
 

 

 

 

 

 

 

 

 

 

 

This thesis has been submitted in fulfilment of the requirements for a postgraduate degree 

(e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following 

terms and conditions of use: 

• This work is protected by copyright and other intellectual property rights, which are 

retained by the thesis author, unless otherwise stated. 

• A copy can be downloaded for personal non-commercial research or study, without 

prior permission or charge. 

• This thesis cannot be reproduced or quoted extensively from without first obtaining 

permission in writing from the author. 

• The content must not be changed in any way or sold commercially in any format or 

medium without the formal permission of the author. 

• When referring to this work, full bibliographic details including the author, title, 

awarding institution and date of the thesis must be given. 

 



REFERENCES 

 

 

 

Investigation into the Pathogenesis of 
Spinocerebellar Ataxia Type 5 

 

 

Yvonne Louise Clarkson 

 

 

A thesis submitted for the degree of Doctor of 
Philosophy 

 

The University of Edinburgh 

 

2010



 

i 

 

ABSTRACT 

_____________________________________________ 
Mutations in SPTBN2, the gene encoding β-III spectrin, give rise to spinocerebellar 

ataxia type 5 (SCA5), an autosomal dominant neurodegenerative disease 

characterized by motor incoordination and cerebellar degeneration. The work 

reported in this thesis addressed possible mechanisms of disease pathogenesis using 

genetically modified mice lacking β-III spectrin (β-III -/-) and also investigated the 

normal function of β-III spectrin through identification of proteins that interact with 

its amino-terminus. 

 

Targeted recombination was successful in eliminating expression of full-length β-III 

spectrin but β-III spectrin lacking exons 2-6 (∆2-6 β-III spectrin) was found to be 

present at a low level in β-III -/- spectrin mice. To ascertain whether the novel 

truncated protein had any obvious gain-of-function or adverse property that would 

complicate analysis of β-III -/- spectrin mice the aberrant transcript ∆2-6 β-III spectrin 

was cloned and a number of in vitro experiments carried out. Protein stability, 

solubility, cellular localization, and functional assays indicated ∆2-6 β-III spectrin 

was less functional than full-length β-III spectrin, confirming the β-III -/- spectrin 

mouse could be considered a functional knockout.  

 

Analysis of β-III -/- spectrin mice revealed that from 18-weeks of age hind limb gait 

became progressively wider than age-matched wild-type (WT) controls and three 



 

ii 

 

behavioural tests (stationary rod, rotarod, and elevated beam) demonstrated a 

progressive impairment in motor performance and coordination. 3-week old β-III -/- 

spectrin mice performed worse on the rotating rod than age-matched controls but 

their performance at 3- and 5-rpm improved with consecutive days of testing. Only at 

10-rpm did young β-III -/- spectrin mice fail to improve, whereas 6-month old β-III -/- 

spectrin mice were unable to stay on the rod even at 3-rpm. The ability to balance on 

a stationary rod was also worse at 6-months of age and the number of hindlimb slips 

made by β-III -/- spectrin mice on the elevated beam increased from 12-weeks of age. 

This progressive motor phenotype mirrors symptoms seen in SCA5 patients. In 

contrast heterozygous mice (β-III +/-) were shown not to develop an ataxic phenotype 

or display cerebellar degeneration, even at 2-years of age. Cell culture studies using 

one mutation (L253P) associated with SCA5 revealed that it interfered with protein 

trafficking from the Golgi apparatus and had a dominant-negative effect on WT 

function. Incubation at a lower temperature resulted in L253P β-III spectrin reaching 

the plasma membrane suggesting an altered protein conformation was responsible for 

the protein trafficking defect. The intracellular accumulation of proteins at the Golgi 

did not initiate the unfolded protein response. From this work it was concluded that 

the β-III -/- spectrin mouse is a new model of cerebellar ataxia and loss of β-III 

spectrin function underlies SCA5 pathogenesis. The results argued against 

haploinsufficiency and instead suggested disease-causing mutations have dominant-

negative effects on WT function and indicate a deficit of cell membrane proteins 

could participate in SCA5 pathogenesis. 
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Finally, using a yeast two-hybrid screen the amino terminus of β-III spectrin was 

found to interact with the carboxy-terminus of prosaposin (a neurotrophic factor) and 

clathrin light chain. The interactions were confirmed in mammalian cells suggesting 

neurite outgrowth and movement of membrane vesicles may be normal functions of 

β-III spectrin. 
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CHAPTER 1 INTRODUCTION 
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CHAPTER 1   

INTRODUCTION 
____________________________________________________________________ 

1.1 Definition of ataxia  

The term ‘ataxia’ is Greek in descent and literally translates to ‘without order’ and is 

used clinically to describe a lack of motor co-ordination or posture that cannot be 

explained by motor weakness or sensation deficits (Garcin, 1969; Trouillas et al., 

1997). Ataxia can be a consequence of immune diseases, cancer, hypothyroidism, 

drug abuse, a cerebellar abscess, other infectious diseases, or an inherited 

neurodegenerative disorder.  

 

The topic of this thesis focuses on the dominantly inherited ataxias, also known as 

the spinocerebellar ataxias (SCAs). They are a group of progressive, typically late 

onset, neurodegenerative disorders that arise from dysfunction within the 

spinocerebellum, the region of the cerebellar cortex that receives somatosensory 

input from the spinal cord (Oscarsson, 1965). Clinically cerebellar signs are 

oculomotor disturbances (abnormal eye movements), dysarthria (difficulties with 

speech), deficits of limb movements and abnormalities of gait and posture (Trouillas 

et al., 1997). In most cases the degeneration of the cerebellum is accompanied by 

damage within other brain regions, including brainstem, basal ganglia, spinal cord 

and the peripheral nervous system. Originally the SCAs, previously known as 

autosomal dominant forms of cerebellar ataxia (ADCA) were classified according to 

these extracerebellar phenotypes (Table 1.1) (Harding, 1993). This placed most 
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forms into type I due to brainstem and/or spinal cord involvement. Whereas type II 

was classified by the occurrence of retinal degeneration and type III were the pure 

cerebellar forms, with or without vestibular symptoms. The latter cases of pure 

cerebellar atrophy may be more appropriately termed familial cortical cerebellar 

atrophy and it is SCA5, a subtype falling into this category, that forms the basis of 

the work reported here. 

 

1.2 The cerebellum 

1.2.1 Motor coordination 

Marie-Jean-Pierre Flourens was the first person to suggest the function of the 

cerebellum was to coordinate movement. She predicted that any interference with the 

cerebellum would affect the ability of the animal to control motor coordination and if 

the entire cerebellum was removed the ability to control movement would be lost 

(Flourens, 1824). Her initial studies involved cerebellar ablations in pigeons and 

from this work she was able to state “the will, the senses, the perception remained, 

but the coordination of movement, the ability for controlled and determined 

movement, was lost”.  

 

It is now known that the cerebellum integrates and combines sensory inputs from the 

periphery, fine-tuning movement and postural control so that automatic motor skills 

are performed rapidly and smoothly every time (Holmes, 1939). Damage to the 

cerebellum results in slow and irregular movement as the action of muscles are no  
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Table 1.1 Clinical and molecular features of autosomal dominant spinocerebellar ataxias 

Disease Distinguishing features 
(all have gait ataxia) 

Harding 
Classification 

Average 
Duration 

Protein or 
chromosomal locus 

Type of mutation Reference 

SCA1 Cognitive impairment, 
peripheral neuropathy 

I 15 years Ataxin-1 CAG repeat Orr et al., 1993; 
Banfi et al., 1994; 
Zoghbi and Orr, 
1995 

SCA2 Slow saccadic eye 
movements, peripheral 
neuropathy, dementia 

I 10 years Ataxin-2 CAG repeat Imbert et al., 
1996; Pulst et al., 
1996; Sanpei et 
al., 1996 

SCA3 Decreased saccade velocity, 
sensory loss, pyramidal and  
extrapyramidal signs  

I 10 years Ataxin-3 CAG repeat Kawaguchi et al., 
1994 

SCA4 Sensory axonal neuropathy, 
deafness 

I Decades 16q22.1  Flanigan et al., 
1996 

SCA5 Early onset, slow progression III > 25 
years 

β-III spectrin In-frame deletions, 
missense mutations 

Ikeda et al., 2006 

SCA6 Very slow progression, 
sometimes episodic ataxia 

III >25 
years 

Voltage-dependent 
P/Q-type calcium 
channel alpha-1A 

subunit 

CAG repeat Zhuchenko et al., 
1997 

SCA7 Visual loss with retinopathy II 20 years Ataxin-7 CAG repeat David et al., 1997 
SCA8 Slowly progressive, 

decreased vibration sense, 
rare cognitive impairment 

I Normal 
lifespan 

13q21 CAG.CTG repeat Koob et al., 1999 
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Table 1.1 Continued Clinical and molecular features of autosomal dominant spinocerebellar ataxias 

Disease Distinguishing features 
(all have gait ataxia) 

Harding 
Classification 

Average 
Duration 

Protein or 
chromosomal 

locus 

Type of 
mutation 

Reference 

SCA10 Epilepsy I 9 years Ataxin-10 ATTCT 
repeat 

Matsuura et al., 2000 

SCA11 Mild, remain ambulatory, 
abnormal eye signs 

III Normal 
lifespan 

Tau-tubulin 
kinase 2 

Insertions 
and deletions 

Worth et al., 1999; Houlden et 
al., 2007 

SCA12 Slowly progressive, 
Parkinson’s, cognitive 
impairments, action tremor of 
upper extremities 

I  Phosphatase 2A 
regulatory 

subunit 

CAG repeat Holmes et al., 1999 

SCA13 Mild mental retardation, 
seizures 
 
 

I Normal 
lifespan 

Potassium 
voltage-gated 

channel 

Missense 
mutations 

Waters et al., 2006 

SCA14 Early axial myoclonus III Decades Protein kinase C 
gamma 

Missense 
mutations 

Chen et al., 2003 

SCA15 Very slow progression III Decades Inositol 1,4,5-
trisphosphate 

receptor type 1 

Deletion of 
5´ part of 

gene 

Matsumoto et al., 1996; 
Knight et al., 2003; Gardner et 
al., 2005; van de Leemput et 
al., 2007; Hara et al., 2008 

SCA16 Head tremor III Decades   Miyoshi et al., 2001 
SCA17 Mental deterioration, 

dystonia, epilepsy 
I >8 years TATA-box 

binding protein 
CAA/CAG 

repeat 
Nakamura et al., 2001 
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Table 1.1 Continued Clinical and molecular features of autosomal dominant spinocerebellar ataxias 

Disease Distinguishing features 
(all have gait ataxia) 

Harding 
Classification 

Average 
Duration 

Protein or 
chromosomal 

locus 

Type of 
mutation 

Reference 

SCA18    7q22-q32  Devos et al., 2001 
SCA19 Cognitive impairment I Decades 1p21-q21  Verbeek et al., 2002 
SCA20 Early dysarthria, hyperflexia, 

bradykinesia 
I Decades 11q12.2-

11q12.3 
260-kb 

duplication 
Knight et al., 2004 

SCA21 Mild cognitive impairment I Decades 7p21-p15.1  Vuillaume et al., 2002 
SCA22 Slowly progressive I Decades 1p21-q23   Chung et al., 2003 
SCA23 Dysarthria, abnormal eye 

movements, reduced 
vibration senses 

I >10 years 20p13-p12.3  Verbeek et al., 2004 

SCA25 Sensory neuropathy I Unknown 2p21-p13  Stevanin et al., 2005 
SCA26 Dysarthria, irregular visual 

pursuits 
III Unknown 19p13.3  Yu et al., 2005 

SCA27 Early onset tremor, 
dyskinesia, cognitive deficits 

I Decades Fibroblast 
growth factor 

14 

Missense 
mutations 

van Swieten et al., 2003 

SCA28 Nystagmus, increased tendon 
reflexes 

I Decades AFG3-like 
protein 2 

Missense 
mutations 

Cagnoli et al., 2006; Di Bella 
et al., 2010 

SCA31 Adult onset, pure cerebellar III  16q22.1 TGGAA 
repeat 

Nagaoka et al., 2000; 
Ishikawa et al., 2005; Sato et 
al., 2009 
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longer coordinated in timing, duration and amplitude. Instead the frontal cerebral 

cortex has to think out every movement. 

 

1.2.2 Neurons in the cerebellar cortex 

The structure of the cerebellum can be divided into two parts – the cerebellar cortex 

and the cerebellar nuclei. The cerebellar cortex comprises three layers (granule cell, 

Purkinje cell and molecular layers) and contains five types of neurons (stellate, 

basket, Purkinje, Golgi and granule cells; Figure 1.1). The granule cell layer contains 

a huge number of neurons, mainly excitatory granule cells but also a few Golgi 

interneurons. In contrast the Purkinje cell layer is a single layer of Purkinje cell 

bodies lying between the granule cell and molecular layers. The latter layer has very 

few cell bodies, only those of inhibitory stellate and basket cells, and instead is 

mainly composed of the dendritic arborizations of the inhibitory Purkinje cells. The 

Purkinje cells receive input from a range of sources throughout the central nervous 

system (CNS) but in turn they are the sole output of the cerebellar cortex, targeting 

the deep cerebellar nuclei (fastigius, interpositus and dentate; refer to section 1.2.5). 
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Figure 1.1 Basic structure of the cerebellar cortex. A schematic representation of the 
three layers of the cerebellar cortex composed of five types of neurons (Apps and Garwicz, 
2005). 
 
 

1.2.3 Purkinje cell innervation and modulation 

Parallel and climbing fibers form the two excitatory (glutamatergic) inputs to 

Purkinje cells (Figure 1.1). Climbing fibers originate from the medulla, within the 

inferior olivary nucleus, and each fiber forms hundreds of excitatory synapses on the 

cell body and proximal dendrites of 1-10 Purkinje cells. Each individual Purkinje cell 

however only receives input from one climbing fiber. Nevertheless the action 

potential produced by a climbing fiber is incredibly large, activating the Purkinje cell 

every time and producing a complex spike. This contains a large-amplitude spike that 
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is followed by a burst of smaller-amplitude action potentials due to prolonged 

conductance within the Purkinje cell soma and dendrites (Eccles, 1967; Thach, 

1967). In contrast parallel fibers, the axons of granule cells, synapse with a large 

number of Purkinje cells. These fibers are situated at right angles to the Purkinje cell 

dendrites and a single Purkinje cell can form synaptic contacts with as many as one 

million granule cells. It is excitation from parallel fibers that modulates the tonic 

simple spike firing frequency such that it can exceed 100 Hz (Eccles, 1967; Thach, 

1967). A third glutamatergic synapse exists between mossy fibers, originating from 

the spinal cord and brainstem, and the dendrites of granule cells. This conveys to the 

cerebellum information from the cerebral cortex and sensory inputs from a variety of 

sources. 

 

The removal of glutamate by postsynaptic neuronal (excitatory amino acid carrier 1 

(EAAC1) and excitatory amino acid transporter type 4 (EAAT4)) and glial 

(glutamate transporter type 1 (GLT1) and glutamate aspartate transporter (GLAST)) 

glutamate transporters is critical for terminating the excitatory signal and preventing 

diffusion of glutamate into neighbouring synapses (Chaudhry et al., 1995; Takahashi 

et al., 1996; Bergles et al., 1997; Clark and Barbour, 1997; Otis et al., 1997; Dzubay 

and Jahr, 1999; Auger and Attwell, 2000; Diamond, 2001). GLAST and EAAT4 are 

thought to be responsible for the majority of cerebellar uptake with GLT1 only 

contributing a small amount (Furuta et al., 1997). Glutamate transporters have an 

essential role in protecting neurons from excitotoxic injury by maintaining low 

concentrations of extracellular glutamate (Danbolt, 2001). Malfunction, aberrant 



CHAPTER 1 INTRODUCTION 

 

9 

 

expression or insufficient capacity of glutamate transporters can lead to high 

extracellular concentrations of glutamate and neuronal death (Choi, 1988; Rothstein 

et al., 1996).  

 

As well as excitatory inputs Purkinje cells receive inhibitory input from three 

interneurons (stellate, basket and Golgi cells). The axons of stellate and basket cells 

directly contact Purkinje cells whereas Golgi cells form synapses with the granule 

cells. All three interneurons are activated by parallel fibers. 

 

1.2.4 Motor learning 

The involvement of the cerebellum in motor learning was a theory proposed by 

David Marr and James Albus (Marr, 1969; Albus, 1971). They stated the modulation 

of Purkinje cell input results in a new movement being learnt or an old one adapted. 

Animal studies have since provided evidence that the cerebellum does have a role in 

motor learning as removal of the cerebellar cortex prevents adaptation and learning 

(Robinson, 1976; McCormick et al., 1981; McCormick and Thompson, 1984; Yeo et 

al., 1984). The mechanism appears to involve trial-and-error with climbing fibers 

signaling an error in movement that weakens the strength of concurrently active 

parallel fiber-Purkinje cell synapses (Simpson and Alley, 1974; Gilbert and Thach, 

1977; Gellman et al., 1985; Dugas and Smith, 1992; Ojakangas and Ebner, 1994). 

This allows signals from the correct movement to emerge and influence Purkinje cell 

output (Ito et al., 1982; Ekerot and Kano, 1985; Strata, 1985; Kano and Kato, 1987). 
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1.2.5 The cerebellar nuclei 

The deep cerebellar nuclei (DCN) and the vestibular nuclei are responsible for the 

output of the cerebellum. When there is no movement, the DCN spontaneously fire at 

rates between 40-50 Hz but during movement the firing rate can either increase or 

decrease from this baseline frequency (Bastian and Thach, 2002). It is the changes of 

firing frequency that result in the modulation of target structures and each nucleus 

appears to control different motor systems and their respective functions (Asanuma 

et al., 1983a; Asanuma et al., 1983b, c, d; Orioli and Strick, 1989) (Table 1.2).  

 

Table 1.2 Functions controlled by the cerebellar nuclei. 

Cerebellar nuclei Functions  Effect on inactivating the 
nucleus 

Fastigius 

(Vestibular and medial) 

Eye movements, 
equilibrium, upright 
stance and gait 

Animal unable to sit, stand 
or walk with recurrent 
falls to the side of the 
lesion (Botterell and 
Fulton, 1938; Kane et al., 
1988, 1989; Sprague and 
Chambers, 1953; Thach et 
al., 1990, 1992). 

Interpositus 

(Intermediate) 

Stretch, contact, 
placing and other 
relexes 

Development of a severe 
action tremor during 
reaching (Kane et al., 
1988, 1989; Thach et al., 
1990, 1992). 

Dentate 

(Lateral) 

Voluntary movements 
of the extremities 
including reaching 
and grasping 

Over angulation of the 
shoulder and elbow when 
reaching (Kane et al., 
1988, 1989; Thach et al., 
1990, 1992). 
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1.3 Genetic causes of SCA 

The prevalence of SCAs in several populations can be as high as 5 – 7 in 100 000 

(van de Warrenburg et al., 2002; Craig et al., 2004), making these diseases as 

common as Huntington’s or motor neuron disease. Currently, over 30 different 

genetic loci have been identified as associating with SCA and are numbered in order 

of discovery (Table 1.1). However, the disease-causing mutations and their 

respective genes have only been identified for sixteen SCA subtypes (Carlson et al., 

2009). This means that 20 – 50% of families with autosomal dominant forms of 

ataxia are still of unknown genetic origin (A Brice, personal communication). The 

SCA subtypes of known genetic origin can be classified into three main subgroups.  

 

1.3.1 CAG repeat expansions 

The first genetic defect to be identified in a family with SCA was the discovery of an 

expanded CAG-repeat sequence in the ataxin 1 gene, which leads to an abnormally 

long poly-glutamine tract being present in the encoded protein (Orr et al., 1993). A 

further five SCA subtypes (SCA 2, 3, 6, 7 and 17) have since been found to be 

associated with coding CAG repeat expansions (reviewed in (Duenas et al., 2006)). 

These six polyglutamine SCAs account for over 50% of all SCA families, with 

SCA3 being the most common form (Bird, 1998). 
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1.3.2 Repeat expansions outwith the protein coding region 

The second category, comprising SCA 8, 10 and 12, are due to repeat expansions that 

occur outside of the protein-encoding region of the relevant disease gene. There is 

therefore no polyglutamine tract expansion or any other amino acid repeat within the 

disease protein. In the case of SCA10 it is a large pentanucleotide expansion within 

an intron (Matsuura et al., 2000), for SCA12 it is a small CAG repeat expansion 

within the 5′ untranslated region of the disease gene (Holmes et al., 1999) and in 

SCA8 a CTG repeat that is bidirectionally transcribed resulting in a non-coding CUG 

transcript and possibly a polyQ protein (Koob et al., 1999).  

 

1.3.3 Conventional mutations 

The remaining seven SCAs comprise an expanding third category due to the 

identification of mutations in rarer forms of dominantly inherited ataxia. These 

subtypes are not caused by dynamic repeat expansions, but instead by conventional 

mutations. The conventional mutations are deletion, missense, nonsense or 

frameshift mutations in the corresponding genes.  Mutations in the genes that encode 

β-III-spectrin (Ikeda et al., 2006), tau tubulin kinase 2 (TTBK2) (Houlden et al., 

2007), a potassium channel (KCNC3) (Waters et al., 2006), protein kinase C 

(PRKCG) (Chen et al., 2003), type 1 inositol 1,4,5-triphosphate receptor (ITPR1) 

(van de Leemput et al., 2007; Iwaki et al., 2008) and fibroblast growth factor 14 

(FGF14) (van Swieten et al., 2003) give rise to SCA5, 11, 13, 14, 15/16 and 27, 

respectively.  
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1.4 Spinocerebellar ataxia type 5 

1.4.1 Clinical symptoms 

In 1992 a large family, descended from the paternal grandparents of United States 

President Abraham Lincoln, was identified as having a clinically mild form of SCA 

(Ranum et al., 1994). Linkage to all known ataxia loci was excluded and instead 

genetic linkage analysis mapped the disease locus to the centromeric region of the 

long arm of chromosome 11 (11q13), identifying a new SCA subtype, coined SCA5.  

 

Clinically SCA5 is more benign (Ranum et al., 1994) than other SCAs (Gouw et al., 

1994; Yagishita and Inoue, 1997) and is classified as ADCA type III due to it 

primarily affecting the cerebellum, with the brainstem usually being spared (Table 

1.1). SCA5 cases show severe atrophy of the cerebellum by magnetic resonance 

imaging (MRI) scans (Figure 1.2) and autopsy examination shows significant 

Purkinje cell loss, shrinkage of the molecular layer, mild loss of granular neurons and 

frequent empty basket fibers (Manto and Pandolfo, 2002; Ikeda et al., 2006). The 

DCN (see section 1.2.5) were found to be gliotic, but this was not accompanied by 

neuronal loss. Another clinical distinction between SCA5 and other SCAs is that 

disease progression is much slower and is typically not fatal (Ranum et al., 1994). 

This difference is thought to result from the lack of bulbar paralysis in SCA5, which 

in the other SCAs results in a poorer ability to fight recurrent pneumonia (Zoghbi, 

1991). 
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Normal control SCA5 patient

 

Figure 1.2 MRI scan shows cerebellar atrophy in SCA5 patient. MRI scan of a normal 
control and a patient with SCA5. The SCA5 patient shows severe cerebellar atrophy with 
sparing of the brainstem. Images obtained from Laura Ranum, personal communication.   

 

Average age of onset of SCA5 is later in life, typically in the third or fourth decade 

but symptoms can manifest between 10 and 68 years of age (Ranum et al., 1994; 

Stevanin et al., 1999; Burk et al., 2004). Mild disturbance of gait, incoordination of 

limbs, abnormal eye movements, and slurred speech are the initial symptoms, which 

gradually progress over several decades to wheelchair dependency in some instances. 

However, patients with early onset (before the age of 20) also show signs of mild 

bulbar involvement and it may be that these individuals will go on to develop a more 

severe form of disease.  
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1.4.2 Genetic mutations that underlie SCA5 

In 2006 Ranum and colleagues found mutations in the gene SPTBN2, which encodes 

β-III spectrin, in affected members of the Lincoln pedigree and two additional 

families but not in 1000 control chromosomes (Table 1.3) (Ikeda et al., 2006). The 

mutation associated with the Lincoln pedigree was a 39-bp in-frame deletion 

resulting in a 13-amino acid deletion within the third spectrin repeat of β-III spectrin 

(see section 1.5.4). A shorter in-frame deletion (15 bp) in the same spectrin repeat 

was observed in a French family and this deletion also resulted in the introduction of 

a missense mutation (R634W). The third family possessed a single missense 

mutation (L253P) within the second of two calponin-homology (CH) domains. 

 

Historical literature had suggested President Lincoln may have suffered from SCA5. 

In 1861 William Russell, a reporter from the London Times, wrote of Abraham 

Lincoln “Soon afterwards there entered, with a shambling, loose, irregular, almost 

unsteady gait, a tall, lank, lean man..” depicting a man with characteristic features of 

ataxia. But recently, using handwriting analysis, Dr. Sotos has refuted this 

possibility. He believes Lincoln’s handwriting was perfect when he drafted the 

Gettysburg Address in 1864 (a year before he died), so, ruling out SCA5, in his 

opinion since the most common complaint of patients is deterioration in handwriting 

and fine finger dexterity (Sotos, 2009). 
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Table 1.3 Details of disease in families with SPTBN2 mutations 

 

Family Disease 
onset 
(yr) 

Clinical Symptoms Pathology Reference 

Lincoln 10-68 Disturbance of gait, 
incoordination of upper 
extremities, slurred speech 
Juvenile onset evidence of 
pyramidal tract dysfunction 

Cerebellar atrophy, 
greater involvement 
of superior 
hemispheres and 
anterior vermis 
No change basal 
ganglia, cerebral 
cortex 

Ranum et 
al., 1994 

French 14-40 Slowly progressive, gait 
instability, horizontal nystagmus, 
brisk reflexes 
Slight facial myokymia, 
decreased vibration sense 
No extrapyramidal signs or 
swallowing difficulties 

Universal cerebellar 
atrophy, sparing of 
pons 

Stevanin 
et al., 
1999 

German 15-50 Downbeat nystagmus, ataxia of 
stance and gait, dysarthria, 
intention tremor 
Normal vestibular function 
No cognitive impairment, 
dysphagia, hearing loss, 
pyramidal tract signs or facial 
myokymia 

Cerebellar atrophy, 
intact brainstem 
structures 

Burk et 
al., 2004 
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1.5 Spectrin 

1.5.1 Structure of spectrin 

Spectrins are heterotetramers comprising two α- and two β-subunits (Figure 1.3). 

These proteins were first discovered in human erythrocytes, being the most abundant 

protein found within the membrane skeleton of red blood cells (Cohen, 1983). The 

majority of each spectrin polypeptide consists of a series of repeats, each one 

approximately 106 amino acids (Speicher and Marchesi, 1984) and forming a triple 

helix (Yan et al., 1993; Pascual et al., 1996). The α- and β-subunits associate 

laterally, forming anti-parallel heterodimers which interact head-to-head to form the 

functional heterotetramer (Ungewickell and Gratzer, 1978; Shotton et al., 

1979)(Figure 1.3). Short actin filaments then link the spectrin tetramers together 

forming a flexible spectrin network attached to the inner leaf of the membrane 

bilayer.  
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Spectrin subunits      

Spectrin dimer

Spectrin tetramer

 

 

Figure 1.3 The formation of spectrin. Spectrin is composed of two α- and two β-spectrin 
subunits. Dimers are generated when non-covalent bonds form between an α- and a β-
subunit  which lie antiparallel to one another (Shotton et al., 1979). Tetramers form when 
dimers are joined together with the N΄ terminus of every α subunit linking to the C΄ terminus 
of every β subunit (Ungewickell and Gratzer, 1978). Image modified from originals (Baines 
and Pinder, 2005; Baines, 2009). 
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It is known that vertebrates have two α- (αI/αII), four β- (βI-βIV) and a β-H subunit, 

which creates diversity and specialization of function (Bennett and Baines, 2001). 

αI/βI polypeptides form mammalian erythrocyte spectrin and are also found in 

striated muscle and a subset of neurons. αII/βII, αII/βIII and αII/βIV polypeptides 

are the major forms in nonerythroid vertebrate tissues.  

 

1.5.2 Erythrocyte spectrin 

Characterization of the erythrocyte membrane has provided clues as to the 

organization and role of the spectrin skeleton. The assembly of a spectrin-actin 

filamentous network at the plasma membrane is critical for mechanical support and 

maintenance of structural membrane integrity. Mutations within spectrin subunits, in 

both mice (Greenquist et al., 1978; Lux et al., 1979) and humans (Agre et al., 1982; 

Agre et al., 1985), cause hereditary spherocytosis, a type of haemolytic anaemia. The 

mutations result in loss of spectrin and unsupported membranes leading to 

fragmentation of erythrocytes when placed under mechanical stress in the circulation.  

 

Accessory proteins have also been identified as associating with erythrocyte spectrin 

and being important for the maintenance of the filamentous network. Protein 4.1 

binds to the actin-binding domain of the β polypeptide and is thought to initiate and 

strengthen the interaction between spectrin and actin (Cohen, 1983; Bennett, 1985). 

Interaction of protein 4.1 with members of the glycophorin family (particularly 

gycophorin C) also links spectrin to the lipid bilayer stabilizing the whole structure. 

A stronger interaction between spectrin and the lipid bilayer arises from ankyrin-R 
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binding to spectrin repeats 14 and 15 of the β polypeptide and the cytoplasmic 

domain of the membrane-bound anion exchanger (Bennett and Stenbuck, 1980; 

Speicher et al., 1982; Kennedy et al., 1991). Interaction with ankyrin-R also 

increases the affinity of spectrin self-association, enhancing formation of the spectrin 

lattice (Cianci et al., 1988). The majority of human cases of hereditary spherocytosis 

actually result from mutations of ankyrin-R and not spectrin per se, but the common 

feature is a defective spectrin lattice (Eber and Lux, 2004; Gallagher, 2005). 

 

1.5.3 Neuronal spectrin 

Studies using Caenorhabditis elegans, Drosophila melanogaster and mice have 

demonstrated several functions of spectrin in the nervous system. Unlike vertebrates 

C. elegans and D. melanogaster have only one α, one β and one β-H subunit. Loss of 

β spectrin in C. elegans, encoded by unc-70, has revealed it is vital for axonal 

integrity (Hammarlund et al., 2000; Hammarlund et al., 2007). Without spectrin the 

worms are paralyzed, axons are unable to withstand strain initiated by movement, 

and muscle structure becomes disordered, eventually detaching from the body wall 

(Moorthy et al., 2000). The presence of β-spectrin therefore protects against 

spontaneous breaks in neuronal processes that would otherwise arise from 

movement. 

 

In postembryonic Drosophila the knockdown of either α or β presynaptic spectrin 

results in synaptic retraction and consequently synapse elimination at the 

neuromuscular junction (Pielage et al., 2005). A decrease in two cell adhesion 
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molecules, neuroglian and Fasciclin II, is observed in flies lacking presynaptic 

spectrin suggesting that a loss in cell-cell contact is an early event in synapse 

retraction and a consequence of spectrin loss. Disorganization and retraction of 

microtubules, along with axonal transport defects, are also observed when spectrin 

protein levels are drastically reduced or absent (Pielage et al., 2005). A resulting 

disruption to normal retrograde transport of critical trophic factors (McCabe et al., 

2003) may be a factor in the observed synapse retraction. Furthermore, a requirement 

for dynactin-mediated axonal transport has been shown to be required for synapse 

stabilization at the Drosophila neuromuscular junction (Eaton et al., 2002) and 

disruption to this transport has been associated with motor neuron disease in humans 

and mice (LaMonte et al., 2002; Hafezparast et al., 2003; Puls et al., 2003; Munch et 

al., 2004). Therefore, an important role of spectrin may be to link cell adhesion 

molecules to the microtubule as an interaction with microtubules for both α and β 

spectrin has been reported (Sisson et al., 2000). 

 

Two mouse models have shown the importance of β-IV spectrin in the nervous 

system. Mice created to have a null mutation within the gene encoding β-IV spectrin 

were found to have tremors and clasp their hindlimbs when held in the air (a 

characteristic feature of ataxia). Severity of the phenotype increases with age and by 

6-10 months of age the mice are no longer ambulatory (Komada and Soriano, 2002). 

The quivering mouse, resulting from a spontaneous mutation in the β-IV spectrin 

gene, also displays ataxia with hindlimb paralysis, deafness and tremor when 

homozygous for the mutation (Parkinson et al., 2001). These mice have ectopically 
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placed voltage gated sodium and potassium channels (VGSCs & VGPCs) as instead 

of being situated at the nodes of Ranvier they are redistributed along the lengths of 

the axons resulting in changes to the firing and propagation of axon potentials. A 

critical role of β-IV spectrin appears to be the localization and stabilization of ion 

channels to specific regions of the neuron.  

 

Findings from animal studies have therefore demonstrated important roles for 

spectrin in stabilizing cell-cell contacts and localizing ion channels, cell-adhesion 

molecules and other transmembrane proteins within specific subdomains of the 

plasma membrane.  

 

1.5.4 ββββ-III spectrin  

β-III spectrin is expressed primarily in the nervous system with the highest level of 

protein expression seen in the soma and dendrites of cerebellar Purkinje cells (Ohara 

et al., 1998; Sakaguchi et al., 1998; Stankewich et al., 1998; Jackson et al., 2001). 

Low levels of transcript have been detected in other tissues including kidney, liver, 

testes, prostate, pituitary, adrenal and salivary glands (Stankewich et al., 1998). It 

was originally thought β-III spectrin associated with the Golgi, maintaining its 

structure through an association with phosphatidylinositol 4,5-bisphosphate (PtdIns 

(4,5)P2) (Beck et al., 1994; Stankewich et al., 1998). Loss of PtdIns (4,5)P2 was 

proposed to result in phosphorylation of spectrin, cellular redistribution and 

subsequent fragmentation of the Golgi (Siddhanta et al., 2003). However, the Golgi 
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localization is now thought to have arisen from antibody cross-reactivity detecting 

another protein with spectrin repeats, syne1 (Gough et al., 2003). 

 

β-III spectrin has been shown to interact with the carboxy-terminus of EAAT4, the 

glutamate transporter found in Purkinje cell soma and dendrites, and stabilize it at the 

plasma membrane (Jackson et al., 2001; Ikeda et al., 2006), the result being an 

increase in cell surface expression and enhanced glutamate uptake. Therefore, β-III 

spectrin appears to play an important role in the clearance of glutamate from the 

synaptic cleft, regulating glutamatergic neurotransmission and preventing glutamate-

mediated excitotoxicity (see section 1.2.3). Yeast two-hybrid studies have shown the 

actin binding domain of β-III spectrin binds directly to actin related protein 1 (Arp 

1), a subunit of the dynactin complex (Holleran et al., 2001). Dynactin is the 

accessory protein that mediates the association of dynein with vesicular cargo, 

suggesting β-III spectrin may participate in vesicular transport along microtubules. 

All three proteins have been co-purified from vesicles isolated from rat brain and it is 

thought that both β-III spectrin and dynactin are involved in organelle and vesicular 

transport, mediated by dynein (Karki et al., 1998; Holleran et al., 2001; Lorenzo et 

al., 2010). 

 

1.6 Mouse models of ataxia  

Clinically, the phenotype observed in SCA patients is well understood (Table 1.1). 

However the cellular processes that underlie cerebellar dysfunction and degeneration 

in SCA remain unclear. Mice have become an important tool for identifying gene 
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function and unravelling mechanisms of disease, as 99% of mouse genes have 

homologues in man and of these 96% are found in the same syntenic location (same 

chromosomal order) as their human homologue (MacAndrew., 2003). They are also 

relatively cheap to maintain, large numbers can be bred rapidly and they have short 

life spans. Therefore mouse models, either generated by genetic manipulation or a 

result of spontaneous mutations, have been used to gain insights into Purkinje cell 

degeneration and cerebellar ataxia.  

  

1.6.1 Naturally occurring cerebellar mutants 

Because unlike other brain regions the majority of cerebellar development occurs 

postnatally (Dobbing and Sands, 1973; Altman and Bayer, 1997), the cerebellum is 

much more vulnerable to developmental and environmental insults. This has led to 

more than 50 mutants being identified and analysed but only 4 are discussed in detail 

here (Sidman et al., 1965; Sidman et al., 1982; Sotelo et al., 1990). These 

spontaneous mutations in the mouse have proved excellent tools for studying 

Purkinje cell degeneration and elucidating the effects loss of certain elements of the 

cerebellar circuitry have on the formation and/or maintenance of the cerebellum. 

This has highlighted a tight interplay between Purkinje cell, granule cell and inferior 

olive cell survival. 

 

1.6.1.1 Purkinje cell degeneration mutant 

The autosomal recessive Purkinje cell degeneration (pcd) mutant is characterized by 

dramatic Purkinje cell degeneration, which starts at about postnatal day (PD) 18 and 
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rapidly progresses over the next 14 days (Mullen et al., 1976). Prior to Purkinje cell 

degeneration, all the normal cerebellar synaptic connections are made (Landis and 

Mullen, 1978) but following Purkinje cell degeneration there is a substantial loss of 

granule cells, deep cerebellar nuclear cells and neurons of the inferior olive (Chang 

and Ghetti, 1993; Triarhou, 1998). Given the gross loss of Purkinje cells severe 

motor impairment would be expected but instead only moderate ataxia is observed in 

pcd mutants. This is thought to be due to altered inhibition in the vestibular and deep 

cerebellar nuclei compensating for the lack of normal tonic inhibition from Purkinje 

cells (Mullen et al., 1976). 

 

Mutations in the gene encoding Nna1, a member of a large protein family with 

conserved zinc-dependent carboxypeptidase domains (Harris et al., 2000), were 

found to underlie Purkinje cell degeneration in pcd mice (Fernandez-Gonzalez et al., 

2002). The exact role this protein plays in Purkinje cell degeneration is not fully 

understood but there is evidence for endoplasmic reticulum (ER) stress and apoptosis 

in cell death. The cerebellar expression of BiP, an ER specific chaperone and CHOP, 

a transcription factor related to ER stress (Oyadomari and Mori, 2004), were found to 

be elevated in mutant Purkinje cells (Kyuhou et al., 2006). A change in the ratio of 

anti-apoptotic to pro-apoptotic factors was also observed in pcd mice with a 5-fold 

increase in levels of c-fos, junB and krox24, three cell death effector genes and a 

reduction in the levels of the anti-apoptotic protein Bcl-2 (Gillardon et al., 1995). 

Activated caspase 3 and caspase 12 were also detected along with signs of DNA 

fragmentation, all characteristics of apoptotic cell death (Kyuhou et al., 2006). 
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1.6.1.2 Staggerer mouse 

In contrast to pcd mouse, severe cerebellar ataxia is observed in staggerer mice that 

have a cell autonomous defect in the maturation of Purkinje cells (Sidman et al., 

1962; Herrup and Mullen, 1979a, b; Herrup, 1983). There is also a large reduction in 

granule cell proliferation and substantial death of granule cells in the first postnatal 

weeks, revealing an important interplay between Purkinje cell and granule cell 

survival.  

 

The staggerer phenotype results from a 122 bp deletion in the orphan nuclear 

hormone receptor gene (RORα) preventing the formation of the RORα ligand 

binding domain and resulting in a loss-of-function (Hamilton et al., 1996). Gene 

expression microarrays and chromatin immunoprecipitation assays have identified a 

number of genes regulated by RORα that are downregulated in staggerer Purkinje 

cells (Gold et al., 2003). Within the top ten are eight genes involved in glutamatergic 

and calcium signaling. These are the metabotropic glutamate receptor (Grm1), 

EAAT4 the Purkinje cell glutamate transporter (Slc1a6), β-III spectrin (Spnb3), the 

IP3 receptor (Itpr1), its binding partner (car8), calmodulin (Calb1), a calmodulin 

regulator (Pcp4) and a modulator of voltage-gated calcium channels (Pcp2). The fact 

that Spnb3 (β-III spectrin) and Itpr1 (IP3 receptor), the genetic causes of SCA5 and 

SCA15/16, respectively are downregulated in the staggerer mouse highlights a 

convergence of disease mechanisms in Purkinje cell degeneration and cerebellar 

ataxia. Furthermore, microarray analysis of the SCA1 transgenic mouse model (refer 
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to section 1.6.2.1) also shows a downregulation of Slc1a6, Spnb3, and Itpr1 prior to 

onset of pathology (Lin et al., 2000). 

 

The loss of granule cells is thought to arise from a downregulation in Purkinje cells 

of Sonic hedgehog (Gold et al., 2003), another gene regulated by RORα and a 

mitogen for granule cell precursors in the embryonic cerebellum (Dahmane and Ruiz 

i Altaba, 1999; Wallace, 1999; Wechsler-Reya and Scott, 1999). Analysis of the 

staggerer mouse has therefore shown that Purkinje cells control both the proliferation 

of granule cells and their ability to respond to granule cell glutamatergic inputs by 

RORα-dependent gene transcription.    

 

1.6.1.3 Lurcher mouse 

The lurcher mouse was identified in 1954 due to its wobbly, lurching gait (Philips, 

1960) and more recently found to arise from a missense mutation in the gene 

encoding the δ2 glutamate receptor (GluR δ2) (Zuo et al., 1997). The function of the 

δ2 glutamate receptor is still unknown as it does not bind glutamate or glutamate 

agonists (Araki et al., 1993; Lomeli et al., 1993; Mayat et al., 1995) but it has been 

proposed that GluRδ2 stabilizes Purkinje cell-granule cell synapses and is involved 

in cerebellum-dependent motor learning (Kashiwabuchi et al., 1995; Kurihara et al., 

1997; Yuzaki, 2004). Homozygote animals die in the early neonatal period due to 

immense neuronal death in the mid and hindbrain (Cheng and Heintz, 1997; Resibois 

et al., 1997) but cerebellar development begins normally in heterozygous animals. 

However, Purkinje cell abnormalities appear shortly after birth (PD 3-4) in 
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heterozygous animals (Swisher and Wilson, 1977) and Purkinje cell degeneration 

begins between PD 8-10. This is closely followed by death of granule cells and 

olivary neurons (Caddy and Biscoe, 1975; Wilson, 1975; Caddy and Biscow, 1976; 

Wilson, 1976). By 3 months of age the cerebellum of heterozygous animals is 

practically devoid of Purkinje cells and at death only 10% and 25% of granule cells 

and olivary neurons remain, respectively (Caddy and Biscoe, 1979). There is no, or 

very little loss of deep cerebellar nuclei. The lurcher mutation is a missense mutation 

that changes an alanine to threonine resulting in a large constitutive cationic current. 

Different studies implicate necrosis, autophagy or apoptosis in lurcher Purkinje cell 

death (reviewed in (Vogel et al., 2007)). The mechanism for autophagy may arise 

from loss of interaction with Beclin-1, a mammalian ortholog of the yeast autophagy 

gene apg6/vps30 (Liang et al., 1999), releasing it to associate with proteins involved 

in the formation of autophagosomes (Kihara et al., 2001). However, there are studies 

that indicate the constitutive leak current is necessary and sufficient to induce 

autophagy and cell death (Yamada et al., 2003a,b).  The leak current may also lead to 

increased oxidative stress and excitotoxicity due to enhanced mitochondrial oxidative 

respiration in response to an increased demand for ATP in depolarized lurcher 

Purkinje cells (Caddy and Biscoe, 1979; Dumesnil-Bousez and Sotelo, 1992; Vogel 

et al., 2001) 
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1.6.1.4 Weaver mouse 

Unlike the other mutants described a complete loss of granule cells precedes a 

secondary loss of Purkinje cells in the weaver mouse. Although about 50% of 

Purkinje cells survive in the weaver mouse it exhibits a more severe form of ataxia 

compared to the pcd mutant that lacks almost all Purkinje cells. This is thought to 

arise from an irregular output due to regions where Purkinje cells survive. In fact, 

removal of the cerebellum improves the motor performance of the weaver mouse 

(Grusser-Cornehls et al., 1999). 

 

1.6.2 Mouse models generated by genetic manipulation 

A number of transgenic and knockout mice have been generated to create animal 

models for several SCA subtypes. These mouse models have revealed whether a 

gain-of-function, haploinsufficiency or a loss-of-function with a dominant negative 

effect underly disease pathogenesis. The work has also highlighted the interplay 

between different cell populations and identified several common cellular 

mechanisms in Purkinje cell dysfunction and death including altered gene 

transcription, excitotoxicity, autophagy, apoptosis, and ER stress. A few of the in 

vivo studies are described in more detail in the following sections. 
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1.6.2.1 CAG repeat expansion models 

Harry Orr and colleagues generated the first mouse model of SCA by creating 

transgenic mice that expressed the human SCA1 gene (Burright et al., 1995). The 

mice were engineered to express human SCA1 with either a normal or an expanded 

CAG repeat sequence, 30 or 82 repeats, respectively. They found that mice 

expressing human ataxin 1 with the expanded, but not the normal CAG repeat 

showed a severe loss of Purkinje cells, thinning of the molecular layer and an ataxic 

phenotype, mimicking the human phenotype (Burright et al., 1995; Zoghbi and 

Ballabio.,1995; Zoghbi and Orr, 1995). This showed that the CAG expansion is 

pathogenic. The presence of ubiquitinated nuclear aggregates, a pathological 

hallmark of SCA1 (Skinner et al., 1997), was also observed in the SCA1 transgenic 

mouse model (Cummings et al., 1998). However, subsequent mouse models have 

shown that these nuclear inclusions, long believed to be important in disease 

pathology (Taroni and DiDonato, 2004), are not involved in polyglutamine-mediated 

pathogenesis as signs of disease are still seen in mouse models that have no 

inclusions within Purkinje cells (Klement et al., 1998; Cummings et al., 1999; 

Watase et al., 2002). Instead, what appears to be fundamental for mutant ataxin 1 to 

cause disease is the nuclear localization of protein. Mice expressing a mutated 

nuclear localisation signal (NLS), lysine 772 replaced with threonine, thus disrupting 

entry into the nucleus, do not develop disease (Klement et al., 1998). Other in vivo 

studies have also revealed that phosphorylation of Ser776 is required for toxicity 

(Emamian et al., 2003). This is thought to be due to altered protein interactions that 

are regulated by phosphorylation, with some being enhanced and others decreased. 
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The binding of an mRNA splicing factor (RNA-binding motif protein 17, RBM17) 

appears to be enhanced by phosphorylation of Ser776 whereas interaction with the 

transcriptional repressor capicua (CIC) is reduced (Lim et al., 2008). Thus the 

balance of ataxin 1-containing complexes is changed by the phosphorylation status of 

Ser776, which appears to be affected by the size of the polyglutamine tract. Mouse 

models have therefore revealed that the polyglutamine expansion found in SCA1 

patients is pathogenic, but importantly they have highlighted that other protein 

regions are also required for toxicity and both a gain-of-function and loss-of-function 

mechanism likely play a role in SCA1 pathogenesis through dysregulating gene 

expression and protein function.  

 

Insights for SCA3, also known as Machado-Joseph disease (MJD) have also been 

gained from in vivo studies. Transgenic mouse models have revealed that, similar to 

SCA1, the nuclear localization of ataxin-3 protein is essential for manifestation of the 

disease phenotype (Bichelmeier et al., 2007).  Normally ataxin-3 is found in the 

cytoplasm of neurons but nuclear inclusions are observed in patients with SCA3 

(Paulson et al., 1997; Schmidt et al., 1998). This difference in subcellular localization 

was investigated by creating different mouse models. When transgenic mice 

expressed ataxin-3 with an expanded polyglutamine repeat but with a nuclear export 

signal (NES) attached they had mild or no behavioural phenotype and very few 

nuclear inclusions. In contrast when a NLS was attached, targeting the protein into 

the nucleus, an earlier and more severe phenotype was observed when compared to 

mice expressing the untagged transgene (Bichelmeier et al., 2007). Therefore nuclear 
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localization, a toxic gain-of-function, would appear to be an important aspect in 

SCA3 pathogenesis. Analysis of another mouse model suggests that Purkinje cell 

dysfunction, and not cell loss, is important in disease phenotype (Chou et al., 2008). 

The mice express full-length mutant ataxin-3 and display a severe behavioural 

phenotype when homozygous for the transgene but show very little cerebellar 

atrophy. 

 

It is worth mentioning that although expression of mutant full-length protein is 

thought to recapitulate human disease most accurately, the initial mouse models of 

SCA3, showing a much more severe phenotype, only expressed a C-terminal region 

of ataxin-3 containing the expanded polyQ repeat (Ikeda et al., 1996). This led to the 

proposal that the production of toxic proteolytic fragments may be important in 

SCA3 pathogenesis. Carboxy-terminal ataxin-3 fragments are seen in the mouse 

expressing full-length protein (Chou et al., 2008) and so the possibility proteolytic 

cleavage of ataxin-3 is important cannot be ruled out. 

 

In the case of SCA6, the trinucleotide repeat expansion is found within exon 47 of 

the CACNA1A gene, encoding the α1A subunit of the (P/Q) CaV2.1 voltage-gated 

calcium channel (Garg and Sanchette, 1999; Pietrobon, 2002). However, a critical 

genetic feature of SCA6 is that the CACNA1A gene undergoes alternative splicing 

and so only one splice variant encodes the polyglutamine tract. The functions 

associated with the different isoforms are not clearly understood but they are thought 
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to be involved in regulating synaptic transmission (Sheng et al., 1994; Rettig et al., 

1996). 

 

The creation of three knock-in mouse models carrying normal, expanded or 

hyperexpanded CAG tracts in the Cacna1a locus revealed that, like SCA1 and 

SCA3, disease severity was linked to repeat length and expression level of the 

mutant protein (Watase et al., 2008). Cell culture experiments had suggested that the 

expanded CAG repeat affected the conductance of the CaV2.1 channel (Matsuyama 

et al., 1999; Restituito et al., 2000; Toru et al., 2000; Piedras-Renteria et al., 2001). 

However, the in vivo models show no change in the voltage sensitivity of either 

activation or inactivation of the CaV2.1 channel in Purkinje cells but rather decreased 

channel abundance and aggregation of mutant Cav2.1 (Watase et al., 2008).  

Similarly knockdown of Cav2.1 calcium channels has been shown to be sufficient to 

induce ataxia and progressive cerebellar atrophy (Saito et al., 2009). Therefore the in 

vivo data indicate that a loss-of-function may be a factor in disease, either a 

consequence of aggregation or altered splicing events that result in decreased levels 

of specific isoforms, whereas expression in heterologous systems suggest proteolytic 

cleavage of the C-terminal region produces a fragment that is translocated to the 

nucleus, causing toxicity (Kubodera et al., 2003; Kordasiewicz et al., 2006). 
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1.6.2.2 Non-coding repeat expansion models 

A CTG repeat believed to be linked to SCA8 is found at the 3′ end of a non-coding 

transcript (Koob et al., 1999). Both a noncoding CUG transcript and a pure 

polyglutamine protein expressed from a novel gene in the opposite direction (ATXN 

8) are thought to be produced from the locus. Transgenic mice expressing the human 

CTG expanded repeat tract (CTG116) at high copy number exhibit an ataxic 

phenotype and possess intranuclear inclusions positive for polyglutamine expansion 

proteins, whereas control lines expressing normal repeat tracts (CTG11) show no 

disease phenotype and no inclusions (Moseley et al., 2006). These findings suggested 

that a gain-of-function at the protein level played a role in pathogenesis.  

 

However, the CUG transcript could also cause disease by two separate mechanisms. 

One mechanism being that the non-coding RNA functions as an endogenous 

antisense RNA to regulate the expression of the Kelch-like 1 (KLHL1) gene on the 

opposite strand. KLHL1, homologous to Drosophila Kelch, an actin-binding protein 

implicated in cytoskeletal regulation (Robinson and Cooley, 1997) is the only 

encoded protein in the vicinity of the SCA8 mutation, making it a strong candidate 

for playing a key role in pathogenesis. Klhl 1 knockout mice do show a subtle motor 

phenotype and marginal molecular layer thinning but do not recapitulate the more 

severe phenotype seen in patients with SCA8 (He et al., 2006). The other possibility 

is a toxic gain-of-function RNA mechanism similar to other RNA-mediated 

neurological disorders such as myotonic dystrophy (Ranum and Cooper, 2006). Here 

the repeat expansions sequester some splicing regulators, e.g. muscleblind-like 1 
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(MBNL1) but also prevent the binding of other RNA proteins that only bind to short 

single-stranded CUG repeats (e.g. CUG-BP1). The result is the misregulation of 

alternative splicing events in several genes due to altered activities of the RNA 

splicing proteins. One example of a CUG-BP1/MBNL1 regulated target gene found 

to be upregulated in the SCA8 transgenic mouse expressing the human CTG 

expanded repeat tract (CTG116) and in human autopsy tissue is GABA-A transporter 

4 (Daughters et al., 2009). This upregulation of Gabt4 may explain the loss of 

GABAergic inhibition seen in the SCA8 transgenic mouse by reducing GABA at the 

synapse (Moseley et al., 2006). However, no Purkinje cell degeneration or any other 

neurodegenerative change is observed in this mouse model. 

 

1.6.2.3 Conventional mutation models 

In the case of SCA15, the mouse model preceded identification of the gene and is a 

good example of how spontaneous mouse mutations have been used to understand 

human disease. A knockout line of mice with a progressive movement disorder was 

shown through linkage and sequence analysis to be due to an in-frame deletion of 18 

bp within exon 36 of Itpr1, the gene encoding inositol 1,4,5-triphosphate receptor 

(van de Leemput et al., 2007). A similar ataxic phenotype is observed in another 

spontaneous mutant mouse (opt), which is due to an in-frame deletion of exons 43 

and 44 of Itpr1 (Street et al., 1997). In 2001 the disease locus for a new autosomal 

dominant pure cerebellar ataxia (SCA15) was linked to the syntenic region of the 

human genome (Storey et al., 2001) leading van de Leemput and colleagues to 

identify a large (~ 200 Kb in length) genomic deletion encompassing one third of 
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ITPR1 and the first half of a neighbouring gene, SUMF1 as the genetic cause of 

SCA15 (van de Leemput et al., 2007). The fact that heterozygous parents of children 

with multiple sulfatase deficiency due to a homozygous SUMF1 mutation show no 

signs of ataxia indicate that heterozygosity for the deletion of SUMF1 in SCA15 

patients is unlikely to underlie disease pathogenesis. Instead a heterozygous loss 

(haploinsufficiency) of ITPR1 protein and the resulting disruption to intracellular 

Ca2+ signalling in Purkinje cells would appear to be important in SCA15. Recent 

linkage analysis has now shown that the locus for SCA16 overlaps with the SCA15 

locus indicating that these phenotypically similar diseases, are probably genetically 

identical (Knight et al., 2003; Miura et al., 2006).  

 

Similarly, the discovery of ataxia in mice with a targeted disruption of the Fgf14 

(fibroblast growth factor 14) locus led to the identification of mutations in the human 

FGF14  gene as the underlying cause of SCA27 (van Swieten et al., 2003). Members 

of the intracellular fibroblast growth factor subfamily (iFGF) have been shown to 

colocalize with voltage-gated sodium (Nav) channels and modulate cell excitability 

(Liu et al., 2001; Liu et al., 2003; Wittmack et al., 2004; Lou et al., 2005; Goldfarb et 

al., 2007; Laezza et al., 2007). Analysis of Fgf14-/- mice has revealed impaired 

Purkinje cell spontaneous firing and it has been proposed that a reduced expression 

of the Nav1.6 channel underlies the deficit. 
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1.7 Aims and approaches 

The overall aim of my thesis was to investigate the physiological role of β-III 

spectrin and identify mechanisms involved in Purkinje cell dysfunction and 

degeneration. This was achieved by the analysis of homozygous (β-III -/-) and 

heterozygous (β-III +/-) β-III spectrin deficient mice, which were generated by Dr 

Mandy Jackson, at The University of Edinburgh. This analysis is presented in 

Chapters 3, 4 and 5. Cell culture studies were employed to investigate the effect 

mutations associated with SCA5 have on β-III spectrin function and this data is 

reported in Chapter 6. A second approach to understand the normal function of β-III 

spectrin was to identify proteins that interact with β-III spectrin directly. This was 

achieved by carrying out a yeast two-hybrid screen using the amino terminus as bait. 

Two proteins, prosaposin and clathrin light chain, were considered the most 

promising candidates and further experiments to confirm the interaction were 

performed, detailed in Chapter 7.  
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CHAPTER 2 

MATERIALS AND EXPERIMENTAL METHODS 

                           

2.1 Mammalian cell culture 

2.1.1 Cell maintenance 

Human embryonic kidney (HEK) 293T cells were grown in minimum essential media 

(Sigma) containing 10% fetal bovine serum, 10 mM glutamine, 1× non-essential amino 

acids and antibiotics (penicillin and streptomycin, Sigma).  HEK-rEAAT4 cells were 

maintained in 75 µg/ml hygromycin (Invitrogen). Both cell lines were maintained in T-

75 flasks at 37°C and 5% C02. Media was changed every 3 days and cells were split on 

reaching 85-90% confluence. Media was aspirated off, cells were washed with 4 ml of 

pre-warmed PBS and 2 ml 0.05% trypsin (Sigma) was added. After 1-2 minutes at 37°C 

4 ml of media were added to the dissociated cells and centrifuged for 2 minutes at 800 

rpm. The cell pellet was re-suspended in 1 ml of media and proportions used to seed 

fresh flasks and/or plates. Mouse neuronal 2a (Neuro 2a) cells were grown in 

Dulbecco’s modified Eagle’s medium (DMEM), supplemented with 4.5g/l glucose and 

0.11g/l sodium pyruvate (Gibco), 10% fetal bovine serum, 10 mM glutamine, and 

antibiotics (penicillin and streptomycin). To split Neuro 2a cells, media was aspirated 

off and 6 ml of fresh media was pipetted up and down to dissociate the cells. Proportions 

of the cell suspension were used to seed fresh flasks and/or plates.  

 

 

38 



CHAPTER 2 MATERIALS AND EXPERIMENTAL METHODS 

 

39 

 

2.1.2 DNA transfection  

For microscopic observation, cells were plated at less than 50% confluency onto glass 

coverslips (VWR) in 35 mm wells and transfected with 0.5 to 4 µg DNA. Prior to 

transfection the coverslips, stored under ethanol, were washed twice with autoclaved 

MQ water and coated overnight at 37°C with poly-L-lysine (50 µg/ml) (Sigma). 

FuGENE 6, and latterly FuGENE HD transfection reagents were used according to 

manufacturer’s instructions (Roche), generally using a 3:2 ratio of µl transfection 

reagent : µg total DNA. To obtain cell homogenates HEK 293T cells were plated at 80-

90% confluency onto 35-mm dishes and transfected with 4 µg of DNA using 

lipofectamine 2000 (Invitrogen). Transfections were carried out in accordance with the 

manufacturer’s instructions and prior to transfection cell media was replaced with 

antibiotic free media. Media was also changed 2 hours post-transfection to remove 

lipofectamine. 24 hours post-transfection cells were either harvested for Western blot 

analysis (refer to section 2.4), fixed with 4% paraformaldehyde (PFA) for 

immunostaining (section 2.1.3) or either treated with 2 µg/ml tunicamycin for 12 hours 

or maintained at 37 °C or 25 °C for an additional 12 hours before harvesting/fixation. 

 

2.1.3 Immunostaining of transfected mammalian cells 

24 hours post-transfection cells were fixed for 20 minutes with 4% PFA and after 

washing with 0.1 M Sorensen’s Phosphate Buffer pH 7.4 coverslips were either directly 

mounted onto glass slides using hardset vectashield (Vector Laboratories) or 
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permeabilised with 0.4% Triton X-100 in phosphate buffered saline (PBS) for 15 

minutes. Following two 5 min washes in PBS, cells were blocked with 5% normal goat 

serum (NGS)/0.1% Triton X-100 in PBS for one hour. Cells were then washed twice 

with PBS and incubated with primary antibody for 1 hour at room temperature (2% 

NGS/0.1% Triton X-100 in PBS). Following three 5 min washes in PBS cells were 

incubated with secondary antibody (1:200 in PBS) for 1 hour at room temperature, 

washed three times with PBS and once with dH2O before mounting coverslips.  Primary 

antibodies used were mouse anti-c-myc (Ab-1, Calbiochem), rabbit anti-carboxy 

terminus β-III spectrin, -EAAT4 and -GLAST (all kind gift of Jeffrey Rothstein), rabbit 

anti-GADD153 (Santa Cruz) and rabbit anti-mGluR1 (Calbiochem). Secondary 

antibodies used were cyanine 3 (Cy3)- or cyanine 2 (Cy2)-conjugated goat anti-mouse 

IgG (Jackson laboratories) and fluorescein isothiocyanate (FITC)-conjugated goat anti-

rabbit IgG (Cappel). Coverslips were mounted using hard set vectashield containing 

4',6-Diamidino-2-Phenylindole (DAPI) (Vector Laboratories) unless Cy2-conjugated 

goat anti-mouse IgG was used, in which case vectashield was the chosen mounting 

agent. Images were captured with the Zeiss Axiovert confocal microscope and processed 

using Image J.  
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2.1.4 Solubilisation assay 

Transfected cells were harvested in ice cold homogenization buffer [HB, 20 mM HEPES 

pH 7.4, 1 mM ethylenediaminetra-acetic acid (EDTA), protease inhibitor cocktail 

(Calbiochem) and 1 mM phenylmethylsulfonyl fluoride (PMSF)] containing 1% Triton 

X-100. Cell suspension was rotated for 2 hours at 4°C before centrifuging at 6000 rpm 

for 2 minutes at 4°C. An equal volume of 2 × loading dye [125 mM Tris-HCl pH 6.8, 

20% glycerol, 4% sodium dodecyl sulfate (SDS), 10% β-mercaptoethanol, 0.25% 

pyroyin Y dye]  was added to the supernatant and pellet. Additional cell pellets were re-

suspended in HB containing 8M Urea and 4% SDS and rotated for 2 hours at 4°C before 

centrifuging at 6000 rpm for 2 minutes. Again an equal volume of 2 × loading dye was 

added to supernatant and pellet. All samples were resolved by SDS-polyacrylamide gel 

electrophoresis (PAGE) (refer to section 2.4). 

 

2.1.5 Stability assay 

HEK 293T cells were treated with 10 µg/ml cyclohexamide (Sigma) 24 hours after 

transfection. Cells were harvested in HB at 0 hours and 3 hours following cycloheximde 

treatment and protein concentrations determined using Coomassie-Plus Reagent and 

bovine serum albumin as standard (Pierce). Samples were resolved by SDS-PAGE and 

protein levels expressed as percentage of 0 hours. 
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2.1.6 Biotinylation 

HEK-rEAAT4 cells were washed twice with 1 mM MgCl2 and 0.1 mM CaCl2 in PBS, 

pre-warmed to 37 °C. Cells were incubated with sulpho-biotin (1 mg/ml in PBS, Pierce) 

for 20 minutes at 4°C with gentle agitation, washed twice with 100 mM glycine (in PBS) 

and excess biotin quenched with 100 mM glycine in PBS for 45 minutes at 4°C. Cells 

were lysed for 1 hour at 4 °C with vigorous shaking (20 mM HEPES pH 7.4, 150 mM 

NaCl, 1 mM EDTA, 1% Triton, 1 mM PMSF and protease inhibitor cocktail) and lysates 

centrifuged at 13000 rpm for 15 minutes at 4°C. An aliquot of supernatant was added to 

an equal volume of 2 × loading dye (total cell lysate). The remainder was incubated with 

an avidin bead suspension (Pierce) for 1 hour with gentle agitation at room temperature. 

The suspension was centrifuged for 15 minutes at 13000 rpm at 4°C and supernatant was 

added to an equal volume of 2 × loading dye (intracellular lysate). The beads were 

washed 4 times with lysis buffer and an equal volume of 2 × loading dye added to form 

the membrane fraction. Total, intracellular and membrane fractions were resolved by 

SDS-PAGE. 

 

2.1.7 Glutamate uptake assay 

Cells grown in 6-well plates were washed twice with ice cold tissue buffer (50 mM Tris-

HCl and 320 mM sucrose, pH 7.4) before being incubated for 10 minutes at 37°C in 

either sodium plus or sodium free Krebs buffers containing 5 µM cold glutamate and 

0.03 µCi/µl 3H-glutamatic acid (sodium plus, 120 mM NaCl, 25 mM NaHCO3, 5 mM 
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KCl, 2mM CaCl2, 1mM KH2PO4 and 1 mM MgSO4, pH 7.4; sodium free, 120 mM 

Choline Cl, 25 mM Tris-HCl, 5 mM KCl, 2 mM CaCl2, 1 mM KH2PO4 and 1 mM 

MgSO4, pH 7.4). Glutamate uptake was terminated by placing the cells back on ice and 

cells were washed twice with ice cold wash buffer (50 mM Tris-HCl, 160 mM NaCl, pH 

7.4). Cells were lysed with 0.1 M NaOH and radioactivity measured using a scintillation 

counter. Na+-dependent uptake was determined by subtracting Na+-free counts. 

 

2.2 Polymerase chain reaction (PCR)-based techniques 

2.2.1 Primer design for PCR 

Primers (refer to appendix 1) were designed by the author, if possible with regard to the 

following rules: 

a) Forward and reverse primers should have similar annealing temperatures ie. 

equivalent numbers of (A + T) and (C + G) residues. 

b) There should be no complementarity in the 4 nucleotides most 3' in each primer, 

to reduce the formation of primer dimers. 

c) Primers should not have extensive stretches of internal complementarity, and 

with regard to site directed mutagenesis: 

d) Primers should have either a G or C at 3' end. 
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2.2.2 PCR 

PCR reactions were carried out in a volume of 50 µl using Expand High Fidelity buffer   

(2 mM Tris-HCl pH 7.5, 1.5 mM MgCl2) (Roche), dNTPs each at 200 µM, 0.3 µM of 

each primer (MWG), 2.6 U Expand High Fidelity enzyme mix (Roche) and 50 ng of 

template DNA. Following an initial denaturation step of 94 °C for 2 minutes, 24 cycles 

of denaturing at 94 °C for 15 seconds, annealing at 55-65°C for 30 seconds and 

extension at 68°C or 72°C (between 30 seconds and 20 minutes), with a final extension 

time of 10 minutes was used. The precise annealing temperature and extension time 

varied according to the predicted Tm of the primers and size of the amplified product, 

respectively. Conditions for each primer pair are detailed in appendix 1.  

 

2.2.3 Purification of PCR products 

Specific PCR products were purified away from amplification primers and nucleotides 

by gel extraction using the QIAEX II gel extraction kit (Qiagen) according to 

manufacturer’s instructions. Products were mixed with loading buffer (30% glycerol, 

0.25% bromophenol blue) and resolved on a 1% Tris-acetate EDTA (TAE) agarose gel. 

The band of interest was excised using a sterile scalpel blade and the agarose solubilzed 

at 55°C in 3 volumes of QX1 buffer (7 M Na PO4, 10 mM NaAc, pH 5.3). The DNA 

binds to QIAEX II silica-gel particles and after washing away excess agarose and salt, is 

eluted with TE (10 mM Tris-HCl, 1 mM EDTA, pH 8.0). 
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2.2.4 Site-directed mutagenesis 

Mutations were introduced using the QuickChange site-directed mutagenesis kit 

(Stratagene) according to the manufacturer’s instructions using pRK5-myc-tagged β-III 

spectrin and pCDNA-YC- β-III295 as template DNA. Refer to appendix 1 for primer 

sequence and PCR conditions.  

 

2.3 Methods used to subclone DNA fragments 

2.3.1 Preparation of DNA 

2 µg of vector DNA was digested for 2 hours and gel purified PCR products were cut 

overnight at 37 °C with the appropriate restriction enzyme (Promega). Restriction 

enzymes were heat-inactivated at 70 °C for 10 minutes and cut plasmid was treated with 

calf intestinal phosphatase (CIP, Promega) for 30 minutes at 37 °C and then heat-

inactivated at 70 °C for 10 minutes. All digested DNA was resolved by electrophoresis 

on a 1% TAE agarose gel and gel-purified with QIAEX II gel extraction kit (Qiagen). 

 

2.3.2 DNA ligations and bacterial transformations 

Ligation reactions were performed either overnight at 4 °C or at room temperature for 1 

hour with 3 U of T4 DNA ligase and T4 DNA ligase buffer (30 mM Tris-HCl pH7.8, 10 

mM MgCl2, 10 mM DTT, 1 mM ATP) in a final volume of 10 µl. DH5α subcloning 

efficiency competent cells (Invitrogen) were transformed with 5 µl of ligation mix 
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followed by heat shocking. DNA was added to 50 µl competent cells and left on ice for 

30 minutes, heat shocked at 42 °C for 45 seconds and placed back on ice for 2 minutes. 

450 µl Luria broth (LB) medium (1% Bacto tryptone, 0.5% yeast extract, 0.5% NaCl) 

was added and incubated at 37 °C for 1 hour with shaking. Aliquots of the 

transformation were plated onto agar plates, supplemented with kanimcycin (30 µg/ml) 

or ampicillin (50 µg/ml). If pGEM-T Easy vector (Promega) was used to directly clone 

PCR products then 0.02% 5-bromo-4-chloro-3-indolyl-β-D-galactoside (X-gal) was also 

added to ampicillin plates for colour selection.  

 

2.3.3 Isolation of plasmid DNA 

Single bacterial colonies (white colonies if using pGEM-T Easy) were picked and 

inoculated into 5 ml LB medium. Cultures were supplemented with ampicillin or 

kanimcycin and grown overnight at 37 °C with shaking. The following day plasmid 

DNA was extracted using QIAprep Spin Miniprep Kit (QIAGEN) according to 

manufacturer’s protocol. Bacteria are lysed under alkaline conditions, then the lysate is 

neutralized and adjusted to a high salt concentration allowing the absorption of DNA 

onto the QIAprep silica membrane. Pure plasmid DNA can then be eluted from the 

membrane with TE. A 5 ml culture reliably yields 5 µg of high-copy plasmid DNA.  
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2.3.4 Mammalian expression vectors 

Full length rat βIII spectrin and the amino terminus of WT and L253P βIII spectrin were 

amplified by PCR using primers that introduced either Bsp EI and Xba I restriction sites 

or Not I and Cla I restriction sites (refer to appendix 1). The PCR products, following 

digestion with the appropriate restriction enzymes and gel purification, were cloned into 

the appropriately cut pCDNA3.1 (zeo) -YC vectors (kind gift of Stephen Michnick). Full 

length Arp1, full length prosaposin and full length clathrin light chain were amplified 

using Quickclone rat cDNA (Clontech) as template and cloned into either the Bsp EI and 

Xba I sites or Not I and Cla I sites of pcDNA3.1 (zeo) -YN. Other mammalian 

expression vectors used were pCDNA3.1-EAAT4 (Jackson et al., 2001), pCDNA3.1-

GLAST, pRK5-mGluR1, pRK5-myc-tagged mGluR5, pCDNA3.1-myc-tagged human 

β-III spectrin (WT and mutant forms, Ikeda et al., 2006), pECFP-golgi and pDsRed2-ER 

(Clontech). 

 

2.3.5 DNA sequencing 

500 ng of double stranded plasmid DNA, in a final volume of 30 µl dH2O, and primers 

(MWG) at a concentration of 3.2 µM were sent to the DNA Sequencing Service at the 

University of Dundee. Sequencing results were analysed using MacVector software.  
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2.3.6 Glycerol stocks 

For long-term storage, glycerol stocks were made by adding 180 µl of sterile 50% 

glycerol to 820 µl of bacterial culture grown overnight. Samples were mixed, snap 

frozen in a dry ice/ethanol bath and stored at -80°C. 

 

2.4 SDS-PAGE and Western blotting 

Samples in 2 × loading dye were boiled for 10 minutes and centrifuged briefly before 

being run on either a 4-20% gradient gel (Invitrogen), or a 6% or 12% acrylamide gel in 

Tris-Glycine/SDS running buffer (25 mM Tris-HCl, 52 mM glycine, 0.1% SDS). After 

electrophoresis (gradient gels, 120 V for 90 minutes; single percentage gels, 200 V for 

40 minutes) proteins were transferred for 1 hour at 100 V to a nitrocellulose membrane 

(Amersham Biosciences) in Tris-Glycine/methanol buffer (25 mM Tris-HCl, 192 mM 

glycine, 20% methanol). Membranes were blocked for 1 hour at room temperature with 

5% wt/vol non-fat dry milk (Marvel) in Tris-buffered saline/Tween 20 (TBS/T, 20 mM 

Tris-HCl, 200 mM NaCl, (pH 7.6 with 0.1% v/v Tween-20). Blots were incubated 

overnight at 4°C with either rabbit anti-β-III spectrin (1:200), anti-EAAT4 (1:200), anti-

GLAST (1:200), anti-GLT1 (1:4000), anti-GFP (1:8000), anti-p38 (1:1000), anti-

GADD153 (1:500), mouse anti-actin (1:1600 Sigma), anti-calbindin (1:1600 Sigma), 

anti-HA (1:1600, Covance), anti-c-myc (1:400, Calbiochem), or goat anti-β-III spectrin 

(1:2000, Santa Cruz) in blocking buffer. After washing 5 times, each for 5 minutes with 

TBS/T, the blots were incubated for 1 hour at room temperature with HRP-conjugated 
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donkey anti-rabbit IgG (1:4000; Amersham Pharmacia), HRP-conjugated sheep anti-

mouse IgG (1:4000; Amersham Pharmacia) or HRP-conjugated donkey anti-goat IgG 

(1:4000; Santa Cruz). Immunoreactive proteins were visualized by autoradiography 

using enhanced chemiluminescence (ECL) according to manufacturer’s protocol (Santa 

Cruz Biotechnology).  

 

2.5 Animal procedures 

2.5.1 Husbandry 

Mice were housed in either individual ventilated cages (IVCs) or conventional cages. All 

animals were kept in a pathogen free environment and maintained in a 12 hour light/dark 

cycle. Food and water were available ad libitum. 

 

2.5.2 Genotyping 

DNA was extracted from mouse ear notches using ChargeSwitch gDNA micro tissue 

kit (Invitrogen) and animals genotyped by PCR analysis. Amplification used a common 

upstream primer (5′- gagcgagaagccgtgcagaag - 3′ ) as well as primers specific to the WT 

allele (5′ - aggatgatggtccacactagcc- 3′ ) and the PGK-neo cassette                                          

(5′ - ctaccggtggatgtggaatg - 3′ ) from the mutant allele. PCR products from the WT 

allele (710 bp) and the mutant allele (562 bp) were resolved by electrophoresis on a 1% 

TAE agarose gel. 
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2.5.3 Behaviour tests 

Prior to testing, mice were handled for 10 minutes per day for 7 days and habituated to 

the test environment. All behaviour tests were carried out in low lighting and with 

constant background noise. Mice were handled, habituated, trained and tested at the 

same time of day for each experiment. As far as possible all tests were carried out blind 

to mouse genotype. 

 

2.5.3.1 Footprint analysis 

Mice had their hind paws dipped in non-toxic, water-soluble black ink (Indian Ink, 

Winsor and Newton) before being allowed to walk down an enclosed runway, lined with 

white paper (80 cm by 10.5 cm wide). After each trial, paws were washed with water. 

Three consecutive strides were measured for each animal. Stride length measurements 

were taken from the base of two consecutive paw prints on the same side and the base 

width was measured as the distance between the centre of one paw print to the centre of 

the next on the opposite side.   

 

2.5.3.2 Rotarod 

Mice were placed on a stationary (maximum time 60 seconds) and rotating rod (3, 5 and 

10 rpm, maximum time 2 minutes) and the latency to fall off was recorded (TSE rotarod, 

3 cm diameter). On the same day each animal was given four consecutive trials with a 

minimum of 30 minutes rest between trials. 
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2.5.3.3 Elevated Beam 

Mice were placed on a narrow horizontal beam (2 cm wide, 80 cm long), held 

approximately 30 cm above the bench, and the number of hind paw slips the animal 

made whilst traversing the beam were counted.  

 

2.5.3.4 Inverted Grid 

Animals were placed on a cage lid, which was then slowly turned upside down, and the 

latency to fall was measured. A maximum time of 60 seconds was given for each of the 

4 consecutive trials. 

 

2.5.3.5 Novel Object Recognition 

Each mouse was placed inside a dark maze (40 cm x 40 cm) and monitored by a video 

camera linked to the Anymaze programme. Various plastic objects were used, 

constructed to be of equal height, weight and interest to the mice. Every trial started with 

a 5 min habituation phase where the mouse was placed in the centre of the empty maze 

and allowed to explore. The mouse was removed for 5 min and 2 plastic objects were 

placed centrally into the maze. The mouse was then re-introduced for a further 5 min, 

removed for 5 min and one object replaced before the mouse was allowed to explore the 

already familiar and novel object for a further 5 min. Data was expressed as a ratio of 

the time exploring novel object to time exploring familiar object (termed exploratory 
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preference). Exploration was recorded when the mouse was in close proximity to the 

object, had its head orientated towards it and demonstrated an active interest in the 

object by either intensively smelling it or having its limbs up against it. Climbing on the 

object was not recorded as exploration. Mice were given 3 trials, with each trial 

separated by 48 hours, and each time two different objects were used. Between trials, the 

maze and objects were thoroughly cleaned with ethanol to remove olfactory cues. 

 

2.6 Analysis of mouse tissue 

2.6.1 Protein homogenates 

Tissue was homogenised in ice cold HB with a Teflon-glass homogenizer. Protein 

concentrations were determined using Coomassie-plus reagent and bovine serum 

albumin as standard (Pierce). 

 

2.6.2 Freezing tissue 

Animals were killed with an overdose of anaesthetic, tissue removed and immersion-

fixed overnight at 4°C in 4% PFA/0.1 M sodium phosphate buffer pH 7.4 before 

cryoprotecting in 30% sucrose/0.1 M sodium phosphate buffer pH 7.4. Tissue was snap-

frozen on dry-ice and stored at -80°C. 
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2.6.3 Transcardial perfusions 

Mice were anaesthetised with sodium pentabarbitol and perfused through the left cardiac 

ventricle with physiological saline followed by 4% PFA in 0.1 M sodium phosphate 

buffer pH 7.4. Brain and kidneys were removed and immersed in 4% PFA overnight at 

4°C. Brain tissue was cryoprotected by immersion in 0.1 M sodium phosphate buffer pH 

7.4 containing 30% sucrose, snap-frozen on dry-ice and stored at -80°C, whereas 

kidneys were embedded in paraffin (refer to section 2.6.5). 

 

2.6.4 Frozen sections 

Fixed brain tissue was mounted onto a chuck, coated in optical cutting temperature 

compound (OCT), and placed in a cryochamber (Leica CM 1900), the temperature of 

which was maintained at -23°C. 10 µm thick sagittal sections were cut, using a blade 

cleaned with ethanol, and electrostatically attached to poly-L-lysine coated Super Frost 

glass slides (VWR). Sections were stored at -20°C prior to staining. 

 

2.6.5 Paraffin sections 

Kidneys were removed from 4% PFA and placed in plastic cassettes (VWR) which were 

immersed in 50% ethanol for 2 hours and then maintained in 70% ethanol until 

embedded in paraffin by Grace Grant and Vivian Allison. After processing, paraffin 

blocks were attached to metal chucks, mounted and orientated in a microtome so that the 
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front side of the block was parallel with the cutting blade. Ribbons of 10 µm wax 

sections were cut, floated in a water bath (40°C) and mounted onto poly-L-lysine coated 

Super Frost glass slides (VWR). Slides were heated in an oven overnight at 37°C. 

 

2.6.6 Histological techniques 

2.6.6.1 Haematoxylin and eosin staining 

Paraffin sections were first de-waxed in xylene for 30 minutes and then rehydrated 

through alcohol (100% to 90% to 70% EtOH), washed in dH2O and stained with 

haematoxylin for 5 minutes. Sections were then washed in dH2O, dipped in 70% acid 

alcohol (2 ml glacial acetic acid in 200 ml 70% EtOH), washed in dH2O and submerged 

in Scotch tap water substitute (STWS) for 3 minutes. After a 3 min dH2O wash, sections 

were stained with alcohol-based acidic eosin, washed in dH2O and placed in potassium 

alum before another dH2O wash. Sections were then processed through 70%, 90%, 95% 

and 100% alcohol, washed twice in mounting xylene and mounted using DPX mountant 

(VWR). All incubations were for 2 minutes unless otherwise stated and haematoxylin 

and eosin solutions were filtered before use. Mounted sections were left overnight at 

room temperature before being imaged using Olympus IX70 microscope and Openlab 

software (Improvision). All images were processed using Image J. 
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2.6.6.2 Cresyl violet staining 

Frozen sections were air dried for 30 minutes before being rehydrated through alcohol 

(100% to 90% to 70% EtOH), washed in dH2O and then stained with cresyl violet 

solution (0.25%) for 3 minutes. Sections were then washed in dH2O before being placed 

in 70% acid alcohol. Sections were dehydrated through alcohol (70% to 90% to 100% 

EtOH), placed in xylene and mounted with DPX mountant. All incubations were for 2 

minutes. Sections were imaged using the Zeiss Axiovert confocal microscope and 

images processed using Image J.  

 

2.6.6.3 Immunostaining 

Frozen sections were air dried for 30 minutes before being immunostained as described 

in section 2.1.3. Primary antibodies used were mouse anti-calbindin D28K (Sigma), 

mouse anti-glial fibrillary acidic protein (GFAP, Sigma), rabbit anti-saposin D (kind gift 

of Ying Sun) and rabbit anti-β-III spectrin (kind gift of Jeffrey Rothstein). Secondary 

antibodies used were Cy3-conjugated goat anti-mouse IgG (Jackson Laboratories) and 

FITC-conjugated goat anti-rabbit IgG (Cappel). Images were captured using the Zeiss 

Axiovert confocal microscope and processed using Image J.   

 

 

 



CHAPTER 2 MATERIALS AND EXPERIMENTAL METHODS 

 

56 

 

2.6.6.4 Quantification of cerebellar morphology 

Quantification was carried out on cresyl violet stained cerebellar sections by counting 

the number of Purkinje cells along a 1 mm linear length in folia II, III, IV, VI and VIII 

(the most consistent folia between animals) and the counts averaged for each animal. 

The molecular layer thickness was also measured at 3 specific points within each of the 

aforementioned folia and the fifteen measurements averaged for each animal.  

 

2.7 Co-immunoprecipitations 

Cerebellums were rapidly dissected and homogenized in 800 µl of HB with a Teflon-

glass homogenizer. The protein concentration was calculated using Coomassie-Plus 

Reagent and bovine serum albumin as standard (Pierce). HB and 10% Triton X-100 

were added to obatain a final concentration of 2 µg protein/µl and 1% Triton X-100 

(v/v). Homogenate was rotated for 2 hr at 4°C before centrifugation at 13000 rpm for 20 

min at 4 °C to remove cellular debris. An equal volume of 2 × loading dye was added to 

25 µl of lysate. 500 µl of lysate was incubated with either 1 µg of anti-saposin D 

antibody or 1 µg of rabbit IgG. After rotating overnight at 4°C 150 µl of 50% protein A 

sepharose slurry in PBS (Amersham Biosciences) was added to each sample and rotated 

for a further 2 hr at 4°C. Protein A sepharose was pelleted by centrifugation for 2 min at 

6000 rpm (4 °C) and resin washed with 500 µl HB. Wash procedure was repeated a 

further three times and after the final wash, an equal volume of 2 x loading dye was 
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added to the resin. Bound proteins were resolved by SDS-PAGE and immunoblotted 

with anti-β-III spectrin antibody.  

 

2.8 Methods used in yeast two-hybrid assay 

2.8.1 Yeast two-hybrid assay 

In the MATCHMAKER GAL4 Two-Hybrid system (Clontech) the bait gene (β-

IIInt295) was expressed as a fusion to the GAL4 DNA-binding domain (BD) and the 

prey protein (a rat library) was expressed as a fusion to the GAL4 DNA-activation 

domain (AD). Upon interaction between the bait and prey proteins, the reporter gene, 

Lac Z, which tested positive for β-galactosidase activity was activated.   

 

2.8.2 Library screen 

The bait plasmid was introduced into yeast strain Y190 by the small-scale lithium 

acetate (LiAc)-mediated method according to manufacturer’s protocol (Yeast Protocols 

Handbook, Clontech 2001). Yeast expressing the bait protein was sequentially 

transformed with an adult rat brain MATCHMAKER cDNA library constructed in 

pACT2 (Clontech), and plated on synthetic defined (SD) agar deficient in leucine, 

tryptophan and histidine and containing 30 mM 3-amino-1,2,4-triazole.  
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2.8.3 Preparation of yeast protein extracts 

Yeast protein extracts were prepared using the urea/SDS method according to 

manufacturer’s instructions (Yeast Protocols Handbook, Clontech 2001). Cells were 

lysed by vortexing with glass beads in cracking buffer (8 M Urea, 5% SDS, 40 mM Tris-

HCl pH 6.8, 0.1 mM EDTA, 0.89% β-mercaptoethanol, protease inhibitor cocktail, 

PMSF and 0.25% pyroyin Y dye) and then centrifuged at 13000 rpm for 5 minutes at 

4°C to pellet debris and unbroken cells. Supernatants were boiled and resolved by SDS-

PAGE. 

  

2.8.4 β-galactosidase activity assays 

Colonies were screened for β-galactosidase activity using a colony lift assay and 

quantification was obtained using a liquid o-nitrophenyl β-D- galactoside (OPNG) assay, 

both according to manufacturer’s instructions (Yeast Protocols Handbook, Clontech 

2001). Cells were lysed by freeze-thawing in liquid nitrogen and in the former case the 

cells were incubated on a filter soaked in Z buffer/X-gal (8 mM Na2HPO4
.7H2O, 4 mM 

NaH2PO4
.H2O, 0.1 mM KCl, 0.1 mM MgSO4

.7H2O, (pH 7) 2.7 % β-mercaptoethanol 

and 20 mg/ml X-gal stock solution) solution and in the latter incubated with 4 mg/ml 

OPNG in Z buffer/β-mercaptoethanol (0.27 %).  
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2.8.5 Recovery of plasmid DNA from yeast 

Yeast colonies were grown in 2 ml of –Leu/Trp SD media overnight at 30 °C with 

shaking. The pellet from 1.5 ml of culture, centrifuged for 5 minutes at 13000 rpm, was 

re-suspended in 200 µl of breaking buffer (2% Triton X-100, 1% SDS, 100 mM NaCl, 

10 mM Tris-HCl pH 8, 1mM EDTA). Samples were vortexed vigorously for 2 minutes 

with an equal volume of glass beads (Sigma) and phenol/ chloroform to break open cells 

and then centrifuged for 5 minutes at 13000 rpm. A second phenol/chloroform extraction 

was carried out on 175 µl of the aqueous layer. DNA was precipitated from 150 µl of the 

second aqueous layer by adding 2.5 volumes of 100% ethanol and centrifuging for 20 

minutes at 13000 rpm. Pellets were washed with 70% ethanol, air-dried and re-

suspended in 30 µl TE. Library efficiency competent cells (Invitrogen) were transformed 

with 10 µl of plasmid DNA.  

 

2.8.6 Yeast Expression Vectors 

Different β-III spectrin constructs (β-IIInt219, β-IIInt258, β-III220-851 and β-III259-

851) were amplified by PCR using primers that introduced Eco RI restriction sites (refer 

to appendix 1). The PCR products, following digestion with the appropriate restriction 

enzymes and gel purification, were cloned into the appropriately cut pGBKT7 vector. 

Different clathrin constructs (CLC374, CLC375-746 and CLC246-500) were amplified  

by PCR using primers that introduced Eco RI and Xho I restriction sites (refer to 

appendix 1) and cloned into the respective sites of the pACT2 vector.  
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2.9 Statistics 

Statistical analysis was performed using a Mann-Whitney test or a two sample Student’s 

t-test, assuming unequal variance. In certain instances, the Kriskal-Wallis H́ test 

preceded the Mann-Whitney test with Bonferroni correction for comparison within 

groups. For densitometry analysis of Western blots a one sample t-test was used with 

predicted value of 100% for WT. 

 



 

1 

CHAPTER 3 

ANALYSIS OF ∆∆∆∆2-6 ββββ-III SPECTRIN  
_______________________________________________________________________ 

3.1 Background 

The targeting strategy used by Dr. Mandy Jackson to generate a β-III spectrin knockout 

mouse involved replacing exons 3 to 6 with the neomycin-resistance gene. This 

disrupted the open reading frame in the recombinant allele by introducing a premature 

stop codon at the beginning of exon 7 due to exon 2 being spliced onto exon 7. Western 

blot analysis of whole cerebellar homogenates, using a previously characterised anti-β-

III spectrin antibody (Jackson et al., 2001), confirmed the loss of full-length β-III 

spectrin (270 KDa) in β-III -/- spectrin mice and revealed its quantity was approximately 

halved (58.4 ± 7.4% of full length β-III spectrin) in β-III +/- spectrin animals (asterix 

Figure 3.1A). However, a smaller molecular weight protein was detected at low levels in 

β-III +/- and β-III -/- spectrin mice but not in WT mice (18.8 ± 2.2% of full-length β-III 

spectrin) (arrowhead Figure 3.1A). 

  

Additional work in the Jackson lab revealed, using semi-quantitative reverse 

transcription-polymerase chain reaction (RT-PCR), a novel β-III spectrin transcript was 

expressed in β-III +/- and β-III -/- spectrin mice (Figure 3.1B). Sequencing revealed this 

arose from exon 1, not exon 2, being spliced onto exon 7 in the recombinant allele. 

Consequently no premature stop codon is introduced and the open reading frame is 

retained. Therefore β-III +/- and β-III -/- spectrin mice appeared to express a truncated form 
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of β-III spectrin (~ 250 KDa) that lacks most of the actin-binding domain encoded by 

exons 2-6. 

+/+            +/- -/-

250

KDa

calbindin

150

►*

A.

eEF1A1

250

750
1000

500

+/+     +/- -/- dH2Obp
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exons 1,2 & 7◄

exons  1 & 7◄

B.

 

Figure 3.1 Low level of smaller molecular weight protein expressed in ββββ-III+/- and ββββ-III-/- 
spectrin mice. A) Total cerebellar homogenates resolved by SDS-PAGE and probed with 
polyclonal antibody raised against C-terminal epitope of β-III spectrin. Calbindin used as protein 
loading control. B) Semi-quantitative RT-PCR analysis using forward primer in exon 1 and 
reverse primer in exon 7. Predicted PCR products for exon 1 to 7, exon 1, 2 & 7 and exon 1 & 7 
are 772- 423- and 260-bp, respectively. Amplification of elongation factor (eEF1A1) controlled 
for template levels. 

 

The initial aim of this thesis was to confirm the truncated protein expressed in β-III +/- 

and β-III -/- spectrin mice was in fact protein lacking exons 2-6 (∆2-6 β-III spectrin) and 

determine whether this truncated protein possessed any obvious gain-of-function or 

adverse properties compared to full-length β-III spectrin. In vitro experiments were 

carried out to compare cellular localisation, solubility, stability and ability to stabilise 

EAAT4, a known interactor of β-III spectrin (refer to section 1.5.4). 
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3.2 Results 

3.2.1 Cloning and expression of �2-6 ββββ-III spectrin  

The cloning of ∆2-6 β-III spectrin cDNA was a 4-step process and utilised the unique 

Sph I restriction site at amino acid (aa) 1108 of rat β-III spectrin and the Sph I restriction 

site in the vector backbone of pGEM-T easy (Figure 3.2A). Briefly, a Sph I restriction 

digest of full-length β-III spectrin cDNA in pGEM-T easy released an amino-terminal 

fragment containing 1-1108 aa, leaving the remainder of β-III spectrin cDNA attached to 

the plasmid backbone (step 1). The RT-PCR product of exon 1 spliced onto exon 7 

amplified from β-III -/- mice was used as one of two DNA templates in an overlapping 

PCR to replace the normal amino terminus with exons 1 & 7 (step 2).  This PCR product 

was then subcloned into pGEM-T easy vector and colonies with the insert in correct 

orientation identified (step 3). The cloned insert was released by digestion with Sph I 

and ligated into the previously Sph I cut pGEM-T easy vector containing the 3' end of β-

III spectrin cDNA (step 4). Finally, amplification of the cloned insert by PCR using 

primers that introduced Not I restriction sites allowed ∆2-6 β-III spectrin cDNA to be 

cloned into two mammalian expression vectors, pCDNA3.1 and pRK5, the latter 

resulting in the addition of an N-terminal myc-tag. 

 

Cell homogenates from HEK 293T cells transfected with the newly generated 

pCDNA3.1 ∆2-6 β-III spectrin construct were run alongside total cerebellar 
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homogenates from β-III +/- and β-III -/- spectrin mice (Figure 3.2B). The expressed protein 

was found to co-migrate on a SDS-polyacrylamide gel with the smaller molecular 

weight protein detected in genetically modified mice, indicating the remaining protein 

was β-III spectrin lacking exons 2-6. Endogenous β-III spectrin in HEK 293T cells was 

shown to be smaller than full-length mouse β-III spectrin by probing cell homogenates 

from cells transfected with empty vector.  

 

3.2.2. Characterisation of �2-6 ββββ-III spectrin protein  

Cellular localisation 

Rat β-III spectrin was previously shown to localise with actin at the cell membrane 

(Jackson et al., 2001). Neuro2a cells were transfected with myc-tagged full length and 

myc-tagged ∆2-6 β-III spectrin to determine whether the loss of exons 2-6 resulted in an 

abnormal cellular distribution. Immunostaining of fixed cells with an anti-c-myc 

antibody showed that like full length β-III spectrin (Figure 3.3A), ∆2-6 β-III spectrin 

was predominantly found at the cell membrane (Figure 3.3B). Images were captured in 3 

planes and all confirmed that both full length and ∆2-6 β-III spectrin were associated 

with the cell membrane. No cytoplasmic or nuclear aggregates were observed. As a 

negative control Neuro2a cells were transfected with empty vector, immunostained 

using anti-c-myc antibody and no immumofluorescence was detected (data not shown). 

Moreover, confocal immunofluorescence microscopy by Emma Perkins revealed that 
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∆2-6 β-III spectrin in β-III -/- spectrin mice was still located throughout the Purkinje cell 

dendtritic tree but, consistent with results from Western blot analysis, at a substantially 

reduced level when compared with WT β-III spectrin (Figure 3.3C). 
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Figure 3.2 Cloning and expression of ∆2-6 ββββ-III spectrin. A) Schematic diagram of steps used 
to clone ∆2-6 β-III spectrin. B) Homogenates of HEK 293T cells tranfected with empty vector 
(EV), or pCDNA3.1 ∆2-6 β-III spectrin (∆2-6) and total cerebellar homogenates from 
homozygous (β-III-/-) and heterozygous (β-III+/-) mice resolved by SDS-PAGE and probed with 
polyclonal antibody raised against C-terminal epitope of β-III spectrin. (FL = full-length). 
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Figure 3.3 ∆2-6 ββββ-III spectrin is located at the cell membrane. Neuro2a cells transfected with 
myc-tagged full length (red) (A) and myc-tagged ∆2-6 β-III spectrin (red) (B). Red arrow 
indicates the xz orthogonal view and green arrow the yz orthogonal view of the same cell. 
Nucleus was stained with DAPI (blue). Bar, 50 µm. (C) Cerebellar sections from 3-week old WT 
(+/+) and β-III-/-(-/-) spectrin mice immunostained with anti-β-III spectrin and anti-calbindin 
antibody. Arrow indicates dendrites. ML = molecular layer, PCL = Purkinje cell layer. All images 
are representative of three independent experiments.  Bar, 50 µm.  
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Protein Solubility 

The solubility of ∆2-6 β-III spectrin was compared to that of full length β-III spectrin. 

HEK 293T cells were transfected with either myc-tagged full length or myc-tagged ∆2-6 

β-III spectrin and 24 hours post transfection cell samples were homogenised in an 

extraction buffer containing 1% Triton (refer to section 2.1.4) and separated into soluble 

and insoluble fractions by centrifugation. Western blot analysis using an anti-c-myc 

antibody confirmed that the levels of ∆2-6 β-III spectrin protein found in the supernatant 

and insoluble pellet fractions were similar to that of full length β-III spectrin. Even when 

transfected cells were solubilised in buffer containing 8 M Urea and 4% SDS there was 

no difference between levels of full length and ∆2-6 β-III spectrin in the insoluble 

membrane pellet fraction (Figure 3.4).   

Urea + 
4% SDS

1% Triton X-100

S        P       S        P          P        P

FL FL∆ 2 - 6 ∆ 2 - 6

 

Figure 3.4 No difference in solubility between full length and ∆2-6 ββββ-III spectrin. 
Transfected cell homogenates solubilised in buffer containing either 1% Triton or 8M Urea and 
4% SDS and supernatant (S) and pellet (P) fractions resolved by SDS-PAGE. Blots probed with 
anti-c-myc antibody. 
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Stability 

The stability of full length and ∆2-6 β-III spectrin was compared by treating transfected 

HEK 293T cells with cyclohexamide (10 µg/ml), an inhibitor of protein synthesis, 24 

hours after transfection. Cells were harvested at 0-hours and 3-hours post treatment and 

samples resolved by SDS-PAGE. Western blot and densitometry analysis using an anti-

c-myc antibody revealed that three hours after addition of cyclohexamide there was a 29 

± 6 % reduction in the level of ∆2-6 β-III spectrin protein but no reduction in full length 

protein (108 ± 7%; P = 0.018) (Figure 3.5). 
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Figure 3.5 ∆2-6 ββββ-III spectrin is less stable than WT. Quantification of Western blot analysis. 
Level of protein remaining 3-hours after administration of cyclohexamide expressed as 
percentage of protein level at 0-hours. All data are given as means ± SEM (N = 3; * P = 0.018). 
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Cell surface expression of EAAT4 

Previously it was shown that β-III spectrin increases EAAT4 glutamate uptake by 

stabilising the transporter at the plasma membrane (Jackson et al., 2001). HEK-r-

EAAT4 cells were either transfected with empty vector (EV), full length β-III spectrin 

or ∆2-6 β-III spectrin and 24 hours after transfection, a biotinylation assay was 

performed to investigate whether ∆2-6 β-III spectrin stabilised EAAT4 at the cell 

membrane (refer to section 2.1.6). Total, intracellular and membrane fractions were 

resolved by SDS-PAGE and immunoblotted using anti-EAAT4 serum (Figure 3.6A). 

Quantification revealed that ∆2-6 β-III spectrin failed to increase cell surface expression 

of EAAT4 (104 ± 1.8 % of EV), unlike full length β-III spectrin (117  ± 1.6 % of EV) (P 

= 0.002) (Figure 3.6B).  
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Figure 3.6 ∆2-6 ββββ-III spectrin fails to increase EAAT4 cell surface expression. (A) A 
representative immunoblot using anti-EAAT4 serum to detect total, intracellular and membrane 
bound EAAT4 in HEK-rEAAT4 cells transfected with empty vector (EV), full length (FL) β-III 
spectrin and ∆2-6 β-III spectrin. p38 was used as a loading control. (B) Densitometry data 
quantifying levels of EAAT4 in membrane fraction. All data are given as means ± SEM (N = 3; ** 
P = 0.002). 
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3.3  Discussion 

The main aim in generating a knockout mouse is to abolish the expression of a protein of 

interest. However it is possible that targeting strategies, although resulting in loss of full-

length protein, give rise to the production of truncated proteins due to aberrant splicing 

events or utilisation of different start codons. Yet the occurrence of various protein 

isoforms can go unnoticed either simply due to the lack of characterisation or as a 

consequence of lack of multiple or good antibodies for protein analysis.  

 

The work reported in this chapter has tried to address what is a difficult but potentially 

fairly common issue in genetically modified mice. Since a transcript was still expressed 

in the β-III -/- spectrin mouse it was necessary to clone and express the aberrant protein in 

order to identify or rule out the occurrence of a toxic gain-of-function. Expression of ∆2-

6 β-III spectrin in Neuro2a cells revealed the loss of exons 2-6 does not appear to have 

any adverse effect on its cellular distribution, with the truncated protein still being 

located at the plasma membrane, similar to WT protein. This indicates that the targeting 

and trafficking of the truncated protein was not disrupted, confirmed by the fact ∆2-6 β-

III spectrin was located throughout the Purkinje cell dendritic tree in the β-III -/- spectrin 

mouse. As further evidence that ∆2-6 β-III spectrin protein did not possess a toxic gain-

of-function, there was no sign of cytosolic or nuclear aggregates, which are a common 

phenomenon of the SCAs caused by trinucleotide expansions (Paulson et al., 1997; 

Skinner et al., 1997; Holmberg et al., 1998; Schmidt et al., 1998; Koyano et al., 2000; 
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Nakamura et al., 2001; Moseley et al., 2006). The fact there was no difference in the 

amount of ∆2-6 β-III spectrin protein solubilized by 1% Triton X-100 or 8 M Urea and 

4% SDS, compared to full-length β-III spectrin, indicated no difference in solubility. 

What the in vitro experiments did reveal was that ∆2-6 β-III spectrin was significantly 

less stable than full length β-III spectrin, with less protein remaining after treatment with 

a protein synthesis inhibitor. In addition, possibly as a consequence of its own reduced 

stability, ∆2-6 β-III spectrin failed to stabilize EAAT4 at the cell surface to the same 

extent as full-length β-III spectrin. 

 

In conclusion the results from in vitro experiments identified no obvious gain-of-

function or adverse property for the truncated protein ∆2-6 β-III spectrin. Instead it 

appears, if anything, to be less functional than full-length β-III spectrin. These data 

provide convincing evidence that the β-III -/- spectrin mouse can be considered a 

functional knockout.  

 

3.3.1 Spnb3-/- mouse 

The characterization of aberrant proteins is not routinely performed in knock-out mouse 

studies and so it is highly probable that a number of published knockout mice are not 

actually true nulls. This raises the question of whether the observed phenotype is due the 
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presence of an aberrant protein isoform rather than a consequence of loss of protein. 

This may be the case for another β-III  spectrin knockout mouse (Spnb3-/-), which lacks 

full-length β-III spectrin but expresses a protein lacking the last 12 exons (~ 110 KDa) 

(Stankewich et al., 2010). Unfortunately, no in vitro experiments were performed to 

analyse the properties of this truncated protein, even though it was found to have an 

aberrant expression pattern, being found in punctate accumulations within the soma, in 

membrane bounded aggregates along the proximal dendritic shafts and along the initial 

axon segment (Stankewich et al., 2010). Therefore it is possible that the myoclonic 

seizures observed in Spnb3-/- mice are not a consequence of loss of β-III spectrin 

function but are due to the aberrant expression and downstream effects of the truncated 

protein (Stankewich et al., 2010), especially since no seizures are seen in our β-III -/- 

spectrin mouse.  

 

3.3.2 Deleterious effects of ββββ spectrin fragments 

The need for careful analysis of truncated forms of β-III spectrin is highlighted by the 

fact there are several studies reporting dominant-negative effects of truncated forms of 

β-I spectrin (Devarajan et al., 1997; Pradhan and Morrow, 2002; Leshchyns'ka et al., 

2003). The expression of region 1 and the MAD 1 domain of β-I spectrin (βIN-5) results 

in the disruption of endogenous Golgi spectrin-ankyrin skeleton and reduced cell surface 

expression of Na,K-ATPase (Devarajan et al., 1997). Similarly expression of βIN-5 and 
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βI14,15 results in cytosolic aggregates and reduced plasma membrane expression of 

CD45, a membrane phosphotyrosine phosphatase expressed in cells of the hematopoietic 

lineage (Pradhan and Morrow, 2002). Finally spectrin fragments βIN-5 and βI2-3 (which 

lacks the pleckstrin homology (PH) domain and the binding site for PKCβ2) prevents 

PKCβ2 from interacting with neural cell adhesion molecule (NCAM) clusters at the cell 

surface thus suppressing NCAM-mediated neurite outgrowth (Leshchyns'ka et al., 

2003). 

 

Similarly various truncated forms of β spectrin are known to be pathogenic, underlying 

hereditary elliptocytosis (Dhermy et al., 1982; Ohanian et al., 1985; Pothier et al., 1987; 

Eber et al., 1988; Yoon et al., 1991; Garbarz et al., 1992). This is thought to arise from 

loss of the carboxy-terminus preventing phosphorylation and dimer self-association. 

Consequently there is membrane instability resulting in spontaneous fragmentation, 

spherocytosis and permanent shape deformation (Coetzer and Zail, 1982; Liu et al., 

1982; Liu et al., 1990; Palek and Lambert, 1990). 

 

3.3.3 Expression of truncated proteins in other mouse models 

One example of where a truncated protein has a detrimental effect due to a toxic gain-of-

function is in the megencephaly (mceph/mceph) mouse, which displays seizures and an 

increased brain volume (Persson et al., 2005). However, in this instance the truncated 

protein, arising from a frame shift and the introduction of a premature stop codon in the 
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gene encoding potassium channel Kv1.1 (Petersson et al., 2003), was fully characterised. 

It is thought the transcripts escape nonsense-mediated mRNA decay (NMD), a process 

whereby mRNAs that have a premature stop codon undergo degradation (Hentze and 

Kulozik, 1999), due to the lack of introns in the Kv1 genes (Brocke et al., 2002). The 

study demonstrated the truncated protein is trapped within the ER and has a dominant-

negative effect on Kv1 subunits in both oocytes and cell culture. Furthermore, the fact 

the Kv1.1 knockout mouse does not have an enlarged brain, whereas brain overgrowth is 

observed in the mceph/mceph mice suggests that it is the truncated protein that has the 

pathological effect on brain size. A similar truncated protein has been identified in a 

patient with episodic ataxia type 1 and it too has been shown to possess dominant-

negative effects (Eunson et al., 2000).  

 

In contrast there appears to have been no analysis of the proteins remaining in the mouse 

lacking the peroxisomal ATP-binding cassette (ABCD2) transporter (Pujol et al., 2004). 

Western blot analysis reportedly shows complete loss of protein however the blot shown 

in the original paper shows only one band’s width of a gel and a subsequent publication 

reveals the detection of additional bands with the anti-ABCD2 antibody, with only one 

band missing in aldr-/- mice (Ferrer et al., 2005). Although quantitative RT-PCR 

confirmed the absence of full-length transcript it did identify shorter, smir-type and low 

expressed fragments, indicative of NMD. However, there was no mention of what the 

other bands detected by the anti-ABCD2 antibody were and no further work was done to 
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analyse whether any of the truncated transcripts were translated. Therefore truncated 

forms of ABCD2 may remain in the aldr-/- mouse. 

 

Finally, SCA3 is caused by a polyglutamine expansion in ataxin-3 (Kawaguchi et al., 

1994) as mentioned in section 1.6.2.1. Over expression of just the polyglutamine 

expansion, and not full-length mutant ataxin-3, resulted in Purkinje cell degeneration 

and a severe ataxic phenotype (Ikeda et al., 1996). This indicates that the truncated 

protein is actually more toxic and potent at inducing Purkinje cell death than full length 

protein.  

 

3.3.4 Conclusions 

It is evident that truncated protein isoforms can have unpredictable and deleterious 

effects on cell function and survival. This highlights why in knockout mice a thorough 

analysis of remaining transcripts and proteins is essential before phenotypic 

interpretation. The fact no abnormal property was identified for ∆2-6 β-III  spectrin 

strongly indicates that the β-III -/- spectrin mouse is a hypomorph (functional knockout). 

Nevertheless, the generation of a transgenic mouse that over expresses the truncated   

∆2-6 β-III  spectrin protein would be an alternative approach to examine whether this 

protein has a toxic gain-of-function. However taking into consideration the data 



CHAPTER 3 ANALYSIS OF ∆2-6 β-III SPECTRIN 

 

78 

 

presented in this chapter, the ethics of utilising additional mice is questionable given the 

prediction these mice would have no obvious phenotype.  

 

 

 



 

1 

CHAPTER 4  

CHARACTERISATION OF ββββ-III -/- SPECTRIN 
MOUSE 

_____________________________________________ 
4.1 Background 

The data shown in chapter 3 indicates the β-III -/- spectrin mouse can be considered a 

functional knockout (hypomorph) as the remaining protein appears to be less 

functional than full-length β-III  spectrin and more importantly was found not to have 

any obvious toxic gain-of-function property. This chapter reports the behavioural 

analyses carried out on β-III -/- spectrin mice to determine whether loss of β-III  

spectrin function gives rise to a phenotype consistent with ataxia and cerebellar 

dysfunction. 

 

4.2 Results 

4.2.1 Behavioural Analyses 

Body Weight 

Male and female mice of both genotypes were weighed at 3-weeks, 6-months and 1-

year of age. There was no significant difference in weight between WT and β-III -/- 

spectrin mice at any age (Figure 4.1).  
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Figure 4.1 No difference in body weight between ββββ-III-/- spectrin and WT mice. Body 
weight of WT mice (black) and β-III-/- spectrin animals (white). All data are given as means ± 
SEM (M, male; F, female). 

 

Gait analysis 

Footprint analysis (representative trace shown in Figure 4.2A) performed on animals 

from 6-weeks to 1-year of age indicated that hind-limb gait of β-III -/- spectrin mice 

became progressively wider than that of WT littermates (Figure 4.2B), with no 

significant difference in stride length at any age (Figure 4.2C). However, the latter 

result might have occurred through mice walking at varying speeds down the 

runway, thus introducing heterogeneity in stride length, which could have masked 

any genotype-dependent differences.  
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Figure 4.2 Abnormal Gait in ββββ-III-/- spectrin mice. (A) Representative footprints from 18-
week old WT and β-III-/- spectrin littermates. Stride length shown by solid lines and base 
width by double headed arrows. (B) Quantification of footprint patterns in β-III-/- (white 
square) and WT littermates (black diamonds) at 18-weeks (**P=0.0078), 6-months 
(***P=2.82E-6) and 1-year (*P=0.02). (C) Quantification of stride length. All data given as 
means ± SEM. 
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Stationary Rod 

Assessment of balance, measured by the ability of WT and β-III -/- spectrin mice to 

remain on a stationary rod, showed no significant difference between the 

performance of WT and β-III -/- spectrin mice at 3-weeks of age (Figure 4.3).  

However at 6-months (P = 0.004) and 1-year of age (P = 0.0007) β-III -/- spectrin 

mice struggled to maintain their balance and were significantly worse than their WT 

littermates.  
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Figure 4.3 Progressive loss of balance in ββββ-III-/- spectrin mice. The latency for WT (black) 
and β-III-/- spectrin mice (white) to remain on a stationary rod. All data given as means ± 
SEM. ** P < 0.01; *** P < 0.001. 
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Rotating Rod 

To increase the intensity of the motor task, mice were examined on a rotating rotarod 

at 3 different speeds (3, 5 and 10 rpm). The 3-week β-III -/- spectrin mice initially 

performed significantly worse than their WT littermates at 3 rpm (Figure 4.4A). 

However, their performance improved and on the third and fourth days of testing β-

III -/- spectrin mice could perform almost as well as WTs. Again at 5 rpm although β-

III -/- spectrin mice were significantly worse than their WT littermates on every day, 

they were able to improve performance, whereas at 10 rpm β-III -/- spectrin mice 

showed no improvement with consecutive days of testing. In contrast, 6-month old 

β-III -/- spectrin mice were unable to remain for more than 20 seconds on the rotating 

rod even at 3 rpm and showed no improvement (Figure 4.4B).  

 

Elevated Beam 

Balance and coordination was also measured using the elevated beam. Mice 

traversed the 2 cm wide beam and impaired coordination was measured by counting 

the number of hind limb slips. β-III -/- spectrin mice were generally more nervous and 

hesitant to cross the beam. Frequently they would try to turn around while on the 

beam and, in so doing, lost their balance and fell off. WT animals never fell off. 

From 12-weeks of age, β-III -/- spectrin mice not only made significantly more slips 

than WT littermates (Figure 4.5) but the slips were generally bigger. Finally a 

tremor, characteristic of some ataxias, was also observed in β-III -/- spectrin mice 

(refer to appendix 3 (bound-in DVD); video of mice on rotating rod, elevated beam 
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and tremor). Significance was obtained both with a two sample Student’s t-test (12-

wk – 6-months P = 0.001; 1-year P = 0.0006) and a Mann-Whitney test (12-wk – 6-

months P = 0.003; 1-year P = 0.004). Furthermore, there was a significant difference 

(P = 0.02) between 12-week – 6-month and 1-year old animals demonstrating a 

progressive decline in motor coordination. Significance was obtained using a 

Kriskal-Wallis H́  test, followed by Mann-Whitney test with Bonferroni correction 

for comparison within groups.  
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Figure 4.4 Progressive motor deficits in ββββ-III-/- spectrin mice. (A) Latency for 3-week WT 
(black diamonds) and β-III-/- spectrin (white circles) mice to fall from rotating rod at 3-, 5- and 
10-rpm. Latency to fall was always significantly different between genotypes apart from day 
3 at 3-rpm (# P=0.218). (B) Performance of 6-month WT and β-III-/- spectrin mice at 3-rpm. 
All data given as means ± SEM.  
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Figure 4.5 Loss of balance in ββββ-III-/- spectrin mice. The number of slips made while 
traversing a narrow, elevated beam were counted for β-III-/- spectrin mice (white) and WT 
animals (black). (** P = 0.001 and *** P = 0.0006, two sample Student’s t-test). All data are 
given as means ± SEM. 

 

Inverted Grid 

There was no significant difference in muscle strength between WT β-III spectrin 

and β-III -/- spectrin mice at any point in their development, as measured by their 

ability to hold onto the inverted grid at 3-weeks, 6-months and 1-year of age (Figure 

4.6).  
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Figure 4.6 No muscle weakness in ββββ-III-/- spectrin mice. The latency for WT animals 
(black) and β-III-/- spectrin mice (white) to fall from an inverted grid was recorded. All data are 
given as means ± SEM. 

 

Novel Object Recognition 

β-III spectrin has been detected in the hippocampus (Jackson et al., 2001) and 

therefore the novel object recognition task was performed to test if there was a 

difference in learning ability between WT and β-III -/- spectrin mice. The novel object 

recognition task takes advantage of a rodents’ natural instinct to explore novel items 

instead of familiar ones. The amount of time that the mouse spends investigating the 

novel object, instead of the familiar one, is a measure of object recognition (refer to 

section 2.5.3.5). The exploratory preference of 3-week-old WT and β-III -/- spectrin 

mice was measured (Figure 4.7).  
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Figure 4.7 ββββ-III-/- spectrin mice display no deficit in object recognition. Preference of WT 
(black) and β-III-/- (white) spectrin mice to explore a novel object. All data are given as means 
± SEM. 

  

 

4.3  Discussion 

In this chapter quantification of motor behaviour revealed that β-III -/- spectrin mice 

develop a progressively splayed hind-limb gait and show progressive motor deficits 

on three separate motor tasks. This phenotype mirrors the wider stance and 

progressive motor incoordination observed in human cases (Stevanin et al., 1999; 

Burk et al., 2004; Ikeda et al., 2006), making the β-III -/- spectrin mouse a good 

animal model of ataxia. Furthermore analysis of the β-III -/- spectrin mouse has 

provided key insights into SCA5 pathogenesis, more specifically indicating that a 
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loss of β-III  spectrin function, rather than a toxic gain-of-function, gives rise to 

ataxia.  

 

The young β-III -/- animals (3-weeks of age) were found to have no problem in 

maintaining balance on a stationary rod, the least demanding motor task, whereas by 

6-months of age this task was more challenging and by 1-year the β-III -/- animals 

were dramatically impaired. Similarly there was a progressive deterioration in their 

ability to maintain balance on a rotating rod. At 3-weeks of age β-III -/- mice, although 

worse than age-matched controls, were found to improve their performance at 3 and 

5 rpm, eventually remaining on the rotating rod for 60-80 seconds, whereas by 6-

months of age they were unable to remain on the rod for longer than 20 seconds at 3-

rpm.  The fact young β-III -/- spectrin mice were able to improve their rotarod 

performance demonstrated that they could overcome the relatively mild motor 

defects evident at that stage. 

 

The poorer rotarod performance of β-III -/- spectrin mice could have been a 

consequence of muscle weakness rather than a loss of balance and coordination. 

However, this possibility was ruled out by the finding that their performance on an 

inverted grid test was the same as WT littermates. Similarly, differences in body 

weight could not have accounted for the poorer rotarod performance, as there was no 

difference between genotypes at any age. Therefore all the data pointed towards the 

motor deficits being due to cerebellar dysfunction and/or degeneration, and not 
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somatic defects, an assumption corroborated by the observed loss of Purkinje cells 

and thinning of the molecular layer in older β-III -/- spectrin mice. However, a 

thorough examination of other brain regions including the substantia nigra and 

corpus striatum is required to rule out any other deficiencies that could contribute to 

the observed phenotype. 

 

Finally to investigate whether cognitive deficits might have contributed to the poorer 

motor performance, a measure of their cognitive ability was obtained using the novel 

object recognition task. The exploratory preference was greater than 1 for both 

genotypes, indicating no cognitive deficit in β-III -/- spectrin mice, with all animals 

spending more time investigating the novel object rather than the familiar one.  The 

lack of involvement of other brain regions is also indicated by the absence of 

neuronal loss in cortex, hippocampus, dentate gyrus and deep cerebellar nuclei 

(Perkins et al., 2010). 

 

4.3.1 Loss-of-function in disease pathogenesis  

The finding reported here, that loss-of- β-III spectrin function underlies SCA5 

pathogenesis, provides additional evidence to support the emerging theory that at 

least some autosomal dominant diseases are not due to a toxic gain-of-function. 

Another  example is SCA1 where originally the aggregation of the polyQ-expanded 

protein was thought to underlie toxic gain-of-function properties (Zoghbi and Orr, 

2000), whereas recent evidence suggests the disease to be due to an altered balance 
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of normal protein activities(Lim et al., 2008). There is a decreased formation of wild 

type ataxin 1-capicua protein complex and an increased formation of mutant ataxin 

1- RBM17 complex. This results in both a partial loss-of-function and enhancement 

of another normal activity, the two effects contributing to a disease phenotype. The 

involvement of a loss-of-function in SCA1 pathogenesis was also indicated by the 

fact that disease severity and lethality are greater in mice carrying a polyQ-expanded 

protein but lacking wild type ataxin 1 compared to animals with both mutant protein 

and normal levels of ataxin 1 (Lim et al., 2008). 

 

Similar results have also been found for other animal models of autosomal dominant 

diseases. For example, the elimination of wild type huntingtin protein (Van 

Raamsdonk et al., 2005) or androgen receptor function (Thomas et al., 2006) 

enhances neurodegeneration in the transgenic models of Huntington’s disease and 

spinobulbar muscular atrophy, respectively. Likewise increased levels of wild type 

huntingtin protein have been found to reduce the apoptotic cell death caused by 

expression of mutant huntingtin, further suggesting a role for loss-of-function in cell 

death (Leavitt et al., 2001). One postulated loss-of-function of mutant huntingtin is 

the inability to promote brain-derived neurotrophic (BDNF) gene transcription, due 

to the inability to repress the function of RE1 silencing transcription factor/neuron-

restrictive silencer factor (REST/NRSF) an inhibitor of BDNF gene transcription 

(Zuccato et al., 2001; Zuccato et al., 2003; Zuccato et al., 2007). 
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A loss-of-function in prion diseases has also been suggested, since the 

overexpression of normal PrP protects cultured neurons from cell-death-inducing 

stimuli (Li and Harris, 2005) and moreover, coexpression of subphysiological levels 

of wild-type PrP prevents neurodegeneration in mice expressing truncated forms of 

PrP (Behrens and Aguzzi, 2002). Although mice lacking the neuronal cell-surface 

PrP protein are normal (Bueler et al., 1992) this is not incompatible with a loss-of-

function mechanism as the cytoprotective functions of PrP may only be critical when 

cells are compromised.  

 

There is also emerging evidence to suggest that Alzheimer’s disease (AD) may be 

the consequence of a loss of presenilin functions rather than the accumulation of β-

amyloid peptides in the form of amyloid plaques (Shen and Kelleher, 2007). One key 

finding that supports this hypothesis is that hallmarks of AD pathology are observed 

following the conditional inactivation of both presenilins (PS1 and PS2) in the adult 

mouse cerebral cortex (Saura et al., 2004) whereas mouse models overexpressing β-

amyloid peptides appear to show no neurodegeneration (Irizarry et al., 1997). The 

fact that a large number of disease causing mutations have been found throughout the 

structure of presenilin (Bertram and Tanzi, 2008) also suggests that a loss of protein 

function accounts for pathogenesis since all alterations have a detrimental effect, 

which would be highly improbable if a toxic gain-of-function were responsible. 

  

A loss-of-function caused by the creation of premature stop codons in the gene 

encoding tau tubulin kinase (TTBK2), a casein kinase (CK) that phosphorylates tau, 
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is also thought to underlie SCA11 (Houlden et al., 2007). The mechanism is thought 

to involve the deposition of unphosphorylated tau and knockdown data from C. 

elegans supports a loss of TTBK2 function in tau toxicity (Kraemer et al., 2006). 

 

Therefore, although previously believed to be associated with recessive forms of 

disease, there are a number of reports that suggest the loss of normal protein function 

is an important factor in a variety of dominant neurodegenerative diseases, in 

accordance with the findings of the present study in relation to SCA5.   

 

4.3.2 Disease pathogenesis in other SCA5 models 

Currently there are only two other proposed animal models of SCA5. One is the 

previously mentioned Spnb3-/- mouse (Stankewich et al., 2010) and the other is a 

Drosophila model that over expresses either mutant forms of human β-III  spectrin or 

fly β-spectrin (Lorenzo et al., 2010).  

 

The Spnb3-/- mouse model is reported to develop ataxia but, in contrast to both the β-

III -/- spectrin mouse and SCA5 patients, the symptoms observed are mild and non-

progressive, suggesting that this mouse is a poor match to the disease phenotype and, 

therefore, a poor disease model. Notably, the behaviour task that showed greatest 

impairment in Spnb3-/- animals was the wire-hanging test, which is not a test for 

balance, but rather muscle and grip strength. Moreover, myoclonic seizures were 

observed in Spnb3-/- mice, a phenotype not reported in any SCA5 individual and 

there was also no loss of Purkinje cells, even at 1.5 years in the Spnb3-/- mice. Taken 
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together these data provide further evidence that the Spnb3-/- mouse is probably not a 

good model for SCA5 pathogenesis, despite the authors claiming that their mouse 

mirrors the pathology of human SCA5. Instead it may be that the truncated protein 

still expressed in this mouse model has a toxic gain-of-function property that 

underlies some or all of the disease phenotype. Additional work to fully analyse the 

function of the truncated protein is required before interpretation of a disease 

mechanism can be made for the Spnb3-/- mouse. Clearly careful consideration needs 

to be given as to whether this mouse should actually be considered a model of ataxia 

at all. 

 

In contrast, data from the fly models, where effects of ectopic expression of mutant 

forms of β-III spectrin are enhanced when endogenous levels of wild type β spectrin 

are reduced, suggests that mutant β spectrin interferes with the normal function of 

spectrin but ultimately loss-of-function underlies the phenotype (Lorenzo et al., 

2010). This is supported by the fact that even in the absence of mutant forms of β-III 

spectrin similar phenotypic defects are observed when β spectrin levels are reduced 

by RNAi (Lorenzo et al., 2010 and T. Hays personal communication). 

 

4.3.3 Conclusions 

This chapter reports the careful analysis of a new animal model of ataxia and clearly 

demonstrates a progressive motor phenotype, a characteristic of human ataxia. The 

work demonstrates that a loss-of βIII-spectrin is pathogenic, providing key insights 
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into disease pathogenesis. Furthermore, Purkinje cell loss is observed in the β-III -/- 

mouse making this model an excellent tool for future study, as a number of other 

SCA mouse models fail to recapitulate this important aspect of the human disease 

(He et al., 2006; Moseley et al., 2006; Chou et al., 2008; Watase et al., 2008). 
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CHAPTER 5 

ANALYSIS OF ββββ-III +/- SPECTRIN DEFICIENT 
MICE 

____________________________________________ 

5.1. Background  

The previous chapter reported the behavioural analysis of β-III -/- spectrin mice and 

the results demonstrated that a loss of β-III spectrin function underlies ataxia and 

cerebellar degeneration. Since SCA5 is an autosomal dominant disease this finding 

indicated that either, the mutant forms of β-III spectrin are simply inactive and the 

disease arises from haploinsufficiency or, in addition to being non-functional, the 

mutant subunits also have a dominant negative effect and suppress the function of 

wild type spectrin.  There is evidence from other mouse models and SCA literature to 

suggest other forms of ataxia (SCA15 & 28) arise from haploinsufficiency (van de 

Leemput et al., 2007; Maltecca et al., 2009). To address whether β-III spectrin 

haploinsufficiency could be pathogenic, heterozygote β-III +/- spectrin mice were 

studied for signs of motor deficits and cerebellar degeneration. The same behavioural 

tests and histological analysis used to characterise the β-III -/- spectrin mouse were 

performed on 6-month to 2-year-old heterozygous animals. 

 

 

 

 

96 



CHAPTER 5 ANALYSIS OF β-III +/- SPECTRIN DEFICIENT MICE 

 

97 

 

5.2 Results 

5.2.1 Behavioural Analyses 

Body Weight 

The body weight between genotypes was not found to differ at any age (Figure 5.1).  
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Figure 5.1 No difference in body weight between WT and β-III+/- spectrin mice. Body 
weight of male (M) and female (F) mice measured for WT (black) and β-III+/- (white) spectrin 
mice at different ages. All data are given as means ± SEM. The exact number of animals 
used (N) at each age point is shown above each genotype.  

 

Gait analysis 

Analysis of footprint patterns showed that, unlike β-III -/- spectrin mice, β-III +/- 

spectrin mice did not display an increase in base width at any age, when compared to 

WT littermates (Figure 5.2A). Similarly, there was no significant difference in stride 

length between WT and β-III +/- spectrin mice at any of the ages examined (Figure 

5.2B).  
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Figure 5.2 β-III+/- spectrin mice have normal gait. Quantification of base width (A) and 
stride length (B) between WT (black diamonds) and β-III+/- spectrin (white circles) mice from 
6-months to 2-years of age. All data are given as means ± SEM. 
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Stationary Rod 

There was no significant difference in the ability of WT and β-III +/- spectrin mice to 

remain on the stationary rod and even at 2-years of age β-III +/- spectrin mice 

performed as well as their WT littermates (Figure 5.3).  
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Figure 5.3 Progressive loss of balance not seen in β-III+/- spectrin mice. Quantification 
of the latency for WT (black) and β-III+/- spectrin (white) mice to fall from the stationary rod. 
Data from 4 consecutive trials, with a maxiumum time of 60 seconds, are given as means ± 
SEM. 

 

 

Rotating Rod 

Neither genotype had any difficulty to remain on a rotating rod at the less intensive 

speeds of 3 and 5 rpm but when the speed was increased to 10 rpm, their 

performance was initially compromised (Figure 5.4). However, their performance 

did improve with consecutive days of testing and there was never any significant 
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difference between genotypes. Only on the first trial day of each speed at 2-years of 

age were β-III +/- spectrin mice obviously worse than their WT littermates but this 

never reached significance (P = 0.077, 0.070 and 0.056). By the second day they 

performed as well as WT littermates.  

 

Elevated Beam 

The number of slips made, when crossing the elevated beam were counted for WT 

and β-III +/- spectrin mice (Figure 5.5). There was never any hesitation in crossing the 

beam for either genotype. By 18-months and 2-years of age, there was very little 

difference in the number of slips made by WT and β-III +/- spectrin mice and at no age 

did the β-III +/- spectrin mice make as many slips as symptomatic β-III -/- spectrin mice 

(refer to section 4.2.1). 

 

Inverted Grid 

There was no difference in the ability of β-III +/- spectrin mice and WT littermates to 

do the inverted grid test (Figure 5.6). 
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Figure 5.4 No progressive motor deficits in β-III+/- spectrin mice. Latency of WT (black 
diamonds) and β-III+/- (white circles) spectrin mice to fall from rotarod at 3, 5 and 10 rpm. 
Motor performance was recorded at 6-months, 1-year, 15-months and 2-years of age. Mice 
were given 4 trials per day and allowed a maximum time of 120 seconds per trial. All data 
are given as means ± SEM. 
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Figure 5.5 No loss of balance in β-III+/- spectrin mice. The number of slips made while 
traversing an elevated beam were counted for WT (black) and β-III+/- (white) spectrin mice 
from 6-months to 2-years of age. All data are given as means ± SEM. 
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Figure 5.6 No muscle weakness in β-III+/- spectrin mice. The latency for WT (black) and 
β-III+/- spectrin (white) to fall from an inverted grid was recorded. Mice were given 4 trials and 
a maximum time of 60 seconds allowed. All data are given as means ± SEM. 
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Novel Object Recognition  

The novel object recognition task was performed on 3-week old WT and β-III +/- 

spectrin mice and the exploratory preference measured (Figure 5.7). There was no 

discernable difference between the ability of WT and β-III +/- spectrin mice in 

recognising the novel object. 
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Figure 5.7 ββββ-III+/- spectrin mice display no deficit in object recognition. Preference of 
WT (black) and β-III+/- (white) spectrin mice to explore a novel object. All data are given as 
means ± SEM. 

 

5.2.2 Histological Analysis 

In order to examine cerebellar morphology sections from 2-year old WT and β-III +/- 

spectrin mice were stained for Nissl. The over all cerebellar size and morphology 

appeared normal in β-III +/- spectrin mice apart from a slight difference in folia 1 and 

2 compared to WT (arrow Figure 5.8A). Quantification revealed no molecular layer 

thinning or Purkinje cell loss in β-III +/- spectrin mice (Figure 5.8B). Cerebellar 
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sections from 2-year old WT and β-III +/- spectrin mice were also immunostained for 

calbindin D28K to examine Purkinje cell morphology. The staining revealed no 

obvious difference in the cell body or dendritic tree of β-III +/- spectrin Purkinje cells 

compared to WT (Figure 5.8C,D).   

 

5.2.3 Analysis of glutamate transporter levels 

A loss of EAAT4 and GLAST was observed in β-III -/- spectrin mice (Perkins et al., 

2010) and dramatic changes in EAAT4 distribution were reported in SCA5 autopsy 

tissue (Ikeda et al., 2006). Therefore glutamate transporter expression levels were 

examined in β-III +/- spectrin mice. Total cerebellar homogenates from 1- and 2-year 

old WT and β-III +/- spectrin mice were resolved by SDS-PAGE and immunoblotted 

for EAAT4, GLAST and GLT1 (Figure 5.9A). Quantification revealed no significant 

difference in any glutamate transporter at 1-year or 2-years of age in β-III +/- spectrin 

mice (Figure 5.9B). Levels of the neuronal transporter EAAT4 were normalised to 

calbindin whereas levels of the astroglial transporters GLAST and GLT1 were 

normalised to actin. 
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Figure 5.8 No cerebellar pathology in β-III+/- spectrin mice. (A) Cerebellar 
sections stained with cresyl violet. Numbers correspond to folia. Bar, 500 µm. (B) 
Left, Quantification of the mean molecular layer thickness at 2-years of age.  Right, 
Quantification of the mean Purkinje cell density in 2-year old WT and β-III+/- spectrin 
mice. All data are given as means ± SEM (WT N = 3; β-III+/- N = 3). (C,D) Cerebellar 
sections immunostained with anti-calbindin D28K antibody. (ML, molecular layer; 
PCL, Purkinje cell layer; Bar, 50 µm (C); Bar, 20 µm (D)). 
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Figure 5.9 No loss of neuronal or astroglial transporters in β-III+/- spectrin mice. (A) 
Representative Western blots of cerebellar homogenates from 2-year old WT and β-III+/- 
spectrin mice immunoblotted using anti-EAAT4, anti-GLAST and anti-GLT1 antibody. (B) 
Quantification of transporter expression from 1- and 2-year old WT and β-III+/- spectrin mice. 
Data plotted as a percentage of WT littermate values. Dotted line represents 100%. All data 
are given as means ± SEM (N = 3 of each genotype).  

 

 

5.3 Discussion 

The data shown in this chapter argue against haploinsufficiency as a disease 

mechanism since even at 2-years of age β-III +/- spectrin mice show no signs of ataxia 

or cerebellar degeneration. Furthermore, the discovery that there is no change in the 

levels of EAAT4 and GLAST in β-III +/- spectrin mice, the two transporters found to 

be reduced in β-III -/- spectrin mice (Perkins et al., 2010), suggests that a loss of 

EAAT4 and GLAST may play a role in disease pathogenesis. 
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5.3.1 Haploinsufficiency as a disease mechanism 

Haploinsufficiency has been shown to underlie a number of dominantly inherited 

human diseases (Santarosa and Ashworth, 2004; Veitia and Birchler, 2004; Zephir et 

al., 2005; Dang et al., 2008; Iwaki et al., 2008) and more recently other forms of 

ataxia (SCA15 & 28) are thought to arise from haploinsufficiency (van de Leemput 

et al., 2007; Maltecca et al., 2009). Often the genes involved in these diseases encode 

proteins where a correct stoichiometry is imperative for normal function and a single 

wild type copy is insufficient. Transcription factors and proteins that form 

macromolecular complexes are examples of such proteins.  

 

In the case of SCA15 it is ITPR1 haploinsufficiency that is believed to be responsible 

for a disease phenotype (van de Leemput et al., 2007). ITPR1 is found coupled to 

calcium channels and mediates calcium release from the ER following binding of 

inositol 1,4,5-triphosphate, an intracellular second messenger (Berridge, 1993; 

Mikoshiba, 1993; Matsumoto and Nagata, 1999). A pathogenic gain-of-function 

resulting from the large gene deletion across the first one-third of the ITPR1 gene 

and across the first half of a neighbouring gene, SUMF1, is not supported by the 

findings as ITPR1 levels were dramatically reduced in cells derived from SCA15 

patients and no disease specific truncated ITPR1 products were detected (van de 

Leemput et al., 2007). Instead the observations are consistent with 

haploinsufficiency, as mice homozygous for Itpr1 deletions display an early onset 

disorder whereas humans heterozygous for the deletion have a much later onset. 

Analysis of aged heterozygous mice is required to reveal whether they eventually 
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show signs similar to SCA15 patients, which would lend further support to 

haploinsufficiency as a mechanism. In addition, the fact ITPR1 is downregulated in 

other neurodegenerative diseases such as Alzheimer’s disease, Huntington’s disease 

and Friedreich’s ataxia (Zecevic et al., 1999) indicates that the dysregulation of 

calcium homeostasis, through loss of this protein, may be a convergent disease 

mechanism in neuronal degeneration.   

 

In the case of SCA28, there is clearer evidence to support haploinsufficiency of a 

nuclear encoded mitochondrial protein, Afg3l2, as the underlying cause of ataxia 

(Maltecca et al., 2009). Although homozygous Afg3l2 mutant mice were found to 

have widespread neuromuscular dysfunction in the CNS and PNS with impaired 

axonal maturation, delayed myelination and death occurring at postnatal day 14 

(Maltecca et al., 2008; Maltecca et al., 2009), heterozygous Afg3l2 mutant mice 

showed characteristics of ataxia including progressive gait abnormalities, motor 

deficits and cerebellar degeneration from 4-months of age (Maltecca et al., 2009). 

This is thought to be due to respiratory chain dysfunction resulting in elevated 

reactive oxygen species production, a consequence of altered mitochondrial calcium 

homeostasis, and ultimately dysfunction and dark cell degeneration of Purkinje cells 

(Maltecca et al., 2009; Di Bella et al., 2010).  

 

With respect to SCA5, all patients to date have been found to be heterozygous for 

mutations in β-III spectrin (Ikeda et al., 2006 and LPW Ranum personal 
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communication). It is therefore possible that SCA5 arises from haploinsufficiency, 

especially since spectrin functions as a heterotetramer and assembly appears to be 

rate limited by the β subunit (Hanspal and Palek, 1987). One possibility is that the 

mutant β-III polypeptides fail to associate with other subunits of the tetramer.  

However, based on the findings reported here it does not appear that β-III spectrin 

haploinsufficiency is responsible for either ataxia or cerebellar degeneration. It is 

possible that mice do not live long enough for a phenotype to manifest itself in β-

III +/- spectrin mice, or that the behavioural tasks used were not sensitive enough to 

detect minor motor deficits. However, the motor tests used were consistent with 

other studies (Dunham and Miya, 1957; Crawley, 1999). One other complicating 

issue is that the β-III +/- spectrin mice will also be expressing a very low level of ∆2-6 

β-III spectrin (refer to Chapter 3). However, this is thought unlikely to provide 

sufficient function to occlude the appearance of any phenotype. Therefore, from the 

analysis of β-III +/- spectrin mice it would appear that β-III spectrin haploinsufficiency 

is not likely to give rise to either ataxia or cerebellar degeneration.  

 

In contrast, work by Stankewich et al., (2010) reported an ataxic phenotype in 

Spnb3+/- mice, but, as mentioned previously, this was based on a wire-hanging test 

which is not generally considered appropriate as a method for assessment of motor 

performance. Furthermore, no data were collected from Spnb3+/- mice to rule out any 

potential toxic gain-of-function associated with the truncated β-III spectrin protein 
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still being expressed in these mice (Stankewich et al., 2010).  Consequently, the 

relevance of these mice as an accurate model of SCA5 must remain open to question.    

 

5.3.2 Lack of glutamate transporter loss in β-III +/- spectrin mice 

The lack of disease phenotype and glutamate transporter loss in β-III +/- spectrin mice 

provides evidence that EAAT4 and GLAST may be important in the development of 

ataxia. In β-III -/- spectrin mice there is an early and consistent loss of EAAT4, the 

Purkinje cell specific transporter, and with age there is a progressive loss of the 

Bergmann glial transporter GLAST (Perkins et al., 2010). Furthermore there is a 

correlation of disease severity with degree of Purkinje cells undergoing dark cell 

degeneration, a characteristic of glutamate-mediated excitotoxicity (Barenberg et al., 

2001; Strahlendorf et al., 2003). The fact no glutamate transporter loss, dark cell 

degeneration or motor deficits were seen in β-III +/- spectrin mice supports the 

correlation between reduction in clearance of glutamate due to loss of EAAT4 and 

GLAST and excitotoxic damage to Purkinje cells resulting in dysfunction and 

disease.  

 

A loss of GLAST, glutamate uptake and dark cell degeneration was also observed in 

the SCA7 transgenic mouse, where mutant ataxin-7 was expressed specifically in 

Bergmann glia, supporting a role for reduced astroglial uptake in Purkinje cell 

toxicity (Custer et al., 2006). The importance of a non-cell autonomous mechanism 

in Purkinje cell degeneration is also highlighted by the discovery that the conditional 
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ablation of Bergmann glia in adult mice results in ataxia and degeneration of 

Purkinje cell dendrites (Cui et al., 2001). Further evidence that GLAST dysfunction 

plays a role in cerebellar ataxia comes from the discovery that a complete loss-of-

function mutation in EAAT1 (GLAST), with a dominant negative effect on wild type 

protein, underlies episodic and progressive ataxia (Jen et al., 2005), and a GLAST 

knockout mouse possesses motor deficits (Watase et al., 1998). 

 

In contrast although EAAT4 loss does not correlate with disease progression, as the 

same level of loss is observed in older animals with more pronounced deficits, an 

early loss of EAAT4 may be a common feature in the onset of ataxia as two other 

mouse models also show a loss of both EAAT4 and β-III  spectrin before any overt 

phenotype (Lin et al., 2000; Gold et al., 2003). 

 

5.3.4 Conclusions 

The analysis of β-III +/- spectrin mice reported in this chapter provides no evidence 

for β-III  spectrin haploinsufficiency in ataxia. However, in conjunction with the data 

presented in chapter 4 that loss of β-III  spectrin function underlies pathogenesis, the 

results indicate that the mutations associated with SCA5 have dominant negative 

effects on WT β-III  spectrin function in addition to partial loss of normal function. 

The fact no non-sense mutations have been identified in SCA5 patients would 

support the hypothesis that haploinsufficiency is not pathogenic and that the 

mutations interfere with the normal function of β-III  spectrin. Furthermore the 
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analysis of both β-III +/- and β-III -/- spectrin mice has revealed that a reduction in 

glutamate transporter protein levels correlates with disease and may be an important 

aspect of disease pathogenesis. 



 

1 

CHAPTER 6   

HUMAN MUTATIONS ASSOCIATED WITH 
SCA5 

_____________________________________________ 

6.1 Background 

Originally two separate in-frame deletions and a missense mutation in β-III spectrin 

were found to associate with SCA5 in three independent families ((Ikeda et al., 

2006); Figure 6.1). Subsequently, the screening of the same regions of β-III spectrin 

in more than 6587 unclassified ataxic individuals identified a further twelve missense 

mutations, (D Lorenzo and LPW Ranum, personal communication). Of the residues 

affected, leucine 253, alanine 486, arginine 634, arginine 658 and arginine 1278 are 

conserved between human and rat. This chapter reports a series of cell culture 

experiments to investigate the effect mutations associated with SCA5 have on normal 

β-III spectrin function.  

CalponinHomology 
domain/ Actin
Binding Domain

Pleckstrin
homology 
domain

17 spectrin repeat domains

Leu 253 Pro

Ala 486 Thr

Arg658 Trp
Arg1278 Gln

39 bp deletion

15 bp deletion     
Arg634 Trp

EAAT4 
interaction

 

Figure 6.1 Human mutations associated with SCA5. A schematic representation of β-III 
spectrin annotated with the location of mutations found in individuals with ataxia that are at 
conserved residues in rat.  
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6.2 Results 

6.2.1 Generation, expression and cellular localisation of β-III spectrin mutant 

constructs 

Using site-directed mutagenesis (refer to section 2.2.4) five missense mutations, 

identified in individuals with ataxia that altered residues conserved between human 

and rat, were introduced into a construct encoding myc-tagged rat β-III spectrin. 

Western blot analysis confirmed the expression of mutant proteins upon transfection 

of HEK 293T cells, but the level of expression varied and L253P was always 

expressed at a lower level (Figure 6.2). 

250
150

100

KDa

p38

WT

 

 

Figure 6.2 Expression of full length rat β-III spectrin with mutations associated with 
SCA5. Cell homogenates from HEK 293T cells transfected with various myc-tagged β-III 
spectrin constructs resolved by SDS-PAGE and probed with anti-c-myc antibody. p38 was 
used as a loading control.   

 

Confocal immunofluorescence microscopy revealed that, unlike WT, L253P β-III 

spectrin was not found at the plasma membrane in either HEK 293T or Neuro 2a 

cells, but instead accumulated in a discrete intracellular location (Figure 6.3). To 
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further elucidate the intracellular distribution, L253P was co-expressed with either a 

Golgi (Figure 6.4A) or an ER marker (Figure 6.4B). This revealed that L253P β-III 

spectrin appears to associate with the Golgi apparatus (Figure 6.4A). Expression of 

myc-tagged β-III spectrin constructs encoding an original human mutation ∆39 bp or 

∆15 bp + R634W found in the Lincoln and French pedigree respectively (Ikeda et al., 

2006), revealed no difference in cellular distribution compared to WT β-III spectrin 

(Figure 6.5). All other mutant forms of rat β-III spectrin were also found at the 

plasma membrane and did not associate with the Golgi apparatus (Figure 6.6).  

  

WT L253P

Neuro 2a

HEK 293T

 

Figure 6.3 Lack of expression of L253P β-III spectrin at plasma membrane. Neuro 2a 
and HEK 293T cells transfected with either myc-tagged WT or L253P β-III spectrin (red). 
Nucleus was stained with DAPI (blue). All images are representative of three independent 
experiments. Bar, 10 µm. 
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Figure 6.4 L253P β-III spectrin associates with a Golgi marker. Neuro 2a cells 
transfected with either myc-tagged WT or L253P β-III spectrin (red) and either (A) a Golgi 
(green) or (B) an ER (green) marker. Nucleus was stained with DAPI (blue). All images are 
representative of three independent experiments. Bar, 10 µm. 
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β-III spectrin Merge

 
 

Figure 6.5 ∆39 bp and ∆15bp + R634W β-III spectrin associate with the plasma 
membrane. Neuro 2a transfected with either myc-tagged ∆39 bp and ∆15bp + R634W β-III 
spectrin (red). Nucleus was stained with DAPI (blue). All images are representative of three 
independent experiments. Bar, 10 µm. 
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B.

 

 

Figure 6.6 Other SCA5 missense mutations associate with the cell membrane. Neuro 
2a cells cotransfected with either a Golgi (green) (A) or ER (green) marker (B) and myc-
tagged β-III spectrin constructs (red). Nucleus was stained with DAPI (blue). All images are 
representative of three independent experiments. Bar, 10 µm. 
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At the time of this work it was found that unlike WT, the amino terminus of human 

L253P β-III spectrin was cleaved (K Dick-Krueger and LPW Ranum). Western blot 

analysis using antibodies against both the N-terminus of β-III spectrin and the N-

terminal c-myc tag confirmed that the amino terminus of rat L253P β-III spectrin was 

cleaved, similar to human L253P β-III spectrin (Figure 6.7A). In contrast no cleavage 

was seen for the other two human mutations, ∆39 bp and ∆15 bp + R634W β-III 

spectrin. Confocal immunofluorescence microscopy revealed that for all three mutant 

constructs the polyclonal antibody raised against the C-terminal region of β-III 

spectrin recognised the same protein as the antibody directed against the N-terminal 

myc-tag (Figure 6.7B). This demonstrated that it was full length L253P β-III spectrin 

that was associated with the Golgi and not the N-terminal proteolyic fragment.  

 

To determine whether increasing the expression of L253P β-III spectrin had any 

effect on the cellular distribution of the mutant protein Neuro 2a cells were 

transfected with different amounts of DNA (0.5 µg – 4 µg). This had very little effect 

on the amount of L253P protein that reached the plasma membrane and instead more 

protein appeared trapped at the Golgi apparatus (Figure 6.8A). Similarly, increasing 

the length of time for protein expression did not result in more L253P protein 

reaching the plasma membrane (Figure 6.8B).  
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Figure 6.7 Full length L253P β-III spectrin associated with Golgi. (A) Neuro 2a cellular 
homogenates immunoblotted using antibodies against either N-terminus of β-III spectrin (top 
panel) or c-myc epitope (bottom panel). (B) Neuro 2a cells transfected with myc-tagged 
L253P, ∆39 bp and ∆15 bp + R634W β-III spectrin and immunostained with a carboxy-
terminal anti- β-III spectrin antibody (green) and an anti-c-myc antibody (red) to detect amino 
terminal myc-tag. Nucleus stained with DAPI (blue). All images are representative of three 
independent experiments. Bar, 10 µm. 
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Figure 6.8 Increased protein levels or longer time for protein expression does not 
result in normal cellular distribution of L253P β-III spectrin. (A) Neuro 2a cells 
transfected with different amounts of myc-tagged WT or L253P β-III spectrin construct DNA. 
β-III spectrin (red), nucleus (blue). (B) Neuro 2a cells transfected with either myc-tagged WT 
or L253P β-III spectrin and left for 36- or 72-hours before fixation and immunostaining. 
Nucleus stained with DAPI (blue). All images are representative of three independent 
experiments. Bar, 10 µm. 
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6.2.2 Dominant negative effect of L253P on WT β-III spectrin 

To determine what effect L253P β-III spectrin had on WT protein, YFP-tagged WT 

β-III spectrin was co-expressed in Neuro 2a cells with myc-tagged L253P β-III 

spectrin. Immunostaining with antibodies against the c-myc and GFP tags revealed 

that the presence of L253P β-III spectrin resulted in WT β-III spectrin being 

abnormally located and found in the same cellular localisation as L253P β-III 

spectrin (Figure 6.9). However, when YFP-tagged WT β-III spectrin was co-

expressed with myc-tagged β-III spectrin both constructs were located at the cell 

membrane (Figure 6.9).  

Anti-GFP AbAnti-c-myc Ab

WT-GFPmyc-L253P

+

+

WT-GFPmyc-WT

 

Figure 6.9 L253P β-III spectrin has a dominant negative effect on WT β-III spectrin. 
Neuro 2a cells co-transfected with YFP-tagged WT β-III spectrin and either myc-tagged WT 
or L253P β-III spectrin. Immunostaining used anti-c-myc antibody (red) and anti-GFP 
antibody (green). All images are representative of three independent experiments. Bar, 10 
µm.  
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6.2.3 Trafficking of membrane proteins disrupted by L253P β-III spectrin 

To examine what effect L253P β-III spectrin had on the trafficking of other proteins 

Neuro 2a cells were co-transfected with either myc-tagged WT or L253P β-III 

spectrin and EAAT4, a protein known to interact with and be stabilised at the cell 

surface by WT β-III spectrin ((Jackson et al., 2001); refer to section 1.5.4). EAAT4 

was found at the cell membrane when WT β-III spectrin was coexpressed, whereas in 

the presence of L253P β-III spectrin EAAT4 had the same intracellular distribution 

as L253P β-III spectrin (Figure 6.10).  

 

WT EAAT4

L253P EAAT4

Merge

Merge

 

 

Figure 6.10 L253P β-III spectrin reduces EAAT4 cell surface expression.  

Neuro 2a cells co-transfected with EAAT4 and either myc-tagged WT or L253P β-III spectrin. 
Cells immunostained using anti-c-myc (red), anti-EAAT4 antibody (green) and nucleus 
stained with DAPI (blue). All images are representative of three independent experiments. 
Bar, 10 µm.  
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To determine whether the defect in protein trafficking was specific to β-III spectrin, 

and proteins it interacted with, the same experiment was repeated using constructs 

that encoded GLAST, mGluR1 and mGluR5. To date, there is only evidence to 

suggest that mGluR1 directly interacts with β-III spectrin (K. Armbrust and LPW 

Ranum, personal communication). Confocal immunofluorescence microscopy 

revealed that, like EAAT4, the cellular distributions of GLAST (Figure 6.11A), 

mGluR1 (Figure 6.11B) and mGluR5 (Figure 6.11C) were altered when co-

expressed with L253P β-III spectrin. However, with EAAT4 there was a complete 

loss of membrane staining but GLAST, mGluR1 and mGluR5 were still partially 

associated with the membrane. Furthermore the morphology of cells transfected with 

L253P β-III spectrin was substantially different to that of WT as they had a more 

rounded appearance. 
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Figure 6.11 Trafficking of proteins from the Golgi disrupted when L253P β-III spectrin 
expressed. Neuro 2a cells co-transfected with either myc-tagged WT or L253P β-III spectrin 
and GLAST (A) or mGluR1 (B). (A,B) Cells immunostained using anti-c-myc (red), anti- 
GLAST (green) and anti-mGluR1 antibody (green). (C) Cells transfected with either 
untagged WT or L253P β-III spectrin and myc-tagged mGluR5. Cells immunostained with 
anti-c-myc (green) and carboxy-terminal anti-β-III spectrin antibody (red). Nucleus stained 
with DAPI (blue). Colours applied using Image J. All images are representative of three 
independent experiments. Bar, 10 µm. 
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6.2.3.1 Membrane trafficking and interaction with Arp1 rescued by 

temperature shift 

Prior to immunostaining transfected cells were incubated for a further 12 hours at a 

lower temperature (25 °C) and the temperature shift was found to rescue the 

trafficking defect of L253P β-III spectrin. At the permissive temperature L253P β-III 

spectrin, like WT, was now localized at the cell membrane (Figure 6.12A). Western 

blot analysis revealed that the temperature shift did not enhance protein levels and in 

fact showed that at 25 °C L253P β-III spectrin levels were still lower than that of WT 

(Figure 6.12B). The disruption to EAAT4 trafficking was also rescued by incubating 

at the lower temperature (Figure 6.12C).  

 

Previously it was shown that β-III spectrin interacts with Arp1, a subunit of the 

dynactin complex and copurifies with dynein and dynactin on intracellular vesicles 

from rat brain (Holleran et al., 2001). A biomolecular fluorescence complementation 

(BiFC) assay (refer to section 7.2.2) was used to investigate whether the L253P 

mutation interfered with the ability of the N-terminus of β-III spectrin to interact 

with Arp1. Full length Arp1 and the amino-terminus of β-III spectrin (amino acids 1-

295) were cloned downstream of the N-terminal (YN) and C-terminal fragments 

(YC) of YFP respectively and HEK 293T cells transfected with the expression 

vectors. Coexpression of YN-Arp1 and WT YC-β-III spectrin yielded fluorescence 

but no fluorescence was observed when L253P YC-β-III spectrin was coexpressed 

with YN-Arp1 (Figure 6.13A), indicating that the mutation does indeed eliminate the 

interaction between β-III spectrin and Arp1.  However, incubation at 25°C for an 
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additional 12 hours produced a fluorescent signal (Figure 6.13A). Western blot 

analysis confirmed all proteins were expressed at 37°C (Figure 6.13B). 
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Figure 6.12 Membrane localisation rescued by temperature shift. (A) Cells 
transfected with either myc-tagged WT or L253P β-III spectrin and 24 hours after 
transfection cells incubated for a further 12 hours at 37°C or 25°C before 
immunostaining with anti-c-myc antibody (red). (B) Western blot analysis of HEK 
293T cell homogenates probed with anti-c-myc antibody. Actin was used as a 
protein loading control. (C) HEK 293T cells expressing myc-tagged L253P β-III 
spectrin and EAAT4. 24 hours post-transfection cells were incubated for a further 12 
hours at 25°C. Cells immunostained using anti-c-myc antibody (red) and anti-EAAT4 
antibody (green).  All images are representative of three independent experiments. 
Bar, 10 µm.  
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Figure 6.13 Interaction with Arp1 rescued by temperature shift. (A) BiFC assay using 
HEK 293T cells transfected with Arp1 fused to the N-terminal half of YFP (YN-Arp) and the 
amino terminus of β-III spectrin, with or without the L253P substitution, fused to the C-
terminal half of YFP (YC-βIII). 24 hours after transfection cells were incubated at 37°C or 
25°C for a further 12 hours. Nucleus was stained with DAPI (blue). All images are 
representative of three independent experiments. Bar, 10 µm. (B) Western blot analysis of 
HEK 293T cell homogenates probed with anti-GFP antibody. Actin was used as a protein 
loading control. 

 

 

6.2.4 L253P β-III spectrin does not induce the unfolded protein response 

A number of neurodegenerative diseases like amyotrophic lateral sclerosis (ALS) 

(Atkin et al., 2006; Nagata et al., 2007) and Alzheimer’s disease (Salminen et al., 

2009) have been shown to be associated with accumulation of abnormal protein, 

impaired ER homeostasis and activation of the ER unfolded protein response (UPR). 

The UPR can be triggered by a block in trafficking at the ER and Golgi, as well as 

the accumulation of unfolded or misfolded proteins in the ER. ER stress induces the 

expression of CHOP (GADD153), a transcription factor growth arrest and DNA 

damage/C/EBP-homologous protein, which is believed to be a downstream effector 
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of all three UPR pathways (Oyadomari and Mori, 2004; Xu et al., 2005). Therefore, 

it was investigated whether the expression of L253P β-III spectrin induced the UPR 

given its detrimental effect on membrane protein trafficking. Neuro 2a cells were 

transfected with either GFP, WT β-III spectrin, L253P β-III spectrin, EAAT4, WT β-

III spectrin and EAAT4 or L253P β-III spectrin and EAAT4. Western blot and 

densitometry analysis revealed that CHOP expression induced by L253P β-III 

spectrin overexpression was not significantly different to that of cells overexpressing 

GFP (Figure 6.14A). Western blot analysis and immunofluorescence microscopy 

confirmed the pharmacological induction of CHOP expression in Neuro 2a cells by 

tunicamycin, a blocker of N-linked glycosylation (Figure 6.14B,C). In contrast no 

nuclear staining for CHOP was observed in Neuro 2a cells transfected with either 

WT or L253P β-III spectrin (Figure 6.14C).  
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Figure 6.14 L253P β-III spectrin does not induce unfolded protein response. (A) Neuro 
2a cells transfected with constructs encoding either GFP, WT β-III spectrin, L253P β-III 
spectrin, EAAT4, WT β-III spectrin and EAAT4 or L253P β-III spectrin and EAAT4. Total 
cellular homogenates resolved by SDS-PAGE and immunoblotted using anti-CHOP 
antibody. Data quantified by densitometry and expressed relative to level of GFP expressing 
cells (means ± S.E.M, N = 3). (B) Total cellular homogenates of untreated (-T) and cells 
treated with tunicamycin (+T) for 12 hours resolved by SDS-PAGE and immunoblotted using 
anti-CHOP antibody. (C) Confocal microscopy of cells transfected with myc-tagged WT or 
L253P β-III spectrin using an anti-c-myc antibody (red), an anti-CHOP antibody (green) and 
nucleus stained with DAPI (blue). All images are representative of three independent 
experiments. Bar, 10 µm.   
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6.3 Discussion 

The data presented in this chapter indicate there is a dominant-negative effect on 

wild-type β-III spectrin function for the L253P missense mutation found within the 

β-III spectrin calponin homology domain of individuals with SCA5. Instead of being 

primarily localised at the cell membrane, mutant L253P β-III spectrin was found 

associated with the Golgi apparatus and furthermore disrupted the normal trafficking 

of WT β-III spectrin and a number of transmembrane proteins. The fact that the 

disruption to protein trafficking was rescued by incubating at a lower temperature 

suggests the missense mutation L253P alters the protein conformation of β-III 

spectrin (Payne et al., 1998; Gelman and Kopito, 2002; Thomas et al., 2003; 

Anderson et al., 2006; Rusconi et al., 2007; Rennolds et al., 2008). This assumption 

is supported by the fact circular dichroism shows a loss of α helical content in the 

amino terminus of human L253P β-III spectrin (KA Dick Krueger and LPW Ranum, 

personal communication).  

 

Furthermore the results presented here are the first to directly show an SCA5 

mutation can interfere with the ability of spectrin to interact with Arp1, a component 

of the dynactin complex, thus providing mechanistic insights into how protein 

trafficking defects may arise. Nevertheless, despite the intracellular accumulation of 

proteins due to expression of L253P β-III spectrin, there was no sign of the UPR 

suggesting that the loss of normal transmembrane protein function is more critical for 

SCA5 pathogenesis rather than an intracellular accumulation of protein. This is in 

contrast to other neurodegenerative diseases and mouse models that have been shown 
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to be associated with an intracellular accumulation of proteins in conjunction with 

the UPR (Atkin et al., 2006; Kim et al., 2006; Nagata et al., 2007; Salminen et al., 

2009). 

 

6.3.1 Loss of transmembrane proteins in SCA5 pathogenesis 

6.3.1.1 Mutant ββββ-III spectrin proteins disrupt vesicular traffickin g of membrane 

proteins 

A role for β-III spectrin in vesicular trafficking was previously proposed based on its 

ability to interact with Arp1, a subunit of the dynactin complex, and copurify with 

dynein and dynactin from rat brain vesicles (Holleran et al., 2001). Dynactin is a 

multi-subunit complex that binds to the microtuble motor dynein (Karki and 

Holzbaur, 1995; Vaughan and Vallee, 1995) and so by also binding spectrin it forms 

a link between the spectrin coat of transport vesicles and the motor (Presley et al., 

1997; Holleran et al., 1998; Holleran et al., 2001; Muresan et al., 2001). Work with 

Drosophila confirms a role for β spectrin in protein trafficking as knockdown by 

RNAi treatment disrupted the subcellular localization of a number of synaptic 

proteins and resulted in the accumulation of axonal cargoes (Featherstone et al., 

2001; Pielage et al., 2005, 2006; Lorenzo et al., 2010). In addition, a role in vesicular 

transport is suggested by the ultrastructural analysis of Purkinje cells lacking β-III 

spectrin where a large number of vesicles are observed surrounding the Golgi 

cisternae (Perkins et al., 2010). 
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There is also evidence from work with Drosophila to indicate that two mutations 

associated with SCA5 (∆ 39 bp and L253P) disrupt vesicle transport. Live imaging 

of larval axons shows a disruption to vesicle movement when human β-III spectrin 

harbouring one or other of these mutations is overexpressed (Lorenzo et al., 2010). 

Furthermore their work in Drosophila indicated a link between defects in the dynein-

dynactin complex and SCA5 pathogenesis (Lorenzo et al., 2010). When flies 

overexpressing human β-III spectrin harbouring the ∆ 39 bp mutation were crossed 

with either a hypomorphic dynein heavy chain allele or a dominant mutation in the 

p150Glued subunit of dynactin the larvae displayed exacerbated posterior paralysis and 

slowing of vesicle transport, inferring a synergistic effect between spectrin and 

dynein-dynactin (Lorenzo et al., 2010). Similarly the rough eye phenotype was 

enhanced in flies overexpressing either the ∆ 39 bp or the L253P mutation by the 

dynein-dynactin mutants (Lorenzo et al., 2010).  

 

Here we directly show that the L253P mutation interferes with the ability of spectrin 

to interact with Arp1, and therefore highlight how normal vesicular trafficking can be 

disrupted in some cases of SCA5 due to disrupting the link between vesicles and the 

microtubule motor dynein. Similar to the study in the SCA1 transgenic mouse, where 

one interaction of ataxin-1 is lost and another enhanced by the polyQ expansion (Lim 

et al., 2008), the presence of the L253P mutation has also been shown to result in an 

enhanced interaction with actin (KA Dick Krueger and LPW Ranum, personal 

communication). Therefore, a change in protein conformation due to the substitution 
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of leucine 253 by proline may alter the balance of normal β-III spectrin interactions, 

enhancing its ability to bind actin and reducing its ability to interact with Arp1, 

resulting in protein trafficking defects. 

 

Importantly, a direct role for dynein in the transport of proteins into dendrites has 

recently been shown (Kapitein et al., 2010), supporting the findings from this chapter 

which suggest that interfering with the binding between β-III spectrin and Arp1 

could result in defects to protein trafficking within the Purkinje cell dendritic tree of 

SCA5 patients. Due to Purkinje cells being among the largest neurons in the human 

CNS (Paley and Chan-Paley, 1974) the trafficking of macromolecules, vesicles and 

organelles are essential for the maintenance and survival of the elaborate dendritic 

tree. 

 

Although a similar disease phenotype was observed in Drosophila for both the           

∆ 39 bp and L253P mutations (Lorenzo et al. 2010), an association with the Golgi 

apparatus was only observed in the present study for the L253P mutant protein. All 

other mutant forms of β-III spectrin analyzed here were found to possess the same 

plasma membrane distribution as WT β-III spectrin. Similarly, only β-III spectrin 

harbouring the L253P mutation was found to be cleaved at the N-terminus, whereas 

neither the ∆ 39 bp nor ∆ 15 bp + R634W mutations showed such cleavage, 

indicating different effects of the mutations on protein structure and function. This 
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raises the question of what effect do the other mutations have on the normal function 

of β-III spectrin? 

 

6.3.1.2 Failure of mutant β-III spectrin proteins to stabilize transmembrane 

proteins  

As mentioned previously β-III spectrin is thought to stabilize EAAT4 at the plasma 

membrane (Jackson et al., 2001) and using total internal reflection fluorescence 

(TIRF) microscopy Ranum and colleagues have shown the in-frame deletion found 

in the Lincoln SCA5 pedigree to stabilize EAAT4 at the plasma membrane of HEK 

cells to a lesser extent than wild-type β-III spectrin (Ikeda et al., 2006). Therefore, 

the other mutant forms of β-III spectrin, although present at the plasma membrane, 

may be ineffective at retaining or stabilizing transmembrane proteins at the cell 

surface. This could be due to the loss of a direct interaction with the transmembrane 

protein or instead with the adaptor proteins 4.1 and ankyrin that form a membrane 

skeleton and are essential for the stable cell surface expression of numerous 

transmembrane proteins (Anderson and Lovrien, 1984; Coleman et al., 2003; Lin et 

al., 2009). Further studies are required to investigate whether other mutations 

associated with SCA5 interfere with the binding of β-III spectrin to 4.1, ankyrin 

and/or other interacting partners.  
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6.3.4 Conclusions 

This chapter clearly identifies an abnormal cellular distribution and loss-of-function 

for the L253P mutant form of β-III spectrin associated with SCA5, namely the loss 

of interaction with Arp1 and disruption to protein trafficking. Furthermore as the 

results from analysis of the heterozygous β-III spectrin deficient mice suggested 

(refer to chapter 5) this mutation does have has a dominant-negative effect on WT β-

III spectrin function, preventing its expression at the plasma membrane. The 

detrimental effects of other mutations associated with SCA5 still remain elusive and 

require further investigation. 
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CHAPTER 7 
IDENTIFICATION OF PROTEINS THAT 

INTERACT WITH THE AM INO TERMINUS OF 
ββββ-III SPECTRIN 

_____________________________________________  
7.1 Background 
For over a decade the yeast-two hybrid assay (as described in section 2.8) has 

identified interacting partners for a large number of different proteins (Chien et al., 

1991; Okura et al., 1996; Shen et al., 1996; Coates and Hall, 2003; Nallani and 

Sullivan, 2005; Park et al., 2009). To shed light on the normal functions of β-III 

spectrin, especially the region missing from the protein expressed in β-III -/- spectrin 

mice (∆2-6 βIII spectrin), an adult rat brain cDNA library was screened using the 

amino-terminus of β-III spectrin as bait. The two proteins thought to be the most 

promising candidates, and analysed in more detail, were prosaposin/saposin D and 

clathrin light chain 1 (CLC1). Prosaposin (PSAP) is the precursor protein for a 

family of four lysosomal glycoproteins (saposins A, B, C and D) (Vielhaber et al., 

1996) and strong evidence to support the further analysis of prosaposin/saposin D 

comes from a paper by Matsuda et al., (2004) where a saposin D KO mouse was 

shown to develop ataxia and dramatic Purkinje cell loss. With respect to CLC1 and 

clathrin’s well-documented involvement in vesicle trafficking (Brodsky et al., 1991; 

Kirchhausen, 2000; Brodsky et al., 2001; Fotin et al., 2004; Robinson, 2004; Poupon 

et al., 2008), it too was considered suitable for further study due to the postulated 

role of β-III spectrin in protein trafficking (refer to chapter 6).  
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7.2 Results 

7.2.1 Yeast two-hybrid assay 

Exons 1 to 7 of rat β-III spectrin (amino acid residues 1-295) were used as bait and 

were amplified by PCR using primers that introduced Eco RI restriction sites (see 

appendix 1). Protein extracts were obtained from yeast strain Y190 transformed with 

the bait construct pGBKT7-β-IIInt295 and expression of the fusion protein               

(~ 56kDa) confirmed by Western blot analysis (Figure 7.1).  

72

43
55

KDa β
-I

IIn
t2

9
5

 

Figure 7.1 Expression of amino-terminus β-III spectrin fusion protein used as 
bait in yeast two-hybrid screen. Protein extract from Y190 cells transformed with 
bait construct (pGBKT7-β-IIInt295) resolved by SDS-PAGE and probed with anti-c-
myc antibody. Size of protein markers shown on the left. 

 

In the yeast two-hybrid screen, protein interactions were detected by the ability of 

transformed yeast to grow on dropout media and by blue colouration of yeast 

colonies in the presence of 5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside. Of 

the 210 clones that grew on dropout media, 60 turned blue. Plasmid DNA was 

rescued from all sixty positive clones and sequencing of 21 revealed the majority to 
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be false positives, containing inserts that were either out-of-frame or were part of 

untranslated regions (Table 7.1). Of the plasmids sequenced the potential clones of 

interest were clathrin light chain 1 (Genbank Accession number NM 031974) and the 

last 79 amino acids of prosaposin (Genbank Accession number NM 002778) (Figure 

7.2). Although an interaction between Arp1 and the amino-terminus of β-III spectrin 

was first reported in yeast (Holleran et al., 2001) and an interaction was observed in 

the BiFC assay (refer to chapter 6), no clone encoding Arp1 was evident in the 

present yeast two-hybrid screen. 
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Table 7.1 Sequence results of clones detected with the yeast-two hybrid screen 

pACT 
clone 

Insert 
Size (bp) 

Sequence 

3 138 guanylate kinase (out of frame) 
8 427 Enolase 
30 201 transmembrane protein 151 cDNA (out of frame) 
34 20 ribosomal protein S27a (out of frame) 
37 24 cytochrome oxidase (out of frame) 
43 206 tumour protein (out of frame) 
44 146 3′ UTR of predicted apoptosis-associated tyrosine kinase 
78 203 5′ UTR of neurogranin  
85 29 3′ UTR of mKIAA0128 
86 200 3′ UTR of epsin 2 
93 383 3′ UTR of microtubule associated protein 
97 833 clathrin light chain 1 
125 98 5′ UTR of mitochondrial ribosomal protein L55 
130 98 5′ UTR of predicted mitochondrial ribosomal protein L55 
149 38 ATPase (out of frame)  
166 170 3′ UTR of discs, large homolog 2 (Drosophila) 
170    17 3′ UTR of metallothionein 3 
181 131 protein similar to TNF intracellular domain-interacting 

protein (out of frame) 
186 530 zinc finger protein RP-8 (out of frame)  
199 272 prosaposin/saposin D 
210 26 procollagen, type 1, alpha 1 (out of frame) 

     UTR – untranslated region 
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405 aa 486 aa524 aa

pACT2 199D

445 aa 524 aa

 

Figure 7.2 Carboxy terminus of prosaposin/saposin D. A schematic 
representation of full length prospaosin and the carboxy terminus of 
prosaposin/saposin D pulled out in the yeast two-hybrid assay. aa, amino acid. 

 

7.2.1.1 Carboxy-terminus of prosaposin/saposin D interacts with β-III spectrin 

in yeast 

An interaction between the amino-terminus of β-III spectrin and the carboxy-

terminus of prosaposin/saposin D was confirmed by measuring β-galactosidase 

activity in yeast retransformed with the rescued plasmid pACT-199 and pGBKT7-β-

IIInt295 (COOH-prosaposin and β-IIInt295 in Figure 7.2A). Activity was found to 

be substantially higher than when pGADT7-T and pGBKT-53 were transformed, 

these being control prey and bait constructs, respectively. Even higher β-

galactosidase activity levels were obtained when a larger bait protein (β-IIInt851; 

amino acids 1-851), similar to that used by Holleran et al., (2001) was used in the 

assay. In contrast, no β-galactosidase activity above control levels was observed 

when full length Arp1 was coexpressed with the larger bait protein (Figure 7.3A), 

although Western blot analysis confirmed expression of full length Arp1 (Figure 

7.3B).  
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Figure 7.3 Carboxy-terminus of prosaposin/saposin D interacts with amino-terminus 
β-III spectrin in yeast. (A) β-galactosidase activity of yeast expressing GAL4 (BD) – 
βIIInt295 or GAL4 (BD) – βIIInt851 and GAL4 (AD) - COOH – prosaposin quantified using 
OPNG liquid assay. Activity of control bait (pGBKT-53), control prey (pGADT7-T) and full 
length (FL) Arp1, a protein previously reported to interact with β-IIInt851, also measured. (B) 
Protein extract prepared from yeast transformed with GAL4 (AD) – Arp1, analysed by SDS-
PAGE and immunoblotted with anti-HA antibody.  

 

 

7.2.1.2 Region of β-III spectrin required for interaction narrowed dow n to exon 

7  

Additional bait proteins (exons 1-5 (βIIInt219), exons 1-6 (βIIInt258), exon 6 – 

amino acid 851 (βIII220-851) and exon 7 – amino acid 851 β-III spectrin (βIII259-

851)) were generated (refer to section 2.8.6) to narrow down the region of β-III 

spectrin that interacted with carboxy terminus of prosaposin/saposin D (Figure 

7.4A). Western blot analysis of yeast extracts confirmed all bait and prey proteins 

were expressed and migrated according to their predicted molecular weights (refer to 

appendix 2) (Figure 7.4B). Bait proteins were fused to the myc-tagged GAL4 DNA 

binding domain (19kDa) whereas prey proteins were fused to the HA-tagged GAL4 

activation domain (15 kDa). 
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Figure 7.4 Interaction with carboxy-terminus prosaposin/saposin D requires β-III 
spectrin exon 7. (A) Left, Schematic representation of bait proteins used to narrow down 
region of interaction. Right, Quantification of β-galactosidase activity using OPNG liquid 
assay. (B) Protein extracts from transformed yeast resolved by SDS-PAGE and 
immunoblotted with antibodies against myc-epitope (bait) and HA-epitope (prey).   
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7.2.2 Bimolecular fluorescence complementation (BiFC) assay 

7.2.2.1 Prosaposin/saposin D and the amino-terminus β-III spectrin interact in 

mammalian cells 

Bimolecular fluorescence complementation (BiFC) assay is a technique that allows 

the direct visualisation of protein interactions within mammalian cells (Hu et al., 

2002) and was utilised to confirm the protein interactions identified in the yeast-two 

hybrid screen. The technique is based on the generation of a fluorescent signal when 

the two halves (YN, amino acids 1-154 and YC, amino acids 155-234) of enhanced 

yellow fluorescent protein (YFP) are brought together, mediated by the association 

of two interacting partners fused to YN and YC (Figure 7.5A). Individually the two 

halves do not emit fluorescence.  
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Figure 7.5 Bimolecular fluorescence complementation assay. (A) Schematic diagram 
showing principle of BiFC (adapted from Hu et al., 2002). (B) Left, Diagramatical 
representation of positive control vectors with leucine-zippers as cloned inserts. Right, 
Confocal immunofluorescence image of HEK 293T cells transfected with positive control 
vectors. Nucleus stained with DAPI (blue). Bar, 10 µm. 

 

cDNAs encoding proteins of interest were amplified by PCR to introduce either Not I 

– Cla I or Bsp EI and Xba I restriction sites (refer to appendix 1) and cloned 

upstream or downstream of the YFP fragments, respectively replacing the positive 

control leucine zipper inserts (Figure 7.5B). HEK 293T cells were transfected with 

four vector combinations: 

1) YN-prosaposin + YC–βIII295  

2) prosaposin–YN + βIII295–YC 

3) prosaposin–YN + YC–βIII295 
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4) YN-prosaposin + βIII295-YC 

When prosaposin and β-III295 (exons 1-7) were cloned downstream of the YFP 

fragments, fluorescence was observed throughout the cytoplasm (Figure 7.6A). 

However, no fluorescence was seen with any other vector combination (Figure 7.6A) 

even though all fusion proteins were expressed. The expression of full length β-III 

spectrin cloned upstream or downstream of YC (Figure 7.7A) also failed to yield a 

fluorescent signal despite the proteins being expressed (Figure 7.7B). 
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Figure 7.6 BiFC assay shows amino-terminus of β-III spectrin and prosaposin interact 
in mammalian cells. (A). Left, Schematic representation of the four vector combinations. 
Right, Confocal immunofluorescence images of representative HEK 293T cells transfected 
with plasmid combinations shown on left. Nucleus stained with DAPI (blue). Bar, 10 µm. (B) 
Total HEK 293T cell homogenates from the four different vector combinations resolved by 
SDS-PAGE and immunoblotted using either anti-GFP antibody that recognises both 
carboxy- and amino-terminus of YFP (top panel, fusion proteins indicated) or anti-p38 
antibody for protein loading control (bottom panel). 
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Figure 7.7 No interaction observed between full-length β-III spectrin and prosaposin in 
BiFC assay. (A) Left, Schematic representation of the two vector combinations used to 
transfect HEK 293T cells. Right, Confocal immunofluorescence images of representative 
cells. Nucleus stained with DAPI (blue). Bar, 10 µm. (B) Total HEK 293T cell homogenates 
from the two vector combinations resolved by SDS-PAGE and immunoblotted using anti-
GFP antibody that recognises both carboxy- and amino- terminus of YFP (fusion proteins 
indicated). 
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7.2.2.2 β-III spectrin exon 7 required for protein trafficki ng from Golgi 

apparatus 

In addition to exons 1-7 of β-III spectrin, exons 1-5 (β-III219), exons 1-6 (β-III258),  

and L253P exon1-7 β-III spectrin were cloned downstream of YC, the configuration 

of the exon 1-7 construct shown to elicit an interaction with prosaposin (vector 

combination 1 in Figure 7.6A). The missense mutation L253P β-III spectrin was 

introduced into the exon 1-7 construct of β-III spectrin by site-directed mutagenesis 

(refer to section 2.2.4). Co-expression of these new YC-β-III spectrin constructs with 

prosaposin resulted in an altered pattern of fluorescence, compared to YC-exon 1-7. 

The fluorescent signal was no longer observed throughout the cytoplasm but instead 

overlapped with a Golgi marker (Figure 7.8A). Western blot analysis revealed all 

proteins migrated at their predicted molecular weights (refer to appendix 2) (Figure 

7.8B).  

 

7.2.2.3  Interaction between amino terminus β-III spectrin and Arp1 in 

mammalian cells 

In contrast to the yeast experiments (Figure 7.3A) an interaction between Arp1 and 

the amino terminus of β-III spectrin was detected in mammalian cells using the BiFC 

assay, but not with all vector combinations (Figure 7.9A,B and refer to Chapter 6). 

Similar to the studies with prosaposin (Figure 7.8) the fluorescent signal was 

observed associated with the Golgi apparatus when exons 1-5 and exons 1-6 of β-III 

spectrin were coexpressed with Arp1 (Figure 7.10A). In contrast no fluorescence was 
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observed when L253P exon 1-7 was expressed along with Arp1 (refer to Chapter 6 

Figure 6.13). Protein expression for all constructs was confirmed by Western blot 

analysis and all proteins migrated according to their predicted molecular weights 

(refer to appendix 2) (Figures 6.13B and 7.10B). 
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Figure 7.8 Golgi associated fluorescence when β-III spectrin exon 7 missing or 
mutated. (A) Confocal immunofluorescence images of representative HEK 293T cells co-
transfected with YN-Prosaposin and either YC-β-III295 (1), YC- β-III258 (2), YC- β-III219 (3) 
or L253P YC β-III295 (4). YFP fluorescence (yellow), Golgi marker (green) and nucleus 
stained with DAPI (blue). Bar, 10 µm. (B) Total HEK 293T cell homogenates from the four 
different vector combinations resolved by SDS-PAGE and immunoblotted using either anti-
GFP antibody that recognises both carboxy- and amino-terminus of YFP (top panel, fusion 
proteins indicated) or anti-p38 antibody for protein loading control (bottom panel). 
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Figure 7.9 Interaction of Arp1 with amino-terminus of β-III spectrin in mammalian cells 
using BiFC assay. (A) Left, Schematic representation of the four vector combinations used 
to transfect HEK 293T cells. Right, Confocal immunofluorescence images of representative 
HEK 293T cells transfected with plasmid combinations shown on left. Nucleus stained with 
DAPI (blue). Bar, 10 µm. (B) Total HEK 293T cell homogenates from the four different vector 
combinations resolved by SDS-PAGE and immunoblotted using either anti-GFP antibody 
that recognises both carboxy- and amino-terminus of YFP (top panel, fusion proteins 
indicated) or anti-p38 antibody for protein loading control (bottom panel). 
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Figure 7.10 Loss of exon 7 results in Golgi associated fluorescence with Arp1 and ββββ-III 
spectrin . (A) Confocal immunofluorescence images of representative HEK 293T cells co-
transfected with YN-Arp and either YC- β-III258 (1) or YC- β-III219 (2). YFP fluorescence 
(yellow), Golgi marker (green) and nucleus stained with DAPI (blue). Bar, 10 µm. (B) Total 
HEK 293T cell homogenates from the two vector combinations resolved by SDS-PAGE and 
immunoblotted using either anti-GFP antibody that recognises both carboxy- and amino-
terminus of YFP (top panel, fusion proteins indicated) or anti-p38 antibody for protein loading 
control (bottom panel). 

 

7.2.3 Interaction of β-III spectrin and prosaposin/saposin D in vivo 

Having confirmed the interaction of prosaposin/saposin D with the amino terminus 

of β-III spectrin in both yeast and mammalian cells the next step was to examine 

whether the proteins interacted in vivo. Cerebellar mouse homogenates were 
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incubated with either rabbit anti-saposin D or control rabbit IgG. After pelleting the 

antibody-protein complex with protein A sepharose, Western blot analysis confirmed 

the coimmunoprecipitation of β-III spectrin with anti-saposin D antibody but not the 

control IgG (Figure 7.11).  
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Figure 7.11 β-III spectrin interacts with carboxy-terminus prosaposin/saposin D in 
vivo. Mouse cerebellar homogenates immunoprecipitated with antibodies against saposin D 
and control rabbit IgG. The resulting precipitates and lystae resolved by SDS-PAGE and 
subjected to immunoblot analysis with antibodies against β-III spectrin. 

 

 

7.2.4 Expression of prosaposin/saposin D reduced in Purkinje cells of β-III -/- 

spectrin mice 

The previously reported expression of prosaposin in Purkinje cells (Kreda et al., 

1994; Sun et al., 1994) was confirmed by staining cerebellar sections with antibodies 

against the carboxy-terminus of prosaposin/saposin D, calbindin D28K, a Purkinje 

cell specific marker, and glial fibrillary acidic protein (GFAP), an astroglial marker 
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(Figure 7.12). Prosaposin/saposin D was found around the membrane of Purkinje cell 

somas and throughout the dendritic tree. Immunostaining of cerebellar sections from 

young (3-week-old) β-III -/- spectrin mice revealed that although saposin 

D/prosaposin was still located within the cell body and dendritic tree of Purkinje 

cells, the intensity of staining was reduced (Figure 7.13).  

 

To quantify the total cerebellar levels of prosaposin/saposin D in WT and β-III -/- 

spectrin mice Western blot analysis was performed using protein homogenates from 

young (6-weeks of age) and old (1-year of age) mice (Figure 7.14A). An anti-saposin 

D antibody, kindly donated by Ying Sun, detected both saposin D (~10 kDa) and 

prosaposin (~72 kDa). Quantification of levels by densitometry, normalized to actin, 

revealed that at 6- weeks and 1-year of age the levels of saposin D and prosaposin in 

β-III -/- spectrin mice were not significantly different to their WT littermates (6 weeks, 

saposin D 91 ± 7.9 %; prosaposin 103.8 ± 9.0 % of WT levels; 1 year, saposin D 

88.3 ± 12.3 %; prosaposin 83.5 ± 6.6 % of WT levels; Figure 7.14B). There was also 

no significant difference in the expression ratios of saposin D to prosaposin in WT 

and   β-III -/- spectrin mice at the two ages. 
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Figure 7.12 Expression pattern of saposin D/prosaposin in cerebellum. Cerebellar folia VI from 3-week old mice immunostained for calbindin 
(red), GFAP (red) or prosaposin/saposin D (green). Bar, 50 µm (top panel), 20 µm (bottom panel).
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Figure 7.13 Reduced prosaposin/saposin D immunoreactivity in β-III-/- spectrin mice. 
(A) Cerebellar sections from 3-week old WT and β-III-/- spectrin mice immunostained with 
anti-COOH-prosaposin/ saposin D antibody (Bar, 50 µm (top panel) and 20 µm (bottom 
panel).  
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Figure 7.14 No reduction in prosaposin/saposin D expression in β-III-/- spectrin mice at 
6-weeks or 1-year. (A) Total cerebellar homogenates from 6-week and 1-year old mice 
resolved by SDS-PAGE and immunoblotted with antibodies against COOH-
prosaposin/saposin D. Actin used as protein loading control. (B) Bands corresponding to 
saposin D and prosaposin quantified by densitometry, normalised against actin and 
expressed as percentage of WT levels at 6-weeks and 1-year of age. All data are given as 
means ± SEM (N = 3 for each geneotype). 

 

7.2.5 Normal kidney morphology in β-III -/- spectrin mice 

Matsuda et al (2004) revealed that loss of saposin D results in ataxia and Purkinje 

cell loss but the other finding was that the saposin D-/- mice develop renal tubular 

degeneration. Western blot analysis confirmed β-III spectrin is expressed in the 

kidney but at a much lower level compared to cerebellum (Figure 7.15A). To 

investigate whether β-III -/- spectrin mice developed any kidney pathology, similar to 

saposin D-/- mice, kidney sections from 1-year-old mice were stained with 

hematoxylin and eosin (H&E). This revealed the glomeruli were healthy and there 

was also no sign of renal tubular degeneration in β-III +/- or β-III -/- spectrin mice 

(Figure 7.15B). Western blot analysis and quantification by densitometry showed no 

significant difference in levels of saposin D or prosaposin in the kidneys of 6-week- 
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and 1-year-old animals (6 weeks, saposin D 112.3 ± 12 %; prosaposin 108.3 ± 11.3 

% of WT levels; 1 year, saposin D 101 ± 15.2 %; prosaposin 104 ± 10.8 % of WT 

levels; Figure 7.15C,D). There was also no significant difference in the ratios of 

saposin D to prosaposin in WT and β-III -/- spectrin mice at the two ages. 
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Figure 7.15 No renal pathology observed in β-III-/- spectrin mice. (A) Homogenates from 
cerebellum (C; 10 µg) and kidney (K; 90 µg) resolved by SDS-PAGE and immunoblotted 
with antibody against β-III spectrin. (B) Sections from kidneys of 1-year-old WT, 
heterozygous and homozygous β-III spectrin deficient mice stained with H&E. (Arrow, 
glomeruli; arrowhead, renal tubule; Bar, 50 µm). (C) Kidney homogenates from 6-week- and 
1-year-old mice resolved by SDS-PAGE and immunoblotted with antibodies against COOH-
prosaposin/saposin D. Actin used as protein loading control. (D) Bands corresponding to 
saposin D and prosaposin quantified by densitometry, normalised against actin and 
expressed as percentage of WT levels. All data are means ± SEM (N = 3 for each genotype). 
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7.2.6 Confirmation that clathrin light chain 1 interacts with β-III spectrin 

7.2.6.1 Quantification of β-galactosidase activity in retransformed yeast 

The other protein identified in the yeast two-hybrid screen that was further 

investigated was clathrin light chain 1 (CLC1). First the interaction was confirmed 

by measuring β-galactosidase activity in Y190 cells transformed with the rescued 

plasmid pACT-97 and pGBKT7-β-IIInt295 (Figure 7.16A). Then to narrow down 

the region of interaction other bait constructs were used [exons 1-5 (βIIInt219), 

exons 1-6 (βIIInt258), exon 6 – amino acid 851 (βIII220-851) and exon 7 – amino 

acid 851 β-III spectrin (βIII259-851)] (Figure 7.16A). Western blot analysis of yeast 

extracts confirmed all myc-tagged bait and HA-tagged prey proteins were expressed 

and migrated according to their predicted molecular weight (Refer to appendix 

2)(Figure 7.16B).  

 

To identify which region of CLC1 interacted with exons 1-7 of β-III spectrin, three 

shorter CLC1 products were generated by Ms Yu Cheng (1 – 374 bp (CLC374), 375 

– 746 bp (CLC375-746) and 246 – 500 bp (CLC246-500) (refer to section 2.8.6) 

(Figure 7.17A). Western blot analysis confirmed that all bait and prey proteins were 

expressed and migrated according to their predicted molecular weights (Refer to 

appendix 2) (Figure 7.17B).  
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Figure 7.16 Interaction of clathrin light chain with amino terminus β-III spectrin 
requires exon 7 and downstream protein sequence. (A) β-galactosidase activity of yeast 
expressing GAL4(AD)-CLC and either GAL4 (BD)- βIIInt295, GAL4(BD)-βIIInt851 or deletion 
GAL4(BD)-baits and quantified using OPNG liquid assay. (B) Protein extracts from 
transformed yeast resolved by SDS-PAGE and immunoblotted with antibodies against myc-
epitope (bait) and HA-epitope (prey). 
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Figure 7.17 Full length clathrin light chain 1 may be important for interaction with 
amino-terminus β-III spectrin. (A) Schematic representation of prey proteins used to 
narrow down region of interaction. β-galactosidase activity quantified using OPNG liquid 
assay. (B) Protein extracts from transformed yeast resolved by SDS-PAGE and 
immunoblotted with antibodies against myc-epitope (bait) and HA-epitope (prey). 

 

7.2.6.2 Interaction between clathrin light chain and amino-terminus β-III 

spectrin in mammalian cells 

An interaction between the amino terminus of β-III spectrin and CLC1 was observed 

with every vector configuration of the BiFCc assay, although the level of fluorescent 

signal varied depending on the vector combination (Figure 7.18A). Western blot 
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analysis revealed a lower level of β-III spectrin fusion protein in cells with weaker 

fluorescence (Figure 7.18B).  

 

The other β-III spectrin constructs (exons 1-5, exons 1-6 and L253P β-III spectrin) 

were used to determine the effect mutating or losing exon 7 had on the cellular 

distribution of fluorescent signal (refer to section 7.2.2.2). As before fluorescence 

was no longer seen throughout the cytoplasm but instead found to overlap with a 

Golgi marker (Figure 7.19A). Western blot analysis confirmed all proteins were 

expressed (Figure 7.19B).  
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Figure 7.18 β-III spectrin and clathrin light chain 1 interact in mammalian cells using 
BiFC assay. (A). Left, Schematic representation of the four vector combinations used to 
transfect HEK 293T cells. Right, Confocal immunofluorescence images of representative 
HEK 293T cells transfected with plasmid combination shown on left. Nucleus stained with 
DAPI (blue). Bar, 10 µm. (B). Total HEK 293T cell homogenates from the four different 
vector combinations resolved by SDS-PAGE and immunoblotted using either anti-GFP 
antibody that recognises both carboxy- and amino-terminus of YFP (top panel, fusion 
proteins indicated) or anti-p38 antibody for protein loading control (bottom panel). 
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Figure 7.19 Discrete localisation of fluorescence in BiFC assay when β-III spectrin 
exon 7 is missing or mutated. (A) Confocal immunofluorescence images of representative 
HEK 293T cells co-transfected with YN-CLC1 and either YC-β-III295 (1), YC- β-III258 (2), 
YC- β-III219 (3) or L253P YC β-III295 (4). YFP fluorescence (yellow), Golgi marker (green) 
and nucleus stained with DAPI (blue). Bar, 10 µm. (B) Total HEK 293T cell homogenates 
from the four different vector combinations resolved by SDS-PAGE and immunoblotted using 
either anti-GFP antibody that recognises both carboxy- and amino-terminus of YFP (top 
panel, fusion proteins indicated) or anti-p38 antibody for protein loading control (bottom 
panel). 
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7.3 Discussion 

The results of a yeast two-hybrid screen, identifying prosaposin/saposin D and CLC1 

as potential interacting partners with the amino-terminus of β-III spectrin, are 

presented in this chapter, along with cellular and in vivo analyses of 

prosaposin/saposin D. Both interactions (prosaposin/saposin D and CLC1) were 

confirmed in yeast and mammalian cells, and although a previously reported 

interaction of β-III spectrin with Arp1 (Holleran et al., 2001) was not detected in the 

present yeast two-hybrid screen it was observed using the BiFC assay. The reason for 

the lack, in the present study, of an interaction in yeast is not known, as although the 

bait used here in the initial screen was shorter compared to that used by Holleran et 

al. (2001), there was still no β-galactosidase activity observed even when the larger 

bait (βIII-1-851) used by Holleran et al., (2001) was transformed with Arp1. 

Nevertheless, the results from the yeast two-hybrid and BiFC assays revealed that, 

for all interactions studied, exon 7 of β-III spectrin was required for β-galactosidase 

activity and a fluorescent signal throughout the cell, respectively. Deletion of exon 7 

resulted in no β-galactosidase activity in yeast, indicating no protein-protein 

interaction, while the YFP fluorescent signal in the BiFC assay was no longer 

throughout the cell, but instead was found associated with the Golgi apparatus, 

suggesting a change to the cellular distribution of the proteins.  

 

It was shown in chapter 6 that the interaction of β-III spectrin with Arp1 was 

completely lost in the BiFC assay when the missense mutation L253P associated 
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with SCA5 was introduced. In contrast the interaction with prosaposin/saposin D and 

clathrin light chain was still observed with L253P, but the fluorescent signal was 

only localised to the Golgi apparatus, similar to the studies when exon 7 was deleted. 

Taken together the data suggest that the inability of L253P to interact with 

endogenous Arp1 prevents the normal trafficking from the Golgi apparatus of β-III 

spectrin and proteins that interact with it. Furthermore, exon 7 appears to be required 

for movement away from the Golgi apparatus. With regard to the negative results 

obtained from the yeast two-hybrid assay, which are apparently contradictory to the 

BiFC assay results, it may be that these arose due to the inability of proteins to reach 

the nucleus and activate the β-galactosidase reporter gene rather than the complete 

loss of a protein-protein interaction. 

 

The importance of protein conformation in the BiFC assay was highlighted in this 

study by the fact that for prosaposin and the amino-terminus of β-III spectrin a 

fluorescent signal was only observed for one of the four possible fusion protein 

configurations. Only when both YFP fragments were fused to the amino-termini of 

the two proteins was a fluorescent signal observed, for all other combinations it 

would appear the location of the YFP fragments was not optimal for interaction of 

the two halves. The lack of a fluorescent signal when full-length β-III spectrin was 

co-expressed with prosaposin is also likely to be due to structural interference due to 

the large size of β-III spectrin, preventing the two YFP fragments coming into close 

opposition with one another. In contrast full-length β-III spectrin was shown by 



CHAPTER 7 IDENTIFICATION OF PROTEINS THAT INTERACT WITH THE 
AMINO TERMINUS OF β-III SPECTRIN 

 

169 

 

coimmunoprecipitation to interact with prosaposin/ saposin D in vivo, demonstrating 

a physiological interaction. However, although there was substantially reduced 

immunoreactivity of prosaposin/saposin D in Purkinje cells of β-III -/- spectrin mice 

compared to age-matched littermates, no difference in expression levels was detected 

by Western blot analysis. Therefore it is still not clear whether there is a loss of 

saposin D or prosaposin in β-III -/- spectrin mice that could play a role in the observed 

ataxic phenotype. However, from the fact no abnormal kidney morphology was 

observed in β-III -/- spectrin mice, unlike saposin D-/- mice which develop renal tubule 

degeneration and hydronephrosis (Matsuda et al., 2004), it would appear that β-III 

spectrin is not required for normal kidney morphology.  

 

With respect to CLC1 it appears that full length CLC1 is required for an interaction 

with β-III spectrin, but due to a lack of both time and reliable antibodies against 

CLC1, no studies were able to be performed to confirm an interaction between the 

two proteins in vivo. 

 

7.3.1 Role for saposin D loss in Purkinje cell degeneration  

Prosaposin is the precursor of four sphingolipid activator proteins (saposins A, B, C 

and D, all about 80 amino acids), which are required for the hydrolysis of a variety of 

sphingolipids (O'Brien and Kishimoto, 1991; Kishimoto et al., 1992). Each saposin 

on its own is catalytically inactive but they interact with a specific glycosphingolipid 
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hydrolase or a membrane-bound sphingolipid, enhancing hydrolytic activity. In fact 

studies of human disorders of specific saposin deficiencies and work with specific 

saposin knockout mouse models has revealed loss of a particular saposin, in both 

human and mouse, elicits effects very similar to those caused by lack of the 

equivalent hydrolase, resulting in severe neurological defects (Matsuda et al., 2001; 

Matsuda et al., 2004; Kolter and Sandhoff, 2005; Spiegel et al., 2005).  Saposin B 

deficiency leads to an accumulation of sulfatides and globotriaosylceramide and a 

metachromatic leukodystrophy-like disease, whereas saposin C deficiency leads to 

glucosylceramide accumulation and a Gaucher-like disease and the saposin A-

deficient mouse is defective in the degradation of galactosylceramide, modelling 

late-onset Krabbe disease. In humans (Harzer et al., 1989; Hulkova et al., 2001; 

Elleder et al., 2005) and mice (Fujita et al., 1996) the loss of prosaposin and 

consequently all four saposins results in a severe, rapidly progressive neurological 

disease and the accumulation of multiple sphingolipids in the brain and other organs. 

Taken together these studies highlight the importance of prosaposin and the saposins 

in the nervous system. 

 

In the case of saposin D there are no reported cases of deficiency in humans but from 

in vitro studies it is thought saposin D activates the degradation of sphingomyelin 

and ceramide, with the latter considered to be the predominant substrate (Morimoto 

et al., 1988; Azuma et al., 1994; Vaccaro et al., 1995). This in vitro work is 

corroborated by the fact that ceramides, particularly those containing hydroxyl fatty 



CHAPTER 7 IDENTIFICATION OF PROTEINS THAT INTERACT WITH THE 
AMINO TERMINUS OF β-III SPECTRIN 

 

171 

 

acids (HFA), were found to accumulate in the cerebellum of saposin D knockout 

mice (Matsuda et al., 2004). One hypothesis, therefore, was that ceramide 

accumulation, due to loss of saposin D in the β-III -/- spectrin mice, was toxic and 

played a role in the observed Purkinje cell degeneration and ataxic phenotype 

(Perkins et al., 2010). Interestingly, in saposin D KO mice the loss of Purkinje cells 

occurred in a striped pattern with the majority of surviving Purkinje cells being found 

in zebrin II positive bands (Matsuda et al., 2004). Sphingosine kinase 1 (SPHK1) 

phosphorylates sphingosine, the product of ceramide degradation, to sphingosine 1 

phosphate (S1P) and this enzyme is found at high levels in zebrin II positive bands 

(Terada et al., 2004). Therefore, the relative levels of S1P and ceramide in Purkinje 

cells may determine whether a cell survives or dies. It is not yet known whether there 

is also a patterned loss of Purkinje cells in β-III -/- spectrin mice. 

 

However, from the present work it is unclear whether levels of saposin D are altered 

in β-III -/- spectrin mice and hence might play a role in the disease phenotype. 

Confocal immunofluorescence studies, which cannot distinguish between prosaposin 

and sapsoin D, show apparently decreased immunoreactivity in β-III -/- spectrin mice 

compared to WT, but Western blot analysis showed no change in levels of 

prosaposin or saposin D. One possibility is that, although the confocal images of WT 

and β-III -/- spectrin mice were captured using the same settings, differences in tissue 

quality or membrane integrity, rather than protein levels per se, may give rise to 

different intensities of staining. On the other hand, the fact that total cerebellar 
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homogenates were analysed by Western blotting could preclude the detection of any 

change in protein levels confined to Purkinje cells, since high levels of expression 

have also been detected in granule cells and Bergmann glia (O'Brien et al., 1995; 

Matsuda et al., 2004; M Jackson unpublished data). A further factor may be antibody 

variability, since a number of antibodies against saposin D/prosaposin were initially 

tested and that supplied by Ying Sun was the only one to detect what was considered 

to be full length prosaposin and saposin D. However, the fact all four antibodies 

detected different sized proteins and showed variations from one another in protein 

distribution within the cerebellum suggests there may be issues with regard to 

antibody cross-reactivity. Another result which seems to conflict with the Western 

blotting data from β-III -/- spectrin mice is that from the BiFC assay, where disruption 

of correct cellular trafficking of prosaposin from the Golgi apparatus by altering β-III 

spectrin (in this case as a consequence of the removal of exon 7) is indicated.  This 

finding would suggest that the proportion of prosaposin converted to saposin D 

should be reduced when trafficking is disrupted, since the conversion to saposin D 

occurs in the lysosomes, a downstream destination of correctly trafficked prosaposin.  

Instead the Western blotting results indicated no difference in the proportions of 

prosaposin and saposin D in β-III -/- spectrin mice compared to WT, although 

disrupted vesicular trafficking from the Golgi is suggested by transmission electron 

microscopy (TEM) data from the β-III -/- spectrin mice (Perkins et al. 2010). 

However, in β-III -/- spectrin mice the protein still expressed does possess exon 7 

(exons 1-6 are missing), perhaps explaining the difference. Additional work is 
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required before any firm conclusions can be made regarding the involvement of 

saposin D in the Purkinje cell degeneration observed in β-III -/- spectrin mice. 

 

7.3.2 Role for prosaposin in Purkinje cell survival 

Prosaposin, although not important in the hydrolysis of sphingolipids, is not simply a 

precursor protein but is found at high levels in the brain and muscle, unlike saposins 

which are ubiquitously expressed (Sano et al., 1988; Sano et al., 1989; Hineno et al., 

1991; Kishimoto et al., 1992; Sano et al., 1992; Hiraiwa et al., 1993; Kreda et al., 

1994; Sun et al., 1994; Sun et al., 2000). It is thought prosaposin functions as a 

secretory protein (Sylvester et al., 1989; Hineno et al., 1991; Kondoh et al., 1991; 

Hiraiwa et al., 1992; Hiraiwa et al., 1993) or as an integral membrane protein 

mediating the transfer of gangliosides across membranes (Rijnboutt et al., 1991). In 

cultured neuronal cells, gangliosides have been shown to promote neurite outgrowth 

(Tsuji et al., 1983; Schengrund, 1990) and there is growing evidence to support a role 

for prosaposin in neurite outgrowth, nerve regeneration and neuroprotection (O'Brien 

et al., 1994; Kotani et al., 1996a; Tsuboi et al., 1998; Calcutt et al., 1999).  

 

Furthermore, the in vitro and in vivo neurotrophic properties of prosaposin have been 

narrowed down to a 21 amino acid linear sequence in the amino-terminus of saposin 

C (O'Brien et al., 1995; Qi et al., 1996; Qi et al., 1999). Prosapeptides, comprising 

this neurotrophic sequence, have been generated and found to stimulate neurite 

outgrowth and choline acetyl transferase activity in vitro and prevent neuronal cell 
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death induced by serum deprivation (O'Brien et al., 1995; Campana et al., 1996; 

Hiraiwa et al., 1997; Campana et al., 1998). Furthermore both prosaposin and 

prosapeptides were found to prevent apoptosis of cerebellar granule cells (Tsuboi et 

al., 1998), Schwann cells (Campana et al., 1999), ischemia induced death of 

hippocampal neurons in gerbils (Sano et al., 1994; Kotani et al., 1996b) and rats 

(Igase et al., 1999) and mediate sciatic nerve regeneration (Kotani et al., 1996a). The 

method of action may be a direct one on the neurons, involving ERK and P13K/Akt 

signalling and reduced phosphorylation of stress activated protein kinases (Ochiai et 

al., 2008) or it may act on glia preventing cell death by increasing sulfatide content 

(Hiraiwa et al., 1997; Campana et al., 1998). Therefore, it is feasible that changes to 

prosaposin levels or cellular distribution could have an important role in Purkinje cell 

survival. The effect of prosapeptides on the survival and morphology of dissociated 

cultured β-III -/- spectrin Purkinje cells could address whether a loss of prosaposin 

plays a role in the loss of Purkinje cells in β-III -/- spectrin mice. It may also be worth 

investigating whether the phosphorylation of Akt, JNK, p38 and ERK are altered in 

β-III -/- spectrin mice compared to WT animals to determine if signalling downstream 

of prosaposin is altered. In addition a number of studies have revealed that 

alternative splicing is important in the sorting of prosaposin with an isoform 

possessing three extra residues (gln-asp-gln) being secreted and the isoform lacking 

the short exon 8 being targeted to lysosomes for proteolytic digestion (Igdoura et al., 

1996; Madar-Shapiro et al., 1999). It may be that there are differences in the levels of 

the two isoforms in β-III -/- spectrin mice compared to WT littermates. 
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7.3.3 Role for clathrin light chain 1 in neurodegeneration 

Although clathrin coated vesicles were isolated 41 years ago (Kanaseki and Kadota, 

1969) and their role in endocytosis and intracellular protein trafficking has been well 

studied (Kirchhausen, 2000; Brodsky et al., 2001; Fotin et al., 2004; Robinson, 

2004), the exact function of the two light chains is not yet known. However, studies 

from yeast indicate that light chains are important for the olgomerization of heavy 

chains (Chu et al., 1996; Huang et al., 1997) as three clathrin heavy chains each 

associate with a light chain and form a triskelion (Kirchhausen and Harrison, 1981; 

Ungewickell and Branton, 1981; Blondeau et al., 2004; Girard et al., 2005). Adaptor 

proteins (AP) then link the clathrin coat to transmembrane cargo molecules 

(Kirchhausen, 2000; Nakatsu and Ohno, 2003; Owen et al., 2004; Robinson, 2004) 

with each AP involved in a distinct transport pathway within the post-Golgi and/or 

endocytic network. For example, AP-2 regulates the formation of clathrin coated 

vesicles during endocytosis (Nakatsu and Ohno, 2003; Owen et al., 2004; Traub, 

2005) whereas AP-4 regulates the formation of vesicles from the trans-Golgi network 

to lysosomes (Aguilar et al., 2001). 

 

Previously the huntingtin-interacting protein (HIP1) and HIP1-related protein 

(HIP1R), two actin-binding endocytic proteins, were found to interact with clathrin 

light chains (Bennett et al., 2001; Engqvist-Goldstein et al., 2001; Henry et al., 2002; 

Legendre-Guillemin et al., 2002). Therefore, defects in clathrin coat formation and 

downstream effects on vesicular trafficking, a consequence of altered light chain 
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activity, may be a factor in neurodegeneration. Clathrin-mediated endocytosis was 

indeed found to be disrupted when HIP proteins were depleted by RNA interference, 

with glutamate receptors being one cargo that failed to be correctly recycled, 

consequently affecting glutamatergic neurotransmission (Kaksonen et al., 2003; 

Metzler et al., 2003; Engqvist-Goldstein et al., 2004). Similarly the knockdown of 

clathrin light chain 1 was shown to result in the mislocalisation of HIP1R, the over 

assembly of actin, disruption to protein trafficking at the trans-Golgi network and an 

increase in endosome-targeted cargo, possibly a consequence of vesicles being 

trapped in an excessively stable actin network (Royle et al., 2005). Therefore it is 

apparent that interfering with the expression of proteins involved in the formation of 

clathrin coats has detrimental effects on vesicular transport. Of note, the trafficking 

of prosaposin, the other binding partner of β-III spectrin, from the Golgi apparatus to 

lysosomes, was found to be disrupted when the recruitment of clathrin to transport 

vesicles was prevented by expression of mutant adaptor proteins (Hassan et al., 

2004).  

 

In this study, using the BiFC assay, the normal cellular trafficking of CLC1 appears 

to be dependent on β-III spectrin, with the proteins remaining associated with the 

Golgi apparatus, rather than distributed throughout the cytoplasm, when mutant or 

truncated forms of the amino terminus of β-III spectrin were expressed. A potential 

link between clathrin and the spectrin-actin cytoskeleton was already proposed based 

on the fact the D4 region of ankyrin R binds with high affinity to the amino terminus 
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of clathrin heavy chain (Michaely et al., 1999). Whether β-III spectrin interacts with 

one or more ankyrin isoforms still needs to be investigated but ankyrin R, initially 

identified in the erythrocyte membrane (Bennett and Stenbuck, 1979), is found 

throughout the cell body and dendritic tree of Purkinje cells (Lambert and Bennett, 

1993) and therefore possesses the same cellular distribution as β-III spectrin, making 

it a possible candidate. In contrast, ankyrin G localises to the axon initiation segment 

(AIS) and nodes of Ranvier where it has been shown to interact with sodium 

channels and β-IV spectrin (Zhou et al., 1998; Berghs et al., 2001; Jenkins and 

Bennett, 2001; Komada and Soriano, 2002). The fact that clathrin was recently 

shown to play a role in the correct sorting of basolateral proteins in epithelial cells 

(Deborde et al., 2008) does raise the question whether the CLC1-β-III spectrin 

interaction plays an important role in the selection and targeting of correct cargo to 

dendrites? 

 

7.3.4 Conclusions 

Two proteins, prosaposin/saposin D and CLC1, identified in a yeast two-hybrid 

screen as interacting with the amino-terminus of β-III spectrin were confirmed as 

binding partners in yeast and mammalian cells and for prosaposin/saposin D the 

interaction was further confirmed in vivo. The identification of these proteins as 

interactors provides further evidence that β-III spectrin plays important roles in 

protein trafficking and that defects to the transport of proteins within the Purkinje 

cell dendritic tree may be critical features of SCA5 pathogenesis. 



 

1 

CHAPTER 8  

GENERAL DISCUSSION 

_____________________________________________ 
8.1 Summary of findings 

In summary, the work carried out in this thesis suggests that loss of β-III spectrin 

underlies SCA5 pathogenesis and that the mutations associated with disease have 

dominant-negative effects on wild type β-III spectrin function. Furthermore the work 

presented here confirms a role for β-III spectrin in vesicular trafficking and reveals 

that one mutation associated with SCA5 (L253P) interferes with protein transport 

from the Golgi apparatus. The deleterious effect of other disease causing β-III 

spectrin mutations was not obvious from the work carried out in this study, but all 

the data obtained to date would suggest that loss of membrane proteins, as a 

consequence of defects either in protein transport or in protein stabilisation at the 

membrane, is an important aspect of SCA5 pathogenesis (Figure 8.1).   

 

The results presented here from in vitro experiments demonstrated that the truncated 

form of β-III spectrin (∆2-6 β-III spectrin), expressed at a low level in the β-III -/- 

spectrin mouse, had no obvious adverse properties, but in fact appeared to be less 

functional than WT β-III spectrin inferring that the β-III -/- spectrin mouse could be 

considered a functional knockout (hypomorph). Therefore, because the animals 

developed progressive motor deficits and cerebellar degeneration, it was concluded 

that a loss of β-III spectrin function recapitulates the clinical features of SCA5. In 

contrast β-III +/- spectrin mice showed no signs of an ataxic phenotype, even at 2 
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years of age, arguing against haploinsufficiency as a causative mechanism and 

instead pointing towards the mutations in β-III spectrin possessing dominant negative 

effects on WT β-III spectrin function in addition to lacking normal function.  
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Figure 8.1 Schematic diagram of β-III spectrin function. 

 

Cell culture studies were able to identify a dominant-negative effect of one mutation, 

the L253P missense mutation within the calponin homology domain of β-III spectrin. 

Expression of L253P β-III spectrin in two mammalian cell lines, HEK 293T and 

Neuro 2a cells, revealed an abnormal cellular localisation compared to that of WT. 

The L253P mutant protein appeared to remain associated with the Golgi apparatus, 
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rather than the plasma membrane, and furthermore interfered with the cell surface 

expression of WT β-III spectrin and other membrane proteins. The ability of β-III 

spectrin to interact with Arp1, a subunit of the dynactin-dynein complex, was also 

lost by the substitution of leucine 253 by proline. This finding revealed how a link 

between the microtuble motor dynein and β-III spectrin could be lost, accounting for 

the observed defects in vesicular protein trafficking. The fact that incubation at a 

lower temperature (25°C) rescued both the interaction with Arp1 and protein 

trafficking defects suggested that a conformational defect was responsible for the 

dominant-negative effect of L253P. But, despite the intracellular accumulation of 

proteins in cells expressing L253P β-III spectrin, there was no evidence for the 

induction of the unfolded protein response in cell culture or in β-III -/- spectrin mice, 

indicating that the actual loss of proteins from the membrane was more important in 

initiating cell death than the accumulation of the mis-trafficked proteins.  

 

Finally, a yeast two-hybrid screen identified prosaposin and/or saposin D (a 

neurotrophic factor and a protein involved in the degradation of ceramide, 

respectively) and clathrin light chain 1 (component of clathrin lattice) as interactors 

of β-III spectrin. Both interactions were confirmed in mammalian cells using a BiFC 

assay and for prosaposin/saposin D further corroboration was obtained from in vivo 

studies. Despite a reduced immunoreactivity of prosaposin/saposin D in β-III -/- 

Purkinje cells compared to WT no difference in total cerebellar protein levels was 

observed by Western blot analysis. It therefore remains uncertain whether a loss of 
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saposin D or prosaposin underlies some aspects of the phenotype observed in β-III -/- 

spectrin mice.  

 

8.2 Outstanding questions 

8.2.1 How are the ββββ-III spectrin mutations associated with SCA5 pathogenesis? 

Work presented in this thesis has begun to shed light on the pathogenic mechanism 

of the L253P missense mutation, with over expression in mammalian cells revealing 

a defect in protein trafficking and inability to interact with Arp1, one subunit of the 

dynactin-dynein complex.  However, in this study the over expression of other 

mutations associated with SCA5 revealed no obvious difference in the cellular 

distribution compared to WT β-III spectrin. Unpublished work using the yeast-two 

hybrid system has suggested that the Lincoln mutation (∆39 bp) reduces the 

interaction between β-III  spectrin and p150Glued (another subunit of the dynactin 

complex) while the French mutation (∆15 bp + R634W) increases the interaction 

between β-III  spectrin and α-II spectrin (LPW Ranum, personal communication). 

Therefore alterations in the balance of protein interactions involved in vesicular 

trafficking may be an important aspect of disease.  

 

Two transgenic mouse models, expressing human β-III spectrin harbouring the 

Lincoln mutation, were also generated by Dr. Ranum and colleagues to elucidate 

disease-causing mechanisms. One model is a conditional transgenic mouse that 

expresses an untagged form of human ∆39 bp β-III spectrin whereas the other is a 



CHAPTER 8 GENERAL DISCUSSION 

 

182 

 

transgenic that constitutively expresses a FLAG-tagged version of the mutant 

protein. Both mutant transgenic lines were found to be slightly impaired on the 

rotarod but no Purkinje cell loss was observed in either line (LPW Ranum, personal 

communication). The mild phenotype and lack of cerebellar degeneration is in strong 

contrast to that observed in the β-III -/- spectrin mice (Perkins et al., 2010), but based 

on the results reported in this thesis, that a loss of β-III spectrin function and 

dominant negative effects underlie disease pathogenesis, the fact that a high level of 

expression was not obtained for either transgene could explain why a mild phenotype 

was observed. Without sufficient knockdown of endogenous β-III spectrin function 

by the mutant protein a disease phenotype would not be obtained. This potential 

problem with regard to expression levels in transgenic mice raises an important issue 

as to what type of animal model is best for the future study of pathogenic 

mechanisms in SCA5. In many respects knock-in mouse models would be the most 

appropriate system, as they would simulate the human disease more closely, with one 

endogenous allele being mutated. 

 

8.2.2 What role do glutamate transporters play in Purkinje cell survival? 

The analysis of both β-III -/- and β-III +/- spectrin mice has revealed that a loss of 

EAAT4 and GLAST, the two predominant glutamate transporters in the cerebellum, 

correlates with Purkinje cells undergoing dark cell degeneration and an ataxic 

phenotype, suggesting that reduced glutamate uptake may be an important factor in 

Purkinje cell dysfunction and degeneration. In the future the generation of additional 

genetically modified mice could provide further insights into the role of EAAT4 



CHAPTER 8 GENERAL DISCUSSION 

 

183 

 

and/or GLAST in SCA5 disease onset and progression. The abolition of EAAT4 or 

GLAST expression in mice heterozygous for the loss of β-III spectrin (β-III +/-

/EAAT4-/- or β-III +/-/GLAST-/-) should reveal whether the loss of GLAST or EAAT4 

is sufficient to cause disease in what should be asymptomatic mice. Similarly, 

determining whether the phenotype of β-III -/- spectrin mice is emphasised by the 

early and complete loss of GLAST will address whether levels of GLAST are 

important in disease progression. Finally the creation of a double glutamate 

transporter knockout mouse  (EAAT4-/-/GLAST-/-) will address which, if any, aspects 

of the β-III -/- spectrin mouse phenotype are due to the loss of EAAT4 and GLAST. 

The fact that no severe phenotype has been reported for either EAAT4 (Huang et al., 

2004) or GLAST (Watase et al., 1998) knockout mice indicates that the loss of one 

transporter can be compensated for by the other and it may only be when both are 

lost that a disease phenotype manifests itself. This would be consistent with analysis 

of the β-III -/- spectrin mouse (Perkins et al., 2010). 

 

8.2.3 Is a subpopulation of Purkinje cells more vulnerable to cell death? 

Although Purkinje cell degeneration is a hallmark of SCAs a number of mouse 

studies have highlighted that the pattern of neuronal loss is often not uniform 

throughout the cerebellum with some regions of cells being preserved (Sarna and 

Hawkes, 2003). EAAT4, like sphingosine kinase 1 (refer to section 7.3.1), is one of a 

handful of proteins known-to-be differentially expressed in distinct Purkinje cell 

populations and has been shown to correlate with patterned neuroprotection (Welsh 

et al., 2002; Sachs et al., 2009). It will be worth investigating whether in β-III -/- 
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spectrin mice a specific Purkinje cell population is initially more susceptible to or 

protected from degeneration and determine whether EAAT4, GLAST and/or 

prosaposin/saposin D levels correlate with the selectivity.  

 

8.2.4 Which sodium channel subunit is involved in SCA5 pathogenesis?  

Although not mentioned in this thesis, work from the Jackson lab has also shown that 

sodium currents from acutely dissociated Purkinje neurons are reduced in β-III -/- 

spectrin mice (Perkins et al., 2010). Furthermore, the decrease in sodium currents 

likely underlies the two-fold reduction observed in the spontaneous firing rate of 

Purkinje cells lacking β-III spectrin (Perkins et al., 2010), since sodium channels 

along with potassium channels are essential for the sustained high-frequency tonic 

firing of Purkinje cells (Raman and Bean, 1999; Sacco et al., 2006; Zagha et al., 

2008). Genetic defects for several other SCA subtypes result in loss of ion channel 

function associated with ataxia in humans (Browne et al., 1994; Ophoff et al., 1996; 

Zhuchenko et al., 1997; Waters et al., 2006). This is also reflected in mice lacking 

various ion channels (Sausbier et al., 2004; Akemann and Knopfel, 2006; Levin et 

al., 2006; Walter et al., 2006), suggesting that the observed loss of sodium currents in     

β-III -/- spectrin mice may be an important factor in disease pathogenesis. Further 

work to determine the role of sodium channel dysfunction in SCA5 is required as a 

patient with cerebellar atrophy and ataxia has been found to have a mutation in the 

gene encoding Nav1.6 (Trudeau et al., 2006), one of the two sodium channel alpha-

subunits (Nav1.1 and Nav1.6) expressed in the cell body and dendritic tree of 

Purkinje cells (Kalume et al., 2007). Additional evidence to support an interaction 
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between β spectrin, sodium channels and ataxia comes from analysis of the β-IV 

spectrin knockout mouse, which develops progressive ataxia and shows 

mislocalisation of voltage gated sodium channels at both the AIS and nodes of 

Ranvier (Parkinson et al., 2001; Komada and Soriano, 2002). The β-III -/- spectrin 

mouse will be a useful tool in identifying whether sodium channel subunits are lost 

and/or redistributed in the absence of β-III spectrin. Subsequently, the effect the β-III 

spectrin mutations associated with SCA5 have on the trafficking, cell surface 

expression and activity of the subunits identified as being altered in β-III -/- spectrin 

mice will reveal whether sodium channel dysfunction is an important aspect of the 

human disease. Finally, it is well documented that the various isoforms of ankyrin 

(R, G, B) link transmembrane proteins such as sodium channels to the spectrin 

skeleton (Zhou et al., 1998; Jenkins and Bennett, 2001; Komada and Soriano, 2002) 

and so the expression and cellular distribution of such adaptor proteins could also be 

examined in β-III -/- spectrin mice as potential factors in disease pathogenesis.  

 

8.3 Common mechanisms in neurodegeneration 

As detailed in section 1.6, the identification of SCA-associated genes has enabled the 

pathogenic mechanisms of some SCAs to be investigated using animal and cell 

culture models. This has led to several hypotheses being suggested as to the 

mechanism(s) of Purkinje cell death, including protein aggregation (consequence of 

trinucleotide repeat expansion or proteolytic cleavage of mutant proteins), alterations 

in Ca2+ homeostasis, defects in vesicle trafficking, glutamate-mediated 

excitotoxicity, impaired protein degradation/unfolded protein response and 
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interference with gene transcription (reviewed in (Duenas et al., 2006)). One or more 

of these pathways have been linked to the pathogenesis of other neurodegenerative 

disorders, including Alzheimer’s (Stokin et al., 2005), Huntington’s (DiFiglia et al., 

1997; Sapp et al., 1999; Li et al., 2000; Trettel et al., 2000; Li et al., 2001; Lee et al., 

2004), ALS (Rothstein et al., 1992; Rothstein et al., 1995; Shaw et al., 1995; Bruijn 

et al., 1997; Zhang et al., 1997; Lin et al., 1998; Williamson and Cleveland, 1999; 

Howland et al., 2002; Ligon et al., 2005), spinal and bulbar muscular atrophy 

(SBMA) (Piccioni et al., 2001) and epilepsy (Tanaka et al., 1997; Sepkuty et al., 

2002) highlighting the convergence of disease mechanisms in neuronal cell death. 

With respect to this study, glutamate-mediated excitotoxicity and defects in protein 

trafficking are two mechanisms convergent with other neurodegenerative diseases 

identified as being important in SCA5, whereas the unfolded protein response was 

not found to play a role in pathogenesis here.  

 

8.4 Conclusions 

The present work has demonstrated that the ∆2-6 β-III spectrin protein doesn’t have 

any toxic gain of function, confirming the β-III -/- spectrin mouse to be a functional 

KO. Behavioural analysis demonstrated that these mice exhibit a phenotype similar 

to that of SCA5 patients. Furthermore, haploinsufficiency was ruled out as a disease 

mechanism by analysis of heterozygote (β-III +/-) mice, while a dominant negative 

effect of a human SCA5 mutation (L253P) on WT β-III spectrin was demonstrated, 

leading to disruption of protein trafficking from the Golgi apparatus. Finally, new 

interactions of β-III spectrin with prosaposin/saposin D and clathrin light chain were 
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found, providing new avenues for further research into SCA5 pathogenesis. In 

conclusion, this work has demonstrated that SCA5, an autosomal dominant disease, 

results from a loss of β-III spectrin function and furthermore the loss of other 

proteins, either through disruption to vesicular trafficking or stabilisation at the 

membrane, appear to be important factors in disease pathogenesis. 
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APPENDIX 1 PRIMER SEQUENCE AND PCR 
CONDITIONS 

_____________________________________________ 

 

PCR Product 
Description 

Forward 
Primer 

Reverse 
Primer 

PCR 
conditions 

Figure 

β-III spectrin 
exons 1+7  
(Bait in 
overlapping 
PCR) 

Name - 5́BD 
Sequence – 
TCA TCG 
GAA GAG 
AGT AGT 
AAC 

Name - 
Revexon7 
Sequence - 
GCC AAT 
TCT TTT 
GCC TTC 
CAC AGC 

Annealing 
temp, 54°C 
Extension 
temp, 72°C for 
30 seconds 

3.2 

β-III spectrin 
exon 7 – 1108 
aa  
(Bait in 
overlapping 
PCR) 

Name – 
Forexon7 
Sequence – 
TTA CTA 
CCA CTA 
CTT CTC 
CAA GAT G 

Name - 
reverse3413 
Sequence - 
GGA TCA 
GCC TGG 
TCT CTG 
GTC A 

Annealing 
temp, 65°C 
Extension 
temp, 72°C for 
3 minutes 

3.2 

β-III spectrin 
exon 1+7 – 
1108 aa 
(Product of 
overlapping 
PCR) 

Name – 
ForExon1 
Sequence – 
ATG AGC 
AGC ACT 
CTG TCA 
CCC ACT 

Name – 
reverse3360 
Sequence - 
CTC GCT 
CTG GGC 
TCT CTC 
CAC 

Annealing 
temp, 65°C 
Extension 
temp, 72°C for 
3 minutes 

3.2 

L253P β-III 
spectrin in 
pRK5 vector 

Name – 
for_german 
Sequence – 
GGC CTG 
ACG AAG 
CCC CTG 
GAT CCT 
GAA G 

Name – 
rev_german 
Sequence – 
CTT CAG 
GAT CCA 
GGG GCT 
TCG TCA 
GGC C 

Annealing 
temp, 70°C 
Extension 
temp, 68°C for 
7.5 minutes 

6.2, 6.3, 6.4, 
6.7, 6.8, 6.9, 
6.10, 6.11, 
6.12, 6.14 
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PCR Product 
Description 

Forward 
Primer 

Reverse Primer PCR 
conditions 

Figure 

A486T β-III 
spectrin in 
pRK5 vector 

Name - 
for_ala486_thr 
Sequence - CTG 
CAA GCG 
GTG GAC 
ACC GTA GCC 
GCA GAA 
CTG 

Name - 
rev_ala486_thr 
Sequence - CAG 
TTC TGC GGC 
TAC GGT GTC 
CAC CGC TTG 
CAC 

Annealing 
temp, 55°C 
Extension 
temp, 68°C 
for 20 mins 

6.2, 6.6 

R634W β-III 
spectrin in 
pRK5 vector 

Name - 
for_arg634_trp 
Sequence - 
GCA GCA 
ACT CGA TGG 
GCC CGA CTG 
GAA GAG 

Name - 
rev_arg634_trp 
Sequence - CTC 
TTC CAG TCG 
GGC CCA TCG 
AGT TGC TGC 

Annealing 
temp, 55°C 
Extension 
temp, 68°C 
for 20 mins 

6.2, 6.6 

R658W β-III 
spectrin in 
pRK5 vector 

Name - 
for_arg658_trp 
Sequence - GCC 
GAG GCC 
TGG GTT TGG 
GAG CAG 
CAG CAC CTC 

Name - 
rev_arg658_trp 
Sequence - GAG 
GTG CTG CTG 
CTC CCA AAC 
CCA GGC CTC 
GGC 

Annealing 
temp, 55°C 
Extension 
temp, 68°C 
for 20 mins 

6.2, 6.6 

R1278Q β-III 
spectrin in 
pRK5 vector 

Name - 
for_arg1278_gln 
Sequence - CGC 
CTT CGG GAC 
AAC CAA 
GAG CAG 
CAG CAC TTC 

Name - 
rev_arg1278_gln 
Sequence - GAA 
GTG CTG CTG 
CTC TTG GTT 
GTC CCG AAG 
GCG 

Annealing 
temp, 55°C 
Extension 
temp, 68°C 
for 20 mins 

6.2, 6.6 

Full length β-
III spectrin -
YC (BiFC 
assay) 

Name - 
for_beta_venus2 
Sequence - ATT 
TGC GGC CGC 
ATG AGC 
AGC ACC CTG 
TCA CCC A 

Name - 
rev_betafull_v2 
Sequence - CCA 
TCG ATT TTG 
TTC TTC TTA 
AAG AAG CTG 
AAT C 

Annealing 
temp, 65°C 
Extension 
temp, 68°C 
for 7.5 mins 

6.9, 7.6 
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PCR 
Product 

Description 

Forward Primer Reverse Primer PCR 
conditions 

Figure 

β-III spectrin 
(exons 1-7)-
YC (BiFC 
assay) 

Name - 
for_beta_venus2 
Sequence - ATT 
TGC GGC CGC 
ATG AGC AGC 
ACC CTG TCA 
CCC A 

Name - 
rev_betamino_v2 
Sequence - CCA 
TCG ATG CCA 
ATT CTT TTG 
CCT TCC ACA 
GC 

Annealing 
temp, 65°C 
Extension 
temp, 72°C 
for 2 mins 
 

7.5, 7.8, 
7.16 

Arp-YN 
(BiFC assay) 

Name - 
for_arp_venus 
Sequence - ATT 
TGC GGC CGC 
ATG GAG TCC 
TAC GAT GTG 
ATC GC 

Name - 
rev_arp_venus 
Sequence - CCA 
TCG ATG AAG 
GTT TTC CTG 
TGG ATG GAT 
CG 

Annealing 
temp, 65°C 
Extension 
temp, 72°C 
for 2 mins 
 

7.8 

β-III spectrin 
(β-IIInt295) 
with 
introduced 
EcoRI 
restriction 
sites for 
introduction 
into pGBKT7 

Name - 
ForEcoRIexon1 
Sequence - GGA 
ATT CAT GAG 
CAG CAC TCT 
GTC ACC CAC 
T 

Name - 
RevEcoRIexon7 
Sequence - GGA 
ATT CCT AGC 
CAA TTC TTT 
TGC CTT CCA 
CAG C 

Annealing 
temp, 70°C 
Extension 
temp, 72°C 
for 1 min 

7.1, 7.3, 
7.14 

Arp1a with 
introduced 
EcoRI and 
XhoI 
restriction 
sites for 
introduction 
into pACT2  

Name – 
ForEcoR1ARP1A 
Sequence – GGA 
ATT CGC ATG 
GAG TCC TAC 
GAT GTG ATC 
GC 

Name – 
RevXholARP1A 
Sequence – CCG 
CTC GAG TTA 
GAA GGT TTT 
CCT GTG GAT 
GGA 

Annealing 
temp, 65°C 
Extension 
temp, 72°C 
for 2 mins 
 

7.2 

β-III spectrin 
(β-IIInt851) 
with 
introduced 
EcoRI and 
XhoI 
restriction 
sites for 
introduction 
into pGBKT7 

Name - 
ForEcoRIexon1 
Sequence - GGA 
ATT CAT GAG 
CAG CAC TCT 
GTC ACC CAC 
T 

Name – 
RevXhoIbIII851 
Sequence – CCG 
CTC GAG CTA 
GGC TGC TTC 
CAG GGC TCG 
TGC  

Annealing 
temp, 70°C 
Extension 
temp, 72°C 
for 3 mins 
 

7.3, 7.14 
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PCR Product 
Description 

Forward Primer Reverse 
Primer 

PCR 
conditions 

Figure 

β-III spectrin 
(βIII220-851) 
with 
introduced 
EcoRI and 
XhoI 
restriction 
sites for 
introduction 
into pGBKT7 

Name – 
ForEcoRIbIIIexon 
(6) 
Sequence – GGA 
ATT CGC CGG 
CCA GAC CTG 
TTG GAT TTT 
GAG 

Name – 
RevXhoIbIII851 
Sequence – 
CCG CTC 
GAG CTA 
GGC TGC TTC 
CAG GGC 
TCG TGC  

Annealing 
temp, 70°C 
Extension 
temp, 72°C 
for 2 mins 
 

7.3, 7.14 

β-III spectrin 
(βIII259-851) 
with 
introduced 
EcoRI and 
XhoI 
restriction 
sites for 
introduction 
into pGBKT7 

Name – 
ForEcoRIbIIIexon 
(7) 
Sequence – GGA 
ATT CGC GAT 
GTG AAC GTA 
GAC CAA CCC 
GAT 
 

Name – 
RevXhoIbIII851 
Sequence – 
CCG CTC 
GAG CTA 
GGC TGC TTC 
CAG GGC 
TCG TGC  

Annealing 
temp, 70°C 
Extension 
temp, 72°C 
for 2 mins 
 

7.3, 7.14 

Full length 
prosaposin 

Name - 
for_prosp_full 
Sequence - ATG 
TAT GCT CTC 
GCT CTC CTC 
GC 

Name - 
rev_prosp_full 
Sequence - CTA 
GTT CCA CAC 
ATG GCG TTT 
GC 

Annealing 
temp, 65°C 
Extension 
temp, 72°C 
for 2 mins 

 

Prosaposin 
with 
introduced 
NotI 
restriction 
sites  

Name - 
for_prosp_prk5 
Sequence - ATT 
TGC GGC CGC 
CAT GTA TGC 
TCT CGC TCT 
CCT CGC 

Name - 
rev_prosp_prk5 
Sequence - 
TAA AGC 
GGC CGC 
CTA GTT CCA 
CAC ATG 
GCG TTT GC 

Annealing 
temp, 65°C 
Extension 
temp, 72°C 
for 2 mins 

 

 

 

 

 



APPENDIX 1 PRIMER SEQUENCE AND PCR CONDITIONS 

 

251 

 

PCR 
Product 

Description 

Forward Primer Reverse Primer PCR 
conditions 

Figure 

Prosaposin-
YN (BiFC 
assay) 

Name - 
for_prosp_venus1 
Sequence - ATT 
TGC GGC CGC 
ATG TAT GCT 
CTC GCT CTC 
CTC GC 

Name - 
rev_prosp_venus1 
Sequence - CCA 
TCG ATG TTC 
CAC ACA TGG 
CGT TTG CAA 
TG 

Annealing 
temp, 65°C 
Extension 
temp, 72°C 
for 2 mins 

7.5 

YN- 
Prosaposin 
(BiFC assay)  

Name  - 
for_venus1_prosp 
Sequence - CCT 
CCG GAA TGT 
ATG CTC TCG 
CTC TCC TCG 
C 

Name - 
rev_venus1_prosp 
Sequence - GCT 
CTA GAC TAG 
TTC CAC ACA 
TGG CGT TTG C 

Annealing 
temp, 65°C 
Extension 
temp, 72°C 
for 2 mins 

7.5 

YC - β-III 
spectrin 
(exons 1-
7)(BiFC 
assay) 
 
 

Name - 
for_venus2_beta 
Sequence - CCT 
CCG GAA TGA 
GCA GCA CCC 
TGT CAC CCA 

Name - 
rev_v2_betaamino 
Sequence - GCT 
CTA GAC TAG 
CCA ATT CTT 
TTG CCT TCC 
AC 
 

Annealing 
temp, 65°C 
Extension 
temp, 72°C 
for 2 mins 

6.13 
7.5, 7.7,  

7.16, 7.17 

YC-Full 
length β-III 
spectrin 
(BiFC assay)  

Name - 
for_venus2_beta 
Sequence - CCT 
CCG GAA TGA 
GCA GCA CCC 
TGT CAC CCA 

Name - 
rev_v2_betafull 
Sequence - GCT 
CTA GAC TAC 
TTG TTC TTC 
TTA AAG AAG 
CTG A 

Annealing 
temp, 65°C 
Extension 
temp, 68°C 
for 7.5 mins 

7.6 

YC- β-III 
spectrin 
(exons 1-6) 
(BiFC assay) 

Name - 
for_venus2_beta 
Sequence - CCT 
CCG GAA TGA 
GCA GCA CCC 
TGT CAC CCA 

Name - 
Rev_exon_6 
Sequence - GCT 
CTA GAC TAC 
TTC AGG ATC 
CAG GAG CTT 
CGT C 

Annealing 
temp, 65°C 
Extension 
temp, 72°C 
for 2 mins 

7.7, 7.9, 
7.17 

YC- β-III 
spectrin 
(exons 1-5) 
(BiFC assay) 

Name - 
for_venus2_beta 
Sequence - CCT 
CCG GAA TGA 
GCA GCA CCC 
TGT CAC CCA 

Name - 
Rev_exon_5 
Sequence - GCT 
CTA GAC TAG 
TGT TTG TGC 
ACA ATG GCA 
TTA AAG 

Annealing 
temp, 65°C 
Extension 
temp, 72°C 
for 2 mins 

7.7, 7.9. 
7.17 
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PCR 
Product 

Description 

Forward Primer Reverse Primer PCR 
conditions 

Figure 

YC – L253P 
β-III spectrin 
(exons 1-
7)(BiFC 
assay) 

Name - 
for_venus2_beta 
Sequence - CCT 
CCG GAA TGA 
GCA GCA CCC 
TGT CAC CCA 

Name - 
rev_v2_betaamino 
Sequence - GCT 
CTA GAC TAG 
CCA ATT CTT 
TTG CCT TCC 
AC 

Annealing 
temp, 65°C 
Extension 
temp, 72°C 
for 2 mins 

6.13 
7.7, 7.17 

YN-Arp 
(BiFC assay) 

Name - 
for_venus_arp 
Sequence - CCT 
CCG GAA TGG 
AGT CCT ACG 
ATG TGA TCG C 

Name - 
rev_venus_arp 
Sequence - GCT 
CTA GAT TAG 
AAG GTT TTC 
CTG TGG ATG 
GAT 

Annealing 
temp, 65°C 
Extension 
temp, 72°C 
for 2 mins 
 

6.13, 7.8, 
7.9 

Clathrin light 
chain 
(CLC374) 
with 
introduced 
EcoRI and 
XhoI 
restriction 
sites for 
introduction 
into pACT2 

Name – 
ForEcoRIclathrin 
Sequence – GGA 
ATT CGC ATG 
GCT GAG TTG 
GAT CCA TTT 
GGC 

Name – 
RevXhoIClathmid 
Sequence - CCG 
CTC GAG TCA 
ATC GAG GGC 
TTC CAG GCG 
CTC 

Annealing 
temp, 65°C 
Extension 
temp, 72°C 
for 30 secs 

7.15 

Clathrin light 
chain 
(CLC375-
746) with 
introduced 
EcoRI and 
XhoI 
restriction 
sites for 
introduction 
into pACT2 

Name – 
ForEcoRIClathmid 
Sequence - GGA 
ATT CGC GCC 
AAT TCT CGG 
AAG CAG GAA 
GC 

Name – 
RevXhoIclathrin 
Sequence – CCG 
CTC GAG TCA 
ATG CAC CAG 
GGG CGC CTG 

Annealing 
temp, 65°C 
Extension 
temp, 72°C 
for 30 secs 

7.15 
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PCR 
Product 

Description 

Forward Primer Reverse Primer PCR conditions Figure 

Clathrin light 
chain 
(CLC246-
500) with 
introduced 
EcoRI and 
XhoI 
restriction 
sites for 
introduction 
into pACT2 

Name – 
ForEcoRIClathen
d 
Sequence - GGA 
ATT CGC TAC 
TAC CAG GAG 
AGC AAT GGT 
CCA 

Name – 
RevXhoIClathbeg 
Sequence - CCG 
CTC GAG TCA 
AGC TTC ATC 
TGC CAC CCT 
GTT GC 

Annealing temp, 
65°C 
Extension temp, 
72°C for 30 secs 

7.15 

Clathrin-YN 
(BiFC assay) 

Name - 
for_clath_ven1 
Sequence - ATT 
TGC GGC CGC 
ATG GCT GAG 
TTG GAT CCA 
TTT GGC 
 
 
 

Name - 
rev_clath_ven1 
Sequence - CCA 
TCG ATA TGC 
ACC AGG GGC 
GCC TGC TT 

Annealing temp, 
65°C 
Extension temp, 
72°C for 1 min 

7.16 

YN-Clathrin 
(BiFC assay) 

Name - 
for_ven1_clath 
Sequence - CCT 
CCG GAA TGG 
CTG AGT TGG 
ATC CAT TTG 
GC 

Name - 
rev_ven1_clath 
Sequence -  GCT 
CTA GAC TAA 
TGC ACC AGG 
GGC GCC TGC 
TT 
 

Annealing temp, 
65°C 
Extension temp, 
72°C for 1 min 

7.16. 
7.17 
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APPENDIX 2 PREDICTED MOLECULAR 
WEIGHTS OF FUSION PROTEINS 

_____________________________________________ 
 

Protein Name Size (kDa) 
F.L β-III spectrin 270 
∆2-6 β-III spectrin 250 
Calbindin 28 
EAAT4 ~60 
p38 38 
GLAST ~60 
GLT1 ~60 
Actin 43 
L253P β-III spectrin 270 
L253P β-III spectrin (rat) cleaved products 22 and 26  

L253P β-III spectrin (human) cleaved products 22 and 26 

A486T β-III spectrin 270 
R634W β-III spectrin 270 
R658W β-III spectrin 270 
R1278Q β-III spectrin 270 
CHOP 27 
GAL4 (BD)-β-IIInt295 57 
GAL4 (AD)-FL-Arp 57 
GAL4 (BD)-β-IIInt219 47 
GAL4 (BD)-β-IIInt258 52 
GAL4 (BD)-β-IIInt851 127 
GAL4 (BD)-β-IIInt220-851 95 
GAL4 (BD)-β-IIInt259-851 90 
GAL4 (AD)-COOH prosaposin 26 
YN-prosaposin  93 
Prosaposin–YN   93 
YC–βIII295 48 
βIII295–YC 48 
YC- F.L β-III spectrin 314 
F.L  β-III spectrin-YC 314 
YC-β-IIInt258 43 
YC-β-IIInt219 38 
L253P YC- β-III spectrin295 48 
YN-Arp 63 
Arp-YN 63 
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Protein Name Size (kDa) 
Prosaposin 72 
Saposin D 10 
GAL4 (AD)-CLC1 47 
GAL4 (AD)-CLC374 31 
GAL4 (AD)-375-746 30 
GAL4 (AD)-246-500 26 
YN-CLC 52 
CLC-YN 52 
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Spinocerebellar ataxia type 5 (SCA5) is an autosomal dominant neurodegenerative disorder caused by
mutations in b-III spectrin. A mouse lacking full-length b-III spectrin has a phenotype closely mirroring symp-
toms of SCA5 patients. Here we report the analysis of heterozygous animals, which show no signs of ataxia
or cerebellar degeneration up to 2 years of age. This argues against haploinsufficiency as a disease mech-
anism and points towards human mutations having a dominant-negative effect on wild-type (WT) b-III spec-
trin function. Cell culture studies using b-III spectrin with a mutation associated with SCA5 (L253P) reveal
that mutant protein, instead of being found at the cell membrane, appears trapped in the cytoplasm associ-
ated with the Golgi apparatus. Furthermore, L253P b-III spectrin prevents correct localization of WT b-III spec-
trin and prevents EAAT4, a protein known to interact with b-III spectrin, from reaching the plasma membrane.
Interaction of b-III spectrin with Arp1, a subunit of the dynactin–dynein complex, is also lost with the L253P
substitution. Despite intracellular accumulation of proteins, this cellular stress does not induce the unfolded
protein response, implying the importance of membrane protein loss in disease pathogenesis. Incubation at
lower temperature (2588888C) rescues L253P b-III spectrin interaction with Arp1 and normal protein trafficking to
the membrane. These data provide evidence for a dominant-negative effect of an SCA5 mutation and show for
the first time that trafficking of both b-III spectrin and EAAT4 from the Golgi is disrupted through failure of the
L253P mutation to interact with Arp1.

INTRODUCTION

Spinocerebellar ataxia type 5 (SCA5) is an autosomal domi-
nant neurodegenerative disease. It is characterized by gait
and limb ataxia, dysarthria and uncoordinated eye movements,
and arises from dysfunction and degeneration of the cerebel-
lum (1–3). Different mutations in the gene encoding b-III
spectrin (SPTBN2) were identified as the genetic cause of
SCA5 in three independent families (3).

Spectrins are heterotetramers comprising two a- and two
b-subunits. The a- and b-subunits associate laterally,
forming anti-parallel heterodimers which interact
head-to-head to form the functional heterotetramer (4,5).
Short actin filaments then link the spectrin tetramers together

forming a flexible spectrin network attached to the inner leaf
of the membrane bilayer. They were originally discovered in
erythrocytes and shown to be critical for mechanical support
and maintenance of structural membrane integrity, with
defects resulting in hereditary elliptocytosis and spherocytosis
(6–9). Spectrins also play important roles in stabilizing cell–
cell contacts and localizing ion channels and cell adhesion
molecules within specific subdomains of the plasma mem-
brane (10–12).

Vertebrates have two a-subunits (aI/aII), four b-subunits
(bI–bIV) and a b-H subunit creating diversity and specializ-
ation of function (13). The mammalian erythrocyte spectrin
(aI/bI) is found in striated muscle and a subset of neurons,
whereas aII/bII, aII/bIII and aII/bIV are the major forms in
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non-erythroid vertebrate tissues. b-III spectrin is primarily
expressed in the nervous system, with the highest levels of
expression in the cerebellum, where it is found in Purkinje
cell soma and dendrites (14,15). Originally, it was shown to
associate with the Golgi apparatus (16), but this staining is
now thought to have arisen from antibody cross-reactivity
(17). We have previously shown b-III spectrin to stabilize
EAAT4, the glutamate transporter predominantly expressed
in Purkinje cells, at the cell surface (15). Other investigators
have found the N-terminal actin-binding region of b-III spec-
trin interacts with Arp1, a subunit of the dynactin–dynein
complex (18). A role for b-III spectrin in dynein-mediated
vesicular transport is implied by observation of axonal trans-
port defects in Drosophila expressing mutant forms of b spec-
trin, which are exacerbated by the expression of mutant dynein
and dynactin (19).

We recently generated a functional b-III spectrin knockout
mouse (b-III2/2) and found that from a young age it showed
characteristic features of cerebellar ataxia, suggesting a loss
of b-III spectrin function underlies SCA5 pathogenesis
(20). Since the human disease is autosomal dominant, this
finding indicates that either the mutant forms of b-III spec-
trin are simply inactive and the disease arises from haplo-
insufficiency or, in addition to being non-functional, the
mutant subunits also have a dominant-negative effect and
suppress the function of wild-type (WT) spectrin. In order
to investigate these two possibilities, we analysed heterozy-
gous animals for signs of motor deficits and cerebellar
degeneration. We show here that even at 2 years of age, het-
erozygous animals show no signs of ataxia or cerebellar
pathology. Instead, using cell culture studies, we provide evi-
dence that b-III spectrin containing a mutation associated
with SCA5 (L253P) has a dominant-negative effect on WT
protein function and interferes with membrane protein traf-
ficking.

RESULTS

Heterozgous b-III1/2 spectrin mice show no signs of ataxia
or cerebellar degeneration

We previously reported that homozygous b-III spectrin-
deficient mice (b-III2/2) develop characteristics of ataxia
including a wider hind-limb gait, progressive motor incoordina-
tion, cerebellar atrophy and Purkinje cell loss (20). To determine
whether heterozygous (b-III+/2) mice eventually show signs of
ataxia, we carried out behavioural tests and histological analysis
on mice aged 6 months to 2 years of age. Analysis of footprint
patterns showed no significant difference in base width or
stride length between b-III+/2 and WT littermates (Fig. 1A).
There was also no significant difference in motor performance
between the genotypes, heterozygous animals performing as
well as WT controls on a stationary rod (Fig. 1B), an elevated
beam (Fig. 1C) and a rotating rod task (Fig. 1D).

Cerebellar sections stained for Nissl demonstrated that the
size and morphology of the cerebellum appeared normal in
2-year old b-III+/2 mice, apart from slight differences in
folia I and II (Fig. 2A1 and B1). Immunostaining for calbindin
showed no changes to Purkinje cell morphology in b-III+/2

mice (Fig. 2A2 and A3, and B2 and B3), whereas quantifi-
cation of Purkinje cell density and molecular layer thickness
revealed no cell loss or cerebellar atrophy (WT, 39.6+ 3.4;
b-III+/2, 37+ 8.6 cell/mm; P ¼ 0.73 and WT, 181.7+ 7.1;
b-III+/2, 197.7+ 11.4 mm; P ¼ 0.37; n ¼ 3 of each geno-
type). We also saw no significant reduction in glutamate trans-
porter levels in b-III+/2 mice (Fig. 2C), providing additional
evidence that the loss of EAAT4 and GLAST in b-III2/2 mice
(20) may be important aspects of disease pathogenesis. There-
fore, b-III+/2 mice display none of the characteristics of
cerebellar ataxia, arguing against haploinsufficiency as a
disease mechanism in the mouse, and hence arguing for a

Figure 1. Progressive motor deficits not seen in heterozygous b-III+/2 mice. (A) Footprint analysis, base width and stride length of 6-month to 2-year old mice.
(B) Ability to remain on stationary rod. Mice were given four consecutive trials, with maximum time of 60 s. (C) Number of hind-limb slips age-matched WT
and b-III+/2 mice made when crossing narrow, elevated beam. (D) Latency of WT and b-III+/2 animals to fall from rotarod at 3, 5 and 10 rpm. Mice were given
four trials per day and allowed a maximum retention time of 120 s per trial. All data are means+SEM (WT n ¼ 3–7, b-III+/2 n ¼ 7–9).
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dominant-negative effect of mutant b-III spectrin on WT b-III
spectrin function associated with SCA5.

b-III spectrin associates with the Golgi apparatus when
Leu253 is substituted by proline

To investigate potential dominant-negative effects, we trans-
fected Neuro2a and human embryonic kidney (HEK) 293T
cells with constructs encoding either myc-tagged WT b-III
spectrin or b-III spectrin containing a mutation associated
with SCA5. The missense mutation (L253P) found in one
family with SCA5 was introduced by site-directed

mutagenesis into rat b-III spectrin cDNA. The leucine 253
residue and the N-terminus of b-III spectrin are highly con-
served from fly to human (3). Immunostaining with an
anti-c-myc antibody revealed that, unlike WT, L253P b-III
spectrin appears to accumulate in a discrete intracellular
location and is no longer found at the plasma membrane
(Fig. 3A). No difference in the cellular distribution was seen
between the two cell lines examined. We therefore used
Neuro2a cells, unless otherwise stated, for all subsequent
experiments since b-III spectrin is predominantly a neuronal
protein (14–16). To elucidate the intracellular distribution,
we co-expressed b-III spectrin constructs with either a Golgi
or an endoplasmic reticulum (ER) marker. This revealed that
L253P b-III spectrin appears to associate with the Golgi
apparatus (Fig. 3B).

To determine the effect of L253P b-III spectrin on WT
protein, we co-expressed yellow fluorescent protein (YFP)-
tagged WT b-III spectrin with myc-tagged L253P b-III spec-
trin. We found that the presence of L253P b-III spectrin
resulted in WT b-III spectrin–YFP being trapped in the
same intracellular location as L253P (Fig. 3C). In contrast,
WT b-III spectrin–YFP was found at the plasma membrane
when myc-tagged WT b-III spectrin was co-expressed. This
finding suggests that the presence of the L253P missense
mutation confers a dominant-negative effect on WT b-III
spectrin protein.

L253P b-III spectrin interferes with protein trafficking
and fails to interact with Arp1

EAAT4 is known to interact directly with and be stabilized at
the cell membrane by b-III spectrin (15). Moreover, a decrease
in EAAT4 protein is seen in young b-III2/2 mice (20) and
dramatic changes in EAAT4 distribution are seen in SCA5
autopsy tissue (3). Taken together, these findings suggest
that EAAT4 may play an important role in disease patho-
genesis. We therefore examined what effect the expression
of L253P b-III spectrin had on EAAT4 cellular distribution.
Immunofluorescence microscopy revealed accumulation of
EAAT4 at the Golgi apparatus when L253P was co-expressed
compared with WT b-III spectrin, suggesting a disruption to
protein trafficking (Fig. 4A). To test whether a lower tempera-
ture could rescue the defect, we incubated transfected cells at
258C for an additional 12 h before immunostaining. We found
that the permissive temperature resulted in L253P b-III spec-
trin reaching the plasma membrane (Fig. 4B). Western blot
analysis confirmed protein levels were not altered by the temp-
erature shift but did show that the expression of L253P b-III
spectrin was less than WT protein (Fig. 4B). In addition
EAAT4 was no longer trapped intra-cellularly in cells expres-
sing L253P b-III spectrin when incubated at the lower temp-
erature (Fig. 4C).

A role for b-III spectrin in vesicular trafficking has been
proposed given its ability to interact with Arp1 and copurify
with dynein and dynactin on intracellular vesicles from rat
brain (18). We used a biomolecular fluorescence comple-
mentation (BiFC) assay to investigate whether the L253P
mutation interfered with the ability of the N-terminus of
b-III spectrin to interact with Arp1. The BiFC technique
is based on the generation of a fluorescent signal when

Figure 2. No cerebellar pathology in b-III+/2 mice. Histological analysis of
cerebellum from 2-year old WT (A) and b-III+/2 (B) mice. (A1, B1)
Cresyl violet stain shows whole cerebellar morphology. (A2–B3) Calbindin
immunostaining reveals Purkinje cell morphology (ML, molecular layer;
PCL, Purkinje cell layer; scale bars: A1 and B1, 500 mm; A2 and B2,
50 mm; A3 and B3, 20 mm). (C) Representative western blot and densitometry
data quantifying levels of plasma membrane glutamate transporters in
2-year-old b-III+/2 and WT animals. EAAT4 levels normalized with calbin-
din, a Purkinje cell specific marker. GLAST and GLT1 normalized with actin.
All data are means+SEM (n ¼ 3 of each genotype).
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the two halves of enhanced YFP are brought together,
mediated by the association of two interacting partners
fused to the YFP fragments (21,22). We cloned full-length
Arp1 and the N-terminus of b-III spectrin (amino acids
1–294) downstream of the N-terminal (YN) and C-terminal
fragments (YC) of YFP, respectively, and transfected HEK
293T cells with the expression vectors. Co-expression of
YN–Arp1 and WT YC–b-III spectrin yielded fluorescence,
but no fluorescence was observed when L253P YC–b-III
spectrin was co-expressed with YN-Arp1 (Fig. 4D), indicat-
ing that the mutation does indeed eliminate the interaction
between b-III spectrin and Arp1. However, incubation at
258C for an additional 12 h produced a fluorescence
signal (Fig. 4D), suggesting that a conformational change
underlies the observed lack of interaction at 378C.
Western blot analysis confirmed that all proteins were
expressed at 378C.

Unfolded protein response not induced by L253P
expression

A number of neurodegenerative diseases have been shown to
be associated with the accumulation of abnormal protein,
impaired ER homeostasis and activation of the unfolded
protein/endoplasmic stress response (UPR) (23–26). The
UPR can be triggered by a block in trafficking at the ER
and Golgi, as well as the accumulation of unfolded or mis-
folded proteins in the ER. Therefore, since L253P appears to

accumulate intra-cellularly and disrupt the trafficking of
proteins through the Golgi, we investigated whether the
UPR was induced by the expression of L253P.

We looked at increased expression levels and nuclear trans-
location of the transcription factor growth arrest and DNA
damage/C/EBP-homologous protein (GADD153/CHOP), a
commonly used indicator of ER stress and thought to be a
downstream effector of all three UPR pathways (27,28).
Western blot analysis revealed no difference in the level of
CHOP protein when L253P b-III spectrin was expressed com-
pared with WT b-III spectrin (Fig. 5A and B). CHOP levels
were normalized to those obtained when GFP was overex-
pressed, and the pharmacological induction of ER stress
using tunicamycin, a blocker of N-linked glycosylation, con-
firmed the ability to induce CHOP expression in the cell
culture system. Immunofluorescence microscopy confirmed
the absence of CHOP activation in cells transfected with
L253P as no nuclear staining was observed, in comparison
with high levels observed in tunicamycin-treated cells
(Fig. 5C). Finally, we only saw a small increase in the
expression of CHOP in symptomatic b-III2/2 mice compared
with litter mate controls (116+ 7.8% of WT; n ¼ 4 of each
genotype; P ¼ 0.11). These data suggest that UPR is not a
major consequence of b-III spectrin loss and is unlikely to
underlie the Purkinje cell degeneration observed in the
b-III2/2 mouse model of ataxia. Furthermore, UPR appears
not to be a downstream effect of a b-III spectrin mutation
associated with SCA5.

Figure 3. Cellular localization of full-length L253P b-III spectrin overlaps with Golgi marker. (A) Neuro2a and HEK293 cells transfected with either myc-
tagged WT or L253P b-III spectrin, fixed and stained using anti-c-myc antibody. Nucleus stained with DAPI (blue). (B) Neuro2a cells cotransfected with
either a Golgi (green) or ER (green) marker and myc-tagged WT or L253P b-III spectrin (red). Nucleus stained with DAPI (blue). (C) Neuro2a cells cotrans-
fected with YFP-tagged WT b-III spectrin and either myc-tagged WT or L253P b-III spectrin. Cells immunostained using anti-c-myc antibody (red) and
anti-GFP antibody (green). All images are representative of three independent experiments (scale bar, 10 mm).
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DISCUSSION

A number of dominantly inherited human diseases have
recently been shown to arise from haploinsufficiency (29–
31). Often in these cases, the genes involved encode proteins
where a correct stoichiometry is vital for function and a
single WT gene copy is insufficient. Examples are transcrip-
tion factors or proteins that form macromolecular complexes.
Since spectrin functions as a heterotetramer and assembly
appears to be rate limited by the b subunit (32), one possibility
is that SCA5 arises from b-III spectrin haploinsufficiency due
to the mutant b polypeptides failing to associate with other
subunits. Here we provide strong evidence that haploinsuffi-
ciency is unlikely to be the disease mechanism, as we see
no signs of motor deficits or cerebellar degeneration in hetero-
zygous b-III+/2 mice even at 2 years of age. This indicates
that the loss of b-III spectrin function, thought to be important
in disease pathogenesis (20), must arise from mutations associ-
ated with SCA5 having a dominant-negative effect on WT
b-III spectrin function. It is possible that the heterozygous
animals do not live long enough for a phenotype to be detected
or the motor tasks used are not sensitive enough to detect
minor motor deficits. However, our cell culture studies do
indicate that the proline substitution found in one SCA5
family (L253P) appears to have a dominant-negative effect
on WT b-III spectrin, preventing protein trafficking from the
Golgi apparatus.

Previously, b-III spectrin was shown to stabilize EAAT4 at
the plasma membrane (15) and, using total internal reflection
fluorescence microscopy, Ranum and co-authors (3) revealed
that the in-frame deletion found in the Lincoln SCA5 pedigree
fails to stabilize EAAT4 at the cell surface to the same extent
as WT b-III spectrin. Here we now show that b-III spectrin
also has a role in the vesicular trafficking of EAAT4 from
the Golgi to the plasma membrane and the L253P mutation
disrupts this process. The observation that a large number of
vesicles are found surrounding Golgi cisternae in b-III2/2

mice (20) supports this cellular function. Further we have
shown that the L253P substitution prevents the normal inter-
action between Arp1 and the N-terminus of b-III spectrin.
Based on their work in Drosophila, a link between defects
in the dynein–dynactin complex and SCA5 pathogenesis is
suggested by Lorenzo et al. (19). When flies overexpressing
mutant human b-III spectrin (the Lincoln mutation) were
crossed with either a hypomorphic dynein heavy chain allele
or a dominant mutation in the p150Glued subunit of dynactin,
the larvae displayed exacerbated posterior paralysis and
slowing of vesicle transport, inferring a synergistic effect
between spectrin and dynein–dynactin. Similarly, the rough
eye phenotype in flies overexpressing either the Lincoln or
the L253P mutation was enhanced by the dynein–dynactin
mutants. Here we provide the first direct evidence that a
SCA5 mutation interferes with the ability of spectrin to inter-
act with a component of the dynactin complex, highlighting

Figure 4. L253P b-III spectrin does not interact with Arp1 and interferes with protein trafficking. (A) Neuro2a cells cotransfected with EAAT4 and either myc-
tagged WT or L253P b-III spectrin. Cells immunostained using anti-c-myc antibody (red), anti-EAAT4 antibody (green) and nucleus stained with DAPI (blue).
(B) Cells transfected with either myc-tagged WT or L253P b-III spectrin and 24 h after transfection incubated at 37 or 258C for a further 12 h. Cells immuno-
stained using anti-c-myc antibody (red). Western blot analysis of cell homogenates probed with anti-c-myc antibody. (C) Cells expressing myc-tagged L253P
b-III spectrin and EAAT4 incubated at 258C for a further 12 h. Cells immunostained using anti-c-myc antibody (red) and anti-EAAT4 antibody (green). (D)
BiFC assay using cells transfected with Arp1 fused to the N-terminal half of YFP (YN-Arp1) and the actin-binding region of b-III spectrin, with or without
the L253P substitution, fused to the C-terminal half of YFP (YC-b-III). Twenty-four hours after transfection cells were incubated at 37 or 258C for a further
12 h. Western blot analysis of cell homogenates probed with anti-GFP antibody. All images are representative of three independent experiments (scale bar,
10 mm).
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how normal trafficking can be disrupted in SCA5. The fact
both the interaction with Arp1 and protein trafficking defects
were rescued by incubating at a lower temperature suggests
that the L253P substitution results in a protein conformation
defect. Ongoing work by Ranum and colleagues supports
temperature sensitivity of conformation of the mutant human
protein (K.A. Dick Krueger and L.P.W. Ranum personal com-
munication). Importantly, a direct role for dynein in the trans-
port of proteins into dendrites has recently been shown (33),
supporting the possibility that interfering with Arp1 binding
will result in defects to protein trafficking within the Purkinje
cell dendritic tree of SCA5 patients.

Irrespective of the mechanism, the intracellular accumu-
lation of proteins can lead to ER stress, the induction of
UPR, and apoptotic cell death. However, we see no major
induction of GADD153/CHOP, a downstream effector of
UPR in transfected cells or in symptomatic b-III2/2 mice.
Taken together, these results suggest that unlike other neuro-
degenerative disorders, the disease mechanism in SCA5 does
not involve the induction of UPR. Instead, the actual loss of
membrane proteins and their cellular functions appears to be
more critical for disease pathogenesis. The expression of
mutant forms of b-III spectrin in Purkinje cells and identifi-
cation of other membrane proteins that are altered will be fun-
damental to fully understanding the mechanisms of Purkinje
cell dysfunction and degeneration. The N-terminus of b spec-
trin is known to bind actin and 4.1, forming a spectrin/4.1/
actin junction. Protein 4.1 has been shown to bind several
membrane proteins and be required for their stable cell-surface
expression (34–36). Incorporation of a mutant b subunit could
alter the conformation of the whole tetramer preventing
normal function and interaction with proteins including
protein 4.1. Future research should investigate whether differ-
ent mutations associated with SCA5 alter the ability of b-III

spectrin to interact with components of the dynein–dynactin
complex or with protein 4.1.

In summary, the present work has shown that mutant b-III
spectrin disrupts protein trafficking from the Golgi apparatus
through elimination of normal interaction between b-III
spectrin and the dynactin component Arp1. This helps
explain the mislocalization of membrane proteins seen in
SCA5. Furthermore, haploinsufficiency is not supported as a
disease mechanism as indicated by a lack of disease phenotype
in mice heterozygous for loss of b-III spectrin.

MATERIALS AND METHODS

Analysis of b-III1/2 mice

All genotyping, motor tasks, histology and western blotting
analysis were carried out as previously described (20).
Seven days prior to the behavioural tests, old mice were habi-
tuated to the test environment by handling (10 min each day).

Antibodies

Sagittal cerebellar sections were immunostained using mouse
anti-calbindin D (1:50) and cyanine 3 (Cy3)-conjugated goat
anti-mouse IgG (Jackson Laboratories). Mouse anti-c-myc
(Ab-1, Calbiochem) and either Cy3- or Cy2-conjugated goat
anti-mouse IgG (Jackson Laboratories) were used to detect
pRK5-myc-tagged constructs. YFP-tagged b-III spectrin was
detected with rabbit anti-GFP (Molecular Probes, Invitrogen)
and fluorescein isothiocyanate-conjugated goat anti-rabbit
IgG (Cappel). Polyclonal antibodies against EAAT4,
GLAST and GLT1 were a kind gift of Jeffrey Rothstein, and
mouse anti-actin, -calbindin and rabbit anti-GADD153
obtained from Sigma and Santa Cruz, respectively.

Figure 5. No induction of unfolded protein response by L253P b-III spectrin compared with WT b-III spectrin. (A) Total cellular homogenates of Neuro2a cells
transfected with constructs encoding GFP, WT b-III spectrin, L253P b-III spectrin or untransfected cells treated with tunicamycin for 12 h resolved by SDS–
PAGE, and immunoblotted using anti-GADD153 antibody. (B) Data quantified by densitometry (means+SEM). (C) Representative confocal images of cells
immunostained for CHOP (green) and nucleus stained with DAPI (blue). Scale bar, 10 mm. (D) Total cerebellar homogenates of symptomatic b-III2/2 and
age-matched WT mice resolved by SDS–PAGE, immunoblotted using anti-GADD153 antibody.
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Plasmids

The missense mutation L253P was introduced using the
QuickChange site-directed mutagenesis kit (Stratagene) accord-
ing to the manufacturer’s instructions using pRK5-myc-tagged
b-III spectrin as template and 5′-GGCCTGACGAAGC
CCCTGGATCCTGAAG-3′ and 5′- CTTCAGGATCCAGG
GGCTTCGTCAGGCC-3′ as primers. Full-length WT b-III
spectrin and the first 294 amino acids of WT and L253P b-III
spectrin were amplified by PCR using primers that introduced
either NotI and ClaI (5′-ATTTGCGGCCGCATGAGCA
GCACCCTGTCACCCA-3′ and 5′-CCATCGATTTTGTTCTT
CTTAAAGAAGCTGAAT-3′) or BspEI and XbaI (5′-CCTC
CGGAATGAGCAGCACCCTGTCACCCA-3′ and 5′-GCTC
TAGACTAGCCAATTCTTTTGCCTTCCAC-3′) restric-
tion sites, respectively, and the products cloned into
pcDNA3.1(zeo)-YC vector (kind gift of Stephen Michnick).
Full-length Arp 1 was amplified using Quickclone cDNA (Clon-
tech) as template and cloned into the BspEI and XbaI sites of
pcDNA3.1(zeo)-YN. Other plasmids were pCDNA3.1 rat
EAAT4 (15) and Golgi (pECFP-golgi) and ER (pDsRed2-ER)
markers from Clontech.

Cell culture and transfections

HEK 293T cells were grown in minimum essential medium
(MEM, Sigma) containing 10% fetal bovine serum, 10 mM

glutamine, 1× non-essential amino acids and antibiotics
(penicillin and streptomycin). Mouse neuronal 2a (N2a) cells
were grown in Dulbecco’s modified Eagle’s medium
(DMEM, Gibco) containing the aforementioned components
and supplemented with 4.5 g/l glucose and 0.11 g/l sodium
pyruvate (Gibco). For cell homogenates, cells were plated
onto 35 mm dishes and for microscopic observation cells
were plated onto poly-L-lysine-coated coverslips in 35 mm
dishes. A total of 2 mg of DNA was used to transfect cells
with Fugene HD at a ratio of 3:2 according to the manufac-
turer’s instructions (Roche). Twenty-four hours post-
transfection cells were either harvested for western blot
analysis, fixed with 4% paraformaldehyde for immunostain-
ing, maintained at 37 or 258C for an additional 12 h (to test
for temperature sensitivity shown by K.A. Dick Krueger et
al., manuscript submitted) or treated with 2 mg/ml tunicamy-
cin (Calbiochem) for 12 h. All coverslips were mounted
using hard set vectashield containing DAPI unless
Cy2-conjugated goat anti-mouse IgG was used. In this
instance, vectashield was used as mounting agent (Vector Lab-
oratories, Burlingame, CA, USA).

Microscopy

Images were captured with an Olympus BX51 microscope or
using a Zeiss Axiovert confocal laser scanning microscope.
All acquisition settings were kept constant between samples,
and colours were applied using Image J.

Statistics

Statistical analysis was performed using Student’s t-test, two
sample assuming unequal variance, apart from densitometry

analysis of western blots where one sample t-test was used
with a predicted value of 100% for the WT.
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Neurobiology of Disease

Loss of �-III Spectrin Leads to Purkinje Cell Dysfunction
Recapitulating the Behavior and Neuropathology of
Spinocerebellar Ataxia Type 5 in Humans
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Mutations in SPTBN2, the gene encoding �-III spectrin, cause spinocerebellar ataxia type 5 in humans (SCA5), a neurodegenerative
disorder resulting in loss of motor coordination. How these mutations give rise to progressive ataxia and what the precise role �-III
spectrin plays in normal cerebellar physiology are unknown. We developed a mouse lacking full-length �-III spectrin and found that
homozygous mice reproduced features of SCA5 including gait abnormalities, tremor, deteriorating motor coordination, Purkinje cell
loss, and cerebellar atrophy (molecular layer thinning). In vivo analysis reveals an age-related reduction in simple spike firing rate in
surviving �-III �/� Purkinje cells, whereas in vitro studies show these neurons to have reduced spontaneous firing, smaller sodium
currents, and dysregulation of glutamatergic neurotransmission. Our data suggest an early loss of EAAT4- (protein interactor of �-III
spectrin) and a subsequent loss of GLAST-mediated uptake may play a role in neuronal pathology. These findings implicate a loss of �-III
spectrin function in SCA5 pathogenesis and indicate that there are at least two physiological effects of �-III spectrin loss that underpin a
progressive loss of inhibitory cerebellar output, namely an intrinsic Purkinje cell membrane defect due to reduced sodium currents and
alterations in glutamate signaling.

Introduction
Dominant spinocerebellar ataxias (SCAs) are a heterogeneous
group of inherited neurodegenerative disorders characterized by
postural abnormalities, progressive motor incoordination, and
cerebellar degeneration (Dueñas et al., 2006; Soong and Paulson,
2007). Recently, using a large kindred descended from the grand-
parents of President Abraham Lincoln, mutations in SPTBN2,
the gene encoding �-III spectrin, were found to cause spinocer-
ebellar ataxia type 5 (Ikeda et al., 2006). However, the mechanism
through which the in-frame deletions and missense mutations
cause disease is still unknown, with toxic gain-of-function, loss-
of-function with a dominant-negative effect on wild-type pro-
tein, or haploinsufficiency all being possibilities.

Spectrins, heterotetramers consisting of two � and two � sub-
units, are important structural components of the plasma mem-

brane skeleton and are thought to play a significant role in
restricting and stabilizing membrane-spanning proteins within
specific subdomains of the plasma membrane. �-III spectrin is
primarily expressed in the nervous system with the highest levels
of expression in the cerebellum, where it is found in Purkinje cell
soma and dendrites (Sakaguchi et al., 1998; Jackson et al., 2001).
However, transcripts are also found in a number of different
organs (Stankewich et al., 1998), and low levels of �-III spectrin
protein are detected in kidney and liver (our unpublished obser-
vation). We have shown that �-III spectrin interacts with EAAT4,
the glutamate transporter predominately expressed in Purkinje
cells, and stabilizes it at the plasma membrane (Jackson et al.,
2001). This implicates �-III spectrin in clearance of glutamate
from the synaptic cleft, and consequently both modulation of
glutamatergic neurotransmission and prevention of glutamate-
mediated neurotoxicity. Other investigators have shown �-III
spectrin interacts with ARP1 and is found in a complex with
dynactin (Holleran et al., 2001). Since dynactin is the acces-
sory protein that mediates the association of dynein with cyto-
plasmic vesicles, another suggested function of �-III spectrin
is to facilitate protein trafficking by linking the microtubule
motor to vesicle-bound cargo. An earlier study also suggested
that �-III spectrin associates with Golgi and cytoplasmic vesicles
(Stankewich et al., 1998). In the case of Drosophila and Caeno-
rhabditis elegans, which have only one form of �-spectrin, loss of
�-spectrin results in destabilization of the neuromuscular junc-
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tion through loss of synaptic cell-adhesion molecules (Pielage
et al., 2005) and axonal breakage (Hammarlund et al., 2007),
respectively.

To further investigate the role of �-III spectrin in normal
cerebellar development and SCA5 disease pathogenesis, we gen-
erated a mouse model in which �-III spectrin expression is dis-
rupted. Here, we show that a functional �-III spectrin knock-out
mouse (�-III�/�) develops characteristic features of cerebellar
ataxia including progressive motor incoordination, a wider hind-
limb gait, tremor, cerebellar atrophy, and Purkinje cell loss, thus
resembling clinical cases. Therefore, the �-III�/� mouse is a new
model of cerebellar ataxia and, furthermore, our results implicate
several physiological defects arising from loss of �-III spectrin in
disease pathogenesis.

Materials and Methods
Creation of �-III spectrin-deficient mice. Mouse �-III spectrin gene was
cloned from a 129Sv mouse BAC library (ResGen). To construct the
targeting vector, two gene fragments were subcloned into the vector
pPNT: a 2.0 kb KpnI fragment containing intron 6 was cloned in between
the PGK-neo selection cassette and the PGK-tk cassette to form the 3�
homology region; and a 7.0 kb XhoI-Sse I fragment containing exons 1
and 2 was cloned upstream of the PGK-neo cassette forming the 5� region
of homology. The targeting vector was linearized with NotI and electro-
porated into 129/Ola embryonic stem (ES) cells (clone E14Tg2a). Stably
transfected ES cell clones were isolated after double selection with G418
and ganciclovir, and homologously recombined ES cell clones identified
by Southern blotting. Genomic DNA from 700 G418- and ganciclovir-
resistant ES clones was digested with SphI and transferred to Hybond-N
membrane (GE Healthcare). A 208 bp and a 160 bp intronic fragment,
external to vector, were used as 5� and 3� probes, respectively. Correctly
targeted ES clones were karyotyped and used for blastocyst injections.
The resulting chimeric males were bred with C57Bl6J females to identify
germ-line transmission by agouti coat color. Heterozygous F1 mice were
then backcrossed with C57Bl6J for at least six further generations. All
procedures involved in generation and analysis of mutant mice were
performed according to the United Kingdom Animals (Scientific Proce-
dures) Act (1986) and other Home Office regulations under specific
pathogen-free conditions.

Genotyping. Animals were genotyped by PCR analysis on genomic
DNA extracted from ear notch biopsies using ChargeSwitch gDNA tissue
kit (Invitrogen). A common upstream primer (5�-gagcgagaagccgtgcagaag-
3�) and primers specific for the wild-type allele (5�-aggatgatggtccacactagcc-3�)
and the PGK-neo cassette in the mutant allele (5�-ctaccggtggatgtggaatg-3�)
were used for amplification. The 710 bp (from wild-type allele) and 562
bp (from targeted allele) PCR products were resolved by electrophoresis
on a 1% agarose gel. �-III spectrin-deficient mice were fully viable and
generally born at a ratio consistent with Mendelian inheritance (1:2:1).
Litters composed of 41 wild-type (WT), 79 �-III �/�, and 44 �-III �/�

animals.
Immunoblotting. Whole cerebella were homogenized in 400 �l of ice-

cold homogenization buffer [20 mM HEPES, pH 7.4, 1 mM EDTA, 1 mM

phenylmethylsulfonyl fluoride, and Protease Inhibitor Cocktail Set III
(Calbiochem)] with a Teflon-glass homogenizer. Protein concentrations
were determined using Coomassie-Plus Reagent and bovine serum albumin
as standard (Pierce). Protein samples were resolved by denaturing SDS-
PAGE and transferred to nitrocellulose membranes (GE Healthcare, Phar-
macia). The membranes were blocked for 1 h at room temperature with 5%
w/v nonfat dry milk in Tris-buffered saline/Tween 20 (TBS/T) (20 mM Tris,
17 mM NaCl, pH 7.6, with 0.1% v/v Tween 20). Blots were incubated over-
night at 4°C with either rabbit anti-�III spectrin, -EAAT4, -GLAST (1:200),
-GLT1 (1:4000), -GluR1 (1:1000; AbCam), or mouse anti-actin,
-calbindin (1:1600; Sigma) in blocking buffer. After washing with TBS/T,
the blots were incubated for 1 h at room temperature with either HRP-
conjugated donkey anti-rabbit IgG, or HRP-conjugated sheep anti-
mouse IgG (1:4000; GE Healthcare, Pharmacia). Immunoreactive
proteins were visualized with ECL (Insight Biotechnology).

Immunohistochemistry. Brains were removed and immersion fixed
with 4% paraformaldehyde in 0.1 M sodium phosphate buffer, pH 7.4,
overnight at 4°C and cryoprotected by immersion in 0.1 M sodium phos-
phate buffer, pH 7.4, containing 30% sucrose. Tissue was quick-frozen
on dry ice, then 15-�m-thick cerebellar sections were cut and fixed onto
microscope slides coated with poly-L-lysine. After air drying for 30 min,
sections either were stained for Nissl with cresyl violet (0.25%) or immu-
nostained. All quantification was performed in a blinded manner on
Nissl-stained sections by counting the number of Purkinje cells along a 1
mm linear length in folia II, III, IV, VI, and VIII (these folia were found to
be the most consistent in shape between animals) and the counts aver-
aged for each animal. The thickness of the molecular layer was measured
in each animal at the same three points within each of the five chosen folia
and the 15 measurements averaged. For deep cerebellar nuclei (DCN)
counts, four areas (150 �m 2 each) were measured and the counts aver-
aged for each animal. For immunostaining, sections were incubated for
1 h with blocking solution (5% normal goat serum with 0.4% Triton
X-100 in PBS. Rabbit anti-�-III spectrin, anti-EAAT4 or mouse anti-
calbindin primary antibody (1:50) (2% normal goat serum/0.1% Triton
X-100 in PBS) was applied for 1 h at room temperature. Sections were
washed three times in PBS before applying goat anti-rabbit FITC-
conjugated secondary antibody (Cappel) or goat anti-mouse Cy-3-
conjugated secondary antibody (Jackson ImmunoResearch) for 1 h at
room temperature followed by three rinses in PBS and coverslipping with
Vectashield (Vector Laboratories). Mouse anti-calbindin primary anti-
body (1:50) and anti-Neu-N antibody (1:100; Millipore Bioscience Re-
search Reagents) was applied overnight at 4°C and biotinylated
universal horse anti-mouse/rabbit IgG, diluted at 1:200 in PBS, was
applied for 1 h at room temperature. Detection of biotinylated sec-
ondary antibody was performed using ABC method with DAB and
H2O2 used as peroxidase substrate (Vector Laboratories). Images
were captured with an Olympus IX70 fluorescence microscope using
Openlab software (Improvision) or a Zeiss inverted LSM510 confocal
laser scanning microscope.

Electron microscopy. Brains were dissected out and immersion fixed
overnight (4°C) with a mixture of 2% paraformaldehyde and 2% glutar-
aldehyde in 0.1 M sodium cacodylate buffer, pH 7.3. Specimens were
postfixed in 1% osmium tetroxide in 0.1 M sodium cacodylate for 45 min,
washed three times in 0.1 M sodium cacodylate buffer, and dehydrated in
50%, 70%, 90%, and 100% normal grade acetones for 10 min each,
followed by two 10 min changes in analar acetone. Samples were embed-
ded in Araldite resin, and 1-�m-thick sections cut, stained with toluidine
blue, and viewed in a light microscope to select suitable areas for inves-
tigation. Ultrathin 60-nm-thick sections were cut from selected areas,
stained with uranyl acetate and lead citrate, and viewed in a Phillips
CM120 transmission electron microscope (FEI). Morphological criteria
used were irregular cell body, dark cytoplasm, and shrinkage. Images
were taken on a Gatan Orius CCD camera.

Semiquantitative reverse transcriptase-PCR. Total RNA was extracted
from mouse cerebellum using RNeasy Mini kit (Qiagen), and reverse
transcriptase (RT)-PCRs were performed using One-Step RT-PCR kit
(Qiagen) according to manufacturer’s instructions. Primers for RT-
PCRs located in exon 1, 7, 34, and 36 of �-III spectrin were: F1
5�-atgagcagcactctgtcacccact-3�; R7 5�-gccaattcttttgccttccacagc-3�; F34
5�-ggcccagggaagtgtggcctt-3�; and R36 5�cttaaagaagctgaatcgtttttctgc-3�.
Amplification of the ubiquitously expressed elongation factor � was used
to control for RNA levels (Stratagene).

Cell culture and transfection. �-III spectrin cDNA lacking exons 2– 6
was subcloned into the NotI site of pCDNA3.1 (Invitrogen) and a Myc-
tagged pRK5 vector. For microscopic observation, HEK293 and
Neuro2A cells were plated onto coverslips coated with poly-L-lysine in 35
mm dishes and transfected with 1 �g of each DNA construct using Fu-
gene reagent (Roche) in accordance with the manufacturer’s instruc-
tions. Anti-c-myc (Ab-1; Calbiochem) and tetramethylrhodamine
isothiocyanate-conjugated goat anti-mouse IgG (SouthernBiotech) were
used for immunofluorescence. For cell homogenates and biotinylation
assays, HEK and HEK-rEAAT4 cells, respectively, were plated onto 35
mm dishes and transfected with 4 �g of each DNA using Lipofectamine
2000 (Invitrogen) according to manufacturer’s instructions.
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Motor coordination tests. Footprint patterns were analyzed using a run-
way (80 cm by 10.5 cm wide) with white paper at the bottom. Hindpaws
of animals were dipped in nontoxic, water-soluble black ink (Indian Ink,
Winsor & Newton). Three consecutive strides were measured for each
animal. Stride length measurements were taken from the base of two
consecutive paw prints on the same side, and the base width was mea-
sured as the distance between the center of one paw print to the center of
the next print on the opposite side. The elevated beam test was performed
using a narrow horizontal beam (2 cm wide, 80 cm long, held at a height
of 30 cm from the table). The number of hindpaw slips the animal made
while traversing the beam were counted. For the hanging wire test, mice
were placed on a wire cage lid, which was turned upside down, and the
latency to fall measured. A 60 s cutoff time was used. In the rotarod test,
the ability of mice to maintain balance on a stationary (maximum time,
60 s) or rotating (3, 5, and 10 rpm) 3-cm-diameter cylinder was assessed
(TSE Rotarod) and the time a mouse remained on the accelerating cyl-
inder recorded (maximum, 120 s).

Glutamate uptake assays. Each cerebellum was homogenized in 800 �l
of tissue buffer (5 mM Tris/320 mM sucrose, pH 7.4) with Protease Inhib-
itor Cocktail Set III (Calbiochem), using Teflon-glass homogenizer. Each
sample was split and pellets washed twice in ice-cold Tissue Buffer, before

being resuspended in either Na �-containing Krebs buffer (120 mM

NaCl, 25 mM NaHCO3, 5 mM KCl, 2 mM CaCl2, 1 mM KH2PO4, 1 mM

MgSO4, 10% glucose) or Na �-free Krebs (120 mM choline-Cl and 25
mM Tris-HCl, pH 7.4, substituted for NaCl and NaHCO3, respectively).
Samples were then incubated with 5 �M

3H-glutamate for 10 min at 37°C
and uptake stopped by placing back on ice. Pellets were washed twice
with Wash Buffer (5 mM Tris/160 mM NaCl, pH 7.4) and radioactivity
measured using a scintillation counter. Na �-dependent uptake was de-
termined by subtracting Na �-free counts.

In vivo electrophysiology. Extracellular recordings were obtained from
Purkinje cells in the vermis of the posterior lobe (lobules V and VI) in WT
and �-III �/� mice anesthetized with intraperitoneal injection of 1.5 g/kg
urethane (solution at 12.5%). The head of the animal was immobilized in
a stereotaxic frame and the cerebellum exposed by a craniotomy extend-
ing from the obex to the lamboidal ridge. The dura was opened along the
midline, and the brain covered with a mixture of paraffin oil and vaseline
to prevent dessication. Glass microelectrodes filled with 0.9% NaCl were
placed �1 mm on either side of the midline then lowered into the vermis
using a hydraulic micromanipulator (Narishige). Recordings of the
spontaneous firing activity were made to a depth of 2 mm. Purkinje cells
were identified by their characteristic firing of complex spikes followed

Figure 1. Progressive motor impairment in �-III �/� mice. A, Western blot analysis of whole cerebellar homogenates (10 �g) confirms full-length �-III spectrin (270 kDa) is absent in �-III �/�

mice, but a smaller molecular weight protein (�250 kDa; arrowhead) is expressed at low levels in �-III �/� and �-III �/� animals. Degradation product is identified by an asterisk. Calbindin levels
confirm equal protein loading. B, Cerebellar sections, from 3-week-old mice, immunostained with anti-�-III spectrin and anti-calbindin antibody show intense �-III labeling (arrow) of WT (�/�)
dendritic tree but faint staining in �-III �/� mice, although still present in proximal and distal dendrites. ML, Molecular layer; PCL, Purkinje cell layer. Scale bar, 50 �m. C, Left, Representative
footprints of 18-week-old WT and �-III �/� littermates. Base width shown by double arrow and stride length by solid line. Right, Summary data showing significant increase in �-III �/� base
width compared with WT at 18 weeks ( p � 0.0078), 6 months ( p � 2.82 � 10 �6), and 1 year ( p � 0.02) of age. D, Time mice remained on stationary rod before falling reveals 6-month-old and
1-year-old �-III �/� mice are impaired ( p � 0.004 and 0.0007). Mice were given four consecutive trials, with maximum time of 60 s. E, Latency of 3-week-old animals to fall from rotarod at 3, 5,
and 10 rpm. Mice were given four trials per day and allowed a maximum retention time of 120 s per trial. Both genotypes improved performance during consecutive days at 3 and 5 rpm, but difference
in latency to fall remained significant in all comparisons, except on day 3 at 3 rpm (p � 0.218). F, 6-month-old �-III �/� mice failed to stay on rotarod at 3 rpm and showed no improvement.
G, Number of hindlimb slips �-III �/� mice made when crossing narrow, elevated beam increased from 12 weeks of age ( p � 0.001 and 0.0006). All data are means � SEM (WT, N � 5–12;
�-III �/�, N � 4 –15). *p � 0.05; **p � 0.01; ***p � 0.001.
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by a pause in simple spike firing (see Fig. 5).
Spike activity was digitized at 10 kHz for a min-
imum of 3 min for each cell of interest, using
Spike2 software (CED). The mean firing rates
of complex and simple spikes were quantified
using analysis functions in the Spike2 software.

Slice electrophysiology. Cerebella were dis-
sected out into ice-cold modified artificial CSF
(ACSF) containing the following (in mM): 60
NaCl, 118 sucrose, 26 NaHCO3, 2.5 KCl, 11
glucose, 1.3 MgCl2, and 1 NaH2PO4 at pH 7.4
when bubbled with 95% O2:5% CO2. The cer-
ebellar vermis was glued to the vibratome
cutting platform (Dosaka EM Co) with cyano-
acrylate adhesive. Two-hundred-micrometer-
thick sagittal slices were cut and incubated for
30 min at 30°C in standard ACSF composed of
the following (in mM): 119 NaCl, 2.5 CaCl2, 26
NaHCO3, 2.5 KCl, 11 glucose, 1.3 MgCl2, and 1
NaH2PO4 at pH 7.4 when bubbled with 95%
O2:5% CO2. Slices were stored at room tem-
perature until required for recording. Slices
were transferred to a submerged recording
chamber and superfused with standard ACSF
(3–5 ml min �1) at room temperature for
voltage-clamp experiments and at 32 � 2°C for
recording spontaneous action potentials. Pur-
kinje cells were visualized with 40� immersion
objective and Normarski differential interfer-
ence contrast optics. Whole-cell recordings
were obtained from Purkinje cells using thick-
walled borosilicate glass pipettes pulled to 5– 8
M	. For recording action potentials, the inter-
nal solution contained the following (in mM):
125 K-gluconate, 15 KCl, 10 HEPES, 5 EGTA, 2
MgCl2, 0.4 NaGTP, 2 NaATP, and 10 Na-
phosphocreatine, adjusted to pH 7.4 with
KOH. For parallel fiber (PF)-mediated EPSC
(PF-EPSC) measurements, the internal solu-
tion contained the following (in mM): 108
Cs-methanesulfonate, 9 NaCl, 9 HEPES, 1.8
EGTA, 1.8 MgCl2, 0.4 NaGTP, 2 MgATP, 63 su-
crose, and 5 QX-314, adjusted to pH 7.4 with
CsOH. Picrotoxin (50 �M) was added to the
ACSF. PF-EPSCs were evoked by placing a patch pipette filled with stan-
dard ACSF at the same position in the molecular layer and applying a
range of stimuli (1.5–5.0 V, 200 �s duration). Pairs of PF-EPSCs (100 ms
apart) were evoked at 0.033 Hz, and a minimum of three PF-EPSCs were
averaged under each condition. Series resistances were �15 M	 and
were compensated for by 40 – 60%. Membrane currents and voltages
were filtered at 5 kHz and sampled at 10 and 200 kHz, respectively, for
voltage-clamp and current-clamp experiments. Data were acquired us-
ing pClamp 9 (Molecular Devices) and analyzed using IGOR Pro (Wave-
metrics). The amplitudes and decay time constants of PF-evoked EPSCs
were measured using the ChanneLab analysis program (Synaptosoft Inc).

Dissociated Purkinje cell electrophysiology. Purkinje cells were isolated
from P16 –P20 mice using dissociation techniques modified from Raman
and Bean (1997). Isolated Purkinje cells were visually identified by their
large, pear-shaped soma (due to the stump of the apical dendrite). The
control extracellular recording solution contained the following (in mM):
110 TEA-Cl, 25 NaCl, 2 BaCl2, 0.3 CdCl2, 10 HEPES, and 10 glucose,
buffered to pH 7.4 with NaOH. Recordings were made at room temper-
ature with borosilicate pipettes (3–5 M	) containing the following (in
mM): 117 CsCl, 9 EGTA, 9 HEPES, 1.8 MgCl2, 14 Na-phosphocreatine, 4
MgATP, and 0.3 NaGTP, adjusted to pH 7.4 with CsOH. To isolate the
TTX-sensitive Na � current voltage protocols were repeated in the pres-
ence of 300 nM TTX and subtracted from the control recordings.

Statistics. Statistical analysis was performed using Student’s t test, two
samples assuming unequal variance, apart from densitometry analysis of

Western blots where one sample t test was used with a predicted value of
100% for WT and proportion data were arcsine transformed before t test.

Results
Generation of �-III spectrin-deficient mice
We used targeted recombination to knock out expression of �-III
spectrin, and our targeting strategy involved replacing exons 3– 6
with the neomycin-resistance gene (see Materials and Methods).
In the recombinant allele, when exon 2 is spliced onto exon 7 this
will disrupt the open reading frame, introducing a premature
stop codon at the beginning of exon 7. WT (�/�), heterozygous
(�-III�/�;�/�), and homozygous (�-III�/�;�/�) progeny
were identified by PCR analysis (see Materials and Methods).

To determine whether we had successfully abolished �-III
spectrin expression, we analyzed, using a previously character-
ized polyclonal antibody raised against a C-terminal epitope of
�-III spectrin (Jackson et al., 2001), whole cerebellar homoge-
nates by Western blot analysis. This revealed that full-length �-III
spectrin (270 kDa) was absent in �-III�/� mice and its quantity
approximately halved (58.4 � 7.4% of WT) in �-III�/� animals
(Fig. 1A). However, a smaller molecular weight protein was de-
tected, at low levels, in �-III�/� mice (18.8 � 2.2% of full-length
�-III spectrin in WT) (Fig. 1A) and �-III�/� mice but not WT

Figure 2. Cerebellar degeneration in old �-III �/� spectrin mice. A, Cerebellar sections immunostained with anti-calbindin D
antibody reveal some ectopically expressed Purkinje cells (arrow) in 3-week-old �-III �/� mice and shrunken Purkinje cell soma
in 6-month-old and 1-year-old �-III �/� mice. ML, Molecular layer; GCL, granule cell layer; PCL, Purkinje cell layer. Scale bar, 50
�m. B, Mean Purkinje cell density measured from cerebellar folia II-IV, VI, and VIII shows Purkinje cell loss in 6-month-old and
1-year-old but not 3-week-old �-III �/� mice. C, Mean molecular layer thickness shows thinning of molecular layer in old
�-III �/� mice. All data are means � SEM. *p � 0.05; **p � 0.01; ***p � 0.001.
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animals. Confocal immunofluorescence microscopy revealed
that this protein was still located throughout the �-III�/� Pur-
kinje cell dendritic tree but, consistent with results from Western
blot analysis, at a substantially reduced level when compared with
WT �-III spectrin (Fig. 1B).

We determined that the smaller molecular weight protein
arises from exon 1, not exon 2, being spliced onto exon 7 in the
targeted but not WT allele (supplemental Fig. 1A, available at
www.jneurosci.org as supplemental material). This retains the
reading frame, and so no premature stop codon is introduced.
Therefore, the mutant mice lack full-length �-III spectrin but
express, at a low level, a form of �-III spectrin (�250 kDa) that
lacks most of the actin-binding domain encoded by exons 2– 6
(supplemental Fig. 1B, available at www.jneurosci.org as supple-
mental material). In vitro studies demonstrate that 
2-6�III pro-
tein has no obvious gain-of-function or adverse property but, if
anything, appears to be less functional than WT (supplemental
Fig. 1C–F, available at www.jneurosci.org as supplemental mate-
rial), providing persuasive evidence that the �-III�/� mouse is a
functional knock-out (hypomorph).

�-III spectrin deficiency causes cerebellar ataxia
To test whether �-III�/� mice show signs of ataxia, we first ana-
lyzed the footprint patterns of 6-week-old to 1-year-old animals

for differences in base width and stride
length (Fig. 1C). Hindlimb gait of �-III�/�

mice became progressively wider than
that of littermate WT mice, but there was
no significant alteration in step length at
any age. However, variation in walking
speed down the runway introduced heter-
ogeneity in stride length that may have
masked genotype-dependent differences.

To quantify motor performance and
coordination, we used three behavioral
tests: stationary rod, rotarod, and elevated
beam. We found no significant difference
at 3 weeks of age between �-III�/� and
WT mice in maintaining balance on a sta-
tionary rod, whereas 6-month-old and
1-year-old �-III�/� mice struggled to
maintain balance (Fig. 1D). Performance
of young �-III�/� mice on a rotating rod
(3 rpm) was initially significantly below
that of WT animals (Fig. 1E). However,
the performance improved on days 3 and
4, demonstrating that �-III�/� mice are
able to learn motor tasks and can perform
well when the task is relatively easy. When
the speed was increased to 5 rpm, again
�-III�/� mice fell off more rapidly than
WT controls, and at 10 rpm they showed
no improvement during consecutive days
of testing (Fig. 1E). In contrast, by 6
months of age �-III�/� mice performed
much worse and showed no improvement
even at 3 rpm (Fig. 1F; see supplemental
video, available at www.jneurosci.org as
supplemental material). To test whether
weakness contributed to poorer rotarod
performance, we evaluated muscle strength
with a hanging wire test. There was no sig-
nificant difference between the perfor-

mance of �-III�/� mice and WT animals at any age, suggesting
no muscle weakness (supplemental Fig. 2A, available at www.
jneurosci.org as supplemental material). Defects in motor per-
formance were also not due to body size variation as there was no
significant difference in body weight (supplemental Fig. 2B,
available at www.jneurosci.org as supplemental material). Fi-
nally, an elevated beam test was used to evaluate motor coordi-
nation and balance. The beam width was 2 cm, so that impaired
coordination and balance would result in hindlimb errors. The
�-III�/� mice were generally more hesitant to cross the beam
compared with WT animals (see supplemental video, available at
www.jneurosci.org as supplemental material) and when turning
sometimes fell off the beam, which WT mice never did. Counting
the number of slips made by each animal while traversing the
beam showed that �-III�/� mice made more, and generally big-
ger, slips than WT littermates from 12 weeks of age (Fig. 1G).
However, �-III�/� mice remain ambulatory and do not fall when
walking, resembling a mild form of ataxia that is observed in
SCA5 patients, in contrast to SCA1 transgenic mice, which dis-
play a more severe form of ataxia (Burright et al., 1995). Finally, a
tremor, a characteristic of some forms of cerebellar ataxia, was
observed in �-III�/� mice (see supplemental video, available at
www.jneurosci.org as supplemental material).

Figure 3. Signs of glutamate-mediated excitotoxicity in �-III �/� Purkinje cells. A1–B2, Ultrastructural analysis of cerebellar
sections from 6-month-old mice shows normal cell bodies in WT (A1, A2) but shrunken and electron dense soma in �-III �/� (B1,
B2). A1, B1, 170� magnification; scale bar, 20 �m. A2, B2, 750� magnification; scale bar, 5 �m. A3, B3, Electron micrographs
(8400� magnification; scale bars, 0.5 �m) show dilated smooth endoplasmic reticulum (ER) (B3, white arrowhead), and frag-
mented Golgi cisternae (arrow) with increased number of vesicles, some of which are invaginated (black arrowhead) in �-III �/�

Purkinje cell somas compared with abundant rough ER (A3, white arrowhead) and normal Golgi apparatus (arrow) in WT. ML,
Molecular layer; GCL, granule cell layer; mt, mitochondria; all Purkinje cell bodies outlined. *Denotes from which cell high-
magnification images were obtained. Note different cell orientation in A2 and B2 compared with A1 and B1.
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Thinning of molecular layer and Purkinje cell loss in
�-III �/� mice
We then looked for cerebellar atrophy and Purkinje cell loss, other
features of patients with ataxia, in �-III�/� mice. Staining and quan-
tification of cerebellar sections (see Materials and Methods) revealed
a thinning of the molecular layer, generally correlated with degener-
ation of dendrites (He et al., 2006), and a progressive loss of Purkinje
cells at 6 months (WT, 50.4 � 3 cells/mm; �-III�/�, 39 � 1.9 cells/
mm; N � 4 and 3, respectively; p � 0.035; and WT, 156.2 � 3 �m;
�-III�/�, 112.2 � 3.1 �m; 73 � 2.5% of WT; p � 1.71 � 10�5) and
1 year of age (WT, 44.7 � 2.3 cells/mm; �-III�/�, 26.9 � 1.5 cells/
mm; N � 4; p � 0.001; and WT, 150 � 8.5 �m; �-III�/�, 109.3 �
4.7 �m; 73 � 3.1% of WT; p � 0.005). This is not observed in young
(3-week-old) �-III�/� animals (WT, 51 � 3.4 cells/mm; �-III�/�,
50.6 � 3.8 cells/mm; N � 10 and 9, respectively; p � 0.94; and
WT, 157.5 � 6.4 �m; �-III�/�, 144.1 � 3.4 �m; p � 0.097) (Fig.
2). There was no obvious variation in the pathology of the
lobules examined, with the same degree of neuronal loss and
atrophy being detected in all five examined. Immunostaining
also highlighted that the remaining Purkinje cell somas in old
�-III�/� animals were generally smaller (WT, 14.5 � 0.13 �m;
�-III�/�, 11.6 � 0.27 �m; N � 3, n � 100/animal; p � 0.0025)
and more irregularly shaped compared with WT littermates. It
also revealed that in young �-III�/� mice more Purkinje cells
were found to lie outside the Purkinje cell layer (WT, 0.28 �
0.17%; �-III�/� 3 � 0.34%, N � 3, n � 350 –520/animal; p �
0.006) (Fig. 2A), a finding also observed in SCA1 mutant mice
(Burright et al., 1995), whereas, we saw no differences in the
densities of DCN among genotypes at any age (supplemental Fig.
3, available at www.jneurosci.org as supplemental material).

Also, no gross morphological change (cell layer thickness) or
neuronal loss was observed in hippocampus (CA1 or CA3), cor-
tex, or dentate gyrus (supplemental Table 1, available at www.
jneurosci.org as supplemental material).

Subsequent ultrastructural analysis using transmission
electron microscopy of Purkinje cells confirmed somal shrink-
age and revealed an age-dependent accumulation of cells un-
dergoing “dark cell degeneration” (Fig. 3), a process linked to
AMPA receptor-elicited delayed excitotoxicity (Garthwaite
and Garthwaite, 1991; Turmaine et al., 2000), in �-III�/� mice.
In 8-month-old �-III�/� animals, the percentage of Purkinje
cells with normal morphology, relative to WT, was 29 � 2.1% com-
pared with 94.5 � 1.9% at 8 weeks of age (8 weeks: N � 4, n �
18–35/animal; 8 months: N � 5, n � 7–18/animal; ***p � 7.2 �
10�6). These cells showed irregular somal morphology, increased
electron density, dilated cisternae of endoplasmic reticulum de-
nuded of ribosomes, and changes to Golgi apparatus (numerous
vesicles, some of which were invaginated, a sign of Golgi frag-
mentation (Siddhanta et al., 2003)).

Loss of glutamate transporter expression in �-III �/� mice
We therefore examined levels of EAAT4, the Purkinje cell-
specific glutamate transporter, in �-III�/� mice, since our previ-
ous work showed EAAT4 interacts with and is stabilized by �-III
spectrin (Jackson et al., 2001). Moreover, dramatic changes in
EAAT4 distribution were seen in SCA5 autopsy tissue (Ikeda et
al., 2006). Even at 3 weeks of age, a decrease in EAAT4 protein was
obvious in �-III�/� mice compared with WT littermate controls
(66.5 � 3.5% of WT; N � 6 each; p � 0.0002) (Fig. 4A). Values
were normalized to calbindin, a Purkinje cell-specific marker.

Figure 4. Loss of neuronal and astroglial glutamate transporters in �-III �/� mice. A, Top, Representative Western blots illustrating loss of EAAT4 protein in �-III �/� mice from 3 weeks of age.
Loss of astroglial glutamate transporter GLAST observed in �-III �/� mice from 12 weeks of age. No loss of GLT1 seen at any age. Bottom, Densitometry data quantifying levels. EAAT4 levels
normalized with calbindin, a Purkinje cell-specific marker ( p � 0.02 for all ages). GLAST and GLT1 normalized with actin. B, Cerebellar sections immunostained with anti-GFAP antibody show no
astrogliosis in 1-year-old �-III �/� mice. C, Glutamate uptake assays on whole cerebellar homogenates show reduced uptake in �-III �/� mice from 12 weeks of age. All data are means � SEM
(N � 3– 6). *p � 0.05; **p � 0.01.
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Immunofluorescence microscopy reveals that in �-III�/� mice
the remaining EAAT4 is still located throughout the dendritic
tree (supplemental Fig. 4, available at www.jneurosci.org as sup-
plemental material). In contrast, no loss of the astroglial gluta-
mate transporters GLAST (103.2 � 7.4% of WT; p � 0.687) and
GLT1 (102.7 � 5.1% of WT; p � 0.62) was observed at this early
stage.

Western blot analysis and densitometry (Fig. 4A) did reveal a
progressive reduction in GLAST protein compared with litter-
mate controls in 12-week-, 6-month-, and 1-year-old animals
(81.5 � 5.5% of WT, p � 0.0206; 64 � 5% of WT, p � 0.0055;
44.3 � 13% of WT; p � 0.05; N � 3 each) in addition to the fairly
consistent loss of EAAT4 (67.3 � 6.2% of WT, p � 0.0033; 50.5 �
5.9% of WT, p � 0.0035; 62 � 5.5% of WT, p � 0.02). In contrast,
no reduction in GLT1 levels was observed at any age (108.3 �
2.4%; 95.8 � 2.4%; 111.7 � 16.9%, respectively). The fact there
was no difference in GFAP expression in old �-III�/� animals
(Fig. 4B) suggests that the progressive loss of GLAST was not a
consequence of global defects in Bergmann glial integrity.

To investigate whether a loss of transporter protein corre-
sponded to a loss in cerebellar glutamate uptake, we measured
uptake of radioactively labeled glutamate into crude cerebellar
membrane preparations. We found a slight reduction in 12-
week-old �-III�/� animals (83.5 � 6.4% of WT; N � 3 and 4; p �
0.08) when the ataxic phenotype starts to become obvious, and
further losses in 6-month-old and 1-year-old animals when the
motor deficits are more pronounced (70 � 7.6% of WT, p � 0.047,

and 49.2 � 9.7% of WT, p � 0.034, respectively; N � 3 each) (Fig.
4C). Together, these results suggest that impaired glutamate uptake,
resulting from loss of EAAT4 and GLAST, correlates with neuronal
degeneration and plays a role in disease progression.

Reduced in vivo Purkinje cell simple spike firing rate in
�-III �/� mice
Purkinje neurons provide the sole output from the cerebellar
cortex, in the form of inhibitory inputs to the DCN, and so it is
their firing rate that encodes the timing signals essential for mo-
tor planning, execution, and coordination. They are one of a few
neuronal populations that fire regularly in the absence of synaptic
input, but integration of excitatory and inhibitory inputs modu-
lates their output (Häusser and Clark, 1997). We therefore re-
corded the in vivo firing pattern of Purkinje cells in 12-week-old
and 8-month-old �-III�/� and WT mice (Fig. 5). We found that
the simple spike firing rate was much less at 8 months than 12
weeks in �-III�/� mice compared with WT animals, indicating
an age-related decrease in output from surviving Purkinje cells.
There was no difference in the firing rate of complex spikes, but
some Purkinje cells from 8-month-old animals appeared to fire
only complex spikes, with the number of such cells being greater
in �-III�/� mice (WT, 1 of 9 cells; �-III�/�, 5 of 15 cells). These
cells were not included in the calculation of the mean simple spike
firing rate.

Reduced spontaneous activity in �-III �/� mice
To identify a possible cellular basis for the impaired Purkinje cell
output in �-III�/� mice, we first measured spontaneous activity
in vitro (Fig. 6A). We found an approximately twofold reduction
in cells from 3-week-old �-III�/� animals (18.3 � 2.6 Hz; N � 2,
n � 7) compared with WT cells (43.4 � 3.5 Hz; N � 3, n � 9; p �
5.22 � 10 5). The difference in the firing rate was not abolished in
the presence of bicuculline, an inhibitor of GABAergic neuro-
transmission, demonstrating that the observed reduction is not
due to increased inhibition. There was also very little effect on
firing rate when excitatory inputs were blocked with NBQX, re-
vealing very little tonic excitatory input within the in vitro slice,
similar to published data (Häusser and Clark, 1997). Therefore,
the observed reduction is due to an intrinsic membrane defect
(i.e., altered ion channel activity) in �-III�/� Purkinje cells.
There was no further reduction in firing frequency observed in
cells from 6-month-old �-III�/� animals (20.8 � 1.2 Hz; N � 2,
n � 16; p � 0.432), suggesting that the intrinsic defect does not
underlie the progressive nature of the disease phenotype. No sig-
nificant difference in cell input resistance, indicating no
change in “leak” conductance, or zero current potential was
detected between the two genotypes in either 3-week-old (WT,
74 � 12 M	; �-III �/� 78 � 8 M	; and WT, �55 � 1 mV;
�-III �/�, �54 � 3 mV) or 6-month-old animals (WT, 78 � 6
M	; �-III �/�, 76 � 6 M	; and WT, �56 � 0.3 mV; �-III �/�,
�57 � 0.8 mV).

It is known that voltage-gated potassium and sodium chan-
nels play important roles in sustaining the high-frequency tonic
firing in Purkinje cells (Raman and Bean, 1999; Sacco et al., 2006;
Zagha et al., 2008). There was no difference in action potential
properties from WT and �-III�/� Purkinje cells (half-width:
WT, 0.24 � 0.05 ms; �-III�/�, 0.23 � 0.009 ms, p � 0.287; peak:
WT, 10.9 � 1.6 mV; �-III�/�, 11.9 � 2.1 mV, p � 0.483; hyper-
polarization peak: WT, �60.6 � 1.9 mV; �-III�/�, �60.3 � 0.9
mV, p � 0.337; n � 7–10 for all analyses), suggesting that the
intrinsic firing defect was not due to a potassium channel;
whereas, when we recorded whole-cell sodium currents from acutely

Figure 5. Reduced in vivo simple spike firing rate in old �-III �/� mice compared with
young �-III �/� mice. Top, Representative trace of in vivo Purkinje cell output from 8-month-
old WT and �-III �/� animals. Complex spike (dashed box) enlarged on right of trace. Bottom,
Firing rates of 12-week-old and 8-month-old �-III �/� mice expressed as percentage of wild-
type frequency show reduction in simple but not complex spikes with age. All data are means�
SEM (12 weeks: WT, N � 3, n � 11; �-III �/�, N � 3, n � 12; 8 months: WT, N � 3, n � 8;
�-III �/�, N � 3, n � 10; p � 0.02).
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dissociated P16-20 Purkinje neurons, they
were found to be significantly smaller in
�-III�/� Purkinje cells compared with WT
cells (Fig. 6B). The current–voltage rela-
tionships were similar for both genotypes,
indicating no difference in voltage depen-
dence of channel activation, and there was
no difference in cell capacitance (WT,
10.1 � 0.5 pF; �-III�/�, 10.0 � 0.4 pF; p �
0.92), suggesting that the growth and mor-
phology of mutant Purkinje cells was the
same as wild-type Purkinje cells. In addi-
tion, the resurgent sodium current ampli-
tude, which is an important aspect of the fast
repetitive Purkinje cell firing, accelerating
depolarization between action potentials,
was also found to be smaller in �-III�/�

cells (Fig. 6C). These results suggest that it is
a sodium channel defect that underlies the
changes in the intrinsic membrane proper-
ties of �-III�/� Purkinje cells and that �-III
spectrin may play a role in maintaining a
high density of sodium channels within the
soma and dendrites, similar to �-IV spectrin
in axons (Komada and Soriano, 2002).

Altered glutamatergic transmission in
�-III �/� mice
Next, since the tonic simple spike firing
rate is increased by PF inputs, we exam-
ined, in cerebellar slices, PF-EPSCs. We
found that PF-EPSC amplitudes, at vari-
ous stimuli, were considerably larger in
6-week-old �-III�/� mice compared with
WT (Fig. 7A,B). However, no enhance-
ment in PF-EPSC peak amplitude was
seen in cells from 6-month-old �-III�/�

animals, and recordings from 1-year-old
�-III�/� animals reveal a decrease com-
pared with WT cells (Fig. 7A,B). This in-
dicates Purkinje cell excitation is initially
enhanced, which would partly offset some
of the intrinsic Purkinje cell defect, but
then progressively declines in �-III�/�

mice, compounding such deficits.
Western blot analysis of cerebellar tis-

sue from these mice shows no difference
between genotypes in the level of GluR1,
an AMPA receptor subunit, to account for
the enhancement (97.7 � 1.8% of litter-
mate controls; N � 3 and 4; p � 0.3) (Fig.
7C). There is also no difference in paired-pulse facilitation be-
tween young �-III�/� and WT mice (1.25 � 0.14 and 1.25 �
0.02, respectively; p � 0.92) at 100 ms intervals, suggesting that a
difference in release probability does not underlie the larger EPSCs.
Instead, we found, similar to other published data (Takayasu et al.,
2004), that application of TBOA, a global glutamate transporter
antagonist, enhanced EPSC amplitude in young WT cells such
that there was no longer a significant difference in amplitude
between genotypes ( p � 0.162). In contrast, a loss of AMPA
receptors (64.5 � 10% of WT; p � 0.038) (Fig. 7C) and a slight
difference in paired-pulse facilitation (WT 1.4 � 0.03; �-III�/�

1.29 � 0.03; p � 0.02) is observed in 1-year-old �-III�/� animals.

Together, the results indicate that the decreased spontaneous
firing rate arising from loss of �-III spectrin is, in young animals,
partly offset by greater excitation. However, this declines in older
animals, likely due to dendritic degeneration, and compounds
the intrinsic defect. Ultimately, the combination of Purkinje cell
death and reduced output from the surviving neurons leads to
less inhibition onto the DCN and a progressive ataxic phenotype.

Discussion
Loss of function in disease pathogenesis
In this study, we show that loss of �-III spectrin produces a phe-
notype that resembles that of SCA5 patients with gait abnormal-
ities, progressive motor coordination deficits, thinning of the

Figure 6. Reduced spontaneous firing due to smaller sodium currents in Purkinje cells from �-III �/� mice. A, Left, Represen-
tative traces of Purkinje cell spontaneous firing measured from 3-week-old WT and �-III �/� littermates. Right, Quantification of
mean firing frequency shows a reduction in spike frequency in Purkinje cells from 3-week-old �-III �/� mice compared with WT
mice. Presence of NBQX or bicuculline does not abolish genotype difference in firing rate. B, Left, Sodium current traces from
representative cells evoked with a series of 50 ms depolarizations from a holding potential of �90 mV to potentials ranging from
�80 to � 20 mV in 10 mV increments. Right, Current–voltage relationship shows reduced whole-cell current in �-III �/� mice.
C, Left, Representative traces of resurgent sodium currents in WT and �-III �/� mice. Currents evoked using a 20 ms step to � 30
mV, followed by repolarizations from –20 to –70 mV. Right, Mean peak resurgent sodium current versus voltage shows reduced
resurgent current in �-III �/� mice. All data are means � SEM. **p � 0.01; ***p � 0.001.
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molecular layer, and Purkinje cell loss (Stevanin et al., 1999; Bürk
et al., 2004; Ikeda et al., 2006). Therefore, these results suggest that
loss of �-III spectrin function underlies SCA5 pathogenesis, provid-
ing mechanistic insights into this autosomal-dominant disease. Al-
though autosomal-dominant diseases were originally thought to
result from toxic gain-of-function properties, recently several stud-
ies have implicated loss-of-function in the pathogenesis of other
dominant neurodegenerative diseases (Van Raamsdonk et al., 2005;
Thomas et al., 2006; Lim et al., 2008).

To date, heterozygous animals have displayed no obvious
ataxic phenotype (our unpublished observation), arguing against
haploinsufficiency as a disease mechanism and pointing toward
the human mutations possessing dominant-negative effects on
wild-type �-III spectrin function. Additional models in which
�-III spectrin with a known SCA5 mutation is expressed should
address this issue.

Sodium channel dysfunction may play a role in SCA5
Results from our in vitro current-clamp experiments revealed a
substantial reduction in spontaneous Purkinje neuron activity in
�-III�/� mice. It is known that several ion channels are essential for
the sustained high-frequency tonic firing of Purkinje cells (Raman
and Bean, 1999; Sacco et al., 2006; Zagha et al., 2008). Moreover,
their loss in mice has been shown to cause ataxia (Sausbier et al.,
2004; Akemann and Knopfel, 2006; Levin et al., 2006; Walter et al.,
2006), and, more importantly, loss of ion channel function has been
identified as a genetic defect in several SCA subtypes (Browne et al.,
1994; Ophoff et al., 1996; Zhuchenko et al., 1997; Waters et al., 2006).

Here, we report that there are reduced
sodium currents in acutely dissociated
Purkinje neurons from �-III�/� mice. Of
note, a mutation in the gene that encodes
Nav1.6 has been found in a patient with
cerebellar atrophy and ataxia (Trudeau et
al., 2006), and �IV-spectrin has been
shown to be required for correct localiza-
tion and stabilization of voltage-gated so-
dium and potassium channels within
axons and its loss results in progressive
ataxia (Parkinson et al., 2001; Komada
and Soriano, 2002). Together, these find-
ings suggest that sodium channel dys-
function is a factor in the pathogenesis of
some forms of SCA.

Spectrin is known to be a key factor in
forming specialized membrane domains
by linking transmembrane proteins such
as ion channels and cell-adhesion mole-
cules to membrane phospholipids and the
actin cytoskeleton (Baines, 2009). Future
analysis of �-III�/� mice will delineate
the role �-III spectrin plays in assembling
such domains as in its absence, or that of
associated proteins (Jenkins and Ben-
nett, 2001), sodium channels may no
longer be maintained within specific
subdomains, potentially contributing to
Purkinje cell dysfunction. Alternatively,
given �-III spectrin’s putative role in fa-
cilitating protein transport (Holleran et
al., 2001) sodium channels may be in-
correctly trafficked.

Role for GLAST dysfunction in Purkinje cell degeneration
We found that in older �-III�/� mice, when motor deficits are
more pronounced, there is, in addition to the loss of EAAT4 seen
in young �-III�/� mice, a loss of the astroglial transporter
GLAST and corresponding reductions in glutamate uptake.
These results and the evidence of glutamate-mediated excitotox-
icity in Purkinje cells of �-III�/� mice from 6 months onward
suggest that it may be the delayed and progressive loss of GLAST
activity that leads to Purkinje cell degeneration and the worsen-
ing ataxic phenotype. Therefore, a non-cell-autonomous mech-
anism involving GLAST dysfunction might be a pathogenic
mechanism common to several SCAs. A complete loss-of-
function mutation in EAAT1 (GLAST), with a dominant-
negative effect on wild-type protein, was recently identified in a
child with episodic and progressive ataxia (Jen et al., 2005), and
this is in accordance with the finding that a GLAST knock-out
mouse possesses motor deficits (Watase et al., 1998). Further-
more, Purkinje cell degeneration is also seen when expanded
ataxin-7 is expressed solely in Bergmann glia, resulting in im-
paired glutamate uptake and loss of GLAST (Custer et al., 2006).
Therefore, glutamate-mediated excitotoxicity, involving GLAST
dysfunction, appears to play a critical role in Purkinje cell degen-
eration. Exactly how loss of �-III spectrin gives rise to this is not
yet determined as �-III spectrin does not appear to be expressed
in Bergmann glia (our unpublished observation). One possibility
is that �-III spectrin, by orchestrating specialized microdomains
in Purkinje cells, assembles a multiprotein transmembrane com-
plex that maintains cell-to-cell contact with Bergmann glia and

Figure 7. Altered PF-EPSCs in �-III �/� mice. A, Left, Representative EPSC waveforms (4 V stimulus) from 6-week-old,
6-month-old, and 1-year-old WT and �-III �/� littermates. Right, Mean PF-EPSC amplitudes versus stimulus intensity shows
consistent differences between WT and �-III �/� cells at different stimuli. B, Mean peak amplitude of EPSCs at 4 V stimulus shows
changes in PF-evoked currents with age in �-III �/� cells (6 weeks: N � 3, n � 10, p � 0.001; 6 months: WT, N � 2, n � 10;
�-III �/�, N�2, n�9, p�0.44; 1 year: WT, N�1, n�6; �-III �/�, N�2, n�11, p�0.05). C, Western blot analysis shows
loss of GluR1 in 1-year-old but no change in 6-week-old �-III �/� mice.
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retains GLAST at the glial membrane. Alternatively, given the
role of spectrin in vesicular transport, it may be that �-III spectrin
is involved in the trafficking and secretion of trophic factors from
Purkinje cells that modulate GLAST protein levels.

Cumulative effects of different insults important for
disease progression
It is known that enhanced DCN hyperexcitability is sufficient to
induce ataxia (Shakkottai et al., 2004), and so any reduction in
GABAergic Purkinje cell output will contribute to motor deficits
by reducing inhibition onto the DCN. However, although we
identified a reduction in Purkinje cell intrinsic spontaneous fir-
ing rate in �-III�/� mice, this loss in output could not account
for the increasing disease severity as the same degree of reduction
was seen in 3-week-old and 6-month-old animals, which show
mild and more severe motor deficits, respectively.

Therefore, it is apparent that additional factors are involved in
modifying Purkinje cell output and affecting disease severity.
Furthermore, these findings highlight the cellular complexity of
cerebellar degeneration and ataxia. From the present study one
contributing factor would appear to be altered excitatory inputs.
Although previous work suggests EAAT4 to affect current decay
(Takayasu et al., 2005), our results show that in young �-III�/�

mice, loss of EAAT4, and not GLAST (Fig. 4A) corresponds with
increased EPSCs (Fig. 7A,B). One possibility for the discrepancy
is that there is less compensation from the other transporter sub-
types in �-III�/� mice compared with EAAT4 knock-out mice. It
may also be that GLAST is not in close opposition with dendritic
spines, reducing rapid removal of glutamate. In contrast, pro-
longed EPSCs in 1-year-old �-III�/� animals correlate with a loss
of GLAST protein, similar to published data (Marcaggi et al.,
2003; Stoffel et al., 2004; Takayasu et al., 2005; Takatsuru et al.,
2006). These recordings also confirm that the removal of synap-
tically released glutamate is retarded in old �-III�/� mice and
raises the possibility that accumulation of glutamate results in
AMPA receptor desensitization. Unexpectedly, given the loss of
EAAT4, PF-EPSCs appear to decay faster in cells from young
�-III�/� mice. Although both astroglial transporters are slightly
elevated in young �-III�/� mice this is unlikely to be the sole
reason for the faster decay, due to the small extent of protein
increase and lack of increased glutamate uptake. Previous work
has shown the sodium channel inhibitor QX-314 may not block
all channel subtypes equally (Yeh, 1978). We saw no difference in
decay constants between young WT and �-III�/� mice when
recordings were performed in the absence of sodium channel
blockers. It is possible, therefore, that in �-III�/� mice, due to the
loss of sodium currents (Fig. 6B,C) there may be less of a con-
taminating current, precluding detection of slowing of the EPSC
decay. A similar finding of briefer PF-EPSC decay times was ob-
served in Nav1.6 knock-out animals (Levin et al., 2006).

Therefore, loss of EAAT4 may coincidentally have a biphasic
effect on Purkinje cell physiology: initially, the loss is compensa-
tory, maintaining Purkinje cell output and downstream DCN
inhibition, resulting in only a mild ataxic phenotype. However,
with time it elicits AMPA receptor-elicited excitotoxicity, resulting
in dendritic degeneration and eventual cell death, both leading to
progressively less Purkinje cell output and hyperexcitability of
DCN. Although there are no reports that EAAT4 knock-out mice
develop ataxia, a downregulation of EAAT4 is seen before any
behavioral phenotype in two other models of ataxia, SCA1 trans-
genic mouse (Lin et al., 2000; Serra et al., 2004) and staggerer
(Gold et al., 2003). Together, the results from these three different
mouse ataxia models suggest that EAAT4 may indeed be a com-

mon factor in early disease pathogenesis. It appears that for nor-
mal glutamatergic neurotransmission a loss of EAAT4 is not
deleterious, as GLAST is able to fully compensate, but when
GLAST is lost (as here), the cumulative effect becomes patho-
genic. A similar concerted role of EAAT4 and GLAST is apparent
in brain ischemia where Purkinje cells with low EAAT4 levels are
selectively lost in GLAST knock-out mice (Yamashita et al.,
2006).

In conclusion, the �-III�/� mouse described here represents a
new model of cerebellar ataxia, showing not only progressive
behavioral abnormalities but also Purkinje cell degeneration.
This is similar to clinical cases, therefore making it a valuable
disease model for future study. The data also reveal that at least
two separate disease pathways are involved in the loss of inhibi-
tory cerebellar output underlying the ataxic phenotype. The first
is a decrease in the tonic firing rate of Purkinje cells due to altered
intrinsic membrane properties arising from reduced sodium cur-
rents. The second is a reduction in excitatory inputs and Purkinje
cell death, possibly a consequence of glutamate-mediated excito-
toxicity, arising from loss of EAAT4- and GLAST-mediated glu-
tamate uptake. Therefore, �-III spectrin appears to play an
important part in the prevention of glutamate-mediated neuro-
toxicity and to have a critical role in maintaining Purkinje cell
tonic firing. Future analysis of this model will provide a greater
understanding of what may be convergent disease mechanisms
for various SCAs (i.e., ion channel dysfunction, glutamate-
mediated excitotoxicity, and protein-trafficking defects). In-
sights into the human disease will be obtained by addressing
whether known SCA5 mutations have similar detrimental effects
to the present mouse model on either or both of the sodium
channels or the astroglial glutamate transporter GLAST.
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Häusser M, Clark BA (1997) Tonic synaptic inhibition modulates neuronal
output pattern and spatiotemporal synaptic integration. Neuron
19:665– 678.

He Y, Zu T, Benzow KA, Orr HT, Clark HB, Koob MD (2006) Targeted
deletion of a single Sca8 ataxia locus allele in mice causes abnormal gait,

4866 • J. Neurosci., April 7, 2010 • 30(14):4857– 4867 Perkins et al. • �-III Spectrin-Deficient Mice Model SCA5



progressive loss of motor coordination, and Purkinje cell dendritic defi-
cits. J Neurosci 26:9975–9982.

Holleran EA, Ligon LA, Tokito M, Stankewich MC, Morrow JS, Holzbaur EL
(2001) �III spectrin binds to the Arp1 subunit of dynactin. J Biol Chem
276:36598 –36605.

Ikeda Y, Dick KA, Weatherspoon MR, Gincel D, Armbrust KR, Dalton JC,
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