q2[ȳ], and Q2[ȳ] is a copy of Q1[x̄] via an isomorphism f : x̄ 7→ ȳ, (b)

z̄ consists of x̄ followed by ȳ, and (c) x0 ∈ x̄ and y0 = f (x0) are two designated nodes

in Q.

For instance, ϕ3, ϕ4, ϕ5 and ϕ′5 of Example 5.3 are keys.

Keys are used to identify vertices that refer to the same entity, i.e., object identifi-

cation [FFTD15]. For instance, ϕ3 and ϕ5 help us identify stadiums, and ϕ4 and ϕ′5
allow us match football leagues. As shown in Example 5.3, keys may be recursively

defined.

(3) Forbidding constraints (FCs). An FC is a GED Q[x̄](X → x.id 6= y.id), to deduce

node pairs that should not be identified. For instance, ϕ6 tells us when two stadiums

should not be matched.

Summing up, GFDs help us repair inconsistent attribute values like CFDs. Keys are

used in object identification to find pairs of nodes in the graph that refer to the same

real-life entity. FCs are negative rules and reduce false positives in object identification.

The need for all these constraints has been verified by the experience of relational data

cleaning (see, e.g., [FG12] for a survey).

Indeed, GEDs subsume the keys of Chapter 3 and GFDs of [FWX16]. As we aim to

clean graphs by using GEDs in this chapter, a chase-based method (to be shown in Sec-

tion 5.2) is developed to derive certain fixes, which extends the chase of Section 3.2,

i.e., entity matching with keys, by incorporating both data repairing and object iden-

tification into a single process. Note that NGDs of Chapter 4 cannot be expressed by

GEDs since GEDs support neither arithmetic expressions nor comparison predicates

beyond ‘=’ and ‘6=’.
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5.2 Certain Fixes with the Chase

Consider a graph G = (V,E,L,FA) and a finite set Σ of GEDs such that G 6|= Σ, i.e.,

there exist inconsistencies in G as violations of the GEDs of Σ. We want to clean G by

fixing the inconsistencies, using the GEDs of Σ as data quality rules. In addition, we

want to assure that the fixes are certain based on a block Γ of ground truth.

We first present fixes by revising the chase (Section 5.2.1). We then propose clean-

ing method Analogist with certain fixes (Section 5.2.2).

5.2.1 The Chase Revised

We start with a representation of (candidate) fixes to inconsistencies. We then revise

the chase (cf. [AHV95]) for Analogist to deduce fixes.

Fixes. We represent fixes as an equivalence relation on nodes x and attributes x.A in G,

denoted by Eq. It includes equivalence classes [x]Eq for nodes x in V , and [x.A]Eq for

attributes in FA(x). More specifically, (a) [x]Eq is a set of nodes y ∈ V , including x for

all x∈V in particular; and (b) [x.A]Eq is a set of attributes y.B and constants c, including

x.A for all x.A is in FA(x). The relation Eq is reflexive, symmetric and transitive.

Intuitively, for each node y∈ [x]Eq, the pair (x,y) is a match for object identification,

i.e., x.id = y.id. For each y.B ∈ [x.A]Eq, x.A = y.B, and if c ∈ [x.A]Eq, x.A has value c,

for data repairing.

We use another relation NEq to keep track of entities that should not be matched.

Here [x]NEq includes nodes y such that x.id 6= y.id, and [x.A]NEq includes constants d

and attributes y.B such that x.A 6= d and x.A 6= y.B. This relation is symmetric and

“transitive” via Eq, e.g., for any z ∈ [x]Eq and w ∈ [x]NEq, z.id 6= w.id.

For v ∈ [u]Eq or v ∈ [u]NEq, we refer to (u,v) as a fix.

We will deduce sequences of fixes (Eqi,NEqi) by applying GEDs of Σ. The initial

Eq0 is the block Γ of ground truth of G, represented as an equivalence relation as above,

in which [x]Eq and [x.A]Eq involve only nodes x and attributes x.A in G. The ground

truth may be validated by asking domain experts, crowd-sourcing, or using highly

accurate knowledge bases as reference data. In this chapter we assume the availability

of ground truth, and focus on how to deduce (certain) fixes to errors in G, from Γ by

using the rules of Σ. For simplicity we assume an initial NEq0 = /0 to start with.

Cleaning. We clean G by applying the fixes of Eq as follows.
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(1) For each [x]Eq in Eq and y ∈ [x]Eq, i.e., if x and y are identified, we merge x and y

into a single node, denoted by xEq, which

◦ inherits attributes of both FA(x) and FA(y) in G; and

◦ retains all edges pertaining to x or y, i.e., if e1 = (x,z) is an edge in G, then

e′1 = (xEq,z) is an edge carrying the same label L(e); similarly for edges e2(z,x),

e3(y,z) and e4(z,y).

(2) For each [x.A]Eq, if c∈ [x.A]Eq, we generate necessary new attribute x.A and repairs

x.A with correct value c:

◦ add attribute A to xEq if x.A does not exist in G, and

◦ let xEq.A = c no matter whether x.A has a value or not.

(3) For each [x.A]Eq and y.B ∈ [x.A]Eq, we equalize x.A and y.B:

◦ add x.A (resp. y.B) to xEq (resp. yEq) if it does not exist; and

◦ let xEq.A = yEq.B = c if there exists c∈ [x.A]Eq; otherwise let xEq.A = yEq.B = #,

denoting value to be assigned.

Here the symbol # indicates that an attribute value is yet to be determined, i.e.,

instantiated, by some subsequent fixes in Eq, acting like labeled nulls. Note that # can

be replaced by any constant from Eq by following (2) or (3) above, where the scope

of each instantiation is limited to a single attribute. That is, the #’s associated with

different attributes could be possibly assigned different values.

The process proceeds until all [x]Eq and [x.A]Eq of Eq are enforced on G. It yields

a graph, referred to as the repair of G by Eq, denoted by GEq. The process supports

object identification (when y∈ [x]Eq) and data repairing (when c∈ [x.A]Eq or y.B= x.A)

at the same time, and may generate and enrich new attributes.

The chase. We compute fixes by chasing graph G with GEDs of Σ, starting with the

block Γ of ground truth, i.e., Eq0. The chase is a classical tool in the relational database

theory [AHV95]. It was recently revised for chasing a graph by GEDs [FL17]. Below

we further extend it and make it a tool for cleaning graphs with (certain) fixes.

More specifically, a chase step of G by Σ at (Eq,NEq) is

(Eq,NEq)⇒(ϕ,h) (Eq′,NEq′).

Here ϕ = Q[x̄](X → Y ) is a GED in Σ, and h(x̄) is a match of pattern Q in the repair

GEq by Eq, satisfying conditions (1)-(2) below:

(1) X is entailed by (Eq, NEq) at h(x̄), i.e., for each literal l ∈ X , if l is x.id = y.id,
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then h(y) ∈ [h(x)]Eq; if l is x.A = c, then c ∈ [h(x).A]Eq; and if l is x.A = y.B, then

h(y).B ∈ [h(x).A]Eq; similarly for inequality literals to be deduced from NEq; and

(2) either Eq′ extends Eq or NEq′ extends NEq by adding a fix:

(2.1) Eq′ extends Eq by instantiating one equality literal l ∈Y , if any; more specifically,

l and Eq′ satisfy one of the following conditions:

(a) if l is x.A = c and c 6∈ [h(x).A]Eq, then Eq′ extends Eq by (a) including a

new equivalence class [h(x).A]Eq′ if h(x).A is not in Eq, and (b) adding c to

[h(x).A]Eq′;

(b) if l is x.A = y.B and h(y).B 6∈ [h(x).A]Eq, then Eq′ extends Eq by adding (a)

[h(x).A]Eq′ if h(x).A is not in Eq; similarly for [h(y).B]Eq′; and (b) h(y).B to

[h(x).A]Eq′; and

(c) if l is x.id = y.id and h(y) 6∈ [h(x)]Eq, then Eq′ extends Eq by adding h(y) to

[h(x)]Eq′ . Moreover, for each attribute A of h(y) in GEq, add [h(x).A]Eq′ if it

does not yet exist, and add h(y).A to [h(x).A]Eq′ . That is, when two nodes are

identified, so are their corresponding attributes.

We compute the equivalence relation of Eq′, also denoted by Eq′, by making it reflex-

ive, symmetric and transitive.

(2.2) NEq′ extends NEq by instantiating an inequality literal l ∈Y , if any, i.e., x.A 6= c,

x.A 6= y.B and x.id 6= y.id along the same lines as in (2.1) above. For instance, if l is

x.id 6= y.id and h(y) 6∈ [h(x)]NEq, then NEq′ extends NEq by adding h(y) to [h(x)]NEq′ .

Example 5.5: Recall graph G, ground truth Γ of Example 5.1, key ϕ3, GFD ϕ2 and FC

ϕ6 of Example 5.3. Initially [x]Eq0 = {x} and [x.A]Eq0 = {x.A,Γ(x.A)}∪{y.B | Γ(x.A)=
Γ(y.B)} for each node x and attribute x.A, where Γ(x.A) (resp. Γ(y.B)) is the confirmed

value of x.A (resp. y.B) in Γ if exists . Consider three chase steps.

(1) (Eq0,NEq)⇒(ϕ3,h3) (Eq1,NEq), where (a) NEq = /0; (b) h3: x 7→ s1, x′ 7→ s2, y 7→ a,

y′ 7→ a; and (c) Eq1 extends Eq0 by letting [s1]Eq1 = [s2]Eq1 = {s1,s2}, [s1.alias]Eq1 =

[s2.alias]Eq1 = {s1.alias,s2.alias}, and [s1.B]Eq1 = [s2.B]Eq1 = {s1.B,s2.B,Γ(s2.B)} for

attribute B in {name,capacity,country,status}.
The chase step computes fixes in Eq1, which (a) identify stadiums s1 and s2, along

with their edges and attributes; and (b) enrich attributes, e.g., s1.country by taking

“England” from Γ(s2.country). Moreover, s1 and s2 are merged into a single sEq1 in

the repair GEq1 .



5.2. Certain Fixes with the Chase 159

(2) (Eq1,NEq)⇒(ϕ2,h2) (Eq2,NEq), where (a) h2 is a match of Q2 in GEq1: x 7→ sEq1 ,

y 7→ c1 and z 7→ f1; and (b) Eq2 extends Eq1 with [s1.country]Eq2 = [s2.country]Eq2 =

[c1.country]Eq2 = {s1.country,s2.country,c1.country,“England”}.
This step propagates “England” to attribute c1.country, by letting c1.country =

“England” in the repair GEq2 of G.

(3) (Eq0,NEq)⇒(ϕ6,h6) (Eq0,NEq′), where (a) h6: x 7→ s4, y 7→ s2; and (b) NEq′ extends

NEq with [s4]NEq′ = {s2} and [s2]NEq′ = {s4}.
By applying FC ϕ6, this step finds that stadiums s2 and s4 do not match (s2.status

is demolished while s4.status is working), although they have the same name and are

owned by the same club. 2

Validity. We say that the chase step (Eq,NEq)⇒(ϕ,h) (Eq′,NEq′) is valid if none of the

following conflicts occurs:

◦ label conflict: there exists node y∈ [x]Eq′ such that L(x) 6= L(y), i.e., Eq′ attempts

to merge nodes with distinct labels;

◦ attribute conflict: there exists y.B ∈ [x.A]Eq′ such that x.A = c and y.B = d for

c ∈ [x.A]Eq′ 6= d ∈ [y.B]Eq′ , i.e., Eq′ assigns distinct values to the same attribute;

or

◦ either [x]Eq′ ∩ [x]NEq′ 6= /0 or [x.A]Eq′ ∩ [x.A]NEq′ 6= /0. That is, Eq′ and NEq′ must

be disjoint for all x and x.A.

Otherwise we say that Eq′ is inconsistent.

One can verify that when Eq′ is consistent, the repair GEq′ of G by fixes Eq′ is

well defined. In particular, if A is an attribute of both x and y, then x.A = y.A, i.e., the

attributes of xEq′ are well-defined.

Chasing. We deduce fixes by a chasing sequence ρ of G by (Σ,Γ):

(Eq0,NEq0), . . . , (Eqk,NEqk),

where Eq0 = Γ, NEq0 = /0, and for all i∈ [0,k−1], there exist a GED ϕ = Q[x̄](X→Y )

in Σ and a match h of Q in the repair GEqi such that (Eqi,NEqi)⇒(ϕ,h) (Eqi+1,NEqi+1)

is a valid chase step.

The sequence is terminal if there exist no more GED ϕ in Σ, match h of Q of ϕ

in GEqk and (Eqk+1,NEqk+1) such that (Eqk,NEqk)⇒(ϕ,h) (Eqk+1,NEqk+1) is a valid

chase step.

Example 5.6: A chasing sequence ρ consists of the chase steps (1) and (2) given in

Example 5.5, followed by steps (a)–(f) below:
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Figure 5.3: The repair of graph G

(a) (Eq2,NEq)⇒(ϕ1,h1) (Eq3,NEq) by GFD ϕ1 such that Eq3 extends Eq2 by includ-

ing “England” in [c2.country]Eq3;

(b) by enforcing key ϕ4, Eq4 is derived from Eq3 by merging [c1]Eq3 and [c2]Eq3

along with their attributes;

(c) by applying GFD ϕ2, (Eq4,NEq)⇒(ϕ2,h′2)
(Eq5,NEq), in which “England” is

added to [s3.country]Eq5;

(d) by enforcing key ϕ′5, football clubs f1 and f2 are identified by adding f1 (resp. f2)

to [ f2]Eq6 (resp. [ f1]Eq6);

(e) stadiums s3 and s4 are identified by key ϕ5, by merging their equivalence classes

and attributes in Eq7; and

(f) NEq is extended to NEq′ as step (3) of Example 5.5.

The sequence ρ is terminal, and ends up with (Eq7,NEq′). The repair GEq7 of G

by Eq7 is depicted in Fig. 5.3, in which all the country attributes are assigned value

“England”, and moreover, leagues c1 and c2 in graph G (resp. football clubs f1 and f2,

stadiums s1 and s2, and s3 and s4) are identified as c (resp. f , s′1, and s′2). The sequence

interleaves data repairing and object identification. 2

Chasing sequence ρ terminates in one of the following two cases.

(a) No GEDs in Σ can be further applied. If so, we say that ρ is valid, and refer to

(Eqk,NEqk,GEqk) as its result. One can verify that in a valid ρ, for all i ∈ [0,k],

GEqi is well-defined.

(b) Either Eq0 is inconsistent or there exist ϕ, h, Eqk+1, NEqk+1 such that

(Eqk,NEqk)⇒(ϕ,h) (Eqk+1,NEqk+1) but Eqk+1 is inconsistent. Such ρ is invalid,

with result ⊥ (undefined).

Church-Rosser property. It is natural to ask whether the chase of graph G by (Σ,Γ)

can always terminate with the same fixes.



5.2. Certain Fixes with the Chase 161

Following the relational database theory [AHV95], we say that chasing with GEDs

has the Church-Rosser property if for all Σ, Γ and G, all terminal chasing sequences of

G by (Σ,Γ) converge at the same result, regardless of in what order the GEDs in Σ are

applied.

Theorem 5.1: For any graph G, any set Σ of GEDs, and any block Γ of ground truth

of G, all chasing sequences of G by (Σ,Γ) are terminal, and moreover, converge at the

same result. 2

Thus we define the result of chasing G by (Σ,Γ) as the result of any terminal chas-

ing sequence of G by (Σ,Γ), denoted by Chase(G,Σ,Γ).

For instance, (Eq7,NEq′,GEq7) given in Fig. 5.3 is the result of chasing graph G of

Fig. 5.1 by Σ of Example 5.3 and the ground truth of Fig. 5.1, no matter what rules of

Σ are used and how we apply them.

Proof of Theorem 5.1: We prove the two statements of Theorem 5.1, respectively, one

by one.

(1) All chasing sequences of G by (Σ,Γ) are finite. Consider a chasing sequence ρ =

(Eq0,NEq0), . . . ,(Eqk,NEqk) of G by (Σ, Γ). To analyze the length of ρ, we first study

the maximum cardinality of ||Eqi|| and ||NEqi||, which indicate the maximum number of

chase steps since each step extends either |Eq| or |NEq|. One can verify the following

by extending the analysis of [FL17]: (a) ||Eqi|| ≤ 4 · |G| · |Σ|+2 · |Γ|, and (b) ||NEqi|| ≤
(4 · |G| · |Σ|+2 · |Γ|)2. Note that an element z can appear in distinct [x]NEqi and [y]NEqi .

Hence there exist at most 4 · |G| · |Σ|+2 · |Γ| many [x]NEqi , and each [x]NEqi contains at

most 4 · |G| · |Σ|+2 · |Γ| many elements.

We now study the length |ρ| of ρ. In a chase step (Eqi−1,NEqi−1) ⇒(ϕ,h)

(Eqi,NEqi), Eqi (resp. NEqi) extends Eqi−1 (resp. NEqi−1) by adding one fix l (Sec-

tion 5.2). Assume w.l.o.g. that l is x.A 6= c; the proofs for other cases are similar.

Then ||NEqi|| ≥ ||NEqi−1||+ 2. Indeed, (a) when neither c nor x.A is in NEqi−1,

||NEqi|| = ||NEqi−1||+ 2, since we need to create two new classes; (b) when only

one of c and x.A exists in NEqi−1, ||NEqi|| = ||NEqi−1||+ 2, (c) when both c and

x.A are in NEqi−1, ||NEqi|| ≥ ||NEqi−1||+ 2, since we need to add at least one ele-

ment to [x.A]NEq, and [c]NEq, respectively. Since ||NEqi|| ≤ (4 · |G| · |Σ|+ 2 · |Γ|)2,

to extend NEq we need at most (4·|G|·|Σ|+2·|Γ|)2

2 = 2 · (2 · |G| · |Σ|+ |Γ|)2 chase steps.

Similarly, we need at most 8 · |G| · |Σ|+ 4 · |Γ| steps to extend Eq. Thus |ρ| ≤
k ≤ (8 · |G| · |Σ|+ 4 · |Γ|) · 2 · (2 · |G| · |Σ|+ |Γ|)2 ≤ 8 · (2 · |G| · |Σ|+ |Γ|)3. Hence any

chasing sequence ρ is finite.
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(2) Church-Rosser property. Assume by contradiction that there exist two terminal

chasing sequences ρ1 = (Eq0,NEq0), . . ., (Eqk, NEqk) and ρ2 = (Eq0,NEq0), . . .,

(Eq′l,NEq′l) such that they have different results. Assume w.l.o.g. that (Eq0,NEq0)

is consistent, since otherwise both ρ1 and ρ2 are invalid and end up with the same

result. Then if (Eqk,NEqk) and (Eq′l,NEq′l) are different, then we have one of the

following cases: (1) Eqk \Eq′l 6= /0; (2) Eq′l \Eqk 6= /0; (3) NEqk \NEq′l 6= /0; and (4)

NEq′l \NEqk 6= /0. To show that these lead to contradiction, we first show the following

lemma.

Lemma 5.2: If ρ1 is valid, and Eq′l \ Eqk 6= /0 or NEq′l \NEqk 6= /0, then ρ1 is not

terminal. 2

Proof of Lemma 5.2: When either S = Eq′l \Eqk 6= /0 or N = NEq′l \NEqk 6= /0, we

show that there exist a GED ϕ = Q[x̄](X →Y ) in Σ, a match h of Q in GEqk , and Eqk+1

and NEqk+1 such that (Eqk,NEqk)⇒(ϕ,h) (Eqk+1,NEqk+1) is a valid chase step. Hence

ρ1 is not terminal.

We define ϕ, h, Eqk+1, NEqk+1 as follows. Suppose that (Eq′j,NEq′j) (1≤ j ≤ l) is

the first case in ρ2 such that S∩Eq′j 6= /0 or N∩NEq′j 6= /0, and (Eq′j−1,NEq′j−1)⇒(ϕ j,h j)

(Eq′j,NEq′j) is the corresponding chase step in ρ2, where ϕ j = Q j[x̄ j](X j → Yj) is a

GED in Σ, h j is a match of Q j in GEq′j−1
, and h j(x̄ j) |= X j. Since both sequences

start with (Eq0,NEq0), we have that j > 0, Eq′j−1 ⊆ Eqk and NEq′j−1 ⊆ NEqk. We let

ϕ = ϕ j, and define h as follows: for each node x in Q j, if h j(x) = yEq′j−1
(i.e., [y]Eq′j−1

,

see Section 5.2 for the definition of the repair of Eq on G), then h(x) = yEqk (denoting

[y]Eqk). Moreover, Eqk+1 and NEqk+1 can be extended accordingly. Similar to the proof

in [FL17], we can verify that (Eqk,NEqk)⇒(ϕ,h) (Eqk+1,NEqk+1) is a valid chase step.

Using Lemma 5.2, we prove statement (2) by considering two cases.

(a) Both ρ1 and ρ2 are valid but have different results. By Lemma 5.2, we must have

that Eq′l \Eqk = /0, Eqk \Eq′l = /0, NEq′l \NEqk = /0, and NEqk \NEq′l = /0, since other-

wise one of the two sequences is not terminal. But then Eqk = Eq′l and NEqk = NEq′l ,

i.e., ρ1 and ρ2 have the same result, a contradiction to the assumption.

(b) One of them is valid and the other is not. Assume w.l.o.g. that ρ1 is valid

but ρ2 is not. We show that ρ1 must be invalid as well. Since ρ2 is invalid,

there exist a GED ϕ = Q[x̄](X → Y ) in Σ and a match h of Q in GEq′l
such that

(Eq′l,NEq′l)⇒(ϕ,h) (Eq′l+1,NEq′l+1), h(x̄) |= X and Eq′l+1 is inconsistent in GEq′l
, where

either Eq′l+1 extends Eq′l or NEq′l+1 extends NEq′l by adding a fix (u,v) from Y . By
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Lemma 5.2, Eq′l ⊆ Eqk and NEq′l ⊆ NEqk. As in the proof of Lemma 5.2, one can ver-

ify that (Eqk,NEqk)⇒(ϕ,h) (Eqk+1,NEqk+1) is a chase step, where Eqk+1 extends Eqk

or NEqk+1 extends NEqk by adding (u,v). Since Eq′l+1 has conflicts and Eq′l ⊆ Eqk,

Eqk+1 also has conflicts, which contradicts to the assumption that ρ1 is valid. 2

As opposed to [FL17], (a) a chase step by GED ϕ = Q[x̄](X → Y ) is applied only

if X has been validated (condition (1) of the chase step), i.e., Y is enforced only after

all literals of X are deduced from ground truth Γ, (b) while [FL17] does not study

graph cleaning, we revise the chase to identify objects and repair attributes, and (c)

Theorem 5.1 extends the result of [FL17] to GEDs with inequality literals.

5.2.2 A Method for Cleaning Graphs

Based on the chase, we propose method Analogist for cleaning graphs with certain

fixes. We start with a notion of certain fixes.

Certain fixes. When Chase(G,Σ,Γ) 6=⊥, we say that (Σ,Γ) is consistent for G. Given

consistent (Σ,Γ), all terminal chasing sequences of G by (Σ,Γ) are valid, and end up at

the same result Chase(G,Σ,Γ) = (Eq,NEq,GEq) by Theorem 5.1. In this case, we refer

to Eq and GEq as the certain fixes and the repair of graph G with (Σ,Γ), respectively.

Intuitively, a chasing sequence ρ deduces fixes from confirmed entity matches and

attribute values by iteratively applying GEDs, starting from the block Γ of ground truth.

The fixes in Eq are certain since they are the logical consequences of (Σ,Γ). That is,

as long as Σ and Γ are correct, then so are the certain fixes in Eq.

Graph cleaning. Graph cleaning with certain fixes is as follows.

◦ Input: A graph G, a set Σ of GEDs and a block Γ of ground truth such that (Σ,Γ)

is consistent.

◦ Output: The certain fixes Eq and repair of G by (Σ,Γ).

We now present Analogist, a rule-based method for cleaning graphs. Given a graph

G in an application, it works as follows. (a) It first discovers a set Σ of GEDs by

employing discovery algorithms [FLL+17], and solicit ground truth Γ by consulting

experts or crowd-sourcing. (b) It validates the rules and ground truth by a consistency

analysis (see Section 5.3). (c) It then finds certain fixes Eq and repair GEq by chasing

G with (Σ,Γ).

While all fixes are guaranteed correct as long as Σ and Γ are validated, Analogist
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may not fix all violations of Σ in G due to inadequate ground truth in Γ. In other words,

GEq 6|= Σ. Consider G 6|= ϕ for GED ϕ = Q[x̄](X → Y ) in Σ, i.e., there is a match h(x̄)

of Q in G such that h(x̄) |= X but h(x̄) 6|= Y . It is possible that after the chase, h(x̄)

remains a match of Q in GEq, but Γ and Σ may not have enough information to cover

all the literals of X at h(x̄), and hence h(x̄) 6|= Y because we cannot deduce the true

values of some x.A in Y , e.g., # in the cleaning process is not instantiated.

When this happens, Analogist interacts with the users and expands Γ with more

ground truth, until all errors can be “covered” by (Σ,Γ) (see Section 5.3 for coverage

analysis). Users may also opt to correct particular errors by providing relevant ground

truth only.

We study consistency, cleaning and coverage analyses (Section 5.3) and give

algorithms for step (c) of Analogist (Sections 5.4 and 5.5).

5.3 Fundamental Problems

We next study three fundamental problems for graph cleaning with certain fixes, com-

pared to their relational counterparts [FLM+12].

Consistency. We start with the consistency problem.

◦ Input: A set Σ of GEDs and a block Γ of ground truth.

◦ Question: Is (Σ,Γ) consistent for G?

It is to decide whether GEDs discovered and ground truth provided have no conflicts,

i.e., they are not dirty. The problem has the same complexity as its relational counter-

part using extended CFDs [FLM+12].

Theorem 5.3: The consistency problem is coNP-complete. 2

Proof:We first prove the upper bound, i.e.,coNP membership, of the consistency prob-

lem, and then show its coNP-hardness.

Upper bound. We give an NP algorithm that, given a graph G, a set Σ of GEDs, and

a block Γ of ground truth, checks whether (Σ,Γ) is not consistent for G. It works

as follows: (1) guess a chasing sequence (Eq0,NEq0) = (Γ, /0)⇒(ϕ1,h1) . . .⇒(ϕk,hk)

(Eqk,NEqk) of G by (Σ,Γ), where k≤ 8 ·(2 · |G| · |Σ|+ |Γ|)3; (2) for each i∈ [0,k−2]),

check whether (Eqi,NEqi)⇒(ϕi+1,hi+1) (Eqi+1,NEqi+1) is a valid chase step; (3) if so,

check whether (Eqk−1,NEqk−1)⇒(ϕk,hk) (Eqk,NEqk) is invalid; if so, return true.

Here we do not construct GEq0, . . . ,GEqk−1 . Instead, we first guess mappings
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h′1, . . . ,h
′
k in G, and then define hi(x) = [h′i(x)]Eqi−1 (i.e., h′i(x)Eqi−1; see Section 5.2

for GEqi−1) for i ∈ [1,k]. One can verify that hi is a mapping from the pattern of ϕi to

GEqi−1 .

The correctness of the algorithm follows from Theorem 5.1 and its proof above.

For its complexity, since |Eq| ≤ 4 · |G| · |Σ|+2 · |Γ| and |NEq| ≤ (4 · |G| · |Σ|+2 · |Γ|)2,

steps (2) and (3) are in PTIME. Thus the algorithm is in NP and the consistency

problem is in coNP.

Lower bound. We show the coNP-hardness by reduction from the satisfiability prob-

lem for GEDs, which is coNP-complete [FL17]. The latter problem is to decide, given

a set Σ1 of GEDs, whether there exists a graph G such that G |= Σ1, and moreover, for

each Q[x̄](X → Y ) in Σ1, Q has a match in G. Given Σ1, we will construct a graph G,

a set Σ of GEDs, and a block Γ of ground truth such that Σ1 is satisfiable if and only if

(iff) (Σ,Γ) is consistent.

The reduction makes use of the following characterization of the satisfiability

problem for GEDs [FL17]: Σ1 is satisfiable iff Chase /0(GΣ1,Σ1) 6= ⊥, where Chase /0

is the chase of [FL17], and GΣ1 is the canonical graph of Σ1, defined as GΣ1 =

(VΣ1 ,EΣ1,LΣ1,F
Σ1
A ), which is a disjoint union of patterns in Σ1 except that FΣ1

A is

empty.

We define G as GΣ, Σ as Σ1, and Γ = /0. To show this makes a reduction, it suffices

to prove that Chase(G,Σ, /0) = Chase /0(GΣ1,Σ1). For if it holds, by the characteriza-

tion above and the statement of the consistency problem, (Σ,Γ) is consistent for G iff

Chase(G,Σ,Γ) 6=⊥ iff Chase /0(GΣ1 ,Σ1) 6=⊥ iff Σ1 is satisfiable.

It remains to show Chase(G,Σ, /0) = Chase /0(GΣ1,Σ1). A close examination of

Chase /0 reveals that Chase /0(GΣ1,Σ1) ⊆ Chase(G,Σ, /0), since Chase extends Chase /0.

Moreover, the GEDs in Σ are those defined in [FL17] and do not have inequal-

ity literals; in addition, Γ = /0. Hence if (Eq,NEq) ⇒(ϕ,h) (Eq′,NEq′) is a chase

step in Chase(G,Σ, /0), then Eq ⇒(ϕ,h) Eq′ is also a step in Chase /0(GΣ1 ,Σ1). By

the Church-Rosser property, we have that Chase(G,Σ, /0) ⊆ Chase /0(GΣ1 ,Σ1). Hence

Chase(G,Σ, /0) = Chase /0(GΣ1,Σ1). 2

Cleaning. The certain fix problem is stated as follows.

◦ Input: A graph G, a set Σ of GEDs, a block Γ of ground truth such that (Σ,Γ) is

consistent, and a fix l.

◦ Question: Does v ∈ [u]Eq when l is an equality fix u = v, and v ∈ [u]NEq when l

is an inequality fix u 6= v?
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Here Eq is the set of certain fixes in Chase(G,Σ,Γ).

This problem is to settle the complexity of cleaning graphs with certain fixes. We

consider (a) the combined complexity, when graph G, GEDs Σ and ground truth Γ may

all vary, and (b) the data complexity, when the GEDs are predefined and fixed, but G

and Γ may vary. The problem was not studied for relations [FLM+12].

Theorem 5.4: For the certain fix problem, the combined complexity is NP-complete,

and the data complexity is in PTIME. 2

Proof:We first consider the upper bound including data complexity, followed by prov-

ing the NP-hardness.

Upper bound. We give an NP algorithm that, given a graph G, a set Σ of GEDs, a

block Γ of ground truth, and a fix l, where (Σ,Γ) is consistent, checks whether l ∈ Eq

or l ∈ NEq. It works as follows: (1) guess a chasing sequence (Eq0,NEq0)⇒(ϕ1,h1)

. . .⇒(ϕk,hk) (Eqk,NEqk) of G by (Σ,Γ) such that k≤ 8 ·(2 · |G| · |Σ|+ |Γ|)3; (2) for each

i ∈ [0,k− 1], check whether (Eqi,NEqi)⇒(ϕi+1,hi+1) (Eqi+1,NEqi+1) is a valid chase

step; if not, reject the guess; (3) check whether l ∈ Eq or l ∈ NEq; if so, return true.

The correctness of the algorithm follows from Theorem 5.1 and that condition that

(Σ,Γ) is consistent for G. For its complexity, since |Eq| ≤ 4 · |G| · |Σ|+ 2 · |Γ| and

|NEq| ≤ (4 · |G| · |Σ|+ 2 · |Γ|)2 (see the proof of Theorem 5.1), both steps (2) and (3)

are in PTIME. Hence the algorithm is in NP, and the certain fix problem is in NP.

We show that the data complexity of the problem is in PTIME, by giving the fol-

lowing algorithm: (1) compute Chase(G,Σ,Γ); (2) check whether l ∈ Eq or l ∈ NEq;

if so, return true; otherwise, return false. The algorithms is correct by the statement

of the certain fix problem. For its complexity, step (1) is in PTIME. Indeed, since

Σ is fixed, we can enumerate all matches of patterns in Σ in G, and then compute

Chase(G,Σ,Γ). Since |Eq| ≤ 4 · |G| · |Σ|+2 · |Γ|, step (2) can also be done in PTIME.

Hence the algorithm is in PTIME.

Lower bound. We prove the NP-hardness by reduction from the 3-colorability prob-

lem, which is NP-complete (cf. [GJ79]). The 3-colorability problem is to decide, given

an undirected graph G1, whether there exists a 3-coloring µ of G1 such that for each

edge (u,v) in G, µ(u) 6= µ(v). The problem remains to be NP-complete when G1 is a

connected graph [GJS76].

Given a connected undirected G1 =(V,E), we construct a graph G, a set Σ of GFDs,

and a block Γ of ground truth satisfying that (Σ,Γ) is consistent, and a fix l of the form
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Figure 5.4: Graph patterns in the proofs

u = v (proof for u 6= v is similar). We show that v∈ [u]Eq iff G1 has a proper 3-coloring.

(1) The graph G is given in Fig. 5.4(1), which is to encode 3-coloring. More

specifically, G = (V1,E1,L1,F1
A ), where (a) V1 = {v0,v1,v2,v3}; it consists of three

nodes to represent the three colors, and a designated node v0 to handle the fix l;

(b) E1 = {(v1,v2),(v2,v1),(v1,v3),(v3,v1),(v2,v3),(v3,v2),(v1,v0),(v2,v0),(v3,v0)};
these edges make v1, v2 and v3 form a clique, and v1, v2 and v3 have edges linking

to v0; (c) L1(v1) = r, L1(v2) = g, L1(v3) = b for three colors, and L1(v0) = 0; and (d)

F1
A is empty.

(2) The set Σ has only one GED ϕ = Q[x0,x1, . . . ,xm]( /0→ (x0.A = 2)), to encode the

structure of G1. As shown in Fig. 5.4 (1). Q[x̄] = (V2, E2, L2), where V2 =V ∪{v0}, i.e.,

the set of nodes in G pluses one node v0; E2 = {(u,v),(v,u) | (u,v) ∈ E}∪{(v,v0)|v ∈
V}, i.e., each undirected edge (u,v) in G is encoded with two directed edges (u,v) and

(v,u), and all nodes in V have an edge to v0; each vertex vi ∈ V2 is labeled wildcard,

i.e., L2(vi) = ‘ ’.

(3) The block Γ is set to be empty. Since Γ is empty and ϕ in Σ has no id literal, it is

easy to verify that (Σ,Γ) is consistent for G.

(4) The fix l is defined as x0.A = 2.

We next show that 2 ∈ [x0.A]Eq iff G1 has a proper 3-coloring.

(⇒) Assume that 2 ∈ [x0.A]Eq. Since Γ is empty, there exists one chase step on G.

Thus there exists a match h of Q in G. Based on h, we can now deduce a 3-coloring µ

of G1 as follows: for each node x ∈ V , if h(x) = v1, then µ(x) = r; if h(x) = v2, then

µ(x) = g; and if h(x) = v3, then µ(x) = b. Note that no node in x ∈V is mapped to v0

by h, since v0 has no outgoing edge. By the definitions of G, Q and h, one can verify
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that µ is a proper 3-coloring of G1.

(⇐) Conversely, assume that µ is a proper 3-coloring of G1. It suffices to show that

there exists a chasing sequence ρ = ( /0, /0) ⇒(ϕ,h) (Eq1, /0) of G by (Σ, /0) such that

x0.A = 2 is in Eq1. For if it holds, since (Σ,Γ) is consistent, x0.A = 2 is deduced by

Chase(G,Σ,Γ) and hence 2 ∈ [x0.A]Eq. The match h is defined as follows: h(x0) = v0;

for each other node x ∈ V2, if µ(x) = r, then h(x) = v1; if µ(x) = g, then h(x) = v2; if

µ(x) = b, then h(x) = v3. One can verify that h is a match of Q in G. As a consequence,

Eq1 deduces x0.A = 2. 2

Coverage. As remarked in Section 5.2, in practice we want to check whether all

violations of Σ in G can be fixed with certainty by Chase(G,Σ,Γ). This motivates us to

study the coverage problem.

◦ Input: G, Σ and Γ as in the certain fix problem.

◦ Question: Does GEq |= Σ, for the repair GEq of G by (Σ,Γ)?

For relations, the data complexity was not studied, and the combined complexity of

a stronger problem is coNP-complete [FLM+12], to decide whether all instances of a

relation schema can be fixed with certainty. We show that unless P = NP, the coverage

problem is harder for graphs, in PNP
|| . The complexity class PNP

|| consists of decision

problems that can be solved by a PTIME Turing machine that can make polynomially

many queries to an NP oracle in parallel, i.e., all queries are formed before knowing the

results of the others [Wag90]. It is known that PNP
|| is a subclass of ∆

p
2 = PNP [PZ82].

Theorem 5.5: The combined complexity of the coverage problem is PNP
|| -complete;

and its data complexity is in PTIME. 2

Proof:This proof is quite involved. We first prove the upper bound and show the data

complexity of the coverage problem is in PTIME, and then prove the lower bound by

reduction from the odd max true 3SAT problem.

Upper bound. We give a PNP
|| algorithm to check whether GEq |= Σ. It works as fol-

lows: (1) check in parallel whether u ∈ [v]Eq for all possible fixes u = v; if u ∈ [v]Eq,

then add u = v to Eq1; (2) use the equivalence relation of Eq1 to construct GEq1; (3)

check whether GEq1 |= Σ; if so, return true; false otherwise.

The correctness of algorithm follows from the definition of GEq and Chase(G,Σ,Γ).

It computes correct Eq by checking all possible fixes, by Theorem 5.4. For the com-

plexity of the algorithm, step (1) is in PNP
|| , since there exists at most (|G|+ |Σ|+ |Γ|)2

many fixes, and checking whether u∈ [v]Eq is in NP (see Theorem 5.4). Since there ex-
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ist at most (|G|+ |Σ|+ |Γ|)2 many fixes, step (2) can be done in PTIME. Step (3) calls

an NP oracle to the validation problem for GEDs [FL17]. Note that the algorithm uses

two rounds of parallel computations. It is known that using constant rounds of parallel

computations is equivalent to using one round of parallel computation [BH91]. Hence

the algorithm above is in PNP
|| .

We next show that the data complexity is in PTIME. We use the following algo-

rithm to check whether GEq |= Σ: (1) compute Chase(G,Σ,Γ); (2) construct the repair

GEq of G; (3) check whether GEq |= Σ; if so, return true; false otherwise.

The correctness of the algorithm follows from the statement of the coverage prob-

lem. For its complexity, step (1) is in PTIME because Σ is fixed, and we can enumerate

in PTIME all matches of patterns in Σ in G. Since |Eq| ≤ 4 · |G| · |Σ|+ 2 · |Γ| (see the

proof of Theorem 5.1), step (2) can be done in PTIME. Step (3) is in PTIME, since Σ is

fixed, and we can enumerate in PTIME all matches of patterns in Σ in GEq. Therefore,

the algorithm above is in PTIME. Hence the data complexity of the coverage problem

is in PTIME.

Lower bound. For the combined complexity, we show that the problem is PNP
|| -

hard by reduction from the odd max true 3SAT (OMT3) problem, which is PNP
|| -

complete [Spa05]. The OMT3 problem is to decide, given a 3-CNF formula ϕ with

variables x1, . . . ,xn, let µ(x̄) be a satisfying assignment of ϕ with the maximal number

of variables set true, whether µ(x̄) sets an odd number of variables true. A 3-CNF

formula has the form C1∧ . . .∧Cl , each clause Ci is a disjunction of three variables or

their negations taken from {x1, . . . ,xn}.
Given ϕ, we define a graph G, a set Σ of GEDs, and a block Γ of ground truth such

that (Σ,Γ) is consistent. We show that GEq |= Σ if and only if µ(x̄) sets an odd number

of variables true.

The reduction takes several steps, through the problems below.

(1) The first problem, denoted by 〈ϕ,k〉, is to decide, given ϕ and a number k, whether

all satisfying assignments of ϕ have no more than k variables set true? We can see that

〈ϕ,k〉 is in coNP [Spa05].

Since ϕ has n variables, we have problems: 〈ϕ,1〉, . . . , 〈ϕ,n〉.

(2) We build the connection between an instance 〈ϕ,k〉 and a 3-colorability instance

(see the proof of Theorem 5.4 for the problem). Since 3-colorability problem is NP-

complete [GJ79], given 〈ϕ,k〉, we can construct a graph Gk such that Gk has a proper
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3-coloring iff 〈ϕ,k〉 returns false. Suppose that G1, . . . ,Gn are the constructed graphs.

Then we can verify the following: µ(x̄) sets an odd number of variables true iff there

exists an odd number k such that for all k1 ≤ k, Gk1 has a proper 3-coloring, and for all

k2 > k, Gk2 has no proper 3-coloring. Moreover, by the connection between 〈ϕ, i〉 and

〈ϕ, i+1〉, if Gi+1 is 3-colorable, then Gi is 3-colorable.

Having G1, . . . ,Gn, we can construct G, Σ, and Γ as follows. (a) The graph G is to

encode all proper 3-coloring, and it contains n attributes to indicate whether G1, . . . ,Gn

have proper 3-coloring. (b) The set Σ consists of two groups of GEDs: the first one is to

check whether G1, . . . ,Gn are 3-colorable; and the second one is to check whether there

exists an odd number k such that for all numbers k1 ≤ k, Gk1 has a proper 3-coloring,

and for all k2 > k, Gk2 does not have a proper 3-coloring. (c) The block Γ is empty.

More specifically, we construct G, Σ and Γ as follows.

(1) As shown in Fig. 5.4(2), we define G = (V,E,L,FA) to encode 3-

coloring, where (a) V = {v0,v1,v2,v3}, consisting of three nodes to repre-

sent the three colors, and another node to check whether GEq |= Σ; (b) E =

{(v1,v2),(v2,v1),(v1,v3),(v3,v1),(v2,v3),(v3,v2)}; these edges make v1, v2 and v3

form a clique; (c) L(v1) = r, L(v2) = g, L(v3) = b for three colors, and L(v0) = C;

and (d) FA(v0).A = 1, FA(v0).A1 = 0, . . . , and FA(v0).An = 0.

Intuitively, we will use attribute FA(v0).A to separate the Chaseprocess and the

checking of GEq |= Σ. The other attributes FA(v0).Ai (i ∈ [1,n]) are to indicate whether

Gi is 3-colorable.

(2) The set Σ consists of two groups of GEDs as remarked above.

The first group consists of n GEDs, one for each of G1, . . . ,Gn. For each i ∈ [1,n],

GED ϕi = Qi[x0,x1, . . . ,xmi]
(

/0→ (x0.Ai = 1)
)
, where Qi is given in Fig. 5.4 (2). More

specifically, pattern Qi[x̄] = (Vi, Ei, Li), where (a) Vi =Vi∪{v0}, i.e., nodes in Gi pluses

one node v0; (b) Ei = {(u,v),(v,u) | (u,v)∈ E}, i.e., each undirected edge (u,v) in G is

encoded with two directed edges (u,v) and (v,u); and (c) each vertex v j ∈Vi is labeled

wildcard, i.e., Li(v j) = ‘ ’. This GED ensures that if Gi is 3-colorable, then v0.Ai must

be 1.

The second group consists of dn
2e GEDs, which are used to check the existence of

the required odd number. To this end, we only need to ensure that for any even number

i, if v0.Ai = 1, then v0.Ai+1 must also be 1, That is, if Gi is 3-colorable, then Gi+1 is

also 3-colorable. In light of this, given any i (i ∈ [1,dn
2e]), we define the following
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GED ϕ′i = Q′i[x0]
(
(x0.A = 1)∧ (x0.A2i = 1)→ (x0.A2i+1 = 1)

)
. The pattern Q′i consists

of only one node labeled C.

By the construction of G1, . . . ,Gn, we know that for any number i ∈ [1,n− 1], if

v0.Ai = 0, then v0.Ai+1 must also be 0; and for any i ∈ [2,n], if v0.Ai = 1, then v0.Ai−1

is also 1. Indeed, for any number i ∈ [1,n− 1], if Gi+1 is 3-colorable, then Gi is

also 3-colorable. That is, all possible values for v0.A1, . . . ,v0.An are: (0,0,0, . . . ,0),

(1,0,0, . . . ,0), . . . , (1,1, . . . ,1).

(3) The block Γ is set to be empty.

We first verify that Chase(G,Σ,Γ) is consistent, i.e., (Σ,Γ) is consistent. Since

Γ does not contain attribute v0.A, and GEDs in Σ do not generate such attribute, only

GEDs in the first group can be used during the computation of Chase(G,Σ,Γ). Because

such GEDs only set values 1, Chase(G,Σ,Γ) is consistent.

We next show that GEq |= Σ if and only if µ(x̄) sets an odd number of variables

true, i.e., the construction above is a reduction.

(⇒) Suppose that GEq |= Σ. Assume by contradiction that µ(x̄) sets an even number

ke of variables true. We show that GEq 6|= ϕ′ke
2

, which contradicts to GEq |= Σ. Since

v0.A = 1, we only need to show that v0.Ake = 1, and v0.Ake+1 = 0 or v0.Ake+1 does not

exist. (i) We first show that v0.Ake = 1. Because µ(x̄) sets ke variables true, by the

construction of G1, . . . ,Gn, we know that Gke is 3-colorable. As in the lower bound

proof of Theorem 5.4, one can show that 1 ∈ [v0.Ake]Eq. By the definition of the repair

GEq, v0.Ake = 1. (ii) When ke = n, obviously v0.Ake+1 does not exist. When ke 6= n, we

show that v0.Ake+1 = 0. Since µ(x̄) sets ke variables true, 〈ϕ,ke + 1〉 return true. By

the construction of Gke+1, we have that Gke+1 is not 3-colorable. Again as in the lower

bound proof of Theorem 5.4, we can show that 1 ∈ [v0.Ake+1]Eq cannot be deduced

from Chase(G,Σ,Γ). By the definition of G and GEq, we know that v0.Ake+1 = 0, since

we initialize v0.Ake+1 = 0 in G. Therefore, v0.A = 1, v0.Ake = 1 and v0.Ake+1 = 0 in

GEq, which contradicts to GEq |= ϕ′ke
2

.

(⇐) Suppose that µ(x̄) sets an odd number ko of variables true. Assume by contradic-

tion that GEq 6|= Σ. We show that µ(x̄) sets an even number of variables true, which

contradicts to the hypothesis. It suffices to show that GEq 6|= ϕ′ for some ϕ′ in the

second group of GEDs in Σ. For if it holds, by the construction of Σ, then there exist

an even number k′ such that v0.A1, . . . ,v0.An are in the form of (1,1,1, . . . ,1,0, . . . ,0),

where only the first k′ elements are 1. By the construction of Σ, we also know that
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G1, . . . ,Gk′ are 3-colorable, while Gk′+1, . . . ,Gn are not 3-colorable. By the construc-

tion of G1, . . . ,Gn, there exist k′ variables set true by µ(x̄). That is, µ(x̄) sets an even

number of variables true, a contradiction.

We now show that there exists ϕ′ in the second GED group of Σ such that

GEq 6|= ϕ′. Since GEq 6|= Σ, it suffices to show that GEq |= ϕ for all ϕ in the first

GED group of Σ. We prove this by contradiction. Suppose that there exists a GED

ϕi = Qi[x0,x1, . . . ,xmi]
(

/0→ (x0.Ai = 1)
)

in the first group such that GEq 6|= ϕi. That is,

there exists a match h of Qi in GEq such that h(x0).Ai = 0 in GEq. But because there

exists a match of Qi in G, 1 ∈ [x0.Ai]Eq is in Chase(G,Σ,Γ). Since Chase(G,Σ,Γ) is

consistent, by the definition of GEq and ϕi (note that X in its attribute constraint is /0),

GEq |= h(x0).Ai = 1, a contradiction. Hence, GEq |= ϕ. 2

5.4 Deducing Certain Fixes

We next develop an algorithm, denoted by Clean, for cleaning graphs with certainty.

Given a graph G, a set Σ of GEDs and a block Γ of ground truth such that (Σ,Γ) is

consistent, Clean computes certain fixes Eq and the repair GEq of G in Chase(G,Σ,Γ).

While the chase (Section 5.2) provides a conceptual method, it is too costly to

be practical. Each chase step starts from scratch: it (a) nondeterministically picks a

GED ϕ = Q(x̄)(X → Y ) from Σ, (b) finds a mapping h from Q[x̄] to G, and (c) checks

whether X is entailed by (Eq,NEq) at h(x̄). Among these, step (b) is costly given

the intractability of graph homomorphism (cf. [GJ79]). After computing h, the chase

may find that X is not entailed by (Eq,NEq) and ϕ cannot be enforced; it has to start

steps (b) and (c) again.

To make the method practical, algorithm Clean proposes two strategies. (a) It com-

putes an order on the GEDs of Σ to determine which GEDs can be used to expand the

fixes in the next chase step. The order is computed by using a precedence graph that

captures the impacts of GEDs enforced in the prior steps. (b) It incrementally expands

Eq and NEq, i.e., a chase step with a GED is taken only if it is “triggered” by newly

generated fixes in Eq or NEq. These reduce redundant computation of costly graph

homomorphism.

We start with precedence graphs, followed by algorithm Clean.

Precedence graphs. Under Γ, we define the precedence graph Gp of Σ as a directed

graph (Vp,Ep), where (1) Vp =Σ, i.e., the vertices are GEDs in Σ; (2) edge (ϕ1,ϕ2)∈Ep
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indicates that applying ϕ2 may make ϕ1 applicable at a later chase step; conversely, if

(ϕ1,ϕ2) is not an edge in Gp, then the application of ϕ2 has no impact on whether

ϕ1 can be enforced. That is, the precedence graph Gp depicts the paths of change

propagation when computing Eq and NEq.

We want to characterize edges with a simple condition that can be checked effi-

ciently. To formalize Ep, we use a few notations.

(1) For an equality literal l in a GED, we define its template tl(l) by substituting label

LQ(x) for each variable x in l, e.g., LQ(x).A = c for x.A = c, LQ(x).A = LQ(x).B for

x.A = y.B, and LQ(x).id = LQ(y).id for x.id = y.id; similarly for inequality literals.

We also extend tl to ground truth (i.e., fixes (u,v)) in Γ, upgrading nodes to their

labels. We write tl(c) = c and tl(x.A) = LQ(x).A for constants c and attributes x.A,

referred to as a term.

We will use templates to catch precedence on the attribute dependencies of GEDs,

by “generalizing” nodes to their labels.

(2) Given Σ and Γ, we denote by (a) TΓ the set of templates of fixes in Γ; (b) TΣ the set

of tl(l) for all literals l that appear in Y of some GED Q[x̄](X → Y ) ∈ Σ; and (c) T(Σ,Γ)
the set of terms tl(x.A) and tl(c) for all attributes x.A and constants c in Σ and Γ.

(3) Given a term t, we define the closure of t under Σ and Γ as the set (t,Σ,Γ)∗ =

{(op, t ′) | TΣ∪TΓ |= t op t ′,op is = or 6=, t ′ ∈ T(Σ,Γ)}. That is, the closure includes all

possible candidate templates t = t ′ and t 6= t ′ that can be deduced from literal templates

of Γ and consequences Y of some attribute constraint X → Y in Σ.

Precedence graphs. We are now ready to formalize the edge relation Ep in the prece-

dence graph Gp. For GEDs ϕi = Qi[x̄](Xi→ Yi) for i ∈ [1,2], (ϕ1,ϕ2) is an edge in Ep

if and only if either

(a) there exist a template t2 op t ′2 of a literal in Y2 and a template t1 op′ t ′1 of a

literal in X1 such that (i) (op′, t ′1)∈ (t1,Σ,Γ)∗, and (ii) either (=, t ′1)∈ (t2,Σ,Γ)∗∪
(t ′2,Σ,Γ)

∗ or (=, t1) ∈ (t2,Σ,Γ)∗∪ (t ′2,Σ,Γ)∗; or

(b) there exist an id literal x.id = y.id in Y2 and a node u in Q1[x̄] such that LQ2(x)�
LQ1(u).

Condition (a) states that after literals from Y2 represented by template t2 op t ′2 are

validated in a chase step, literals of t1 op′ t ′1 from X1 may be entailed by Eq and NEq

at a later step. Closures (t2,Σ,Γ)∗ and (t ′2,Σ,Γ)
∗ capture the equivalence relation of Eq

and the impact of NEq. Condition (b) is to find new matches of Q1[x̄] after its node u
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Figure 5.5: A precedence graph

is mapped to a node that is merged by enforcing ϕ2.

Example 5.7: Recall Σ from Example 5.3. Under Γ of Fig. 5.1, the precedence

graph Gp of Σ is shown in Fig. 5.5. By condition (a), edge (ϕ4,ϕ2) exists due to

(=, league.country), where league.country, the term of x.country and y.country in X4

of ϕ4 and y.country in ϕ2, is in closure (league.country,Σ,Γ)∗ = {(=, league.country),

(=,stadium.country)}. That is, after ϕ2 is applied, the change of y.country may make

ϕ4 applicable at a later chase step.

Edge (ϕ2,ϕ4) is in Gp since there exists a node y labeled league in Q2[x̄], and ϕ4

identifies league entities (condition (b) above). 2

Algorithm. We now present algorithm Clean in Fig. 5.6. Given graph G, GEDs Σ

and ground truth Γ, it first builds the precedence graph Gp of Σ under Γ (line 1), and

computes the topological ranks of the strongly connected components (scc’s) in Gp

(line 2), by procedures buildPrecedence and rankSCC, respectively (not shown). The

topological rank of an scc is such defined that (a) scc.rank = 0 if it is a leaf node

in the contracted graph G′p that collapses each scc of Gp into a single node, and (b)

scc.rank = max{scc′.rank+1 | (scc,scc′) ∈ E ′p}, where E ′p is the edge set of G′p. Each

GED ϕ ∈ Σ is in an scc. The rank of ϕ is defined as the topological rank of the scc in

which ϕ belongs. A set Ø collects the GED ranks (line 2).

Then algorithm Clean applies GEDs of Σ iteratively and incrementally, following

the topological ranks of the GEDs, starting from the lowest rank (lines 3-14). For each

i, it collects a set R of GEDs of rank i (line 4). For each GED ϕ = Q[x̄](X → Y )

in R , it identifies a set Sϕ of partial matches of Q by procedure filterPAns (line 7).

It completes the matches and finds fixes via procedure Matchn (line 8). The partial

matches are selected if X is entailed by Eq and NEq, in response to a set δEq of fixes

that are newly added (line 11).
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Algorithm: Clean

Input: A graph G, a set Σ of GEDs, and a block Γ of ground truth.

Output: The certain fixes Eq and the repair GEq of G by (Σ,Γ).

1. Gp := buildPrecedence(Σ,Γ); Eq := Γ; NEq := /0; GEq := G;

2. Ø := rankSCC(Gp); i := 0;

3. while i≤ Ø.maxrank do

4. set R := {ϕ | ϕ ∈ Σ,Ø[ϕ].rank = i}; δEq := (Eq,NEq); δcur := /0;

5. repeat

6. for each GED ϕ = Q[x̄](X → Y ) in R do

7. Sϕ := filterPAns(X ,Eq,NEq,δEq);

8. δcur := δcur∪Matchn(Q[x̄],GEq,Sϕ);

9. (Eqpre,NEqpre) := (Eq,NEq); expand Eq and NEq with δcur;

10. (Eq,NEq) := compEqv(δcur,Eq,NEq);

11. δEq := (Eq∪NEq)\ (Eqpre∪NEqpre);

12. GEq := Mutate(GEq,δEq);

13. until δEq is an empty set;

14. i := i+1;

15. return (Eq,GEq);

Figure 5.6: Algorithm Clean

Clean expands Eq and NEq with fixes deduced in the current iteration (line 9). It

computes the equivalence relation of Eq and makes NEq symmetric and “transitive”

via Eq by procedure compEqv (line 10), and repairs graph GEq by applying the newly

included fixes in δEq (line 11) by procedure Mutate (not shown; line 12). The process

continues until no more fixes can be added to Eq or NEq (line 13). It returns Eq and

GEq after all GEDs in Σ are processed (line 15).

We next present procedures filterPAns and Matchn.

Procedure filterPAns. The procedure takes as input X from GED Q[x̄](X → Y ), Eq,

NEq, and the set δEq of fixes added in the last iteration. It finds a set Sϕ of homo-

morphic mappings from the pattern nodes that appear in X to the nodes in Eq∪NEq,

refereed to as partial matches. It ensures that every mapping h in Sϕ satisfies X and

contains at least one node z from δEq, i.e., h(x̄s) |= X and h(y) = z for some node z in

δEq, where x̄s ⊆ x̄ is a list of variables denoting pattern nodes in X , and y ∈ x̄s.
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To speed up this process, Clean maintains an inverted index from templates tl to

fixes that have the same tl . Hence filterPAns joins the newly enforced fixes with the

previous ones to incrementally find fresh partial matches where X can be validated.

Procedure Matchn. Matchn completes partial matches Sϕ of Q[x̄] in GEq that were

computed by filterPAns. It follows the generic subgraph matching process [LHKL12],

and verifies graph homomorphism by checking edge connections. It also deduces fixes

to be included in Eq and NEq. Note that Matchn only incrementally enumerates those

matches that can be expanded from freshly computed partial matches and must involve

lately merged nodes when Sϕ = /0.

Example 5.8: Continuing with Example 5.7, algorithm Clean first computes the ranks

of GEDs in Σ based on precedence graph Gp (the ranks are annotated in brackets in

Fig 5.5). It then chases graph G by (Σ,Γ), starting with GEDs of rank 0, i.e., ϕ3, ϕ5,

and ϕ′5.

Consider ϕ3 = Q3[x̄](X3 → Y3) as an example. Templates for X3 are

stadium.capacity = stadium.capacity and architect.id = architect.id. Procedure

filterPAns finds fixes that have the templates in Eq0 and δEq, including s1.capacity =

s2.capacity and a.id = a.id, where initial δEq = (Eq0, /0). Two partial matches h1 and

h2 are found: h1(x̄s): x 7→ s1, x′ 7→ s2, y 7→ a, y′ 7→ a, and h2(x̄s): x 7→ s2, x′ 7→ s1,

y 7→ a, y′ 7→ a. Since these two make (complete) matches of Q[x̄] in G, i.e., x̄s = x̄,

procedure Matchn simply checks the homomorphism condition, and deduces a new

fix s1.id = s2.id to be enforced at h1 and h2. Clean expands Eq with s1.id = s2.id, and

updates GEq by identifying nodes s1 and s2. No partial matches are found for ϕ5 and

ϕ′5 in the first iteration.

Since a fix s1.id = s2.id is added to Eq, Clean continues to process GEDs of rank

0. Nodes f1 and f2 are merged by ϕ′5 in the second iteration, in which s1.id = s2.id is

used to build partial matches of Q5[x̄], and s3 and s4 are merged in the third iteration

by ϕ5.

After these, Clean processes the GEDs of rank 1, since no new fixes can be deduced

by applying ϕ3, ϕ5 or ϕ′5. For instance, ϕ2 fixes attribute c1.country as in Example 5.5,

ϕ1 is used to validate c2.country, and c1 and c2 are merged by ϕ4 in the next iteration

by using the newly validated c1.country = c2.country. Once no new fixes can be added,

Clean returns Eq7 and GEq7 of Example 5.6. 2

Analyses. Clean checks all the applicable chase steps that expand Eq or NEq at some
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point, guided by the precedence graph. Its correctness follows from Proposition 5.6.

Proposition 5.6: Given G, Σ and Γ, a fix (u,v) is deduced by chasing G by (Σ,Γ) iff

(u,v) is added to Eq or NEq by algorithm Clean. 2

Proof:We denote a fix (u,v) by l, and prove the two directions as follows.

(⇒) Suppose that fix l is added to Eq or NEq by Chase(G,Σ,Γ). Let

(Eq0,NEq0)⇒(ϕ1,h1) . . .⇒(ϕk,hk) (Eqk,NEqk) be a terminal chasing sequence ρ. We

show that l is included in Eq or NEq by Clean, by induction on the number of chase

steps of ρ.

(1) When l is included in (Eq0,NEq0), then l must be in Γ. Obviously, l is included in

Eq or NEq by Clean (line 2).

(2) Suppose that fix l is added to (Eqi+1,NEqi+1) by applying a GED ϕ = Q[x̄](X →
Y ) at a match h, where the rank of ϕ is t, h(X) uses fixes l′1, . . . , l

′
n in (Eqi,NEqi),

and l′1, . . . , l
′
n either exist in Γ, or are generated by ϕ′1, . . . ,ϕ

′
m. Then by the induction

hypothesis, l′j’s are included in Eq or NEq by Clean. Since h(X) uses l′1, . . . , l
′
n, by the

precedence graphs, the ranks of ϕ′1, . . . ,ϕ
′
m are no larger than t. Hence l is also included

in Eq or NEq by Clean (lines 5-14).

(⇐) We show that all fixes included in Eq or NEq by Clean can be deduced by the chase

when computing Chase(G,Σ,Γ), by induction on the computation steps of Clean. In

the first step (line 1), Clean starts with Eq0 = Γ and NEq0 = /0. Thus the statement

holds.

Assume that Eqi and NEqi are extended from Eqi−1 and NEqi−1 by Clean (lines

9-10). By the induction hypothesis, all fixes in Eqi−1 and NEqi−1 are deduced by the

chase. We show by contradiction that all fixes in Eqi and NEqi are also deduced by the

chase. Suppose that there exists a fix l in Eqi or NEqi that is not deduced by the chase.

Since l is in Eqi or NEqi but not in Eqi−1 and NEqi−1, Clean (lines 7-8) applies a GED

ϕ at a match h to add l. Hence one can verify that (Eq,NEq)⇒(ϕ,h) (Eq′,NEq′) is a

valid chase step, where (Eq′,NEq′) extends (Eq,NEq) by adding l. In other words, l

can be deduced by the chase, a contradiction. Hence, all fixes added to Eqi and NEqi

by Clean can be deduced by the chase. 2

For the worst-case complexity, algorithm Clean is in O(|Σ||G||Σ|) time. Indeed, (a)

it takes O((|Γ|+ |Σ|)3) time to build precedence graph Gp (line 1), and O(|Σ|2) time
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to compute the topological ranks of scc’s in Gp (line 2) [Tar72]. (b) Identifying and

completing partial matches take O(|ϕ||G||ϕ|) time, for processing GED ϕ (lines 7-8).

(c) While the same GED may be involved in multiple iterations, each partial match

is processed only once since procedure filterPAns outputs partial matches incremen-

tally. Hence, the total cost for implementing the chase is at most O(|Σ||G||Σ|) (lines 3-

14). Putting these together, Clean takes O((|Γ|+ |Σ|)3+ |Σ|2+ |Σ||G||Σ|) =O(|Σ||G||Σ|)
time, since |Σ| � |G| and |Γ| � |G| in practice.

5.5 A Parallel Scalable Algorithm

Theorem 5.4 tells us that graph cleaning is intractable. To clean large-scale graphs, it

is often necessary to use parallel algorithms. Below we first review a characterization

of parallel algorithms (Section 5.5.1). We then parallelize algorithm Clean and show a

performance guarantee of the parallel algorithm (Section 5.5.2).

5.5.1 Parallel Scalability

One might be tempted to think that a parallel algorithm would run faster given more

processors. However, few algorithms in the literature guarantee this. Worse still, for

some computation problems, no parallel algorithms would run much faster no matter

how many processors are added. For instance, it is known that the computational

and communication costs of distributed graph simulation [HHK95] are functions of

the size |G| of the data graph G, which do not necessarily get smaller when more

processors are added [FWW14a]. This suggests that we characterize the effectiveness

of parallel algorithms. To this end, we revise a notion of parallel scalability introduced

by [KRS90] and widely used in practice.

An algorithm Ap for graph cleaning is said to be parallel scalable relative to algo-

rithm Clean if its running time can be expressed as:

T (|G|, |Σ|, |Γ|, p) = O
(t(|G|, |Σ|, |Γ|)

p

)
,

where t(|G|, |Σ|, |Γ|) denotes the cost of Clean, and p is the number of processors used

by Ap for parallel computation.

Intuitively, a parallel scalable Ap linearly reduces the cost of Clean when p in-

creases, by taking sequential algorithm Clean as a yardstick. The main conclusion

we can draw from the parallel scalability is that Ap is able to run faster when adding
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more processors, and hence makes it feasible to scale with large graphs G. In con-

trast, [FWW14a] shows that there exists no parallel scalable algorithm for graph sim-

ulation, and the proof given there holds in general distributed frameworks.

Note that this is analogous to the notion of parallel scalability on incremental error

detection algorithms defined in Section 4.5.1.

5.5.2 Parallelizing Algorithm Clean

We provide an algorithm for cleaning graphs with certainty, denoted as PClean, by par-

allelizing Clean. It cleans graphs that are fragmented and distributed across processors

W0, . . . , Wp−1. We show that PClean is parallel scalable relative to Clean.

Algorithm PClean runs in supersteps, where GEDs of the same rank are processed

in parallel in the same superstep. Similar to algorithm Clean, PClean expands Eq and

NEq incrementally guided by the ranks of GEDs, while the procedures of partial match

identification and completion, i.e., filterPAns and Matchn in Clean, are parallelized by

using a workload partition strategy. Relations Eq and NEq are also distributed across p

processors, such that each processor Wi maintains Eq(i) and NEq(i) and moreover, each

fix in the local copies contains at least one node stored at Wi for i ∈ [0, p−1].

We next show how to parallelize filterPAns for partial match identification and

Matchn for match completion, to evenly partition their costs across p processors, which

dominate the cost of Clean.

Parallel partial match identification. This is to identify partial matches (h(x̄s) in

Section 5.4) that satisfy the entailment condition of the chase. It is performed in par-

allel by procedure PFilter of PClean. The new challenges are that a partial match here

may be deduced from fixes that are filtered at different processors.

Procedure PFilter takes a set R of GEDs as part of its input. Consider a GED

Q[x̄](X → Y ) in R , and a literal l in X . At each processor Wi, PFilter inspects the

fixes in the local Eq(i) and NEq(i) that share the same template tl(l), referred to as

the fixes by tl(l). Since fixes are scattered all over the p processors, in contrast to the

sequential filterPAns that combines these fixes directly to construct the partial matches

h(x̄s), processor Wi broadcasts its local fixes to other processors, so that partial matches

can be constructed in parallel. Upon receiving the fixes, all processors sort the set of

fixes by tl(l), denoted as Eq[tl], based on a predefined order.

PFilter then assembles these fixes to construct partial matches of Q[x̄], in parallel.



180 Chapter 5. Cleaning Graphs with Certainty

Let t1, . . . , tm be the templates of all literals in X . Since the cardinality ||Eq[tl]|| of

each Eq[tl] is known, PFilter evenly partitions the assembling work. More specifically,

each processor Wj is assigned an index IDXi (range) for each sorted Eq[ti], such that

the indices {IDXi | i ∈ [1,m]} of its groups of fixes satisfy

Σ
m−1
i=1 (IDXi ·Πm

s=i+1||Eq[ts]||)+ IDXm mod p = j.

That is, the combinations of the fixes are evenly partitioned across p processors in a

“round-robin” manner. Let ∆Eq denote the set of fixes included in Eq or NEq in the last

superstep. The matches with nodes involved in ∆Eq are returned by each processor Wj.

Example 5.9: Consider (a) GED ϕ7 = Q5[x̄](X7→ y.id 6= y′.id), where X7 is {x.country

= “England”, x′.country= “Scotland”}, and Q5 is given in Fig. 5.2; it states that two

football clubs cannot be identified if their home grounds are in England and Scotland,

respectively, and (b) a graph G′ that consists of stadium’s m0–m9 and football club’s

b0–b99, in which mi is owned by b j for i ∈ [0,9] and j ∈ [10i,10i+ 9]; moreover, as

ground truth, m0–m4 have value “England” for attribute country, and m5–m9 are in

“Scotland”.

Given these, PFilter first picks from ground truth Eq[t1] = {mi.country =

“England”| i ∈ [0,4]} and Eq[t2] = {mi.country = “Scotland” | i ∈ [5,9]}, by tem-

plates t1 of stadium.country = “England” and t2 of stadium.country = “Scotland”.

Then the PFilter evenly distributes the work of combining the fixes (ground truth)

in Eq[t1] and Eq[t2], 25 in total, to deduce partial matches. Assume that there are

5 processors, and that Eq[t1] (resp. Eq[t2]) is such sorted that mi.country = “England”

(resp. mi.country = “Scotland”) is assigned index i (resp. i−5). By the equation above,

each processor Wk validates 5 partial matches that are composed of mi and m j such that

5i+ j mod 5 = k, for k ∈ [0,4], i.e., pattern nodes x and x′ in Q5[x̄] are mapped to such

mi and m j, respectively. 2

Parallel match completion. Algorithm PClean invokes procedure PMatch to com-

plete the partial matches and to find fixes to be added to Eq and NEq, in parallel.

PMatch works as follows.

(1) For each partial match h(x̄s) ∈ SR of pattern Q[x̄] assembled at processor Wi,

PMatch identifies the candidates for pattern nodes u that remain to be matched, by

breadth depth search. Here the set Ch(u) of candidates for u is a set of nodes in GEq,

where for each node v ∈ Ch(u), (a) L(v) matches LQ(u), and (b) there exists v′ ∈ Ch(u′)

or v′ matches u′ in h(x̄s) such that edge (v′,v) (resp. (v,v′)) is in GEq for a pattern edge
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(u′,u) (resp. (u.u′)) adjacent to u in Q[x̄], with matching labels. When reaching “bor-

ders”, e.g., nodes with crossing edges to other fragments, it notifies other processors

the next pattern node to match, and the traversal continues there.

Then processor Wi broadcasts h(x̄s) along with the candidates of u and the edges

connecting them. Each processor sorts the candidates for each pattern node, like how

PFilter treats Eq[tl].

(2) Procedure PMatch then completes the partial matches by combining and verifying

candidates for pattern nodes that remain to be matched, in parallel. For each partial

match h(x̄s) of Q[x̄], processor Wj groups candidates from Ch(u) for each u ∈ x̄ \ x̄s,

along the same lines as combining fixes in PFilter. Moreover, it adopts the same work-

load partition strategy as PFilter. That is, the indices of each group of candidates

processed by Wj satisfy the same equation presented there except that the cardinal-

ity of Ch(u) is used here. Like Matchn, it incrementally expands matches with newly

added fixes. It then checks edges between candidates for homomorphism, and returns

the fixes to be enforced by the qualified matches.

Example 5.10: Continuing with Example 5.9, PMatch completes those partial

matches obtained by mapping y and y′ in G′. For each partial match h(x,x′) = (mi,m j),

it first finds candidate sets Ch[y] = { fi′ | i′ ∈ [10i,10i+ 9]} and Ch[y′] = { f j′ | j′ ∈
[10 j,10 j + 9]} from G′ since such fi′’s and f j′’s connect to h(x) and h(x′), respec-

tively. Then the nodes in Ch[y] and Ch[y′] are grouped together in parallel using the

same partition strategy as in Example 5.9, in which processor Wk verifies 20 matches

with y 7→ fi′ and y′ 7→ f j′ such that 10i′+ j′ mod 5 = k for k ∈ [0,4]. Thus all the pro-

cessors find the same number of matches in PMatch, and each fi′.id 6= f j′.id is included

to NEq since the matches are graph homomorphisms. 2

Algorithm. The main driver of PClean is shown in Fig. 5.7. It first computes the

ranks of the GEDs as in Clean, by building the precedence graph of Σ at a designated

processor (line 1). It then deduces fixes to be enforced in supersteps based on GED

ranks (lines 3-12). In each superstep, PFilter identifies partial matches (line 6) and

PMatch completes the partial matches (line 7), in parallel at all processors. Each new

fix l returned by PMatch is added to the local copy of Eq or NEq at the corresponding

processors Wi (line 8), where at least one node in l is stored. After updating Eq and

NEq (line 9), each processor mutates its fragment of G, by identifying objects and

repairing attributes based on the fixes newly deduced (line 10). Once no more fix can
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Algorithm: PClean

Input: A fragmented graph G, a set Σ of GEDs, and a block Γ of ground truth.

Output: The certain fixes Eq and repair GEq of G by (Σ,Γ).

1. compute the topological ranks of GEDs in Σ;

2. Eq := Γ; NEq := /0; GEq := G; i := 0;

3. while there exist GEDs in Σ that have not been processed do

4. collect in R those GEDs in Σ with rank i; ∆Eq := (Eq,NEq);

5. repeat /*one superstep*/

6. SR := PFilter(R ,Eq,NEq,∆Eq); /*parallel partial match identification*/

7. ∆Eq := PMatch(R ,SR ,GEq); /*parallel match completion*/

8. expand Eq and NEq with ∆Eq;

9. compute the equivalence relation of Eq; update NEq;

10. update GEq with ∆Eq;

11. until there is no more fix included in Eq or NEq;

12. i := i+1;

13. return (Eq,GEq);

Figure 5.7: Algorithm PClean

be deduced (line 11), GEDs of the next rank are processed (line 12). When all GEDs

of Σ are processed, each processor returns its local copy of Eq and GEq (line 13).

Parallel scalability. To see that PClean is parallel scalable relative to Clean, it suffices

to show that PFilter and PMatch take O(|ϕ||G||ϕ|/p) time for each GED ϕ∈ Σ. For if it

holds, by |Σ| � |G| and |Γ| � |G|, PClean is in O((|Γ|+ |Σ|)3 + |Σ|2 + |Σ||G||Σ|/p) =

O(|Σ||G||Σ|/p) = O(t(|G|, |Σ|, |Γ|)/p) time; note that the costs of expanding Eq and

NEq and updating GEq are much less.

Observe that PFilter (a) filters fixes from Eq and NEq by templates in ϕ, in

O(|ϕ||G|2) time; (b) broadcasts fixes and sorts the sets of fixes in O(|ϕ||G|2 log |G|)
time; (c) joins fixes with indices, in O(|ϕ||G||ϕ|/p) time, since the workload is evenly

partitioned. For the cost of PMatch, note that (d) it takes O(|ϕ||G|) time to explore the

candidates for each partial match; (e) there are at most O(|G||ϕ|) many partial matches,

and they are evenly partitioned across processors as assured by PFilter; (f) each pro-

cessor takes O(|ϕ||G||ϕ|/p) time to validate its partition of candidates, along the same

lines as (c); and (g) the communication cost is also in O(|ϕ||G||ϕ|/p), which can be ver-
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ified by induction on the lengths of partial matches. Thus the total cost for processing

ϕ is in O(|ϕ||G||ϕ|/p).

5.6 Experimental Evaluation

Using real-life and synthetic graphs, we conducted three sets of experiments to evaluate

(1) the effectiveness of the method by combining data repairing and object identifica-

tion; (2) the impact of GEDs and ground truth on the quality of repairs; and (3) the

efficiency and scalability of the algorithms for deducing certain fixes.

Experimental setting. We used the following datasets.

Graphs. We used two real-life graphs: (a) DBpedia [DBp], a knowledge graph with 28

million entities of 200 types and 33.4 million edges of 160 types; and (b) YAGO2, an

extended knowledge base of YAGO [SKW07] with 2 million entities of 13 types and

5.7 million edges of 36 types.

We also designed a generator to produce synthetic graphs G, controlled by the

number of nodes |V | (up to 50 million) and number of edges |E| (up to 100 million),

with labels and attributes drawn from an alphabet L of 100 symbols. Each node is

assigned 8 attributes with values drawn from a domain D of 300 elements.

GEDs. We generated a set Σ of GEDs for each graph by extending an algorithm

of [FLL+17], which discovers GEDs with high support. The support of GED ϕ in

a graph G′ indicates how often ϕ can be applied to G′. We mined 200, 150 and 100

GEDs from DBpedia, YAGO2 and Synthetic, respectively, in which (a) the number of

nodes in patterns, denoted by k, is at most 6 (up to 36 edges), and (b) the number of

literals in attribute constraints, denoted by r, is at most 8.

Dirty datasets. Since there is no “gold standard” to compare with, we introduced noise

to the “clean” datasets to evaluate the effectiveness of graph cleaning algorithms. To

do this, we first constructed “clean” datasets by (1) applying the GEDs of Σ discovered

to the original graphs, and (2) manually resolving the violations of Σ detected.

We then introduced noise to the clean graphs by (a) updating attribute values, con-

trolled by inconsistency rate err%, the ratio of the number of updated attributes to the

total number of attributes; and (b) adding duplicate entities, controlled by duplicate

rate dup%, i.e., the percentage of duplicate entities in the entire graph.

Ground truth. The block Γ is sampled from the clean graphs, controlled by the size
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|Γ|, and a relevance ratio rlv%. Here rlv% measures the percentage of pairs (u,v)

of confirmed attribute values and entity matches in Γ that are relevant to Σ. A pair

(u,v) is relevant to Σ if it can be used in validating X at some matches for a GED

Q[x̄](X → Y ) ∈ Σ. Intuitively, rlv% indicates to what extent ground truth Γ can be

involved in fixing the noise with GEDs Σ.

Algorithms. We implemented the following, all in Java. (1) Sequential Clean (Sec-

tion 5.4) and three variants: (a) CleanD, which applies GFDs to correct attribute values

only; (b) CleanO, which only identifies entities by using keys; and (c) CleanE, which

uses GEDs defined with equality literals only. (2) A sequential algorithm ChaseG that

implements the chase (Section 5.2) directly. (3) The entity matching algorithm EMMR

of [FFTD15] and an entity resolution algorithm GraphER by graph clustering [BG06].

(4) Parallel PClean (Section 5.5), and a variant PCleannw that does not support work-

load partition.

The experiments were conducted on Amazon EC2 r3.2xlarge instances, each was

powered by Intel Xeon E5-2670v2, with 61 GB memory and 122 GB SSD storage.

We used up to 20 instances. All the experiments were run 5 times, and the average is

reported here.

Experimental results. We next report our findings. The accuracy of the algorithms are

evaluated by F-measure defined as 2 · (precs · recall)/(precs+ recall). Here (a) precs is

the ratio of true fixes, including attributes correctly updated and true duplicate entities

identified, to all the fixes derived by an algorithm; and (b) recall is the ratio of the

noise correctly fixed to all the noise in the graph, i.e., inconsistent attribute values and

duplicate entities. Note that precs is always 100% for Clean and PClean, while recall

depends on how informative GEDs and ground truth are.

Exp-1: Interaction between data repairing and object identification. We compared

the accuracy of Clean against the methods for only (1) repairing or (2) entity resolution

(duplicate detection). We used real-life graphs and all GEDs discovered. We fixed

rlv% = 90% and |Γ|= 120K (resp. 90K) for DBpedia (resp. YAGO2).

(a) Deduplication helps repairing. Fixing duplicate rate dup% = 8%, we varied the

inconsistency rate err% from 3% to 15%. The results on DBpedia and YAGO2 are

reported in Figures 5.8(a) and 5.8(b), respectively. We find the following. (a) Clean

consistently outperforms CleanD, and is at least 35.5% more accurate. This verifies that

object identification indeed improves data repairing. (b) The accuracy (F-measure) of
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Figure 5.8: Interaction between data repairing and object identification

both algorithms decreases when err% grows. However, CleanD is less sensitive to the

increase of err%.

(b) Repairing helps deduplication. Fixing inconsistency rate err% = 12%, we var-

ied dup% from 2% to 10%. As shown in Figures 5.8(c) and 5.8(d) on DBpedia and

YAGO2, respectively, (a) Clean achieves the best accuracy, and outperforms CleanO,

EMMR, and GraphER by 36.5%, 49.1% and 54.1% on average, respectively. Indeed,

the entity matching algorithms EMMR and GraphER identify a number of false posi-

tives based on erroneous attribute values. (b) The larger dup% is, the less accurate is

for each algorithm. However, the accuracy gaps between Clean and others get larger

with the increase of dup%. These verify that data repairing helps object identification.

On average, the F-measure of Clean (and PClean) is 0.909 and 0.922 in the settings

of (a) and (b) above, over real-life graphs.

Exp-2: Quality of repairs. We next evaluated the impact of GEDs Σ and ground truth

Γ on the quality of the fixes derived by Clean, compared with the counterpart CleanE

that does not use GEDs with inequalities. We fixed err% = 15% and dup% = 10%.
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Figure 5.9: Quality of repairs

Varying ||Σ||. Using the same ground truth as in Exp-1, we varied the number ||Σ|| of

GEDs used from 40 to 200 (resp. 30 to 150) for DBpedia (resp. YAGO2). The results

in Figures 5.9(a) and 5.9(b) show that (a) the more GEDs are available, the higher

F-measure is achieved, as expected; and (b) Clean behaves better than CleanE, and

the improvement becomes more substantial with the increase of ||Σ||. This verifies the

effectiveness of supporting inequalities in GEDs.

Varying rlv%. Fixing ||Σ|| = 90 and |Γ| = 100K (resp. 80K) for DBpedia

(resp. YAGO2), we varied the relevance ratio rlv% from 20% to 100%. As shown
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Figure 5.10: Efficiency of Clean, PClean

in Figures 5.9(c) and 5.9(d), (a) the larger rlv% is, the more certain fixes are found by

Clean. This indicates that the number of fixes found highly depends on rlv%. (b) Clean

outperforms CleanE, consistent with Figures 5.9(a) and 5.9(b).

Varying |Γ|. Fixing ||Σ|| = 100 and rlv = 100%, We varied |Γ| from 10K to 90K on

YAGO2. As shown in Fig. 5.9(e), Clean does better when given a larger block of

ground truth, i.e., more confirmed attributes and entity matches help improve the qual-

ity of fixes, as expected. The results on DBpedia are consistent and hence not shown.

Exp-3 Efficiency and scalability. Finally, we evaluated the efficiency and scalability

for cleaning graphs. In these experiments, we fixed err% = 15%, dup% = 10%, ||Σ||=
60, k = 5, r = 6, rlv% = 80%, |Γ| = 50K, and used p = 16 processors unless stated

otherwise.

Impact of |Σ|. Varying k from 2 to 6 on DBpedia, and r from 4 to 8 on YAGO2, we

evaluated the impact of |Σ| on the graph cleaning algorithms. The results are reported in

Figures 5.10(a) and 5.10(b), respectively. We find the following. (a) All the algorithms

take longer to process GEDs with larger k or r, i.e., having more pattern nodes and
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Figure 5.11: Parallel scalability of PClean

literals, as expected. Moreover, they are more sensitive to the number k of pattern

nodes. (b) Clean substantially outperforms ChaseG, by 3.42 times on average. This

justifies the need for developing Clean, instead of using the chase. (c) PClean performs

the best in all cases, and is on average 2.15 times faster than PCleannw.

Impact of |Γ|. We varied |Γ| from 30K to 150K on DBpedia. As shown in Fig. 5.10(c),

(a) the larger |Γ| is, the longer is taken by all the algorithms. (b) PClean outperforms

the others, consistent with Figures 5.10(a) and 5.10(b), and takes only 721s when |Γ|
is 120K. (c) PClean is less sensitive to |Γ|, due to its parallelization of the procedures

for partial match identification and completion in Clean.

Parallel scalability. We evaluated the parallel scalability of the parallel algorithms by

varying the number p of processors from 4 to 20. As shown in Figure 5.11(a) over

DBpedia (resp. 5.11(b), 5.11(c) over YAGO2, Synthetic), (a) PClean scales well with

p: the improvements is 3.74 (resp. 4.27, 3.76) times when p increases from 4 to 20; this

verifies the parallel scalability of PClean. (b) PClean outperforms PCleannw by 1.77

times on average. (c) PCleannw is less sensitive to the increase of p, due to unbalanced

workloads across processors. This verifies the effectiveness of our workload partition
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strategy.

Impact of |G|. Using synthetic graphs G, we varied |G| with scale factors from 0.2 to

1. Figure 5.11(d) shows the following. (a) PClean scales well with |G| and is feasible

on large graphs. It takes 430 seconds when G has 40 million nodes and 80 million

edges, while Clean takes 3075 seconds, and ChaseG takes 9342 seconds. (b) PClean

performs better than PCleannw, consistent with Figures 5.11(a) to 5.11(c).

Summary. We find the following. (a) The certain fixes of Clean are of high quality:

the F-measure is on average 0.916 with a couple hundred of GEDs and limited ground

truth. (b) Cleaning graphs by unifying data repairing and object identification is effec-

tive: Clean outperforms repairing and entity resolution taken as independent tasks by

43.4% and 46.6% on average, respectively, in accuracy. (c) Cleaning graphs with cer-

tainty is feasible. PClean takes 430 seconds to find certain fixes for graphs with 120M

nodes and edges using 16 processors, as opposed to 9742s by ChaseG. (d) PClean is

parallel scalable. Its performance is improved by 3.92 times on average when p is from

4 to 20. (e) Our workload partition strategy is effective, improving the performance by

1.96 times on average.





Chapter 6

Conclusion and Future Work

We summarize the results of this thesis and propose future work in this chapter.

6.1 Summary

This thesis develops a package of techniques for the analysis of big graphs, which aim

to improve both the efficiency and quality. Specifically, the main results include the

following.

• We have established undoable and doable results for incremental graph compu-

tations. We have shown that the incremental problems for RPQ, SCC and KWS

are unbounded under unit updates. However, we have proposed alternative char-

acterizations for the effectiveness of incremental graph computations, and shown

that RPQ, SCC, KWS and ISO are either localizable or bounded relative to their

batch counterparts, by providing incremental algorithms with corresponding per-

formance guarantees. Our experimental results have verified that the incremental

algorithms substantially outperform their batch counterparts and scale well with

large graphs, justifying the effectiveness of the new standards.

• We have proposed a class of keys for graphs. We have shown that entity match-

ing with keys is NP-complete and hard to parallelize. Despite these, we have

provided two parallel scalable algorithms, under MapReduce and vertex-centric

asynchronous model, respectively. Our experimental results have verified that

entity matching is feasible on big graphs in practice, in which the parallel run-

ning time of the parallel scalable algorithms are linearly reduced when the num-

ber of available processors increases.

• We have proposed a class of NGDs with arithmetic and comparison expressions
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to catch semantic inconsistencies in graphs. We have justified NGDs by estab-

lishing the complexity of the satisfiability and implication analyses of NGDs and

their extensions. We have developed the first incremental algorithms to detect

errors in graphs, with provable performance guarantees. We have empirically

verified that NGDs and the algorithms yield a promising tool for detecting errors

in graph-structured data, numeric or not.

• We have proposed a method Analogist to clean graphs with certainty, by revising

the chase. We have extended the GEDs of [FL17] to express rules for data repair-

ing and object identification, positive and negative. We have settled fundamental

problems for graph cleaning. We have developed (parallel scalable) algorithms

underlying Analogist. Our experimental results have verified that the method is

promising for fixing semantic inconsistencies in graphs.

6.2 Future Work

There is much to be done. We list some of the topics that are targeted for future work,

which deserve a full treatment.

Incremental graph computations. As we have seen in Chapter 2, localizable and rel-

atively bounded algorithms allow us to effectively conduct incremental computations

on big graphs. Now the question is whether there are other alternative characteri-

zations for the effectiveness of incremental graph algorithms? Therefore, one topic

for future work is to classify graph queries commonly used in practice, characterize

their incremental computations, and identify performance guarantees for their incre-

mental algorithms when possible. Another topic is to identify practical conditions un-

der which unbounded incremental problems become bounded or relatively bounded.

We are also investigating (relative) bounded incremental algorithms under access con-

straints [CFHH15], which are a combination of cardinality constraints and indices. As

indicated in [CFHH15], some instances of an unbounded incremental problem become

“bounded” under access constraints. This issue also needs a full treatment.

Discovering keys and NGDs. To make practical use of keys and NGDs in identi-

fying duplicate entities and detecting numeric inconsistencies, effective techniques

have to been in place to find nontrivial and interesting keys and NGDs from real-life

graphs. The problem is more challenging than discovery of relational FDs [HKPT99]

and CFDs [HKPT99], since keys and NGDs both are combinations of topological con-
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straints and attribute dependencies, not to mention the recursion and numeric expres-

sions involved. Moreover, the validation analysis of the dependencies discovered is

NP-complete and coNP-complete for keys (Chapter 3) and NGDs (Chapter 4), respec-

tively, compared to low PTIME for the FD and CFD counterparts. It is also harder than

conventional graph pattern mining as it has to deal with disconnected patterns.

Cleaning graphs. The work of Chapter 5 is still preliminary. One topic for future

work is to clean graphs by combining rule-based and machine learning approaches,

i.e., combining the benefits of the both, similar to the method of [PSC+15] for cleaning

relational data. Another topic is to develop an algorithm that, given a graph G and a

set Σ of GEDs, computes a minimum block Γ of “facts”, i.e., candidate ground truth,

to be validated by experts or crowd-sourcing, such that all errors in G can be fixed by

Chase(G,Σ,Γ). This is also challenging since the coverage problem for graph cleaning

is already PNP
|| -complete.

Parallel scalability. As remarked in Chapter 5, it is not always the case that there exist

parallel scalable algorithms to answer graph queries in a big dataset G, such that given

more processors, it is warranted to take less time. For instance, it has been shown that

the computational and communication costs of distributed graph simulation are func-

tions of the size |G| of G, which do not necessarily get smaller when more processors

are added [FWW14a]. In fact, a number of published distributed algorithms are not

parallel scalable. Worse still, there is not even a generally accepted notion of paral-

lel scalability yet. It is nontrivial to characterize this for shared-nothing architectures,

when both computation complexity and communication costs are taken into account.

We are formalizing the notion of parallel scalability for shared-nothing architectures,

in response time and communication cost. That is, we want to decide whether it is

feasible to answer our queries on big data if we are able to get more processors. We

are also investigating systematic methods for developing parallel scalable algorithms

with performance guarantees, and studying formal methods to prove the impossibility

of parallel scalability for various query classes.
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