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Abstract

Recent experiments have shown the fundamental role that random fluctuations play

in many chemical systems in living cells, such as gene regulatory networks. Mathe-

matical models are thus indispensable to describe such systems and to extract relevant

biological information from experimental data. Recent decades have seen a consid-

erable amount of modelling effort devoted to this task. However, current methodolo-

gies still present outstanding mathematical and computational hurdles. In particular,

models which retain the discrete nature of particle numbers incur necessarily severe

computational overheads, greatly complicating the tasks of characterising statistically

the noise in cells and inferring parameters from data. In this thesis we study analytical

approximations and inference methods for stochastic reaction dynamics.

The chemical master equation is the accepted description of stochastic chemical

reaction networks whenever spatial effects can be ignored. Unfortunately, for most

systems no analytic solutions are known and stochastic simulations are computation-

ally expensive, making analytic approximations appealing alternatives. In the case

where spatial effects cannot be ignored, such systems are typically modelled by means

of stochastic reaction-diffusion processes. As in the non-spatial case an analytic treat-

ment is rarely possible and simulations quickly become infeasible. In particular, the

calibration of models to data constitutes a fundamental unsolved problem.

In the first part of this thesis we study two approximation methods of the chemical

master equation; the chemical Langevin equation and moment closure approximations.

The chemical Langevin equation approximates the discrete-valued process described

by the chemical master equation by a continuous diffusion process. Despite being fre-

quently used in the literature, it remains unclear how the boundary conditions behave

under this transition from discrete to continuous variables. We show that this boundary

problem results in the chemical Langevin equation being mathematically ill-defined if

defined in real space due to the occurrence of square roots of negative expressions.

We show that this problem can be avoided by extending the state space from real to

complex variables. We prove that this approach gives rise to real-valued moments and

thus admits a probabilistic interpretation. Numerical examples demonstrate better ac-

curacy of the developed complex chemical Langevin equation than various real-valued

implementations proposed in the literature.

Moment closure approximations aim at directly approximating the moments of a

process, rather then its distribution. The chemical master equation gives rise to an
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infinite system of ordinary differential equations for the moments of a process. Mo-

ment closure approximations close this infinite hierarchy of equations by expressing

moments above a certain order in terms of lower order moments. This is an ad hoc

approximation without any systematic justification, and the question arises if the re-

sulting equations always lead to physically meaningful results. We find that this is

indeed not always the case. Rather, moment closure approximations may give rise to

diverging time trajectories or otherwise unphysical behaviour, such as negative mean

values or unphysical oscillations. They thus fail to admit a probabilistic interpretation

in these cases, and care is needed when using them to not draw wrong conclusions.

In the second part of this work we consider systems where spatial effects have to be

taken into account. In general, such stochastic reaction-diffusion processes are only de-

fined in an algorithmic sense without any analytic description, and it is hence not even

conceptually clear how to define likelihoods for experimental data for such processes.

Calibration of such models to experimental data thus constitutes a highly non-trivial

task. We derive here a novel inference method by establishing a basic relationship

between stochastic reaction-diffusion processes and spatio-temporal Cox processes,

two classes of models that were considered to be distinct to each other to this date.

This novel connection naturally allows to compute approximate likelihoods and thus

to perform inference tasks for stochastic reaction-diffusion processes. The accuracy

and efficiency of this approach is demonstrated by means of several examples.

Overall, this thesis advances the state of the art of modelling methods for stochastic

reaction systems. It advances the understanding of several existing methods by eluci-

dating fundamental limitations of these methods, and several novel approximation and

inference methods are developed.
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Lay Summary
The number of molecules of many chemical species in living cells, such as proteins,

vary randomly in time. Such random fluctuations have been found to play a crucial role

in many biological processes in living cells. An important example is the process of

gene expression, which denotes the production of proteins from genes. Gene expres-

sion is a fundamental process in biology, because it enables cells to transform static in-

formation encoded in the DNA into dynamically varying protein concentrations which

in turn enables cells to respond to and process external stimuli. Experiments have

shown that random fluctuations in gene expression can lead to dramatically differing

behaviours of genetically identical cells. Accordingly, recent years have seen a rapid

improvement of experimental techniques that allow to measure such effects. In order to

be able to interpret the experimental data and to understand the underlying processes,

however, mathematical methods are needed that allow to model such processes. In

this thesis, we study several existing methods and develop new ones for modelling the

effect of random fluctuations in biological systems.

Chemical reactions between small populations of molecules are the major source of

random fluctuations in cells. As these molecules move randomly in the cell driven by

Brownian diffusion, reactions occur randomly with certain probabilities whenever two

reactant molecules collide. Under certain conditions the spatial positions of molecules

can be ignored and the system dynamics can be described by simpler models.

In the first part of this thesis, we study two such methods: the chemical Langevin

equation and moment closure approximations. We find that both methods have severe

mathematical problems and show that they can give rise to unphysical results. Mo-

ment closure approximations, for example, may lead to negative molecule numbers,

which clearly does not make sense physically. For the chemical Langevin equation,

we propose a modified version and show that this new method does not suffer from

these problems. Moreover, we find that the developed method is more accurate than

other versions proposed in the literature for several example systems.

In the second part of this work we consider the case where spatial positions of

molecules have to be taken into account. Such systems are typically modelled as

stochastic reaction-diffusion processes. We consider the problem of estimating un-

known parameters of a model from experimental data. Our main result is the derivation

of a novel connection between stochastic reaction-diffusion processes and so-called

Cox processes. The latter constitute a popular class of models from statistics used to

describe realisations of random spatio-temporal processes. The established connection
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provides the basis for a novel method for parameter estimation for stochastic reaction-

diffusion processes. We demonstrate the accuracy and efficiency of our method for

several examples.
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Chapter 1

Introduction

1.1 Motivation and Overview

Understanding the functioning of living cells and biological organisms at the system

level has gained increasing focus in recent years and defines a key research programme

for the next decades [1]. Experimental techniques are developing at breathtaking speed

producing a wealth of data at finer and finer resolutions. Biologists are now for instance

able to obtain time-course data of certain components in single cells simultaneously

across hundreds of cells [2]. An important example are fluorescent mRNA or protein

molecules. Even more than that, scientists are now able to modify living cells, either

genetically or otherwise, to gain deeper insights into their functioning [3] or to produce

specific desirable behaviours [4, 5].

However, such experimental data does not by itself reveal the function of such

biological systems. The underlying processes typically involve large numbers of inter-

acting components giving rise to highly complex behaviour. Moreover, experimental

data are generally corrupted by measurement noise and incomplete, thus posing the

mathematical and statistical challenge to infer the relevant biological information from

such measurements.

We focus here on mathematical and statistical modelling of biological systems in

which random fluctuations of molecule numbers play an important role. Recent ex-

periments have shown this to be the case in many processes, gene expression being a

prominent example. One of the first experiments studying such random fluctuations

was performed by Elowitz et al. in 2002 [6]. The authors observed a large heterogene-

ity in the expression levels of certain genes across an Escherichia coli colony. They

found that these differences between different cells originate to a large extent from
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Chapter 1. Introduction 2

random, or intrinsic, fluctuations of the protein numbers in time, rather than only from

physiological differences between cells, which one may naively expect. Since then

scientists have found that the role of intrinsic noise is crucial for many biological pro-

cesses. Not only can intrinsic noise drastically change the quantitative behaviour of

systems, but it also gives rise to novel qualitative phenomena, such as noise-induced

oscillations [7], which cannot be explained in a deterministic setting. While under cer-

tain conditions the spatial distribution of the components in the cell can be ignored,

which significantly reduces the complexity of possible models, these conditions are

often not met in reality, making spatial descriptions indispensable. In [8], for exam-

ple, the authors showed that a certain protein in Escherichia coli undergoes spatial

stochastic switching between two sides of the cell, thereby directing the location of

cell division. Such effects can clearly only be described by spatial models.

The question arises how one can mathematically model the effects of random fluc-

tuations in chemical reaction networks. Optimally, one would like to know the prob-

ability distribution of the system to be in a certain state for all times. As it turns out,

under certain conditions for which spatial effects can be ignored, an exact analytic

equation exists governing the time evolution of this probability distribution: the chem-

ical master equation (CME). By solving the CME, one may thus in principle extract all

the relevant information about the dynamics of a given system. In practice, however,

solving the CME is a difficult task, and analytic solutions are known only for the most

simple systems.

One possibility to circumvent this problem is to use stochastic simulations. The lat-

ter exactly simulate the underlying stochastic process, thereby drawing exact samples

from the CME’s solution. Unfortunately, however, this procedure is computationally

expensive and quickly becomes infeasible for larger systems and/or inference tasks.

Significant effort has thus been spent in the development of approximation methods

to the CME. We study two such approximation methods in this thesis. One class of

methods approximates the actual stochastic process underlying the CME. This in turn

leads to approximations of the probability distribution. An example which we study

here is the chemical Langevin equation (CLE). Another class of methods aims at di-

rectly approximating the statistical moments of the CME’s solution rather than the full

process. One example are so-called moment closure approximations (MAs). We study

a certain class of MAs in this work.

The chemical Langevin equation (CLE) and its corresponding chemical Fokker-

Planck equation (CFPE) constitute a popular diffusion approximation of the CME [9].
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It approximates the discrete process underlying the CME by a continuous diffusion

process. The continuous variables describing this process satisfy a coupled set of

stochastic differential equations, which are often more efficient to simulate than the

CME. The CLE has been used successfully in the literature [10, 11] and is subject of

ongoing research [12, 13].

However, it remains unclear how the boundary behaviour of the CME translates to

the CLE formalism. The CME has a natural boundary at zero molecule numbers, which

manifests itself in the probability to find a negative molecule number to be zero for all

times. To this date, it is not clear how this boundary behaves when approximating

the discrete process by a continuous one in the CLE formalism. As it turns out, this

approximation leads to fundamental problems of the CLE due to the occurrence of

square roots of negative expression for which the CLE is not defined since it is only

defined for real numbers. We term this problem the breakdown of the CLE. Despite

being noticed in the literature [14, 15], the breakdown has not been studied thoroughly

up to date, and several open questions remain.

First of all, there exist different representations of the CLE, and it is not clear if

a representation can be chosen that avoids breakdown, or if the breakdown is actually

intrinsic to the CLE and thus independent of the chosen representation. If the latter is

the case, one may want to develop modified versions of the CLE that avoid breakdown.

Several such modifications of the CLE have been proposed in the literature that aim

at keeping the CLE real-valued, such as imposing artificial boundaries enforcing pos-

itivity or omitting some noise terms. However, all these methods are ad hoc without a

microscopic justification, and it remains unclear how such modifications influence the

accuracy of the CLE. The question hence arises if there exists a more natural, micro-

scopically justified version of the CLE that avoids breakdown.

The second type of approximation method that we study in this work are moment

closure approximations (MAs) [16, 17]. MAs aim at approximating the first few mo-

ments of the solution of the CME. The latter gives rise to an infinite hierarchy of cou-

pled ordinary differential equations for the moments. The class of MAs that we con-

sider in this thesis close this infinite hierarchy of equations by expressing all moments

above a certain order in terms of lower order moments. This is an ad hoc approxi-

mation lacking a systematic justification, and hence little is known about the validity

and accuracy of MAs. While there exist studies of the quantitative accuracy of MAs

[18, 19], a more fundamental question which has not been studied to-date is: when can

we trust MAs to lead to physically meaningful results? By “physically meaningful”
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we mean positive mean concentrations and positive even central moments of the fluc-

tuations in molecule numbers. We perform a numerical case study in this work that

aims at answering this question.

As mentioned before, the conditions underlying the CME description are often

not fulfilled in reality, and spatial positions and movement of molecules have to be

taken into account. Such systems are then typically modelled by stochastic reaction-

diffusion processes (SRDPs), in which each single molecule is simulated in space and

time, undergoing Brownian diffusion and with chemical reactions happening under

certain rules when molecules collide. Simulations of such systems are computationally

expensive and quickly become infeasible for larger systems. In contrast to the non-

spatial case and its CME description discussed before, there generally does not exist

an analytic description of SRDPs. It is therefore not even conceptually clear how

to define a likelihood for such processes, making the calibration of models to data

extremely difficult. SRDPs are not only used for chemical kinetics, but in various

other scientific fields, such as ecology [20] or social sciences [21]. With an increasing

amount of data becoming available in many of these fields, the calibration of models to

data constitutes an outstanding problem. The development of an efficient and accurate

inference method for such processes is one of the goals of this thesis.

1.2 Related work

The chemical Langevin equation

The CFPE was first derived by Kramers [22] and Moyal [23] by means of the so-

called Kramers Moyal expansion. A more intuitive approach, which leads directly to

the CLE, was given seven decades later by Gillespie [9]. The breakdown of the CLE

due to the occurrence of square roots of negative expressions has first been studied in

[24] and [14]. The authors show for some simple reaction systems that the CLE can

lead to negative molecule numbers and may break down. The authors do not study

different forms of the CLE, however, and the question thus remains if different repre-

sentations of the CLE may avoid breakdown. Wilkie and Wong proposed a modified

version of the CLE, which avoids breakdown by globally removing some noise terms

[24]. Using such a global modification for fixing a local boundary problem is criticised

in [15], where the authors show that this modification leads to significant quantitative

inaccuracies for one example system. Dana and Raha proposed another modified ver-
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sion [25]. Here breakdown is avoided by setting a noise term to zero whenever the

expression in its corresponding square root becomes negative. While this local mod-

ification seems more appropriate than the global one proposed in [24], it still lacks a

microscopic justification.

Moment closure approximations

The idea of MA methods goes back more than six decades [16, 17, 26], but has

only been popularised in the context of biochemical reaction systems in recent years

[27, 28]. These references all use what we call here the normal moment closure. Sev-

eral other MA methods have been proposed in the literature, such as the here studied

log-normal MA [29], the Poisson MA [30] and central-moment-neglect (CMN) MA

[31]. There exist few studies that investigate the quantitative accuracy of MA methods,

including [18, 19]. However, to our knowledge, no studies are available that consider

the validity of MAs, i.e., if they always give physically meaningful results that admit a

probabilistic interpretation.

Stochastic reaction-diffusion processes

SRDPs were originally introduced in the context of coagulation of colloids by Smolu-

chowski in 1916 [32, 33]. The Doi picture of SRDPs, which we will adopt in this work,

has been developed by Doi in 1976 [34, 35]. As far as we are aware, the few attempts

at statistical inference for SRDPs either used simulation-based likelihood free methods

[20], inheriting the intrinsic computational difficulties, or abandoned the SRDP frame-

work by adopting a coarse space discretisation [36], or neglecting the individual nature

of molecules using a linear noise approximation [37].

1.3 Contribution

The complex chemical Langevin equation

Our results on the breakdown problem of the CLE presented in this thesis are based

on reference [38]. Our first result is that the breakdown cannot be avoided for most

chemical reaction systems independently of the choice of the CLE’s noise matrix. This

means that the CLE as presented in the literature is mathematically ill-defined for most

reaction systems.
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A fundamental property of the CLE is that its predictions of the mean and vari-

ance agree exactly with the corresponding CME results for linear reaction systems.

We show here that naive implementations imposing artificial boundaries to enforce

positivity, which is typically done in the literature, violate this agreement for linear

systems. We find that the same is true for the two modified versions of the CLE men-

tioned above.

Next, we show that the problem of breakdown can be avoided by extending the

CLE’s state space from real to complex numbers. This novel complex CLE does not

suffer from breakdown, and we prove that its moments are real-valued and hence ad-

mit a probabilistic interpretation. Moreover, we show that the complex CLE gives rise

to real-valued autocorrelation functions and power spectra, and that it allows to com-

pute first-passage times. We further show that the complex CLE restores the CLE’s

exactness for mean and variance for linear reaction systems. We find that it gives

significantly more accurate results than the different real-valued versions mentioned

above, as well as the second-order normal MA and the so-called linear noise approxi-

mation, for two non-linear example systems.

Our results thus suggest that the different real-valued CLEs should be used with

care and that the complex CLE developed here constitutes a useful alternative tool for

the study of stochasticity in chemical reaction systems.

Validity of moment closure approximations

Our analysis of the validity of MAs is based on references [39] and [40]. First, we

formulate a set of validity conditions for MAs which guarantee physically meaningful

results. Next, we give a detailed study of the second-order normal MA for a determin-

istically monostable system with one species. By “deterministically monostable” we

mean that the deterministic rate equations possess one positive stable fixed point. We

find that the normal MA indeed fails to give physically meaningful results whenever

the system size is small enough. We find that this is also true for the other studied MAs

and for other deterministically monostable systems: the MAs fail to give physically

meaningful results below a certain critical system volume. Below this critical volume

the MAs may give rise to divergent trajectories or negative means or variances, and

hence do not admit a probabilistic interpretation.

Next, we study the second-order normal, Poisson, log-normal and central-moment-

neglect (CMN) MAs with respect to their validity and their quantitative accuracy (as

compared to exact CME results) for three more complex systems: a deterministically
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bistable system, i.e., a system whose rate equations have two positive stable fixed

points, a deterministically ultrasensitive and a deterministically oscillatory system. For

all three systems, we find that, as for the previously studied deterministically monos-

table system, the MAs fail to give physically meaningful results below a certain critical

volume. Moreover, we find for the deterministically bistable and deterministically os-

cillatory systems that the MAs are valid only for an intermediate range of system sizes,

with unphysical multistability and unphysical oscillations, respectively, for large sys-

tem sizes. For the deterministically ultrasensitive system, we find that the Poisson

and log-normal MAs are not uniquely defined, a flaw not shared by the normal and

CMN-MAs. We show that this non-uniqueness is due to a conservation law in particle

numbers. We find that the wrong choice of the different versions violates certain sym-

metries of the system, while the normal and CMN-MAs conserve these symmetries.

Overall, we find that the normal MA has a higher range of validity than the other

MAs, and that it is always uniquely defined in contrast to the Poisson and log-normal

MAs. In terms of quantitative accuracy as compared to the exact CME results, we find

no significant difference between the different MA methods. Our results thus suggest

that the normal MA is favourable over the other methods.

We present here also the Mathematica package MOCA which allows the automated

derivation and numerical analysis of the four studied MA methods in a graphical user

interface. It is applicable to non-polynomial and time-dependent reaction rates and

thus applicable to virtually any reaction system. Moreover, it allows the user to define

novel MA methods. We believe that these features make MOCA a useful software tool

for the chemical kinetics community.

Inference for stochastic reaction-diffusion processes

Reference [41] is the basis of our results on inference methods for SRDPs. As we

mentioned before, inference for SRDPs is a highly non-trivial task and barely any

methods exist in the literature. We develop a novel inference method in this work by

establishing a novel connection between SRDPs and so-called spatio-temporal point

processes.

Our starting point is the simple observation that, at any fixed time point, an SRDP

creates random point patterns in space. Consequently, if we measure an SRDP at

discrete time points, we obtain a sequence of random spatial point patterns. Spatio-

temporal point processes, a class of models widely used for inference tasks in statistics,

describe exactly such time-sequences of spatial point patterns. The question thus arises
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if there exists a connection between these two types of models. In the literature, they

have been considered distinct to each other so far. However, as it turns out, there indeed

exists such a connection between SRDPs and so-called Cox processes, the latter being

a particularly popular type of point processes.

By using the so-called Poisson representation and reaction-diffusion master equa-

tion, we are able to show that the single time probability distributions of a certain class

of SRDPs are exactly the same as the ones of a Cox process, and that the same is

true for other SRDPs in an approximate sense. We derive a stochastic partial differ-

ential equation for the intensity of the corresponding Cox process. To our knowledge,

we derive here for the first time a mathematical connection between Cox processes

and SRDPs. Since the Cox process likelihood is a well-known object, we can use the

derived connection to (approximately) compute single-time-point likelihoods.

By applying a certain type of mean-field approximation, we can go one step fur-

ther and use the established connection to approximate multi-time-point likelihoods for

SRDPs. This in turn allows us to use statistical inference methods for Cox processes to

perform inference for SRDPs. We find our approach to be highly accurate and efficient

for several examples.

1.4 Organisation

This thesis is structured as follows. Chapter 2 presents basic mathematical concepts

that form the basis of the subsequent chapters. We start by reviewing the origins and

importance of intrinsic noise in biological systems in Section 2.1. Next, we give a brief

introduction to the theory of stochastic processes in Section 2.2 with particular focus

on Markov jump and diffusion processes. Next, we introduce the concept of stochastic

chemical kinetics in a non-spatial setting in Section 2.3. We introduce the CME and

the stochastic simulation algorithm, as well as several approximation methods of the

CME, including the CLE and MAs, and introduce the Poisson representation. In Sec-

tion 2.4, we then relax the conditions underlying the non-spatial CME description and

introduce SRDPs as a spatial description of chemical reaction systems. After giving a

microscopic description of SRDPs we present the reaction-diffusion master equation

as a coarse-grained approximation of SRDPs. Next, we introduce Poisson and Cox

processes and discuss some of their properties in Section 2.5.

Chapter 3 focuses on the CLE. First, we analyse the breakdown problem of the

real-valued CLE in Section 3.1. Next, we derive the complex CLE and prove its basic
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properties in Section 3.2. We then study its accuracy and compare it to different real-

valued CLEs for two example systems in Section 3.3.

In Chapter 4 we analyse the validity of MA methods. We start by stating the general

problem in Section 4.1. After formulating validity conditions for MAs that guarantee

physically meaningful results in Section 4.2, we analyse the normal MA with respect

to these conditions for a simple one-species system in Section 4.3. A numerical com-

parison of the normal, Poisson, log-normal and CMN-MAs for three more complex

systems is then conducted in Section 4.4. Finally, we present the software package

MOCA in Section 4.5.

Chapter 5 is devoted to the development of an efficient and accurate inference

method for SRDPs. First, we classify different reaction types with respect to the be-

haviour of their Poisson representation in Section 5.2. Next, we derive approximations

for reaction types whose Poisson representation is complex-valued, leading to a real-

valued Poisson representation for all reaction systems. We then apply this real-valued

Poisson representation to the reaction-diffusion master equation and subsequently take

the continuum limit in Section 5.3. In Section 5.4 we show that this amounts to a Cox

process representation of SRDPs which in turn allows us to derive a novel inference

method for SRDPs. We demonstrate the accuracy and efficiency of our approach for

three example systems in Section 5.5.

Finally in Chapter 6 we conclude and point out possible future research directions.

In order not to disrupt reading, some technical derivations are presented in the ap-

pendix.



Chapter 2

Preliminaries

In this chapter we introduce some well-known methods and concepts that our results in

the following chapters will be based on. First, we explain how stochastic effects arise

in biological systems in Section 2.1. We then give a brief mathematical introduction

to the theory of stochastic processes in Section 2.2. Next, in Section 2.3 we show how

stochastic processes can be used to model stochasticity in chemical reaction systems

and discuss the most general non-spatial description of such systems, the chemical

master equation. We present several approximation methods of the latter, as well as

an alternative formulation, before treating the more general, spatial case of stochas-

tic reaction-diffusion processes in Section 2.4. Finally, in Section 2.5, we introduce

spatio-temporal point processes, a class of models from statistics which seems to be

unrelated to the previously mentioned fields, but which will prove to be crucial for our

analysis of stochastic reaction-diffusion processes later on.

2.1 Stochasticity in biological systems

Stochastic effects play an important role in many chemical reaction networks in living

cells. Examples are enzyme catalysed processes, transduction of external signals to

the interior of cells or the process of gene expression, to name just a few. We explain

here the emergence and importance of stochasticity in biochemical networks on the

example of gene expression.

10
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Figure 2.1: Illustration of gene expression. Transcription is conducted by an RNA poly-

merase enzyme (RNApol) that binds to the gene and produces an mRNA molecule

from the gene’s DNA code. The mRNA is then translated into proteins by ribosomes.

2.1.1 Gene expression

The term “gene expression” denotes the process of protein production from a gene

and is illustrated in Figure 2.1. The process includes two main steps; transcription

during which mRNA molecules are produced, and translation during which protein

molecules are produced. The transcription process involves the enzyme RNA poly-

merase. For the mechanism to become initiated, an RNA polymerase enzyme has to

bind to the beginning sequence of a gene. It then slides along the gene and produces

an mRNA molecule that represents the DNA code of the gene. The RNA polymerase

moves around randomly in the cell, which can be approximately described as Brown-

ian diffusion. This means that the RNA polymerase binding to the gene is a stochastic

event that happens randomly in time. As it turns out, not only the binding of the RNA

polymerase to the gene, but also the sliding along the gene happens stochastically.

Therefore, the production of mRNA molecules is a stochastic process.

The production of protein molecules from mRNA during translation is conducted

by ribosome molecules, which are RNA and protein complexes. The ribosomes and

mRNA diffuse in the cell and hence meet randomly before transcription can occur.

Transcription is thus also a stochastic process. Similarly, the degradation of mRNA

molecules and proteins is conducted by certain enzymes and thus happens stochasti-

cally.

Gene expression is frequently regulated by certain types of proteins, so-called tran-

scription factors. Transcription factors are gene specific and bind to the promoter

which is a part of the gene upstream of the DNA sequence that becomes transcribed.

Once bound to the promoter, the transcription factor modifies the rate at which RNA
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polymerase molecules bind to the gene and hence the rate of transcription. A transcrip-

tion factor can either increase or decrease the binding rate and thus either enhance or

suppress gene expression.

We refer to fluctuations that arise due to the inherent stochasticity of chemical pro-

cesses as described above as intrinsic noise. Differences in molecule numbers of a

certain species, say proteins, between different cells can be due to this intrinsic noise.

However, such differences can also origin from other effects, such as physiological dif-

ferences between cells or differing environmental conditions. For example, the num-

bers of RNA polymerase or ribosomes may differ between different cells, or different

cells may be exposed to varying nutrient concentrations due to environmental fluctua-

tions. Such differences that are not due to the stochasticity of chemical reactions are

referred to as extrinsic noise.

2.1.2 Experimental evidence

As explained above, stochastic fluctuations are inherent to biochemical processes such

as gene regulation. The question hence arises: what effects do these fluctuations have

on the functioning of cells and which processes dominate the emergence of these fluc-

tuations? Another important question is how the effects of intrinsic and extrinsic noise

compare to each other. As it turns out, both types of noise can have significant effects

on biochemical processes as has been found in various experimental studies.

One of the first experiments that aimed at separating the effects of intrinsic and ex-

trinsic noise on gene expression has been conducted by Elowitz et al. in 2002 [6]. The

authors observed large variations in the expression levels of certain genes across an Es-

cherichia coli colony, and showed that both intrinsic and extrinsic noise can contribute

significantly to these variations.

[6] and other early studies in prokaryotes suggested that fluctuations are mainly

due to small-number fluctuations in mRNA numbers, giving rise to translational bursts

in protein numbers [42]. Since then, however, it has been found that also transcrip-

tional bursts in mRNA numbers can have significant effects in prokaryotes [43, 44].

Transcriptional bursts have also been found to largely govern fluctuations in gene ex-

pression in eukaryotes [45].

In [44] the authors measured the expression levels of 43 genes in Escherichia coli

under various different environmental conditions. They observed that the variance of

protein numbers scales roughly like the mean protein numbers, and their analysis sug-
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gests that this scaling is likely due to promoter fluctuations. Moreover, the authors

show that for intermediate abundance proteins, the intrinsic fluctuations are compara-

ble or even larger than extrinsic fluctuations. Similarly, in a large scale study of 2500

genes in yeast, it was found that fluctuations are dominated by transcriptional bursts

[46]. In addition, the authors found that fluctuations of a gene are strongly correlated

with regulating transcription factors. In another large scale study on Escherichia coli

in [47], the authors found that the distributions of all proteins can be approximated by

geometric distributions, and that fluctuations are dominated by extrinsic noise at high

expression levels.

The reported fluctuations can have significant influence on the functional behaviour

of cells. A particular important example are stochastic cell fate decisions [48]. Differ-

ing cell fate decisions of genetically identical cells are believed to be beneficial for a

population of cells experiencing strongly fluctuating environments [48].

There are a large number of other experimental studies demonstrating the impor-

tance of intrinsic noise in biochemical networks. The question arises if it is possible to

mathematically model the dynamics of such systems. To answer this question, we will

first give a brief introduction to the theory of stochastic processes in the next section,

before discussing mathematical models for stochastic chemical networks in Section

2.3.

2.2 Stochastic processes

Processes that experience random fluctuations as described in the previous section

are typically modelled by stochastic processes. We only consider continuous-time

stochastic processes in this work. A continuous-time stochastic process is a time-

dependent random variable X(t). Given some values x1,x2, . . . ,xn of X(t) at time

points t1,t2, . . . ,tn, we assume that the joint probability density

p(x1,t1;x2,t2; . . . ;xn,tn) (2.1)

exists. If such a distribution is defined for all possible values of x1,x2, . . . ,xn and

t1,t2, . . . ,tn for all n ∈N, the stochastic process is completely characterised.

We consider here a particular class of stochastic processes called Markov processes.
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2.2.1 Markov processes

Intuitively, the Markov property states that the dynamics of a stochastic process only

depends on the present state of the process rather than on its past. In other words,

Markov processes are memoryless. If we assume the time-ordering τ1 ≤ τ2 ≤ . . .τm ≤

t1 ≤ . . .tn, the Markov property can be formulated as

p(xn,tn; . . . ;x1,t1∣zm,τm; . . . ;z1,τ1) = p(xn,tn; . . . ;x1,t1∣zm,τm). (2.2)

Assuming that t1 ≤ t2 ≤ t3, we can use this to show

p(x3,t3;x2,t2;x1,t1) = p(x3,t3∣x2,t2;x1,t1)p(x2,t2;x1,t1)

= p(x3,t3∣x2,t2)p(x2,t2∣x1,t1)p(x1,t1).
(2.3)

It is straightforward to generalise this to show that any joint distribution can be written

as the product of transition probabilities of the form p(x2,t2∣x1,t1) times the marginal

distribution of the initial state, i.e., (t1 ≤ t2 ≤ . . . ≤ tn)

p(xn,tn; . . . ;x1,t1) = p(x1,t1)
n−1
∏
i=1

p(xi+1,ti+1∣xi,ti). (2.4)

This means that a Markov process is fully characterised by its initial distribution and

its transition probabilities.

2.2.2 The differential Chapman-Kolmogorov equation

By integrating both sides of Eq. (2.3) over x2 and dividing by p(x1,t1) we obtain the

Chapman-Kolmogorov equation

p(x3,t3∣x1,t1) = ∫ dx2 p(x3,t3∣x2,t2)p(x2,t2∣x1,t1). (2.5)

Let us now consider a n-dimensional process and write x = (x1, . . . ,xN). Under certain

assumptions the Chapman-Kolmogorov equation in Eq. (2.5) can be written in a differ-

ential form. Specifically, we require that functions W(z∣x,t),Ai(x,t) and Bi j(x,t), i, j =

1, . . . ,n exist, such that the following relations hold for all ε > 0:

lim
dt→0

p(z,t +dt ∣x,t)
dt

=W(z∣x,t), (2.6a)

lim
dt→0

1
dt ∫∣z−x∣<ε

dz(xi− zi)p(z,t +dt ∣x,t) = Ai(x,t)+O(ε), (2.6b)

lim
dt→0

1
dt ∫∣z−x∣<ε

dz(xi− zi)(x j − z j)p(z,t +dt ∣x,t) = Bi j(x,t)+O(ε). (2.6c)
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Requirement (2.6a) has to be true uniformly in x,z and t for ∣x−z∣ < ε, while require-

ments (2.6a) and (2.6b) have to be true uniformly in z,t and ε. Using these relations it

is possible to derive the differential Chapman-Kolmogorov equation [49]:

∂

∂t
p(y,t ∣x,t′) = ∫ dx′[W(y∣x′,t)p(x′,t ∣x,t′)−W(x′∣y,t)p(y,t ∣x,t′)

−
N
∑
i=1

∂

∂yi
[Ai(y,t)p(y,t ∣x,t′)]+

1
2

N
∑

i, j=1

∂2

∂yi∂y j
[Bi j(y,t)p(y,t ∣x,t′)].

(2.7)

The first line describes discrete jumps between two states x and x′ with transition

rates or propensity functions W(x′∣x,t). The second line describes continuous changes

of the process, and A(x,t) and B(x,t) are called drift vector and diffusion matrix,

respectively. Note that the Markov property manifests itself in W(x′∣x,t), A(x,t) and

B(x,t) being functions of the current state and time only, and not of any past time

points.

Eq. (2.7) only has a probabilistic interpretation if a non-negative solution exists. It

can be shown that this is the case if the following conditions are met [50]: W(x′∣x,t)
has to be non-negative, B(x,t) has to be positive semi-definite, appropriate boundary

conditions have to be specified, and the following initial condition has to be satisfied,

p(y,t ∣x,t) = δ(y−x). (2.8)

Let us next study two different types of stochastic processes which arise as special

cases of Eq. (2.7) and which we will use throughout this thesis.

2.2.3 Markov jump processes

Consider the case where A(x,t) = 0 and B(x,t) = 0. In this case Eq. (2.7) becomes a

so-called master equation:

∂

∂t
p(y,t ∣x,t′) = ∫ dx′ [W(y∣x′,t)p(x′,t ∣x,t′)−W(x′∣y,t)p(y,t ∣x,t′)] . (2.9)

It can be shown that the corresponding process has a finite probability to remain in

a certain initial state for a finite time. This means that realisations of the process are

locally constant functions with discontinuous jumps [49]. Hence the name Markov

jump processes. Let R(x,t +∆t,t) be the probability that the process remains in state

x for some time interval ∆t with initial time t. Assuming that the transition rates
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W(x∣x′,t) =W(x∣x′) do not depend on time, it can be shown [49] that R(x,t +∆t,t)

takes the form

R(x,t +∆t,t) = exp(−λ∆t), λ = ∫ dx W(x∣x′). (2.10)

This means that the jump times are exponentially distributed which can be used to

simulate the process.

Note that although a Markov jump process described by a master equation as in

Eq. (2.9) only undergoes discrete jumps, its state space can generally be continuous.

However, many Markov jump processes of interest do only live on an integer-valued

state space. In this case the integral in Eq. (2.9) becomes a sum and the master equation

can be written as

∂

∂t
p(y,t ∣x,t′) =∑

x′
dx′[W(y∣x′,t)p(x′,t ∣x,t′)−W(x′∣y,t)p(y,t ∣x,t′)]. (2.11)

2.2.4 Diffusion processes

Consider next the case of vanishing transition rates, i.e., W(x∣x′,t) = 0. In this case one

obtains a so-called diffusion process and Eq. (2.7) becomes a Fokker-Planck equation,

∂

∂t
p(y,t ∣x,t′) = −

N
∑
i=1

∂

∂yi
[Ai(y,t)p(y,t ∣x,t′)]+

1
2

N
∑

i, j=1

∂2

∂yi∂y j
[Bi j(y,t)p(y,t ∣x,t′)] .

(2.12)

The first term is called drift term and describes deterministic motion of the process.

The second term is called diffusion term and describes fluctuations around the deter-

ministic motion. Bi j(y,t) has to be positive semi-definite and symmetric.

The Wiener process

A simple but important one-dimensional example is the Wiener process which is ob-

tained by A = 0 and B = 1 leading to

∂

∂t
p(w,t ∣w0,t0) =

1
2

∂2

∂w2 p(w,t ∣w0,t0). (2.13)

This is solved by a normal distribution:

p(w,t ∣w0,t0) =
1

√
2π(t − t0)

exp(−
(w−w0)

2

2(t − t0)
) , (2.14)
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with mean and variance given by

⟨w⟩ =w0, (2.15)

⟨(w−w0)
2⟩ = t − t0. (2.16)

The Wiener process is also referred to as Brownian motion or Gaussian white noise.

The Langevin equation

It can be shown that any Fokker-Planck equation of the form in Eq. (2.12) is equiv-

alent to an Ito stochastic differential equation (SDE) or Langevin equation. In one

dimension, the latter reads

dx(t) = A(x(t),t)dt +
√

B(x(t),t)dW(t), (2.17)

where W(t) is a Wiener process whose distribution satisfies Eq. (2.13). The SDE in

Eq. (2.17) is defined in the sense that its solutions satisfy

x(t) = x(t0)+∫
t

t0
dt′A(x(t′),t′)dt′+∫

t

t0

√
B(x(t′),t′)dW(t′). (2.18)

The last term denotes an Ito stochastic integral [49]. An easy method to simulate an

SDE of the form in Eq. (2.17) is the Euler-Maruyama algorithm which discretises time

into intervals ∆t and updates the process iteratively as

x(t +∆t) = x(t)+A(x(t),t)∆t +
√

B(x(t),t)∆t dw, dw ∼N(0,1), (2.19)

where N(0,1) is a normal distribution with mean 0 and variance 1. It can be shown

[49] that the distribution of a process described by Eq. (2.17) agrees exactly with the

solution of the corresponding Fokker-Planck equation in (2.12). One can thus interpret

the SDE in Eq. (2.17) as a generator of realisations of the stochastic process described

by the corresponding Fokker-Planck equation.

Similarly, one can define an SDE for the general, multi-dimensional case. The SDE

corresponding to the Fokker-Planck equation in (2.12) is given by

dx(t) =A(x(t),t)dt +C(x(t),t)dW(t), CCT =B, (2.20)

where dW(t) = (dW1(t), . . . ,dWm(t)), m is the number of columns of C and the Wi(t)

are independent Wiener processes. Note that in general different choices for the ma-

trix C exist. It can be shown, however, that such different choices lead to the same

transition probabilities, which means that they are equivalent [49].
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2.3 Stochastic chemical kinetics

After having given a formal mathematical introduction to stochastic processes in Sec-

tion 2.2, let us now consider how the presented methods can be used to model the

dynamics of stochastic chemical reaction networks.

2.3.1 Chemical reaction networks

As discussed in Section 2.1, gene expression is an example of a biological process

for which stochastic fluctuations are important. The underlying mechanisms of such

processes are typically complicated procedures involving several different types of

molecules and physical operations. Instead of modelling all these mechanisms ex-

plicitly, we model them as single stochastic events. In the case of transcription, for

example, a gene produces mRNA molecules at random points in time. We call such

events chemical reactions and use an abstract notation to represent them. For a gene G

that produces an mRNA molecule M, for example, we write

GÐÐÐ→G+M. (2.21)

A set of chemical species together with a set of chemical reactions constitutes what we

call a chemical reaction network.

General chemical reaction networks

Let us next introduce the notation for representing general chemical reaction networks.

A general chemical reaction system consists of some chemical species Xi, i = 1, ...,N,

that interact via some chemical reactions as

N
∑
i=1

si jXi
k j

ÐÐÐÐ→
N
∑
i=1

ri jXi, j = 1, . . . ,R, (2.22)

where the stoichiometric coefficients si j and ri j are non-negative integer numbers de-

noting numbers of reactant and product molecules, respectively, and kr is the macro-

scopic reaction rate constant of the rth reaction. We say that the rth reaction is “of order

m” if ∑N
i=1 sir = m, i.e., if it involves m reactant molecules. We further call a reaction

“bimolecular” if m = 2 and a system “linear" if m ≤ 1 for all reactions in the system.
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onoff protein

binding
gene

Figure 2.2: Illustration of a gene expression system with negative feedback loop. When

the gene is in the “on” state it produces proteins of a certain type. The protein can decay

or bind to the gene. In the bound state the gene is in the “off” state, i.e., no protein

is produced. The protein hence suppresses its own production. The corresponding

reactions are given in Eq. (2.23).

Example

As an example, consider the gene system in Figure 2.2. This system can be viewed

as a simplified version of the gene expression process described in Figure 2.1: we

replace the process of transcription (gene produces an mRNA molecule) and translation

(mRNA molecule produces a protein) by a single reaction in which the gene directly

produces the protein. This is a valid approximation if the time scales of transcription

and decay of mRNA are much faster than all other time scales in the system.

In the system in Figure 2.2, the protein can bind to the gene and thus acts as its own

transcription factor. In the bound state Goff, the gene does not produce any protein. The

protein thus suppresses its own production, which means the system is an example of a

negative feedback loop. The corresponding reactions in the notation of Eq. (2.22) read

Gon k1
ÐÐÐÐ→Gon+P, Gon+P

k2
ÐÐÐÐ⇀↽ÐÐÐÐ

k3

Goff, P
k4

ÐÐÐÐ→∅, (2.23)

where we call the gene in the on and o f f state and the protein Gon,Goff and P rather

than X1,X2 and X3 for notational clarity. In our nomenclature, Gon +P → Goff is a

second-order/bimolecular reaction, while the other three reactions are of first order/linear.

By “P→∅” we indicate that P leaves the system under consideration. This could either

mean that P physically leaves the compartment under consideration, or that it becomes

converted into different types of chemical species that are not included in our model.

Modeling

In the most general description of chemical reaction processes, we assume that the

Xi molecules in Eq. (2.22) undergo Brownian diffusion in a closed compartment and
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that the reactions in Eq. (2.22) happen stochastically under certain rules. Bimolecu-

lar reactions happen with certain probabilities whenever two reactant molecules col-

lide. We thus have two sources of stochasticity for bimolecular reactions; Brownian

diffusion leading to stochastically occurring collisions; and the collisions themselves

stochastically leading to reaction events. The most general models of such systems

typically rely on time discretisation and simulations of each single molecule in space,

with chemical reactions happening with certain probabilities under certain rules. Un-

der certain conditions, however, simplified descriptions can be employed making a

spatial description and the simulation of single particles obsolete. We will next first

discuss the situation where such conditions are met and deal with the more general

spatial case later in Section 2.4.

2.3.2 The chemical master equation

We now consider a general chemical reaction system as in Eq. (2.22) in a closed com-

partment, and assume well-mixed and dilute conditions. By “well-mixed” we mean

that the diffusion of particles in the compartment constitutes the fastest time scale of

the system, in the sense that the expected travelled distance of each molecule between

reactive collisions is much larger then the length scale of the compartment. By “dilute”

we mean that the combined volume of all the considered molecules is much smaller

than the total volume, which means that the volume of the molecules can be ignored.

If these two conditions are met, it can be shown [51] that the state of the system at any

time is fully determined by the state vector n = (n1, . . . ,nN), where ni is the molecule

number of species Xi. In particular, the spatial locations and diffusion of molecules

do not have to be modelled. The dynamics of the system can then be modelled as

a Markov jump process (c.f. Section 2.2.3). Since chemical reactions always lead to

integer-valued changes in molecule counts, the state space of the process is given by

the non-negative integers. Accordingly, the transition probabilities of the process sat-

isfy a master equation of the form in Eq. (2.11). Since in the case of chemical reaction

systems, the propensity functions do not depend on time and since only a finite num-

ber of transitions are possible - the chemical reactions - the master equation takes a

particular simple form and is called the chemical master equation (CME)[51]:

∂tP(n,t) =
R
∑
r=1

fr(n−Sr)P(n−Sr,t)−
R
∑
r=1

fr(n)P(n,t), (2.24)
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where P(n,t) is the probability of the system to be in state n at time t and we implicitly

assume conditioning on some initial state n0 at some initial time t0. Sr in Eq. (2.24) is a

vector whose entries correspond to the rth column of the stoichiometric matrix defined

as Si j = ri j − si j, and we call the fr(n) microscopic propensity functions. Specifically,

fr(n)dt gives the probability for the rth reaction to happen in an infinitesimal time

interval dt. In the case of mass-action kinetics the propensity functions are defined as

fr(n) = krΩ
N
∏
k=1

nk!
(nk− sk j)!Ωsk j

, (2.25)

where Ω is the volume of the system and kr is the macroscopic reaction rate constant of

the rth reaction. Eq. (2.25) can be derived from combinatorial considerations. Propen-

sity functions that are not of mass-action kinetics type as in Eq. (2.25) are frequently

used in the literature, such as hill-type functions for modelling the dependence of a

gene’s expression level on its transcription factor. Such propensity functions typically

arise in reduced models where an effective reaction replaces several microscopic reac-

tions. In the gene expression system mentioned before, for instance, the binding of the

transcription factor to the promoter of the gene is not modelled explicitly, but the ef-

fect of its concentration included in the modified propensity function of the expression

reaction. In this thesis, we only consider example systems with propensity functions

of mass-action kinetics type. However, most of the derived results are valid for more

general, analytic propensity functions.

In the context of chemical reactions, the CME was first proposed by McQuarrie

[52] and later derived from physical principles by Gillespie [51]. Analytic solutions of

the CME are known only for few simple systems. Therefore, one generally has to rely

on stochastic simulations or on approximations of the CME.

Example

As an example, consider the gene system in Figure 2.2 with reactions given in Eq. (2.23).

If we order the reactions according to the rate constants in Eq. (2.23), and the species

as Gon,P and Goff with particle numbers n1,n2 and n3, respectively, the matrices s and

r with coefficients defined in Eq. (2.22) read

s =
⎛
⎜
⎜
⎜
⎝

1 1 0 0

0 1 0 1

0 0 1 0

⎞
⎟
⎟
⎟
⎠

, r =
⎛
⎜
⎜
⎜
⎝

1 0 1 0

1 0 1 0

0 1 0 0

⎞
⎟
⎟
⎟
⎠

. (2.26)
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Accordingly, the stoichiometric matrix S= r−s and propensity vector f(n)= ( f1(n), . . . , fR(n))T ,

with the fr defined in Eq. (2.25), are given by

S =

⎛
⎜
⎜
⎜
⎝

0 −1 1 0

1 −1 1 −1

0 1 −1 0

⎞
⎟
⎟
⎟
⎠

, f(n) = (k1n1,
k2

Ω
n1n2,k3n3,k4n2)

T , (2.27)

and it is straightforward to write down the corresponding CME using Eq. (2.24). How-

ever, note that the system has a conservation law in particle numbers which we can use

to find a simplified description by reducing the number of variables: the total number

of genes in the “on” state and genes in the “off” state is constant, i.e., n1+n3 = const.

Let as assume that the constant is equal to unity, i.e., that there is only one gene in the

system. We can thus reduce the system to a two species system by using n3 = 1−n1.

The matrices s and r for the reduced system are simply obtained from Eq. (2.28) by

dropping the last row,

s =
⎛

⎝

1 1 0 0

0 1 0 1

⎞

⎠
, r =

⎛

⎝

1 0 1 0

1 0 1 0

⎞

⎠
, (2.28)

and the stoichiometric matrix and propensity vector of the reduced system read accord-

ingly

S =
⎛

⎝

0 −1 1 0

1 −1 1 −1

⎞

⎠
, f(n) = (k1n1,

k2

Ω
n1n2,k3(1−n1),k4n2)

T . (2.29)

The corresponding CME becomes (c.f. Eq. (2.24))

P(n1,n2,t) = k1n1P(n1,n2−1,t)+
k2

Ω
(n1+1)(n2+1)P(n1+1,n2+1,t)

+k3(2−n1)P(n1−1,n2−1,t)+k4(n2+1)P(n1,n2+1,t)

−(k1n1+
k2

Ω
n1n2+k3(1−n1)+k4n2)P(n1,n2,t).

(2.30)

We will work with the reduced system in the following. Despite having a relatively

simple system here with effectively only two species, no time-dependent solution for

its CME in Eq. (2.30) has been derived to our knowledge. A solution in steady state

has been derived in [53], but for most other systems not even a steady-state solution is

available. Therefore, one generally needs to rely on stochastic simulations or approxi-

mations of the CME to study the behaviour of such systems.
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2.3.3 The stochastic simulation algorithm

The stochastic simulation algorithm (SSA) is a popular Monte Carlo method that al-

lows to simulate exact realisations of the stochastic process described by the CME

in Eq. (2.24). It was first proposed in the context of chemical kinetics by Gillespie

[54, 55], and several variants have been proposed in the literature [56]. As explained

in Section 2.2.3, the waiting times of reaction events are exponentially distributed if

the propensity functions of the master equation do not explicitly depend on time. Since

this is the case in the CME, it is straightforward to simulate the occurrences of chemical

reactions and to update the state vector accordingly. This is the basic idea underlying

the SSA and its variants. One example is the so-called “direct method” [54], which

samples the time step τ for the next reaction to happen from an exponential distribu-

tion with mean given by the inverse of the sum of all propensity functions evaluated at

the current state, i.e.,

τ ∼ exp(−τ

R
∑
r=1

fr(n))
R
∑
r=1

fr(n), (2.31)

if n is the current state of the system. Which reaction happens is then determined by

using that the probability of the rth reaction to happen is proportional to fr(n).

Unfortunately, the applicability of the SSA is severely limited due to its compu-

tational cost. Since each and every reaction event is simulated explicitly, the SSA

becomes computationally expensive even for systems with few species. This is par-

ticularly the case if the molecule numbers have large fluctuations or if many reactions

happen per unit time. In the first case a large number of sample paths have to be

simulated to obtain statistically accurate results, whereas in the second case single

simulations become expensive since the time between reaction events becomes small.

The fact that exact simulations are computationally expensive makes analytic approx-

imations of the CME appealing.

2.3.4 Moment closure approximations

One class of such approximation methods are so-called moment closure approxima-

tions (MA). MAs aim at approximating the first few moments of a process satisfying

the CME.
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Moment equations

Starting from the CME in Eq. (2.24) one can derive time evolution equations for the

moments of its solution. To obtain the time evolution equation for the moment ⟨ni . . .nl⟩

we multiply Eq. (2.24) by ni . . .nl and sum over all molecule numbers, leading to

∂t⟨ni . . .nl⟩ =
R
∑
r=1

⟨(ni+Sir) . . .(nl +Slr) fr(n)⟩−
R
∑
r=1

⟨ni . . .nl fr(n)⟩. (2.32)

Here, ⟨⋅⟩ denotes the expectation with respect to the solution P(n,t) of the CME in

Eq. (2.24). For moments of up to order two Eq. (2.32) becomes

∂t⟨ni⟩ =
R
∑
r=1

Sir⟨ fr(n)⟩, (2.33)

∂t⟨nin j⟩ =
R
∑
r=1

[S jr⟨ni fr(n)⟩+Sir⟨ fr(n)n j⟩+SirS jr⟨ fr(n)⟩]. (2.34)

We see that unless all fr(n) are zeroth or first-order polynomials in n, i.e., unless

the system is linear without any bimolecular or higher order reactions, the evolution

equation of a certain moment depends on higher order moments. This means that the

moment equations of different orders are coupled to each other, leading to an infinite

hierarchy of coupled equations with can obviously not be solved.

General formulation

The idea underlying the class of moment closure approximations that we will study

in this work is to express all moments above a certain order M as functions of lower-

order moments. The latter is typically done by assuming the distribution of the system

to have a particular functional form, for example a normal distribution. This decou-

ples the equations of the moments up to order M from higher-order moments, which

in turn allows to (numerically) solve the resulting moment equations. We refer to such

a moment closure as “MA of order M”. Such MA methods thus amount to solving a

finite system of ordinary differential equations (ODEs) for which efficient and accu-

rate numerical algorithms exist. Solving MAs numerically is thus generally orders of

magnitude faster than using stochastic simulations of the CME. Let
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yi1,...,ik = ⟨ni1 . . .nik⟩, (2.35)

zi1,...,ik =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

⟨(ni1 −yi1) . . .(nik −yik)⟩ if k ≥ 2,

yi1 if k = 1,
(2.36)

ci1,...,ik = ∂si1
. . .∂sik

g(s1, . . . ,sN)∣s1,...,sN=0, (2.37)

denote the raw or “normal” moments, central moments and cumulants of order k, re-

spectively. We call yi1,...,ik a “diagonal moment” if il = im for all l,m ∈ {1, . . . ,k}, and a

“mixed moment” otherwise, and similarly for central moments and cumulants. g(s) in

Eq. (2.37) is the cumulant generating function defined as

g(s1, . . . ,sN) = log⟨exp(s1n1+ . . .+ sNnN)⟩. (2.38)

We note that all three types of moments are respectively invariant under permutations

of their indices. Therefore, only one representative combination of each permutation

class has to be considered. Taking this symmetry into account significantly reduces

the number of variables and moment equations. We adopt here the convention that the

indices are ordered from small to large, i.e., for a moment yi1,...,ik we have i1 ≤ i2 ≤ . . . ≤

ik. Expressing the moment closure functions in terms of cumulants rather than raw

moments often gives shorter expressions. The equations for the cumulants can then be

rearranged to give equations for the raw moments.

Some popular moment closure methods

Four popular moment closures methods are

• “Normal moment closure" (also called “cumulant neglect moment closure" in

the literature): all cumulants above order M are set to zero, i.e.,

ci1,...,ik = 0, for k >M. (2.39)

• “Poisson moment closure": the cumulants of a one-dimensional Poisson distri-

bution are all equal to the mean value. We assume here the multivariate distri-

bution to be a product of uni-variate Poisson distributions. Accordingly, for the

Poisson MA of order M we set all diagonal cumulants to the corresponding mean
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and all mixed cumulants to zero, i.e.,

ci1,...,ik = yi, for k >M and i1, . . . , ik = i, for some i ∈ {1, . . . ,N},

(2.40)

ci1,...,ik = 0, for k >M and im ≠ in for some m,n ∈ {1, . . . ,N}. (2.41)

• “Log-normal moment closure": let m and S be the mean vector and covariance

matrix of a multi-dimensional normal random variable. Then the logarithm of

the latter has a multivariate log-normal distribution and its moments can be ex-

pressed in terms of m and S as [57]

yi1,...,ik = exp(vT m+
1
2

vT Sv) , for k >M, (2.42)

where v = (g1, . . . ,gN), and gm is the number of i j’s having the value m. This

allows to express m and S in terms of the first two moments yi and yi, j which

then in turn allows to express higher-order moments in terms of yi and yi, j, too.

• “Central-moment-neglect (CMN) moment closure": all central moments above

order M are set to zero:

zi1,...,ik = 0, for k >M. (2.43)

Each of the closure equations can be used to express all raw moments above order M

in terms of lower order moments and thus close the moment equations according to the

corresponding MA. We note that the normal MA, Poisson MA and CMN-MA can be

equivalent depending on the reaction system and closure order.

The normal moment closure dates back more than sixty years [16, 17, 26]. It

has been introduced to the field of biochemical reactions only in recent years [27],

however, and is probably the most commonly used one. The Poisson and log-normal

moment closure techniques have been proposed in [30] and [29], respectively. In [58]

it has been shown that the assumption of a log-normal distribution is equivalent to a

“derivative matching" closure. The CMN-MA is also called “low dispersion moment

closure" in the literature [31].

Example

Let us again consider the gene system in Figure 2.2 with reactions given in Eq. (2.23).

The corresponding stoichiometric matrix and propensity vector are given in Eq. (2.29).
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Using these in Eqs. (2.33) and (2.34) and using the notation introduced in Eq. (2.35)

one obtains

∂ty1 = −
k2

Ω
y1,2+k3(1−y1), (2.44)

∂ty2 = k1y1−
k2

Ω
y1,2+k3(1−y1)−k4y2, (2.45)

∂ty1,1 =
k2

Ω
(−2y1,1,2+y1,2)+k3(−2y1,1+y1+1), (2.46)

∂ty1,2 = k1y1,1+
k2

Ω
(−y1,1,2−y1,2,2+y1,2)+k3(−y1,1−y1,2+y2+1)−k4y1,2, (2.47)

∂ty2,2 = k1(2y1,2+y1)+
k2

Ω
(−2y1,2,2+y1,2)+k3(−2y1,1−y1+2y2+1)+k4(−2y2,2+y2).

(2.48)

Note that the equations for the first moments in Eqs. (2.44) and (2.45) depend on the

second moment y1,2, and that the equations for the second moments (2.46)-(2.48) de-

pend on the third moments y1,1,2 and y1,2,2. Similarly, it is easy to see that moment

equations of any order depend on higher order moments, which means that we have an

infinite system of coupled equations. Note that all terms in Eqs. (2.44)-(2.48) depend-

ing on higher order moments are proportional to the rate constant k2 of the bimolecular

reaction in Eq. (2.23), illustrating that the moment equations decouple in the absence of

bimolecular (and higher order) reactions. This could be achieved here by setting k2 = 0

for which the moment equations would decouple and could thus be solved numerically.

Let us now apply the normal moment closure defined in Eq. (2.39) to second order,

i.e., we close the moment equations in (2.44)-(2.48) by setting the third order cumu-

lants c1,1,2 and c1,2,2 to zero. To this end, we express c1,1,2 and c1,2,2 in terms of raw

moments, set them to zero and rearrange in terms of y1,1,2 and y1,2,2, leading to

y1,1,2 = 2y1y1,2+y2y1,1−2y2y2
1, (2.49)

y1,2,2 = 2y2y1,2+y1y2,2−2y1y2
2. (2.50)

Using these expressions in Eqs. (2.44)-(2.48) the equations decouple from higher order

moments. We give here the resulting equations in terms of central rather than raw
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moments (c.f. Eq. (2.36))

∂tz1 = −
k2

Ω
(z1,2+ z1z2)+k3(1− z1), (2.51)

∂tz2 = k1z1−
k2

Ω
(z1,2− z1z2)+k3(1− z1)−k4z2, (2.52)

∂tz1,1 =
k2

Ω
(−2z2z1,1−2z1z1,2+ z1,2+ z1z2)+y1,2)+k3(−2z1,1− z1+1), (2.53)

∂tz1,2 = k1z1,1+
k2

Ω
(−z2z1,1− z1z1,2− z2z1,2− z1z2,2++z1,2+ z1z2) (2.54)

+k3(z1,2− z1,1− z1+1)−k4z1,2, (2.55)

∂tz2,2 = k1(2z1,2+ z1)+
k2

Ω
(−2z1z2,2−2z2z1,2+ z1,2+ z1z2) (2.56)

+k3(−2z1,2− z1+1)+k4(−2z2,2+ z2). (2.57)

2.3.5 The chemical Langevin equation

Suppose now that we are not only interested in approximating the moments of the

CME solution as in the previous section, but that we would like to approximate the

whole process and its distribution. The chemical Langevin equation (CLE) and the

corresponding chemical Fokker-Planck equation (CFPE) constitute a popular diffusion

approximation of the CME that aims at exactly that. Kramers and Moyal derived the

latter by applying a Taylor expansion to the CME which upon truncation leads to a

partial differential equation approximation of the CME [22, 23].

The chemical Fokker-Planck equation

Letting the variables in the CME in Eq. (2.24) become continuous and performing a

Taylor expansion to second order in the first term of the r.h.s. of Eq. (2.24), we obtain

a Fokker-Planck equation of the same form as in Eq. (2.12):

∂tP(x,t) =−
N
∑
i=1

∂

∂xi
[Ai(x)P(x,t)]+

1
2

N
∑

i, j=1

∂

∂xi

∂

∂x j
[Bi j(x)P(x,t)] , (2.58)

where we denote the continuous variable corresponding to species Xi by xi. Note that

the drift vector A(x) and diffusion matrix B(x) in Eq. (2.58) do not depend on time.

Eq. (2.58) is called the chemical Fokker-Planck equation (CFPE). Note that whereas

the state variables denote discrete molecule numbers in the CME, they denote contin-

uous real numbers in the CFPE. It has been shown that the differences between the

predictions of the two descriptions tend to zero in the limit of large molecule numbers
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[59]. The drift vector A and diffusion matrix B are given by

Ai(x) =
R
∑
r=1

Sir fr(x), (2.59)

Bi j(x) =
R
∑
r=1

SirS jr fr(x). (2.60)

The chemical Langevin equation

As explained in Section 2.2.4, a Fokker-Planck equation of the form in (2.58) is equiv-

alent to a Langevin equation of the form

dx =A(x)dt +C(x)dW, C(x)C(x)T =B(x), (2.61)

where W is a multi-dimensional Wiener process. By “equivalent” we mean that sim-

ulating Eq. (2.61) corresponds to drawing samples from the solution of Eq. (2.58). In

the context of the CFPE, Eq. (2.61) is called the chemical Langevin equation (CLE).

Note that the domain of both the CFPE and of the CLE is (implicitly) assumed to be

that of real numbers.

Generally there exist different choices for C(x) in Eq. (2.61) corresponding to dif-

ferent factorisations of the matrix B(x); these lead to as many different representations

of the CLE. A commonly used choice, following the seminal paper by Gillespie [9], is

Cir(x) = Sir
√

fr(x) leading to a CLE of the form

dxi =
R
∑
r=1

Sir fr(x)dt +
R
∑
r=1

Sir
√

fr(x)dWr. (2.62)

This representation of the CLE is the most commonly used one in the literature, and

we shall hence call it the “standard form” of the CLE throughout the rest of this thesis.

Properties

For a function g(x), one can derive an ordinary differential equation for the time evo-

lution of its expectation value ⟨g(x)⟩ from the CFPE in Eq. (2.58) by multiplying the

latter with g(x) and integrating over all x [49]. Alternatively, one can use Ito’s formula

to derive an equation for the time evolution of g(x) from the CLE in Eq. (2.61) and

subsequently take the average [49]. The equations derived from either the CFPE and

CLE are identical. In particular, they depend only on B(x) = C(x)C(x)T and are thus

independent of the particular choice for C(x). In this sense, the different choices for

C(x) are often claimed to be equivalent in the literature [60].
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When setting g(x) = xi . . .xl we obtain evolution equations for the moments of the

solution of the CFPE. Importantly, it turns out that the equations for moments of up to

order two are exactly the same as the corresponding equations derived from the CME

in Eqs. (2.33) and (2.34). Note however that since they are generally coupled to higher

order moments for which the evolution equations derived from the CFPE and CME do

not agree, the first two moments (and higher order moments) of the CFPE do generally

not agree with the ones of the CME. However, since the moment equations decouple

for linear systems as pointed out in Section 2.3.4, we obtain the important result that

the moments of up to order two of the CFPE and CME agree exactly for linear reaction

systems.

The CFPE in Eq. (2.58) is generally a non-linear Fokker-Planck equation and no

analytic solutions are known. However, since efficient stochastic simulations of the

corresponding CLE in Eq. (2.61) exist, it is often more efficient to simulate the latter

than the CME. However, simulations of the CLE will generally still be computationally

significantly more expensive than numeric solutions of moment closure approxima-

tions introduced in Section 2.3.4. The advantage over moment closure approximations

is that the CLE approximates the whole stochastic process and its distribution, rather

than only the first few moments of the process.

Example

Let us come back to the gene expression system in Figure 2.2 with reactions in Eq. (2.23)

and consider the corresponding CFPE and CLE. Using the stoichiometric matrix and

propensity vector in Eq. (2.29) we obtain for the drift vector and diffusion matrix de-

fined in Eq. (2.59) and Eq. (2.60), respectively,

A(x) =
⎛

⎝

−
k2
Ω

x1x2+k3(1−x1)

k1x1−
k2
Ω

x1x2+k3(1−x1)−k4x2

⎞

⎠
, (2.63)

B(x) =
⎛

⎝

k2
Ω

x1x2+k3(1−x1)
k2
Ω

x1x2+k3(1−x1)

k2
Ω

x1x2+k3(1−x1) k1x1+
k2
Ω

x1x2+k3(1−x1)+k4x2

⎞

⎠
, (2.64)

where x1 and x2 are the (continuous) particle numbers of Gon and P, respectively. To

obtain the CLE in Eq. (2.61), we have to compute C, which is the square root of B and

thus generally not uniquely defined. In the standard form given in Eq. (2.62) it reads

Ci j(x) =
⎛
⎜
⎝

0 −

√
k2
Ω

x1x2
√

k3(1−x1) 0
√

k1x1 −

√
k2
Ω

x1x2
√

k3(1−x1) −
√

k4x2

⎞
⎟
⎠
. (2.65)
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We thus obtain the CLE

dx1 = (−
k2

Ω
x1x2+k3(1−x1))dt −

√
k2

Ω
x1x2dW2+

√
k3(1−x1)dW3, (2.66)

dx2 = (k1x1−
k2

Ω
x1x2+k3(1−x1)−k4x2)dt (2.67)

+
√

k1x1dW1−

√
k2

Ω
x1x2dW2+

√
k3(1−x1)dW3−

√
k4x2dW4,

where the Wi are independent Wiener processes. Note that it does not make a difference

if one changes the signs in front of the square roots in Eq. (2.65), or equivalently in

front of the noise terms in Eq. (2.66), as long as one does so simultaneously for each

occurrence of a specific term, i.e., changes the sign of whole columns in Eq. (2.65).

To see that such changes are equivalent note that the diffusion matrix B = CCT of the

CFPE is invariant under such changes. This can also be seen directly from the CLE in

Eqs. (2.66) and (2.67) since the Wiener processes are symmetric with zero mean.

2.3.6 System size expansion

Let us next consider another popular approximation of the CME, the system size ex-

pansion (SSE). The SSE is a perturbative expansion of the CME in the inverse system

size originally developed by van Kampen [61, 62]. The idea is to separate concentra-

tions into a deterministic part, given by the solution of the macroscopic rate equations,

and a part describing the fluctuations about the deterministic part.

Deterministic rate equations

The starting point for the SSE are the macroscopic rate equations. For a chemical

reaction system as in Eq. (2.22) these read

∂tφi =
R
∑
r=1

Sir f (0)r (φφφ), (2.68)

where φφφ = (φ1, . . . ,φN), φi is the concentration of species Xi and f (0)r (φφφ) is the macro-

scopic propensity function of the rth reaction. f (0)r (φφφ) is given in terms of the micro-

scopic propensity function defined in Eq. (2.25) as

f (0)r (φφφ) = lim
Ω→∞

fr(Ωφφφ)

Ω
, (2.69)

where Ω is the system size. For monostable systems, i.e., systems whose rate equations

possess exactly one positive stable fixed point, the mean value of the CME converges to
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the rate equations result in the limit of infinite system sizes Ω→∞, and the fluctuations

around the mean converge to zero. In this sense the rate equations in Eq. (2.68) can be

thought of as a macroscopic description of chemical reaction systems.

General derivation

The system size expansion makes the ansatz to split the instantaneous particle numbers

ni in the CME into a deterministic part and a fluctuating part as

ni

Ω
= φi+Ω

−1/2
εi, i = 1, . . . ,N, (2.70)

where φi is the solution of the deterministic rate equations in Eq. (2.68) and we in-

troduced the new variables εi representing fluctuations about the deterministic mean.

For the system size expansion to be applicable we have to assume that the microscopic

propensity functions in the CME can be expanded as

fr(n) =Ω

∞
∑
i=0

Ω
−i f (i)r ( n

Ω
). (2.71)

If we assume mass-action kinetics for which the propensity functions take the form in

Eq. (2.25), it is easy to see that such an expansion always exists. Note that the first term

in the sum in Eq. (2.71) is just the macroscopic propensity function of the rth reaction

already defined in Eq. (2.69). Next, we perform a transformation of variables from the

ni variables to the new εi variables. For the distribution Π(εεε,t) of εεε = (ε1, . . . ,εN) this

means

Π(εεε,t) =Ω
N/2P(Ωφφφ+Ω

1/2
εεε,t). (2.72)

We have now all the ingredients we need to perform the system size expansion. Plug-

ging Eqs. (2.70), (2.71) and (2.72) into the CME in Eq. (2.24) and performing a Taylor

expansion around εεε = 0 one obtains an expansion of the CME in powers of Ω−1/2.

The linear noise approximation

If we truncate this expansion to zeroth order we obtain the so-called linear noise ap-

proximation (LNA) [61, 62],

∂tΠ(εεε,t) = [−
N
∑
i=1

∂

∂εi

N
∑
j=1

J j
i ε j +

1
2

N
∑

i, j=1
Di j

∂

∂εi

∂

∂ε j
]Π(εεε,t)+O(Ω

−1/2), (2.73)
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where we have defined

Di j =
R
∑
r=1

SirS jr f (0)r (φφφ), Jl
i =

∂

∂φl

R
∑
r=1

Sir f (0)r (φφφ). (2.74)

Note that both J and D depend on the solution φφφ of the rate equations in (2.68) and are

thus generally time dependent. Looking at Eq. (2.68) we find that J in Eq. (2.74) is just

the Jacobian of the rate equations. Eq. (2.73) is a linear Fokker-Planck equation and is

hence solved by a multivariate normal distribution under appropriate initial conditions.

By multiplying Eq. (2.73) with εi and εiε j and integrating over all εεε, one obtains ODEs

for the first and second moments, ⟨εi⟩ and ⟨εiε j⟩, respectively. By doing so one finds

that if the mean is initially zero, ⟨εi⟩∣t=0 = 0, it remains zero for all times. Since εεε

describes the fluctuations around φφφ, it is reasonable to assume this to be the case. The

solution of Eq. (2.73) is thus a multivariate normal distribution with zero mean. Since

nnn and εεε are related by a linear transformation given in Eq. (2.70), the distribution of nnn

is also given by a multivariate normal distribution. The mean of the latter satisfies the

rate equations in Eq. (2.68) and the covariance ΣΣΣ fulfils

∂tΣΣΣ = JJJΣΣΣ+ΣΣΣJJJT
+Ω

−1DDD. (2.75)

The linear noise approximation thus describes the lowest order fluctuations about the

deterministic mean.

For linear reaction systems, the mean and variance predicted by the LNA agree

exactly with the mean and variance predicted by the CME. For non-linear systems,

however, this is generally not the case, and it has been shown that the deviations of

the LNA as compared to the CME can become quite significant for realistic systems

[63, 64]. It is therefore appealing to consider higher order corrections beyond the LNA.

Higher order corrections

For the derivation of higher order corrections of the system size expansion, we sim-

ply need to keep higher order terms in the expansion of the CME beyond the LNA

in Eq. (2.73). The resulting PDEs can generally not be solved analytically anymore.

However, it is straightforward to derive ODEs for the moments of the system accu-

rate to the corresponding order. If one includes the leading order correction to the

mean concentrations given by the rate equations, the corresponding equations have

been called “effective mesoscopic rate equations” [63], and the next leading order cor-

rections to the variance “Inverse Omega Square” method [65]. We will not use these
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higher order corrections in this work and refer the interested reader to the references

[63] and [65].

Properties

As long as one is only interested in the LNA or higher order corrections to the mo-

ments, rather than the distributions of higher order truncations, the system size expan-

sion amounts to the solution of finite sets of ODEs. Efficiency wise, it is thus com-

parable with moment closure approximations introduced in Section 2.3.4 and hence

generally superior to stochastic simulations of the CME or of the chemical Langevin

equation introduced in Section 2.3.5.

Since the system size expansion is an expansion around the deterministic mean,

it cannot be used for deterministically multistable systems, i.e., systems whose rate

equations have two or more positive stable fixed points, unless one is only interested

in the short-time behaviour of a process.

We note that for truncations of higher orders than zero, the resulting PDEs corre-

sponding to Eq. (2.73) involve higher order derivatives and thus have no probabilistic

interpretation due to non positive-definite solutions [66]. It can however be shown that

the moment equations for the system size expansion can be derived directly from the

moment equations of the CME, thereby avoiding this flaw of negative distributions.

Example

Let us consider the rate equations and LNA for the gene system in Figure 2.2. Us-

ing the definition of the macroscopic propensity functions in Eq. (2.69) together with

Eq. (2.29), we obtain

f(0)(φφφ) = (k1φ1,k2φ1φ2,k3(
1
Ω
−φ1),k4φ2)

T . (2.76)

Using Eqs. (2.68) and (2.29) we obtain the rate equations for this system,

∂tφ1 = −k2φ1φ2+k3(
1
Ω
−φ1), (2.77)

∂tφ2 = k1φ1−k2φ1φ2+k3(
1
Ω
−φ1)−k4φ2. (2.78)
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For the LNA defined in Eq. (2.73) we need the matrices J and D defined in Eq. (2.74),

for which we obtain

D =
⎛

⎝

k2φ1φ2+k3(
1
Ω
−φ1) k2φ1φ2+k3(

1
Ω
−φ1)

k2φ1φ2+k3(
1
Ω
−φ1) k1φ1+k2φ1φ2+k3(

1
Ω
−φ1)+k4φ2

⎞

⎠
, (2.79)

J =
⎛

⎝

−k2φ2−k3 −k2φ1

k1−k2φ1−k3 −k2φ1−k4

⎞

⎠
. (2.80)

Note that D and J are functions of the time-dependent solutions φ1 and φ2 of the rate

equations in (2.77) and (2.78). The solution of the LNA is a normal distribution in

n = (n1,n2). Its mean is obtained by (numerically) solving the rate equations in (2.77)

and (2.78), and the covariance by subsequently solving Eq. (2.75) using Eqs. (2.79)

and (2.80).

2.3.7 The Poisson representation

After having discussed several approximation methods of the CME in the previous

sections, let us next discuss an elegant (exact) alternative formulation of the CME,

the “Poisson representation” (PR). The PR was first derived by Gardiner in 1977 [67].

Despite its elegance it has rarely been used for actual applications in the literature. It

will however prove to be indispensable for our work in Chapter 5.

General formulation

The basic ansatz underlying the PR is to write the solution P(n,t) of the CME as a

mixture of Poisson distributions [67],

P(n,t) = ∫ du P(n1;u1) . . .P(nN ;uN)p(u,t), ui ∈C, (2.81)

where u = (u1, . . . ,uN) and P(ni;ui) = (e−uiuni
i )/ni! is a Poisson distribution in ni. The

ui are generally complex-valued and the integrals in Eq. (2.81) run over the whole

complex plane for each ui. Starting from the CME, one can derive a time evolution

equation for the generating function of P(n,t) [49]. Using the ansatz in Eq. (2.81) in

this equation leads to [67]

∂t p(u,t) =
R
∑
r=1

Ωkr (
N
∏
i=1

(1−
∂

∂ui
)

rir

−
N
∏
i=1

(1−
∂

∂ui
)

sir

)
N
∏
j=1

Ω
−s jrus jr

j p(u,t). (2.82)

We note that for the derivation of Eq. (2.82), an integration by parts has to be performed

and a corresponding surface term needs to be dropped. The latter is only possible if
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p(u,t) is sufficiently compact and has to be checked a posteriori in general. Note that

the PDE in Eq. (2.82) involves derivatives of finite order but may involve higher orders

than two. In this case, Pawula’s theorem tells us that p(u,t) can generally become

negative which means that Eq. (2.82) does not admit a probabilistic interpretation [66].

However, if we consider only reactions satisfying

∑
i

sir ≤ 2, ∑
i

rir ≤ 2, r = 1, . . . ,R, (2.83)

i.e., a maximum of two reactant and a maximum of two product particles, respectively,

no derivatives of higher order than two arise and Eq. (2.82) simplifies to a Fokker-

Planck equation of the form

∂t p(u,t) = −
N
∑
i=1

∂

∂ui
[Ai(u)p(u,t)]+

1
2

N
∑

i, j=1

∂

∂ui

∂

∂u j
[Bi j(u)p(u,t)] . (2.84)

The drift vector A(u) and diffusion matrix B(u) are given by

Ai(u) =
R
∑
r=1

Sirgr(u), (2.85)

Bi j(u) =
R
∑
r=1

gr(u)(rirr jr − sirs jr −δi, jSir), (2.86)

gr(u) =Ωkr

N
∏
j=1

Ω
−s jrus jr

j , (2.87)

where δi, j denotes the Kronecka delta, and we have introduced the PR propensity func-

tions gr(u). We note that if a the rth reaction does not have two or more reactant

molecules of the same species, i.e., sir ≤ 1, i = 1, . . . ,N, the PR propensity gr(u) is sim-

ply obtained from the CME propensity defined in Eq. (2.25) by replacing ni → ui. A

Fokker-Planck equation of the form in (2.84) is equivalent to the Langevin equation

du =A(u)dt +C(u)dW, CCT =B, (2.88)

where W is a l-dimensional Wiener process and l is the number of columns of C. By

“equivalent” we mean that simulating Eq. (2.88) corresponds to drawing samples from

the solution of Eq. (2.84).

Properties

Depending on the reactions in the system, the diffusion matrix B may be zero, in which

case the Langevin equation in Eq. (2.88) reduces to a set of deterministic ODEs. On the
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other hand, depending on the reactions, B(u) does not always remain positive semi-

definite which means that CCT =B cannot be fulfilled for real u (see Appendix A.2 for

a proof). This in turn means that Eq. (2.84) is not a proper Fokker-Planck equation in

real variables, but has to be extended to complex-valued space.

Note also that despite Eqs. (2.84) and (2.88) looking similar to the chemical Fokker-

Planck equation and chemical Langevin equation in Eqs. (2.58) and (2.61), respec-

tively, they have fundamentally different interpretations: the ui variables in the Pois-

son representation are auxiliary variables with no real physical interpretation. In the

CFPE and CLE in Eqs. (2.58) and (2.61), in contrast, the xi variables represent physical

quantities, namely (continuous) molecule numbers.

An important property of the PR is that the mean values of the ui variables agree

exactly with the mean values of the ni variables. More generally, one can derive an

exact relationship between the moments of the ui variables and the moments of the ni

variables [49]. This means that if one computes moments in PR space up to a certain

order, one can easily translate them into moments of molecule numbers, without having

to know the whole distribution of the ui variables.

Example

Let us next derive the PR Langevin equation for the gene system in Figure 2.2. The PR

propensity vector g, drift vector A and diffusion matrix B are defined in Eqs. (2.85)-

(2.87). Using Eqs. (2.28) and (2.29), we obtain

g = (k1u1,
k2

Ω
u1u2,k3(1−u1),k4u2)

T , (2.89)

A =
⎛

⎝

−
k2
Ω

u1u2+k3(1−u1)

k1u1−
k2
Ω

u1u2+k3(1−u1)−k4u2

⎞

⎠
, (2.90)

B = (k1u1−
k2

Ω
u1u2+k3u3)×

⎛

⎝

0 1

1 0

⎞

⎠
. (2.91)

Since the matrix in the last equation has the eigenvalues +1 and −1, B cannot be pos-

itive semi-definite, which means that the PR becomes complex-valued. For the PR

Langevin equation in Eq. (2.88) we have to take the square root of B. One possible

choice is

C =
1
2

√

k1u1−
k2

Ω
u1u2+k3u3

⎛

⎝

1+ i 1− i

1− i 1+ i

⎞

⎠
. (2.92)

Note that C cannot be chosen real since B is not positive semi-definite (see Appendix

A.2 for a proof).
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2.4 Stochastic reaction-diffusion processes

Let us next consider the case when the “well-mixed” condition underlying the previous

section does not hold, i.e., if the diffusion of particles is not fast. In this case the spatial

positions and diffusion of particles have to be taken into account, and the non-spatial

CME description introduced in Section 2.3.2 is no longer valid. Such systems are

typically modelled as stochastic reaction-diffusion processes (SRDPs). We will in the

following first discuss an algorithmic description of such processes and subsequently

a coarse-grained approximation thereof.

2.4.1 Brownian dynamics in the Doi model

The standard approach to describe spatial chemical reaction systems relies on Brown-

ian dynamics simulations. The idea is to discretise time into steps dt, to simulate the

diffusion of each individual particle in space and to let reactions happen under certain

rules with certain probabilities during each time step. Let us start by considering the

spatial diffusion of particles.

Diffusion

Consider a single particle in an M−dimensional spatial domain V ⊂RM and let pdiff(x,t ∣x0,t0)

be the probability to find the particle at position x at time t if it was initially at position

x0 at time t0. Then pdiff(x,t ∣x0,t0) fulfils the diffusion equation

∂t pdiff(x,t ∣x0,t0) =D∆pdiff(x,t ∣x0,t0), (2.93)

where D is the microscopic diffusion constant and ∆ = ∂2/∂x2
1 + . . .+ ∂2/∂x2

M is the

M−dimensional Laplace operator. If the system is unbounded, i.e., V =RM, the solution

of Eq. (2.93) is given by a product of normal distributions with variance 2Ddt, one for

each spatial component:

pdiff(x,t0+dt ∣x0,t0) =
M
∏
i=1
N(xi;x0

i ,2Ddt), (2.94)

N(x;m,V) =
1

√
2πV

e−
(x−m)2

2V , (2.95)

where we set t = t0+dt. In particular, this means that the diffusion in different spatial

(orthogonal) directions is independent of each other. We can thus use Eq. (2.94) to
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simulate the diffusion of particles in space for discrete time steps dt by sampling the

traveled distance from a normal distribution,

xi(t +dt) = xi(t)+dx, dx ∼N(x;0,2Ddt), (2.96)

independently for each particle and each spatial dimension i = 1, . . . ,M. The mean

square displacement is accordingly given by ⟨dx2⟩ = 2Ddt. If the system is (spatially)

unbounded, Eq. (2.96) is exact for any dt in the sense that it draws samples from

Eq. (2.94). However, if the system is bounded with say reflecting boundary condi-

tions, the solution of Eq. (2.93) is no longer given by Eq. (2.94). For time steps dt

small enough such that the expected overlap of Eq. (2.94) with the boundary is small,

however, Eq. (2.94) can be expected to give a good approximation of the solution of

Eq. (2.93). Roughly speaking, this is the case if the root of the mean square displace-

ment,
√

⟨dx2⟩ =
√

2Ddt, is much smaller than the length scale of the system. Therefore,

as long as we choose the time step dt sufficiently small, we can use Eq. (2.96) together

with appropriate boundary conditions to simulate the diffusion of particles. If the up-

dated position of a particle according to Eq. (2.96) lies outside of the compartment,

we have to apply certain boundary constraints. In the case of reflecting boundaries, for

example, we simply reflect the particle at the boundary back into the compartment.

Zeroth order reactions

Let us next consider zeroth order reactions, i.e., such with zero reactant molecules,

such as ∅
c

ÐÐÐÐ→ X . This could for example model a random input of particles into a

system, or the particle could become created by other species in the system which are

not modelled explicitly. Such a reaction may occur homogeneously across the whole

system or be space dependent. Independently of that, for the purpose of simulation, one

first has to decide if the reaction occurs in the time step dt or not. If c is the propensity

of the reaction, then cδt is the probability for it to happen in an infinitesimally small

time interval δt. If we choose our time step dt small enough, cdt will therefore be a

good approximation of the probability for the reaction to happen in dt. We implicitly

make the assumption here that the reaction can occur only once in each time step which

is obviously only valid for small enough dt. Specifically, the waiting time distribution

of the reaction to happen is given by the exponential exp(−cdt) with expected value

1/c, and we require dt ≪ 1/c. In summary, the reaction occurs with probability cdt in

a time step of length dt. If the reaction occurs, we sample from its spatial distribution

to determine the position where it occurs.
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First order reactions

First order reactions, i.e., such with one reactant molecule, are treated in a similar way.

As an example, consider the decay reaction X
c

ÐÐÐÐ→∅. One possibility to simulate

such a reaction is to decide for each X particle separately if the reaction occurs with

probability cdt. This is quite inefficient, however, because one needs to simulate a

random number for each X molecule in the system in each time step. Alternatively, one

can decide if the reaction occurs at all for any of the X molecules in the system with

probability #X ×cdt, where #X is the current number of X molecules in the system. As

for zeroth order reactions, this approach is only valid if the probability for a reaction

to happen in dt is small and the probability for the reaction to happen more then once

thus negligible. If the reaction does occur in a given time step, we decide randomly for

which of the X molecules it occurs. Since the propensity #X ×cdt now depends on the

number of X molecules in the system, it is difficult to verify these criteria a priori, and

they may have to be verified a posteriori.

Bimolecular reactions

Finally, let us consider bimolecular reactions, i.e., such with two reactant molecules,

which introduce explicit spatial interactions between particles. The particular form

of the interactions needs to be specified, and there are different ways to do so. We

will work in the Doi picture in this work [34, 35], in which molecules are modelled

as point particles and bimolecular reactions occur with a certain probability per unit

time whenever the distance between two reactant molecules is smaller than a certain

reaction range. Let us take the dimerisation X +X →∅ as an example, and let r and c

be the corresponding reaction range and reaction rate constant, respectively. In each

simulation step, one needs to find all pairs of X molecules that are separated from each

other by less than r. For each such pair, the reaction then occurs with probability cdt.

Here, the time step dt needs to be small enough such that the probability of a molecule

to react with more than one other molecule is negligible. As before, this generally

needs to be verified a posteriori.

Additional remarks

Note that certain reactions may require additional spatial rules to be specified. For

the reaction X1 → X2 +X2, for example, one needs to specify where the two product

molecules should be placed relatively to the position of the reacting X1 molecule. One
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Figure 2.3: Visualisation of the RDME for a two-dimensional square system of edge

length S. The RDME splits up space into square compartments of edge length h and

assumes well-mixed and dilute conditions in each compartment. The dynamics in each

compartment can therefore be described by a CME of the form in Eq. (2.24). The

CMEs of the single compartments are coupled via diffusion, which is modelled as linear

reactions with rate d =D/h2, where D is the microscopic diffusion rate constant.

possibility is to create both X2 particles at the exact position of X1. Another possibility

would be to create them at a fixed distance opposite of each other relative to the X1

molecule at a random angle. If bimolecular reactions are involved and if they are dif-

fusion limited, such different definitions can have dramatic effects on the dynamics of

the system. However, the algorithm described above that allows to decide if a reaction

happens in each step is valid independently of such additional rules. The latter just

need to be implemented “on top” of the former.

For each of the reaction types, we formulated conditions that the time interval

dt needs to satisfy for the algorithm to be valid. In a system with more than one

reaction, one may obtain additional requirements. For example, dt has to be small

enough such that a single X1 molecule has negligible probability to undergo both the

reactions X1 → X2 and X1 → X3 in one time step. It is not straightforward to verify all

such criteria explicitly. In practise, it is generally easier to converge the quantity of

interest, e.g. the mean particle number of a certain species, with respect to dt.

Since the system has to be simulated for small time steps dt and every molecule has

to be modelled explicitly, such simulations in continuous-space are computationally

extremely expensive, and several modified simulation methods have been proposed

that aim at lower computational costs [68, 69]. An alternative method which we discuss
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next relies on the discretisation of space.

2.4.2 The reaction-diffusion master equation

The reaction-diffusion master equation (RDME) can be viewed as a coarse-grained

approximation of stochastic reaction-diffusion processes in continuous space which

we discussed in Section 2.4.1. The basic idea is to discretise space into compartments

and assume well-mixed and dilute conditions in each compartment. For simplicity,

we consider a system in an M-dimensional cubic volume V = [0,S]M of edge length S

and discretise it into cubic compartments of edge length h. We denote by L = (S/h)M

the number of compartments and label each compartment with an index i ∈ {1, . . . ,L}.

We note that it is straightforward to generalise the following considerations to more

complicated geometries for both the system V and the space discretisation. The RDME

framework assumes that the system within each compartment is well-mixed and dilute,

which means that the dynamics in each compartment can be described by a chemical

master equation of the form in Eq. (2.24). The diffusion of particles is modelled by

linear reactions between adjacent compartments with rate constant d = D/h2, where D

is the microscopic diffusion constant. Figure 2.3 visualises the idea of the RDME for

a two-dimensional system.

Let n = (n1
1, . . . ,n

1
N , . . . ,n

L
1 ,n

L
N) denote the state of the system, where nl

i is the copy

number of species Xi in compartment l, and let nl = (nl
1, . . . ,n

l
N) denote the state vector

of the lth compartment. The time evolution of the probability P(n,t) to be in state n at

time t fulfils the RDME [70],

∂tP(n,t) =
L
∑
l=1
∑

m∈N(l)

N
∑
i=1

di[(nm
i +1)P(n+δ

m
i −δ

l
i,t)−nl

iP(n,t)]

+
L
∑
l=1

R
∑
r=1

[ fr(nl −Sr)P(n−Sl
r,t)− fr(nl)P(n,t)],

(2.97)

whereN(l) denotes all adjacent compartments of compartment l, fr(nl) is the propen-

sity function of the rth reaction, δl
i is a vector of length N×L with the entry correspond-

ing to species i in box l equal to 1 and all other entries equal to zero and Sl
r is a vector of

length N×L with the entries corresponding to the lth compartment equal to Sr and zero

otherwise. The latter denotes the rth row of the stoichiometric matrix S. Note that the

propensity functions fr(nl) only depend on the state vector of single compartments.

Importantly, if a propensity function fr has a volume dependence, as do propensity

functions of mass-action kinetics type defined in Eq. (2.25), for example, the volume
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of the corresponding compartment has to be taken here, rather than the volume of the

whole system. The first term in Eq. (2.97) describes the diffusion of particles, while

the second term is a sum over CME type of terms for each compartment.

The RDME can be seen as a coarse-grained approximation of the Doi model [71].

For a linear reaction system, i.e., in the absence of bimolecular reactions, it constitutes

a perturbative approximation of the corresponding continuous system, in the sense that

the RDME converges to the latter in the continuum limit h→ 0. In the presence of

bimolecular reactions, however, this is not the case in systems with more than one spa-

tial dimension [71]. The reason is that in the RDME framework bimolecular reactions

only happen if both reactant molecules are positioned in the same compartment. As the

compartment size approaches zero, the probability to find two molecules in the same

compartment converges to zero and no bimolecular reactions occur, independently of

the scaling of the propensity function with the compartment volume [71]. This leads

to a lower bound on the compartment spacing [72].

As for the CME, there are generally no analytic solutions known for the RDME and

one has to rely on further approximations or stochastic simulations. For the purpose

of simulations, the RDME has the advantage over Brownian dynamics simulations

that there is no need for time discretisation or the simulation of individual particles.

By treating molecules of the same species positioned in different compartments as

different species, one can write the RDME in Eq. (2.97) as a CME. Therefore, the

stochastic simulation algorithm, as well as the approximation methods of the CME

introduced in Section 2.3, can be applied to the RDME. Using the stochastic simulation

algorithm or an advanced version thereof (c.f. Section 2.3.2) directly on the RDME

is generally highly inefficient, however, since the sparse structure of the RDME is

not taken into account, and significant effort has been spent in the literature on the

development of more efficient simulation methods for the RDME [73, 74].

2.5 Poisson and Cox processes

Let us now leave the field of chemical reaction systems and consider a class of models

that seems to be quite unrelated at first sight; so-called spatio-temporal point pro-

cesses. The latter are typically used empirically to perform inference tasks for systems

with spatial (temporal) events for which no microscopic description exists, such as

conflict events in social sciences for example [75]. Even though stochastic reaction-

diffusion processes (SRDPs) (Section 2.4) and point processes have both been applied
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to the same type of problems, for example in epidemiology [76, 77], they are widely

perceived as conceptually distinct. However, we will show in Chapter 5 that the two

approaches are intimately related.

2.5.1 Definition

A (spatial) Poisson process on a spatial region D of arbitrary dimension defines a

measure on countable unions of zero-dimensional subsets (points) of D. A Poisson

process is often characterised by an intensity function u ∶ D →R+ giving the probability

density of finding a point in an infinitesimal region around some x ∈ D. Now let N(A)

denote the number of points in a subregion A ⊂ D. Then N(A) is a Poisson random

variable with mean given by the integral of u over A:

p(N(A) = n) = P(n;uA), uA = ∫
uA

dx u(x), (2.98)

where P(n;uA) is a Poisson distribution in n with mean uA.

A (spatial) Cox process is a generalisation of a Poisson process and also called

“doubly stochastic process”, in the sense that the intensity function u is itself a random

process, and conditioned on the intensity u a Cox process reduces to a Poisson process.

The distribution of the number of points in a subregion A ⊂ D is thus a mixture of

Poisson distributions,

p(N(A) = n) = ∫ duAP(n;uA)p(uA). (2.99)

Since we are interested in dynamical systems, we will assume time-dependent intensity

functions u ∶ D×T →R+, where T is a finite real interval denoting time. We then require

that for any fixed time point t ∈ T the process is a spatial Poisson (Cox) process with

intensity u(⋅,t). In the case of a Poisson (Cox) process, the intensity u may for example

be defined as the solution of a PDE (SPDE). Note that, strictly speaking, our definition

does not describe “spatio-temporal point processes” in the conventional sense, which

would be defined as point processes on the product space D×T .

2.5.2 Numerical solution of (S)PDEs via basis projection

Let us next discuss a method to numerically solve (S)PDEs, which we will make use

of in the context of (Cox) Poison processes in Chapter 5. The basic idea is to project an

infinite dimensional (S)PDE in continuous space onto a finite set of spatial basis func-

tions. This gives rise to a finite set of coupled (S)ODEs. For simplicity, we confine the
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following presentation to a one-dimensional and one-species system. It is straightfor-

ward to extend the presented methods to multi-dimensional and multi-species systems.

Consider an SPDE of the form

du(x,t) = A(x,t)+
√

C(x,t)dW(x,t), (2.100)

where A(x,t) and C(x,t) are polynomials in u(x,t) with potentially space-dependent

coefficients, and W(x,t) is a spatio-temporal Wiener process. We approximate u(x,t)

by a linear-combination of a finite set of basis functions {φi(x)}n
i=1,

u(x,t) =
n
∑
i=1

ci(t)φi(x), (2.101)

where we have introduced the time-dependent coefficients ci(t). Inserting this ansatz

into Eq. (2.100), multiplying from the left with φ j and integrating over x, it can be

shown that the parameter vector c(t) = (c1(t), . . .cn(t)) fulfils

dc(t) =Φ
−1⟨φ∣A⟩dt +

√
Φ−1⟨φ∣C∣φ⟩Φ−1dW, (2.102)

where W is a n-dimensional temporal Wiener process and we have defined

⟨φi∣ f ⟩ = ∫ dx φi(x) f (x,t), (2.103)

⟨φi∣ f ∣φ j⟩ = ∫ dx φi(x) f (x,t)φ j(x), (2.104)

⟨φ∣ f ⟩i = ⟨φi∣ f ⟩, (2.105)

⟨φ∣ f ∣φ⟩i j = ⟨φi∣ f ∣φ j⟩, (2.106)

Φi j = ⟨φi∣φ j⟩, (2.107)

for a general function f (x,t). Eq. (2.102) constitutes a finite set of coupled SDEs. In

the case of a Poisson process, i.e., C(x,t) =0, Eq. (2.102) reduces to a finite set of ODEs

and can hence be integrated numerically. In the case of a Cox process with C(x,t) ≠ 0,

Eq. (2.102) contains non-vanishing noise terms. If the system is linear, i.e., A(x,t) is

linear in u(x,t) and C(x,t) independent of u(x,t), the system of SDEs is solved by

a multivariate normal distribution whose mean and covariance can be obtained from

direct numerical integration. If C(x,t) also depends linearly on u(x,t), the mean and

covariance can still be obtained from direct numerical integration, but the solution of

Eq. (2.102) is not a multivariate normal distribution anymore. A simple approximation

is given by approximating the solution by a multivariate normal distribution with the

corresponding mean and covariance. If A(x,t) or C(x,t) is a second or higher order
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polynomial in u(x,t), the moment equations couple to higher order equations, and

further approximations may have to be applied. For the methods employed in this

work this will not be necessary, however.

Locally constant non-overlapping basis functions

As an example, consider locally constant non-overlapping step functions for the φi.

For a one-dimensional system in the interval [0,1], for example, we define n basis

functions as

ψ(x) =
⎧⎪⎪
⎨
⎪⎪⎩

1 0 ≤ x ≤ 1
n ,

0 otherwise,
(2.108)

φi(x) =ψ(x−(i−1)/n) for i = 1, . . .n. (2.109)

The corresponding overlap matrix and diffusion operator read

Φ = ⟨φ∣φ⟩ =
1
n

1n×n, (2.110)

⟨φ∣∆∣φ⟩ = n

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−1 1

1 −2 1

1 −2 ⋱

⋱

⋱ −2 1

1 −2 1

1 −1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (2.111)

where 1n×n is the n-dimensional unity matrix and ∆ is the Laplace operator.

2.5.3 The likelihood function

Point processes are typically used to perform inference from experimental data. Sup-

pose we have some spatial point measurements x=(x0, . . . ,xn) of the state z=(z0, . . . ,zn)

of the system at discrete time points t0, . . . ,tn. Suppose further that we model the sys-

tem by means of a Poisson (Cox) process with intensity u(x,t) which we obtain by

solving a (S)PDE via a basis projection approximation as defined in Eq. (2.101). This

means that u(x,t) can be represented by the coefficient vector c(t) = (c1(t), . . .cn(t)).

We can thus identify zi = ci = c(ti). Let Θ represent the used model. For a Poisson

process, the likelihood of one measurement xi at time ti is given by [78]

p(xi∣Θ) = =∏
s∈xi

u(s,ti)e−∫ dxu(x,ti). (2.112)
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In the case of a Cox process, for which u(x,t) is stochastic, Eq. (2.112) has to be

averaged accordingly with respect to the distribution of u(x,t).

To perform inference we need to compute the likelihood p(x∣Θ) of the full data

given the model. The likelihood factorises as

p(x∣Θ) = p(x0)
n
∏
i=1

p(xi∣xi−1, . . . ,x0), (2.113)

where we suppressed conditioning on Θ on the right hand side for notional convenience

and will implicitly assume all distributions to be conditioned on Θ in the following.

The factors in Eq. (2.113) can be written as

p(xi∣xi−1, . . .x0) = ∫ dcidci−1 p(xi∣ci)p(ci∣ci−1)p(ci−1∣xi−1, . . .x0,)

= ∫ dci p(xi∣ci)p(ci∣xi−1, . . .x0),
(2.114)

and can be computed iteratively as follows. Assume that we know the posterior

p(ci−1∣xi−1, . . .x0) at time step i−1, and that we can solve the system forward in time to

obtain the predictive distribution p(ci∣xi−1, . . .x0)= ∫ dci−1 p(ci∣ci−1)p(ci−1∣xi−1, . . .x0)

of time step i. The posterior of time step i is then obtained by performing the Bayesian

measurement update

p(ci∣xi, . . .x0) =
p(xi∣ci,xi−1, . . .x0)p(ci∣xi−1, . . .x0)

p(xi∣xi−1, . . .x0)

=
p(xi∣ci)p(ci∣xi−1, . . .x0)

p(xi∣xi−1, . . .x0)
,

(2.115)

where we have used the Markov property to obtain the second line. We observe that

the likelihood contribution in Eq. (2.113) at time step i is just the normalisation of

the posterior at that time step. Therefore, if we can solve the system forward in time

and perform the measurement update in Eq. (2.115), we can compute the likelihood

iteratively. This procedure is called “filtering”.

In the case of a Poisson process this procedure is particularly simple: since the

intensity and thus the ci are deterministic, the predictive distributions p(ci∣xi−1, . . .x0)

are delta functions, and hence the measurement updates in Eq. (2.115) become trivial.

Effectively, one only needs to solve the system forward in time over the whole time

interval, compute the likelihoods of single measurement time points as in Eq. (2.112)

and take the product.

In the case of a Cox process, however, the measurement update in Eq. (2.115)

is generally not trivial, and the posterior in Eq. (2.115) is in fact intractable in most

cases. In the systems we study in this thesis, the solution of the SDE in Eq. (2.102) is
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either a multivariate normal distribution or we approximate it by a multivariate normal

distribution. In this case it is convenient to project the posteriors at different time steps

back to multivariate normal distributions during the filtering procedure. A popular

method to achieve this is the Laplace approximation [79], which approximates the

posterior by a Gaussian centred at the posterior’s maximum and with covariance being

the negative Hessian of the posterior in the maximum.

Assuming that we can (approximately) compute the likelihood p(x∣Θ), the most

straightforward way to perform e.g. parameter inference is to optimise p(x∣Θ) with

respect to the parameters of the model Θ. We will adopt this approach in this work,

but would like to point out that the computation of the likelihood is the basis for most

more advanced inference schemes such as Bayesian methods [79].

We have now established all the machinery that we need in the following chapters, and

are hence ready to present the results of this thesis.



Chapter 3

The complex chemical Langevin

equation

In this Chapter we study the chemical Langevin equation (CLE) and chemical Fokker-

Planck equation (CFPE), with particular regard to their boundary condition problem.

We introduced the CLE/CFPE as a diffusion approximation of the chemical master

equation (CME) in Section 2.3.5. Here, after defining the breakdown problem, we

show that the CLE is mathematically not always well-defined due to the occurrence

of square roots of negative expressions in Section 3.1. We call this phenomenon

the breakdown of the CLE. Next, we show in Section 3.2 that the breakdown can be

avoided by extending the state space of the CLE from real-valued to complex-valued

numbers. In Section 3.3 we demonstrate that the resulting “complex CLE” is signifi-

cantly more accurate than other modified versions of the CLE that have been proposed

in the literature to keep the state space real-valued. Finally, we conclude in Section

3.4.

3.1 Breakdown of the chemical Langevin equation

In Section 2.3.5 we introduced the CLE/CFPE as a diffusion approximation of the

CME, which can be obtained by letting the variables in the CME become continuous

and performing a Taylor expansion to second order. This gives the CFPE

∂tP(x,t) =−
N
∑
i=1

∂

∂xi
[Ai(x)P(x,t)]+

1
2

N
∑

i, j=1

∂

∂xi

∂

∂x j
[Bi j(x)P(x,t)] , (3.1)

Ai(x) =
R
∑
r=1

Sir fr(x), Bi j(x) =
R
∑
r=1

SirS jr fr(x), (3.2)

49
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where x = (x1, . . . ,xn) and xi is the continuous molecule number variable of species Xi.

As explained in Section 2.3.5, the CFPE in Eq. (3.1) is equivalent to the CLE

dx =A(x)dt +C(x)dW, C(x)C(x)T =B(x), (3.3)

where W is a multi-dimensional Wiener process. Generally there exist different choices

for C(x) in Eq. (3.3). One such choice which we call the “standard form” of the CLE

reads

dxi =
R
∑
r=1

Sir fr(x)dt +
R
∑
r=1

Sir
√

fr(x)dWr. (3.4)

Note that the CLE/CFPE has continuous variables in contrast to the discrete variables

of the CME. It is easy to see that the CME has a natural boundary at zero molecule

numbers. Specifically, if the probability of finding a negative number of particles is

zero initially, it remains zero for all times. It is not clear how this boundary condition

behaves when approximating the discrete process described by the CME by a continuos

diffusion process satisfying the CLE/CFPE in Eqs. (3.1) and (3.3), respectively. As

pointed out in Chapter 1, it is known that the xi variables can become negative for

some systems, which can lead to negative propensity functions fr(x) and thus to square

roots of negative expressions in the CLE. Since the CLE is defined for real-valued

variables, it is not defined for such occurrences. We call the occurrence of square

roots of negative expressions breakdown of the CLE. Let us next study this breakdown

behaviour for some example systems.

3.1.1 Linear reaction systems

We start by considering two simple linear reaction systems. Recall that for linear sys-

tems, the CLE’s predictions for the mean and variance of the process agree exactly with

the mean and variance predicted by the CME (c.f. Section 2.3.5). This fundamental

property of the CLE can be derived by comparing the moment equations derived from

the CLE and CME, respectively. One may thus require any implementation or modified

version of the CLE to satisfy this property.

Example (i): birth-death process

We start by considering a simple linear reaction system with one species

∅
c1

ÐÐÐÐ⇀↽ÐÐÐÐ
c2

X . (3.5)
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The CLE for this system reads

dx = (Ωc1−c2x)dt +C(x)dW, (3.6)

where C(x)C(x)T = B = Ωc1 + c2x and Ω is the compartment volume. We consider

two forms of the CLE: the standard form with C11 =
√

Ωc1 and C12 = −
√

c2x and a

possible alternative form where C(x) =
√

Ωc1+c2x. We rescale time as τ = tc2 and

define k =Ωc1/c2. Note that rescaling time also rescales the noise terms since from Ito

calculus we have ⟨dW(τ)⟩ =
√

dτ =
√

c2dt =
√

c2⟨dW(t)⟩ [49]. The two CLEs are then

respectively given by

dx = (k−x)dτ+
√

kdW1−
√

xdW2, (3.7)

dx = (k−x)dτ+
√

k+xdW1. (3.8)

We first consider the standard CLE given by Eq. (3.7). Assume we start with a positive

x > 0 at τ = 0. The noise terms can drive the system towards x = 0. For x = 0 the second

noise term vanishes and the drift becomes positive. However, due to the first noise

term, the variable x becomes negative with a finite probability in a finite time interval

and the CLE breaks down.

Next consider the alternative form of the CLE as given by Eq. (3.8). This CLE

breaks down for x < −k. However, since the diffusion term vanishes for x = −k and the

drift term becomes 2k > 0, the region x < −k is not accessible and this CLE does hence

not break down (note that since one has to numerically integrate the CLE with a finite

time step, breakdown may still occur, but this purely numeric effect vanishes in the

limit of infinitesimally small time steps).

We note that other alternative forms of the CLE than the one considered are possi-

ble by choosing different factorisations C of the Fokker-Planck diffusion matrix B in

Eq. 3.3. However, it is easy to verify that all other possible choices of C give rise to

CLEs for which the argument in the square roots becomes negative for x < 0 (as for the

standard form of the CLE) or for x < −k (as for the alternate form given by Eq. (3.8)).

Hence the two cases considered above provide a complete picture of the breakdown

phenomenon.

We call the implementations of the CLEs in Eq. (3.7) and Eq. (3.8), CLE-R1 and

CLE-R2, respectively, and simulate them using the standard Euler-Maruyama algo-

rithm [80]. For the CLE-R1, we impose a reflecting boundary at x = 0 to avoid the

breakdown of the CLE for finite times. The simulation parameters are the time step of

the Euler-Maruyama algorithm (δτ), the time after which steady state is assumed to be
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Figure 3.1: The normalised mean µ̂ and normalised variance σ̂2 as a function of the

non-dimensional parameter k for the various CLEs of the simple production-decay re-

action system given by scheme (3.5). CLE-R1 denotes the CLE in Eq. (3.7) with re-

flective boundary condition, CLE-R2 denotes the CLE in Eq. (3.8), CLE-WW is the

modified CLE approach in [24] and CLE-DR is the modified CLE approach in [25].

The normalisation involves dividing the means and variances obtained from the sim-

ulations by the exact analytic results: µ = σ2 = k = Ωc1/c2. Only the CLE-R2 agrees

with the analytic result (black dashed line) for all k. The simulation parameters are

δτ = 10−5,∆τ = 1,N = 103 (see main text for discussion of these parameters and for the

method used to calculate the moments from the CLEs).

achieved (∆τ) and the number of samples (N). Moments are calculated from a single

time trajectory by averaging over the fluctuating variables at time points ∆τ, 2∆τ, ...,

N∆τ; this procedure is repeated ten times leading to ten independent estimates for the

moments - the average over the estimates and the standard deviation about these aver-

ages are what is plotted in the figures. This simulation protocol is followed throughout

the rest of this Chapter.

Figure 3.1 shows the results for the mean number of X molecules and the variance

of fluctuations about this mean in steady-state conditions normalised by the analytic

results (mean concentration = variances of fluctuations = k for a birth-death process

simulated using the CME or the CLE) as a function of k. Both methods give the correct

result for large values of k. This is because a large k value corresponds to a large input-

to-decay ratio and thus a large mean value which implies a small probability of the

number of molecules becoming negative. With decreasing k, the discrepancy between

the two CLEs becomes evident: the CLE-R1 gives the wrong moments, whereas the

CLE-R2 agrees with the analytic result. This is clearly due to the fact that the CLE-R1
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imposes an artificial boundary to avoid the breakdown of the CLE whereas the CLE-R2

naturally does not suffer from any breakdown. Our results imply that different versions

of the CLE with different noise terms are not necessarily equivalent in terms of their

boundary behaviour.

Figure 3.1 shows as well the results of the modified CLE methods of Wilkie and

Wong (CLE-WW) [24] and of Dana and Raha (CLE-DR) [25] applied to the reac-

tion scheme (3.5). The latter method becomes accurate in the macroscopic limit (the

limit of large k) while the former method (CLE-WW) is accurate only in the mean

concentration but gives an incorrect variance of fluctuations for all values of k. The

CLE-WW does not converge to the correct results in the macroscopic limit because it

postulates a global change to the diffusion terms of the CLE (the deletion of some of

these terms) to fix the breakdown problem which is localised to the boundary of zero

molecule numbers. On the other hand, the CLE-DR modifies the diffusion coefficients

only in breakdown regions of the parameter space setting them to zero, and hence it

necessarily becomes accurate in the macroscopic limit. Because of these reasons, in

the rest of this chapter we shall compare our results only with those of the CLE-DR.

Hence it is clear that even for the simple example considered here, the meth-

ods which artificially correct for the breakdown of the CLE (CLE-R1 with reflection

boundary conditions, CLE-DR and CLE-WW) lead to an inequivalence between the

CLE’s predictions for the first two moments and those of the CME. Equivalence can be

restored, in this case, by choosing an alternative CLE representation (CLE-R2) which

naturally does not break down at any point in time. We note that the alternative CLE

representation is consistent with a drift-diffusion process which can access real values

of x larger than −k; the probabilistic interpretation of the CFPE is also consistent with

such a process since the diffusion scalar B=Ωc1+c2x of the CFPE is positive for x>−k.

Hence one can state that for this example it is possible to find a well-defined CLE rep-

resentation in real space because the drift-diffusion process describing the chemical

reaction lives on the real domain. We next consider a linear multi-species system to

check whether one can always find a representation of the CLE in real space which

does not suffer breakdown.

Example (ii): Production followed by isomerisation

We consider the following system of linear reactions involving two distinct species

∅
c1

ÐÐÐÐ⇀↽ÐÐÐÐ
c4

X1
c2

ÐÐÐÐ⇀↽ÐÐÐÐ
c3

X2. (3.9)
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We rescale time as τ = c4t and define k1 = Ωc1/c4,k2 = c2/c4,k3 = c3/c4. The standard

form of the CLE for the reaction system (3.9) (denoted as CLE-R1) reads

dx1 = (k1−k2x1+k3x2−x1)dτ+
√

k1dW1−
√

k2x1dW2+
√

k3x2dW3−
√

x1dW4, (3.10)

dx2 = (k2x1−k3x2)dτ+
√

k2x1dW2−
√

k3x2dW3. (3.11)

When one of the variables becomes zero, some noise terms become zero and some

remain finite and thus the noise can drive the system to negative values of the variables

which then leads to breakdown. A possible alternative form is given by the Langevin

equation (denoted as CLE-R2)

dx1 = (−x1+k1−k2x1+k3x2)dτ+
√

y1dW1+
√

y2dW2, (3.12)

dx2 = (k2x1−k3x2)dτ−
√

y2 dW2, (3.13)

where we have defined

y1 = x1+k1, (3.14)

y2 = k2x1+k3x2. (3.15)

The CLE-R2 breaks down if y1 or y2 become negative. To check whether this can

occur, we transform the CLE-R2 to the new variables y1 and y2. For this purpose, we

express x1 and x2 in terms of y1 and y2 as

x1 = y1−k1, (3.16)

x2 =
1
k3

(y2+k2(k1−y1)). (3.17)

Using Ito’s formula [49], we find that the CLE-R2 in the new variables reads

dy1 = (2k1−y1(2k2+1)+2k1k2+y2)dτ+
√

y1dW1+
√

y2dW2, (3.18)

dy2 = (2k1k2(1+k2−k3)+k2y1(2k3−2k2−1)+y2(k2−k3))dτ

+k2
√

y1dW1+(k2−k3)
√

y2dW2. (3.19)

Consider the case y2 = 0,y1 > 0. The CLE-R2 then reads

dy2 = (2k1k2(1+k2−k3)+k2y1(2k3−2k2−1))dτ+k2
√

y1dW1. (3.20)

Clearly the diffusion term can drive the system to negative values of y2 and hence to

breakdown. Interestingly, breakdown can also occur because the drift becomes nega-

tive for positive y1. For example for 2k3−2k2−1≠ 0 and (1+k2−k3)/(2k3−2k2−1) < 0,
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Figure 3.2: Graphical representation of the state space of the two-dimensional reaction

system in (3.9). The dashed lines indicate the boundaries where either y1 or y2 become

zero. The grey area corresponds to the part of the state space where the eigenvalues

λ1 and λ2 of the CFPE diffusion matrix are negative and positive, respectively. The

blue shaded area represents the region of space where both eigenvalues are negative.

Thus the diffusion matrix is not positive semi-definite in the grey and blue shaded areas.

The blue arrows represent the eigenvectors for the case y1 = 0,y2 > 0 and the case

y2 = 0,y1 > 0. Since the eigenvector of the non-vanishing eigenvalue is not parallel to

the boundary, there is a non-vanishing noise component orthogonal to the boundary

that can drive the system to breakdown.

the drift becomes negative for y1 < 2k1(k3 − k2 −1)/(2k3 −2k2 −1), which is possible

under the constraint y1 > 0. Similarly it is easy to show that for the case y1 = 0,y2 > 0

the diffusion term can drive the system to breakdown (breakdown due to the drift term

is here not possible because the drift is always positive).

To gain insight into the underlying reason for breakdown, we next consider the

diffusion matrix of the CFPE. Using Eq. (3.2) we find that the diffusion matrix is given

by

B =
⎛

⎝

k1+x1+k2x1+k3x2 −k2x1−k3x2

−k2x1−k3x2 k2x1+k3x2

⎞

⎠
=
⎛

⎝

y1+y2 −y2

−y2 y2

⎞

⎠
. (3.21)
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Figure 3.3: Normalised mean and variance of the implementations CLE-R1, CLE-R2,

CLE-DR and CLE-WW for species X1 of the linear reaction system (3.9) as a function

of k1 = Ωc1/c4. All other parameters are set to unity. Reflection boundary conditions

at zero molecule numbers and at y1 = y2 = 0 are respectively imposed on CLE-R1 and

CLE-R2 to avoid their breakdown. The values are normalised by the exact analytic

expression for the moments obtained from the CME: µ1 = σ2
1 = k1. A large k1 thus

corresponds to a large mean value. The dashed line represents the exact value. Since

the system is linear, the CLE should reproduce the exact result. The large deviations

for small values of k1 thus clearly indicate that the imposed reflection boundaries distort

the moments. Simulation details for all implementations are δτ = 10−4,∆τ = 1,N = 104.

Its eigenvalues and corresponding eigenvectors are given by

λ1 =
1
2
(y1+2y2−

√

y2
1+4y2

2) , λ2 =
1
2
(y1+2y2+

√

y2
1+4y2

2) , (3.22)

v1 =
⎛
⎜
⎝
−
−y1+

√

y2
1+4y2

2

2y2
,−1

⎞
⎟
⎠

T

, v2 =
⎛
⎜
⎝
−

y1+
√

y2
1+4y2

2

2y2
,1

⎞
⎟
⎠

T

. (3.23)

Inspection of these equations shows that the eigenvalue λ1 becomes negative if y1 or y2

become negative, i.e., the positive semi-definite form of the diffusion matrix, which is

a necessary requirement of any Fokker-Planck equation, cannot be maintained. Hence

it follows that breakdown of the CLE-R2 is due to the fact that the drift-diffusion pro-

cess has a finite probability of accessing a region of space (y1 or y2 negative) where the

diffusion matrix of the CFPE is not positive semi-definite, i.e., there is no probabilistic

interpretation of a drift-diffusion process in the real domain which describes the reac-

tion system in Eq. (3.9). Therefore, the breakdown of the CLE-R2 is independent of the

particular choice of C and thus the same problem is manifest for all possible choices

of C, for all possible Langevin equation representations of the CFPE.

This intrinsic breakdown of the CFPE can also be understood as follows. Figure 3.2
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shows the eigenvectors corresponding to y1 =0,y2 >0 and y2 =0,y1 >0. The eigenvector

corresponding to λ2 in the case y1 = 0,y2 > 0 is v2 = (−1,1)T . This is clearly not parallel

to the boundary y1 = x1+k1 = 0 which is parallel to (0,1)T . There is thus always a non-

vanishing noise component orthogonal to the boundary which implies that the noise

can drive the system across the boundary leading to breakdown of the CFPE. A similar

conclusion follows for the case y2 = 0,y1 > 0.

We note that the connection between the form of the diffusion matrix and the break-

down properties of the CLE is not specific to this example. It can be generally proved

for all chemical systems that if the diffusion matrix B is not positive semi-definite then

the matrix C cannot be real, i.e., the CLE necessarily breaks down due to square roots

of negative arguments. A proof of this result can be found in Appendix A.2.

Correcting the breakdown by imposing artificial reflective boundaries introduces

significant errors. The results of such simulations - the mean and variance of species

X1 for CLE-R1 and CLE-R2 - are shown in Figure 3.3. The results are normalised

with the exact analytic results obtained by solving the CME for the reaction system in

Eq. (3.9) (this leads to mean = variance = k1). Both CLEs show significant deviations

from the exact result for small values of k1, i.e, for small values of the average number

of molecules of X1. As for the previous example of a simple birth-death process, it is

found that these significant deviations from the exact CME result cannot be eliminated

using CLEs with modified propensities, i.e., using the methods of Wilkie and Wong

[24] or of Dana and Raha [25].

3.1.2 Bimolecular reaction systems

In the previous section we saw for a linear system with one species that there exists

a representation of the CLE which avoids breakdown and which recovers the equiva-

lence of the CLE and CME results for the mean and variance of the process for linear

systems. In contrast, for a simple linear two-species system we found that this is not

the case, i.e., that the CLE breaks down for all representations and the equivalence of

the CLE and CME for linear systems is violated. With the intuitive eigenvector pic-

ture in mind (as illustrated in Figure 3.2), we expect the CLE to break down for most

multi-dimensional systems, since there is no reason why the eigenvectors of the diffu-

sion matrix should in general be parallel to the boundary separating the regions in state

space where the diffusion matrix is positive semi-definite and where it is not.

As an example, a detailed breakdown analysis of a three variable CLE describing a
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reaction which is catalysed by two enzymes can be found in Appendix A.1. We show

there that all representations of the CLE do break down. For the two systems that we

will study in Section 3.3, one of which is the example system of Chapter 2 introduced

in Figure 2.2, one can easily perform a similar analysis leading to the same conclusion.

The intrinsic reason for the breakdown is found to be as for linear systems - namely

that the diffusion matrix of the associated CFPE loses its positive semi-definite form

for points in real space which can be reached by the drift-diffusion process described

by the CLE/CFPE.

3.2 The complex chemical Langevin equation

In the previous section we have shown that the commonly employed CLE generally

suffers from breakdown at finite times due to the occurrence of negative arguments

in square roots. This problem can be alleviated by imposing reflecting boundary con-

ditions or by a variety of other modified versions of the CLE. However, as we have

shown, these procedures introduce inaccuracies in the CLE predictions. Foremost

amongst such is the inequivalence between the modified CLE predictions and those

of the CME for the mean and variance of the process for linear systems.

The state space of the CLE is generally taken to be the real domain since molecule

numbers are real, and this has been an assumption in our derivations of the previous

section as well. However as we show in this section, the breakdown can be avoided by

working directly with a complex extension of the CLE; we show here that this restores

the equivalence of the CLE and CME predictions for the mean and variance for linear

reactions and gives accurate results for bimolecular systems. Although the molecule

numbers are generally complex, we show that the complex CLE predicts real-valued

moments and hence admits a physical interpretation. The only properties used for this

derivation are the analyticity and behaviour under complex continuation of the drift

and diffusion terms in the CFPE - hence the generality of our approach. We also show

that the expectation of any analytic function in RN and the autocorrelation functions

and power spectra predicted by the complex CLE are real-valued functions. Finally we

discuss the method by which the complex CLE can be used to simulate first passage

times.
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Figure 3.4: Absolute value of the imaginary parts of the first five moments of species

X1 in reaction (3.9) as a function of the number of samples N in CLE-C simulations.

The ith moment is given by mi. Each value is normalised by the absolute value of

the corresponding moment. The points of each moment can be approximately fitted

by a straight line (black dashed curve) with a slope of −1/2 . This implies that the

normalised imaginary parts decay as ∼ 1/
√

N and thus converge to zero in the limit

of an infinite number of samples. The simulation parameters are k1 = 0.3,k2 = k3 = 1,

δτ = 10−3,∆τ = 1.

3.2.1 Definition and properties

We start by defining the complex CLE:

Definition 3.1. The complex CLE is defined by the very same equation as the real-

valued CLE in Eq. (3.3), but on a complex-valued state space.

This means in particular that for real and positive initial conditions the complex

CLE reduces to the real-valued CLE for certain reaction systems, such as the one-

species linear system studied in Section 3.1.1. As we have argued in Section 3.1.2,

however, we expect the complex CLE to actually become complex-valued for most

multi-species systems, in which case it does not agree with the real-valued CLE.

The complex CLE is well-defined and does not suffer form any breakdown by

construction. However, the question arises if the complex CLE allows a probabilistic

interpretation since complex-valued molecule numbers are physically not meaningful.

As it turns out it does indeed admit a probabilistic interpretation since we can show the

following result:
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Figure 3.5: Testing the accuracy of the complex CLE (CLE-C). This is the same plot

as in Figure 3.3, but with the corresponding results of the CLE-C included. The CLE-

C gives the correct mean and variance of species X1, i.e, agrees with the CME, within

sampling error. The CLE-C’s superior accuracy over that of the real-valued CLEs stems

from the fact that the CLE-C does not suffer from breakdown and that hence it does not

require the imposition of artificial boundaries (as necessary for the real-valued CLE-R1

and CLE-R2). The used simulation parameters are δτ = 10−3,∆τ = 1,N = 104.

Theorem 3.1. For real initial conditions, the complex CLE defined in Definition 3.1

has real-valued moments for all times. More generally, consider a real-valued func-

tion g(x) analytic in RN that can be globally represented as a power series. When

continued to complex variables, the expectation of g(z) with respect to the distribution

predicted by the complex CLE is real-valued for all times.

We give the proof in the next section. So despite single realisations of the complex

CLE being complex-valued, the moments become real-valued in the ensemble average.

This is verified numerically in Figure 3.4 for the two-species linear system defined in

Eq. (3.9). The Figure shows the imaginary part of the first five moments of species

X1 as a function of the number of simulated samples used to compute the moments.

We find that the imaginary part converges to zero in the limit of an infinite number of

samples.

Theorem 3.1 implies

Corollary 3.1. The complex CLE fulfils the property of exact mean and variance of

fluctuations for linear reaction systems.

This follows directly from the agreement of the moment equations of up to order

two as derived from the CLE and the CME as shown in Section 2.3.5, together with the

fact that the complex CLE is well-defined without any imposed boundaries and that its

moments are real-valued. This result is verified in Figure 3.5, which is the same as
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Figure 3.3 but with the results of the complex CLE included (CLE-C). We find that, in

contrast to the various real-valued versions of the CLE, the complex CLE’s prediction

for the mean and variance agree with the corresponding CME results.

Other quantities that are frequently of interest are autocorrelation functions and

power spectra. For these we can prove:

Theorem 3.2. Autocorrelation functions and power spectra predicted by the complex

CLE are real-valued for all times.

To summarise, the complex CLE is well-defined for all reaction networks, and

gives rise to real-valued moments, real-valued autocorrelation functions and real-valued

power spectra.

3.2.2 Proof of main results

Before proving the theorems of the previous section, let us write the complex CLE

in terms of real-valued expressions. For the purpose of presentation, we use the

CLE in the standard form in the following. We note, however, that the complex

CLE and the following proofs are independent of the chosen representation. Writ-

ing z = (z1, . . . ,zN)T , where zi is the complex variable corresponding to the particle

number of species Xi, the complex CLE reads

dz =A(z)dt +C(z)dW. (3.24)

By writing z j = x j+iy j this equation can be split up into coupled Langevin equations for

the real parts x j and imaginary parts y j. By relabelling the variables as (w1, . . . ,w2N)T =

(x1, . . . ,xN ,y1, . . . ,yN)T we can write the equations in the form

dw =Adt +CdW, CCT = B. (3.25)

Here, we have defined

A= (Ax
1, . . . ,A

x
N ,A

y
1, . . . ,A

y
N)T , C =

⎛

⎝

Cx

Cy

⎞

⎠
, dW = (dW1, . . . ,dWR)

T . (3.26)

B = CCT =
⎛

⎝

Cx(Cx)T Cx(Cy)T

Cy(Cx)T Cy(Cy)T

⎞

⎠
=
⎛

⎝

Bxx Bxy

Byx Byy

⎞

⎠
. (3.27)

The superscripts x and y denote the real and imaginary part of a function f (x,y) =
f x(x,y)+ i f y(x,y).
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The new diffusion matrix B is symmetric; this follows from the fact that Bxx and Byy

are symmetric while Bxy = (Byx)T . Moreover, we find that B is positive semi-definite

since C is real in R2N (see Appendix A.2). The FPE corresponding to the complex CLE

reads

∂tP(w,t) =−
2N
∑
i=1

∂i [Ai(w,t)P(w,t)]+
1
2

2N
∑

i, j=1
∂i∂ j [Bi j(w,t)P(w,t)] . (3.28)

For proving the theorems of the previous section we need the following lemma de-

scribing an important property of the probability distribution of the process:

Lemma 3.1. The solution P(x,y,t) = P(w,t) of the FPE in Eq. (3.28) is invariant

under the joint reflection of the imaginary variables, y→−y, i.e.,

P(x,−y,t) = P(x,y,t). (3.29)

Proof. We first rewrite the FPE in Eq. (3.28) in the form

∂tP(x,y,t) = [−
N
∑
i=1

(∂xiA
x
i (x,y)+∂yiA

y
i (x,y))

+
1
2

N
∑

i, j=1
(∂xi∂x jB

xx
i j (x,y)+∂yi∂y jB

yy
i j (x,y)+2∂xi∂y jB

xy
i j (x,y))]P(x,y,t),

(3.30)

where we have used ∂xi∂y jB
xy
i j = ∂yi∂x jB

yx
i j , which can easily be verified from the def-

inition of B in Eq. (3.27). Since Ai is a polynomial with real coefficients, it fulfils

Ai(z̄) = Ai(z), or written in terms of the x and y variables Ai(x,−y) = Ai(x,y). For its

real and imaginary parts this implies

Ax
i (x,−y) = Ax

i (x,y),

Ay
i (x,−y) = −Ay

i (x,y). (3.31)

Using that fr are polynomials in the molecule numbers (c.f. Eq. (2.25)) and the sym-

metry properties of the complex square root, i.e.
√

z̄ =
√

z, we find
√

fr(z̄) =
√

fr(z) =
√

fr(z). Using C in the standard form, Cir = ∑r Sir f 1/2
r , we find that Cir(z̄) =Cir(z).

The real and imaginary parts thus obey Cx
i j(x,−y)=Cx

i j(x,y) and Cy
i j(x,−y)=−Cy

i j(x,y),

respectively. Using these properties and the definition of Bi j given in Eq. (3.27), it is

straightforward to verify that

Bxx
i j (x,−y) = Bxx

i j (x,y),

B
yy
i j (x,−y) = Byy

i j (x,y),

B
yx
i j (x,−y) = −Byx

i j (x,−y). (3.32)
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Using Eqs. (3.31) and (3.32), we find that the FPE in Eq. (3.30) is invariant under the

joint reflection of the imaginary variables, y→−y :

∂tP(x,−y,t) = [−
N
∑
i=1

(∂xiA
x
i (x,−y)+∂−yiA

y
i (x,−y))

+
1
2

N
∑

i, j=1
(∂xi∂x jB

xx
i j (x,−y)+∂−yi∂−y jB

yy
i j (x,−y)+2∂xi∂−y jB

xy
i j (x,−y))]P(x,−y,t)

(3.33)

= [−
N
∑
i=1

(∂xiA
x
i (x,y)+∂yiA

y
i (x,y))

+
1
2

N
∑

i, j=1
(∂xi∂x jB

xx
i j (x,y)+∂yi∂y jB

yy
i j (x,y)+2∂xi∂y jB

xy
i j (x,y))]P(x,−y,t).

(3.34)

Since the initial condition is always given by a symmetric probability distribution (the

imaginary parts are necessarily zero since the initial specification is in terms of real-

valued molecule numbers), it follows that the probability distribution solution of the

FPE in Eq. (3.30) remains symmetric for all times, P(x,y,t) = P(x,−y,t), which con-

cludes the proof.

Lemma 3.1 allows us to prove Theorem 3.1:

Proof of Theorem 3.1. Consider a general moment ⟨zm1
1 zm2

2 . . .zmN
N ⟩,m1, . . .mN ∈ N, of

the complex variables zi = xi+ iyi:

⟨zm1
1 . . .zmN

N ⟩ = ∫ dz1 . . .dzN zm1
1 . . .zmN

N P(z,t)

= ∫ dx1 . . .dxNdy1 . . .dyN (x1+ iy1)
m1 . . .(xN + iyN)mN P(x,y,t). (3.35)

Each summand of the imaginary part of the product (x1+ iy1)
m1 . . .(xN + iyN)mN can be

written in the form xm1−k1
1 . . .xmN−kN

N yk1
1 . . .ykN

N , with ki ∈N,ki ≤mi for i=1, . . .N, with odd

∑
N
i=1 ki, i.e., the exponents of the yi sum to an odd integer. The term xm1−k1

1 . . .xmN−kN
N yk1

1 . . .ykN
N

thus changes its sign under y→ −y, and since the probability distribution is symmet-

ric in y according to Lemma 3.1, it follows that the imaginary part of the integral in

Eq. (3.35) vanishes. This means that moments of the complex variables zi are real-

valued which proves the first statement of Theorem 3.1.

Next, suppose we are interested in the moments of a general real-valued function

g(x). Suppose g is analytic in RN and that it can be globally represented as a power se-

ries. This implies that it can be analytically continued to CN . Since g(x) is real-valued
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the coefficients of its power series about a real point are real, too. This means that g

fulfils g(z̄) = g(z), and since the probability is symmetric under z→ z̄, the expectation

of the imaginary part of g(z) vanishes. This means that the expectation of g(z) is

real-valued, which concludes the proof.

Similarly, we can now prove Theorem 3.2

Proof of Theorem 3.2. The autocorrelation matrix for a homogeneous process can be

computed by [49]

G(τ) = ⟨z(τ)zT (0)⟩ = lim
T→∞

1
T ∫

T

0
dt z(t +τ)zT (t). (3.36)

In terms of probability densities, it can be written as

G(τ) = ∫ dzτdz0 zτzT
0 P(zτ,τ;z0,0), (3.37)

where we defined zt = z(t). According to Lemma 3.1, the solution of the FPE cor-

responding to the complex CLE is symmetric under the reflection of the imaginary

variables, y→−y, under appropriate initial conditions. It follows that transition prob-

abilities and hence joint probability distributions have this property, too. Writing

zt = xt + iyt , we have

Im[Gi j(τ)] = ∫ dxτdyτdx0dy0 ((xτ)i(y0) j +(yτ)i(x0) j)P(xτ,yτ,τ,x0,y0,0). (3.38)

The integrand is an odd function under the joint reflection yτ → −yτ,y0 → −y0, which

means Im[Gi j(τ)] = 0, i.e., the correlation matrix G is real. For a homogeneous process

it further fulfils G(−τ) = G(τ) by construction. This means that the power spectrum,

which is simply the Fourier transform of the autocorrelation matrix [49], is a real func-

tion given by

S(ω) =
1

2π
∫

∞

−∞
dτe−iωτG(τ). (3.39)

We thus have shown that the autocorrelation function and power spectrum are real-

valued functions.

3.2.3 First passage times

Another physical quantity that is often of interest is the first passage time, i.e., the mean

time the state vector x = (x1, . . . ,xN) takes to reach a particular value. For example, one
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may want to know the time it takes a certain number of protein molecules of some

species to be produced. Say the molecule number of this species is labeled xi; then the

first passage time can be computed from the complex CLE by calculating the average

time it takes for the real part of xi to achieve a certain value, i.e., we simply leave the

imaginary parts unbounded.

3.3 Examples

Next, we demonstrate the accuracy of the complex CLE for two systems of biochemi-

cal importance. In both cases we find the complex CLE’s accuracy to be much higher

than the accuracy of the conventional real-valued CLE as well as the accuracy of the

linear noise approximation (LNA) and the normal moment closure approximation of

second order (2MA) introduced in Sections 2.3.6 and 2.3.4, respectively.

A genetic negative feedback loop

First, we consider the gene system introduced in Figure 2.2 with reactions in Eq. (2.23).

The CME for this system has recently been solved exactly in steady state [53]. The

CLE in standard form is given in Eqs. (2.66) and (2.67). We implement the CLE

in three different ways: the naive implementation enforcing reflective boundary con-

ditions, i.e., 0 < x1 < 1 and x2 > 0, such that the terms under the square roots in the

standard form of the CLE in Eqs. (2.66) and (2.67) remain positive (CLE-R), the com-

plex version of the CLE (CLE-C) and the modified CLE of Dana and Raha (CLE-DR)

[25]. The simulations utilise the parameter set k1 = 10,k3 = 0.5,k4 = 1. Figure 3.6 shows

the normalised mean and the normalised variance of the protein and gene as a func-

tion of the dimensionless parameter σb = k2/(Ωk4). This can be viewed as varying the

bimolecular reaction constant k2 for fixed volume Ω or equivalently as varying the vol-

ume of the system for fixed k2. We observe that the predictions of the the CLE-R and

CLE-DR are considerably more inaccurate than those of the other methods (CLE-C,

LNA and 2MA). In particular, they are significantly more inaccurate than the CLE-C,

showing that enforcing artificial boundary conditions and modifying noise terms can

have large effects on the method’s accuracy. The difference in the accuracy of the

CLE-C, LNA and 2MA is much less pronounced. The CLE-C is slightly more accu-

rate than the 2MA, which in turn is slightly more accurate than the LNA (see insets of

Figure 3.6).
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Figure 3.6: Normalised steady-state mean numbers of protein µ̂P and bound gene µ̂G,

and their corresponding variances σ̂2
P and σ̂2

G, as a function of the non-dimensional

parameter σb (a measure of binding affinity of the protein to the gene), for the genetic

negative feedback loop in Figure 2.2. The values are normalised by the exact values

obtained from the CME [53]. We find that the CLE-R (CLE in standard form with artificial

reflective boundaries to avoid breakdown) and CLE-DR (a modified CLE proposed in

[25]) give significantly worse results than the CLE-C. The accuracy of the latter and

of the conventional LNA and the 2MA approximations are comparable. The simulation

parameters are as follows. For the CLE-R and CLE-DR: δτ = 10−4,∆τ = 10,N = 104. For

the CLE-C: δτ = 10−4,∆τ = 10,N = 105.

The Michaelis-Menten reaction with substrate input

Next, we consider the Michaelis-Menten reaction with substrate input

∅
c4

ÐÐÐÐ→ S, S+E
c1

ÐÐÐÐ⇀↽ÐÐÐÐ
c2

ES
c3

ÐÐÐÐ→ E +X , (3.40)

where E is the free enzyme, ES is the enzyme-substrate complex, S is the substrate and

X is the product. The number of enzyme molecules is fixed to one. The system has a

steady state in the substrate concentration if α ≡ c4Ω/c3 < 1, which simply means that

the input rate must be slower than the maximum turnover rate. We derived an exact

steady-state solution of the CME for this reaction which has not been reported in the
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Figure 3.7: Normalised steady-state mean number of molecules of substrate µ̂S and

enzyme µ̂E , and their corresponding variances σ̂2
S and σ̂2

E , as a function of the non-

dimensional parameter α (a measure of saturation), for the enzyme reaction system in

Eq. (3.40). The values are normalised by the exact values obtained from the CME which

are derived in Appendix A.3. We find that the CLE-R (CLE in standard form with artificial

reflective boundaries to avoid breakdown) and CLE-DR (a modified CLE proposed in

[25]) give significantly worse results than the CLE-C. The latter is also significantly more

accurate than both the conventional LNA and the 2MA approximations. The simulation

parameters are as follows. For the CLE-C: δτ = 10−4,N = 105. ∆τ scales like α4 from

5−45 for α = 0.1−0.9; for the CLE-R and CLE-DR: δτ = 10−4, ∆τ = 10 and N = 104.

literature to our knowledge. We present the full derivation in Appendix A.3, where

we obtain expressions for P0(n,τ) and P1(n,τ) - the probability of having n substrate

molecules at time τ given 0 and 1 free enzyme molecules, respectively. These are given

by

P0(n) =
C′′

kn!
(

k4

k3
)

n+1
Γ(n+k+1)

Γ(k) 1F1 [−n;−(k+n);k3] , (3.41)

P1(n) =
C′′

n!
(

k4

k3
)

n
Γ(k+n)

Γ(k) 1F1 [−n;−(k+n−1);k3] , (3.42)
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Figure 3.8: Normalised mean first passage time T for a number p f of product molecules

to be produced, as a function of the initial substrate concentration s0, for the enzyme

reaction system (3.40). The values are normalised by the exact values corresponding

to the CME obtained by stochastic simulations using the SSA. We find that the CLE-R

(CLE in standard form with artificial reflective boundaries to avoid breakdown) gives

generally worse results than the CLE-C. For the simulation time step we used δτ = 10−3

for the CLE-C and CLE-R. The number of samples drawn were 103 and 102 for p f = 10

and 100 respectively.

where c = c1/Ω, k2 = c2/c,k3 = c3/c,k4 =Ωc4/c, k = k2+k4, k34 = k3/k4, C′′ = e−k4(k34−

1)k+1/kk+1
34 , Ω is the compartment volume, Γ is the gamma function and 1F1 is the con-

fluent hypergeometric function. All moments of the the substrate and enzyme molecule

numbers can thus be computed exactly without the need for stochastic simulations.

The CLE in standard form (and the time rescaled by c1/Ω) is given by

dx1 = (Ωc4+c2(1−x2)−
c1

Ω
x1x2)dt +

√
Ωc4dW1+

√
c2(1−x2)dW2−

√
c1

Ω
x1x2dW3,

dx2 = ((c2+c3)(1−x2)−
c1

Ω
x1x2)dt +

√
c2(1−x2)dW2−

√
c1

Ω
x1x2dW3+

√
c3(1−x2)dW4,

(3.43)

where x1 is the number of substrate molecules and x2 is the number of free enzyme

molecules. Here, we have used the conservation law between the free enzyme and

complex molecules, which implies that the number of complex molecules can be writ-

ten as 1−x2.

For simulations, we choose physiologically realistic values for the rate constants

[81, 82]: c1 = 2×106(Ms)−1, c2 = 1s−1, and c3 = 1s−1. We choose the volume to be

Ω = 106M−1 which corresponds to a spherical submicron compartment of roughly 150

nm diameter. The dimensionless parameter α≡ c4Ω/c3 is varied over the whole interval
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[0,1] admitting a steady state through modification of the value of the input rate c4. As

for the gene system, we implement the CLE in three different ways: the naive imple-

mentation enforcing reflective boundary conditions (CLE-R), i.e., 0 < x1 and 0 < x2 < 1,

the complex version of the CLE (CLE-C) and the modified CLE of Dana and Raha

(CLE-DR) [25], and compare these with the corresponding LNA and 2MA results.

Figure 3.7 shows the mean and variance of both enzyme and substrate species

obtained from the different methods normalised by the corresponding CME value (as

determined from the exact solution - see Appendix A.3) as a function of α. First of all,

we observe that the CLE-C’s predictions are significantly more accurate than those of

the CLE-R and CLE-DR, again showing how enforcing positivity or modifying noise

terms can give rise to significant inaccuracies. Moreover, we find that the CLE-C

gives significantly more accurate results than the LNA and 2MA as well (only for the

variance for the latter).

Next, we consider the following first passage time problem. We want to compute

the mean time it takes to produce a certain number of product molecules as a function

of the initial substrate numbers. We explained in Section 3.2.1 how the complex CLE

can be used to simulate first passage times. Figure 3.8 shows the mean first passage

time T for the catalytic reaction to produce p f = 10 and 100 product molecules. The

values are normalised by those obtained from stochastic simulations using the SSA.

The rate constants c1,c2 and c3 and the volume Ω are chosen as before and in addition

we set c4 = 105Ms−1. We observe that the CLE-R gives much larger deviations from

the SSA result than the CLE-C, which once more shows that enforcing positivity can

lead to inaccurate results.

3.4 Conclusion

Although the CLE is a popular and convenient approximation method of the chemical

master equation, the problem of its boundary behaviour has been rarely studied in the

literature, despite well-known problems arising for small molecule numbers. Here,

we have shown that the CLE is in general mathematically ill-defined if defined in real

space due to the occurrence of square roots of negative expressions in finite time with

finite probability for most reactions systems, Moreover, we have shown that this break-

down can generally not be avoided by different choices of the noise matrix in the CLE.

We have found that this breakdown is due to the stochastic process reaching regions in

state space for which the diffusion matrix of the CFPE is not positive semi-definite. We
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have also shown that, due to their different breakdown behaviours, different choices of

the noise matrix are generally not equivalent as often claimed in the literature.

The naive way to avoid breakdown is to enforce artificial boundary conditions en-

forcing positive variables. We have found that such an implementation, as well as

other alternative formulations of the CLE proposed in the literature that modify noise

terms, lead to highly inaccurate predictions for the mean and variance of the process

as compared to the exact CME result. In particular, they violate the fundamental prop-

erty of agreement of CLE and CME predictions for the mean and variance for linear

reaction systems. Next, we have shown that the problem of breakdown can be solved

by extending the state space of the CLE to complex-valued variables. This new CLE

is always well-defined and does not suffer from breakdown. Its physical interpreta-

tion stems from the fact that it predicts real-valued moments, as well as real-valued

autocorrelation functions, power spectra and first-passage times. We have also shown

that the complex CLE restores the agreement of the CLE and CME predictions for the

mean and variance for linear systems.

As we have seen, simulation using the real-valued CLE requires the use of methods

to artificially correct for its breakdown near the zero molecule number boundary, and

hence the apparent inaccuracy of the CLE comes from the use of these methods as well

as from its intrinsic assumption of continuous molecule numbers. When the CLE is

considered in complex space, we found it to be remarkably accurate even for chemical

systems with species in very low molecule numbers, such as the two bimolecular ex-

amples studied in Section 3.3, where the numbers of gene and enzyme were just one.

This suggests that inaccuracies of the CLE may often not be due to its assumption of

continuous molecule numbers but rather due to the methods used to avoid breakdown.

The complex CLE involves the simulation of twice the number of coupled stochas-

tic differential equations as the conventional real-valued CLE, and hence it is typi-

cally found that more samples are needed to obtain accurate estimates of the moments.

Moreover, in some cases, such as the gene and enzyme examples in Section 3.3, we

found that to guarantee numerical stability it was necessary to take a smaller time step

size for the complex CLE than for the conventional CLE. Probably this restriction can

be lifted or eased by use of more sophisticated stochastic differential equation simula-

tion methods than the simple Euler-Maruyama method used here (see [80] for a broad

discussion of available methods). Another disadvantage of the complex CLE is that,

since its variables are complex-valued, it is not possible to directly obtain the prob-

ability distribution over the real variables. The latter would be the object needed if
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one wanted to approximate the solution of the CME. However, whenever the distribu-

tion predicted by the complex CLE is narrow in imaginary directions in comparison

to real directions, a good estimate of the distribution over real-valued variables can be

obtained by projecting the distribution over the complex-valued variables onto the real

axes.

We note that even using the Euler-Maruyama implementation, the complex CLE is

computationally advantageous compared to the stochastic simulation algorithm when-

ever one is simulating systems characterised by many reactions per unit time and rel-

atively few species. The complex CLE was found to achieve a high accuracy over a

broad range of molecule numbers suggesting that it could be a novel useful tool for

modelling stochasticity in chemical reaction networks.



Chapter 4

Validity of moment closure

approximations

In the previous chapter we found that the chemical Langevin equation may become

mathematically ill-defined due to the absence of natural boundary conditions for the

diffusion approximation, a phenomenon we termed breakdown. We have shown that

ad hoc methods for fixing the breakdown can lead to inaccurate predictions for mean

concentrations and variance of fluctuations as compared to corresponding chemical

master equation (CME) results. In the present chapter, we perform a somewhat similar

analysis of the moment closure approximations (MAs) introduced in Section 2.3.4. We

try to answer the question if MAs are mathematically always well-defined and if they

always give physically meaningful predictions that admit a probabilistic interpretation.

To this end, after revising the definition of moment closure approximations in Sec-

tion 4.1, we clarify what we mean by “physically meaningful predictions”, and we for-

mulate a set of validity conditions for MAs that ensure feasibility of these predictions

in Section 4.2. Next, we study the normal MA in detail for a simple one-species sys-

tem. We find that the MA indeed fails to give physically meaningful results depending

on the parameters, and a detailed steady-state and stability analysis is provided to elu-

cidate this breakdown behaviour. In Section 4.4 we then compare the normal, Poisson,

log-normal and central-moment-neglect (CMN) MAs for three more complex reaction

systems, with respect to their breakdown behaviour and their quantitative accuracy.

Next, we introduce the software package MOCA in Section 4.5 which allows the au-

tomated derivation and analysis of the studied MA methods. Finally, we conclude in

Section 4.6.

72
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4.1 Moment closure approximations

Recall that by multiplying the CME in Eq. (2.24) by ni . . .nl and summing over all

ni, . . . ,nl one obtains an ODE for the moment ⟨ni . . .nl⟩, where ⟨⋅⟩ denotes the expecta-

tion with respect to the solution of the CME. Up to order two these read

∂t⟨ni⟩ =
R
∑
r=1

Sir⟨ fr(n)⟩, (4.1)

∂t⟨nin j⟩ =
R
∑
r=1

[S jr⟨ni fr(n)⟩+Sir⟨ fr(n)n j⟩+SirS jr⟨ fr(n)⟩]. (4.2)

For a bimolecular reaction the propensity function fr(n) is a polynomial of order two

in the ni, which means that the ODEs for the second moments in Eq. (4.2) depend on

third order moments. This in turn means that the set of ODEs in Eqs. (4.1) and (4.2)

is not closed (and similarly for reactions of order three or higher). The same is true

for higher order moments, i.e., their time evolution equations depend on higher order

moments. This means that we have an infinite system of coupled ODEs which hence

cannot be solved.

The MA methods we study here express moments above a certain order in terms

of lower order moments which allows to close the equations to that order. This is of-

ten done by assuming the solution of the CME to have a particular functional form.

We study here the normal MA, which sets all cumulants above a certain order to zero

corresponding to a normal distribution, the Poisson MA, which sets all diagonal cumu-

lants to the mean and all non-diagonal cumulants to zero, the log-normal MA which

assumes a multivariate log-normal distribution to close the equations, and the central-

moment-neglect MA (CMN-MA) which sets all central moments above a certain order

to zero (c.f. Eqs. (2.39)-(2.43)).

These MAs are non-systematic, ad hoc approximations, in the sense that they are

not defined as a perturbative expansion in a small parameter or similarly. It is thus not

clear a priori, and has not been studied so far to our knowledge, if MAs always give

physically meaningful results admitting a probabilistic interpretation. We next clarify

what we mean by “physically meaningful”.

4.2 Validity conditions

Let us formulate the requirements that we pose on MA methods to be valid in a more

systematic way. To this end we define a set of criteria which guarantee physically
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meaningful predictions of MA approximations and which we will repeatedly use in

the rest of this chapter. We only consider systems for which the CME has a globally

attractive steady-state solution.

Note that negative mean values of particle numbers are physically meaningless and

central moments of probability distributions are always non-negative. Therefore, the

first obvious requirement that we pose for MAs to be valid, is that the mean values, the

variance and all higher-order central moments should be non-negative for all times,

provided they are chosen accordingly initially.

Moments of a distribution are defined as expectations of polynomials in the vari-

ables with respect to the distribution. Now if the CME has a globally attractive steady-

state solution, this means that the moments in steady state are uniquely defined. Note

that this is also true if the steady-state solution of the CME is multimodal or if the

deterministic rate equations are multistable. We thus require a valid MA to have ex-

actly one positive and globally attractive fixed point. This means that time trajectories

should converge to the same positive fixed-point for all initial conditions. By “positive

fixed point” we mean a fixed point with non-negative mean value and non-negative

central moments.

Consider a system for which the deterministic rate equations show sustained oscil-

lations. In this case, single-time trajectories of the SSA may show sustained oscilla-

tions. However, since independent trajectories get out of phase as time progresses, the

moments of the ensemble, which are the moments of the solution of the CME, always

show either damped or over-damped oscillations. We hence require valid MAs to not

exhibit sustained oscillations. Note that this requirement is actually already contained

in the previous one since the existence of a globally attractive fixed point excludes

sustained oscillations. We treat the case of sustained oscillations explicitly anyway for

clarification.

In summary, we require valid MAs to fulfil the following conditions, provided the

CME has a globally attractive steady-state solution:

• Mean values and central moments are non-negative for all times.

• The MAs have a globally attractive positive fixed point.

• The MAs do not exhibit sustained oscillations.

Note that the first condition is obviously a sensible condition for all systems, also if

the CME does not have a globally attractive fixed point.
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4.3 Validity analysis of normal MA for a simple example

In this section, we analyse the second-order normal MA with respect to the validity

conditions described in the previous section for a simple one-species reaction system.

We will find that the method does not always fulfil the validity conditions. We give a

detailed analysis of the method’s validity for this simple example here before giving

a quantitative comparison of the different MA methods mentioned above for several

more complex systems in the following section.

Consider a model of bursty gene expression followed by a post-translational protein

dimerisation reaction:

∅
c1qm

ÐÐÐÐÐ→mP, m ∈N/{0}, P+P
c2

ÐÐÐÐ→∅, (4.3)

where P is the protein species, c2 is the dimerisation rate constant and m is the burst

size. Experimental [83] and theoretical [84, 85] evidence indicates a geometric distri-

bution qm = p(1− p)m−1 with constant parameter p (p < 1) as an appropriate model for

bursting; c1qm are then the rates at which bursts of size m are created. The production

step can be viewed as either an infinite number of input reactions, or equivalently as

a single input reaction with input size m being a random variable. Note that 1/p is

equal to the mean burst size. Note also that in the limit of p→ 1, the expression is

non-bursty and the set of protein production reactions in (4.3) reduces to the single

reaction ∅
c1

ÐÐÐÐ→ P.

We rescale time as τ = tc2/Ω and define the dimensionless constant k = Ω2c1/c2,

where Ω is the volume of the system. It is easy to show that the rate equations for

this system have a unique positive fixed point which is globally attractive for all k;

exact stochastic simulations using the stochastic simulation algorithm also show that

the CME has a stationary solution for all values of k.

Using Eqs. (4.1) and (4.2), we can derive the time-evolution equations for the first

moment ⟨n⟩ and the second moment ⟨n2⟩ which read

∂τ⟨n⟩ = −2⟨n2⟩+2⟨n⟩+k⟨m⟩, (4.4)

∂τ⟨n2⟩ = −4⟨n3⟩+8⟨n2⟩−4⟨n⟩+2⟨n⟩k⟨m⟩+k⟨m2⟩, (4.5)

where ⟨m⟩ = 1/p and ⟨m2⟩ = (2− p)/p2 (these follow from the definition of qm). These

equations are then closed by using the normal MA (setting the third cumulant of n to
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Figure 4.1: Stability of the second-order normal MA for the bursty gene expression

system in Eq. (4.3). The three plots in the upper panel show the real and imaginary

parts of the mean protein number µ and the variance Σ in protein number fluctuations

of the three fixed points Si for the normal MA in Eqs. (4.6) and (4.7) as a function of

k for a mean burst size of 20 (i.e., p = 1/20). The three plots in the lower panel show

the corresponding real and imaginary parts of the eigenvalues of the Jacobian, λ1 and

λ2, respectively. We find that S2 and S3 are always unstable, while S1 is stable and the

mean and variance are positive, if and only if k > k1.

zero), leading to:

∂τµ = ⟨m⟩k+2µ−2µ2−2Σ, (4.6)

∂τΣ = ⟨m2⟩k+4µ(µ−1)+8(1−µ)Σ, (4.7)

where µ = ⟨n⟩ and Σ = ⟨n2⟩−⟨n⟩2 are the mean and variance in protein numbers.

Setting the left hand side of Eqs. (4.6) and (4.7) to zero, and solving simultaneously,

one finds that there are three possible solutions which we call Si = (µi,Σi), i = 1, . . . ,3.

Figure 4.1 shows the real and imaginary parts of the mean and variance of these three

fixed points, as well as the real and imaginary parts of the corresponding eigenvalues

of the Jacobian of Eqs. (4.6) and (4.7) for the case p = 1/20 (this corresponds to a mean

burst size of 20 which has been measured experimentally for gene expression [83]). By

inspection of Figure 4.1, we see that of the three possible steady-state solutions only S1

is physically admissible; this is since it is the only steady-state solution which displays

a positive mean and variance of molecule numbers and which is locally stable (negative

real part of the eigenvalues of the Jacobian). However note that these properties only

manifest for k larger than a certain critical value k = k1 ≈ 70. This would lead one
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Figure 4.2: Time trajectories of the second-order normal MA (2MA) and of the

ensemble-averaged SSA in the µ - Σ plane for different values of k for the bursty gene

expression system in Eq. (4.3). The figure shows time trajectories for deterministic ini-

tial conditions. The red and green dots show the stable and unstable fixed points (FPs)

of the normal MA equations, respectively. While for k = 65 there is no fixed point in the

positive orthant and the time trajectories diverge for all initial conditions, for k = 75 most

initial conditions lead to trajectories converging to a unique stable fixed point. However,

a small initial mean value still leads to divergence. Finally, for k = 85 all initial conditions

lead to trajectories converging to a unique fixed point with positive mean and variance.

In contrast, the CME has a stationary solution for all values of k. The mean burst size

is 20 (p = 1/20).

to surmise that the CME has a stationary solution only for k greater than this critical

value. However, as noted earlier this is not the case: the CME has a stationary solution

for all values of k. These results taken together imply that the normal MA does not

give a physically meaningful steady-state solution for all values of k.

Next, we study the time evolution of the moments. Figure 4.2 shows the numeri-

cally integrated time trajectories for several initial conditions for three different k val-

ues and for p = 1/20. We find that for k < k2 ≈ 1.2k1 ≈ 85, some of the trajectories

diverge as time goes to infinity which is unphysical since the CME has a stable fixed

point. This instability manifests for all deterministic initial conditions for k < k1 and

for initial conditions characterised by a small initial mean number of protein molecules

for k1 ≤ k < k2. For k ≥ k2, however, the trajectories converge to the stable fixed point

and are non-negative at all times. We verified this numerically for initial conditions up
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Figure 4.3: Critical values (k2, ⟨n⟩CME) of the normal MA as a function of mean burst

size 1/p for the reaction system in Eq. (4.3). Both curves are monotonically increasing

with increasing 1/p implying that the critical molecule number above which the normal

MA equations lead to physically meaningful results increases with the burstiness in

protein expression.

to µ(τ = 0) = 106. Since k =Ω2c1/c2, increasing k is equivalent to increasing the system

volume Ω while keeping the rate constants c1 and c2 constant. Hence in coincidence

with the steady-state analysis above, we find that the normal MA only gives physically

admissible solutions for system volumes above a certain critical threshold. We shall

refer to the requirement of physically meaningful convergent time trajectories as the

“time-dependent criterion” and the requirement of a positive stable fixed point as the

“steady-state criterion”. The fulfilment of the steady-state criterion is obviously a nec-

essary condition for the time-dependent criterion. However, since we have k1 < k2, we

find that it is not a sufficient condition, i.e., even despite the existence of a positive sta-

ble fixed point, there may exist time trajectories that diverge or converge to unphysical

values.

The analysis described above was specifically for the case of p = 1/20. Qualita-

tively similar results are found for all values of p, i.e, there exist critical p-dependent

values k1 and k2 with k2 ≥ k1, such that for k > k1 the steady-state criterion is sat-

isfied and for k > k2 the time-dependent criterion is satisfied. Figure 4.3 shows the

p-dependence of the critical value k2 as well as the p-dependence of the corresponding

mean particle number ⟨n⟩CME. Note that both k2 and ⟨n⟩CME increase with 1/p imply-

ing that the larger the burstiness in protein expression, the larger the critical molecule

number above which the normal MA gives physically meaningful results. For p= 1/20,
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Figure 4.4: Time trajectories of the third-order normal MA (3MA) and the ensemble-

averaged SSA in the µ - Σ plane for different values of k for the bursty gene expression

system in Eq. (4.3). For k = 20 there is an unphysical stable fixed point of the MA

equations with negative variance. For k = 60 the stable fixed point has positive mean

and variance but the variance of some trajectories becomes negative as the fixed point

is approached. Finally, for k = 150 all trajectories converge to a physically admissible

steady state and are physically meaningful (positive mean and variance at all times). In

contrast, the CME has a stationary solution for all values of k. The mean burst size is

20 (p = 1/20).

we had found before that k2 = 85 which corresponds to a mean steady-state protein

number of ⟨n⟩CME ≈ 25, i.e., the normal MA equations for a mean protein burst size of

20 give physically meaningful results for the time evolution of the system only when the

number of protein molecules in steady state exceeds 25. It is well known that protein

numbers in cells can be very small, even of the order of a few molecules and hence our

results show that one must be careful when using moment closure approximations to

understand cell level phenomena.

In Figure 4.2 we have shown that the normal MA can give rise to diverging time

trajectories despite the existence of a positive stable fixed point. To illustrate the pos-

sibility of qualitatively different unphysical behaviour we performed the same analysis

for the third order normal MA (3MA). Figure 4.4 shows the 3MA analog of the second-

order normal MA time evolution analysis shown in Figure 4.2. The similarity between

the two figures is evident: the time evolution criteria are only satisfied for k greater

than a certain critical value (≈ 100). However, we find a quite different unphysical
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behaviour here: rather than divergent trajectories as for the second-order normal MA,

we find here that the trajectories either converge to a fixed point with negative variance

or run through negative values for some finite time intervals before converging to a

positive fixed point.

In summary, our analysis of this section shows that the normal MA for a gene

circuit involving a bimolecular reaction gives physically meaningful results only for

systems above a certain critical volume. We did not present the corresponding results

for the Poisson, log-normal and CMN-MAs, but only want to report here that these

methods behave qualitatively exactly the same.

4.4 Analysis and comparison of different moment clo-

sure methods

In the previous section we found that the second-order normal MA gives physically

meaningful results only above a certain critical system size for a simple one-species

bimolecular reaction system that is deterministically monostable. In the present sec-

tion, we analyse the second-order normal MA, as well as the second-order Poisson,

log-normal and CMN-MAs for systems with different deterministic behaviours: we

first analyse a system whose deterministic rate equations are bistable. Next, we in-

vestigate how well the MA methods can capture the influence of noise in a protein-

phosphorylation system whose deterministic system shows ultrasensitivity. And fi-

nally, we use the MAs to study the role of stochasticity in a system whose deterministic

system is oscillating and which becomes entrained by an external force. The different

MA methods were defined in Eqs. (2.39)-(2.43).

4.4.1 A deterministic bistable system

Consider the minimal elementary reaction system whose rate equations show bistabil-

ity [86]

∅
k0

ÐÐÐÐ→ X , Y
k1

ÐÐÐÐ→ 2X , (4.8)

2X
k2

ÐÐÐÐ→ X +Y, X +Y
k3

ÐÐÐÐ→Y, (4.9)

X
k4

ÐÐÐÐ→∅. (4.10)

We added the first reaction to the ones given in [86] to prevent the stochastic system

from having an absorbing state for zero molecule numbers. Depending on the pa-
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Figure 4.5: Number of positive stable fixed points as a function of the volume Ω on log-

scale obtained from steady-state analysis for the bistable reaction system in Eqs. (4.8)-

(4.10) for the parameters k0 = 1,k1 = 1,k2 = 5,k3 = 0.2 and k4 = 5. We shift the points

slightly to make coinciding points distinguishable. We find that all three MAs give a

physical result of a single positive stable fixed point only on an intermediate range of

volumes. The latter is significantly smaller for the log-normal MA than for the normal

and Poisson MAs.

rameter values the deterministic rate equations become bistable for this system. All

parameter sets used in this section are chosen such that this is the case. Since the re-

actions in Eqs. (4.8)-(4.10) are of order two or lower, their propensity functions are

polynomials of up to order two in the species variables. This means that the time evo-

lution equations of the second-order moments depend on the third-order moments, but

not on higher-order moments. We thus have to express the third-order moments in

terms of first and second-order moments to close the equations to second order. Recall

that the second-order normal and CMN-MAs set all cumulants and central moments

above order two to zero, respectively (c.f. Eqs. (2.39) and (2.43)). Since the third-order

cumulant and third-order central moment are identical, the second-order normal MA

and CMN-MA are equivalent for the reaction system in Eqs. (4.8)-(4.10). This is of

course a general result, i.e., for chemical reaction systems with elementary reactions

and mass-action kinetics (i.e., reactions up to order two and polynomial propensity

functions), the second-order normal MA and second-order CMN-MA are identical.

We thus analyse the normal, Poisson and log-normal MAs here.
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Figure 4.6: Time trajectories for the bistable reaction system in Eqs. (4.8)-(4.10) for

different volumes Ω and different initial conditions for the parameters k0 = 1,k1 = 1,k2 =

5,k3 = 0.2 and k4 = 5. The dashed and dotted lines indicate the respective positive and

stable fixed points of species X and Y . Depending on the volume, the MAs have one,

two or three positive stable fixed points.

Validity

Qualitatively, we find a similar behaviour for the three different MA methods. As

for the deterministically monostable system studied in Section 4.3, we find that the

MAs show unphysical behaviour below a certain critical volume. However, in contrast

to Section 4.3, we find that the MAs become bistable above a second, larger critical

volume, and thus fail to give a physical result since moments of a distribution are

uniquely defined. We thus find that for the studied deterministically bistable system,

the MAs fulfil the validity conditions only in an intermediate range of system volumes.

The bistability of the MAs for large volumes may led one to the interpretation that

the MAs approach the (bistable) rate equations for large volumes. Interestingly, how-

ever, we find that when increasing the volume further all three MAs become tristable,

i.e., have three positive stable fixed points, see Figure 4.5. This means the MAs have

more positive stable fixed points than the rate equations here, the latter being bistable

independent of the volume, and thus the MAs have no physical interpretation anymore

whatsoever. In [18] it has been shown that for monostable systems, the normal MA

becomes equivalent to the rate equations for the mean values in the limit of large vol-
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parameters normal Poisson log-normal

k0 k1 k2 k3 k4 log(Ω1) log(Ω2) log(Ω1) log(Ω2) log(Ω1) log(Ω2)

0.5 2 2 0.5 2 < −11 2.4 < −11 2.4 0.75 1.0

0.5 4 1 0.25 2 −5.4 −0.59 < −11 −0.11 −1.9 0.58

1 4 1 0.5 2 < −11 −0.75 −2.5 0.96 0.06 0.49

2 4 2 0.5 4 −4.7 1.6 < −11 1.7 0.05 0.25

0.25 4 1 1 1 < −11 2.2 −1.8 2.3 0.73 1.4

1/3 3 3 1/3 3 −4.9 0.59 < −11 0.57 −1.5 1.3

5 5 1 0.2 5 −5.8 −0.34 < −11 −0.25 −1.7 -0.74

0.2 1 1 0.2 1 −4.2 1.3 < −11 1.4 −0.13 0.85

1 1 5 0.2 5 −4.4 1.0 < −11 0.72 −0.38 0.85

0.2 5 5 0.2 5 −6.0 0.40 < −11 0.40 −3.1 2.0

Table 4.1: Range of validity in the volume Ω on logarithmic scale for different parameter

sets for the bistable reaction system in Eqs. (4.8)-(4.10). Ω1 and Ω2 denote the left

and right end of the validity interval, respectively. We have only checked for fixed points

down to a volume of e−11. The term “< −11" thus indicates that the lower boundary of

the corresponding validity interval is smaller than e−11.

umes. One can easily show that the result also applies to the Poisson, log-normal and

CMN-MA. Here, we find numerically that the tristability remains for volumes up to

1010, which suggests that the convergence of the MAs to the REs in the limit of large

volumes does not hold for deterministic bistable systems. Figure 4.6 shows the time

trajectories for the MAs for different volumes, verifying that the MAs can indeed have

one, two or three positive stable fixed points depending on the volume.

Table 4.1 lists the endpoints of the validity interval for the MAs for ten different

parameter sets on logarithmic scale. Figure 4.7 visualises these. We observe that the

log-normal MA has a much smaller validity range than the other two MAs. The normal

and Poisson MA most of the time have a similar upper bound while the lower bound

is generally smaller for the Poisson MA. We thus find that in terms of validity, the

log-normal MA performs significantly worse than the other two MA schemes for the

reaction system studied here.
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Figure 4.7: Visualisation of validity intervals shown in Table 4.1 on logarithmic scale in

the volume for the same ten parameter sets as used in the table. For a lower bound

smaller than e−11 the lines have an arrow pointing to the left. We find that the log-normal

MA’s range of validity is significantly smaller than that of the normal and Poisson MAs.

Accuracy

We next compare the prediction of the different MA schemes and of the rate equations

for the mean copy numbers of species X and species Y in steady state with results

obtained from exact stochastic simulations using the SSA. The latter have been per-

formed using the software package iNA [87]. Figure 4.8 shows the mean values of

species X as a function of the volume for the ten parameter sets used in Table 4.1. The

corresponding figures for species Y look very similar and are not shown here. The

result is divided by the corresponding SSA result. The range of volumes shown corre-

sponds roughly to the validity range of the normal and Poisson MA. We observe here

again that the MAs become bistable for larger volumes and that the validity interval

of the log-normal MA is significantly smaller than the one of the normal and Poisson

MA.

We find that the MAs overestimate the mean copy numbers and that the deviation

from the SSA result increases for decreasing volumes. Where two or all three MAs

are valid and thus comparable, the accuracy of the different methods is similar, with

the log-normal MA being slightly more accurate than the other two and the normal

MA being slightly more inaccurate than the Poisson MA. Note, however, that for most

parameter sets the log-normal MA’s range of validity is significantly smaller than that

of the other MAs.

For large volumes, the MAs have two positive stable fixed points converging to
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Figure 4.8: Mean value of species X in steady state obtained from moment closures and

rate equations as a function of volume Ω on logarithmic scale for the bistable reaction

system in Eqs. (4.8)-(4.10). The parameter sets are the same as in Table 4.1. The

values are divided by the corresponding result obtained from stochastic simulations

using the SSA. The horizontal dashed line thus indicates the exact value. For the SSA

result 104 samples were simulated for each point.

the two positive stable fixed points of the rate equations. The exact result obtained

from SSA simulations agrees with the larger of these two fixed points. The third fixed

point of the MAs for large volumes seems to always lie between the two of the rate

equations. While it lies exactly in the middle for the normal and Poisson MA, it is

very close to the lower one for the log-normal MA. We find the same behaviour for all

parameter sets. Note though that this can not be seen for all parameter sets in Figure

4.8 due to the small plot range.

4.4.2 A deterministic ultrasensitive system

Next, we study an enzyme catalysed protein-phosphorylation system with reactions

P+E1
a1

ÐÐÐÐ⇀↽ÐÐÐÐ
d1

E1P
k1

ÐÐÐÐ→ P∗+E1, (4.11)

P∗+E2
a2

ÐÐÐÐ⇀↽ÐÐÐÐ
d2

E2P∗
k2

ÐÐÐÐ→ P+E2. (4.12)

This system shows ultrasensitivity for certain parameter values [88], namely when the

enzymes are saturated, i.e., when most enzymes are on average in the complex state.
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Here, P and P∗ denote the non-phosphorylated and phosphorylated forms of the pro-

tein, respectively, E1 and E2 the phosphorylating and de-phosphorylating enzymes,

respectively, and E1P and E2P∗ the respective protein-enzyme-complexes. In [88] the

authors studied the dependence of the ratio of phosphorylated to non-phosphorylated

proteins as a function of w1/w2 with w1 = k1Et
1 and w2 = k2Et

2 in the deterministic set-

ting, where Et
1 and Et

2 are the conserved total numbers of the respective enzymes in

the system. Assuming a Hill-type response curve, the corresponding Hill coefficient is

often used to quantify the steepness of the response. The authors speak of an “ultrasen-

sitive response" whenever the response is steeper than a Michaelis-Menten response,

i.e., has a Hill coefficient of larger than unity.

We study here the effect of noise on the ultrasensitive response and again com-

pare moment closure results with SSA simulations. The latter have been performed

using the software package iNA [87]. First, however, we describe a surprising non-

uniqueness of the Poisson and log-normal MA and study the validity of the differ-

ent MA schemes. As we have explained below Eq. (4.10), the second-order normal

and second-order CMM-MA are identical for elementary reaction systems with mass-

action kinetics. Since this is the case here, we only study the normal, Poisson and

log-normal MAs in the following.

Non-uniqueness for reduced systems

The studied reaction system in Eqs. (4.11) and (4.12) has six species: P, P∗, E1, E2,

E1P, E2P∗, and three conservation laws: the total number of proteins and the total num-

bers of the respective enzymes, i.e., P+P∗+E1P+E2P∗, E1+E1P and E2+E2P∗, are

conserved, where we use the symbol for the species also as the corresponding molecule

number variable in a slight abuse of notation. The conservation laws allow one to re-

duce the system to three variables, which is obviously of computational advantage.

There are two ways of obtaining the reduced moment closure equations: arguably, the

standard approach would be to start from the reduced CME, compute the reduced mo-

ment equations and subsequently apply the moment closure. Alternatively, one may

start from the full CME, compute the moment closure equations and afterwards reduce

the equations by taking the conservation laws into account. One may expect, or re-

quire, the two approaches for a sensible moment closure scheme to be equivalent. It

is easy to show that this is indeed the case for the normal and CMN moment closures.

However, we find here that this is not the case for the Poisson and log-normal MA. We

thus conclude that the Poisson and log-normal MAs are generally not uniquely defined
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if one reduces a system according to conservation laws in molecule numbers, a clear

flaw of these methods. The reason for the non-uniqueness of the MA equations is that

while the moment equations depend on diagonal higher-order moments if one starts

from a reduced CME, no such dependence is found if the MA equations are derived

from the full CME. While the normal and CMN-MAs treat diagonal and non-diagonal

moments equivalently, the Poisson and log-normal MAs do not do so, thus leading to

non-uniqueness. We explain this in more detail in Appendix B.

One consequence of this non-uniqueness is that certain symmetries of the system

are broken. Looking at the reaction system in Eqs. (4.11) and (4.12), one sees that the

system is symmetric under exchanging species labels and reaction constants, P↔ P∗

and E1 ↔ E2 and a1 ↔ a2,d1 ↔ d2 and k1 ↔ k2. This means that for a1 = a2,d1 =

d2 and k1 = k2 the mean values of P and P∗, E1 and E2, as well as E1P and E2P∗

should be respectively equal. We find that this is indeed the case for the normal and

CMN moment closure, and also for the Poisson and log-normal MAs if one derives the

equations starting from the full CME. If one applies the Poisson and log-normal MAs

to the reduced CME, however, they do break the symmetry.

We conclude that one should be careful when using the Poisson or log-normal MA

for systems with conservation laws. In case the MAs are non-unique it is favourable

to first derive the MAs before applying the conservation laws. In the following we

will study the opposite cases, i.e., if the Poisson and log-normal MA are applied to the

reduced CME, which would normally be the standard approach.

Validity

As in [88] we define w1 = k1Et
1 and w2 = k2Et

2. The authors in [88] studied the depen-

dence of the fraction of the protein number in the phosphorylated state as a function

of w1/w2 using deterministic rate equations. The authors call this response “ultra-

sensitive" whenever it is steeper than a Michaelis-Menten response, meaning a Hill-

coefficient larger than one. Here, we would like to study the effect of noise on the

response and investigate how different moment closures perform for this system. To

this end, we compute the mean value of the phosphorylated protein P∗ in steady

state on a grid in w1/w2 with all the other parameters fixed and fit a Hill function

(w1/w2)
nH /(Kd +(w1/w2)

nH) to the result, where Kd and nH are the dissociation con-

stant and the Hill coefficient, respectively.

We find that the normal MA and rate equations are valid for all w1/w2 for all chosen
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Figure 4.9: Fraction of mean phosphorylated protein in steady state as a function of

w1/w2 for the protein phosphorylation system in Eqs. (4.11) and (4.12). The blue

and orange curve are Hill-functions fitted to the points of the RE and normal MA, re-

spectively. The Poisson and log-normal MAs have only few positive stable fixed points

in the response region making a sensible fit impossible. The used parameters are

a1 = a2 = 5,d1 = d2 = 1,k1 = k2 = 1,Ω = 1,Et
1 = Et

2 = 7 and Pt = 15, where Et
1,E

t
2 and Pt

are the total number of enzyme E1, the total number of enzyme E2 and the total number

of proteins in the system, respectively. For the SSA result 104 samples were simulated

for each point.

parameter sets, whereas the Poisson and log-normal MA are not valid for certain pa-

rameter regimes, i.e., they do not always have a positive stable fixed point. Figure 4.9

visualises the fitting procedure for one parameter set. While the rate equations and nor-

mal MA are stable on the whole considered response region in w1/w2, the Poisson and

log-normal MAs are unstable for the major part of the region. We obtain only one and

two values in the response region, respectively. The Poisson and log-normal MAs thus

do not allow a sensible estimate of the response-steepness via a fit of a Hill-function.

Figure 4.10 visualises the validity of the rate equations, normal, Poisson and log-

normal MAs as a function of the total enzyme number and w1/w2 for five different

parameter sets. The figure indicates where the methods have a positive stable fixed

point and where not. In addition, when a positive stable fixed points exists, we solve

the time-dependent MAs with the initial condition being the fixed point of the rate

equations for the corresponding parameters, and the figure indicates the regions where

these diverge despite the existence of a positive stable fixed point. This thus indicates

the sensitivity of the different methods to initial conditions. While the rate equations

and normal MA are stable and the time trajectories converge everywhere, the Poisson
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Figure 4.10: Validity of different MAs as a function of the total enzyme numbers

Et
1 = Et

2 = Et and of w1/w2 for the protein phosphorylation system in Eqs. (4.11) and

(4.12) for five different parameter sets. If we write (a,d,k,Pt ,Ω) with a1 = a2 = a,

d1 = d2 = d and k1 = k2 = k, where Pt is the total protein number and Ω is the volume,

the parameter sets are given by Set 1 =(1,1,1,25,0.3), Set 2 = (5,1,1,15,1), Set 3

= (5,2,2,25,1), Set 4 = (10,1,1,25,1) and Set 5 = (1,1,1,20,1). The red regions

indicate that the methods have no positive stable fixed point. The blue regions indicate

where a positive stable fixed points exists and the time trajectories converge with initial

condition being the fixed point of the rate equations. The yellow regions show where

the time trajectories diverge despite the existence of a positive stable fixed point, which

means that the fixed point is only locally attractive.

and log-normal MA do so only in subregions of the parameter space. Note that we

do not make any statements about unstable fixed points here since we investigated the

convergence of time trajectories only for one fixed initial condition. The divergence of

the time trajectories in the yellow region suggest that there exists an unstable positive

fixed point, but the same might be true in some parts of the blue region despite the

convergence of time trajectories.

It is important to mention that, despite being valid for all investigated parameter

regimes here, the normal MA does not remain valid if the volume is decreased suffi-

ciently enough (as do the other MA methods). So as for the previous example systems,

there is a critical volume below which the MAs fail to give physical predictions of the
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Figure 4.11: The Hill coefficient as a function of total enzyme number for the five differ-

ent parameter sets introduced in Figure 4.10 for the protein phosphorylation system in

Eqs. (4.11) and (4.12). The SSA result is shown as a solid black line. As explained in

the main text, for some parameter values the Poisson and log-normal MA do not allow

to estimate a Hill function due to instability. In such cases we set the Hill coefficient to

zero. For the SSA result 104 samples were simulated for each point.

system.

In conclusion, we find that the normal MA performs significantly better than the

Poisson and log-normal MA for the studied system in terms of validity.

Accuracy

Next, we compare the Hill coefficient obtained from the different methods with the

results obtained from SSA simulations as a function of the total enzyme number Et for

the five parameter sets defined in the caption of Figure 4.10. The SSA simulations were

performed using the software package iNA [87]. If a method did not allow to estimate

a Hill coefficient for some Et because its validity range was too small, we set the

corresponding value to zero. Figure 4.11 illustrates the results. First of all, we find that

the rate equations overestimate the Hill coefficient for all Et , with a larger deviation for

small Et , which means that the noise in the system significantly reduces the steepness

of the response. For small Et the Hill coefficient estimated from the rate equations

becomes up to four times larger then the SSA result (Set 4 in Figure 4.11). Whenever

they allow to estimate a Hill coefficient, the moment closure approximations are more
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accurate than the rate equations. While the normal and Poisson MAs underestimate

the response, i.e., overestimate the influence of noise, the log-normal overestimates the

response. In terms of accuracy, the three methods perform very similarly, the Poisson

MA perhaps being slightly more accurate than the other two methods. However, this

slightly higher accuracy of the Poisson MA does not overcome its disadvantage of

instability described before.

4.4.3 A deterministic oscillatory system

Next, we study the Brusselator, a well-known deterministic oscillating chemical sys-

tem given by [89, 90]

2X +Y
c1

ÐÐÐÐ→ 3X , X
c2

ÐÐÐÐ→Y, ∅
c3

ÐÐÐÐ⇀↽ÐÐÐÐ
c4

X . (4.13)

Depending on the parameter values, the deterministic rate equations show sustained

oscillations, damped oscillations or over-damped oscillations. Single SSA trajectories

may show sustained oscillations, while ensemble averages of the SSA always show

damped or over-damped oscillations (unless an external, time-dependent input is ap-

plied) due to the dephasing of independent trajectories. Therefore, in the absence of

an external force, a MA can only be interpreted as a valid moment approximation if

its trajectories show damped or no oscillations. Here, we want to first study the va-

lidity of the different MA methods for different parameter sets, and then analyse their

behaviour if the system becomes entrained by an external force. Note that the first reac-

tion in (4.13) is trimolecular, which means that the corresponding propensity function

is of third order in the molecule numbers (c.f. Eq. (2.25)). The time evolution equa-

tion of the second-order moments thus depend on the third and fourth-order moments

(c.f. Eq. (4.2)). Therefore, since the fourth-order central moments and fourth-order

cumulants are not identical (in contrast to the third-order ones), the normal and CMN-

MAs are not equivalent for the reaction system in Eq. (4.13) and we hence analyse all

four MAs separately in the following.

Validity

We study here the validity of the MAs for three different parameter sets defined in the

caption of Figure 4.13. Not surprisingly, as for the previously studied systems, we find

that the MAs show unphysical behaviour below a certain critical volume. In contrast to
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Figure 4.12: Time trajectories of the mean of species X (blue line) and Y (orange

line) for several volumes for the Brusselator system in Eq. (4.13) for the parameters

(c1,c2,c3,c4) = (0.9,2,1,1). While the normal, Poisson and CMN-MAs give physically

meaningful results, i.e., damped oscillations, for an intermediate range of volumes, the

log-normal MA fails to do so for all volumes. To minimise the possibility of numerical

effects we computed the shown results using the ODE integration methods “Adams",

“Backward Differentiation Formula", “Explicit Runge Kutta", “Implicit Runge Kutta", “Ex-

plicit Midpoint" and “Stiffness Switching" and varied the step sizes of the numerical

integrator over several orders or magnitude, all giving the same results.

the two previous cases, however, we find here that the MAs show sustained oscillations

and therefore unphysical behaviour above a second, larger critical volume. So similar

to the deterministically bistable system in Section 4.4.1, we find that the MA methods

are valid only for an intermediate range of volumes. Surprisingly, however, for the

log-normal we can not find such an intermediate regime, i.e., the two critical volumes

seem to coincide.

Figure 4.12 shows the time trajectories of the moments for the different MAs for

four different volumes for one fixed parameter set. While the normal, Poisson and

CMN-MAs diverge for small volumes, are monostable for intermediate volumes and

show sustained oscillations for large volumes, the log-normal switches directly from

divergent to oscillatory behaviour. We estimated the range of validity for the three
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Figure 4.13: Range of validity for the Brusselator system in Eq. (4.13) for three dif-

ferent parameter sets as a function of the volume Ω on logarithmic scale. The used

parameters for (c1,c2,c3,c4) are Set 1 = (1,3,0.9,1) , Set 2 = (0.9,2,1,1) and Set 3

= (1,2,1,1.5). If the range of validity has length zero we plot a single point at zero.

By “range of validity" we mean the range of volumes for which the MAs give physically

meaningful (i.e., non-negative and converging) time trajectories.

different parameter sets for fixed initial conditions of unity for the mean values of both

species and zero variance. Figure 4.13 shows the ranges of validity on logarithmic

scale in the volume. While the Poisson and normal MA have a finite range of volumes

where they lead to physically meaningful results for all parameter sets, the CMN-MA

has a vanishing one for one parameter set and the log-normal for all parameter sets.

System with entrainment

In systems biology it is frequently of interest to study systems where one or several

propensity functions are time dependent. For example, circadian oscillators are often

modelled by a deterministic oscillatory system with an imposed periodic propensity

function modelling the influence of an external light input [91, 92, 93]. Here, we

want to study the performance of the different MA schemes for such a system in the

stochastic setting. To this end, we modify the rate constant c2 of the second reaction

in Eq. (4.13) such that it varies over time from 0.5 to 1.5 times the chosen mean value

in a sinusoidal way, i.e., c2(t) = c0
2 ×(1+ 1

2 sin(ωt)) where c0
2 is the fixed mean value

of c2 and the frequency ω of the sine curve is chosen to be the oscillation frequency

of the deterministic system. After ten periods, we switch off the time dependence

and fix c2 to its mean value. Since we have a time-dependent propensity function

here, we cannot use the SSA to simulate the system. We therefore use Extrande, a

recently developed exact MC method to sample from the solution of CMEs with time-

dependent rate functions [94].

Figure 4.14 shows the time trajectories for the rate equations, Extrande simulations
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Figure 4.14: Time trajectories for the Brusselator system in Eq. (4.13) for the three

parameter sets defined in the caption of Figure 4.13 with entrainment for two different

volumes for each parameter set. The red and blue lines denote the mean values of

species X and Y , respectively. The external input gets switched on at time t = 0 and

switched off after ten oscillation periods of the deterministic system (which depends on

the given parameter set). For the Extrande result we simulated 105 samples for Set 1

and 104 samples for Set 2 and Set 3, respectively.

and the different MA methods. We find that the rate equations show sustained os-

cillations after entrainment, while the Extrande results show damped or over-damped

oscillations. The normal and Poisson MA behave qualitatively the same way as the

Extrande and are thus valid moment approximations for the chosen parameter values.

Quantitatively they differ quite significantly from the Extrande result, however. They

underestimate the mean values, show oscillations with larger amplitudes during en-

trainment and a weaker damping after entrainment. Looking at Figure 4.14 one finds

that these effects are stronger for the respective smaller volume for each parameter set.

The normal and Poisson MA thus underestimate the influence of noise here. The log-

normal and CMN-MAs fail everywhere to provide a physical result. For the former
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this may to be expected, since it also failed to do so in the case without entrainment.

Interestingly, however, the CMN-MA is invalid even for parameters for which it is

valid in the case without external input. Overall, the normal and Poisson MA seem to

perform significantly better for this system than the log-normal and CMN-MA.

4.5 MOCA - A software package for moment closure

approximations

The derivation of the moment equations from the CME and the subsequent application

of moment closures is conceptually a straightforward task. Practically, however, it be-

comes extremely cumbersome if more than one species is involved and if one considers

higher-order MAs. Suppose for example a system of three species for which we want

to compute the fourth-order normal MA equations. Taking symmetries into account,

this leads to 34 moment equations which have to be derived from the CME. These

will have to be closed, and several fifth-order moments (and potentially higher-order

moments) will have to be replaced in terms of lower-order moments. Obviously, this

task quickly becomes unfeasible to do manually. Moreover, the numerical analysis of

MA equations is not straightforward, and there is no user-friendly software package

available allowing non-expert users to derive and analyse MAs.

To our knowledge, there are three software packages available in the literature for

moment closures: the Matlab toolbox StochDynTools [95] which allows the derivation

of MA equations using several different closure schemes for mass-action chemical

systems, i.e., those with polynomial propensity functions; the Python package Mo-

mentClosure [96] which allows the same but only for the normal moment closure and

has the facility to export the MA equations to a Maple file for further analysis; and a

Matlab toolbox presented in [97] which allows to use the normal moment closure to

second order for mass-action chemical systems. For the application of all three pack-

ages, the user needs to be familiar with the respective programming language and the

numerical analysis is not automated.

Here we present the Mathematica package MOCA (moment closure analysis) which

was used for the presented numerical analysis. MOCA significantly extends the appli-

cability and functionality of the three software packages mentioned above. It imple-

ments the investigated four moment closure approximations, as well as deterministic

rate equations, in a graphical user interface and is freely available via the website [98]
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Figure 4.15: MOCA input for time-independent propensity functions for the gene system

in Figure 2.2. The first two lines do not need to be modified. They set the directory of the

file and load the package MOCA.m. The following lines define the number of species,

stoichiometric matrix, parameters and propensity functions of the system, respectively.

We have set the volume to Ω = 1 here.

or in the supplemental material of [40]. In contrast to other available moment closure

software packages [95, 96, 97], MOCA does not only derive the closure equations but

also automatically performs numerical analysis of the derived equations, making the

methods available to non-expert users. The results are automatically visualised and

can be exported to various formats.

We show here some functionalities of MOCA by applying it to our running example

of Chapter 2; the gene system in Figure 2.2 with reactions in Eq. (2.23).

Applicability

MOCA extends the applicability over existing moment closure packages to

• non-polynomial propensity functions

• time-dependent propensities functions

• propensities defined on discrete time points (e.g. measured fluctuating external

parameter)

Note that while non-polynomial propensities can often give a useful description of a

system, they should really be interpreted as an effective approximate description of a

set of elementary reactions, valid only under certain conditions [99]. For these type of

propensities the software applies a Taylor expansion of the propensity around the mean

value to a specified order as proposed in [100]. These different features make MOCA

applicable to virtually any reaction system with arbitrary propensity functions.
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In addition to the different moment closure methods described above, MOCA al-

lows the user to define his own moment closure method, providing an easy way to

develop novel moment closure schemes.

User input

To use the package, the file MOCA.m needs to be placed in the same folder as the

Mathematica notebook that will be used for the analysis. Figure 4.15 shows an example

input for the corresponding notebook for the reaction system in Figure 2.2. The first

two lines, which set the path and load the package, respectively, have to be executed

without any modification. Next, the number of species and the stoichiometric matrix

have to be specified and assigned to the variables nS and stochMatrix, respectively,

as depicted in the third and fourth line in Figure 4.15. The propensity vector and

stoichiometric matrix are given in Eq. (2.29). The number of species nS has to be

equal to the number of rows of stochMatrix. Next, the parameter vector parameters
and the propensity vector called propensity need to be specified, as done in the fifth

and sixth input lines in Figure 4.15.

The species variables have to be denoted by an “x" with the species index as a sub-

script. All terms in the propensity function that are not species variables or numerical

values have to be listed as a parameter in parameters. This is all the input needed

if dealing with time-independent propensity functions and when using the GUI. Note

that the propensities do not need to be of mass-action, i.e., polynomial type, they can

have any analytical form.

For using the coding version of MOCA, deterministic rate equations and time-

dependent propensity functions, as well as for the definition of new moment closure

methods, see the corresponding tutorial files in the supplemental material [98].

Analysis - the graphical user interface

There are four functions available within a GUI. They simply need to be typed into the

notebook and evaluated to open the corresponding GUI:

• DeriveEquations: derives the MA equations for central moments for general

parameters and allows to assign numerical values to the parameters.

• SteadyState: numerically searches for positive and stable fixed points of the

MA equations.
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Figure 4.16: GUI for deriving MA equations with MOCA for the gene system in Figure

2.2. After defining the system as in Figure 4.15 the command SteadyState has to be

evaluated in the notebook for the GUI to appear. The user can choose the closure

method, closure order, expansion order and specify parameter values. For changes to

apply the user needs to press the little “update button" in the top right corner.

• SteadyStateVaryParameter: same as SteadyState but with one parameter var-

ied over a grid specified by the user. The resulting table can be exported into a

“CSV” (“Comma-separated values”) file.

• TimeTrajectory: solves MA equations numerically in time for numerical pa-

rameter values and plots the result. The result can be exported as a figure to

various formats or evaluated on a grid in time and stored in a “CSV” file.

Figure 4.16 shows the GUI that appears after typing and evaluating DeriveEquations.

The user can interactively choose a moment closure method, the closure order as well

as the expansion order. By “expansion order" we mean the expansion of the propensity

functions around the mean value as proposed in [100]. This is only necessary for non-

polynomial rate functions. For exclusively polynomial rate functions, the expansion

does not make a difference as long as its order is equal to or higher than the maximum

order of the propensity polynomials. Finally, it is possible to assign numerical values to

the parameters. The equations only become updated when the small “update bottom"

in the top right corner is clicked. This is also true for the functions described in the

following, i.e., changes in the input are only applied after clicking the “update bottom".

The function SteadyState allows to numerically compute positive stable fixed

points of the MA equations. It has the same input parameters as the function De-
riveEquations described before, with the difference that the parameters have an initial

numerical value. For some parameter values, the method cannot find a positive and sta-

ble fixed point. However, this does not necessarily mean that the numerical algorithm
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Figure 4.17: GUI corresponding to the command SteadyStateVaryParameter in

MOCA for the gene system in Figure 2.2. The table shows positive stable fixed points

obtained by varying one parameter over a specified grid.

fails. Earlier in this chapter we showed that MA equations can indeed have no positive

and stable fixed point for certain bimolecular reaction system (even though the SSA

and rate equations do have positive stable fixed points). We also showed that MAs can

have more than one positive stable fixed point, in which case the SteadyState function

may give more than one result.

Similarly, the function SteadyStateVaryParameter searches for positive stable

fixed points but varies a user specified parameter over a user specified grid. The cor-

responding GUI is shown in Figure 4.17. The resulting table can be exported to a text

file in “CSV” format.

The final function TimeTrajectory solves the MA equations numerically in time

and plots the result. Figure 4.18 shows the corresponding GUI. In addition to method

specifications and values for parameters, the user can specify initial conditions for the

mean values of the species (higher-order central moments are set to zero initially, i.e.,

deterministic initial conditions), the final time point and the plot order specifying up to

which order moments should be plotted. The result can either be exported as a figure

to various formats or into a “CSV” text file where the solution is evaluated on a time

grid with user-specified time spacing.
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Figure 4.18: GUI for solving and visualising the MA equations numerically in time using

the TimeTrajectory command of MOCA. In addition to the method specifications, the

user can specify initial conditions for the mean values, the final time point as well as up

to which order moments should be plotted. The result can be exported as a figure or

into a “CSV” file evaluated on a time grid.

Coding commands

The GUI commands described above are also available as Mathematica functions al-

lowing more experienced Mathematica users a more flexible application of the meth-

ods. See the example files on [98] or in the supplemental material of [40] for details

on how to use these functions.

4.6 Conclusion

In this chapter, we studied several moment closure approximation schemes for the mo-

ment equations of the CME in terms of their physical validity and their quantitative

accuracy. For non-linear systems, we found that the MAs give physically meaningful

results only above a certain critical volume if the system is deterministically monos-

table, and only for intermediate volumes if the system is not deterministically monos-

table.

While we found no significant difference in quantitative accuracy between the four

MAs, the ranges in parameter space for which the MAs gave physically meaningful
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results were significantly larger for the normal MA suggesting that the normal MA

is favourable over the other studied methods. We emphasise that these results are

exclusively based on numerical analysis and although we confirmed the results for a

wide range of parameter sets and several example systems, we cannot expect all of

them to hold in general for all parameter sets or chemical reaction systems. This is

particularly true for the results on quantitative accuracy. In [101], for example, it has

been found for a single parameter set for one chemical reaction system that the log-

normal MA is significantly more accurate than the normal MA.

Our analysis revealed a number of non-trivial, surprising aspects of the limiting

behaviour of MA equations. We found that all four MAs give physically meaningful

results only above a certain critical system volume for deterministically monostable

systems. Below this threshold, the equations give rise to diverging trajectories or oth-

erwise unphysical behaviour, such as negative mean values or variances and hence do

not admit a probabilistic interpretation. For a deterministically bistable and a deter-

ministic oscillatory system, we found that the MAs give physically meaningful results

only for an intermediate range of system volumes, showing unphysical multistability

or unphysical oscillatory behaviour above this regime. Surprisingly, we found for an

enzyme-catalysed reaction, that the Poisson and log-normal MAs were not uniquely

defined. Our analysis suggests that this may indeed be generally the case for systems

with conservation laws, a flaw not shared by the other two MAs.

In conclusion, our results suggest that one should be careful when using MAs,

since one may be led to physically wrong conclusions otherwise. Our results do not

favour one MA over the others in terms of accuracy, but suggest that the normal MA

is favourable over the other MAs due to its significantly larger ranges of validity

Finally, we presented the software package MOCA which was used for the nu-

merical analysis of the various MAs. MOCA allows to derive and analyse moment

closure approximations for systems with polynomial, non-polynomial as well as time-

dependent propensities. MOCA implements the four MA methods studied here as well

as user-defined moment closure schemes and automatises the numerical analysis. It al-

lows non-expert users to apply moment closure methods in a user-friendly graphical

user interface. We believe that these features make MOCA a useful software tool for

studying stochastic reaction systems.



Chapter 5

Cox process representation of

stochastic reaction-diffusion

processes

In the preceding two chapters we studied approximate methods for the non-spatial

description of chemical kinetics, i.e., of the chemical master equation (CME). In the

present chapter, we relax the “well-mixed” assumption underlying the CME, which

means that the spatial locations and diffusion of particles have to be modelled. In this

case the kinetics can be described by stochastic reaction-diffusion processes (SRDPs)

which we introduced in Section 2.4. Deriving an efficient and accurate inference

method for such processes is the goal of this chapter.

To this end we make use of the Poisson representation (PR) which we introduced

in Section 2.3.7. As explained there, the PR can become complex-valued depending

on the involved reactions. After revising SRDPs and discussing the problem of infer-

ence for such processes in the next section, we give a classification of different reaction

types according to their PR behaviour in Section 5.2, and subsequently introduce ap-

proximated versions of certain reaction types. These approximations lead to a PR that

is real-valued for all reaction systems. Next, we apply the resulting real-valued PR

to the reaction-diffusion master equation (RDME) in Section 5.3 and study its contin-

uum limit. Next, we show in Section 5.4 that the derived equations give rise to a novel

representation of SRDPs in terms of Cox processes (c.f. Section 2.5), and show how

this representation naturally leads to a novel inference method. We demonstrate the

efficiency and accuracy of our method for several examples in Section 5.5. Finally, we

conclude in Section 5.6.

102
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5.1 Stochastic reaction-diffusion processes

5.1.1 Brownian dynamics

SRDPs are generally defined in an algorithmic way as Brownian dynamics simulations.

We employ the Doi picture of SRDPs here in which particles are modelled as point

particles and bimolecular reactions happen with a certain probability per unit time

whenever the distance between two molecules is less than a certain reaction range.

For simulations, time is discretised into small intervals, and each particle in the

system and the occurrences of chemical reactions are simulated explicitly in each time

step. The particles undergo Brownian diffusion and chemical reactions happen with

certain probabilities per time step. For details see Section 2.4.1.

As we explained in Section 2.4.1, the time step discretisation has to be chosen small

enough to fulfil several requirements. For example, if the system is not infinite but has

certain boundaries, the time step has to be small enough to avoid unphysical boundary

effects. Another example is that the probability that one particle participates in more

than one chemical reaction in one time step should be negligible. These requirements

generally make small time steps necessary, and since every single particle has to be

simulated explicitly, such simulations are computationally extremely expensive. This

is particularly true whenever bimolecular reactions are involved. In this case, the dis-

tances between all particles that may react with each other have to be computed in each

time step. With increasing particle numbers, this becomes extremely laborious.

To get a feeling for the computational complexity of SRDP simulations, consider

the stochastic simulation algorithm (SSA) introduced in Section 2.3.3. The SSA sim-

ulates the stochastic process underlying the CME description, i.e., in the case where a

non-spatial description is valid. In this case the simulation of single particles and the

discretisation of time are both not necessary. Rather, the state of the system is simply

given by the total particle counts for all species, and time is propagated by simulat-

ing the occurrences of reactions. The latter is possible in this case since inter-reaction

times are exponentially distributed and hence can be simulated easily. This is computa-

tionally obviously much less expensive then the simulation of SRDPs. But even for the

SSA, the simulation of larger systems becomes expensive, and in particular inference

tasks can become infeasible. It is therefore evident that inference attempts for SRDPs

based on naive Brownian simulations are likely to fail.

More importantly than these computational difficulties, it is not even clear con-

ceptually how to define a likelihood for SRDPs. While it is obvious how to define a
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likelihood for non-spatial systems described by the CME (namely by simply evaluat-

ing the CME’s solution at the measured number of molecules), this is not the case for

SRDPs. It is thus not even clear conceptually how to perform inference for SRDPs.

5.1.2 The reaction diffusion master equation

Let us next briefly review the RDME formalism introduced in Section 2.4.2. The

RDME can be viewed as a coarse-grained approximate description of SRDPs. We

consider here the case where space is discretised into cubic compartments of edge

length h. The considerations in the following can easily be generalised to more general

discretisations. The RDME assumes the system to be well-mixed and dilute in each

compartment. The dynamics in each compartment can hence be modelled by means

of a CME. The diffusion of particles between compartments is modelled as linear re-

actions between adjacent compartments with rate constant d = D/h2, where D is the

microscopic diffusion constant.

Now let L be the number of compartments,N(l) denote all adjacent compartments

of the lth compartment, fr(n) be the propensity function of reaction r, δl
i be a vec-

tor of length N ×L with the entry corresponding to species Xi in the lth compartment

equal to 1 and all other entries zero and Sl
r be a vector of length N ×L with the en-

tries corresponding to the lth compartment equal to Sr and zero otherwise, where Sr is

the rth row of the stoichiometric matrix S. Let further n = (n1
1, . . . ,n

1
N , . . . ,n

L
1 , . . . ,n

L
N)

denote the state of the system, where nl
i is the copy number of species Xi in the lth

compartment, and let nl = (nl
1, . . . ,n

l
N) denote the state vector of the lth compartment.

The RDME then governs the time evolution of the probability P(n,t) to be in state n
at time t and reads

∂tP(n,t) =
L
∑
l=1
∑

m∈N(l)

N
∑
i=1

di[(nm
i +1)P(n+δ

m
i −δ

l
i,t)−nl

iP(n,t)]

+
L
∑
l=1

R
∑
r=1

[ fr(nl −Sr)P(n−Sl
r,t)− fr(nl)P(n,t)].

(5.1)

The first term describes the diffusion of particles between adjacent compartments and

the second term is a sum of CME-type terms for the single compartments. The RDME

has the advantage over SRDPs that data likelihoods are in principle straightforward

to compute given the RDME’s solution. The latter is however not known for most

systems. Stochastic simulations of the RDME are generally more efficient than for

SRDPs, but the computational costs are still significant. In particular, they are gener-
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ally significantly more expensive than SSA simulations for corresponding non-spatial

systems.

A disadvantage of the RDME is that the discretisation of space is a non-trivial task.

Importantly, the discretisation cannot be made arbitrarily small since this leads to the

disappearance of bimolecular reactions. This happens because in the RDME frame-

work two particles can only react with each other if they are positioned in the same

compartment. However, the probability for the latter to be the case converges to zero

in the continuum limit, which in turn leads to bimolecular reaction rates converging to

zero.

These reasons taken together show that inference for SRDPs using the RDME is a

difficult and computationally expensive task.

5.2 Real-valued Poisson representation

Consider the PR which we introduced in Section 2.3.7 as an exact reformulation of the

CME. It translates the system from discrete particle numbers in the CME to continuous

variables. This is achieved by making the following ansatz for the solution P(n,t) of

the CME:

P(n,t) = ∫ du P(n1;u1) . . .P(nN ;uN)p(u,t), ui ∈C, (5.2)

where u = (u1, . . . ,uN) and P(ni;ui) = (e−uiuni
i )/ni! is a Poisson distribution in ni with

mean ui. If all reactions in the system involve at the most two reactant and two product

molecules, the distribution p(u,t) satisfies the following FPE,

∂t p(u,t) = −
N
∑
i=1

∂

∂ui
[Ai(u)p(u,t)]+

1
2

N
∑

i, j=1

∂

∂ui

∂

∂u j
[Bi j(u)p(u,t)] . (5.3)

The drift vector A(u) and diffusion matrix B(u) are given by

Ai(u) =
R
∑
r=1

Sirgr(u), (5.4)

Bi j(u) =
R
∑
r=1

gr(u)(rirr jr − sirs jr −δi, jSir), (5.5)

gr(u) =Ωkr

N
∏
j=1

Ω
−s jrus jr

j , (5.6)

where δi, j denotes the Kronecka delta. The Fokker-Planck equation in (5.3) is equiva-

lent to the Langevin equation

du =A(u)dt +C(u)dW, CCT =B, (5.7)
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Table 5.1: Classification of different types of reactions w.r.t. to their Poisson represen-

tation. If different types of reactions are present in a system, the PR typically behave

like the reaction of highest type.

reaction types PR

Type stoichiometry description examples

I
∑i sir ≤ 1

∑i rir ≤ 1

zero or one

reactant and

product molecules

∅→ A

A→∅

A→ B

real and determ.

II
∑i sir ≤ 1

rir = 2 for one i

and zero otherwise

zero or one reactant;

two identical

product molecules

∅→ A+A

A→ A+A

B→ A+A

real and stoch.

III
∑i sir ≤ 1

rir = r jr = 1 for two i ≠ j

and zero otherwise

zero or one reactant;

two non-identical

product molecules

∅→ A+B

A→ A+B

A→ B+C

complex and stoch.

IV
∑i sir = 2

∑i rir ≤ 2 two reactant molecules
A+A→ . . .

A+B→ . . .
complex and stoch.

where W is an l-dimensional Wiener process and l is the number of columns of C. An

important property of the PR which we will use in the following is the fact that the

mean values of the ui variables in PR space agree exactly with the mean values of the

ni variables of the CME.

As we demonstrated in Section 2.3.7, the PR can be deterministic, i.e., B = 0, de-

pending on the reaction system, and its variables can be real- or complex-valued. We

will next give a characterisation of different reaction types with respect to their PR

behaviour.

5.2.1 Classification of reactions

Table 5.1 shows a classification of different types of elementary reactions in terms

of the behaviour of the corresponding PR Langevin equation. These are deduced by

inspection of the PR diffusion matrix in Eq. (5.5). We note that this strict classification
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only holds if the considered reaction is the only reaction in the system. If there are

several reactions happening, the system typically behaves as the entry in Table 5.1

corresponding to the reaction of highest type.

The behaviours of the PR are quite intuitive: for reactions of Type I, it is well-

known that fluctuations are Poissonian, which manifests itself in a deterministic PR.

Note that if the Poisson representation is stochastic and real-valued, the probability

distribution of the molecule numbers in Eq. (5.2) is a real-valued mixture of Pois-

son distributions, for which it is well known that the resulting distributions are super-

Poissonian. For reactions of Type II, for which fluctuations are super-Poissonian, the

PR is therefore real and stochastic. It is easy to see that reactions of Type III and

IV cannot be represented in this way: a zeroth or first order reaction with two non-

identical product molecules, i.e., of Type III, imposes a constraint on the particle num-

bers. For the reaction ∅→ A+B for example, the particle numbers of species A and B

differ by a constant integer number (determined by the initial condition). Conditioned

on the molecule number of A, the distribution of B is a delta function which obviously

has sub-Poissonian fluctuations, and can thus not be represented by a real-valued Pois-

son mixture. Consequently, the PR has to be complex-valued. Bimolecular reactions

give rise to similar constraints or otherwise lead to sub-Poissonian fluctuations which

means that their PR has to be complex-valued.

5.2.2 Linearisation of Type III and IV reactions

We now introduce approximations of Type III and IV reactions that lead to real-valued

PRs. Consider first reactions of Type IV, where two molecules react with each other.

We approximate this type of reactions in a mean-field type of sense: we replace the di-

rect interaction of the two molecules by two unimolecular reactions whose propensity

functions depend on the mean value of the respective other species. For instance, the

reaction

A+B
k

ÐÐÐÐ→∅, f (n) =
k
Ω

nBnA, (5.8)

becomes replaced by the two reactions

A
k⟨nB⟩/Ω

ÐÐÐÐÐÐÐ→∅, f (n) =
k
Ω

⟨nB⟩nA, (5.9)

B
k⟨nA⟩/Ω

ÐÐÐÐÐÐÐ→∅, f (n) =
k
Ω

⟨nA⟩nB, (5.10)

where ⟨nA⟩ and ⟨nB⟩ denote the mean values of the molecule numbers of species A

and B, respectively, and Ω is the volume of the system. The reactions (5.9) and (5.10)
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Table 5.2: Reactions of Types III and IV and their approximate reactions. The corre-

sponding propensities in PR space for the approximate system are obtained by replac-

ing nA and nB with uA and uB, respectively.

original approximation

reaction propensity reaction propensity

A+B→ . . . knAnB/Ω
A→ . . .

B→ . . .

k⟨nB⟩nA/Ω

k⟨nA⟩nB/Ω

A+A→ . . . knA(nA−1)/Ω A→ . . . k⟨nA⟩nA/Ω

A→ A+B knA ∅→ B k⟨nA⟩

∅→ B+C Ωk
∅→ B

∅→C

Ωk

Ωk

A→ B+C knA
A→ B

A→C

knA

knA

correspond to linear reactions with one reactant and zero product molecules. The cor-

responding PR is therefore real and deterministic according to Table 5.1. Since the

mean values of the corresponding PR variables, say uA and uB, are equal to the means

of nA and nB, i.e., ⟨uA⟩ = ⟨nA⟩ and ⟨uB⟩ = ⟨nB⟩, respectively, we simply rescale the rate

constants in PR space by ⟨uA⟩/Ω and ⟨uB⟩/Ω, respectively. Specifically, if there are no

other reactions happening in the system, the PR Langevin equations read

duA = −
k
Ω

⟨uB⟩uAdt, (5.11)

duB = −
k
Ω

⟨uA⟩uBdt. (5.12)

In particular, if there are no other reactions happening in the system, the PR is de-

terministic and we can write ⟨uA⟩ = uA and ⟨uB⟩ = uB. Consider next a bimolecular

reaction with two identical reactant molecules,

A+A
k

ÐÐÐÐ→∅, f (n) =
k
Ω

nA(nA−1). (5.13)

For such type of reactions, we replace the interaction of A with itself by the interaction

of A with its mean,

A
k⟨nA⟩/Ω

ÐÐÐÐÐÐÐ→∅, f (n) =
k
Ω

⟨nA⟩nA. (5.14)

In PR space, this leads to the Langevin equation for A,

duA = −
k
Ω

⟨uA⟩uAdt. (5.15)
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Consider next reactions of Type III (c.f. Table 5.1). The reaction

A
k

ÐÐÐÐ→ A+B, f (n) = knA, (5.16)

for example, can be approximated in a similar fashion as the bimolecular reactions

before: we replace the dependence of the creation of B molecules on A molecules by a

dependence on the mean of the later,

∅
k⟨nA⟩

ÐÐÐÐÐÐ→ B, f (n) = k⟨nA⟩. (5.17)

For the other two Type III reactions,

∅
k

ÐÐÐÐ→ B+C, f (n) = kΩ, (5.18)

A
k

ÐÐÐÐ→ B+C, f (n) = knA, (5.19)

we have to decouple the productions of B and C, i.e., which can be achieved by ap-

proximating the reactions by

∅
k

ÐÐÐÐ→ B, ∅
k

ÐÐÐÐ→C, f (n) = kΩ, (5.20)

A
k

ÐÐÐÐ→ B, A
k

ÐÐÐÐ→C, f (n) = knA. (5.21)

While the reactions in Eqs. (5.18) and (5.19) correlate the molecule numbers of species

B and C, we have effectively decorrelated B and C by introducing the reactions in

Eqs. (5.20) and (5.21).

Table 5.2 summarises the approximations for all reactions of Type III and IV. Note

that depending on the reaction, a combination of the proposed approximations may

have to be performed, for example for the reactions A+B→ A+C and A+B→C+D.

5.3 Real-valued Poisson representation in space

We now aim at applying the real-valued PR to the RDME and subsequently taking the

continuum limit. The RDME is given in Eq. (5.1).

We start by considering the first term in Eq. (5.1) which describes diffusion. Since

different species do not interact with each other here, we can consider a single species

system, say species X1, for which the first term in Eq. (5.1) reduces to

∂tP(n,t) =
L
∑
l=1
∑

m∈N(l)
d[(nm+1)P(n+δ

m−δ
l,t)−nlP(n,t)], (5.22)
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where n = (n1, . . . ,nL), nl is the number of X1 particles in the lth compartment, δm is a

vector with a one in the mth entry and zero otherwise, and the sum over m runs over

all neighbouring compartments of the lth compartment. These are reactions of Type

I (c.f. Table 5.1) and we use the PR without any approximations. The corresponding

Langevin equation (which is deterministic in this case) reads

dul =D
2Mul −∑m∈N(l)um

h2 dt, l = 1, . . . ,L, (5.23)

where M is the spatial dimension of the system and D = dh2 the microscopic diffusion

constant. Since the sum over m runs over all adjacent compartments of the lth compart-

ment, the fraction in Eq. (5.23) is just the discretised version of the Laplace operator

∆ = ∂2
1+ . . .+∂2

M. Introducing a discretised density field u(xl) = ul/hM, where xl is the

centre of the lth compartment, and taking the continuum limit of (5.23) we get the PDE

du(x,t) =D∆u(x,t)dt, (5.24)

which is just the diffusion equation for the field u(x,t).

Consider next the second term in Eq. (5.1) which describes chemical reactions.

Since reactions only occur within compartments, we can treat the compartments inde-

pendently of each other. For a single compartment, the second term in Eq. (5.1) then

reduces to the CME. Here, however, we first apply the approximations discussed in the

previous section for reactions of Type III and IV (c.f. Table 5.1). The corresponding

propensity functions in PR space are given in the last column of Table 5.2 after re-

placing the ni variables by their corresponding ui variables. This leads to a real-valued

PR. Since in the applied approximations, only reactions with two identical product

molecules lead to stochastic terms in the PR, the PR Langevin equation simplifies to

dui =
R
∑
r=1

Sirgr(u)dt +∑
r′

√
2gr′(u)dWr′ , (5.25)

where the sum over r′ only runs over reactions with two Xi product molecules. This is

a direct consequence of the approximation applied to Type III and Type IV reactions.

The propensities gr(u) are obtained by replacing the ni variables with ui variables and

Ω with hM in the expressions in the last column of Table 5.2. Reintroducing the label

l denoting the compartment number in Eq. (5.25), and the species label i in Eq. (5.24),

we can add the contributions of diffusion and chemical reactions to obtain

dul
i =Di

2Mul
i −∑m∈N(l)um

i

h2 dt +
R
∑
r=1

Sirgr(ul)dt +∑
r′

√

2gr′(ul)dW l
r′ . (5.26)
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If we again define the discretised density field ui(xl) = ul
i/h

M, where xl is the centre

of the lth compartment, and dWr(xl) = dW l
r /

√
hM, we can take the continuum limit of

Eq. (5.26) leading to

dui(x,t) = [Di∆ui(x,t)+
R
∑
r=1

Sirgr(u(x,t))]dt

+∑
r′

√
2gr′(u(x,t))dWr′(x,t).

(5.27)

Here, Wr′ are independent spatio-temporal Wiener processes. Note that the sum in the

second line only runs over reactions with two Xi product molecules. The gr(u(x,t))

are the propensity functions in PR space which are obtained by applying the mean-field

approximation described in the previous section. They are not functions of single PR

variables anymore, but rather functions of the space-dependent intensity field vector

u(x,t) = (u1(x,t), . . . ,uN(x,t)). The gr(u(x,t)) are obtained by taking the correspond-

ing propensity function fr(n) in real space, replacing ni→ ui(x,t) and ⟨ni⟩ → ⟨ui(x,t)⟩

and omitting Ω factors. The latter get absorbed in the definition of the intensity fields

defined below Eq. (5.26). For Type III and Type IV reactions, the linearised versions

of the reactions and corresponding fr(n) have to be taken. These are given in Table

5.2. Note that ⟨ui(x,t)⟩ does not denote a spatial averaging, but rather an expectation

locally in space. The ui(x,t) are stochastic fields and ⟨ui(x,t)⟩ denotes the expectation

locally in space with respect to their measure, which means that ⟨ui(x,t)⟩ is a function

of space (and time).

Consider for example the reaction A+B→ ∅. The non-spatial propensity in real

space for this reaction is f (nA,nB) = knAnB/Ω. However, since this is a Type IV

reaction, we replace it according to Table 5.2 by the two reactions A → ∅ and B →

∅ with propensities f (nA,nB) = k⟨nB⟩nA/Ω and f (nA,nB) = k⟨nA⟩nB/Ω, respectively.

By replacing ni → ui(x,t) and ⟨ni⟩ → ⟨ui(x,t)⟩ and omitting Ω terms, we thus obtain

the corresponding propensity functions in spatial PR space as g(uA(x,t),uA(x,t)) =

k⟨uB(x,t)⟩uA(x,t) and g(uA(x,t),uA(x,t)) = k⟨uA(x,t)⟩uB(x,t), respectively. A more

detailed example of this procedure can be found at the end of this section.

Equation (5.27) looks similar to the spatial chemical Langevin equation, which

can be obtained by applying the chemical Langevin equation to the RDME and sub-

sequently taking the continuum limit [49]. However, Eq. (5.27) has a different inter-

pretation since it describes the intensity in PR space. In particular, just as any other

PDE or SPDE description in real space, the spatial chemical Langevin equation does

not provide a generative model for the actual location of events, and thus would not
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allow us to directly model particle locations statistically. Notice that, as a consequence

of the mean-field approximation, the mean value of the ui(x,t) fields is the same as in

a deterministic rate equation description; however, the dynamics of the observed vari-

able, i.e., the points in space, remain stochastic even when the intensity field evolves

deterministically.

Note that Gardiner has derived equations similar to Eq. (5.27) in [67] by applying

the full PR without any approximations to the RDME and taking the continuum limit.

For reactions of Type I and II, the result is equivalent to Eq. (5.27). For reactions

of Type III and IV, however, Gardiner’s equations are complex-valued and differ from

Eq. (5.27). To our knowledge, the relation of SRDPs to spatio-temporal point processes

that we will establish in the following using Eq. (5.27) has never been reported in the

literature.

Example

As an example, consider the following reaction system

X
k1

ÐÐÐÐ→ X +X , X +X
k2

ÐÐÐÐ→∅. (5.28)

The corresponding stoichiometric matrix reads

S = (1,−2). (5.29)

The first reaction in (5.28) is of Type II and thus does not need to be approximated. The

corresponding non-spatial propensity function in real space is given by f1(n) = k1n,

where n is the variable denoting the number of X particles. The second reaction in

Eq. (5.28) is of Type IV and hence needs to be approximated. According to Table 5.2

we approximate it by the reaction X
k2⟨n⟩/Ω

ÐÐÐÐÐÐÐ→∅ with propensity f2(n) = k2⟨n⟩n/Ω.

The corresponding propensity functions in spatial PR space are obtained by replacing

n→ u(x,t) and ⟨n⟩ → ⟨u(x,t)⟩, where u(x,t) is the PR field of species X . We thus have

X
k1

ÐÐÐÐ→ X +X , f1(n) = k1n,

↓

X
k1

ÐÐÐÐ→ X +X , g1(u(x,t)) = k1u(x,t),

(5.30)
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Figure 5.1: Visualisation of Cox process representation of SRDPs. Left: time evolution

of the true SRDP in space. Particles diffuse in space, may decay or are created and

react with each other. Right: time evolution of a Cox process. Here, the intensity

field evolves in time, rather than the points in real space. The latter are merely noisy

realisations of the intensity field. In particular, the points patterns at two different time

points are independent of each other conditioned on the intensity field.

for the first reaction and

X +X
k2

ÐÐÐÐ→∅, f2(n) =
k2

Ω
n(n−1),

↓

X
k2

ÐÐÐÐ→∅, f2(n) =
k2

Ω
⟨n⟩n,

↓

X
k2

ÐÐÐÐ→∅, g2(u(x,t)) = k2⟨u(x,t)⟩u(x,t),

(5.31)

for the second reaction. The corresponding stoichiometric matrix becomes

S = (1,−1). (5.32)

Using the general equation in (5.27) we hence obtain the SPDE for the intensity field

u(x,t),

du(x,t) = [D∆u(x,t)+k1u(x,t)−k2⟨u(x,t)⟩u(x,t)]dt

+
√

2k2⟨u(x,t)⟩u(x,t)dW(x,t).
(5.33)

We would like to emphasise once more that ⟨u(x,t)⟩ denotes the local expectation of

the stochastic intensity field u(x,t) and not a spatial averaging.
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5.4 Cox process representation and inference

We will now use the derived results of the previous section to establish a novel re-

lationship between SRDPs and Cox (Poisson) processes. The latter were introduced

in Section 2.5. Note that in the classical view of the PR the auxiliary variables u are

simply introduced as a mathematical device. Here, however, we will reinterpret the PR

variables by considering a joint process over the u and the particle number variables.

Formally, this is equivalent to what is called demarginalisation in statistics: a complex

process is replaced by a (simpler) process in an augmented state space, such that the

marginals of the augmented process return exactly the initial process.

To this end, we will interpret the PR intensity field u(x,t) as the intensity field of a

spatio-temporal Cox (Poisson) process. In this case the intensity field can be thought of

as the state variable of the system, with the actual spatial points as noisy realisations of

this state (see Figure 5.1 for a graphical visualisation of this concept.). The results of

the present section then follow immediately from the derivation of the previous section.

Our first observation follows directly from Gardiner’s analysis of the continuum limit

of the RDME (see next section for a proof)

Remark 5.1. Consider an SRDP on a spatial domain D and temporal domain T with

deterministic initial conditions, and let all reactions be of Type I, i.e., involve produc-

tion or decay of at most one particle. Then, under appropriate initial conditions, the

single-time-point spatial probability distribution of the SRDP is exactly the same as of

a spatial Poisson process ∀t ∈ T . The intensity field of the latter fulfils the PDE given

in Equation (5.27).

The corresponding equation in (5.27) if only applied to Type I reactions has been

derived by Gardiner before [67]. To our knowledge, however, the connection to spatio-

temporal Poisson processes in the statistical sense has not been formulated in the liter-

ature to this date.

Next, by using the real-valued PR developed in the previous section, we can gener-

alise Remark 5.1 to general reaction systems, leading to (see next section for a proof)

Result 5.1. Consider the same setting as in Remark 5.1. Under appropriate initial

conditions, if there is at least one reaction with two product particles of the same

species, i.e., a reaction of Type II, the system’s single-time-point distribution is exactly
given by a Cox process, whose intensity fulfils the stochastic PDE (SPDE) given in

Equation (5.27). If the system involves other types of reactions, i.e., reactions of Type
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Figure 5.2: Top: Graphical model resembling the true system. The measurements xi

constitute the true state of the system. Bottom: approximation when PR is interpreted

as point process. The intensity field is the state of the system, the measured point

patterns being noisy realisations thereof. Grey and white circles indicate observed and

unobserved variables, respectively.

III or IV, the single-time probability distribution of the SRDP is approximated in a

mean-field sense by that of a Poisson (Cox) process whose intensity fulfils Equation

(5.27).

Result 5.1 provides an efficient means to calculate statistics such as expected num-

ber of agents within a certain volume, without the need to perform extensive Monte

Carlo simulations, since it only requires to solve a (S)PDE for which a rich literature

of numerical methods exists [78, 102]. Importantly, we can use Result 5.1 to approx-

imate the likelihood function of a configuration of points arising from an SRDP by

using the well-known Cox process likelihood, which we introduced in Section 2.5.3.

This function can be easily optimised to yield statistical estimates of kinetic parameters

from single-time observations.

We consider next the problem of approximating the joint distribution of point pat-

terns arising from an SRDP at different time points. This is important when we have

time series observations, i.e., spatial measurements x = (x0, . . . ,xn), xi ⊂ D, at discrete

time points t0, . . . ,tn, and we want to compute the likelihood p(x∣Θ) of the data given
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a model Θ. Since we consider Markovian systems, the likelihood can be written as

p(x∣Θ) = p(x0∣Θ)
n
∏
i=1

p(xi∣xi−1,Θ). (5.34)

We would like to approximate this likelihood using the relation to Cox processes es-

tablished in Result 5.1. While this is in principle straightforward, computing the terms

p(xi∣xi−1,Θ) involves determining the distribution over the associated ui−1 variable in

PR space. This would involve inverting the PR transformation in Eq. (5.2), which is

computationally difficult. Instead, we opt for an approximation strategy: assume that

we have determined the PR distribution p(ui−1) at time ti−1, where we introduced the

shorthand ui = u(x,ti). By definition of the intensity of a Poisson process, ui−1 repre-

sents the expectation of the random configuration of points xi−1 at time ti−1. We then

approximate p(xi∣xi−1,Θ) in a mean-field way by replacing the explicit dependence

on xi−1 with its expectation: p(xi∣xi−1,Θ) ≈ ⟨p(xi∣xi−1,Θ)⟩p(xi−1∣ui−1) = p(xi∣ui−1,Θ).

Figure 5.1 visualises this approximation. The left panels shows the time evolution

in an SRDP, while the right panel shows the time evolution of a corresponding ap-

proximating Cox process. This leads to a new interpretation of the measured points

x = (x0, . . . ,xn): while they are snapshots of the actual state in the true system, they

correspond to noisy realisations of the state u(x,t) in the Cox process picture. This

corresponds to replacing the graphical model in the upper panel in Figure 5.2 by the

graphical model in the lower panel.

We thus have:

Result 5.2. The joint n-time-point marginal distribution of an SRDP can be approxi-

mated in a mean-field sense by the joint distribution of a Poisson (Cox) process with

intensity governed by the (S)PDE in Equation (5.27).

Result 5.2 is particularly powerful statistically, because it enables us to analyti-

cally approximate the exact (intractable) likelihood p(x∣Θ) in Equation (5.34) by the

likelihood of a spatio-temporal Cox process with intensity u(x,t). This allows us to de-

velop efficient algorithms for approximate maximum likelihood estimation in general

SRDPs; Section 5.5 is dedicated to illustrating the performance of this method on a

range of case studies. Let us first however prove Remark 5.1 and Result 5.1 and briefly

review the used inference procedure for Poisson and Cox processes.
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5.4.1 Proof of Remark 5.1 and Result 5.1

For the proof of Remark 5.1 and Result 5.1 we only need to consider the behaviour

of probability distributions when taking the continuum limit in Section 5.3. For sim-

plicity, we consider a one-dimensional system with one species X in the interval [0,1].

Let us go one step back and consider the PR of the discretised version in Eq. (5.26)

before taking the continuum limit. Consider first a system involving only reactions

of Type I. In that case we do not have to perform any approximations to arrive at

(5.26) and the second sum including the noise terms vanishes, i.e., (5.26) reduces

to a PDE. For deterministic initial conditions the ui thus remain deterministic, and

the probability distribution of nl in the lth compartment at time t is given by a Pois-

son distribution with mean value ul . The mean number of molecules in an interval

I = [(m1−
1
2)h,(m2+

1
2)h],m1 <m2 ∈N at time t is hence

⟨N(I,t)⟩ =
m2

∑
i=m1

⟨ni⟩ =
m2

∑
i=m1

⟨ui⟩ =
m2

∑
i=m1

ui, (5.35)

where N(I,t) =∑m2
i=m1

ni. Since the ni are independent Poisson random variables, N(I,t)

is also a Poisson random variable with mean ⟨N(I,t)⟩ = ∑m2
i=m1

ui(t).

Defining ui/h→ u(xi), where xl is the centre of the lth compartment, allows us to

take the continuum limit h→0 of Eq. (5.26) at constant I = [(m1−
1
2)h,(m2+

1
2)h] which

gives the PDE in Eq. (5.27). The mean value of N(I,t) can be written as ⟨N(I,t)⟩ =

∑
m2
i=m1

hu(xi,t), which is a Riemann sum. Taking the limit h→ 0 for constant I thus

gives

⟨N(I,t)⟩ → ∫
I
dx u(x,t). (5.36)

According to the “Countable additivity theorem” [103], the sum of an infinite number

of Poisson distributed independent random variables converges with probability 1 if

the sum of the mean values converges, and the sum has a Poisson distribution with

corresponding mean value. We assume that the mean particle density is bound every-

where, which means that the values ui/h = u(xi) are bound for all i and all h. Let B be

such an upper bound. Since
RRRRRRRRRRR

m2

∑
i=m1

hu(xi)

RRRRRRRRRRR

≤ h
m2

∑
i=m1

∣u(xi)∣ ≤ h
m2

∑
i=m1

B = (m2−m1)B, (5.37)

the sum converges in the limit h→ 0. We thus find that N(I,t) is Poisson distributed in

the continuum limit with mean value ∫I dx u(x,t), and we can write

P(N(I,t) = n)
h→0

ÐÐÐÐÐ→P(n;∫
I
dx u(x,t)). (5.38)
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The same can be shown similarly for a countable union of subintervals of [0,1], and

N(U1,t) and N(U2,t) are obviously independent for disjunct U1 and U2. The probabil-

ity distribution for any fixed t is thus exactly the same as the one of a spatial Poisson

process with intensity u(x,t).

Suppose now that the system also includes reactions of Type II. In this case the

PR becomes stochastic, i.e., Eq. (5.26) and its continuum version in Eq. (5.27) con-

tain non-vanishing noise terms, which means that the field u(x,t) is a random process.

Given a realisation of u(x,t), the same considerations from before for the deterministic

case apply and the single-time distribution behaves like a spatio-temporal Poisson pro-

cess. Since u(x,t) is now a random process, the single-time distribution of the system

corresponds exactly to the one of a Cox-process with intensity u(x,t). The same con-

siderations hold in an approximate sense for Type III and IV reactions. These findings

can easily be generalised to multiple-species systems and general spatial dimensions

and domains. This concludes the derivation of Remark 5.1 and Result 5.1 of the previ-

ous section.

5.4.2 Computing the likelihood for Poisson and Cox processes

We briefly review the computation of likelihoods for Poisson and Cox processes and

the numerical solution of SPDEs via basis projection which we presented in Sections

2.5.3 and 2.5.2, respectively. For simplicity we consider a one-species system here.

The methods can however easily be generalised to multi-species systems.

Numerical solution of (S)PDEs via basis projection

Consider first the numerical solution of an (S)PDE for the intensity field as in Eq. (5.27).

As explained in Section 2.5.2, we make the ansatz u(x,t) = ∑n
i=1 ci(t)φi(x) of writing

the intensity field u(x,t) as a linear combination of a finite set of n spatial basis func-

tions φi(x) and project the (S)PDE onto these basis functions. This leads to (S)ODEs

for the coefficient vector c(t) = (c1(t), . . . ,cn(t)). In the case of a Poisson process, i.e.,

vanishing noise terms in Eq. (5.27), c(t) fulfils a set of ODEs which can be integrated

numerically. In the case of a Cox process, c(t) fulfils a set of SDEs. In the case of

linear SDEs, i.e, drift terms depending linearly on c(t) and noise terms being indepen-

dent of c(t), the system of SDEs is solved by a multivariate normal distribution whose

mean and covariance can be obtained by direct numerical integration. If the SDEs are

non-linear, the solution is no longer a multivariate normal distribution. However, it
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can easily be seen that, due to the approximations that we apply to Type III and Type

IV reactions, the time evolution equations for the mean and covariance of c(t) decou-

ple from higher order moments, and can thus be obtained by numerical integration.

We then simply approximate the solution of the set of SDEs by a multivariate normal

distribution with corresponding mean and covariance. For details on the solution of

(S)PDEs via basis projection see Section 2.5.2.

Filtering

Assume now that we have a (Cox) Poisson process whose intensity fulfils the (S)PDE

in Eq. (5.27) and that we can solve this (S)PDE via basis projection as described above.

The state of the system at time t is thus represented by the vector c(t) of basis projec-

tion coefficients. Assume further that we have spatial measurements x = (x0, . . . ,xn) at

discrete times t0, . . . ,tn. For a Poisson process with intensity field u(x,t), the likelihood

of one measurement xi at time ti is given by

p(xi∣Θ) =∏
s∈xi

u(s,ti)e−∫ dxu(x,ti), (5.39)

where Θ represents the model. In the case of a Cox process, for which u(x,ti) is

stochastic, Eq. (5.39) has to be averaged accordingly with respect to the distribution of

u(x,ti).

To perform inference we need to compute the likelihood p(x∣Θ) of the data given

our model Θ. We omit in the following the conditioning on Θ for notational clarity.

The likelihood factorises as

p(x) = p(x0)
n
∏
i=1

p(xi∣xi−1, . . . ,x0). (5.40)

This can be solved iteratively as follows. Assume that we know the posterior p(ci−1∣xi−1, . . .x0)

at time step i−1 and that we can propagate it forward in time via basis projection to

obtain the predictive distribution p(ci∣xi−1, . . .x0). To obtain the posterior at time step

i, we have to perform the measurement update

p(ci∣xi, . . .x0) =
p(xi∣ci)p(ci∣xi−1, . . .x0)

p(xi∣xi−1, . . .x0)
. (5.41)

We find that the normalisation gives the contribution to the full likelihood in Eq. (5.40)

at time step i. We can thus in principle compute the full likelihood in Eq. (5.40) itera-

tively.
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In the case of a Poisson process, c(t) is deterministic, which means that the mea-

surement updates in Eq. (5.41) become trivial and effectively no measurement updates

have to be performed. Rather, one only needs to solve the PDE forward in time over

the whole measurement time interval, plug the measurements into the likelihood in

Eq. (5.39) for single time points, and subsequently take the product over the time

points.

In the case of a Cox process, the measurement updates in Eq. (5.41) have to be

performed. Generally, these cannot be computed analytically. We approximate them

here by means of the Laplace approximation [79], which approximates the posterior by

a Gaussian centred at the posterior’s maximum and with covariance being the negative

Hessian of the posterior in the maximum. For more details on the computation of the

likelihood for Poisson and Cox processes we refer the reader to Section 2.5.3.

We perform parameter inference in this work by maximising the likelihood with

respect to the parameters. This is probably the most straightforward way for parameter

inference. We would like to point out however, that the possibility of (approximately)

computing the likelihood in principle allows the development of more advanced infer-

ence methods such as Bayesian inference [79].

5.5 Examples

In the following we apply Result 5.1 and Result 5.2 to perform parameter inference

for several systems. We solve the corresponding (S)PDEs for the different systems via

basis projection as explained in Section 5.4.2 using locally constant, non-overlapping

basis functions defined in Section 2.5.2. For details see Appendix C.

5.5.1 Gene expression

To demonstrate the accuracy of our method, we first consider simulated time-series

data in this section. To this end, consider a gene expression system in a one-dimensional

container as depicted in Figure 5.3. A gene located in the nucleus is transcribed into

mRNA molecules. The latter decay and diffuse across the whole cell and are translated

into proteins in the cytosol. The protein molecules also diffuse across the whole cell

and decay. For simplicity, we do not model the gene explicitly but assume that mRNA

becomes transcribed with a certain fixed rate m1 homogeneously in the nucleus. The
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Figure 5.3: Gene expression system. Left: chemical reactions taking place. Right:

system in space. The mRNA becomes transcribed in the nucleus, and becomes trans-

lated to proteins in the cytosol. mRNA and protein molecules decay stochastically and

undergo Brownian diffusion across the whole cell.

Table 5.3: Inference for gene expression system in Figure 5.3 and reactions in

Eqs. (5.42) and (5.43). We assume measurements of the protein while the mRNA

is unobserved. The inference is carried out by maximising the likelihood of simulated

data for thirty measurement points separated by ∆t = 0.5. This procedure is carried

out for hundred simulated data sets, and the mean value and standard deviation (in

parenthesis) of the inferred results are displayed.

r dm dp m1 m2 p1 p2

exact 0.3 0.1 0.1 20 0.5 20 0.2

inferred 0.31 (0.06) 0.12 (0.08) 0.14 (0.06) 23 (12) 0.51 (0.4) 26 (18) 0.25 (0.1)

corresponding reactions are

∅
m1

ÐÐÐÐ→M, M
m2

ÐÐÐÐ→∅, (5.42)

M
p1

ÐÐÐÐ→M+P, P
p2

ÐÐÐÐ→∅, (5.43)

where M and P denote the mRNA and protein, respectively. For this system, the SPDE

of our method in Eq. (5.27) becomes deterministic and thus corresponds to a Poisson

process, see Appendix C.1 for details.

In addition to the reaction parameters m1,m2, p1 and p2, we have to infer the nu-

cleus size r, as well as the diffusion rates dm and dp of the mRNA and protein, re-

spectively, summing up to a total number of seven parameters. We assume that the

positions of the protein molecules are observed at thirty time points, while the mRNA

is unobserved. The inference results for one parameter set are shown in Table 5.3.

Considering that we observe the protein at only thirty time points with unobserved
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Table 5.4: Inference for the same system as in Table 5.3 but with the additional auto-

catalytic reaction in Equation (5.44). Since only the difference p2− p3 is identifiable we

fix p3 = 0.01 and infer the other seven parameters. The table shows the average and

standard deviations (in parenthesis) of the inference results for one hundred simulated

data sets.

r dm dp m1 m2 p1 p2

exact 0.3 0.1 0.1 20 0.5 20 0.2

inferred 0.30 (0.05) 0.14 (0.08) 0.088 (0.03) 27 (17) 0.57 (0.3) 24 (21) 0.19 (0.08)

mRNA and that we have seven unknown parameters, the inferred average values are

remarkably close to the exact values. Moreover, the standard deviations of the inferred

results for single data sets are small, demonstrating the accuracy and precision of our

method.

Next, we extend the system in Figure 5.3 by adding an autocatalytic reaction for

the protein,

P
p3

ÐÐÐÐ→ P+P. (5.44)

Including this reaction leads to a non-vanishing noise term in Equation (5.27) and the

system corresponds to a Cox process. We note that the system has a steady state only if

p3 < p2 , with an otherwise exponentially growing mean protein number. On the mean

level only the difference p2 − p3 is identifiable, and we fix p3 = 0.01. We thus infer

the same parameters as in the previous case, but this time modelled as a Cox process.

Table 5.4 shows the results indicating the accuracy of our method. See Appendix C.1

for details on the used inference method and equations.

5.5.2 SIRS model

We next consider the SIRS system, a popular model for describing the dynamics of an

infection spreading through a population. The model contains a susceptible species (S),

which can be infected by interacting with an infected (I) species. The latter stochas-

tically recover by making a transition to a recovered species (R), which in turn can

become susceptible again. Such systems are frequently modelled as SRDPs [76] or

discretised versions thereof [104]. We consider a system in the two-dimensional square
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Table 5.5: Inference for the SIRS model with reactions given in Equation (5.45). The

inference is carried out by maximising the likelihood of simulated data for forty mea-

surement points. This procedure is carried out for two hundred simulated data sets,

and the mean value and standard deviation (in parenthesis) of the inferred results are

displayed.

103×d 10× r 10× s 103×kPR Sini

exact 1 0.2 2 - 200

inferred 0.8 (0.3) 0.19 (0.09) 1.8 (1.2) 1.5 (0.5)

exact 1 0.2 2 - 300

inferred 0.9 (0.4) 0.15 (0.06) 1.4 (0.9) 2.4 (0.5)

exact 1 2 2 - 200

inferred 1.0 (0.6) 1.6 (0.7) 1.5 (1.0) 3.4 (1.1)

exact 1 0.2 2 - 200

inferred 0.8 (0.4) 0.21 (0.11) 2.2 (1.6) 2.4 (0.5)

exact 2 0.2 2 - 100

inferred 1.6 (0.8) 0.19 (0.09) 1.9 (1.2) 4.6 (1.1)

[0,1]×[0,1]. The particles perform Brownian diffusion and interact via the reactions

S+ I
k,w

ÐÐÐÐÐ→ 2I, I
r

ÐÐÐÐ→ R, R
s

ÐÐÐÐ→ S, (5.45)

where the bimolecular infection reaction is characterised by the microscopic reaction

rate k and the reaction range w. We assume that all three species diffuse with the same

diffusion rate d. We assume further that initially there are no recovered (R) particles,

Sini susceptible (S) particles placed uniformly over the whole area, and one infected

(I) particle located at [0.05,0.05]. We consider a fully observed system and perform

inference for forty simulated data points using Result 5.2, thereby replacing k and w by

an effective bimolecular reaction parameter kPR. The model thus has four parameters

that need to be inferred: the diffusion rate d, the recovery rate r, the susceptible rate

s and the bimolecular infection rate kPR. Table 5.5 shows the corresponding results,

demonstrating the accuracy and precision of our method. The computational efficiency

of our method in comparison to stochastic simulations is particularly pronounced here.

For the first parameter set in Table 5.5, for example, the Brownian dynamics simulation

of a single realisation of the system takes about 250 seconds, while the whole inference

procedure for the four parameters using our method takes only about ten seconds for

one simulated data set on a 3.1GHz core. See Appendix C.2 for details on the used

inference method.
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Figure 5.4: Visualisation of a single simulated realisation (points) and prediction of our

method (background colours) for the SIRS system with reactions in Equation (5.45).

The figures show the time evolution from t = 0 to t = 45 with steps of ∆t = 5. For the

simulation we use the parameters (Sini,k,w,d,r,s) = (103,104,0.02,0.0002,0.3,0.01)

and for the point process prediction the corresponding inferred parameters. The back-

ground is an RGB image with the three colour components being proportional to the

intensity fields of the three species S (blue), I (red) and R (green). Notice how the

mean-field approximation still captures the complex behaviour of a wave of infection

spreading through the domain from the bottom left corner.

Figure 5.4 visualises the dynamics of the SIRS system for one parameter set. In-

dividual points from a simulation are shown in different colours (brown for S, yellow

for I and purple for R), while the background RGB colours represent the intensity of

the respective PR fields with optimised parameters (blue for S, red for I and green for

R). Notice how the PR approximation is able to capture the emerging behaviour of a

wave of infection sweeping through the domain from bottom left to top right, before

the establishment of a dynamic equilibrium between the three population. Such a phe-

nomenon is clearly due to the spatial aspect of the system, and could not have been

recovered using an inference method that did not incorporate spatial information. In-

deed, the overall number of infected individuals rises rapidly and remains essentially

constant between time 20 and time 35 before dropping to steady state, a behaviour

which is simply not possible in a non-spatial SIRS model.
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Figure 5.5: Visualisation of results for the Drosophila embryo Bicoid data. Left and

middle: Bicoid density across a single embryo for measurement data and point process

intensity, respectively. Right: corresponding density along the major axis for one em-

bryo, from experimental data (red histogram) and point process intensity (blue line). In

both cases the point process prediction agrees well with the experimental data. The

point process prediction is obtained by solving Equation (5.27) numerically for the in-

ferred parameter values.

5.5.3 Drosophila embryo

Finally, we apply our method to real gene expression data for the Bicoid protein at

cleavage stage 13 in the Drosophila embryo. The data for seventeen embryos can be

obtained from the FlyEx database [105]. The data consists of fluorescence intensity

measurements on a spatial grid and is shown for one embryo in the left panel of Figure

5.5. The protein becomes expressed in some region at the left end of the embryo and

then diffuses across the embryo and decays. The system is typically modelled by a

linear birth-death process [36, 37], and we assume the protein to be expressed within

a certain distance r from the left end of the Embryo (see Appendix C.3 for details).

At cleavage stage 13 the system is supposed to be in steady state and we can perform

inference using Result 5.1 and Equation (5.27). For simplicity, we project the data to

one dimension (see Appendix C.3 for details).

The system has four parameters: the creation range r, the diffusion rate d, the pro-

duction rate c1 and decay rate c2 of the Bicoid protein. For steady-state data not all

parameters but only certain ratios are identifiable. We thus infer the creation range r,

the diffusion rate d and the ratio c = c1/c2. For the average of the inferred parame-

ters and their standard deviations (shown here in parentheses) across the ensemble of

embryos we obtain

r = 0.26(0.09), d = 0.023(0.005), c = 1.3(0.2)×104, (5.46)
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with standard deviations of about 20% to 30%. We find that these results do not change

significantly under variations of the initial parameter values used in the likelihood op-

timiser.

Figure 5.5 illustrates the inference result for one embryo. The left figure shows

the Bicoid density along the major axis of the embryo and the middle and right figures

show the corresponding densities across the whole embryo for experimental data and

the PR prediction, respectively. In both cases we observe good agreement between the

measurement data and the point process approximation. See Appendix C.3 for details

on the used inference method.

5.6 Conclusion

In this chapter we studied two popular classes of models for studying stochasticity in

spatio-temporal systems; stochastic reaction-diffusion processes (SRDPs) and spatio-

temporal point processes. The two classes of models are both commonly used in many

disciplines such as epidemiology [21, 77] and social sciences [75], however they are

widely perceived as conceptually distinct. SRDPs are microscopic mechanistic de-

scriptions used to predict the dynamics of spatially interacting particles, whereas point

processes are typically used empirically to perform inference tasks for systems for

which no microscopic description exists. The two approaches therefore seem to be

orthogonal to each other.

However, we have shown that the two methods are intimately related. By using the

Poisson representation (PR) we established a Cox process representation of SRDPs,

which is exact for certain classes of systems and approximate for others. This novel

representation enables us to apply statistical inference methods to SRDPs, which has

not been possible so far. We applied the developed method to several example systems

from systems biology and epidemiology and obtained remarkably accurate results.

It is straightforward to see that our method agrees with a deterministic rate equa-

tion description on the mean level. Bimolecular reactions may hence lead to devia-

tions from the true mean, which is known to be the case in some non-spatial scenarios

[64]. Moreover, since in our method distributions are given as real Poisson mixtures,

sub-Poissonian fluctuations cannot be captured. However, Gardiner showed that fluc-

tuations of SRDPs are dominated by diffusion on small length scales and therefore

Poissonian [49], which may explain the accuracy of our method.

Our method approximates certain reaction types. We sometimes call this procedure
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“linearisation of reactions”. We would like to point out, however, that this approxima-

tion introduces modified propensity functions that depend on the mean fields of certain

species. The resulting reactions are thus not truly linear in the elementary reaction

sense. Importantly, the SPDEs governing the time evolution of the intensity fields may

depend non-linearly on the intensity fields and are thus capable of capturing non-linear

behaviour.

For the inference from multi-time-point data, the derived method approximates the

dependence between different measurement time points by a conditional dependence

on the mean fields. Conditioned on these mean fields the measurements at different

time points are then independent. We thus expect our method to become less accu-

rate whenever the positions of particles between two consecutive measurements are

highly correlated. It is non-trivial to quantify this statement, but one can expect the

correlations to be high whenever the time interval between measurements is small in

comparison to the time scale of the reactions and, most importantly, small in compari-

son to the time scale of spatial diffusion. However, since measurements with very short

time intervals contain only little information about the system, it is difficult to test our

method against this criterion.

One disadvantage of our method that we would like to point out is that it cannot

infer kinetic parameters of bimolecular reactions since such non-local interactions get

replaced by local interactions with effective parameters. We would like to stress, how-

ever, that the same is true for any inference method that relies on the discretisation of

space, i.e., on the RDME. Modifications of our method that treat bimolecular reactions

more accurately are subject to future research.

Most inference methods in the literature for SRDPs are either based on Brownian

dynamics simulations or stochastic simulations of spatially discretised systems using

the RDME. Both approaches are computationally extremely expensive and quickly be-

come unfeasible for larger systems and in particular for inference purposes. In contrast,

our method relies on the solution of (S)PDEs for which a rich literature of efficient nu-

merical methods exists. For the studied example systems our method turned out to be

highly efficient, in particular for systems that correspond to Poisson processes within

our framework: the computational time for inferring seven unknown parameters in the

gene expression system without the autocatalytic reaction, for example, was found to

be about 500 seconds on a 3.1GHz processor. We therefore expect our method to be

applicable to significantly larger systems containing more species and unknown pa-

rameters. Remarkably, for the SIRS system, for which four unknown parameters had
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to be inferred, simulating a single realisation of the process from Brownian dynam-

ics simulations took an order of magnitude more (about 250 seconds) than the whole

inference procedure using our method (about 10 seconds), i.e., optimising the likeli-

hood with respect to the parameters. This indicates the immense computational costs

of inference methods based on Brownian dynamics simulations.

We therefore believe that the derived representation of SRDPs in terms of Cox

processes has the potential to serve as the basis for a new class of statistical inference

methods for SRDPs.



Chapter 6

Conclusion and Outlook

Stochastic effects play a crucial role in many chemical reaction networks in living cells.

With a rapidly increasing amount of data becoming available for such systems, the

development of mathematical models to describe these effects and to infer information

from data constitutes an outstanding research problem. Significant effort has been

spent in recent years on the development of such models. Generally, the mathematical

description of the stochastic chemical process is intractable, and methods typically

approximate it by a tractable model.

In particular in the case of non-spatial descriptions of chemical networks, a large

number of different approximation methods have been proposed in the literature. Many

of these approximations have no systematic justification, and little is known about their

applicability and mathematical limitations. We studied two such classes of approxima-

tions in this work; the chemical Langevin equation (CLE) and a certain class of mo-

ment closure approximation (MA) methods. We have elucidated fundamental math-

ematical problems for both methods, which can considerably limit their applicability.

We found that wrong usage of these methods may lead to substantially inaccurate re-

sults, as well as to qualitatively wrong or unphysical conclusions. We believe that our

results significantly advance the understanding of the studied methods.

In comparison to the non-spatial case, the description of spatial processes, i.e.,

stochastic reaction-diffusion processes (SRDPs), is much less developed. In particular

for the task of inference from experimental data, there are barely any methods avail-

able. We developed a novel inference method in this thesis that was found to be highly

efficient and accurate. We think that the proposed method constitutes an important ad-

vancement to the state of the art of inference methods for SRDPs and that it may serve

as a basis for future research in this field.

129
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Future perspectives

In the context of the CLE’s mathematical limitations, we proposed a novel version of

the CLE: the complex CLE which extends the state space of the CLE from real-valued

to complex-valued variables. We showed that the complex CLE does not suffer from

the problems of the conventional CLE and that it is significantly more accurate than

other modifications of the CLE proposed in the literature.

However, the complex CLE has several drawbacks: first of all, it is not clear how

to obtain a probability distribution over real variables from its simulations. The ex-

ploration of this problem is subject of future research. Another disadvantage of the

complex CLE is that it is computationally more expensive than the real-valued CLE. It

would thus be useful to derive criteria that validate usage of the real-valued CLE. We

would like to mention, however, that for systems for which the real-valued CLE does

not break down or whenever the probability of the real-valued CLE to break down in

a specified finite time interval is sufficiently small, the complex CLE effectively re-

duces to the real-valued CLE, and the complex CLE’s drawbacks disappear. In cases

of doubt, the usage of the complex CLE hence seems favourable.

The analysis of the validity of MAs performed in this work was a purely numerical

case study. The question hence arises to what extent our results can be generalised

to general reaction networks. Moreover, since we have mainly focused on second-

order MAs here, it would be interesting to see how our results generalise to higher

order MAs. A more extensive numerical study could shed some light on this issue.

Optimally, one would want to find analytic proofs for the properties of MAs that we

found numerically in this work for certain example systems. Due to the complicated

non-linear form of MAs, however, general analytical proofs seem hardly accessible.

Yet, for some properties this might be possible, in particular regarding the unphysical

sustained oscillations for large system sizes of certain systems.

The developed inference method for SRDPs incorporates two approximations. The

first approximation concerns bimolecular reactions and certain linear reactions. One

possibility to improve the proposed method would thus rest upon improving this ap-

proximation or to abandon it partially. The latter option would mean to dispense with

the representation of SRDPs in terms of spatio-temporal Cox processes, at the cost of

more expensive computations. The second approximation concerns the partial decor-

relation of measurements at different time points. This could potentially also be im-

proved by extending the state space of our method to complex-valued variables. How-
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ever, once again, this would mean to abandon the Cox process picture and would make

computations more involved.

Another possibility to improve our method concerns the actual inference procedure.

We performed parameter inference in the most straightforward way by maximising the

data likelihood. An interesting next step would be to incorporate our method into more

elaborate inference methods, such as Bayesian methods.

One drawback of our method is that it cannot be applied directly without further

modifications to systems with conservation laws in particle numbers. A gene that

switches between an on and an off state and that transcribes mRNA in the on state, for

example, would be difficult to model with our method. One possibility to circumvent

this problem would be to incorporate our method into a hybrid model, where the gene

is modelled explicitly in real space.

We hope that the methods and results developed in this thesis will stimulate corre-

sponding research.



Appendix A

Breakdown of the chemical Langevin

equation

A.1 Breakdown analysis for a two enzyme catalysed re-

action

Consider the system

EA+A
c1

ÐÐÐÐ→ EA+B, ∅
c3

ÐÐÐÐ⇀↽ÐÐÐÐ
c4

EA,

EB+B
c2

ÐÐÐÐ→ EB+A, ∅
c5

ÐÐÐÐ⇀↽ÐÐÐÐ
c6

EB.
(A.1)

The enzymes are denoted by EA and EB and the substrates by A and B. We do not

model the intermediate states of the catalyse process but rather assume they are fast

enough such that they can be replaced by one effective reaction. Let N0, x, xA and

xB be the total number of substrate molecules (those of A and B), and the number of

molecules of A, EA and EB, respectively. It can be easily seen that N0 is constant, which

means that the system can be reduced to three variables by using that the number of B

molecules is equal to N0−x.

We rescale time as τ = c6t and define k1 = c1/(Ωc6),k2 = c2/(Ωc6),k3 =Ωc3/c6,k4 =

c4/c6 and k5 =Ωc5/c6. The CLE in standard form then reads

dx = (−k1xAx+k2(N0−x)xB)dτ−
√

k1xAx dW1+
√

k2(N0−x)xB dW2, (A.2)

dxA = (k3−k4xA)dτ+
√

k3 dW3−
√

k4xA dW4, (A.3)

dxB = (k5−xB)dτ+
√

k5 dW5−
√

xB dW6. (A.4)

132
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It can be easily seen that this CLE breaks down, since some of the noise terms are

non-zero independently of the values of the variables.

An alternative form of the CLE is given by

dx = (−k1xAx+k2(N0−x)xB)dτ+
√

λ1 dW1, (A.5)

dxA = (k3−k4xA)dτ+
√

λ2 dW2, (A.6)

dxB = (k5−xB)dτ+
√

λ3 dW3, (A.7)

where

λ1 = (k1xA−k2xB)x+N0k2xB, (A.8)

λ2 = k3+k4xA, (A.9)

λ3 = k5+xB. (A.10)

Using Ito’s formula [49] and the above CLEs for xA and xB, we can derive the CLEs

for λ2 and λ3 leading to

dλ2 = k4(2k3−λ2)dτ+k4
√

λ2 dW2, (A.11)

dλ3 = (2k5−λ3)dτ+
√

λ3 dW3. (A.12)

Thus the CLEs in the variables λ2 and λ3 do not break down because when the noise

terms equal zero (for λ2 and λ3 equal zero respectively), the drift terms become positive

which leads to the eventual increase of the variables. This in fact could be deduced

from our previous results as follows. The enzymes EA and EB are not influenced by the

reactions involving A and B. They simply undergo the simple birth and death process

that has been investigated earlier (see Section 3.1.1) and whose alternative form CLE

has been shown to not suffer from breakdown.

Similarly, we can deduce the CLE for variable λ1 using the CLE for variable x

above. Under the constraint k1xA − k2xB =
k1
k4
(λ2 − k3)− k2(λ3 − k5) ≠ 0, the new CLE

reads

dλ1 = f (λ1,λ2,λ3)dτ+
√

λ1(
k1(λ2−k3)

k4
+k2(k5−λ3))dW1+

√
λ2k1×

k4(k2N0(k5−λ3)+λ1)

k1(λ2−k3)+k2k4(k5−λ3)
dW2−

√
λ3k2

k4λ1+k1N0(k3−λ2)

k1(λ2−k3)+k2k4(k5−λ3)
dW3, (A.13)

where f is a complicated function of the variables λ1, λ2, and λ3 and whose particular

form is not important to our analysis. We find that as λ1 becomes zero, the first noise

term vanishes, however the other two noise terms are generally non-zero which implies

that noise can drive λ1 to negative values and hence the CLE breaks down.
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Thus, as for the two variable example in Section 3.1.1, the alternative form of the

CLE does not circumvent the problems of the standard form of the CLE. Also similar

to the results there, the breakdown is intimately related to the properties of the diffusion

matrix of the CFPE. To see this, note that the diffusion matrix for the system (A.1) is

given by

B =

⎛
⎜
⎜
⎜
⎝

λ1 0 0

0 λ2 0

0 0 λ3

⎞
⎟
⎟
⎟
⎠

. (A.14)

Since this matrix is diagonal in the basis x,xA,xB, it follows that λ1, λ2 and λ3 are its

eigenvalues and that the matrix is positive semi-definite only if all three eigenvalues are

positive. However, we have seen that the alternative form of the CLE breaks down at

λ1 = 0 which indeed corresponds to B losing its positive semi-definite form and hence

to an ill-defined CFPE. Hence the breakdown of all possible CLEs in real variable

space for this system is guaranteed.

A.2 Positive semi-definiteness of the diffusion matrix

associated with the CLE

Let C ∈ Rm×n be a real matrix, m,n ∈ N, and B = CCT ∈ Rm×m. Let v ∈ Rm,v ≠ 0, be an

eigenvector of B with eigenvalue λ ∈ R such that

Bv = λv. (A.15)

For a vector w ∈Rp, p ∈N, let ∣∣w∣∣p denote the Euclidean norm in Rp, ∣∣w∣∣p = (wT w)1/2.

Consider

λ∣∣v∣∣2m = λvT v = vT Bv = vT CCT v = (CT v)T (CT v) = ∣∣CT v∣∣n ≥ 0. (A.16)

Since v ≠ 0, we have ∣∣v∣∣2m > 0 and thus λ ≥ 0. Since B = CCT is symmetric, it is

diagonalisable. We have shown that all eigenvalues are non-negative and can thus

conclude that B is positive semi-definite. Conversely it follows that if the diffusion

matrix B is not positive semi-definite then the matrix C cannot be real.
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A.3 Exact solution of the CME describing catalysis by

a single enzyme molecule

Here we derive an exact solution to the CME for the enzyme reaction system with

reactions in Eq. (3.40). To the best of our knowledge this has not been reported to this

date; a previous exact derivation led only to an explicit expression for the mean value

of the substrate [106].

Define c = c1/Ω, rescale time as τ = ct and define k2 = c2/c,k3 = c3/c,k4 = Ωc4/c.

Let P0(n,τ) and P1(n,τ) be the probability of having n substrate molecules at time τ

given 0 and 1 free enzyme molecules, respectively. The coupled CMEs describing the

time evolution of these two probabilities are then given by

∂τP0(n,τ) = k4P0(n−1,τ)+(n+1)P1(n+1,τ)−k4P0(n,τ)−k2P0(n,τ)−k3P0(n,τ),

(A.17)

∂τP1(n,τ) = k4P1(n−1,τ)+k2P0(n−1,τ)+k3P0(n,τ)−k4P1(n,τ)−nP1(n,τ). (A.18)

Define the generating functions as

G0(s) =∑
n

snP0(n), (A.19)

G1(s) =∑
n

snP1(n). (A.20)

Multiplying (A.17) and (A.18) in steady state (∂τP0 = ∂τP1 = 0) with sn and summing

over n leads to

0 = (k4(s−1)−k2−k3)G0(s)+∂sG1(s), (A.21)

0 = (k2s+k3)G0(s)+(k4(s−1)− s∂s)G1(s). (A.22)

Solving the second equation for G0 and inserting into the first gives

0 =
(k4(s−1)−k2−k3)k4(1− s)

k2s+k3
G1(s)+(

(k4(s−1)−k2−k3)s
k2s+k3

+1)∂sG1(s), (A.23)

which leads to the solution

G0(s) =C
ek4s

(k3−k4s)k2+k4+1 =C′ ek4s

(k34− s)k+1 , (A.24)

G1(s) =C
ek4s

(k3−k4s)k2+k4
=C′ ek4s

(k34− s)k , (A.25)



Appendix A. Breakdown of the chemical Langevin equation 136

where k34 = k3/k4, k = k2 + k4, and C′ is a normalisation constant. The latter can be

obtained from the normalisation condition

∑
n
(P0(n)+P1(n)) =G0(1)+G1(1) = 1, (A.26)

which leads to

C′ =
e−k4

k34
(k34−1)k+1. (A.27)

Hence the generating function solution is given by

G0(s) =
ek4(s−1)

k34
(

k34−1
k34− s

)

k+1
, (A.28)

G1(s) =
ek4(s−1)

k34

(k34−1)k+1

(k34− s)k . (A.29)

One can show by induction that

∂
n
s G0(s) = =

C′

k
∑

n
i=0 (

n
i)[k]

n−i+1(k4(k34− s))i

(k34− s)k+n+1 ek4s

=
(k34−1)k+1

k34k
ek4(s−1)

(k34− s)k+n+1

n
∑
i=0

(
n
i
)[k]n−i+1(k4(k34− s))i, (A.30)

∂
n
s G1(s) = =C′∑

n
i=0 (

n
i)[k]

n−i(k4(k34− s))i

(k34− s)k+n ek4s

=
(k34−1)k+1

k34

ek4(s−1)

(k34− s)k+n

n
∑
i=0

(
n
i
)[k]n−i(k4(k34− s))i, (A.31)

where we have used the definition for the rising factorial

[k]i = k ⋅ (k+1) . . .(k+ i−1), (A.32)

[k]0 = 1. (A.33)

The probability distributions can now be obtained by using their definition in terms of

the generating functions which read

P0(n) =
1
n!

∂
n
s G0(s)∣s=0, (A.34)

P1(n) =
1
n!

∂
n
s G1(s)∣s=0. (A.35)

Substituting Eqs. (A.30) and (A.31) in Eqs. (A.34) and (A.35), leads to

P0(n) =
C′′

k
kn+1

4
n!

n
∑
i=0

(
n
i
)[k]n−i+1ki−n−1

3 , (A.36)

P1(n) =C′′ k
n
4

n!

n
∑
i=0

(
n
i
)[k]n−iki−n

3 , (A.37)
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where C′′ = e−k4(k34−1)k+1/kk+1
34 . These can be compactly represented in terms of the

confluent hypergeometric function 1F1 as

P0(n) =
C′′

kn!
(

k4

k3
)

n+1
Γ(n+k+1)

Γ(k) 1F1 [−n;−(k+n);k3] , (A.38)

P1(n) =
C′′

n!
(

k4

k3
)

n
Γ(k+n)

Γ(k) 1F1 [−n;−(k+n−1);k3] . (A.39)

Analytic expressions for moments of arbitrary order can be directly computed by tak-

ing appropriate derivatives of the generating functions in Eqs. (G14) and (G15). Let

⟨n⟩ and Σ denote the mean and variance of the substrate, and further ⟨nE⟩ and ΣE the

mean and variance of the free enzyme. We obtain the following expressions for these:

⟨n⟩ =
k4k3(k3+k2)+k2

4
k3(k3−k4)

, (A.40)

Σ =
k4(k2

3(k2
4 +k3(−k4+k2+k3))+k4(k3(k4+k3)−k2

4))

k2
3(k4−k3)2

, (A.41)

⟨nE⟩ = 1−
k4

k3
, (A.42)

ΣE =
k4(k3−k4)

k2
3

. (A.43)



Appendix B

Non-uniqueness of moment closure

approximations

Here, we investigate in detail the non-uniqueness of the Poisson and log-normal MAs

for systems with conservation laws. To this end, we consider the simple reversible

reaction system

A+B
k1

ÐÐÐÐ⇀↽ÐÐÐÐ
k2

C. (B.1)

We now compute the MA equations by applying the conservation laws of the system

once after, and once before closing the equations.

Closing the equations first

This approach involves deriving the moment equations from the CME and subse-

quently imposing the conservation laws. The stoichiometric matrix and propensity

vector for this system read (c.f. Eq. (2.24))

S =

⎛
⎜
⎜
⎜
⎝

−1 1

−1 1

1 −1

⎞
⎟
⎟
⎟
⎠

, f(n1,n2,n3) = (
k1

Ω
n1n2,k2n3)

T , (B.2)

where n1,n2 and n3 denote the copy numbers of species A,B and C, respectively, and Ω

is the volume of the system. The corresponding time evolution equations for the first

and second-order moments can be obtained from Eqs. (2.33) and (2.34). For y1 = ⟨n1⟩

and y1,1 = ⟨n2
1⟩, for example, they read

∂ty1 = −
k1

Ω
y1,2+k2y3, (B.3)

∂ty1,1 = −2
k1

Ω
y1,1,2+2k2y1,3+

k1

Ω
y1,2+k2y3. (B.4)

138
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Note that due to the term n1n2 in the first element of the propensity vector in Eq. (B.2),

the equation for y1,1 depends on the third-order moment y1,1,2, but not on any diago-

nal third-order moment, i.e., not on y1,1,1,y2,2,2 or y3,3,3. The same is of course true

for the equations of the other second-order moments: they do not depend on a di-

agonal third-order moment. This means that the second-order normal and Poisson

MAs are equivalent, since they differ only in their expressions for diagonal moments

(c.f. Eqs. (2.39)-(2.41)). The corresponding second-order normal and Poisson MAs

for y1 and y1,1 are obtained by setting the corresponding third-order cumulant c1,1,2 to

zero which leads to y1,1,2 = 2y1y1,2+y2y1,1−2y2
1y2 and thus gives

∂ty1 = −
k1

Ω
y1,2+k2y3 (B.5)

∂ty1,1 = −4
k1

Ω
y1y1,2−2

k1

Ω
y2y1,1+4

k1

Ω
y2

1y2+2k2y1,3+
k1

Ω
y1,2+k2y3, (B.6)

and similarly for the other first and second-order moments. Note that the system has

two conservation laws which can be written as

n1+n3 = At = const., (B.7)

n2+n3 = Bt = const. (B.8)

To simplify the following equations, let us assume At = Bt , which implies n1 = n2. The

system of moment equations of three variables can thus be reduced to a system with

only one variable, since all moments of first and second order can be expressed in terms

of y1 and y1,1 using Eqs. (B.7) and (B.8). For example, we have y3 = ⟨n3⟩ = ⟨At −n1⟩ =

At −y1 and y1,2 = ⟨n1n2⟩ = ⟨n1n1⟩ = y1,1 and similarly for the other first and second-order

moments. The resulting equations for y1 and y1,1 are thus closed and read

∂ty1 = −
k1

Ω
y1,1+k2(At −y1), (B.9)

∂ty1,1 = −6
k1

Ω
y1y1,1+4

k1

Ω
y3

1+2k2(Aty1−y1,1)+
k1

Ω
y1,1+k2(At −y1). (B.10)

Note that these are the resulting second-order MA equations for both the normal and

the Poisson MA.

Applying the conservation laws first

Alternatively, we can start from the reduced CME with species B and C eliminated,

whose stoichiometric matrix and propensity vector are given by

S = (−1 1) , f(n1) = (
k1

V
n2

1,k2(At −n1))
T . (B.11)
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Note that due to the term n2
1, the time evolution equation for the second-order moment

y1,1 depends on the diagonal third-order moment y1,1,1 (all moments are diagonal here

of course, since we deal with a system with only one variable). The corresponding

equations for the first two moments can be obtained using Eqs. (2.33) and (2.34) and

read

∂ty1 = −
k1

Ω
y1,1+k2(At −y1), (B.12)

∂ty1,1 = −2
k1

Ω
y1,1,1+2k2(Aty1−y1,1)+

k1

Ω
y1,1+k2(At −y1). (B.13)

For closing these equations to second order, we need to express y1,1,1 in terms of y1

and y1,1. The corresponding expression is now not the same anymore for the normal

and Poisson MAs. For the normal MA we have y1,1,1 = 3y1y1,1 − 2y3
1. Inserting the

latter into Eq. (B.13) one obtains the same result as in Eqs. (B.9) and (B.10) which we

obtained by applying the conservation laws after closing the equations. In contrast, if

we apply the Poisson MA, which sets y1,1,1 = 3y1y1,1−2y3
1+y1, the resulting equation

for y1,1 is not equal to Eq. (B.10). The reason for this is that the Poisson MA does

not treat diagonal and non-diagonal moments equivalently. Here, this means that the

replacements of y1,1,1 and y1,1,2 differ from each other if one sets the index 2 to 1 in the

expression for y1,1,2. Since the same is true for the log-normal MA, the latter also gives

differing results depending if the equations are closed before or after the conservation

laws are applied. Since the normal and CMN-MA do treat diagonal and non-diagonal

moments equivalently (so the expressions for y1,1,1 and y1,1,2 are the same after setting

2 to 1), these MAs do not suffer from this flaw.
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Cox process representation - details

on examples

C.1 Gene expression

Equations

Consider the gene expression system in Figure 5.3 in Chapter 5. We do not model the

gene explicitly, but rather assume a homogeneous production of mRNA in the nucleus.

The corresponding reactions are

nucleus ∶ ∅
m1

ÐÐÐÐ→M, (C.1)

whole cell ∶ M
m2

ÐÐÐÐ→∅, (C.2)

cytosol ∶ M
p1

ÐÐÐÐ→M+P, (C.3)

whole cell ∶ P
p2

ÐÐÐÐ→∅, (C.4)

and both the mRNA M and protein P diffuse across the whole cell with diffusion con-

stants dM and dP, respectively. After linearising the reaction in Eq. (C.3) as explained

in Section 5.2.2 the PR for this system is real and deterministic, and we obtain using

Eq. (5.27)

duM(x,t) = [dM∆uM(x,t)+m1hn(x)−m2uM(x,t)]dt, (C.5)

duP(x,t) = [dP∆uP(x,t)+ p1hc(x)uM(x,t)− p2uP(x,t)]dt, (C.6)

hn(x) =
1
r

Θ(r−x), (C.7)

hc(x) =
1

1− r
Θ(x− r), (C.8)
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where r is the size of the nucleus and Θ the Heaviside step function. The functions

hn(x) and hc(x) arise because M and P only become created in the nucleus and cytosol,

respectively. If we additionally include the reaction

P
p3

ÐÐÐÐ→ P+P, (C.9)

the equation for uP(x,t) becomes a SPDE and reads

duP(x,t) = [dP∆uP(x,t)+ p1hc(x)uM(x,t)+ p3uP(x,t)− p2uP(x,t)]dt

+
√

2p3uP(x,t)dW(x,t).
(C.10)

Inference

Consider first the system without the reaction in Eq. (C.9). In this case the system cor-

responds to a Poisson process. After basis function projection of the PDEs in Eqs. (C.5)

and (C.6) as explained in Section 2.5.2, we are left with solving a coupled system of

ODEs and can compute data likelihoods as explained in Section 2.5.3. We fix the

parameters to

r = 0.3, dM = 0.1, m1 = 20, m2 = 0.5, dP = 0.1, p1 = 20, p2 = 0.2, (C.11)

and assume that initially there are zero mRNA molecules and zero protein molecules in

the cell. We further assume that the mRNA is unobserved and consider measurements

of the protein at thirty equally separated time points separated by ∆t = 0.5. We solve

the PDEs in Eqs. (C.5) and (C.6) by projecting them onto twenty basis functions as

explained in Section 2.5.2. We then optimise the likelihood of the data with respect to

the parameters to obtain the inferred parameter values. We vary the initial values for

the parameters in the likelihood optimiser randomly between 0.5 times and 2 times the

exact value. The inference results are shown in Table 5.3 in the main text.

Next, we consider the same system but with the additional reaction in Eq. (C.9), for

which the PDE in Eq. (C.6) gets replaced by the SPDE in Eq. (C.10). Now the system

corresponds to a Cox-process, and we are left with solving a coupled system of SDEs

after basis function projection. Since the drift and mean are both linear in the vari-

ables, the mean and covariance can be obtained by direct numerical integration, and

we approximate the solution of the SDEs by a corresponding multivariate normal dis-

tribution. The corresponding likelihoods can then be computed as explained in Section

2.5.3. We again consider measurements of the protein at thirty equally separated time

points separated by ∆t = 0.5 and optimise the corresponding likelihood. The results are

shown in Table 5.4 in the main text.
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C.2 SIRS model

Equations

The reactions of the SIRS system are

S+ I
k,r

ÐÐÐÐ→ 2I, I
r

ÐÐÐÐ→ R, R
s

ÐÐÐÐ→ S. (C.12)

We consider a system in the two-dimensional square [0,1]× [0,1]. After linearising

the first reaction in Eq. (C.12) as explained in Section 5.2.2 the PR for this system is

real, and we obtain using Eq. (5.27) for the intensity fields of S, I and R,

duS(x,t) = d∆u(x,t)−kuS(x,t)uI(x,t)+ suR(x,t), (C.13)

duI(x,t) = d∆uI(x,t)+kuS(x,t)uI(x,t)− ruI(x,t), (C.14)

duR(x,t) = d∆uR(x,t)+ ruI(x,t)− suR(x,t), (C.15)

where we omitted noise terms in the equation for uI(x,t) for simplicitly and hence treat

the system deterministically.

Inference

Initially at t = 0, we distribute Sini particles of species S randomly across the whole

area, one I particle at [0.05,0.05] and assume zero R particles. We simulate data for

forty time points equally spaced by ∆t = 1. As a basis we take 100 basis functions

equally distributed in both dimensions. The inference results are shown in Table 5.5 in

the main text.

C.3 Drosophila embryo

Data and equations

The data of the Bicoid protein in Drosophila embryos we consider here consists of two-

dimensional fluorescence data as depicted in the left panel in Figure 5.5 in the main

text. Since the relation of measured fluorescence intensity to actual protein numbers is

unknown we simply translate them one to one. The Bicoid system is typically modelled

by a simple birth-death process with the reactions

∅
k1

ÐÐÐÐ→ P, P
k2

ÐÐÐÐ→∅. (C.16)



Appendix C. Cox process representation - details on examples 144

For simplicity, since diffusion is radially symmetric, we only consider the data within

a certain distance from the major axis of the embryos, which we then project onto

this axis, thus effectively obtaining one-dimensional data. We assume further that the

protein is produced within a certain range around the left tip of the embryos. Mathe-

matically the system is thus basically equivalent to the mRNA system in Section 5.5.1.

The intensity of the protein fulfils the PDE

du(x,t) = (d∆u(x,t)+k1 f (x)−k2u(x,t))dt, (C.17)

where x is the distance from the left top of the embryo, d is the diffusion constant, k1

the production rate, f (x) = 1/r for x ∈ [0,r] and f (x) = 0 for x ∉ [0,1], r is the production

radius around the origin and k2 is the decay rate.

Inference

Since we have steady-state data, not all parameters are identifiable. One can easily see

that multiplication of k1 and k2 with the same factor leads to the same steady state. We

thus infer the creation range r, the diffusion rate d, and the ratio c = k2/k1. We solve the

PDE in Eq. (C.17) by projecting it onto twenty basis functions and solve the resulting

ODEs for large times to ensure steady state. We optimise the likelihood for each of the

embryos independently to obtain the inferred parameter values with mean values and

standard deviations (in parenthesis) given in Eq. (5.46).
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