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Abstract 
 

 

Cynipid gall wasps have fascinating biology that has piqued the interest of 

naturalists throughout history. They induce morphologically complex, 

sometimes spectacular, gall structures on plants in which the larval stages 

develop. Gall wasps have therefore evolved an intimate association with their 

hosts - both metabolically, and in terms of their population histories. Gall  

wasps must both interact physiologically with their hosts to induce galls, and 

track their host plants through space and time. My thesis centres on two uses 

of genomic data in understanding the biology of the oak apple gall  wasp 

Biorhiza pallida. I provide a comprehensive investigation into patterns of oak 

and gall wasp gene expression associated with gall induction, and a 

population genomic reconstruction of the population history of this species 

across the Western Palaearctic. While advances in sequencing technology 

and reduced costs have made these aims possible, analysis of the massive 

resulting datasets generated creates new challenges.   

Firstly, in reconstructing the population history of B. pallida, I describe 

the use of shotgun sequencing and an informatic pipeline to 

generate alignments of several thousand loci for three B. pallida individuals 

sampled from putative glacial refugia across the Western Palaearctic in 

Iberia, the Balkans and Iran. This dataset was analysed using a new 

maximum likelihood method capable of estimating population splitting and 

admixture among refugia across very large numbers of loci. The results 

showed an ancient divide between Iberia and the other two refugia, followed 

by very recent admixture between easternmost and westernmost regions. 

This suggests that gall wasps have migrated westwards along the North 

African coast as well as through mainland Europe.  

Second, I compare the gene expression profiles of gall wasp and oak 

tissues sampled from each of three stages of gall development, leading to 

new insights into potential mechanisms of gall wasp-oak interaction. A highly 

expressed gall wasp protein was identified that is hypothesised to stimulate 

somatic embryogenesis-like development of the gall through interaction 



 xiv 

with oak tissue glycoproteins. Highly expressed oak genes include those 

coding for nodulin-like proteins similar to those involved in legume nodule 

formation.  

Finally, analysis of the gall wasp genome has revealed potential, but 

as yet unconfirmed, horizontal gene transfer events into gall wasp genomes. 

Genes discovered in three gall wasp genomes and expressed in three 

transcriptomes encode plant cell wall degrading enzymes. They are not of 

hymenopteran origin, and are most homologous to genes of plant pathogenic 

bacteria. These genes could be involved in several aspects of gall wasp 

biology, including feeding and developmental manipulation of host plant 

tissue.  
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Chapter 1: Introduction 
 

 
1.1 General aims of this thesis 

 

This thesis uses the recent revolutionary advances in genome and 

transcriptome sequencing to investigate two intriguing aspects of gall wasp 

(family: Cynipidae) biology - how the gall wasp induces plant galls on hosts, 

and the phylogeography of gall wasps. The new technologies make a 

previously difficult to work with non-model organism much more accessible to 

study. Now it is possible to make powerful inferences by sampling natural 

populations of species. This thesis explores this in two ways: (1) a 

transcriptomic investigation into the control of gall induction by gall wasps 

and, (2) ascertaining the Pleistocene history of a Western Palaearctic 

species by genome-wide model-based phylogeography. Although they are 

distinct analyses, the data, DNA and RNA sequencing, is generated in the 

same manner. Furthermore, the dataset for one part of this thesis, for 

example, genome assemblies used in phylogeograpic inference, has 

applications in finding candidate genes for gall induction and vice-a-versa. 

Additionally, unforeseen insights into gall wasp biology can be made with 

genomic and transcriptomic datasets. This thesis demonstrates the versatility 

of high-throughput sequencing when applied to difficult to manipulate non-

model organisms sampled from natural populations. 

1.1.2 Overview of the introductory chapter 

 

In this chapter I begin with an introduction of general aspects of cynipid gall 

wasp biology (1.2). Then the stages of gall induction are detailed and existing 

hypotheses for control of gall induction by gall wasps discussed (1.3). This is 

followed by a review of recent developments in phylogeography, particularly 

in non-model organisms, and the benefits of using gall wasps to study range 

expansions from glacial refugia (1.4). The gall wasp chosen as the basis of 

these investigations, Biorhiza pallida, is introduced in section 1.5 along with 
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other gall wasp genetic resources used in this thesis. Finally, data sharing 

between the major aspects of this thesis and brief summaries of chapter 

objectives are given in section 1.6 and 1.7. 

 

1.2 Cynipid gall wasp biology 

 
1.2.1 Galling is a widespread trait 
 

Galling is a widespread trait that has evolved repeatedly in viruses, 

prokaryotes, fungi, nematodes and arthropods. Galls are formed by host 

tissues from manipulation of host gene expression by the inducer, and 

therefore are an example of an extended phenotype (Dawkins, 1982). The 

process can result in anything from a cryptic swelling to spectacular 

structures that can be mistaken for fruits or inflorescences by the unaware. 

Arguably the most complex and beautiful galls are those induced by cynipid 

gall wasps (Hymenoptera, superfamily Cynipoidea) on a taxonomically 

diverse range of plant hosts.       

 Although galling has piqued the interest and comment of many 

naturalists from Hippocrates to Darwin (Harper et al., 2009), induction is well 

understood only for the bacterial crown galler Agrobacterium tumefaciens. 

During infection the bacterium transfers tumour-inducing (Ti) plasmids into 

host cells, and the plasmids subsequently integrate into the host genome and 

dictate expression. The Ti plasmid is now a powerful tool in plant genetic 

engineering as a gene of interest can be cloned into the plasmid and targeted 

to specific tissues. Much research has also focused on galls formed by plant-

pathogenic nematodes and the Hessian fly Mayetiola destructor because of 

their impact on yields of economically important crops worldwide. But for 

Hessian flies and the cynipid gall wasps the precise mechanism of induction 

remains unknown, in part due to the greater complexity of the interaction 

between galler and host than for A. tumafaciens. 
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1.2.2 Cynipid gall wasps 

There are circa 1400 described species of cynipid gall wasps, second only to 

gall midges (Diptera, family Cecidomyiidae) in diversity of galling arthropods. 

It is hypothesised that the phytophagous gall inducing life cycle evolved from 

an ancestral ectoparasitic parasitoid of larvae developing within plants such 

as those of wood-boring insects (Liljeblad and Ronquist, 1998). The splitting 

time from their entomophagous sister taxa, the Figitidae, is estimated to have 

occurred approximately 127 million years ago (Buffington et al., 2012).

 The true diversity of cynipid gall wasps is much greater than currently 

described, as many regions, especially temperate China and tropical 

Southeast Asia, and potential hosts, like Nothofagus (family: Fagaceae, 

predominantly found in South America) and species of Asteraceae, have not 

been extensively surveyed. Consequently new species continue to be 

discovered and described (figure 1.1) (Pujade-Villar et al., 2010; Ide et al., 

2010; Melika et al., 2011; Tang et al., 2011, Tang et al., 2012; Melika et al., 

2013). 
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Figure 1.1. Gall of new species of gall  wasp discovered by J. Hearn on a species of Castanopsis in 
Yunnan, China. Photo courtesy of Chang-ti Tang. 
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At approximately 1000 described species, Oak cynipids (tribe: 

Cynipini) have the greatest species richness of the five cynipid tribes) 

(Ronquist & Liljeblad, 2001). This figure however does not include gall wasps 

on other Fagaceae like Castanopis or Lithocarpus. The Cynipini have 

speciated greatly after host shifting on to trees of the Fagaceae family, the 

beeches and oaks. Subsequent host-shifts are very rare among gall wasps 

compared to the rate of host shifting for other plant-insect interactions 

(Ronquist & Liljeblad, 2001). When host shifts have occurred, the taxonomic 

distance between hosts can be great. For example, a gall wasp within the 

genus Diastrophus has shifted from a eudicot to a monocot host (Ronquist & 

Liljeblad, 2001). Following from this, it has been speculated that the 

mechanism of gall induction uti lises deeply conserved plant pathways (G. 

Stone, personal communication). The oak cynipids induce the most 

morphologically diverse of cynipid galls (figure 1.2) possibly due to selection 

pressure from hymenopteran parasitoids (Stone & Schönrogge, 2003; Bailey 

et al., 2009). Not surprisingly this makes them the most popular tribe of gall 

wasps for study. The second most speciose gall wasp tribe, the Rosa galling 

Diplolepidini at 63 species, approaches the Cynipini in external gall 

complexity.  
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Figure 1.2. Diversity of galls induced by Cynipini gall wasps on various plant tissues (compiled by G Stone. Images 
by Graham Stone, György Csóka, Jose-Luis Nieves-Aldrey). 



 7 

 

 

  The herb-galling (Asteraceae) Aylacini tribe is paraphyletic but one of 

its lineages is probably basal within the Cynipidae (figure 1.3), and Ronquist 

& Liljeblad (2001) propose the Papaveraceae as the original host of the 

cynipid galls. They induce on several plant families including Asteraceae, 

Papaveraceae, Lamiaceae and Rosaceae. Many Aylacini have cryptic galls 

within stems of their hosts and as such have been less attractive as research 

subjects and many species and novel hosts are probably as yet unidentified. 

These cryptic stem galls probably represent the ancestral relationship 

between gall wasp and host (Ronquist & Liljeblad, 2001).  

Within the Cynipidae, species of the tribe Synergini  have evolved to 

attack and develop within galls of other gall wasps. They do not induce their 

own galls but can modify galls of other cynipids (Csóka et al., 2005). The 

original inhabitant of the gall may be squashed by these modifications. 

Species that live commensally with their hosts like this are called inquilines. 

Aylacini

Diplolepidini

Cynipini

Pediaspini

Insect parasitoid cynipoidea

Figure 1.3. Phylogeny of gall  wasp tribes demonstrating paraphyly of the Aylacini; Synergini inquilines not 
included, as they are unresolved. Adapted from Ronquist & Lil jeblad (2001). 
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Where the Synergini sit within the gall wasp phylogeny is unknown and the 

tribe may be paraphyletic or polyphyletic as secondary loss of induction could 

have evolved many times (Nylander, 2004).  

 

1.2.3 Many Cynipids have complex life cycles 

 

Many rose (tribe Diplolepidini) and herb (tribe Aylacini) gall wasps have one 

sexually reproducing generation per year. This occurs by facultative 

arrhenotoky: unferti lised eggs give rise to haploid males and fertilised eggs to 

diploid females (Csóka et al., 2005). Parthenogenesis is also common and 

probably due to Wolbachia infection of effected species (Plantard et al., 

1998; Plantard et al., 1999). In Hymenoptera the infection often induces 

duplication of gametes after meiosis creating homozygous diploid offspring 

(Plantard et al., 1998; Csóka et al., 2005). Due to the haplo -diploid sex 

determination of Hymenoptera this results in species consisting completely of 

diploid females (Csóka et al., 2005).   

In contrast, the oak (tribe Cynipini) and sycamore (tribe Pediaspini) 

gall wasps have some of the most complex known life cycles. They undergo 

heterogony, meaning they alternate strictly between sexual and asexual 

generations (Csóka et al., 2005), which is a very rare form of life cycle among 

Metazoa. Both generations are completed in a year for most Cynipini, 

although there are exceptions where the asexual generation requires more 

than a year to develop (Askew, 1984; Csóka et al., 2005). The asexual 

generation females can be of three types: (1) androphores p roducing only 

males, (2) gynophores produce sexual females and (3) gynandrophores 

which give rise to both. Gall wasp gynephore asexuals contradict the 

complementary sex determination (CSD) found in Honeybees (Apis 

mellifera). The CSD model requires a heterozygous sex-detemining locus is 

required to produce females and homozygous diploids result in males. It is 

unknown how gynephores produce females because diploidisation would 

lead to homozygotes, and therefore males under the CSD model. Most gall 

wasp species have only androphore and gynophore females (Csóka et al., 
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2005). Figure 1.4 shows the lifecycle for several European species of the 

Andricus, Cynips and Neuroterus genera. The life cycle is further complicated 

in some species of Andricus and Callirhytis as they also alternate host 

between generations. For host-alternating Andricus species the asexual 

female oviposits on section Cerris oaks and the sexual female on section 

Quercus oaks (Csóka et al., 2005). The complexity and duration of gall wasp 

life cycles makes them challenging to study. By contrast Drosophila 

melanogaster (Diptera: Drosophilidae), an arthropod model organism, is 

easily reared in laboratory conditions and can complete a generation in 10 

days.  

 

 

 

 

 

Figure 1.4. The complex bigenerational l ife cycle of Andricus, Cynips and Neuroterus oak gall  
wasps. Image courtesy G. Stone.  
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1.2.4 Oak gall wasp communities  

 

Cynipid gall wasps are associated with a community of species, best studied 

in the Cynipini tribe in the Western Palaearctic. A gall can act as a useful pre-

existing home for many inquilines including cynipid Synergini but also moths, 

midges and beetles (Stone & Schönrogge, 2003). A larva may be eaten by 

chalcid parasitoids oviposited directly into the larva or its chamber or by 

caterpillars, birds and rodents that attack from the outside. Furthermore, 

parasitoids may themselves be parasitised by other chalcids, an example of 

hyperparasitism (Sullivan & Völkl, 1999). 

 Complex multi-trophic interactions exist in oak gall communities. For 

example galls induced by species of Andricus, Disholcaspis and Dryocosmus 

produce nectar, which attracts ants that protect the gall from parasitoid attack 

(Stone et al., 2002). This is a tetra-trophic interaction of (1) oak, (2) gall 

wasp, (3) ants and (4) parasitoids. Because of the discrete structure of the 

galls there is an intimate association between trophic levels, particularly 

between plant host, gall wasp and its parasitoids.  

 

1.2.5 Western Palaearctic phylogeography and oak gall wasps 

 

The phylogeography of the Western Palaearctic is shaped by periods of 

glaciaton and the gall wasps are no exception. Species expand from refugia 

in Southern Europe into Northern Europe during interglacial periods and back 

again during glacial. The grasshopper, Chorthippus parallelus, is the classic 

insect example of refugial specific haplotype structure in Northern Europe 

(Hewitt, 1999). Postglacial northern European populations of this 

grasshopper are derived from the Balkan refugia, and the Pyrenees and Alps 

have acted as a natural barrier to recolonisation from Spain and Italy 

respectively (Hewitt, 1999). Southern European Refugia have persisted 

through the Pleistocene because of their mountainous nature, species could 

move up and down in altitude depending on environmental conditions 

(Hewitt, 1999).  
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European gall wasps migrated from Asia into Europe in the Late to 

Early Pleistocene, 1.3–4.2 million years ago, reaching Iberia approximately 

400 000 years ago (2.5%–97.5% quantiles of 0.1-0.7 million years ago) 

(Stone et al., 2012). Since appearing in the Western Palaearctic changes in 

oak gall wasp ranges have been shaped by glacial and inter-glacial periods 

in a similar fashion to C. parallelus. Along with their hosts, and most 

European species of flora and fauna (Hewitt, 1999), oak gall wasps retreated 

to and expanded from southern refugia in Spain, Italy/the Balkans and 

Turkey eastwards into Iran.  

Oak gall wasp host species, the Quercus section Quercus trees are a 

keystone taxon in Europe supporting more insect species than other forest 

trees (Kelly & Southwood, 1999). They have the same southern refugia as 

other species, and possibly another in the Caucasus. Their postglacial re-

colonisation in the current interglacial period occurred from Iberia, Italy and 

the Balkans based on haplotypes of chloroplast DNA present in Northern 

Europe (Hewitt, 1999).  
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1.3 The stages of cynipid gall induction  

 

There are three clearly defined phases of gall growth: initiation, growth and 

maturation (figure 1.5) (Harper et al., 2009). These stages are easy to 

differentiate visually and are natural sampling points for characterising and 

contrasting gene expression of gall wasp larval and host plant tissues during 

gall development. By the mature stage the gall has stopped growing and the 

larvae feed. Following this, I hypothesise that gene expression profiles of 

both host and inducer will change dramatically from growth to mature tissues. 

Additionally, although there is great variation in the outer tissues among galls 

of different gall wasps, the organisation of the inner tissues is highly 

conserved across species and host location (Stone & Schönrogge, 2003).  
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Figure 1.5. The two post-induction stages of Biorhiza pallida and Andricus quercuscalicis, multi- and 
 single-locular gall inducers respectively. Note the progression from (A) early growth gall  through to (B)  
mid growth to (C) mature galls. Figure courtesy of K. Schönrogge. 

 

 

1.3.1 Stage 1, Induction: 

 

A female gall wasp will oviposit one or multiple eggs in a highly specific site 

at the key developmental point of a specific tissue (Rohfritsch & Shorthouse, 

1982). Along with the egg, maternal factors may be introduced to the host to 

facilitate induction. The egg must avoid or neutralise the host's immune 

responses after oviposition for successful gall induction. Observation of failed 

oviposition events and variation between trees in susceptibility to galls 

suggest host-immunity acts at this point in development. 

Induction can occur on any plant organ including roots, flowers, fruits 

and buds. There is a very high specificity of the species and generation of the 

gall wasp to induction location. For successful induction plant tissues 



 14 

surrounding the egg must be capable of developing into different cell types 

(Harper et al., 2009). Females of some species will lay multiple eggs at one 

oviposition site to form a multi locular gall. In such cases, the burden of 

parasitism is possibly reduced by the greater size of the gall and ‘sacrifice’ of 

outer chambers to parasitoids (Stone et al., 2002).  

Interactions between the galler egg and plant cell walls appear to be 

key to successful induction. Plant cells surrounding the egg are lysed by 

cellulolytic enzymes integrated into the egg wall (Shorthouse et al., 2005; 

Harper et al., 2009). A cavity is created into which the egg snuggly sits (figure 

1.6). Genes for such enzymes are rare in metazoan genomes although they 

are found in some arthropods, such as termites (Davison & Blaxter, 2005; 

Pauchet et al., 2010). This leads to the hypothesis that gall wasps have 

evolved or acquired plant cell wall degrading enzymes to facilitate cell lysis. 

The potential presence of plant cell wall degrading enzymes raises the 

additional question: are these genes integrated into the gall wasp genome or 

encoded by a symbiont? Termites vary among species with both symbiont 

encoded and horizontally transferred, cellulolytic enzymes genes (Watanabe 

et al., 1998). 

If such genes are present in the genome of the gall wasp they could 

result from horizontal gene transfers. Candidates are the plant host (or 

ancestral host) due to the intimacy of the host-galler relationship, bacteria, 

fungi and viruses (i.e. Virus-Like-Particles, section 1.3.5). There are many 

species of phytophagous plant cell wall degrading bacteria and fungi that are 

potential donors. Horizontal genetic transfer events from bacteria into 

phytophagous insects, especially among beetles, are being discovered as 

more non-model organism genomes and transcriptomes are sequenced 

(Pauchet et al., 2010; Acuña et al., 2012; Syvanen, 2012; Keeling et al., 

2013). 

After approximately seven days, varying by species, the egg hatches 

and the surrounding cells are by now de-differentiated and become wound 

callus-like cells (Harper et al., 2009). Whether the de-differentiation of 

surrounding cells is a maternal affect due to substances oviposited alongside 



 15 

the egg or through effectors secreted by the egg is unknown. The larva now 

enters a space that has formed beneath the egg, triggering rapid gall growth 

and tissue differentiation and transition to the growth phase. Intriguingly the 

larva grows very little during this phase and is assumed not to feed; it is 

thought that the larva ‘concentrates’ on induction (Harper et al., 2009).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.3.2 Stage 2, Growth: 

 

Large nutritive cells deriving from a layer of nutritive parenchyma form 

around the larval chamber. Nutritive cells are the only food source available 

to the larva and are free from secondary plant compounds that inhibit 

feeding, such as tannin. The nutritive cells have high concentrations of 

Figure 1.6. Egg of Diplolepis spinosa oviposited into the apical meristem of Rosa blanda 
demonstrating lysis of surrounding cells, image courtesy J. Shorthouse. 
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proteins, lipids, ribosomes and nitrogenous compounds compared to non-

nutritive parenchyma (Harper et al., 2009). They have also undergone many 

rounds of endoreduplication of the nucleus, presumably to produce the 

nutrients required by the gall wasp in sufficient concentrations (Harper et al., 

2004). 

 Harper et al. (2004) isolated biotin carboxylase carrier protein (BCCP) 

from the nutritive cells of several gall wasps. BCCP is a protein found highly 

expressed in seeds of Brassica napus (Harper et al., 2009; Elborough et al., 

1996). It is a component of the triacylglycerol lipid synthesis pathway and the 

resulting lipids are an energy rich food source for larvae. Many rounds of 

endoreduplication are necessary for nutritive cells to reach large sizes; the 

total number of rounds varies across galls according to inducer species 

(Harper et al., 2009). These processes mirror those occurring in nutritive cells 

of developing seeds, leading Schönrogge et al. (2000) to propose the ‘galls-

as-seeds’ hypothesis. Under this hypothesis the inducer manipulates host 

seed development pathways to form nutritive tissues.  

Turning host cells into nutritive factories surrounding the feeding site is 

also analogous to strategies of other intimately host-associated 

phytophagous species. Gall midges and cyst nematodes induce large high-

expression cells by endoreduplication (Stuart et al., 2012) whereas root knot 

nematodes induce giant syncytial cells (Mitchum et al., 2012). Similarly to gall 

wasps, the juvenile forms of these species can feed on the nutrients within 

these cells. The mechanism of syncytial cell formation is unknown but it has 

been demonstrated that proteins secreted by the nematode localise to host-

cells (Mitchum et al., 2012). 

As the growth phase continues, the larval chamber enlarges, an outer 

layer of parenchyma develops around the nutritive cells, and gall tissue 

vascularises and connects to the vascular network of the host (Csóka et al.,  

2005). As a result the gall now acts as a resource sink for plant-fixed carbon 

and mineral nutrients while non-nutritive parenchyma concentrate tannins 

and phenolics (Csóka et al., 2005). This is easily observed by dissecting 

mature galls as the gall tissues oxidise rapidly on exposure to air. The outer 
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gall cortex develops and the epidermis differentiates into species-specific 

structures (Harper et al., 2009). The gall itself grows rapidly during this stage 

but the larva(e) remain(s) small and feed(s) very little. Figure 1.5 

demonstrates this in the lack of change in size of larval chambers from early 

(A) to growth (B) stage. 

 

1.3.3 Stage 3, Maturity: 

The gall enters the maturation phase when a layer of sclerenchyma develops 

within the parenchyma, splitting it into internal nutritive parenchyma and 

external gall parenchyma (C, figure 1.5). A mature gall ceases to be a 

resource sink for plant metabolites and may lignify as a defence against 

herbivores and parasitoids and/or detach from the host and fall to the leaf-

litter (Csóka, et al., 2005). The larva feeds until the nutritive cells have been 

consumed and a sclerenchyma lining has been reached; to avoid fouling the 

food source it does not defecate (Csóka, et al., 2005). The mature stage is 

another candidate for plant cell wall degrading enzyme expression as the 

larvae needs to break down the nutritive cells to access lipids and 

carbohydrates. In this case the genes would be expressed by the salivary 

glands. Alternatively such enzymes could be expressed in the gut to break 

down plant cell walls into digestible products as occurs in phytophagous 

beetles (Pauchet et al., 2010).       

 Finally, the larva pupates, and may diapause according to 

environmental conditions, before emerging as an adult, and defecating . The 

adult wi ll then mate, or not if it is an asexual generation female, and females 

oviposit. The gall wasp life cycle then begins again.  

1.3.4 Dissecting an extended phenotype: hypotheses of gall Induction 

by cynipid gall wasps 

The control of gall induction and growth by the eggs and larvae of cynipid gall 

wasps remains a mystery. Many compounds and/or mechanisms including 

RNA, DNA, viruses, proteins, plant hormones, oligosaccharides, 
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arabinogalactan proteins (AGPs), NOD factors and physical action have 

been put forward as candidates for induction (Harper et al., 2009). These 

hypotheses are evaluated in this thesis, and new ones proposed based on 

the RNA sequencing experiment (chapter 3). It is known that killing eggs and 

larvae during gall formation will halt the process (Beijerinck, 1882). This 

observation, which confirms that the gall is an extended phenotype of the 

inducer, has since been replicated (Rohfritsch & Shorthouse, 1982) but not 

expanded upon.        

 The lack of understanding of cynipid galling reflects the difficulty in 

studying a taxon requiring a minimum of 1 year per (pair of) generation(s), a 

host to develop on, and the difficulty of manipulating mating and oviposition. 

These factors combine to make experiments manipulating gall wasp biology 

prior to the introduction of new sequencing technologies daunting. Research 

focusing on changes in the host gene expression has been more 

enlightening and has led to the hypothesis that galls are similar in their host 

plant gene expression to seeds (section 1.3.2) (Schönrogge et al., 2000; 

Harper et al., 2004).  

1.3.5 Virus-like-particles 

The problem of gall induction can be broken down into two segments: firstly, 

how is the gall inducing material transferred to the hosts; and secondly, how 

are host cells manipulated to form a gall. A hypothesis addressing the first 

segment is that inducing stimuli are transferred as virus-like-particles (VLPs) 

from galler to host, as proposed by Cornell (1983). This is a potential 

mechanism for the inducer to transfer the key substance(s) to the host. 

Cornell used an argument by analogy with endoparasitoid wasps that utilise 

VLPs to suppress host immune responses at oviposition (Whitfield & Asgari, 

2003), although with VLP transmission controlled by the gall wasp larva and 

not as a maternal effect. VLPs of parasitoid wasps suppress their insect host 

immune responses. Bezier et al. (2009) demonstrated that braconid wasp 

VLP (bracoviruses) packaging proteins are of viral origin while the viral 

genome they carry is of wasp origin. Thus the wasps have co-opted a novel 
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method of delivering key components for successful parasitism into the host. 

For cynipids VLPs could be introduced at oviposition or continuously by the 

larva(e) throughout gall induction and growth.  

1.3.6 Secreted proteins 

Another possibility is the secreted proteins observed in plant-pathogenic 

nematodes and gall midges like the Hessian fly (Mitchum et al., 2012; Stuart 

et al., 2012). In the plant-parasitic nematodes these proteins are 

characterised by a signal peptide and localisation to the host’s extracellular 

matrix, apoplast, cytoplasm or nucleus ce ll (Mitchum et al., 2012). Their 

functional effects are poorly understood but some are candidate 'effector' 

proteins for host manipulation and suppression of immune responses 

(Mitchum et al., 2012). They appear to use molecular mimicry of host 

proteins to manipulate host expression and developmental changes 

(Mitchum et al., 2012). The Hessian fly is similar - more than 50% of first-

instar larvae salivary glands transcripts encode a signal peptide (Stuart et al., 

2012). This is the larval stage at which a compatible wheat-Hessian fly 

reaction occurs. Less than 5% of these transcripts have similarities to known 

proteins and many show evidence of positive selection (Stuart et al., 2012). 

The secreted proteins appear to have evolved with the galling trait in both 

Nematodes and gall midges. They do not have orthologs in non-galling 

Nematodes or midges respectively (Mitchum et al., 2012; Stuart et al., 2012).  

1.3.7 NOD factors and other glycosylated molecules 

Various kinds of oligosaccharide containing compounds are known to be 

important in plant signalling and development. The best understood gall-

inducing compounds are the lipo-chitooligosaccharides, or NOD factors, of 

the Rhizobium-legume nitrogen fixing symbiosis. The lipid side chains of 

NOD factors are species-specific and together with the chito-oligosaccharide 

backbone activate host plant early nodulin genes (ENOD). ENOD genes may 

well represent core genes of plant development that are switched on to 

create the highly specialised Rhizobium-legume nodules. As such they 
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represent a class of candidate genes for gall formation in cynipid galls, albeit 

with or without a NOD factor trigger.      

 Genes encoding arabinogalactan protein (AGPs) are known ENOD 

genes with a wide variety of plant roles compatible with gall formation. AGPs 

are proteoglycans consisting of less than 10% protein, the rest being 

predominantly arabinosyl and galactosyl residues (Schultz et al., 1998). 

AGPs are capable of rescuing somatic embryogenesis in arrested embryos 

of Daucus carota mutant lines. Somatic embryogenesis is the development of 

a plant from cells of somatic origin not normally responsible for 

embryogenesis (Bhojwani and Dantu, 2013).     

 The very first events of gall induction, the dedifferentiation of host cells 

surrounding the gall wasp egg and newly hatched larva, is similar to the 

process of somatic embryogenesis. In 2001, van Hengel et al. using 

endogenous carrot chitinases demonstrated that arabinogalactan proteins 

are capable of controlling somatic embryogenesis in carrots. It was already 

known that a carrot temperature-sensitive mutant, ts11, developmentally 

arrested by non-permissive temperatures at the globular, or first, stage of 

somatic embryogenesis is rescued by the addition of chitinase (De Jong et 

al., 1992; Kragh et al., 1996). Arabinogalactan proteins were candidate 

substrates for these chitinases as they contain cleavage sites hydrolyzable 

by chitinases (van Hengel et al., 2001). Van Hengel et al., (2001) compared 

the effect of treating carrot wild type seed protoplasts treated with either 

arabinogalactan proteins or arabinogalactan proteins incubated with 

chitinase, and control protoplasts. In controls, removal of cell walls caused a 

20-fold drop in somatic embryogenesis in carrot seeds compared to normal 

levels. Addition of arabinogalactan proteins alone increased the rate of 

somatic embryogenesis to normal levels. Furthermore, addition of carrot 

chitinases gave a 50% increase in somatic embryogenesis over the effect of 

treatment with arabinogalactan.        

 Additional experiments showed the effect of protoplast incubation with 

arabinogalactan protein and chitinase to be both species- and temporally-

specific. Interestingly, the active chitinases are secreted by cells that do not 
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themselves undergo somatic embryogenesis, but act on cells that do (van 

Hengel et al., 1998). Modification of AGP side chains by secreted gall wasp 

enzymes (1.3.2), such as chitinase, is a potential mechanism of host 

manipulation to produce somatic embryogenesis-like results (K. Schönrogge, 

personal communication).   

 

1.3.8 Manipulation of other host glycoproteins 

 

Along with AGP, xyloglucan and pectin are found in plant cell walls and are 

known to transduce signals. The break down products of xyloglucan and 

pectin elicit defence or growth responses depending on the size of the 

oligomer produced. Cynipid eggs have pectinase activity when oviposited 

(Shorthouse et al., 2005), (figure 1.6) creating a cavity for the egg in host 

tissue. As pectinases are embedded in the egg surface a maternal effect is 

hypothesised with pectinases inserted during ovogenesis, although this has 

not been experimentally verified. 

Additional roles for pectinase molecules are possible. Harper et al. 

(2009) hypothesise that cell wall loosening from the lysis of pectins, and 

presumably xyloglucans, could allow a large signalling molecule to permeate 

cell walls and induce galls.  
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1.4 Phylogeography: many individuals or many genes?  

 

Phylogeography is the study of past events that result in the geographical structuring 

we observe in present populations of species. This is of great intrinsic interest, but is 

also important to other disciplines of biology both pure and applied.  

Knowledge of the demographic processes shaping current populations is 

necessary to make unbiased ecological inferences about species. For example food 

webs show the relations between trophic levels of an ecologica l community, but the 

rules governing how species assemble into webs are poorly understood. 

Phylogeography provides a framework for testing competing hypotheses of 

community assembly.  This is important because stable phylogeographic 

associations between constituent species of a food web over time predict 

strong coevolution and high sensitivity of food webs to species gain/loss. 

Whereas shuffling of species in communities by contrasting phylogeographic 

histories of component species predicts diffuse coevolution and greater food 

web resilience (Memmott, 2009). 

 Phylogeography also has a role in understanding the ability of invasive 

species to thrive in new environments, often at great economic cost. Until recently 

there was little economic impact of gall wasps in Europe. However, the 

introduction of the chestnut gall wasp, Dryocosmus kuriphilus, from the Far 

East to Southern Europe is changing this somewhat. The European chestnut 

Castanea sativa is also highly susceptible to this gall wasp. Galls on 

susceptible leaf tissue can reach very high. Fruit yield is reduced and the 

host may die (EFSA Panel on Plant Health, 2010) leading to the destruction 

of irreplaceable stands of ancient European chestnuts. By identifying the 

source population of invasive D. kuriphilus (assuming a single invasion 

event) in its native East Asian range the host chestnut populations can be 

found. This can potentially aid control of D. kuriphilus in Europe by study of 

native host resistance to the gall wasp.  

Many phylogeographic studies generate data from few loci across 

large numbers of individuals to infer population histories. Such studies are 

shaped by the nature of Sanger sequencing. It is relatively inexpensive to 
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design primers that amplify loci up to 1000 bases long and then sequence 

that region in many samples, but not to scale this approach to whole 

genomes. But identifying loci to amplify is a challenge in itself and the 

approach becomes prohibitively expensive and labour-intensive with 

increasing numbers of loci (Lohse et al., 2010). There is also a limit to 

dataset size in the tens of loci (Lohse et al., 2010). It has also been common 

to rely on mitochondrial sequence only, or in combination with one or two 

nuclear loci because of the relative ease of doing so (Rokas et al., 2001). 

This is potentially misleading as mitochondrial genome history may differ 

from that of the nuclear genome, often in insect species because of infection 

by cytoplasmic Wolbachia (Rokas et al., 2001). Secondly when only one 

locus is used, mitochondrial or nuclear, spurious population histories may be 

inferred. This is because of the stochastic nature of the coalescent 

(Rosenberg & Norborg, 2002). To control for coalescent variation and 

accurately infer population histories within a species multiple unlinked loci 

must be analysed. This is because unlinked genes within a genome that 

have experienced the same demographic events are independent replicates 

of the coalescent (Rosenberg & Norborg, 2002).  

 

1.4.1 Genome-wide phylogeography in non-model organisms 

 

Genome-wide shotgun sequencing in combination with coalescent modelling 

has the potential to revolutionise phylogeography. It is now possible to 

sequence low-coverage draft genomes or sample thousands of SNPs across 

the genome at (constantly decreasing) affordable cost. Genome-wide 

inference of a non-model organism in phylogeography was first applied to 

resolving the postglacial history of the pitcher plant mosquito Wyeomia 

smithii, a temperate North American species (Emerson e t al., 2010). 

Previous, allozyme based analyses had been unable to differentiate 

postglacial range changes of the mosquito 19-22 000 years ago (Armbruster 

et al., 1998). Like gall wasps, W. smithii’s range follows that of its host, in this 

case Sarracenia purpurea, across Canada and south to the Gulf of Mexico 
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(Emerson et al., 2010). From sampling across W. smithii’s range, Emerson et 

al. (2010) sequenced restriction-site-associated DNA sites (RAD tags). They 

identified 3 741 single nucleotide polymorphisms (SNPs) across W. smithii’s 

836 megabase genome in these RAD-tags, an unprecedented dataset. A 

combined cytochrome oxidase 1, a mitochondrial gene, and SNP 

phylogenetic tree was constructed. The tree demonstrated W. smithii’s range 

expansion form a southern Appalachian refugium followed the retreat of the 

Laurentide Ice Sheet and prevailing winds. It first spread up the Atlantic 

coastline and then west into Canada.  

Although the method of generating the dataset was novel, the 

Wyeomia smithii analysis reflects older tree-based thinking in 

phylogeography (Nichols, 2001), in which the results are interpreted post-

hoc. Newer coalescent modelling based methods, like Lohse’s (2011) 

likelihood model (section 1.4.3) are superior, as competing models for 

postglacial range expansion are pre-specified and tested against one another 

in a likelihood framework.  

Until this thesis, genome-wide methods had not been applied to 

phylogeography in cynipid gall wasps. Previous gall wasp phylogeography 

studies have sampled few markers, using little of the total information content 

in the genomes (Stone & Sunnucks, 1993; Rokas et al., 2001, 2003; Stone et 

al., 2007; Challis et al., 2007). These studies had elucidated range 

expansions and refugia in Western Palaearctic gall wasps similar to that 

observed in other European species like C. parallelus (Hewitt, 1999). A 

genome-wide study of population splitting and admixture between gall wasp 

refugia tests the validity of previous inferences and makes more powerful 

conclusions possible.   

 

1.4.2 Estimating migration between populations using coalescent 

modelling 

 

In the past decade, rigorous coalescent-based models for estimating 

population splitting times and admixture events between populations have 
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been introduced that rely on multiple unlinked loci with negligible internal 

recombination (Hey & Nielsen, 2004; Hey, 2010; Lohse et al., 2011).  

 The importance of admixture in population and species histories was 

underlined by the discovery of segments of Neandertal (Homo 

neanderthalensis) ancestry in the genomes of non-African humans (Homo 

sapiens sapiens) (Green et al., 2010). Green et al. identified this admixture 

by comparing frequencies of SNPs between African and non-African human 

populations and the Neandertal genome. They found non-African humans 

were significantly enriched for shared SNPs with Neandertals than expected 

by chance. These regions consist of an estimated at 1-4% of non-African 

human genomes (Green et al., 2010). The direction of this admixture event 

was from the Neandertals into early-modern non-African humans.   

 

1.4.3 The likelihood model 

  

Lohse et al., 2011 have developed a maximum-likelihood framework to test 

models of divergence with gene flow between three populations using only 

one haploid genome from each population, in contrast to the traditional 

sampling approaches of phylogeography. Only one individual per refuge is 

sampled as the model assumes the sampling populations are panmictic, that 

is any one individual is completely representative of the mosaic of 

genealogies within that population. It assumes the sampled populations are 

discrete from one another as is standard in statistical phylogeography 

(Hickerson et al., 2010; Hey & Machado, 2003; Knowles, 2009) because 

such models are tractable and easy to interpret. This likelihood method is 

statistically optimal as it uses all available information in the data, which is 

key when estimating recent events, as there may be low numbers of 

informative mutations. This makes the method more powerful than Green et 

al.’s (2010) SNP only approach, but computationally difficult. A more rigorous 

approach to the pitcher plant mosquito discussed above is possible using this 

method by sampling a haploid from each of three populations of pitcher plant: 

in the refugium, northward along the Atlantic coast, and inland near the Great 
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Lakes. Then, by comparing likelihoods of different models of range 

expansion Emerson et al.’s (2010) inferences can be tested.   

 

1.4.4 Gall wasps are ideal for intra-specific population studies 

 

Gall wasps, chalcid parasitoids and most Hymenopterans are particularly well 

suited to population genetics as males are haploid. Single nucleotide 

polymorphism (SNP) calling is greatly simplified, because heterozygotes are 

not possible (chapter 2). Any site within an individual with more than one 

base present contains an error. This could be due to sequencing error or a 

misaligned read. Furthermore, there is no requirement to phase blocks of 

sequence as any SNPs within a block correspond to the same haploid 

chromosome. 

 In this thesis I have developed a pipeline to generate genome-wide 

alignments of across triplets of outgroup-aligned ingroup sequences and 

analysed it using a model-based approach. The pipeline is a standardised 

protocol for taking the raw data and turning it into a high quality dataset of 

thousands of outgroup-aligned single-copy nuclear loci. This is important 

because of the scale of the dataset. It is no longer possible to check by eye 

the quality of each final alignment as one could with small numbers of loci. 

Therefore each step needs to be sufficiently rigorous that the thousands of 

final alignments do not need to be individually checked. It would also be 

relatively simple to expand the pipeline to more individuals than a triplet with 

theoretical advances and cheaper sequencing.  

 The pipeline is a viable method for generating a high quality dataset of 

thousands of loci and megabases of sequence without needing a reference 

genome. It would also be relatively simple to expand the pipeline to more 

individuals with theoretical advances and cheaper sequencing. 

 Although the results contained in this thesis apply only to one trophic 

level the success of this initial study has led to a multi-trophic project 

beginning in January 2013 (chapter 5). It applies the triplet based likelihood 

method to multiple species of gall wasps, including a cynipid inquiline,  and 
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their parasitoids. The pipeline developed here will form the basis of the 

bioinformatic aspects of the project. 

  

1.5 Selecting a model system for the study of oak gall wasp interactions 

and phylogeography. Biorhiza pallida  gall wasp on Quercus section 

Quercus oaks  

 

The gall wasp chosen for investigating gall induction (chapter 3) and gene 

flow between glacial refugia (chapter 2) is Biorhiza pallida (sexual generation 

gall, figure 1.7). It is abundant across the Western Palaearctic, easily 

identified and sampled, and multilocular species. A multilocular gall contains 

multiple developing larvae; B. pallida sexual generation galls may contain 

dozens of larvae and grow in excess of 5cm diameter. The galls of this 

species cannot be misidentified for other species of gall wasp. For these 

reasons B. pallida has been the focus of previous phylogeograhy (Rokas et 

al., 2001) and gall induction studies (Schönrogge et al., 2000; Harper et al., 

2004), and as a result, morphological development of the galls is well 

understood. B. pallida galls Quercus section Quercus oaks in the Western 

Palaearctic. The sexual generation of B. pallida is well known in the United 

Kingdom for inducing oak apples during the spring. By contrast the asexual 

generation gall develops on the roots of Quercus robur/petraea and is 

seldom observed. 

 Western Palaearctic gall wasps show genetic structure compatible 

with three Pleistocene refugial areas (Iberia; Italy and the Balkans; 

Asia Minor and Iran) that follow those for deciduous oaks (Petit et al., 2003). 

Most species show patterns compatible with westwards range expansion into 

Europe from Asia during or before the Pleistocene (the ‘Out of 

Anatolia’ hypothesis, see Rokas et al., 2003; Challis et al., 2007; Stone et al., 

2009), a pattern also supported by a recent meta-analysis of 19 parasitoid 

and 12 gall wasp species (Stone et al., 2012). The only exception to this 

pattern known has been B. pallida, for which mitochondrial and ITS nuclear 

sequence data show evidence of a deep east-west divide (Rokas et al., 
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2001). By choosing B. pallida for genome-wide phylogeographic inference, 

this anomalous pattern can be tested more rigorously and deeper insights 

made.  

 

1.5.1 Belizinella gibbera, Diplolepis spinosa and resources  

 

Two other gall wasp species, Belizinella gibbera and Diplolepis spinosa, were 

also important to parts of this thesis. Belizinella gibbera was chosen as it is 

closely related to B. pallida making a suitable outgroup for genome-wide 

phylogeography (figure 2.2). B. gibbera sequences are used  to polarise 

SNPs within B. pallida. At sites with SNPs the ingroup nucleotide concordant 

with the outgroup nucleotide is the ancestral state. The other nucleotide is a 

mutation that has occurred since the population(s) that has/have it diverged 

Figure 1.7. A growth stage B. pallida gall  on Q. robur, photo J. Hearn. 
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from the other population(s). Unlike B. pallida, B. gibbera is unilocular and 

currently only asexual females have been found. Very little is known about 

the ecology of this species. Samples used in this thesis were collected from 

Quercus dentata (Quercus section Mesobalanus) in the Russian Far East. It 

is possible that an as yet unidentified sexual generation exists (Abe et al., 

2007).  

Diplolepis spinosa is a galler of the rose, Rosa blanda (Rosaceae), 

and forms large spiny multilocular galls on stems; it is an asexual species. It 

was chosen because its morphological evolution is also well understood 

(Shorthouse et al., 2005).  

 Also available for this thesis was three transcriptomes generated by 

the 1K Insect Transcriptome Evolution (www.1kite.org/) project. A 

transcriptome is the complete set of genes transcribed by the organism or 

tissue at the point of sampling. Two of the transcriptomes are from adult 

cynipids. They are the oak galler Andricus quercuscalicis and the sycamore 

galling Pediaspis aceris. Both are more closely related to B. pallida than D. 

spinosa (figure 1.3). The final transcriptome is from Leptopilina clavipes - a 

figitid parasitoid, the closest parasitoid group to the cynipids. Comparisons of 

transcriptome expression are less powerful than genome comparisons are as 

genes not present in a transcriptome may be present in the species genome 

but are not expressed at the sampling point.  

 

 

 

 

 

 

 

 

 

 

 

http://www.1kite.org/
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1.6 'omics and data-sharing between different projects 

 

This thesis aims to investigate two distinct but fascinating aspects of cynipid 

gall wasp biology. This is done by large scale sequencing of gall wasp 

genomes and transcriptomes. The research methods developed and applied 

here have only become possible in the past few years with the introduction of 

high throughput sequencing. For both chapters, the sequencing data 

generated primarily to answer the objectives for one chapter was applied to 

the other chapter (and vice-a-versa) and improved subsequent analyses.  

 

1.7 Brief overview of thesis chapters  

 

The following subsections provide an overview of the content of each chapter 

in this thesis. 

 

1.7.1 Chapter 2: Genome-wide statistical phylogeography 

 

To test models of gene flow between refugial populations of a western 

Palaearctic gall wasp a pipeline was developed to create single-copy 

nuclear-sequence alignments sampled genome-wide of a haploid B. pallida 

from each Western Palaearctic refugium plus outgroup sequence. This work 

was carried out in collaboration with Dr Konrad Lohse (University of 

Edinburgh) and others. Developing the pipeline presented many bioinformatic 

challenges.  

  The B. pallida transcriptome, analysed in chapter 3, was used to 

identify regions within the final alignments that contained expressed 

sequence. The proportion of expressed sequence per alignment was then 

used to fit heterogeneous mutational rates to the model resulting in higher 

likelihood scores. It was also possible to identify linked alignments using by 

finding those that overlapped the same transcript, a violation of the likelihood 

method’s assumptions. 
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1.7.2 Chapter 3: Identifying Candidate genes for gall induction 

 

The transcriptomic experiment of this thesis aims to elucidate the underlying 

genetic control of gall induction by gall wasp larvae and the corresponding 

host response. The larva is essential to successful galling from initiation 

onward and hence is the focus of the experiment, although maternal effects 

at oviposition may also be important. The experimental design was of 

replicated de novo transcriptome sequencing of gall segments containing 

tissues of both host and galler across the three developmental stages. Draft 

genome assemblies of the B. pallida and Q. robur genomes were leveraged 

to identify the origin of reads in this mixed dataset. The quality filtered reads 

were aligned to both genome assemblies plus the Q. robur/petraea ESTs. 

Very simply, if a read aligned best to the B. pallida genome it was assigned 

to an Arthropod (i.e. gall wasp) bin. Alternatively if the best alignment was to 

the oak sequences then the read was assigned as of plant origin.  

The expression of the mature and growth stages was used as a 

control to identify gall wasp and plant genes of high expression at the early 

stage. These genes were then annotated bioinformatically to (a) identify their 

function and context in genetic pathways and (b) generate more specific 

hypotheses for future functional studies into induction. The draft genome 

assemblies of Diplolepis spinosa and Belizinella gibbera were also available 

for querying the presence of candidate genes of interest in other gall wasp 

genomes. 

    

1.7.3 Chapter 4: Horizontal gene transfer into cynipid genomes 

 

Hypotheses of horizontal transfer events were tested using transcriptomic 

and genomic resources. The presence of genes of viral capsid origin 

(discussed in section 1.3.5) was tested across genomes. Plant genes were 

also candidates for horizontal genetic transfer because of the intimate 

relationship between host and gall wasp. Finally, plant cell-wall degrading 

enzymes (PCWDEs) of plant pathogens were searched for as they have 
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been found in other phytophagous arthropods and plant-parasitic nematodes.  

 These tests were simple presence absence tests for such genes in the 

genome assemblies of B. pallida, B.gibbera and D. spinosa. They were also 

looked for in the available transcriptomes, although this was less powerful as 

absence could mean lack of such gene expression, not lack of these genes 

in the genome. A role in gall induction was considered if candidate 

horizontally transferred genes were differentially expressed during gall 

development (as established in chapter 3). 

 

1.7.4 Chapter 5: Future proposals based on the results of this thesis 

 

Future work is presented for genome-wide phylogeography and cynipid 

transcriptomics. The expansion of the methods of chapter 2 to many cynipids 

and their parasitoids is discussed, as this will allow testing of hypotheses of 

community assembly. Experimental follow up to the inferences of chapter 3 

are proposed to test specific hypotheses of galler host interaction. Finally, 

methods of confirming horizontal gene transfer events into the cynipid 

genomes are discussed.   
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Chapter 2: Statistical phylogeography from 
individual de novo genome assemblies 
 
 

 
2.1 Aims 
 

The principle aim of this chapter was to develop a method for generating 

thousands of blocks of single-copy nuclear sequence from multiple 

individuals from low coverage Illumina short read data in the absence of a 

reference genome. The approach was tested on data from haploid individuals 

of the Western Palaearctic gall wasp, Biorhiza pallida, sampled from three 

European refugia. The resulting data were used to test alternative models of 

divergence between three refugial populations using a new maximum 

likelihood method (Lohse et al., 2011; Lohse et al., 2012; Lohse & Frantz 

2013). The size of the dataset allowed powerful inferences of the recent, 

Pleistocene population history of this species, demonstrating that de novo 

genome assemblies contain detailed information about recent population 

parameters, such as splitting times and admixture between glacial refugia. 

This chapter involved collaboration with Dr. Konrad R. Lohse 

(University of Edinburgh). I developed the bioinformatic pipeline and 

generated the dataset and K. R. Lohse developed the likelihood method. The 

results were analysed together.  

 

2.2 Phylogeography, the coalescent and multiple loci  

 

Many phylogeographic studies use data from small numbers of variable loci, 

such as mitochondrial DNA or microsatelli tes, across large numbers of 

individuals to infer population histories (Avise, 1987). In part, such studies 

are shaped by the nature of Sanger sequencing. It is relatively inexpensive to 

design primers that amplify loci up to 1000 bases long and then sequence 

that region in many samples, but not to scale this approach to whole 

genomes. But identifying loci to amplify is a challenge in itself and the 

approach becomes prohibitively expensive and labour-intensive with 
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increasing numbers of loci (Lohse et al., 2010). There is a limit to dataset 

size in the tens of loci (Lohse et al., 2010). It was also common to rely on 

mitochondrial sequence only, or more recently in combination with one or two 

nuclear loci because of their variability and the relative ease of doing so 

(Rokas et al., 2001). However, it has long been known that many loci are 

preferable to one or two, but this was restricted to microsatellites and 

allozymes. These are difficult to generate and lack a coalescent framework 

for analysis; hence sequence based analyses became the norm.  

For intra-specific studies the level of variability in few loci may still be 

insufficient for discerning recent processes. Furthermore, inferences are 

potentially misleading as mitochondrial genome history may differ from that of 

the nuclear genome, driven for example in insect species because of 

infection by cytoplasmic Wolbachia (Rokas et al., 2001). Secondly when only 

one locus is used, mitochondrial or nuclear, spurious population histories 

may be inferred because of the stochastic nature of the coalescent 

(Rosenberg & Norborg, 2002).  

To control for coalescent variation and accurately infer population 

histories within a species multiple unlinked loci must be analysed in a model 

based framework (Nichols, 2002). This is because unlinked genes within a 

genome that have experienced the same demographic events are 

independent replicates of the coalescent process (Rosenberg & Norborg, 

2002).  

  

2.2.1 Estimating admixture between populations using coalescent 

modelling 

 

In the past decade more rigorous coalescent-based models for estimating 

splitting times and continuous or discrete admixture (gene flow) between 

populations have been introduced that require multilocus data and commonly 

assume negligible internal recombination (Hey & Nielsen 2004, Hey 2010, 

Lohse et al., 2011).  

 The importance of admixture in population and species histories was 
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underlined by the discovery of segments of genome with closer homology to 

Neandertals (Homo neanderthalensis) than to putative ancestral humans 

(Homo sapiens) in the genomes of modern non-African humans (Green et 

al., 2010). They introduced the D-statistic that tests for admixture by 

estimating enrichment for patterns of SNPs explainable by admixture. The 

proposed admixed regions comprise an estimated at 3-7% of non-African 

human genomes (Green et al., 2010). The models tested incorporated only 

unidirectional admixture from Neandertal to modern human. The admixture 

relationship is described in figure 2.1, scenario E; the direction of admixture 

is from the ancestral population (Neandertal) into the youngest population 

(non-African humans).  

  

2.2.2 Genome-wide phylogeography in non-model organisms 

 

Genome-wide shotgun sequencing in combination with coalescent modelling 

has the potential to revolutionise phylogeography. It is now possible to 

sequence low-coverage draft genomes at (constantly decreasing) affordable 

cost. However, sampling whole genomes from large numbers of individuals, 

as in traditional phylogeographic sampling designs, is still prohibitively 

expensive. Nevertheless, with further advances in sequencing and 

coalescent modelling this is probably the direction the field of 

phylogeography is heading.  

The ability to analyse many homologous sequence blocks from 

genome sequence, as we have here, is in itself as previous genome-wide 

studies involved a “genomic reduction” step prior to sequencing (McCormack 

et al., 2013, Arnold et al., 2013). An example and the principal alternative to 

whole genome shotgun sequencing considered is Restriction-site Associated 

DNA (RAD) sequencing (Davey and Blaxter, 2010). For RAD sequencing 

short regions (100s of bases) around the chosen restriction site are amplified 

and sequenced. RAD sequencing results in allele frequency data for 

thousands of loci across the genome. A further advantage of this approach is 

that data for large numbers of individuals can be analysed if required. RAD 
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sequencing has been used to elucidate population structure in the pitcher 

plant mosquito using a phylogenetic approach (Emerson et al., 2012). The 

disadvantages of RAD over the whole genome shotgun sequencing applied 

here are two-fold. Firstly, generating RAD libraries is complex and time-

consuming. Secondly, the data produced are less appropriate for inferring 

intra-specific population histories. This is because the short sequences that 

are currently generated for RAD studies result in a dataset of thousands of 

unlinked single nucleotide polymorphisms (SNPs). More detailed information 

about population histories can be gained from longer blocks of sequence with 

multiple, linked polymorphic sites (Lohse et al., 2011). This is because linked 

sites allow you to generate population tree topologies (genealogies) for each 

sequence, including information about branch lengths. Across genealogies 

this distribution of branch lengths is highly informative of population history 

(Lohse et al., 2010), a source of information not available to RAD sequencing 

approaches. However, this may change if read lengths of Illumina technology 

continue to increase. This is because long sequence blocks linked to RAD 

sites will become possible, allowing genealogy based analyses as well as the 

currently possible SNP frequency analyses. 

 

2.2.3 Triplet sampling and the likelihood model 

 

An alternative strategy to "genomic reduction" is to work with whole 

genomes, but with the analysis restricted to a few individuals. Lohse et al. 

(2011) have developed and extended (Lohse et al., 2012) a maximum-

likelihood framework to test models of divergence with gene flow between 

three populations using only one haploid genome from each population. The 

restriction to three individuals is not because it is superior to using multiple 

individuals but reflects the difficulty in expanding the model to more 

individuals or populations (Lohse et al., 2011). This minimal triplet sampling 

is uninformative about current ongoing processes within populations such as 

changes in effective population size (Ne), as a single haploid genome lacks 

the resolution needed for such parameter estimates. However, this sampling 
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does contain much information on the historical interactions between distinct 

populations (Lohse et al., 2012). The Lohse method (2011) models the 

relationship between populations as a series of instantaneous divergence 

and admixture events and fits models numerically by maximizing the 

likelihood of parameters. This is an important advance, as most inference 

methods for fitting alternative models of population history do not scale up to 

genomic datasets or analyses take a prohibitive amount of time to complete 

(but see Francois et al., 2008). It assumes the sampled populations are 

discrete (physically separated and distinct) from one another as is standard 

in statistical phylogeography (Hickerson et al., 2010; Hey & Machado; 2003; 

Knowles, 2009) because such models are tractable and easy to interpret 

(Harris & Nielsen, 2013; Li & Durbin, 2011, Green et al., 2010; Lohse & 

Frantz 2013).  

This likelihood method is statistically optimal as it uses all available 

information and is based on blocks of sequences, thus for every block of 

sequence a genealogy can be generated. This is more powerful than a RAD 

or D-statistic based analysis, because there is less information content in 

unlinked SNPs than for sequence blocks containing linked sites, like Lohse’s 

(2011) method. It is therefore superior to single nucleotide polymorphism 

(SNP-only) based analyses. For example, it considers the distribution of 

polymorphisms across loci; meaning loci without any SNPs are still 

informative. Additionally, singleton mutations provide information on the 

length distribution of external branches of genealogies, whereas the D-

statistic of Green et al., (2010) only measures the relative frequency of two 

types of shared-derived sites (which occur on internal branches of a 

genealogy). The extra information, and associated more powerful inferences 

over SNP based methods makes the informatic challenge of generating an 

appropriate sequence-based (rather than SNP-based) dataset worthwhile. 

Other recently developed methods, like the RAD-based allele 

frequency spectrum approach discussed above, also consider genome-wide 

datasets as the field adapts to the possibilities of high-throughput 

sequencing. Li and Durbin (2011) have developed a hidden Markov approach 
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for inferring past changes in effective population size from just a single 

diploid genome. Similarly, Harris and Nielsen (2013) use the length 

distribution of allelically identical (or identical by state, IBS) tracts of 

sequence in pairwise alignments to fit complex histories of divergence and 

admixture between two populations. However, both these methods are 

currently restricted to histories involving just one or two populations. They 

also rely on long sequence tracts and hence excellent genome assemblies 

unavailable outside of a handful of (largely model) organisms for eukaryotes.  

The Lohse (2011) approach is far more applicable to non model 

organisms, as it requires many sequence blocks long enough to contain 

multiple polymorphic sites but short enough to justifiably ignore within block 

recombination (here block sizes of 500-2000 bases were used). This is 

complementary to the highly fragmented de novo assemblies that can be 

achieved with low coverage short-insert (≤ 300 base pair) paired-end Illumina 

data.  

 

2.2.4 Oak gall wasp phylogeography and Biorhiza pallida 

 

A suite of detailed studies have addressed phylogeographic patterns in 

Western Palaearctic oak gall wasp communities, both for the gall inducers 

(Stone & Sunnucks, 1993; Rokas et al., 2001, 2003; Stone et al., 2007; 

Challis et al., 2007; Stone et al., 2012) and their parasitoid enemies 

(Hayward & Stone, 2006; Lohse et al., 2010, 2012; Nicholls et al., 2010a, 

2010b; Stone et al., 2012). European gall wasps are inferred to have 

migrated from Asia into Europe in the Pliocene or Pleistocene epochs 

(the ‘Out of Anatolia’ hypothesis, Rokas et al., 2003; Challis et al., 2007; 

Stone et al., 2009; see also Connord et al., 2012), 1.3–4.2 million years ago, 

reaching Iberia approximately 400 000 years ago (2.5%–97.5% quantiles of 

0.1-0.7 million years ago) (Stone et al., 2012). Gall wasps have continued to 

enter Iberia since the initial immigration event (Stone et al., 2012). Both gall 

wasps and their parasitoids show genetic structure compatible with three 

major Pleistocene refugial areas (Iberia; Italy and the Balkans; Asia Minor 
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and Iran) that broadly parallel those for deciduous oaks (Petit et al., 2003). 

The only exception to this pattern to date has been B. pallida, for which 

mitochondrial and internal transcribed spacer (ITS) nuclear sequence 

data show evidence of a deep east-west divide (Rokas et al., 2001). This 

raises the question of how general the ‘Out of Anatolia’ pattern is for all 

three trophic elements of this community (Stone et al., 2009, 2012). Here we 

use B. pallida as a case study for phylogenomic inference, and ask whether 

genome-level data support the apparently anomalous pattern for this species 

within the oak gall wasp community. 

 

2.2.5 Gall wasps are well suited for intra-specific population studies 

 

Gall wasps, chalcid parasitoids and most Hymenoptera are particularly well 

suited to for sequence-based analysis of genetic diversity as males are 

haploid. Because heterozygotes are not possible, single nucleotide 

polymorphism (SNP) calling is greatly simplified. Any site within an individual 

with more than one base present must contain an error. This could be due to 

sequencing error or a misaligned read. Furthermore, there is no requirement 

to phase (correctly identify alleles derived from each haploid in diploid 

sequence) blocks of assembled sequence as any SNPs within a block 

correspond to the same haploid chromosome. 

Belizinella gibbera, a species closely related to B. pallida, was chosen 

as the outgroup species to polarise SNPs within B. pallida. At each 

polymorphic site mutations that are concordant between the in- and outgroup 

are the ancestral state. The other nucleotide is a mutation that has occurred 

since the population(s) that has/have it diverged from the other population(s). 

When two populations share the derived site the site is a parsimony 

informative site. The site could result from a mutation before two populations 

split but after splitting from the ancestral population. Alternatively it could 

result from a mutation in one of the populations after the populations split 

with subsequent admixture into the other population. A  final possibility is a 

duplicate independent mutation (a back mutation) a violation of the infinite 
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sites model assumed by Lohse et al.’s (2011) method. Back mutations are a 

danger when outgroup sequences are very divergent from ingroup 

sequences and individual sites reach mutational saturation (when multiple 

mutations at a site obscure the relationship between sequences). 

 

2.2.6 Modelling divergence and admixture of refugial populations of B. 

pallida 

  

Jesus et al. (2006) proposed a model of demographic changes that occur to 

a species undergoing alternating glacial and interglacial periods. During 

interglacials, like the present, the species is panmictic, but during glacial 

periods populations of the species fragment into small sub-populations 

corresponding to refugia. As this is a cyclical process, admixture between 

populations happens in a discrete fashion only during interglacials; thus, we 

modelled admixture between refugia as instantaneous and unidirectional. 

Population sizes of each refuge considered (Iberia - West, Hungary/Croatia - 

Central and Iran - East) were assumed to be equal. Under an infinite sites 

model in which any new mutations must occurs at different sites (therefore 

only two possible nucleotides at any one site), there are six possible 

branches on a triplet genealogy (figure 2.1) along which mutations can occur 

(k = {kw, ke, kc, kwe, kwc, kec}), where kw is the number of singletons occurring 

in the western population (mutations found only in the western refugia, i.e. 

have occurred along a terminal branch of the genealogy, figure 2.1). A 

mutation on branch kwc represents a shared-derived sited between the 

western and eastern populations; at such positions the topology is {E,{W,C}}. 

A vector of these mutational types for each alignment forms the input for the 

likelihood model. Different histories of population and admixture predict 

contrasting values in such a matrix.  

For a given order of population divergence, there are six possible 

models (figure 2.1), each with five parameters: the time of the older split T2; 

the time of the more recent split (T1); the time of admixture, or gene flow, (Tgf) 

(all measured back in time from the present); the admixture proportion (f) and 
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the effective population size (Ne). For computational tractability, a single and 

constant Ne for both ancestral populations was assumed. Support for all six 

admixture scenarios was assessed as well as for simpler, nested models that 

assume no admixture and divergence between either three or two 

populations for each of the three possible orderings of population divergence 

(a total of 24 divergence and admixture models). We also quantified the 

support for a basal polytomy, a single panmictic population, and for distinct 

refugial Ne in the strict divergence models (to test whether the additional 

parameter substantially improved model fit without the need to invoke 

admixture), giving 32 models in total.  

By calculating the likelihood scores of different models of population 

history the divergence and direction of admixture events between the three 

refugia resulting from past range expansions can be identified.  
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2.2.7 Testing the assumption of discrete populations between refugia 

 

The likelihood model assumes each population sampled is panmictic, and 

therefore that a single haploid genome can be taken as representative of the 

population as a whole. In other words, we assume that the haploid genome 

sampled in Iberia can be considered representative of the mosaic of 

genealogies present in Iberia. However, local genetic structure emerges as a 

consequence of the limited dispersal ability of individuals (Askew, 1984), and 

could occur within each refugial region in our analysis. The subject of this 

study, B. pallida has been observed completing multiple generations on a 

single oak, and there is evidence for very local, at the single tree level, 

adaptation in cynipids related to B. pallida (Egan and Ott, 2007). So any 

model that approximates a population occupying a large area (such as Iberia) 

as panmictic may well break down over recent time-scales. Therefore, a 

Figure 2.1. The six models of gene flow considered. Tgf is time of gene flow, indicated by the horizontal 
arrow; T1 and T2 are population-splitting times (figure courtesy K. R. Lohse). 
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replicate haploid genome from each of the Central and Western refugia 

(sampled individuals: table 2.2 and sampling sites: figure 2.2) was 

sequenced to test the assumption of within refuge panmixis. In each refuge 

the replicates were both sampled approximately 400 km away from the 

original population sample, a distance probably well above the dispersal 

ability of an individual wasp (Askew, 1984). The assumption that a single 

haploid genome can be considered representative of a large refugium holds if 

the same population splitting, admixture, and parameter estimates are 

inferred with either refugial haploid genome. The maximum likelihood 

analyses were performed on all four possible combinations of West and 

Central individuals. Although desirable, there was no duplication of the 

Eastern refuge because no suitable haploid male samples were available 

from Iran or Asia Minor.  

2.2.8 Sample selection for Genome-wide phylogeography 

 

In total, five haploid males were selected from the sexual-generation of B. 

pallida for sequencing, two each from the Iberian and Balkan refugia and one 

from Iran in the east (table 2.1, figure 2.2).  

As polymorphic sites within ingroup sequences had to be sorted into 

derived and ancestral (polarised), alignment to an outgroup was necessary. 

Choosing a good outgroup with optimum divergence form the ingroup was 

essential for a robust analysis. Firstly, Ingroup individuals should not be more 

divergent from each other than to outgroup sequences, this can occur 

because of lineage sorting (K. R. Lohse, personal communication). But they 

must also be close enough to avoid mutational saturation under a simple 

mutational model of infinite sites. Under the infinite sites assumption each 

new mutation occurs at a new site within genome, therefore back mutations 

are a violation of this assumption. Mutational saturation from sequence 

divergence between in- and outgroup causes back mutations that can result 

in errors in polarising ingroup sequences. Belizinella gibbera was chosen as 

the outgroup based on a cytochrome B (cytB), a mitochondrial gene, global 

phylogeny of oak gall wasps (figure 2.3, complete tree: appendix fig 2.15) 
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(James Nicholls, personal communication). Two B. gibbera females from the 

Russian Far East were sequenced; as the species is asexual haploid males 

are not available. The two sequenced females were reared from galls on the 

same tree. 
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Figure 2.2. Sampling locations of the five B. pallida individuals (West A, West B, Centre A , Centre B and East, used for genome 
sequencing and population genomic analyses. Each refugium is coloured; W: green, C: orange, E: blue. The green line shows the 
extent of the distribution of the oak host plant. Figure courtesy of Graham Stone. 
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Specimen ID  Collection site Region  Latitude and 

longitude 

Date   

Bgib15  Khazan lake Primorsky Krai  42.45 N, 130.65 E 26/09/08   

Bgib18  Khazan lake Primorsky Krai   42.45 N, 130.65 E 26/09/08   

  Mairena Granada  37.37 N, 5.75 W 06/05/09   

Bpal2  Embalse de Garcia 

de sola 

Extramadura  39.17 N, 5.22 W 12/04/05 Q. faginea  

Bpal1  Szokolya -

 

 47.87 N, 19.02 E 15/05/98 Quercus 

petraea/robur 

 

Bpal1613  Ze Medvedgrad   45.86 N, 15.94 E 16/05/11 Q. petraea  

Bpal1560 East Bane or Merivan*   35.99 N, 45.90 E 01/04/11 Q. robur  

BpalUK BpalUK  Dorset  51.41 N, 0.64 W 20/08/09 Q. robur James Nicholls 

Table 2.1. Collection locations, dates, host species and extraction details for genome-wide phylogeography samples; *galls from both locations were received in 
Edinburgh from Iran in the same batch and not differentiated.  
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2.2.9 B. pallida and B. gibbera genomic DNA sequencing 

 

Each of the seven in- and outgroup individuals were extracted using the 

DNEasy kit (Qiagen). Extractions with the best 260/280 ratio measured by 

NanoDrop spectrophotometer (Thermo Scientific) and highest mass of DNA 

by Qubit fluorimeter (Invitrogen) were selected from each refugium. The 

260/280 ratio is a measure of extraction purity, and DNA is considered pure 

at a ratio of 1.8 and RNA at 2.0. Lower ratios than this can be due to 

contamination with protein or an extraction reagent, which may interfere with 

downstream processes. The DNA concentration for each sample was 

determined using a Qubit fluorimeter (Invitrogen) as the intercalating dye 

approach is more accurate than the impurity sensitive NanoDrop (Thermo 

Scientific). 

 

2.2.10 Illumina Adapter and quality filtering 

 

Raw and filtered read numbers for each individual are given in table 2.1. New 

genomic data was generated several times from 2009 through 2012 but 

filtering was standardised throughout to create a homogenous filtered 

dataset. 

Figure 2.3. Phylogenetic relationship of Biorhiza pallida to Belizinella gibbera, courtesy of James Nicholls. 

Black stars represent posterior probabilities of ≥0.9, hollow stars ≥0.7.The time since the most recent 
common ancestor of the two species is estimated at >40 mill ion years ago.  
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Filtering methods were adapted from Sujai Kumar's protocol 

(https://github.com/sujaikumar/assemblage). The raw data was first assessed 

using Fastqc (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). All 

reads were 3' quality trimmed using Sickle (https://github.com/najoshi/sickle) 

to a minimum quality of 20, equivalent to 99% accuracy or an error rate of 

one in one hundred. This Q20 filtering is commonly used and represents a 

trade-off between removing errors and not over-filtering the data, which can 

degrade assembly quality. Reads containing bases called as 'N's were 

removed entirely. These reads are frequently of overall low quality (S. Kumar 

and G. Koutsovoulos, personal communication). Adapters that had escaped 

basic filtering by the GenePool were removed using Scythe 

(https://github.com/vsbuffalo/scythe) and standard Illumina Paired End 

Adapters 1 and 2 (figure 2.4).  

 

>Illumina Paired End Adapter 1 

ACACTCTTTCCCTACACGACGCTCTTCCGATCT 

>Illumina Paired End Adapter 2 

CTCGGCATTCCTGCTGAACCGCTCTTCCGATCT 

 

A minimum length of 20 or 50 bases post-filtering was required for a 

read to be retained for 50 or 100 base-long raw reads respectively. For read 

pairs where one read fails quality control the other read was retained in a 

singles file (referred to as ‘QC singles’ in this thesis). The Sickle and Scythe 

commands were run as a single command as described at 

https://github.com/sujaikumar/assemblage. If Fastqc had flagged certain 

sequences as overrepresented in the data these were also removed using 

Scythe if they were verified as adapter sequence. Other overrepresented 

sequences were not removed as these can represent common sequences, 

or in the case of RNAseq sequences are derived from highly expressed 

transcripts. Fastqc was re-run on the filtered data to check quality control. 

 

Figure 2.4. Standard Il lumina paired-end adapter used to fi lter data. 

https://github.com/sujaikumar/assemblage
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://github.com/najoshi/sickle
https://github.com/vsbuffalo/scythe
https://github.com/sujaikumar/assemblage
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Sample 
Name 

Study Name Pairs/Singles Reads (millions) Bases (Gb) Filtered Pairs 
(millions) 

Filtered Singles 
(millions) 

Filtered 
Bases (Gb) 

Bpal 1 CentreA 83.6 10.42 77.1 5.1 8.50 

Bpal 2 WestB 41.3 6.26 35.0 1.1 5.41 

BpalUK UK 25.0 2.50 14.9 0 1.50 

Bpal 1398 WestA 58.0 11.60 54.2 3.6 10.69 

Bpal 1560 East 43.2 8.64 41.2 1.6 7.79 

Bpal 1613 CentreB 41.0 8.20 39.3 1.7 8.24 

Bgib 18 Outgroup 36.4 7.28 34.4 1.9 6.76 

Bgib 15 Outgroup 93.6 11.16 58.3 33.1 9.89 

Table 2.2. Combined Il lumina read statistics for raw and fi ltered data for each individual sequenced for the genome-wide phylogeography study. 
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2.3 Methods and Results: creating a dataset of thousands of loci for 
phylogeographic inference 
 

 
A flow diagram of the analysis steps in this chapter is shown in figure 2.5.  

 
 
 
 

Figure 2.5. Flow diagram of all  analysis steps in this chapter. Numbering corresponds to chapter 
section headers. 
 

Separate de novo assemblies of in- and 

outgroup and aligning reads per individual to the 

reference assemblies 

Repeat masking de novo assemblies 

Identifying orthologous sequences between non-

repetitive outgroup and ingroup sequences 

using BLAST 

 Multiple sequence alignment of ingroup and 

outgroup consensus sequences

SNP calling in Samtools and extracting 

consensus sequence per individual and 

removing undesirable sequences using BLAST 

and coverage

 

Using the B. pallida transcriptome to fit 

mutational heterogeneity to alignments 

Likelihood analyses of historical models 

The effect of length and quality filtering in the 

frequency of polymorphisms
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2.3.1 De novo assemblies of B. pallida and B. gibbera 
 

The CLC bio de novo assembler (http://www.clcbio.com/products/clc-

assembly-cell/) was chosen for making the assemblies; CLC bio de novo is a 

de Bruijn graph assembler. CLC bio is proprietary software and its 

implementation of the de Bruijn algorithm is unpublished. CLC bio was 

chosen for its memory efficiency over other de Bruijn graph assemblers. This 

was important, as the genome size of oak gall wasps appears to be large for 

insects at 1.75Gb (± 0.286, n = 4) (Lima, 2012). The random access memory 

(RAM) needed to hold the graph during assembly for less memory efficient 

assemblers, like Velvet (Zerbino et al., 2008) was more than that available 

(512Gb RAM).  

A de Bruijn graph is a directed graph of overlapping sequences of 

symbols (de Bruijn, 1946). By following edges through a graph complete 

sequences can be reconstructed. The de Bruijn graph approach first 

decomposes short-reads in to k-mers that become nodes on the de Bruijn 

graph (figure 2.6) (Schatz et al., 2011). A k-mer is a word of k nucleotides in 

length (Zerbino et al., 2008) and is a standard parameter of assemblers that 

can be modified to identify an optimum value. For example, Velvet maps 

multiple overlapping k-mers onto a node, and the reverse complements of 

the k-mers to create a bi-directed graph (Zerbino et al., 2008). A directed 

edge between nodes is representative of k-mers occurring consecutively in 

one or more reads (figure 2.6) (Schatz et al., 2011). When non-branching 

paths through the graph occur, like the blue k-mers of figure 2.6, 

unambiguous sequences of nucleotides can be strung together into contigs 

(Schatz et al., 2011).  

http://www.clcbio.com/products/clc-assembly-cell/
http://www.clcbio.com/products/clc-assembly-cell/
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 Ideally, a de Bruijn graph resolves into a unique path through a  

segment of genome, but technical and biological issues can preclude this 

outcome. There are three common types of issues that occur with de Bruijn 

graph assembly. Two of these can be detected from graph topology (figure 

2.6). Firstly, ‘tips’ are a chain of nodes disconnected from the rest of the 

graph at due to sequencing errors that interrupt further k-mer addition to 

graph. Secondly, ‘bulges’ or ‘bubbles’ occur in graphs because of 

discrepancies within reads. Alternatively, because the assembly attempts to 

collapse repeated sequences into one sequence, unique segments within 

repeats will cause bubbles. Algorithms that detect tips and bubbles can be 

implemented during assembly to clean up the graph (Zerbino et al., 2008). 

The third issue, incorrect connections between nodes, cannot be detected 

from graph topology. Instead, abrupt changes in coverage can be used to 

GTCAGT ACC CCT

CTA

CTG TGA

TAG

Figure 2.6. De Bruijn graph schematic of nodes and directed edges for k-mers of 3bp length. The blue 

boxes represent unambiguous route through the nodes. One can see that from one node to the next, one 
base is added and the last base is lost. The path then branches into two possible correct paths (orange 
and green nodes and edges). A bubble is formed if the orange and green bubbles are re-connected to 

form one path again.  
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break up incorrect connections (Zerbino et al., 2008). 

 

2.3.2 Assembly using CLC bio de novo assembler 

 

The filtered reads (table 2.2) across B. pallida individuals were combined and 

assembled together using the CLC bio de novo assembler (version 4.0.6). 

This was to maximize the coverage of reads across the genome and produce 

the best possible assembly. Also a bias towards reads from the individua l 

used to build the assembly is avoided in the meta-assembly approach. Data 

from the two outgroup individuals sequenced were combined to create a 

single B. gibbera assembly in the same way (table 2.3).  

   

 

Species Assembly N50 Number of 
contigs  

Total bases Average GC Number of Ns 

Biorhiza 
pallida 

1 075 1 163 314 805 102 378 32.9 4 203 182 

Belizinella 

gibbera 

643 817 710 443 963 639 36.1 2 525 790 

 

2.3.3 Aligning reads per individual to the reference assemblies  

 

The reads for each B. pallida and B. gibbera individual were aligned back to 

the respective assemblies. The Stampy aligner was chosen for its high 

sensitivity in predicting insertions or deletions (Indels), and aligning divergent 

reads (Lunter & Goodson 2011; Nielsen et al., 2011); it outperforms the 

popular BWA aligner (Li & Durbin, 2009). Ultimately, Indels were not 

incorporated into the dataset because of concerns over the accuracy of their 

prediction by Stampy (and alternatives). Neither, were SNPs within ten bases 

of Indels as they may have resulted from incorrect mappings. 

   

  

Table 2.3. Assembly statistics for the in- and outgroup species, B. pallida and B. gibbera respectively. 
Paired-end information is used to bridge unsequenced gaps in the assembly, CLC bio de novo places ‘N’s 

in these gaps of known length; hence number of Ns in the table. 
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A density plot of average contig coverage across all individuals is 

given for B. pallida and B. gibbera assemblies in figures 2.7-8. The dashed 

red lines show average coverage across all contigs demonstrating the 

inappropriateness of this metric for low-coverage draft genome assemblies. 

The few contigs of very high coverage cause a rightward skew in the 

coverage distribution and have a disproportionate effect on the mean. The 

mode is a superior descriptor of the peak of these distributions; it is less than 

10 fold for both species. The numbers of reads that map for each individual 

are given in table 2.4. Percentages of reads mapping and pairs of reads 

mapping are high across all individuals. However, the percentage of properly 

matched pairs is low, ranging from 38-60%. This is because only pairs 

mapping to the same contig are reported as properly paired. There are many 

pairs for which one read maps to a different contig to the other read. This is 

expected, as genome-sequencing coverage was low, resulting in highly 

fragmented assemblies. The assembler did not have enough information 

from other read pairs to bridge the gap between effected contigs. The 

percentage of total reads mapping is not 100%, as PCR duplicates (separate 

[pairs of] reads derived from the same initial DNA molecule) were only 

counted once.  

  

Individual Total Reads 
mapped 

% TRM Both pairs 
mapping 

% BPM Properly 
paired 
mappings 

% PPM 

West A 110 032 493 98.15 105 275 278 97.03 41 735 608 38.47 

West B 62 460 228 97.61 59 916 548 96.1 37 513 788 60.15 
Centre A 151 336 967 97.4 126 679 062 95.9 77 652 270 58.81 
Centre B 78 693 352 98.02 75 965 852 96.67 40 744 660 51.87 
East  82 868 384 97.91 80 238 688 96.7 43 559 560 52.47 

Outgroup A 68 904 531 97.43 66 085 246 96.09 31 720 514 46.12 
Outgroup B 140 837 165 94.08 106 730 492 91.55 61 067 174 52.38 

 

Table 2.4. Reads mapping to the reference assemblies for ingroup and outgroup individuals. %TRM = 
percentage total reads mapping; %BPM = percentage both pairs mapping; %PPM = percentage properly 
paired mappings. 
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Figure 2.7. Average coverage density plot of the B. pallida assembly for all reads. Maximum coverage shown on this graph is 100-fold, however there are contigs 
with much greater coverage (>1000-fold) at low frequencies; hence the average coverage (red dashed line) is at 50 -fold coverage.  
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Figure 2.8. Average coverage density plot of the B. gibbera assembly for all  reads. Maximum coverage shown on this graph is 100-fold, however there are contigs 
with much greater coverage (>1000-fold) at low frequencies; hence the average coverage (red dashed line) i s at 30-fold coverage.  
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2.4.1 Repeat masking de novo assemblies 

 

A repetitive sequence refers to DNA sequences that occur multiple times 

within a genome (Jurka et al., 2007). A large proportion of eukaryote genome 

can consist of various repetitive elements. For example, the human genome 

consists of approximately 50% repetitive elements (Treangen & Salzberg, 

2012) that range in size from the tens of bases for short tandem repeats to 

tens of kilobases for large transposable elements.  

It was important to avoid including repetitive sequences in the final 

dataset. This is because the ancestral relationships of duplicated sequences 

are hard to disentangle. This is in contrast to single copy nuclear genes that 

were present in their most recent common ancestor in one copy  

 

2.4.2 RepeatScout and RepeatMasker 

 

A combination of RepeatMasker (Smit et al., 2010) and RepeatScout (Price 

et al., 2005) were used to mask repetitive elements in the B. pallida and B. 

gibbera draft assemblies. Masking was done at this stage to greatly simplify 

the identification of orthologous sequences between the two assemblies 

(section 2.5.1).  

 RepeatScout (Price et al., 2005) is a de novo repeat finder. It predicts 

repeats in a genome assembly that can then be supplied to RepeatMasker 

(Smit et al., 1996-2013). RepeatScout works by first identifying high 

frequency subsequences in the input sequences of length l, or l-mers, as 

seeds (see section 2.5.1 below); l-mers are analogous to k-mers (discussed 

above). The most frequent l-mer is then extended to create a consensus 

sequence for a repeat family (Price et al., 2005). Other l-mers that belong to 

the same repeat family are identified and removed from the l-mer table. The 

process is repeated for the next most frequent l-mer until a threshold 

minimum l-mer frequency is reached (Price et al., 2005). RepeatScout was 

run with default settings and a fasta file of repeats was output for both 

assemblies for use with RepeatMasker.  
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 The output fasta file containing de novo predicted repeats was 

combined with the RepeatMasker default repeat fasta file. This file contains 

repeats and low complexity sequences, such as simple tandem repeats, 

commonly observed in sequenced genomes (Smit et al., 2010). 

RepeatMasker was run using RMBlast, a modified version of BLAST 

(Altschul et al., 1997) optimized for RepeatMasker, to identify repeats. 

Masked versions of the B. pallida and B. gibbera assemblies were output 

with N’s replacing predicted repeat sequences. RepeatMasker also provides 

detailed annotations of the masked sequences. However, most of the 

repeats masked were not annotated as they were identified using the de 

novo RepeatScout predicted repeats.  

For B. pallida 51% (408 933 208 bases) and B. gibbera 34% (149 745 

254 bases) of the assemblies were masked respectively. For comparison, 

using RepeatScout Wang et al. (2008) masked 20% of the 144Mb 

assembled Drosophila melanogaster genome and 26% of the 151Mb red 

flour beetle, Tribolium castaneum, genome.  

 

2.5.1 Identifying orthologous sequences between outgroup and ingroup 

sequences 

 

Reciprocal discontiguous megablasts (Altschul et al., 1990) of the masked 

assemblies identified orthologous regions between the two species. In 

explanation, for two sequences X and Y  from species x and y, respectively, if 

sequence X is the best BLAST hit for sequence Y and sequence Y is the 

best BLAST hit for sequence X, X and Y are reciprocal best hits (RBHs) 

(explanation adapted from Salichos & Rokas, 2011). The relatively simple 

RBH approach has been shown to compare well to more complex algorithms 

for ortholog identification (Altenhoff & Dessimoz, 2012). It is also appropriate 

for this dataset as BLAST works well with the short sequences representative 

of the assemblies. The BLAST algorithm can be parallelised so the reciprocal 

BLASTs were split up into hundreds of sub-jobs and run using the Edinburgh 

Compute and Data Facility (ECDF) (http://www.ecdf.ed.ac.uk/).  

http://www.ecdf.ed.ac.uk/
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 Discontiguous megablast is recommended for cross-species searches 

(http://www.ncbi.nlm.nih.gov/Web/Newsltr/FallWinter02/blastlab.html). The 

BLAST algorithm works by identifying short matching sequences between 

compared sequences. After finding shared sequences a local alignment is 

made, an operation called seeding. Discontiguous megablast differs by not 

using an exact contiguous word match to seed alignments. Instead, an 

equivalent, user-specified, number of non-contiguous positions within longer 

template seed alignments are used. For example, in a coding sequence, 12 

bases of a template of 18 bases (or 6 amino acid codons) could be required 

to match exactly at codon positions 1 and 2 (equivalent to: 

110110110110110110 where ‘1’ is an exact match). The third base 

(represented by a zero) is allowed to wobble in accordance with third base 

degeneracy. This approach is more sensitive than searching for exact 

matches with a sequence length of 12 

(http://www.ncbi.nlm.nih.gov/Web/Newsltr/FallWinter02/blastlab.html). A 

sequence length of 11 with a mixed coding and non-coding template 

(different to that above) of length of 16 was used for the discontiguous 

megablasts with an e-value cut off of 1 x 10-20, and filtering of low-complexity 

sequences to avoid spurious matches.  

The masked assemblies of B. pallida and B. gibbera were blast 

searched against one another. Masking of repeats (section 2.4.2) greatly 

reduced the number of initial blast hits, making RBH filtering simpler. 

Sequences around masked repeats within the same contig were kept for 

analysis. Multiple BLAST hits can occur along a contig; therefore it was 

possible, and common, for a contig to have several RBHs along its length to 

different contigs in the other species. Overlaps between best hits of 15 bases 

were allowed to avoid penalising good unique hits with short overlaps  along 

one contig. A RBH was only kept if the difference in bit scores (a 

standardized score for the alignment comparable across separate blast 

searches) with the next best overlapping hit (>15 bp long) for that contig in 

the query species was greater than or equal to 100. This bit score filter was 

to avoid including false RBH orthologs because the BLAST algorithm chose 

http://www.ncbi.nlm.nih.gov/Web/Newsltr/FallWinter02/blastlab.html
http://www.ncbi.nlm.nih.gov/Web/Newsltr/FallWinter02/blastlab.html
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the wrong alignment of two or more alignments with close scores. The 

filtering process was repeated for both reciprocal BLASTs: B. pallida versus 

B.gibbera and B.gibbera versus B. pallida. Bit score and overlap filtering 

were performed using a perl script on the BLAST output.  

After RBH filtering, there were 323 693 blast hits remaining spanning 

240 012 B. pallida and 301 282 B. gibbera contigs respectively. The effect of 

repeat masking and filtering by RBH on the distribution of contig average 

coverage can be seen in figure 2.9. The mean coverage is now far less 

skewed by high coverages as many repetitive sequences have been 

removed, but the peaks of the distributions are similar to those shown in 

figures 2.7-8.  

Fewer B. pallida contigs were in the final RBH orthologs dataset, as 

the B. pallida assembly was superior to B. gibbera’s (table 2.3). This has the 

corresponding effect that, on average, B. pallida contigs are longer than 

those for B. gibbera. Thus, more multiple RBHs occurred along the longer B. 

pallida contigs than for shorter B. gibbera contigs. A new BAM alignment file 

was created for each individual containing only the putatively orthologous 

regions. Table 2.5 shows the number of reads overlapping regions of 

reciprocal best hits for each individual. Table 2.6 shows the number of reads 

mapping to the orthologous regions. Note that the properly paired mapping 

percentages are much higher than for the total assembly (table 2.4). 
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Individual Total Reads Paired Singles 

West A 11 874 298 11 491 196 383 102 
West B 6 694 572 6 470 325 224 247 
Centre A 16 672 756 13 697 004 2 975 752 
Centre B 8 490 633 8 304 868 185 765 

East  9 309 041 9 123 426 185 615 
Outgroup A 8 567 014 8 313 168 253 846 
Outgroup B 22 536 368 16 390 864 6 145 504 

 

 

 

 

Individual Total Reads 
mapped 

% TRM Both pairs 
mapping 

% BPM Properly 
paired 
mappings 

% PPM 

West A 10 863 854 91.49 10 356 235 90.12 8 256 622 71.85 
West B 6 058 958 90.51 5 782 148 89.36 5 081 054 78.53 

Centre A 14 525 611 87.12 12 069 417 88.12 10 539 095 76.94 
Centre B 7 805 239 91.93 7 505 425 90.37 6 472 021 77.93 
East  8 466 774 90.95 8 163 865 89.48 7 138 558 78.24 
Outgroup A 7 353 309 88.45 7 165 552 86.2 6 033 392 72.58 

Outgroup B 16 790 607 74.5 12 665 104 77.27 9 862 156 60.17 

 

 

 

2.6.1 SNP calling and extracting consensus sequence per individual 

 

Raw variant calling across individuals for both species was performed using 

Samtools mpileup (Li et al., 2009); indels were not called, as current aligners 

are not capable of accurate indel prediction. Samtools mpileup output was in 

the Variant Call Format (VCF) for storing and parsing sequence 

polymorphisms. Consensus sequences of minimum length 300 bases were 

Table 2.5. Reads overlapping the orthologous regions of reference assemblies for ingroup and outgroup 
individuals. Paired refers to paired-end read fragments and singles to single-end reads. 

 
 

Table 2.6. Reads mapping to the orthologous regions of reference assemblies for ingroup and outgroup 
individuals. %TRM = percentage total reads mapping; %BPM = percentage both pairs mapping; %PPM = 

percentage properly paired mappings. 
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identified for each individual per species from the VCF files by a custom perl 

script (all custom scripts were written by J. Hearn). For ingroup sequences; 

(1) the reference base was called if no variant was present or the variant did 

not reach a user-defined SNP quality threshold, (2) an 'N' was coded if the 

individual had 0 coverage at that position or was called heterozygous by 

samtools indicating a sequencing error, or more than one polymorphism was 

present violating the assumption of the infinite sites model (in which only one 

variant at any site is possible); (3) a SNP was called if it was homozygous in 

that individual and above the user-defined quality threshold. Ingroup 

consensus sequences for each individual were produced at two SNP quality 

thresholds by VCF file fi ltering: Q0, and Q20 (equivalent to an error rate of 1 

in 100) for comparison of results. This was to assess the effect of quality 

filtering on the number of SNPs for analysis and the ratio between the six 

mutational types (k = {kw, ke, kc, kwe, kwc, kec}) possible.  

 For the two diploid outgroup individuals a genotype called '0/1' by 

mpileup could be a true heterozygote position in addition to ‘0/0’ versus ‘1/1’ 

homozygous variants. All polymorphic positions in the outgroup were called 

as 'N' to avoid including ancestral polymorphisms segregating in in- and 

outgroup sequences. An ancestral polymorphism occurs when the common 

ancestor of two alleles at a locus existed before two species became isolated 

(Charlesworth, 2010). This is undesirable as the divergence times between 

such alleles in two species are greater than that of the species divergence 

times (Gillespie and Langley, 1979; Charlesworth, 2010). Sites were also 

called as 'N's at positions with 0 read coverage in both individuals. Therefore, 

a single, completely homozygous outgroup sequence was created that took 

advantage of deeper sequencing from combining sequence data  across 

individuals. For the two outgroup B. gibbera sequences 531 328 putative 

polymorphic sites were identified between them and masked with ‘N’s, 

representing 0.5% of total sites in the VCF file.  
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2.6.2 Removing undesirable sequences using BLAST and coverage 

 

Contigs were removed from the dataset if they had nucleotide (blastn) or 

translated nucleotide (blastx) BLAST top hits to bacteria, as both species 

contain Wolbachia, mitochondrial genome sequences, and other identifiably 

contaminant sequence such as mouse or human DNA. Repeats that had 

escaped masking by RepeatScout and RepeatMasker were also identified. 

These are repeats that are collapsed into one contig by the de Bruijn graph 

during assembly, allowing them to escape prediction as repeat sequence by 

RepeatScout  

To remove repeats that had been collapsed into one contig during 

assembly, and therefore not identified by RepeatScout, coverage cut-offs 

were used. Contigs were removed if they had coverage above an arbitrary 

threshold using contig average coverage distributions as a guide (figures not 

shown, figure 2.9 shows distributions after coverage filtering). These were  

set at 75 fold for B. pallida and 30 fold for B. gibbera respectively, based on 

inspection of the coverage distributions (figure 2.9). These coverages cut-offs 

are where the respective distributions approached very low frequencies in 

each species. The cut-offs remove the ‘long-tail’ of the frequency 

distributions consisting of high-coverage contigs. The final B. pallida dataset 

had a modal coverage across all individuals o f ~7.5 after fi ltering (figure 2.9). 

Filtering in this way is conservative as contigs representing single-copy 

nuclear DNA sequences that were sequenced at greater depth than most of 

the genome will also be present in the ‘long tail' of the distribution After 

BLAST and coverage filtering, 304 027 hits remained across 232 097 B. 

pallida and 290 379 B. gibbera contigs respectively (table 2.7).  

Species Orthologous 

segment N50 

Number of 

contigs  

Total bases Average GC 

B. pallida 734 232 097 113 583 710 36.7 
B. gibbera 508 290 379 111 785 775 35.9 

 

 

Table 2.7. Assembly statistics for orthologous regions in the in- and outgroup after all  fi ltering. 
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A) B) 

Figure 2.9. Average coverage per contig density plot of remaining orthologous regions for (A) B. pallida and (B) B. gibbera after filtering of contaminant and high-
coverage sequences. The average coverage, shown by the dashed red line, is now much closer to the mode than for the plots for  all  of the data (figures 3.3-4) but is 
stil l  effected by right skew of the data.  
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2.7.1 Multiple sequence alignment of ingroup and outgroup sequences  

 

Multiple sequence alignments for each sequence block were generated for 

the four triplet combinations of B. pallida individuals and the outgroup using 

the aligner MUSCLE (Edgar, 2004). They were output as simple fasta 

alignments (sequence blocks) of 300 bases minimum length, an arbitrary cut-

off that simplified further bioinformatic preparation of the dataset. Indels 

occurring between ingroup and outgroup were removed as were any sites 

violating the infinite sites assumption or coded as ‘N’ in the ingroup VCF 

filtering, using custom perl scripts. The combinations were labelled: WaCaE 

WbCaE WaCbE WbCbE, based on the three individuals combined. For 

example, WaCaE represents individuals West A – Centre A – East.  

 To avoid linkage between separate blocks in the final dataset and to 

increase the length of some blocks MUSCLE multiple sequence alignments 

derived from the same B. pallida contigs were combined linearly into single 

blocks. This occurs when multiple distinct Blast RBH alignments occur along 

one B. pallida contig to outgroup B. gibbera contigs. The alignment derived 

from the RBH closest to the start of the B. pallida contig was placed first, 

followed by the second closest and so on. However, only one alignment per 

outgroup contig was kept when multiple RBHs B. gibbera per contig 

occurred, meaning the other alignments along the same B. gibbera contig 

were removed from the dataset. 

Finally, the raw blocks were filtered to a length of 2 000 bases (2 kb), 

as this length represented a good trade-off for obtaining blocks long enough 

to include enough polymorphic sites for inference and short enough to be 

unconcerned about recombination within contigs. Sub-sampling from the full 

set of contigs with this length cut-off gave between 2419-2889 (table 2.8) 

blocks (depending on the combination of W/C/E individuals), roughly 10% of 

the contigs meeting the initial filtering requirements.  

These blocks were further sub-sampled to 1 000 and 500 bases 

length to assess the robustness of the likelihood method to differing block 

sizes. Sub-sampling the datasets using this length cut-off meant that 
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approximately 10% (table 2.8) of bases remaining after creation of sequence 

blocks were used in the likelihood analysis. 

 

Alignment Block 
length 

Number of 
contigs  

Total bases 
(% remaining) 

Filtered 
contigs  

Filtered bases 
(% remaining)  

Average 
GC 

WaCbE  >300 83 383 60 277 500(100) 69 032 49 038 121(100) 38.6 

WaCaE  >300 84 822 61 012 720(100) 70 286 49 630 679(100) 38.6 

WbCbE  >300 77 752 54 117 641(100) 64 721 44 317 891(100) 39 

WbCaE  >300 79 175 54 842 541(100) 65 931 44 902 450(100) 38.8 

        

WaCbE 2 kb 2 889 5 778 000(9.6) 2 648 5 296 000(10.8) 39.7 

WaCaE  2 kb 2 871 5 742 000 (9.4) 2 640 5 280 000(10.6) 39.5 

WbCbE  2 kb 2 419 4 838 000(8.9) 2 231 4 462 000(10.1) 40.2 

WbCaE  2 kb 2 419 4 838 000(8.8) 2 231 4 462 000(10.1) 40.1 

        

WaCbE  1 kb 2 889 2 889 000(4.8)  2 648 2 648 000(5.4) 39.4 

WaCaE  1 kb 2 871 2 871 000(4.7) 2 640 2 640 000(5.4) 39.3 

WbCbE  1 kb 2 419 2 419 000(4.5) 2 231 2 231 000(5.0) 39.9 

WbCaE  1 kb 2 419 2 419 000(4.5) 2 231 2 231 000(5.0) 39.7 

 

 

2.8.1 The effect of length and quality filtering on the frequency of 

polymorphisms 

 

The full WaCaE datasets comprised 84 822 aligned contigs >300 bp (table 

2.8) with an N50 value of 803 bases. A total of 171,694 polymorphic sites 

were recovered in the in-group, corresponding to an average per site 

diversity (as measured by Watterson's Θw  of 0.188%) (table 2.9). Average 

per-site divergences between outgroup and the Eastern individual was 4%. If 

the ‘Out of the East’  model is true, represented by a  population divergence in 

the order (E,(C,W)) without admixture, we expect derived sites shared by 

Central and Western individuals (C/W) to be more common than both derived 

sites shared by Central and Eastern individuals (C/E) and sites shared by 

Table 2.8. Alignment statistics for all  four datasets  for no filtering, and block lengths of 2 kb and 1 kb1 kb. 
Filtered columns refer to dataset after removal of linked blocks identified by transcriptomics (see section 
2.9). Block length is in base pairs. 
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Western and Eastern individuals (W/E). Likewise, without gene flow after 

divergence, (C/E) and (W/E) sites, which correspond to internal branches of 

genealogies that are incongruent with the population history, are expected to 

occur at equal frequency (Hudson 1983, Tajima 1983). Analogously, under 

null models of a polytomic split or a single panmictic population, all three 

types of shared derived sites are equally likely. Contrary to these simple 

models, (C/E) sites were more frequent (9.6%) than (W/E) sites (5.1%), 

which in turn were more frequent than (W/C) sites (2.8%) (see top two rows 

of table 2.9 and figure 2.10 for 2 kb count distributions). This double 

asymmetry suggests that simple divergence models without gene flow are 

likely to provide a poor fit to the data. If we assume that the majority class of 

informative sites corresponds to the order of population divergence, then 

these results imply that the Western population diverged from the common 

ancestor of the Central and Eastern populations before these in turn 

diverged. Under this model, the observed excess of (W/E) sites relative to 

(W/C) sites could arise as a consequence of gene flow between Western and  

Eastern refugia after the more recent (C/E) split (Durand et al., 2011; Lohse 

and Frantz, 2013). 
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Figure 2.10. Distribution of mutational types for WaCaE 2 kb dataset for singletons, mutations only found in one refugia and shared-derived sites. Note the 

difference in scale of the Y-axis of each plot. This plot demonstrates the distributions of allele frequencies shown for the full  and 2 kb datasets in tab le 3.7 as SNP 
counts.  
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2.8.2 Length and number of blocks 

The assumption of no linkage between blocks imposes a severe limit on the 

number of blocks that could be analysed. Without information about the 

relative position of blocks in the genome, the number of blocks must be 

chosen such that the probability that two blocks are physically separated by 

less than some minimum distance by chance can be ignored. Assuming a 

genome size of 1.75Gb for B. pallida (the average measured in oak gall 

wasps, Lima, 2012) and sampling of blocks by chance alone, the distance 

between neighbouring blocks is exponentially distributed with rate n/1.75Gb 

(where n is the number of blocks). For example, if we classify blocks 

separated from their nearest neighbour by 20kb or more as being in linkage 

equilibrium and want to ensure that less than 5% of all blocks fall below this 

threshold, we could in theory sample a maximum of 

−(1.75Gb×Log[0.95])/20kb ≈ 4500 blocks. Sampling contigs longer than 2 kb 

from the full triplet datasets resulted in about half this theoretical maximum. 

For ease of comparison across different sequence blocks, we fixed the 

number of 2 kb blocks to the minimum of number of sequence blocks for all 

datasets (i.e. in each W/C/E combination of individuals, we randomly 

sampled that number of blocks).      

 Filtering contigs by length could result in various biases that might 

affect inference. For example, more conserved and/or structurally complex 

regions of the genome with lower divergence rates are expected to assemble 

better and align with fewer errors, and so should be represented by longer 

contigs. To quantify this effect, we correlated contig length against per site 

divergence in the WaCaE data. As expected, longer contigs were on average 

less diverged (figure 2.11) (Kendall’s τ = −0.0419, p < 10−6). Consistent with 

this, the average per site diversity (θW) in the 2 kb filtered WaCaE data was 

about half of that in the unfi ltered data (table 2.9). This confirms that length 

filtering does enrich for conserved sequences. However, for the purpose of 

estimating population history, any overall bias in absolute diversity can be 

incorporated by a simple rescaling of the mutation rate. In contrast, to justify 

treating the length-filtered data as a random sample of genealogies in the 
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genome requires that the length filtering does not affect the relative 

frequency of the six possible mutational types (k = {kw, ke, kc, kwe, kwc, kec}) on 

the genealogical branches of the three populations splitting model (2.1) (i.e. 

the frequency of mutational types normalized by the proportion of 

polymorphic sites).  

 

 

 

Figure 2.11. Scatter plot of divergence/site against block length indicating longer  contigs are less 
divergent/more conserved. Individual blocks have been smeared to show densities. Red line = 
line of best fit. The red line is a l ine of best fit through the data demonstrating the negative 
trend. 
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2.8.3 Frequency of mutations between raw and length filtered datasets 

To compare the frequencies of mutational types in the full and length-filtered 

WaCaE data, we obtained a random sample of unlinked SNPs in each 

dataset by picking one SNP at random from each sequence block. In the 

length- filtered data, all 2 kb blocks were included. In the full data, SNPs 

were drawn from a random sample of 4500 sequence blocks (the maximum 

estimated to be linkage free at a plausible recombination rate, as explained 

above) to avoid linkage effects. There was no significant difference in the 

relative frequencies of the three types of shared derived mutations (table 2.9) 

(χ2 = 1.96, p = 0.38) between the fi ltered (length > 300bp) and unfiltered data 

(length 2 kb) for the WaCaE. However, there was a significant (but slight) 

excess of singleton mutations compared to shared-derived sites in the 2 kb 

data (χ2 = 9.3, p = 0.0023) in the WaCaE dataset. This may be either due to 

assembly or alignment bias or purifying selection (which is likely to be 

stronger in the 2 kb filtered data as it contains a greater proportion of 

expressed sequence) (Fu and Li, 1993). 

 

Dataset length θW W C E W/C W/E C/E 

WaCaE >300bp 0.00188 0.325 0.214 0.263 0.040 0.058 0.100 

WbCbE >300bp 0.00147 0.269 0.244 0.283 0.044 0.060 0.100 

WaCaE 2 kb 0.00089 0.338 0.22 0.267 0.027 0.049 0.098 

WbCbE 2 kb 0.00079 0.276 0.25 0.287 0.035 0.054 0.099 

 

 

 

 

 

 

 

 

Table 2.9: Genetic diversity and relative frequencies of mutational types in B. pallida sequence blocks for 
>300 bp and 32 kb datasets. 
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2.8.4 The effect of quality filtering on the final datasets 

 

The number of SNPs in the final 2 kb dataset at Q0 and Q20 filtering were 

compared across individuals (figure 2.12). There is very little difference 

between Q0 and Q20 numbers for singletons and shared-derived sites; for 

two comparisons the numbers are identical. The reason for the negligible 

effect of quality filtering is probably the strict haploid-based fi ltering of the 

SNPs on an already heavily filtered dataset.  
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Figure 2.12. Number of singletons and shared derived sites for Q0 and Q20 fi ltered data for WaCaE 2 kb sequence blocks.  
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2.9.1 Leveraging the B. pallida transcriptome to improve the final 

dataset by using it to fit mutational heterogeneity to blocks 

 

2.9.2 Proportion of expressed sequence per block  

 

The final sequence blocks were expected to be a mix of coding and non-

coding sequences. However, the term ‘expressed sequence’ is used here 

over coding sequence (CDS) because many of the individual transcripts of 

the B. pallida larval transcriptome contain 5’ and 3’ untranslated regions 

(UTRs). It is reasonable to assume that the mutation rate will differ 

(mutational heterogeneity) between the two types of sequence. To fit 

mutational heterogeneity the proportion of expressed sequence was 

identified for each alignment. The sequence blocks were then partitioned 

according to the proportion of expressed sequence. The effective neutral 

mutation rate was scaled to achieve a mutation rate for each of these bins. 

The scaling factor was the within bin divergence per site relative to the total 

divergence across all sites.  

 To identify the expressed sequences a B. pallida transcriptome (table 

2.10, see Chapter 3) was used. The transcriptome is generated entirely from 

larval tissues and as such any adult specific expression is missed. Thus the 

transcriptome is not a complete gene set and the estimated proportion of 

expressed sequence is an underestimate of the true proportion of expressed 

sequence. The Trinity assembler that generated the transcriptome assembly 

outputs transcripts with UTRs (Grabherr et al., 2011). 

 

 

 

 

 

 

B. pallida transcriptome assembly metrics 

N50 (bp) 1 736 

Number of transcripts 108 459 

Maximum transcript size (bp) 37 465 

Transcriptome length (bp) 94 447 801 

Table 2.10: Basic statistics for B. pallida used to assign expressed sequences to sequence 
blocks. See chapter 3 for more in depth description. 
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2.9.3 Linked sequence blocks 

 

The second application of the transcriptome was to identify linked sequence 

blocks. If different sequence blocks were found to match the same transcript 

it was assumed that they were sampled from regions adjacent to one another 

in the genome. In these cases only one of the linked sequence blocks was 

kept for analysis and the other(s) discarded (see table 2.11, effect of filtering 

linked blocks). 

 

2.9.4 Assigning proportions of expressed sequence to blocks 

 

The following method was applied to each dataset of 1 kb, 2 kb and 

unfiltered lengths. Firstly, the sequences for one of the individuals was 

removed from each alignment and placed into a fasta file. This fasta file was 

then searched against a nucleotide BLAST database (blastn) of the 

transcriptome (see table 2.10 for basic statistics of the transcriptome). A 

minimum e-value of 1 x 10-20 was required to accept that the sequence is 

expressed and a maximum of 10 hits were recorded per alignment. The blast 

results file (output format “6”) was then sorted to find sequence blocks with 

multiple hits to the transcriptome. One of these sequence blocks was kept 

and the others removed from the dataset, as they are probably all linked in 

the B. pallida genome (section 2.9.3). Linked sequence blocks identified in 

the 2 kb blast hits were used to filter the 1 kb dataset. This was to take 

advantage of the longer 2 kb sequence blocks and therefore chance of a 

blast hit to the transcriptome in the 2 kb alignment; it also meant the final 2 

kb; 1 kb and 500b datasets had the same number of sequence blocks. 

Then a BED file (a fi le compatible with the sequence manipulation 

tools of the BEDtools program, Quinlan & Hall, 2010) of regions within 

sequence blocks that matched expressed sequences was created. These 

regions were merged together as many transcripts overlapped the same  

region of the alignment. This was done using the mergeBed tool (Quinlan & 

Hall, 2010). Because the Trinity assembler (Grabherr et al., 2011) outputs 
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potential isoforms of a gene such multiple mappings are expected to occur. 

The proportion of expressed sequence for each alignment was computed 

from the mergeBed output by dividing the region of the alignment covered by 

transcripts by the total length of the alignment. Proportions were then 

combined into one proportion per alignment using a perl script. This was 

necessary where transcripts matched to non-overlapping regions of the 

alignment, because mergeBed does not merge such regions. The 

proportions were appended to the filtered MUSCLE sequence blocks fi le for 

use in the maximum likelihood analyses.  

Table 2.11 shows the results of filtering linked sequence blocks for the 

WaCaE dataset and table 2.8 the numbers of blocks remaining for all four 

comparisons. A much higher proportion of the 2 kb dataset contains 

expressed sequences than the full dataset at 52% to 31% compared to the 

unfiltered dataset. This is probably because longer blocks of sequence 

represent more unique regions of the genome. Such regions are easier to 

assemble than more repetitive regions and resulting in longer contigs 

assembled.  

 

Dataset WaCaE 2 kb WaCaE unfiltered 

Number of blocks 2 871 84 822 

Blocks hitting transcripts 1 501 25 883 

Percentage  52 31 

Number blocks kept 1 92  6 501 

Number removed 2 31 14 536 

Remaining blocks 2 640 70 286 

 

To be able to compare likelihoods across datasets, we fixed the 

number of blocks to 2 231 in all analyses, the lowest number of final 

sequence blocks for any combination of individuals (table 2.8, comparison 

WbCbE) after removing blocks that may be linked based on alignment of 

sequence blocks to the B. pallida transcriptome.  

Table 2.11: The effect of removing linked sequence blocks on total numbers of blocks. 
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2.9.5 The proportion of expressed sequence in a contig correlates 

negatively with mutations per site  

 

In total, 50% of all contigs in the WaCaE dataset had no hit to the 

transcriptome and are thus considered non-expressed. Across all sites the 

proportion of expressed sequence was 70% for those contigs that did contain 

expressed sequence. This together with the increased GC content in the 

filtered datasets (for WaCaE 38.6 – 39.5%, table 2.8 compared to table 2.3) 

clearly showed that our fi ltering strategy enriched for expressed sequence. 

Figure 2.13 shows the negative relationship of mutations per site versus 

proportion of expressed for the WaCaE triplet from 2 kb filtered data. The 

regression line indicates a strong negative relationship (Kendall’s tau = -

0.389, p-value = 2.22 x 10-16). This correlation is much stronger than for the 

WaCaE triplet for all data unfiltered for length (Kendall’s tau = -0.0419, p-

value =< 2.22 x 10-16), which probably reflects the greater proportion of 

expressed sequence in the 2 kb dataset versus the length unfiltered blocks. 

The plot confirms the expectation that expressed sequences are under 

purifying selection and many deleterious polymorphisms are removed. Much 

unexpressed sequence is probably under no such constraint, however 

purifying selection does occur in non-coding sequence (Halligan et al., 2011). 

Therefore, it cannot be concluded that expressed and unexpressed 

sequence represents a dichotomy between sequence under selection and 

neutral sequence.  
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Figure 2.13. Mutations per site against proportion of expressed sequence for the WaCaE 2 kb dataset, the dashed red line is a line of best fit showing the 
negative trend in mutations/site with increasing proportion of expressed sequence. 
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2.10.1 Likelihood analyses of historical models    

K. R. Lohse carried out the maximum likelihood analyses in Mathematica v8 

(Wolfram Research, 2010).  

The data were summarized as a vector of mutational types in each sequence 

block. Likelihoods of model parameters given the numbers of the six mutation 

types in a block were calculated numerically. The probability of observing a 

particular mutational configuration in a sequence block (which can be interpreted 

as the likelihood of the model) can be expressed in terms of the partial 

derivatives of a generating function (Lohse et al., 2011). Assuming that 

alignment blocks are unlinked and hence statistically independent, the joint 

logarithm of the likelihood (lnL) across blocks is the sum of individual block lnL.

 To conduct a broad search of model space, we took a strict divergence 

model between three populations as a starting point and considered all histories 

that involve a single unidirectional admixture event either to or from the oldest 

(or first diverging) population. Models with bidirectional or multiple admixture 

events were not considered because the additional parameters are 

computationally intractable, and also because these models are biologically 

unexpected: expansion out of refugia is expected to be a unidirectional process. 

For each of the six models, we numerically computed the parameter values that 

maximized lnL across a large number of sequence blocks of fixed length.  

      

2.10.2 Likelihood model results       

              

Comparing the three possible histories of strict divergence, a population tree 

topology (W,(C,E)) had highest support (ΔlnL), as expected from the frequencies 

of shared derived sites. Allowing for different values of Ne in the two ancestral 

populations did improve model fit (table 2.12). However, 8–9 of the 18 models 

involving admixture had greater support (table 2.12). The best supported history 
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still assumes a (W,(C,E)) population tree topology but involves substantial 

admixture (proportion of admixture, f = 0.76 − 0.83) (table 2.12) from the Eastern 

into the Western refuge shortly after the split between Centre and East (model B 

in figure 2.1).          

 The WaCaE and WbCbE sequence blocks yielded the same ranking of 

models and gave very similar parameter estimates with broadly overlapping 

95% confidence intervals (tables 2.12-13 and figure 2.14). For completeness, 

analogous analyses for the other two possible triplet datasets (i.e. WaCbE, 

WbCaE) were also run, both of which again identified the same best model and 

gave similar admixture estimates (WbCaE f = 0.85; WaCbE f = 0.69). 

Interestingly however, the estimated admixture proportion f was slightly higher in 

both triplet analyses involving the individual from Southern Spain (figure 2.12) 

(see Discussion). Repeating the analysis for WaCaE at block lengths of 500 and 

1000 bases resulted in the same model choice and similar parameter estimates 

(appendix, tables 2.15-16). 
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 k    

Panmixia  1 -589.3   

Polytomy 2 -88.7   

Gene flow  (W1;(C2;E3)) (C1;(E2;W3)) (E1;(C2;W3)) 

A) 21 5 -9.1,(T1) -18.8 -18.2,(f*) 

B) 31 5 0 -88.7,(T1, T2) -88.7,(T1,f*) 

C) 2/31 5 -4.8 -88.7,(Tgf,f*) -88.7,(Tgf,T2) 

D)12 5 -25.7, (f) -18.2,(T1) -18.2,(f*) 

E)13 5 -18 -88.7,(T1, T2) -88.7,(T1,T2) 

F)12/3 5 -25.7, (f*) -79.4 -33.4,(Tgf) 

2 pop. 2 -260.8 -404 -474.5 

3 pop. 2 -25.7 -88.7,(T2) -88.7,(T2) 

2 pop. Ne 3 -48.5 -90.1 -93.7 

3 pop. Ne 4 -20.8 -88.7,(T2) -88.7,(T2) 

 

 

 

 

 

 

 

 

Table 2.12. Support for alternative scenarios of divergence and admixture in the oak gall  wasp B. pallida 
(WaCaE, 1 kb data). Support (ΔlnL) relative to the best model (given a value of 0) for alternative histories of 

refugial populations of B. pallida estimated from the WaCaE dataset (Model B, (W1;(C2;E3)) in Fig. 3.1 has 
highest support and is shown in bold)..The labelling of populations (1 –3) and of models (A–F) corresponds to 
that in Fig. 3.1; all  scenarios involving unidirectional admixture were assessed for each of the three possible 
orders of population divergence (columns 1–3). Models of strict divergence without admixture between two 

(2 populations i.e. T1 = 0) or three (3 pop.) populations were fitted assuming either a single or two different Ne 
(indicated where Ne is included in the row headings) for ancestral populations Parameters for which the MLE is 
0 (i.e. the model reduces to a simpler nested model) are indicated in brackets (f*) refers to complete 
admixture, i .e. f = 1). 
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 k    

Panmixia  1 -589.3   

Polytomy 2 -88.7   

Gene flow  (W1;(C2;E3)) (C1;(E2;W3)) (E1;(C2;W3)) 

A) 21 5 -14.9,(T1)  -21.1 -33.2,(f*) 

B) 31 5 0 -59.9,(T1) -59.4,(T2,Tgf) 

C) 2/31 5 -14.3 -59.9 -60.3,(Tgf, f*) 

D)12 5 -18.0 -19.4,(T1) -19.4,(T1) 

E)13 5 -18 -60.0,(f) -60.0,(f*) 

F)12/3 5 -33.2,(f*) -49.7 -14.4,(Tgf ) 

2 pop. 2 -265.3 -293.6 -386.7 

3 pop. 2 -33.2 -60 -60.3,(T2) 

2 pop. Ne 3 -46.1 -60 -64.7 

3 pop. Ne 4 -31.0 -60 -60.3,(T2) 

 

 

 

Table 2.13. Support for alternative scenarios of divergence and admixture in the oak gall  wasp B. pallida 
(WbCbE, 1 kb data). Support (ΔlnL) relative to the best model (given a value of 0) for alternative histories of 
refugial populations of B. pallida estimated from the WbCbE dataset (Model B, (W1;(C2;E3))  in Fig. 3.1 has 
highest support and is shown in bold). The labelling of populations (1–3) and of models (A–F) corresponds to 

that in Fig. 3.1; all  scenarios involving unidirectional admixture were assessed for each of the three possible 
orders of population divergence (columns 1–3). Models of strict divergence wi thout admixture between two 
(2 populations i.e. T1 = 0) or three (3 pop.) populations were fitted assuming either a single or two different Ne 

(indicated where Ne is included in the row headings) for ancestral populations. Parameters for which the MLE 
is 0 (i.e. the model reduces to a simpler nested model) are indicated in brackets (f*) refers to complete 
admixture, i .e. f = 1).  
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Figure 2.14. A) ΔlnL plots for the times of divergence (T1 (black) and T2 (blue)) and admixture Tgf  (red). Estimates from the WaCaE data are 

shown as solid lines, those from the replicate data set WbCbE as dashed lines. B) ΔlnL for the admixture proportion f. 

A) B) 
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To provide an order of magnitude time calibration for the inferred history, we 

applied a direct, genome-wide estimate of the effective neutral mutation rate of 

3.5 × 10−9 per site and generation measured in Drosophila melanogaster 

(Keightley, 2009). To account for the bias towards conserved sequence in our 2 

kb filtered data, we scaled the D. melanogaster rate by the ratio of per site 

diversity in the fi ltered and unfi ltered data (0.47 and 0.54 for WaCaE and 

WbCbE data respectively (see θW in table 2.9). Assuming that B. pallida has two 

generations per year (Csóka et al., 2005; Atkinson et al., 2003) this calibration 

gives effective population sizes between 39,000 – 52,000 (table 2.14). The time 

of admixture and the more recent split (tgf, t1) both date to the last glacial period 

(Weichselian, 12-110 thousand years ago [kya]), whereas the MLE for the oldest 

split (t2) falls in the previous (Saalian, 130-200 kya) glacial period. However, 

because the molecular clock is from a different insect order, these absolute 

dates are tentative at best.  

Finally, scaling the effective neutral mutation rate of each bin to account 

for mutational heterogeneity drastically improved model fit (table 2.14). It had no 

impact on the ranking of alternative models or parameter estimates under the 

best-supported model. However, we did find that incorporating mutational 

heterogeneity led to a slight reduction in both divergence time and Ne estimates 

(table 2.14).  
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Dataset μ het. ΔlnL f Θ(Ne) Tgf (tgf) T1 (t1) T2 (t2) 

WaCaE, 1 kb no -9269.3 0.76 

(0.72, 0.79) 

0.69 

(52 000)  

1.04(54KY) 

(51–58KY) 

1.21(63KY) 

(60-66KY) 

3.34(173KY) 

(158-189KY) 
        

WbCbE, 1 kb no -8815.1 0.83 
(0.80,0.86) 

0.64 
(43 000)  

0.95(41KY) 
(38–44KY) 

1.17(50KY) 
(51-57KY) 

3.51(151KY) 
(135-168KY) 

        

WaCaE, 1 kb yes  -8769.7 0.76 

(0.72,0.79) 

0.61 

(45 900)  

1.1(50KY) 

(47–54KY) 

1.26(58KY) 

(55-60KY) 

3.45(158KY) 

(143-172KY) 
        

WbCbE, 1 kb yes  -8444 0.82 
(0.79,0.85) 

0.58 
(39 100)  

0.97(38KY) 
(35–40KY) 

1.17(51KY) 
(49-54KY) 

3.47(136KY) 
(121-151KY) 

        

 

 

 

 

 

 

 

 

 

 

 

Table 2.14 Parameter estimates under the best-supported model. MLE are given for different triplet 
combinations and analyses with and without mutational heterogeneity. Both effective population size and 

divergence time parameters are scaled relative to the rate of coalescence, i.e. in 2Ne generations. Absolute 
values calibrated using a direct, genome-wide mutation rate for Drosophila (Keightley et al., 2009) and 
assuming two generations per year are given in brackets. 95 %C.I. of scaled parameter values are given in 

brackets below the point estimate. 
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2.11 Discussion  

The results show how outgroup-rooted sequence blocks of thousands of 

orthologous sequence blocks can be generated for multiple individuals using 

low-coverage genomic data and standard de novo assembly tools. Although the 

requirement for orthologous sequences in in- and outgroup and the fi ltering 

against repetitive sequences and short contigs enrich for coding and otherwise 

selectively constrained sequence, in the case of B. pallida, the frequency of 

mutational types is little affected. This suggests that the resulting data provide a 

representative sample of neutral variation in the genome that, if analysed in a 

multi-locus framework are highly informative about recent history 

 

2.11.1 Admixture dominates the history of Biorhiza pallida 

 

The model fit to B. pallida of (W,(C,E)) population divergence with strong East to 

West admixture differs qualitatively from previous population genomic inferences 

of divergence with admixture (Green et al., 2010; Lohse et al., 2013; both on 

gene flow between modern Homo sapiens and Neanderthals) in two ways. 

Firstly, admixture is from the more recently diverged population (E) into the older 

population (W), so in the opposite direction to that observed in the three -

population analysis of our own Neandertal ancestry (Green et al., 2010; Durand 

et al., 2011). Secondly, the history of B. pallida is dominated by admixture rather 

than divergence (table 2.12, f = 0.76 − 0.83). Despite this, the majority class of 

shared derived sites is still ‘C/E’, and so concordant with the order of population 

divergence (W,(E,C)). This is a peculiar consequence of the direction of 

admixture: going backwards in time, ‘W’ lineages that trace back to the ‘E’ 

population via admixture only spend a short time in the ‘E’ population before 

they trace back to the ancestral ‘C/E’ population. 

Both the order of population divergence and the direction of admixture 

are unexpected. First, our inference of initial divergence of the Western refuge 
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contrasts with a previous meta-analysis of 12 oak gall wasps (including B. 

pallida and 19 associated parasitoid species (Stone et al., 2012), as well as a 

multi-locus study that compared the history of four oak gall parasitoid species 

(Lohse et al., 2012). This history is also incompatible with mitochondrial DNA 

gene trees and patterns in allozyme diversity in other gall wasps (Stone et al, 

2001, 2007; Rokas et al., 2003; Challis et al., 2007). Both studies found a 

general signature of (E,(C,W)) divergence on a community scale, but had 

insufficient power to resolve the order of population divergence in individual 

species (or to fit additional admixture parameters). Interestingly, however, the 

deep split of the Iberian population from other refugia here inferred for (B. 

pallida) is compatible with the mitochondrial genealogy reconstructed by Rokas 

et al. (2001). Second, the history of (B. pallida) involves substantial admixture 

from the Middle East into Iberia bypassing the Balkans. Migration into Iberia 

through North Africa, possibly via a Sicilian land bridge to Tunisia, is the most 

plausible route of dispersal. Striking floristic links between Iberia and Asia Minor 

have been found across a range of plant taxa (Davis and Hedge, 1971), 

including oaks (Lumaret et al., 2002), and there is genetic evidence that Iberia 

was colonised from North Africa during the Pleistocene by some animal taxa 

(Griswold and Baker, 2002; Habel et al., 2008). Our finding of a higher 

admixture fraction from the east for the sample from Southern (Wb) compared to 

Central (Wa) Iberia further supports a scenario of dispersal via North Africa. 

Similarly, the genetic similarity of extant populations of oak gall  wasps (Rokas et 

al., 2003) and their parasitoids (Nicholls et al., 2010) in Morocco and Spain 

suggests that the Strait of Gibraltar presents little or no barrier to gene flow. 

Given the lack of molecular calibrations for Hymenoptera in general and gall 

wasps in particular, our absolute time estimates are tentative at best. 

Nevertheless, it is clear that the divergence and admixture between refugial 

populations of B. pallida is recent, encompassing no more than two or three 

glacial cycles. 
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2.11.2 Sampling the genome and the limits of power  

While in the past, most statistical analyses of phylogeographic scenarios were 

limited in power by the number of available loci (Carstens et al., 2009; Lohse et 

al., 2012), the massive replication of sequence blocks afforded by short-read 

sequencing overcomes this and in the case of B. pallida allowed us to reliably 

identify the best fitting history among a set of alternative divergence and 

admixture scenarios. 

However, despite increasing the number of loci by several orders of 

magnitude, the difference in support we find for some alternative models (tables 

2.12-13) is still relatively modest, suggesting that the power to distinguish more 

complex models is limited. For example, it would be hard to distinguish multiple 

admixture events from a single event or a model of continuous migration (Hey 

2005). It is worth reiterating that the lack of linkage information for the B. pallida 

assembly imposes limits the number of blocks we were able to include in the 

maximum likelihood analyses, i.e. the final analysis only included 2.2Mb of 

sequence, a mere 0.13% of the genome. In other words, most of the assembled 

genome remained unused. If one had complete linkage information, i.e. if the 

relative position of blocks was known, one could sample b locks at fixed intervals 

(Lohse and Frantz, 2013), which would increase the number of blocks that can 

safely be taken as unlinked by an order of magnitude. However, the gain in 

power is limited, as increasing the number of independently segregating blocks 

by a factor k increases the accuracy of parameter estimates by √k (Lohse and 

Frantz, 2013), although still worth exploiting . Instead, it is the recent time-scale 

of the B. pallida history that sets an inherent limit to the complexity of models 

that one can hope to discriminate among, using a multi-locus approach. 

Given this mutational limitation, it is clear that increasing the number of 

individuals sampled from within each population would also only slightly improve 

inference: most ancestral lineages would coalesce rapidly, i.e. the vast majority 

of genealogical branches added by larger samples would be unresolved, and so 
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would not give much extra information. Very large samples of a long non-

recombining sequence can be informative (Kong et al., 2011), but mainly about 

even more recent population history than the timescale considered here. 

Sampling individuals a further distance apart would give extra information, but 

also requires more complex models, involving multiple parameters for 

separation times and admixture rates. In general, these considerations suggest 

that there will be an upper limit to the signal contained in even an extremely 

large number of short, unlinked sequence blocks.  

In contrast, we would have far more information if we could analyse the 

full linear sequence and explicitly use linkage information. In B. pallida, a total of 

3.5% of the genome would be usable after filtering for unique orthologous 

sequence, but allowing an arbitrary degree of linkage; ultimately, of course, we 

could use the whole genome in such an analysis. In lieu of this, methods that do 

not require outgroup alignment would increase the size of the B. pallida dataset 

further. Pairwise sequence blocks of Centre A and Centre B individuals yielded 

194 231 blocks covering 230 megabases (mb) with an N50 of 898 bp and 479 

590 SNPs with quality scores greater than twenty. Whereas 2 231 blocks 

spanning 4.5 mb of sequence for the 2 kb datasets was used in this analysis. 

Additionally, such a dataset is far easier to construct than the one developed 

here as no identification of orthologous regions between species is required. 

The gain in power does not come primarily from this sheer volume of data; 

rather, we gain extra information from the lengths of sequence blocks. For 

example, the length of block that shares the same genealogy within a population 

is inversely proportional to its coalescence time, and the length of introgressed 

blocks of genome decreases with the time since introgression. Thus, 

recombination gives an additional time-scale, beyond that provided by mutation, 

as used here. Barton et al. (2013) show that in a two-dimensional continuum, 

the distribution of block lengths shared between genomes allows inference of 

both dispersal rate and neighbourhood size, whereas samples of allele 

frequencies do not give information about dispersal rate. Li and Durbin (2011) 
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use the distribution of heterozygous SNPs to infer ancestral population size 

through time, while Harris & Nielsen (2013) use this information to infer complex 

migration histories. However, a full statistical analysis that takes into account the 

linear structure of the genetic map not only remains extremely challenging 

analytically, but also requires much better assemblies or linkage maps than can 

currently be achieved for most organisms in practice.  

In the meanwhile, the combination of de novo assembly and numerical 

likelihood computation we develop here provides a level of resolution far beyond 

that of traditional phylogeographic analyses of a few loci. The fact that our 

bioinformatic pipeline yielded sufficient data (and resolution to distinguish 

between models) in an oak gall wasp, the group with the largest known 

genomes in the Hymenoptera (Lima, 2012), is encouraging and suggests that 

analogous analyses will be feasible in a large range of organisms or even whole 

ecological communities (Stone et al., 2012). This is because, for species with 

smaller genomes adequate coverage can be achieved at lower costs; a situation 

further improved by future advances in Illumina (and potentially other 

technologies) sequencing yields. Furthermore, our sensitivity analyses suggest 

that such inferences based on large numbers of blocks and few individuals are 

robust in two fundamental ways. Firstly, and despite the fact that undetected 

recombination can bias multi-locus analyses (Strasburg & Rieseberg, 2009), 

neither model selection nor parameter estimates are much affected by the 

length of sequence block (table 2.16). Secondly, the fact that we recover 

essentially the same population history using individuals sampled many 

dispersal distances apart highlights that simple, discrete population models can 

be a useful approximation to recent, intra specific histories. 
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2.12 Appendix 

Figure 2.15. Global cytochrome B (Cytb) phylogenetic tree with orange box surrounding region blown-up for figure 
2.2. Black stars represent posterior probabilities of ≥0.9, hollow stars ≥0.7. Phylogeny courtesy of J. Nicholls. 
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Model Admixture k  500b   2 kb  

Panmixia No 1  -263.2   -948.7  

Polytomy No 2  -59.3   -111.6  

Topology   (W1;(E2;C3)) (C1;(E2;W3)) (E1;(C2;W3)) (W1;(E2;C3)) (C1;(E2;W3))  (E1; (C2;W3)) 

2pop. No 3 -109.6 -197.3 -239.8 -446.4 -601.6 -692.2 

3pop. No 4 -19.2 -59.3,(T2) -59.3,(T2) -46.2 -111.6,(T2) -111.6,(T2) 

A) 21 5 -12.8,(T1) -5.5 -19.2,(f*) -16.6,(T1) -46.2(f*) -28.3 

B) 31 5 0 -59.3,(T1, f*) -59.3,(T2, f*) 0 -111.6,(T2,f) -111.6,(T2,f*) 

C) 2/31 5 -12.5 -59.3,(Tgf,f*) -59.3,(Tgf, T2), N/A -111.6, (Tgf, f*) -111.6,(Tgf, f*) 

D) 12 5 -19.2,(f) -8.3,(T1) -19.2,(f*) -30.1,(T1) -46.2,(f*) -30.1 

E) 13 5 -8.2 -59.3,(T1,T2) -59.3,(T2,f) -46.2,(f) -111.6, (T1, T2) -111.9,(T2,f) 

F) 12/3 5 -19.2,(f*) -57.5 -13.4,(Tgf) -45.8, -40.4,(Tgf) -100.4 

 

Table 2.15 Support (ΔlnL relative to the best model) for alternative divergence scenarios for three refugial populations of B. pallida without 
admixture or with unidirectional admixture (A–F) for alternative block lengths (500b and 2 kb). All  possible scenarios (the labeling of 
populations (1–3) and of models (A–F) corresponds to Fig. 2) were assessed for the three possible orders of population divergence (columns 1 –

3). Parameters for which the MLE is 0 (i.e. the model reduces to a simpler nested model) are indicated  in brackets (f* refers to complete 
admixture, i .e. f = 1). The model with highest support is shown in bold. 
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Dataset μhet. ΔlnL f θ (Ne) TGF(tGF) T1(t1) T2(t2) 

WaCaE, 500b no -6560.4 0.67 0.39(59,200) 0.65(38KY) 0.93(54KY) 2.44(144KY) 

WaCaE, 1 kb no -9269.3 0.76 0.69(52000) 1.04(54KY) 1.21(63KY) 3.34(173KY) 

WaCaE, 2 kb no -10713.2 0.69 1.34(52900) 1.04(53KY) 1.23(62KY) 2.73(138KY) 

Table 2.16 MLE of parameter estimates under the best-supported model for the WaCaE alignment and 
three different block lengths: 500b, 1 kb, and 2 kb. Both effective population size and divergence time 
parameters are scaled relative to the rate of coalescence, i.e. in 2Ne generations. Absolute values calibrated 
using the direct, genome-wide Drosophila mutation rate of Keightley et al., (2009) and assuming two 

generations per year are given in brackets. 
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Chapter 3: Dissecting an extended phenotype: 

candidate genes for gall induction by cynipid 

gall wasps 

 

 

3.1 Introduction 

 

Genes involved in gall induction and formation can be identified by 

comparing gene expression of the three growth stages of gall development in 

the gall wasp, Biorhiza pallida, and its oak host Quercus robur. It is 

hypothesized that early stage gall wasp larval gene expression is focused on 

inducing the gall, with corresponding high expression of relevant oak genes. 

To test this hypothesis, I compared diversity and relative levels of gene 

expression in three key stages of gall growth (early, growth, mature), and 

specifically compared early stage galls with growth and mature stages. 

Firstly, transcriptome sequence reads generated using RNA sequencing 

(RNASeq) were assigned to a species of origin as best as possible 

bioinformatically, and species-specific de novo assemblies created. Then 

species-assigned reads from each gall stage replicate were aligned to these 

assemblies and expressed genes quantified. Genes more highly expressed 

in the early stages were identified by differential expression analysis. 

Differentially expressed genes were functionally annotated and potential 

orthologs of larval genes identified in a phylogenetically close oak gall wasp  

(Belizinella gibbera) and a more distantly related rose gall wasp (Diplolepis 

spinosa). Finally, existing hypotheses of gall induction are evaluated in the 

light of my results and new, specific, hypotheses regarding gall induction are 

proposed.  
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3.1.1 The stages of gall induction are the basis of the experimental 

design 

The stages of gall induction are discussed and referenced at length in 

Chapter 1 and are briefly reiterated here. There are three recognizable 

stages of gall induction that make excellent sampling points. The stages of 

gall induction I sampled can be summarised as follows: 

Induction: The gall wasp egg is oviposited at a key spot in host meristem of 

the appropriate organ (Shorthouse et al., 2005). By the time the egg hatches, 

host plant cells surrounding the egg have de-differentiated to become callus-

like cells. The larva lies in a space that will become its chamber surrounded 

by differentiating gall tissues that are undergoing rapid gall growth. Very 

simply, an early stage gall is small (of the order of a few mm in diameter) and 

so are the larvae (ca. 1mm long). 

Growth: Nutritive cells form around the larval chamber from gall 

parenchyma. These cells are the only food source for the larva, but contain 

high levels of lipids and carbohydrates and have high nitrogen content. The 

gall tissues continue to grow, vascularize and import nutrients from the rest of 

the host. The gall is now much larger than the early stage but the larvae have 

not noticeably grown.  

Mature: A layer of sclerenchyma develops between nutritive and outer 

parenchyma. The larvae feed on the nutritive cells and grow until  the layer of 

sclerenchyma is reached. B. pallida galls lignify and take on a brown, paper-

like appearance. The larvae pupate and eventually emerge as adults. 

However, in some species a larval or pupal diapause lasting several years 

may occur. The gall is the same size as at the growth stage but the larvae 

are much larger and their chambers enlarged as their lining of nutritive tissue 

is consumed. 

Four replicates were sampled at each stage for sufficient statistical power for 

accurate identification of differentially expressed genes between stages. 
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3.1.2 Hypotheses for gall Induction and formation by cynipid gall wasps 

and their plant hosts 

As laid out in chapter 1 there are very few hypotheses for how gall induction 

occurs. The principle hypotheses are repeated below. In the discussion, 

these hypotheses are evaluated, and new hypotheses are proposed based 

on insights from the RNAseq experiment. The hypotheses are split between 

those that concern the gall wasp, and those that concern the host. 

3.1.3 Gall wasp based hypotheses 

 

3.1.3.1 Virus-like-particles 

 

Virus-like-particles (VLPs) passing from galler to host, as proposed by 

Cornell (1983) provide a potential mechanism for transferring the key factors 

of induction. Cornell used an argument by analogy with endoparasitoid 

wasps that utilise VLPs to suppress host immune responses at oviposition 

(Whitfield & Asgari, 2003). In braconid wasps it has been shown that VLP 

(bracovirus) packaging proteins are of viral origin while the viral genome they 

carry is of wasp origin (Bezier et al., 2009).  

Cynipid VLP transmission is hypothesized to be under control of the 

gall wasp larva and not as a maternal effect (Cornell , 1983). Such VLPs 

would need to be produced continuously by the larva(e) at the early or growth 

stages to be detected by this experimental design. VLP involvement would 

be indicated by high expression of viral particle packaging proteins by the 

larvae, such as capsid proteins of viral origin. Additionally, if a distinct class 

of gall wasp genes is much more highly expressed than other genes this 

could indicate expression of VLP genome genes by host cells. This is 

because host expression is expected to be much higher in general than larval 

expression, therefore so would any gall wasp genes being expressed in the 

host and not the larva. The possibility of VLPs being introduced at oviposition 

with the egg is not addressed here, but has been explored and rejected by S. 

Cambier (personal communication).  
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3.1.3.2 Secreted proteins 

 

A high number of secreted proteins are observed in plant-host tissues 

affected by plant-pathogenic nematodes and gall midges such as the 

Hessian fly (Mitchum et al., 2012; Stuart et al., 2012). These proteins are 

characterised by a signal peptide and localisation to the host’s extracellular 

matrix, apoplast, cytoplasm or cell nucleus (Mitchum et al., 2012). The 

functional effects are poorly understood but some are candidate 'effector' 

proteins for host manipulation and suppression of immune responses 

(Mitchum et al., 2012). This status is probably at least in part because many 

of these proteins do not have orthologs in non-galling nematodes or midges 

respectively (Mitchum et al., 2012; Stuart et al., 2012). These secreted 

proteins appear to have evolved with galling in both nematodes and gall 

midges. In B. pallida proteins expressed highly in the early stage encoding a 

signal peptide are candidates for secretion from the larva(e) to act on host 

cells. As for galling nematodes and midges, a high proportion of such genes 

may have evolved within the Cynipidae and have no known orthologs.  

Highly expressed gall wasp genes encoding secretory peptides are 

potential candidates for transmission from the larvae to the host, and by 

extension direct interaction between galler and host. Secreted proteins with 

high expression in the early stage are candidates for a role specific to 

induction.  

 

3.1.3.3 Plant cell wall degrading enzymes 

 

The potentially horizontally transferred plant cell wall degrading enzymes 

(PCWDEs) discovered in several gall wasp genomes including B. pallida 

have potential roles in gall induction (chapter 4). These genes include 

cellulases, pectin and pectate lyases and rhamnogalacturonate lyases that 

break down cellulose, pectin and rhamnogalacturonan of the plant cell wall. 

They are of probable bacterial origin as they are most homologous to plant 
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pathogenic bacterial PCWDEs (chapter 4). But a close relative of the donor 

species of these genes is not identifiable.  

There are two hypotheses concerning these genes in gall wasp larvae, 

distinguished by their contrasting predictions for gene expression profiles. 

Firstly, they may have a role in gall induction, for example  by remodeling 

plant tissues. In this hypothesis, high expression in the induction phase 

relative to the growth and mature stages is predicted. Harper et al. (2009) 

hypothesise that cell wall loosening from the lysis of pectins, and presumably 

xyloglucans, could allow a large signalling molecule to permeate cell walls 

and induce galls. A second hypothesis is that these enzymes play a role in 

degradation of nutritive cell walls during larval feeding. This hypothesis 

predicts highest expression of such genes in mature galls, with very low 

expression early in gall development, when the larva is not feeding. 

 

3.1.4 Plant gene expression based hypotheses 

 

3.1.4.1 Plant hormones 

 

Auxins and cytokinins have been implicated in cynipid gall formation. 

Kaldewey (1965) and Matsui and Torikata (1970) both identified an auxin, 

indole-3 acetic acid-like (IAA) response to an Avena (Poaceae) coleoptile 

angle bioassay using larval secretions (Harper et al., 2009). This does not 

mean the secretions contain IAA, but possible factors that trigger 

concentration of plant IAA to the secretion. The cytokinin zeatin has been 

isolated from cynipid larvae and hypothesized as important in gall induction 

(Ohkawa, 1974; Matsui and Torikata, 1970; Matsui et al., 1975; Harper et al., 

2009). It is unknown whether the larva produces or concentrates zeatin from 

surrounding cells (Harper et al., 2009). Larval extracts have cytokinin-like 

effects on plant tissues, such as callus induction from stem tissues (Matsui et 

al., 1975). It appears that morphogens in cynipid larval extractions cause 

auxin- and cytokinin-like responses (Harper et al., 2009). This suggests that 

plant hormones are key to gall development, but whether as cause or effect 
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remains unknown. I identify genes that show elevated expression in the early 

stage of gall development in the host Q. robur and whose annotations identify 

them as having probable roles in plant hormone synthesis/metabolism 

expression. I discuss possible roles for activity of these genes. 

 

3.1.4.2 The galls-as-seeds hypothesis 

 

Biotin carboxylase carrier protein (BCCP) has been isolated from the nutritive 

cells of several gall wasps, including B. pallida (Harper et al., 2004). BCCP is 

a protein highly expressed in seeds of Brassica napus (Harper et al., 2009; 

Elborough et al., 1996); although similar studies are lacking for oaks. It is a 

component of the triacylglycerol lipid synthesis pathway. These lipids are a 

food source for larval gall wasps, along with other nutrients present at high 

concentrations in the nutritive cells lining the larval chamber (Harper et al.,  

2009). The high nutrient content of the gall lining mirrors that found in 

nutritive cells of developing seeds, leading Harper et al., 2000 to propose the 

‘galls-as-seeds’ hypothesis. Furthermore, associated with seed development 

are rounds of endoreduplication of nutritive cell chromosomes, and the same 

is also observed for gall nutritive cells  (Harper et al., 2009). Under this 

hypothesis the inducer manipulates host seed development pathways to form 

nutritive tissues. To test this, I compared gene expression of BCCP and 

associated proteins across gall stages. If the galls-as-seeds hypothesis is 

correct, high expression of these genes is expected in the early and growth 

gall stages. Additionally, high expression of genes associated with 

endoreduplication in early stage galls would further support this hypothesis.  

3.1.4.3 NOD factors and arabinogalactan proteins 

 

The lipo-chitooligosaccharides, or Nod factors, of the Rhizobium-legume 

nitrogen fixing symbiosis induce nodules on host plants. They activate host 

plant early nodulin genes (ENOD) that form the nodules in which the 

symbiotic exchange of nitrogen and nutrients can occur. ENOD genes may 

represent core genes of plant development that are switched on to create the 
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highly specialised Rhizobium-legume nodules. Because of this, ENOD genes 

are candidates for involvement in gall induction. Specifically, cell wall 

anchored arabinogalactan proteins (AGPs) are a recognized class of ENOD 

genes (Cassab, 1986) previously proposed for involvement in gall formation 

(K. Schönrogge, personal communication). They are proteoglycans 

consisting of less than 10% protein, the rest being predominantly a rabinosyl 

and galactosyl monosaccharides (Schultz et al., 1998). AGPs are known to 

have an important role in somatic embryogenesis (van Hengel et al., 2001). 

They can initiate somatic embryogenesis in wild type cells of the carrot, 

Daucus carota and this ability is enhanced by addition of D. carota chitinases 

(van Hengel et al., 2001). Interestingly, Rhizobium Nod factors can rescue 

somatic embryogenesis similarly to chitinase in D. carota temperature 

sensitive mutants at non-permissive temperatures (De Jong et al., 1993).  

Modification of AGP oligosaccharide side chains by secreted gall wasp 

enzymes is hypothesised to transduce key gall formation signals into host 

cells (K. Schönrogge, personal communication). AGPs are candidates for a 

direct interaction between gall wasp larva and host cells. Differentially 

expressed host genes highly expressed in the early stage will be searched 

for ENOD genes with a focus on arabinogalactan protein genes. Gall wasp 

enzymes with the potential to interact with arabinogalactan proteins will be 

searched for in the differentially and highly expressed genes in the early 

stage larvae versus the later stages of gall development.  
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3.2 Sampling, experimental design and challenges: 

The criteria for sampling different stages of gall tissues and subsequent 

sequencing and quality control or reads are described in this section. The 

methods and results of this chapter begin at the post-sequencing stage (read 

statistics: table 3.1). They are split into three sections, outlined below.  

 

A. Bioinformatic separation of reads into species. Instead of attempting 

to dissect larvae from gall tissue, the design called for bioinformatic 

separation of reads into species post-sequencing. Furthermore, key 

to a successful experiment was ensuring sufficient depth of B. 

pallida sequencing in the early and growth stages. Too little B. 

pallida mRNA sampling was the principal risk of the experimental 

design.  

 

B. Statistical analysis of stage specific variation in gene expression. 

Using the counts of each gene in each replicate, differential 

expression analysis was performed to identify genes highly 

expressed in the early stage versus the later stage of gall formation. 

Two popular differential expression programs, DESeq and EdgeR, 

were compared.   

 

C. Identifying roles of differentially expressed genes. Differentially 

expressed genes were annotated as well as possible using BLAST 

comparison to non-redundant nucleotide and protein sequence 

databases, InterProScan and subsequently BLAST2GO and GO 

term enrichment. These annotations were used as this basis for 

evaluating hypotheses and generating new ones in the discussion.  
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3.2.1 Sample selection for transcriptomics of gall induction  

 

3.2.2 A Technology driven approach to experimental design 

 

By sequencing whole galls, or segments representative of the whole, the 

high- throughput of Illumina technology was leveraged. RNA derived from the 

oak host was deliberately 'over-sequenced' to adequately sample the much 

lower proportion of gall wasp larval expression. In doing so, gall tissues were 

treated as one system containing multiple actors. This approach is well suited 

to exploring an extended phenotype as the host, Q. robur, expression 

became integral to the design.  

The sequencing design called for four replicates at each stage giving 

twelve samples in total. This number of replicates represented a trade-off 

between enough samples for robust statistical inference and available 

resources. A protocol was developed for collecting gall tissues in the field 

using the preservative RNAlater (Ambion). It was designed to minimise 

changes and degradation in RNA expression due to removal of galls from the 

host. Sampling was carried out at several sites around the town of Blandford 

Forum, Dorset (50°51′43″N, 2°9′45.5″W) in Southern England. Under this 

design, the difficulty of dissecting larvae form gall tissue was shifted onto the 

bioinformatic problem of separating reads by species post hoc.  

B. pallida is a multi locular gall meaning there are multiple larvae 

developing in a single gall. This causes unknown variation in the number of 

larvae between galls but is expected to negate  the effect of parasitoids and 

inquilines on expression analyses. Because of the replicated design, 

parasitoid and inquiline expression is not expected to confound B. pallida 

expression. It also increases the proportion of gall wasp derived tissues in 

early stage galls compared to many unilocular gall producing gall wasps. 
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3.2.3 Gall collecting and dissection in the field 

 

Gall development is a continuum but by using certain criteria galls of 

approximately the same stage were identified. For early galls a diameter of 

<0.5cm, but smaller if possible were collected (figure 3.1, early stage galls 

selected for sequencing). Growth stage galls were identified by their much 

larger size, but when dissection the larva(e) remained small. Where larvae 

were not visible the larval chambers could still be identified (figure 3.2, 

growth stage galls selected for sequencing). Growth stage tissues are moist, 

rapidly oxidise on exposure and vascularisation is occurring but not yet 

complete (figure 3.3, mature stage galls selected for sequencing). Mature 

galls had large growing larvae that were active and could be observed 

feeding using their pincer-like mandibles. At this stage larval chambers are 

enlarged hollows as feeding depletes nutritive tissues. B. pallida gall tissues 

also lignify and dry out becoming much harder to slice open. Externally they 

take on the texture and shade of a brown paper bag. Growth and mature 

stage galls were sliced open with a razor blade the gall in half and an internal 

picture taken to use the larva(e) and chambers as stage diagnostics. This 

was done quickly to minimise changes in gene expression and with latex 

gloves to avoid contamination.  

Small galls were rapidly sliced into halves or quarters and immediately 

immersed in RNAlater (Ambion). Even when the gall was tiny it was sliced in 

half to allow RNAlater (Ambion) to rapidly permeate inner tissues. Larger 

galls were first cut in half and thin segments sliced from the centre out, akin 

to orange segments, and placed in RNAlater (Ambion) (figure 3.4). Each 

segment contained the inner and outer tissue sampled in proportions 

representative of the complete gall except for the epidermis.  
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Figure 3.1. Early stage galls  chosen for sequencing, collected April  2011.  
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Figure 3.2. Growth stage galls  chosen for sequencing, collected April  2011. The bottom row is an internal view showing small larvae with pronounced 
chambers and vascularisation of tissues. 
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Figure 3.3. Mature stage galls  chosen for sequencing, collected April  2011. The bottom row is an internal view showing large feeding larvae with 
pronounced hollowed chambers and lignification of tissues. 
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3.2.4 Extracting RNA 

 

Extractions for each of the twelve RNASeq experiment samples followed that 

of the RNEasy plant mini kit extraction protocol for plants and fungi (Qiagen) 

with modifications outlined here. The frozen sample tubes were weighed and 

then thawed at room temperature and the gall tissue placed into a mortar and 

pestle pre-cooled and filled with liquid nitrogen (LN). The tubes were then re-

weighed without the samples for an approximate gall tissue weight. For 

smaller galls with diameters <0.5cm the whole gall was extracted on two 

extraction columns. For much larger growth and mature galls four segments 

were combined per gall. Multiple segments were combined to balance the 

effect of segments sliced poorly in the field. The sample was ground in LN 

until a fine powder was left and there was no resistance to the pestle. The 

amount of lysis buffer used depended on the number of columns used for the 

RNEasy (Qiagen) extractions. All extractions for a single gall/sample were 

combined into one tube and a small amount (15-50 micro litres) aliquoted 

Figure 3.4. A slice of gall  tissue ready to be immersed in RNAlater 
(Ambion) for extraction. Gall tissues oxidise rapidly on exposure to 
air highlighting the larval chambers. 
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into another Eppendorf tube for quality control. The rest was immediately 

frozen at -80°c until ready for sequencing. 

 

3.2.5 Quality controlling RNA samples post extraction 

 

Samples were assessed for RNA purity using the 260/280 and 260/230 ratios 

measured on a NanoDrop spectrophotometer (Thermo Scientific). The 

GenePool (Edinburgh) required 260/280 ratios >1.85 for RNA sequencing. 

The ideal 260/230 ratio is 2, however many samples from larger galls had 

lower ratios of approximately 1.3 possibly due to carry-over of carbohydrates 

and other impurities caused by column overloading during extraction. 

Samples with low 260/230 ratios did not cause a problem during library 

preparation and sequencing. One sample (270C) required additional 

purification; this was done using the appropriate RNEasy (Qiagen) plant mini 

kit protocol. All sample extractions yielded high concentrations of RNA. 

To determine if the RNA had good integrity an Agilent 2100 

Bioanalyzer (Agilent Technologies) total RNA nano trace was run on the 

samples. Assessing the ratio of the 28s to 18s ribosomal RNA peaks is a 

proxy for total RNA integrity (figure 3.5). All samples submitted for 

sequencing had no visible degradation on the Bioanalyzer traces validating 

the RNAlater (Ambion) based field collection protocol. 

 

Figure 3.5. Agilent 2100 Bioanalyzer (Agilent Technologies) trace of total RNA for sample 4, x-axis is sixe 

of fragment in nucleotides and y-axis is fluorescence units. The lack of degradation of the 18s and 36s 
rRNA peak or at the baseline confirms that RNA is of sufficient quality for sequencing. 
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3.2.6 Reverse Transcriptase Polymerase Chain Reaction 

 

Prior to sequencing it was not known if gall wasp RNA was at detectable 

levels in the sampled tissues, especially for early stage extractions. Reverse 

transcriptase polymerase chain reaction (RT-PCR) using a pair of exon-

primed intron-crossing (EPIC) primers was used to establish if there was 

detectable gall wasp expression in the extraction. A positive control of B. 

pallida DNA was used to confirm cDNA was amplified and not residual 

genomic DNA. EPIC loci will amplify different sized bands depending on if 

the amplicon contains an intron or does not. The EPIC primers used were 

designed from the Nasonia vitripennis genome and ESTs and tested across 

a range of gall wasps and chalcid parasitoids (Lohse et a l., 2010; further 

refined for cynipids by James Nicholls, personal communication). Primers for 

the genes Receptor for Activated C Kinase 1 (RACK1) and Ribosomal 

Protein L37 Rpl37 worked best and were specific to  B. pallida. All sequenced 

samples were positive for these two loci. Sanger sequencing of amplicons 

confirmed cDNA to be B. pallida by comparison to the sequence of the 

positive control. 

 

3.2.7 Library preparation 

 

All 12 samples were prepared as 100 base pair (bp) paired-end TruSeq 

libraries 

(http://www.Illumina.com/products/truseq_rna_sample_prep_kit_v2.ilmn) by 

The GenePool and multiplexed together for sequencing on an Illumina HiSeq 

2000. Multiplexing the samples minimises inter-lane technical effects of 

sequencing as all samples are affected to the same extent. For a second 

lane of sequencing the 8 early and growth stage libraries were multiplexed 

together. This was to increase the number of gall wasp reads sequenced in 

the early stages of gall developmental when the proportion of gall wasp 

derived tissue is lowest. 

 

http://www.illumina.com/products/truseq_rna_sample_prep_kit_v2.ilmn
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3.2.8 Sequencing results  

 

Quality filtering was carried as for genomic DNA in chaper 2 and before and 

after filtering results is given in table 3.1. One difference between 

transcriptome and genome data is overrepresentation of certain oligomers at 

the beginning of RNASeq reads. This is because of biased random hexamer 

priming during the reverse transcriptase stage of library preparation, (Hansen 

et al., 2010) and is not uncommon with RNAseq data. 
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Sample 
Name 

Stage Read Count (millions) Bases (Gb) Filtered Pairs (millions) Singles (millions) Filtered Bases 
(Gb) 

1 Early 51.4 10.32 48.0 2.6 9.55 

4 Early 39.4 7.88 37.1 1.8 7.40 

8 Early 28.7 5.74 27.1 1.4 5.39 

211 Early 33.9 6.78 31.6 1.8 6.29 

127 Growth 45.5 9.09 41.4 3.2 8.23 

148 Growth 37.9 7.58 35.1 2.2 6.98 

182 Growth 17.1 3.43 45.8 0.6 3.28 

224 Growth 32.0 6.40 29.5 2.0 5.85 

234 Mature 11.4 2.28 10.9 0.4 2.18 

252 Mature 8.7 1.75 8.3 0.3 1.68 

270C Mature 13.1 2.63 12.6 0.4 2.53 

281 Mature 14.2 2.85 13.6 0.5 2.74 

Table 3.1. Combined Il lumina read statistics for raw and fi ltered data for each transcriptome sample.  
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3.3 Part A) Bioinformatic separation of reads into species: has enough 

gall wasp mRNA been sequenced? 

 

3.3.1 Estimating the insert size of paired-end data 

 

Estimating the insert size of paired-end data is important as overlapping 

reads can be combined to create super-reads for less memory demanding 

assemblies. It is also useful for recognizing irregularities resulting from library 

preparation. RNA sequencing library preparation results in an expected 

fragment size of 190 base pairs (bp) (GenePool, personal communication). 

At this fragment size an overlap of 10 bp will occur between two 100 bp 

paired-end reads on average; the distance the pairs overlap will increase 

with shorter fragment sizes. To estimate the insert size, and standard 

deviation of the insert size a single-ended CLC bio de novo assembly 

(v4.0.3, http://www.clcbio.com/products/clc-assembly-cell/) of the data was 

made and the reads mapped back to the data following the section ‘How to 

map reads to an assembly to get insert-size and coverage information using 

CLC’ of the assemblage protocol (available at: 

https://github.com/sujaikumar/assemblage) (Kumar, 2012). The reads from 

each replicate were separately mapped to the single ended assembly using 

CLC reference assembly (V4.0.3). Then a script that calls CLC assembly info 

(v.4.0.3) outputs files containing coverage and insert size estimates for each 

pair of reads. The output files are used for the next section of the 

assemblage protocol ‘How to make a plot of insert sizes for each library.’ The 

plots revealed that average insert size for all libraries was 140-145 bp with 

tight, very slightly right-skewed, distributions from 50-350 bp. An average 

fragment length of 140 bp means an average overlap of approximately 60 bp 

between reads of each paired-end fragment. 

 

 

 

 

http://www.clcbio.com/products/clc-assembly-cell/
https://github.com/sujaikumar/assemblage
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3.3.2 Combining overlapping reads using FLASH 

 

Prior to assembly, overlapping paired-end reads were overlapped with 

FLASH (Magoč & Salzberg, 2011) to create super-reads. FLASH (Fast 

Length Adjustment of Short Reads) overlapped super-reads can be used to 

improve assemblies and reduce the memory requirements of the assembler 

(Magoč & Salzberg, 2011). Firstly, each read pair is aligned so that they 

overlap completely and the overlap length is calculated. A score for the 

overlap is given by the ratio of mismatches to overlap length. Aligning and 

scoring is repeated at every possible alignment length until a minimum 

overlap threshold is reached. The best alignment is the one with the lowest 

ratio and is chosen. When two overlaps have an equal score the one with 

lowest average quality score of mismatches decides the best alignment. 

Finally, the best alignment score must be lower than a mismatch threshold 

for an overlap to be reported (Magoč & Salzberg, 2011). FLASH was run on 

all of the paired-end reads across replicates with a minimum overlap of 10 

bp. A histogram of overlapping read length output by FLASH corroborated 

the average insert size of 140-145 bp for each replicate. Table 3.2 gives the 

read numbers and number of bases after running FLASH for all replicates 

combined. Read pairs connected into super-reads constitute most of the data 

as expected from the average insert size. This dataset was assembled using 

Trinity (Grabherr et al., 2011).  

 The de Bruijn graph-based Trinity assembler was chosen for its 

excellent performance, user support and integration with downstream 

expression analyses (http://Trinityrnaseq.sourceforge.net/). It is a memory 

intensive assembler; therefore a 512Gb RAM computer was used to create 

assemblies. De Bruijn graph based transcriptome assembly differs from 

genome assembly as discussed in chapter 2 because many disconnected 

graphs occur, each representing a different locus. In contrast, the goal in 

genome assembly is to generate a minimal number of graphs corresponding 

to chromosomes. The program is modular, consisting of three sequential 

assembly steps: Inchworm, Chrysalis and Butterfly.  
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Library Number of reads  Bases (Gb) 

All reads pair 1 85 091 456 8.1 

All reads pair 2 85 091 456 8.1 

All reads overlapped 226 574 604 33.2 

All reads QC singles 16 970 221 1.5 

Total  413 727 737 50.9  

 

 

3.3.3 The combined reads assembly 

 

All reads across all replicates were combined for assembly of a reference 

transcriptome in Trinity (table 3.3). The quality of this assembly is not 

essential to the differential expression analysis; the transcripts just need to 

be contiguous enough to identify their origin using BLAST. The assembly has 

an N50 of 1468. Although N50 is not the best metric for use with a 

transcriptome as there is a range of expected transcript lengths, and long 

transcripts representing multiple isoforms of the same gene may also bias 

the N50 artificially upwards. The very high number of components and 

transcripts is likely to reflect the presence of two transcriptomes in the data 

and the ‘verbosity’ of the Trinity assembler.   

 
N50 Number of 

transcripts 

Number of 

components 

Number of 

transcripts 
in N50 

Maximum 

transcript 
size 

Number of bases 

in transcripts 

1468 351 215 231 436 53 017 32 024 296 033 427 

 

 

Table 3.2. Numbers of reads remaining after FLASH overlapping of all  RNAseq reads , Gb = 
gigabases. All  reads QC singles refers to single reads in which the pair failed quality control (QC) 
(see Chapter 2). 

Table 3.3. Assembly metrics for the all  reads transcriptome assembly. 
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3.3.4 Assigning species to transcripts 

 

My strategy for obtaining a higher quality B. pallida assembly was to 

separate the reads into bins representing each oak and gall wasp, remove 

reads derived from contaminants, and re-assemble each bin of reads 

separately.  

To do this the transcripts were first assigned a probable taxonomic 

origin using several custom BLAST databases. A combined BLAST database 

was created using my B. pallida genome assembly, a recently generated Q. 

robur genome assembly (P. Fuentes, personal communication) (table 3.4) 

and publically available Q. robur ESTs (Ueno et al., 2010) 

(https://w3.pierroton.inra.fr/QuercusPortal/index.php?p=cgen). Additional 

BLAST databases for the Arthropoda, Plants, Fungi, Bacteria, Viruses, 

Mammalia, and Castanea chloroplasts for both protein and nucleotide 

sequences were also created. The combined transcriptome was then BLAST 

searched against all the custom databases and the results combined into a 

single output file. The Mammalia database was for identifying contamination 

of the dataset with mouse and human RNAs. The Castanea mollissima 

(Jansen et al., 2011) chloroplast database was created from the Castanea 

mollissima chloroplast genome to identify large contigs corresponding to 

chloroplast DNA. These are derived from Q. robur chloroplast mRNA and 

potentially DNA that escaped DNA digestion during extraction. C. mollissima 

is the phylogenetically closest species to Q. robur with an available 

chloroplast genome sequence. A transcript was assigned to one of several 

categories according to the taxonomic origin of the top-scoring transcript. A 

transcript was assigned to the Arthropoda category if its top hit was to either 

the B. pallida genome or the Arthropoda database, and so for all taxonomic 

databases. No e-value threshold was applied for the BLASTs against the B. 

pallida and Q. robur genomes, but a threshold of 1 x 10-5 was applied for the 

other databases. This was to assign as many contigs as possible to the 

Plants and Arthropoda categories based only on the best-hit criterion. All 

BLASTs used low complexity filtering to avoid spurious matches.

https://w3.pierroton.inra.fr/QuercusPortal/index.php?p=cgen
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Species Max. contig 
length 

Number of 
contigs  

Total bases in 
contigs  

N50 for contigs  Contigs in N50 GC contigs Number 'N's  

Biorhiza pallida 38 791 1 163 314 805 102 378 1 075 193 792 32.9 4 203 182 

Quercus robur 90 459 715 072 652 949 554 1 615 98 301 35.5 28 530 837 

Q. robur ESTs 6 795  218 977 99 131 312 505 53 317 40.4 22 978 

Table 3.4. Assembly metrics for draft gall  wasp and oak genomes and assembled ESTs (Ueno et al., 2010) used for as references  for read aligning. Number of ‘N’s refers 
to nucleotides in the database where the assembler was not able to determine the correct nucleotide but knew the position exi sts in the genome by read context. 
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 The B. pallida and Q. robur genome assemblies are both low-

coverage drafts (table 3.4), and are therefore incomplete. Because of this 

they may be missing genes that are expressed in the respective species 

transcriptomes. Therefore transcripts with best-scoring matches to the 

custom Arthropoda database were combined with those top-scoring to the B. 

pallida genome into one Arthropoda category. Q. robur genome/EST plus 

Plant database top hits were also combined in this way into a Plants 

category. Arthropoda, a broad taxonomic label, was used because parasitoid 

and inquiline derived sequences were implicitly assigned to this group. As 

expected, the majority of transcripts, 62.3%, are derived from Plants/Q. robur 

(table 3.5). The next largest category is the gall wasp proxy Arthropoda 

category at 31.7%. Together Plant and Arthropod categories constitute 94% 

of the transcripts, while the Fungi category is next most common at 4.8%. 

The Fungi percentage indicates an infection of p lant tissues in two replicates 

and is controlled for during expression analysis. The viruses are 

predominantly single-strand RNA plant viruses. The Mammalia transcripts 

are 70% Mus musculus at very high identities and are probably laboratory or 

reagent contaminants. 

 
Database Number of transcripts % of transcripts 

Arthropoda 111 387  31.7 
Plants 218 692  62.3 
Fungi 16 949  4.8 

Bacteria 414  0.1 
Viruses 154  0.0 
Castanea chloroplast genome 1392  0.4 
Mammals 1535  0.4 

Other BLAST hits 447  0.1 
Unassigned contigs 245  0.1 
Total 351 215  100 

 
 
 

 

Table 3.5. Taxonomic origins assigned to contigs from the all  read transcriptome assembly. 
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3.3.5 Identifying and filtering non-coding and organelle derived 

transcripts  

 

Concurrent with identifying the taxonomic origin of the transcripts, rRNA, 

mitochondrial and chloroplast gene transcripts were identified. It is prudent to 

remove these genes as they are often very highly expressed and may skew 

the normalization of replicates (see section 3.4.2) as performed by differential 

expression analysis programs. This is because these genes occur in multiple 

copies per cell in the nuclear or organelle genomes, unlike the single-copy 

nuclear genes that are most likely to be of interest for this experiment.  

 To identify the large (LSU) and small (SSU) ribosomal subunits, high 

quality Bacteria and Eukaryote sequences were downloaded from the Silva 

RNA database (http://www.arb-silva.de/) and searched against the combined 

transcriptome assembly using the LAST aligner (Kielbasa et al., 2011); 297 

transcripts were identified as either LSU or SSU in this way. Other non-

coding RNAs were identified by an adapted BLAST search against the Rfam 

database (Gardner et al., 2009). Rfam is a database of annotated RNA 

sequence families such as transfer RNAs (tRNAs) and micro RNAs 

(miRNAs). The Rfam_scan.pl (Gardner et al., 2009) script was used to map 

annotations to BLAST results, and a total of 1072 transcripts were identified 

as non-coding RNAs. Finally, 178 transcripts encoding tRNAs were identified 

using tRNAscan (Lowe and Eddy, 1997). However, after cross checking the 

tRNA predicted transcripts with BLAST results only 87 were assigned for 

removal as these transcripts were chloroplast or mitochondrion encoded. The 

retained transcripts were those apparently overlapping with nuclear genes. 

 

3.3.6 Aligning reads to transcripts for removal 

 

A list of transcripts for removal was created from the non-coding genes and 

those identified as of chloroplast, mitochondrial and mammalian origin; this 

amounted to 4191 transcripts. Reads were aligned to the 4191 transcripts 

using bowtie2 default parameters (Langmead & Salzberg, 2012) and 

http://www.arb-silva.de/
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removed from the analysis; Remove reads totalled 68 430 077 paired-end 

fragments and 5 917 057 single-end reads. Replicates 127 (early), 224 

(growth) and 234 (mature) had particularly high expression of the removed 

transcripts as evidenced by the lower remaining percentage of bases after 

filtering at 58.7%, 39.5%, and 55.2% (table 3.6). This may reflect overloading 

of the columns with gall tissue at extraction causing sub-optimal DNA 

degradation or polyA tail selection worked poorly for these samples. 

 

 

 
 

 
 
 

 
 

 
 
  

3.3.7 Aligning reads to the taxonomically categorized transcripts and 
genomic resources 

 

The filtered reads were now ready to align to a reference of taxonomically 

categorized transcripts, Q. robur and B. pallida genomes, and the Q. robur 

ESTs. The reads aligned were not those that had been combined with 

FLASH for the combined assembly but the original pairs and singles. The 

transcripts that were filtered above were removed from their species 

categories. The aligner GSNAP (Wu and Nacu, 2010) was chosen, as it is 

splice-aware and therefore able to accurately align RNAseq reads to 

genomic contigs. GSNAP can align reads that bridge exons; consequently 

these reads need to be split when aligned to a genome (Wu and Nacu, 

2010). The highest scoring mapping for each read was used to assign 

species of origin.  

Sample Stage Bases 
Gb 

Remaining bases 
Gb 

Percentage 
remaining 

1 Early 9.55 9.15 95.7 
4 Early 7.40 7.10 95.3 
8 Early 5.39 5.18 96.0 

211 Early 6.29 5.76 91.6 
127 Growth 8.23 4.83 58.7 
148 Growth 6.98 5.76 82.5 
182 Growth 3.28 2.55 78.0 

224 Growth 5.85 2.31 39.5 
234 Mature 2.18 1.20 55.2 
252 Mature 1.68 1.19 70.9 
270C Mature 2.53 2.13 84.2 

281 Mature 2.74 1.80 65.7 

Table 3.6. Percentage of bases remaining for each replicate after removal of unwanted sequences. 
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Where multiple equal highest scoring mappings occurred the read was 

assigned to each applicable category. This led to an inflation of the total 

reads assigned to each category versus true total reads. With the available 

resources it was not possible to further categorise these multi-mapping 

reads. The reads were kept so the maximum amount of reads could be used 

to create the best possible B. pallida transcriptome.  

 For most replicates this inflation percentage (table 3.7) was a minor 

percentage of the total reads. Indeed, for sample 270C there were fewer 

reads after GSNAP mapping to the references (-1.07%). However, three 

replicates, 127, 224 and 243 had greater mapping inflation at 4.45%, 7.14% 

and 3.48% respectively. These are the same replicates highlighted as having 

the most reads aligning to unwanted transcripts. That the same replicates are 

flagged as problematic suggests the same issue is affecting them.  

 

3.3.8 Gall wasp sampling depth, numbers of reads, and dynamic range 

 

The principal risk of the RNAseq experiment was insufficient sampling of gall 

wasp transcripts. A huge difference in expression proportion between gall 

wasp and host in favour of the host was expected. This was based on the 

proportion of gall tissue derived from each species and was particularly true 

for growth stage galls with their tiny larvae but large gall size. The presence 

of gall wasp RNA had been detected in each replicate by reverse 

transcriptase PCR, but this did not indicate whether sufficient dynamic range 

of gall wasp RNA would be captured for a useful differential expression 

analysis. The dynamic range is the ratio between maximum and minimum 

gene expression level, and RNAseq can detect a >9,000-fold difference 

(Wang et al., 2009). In terms of dynamic range, insufficient sampling of B. 

pallida RNA would drastically reduce the fold difference between minimally 

and maximally expressed transcripts as only the most highly expressed 

transcripts are captured. Additionally, a de novo assembly recovering many 

complete transcripts representative of a tissue transcriptome requires a 

minimum of 20 million reads (Francis et al., 2013); for whole organisms the 
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recommendation is 30 million reads. In practice, these figures will vary by 

species and tissue and are only guidelines. 

 The total number of gall wasp paired-end and single-end reads 

sequenced is 43 302 057 (table 3.8). This is above the minimum 

recommended for transcriptome analysis (Francis et al., 2013). However, 

However many of these are pairs, as a result approximately 20 000 000 

independent fragments have been sequenced (table 3.8). The lowest number 

of gall wasp reads in any replicate is 1 692 111 for early stage replicate 8, 

while early stage replicates 4 and 211 also have low overall counts. These 

are low counts and deeper sequencing would be preferable, but the highest 

expressed genes will be captured. As these genes are of most interest 

differential expression analysis is viable. 

 

3.3.9 Approximate percentages of gall wasp, oak and other species  

 

There is an obvious trend in the ratio of gall wasp to oak with developmental 

stage (table 3.9) when using Arthropoda assigned reads as a proxy for gall 

wasp. The early stage galls have overwhelming oak expression, and the 

percentage gall wasp ranges from 2.58-4.12%. Sample 211 has a Fungi 

proportion of 3.54%, very close to the gall wasp proportion at 4.06%. This 

reflects a fungal infection of the plant tissue that needs to be controlled in 

expression analyses. A fungal infection will result in fungal-specific response 

by the host and oak that may confound gall induction associated expression. 
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  1 4 8 211 127 148 182 224 234 252 270C 281 

Number of mappings 93570526 71759215 52664528 59067477 51493017 59441197 26059225 25159422 12605455 12282898 21356161 18250667 

Number of reads 93328764 71590117 52578351 58844157 49298390 58795708 25643921 23482195 12181300 12023150 21587793 18172550 

Discrepancy 241762 169098 86177 223320 2194627 645489 415304 1677227 424155 259748 -231632 78117 

% Mapping 
 inflation 

0.26 0.24 0.16 0.38 4.45 1.10 1.62 7.14 3.48 2.16 -1.07 0.43 

Origin 1 4 8 211 127 148 182 224 234 252 270C 281 

Arthropod 3855332 1851710 1692111 2396419 3605113 2884112 2087645 3591806 6186109 4562420 6997659 3591621 

Plant 89705901 69904305 50961803 54548292 47884940 56547111 23951601 21558828 6409592 7685409 14087999 14292587 

Fungi 4001 347 8253 2089980 561 717 313 1930 806 4131 201740 2983 

Virus 4742 
 
2534 2040 17592 1642 

 
8497 19412 5904 8469 

 
29846 61361 361488 

Bacteria 215 
 
94 112 12573 681 

 
500 193 866 169 

 
1010 6298 322 

Unassigned 335 225 209 2621 80 260 61 88 310 82 1104 1666 

Total 93570526 71759215 52664528 59067477 51493017 59441197 26059225 25159422 12605455 12282898 21356161 18250667 

Table 3.7. Discrepancy between the number of GSNAP mappings and the number of reads  for individual replicates. 

Table 3.8. Total numbers of reads assigned to each taxonomic category for individual replicates. Column headers refer to sample identification. 
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Stage Early Growth Mature 

Sample 1 4 8 211 127 148 182 224 234 252 270C 281 

Arthropod 4.12 2.58 3.21 4.06 7.00 4.85 8.01 14.28 49.07 37.14    32.77 19.68 

Plant 95.87 97.42 96.77 92.35 92.99 95.13   91.91 85.69 50.85 62.57    65.97 78.31 

Fungi 0.00 0.00 0.02 3.54 0.00 0.00 0.00 0.01 0.01 0.03 0.94 0.02 

Viruses 0.01 0.00 0.00 0.03 0.00 0.01 0.07 0.02 0.07 0.24 0.29 1.98 

Table 3.9. Percentage of reads assigned to each taxonomic category across replicates. 
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The percentages of gall wasp reads are more variable for growth 

stage galls at 4.85-14.28%, but all values are higher than the early stage. 

This probably reflects greater variance in the precise stage of the growth gall 

tissues sampled. The number of larvae in the gall potentially confounds 

staging growth stage B. pallida galls, as the size may reflect maturity or the 

number of inhabitants. However, the percentage of gall expression in the 

growth stages was higher than expected. At this stage the ratio of p lant to 

gall wasp tissue in the gall is at its largest, therefore a lower percentage of 

gall wasp was expected compared to the early stage. 

 The mature stage contrasts very strongly with both early and growth 

stages. Replicate 281 has the least gall wasp expression at 19.68%. The 

other three replicates range from 32.77-49.07%. These percentages are 

much greater than the other two gall stages and reflect broad changes in 

expression of both oak and gall wasp. Reads of replicate 270C are 0.94% 

fungal derived this is not large but in terms of actual read numbers is 

significant. Replicates 211 and 270C were combined to control for fungal 

specific expression in part B), differential expression analyses, below. 

Replicate 281 also has 1.98% viral expression, but as the focus was on 

identifying genes of interest in the early and growth stages this was not 

controlled for.  

 

3.3.10 Creating species-specific assemblies from the separated reads 

 

Reads from each replicate for the Arthropod and Plants data were combined 

to create species-specific assemblies using Trinity. Before assembling the 

Plants data it was digitally normalized because of the large number of reads. 

 

3.3.11 Plant data normalization and combining overlapping reads 

 

The Plant data was digitally normalized using Trinity’s included in silico 

normalization scripts. This was to improve assembly run times and reduce 

memory requirements. Normalisation refers to equalizing the coverage data 
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around a coverage value by removing many of the reads containing very high 

frequency k-mers; Trinity’s normalization scripts were run with an average 

coverage of 30-fold and k-mer length of 25 for the Plants data. This read 

normalization was only performed for reads used in the Plants assembly. For 

quantification of the transcripts (section 3.4.2) the non-normalised reads 

were used to maintain the correct ratios of expression between transcripts. 

The paired and single Plants reads were normalized separately as it was not 

possible to perform a combined normalization. The Plants dataset was 

dramatically reduced by normalization; approximately 5% of the plants data 

was retained (table 3.10).  

 

Plants reads Number of 

Reads 

Number of 

bases (Gb) 

Post-

normalization 

 

Post 

normalization 

Bases (Gb) 

Paired read 1 223 908 854 22.1 11 893 250 1.18 

Paired read 2 223 908 854 22.1 11 893 250 1.18 

Singles 10 186 559 0.88 4 176 744  0.37 

 

Overlapping reads were combined using FLASH (Magoč & Salzberg, 

2011) for each species, as was done for the All data assembly. Table 3.11 

shows the final numbers of overlapped reads, split paired-end reads and pre-

existing single reads used for assemblies for Plants and Arthropoda. The 

FLASH-overlapped Arthropoda data were assembled with Trinity. For the 

plant data, Trinity assemblies of normalized Illumina only, and of Illumina 

plus the Q. robur ESTs were made. The ESTs were incorporated as an 

attempt to improve the Plants assembly. Default Trinity parameters were 

used. The assembly metrics (table 3.12) were compared and the most 

suitable Plants assembly chosen for use as a reference for quantifying 

transcripts.  

 

Table 3.10. Reads remaining after normalization of plant data . 
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Library Plants number of 
normalized reads 

Plants 
normalised bases 
(GB) 

Arthropoda 
number of reads 

Arthropoda 
normalised bases 
(GB) 

Read 1 3 148 666 0.3 5 606 161 0.5 

Read 2 3 148 666 0.3 5 606 161 0.5 

Overlapped 8 744 584 1.3 15 522 516 2.3 

QC singles 4 176 744 0.4 1 044 703 0.1 

 

 

 

Assembly Arthropoda Plants Plants + 
ESTs 

N50 1736 1850 1622 

Number of transcripts 108459 202766 247898 

Number of components 89138 118649 130151 

Number of transcripts in N50 12453 34262 52801 

Maximum transcript size 37465 15437 15023 

Number of bases in transcripts (MB) 94.44 207.29 276.15 

CEGMA % complete 97.58 96.37 95.16 

Average copy number 2.57 2.81 3.50 

% orthology  78.51 69.46  90.25 

 

 

 

 

 

 

 

 

Table 3.11. FLASH results for both gall  wasp and oak datasets. 

Table 3.12. Metrics for the species-specific assemblies including CEGMA results and the plants + ESTs 
assembly. 
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3.3.12 The species-specific assemblies 

 

All three assemblies appear to have assembled well, with N50s > 1kb and 

long maximum contigs (table 3.12). The very long maximum length 

Arthropoda transcript encodes an insect muscle titin, which are known to be 

large proteins. The two plant assemblies have more transcripts and higher 

numbers of transcripts per component at 1.71 (Plants, Illumina only) and 1.90 

(Plants, Illumina plus ESTs) versus 1.22 for the Arthropoda assembly. This 

may represent underlying biology if Q. robur has a greater average of 

number of isoforms per gene than B. pallida.  

In addition to the metrics above, CEGMA (Core Eukaryotic Genes 

Mapping Approach) (Parra et al., 2007) scores were also evaluated. Parra et 

al. (2007) identified a set of core eukaryotic genes (CEGs) present in 

available eukaryote genomes, and the version used (2.4) contains 248 

CEGs. CEGMA combines BLAST (Altschul et al., 1990), GeneWise (Birney 

et al., 2004) and geneid (Parra et al., 2000) searches and HMMER (Finn et 

al., 2011) to identify orthologs of the CEGMA gene set in tested dataset. 

Although, CEGMA is intended for genomes, under the assumption that CEGs 

will be constitutively expressed because they perform essential functions it is 

applied here to transcriptomes. Table 3.12 provides estimates of the 

percentage completeness for the CEGs, the average number of orthologs 

per CEG and percentage of CEGS with more than one ortholog. The final 

two metrics can indicate if more than one species is present in the 

transcriptome, as CEGS are supposed to be single-copy nuclear genes. This 

is apparent in the CEGMA scores for the Arthropoda and Plants assemblies 

(table 3.12). This may be due to the presence of parasitoid and inquiline 

derived transcripts within the assembly because the filtering process has not 

identified them.  

As a result the ortholog copy number is much greater than one and 

lots of CEGs have orthologs. Redundancy in the assembly may also have 

caused high copy number scores. Therefore, CEGMA was run with the 



 

128 

longest transcript from each Trinity clustered component only. The average 

copy number for the Arthropoda dropped from 2.47 to 2.24, suggesting 

assembly redundancy does not explain a large proportion of the high CEG 

copy number. For the Plants assembly CEG copy number dropped from 2.81 

to 2.06, but the difference was greatest for the Plants + ESTs assembly 

which dropped from 3.50 to 1.97. Polymorphism in the ESTs, sampled from 

Q. robur tissues collected in France versus gall tissue collected in the UK 

could have caused this. Highly divergent allelic polymorphism can cause 

copies of the same gene to be assembled separately by Trinity. This would 

also explain the greater number of transcripts, 247 898 versus 202 766, and 

very high percentage of CEG orthology of 90% for the Plants + ESTs 

dataset.  

The Arthropoda and Plants transcriptomes are all close to 

completeness; each has greater than 95% CEGs. The missing CEGs may 

not be true core eukaryotic genes. These are genes that are present in all of 

the few genomes surveyed to create the current version of the CEGMA 

database but are not true universal CEGs. The Illumina only Plants assembly 

was chosen because incorporating the EST dataset did not result in an 

improved assembly. Additionally, the potential redundancy discussed abo ve 

could complicate expression analyses. 

 

3.3.13 Annotating the assemblies and estimating the percentage of 

coding sequence 

 

The two assemblies were annotated using BLAST (Altschul, 1990) and 

InterProScan (Zdobnov and Apweiler, 2001). The annotations were then 

used to apply gene ontology (GO) terms to transcripts using BLAST2GO 

(Conesa et al., 2005). The transcriptomes were aligned against the BLAST 

non-redundant nucleotide and protein (‘nt’ and ‘nr’) databases with an e-

value cut-off of 1 x 10-5 and complexity filters on. In total, 104 585  (45% of 

total transcripts) and 54 684 (52% of total transcripts) of Plants and 

Arthropoda transcripts were BLAST annotated respectively. The low 
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percentages probably reflect the fact that no genomes for species closely 

related to B. pallida or Q. robur are present in the BLAST databases; thus, 

many of the expressed genes are new and orthologs are not present in the 

databases. It also reflects error, as not all transcripts will be derived from 

protein coding genes, even after filtering. For InterProScan, 139 693 and 87 

826, Plants and Arthropoda transcripts received some form of annotation. 

The InterProScan and BLAST ‘nr’  results were combined to generate 

GO terms with BLAST2GO. In total, 65 360 oak and 25 128 gall wasp 

transcripts were annotated with GO terms respectively. The gene ontology 

project is an attempt to annotate genes and their product with a structured 

and controlled vocabulary (Harris et al., 2008).  

 

3.3.14 Filtering the species specific assemblies 

 

In the species-specific assemblies certain transcripts were derived from 

reads that escaped filtering at the combined assembly stage. To remove 

non-coding RNA transcripts Rfam scan, tRNAscan, and a LAST search of 

LSU-SSU sequences were repeated on the Plants and Arthropoda 

assemblies. Other undesirable transcripts, mitochondrial, chloroplast and 

mammalian sequences were identified by BLAST searches against the NCBI 

non-redundant protein and nucleotide databases (databases downloaded 

January 4th 2012). In total, 867 Arthropoda and 3082 Plants transcripts were 

filtered by removal from the gene counts matrix created with RSEM below  

 

3.3.15 Generating transcript counts using RSEM  

 

To perform differential expression (part B) analysis a matrix of counts 

consisting of a count for each gene in each replicate is required. This is 

complicated for a de novo transcriptome as reads can map to multiple 

isoforms of the same gene. The program RSEM provides a method to do this 

and condenses the read counts to the gene level.  

Correctly apportioning reads to different isoforms of the same gene is 
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difficult. In essence, how are the reads derived from each isoform of a gene 

aligned to the correct isoform? If one isoform is highly expressed, other 

overlapping isoforms will have inflated counts from multiple mappings; hence 

an isoform-based analysis is not advisable. As a result, gene level counts are 

essential; the differential expression programs used, DESeq (Anders and 

Huber, 2010) and EdgeR (Robinson et al., 2010) (Part C), both require gene 

counts. Additionally, not knowing which transcripts are isoforms of the same 

gene in a de novo transcriptome further complicates transcript quantification.  

Fortunately, Trinity combines sets of transcripts into components 

corresponding to genes. The program RSEM (RNA-seq by Expectation 

Maximization) can then estimate combined counts per component/gene while 

controlling for multi-mappings. RSEM first aligns reads to transcripts using 

Bowtie (Langmead et al., 2009), and individual reads are allowed to map to 

multiple locations. It then computes maximum likelihood abundance 

estimates using a statistical model based on the Expectation-Maximization 

algorithm. The contribution of multi-mapping reads to a count for an isoform 

is a fraction dependent on the number of mappings per read. Gene counts 

are given by summation of transcripts within a Trinity component group. 

RSEM was run in both single and paired-end mode to evaluate the best 

performing mode with these data. For the single ended approach read ‘1’ 

from each pair was used and combined with singles resulting from the initial 

quality filtering of the data.  
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Origin Mapping method 1 4 8 211 127 148 182 224 234 252 270C 281 

  Early Growth Mature 

Plants Single end 95.65 95.43 95.30 94.93 93.87 94.31 94.65 94.56 94.38 94.49 93.87 94.06 

  Paired end 87.92 87.37 87.35 86.53 84.86 85.51 85.88 83.54 85.40 85.79 85.73 85.51 

  Difference 7.73 8.06 7.95 8.40 9.01 8.80 8.77 11.02 8.98 8.70 8.14 8.55 

Arthropod Single end 93.32 93.07 93.24 91.52 95.17 93.83 94.65 94.94 93.02 93.7 94.96 91.93 

  Paired end 84.31 83.54 83.92 80.95 84.35 85.15 86.17 80.51 83.45 85.43 88.25 82.47 

  Difference 9.01 9.53 9.32 10.57 10.82 8.68 8.48 14.43 9.57 8.27 6.71 9.46 

Table 3.13. Percentages of reads mapping and difference between single and paired end read mapping with RSEM for Plants and Arthropod datasets. 
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The single end approach mapped more reads (table 3.13) for both 

species across all replicates. Therefore, counts derived from single end 

mapping were used for differential expression analysis. Both Plants and 

Arthropoda data have similar mapping percentages for each replicate and 

both types of mapping. The discrepancy between paired- and single-end 

occurs because Trinity doesn’t scaffold transcripts. As a result, reads from 

the same paired-end fragment can map to different transcripts representing 

fragments of a full-length transcript. Bowtie, the aligner RSEM runs internally 

does not consider these mappings valid for quantification; hence, the single 

read provides more accurate counts. Differences between single end and 

paired end percentages were similar for both Plants and Arthropods. Most 

differences are of the order 8-10%. The counts for each replicate were 

combined to create the necessary count matrix for testing differential 

expression (an example is given in appendix table 3.25).  
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Part B) Statistical analysis of stage specific variation in gene 

expression  

 

3.4 Identifying candidate genes for gall induction and formation: edgeR  

and DESeq 

 

To identify differentially expressed genes between the early and later stages 

of gall development two popular differential expression programs, edgeR 

(Robinson et al., 2010) and DESeq (Anders and Huber, 2010), were 

compared and contrasted. Both programs model count data using the 

negative binomial distribution to estimate means and variances for each 

gene in the experiment.  

 

3.4.1 Filtering genes with low counts from the analysis 

 

Before performing expression analyses genes with little power to detect 

differential expression were removed from the count matrices. This increases 

the overall power of the experiment as each gene is tested for significance 

independently; hence the effect of the multiple testing adjustment is reduced 

by the lower number of tests overall. Both programs preferentially remove 

genes with low overall counts, but they do this filtering by different methods. 

 EdgeR recommends filtering genes with expression below a set 

threshold, in fewer replicates than there are replicates per condition. So, for 

twelve replicates, with four per stage at least four replicates need to have 

counts above the threshold. EdgeR normalizes the threshold to counts per 

million (CPM), meaning if three reads out of 3 000 000 are aligned to a gene 

in a replicate, then that gene has a CPM of one. A CPM cut off of 2 was used 

for EdgeR for both gall wasps and oak genes; and 20 940 (24%) gall wasp 

and 16 790 (14%) oak genes were retained for differential expression 

analyses.  

 The DESeq approach is more complex and involves running a full 

differential expression analysis (implementing a generalized linear model 
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approach) and then ranking the unadjusted for multiple testing p -values 

against their expression ranking (figures 3.6, both datasets). From this plot 

an expression rank cut-off can be chosen and the analysis repeated. The 

cut-off is chosen to remove all those values with a rank expression too low to 

have enough power to detect differential expression. It can be seen in figure 

3.6 that after ranking each gene by expression, the lowest 70% of gall wasp 

genes and 30% of plant genes have very few genes with unadjusted p-

values less than 0.003 (or 2.5, y-axis figure 3.6). The much higher 

percentage for gall wasps probably reflects the shallower sequencing depth 

of the larval transcriptome leaving little power to detect differential expression 

for many genes. After filtering, 79 893 oak and 26 155 gall wasp genes 

remained for DESeq analysis. Tables 3.14-15 compares the numbers of 

genes called as differentially expressed when applying p-value expression 

based filtering and the unfiltered data, There is an increase in detection 

power resulting from the filtering for both Plants and Arthropod datasets.  

Finally, the Plants and Arthropoda datasets were analysed in DESeq, 

but were filtered using the edgeR CPM method. This assessed the effect of 

filtering method on the final set of differentially expressed genes. 
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Plants/Q. robur Filtered 

Not DE 

Filtered 

DE 

Sum 

Unfiltered Not DE 112 519 396 112 915 

Unfiltered DE 5 3 518 3 523 

Sum 112 524 3 914 116 438 

 

 

 

 

 

Arthropoda/B. pallida Filtered 

Not DE 

Filtered 

DE 

Sum 

Unfiltered Not DE 81 365 1 568 82 933 

Unfiltered DE 1 5 226 5 227 

Sum 81 366              6 794           88 160 

Table 3.14. Effect of not fi ltering data on differential expression (DE) when using DESeq. Top row are 
data filtered using DESeq’s p-value expression ranking based fi ltering and the left hand-side without 

filtering. More genes are called differentially expressed, 396, using filtering. Only 5 genes are called 
DE without fi ltering that were not called DE after fi ltering.  

Table 3.15. Effect of not fi ltering data on differential expression (DE) when using DESeq. Top row are 
data filtered using DESeq’s p-value expression ranking based fi ltering and the left hand-side without 

filtering. More genes are called differentially expressed, 1568, using filtering. Only 1 gene is called 
DE without fi ltering that was not called DE after fi ltering.  
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Figure 3.6. Log plot of p values versus expression demonstrating low power of lowly expressed genes. 1. Plants, 2. Arthropoda. Expression ranking is from low 
(0.0) to high (1.0). At high expression rankings the power to detect differential expression indicated by th e y-axis is greatly increased. 

1. 

2. Arthropoda 1. Plants 
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3.4.2 Normalising the datasets is essential for comparing counts 

between replicates 

 

Before testing for differential expression the count datasets needed to be 

normalised to allow comparisons between replicates. Normalisation adjusts 

for differences in sequencing depth as indicated by total read counts per 

replicate. It also adjusts for differences in RNA composition within a replicate 

(Dillies et al., 2012). RNA composition adjustment is needed when a subset 

of genes is very highly expressed and a large proportion of reads are derived 

from these genes.  

DESeq and edgeR use different normalization methods, although they 

both assume most genes are not differentially expressed. DESeq derives a 

scaling factor for each replicate from the ratio of the median, for each gene, 

of its read count divided by the geometric mean of counts for that gene 

across all replicates (Dillies et al., 2012). EdgeR uses the trimmed mean of 

M-values (TMM) normalization (Robinson and Oshlack, 2010). It uses one 

replicate as a reference by which the other replicates are normalized. The 

TMM is the weighted mean of gene-wise log expression ratios between the 

reference and non-reference replicates. The most expressed genes and 

those with the largest log ratios are trimmed from the TMM calculation (Dillies 

et al., 2012).  

Dillies et al., (2012) compared the performance of several 

normalization techniques including DESeq, TMM, upper quartile, median, 

reads per ki lobase per million mapped reads (RPKM) and quantile based 

normalization methods. They found that DESeq and TMM normalization were 

superior to the other methods and produced similar results. Robust 

normalization was key to this experiment as the total read counts derived 

from oak and gall wasp varies widely across replicates in different stages 

because of changes in the proportion of reads derived from oak or gall wasp 

among replicates (i.e. mature gall tissue has a higher proportion of total gall 

wasp expression than early stage tissue).  
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3.4.3 Clustering of replicates by global patterns of expression: are 

replicates from the same stage similar? 

 

By representing the filtered count data visually, relationships between the 

replicates were assessed. Replicates from the same stage were expected to 

cluster more closely than replicates in other stages.  

For clustering, DESeq first performs a variance-stabilising 

transformation (VST) of the data. This equalizes the variance across genes, 

allowing each gene to contribute equally to Euclidean-based clustering of the 

data. Otherwise the most highly expressed genes that have the most 

variance will dwarf any influence of other genes. VST was not applied to the 

actual differential expression analysis in DESeq. Figures 3.7-3.9 are the VST 

stabilized sample PCAs produced by DESeq for Q. robur and B. pallida 

respectively, for the 500 most variable genes across replicates. The Q. robur 

and B. pallida heat maps are very similar and show that the samples cluster 

well together, particularly in the early stage, albeit not perfectly as one growth 

stage replicate clusters with mature stage replicates. This was encouraging 

and validated the ‘wild’ sampling strategy for the gall tissues. The two fungal 

infected replicates, 211 of the early stage and 270C of the mature stage, sit 

separately from the other replicates for the Q. robur PCA. The B. pallida PCA 

(figure 3.8) is less well resolved than the Q. robur PCA. The fungus-infected 

replicates sit separately from other replicates in the same stage, although 

early stage replicate 211 sits with growth stage replicates and not as an 

outlier. Fungal infection has a strong effect on expression in both species, 

enough to form the second axis of the PCAs, and needs to be controlled for. 

One growth stage replicate is also an outlier in the B. pallida PCA. For both 

species the x-axis (principal component 1) differentiates stage of gall growth 

well.  

Low sampling coverage could explain the lower resolution of B. 

pallida; alternatively, the sampling method may not fit gall wasp larval 

stages/global expression patterns as well as it does the oaks’. For example, 

a delay may occur between larval expression changes and host response.  
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Clustering indicated the need to control for fungal infection in 

replicates 211 and 270C. The effect on replicate 270C was surprising as the 

percentage of fungal expression in the data was low at 0.94%. Replicate 281 

was not an obvious outlier in any plots despite the percentage of virus-

derived reads (1.98%).  

 

3.4.4 Controlling for fungal infection derived expression: Fitting a batch 

effect 

 

A simple fungal infected (replicates 211 and 270C) versus uninfected 

replicates differential expression analysis, ignoring stages, was run on the 

Plants/Q. robur data in DESeq. In total 320 genes were differentially 

expressed (at adjusted alpha = 0.05). BLAST2GO annotations revealed that 

several of the genes highly expressed in 211 and 270C are annotated as 

chitinases that hydrolyse the cuticle of fungi to combat infections. These 

differentially expressed genes were removed from the gene counts matrix 

and a full GLM, with developmental stages fitted as factors, in DESeq was 

run. The resulting PCA plot (figure 3.9) shows that replicates 211 and 270C 

now cluster most closely with replicates of the same stage. The PCA plot is 

also very similar to the ‘edgeR filtered DESeq’ dataset PCA plot for which no 

genes were removed (appendix, figure 3.15). EdgeR filtering probably 

removes many fungal-infection affected genes. This is because the edgeR 

filtering criteria requires four replicates with a counts per million greater than 

two. Therefore genes with expression higher than 2 CPM in two replicates 

(211 and 270C) only are filtered. Genes differentially expressed in response 

to fungal infection were not filtered from the dataset for the fina l analysis, as 

they may have additional roles during gall development.  

Fungal Infection status of each replicate was fit as an additional factor 

to the model design for both DESeq and edgeR. By controlling for this 

expression, fungal-effected genes were not called as false positives in the full 

analyses.
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Figure 3.7. Principle components analysis of Plant (putative oak expression) replicates. The two fungal infected replicates sit 
separately from the others. 
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Figure 3.8. Principle components analysis of Arthropod (putative gall wasp expression) replicates.  



 

142 Figure 3.9. Principle components analysis of Plant replicates after removal of genes significantly d ifferentially expressed due to fungal infection. The 
data clusters much better by stage compared to figure 3.7. 
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3.4.5 Testing for differentially expressed genes 

 

Both programs apply a generalized linear model (GLM) based on the 

negative binomial distribution and then likelihood ratio tests to identify 

significant differential expression (adjusted  = 0.05). The null hypothesis 

was of no difference in expression between the stages, and the alternative 2-

tailed hypothesis is of a difference in expression. Additional contrasts were 

made between each pair of conditions (early versus growth, early versus 

mature and growth versus mature) in EdgeR, under the same hypotheses, to 

produce volcano plots contrasting pairs of stages (figures 3.12-14). 

P-values from the GLM likelihood-ratio tests were adjusted for multiple 

testing using the Benjamini-Hochberg procedure by both programs 

(Benjamini and Hochberg, 1995). Significant genes are given for oak and gall 

wasp differential expression for DESeq, edgeR and edgeR filtered DESeq 

dataset.  

 

 

Plants/Q. robur Number 
DE 

Higher in Early > 2 fold 
change 

Lower in 
Early 

> 2 fold 
change 

EdgeR 5790 2748 443 2560 662 

DESeq 3869 1738 598 1843 998 

EdgeR filtered DESeq 4126 1980 405 1888 565 

      

Arthopod/B. pallida Number 

DE 

Higher in Early > 2 fold 

change 

Lower in 

Early 

> 2 fold 

change 

EdgeR 9347 4554 1510 2780 1367 

DESeq 6659 3214 1327 2230 1330 

EdgeR filtered  
DESeq 

7905 4432 1552 1881 1039 

 

 

 

Table 3.16.  Differentially expressed (DE) genes for each species for edgeR, DESeq and edgeR fi ltered 

DESeq analyses. Genes described as showing higher expression in the early stage, refer to those that 
have negative relative expression (<0) in both growth and mature stages versus the early stage; the 
reverse criterion is true for lower expression in the early stage. The > 2 fold change genes are DE genes 

with greater than 2 fold differences in expression either higher of lower in the early s tage versus the 
later stages. 
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The edgeR contrasts (table 3.17) show for B. pallida a much greater 

change in expression between the early or growth stages versus mature, 

suggesting that a global change in expression patterns occurs between the 

growth and mature stages. In contrast, Q. robur has greater differential 

expression between the early stage versus the growth and mature stages, 

albeit more pronounced against the mature, suggesting a major shift in 

expression from early to growth stages.  

 

Figures 3.10-11 are venn diagrams of overlapping total differential 

expression between the three analyses. Interestingly, the edgeR filtered 

DESeq shares far more differential expression with the edgeR results than 

the DESeq only analysis for both Q. robur and B. pallida. This suggests that 

the initial filtering method has a strong effect on the results. Appendix figures 

3.16-17 show overlapping differentially expressed genes with greater than 2 

fold change between early and both later stages. They show greater 

proportional overlap between edgeR and DESeq, probably because these 

genes are highly expressed and were not filtered by either program. 

EdgeR 

contrasts 

Number 

DE 

Higher in Earlier 

stage 

> 2 fold 

change 

Lower in Earlier 

stage 

> 2 fold 

change 
Q. robur 

Early vs 
Growth 

3085 1405 551 1680 823 

Early vs 
Mature 

5850 3050 1186 2800 1291 

Growth vs 

Mature 

1374 836 421 538 316 

B. pallida 

Early vs 
Growth 

3081 1658 1406 1423 1347 

Early vs 
Mature 

8984 5867 5454 3117 2110 

Growth vs 

Mature 

6477 5133 4967 1344 931 

Table 3.17.  EdgeR pairwise contrast between stages used to create volcano plots, figure 3.12-14. 
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Figure 3.10. Venn diagram of overlapping genes of differential expression in oak between analyses . 
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Figure 3.11. Venn diagram of overlapping genes of differential expression in gall wasp between analyses. 
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3.4.6 Global patterns of gene expression in gall tissues: log fold change 

plots of differentially expressed genes 

 

By plotting log fold change against p-value for each gene (volcano plots), the 

broad changes in gene expression can be better observed, as shown for the 

edgeR contrasts between specific stages in figures 3.12-14. It was not 

possible to make these plots for the GLM results from edgeR and DESeq as 

a significantly differentially expressed gene could result from either of the 

early versus growth or mature comparisons, resulting in misleading plots.   

 The early versus growth stage reveals a group of strongly expressed 

plant genes in the early stage, as evidenced by the strong p-values and log 

fold change. There is also a right skew of gall wasp genes more highly 

expressed in the growth stage. On inspection there are 318 genes with a log 

fold change increase greater than ten in the growth stage. The raw counts 

indicate that these genes are affected by an unknown factor on replicate 224 

only as no other growth stage replicates contain expression for these genes, 

and therefore are probably not important to gall development.   

The early versus mature and growth versus mature plots (figure 3.12-

12) are very similar (note the different y-axis scale). In both, gall wasp genes 

have more statistically significant genes in the earlier stage (the longer left-

hand smears of the plot) while plant genes are more evenly divided. This is 

supported by the number of genes more highly expressed in the earlier stage 

versus later stage in table 3.16. Taken together, this would indicate that the 

mature stage represents very different global gall wasp expression to the two 

earlier stages, as overall 4231 genes are differentially expressed by the early 

and growth stage commonly versus the mature stage. 

 

 

 

 

 

 



 

148 

 

Figure 3.12. Volcano plot of early versus growth stages for both datasets. Dashed grey lines indicate a log 2 fold change 
in expression. LFC: log fold change; DE: differential expression. 
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Figure 3.13. Volcano plot of early versus mature stages for both datasets. Dashed grey lines indicate a log 2 fold change 
in expression. LFC: log fold change; DE: differential expression. 
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Figure 3.14. Volcano plot of growth versus mature stages for both datasets. Dashed grey lines indicate a log 2 fold change 
in expression. LFC: log fold change; DE: differential expression. 
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Part C) Identifying possible roles of differentially expressed genes  

 

3.5 Differentially expressed genes and BLAST and InterProScan 

annotations 

 

Table 3.18 outlines the numbers genes more highly and relatively less 

expressed in the early versus growth and mature stages, the number of 

genes with similarity to sequences in the non-redundant nucleotide and 

protein databases (BLASTx and BLASTn, e-value cut-off of 1 x 10-5) and 

InterProScan annotations. Differentially expressed genes identified by both 

edgeR and DESeq were chosen for further analysis, and this amounted to 

5228 B. pallida and 2679 Q. robur genes.  

 Almost all Q. robur differentially expressed hits have some form of 

annotation from BLAST and InterProScan. This is also true for those B. 

pallida genes where expression is greater in the growth and mature stages. 

However, it is not the case for genes more highly expressed in the early 

stage, as only 15% (441/2927) have BLAST hits. Furthermore, the 

percentage is even lower for genes showing more than two-fold difference in 

expression, at 9% (105/1138). One possible explanation is that many genes 

involved in gall induction may be specific to cynipid gall wasps, and hence 

absent from current functional databases. It is not currently possible to 

perform a strong test of this hypothesis, as the genome of a suitable out-

group is not available. Conversely, the high number of BLAST hits at the later 

stage suggests that at this point in gall development larval gene expression 

is involved in universal processes, particularly feeding and growth. 

InterProScan annotated genes are high across both comparisons, allowing 

some inferences to be made about early differentially expressed genes 

without known orthologs. However, many InterProScan annotations are not 

greatly informative, such as the presence of a signal peptide or 

transmembrane domain.  
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3.4.1 B. pallida genes 

 

Inspecting the list of annotated genes expressed greater than two fold higher 

in the early stage (table 3.18) indicates some candidates for involvement in 

induction and formation in both B. pallida and Q. robur respectively. Two 

distinct genes annotated as chitinases are differentially expressed at high 

absolute expression compared to other gall wasp genes (based on raw 

counts, table 3.19) in the gall wasp larvae versus later stages. Other 

differentially expressed early stage gall wasp genes with high counts include 

a serine protease, serine threonine protein kinase, carbonic anhydrase and 

glycine N-acyltransferase-like protein. Many of the genes called differentially 

expressed in the early stage, including proposed horizontally transferred 

(chapter 4) pectin and pectate lyase, have very low absolute counts (table 

3.19).  

 Over 60% of the unannotated early differentially expressed gall wasp 

genes contain a signal peptide sequence indicating presence in a secretory 

pathway. This is not particularly noteworthy, given that 76% of the later gall 

wasp differentially expressed genes also contain a signal peptide.  

 

3.5.2 Q. robur genes 

 

The oak data has several excellent candidates for involvement in gall 

induction from BLAST functional annotations. Two Q. robur genes that are 

differentially, and highly, expressed in the early stage gall tissues are 

orthologous to early nodulin genes. In leguminous plants, early nodulin 

genes respond to nodulation factors (Nod) produced by nitrogen-forming 

bacterial symbionts to create root nodule galls. Specifically, the transcripts 

encode plastocyanin domain-containing arabinogalactan protein (AGP) 

(counts for one shown in table 3.19). A search of the BLAST2GO annotations 

for more Nod factor annotated genes revealed two more nod factor-induced 

genes that are differentially expressed highly in the early gall stage (although 

with log fold changes less than 2 versus the growth and mature stage). The 
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other nod factor-induced gene is the highest expressed of the four and is a 

major facilitator superfamily (MFS) membrane transporter that transports 

small solutes such as sugars. There are four nod factor-induced differentially 

expressed (>2 fold change) genes in the growth and mature stages. In 

addition to the nod-induced genes, Q. robur genes of interest based on the 

rapid growth of early to growth stage galls are 13 oak cyclin and cell division 

kinase genes differentially expressed highly in the early stage. 
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Overlapping DE Number DE Higher in Early > 2 fold change Lower in Early > 2 fold change 

Q. robur 2679 1486 401 1070 466 

B. pallida 5228 2927 1138 1360 810 

      

BLAST hits Number DE Higher in Early > 2 fold change Lower in Early > 2 fold change 

Q. robur 2571 1457 395 996 425 

B. pallida 2032 441 105 1258 758 

      

Interproscan annotations Number DE Higher in Early > 2 fold change Lower in Early > 2 fold change 

Q. robur 2664 1480 398 1061 459 

B. pallida 5068 2801 1068 1355 808 

 

 

 

 

 

 

 

 

 

 

Table 3.18. Overlapping differentially expressed genes and BLAST and InterProScan based annotations. B. pallida genes that are relatively highly 
expressed are shown in bold to highlight their relative lack of annotation. When only the Phobius protein function prediction results were parsed 
from the InterProScan annotations the numbers were almost identical as full InterProScan annotations shown. 
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Stage Early Growth Mature 

Replicate 1 4 8 211 127 148 182 224 234 252 270C 281 

Chitinase 1496 825 584 757 222 149 92 15 4 0 1 1 

Chitinase 2128 1553 958 1713 264 165 126 14 8 6 4 4 

Pectate lyase 33 15 12 14 7 2 2 0 0 1 0 0 

Pectin lyase 11 6 5 8 2 0 1 0 0 0 0 0 

AGP Early nodulin 55-2 precursor 4570 2572 1718 2069 14 7 2 1 1 6 0 3 

BCCP 2649 1454 1094 1203 933 1873 567 401 92 67 129 197 

Table 3.19. Raw counts for several genes of interest in early, growth and late stage galls. These counts are indicative of absolute levels of gene 
expression, whether or not specific genes are differentially expressed across gall stages. 
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3.5.3 Enrichment of GO terms using a Fisher’s exact test 

 

GO term enrichment in differentially expressed genes was performed using a 

Fisher’s exact test implemented in the BLAST2GO analysis suite. The test 

evaluates the frequency of GO terms between a test set of differentially 

expressed genes and a reference set (Conesa et al., 2005). The terms cover 

three domains: cellular component (CC), molecular function (MF) and 

biological process (BP). Thus a gene can be annotated with GO terms from 

each domain detailing its cellular position (CC), catalytic activity (MF) and 

involvement in a defined pathway - for example, cell division (BP).  

Here the reference set consists of the other functional annotations for 

those genes that passed normalization in both EdgeR and DESeq. This 

amounted to 19 838 gall wasp and 16 790 oak genes. Genes in the 

differentially expressed set were removed from the reference for the tests. A 

2x2 contingency table is constructed for each GO term. It consists of how 

many genes in the test set are assigned that GO term and how many in the 

test set are not, and how many genes in the reference have that term and 

how many in the reference set do not. The resulting P-value is corrected for 

multiple testing. The GO terms associated with genes in the greater than 2-

fold change, up and down in both edgeR and DESeq for the early versus 

later stages were tested. Enrichment tests were performed with a false 

discovery rate cut off of 0.05. The most specific GO annotations terms of 

enriched GO terms were identified (table 3.20). These are the most specific 

GO annotations assigned to this gene, as a gene may have several enriched 

GO terms from very general (metabolism) to the very specific (plant cell wall 

degradation).  

 

GO term enrichment Early Most specific GO Later Most specific GO 

B. pallida 0 0 70 18 

Q. robur 216 39 50 19 

 

Table 3.20. GO term enrichment for greater than 2 fold differentially expressed genes  for early versus 
growth and mature stages showing numbers all  enriched GO terms and the number of most specific GO 
terms per gene. 
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Not surprisingly, as GO terms are generated from BLAST and 

InterProScan annotations, the early B. pallida genes do not have any 

enriched GO terms. This reinforces the idea that these genes lack orthologs 

in other sequenced organisms, and reflects a bias in GO terms to well-

studied processes in model organisms. However, there are enriched GO 

terms for those genes more highly expressed in the later stages (table 3.21). 

The opposite effect occurs for the oak data, with more GO term enrichment 

identified in the early stage versus the later stages. Lists of specific GO terms 

for the early and later Q. robur stages are found in tables 3.22-23 (the 

complete tables containing all GO hierarchy terms, from the most general to 

specific, assigned to a gene: appendix tables 3.27-28) 

 

 

 

 

 

 

 

Table 3.21. Enriched GO terms for B. pallida genes more highly expressed in the growth and mature 

stages versus the early stage. F = molecular function; C = cellular component; P = biological process. 
#Test = number of differentially expressed genes for thi s GO annotation; #Ref number of genes for this 
GO annotation in the referenc e, not including differentially expressed genes; #not in test number of 
differentially expressed genes not in this GO annotation; #not in Ref number of genes that do not have 
this GO annotation in the reference. 

Table 3.22. Enriched GO terms for Q. robur genes more highly expressed in the early versus the 
growth and mature stages. F = molecular function; C = cellular component; P = biological process. 
#Test = number of differentially expressed genes for this GO annotation; #Ref number of genes for 

this GO annotation in the reference, not including differentially expressed genes; #not in test number 
of differentially expressed genes not in this GO annotation; #not in Ref number of  genes that do not 
have this GO annotation in the reference. 
  

Table 3.23. Enriched GO terms for Q. robur genes more highly expressed in the growth and mature 

stages versus the early stage. F = molecular function; C = cellular component; P = biological process. 
#Test = number of differentially expressed genes for this GO annotation; #Ref number of genes for 
this GO annotation in the reference, not including differentially expressed genes; #not in test number 

of differentially expressed genes not in this GO annotation; #not in Ref number of genes that do not 
have this GO annotation in the reference. 
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GO-ID Term Category FDR P-Value #Test #Ref #not in 
Test 

#not in 
Ref 

GO:0003735 structural constituent of ribosome F 4.06E-11 1.45E-14 63 211 447 5446 

GO:0005811 l ipid particle C 1.53E-10 1.10E-13 50 145 460 5512 

GO:0006412 Translation P 1.36E-07 1.79E-10 83 419 427 5238 

GO:0055114 oxidation-reduction process  P 0.001289173 2.77E-06 54 293 456 5364 

GO:0005524 ATP binding F 0.002749936 7.23E-06 73 462 437 5195 

GO:0005576 extracellular region C 0.004204039 1.41E-05 34 158 476 5499 

GO:0005875 microtubule associated complex C 0.004752315 1.77E-05 37 182 473 5475 

GO:0016469 proton-transporting two-sector ATPase complex C 0.005932773 2.62E-05 14 35 496 5622 

GO:0030246 carbohydrate binding F 0.006027306 2.74E-05 20 69 490 5588 

GO:0005200 structural constituent of cytoskeleton F 0.006729023 3.30E-05 12 26 498 5631 

GO:0022627 cytosolic small ribosomal subunit C 0.009640831 5.48E-05 11 23 499 5634 

GO:0006457 protein folding P 0.009640831 5.53E-05 22 86 488 5571 

GO:0003723 RNA binding F 0.009875232 5.79E-05 55 339 455 5318 

GO:0008553 hydrogen-exporting ATPase activity, phosphorylative 
mechanism 

F 0.014487533 9.87E-05 11 25 499 5632 

GO:0015991 ATP hydrolysis coupled proton transport P 0.018149182 1.30E-04 11 26 499 5631 

GO:0030017 Sarcomere C 0.030194911 2.27E-04 13 39 497 5618 

GO:0061061 muscle structure development P 0.046059637 3.80E-04 30 160 480 5497 

GO:0007052 mitotic spindle organization P 0.048213359 4.04E-04 20 87 490 5570 
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GO-ID Term Category FDR P-Value #Test #Ref #not in 
Test 

#not in 
Ref 

GO:0051322 Anaphase P 4.81E-29 4.36E-32 37 75 284 12628 

GO:0051567 histone H3-K9 methylation P 1.48E-25 2.11E-28 42 148 279 12555 

GO:0006275 regulation of DNA replication P 1.22E-22 2.83E-25 33 91 288 12612 

GO:0016572 histone phosphorylation P 5.92E-21 1.61E-23 25 42 296 12661 

GO:0010389 regulation of G2/M transition of mitotic cell  cycle P 2.20E-18 7.97E-21 22 37 299 12666 

GO:0006270 DNA-dependent DNA replication initiation P 1.06E-17 4.25E-20 23 48 298 12655 

GO:0006306 DNA methylation P 4.13E-17 1.77E-19 33 151 288 12552 

GO:0048451 petal formation P 3.38E-16 1.58E-18 19 30 302 12673 

GO:0048453 sepal formation P 2.88E-15 1.68E-17 18 29 303 12674 

GO:0051225 spindle assembly P 2.39E-13 1.86E-15 16 27 305 12676 

GO:0031048 chromatin silencing by small RNA P 5.16E-12 5.21E-14 23 104 298 12599 

GO:0006346 methylation-dependent chromatin silencing P 6.08E-12 6.22E-14 23 105 298 12598 

GO:0003777 microtubule motor activity F 6.70E-11 7.78E-13 15 36 306 12667 

GO:0005874 Microtubule C 4.69E-08 7.41E-10 16 76 305 12627 

GO:0009909 regulation of flower development P 6.13E-08 9.76E-10 29 286 292 12417 

GO:0007067 Mitosis  P 8.94E-07 1.56E-08 13 58 308 12645 

GO:0007018 microtubule-based movement P 1.62E-06 2.93E-08 12 50 309 12653 

GO:0010075 regulation of meristem growth P 6.32E-06 1.18E-07 18 146 303 12557 

GO:0042023 DNA endoreduplication P 9.92E-05 2.00E-06 12 78 309 12625 

GO:0000079 regulation of cyclin-dependent protein kinase 

activity 

P 1.48E-04 3.01E-06 7 20 314 12683 

GO:0007169 transmembrane receptor protein tyrosine kinase 
signaling pathway 

P 2.42E-04 4.98E-06 12 86 309 12617 

GO:0009855 determination of bilateral symmetry P 3.15E-04 6.61E-06 13 105 308 12598 

GO:0010103 stomatal complex morphogenesis  P 4.09E-04 8.73E-06 13 108 308 12595 
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GO:0009524 Phragmoplast C 0.001085499 2.33E-05 8 41 313 12662 

GO:0010143 cutin biosynthetic process  P 0.003054561 6.76E-05 4 6 317 12697 

GO:0004674 protein serine/threonine kinase activity F 0.003839808 8.60E-05 34 654 287 12049 

GO:0009957 epidermal cell  fate specification P 0.004547407 1.04E-04 4 7 317 12696 

GO:0007000 nucleolus organization P 0.005561425 1.30E-04 5 16 316 12687 

GO:0000793 condensed chromosome C 0.005561425 1.30E-04 5 16 316 12687 

GO:0008356 asymmetric cell  division P 0.010466792 2.55E-04 5 19 316 12684 

GO:0005576 extracellular region C 0.011130584 2.72E-04 43 964 278 11739 

GO:0000914 phragmoplast assembly P 0.011410855 2.81E-04 3 3 318 12700 

GO:0031225 anchored to membrane C 0.020061757 5.08E-04 9 85 312 12618 

GO:2000123 positive regulation of stomatal complex 
development 

P 0.023420031 6.06E-04 2 0 319 12703 

GO:0048443 stamen development P 0.025120045 6.67E-04 10 108 311 12595 

GO:0006323 DNA packaging P 0.027027594 7.21E-04 7 54 314 12649 

GO:0042127 regulation of cell  proliferation P 0.033869426 9.21E-04 9 93 312 12610 

GO:0009955 adaxial/abaxial pattern specification P 0.038539463 0.001057926 7 58 314 12645 

GO:0000786 Nucleosome C 0.042820307 0.001186527 5 28 316 12675 
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GO-ID Term Category FDR P-Value #Test #Ref #not in 

Test 

#not in 

Ref 

GO:0010413 glucuronoxylan metabolic process P 1.05E-05 2.18E-08 18 127 308 12571 

GO:0045492 xylan biosynthetic process  P 1.11E-05 2.43E-08 18 128 308 12570 

GO:2000652 regulation of secondary cell wall biogenesis P 1.94E-04 5.02E-07 5 3 321 12695 

GO:0010089 xylem development P 5.07E-04 1.51E-06 10 48 316 12650 

GO:0009809 l ignin biosynthetic process  P 0.00167049 5.41E-06 8 32 318 12666 

GO:0016701 oxidoreductase activity, acting on single donors with 
incorporation of molecular oxygen 

F 0.002428961 8.81E-06 10 60 3112638   

GO:0005506 iron ion binding F 0.003377873 1.31E-05 21 269 305 12429 

GO:0006624 vacuolar protein processing P 0.003751016 1.55E-05 3 0 323 12698 

GO:0016706 oxidoreductase activity, acting on paired donors, with 
incorporation or reduction of molecular oxygen, 2-
oxoglutarate as one donor, and incorporation of one 

atom each of oxygen into both donors  

F 0.004214725 1.86E-05 10 66 316 12632 

GO:0055114 oxidation-reduction process P 0.008119209 3.78E-05 64 1494 262 11204 

GO:0050734 hydroxycinnamoyltransferase activity F 0.012735066 6.10E-05 3 1 323 12697 

GO:0016760 cellulose synthase (UDP-forming) activity F 0.016620734 8.39E-05 6 24 320 12674 

GO:0015103 inorganic anion transmembrane transporter activity F 0.017624606 9.13E-05 9 65 317 12633 

GO:0046274 l ignin catabolic process P 0.025032974 1.39E-04 5 16 321 12682 

GO:0005576 extracellular region C 0.033647111 1.96E-04 44 963 282 11735 

GO:0071702 organic substance transport P 0.045690319 2.75E-04 23 388 303 12310 

GO:0009815 1-aminocyclopropane-1-carboxylate oxidase activity F 0.045690319 2.94E-04 3 3 323 12695 

GO:0016209 antioxidant activity F 0.045690319 2.96E-04 10 95 316 12603 

GO:0015706 nitrate transport P 0.045690319 2.96E-04 10 95 316 12603 
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3.5.4 GO term enrichment correlates with phenotypic observations of 

gall tissue 

 

3.5.4.1 Oak GO terms over-represented in early stage galls 

 

Enriched GO terms demonstrate a clear distinction in expression between 

the early and later stages in the oak tissue. The early tissues have many GO 

terms associated with cell division and regulation, more so in the complete 

GO terms table. Galls grow rapidly at this stage; hence, much cell division is 

expected as indicated by GO terms for cytokinesis, mitosis specifically 

anaphase and metaphase, regulation of DNA replication and microtubule 

organisation. Inspection of the differentially expressed gene list BLAST 

annotations indicates Cyclin B to be highly expressed at this stage. Cyclin B 

is key to progression from the G2 to M phase of the cell cycle. Additionally, Q. 

robur DNA is being heavily reorganized at this stage, through histone and 

DNA modification (methylation and alkylation), chromatin silencing and 

condensation of chromosomes as shown by enriched GO terms (table 3.22). 

The gene expression profiles neatly mirror the observed phenotype of B. 

pallida galls at this stage (contrast the sizes of sampled early and growth 

galls in figures 3.1-2). The gall tissue also shares expression with petal and 

sepal formation, which is not surprising as these tissues and gall wasp galls 

develop from meristematic tissue.  

There are also hints at the cycles of endoreduplication (table 3.22, 

GO: 0042023) that occur in nutritive cells forming around the larval chamber 

during the early stage of gall development. In contrast to this, there is 

enrichment for chromatin silencing by small RNA and methylation (GO: 

0031048 & 0006346) associated with the repression of gene expression. 

This may reflect gene silencing of certain genes for which high expression is 

not required in the endoreduplicated nutritive cells. Additionally, in the 

complete GO terms table for early versus later stages (appendix table 3.27) 

fatty acid biosynthesis is over-represented correlating with the observed lipid-

dense nutritive cell cytoplasm (Harper et al., 2004).  
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3.5.5 GO terms over-represented in growth and mature stage galls 

 

3.5.5.1 Q. robur 

 

Whereas early oak tissue expression appears to be dominated by cytokinesis 

and associated processes, the later stage tissues are enriched for processes 

of maturation. Four of the five lowest adjusted P-values for enriched GO 

terms are involved in primary and secondary cell wall growth while the other 

is for xylem development. Both of these observations are in line with 

phenotypic observations. In growth stage galls, parenchyma vascularizes so 

that plant nutrients and water can be imported into the gall for the larva’s 

benefit; this explains the enrichment for a xylem development GO term. It 

can also be seen in internal pictures of growth stage galls. Lignification of cell 

walls, in part, signifies gall progression to the mature stage, as evidenced by 

the papery epidermis of B. pallida galls and hardening of vascular tissues.  

The other process enriched in growth and mature galls is 

oxidoreductase activity (appendix table 3.28). Although there are many 

processes that oxidoreductases could be involved in, including cell wall 

biogenesis, one in line with maturing plant tissues is the production of 

secondary plant compounds, such as phenolics and tannins. The presence 

of hydroxycinnamoyltransferase activity (GO:0050734), involved in 

phenylpropanoid metabolism, would support this.   

 

3.5.5.2 B. pallida 

 

It is harder to draw conclusions about the gall wasp enriched GO terms. It is 

more telling that early stage expression has few annotations, as this 

indicates that previously uncharacterized genes dominate expression.  

The presence of sarcomere (GO:0030017) and muscle structure 

development (GO:0061061) GO terms indicates the larvae are growing in the 

growth and mature stages, which is obvious in mature replicates but not the 

growth stage. Other enriched GO terms are very general, with several  
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translation and ribosomal associated GO terms as well a lipid and RNA 

binding and protein folding. This is to be expected if by this stage the larvae 

are no longer manipulating host expression, as the gall has finished growing, 

and are switching to feeding on the surrounding nutritive cells. 

 

3.5.6 Comparison of differentially expressed B. pallida genes with the 

genomes of Diplolepis spinosa and Belizinella gibbera 

 

As many of the genes differentially expressed are new, little can be said 

about their function. If gall induction by cynipid gall wasps occurs by the 

same core processes, it follows that orthologs of the key genes are expected 

to be present in species across the gall-inducing Cynipidae. By using the 

genome assembly of the rose gall wasp Diplolepis spinosa (Diplolepidini) 

(see Chapter 4 for assembly) conserved orthologs in another cynipid gall 

wasp tribe can be identified among differentially expressed genes. 

Additionally, the genome of the oak gall wasp Belizinella gibbera can be used 

to check concordance in gene complement among the tribe Cynipini.  

The B. pallida transcriptome was compared to the cynipid genome 

assemblies. BLASTn nucleotide-nucleotide and tBLASTx translated-

nucleotide-versus-translated-nucleotide searches were run. An e-value cut-

off of 1 x 10-5 was applied and BLASTn and tBLASTx results combined for 

analysis. TBLASTx was chosen as the divergence time of B. pallida and D. 

spinosa is probably tens of millions of years (Ronquist and Liljeblad, 2001) 

and tBLASTx will compare 6-frame translations of both the query and 

reference.  Consequently coding sequence will have diverged to the extent 

that protein sequence alone may identify some potential orthologs.  

The D. spinosa assembly probably contains most of this species’ 

complement of genes, as the CEGMA scores (Perra et al., 2009) are good at 

80% complete (Chapter 4). In contrast, the B. gibbera genome is far from 

complete with scores of 25% complete for CEGs. Table 3.24 gives the 

number of genes in each differentially expressed category with a 

corresponding contig in the D. spinosa and B. gibbera genomes respectively.  
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Shared DE All DE Higher in 
Early 

> 2 fold 
change 

Lower in 
Early 

> 2 fold 
change 

D. spinosa 2310 

(44%) 

662  

(23%) 

186  

(16%) 

1257  

(92%) 

740  

(91%) 
B. gibbera 
 

5122 
(98%) 

2914 
(100%) 

1137 
(100%) 

1298  
(95%) 

769  
(95%) 

 

 

The D. spinosa sequence similarity results share the same pattern as that for 

the BLASTs against nt and nr datasets and GO enrichment (table 3.24). A 

low percentage, 23%, of the differentially and highly expressed genes in the 

early stage has hits to the D. spinosa genome. This is reduced further for 

those with greater than 2-fold change at 16%, but this does include the 

chitinase and serine threonine kinase genes. In contrast, genes more highly 

expressed in the growth and mature stages have over 90% hits to D. 

spinosa. The closely related B. gibbera however contains almost all 

differentially expressed B. pallida genes across stages. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3.24.  Differentially expressed gall  wasp genes with hits in a closely related (B. gibbera) and 
phylogenetically distant (D. spinosa) gall  wasp. 
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3.6 Discussion: The induction and formation of B. pallida galls 

 

In the discussion each of the pre-existing hypotheses are evaluated in the 

same order as the introduction, except for the NOD factors and 

arabinogalactan hypotheses (section 3.1). New hypotheses based on the 

gene expression patterns identified above are proposed. Finally, the NOD 

factors, arabinogalactan proteins and gall wasp chitinases are discussed at 

length as the most exciting results and potentially fruitful directions of future 

research into cynipid gall induction.  

 

3.6.1 Previously identified candidates for gall induction 

 

3.6.1.1 Virus-like-particles  

 

No genes were found that indicated a virus-like-particle (VLP) being involved 

in the gall process. Neither were any found in a Trinity assembly of reads 

assigned to the Virus group. These transcripts derived principally from plant 

viruses with RNA genomes (table 3.8). A VLP is very unlikely to be 

transferring the key affecters of gall induction into the host during gall 

development. Additionally, VLPs are not oviposited with the egg based on 

venom gland transcriptomes of B. pallida and Diplolepis rosae and electron 

microscopy of the venom gland (S. Cambier, personal communication). 

 

3.6.1.2 Secreted proteins 

 

The vast majority of early differentially expressed B. pallida genes are 

predicted to encode a secretory peptide, but so do the majority of later stage 

differentially expressed genes. None of the early differentially expressed 

genes have homology to a gall inducing nematode or gall midge sequence 

by BLAST analysis (appendix table 3.26). These genes have very little 

homology to other known genes as indicated by the BLAST2GO annotations. 

This contrasts with genes differentially expressed highly in the growth and 
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mature stages that mostly have orthologs in other insects. The genes 

involved in gall induction are possibly unique to the Cynipidae, having 

diverged from an ancestral sequence at the same time that gall wasps 

diverged from non-galling ancestors. Without a close outgroup genome 

sequence this is not possible to state with much confidence. The low number 

of shared orthologs with the D. spinosa genome suggests there may be 

differences in the number of genes involved in gall induction across tribes, 

with a core set of conserved genes. The products of these conserved genes 

are candidates for secretion from the larvae of materials driving interaction 

with the plant host, leading to the hypothesis:  

 

Highly expressed genes in the early stage with signal peptides 

encode proteins secreted from the larva that can interact with host 

factors 

 

Proving function requires additional experimentation, but even without 

knowing their function they may be informative about other aspects of gall 

wasp larval biology. A key question is where are these genes synthesized in 

the gall wasp larva? There are two hypothetical origins for routes of egress 

from a gall wasp larva, the larval salivary glands or Malpighian tubules 

(Harper et al., 2009). The Malpighian tubules of cynipids are very different to 

other insects and are lined by secretory cells with polytene chromosomes 

(Harper et al., 2009). In situ or immunostaining approaches can be used to 

identify the origin and targets of secreted larval gall wasp proteins. This is 

discussed further in chapter 5. Interestingly two of the few early stage genes 

that are highly expressed, encode a putative signal peptide, and have strong 

similarities to genes in other insects, are the chitinases.   

 

3.6.1.3 Potentially horizontally transferred plant cell wall degrading 

enzymes 

 

Pectin lyases most similar to bacterial sequences, which degrade cell wall 
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pectin, were differentially expressed in the early stage gall (discussed in 

chapter 4). Another pectin lyase was more highly differentially expressed in 

the mature stage. Two distinct cellulase genes are expressed highly 

throughout gall developmental stages but are not significantly differentially 

expressed in any direction. The cellulases therefore have some role albeit 

one not limited to gall induction. Potentially, they could aid in larval feeding 

by breaking down nutritive cell walls in the larval chamber, as could the 

pectin lyase. Alternatively the secretion of PCWDEs could weaken cell walls 

allowing the passage of induction-related factors into host tissues (Harper et 

al., 2009) 

 

3.6.1.4 Plant hormone related genes  

 

In the early stage, five oak genes associated with plant hormones are highly 

expressed. Two are ethylene responsive transcription factors and another, 1-

aminocyclopropane-1-carboxylate synthase, is an important component of 

the ethylene synthesis pathway. The other two genes are a gibberellin 2-

oxidase, which catabolizes gibberellin (Huang et al., 2010), and an auxin 

transporter protein that facilitates the intercellular flow of auxin.  

Ten genes are differentially expressed higher in the growth and 

mature versus the early stage. They include distinct (by sequence) versions 

of the early stage differential expressed genes, including three 1-

aminocyclopropane-1-carboxylate oxidases, and a gibberellin 2-oxidase. The 

other genes are four auxin-induced proteins, a giberrelin receptor and 

abscisic insensitive 1b. 

That plant hormones are involved in gall growth has been 

hypothesized and a high concentration of the auxin indole acetic acid has 

been identified in gall tissues (Harper et al., 2009). The results presented 

here suggest roles for, principally, ethylene and auxin during gall 

development but RNAseq is less a powerful tool for investigating plant 

hormone levels in gall tissue than specific assays. Indeed, there were no 

plant hormone synthesis pathways enriched GO terms in any direction.  



 

169 

3.6.1.5 Galls-as-seeds: Biotin carboxyl carrier protein 

 

Biotin carboxyl carrier protein (BCCP) has been previously identified at high 

expression levels in the nutritive cells surrounding gall wasp larvae for 

several species, including B. pallida (Harper et al., 2004). No genes 

annotated as BCCP were called as differentially expressed in this 

experiment. However, a BCCP annotated gene was expressed at high levels 

throughout gall development, corroborating the assay-based work of Harper 

et al. (2004). I also tested acetyl-CoA carboxylase genes (35 annotated by 

BLAST) for differential expression, as BCCP is a component of this multi -

subunit enzyme. No differential expression of these genes was detected, 

although again expression was high for many transcripts in each 

developmental stage, indicating that galls have a high metabolic rate. 

 There are other markers that suggest similarity to seed tissues, in 

particular the extremely high and differential expression of late embryogenic 

protein 14 (lea14). This protein belongs to the late embryogenic proteins 

expressed in plant seed or stressed plant tissues (Hundertmark and Hincha, 

2008). Unfortunately, the functional role of these proteins is unknown, 

although lea14 may help cells avoid desiccation (Singh et al., 2005). If this 

were the case high expression of a lea14-like oak protein could be explained 

by desiccation avoidance in early gall tissue that has not yet vascularised. 

Other late embryogenesis-associated proteins are also highly expressed, but 

not differentially nor as extremely as lea14.  

 

3.6.2 New hypotheses for gall induction 

 

3.6.2.1 New hypothesis 1: Differentially expressed genes that are 

conserved across gall wasp tribes are candidates for genes with key 

roles in gall induction. 

 

The low proportion of B. pallida early differentially expressed genes with 

similarity to genes in the D. spinosa genome assembly has two explanations. 
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Firstly, that few gall induction genes are indeed shared by D. spinosa and B. 

pallida; and those that are shared represent a core set of conserved genes. 

These 186 genes are candidates for further investigation. For example, a 

chitinase gene is present in the D. spinosa genome and homologous to both 

highly expressed B. pallida chitinases. Is this D. spinosa chitinase expressed 

in a similar pattern to the B. pallida chitinases? Alternatively, there could be 

many orthologs between the species, but sequence divergence has resulted 

in little to no identity in genes performing the same functions in the two hosts. 

Positive selection in tandem with divergence over at least 45 million years 

(Ronquist and Liljeblad, 2001) between these species, could potentially result 

in sufficient divergence that orthology is not detectable. In this case a gradual 

fall in identifiable potential orthologs would be expected as one compares 

species across greater phylogenetic distances . Adaptation to different hosts, 

the Rosaceae and Fagaceae, is a potential driver for positive selection 

among these genes. Adaptation could also be to specific host tissues; B. 

pallida sexual generation eggs are oviposited in apical meristem tissue of 

bud scales (Rey, 1992) while D. spinosa eggs are oviposited below the 

apical meristem in the cortex surrounding the procambium (Shorthouse et al., 

2005). Differences in host expression profiles in the differing cell types in 

which galls are induced (apical versus cortical meristem) could drive 

evolution of induction genes.  

 

3.6.2.2 New hypothesis 2: Nutritive cell gene expression results in 

endocycling of chromosomes while surrounding parenchymal gene 

expression drives rapid cell division. 

 

In the early stage galls phenotypic observations indicate that rapid cell 

division is occurring in parenchyma tissues, while nutritive cells are 

endocycling (Harper et al., 2004; Harper et al., 2009). A GO term for 

endoreduplication is enriched at the early stage for oak that could explain the 

observed polytene chromosomes of gall nutritive cells. However, the high 

expression of cyclin B genes seen in the early stage gall tissue contradicts 



 

171 

endoreduplication, as endoreduplication in plants bypasses the  M-phase of 

mitosis which cyclin B proteins initiate in complex with cell-division kinases 

(CDKs) (Breuer et al., 2010). These contradictory, cyclin GO terms may 

represent processes occurring in the dividing parenchyma surrounding the 

nutritive cells. Therefore, the contradictory expression indicated by GO term 

enrichment may result from distinct expression between nutritive and non-

nutritive parenchymal tissues. This experiment does not discriminate 

between nutritive and parenchymal tissue, and thus GO terms cannot be 

partitioned by cell type.  

To test this hypothesis future experiments could compare expression 

between nutritive cells and surrounding parenchyma. The expectation would 

be for GO terms associated with endoreduplication to occur in nutritive cells 

only, while cell division GO terms would be highly expressed in surrounding 

parenchyma.  

 

3.6.2.3 New hypothesis 3: Gall enlargement occurs by early cell division 

followed by rapid cell expansion in the growth stage 

 

The expression of many cell division GO terms and genes in the early stage 

gall tissue versus the later stages makes intuitive sense. But the gall grows 

rapidly during the growth stage so why are cell division associated genes not 

highly expressed in this stage as well? It may be that the size constraint on 

selecting growth stage galls meant that most of the cell differentiation and 

growth had been completed in the sample growth stage galls. An alternative 

explanation is that cell division and cell expansion are distinct to the early 

and growth stages. In this scenario, cell division occurs early in gall division; 

the inference would then be that observed rapid gall growth is driven 

predominantly by cell expansion not cell division. The GO enrichment results 

are very clear on cell division being an early stage gall process. Therefore 

observing cell expansion, by microscopy, of gall tissues, without cell division 

in growth stage galls would provide evidence for this hypothesis.  
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3.6.2.4 New Hypothesis 4: Gall wasp chitinases modify host 

arabinogalactans, resulting in somatic embryogenesis-like 

dedifferentiation and cell division in host tissues. 

 

Differentially expressed arabinogalactan protein expression in oak tissue 

suggests a role for these B. pallida chitinases only described before for plant 

chitinases. Gall wasp chitinase could act on host arabinogalactan proteins 

(AGPs) in the extracellular matrix in a way analogous to the action of 

endogenous plant chitinases (van Hengel et al., 2001) by enhancing somatic 

embryogenesis due to cleavage of arabinogalacatan chains of AGPs.  The 

gall wasp chitinases contain the required signal peptides for secretion into 

the extracellular milieu of the gall wasp larva.  The high-expression of these 

chitinase genes compared to most other differentially expressed gall wasp 

genes is striking. Their possible substrate, an early nodulin associated AGP 

is also differentially and highly expressed by the host in early stage tissue. 

This AGP is multi-domain containing a phytocyanin domain as well as the 

AGP backbone. Poon et al. (2012) showed AGPs with this domain are 

capable of promoting somatic embryogenesis. The AGP identified in this 

experiment appears similar to that identified by Poon et al., (2012) named 

GhPLA1 (Gossypium hirsute phytocyanin-like arabinogalactan protein1)  

(BLASTx bit score of 331). 

The two gall wasp larval chitinases are quite divergent from one 

another with only 60% amino acid identity; they both however have best 

BLASTx hits to the same Nasonia vitripennis chitotriosidase-1-like protein 

(gene ID: 345494134). The insect, family 18 glycosyl-hydrolase, chitinases 

normally function in turnover of extracellular chitin-containing matrices such 

as the insect cuticle (Arakane and Muthukrishan, 2009). Some insect 

chitinases are important to larval and pupal molting in Tribolium castaneum 

(Zhu et al., 2008). The two B. pallida chitinases have little to no expression in 

the mature galls when one would expect high cuticle chitinase activity as 

larvae prepare for pupation, although the experimental design may not be 

sensitive enough to detect such expression.  
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 The gall wasp chitinase cleaving host arabinogalactans hypothesis is 

attractive as evolutionary predictions for the origin of this interactio n make 

intuitive sense. Cynipid gall wasps probably evolved from parasitoids of 

wood-boring larvae (Ronquist and Liljeblad, 2001). In such a scenario, the 

ancestral gall wasp chitinase could have been used to degrade the ancestral 

parasitoids host-larval cuticle and would have come in to contact with host 

plant cells. Host cells may have then reacted to this unintended stimulus in 

the manner discussed above, forming somatic embryogenic calli. Such an 

accidental interaction could have been one of the earliest steps in the 

evolution of cynipid gall induction.  

New hypothesis 4 makes testable predictions: 

 

1. Orthologs of the B. pallida chitinases will be present in other gall 

wasps and have similar expression patterns. 

2. Incubation of oak gall wasp chitinases with host arabinogalactan 

proteins will increase the somatic embryogenesis potential of the 

AGPs.  

 

 These hypotheses do not address how the proposed key 

arabinogalactan proteins came to be highly expressed in oak tissue. In short, 

if the hypothesis is correct, then for the chitinases to be effective the 

substrate arabinogalactan proteins have to be expressed. However, this 

observation may explain the importance of phenology to gall induction. Both 

van Hengel et al., (2001) and Poon et al., (2012) demonstrated that temporal 

expression of AGP is key to somatic embryogenesis. In cotton, the early 

somatic embryogenesis expressed GhPLA1 is required for somatic 

embryogenesis, while a different AGP expressed late in somatic 

embryogenesis was inhibitory to initiating somatic embryogenesis (Poon et 

al., 2012). Van Hengel et al., (2001) also observed this effect, although the 

involved AGPs were not characterized. Transient early AGP expression may 

represent, along with other as yet unidentified host genes, the genetic basis 

of the ‘window-of-opportunity’ B. pallida females have to successfully exploit 
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to induce a gall on oak. If GhPLA1 is a conserved target for manipulation this 

statement may apply to all cynipids, leading to another new hypothesis: 

 

New hypothesis 5: transient gene expression of key host genes, 

including orthologs of GhPLA1, in cells that go on to form a gall 

has driven specificity in gall wasp oviposition timing.  

 

It has been observed that many B. pallida gall wasps will preferentially 

oviposit on the tree they emerged from (Egan and Ott, 2007). This is 

consistent with a synchronizing of host phenology and cynipid oviposition 

timing. Cynipid gall wasps may predominately manipulate already occurring 

processes in meristematic host tissues as opposed to initiating them, 

representing a ‘simpler’ strategy of host manipulation. 

 

3.6.2.5 New hypothesis 6: Somatic embryogenesis is induced in host 

apical meristem to initiate B. pallida gall development. 

 

The early stages of gall induction demonstrate similarity to plant expression 

during somatic embryogenesis. Expression of genes known to be involved in 

somatic embryogenesis was investigated to find further evidence for this 

hypothesis. None of the enriched GO terms (full or specific) directly 

addressed somatic embryogenesis. Five GO terms were enriched in the 

early stage for post-embryonic development. These GO terms are in the 

same hierarchy for somatic embryogenesis. It was, however, more fruitful to 

look at differential expression of genes associated with somatic 

embryogenesis, such as somatic embryogenesis receptor kinase (SERK) 

(Karami et al., 2009). 

 Somatic embryogenesis receptor kinase (SERK) genes are expressed 

in early embryogenic cells of Arabidopsis thaliana, Zea mays, Medicago 

trunculata, Oryza sativa, Theobroma cacao, Citrus unshiu, and others 

(Karami et al., 2009). SERK gene overexpression increases the chance that 

a cell will undergo somatic embryogenesis (Karami et al., 2009). The genes 
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encode leucine-rich repeat receptor-like kinases (LRR-RLKS) involved in 

plant signaling. One SERK gene is differentially expressed  highly in the early 

stage of gall tissue, while several others are highly expressed throughout 

induction. Several other SERKs have high expression throughout induction 

but are not differentially expressed in any direction. SERK1 has been found 

in complexes with brassinosteroid-insensitive 1 and its associated receptor 

kinase (Karami et al., 2009). This is mirrored in the oak gene early 

transcriptome, with one brassinosteroid-insensitive 1 associated receptor 

kinase differentially expressed more highly in the early stage. Again, several 

other brassinosteroid-insensitive 1 genes are highly expressed throughout 

gall development and are not differentially expressed. Binding of 

brassinosteroid, a plant hormone, to the SERK/brassinosteroid-insensitive1 

receptor-kinase complexes triggers transcription of embryogenesis related 

genes (Karami et al., 2009). There are many other genes involved in somatic 

embryogenesis highly expressed during gall induction, including Glutathione 

s-transferases, CLAVATA receptors, the embryogenic cell receptor, 

ECPP44; apetala3, WUSCHEL, transport inhibitor proteins and other 

arabinogalactan proteins without phytocyanin domains (Karami et al., 2009).  

 This ‘galls-as-somatic embryos’ hypothesis is complementary to the 

‘galls-as-seeds’ hypothesis of Harper et al., (2004). The somatic embryo 

hypothesis addresses the earliest stage of induction whereas the ‘galls -as-

seeds’ hypothesis was based on studies of later tissues (Harper et al., 2004).  

To investigate the similarity between gall induction and somatic 

embryogenesis a comparison of gall tissue expression with that of oak cells 

undergoing somatic embryogenesis such as induced callus tissues or early 

acorn is recommended. 

 An alternative explanation to somatic embryogenesis-like expression 

by oak tissues is that expression common to somatic embryogenesis and 

maintaining the apical meristem, on which B. pallida sexual generation galls 

are initiated, is confounded. The CLAVATA and WUSCHEL genes, for 

example, are key regulators of cell fate in shoot apical meristem signaling in 

Arabidopsis thaliana (Schoof et al., 2000; Barton, 2010). To address this, B. 
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pallida gall gene expression should be compared to non-embryogenic 

meristematic tissue to assess the continuity of expression in gall tissue from 

the originating meristem.  

 

3.7 Conclusions 

 

The RNAseq experiment has identified strong candidates for control of gall 

development in both oak and gall wasp. It has also helped identify a potential 

direct interaction between oak and gall wasps in the early gall. However, 

many gall wasp genes identified as candidates have unknown functions as 

they lack identifiable homologs outside the Cynipidae, and potentially within 

the Cynipidae. The principal limitation of the experiment was the lower depth 

of gall wasp sequencing in each replicate. This did not affect the assembly, 

which is of good quality, or the ability to annotate B. pallida transcripts. The 

gall wasp chitinases identified are hypothesized to act directly on oak 

arabinogalactan proteins. The published roles of chitinases in interaction with 

plant arabinogalactans in initiating somatic embryogenesis prompted further 

investigation, as an arabinogalactan protein associate with early nodulation 

was highly expressed in early galls. As a result, gall induction is 

hypothesized to involve expression pathways commonly found during 

somatic embryogenesis. Many of the phenotypic observations of the initiation 

of gall induction are analogous to somatic embryogenesis. As previously 

predicted (Stone & Schönrogge, 2003) gall wasps do appear to manipulate 

highly conserved plant developmental pathways. Potential further 

experiments based on new hypotheses of gall induction are proposed in the 

final chapter on future research. 
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3.8 Appendix 

 

 1 4 8 211 127 148 182 224 234 252 270C 281 

comp327188_c0 1 0 0 0 0 0 2 0 0 0 1 0 

comp327193_c0 2 0 0 0 0 1 0 0 0 0 0 0 

comp327195_c0 1 0 0 0 1 1 0 0 0 0 0 0 

comp32719_c0 124 59 35 45 41 47 72 24 141 97 121 69 

comp327222_c0 2 3 0 0 0 0 0 0 0 0 1 1 

comp327227_c0 1 1 0 1 0 0 0 0 0 0 0 0 

comp32722_c0 37 23 13 13 13 28 25 3 51 71 88 37 

comp327246_c0 1 0 0 0 0 1 0 0 0 0 2 0 

comp327253_c0 2 0 0 1 0 0 0 0 0 0 0 0 

comp327279_c0 1 0 0 0 0 0 0 0 0 1 0 0 

comp32729_c0 86 36 20 22 14 39 31 10 42 22 30 13 

comp327305_c0 1 0 0 0 0 0 0 0 1 0 0 0 

comp32733_c0 82 54 38 145 44 30 54 21 195 192 241 121 

comp327344_c0 1 1 0 0 0 0 0 0 0 0 0 0 

comp327356_c0 3 0 1 0 0 0 0 0 0 0 0 0 

comp327378_c0 1 0 0 0 0 0 0 0 0 0 2 0 

comp327394_c0 2 0 1 0 0 1 0 0 0 0 0 0 

comp327399_c0 3 2 0 1 0 0 0 0 0 0 0 0 

comp327401_c0 1 0 1 0 0 0 0 0 0 0 2 0 

 

Table 3.25. Example of raw counts per gene per replicate generated by RSEM. 
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Figure 3.15. Principal components analysis of Plants data fi ltered by edgeR demonstrating implicit fi ltering of fungal 
infection affected gene expression. 
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Figure 3.16. Venn diagram for Plants of differentially expressed genes exhibiting greater than 2 fold up or down changes 
in expression. 
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Figure 3.17. Venn diagram for Arthropoda of differentially expressed genes exhibiting greater than 2 fold up or down 
changes in expression. 
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Table 3.27. Complete GO terms for early stage highly expressed Q. robur genes. F = molecular 

function; C = cellular component; P  = biological process. #Test = number of differentially 
expressed genes for this GO annotation; #Ref number of genes for this GO annotation in the 
referenc e, not including differentially expressed genes; #not in test number of differentially 

expressed genes not in this GO annotation; #not in Ref number of genes that do not have this 
GO annotation in the reference. 
 

Table 3.28. Complete GO terms for growth and mature stage highly expressed Q. robur genes. F 

= molecular function; C = cellular component; P = biological process. #Test = number of 
differentially expressed genes for this GO annotation; #Ref number of genes for this GO 
annotation in the reference, not including differentially expressed genes; #not in test number of 

differentially expressed genes not in this GO annotation; #not in Ref number of genes that do 
not have this GO annotation in the reference. 
 

Table 3.26. Most similar sequences from BLAST seqrches of B. pallida genes differentially highly 
expressed in the early stage. 
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Query % Length Query start Query end E-value Bit score Target description 

comp27668_c0 80.95 2320 844 3152 0 2179 Apis mellifera FoxP protein (Foxp), mRNA 

comp23205_c0 75.08 1637 200 1836 0 1113 PREDICTED: Apis mellifera solute carrier family 23 member 2-like 

(LOC410114), mRNA 

comp74505_c0 70.72 485 2261 810 0.00E+00 667 PREDICTED: hypothetical protein LOC409020 [Apis mellifera] 

comp23521_c0 86.12 497 6 502 2.00E-163 585 PREDICTED: Nasonia vitripennis charged multivesicular body protein 4b-
like (LOC100123786), mRNA 

comp75244_c0 68.31 1537 349 1835 7.00E-148 535 PREDICTED: Bombus terrestris protein krueppel-like (LOC100642205), 

mRNA 

comp13050_c0 50 448 42 1382 1.00E-120 438 UDP-glucuronosyltransferase 2B15 [Harpegnathos saltator] 

comp95519_c0 43.19 382 519 1661 1.00E-91 342 PREDICTED: cytochrome P450 4C1 [Nasonia vitripennis] 

comp17344_c0 32.44 669 2060 126 1.00E-86 326 hypothetical protein AaeL_AAEL005543 [Aedes aegypti] 

comp25856_c0 44.35 345 134 1126 2.00E-80 304 PREDICTED: venom acid phosphatase Acph-1-like isoform 1 [Nasonia 
vitripennis] 

comp13718_c0 39.86 424 428 1597 6.00E-67 260 PREDICTED: hypothetical protein LOC100643835 [Bombus terrestris] 

comp20790_c0 45.66 311 134 1051 2.00E-61 241 Pectate lyase/Amb allergen [Dickeya dadantii Ech703] 

comp28991_c0 47.84 255 57 800 2.00E-61 241 serine protease 4 precursor [Nasonia vitripennis] 

comp27433_c0 39.78 357 1124 81 4.00E-59 234 PREDICTED: chitotriosidase-1-like [Nasonia vitripennis] 

comp68430_c0 45.49 255 824 69 1.00E-57 228 PREDICTED: elongation of very long chain fatty acids protein 1-like [Apis 
mellifera] 

comp28195_c0 41.01 356 291 1328 1.00E-54 219 PREDICTED: chitotriosidase-1-like [Nasonia vitripennis] 

comp15877_c0 51.87 187 273 815 3.00E-49 201 PREDICTED: protein canopy-1-like [Bombus terrestris] 

comp12097_c0 38.83 273 151 963 2.00E-44 185 PREDICTED: glycine N-acyltransferase-like protein 3-like [N. vitripennis] 
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comp115223_c0 40.08 252 190 945 3.00E-44 183 hypothetical protein TcasGA2_TC010509 [Tribolium castaneum] 

comp104770_c0 36.23 403 7 1080 2.00E-35 155 PREDICTED: hypothetical protein LOC410107 [Apis mellifera] 

comp23773_c0 72.56 266 639 904 2.00E-32 150 Drosophila mojavensis GI24266 (Dmoj\GI24266), mRNA 

comp12191_c0 76.14 197 435 631 2.00E-30 143 Drosophila mojavensis GI21819 (Dmoj\GI21819), mRNA 

comp26235_c0 72.95 244 159 402 8.00E-31 143 Mantispa pulchella clone Mp1 mariner transposase pseudogene, 

complete cds 

comp28222_c0 43.69 206 855 271 4.00E-32 143 hypothetical protein SINV_08289 [Solenopsis invicta] 

comp9488_c1 72.73 275 694 959 2.00E-30 143 Plasmodium knowlesi strain H chromosome 7, complete genome 

comp17168_c0 72.31 260 249 507 9.00E-30 141 Herpetosiphon aurantiacus DSM 785, complete genome 

comp63126_c0 30.92 304 190 1092 5.00E-31 140 Regucalcin [Camponotus floridanus] 

comp23026_c1 46.1 141 5 403 3.00E-31 138 teratocyte released chitinase [Toxoneuron nigriceps] 

comp30525_c0 76.47 170 280 449 1.00E-25 127 Emiliania huxleyi virus 86 isolate EhV86 

comp28027_c0 32.58 267 1041 271 1.00E-26 125 carbonic anhydrase [Aedes aegypti] 

comp26048_c0 68.52 324 3 324 4.00E-23 118 Nasonia vitripennis BAC NV_Bb-46A12 (Clemson University Genomics 
Nasonia vitripennis BAC Library) complete sequence 

comp43152_c0 57 100 71 361 4.00E-24 114 PREDICTED: venom allergen 5-like [Nasonia vitripennis] 

comp146762_c0 72.65 223 531 751 1.00E-20 111 Pleistodontes nigriventris clone 31.2 transposon mariner nonfunctional 
transposase protein gene, partial sequence 

comp27060_c0 26.97 304 338 1231 5.00E-22 111 Regucalcin [Camponotus floridanus] 

comp16537_c1 34.68 173 1219 1737 2.00E-21 109 reverse transcriptase, putative [Pediculus humanus corporis] 

comp45923_c0 67.72 443 419 846 7.00E-20 109 Drosophila mojavensis GI22470 (Dmoj\GI22470), mRNA 

comp24545_c0 15.43 350 9 1004 1.00E-20 105 late embryogenesis abundant-like protein 1 [Brachionus plicatilis] 
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comp65698_c0 71.57 197 367 563 1.00E-18 104 Candida tropicalis MYA-3404 predicted protein, mRNA 

comp41058_c0 31.35 185 50 592 4.00E-20 103 PREDICTED: apolipoprotein D-like [Bombus impatiens] 

comp115810_c0 51.96 102 1241 1546 8.00E-45 102 PREDICTED: tigger transposable element derived 6-like [Saccoglossus 
kowalevskii] 

comp15389_c0 31.16 199 30 608 1.00E-19 101 hypothetical protein I79_025492 [Cricetulus griseus] 

comp45337_c0 75 152 165 312 4.00E-17 100 PREDICTED: Acyrthosiphon pisum glutathione S-transferase-like 

(LOC100570856), mRNA 

comp8141_c0 41.77 79 520 284 3.00E-18 97.1 hypothetical phage protein [Campylobacter phage CP220] 

comp76905_c0 79.09 110 166 275 7.00E-16 95.1 Drosophila mojavensis GI19857 (Dmoj\GI19857), mRNA 

comp61656_c0 26.87 268 91 873 2.00E-17 94.7 putative trypsin 2 [Phlebotomus perniciosus] 

comp8386_c0 38.18 110 119 448 7.00E-17 93.6 biotin carboxylase subunit of acetyl CoA carboxylase [Plasmodium vivax 
SaI-1] 

comp26053_c0 32.59 224 160 759 1.00E-16 91.7 APEG precursor protein [Xenopus laevis] 

comp77120_c0 77.39 115 396 510 7.00E-15 91.5 Dictyostelium discoideum DrnA gene for putative RNaseIII 

comp16621_c0 79.69 128 73 194 5.00E-14 89.7 PREDICTED: Nasonia vitripennis hexokinase type 2-like, transcript variant 
2 (LOC100121683), mRNA 

comp18400_c0 100 47 1485 1531 7.00E-13 86 Hordeum vulgare subsp. vulgare cDNA clone: FLbaf144f19, mRNA 

sequence 

comp25915_c0 74.24 132 82 213 7.00E-13 84.2 Leishmania braziliensis MHOM/BR/75/M2904 hypothetical protein 
(LbrM03_V2.0720) partial mRNA 

comp12159_c0 29.04 272 1710 949 1.00E-13 83.6 GK10310 [Drosophila willistoni] 

comp23087_c0 25 268 476 1249 1.00E-13 82.8 PREDICTED: suprabasin-like, partial [Ornithorhynchus anatinus] 

comp8146_c0 32.12 165 733 1227 3.00E-13 82.8 reverse transcriptase, putative [Pediculus humanus corporis] 
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comp23359_c0 29.48 173 557 69 7.00E-14 81.3 PREDICTED: similar to CG11284 CG11284-PA [Tribolium castaneum] 

comp13566_c0 83.12 77 2 78 2.00E-11 80.6 Vitis vinifera contig VV78X029495.10, whole genome shotgun sequence 

comp62785_c0 69.04 197 457 653 2.00E-11 80.6 Zebrafish DNA sequence DKEY-80G18 in linkage group 15,  

comp25803_c0 70.55 163 489 651 8.00E-11 78.8 C.jacchus DNA sequence from clone CH259-147B13, complete sequence 

comp85100_c0 27.44 277 260 1027 2.00E-11 75.5 hypothetical protein AND_12620 [Anopheles darlingi] 

comp379680_c0 45.78 83 2 250 4.00E-12 75.1 Acidic mammalian chitinase [Harpegnathos saltator] 

comp22909_c0 42.31 104 4 312 1.00E-11 73.2 PREDICTED: similar to chitinase 6 [Tribolium castaneum] 

comp17324_c1 32.47 154 211 672 3.00E-10 71.6 PREDICTED: hypothetical protein LOC100561123 [Anolis carolinensis] 

comp85680_c0 28.91 211 94 708 1.00E-10 71.6 PREDICTED: regucalcin-like [Bombus impatiens] 

comp100285_c0 36.89 103 236 544 4.00E-10 71.2 hypothetical protein EAG_10027 [Camponotus floridanus] 

comp59931_c0 50.82 61 3 185 6.00E-11 71.2 pectin lyase [Bacillus subtilis subsp. spizizenii ATCC 6633] 

comp63509_c0 25 80 159 398 1.00E-10 71.2 conserved Plasmodium protein [Plasmodium falciparum 3D7] 

comp23065_c0 33.06 124 370 8 1.00E-10 70.1 carbonic anhydrase [Aedes aegypti] 

comp52503_c0 83.33 72 513 583 2.00E-08 69.8 Candidatus Carsonella ruddii PV DNA, complete genome 

comp16643_c0 29.05 210 274 873 2.00E-09 69.3 trypsin precursor MDP5A [Mayetiola destructor] 

comp44651_c0 26.99 226 873 256 8.00E-10 69.3 PREDICTED: hepatocyte growth factor-like isoform 1 [Equus caballus] 

comp26084_c0 40.48 84 331 98 4.00E-10 68.6 chitinase [Danaus plexippus] 

comp27724_c0 37.04 108 300 1 8.00E-10 67.4 carbonic anhydrase 6 precursor, putative [Pediculus humanus corporis] 

comp15631_c0 84.72 72 118 189 4.00E-07 66.2 Mouse DNA sequence from clone RP23-291H20 on chromosome 2 

Contains the 3' end of a novel gene, complete sequence 

comp26225_c0 85.71 56 674 729 3.00E-07 66.2 Cyprinid herpesvirus 3 DNA, complete genome, strain: TUMST1 



 

186 

comp21444_c0 26.26 179 263 760 1.00E-08 65.9 Hypothetical protein CBG09235 [Caenorhabditis briggsae] 

comp19164_c0 26.11 180 144 680 1.00E-08 65.5 PREDICTED: hypothetical protein LOC100679084 [Nasonia vitripennis] 

comp22816_c0 29.66 145 811 1218 7.00E-08 64.7 hypothetical protein CPAR2_502130 [Candida parapsilosis] 

comp10926_c0 86.79 53 491 543 1.00E-06 64.4 Dictyostelium discoideum snwA gene, complete cds 

comp35880_c0 73.43 143 196 334 1.00E-06 64.4 Plasmodium falciparum 3D7 chromosome 9 

comp46560_c0 76.11 113 51 159 7.00E-07 64.4 Zebrafish DNA sequence from clone CH211-87D5 in linkage group 7, 
complete sequence 

comp6997_c0 72.73 110 336 445 1.00E-06 64.4 Thielavia terrestris NRRL 8126 chromosome 6, complete sequence 

comp73144_c0 77.11 83 442 524 1.00E-06 64.4 Mouse DNA sequence from clone RP23-304H7 on chromosome 11 

Contains a COMM domain containing 9 (Commd9) pseudogene, a novel 
gene and the Tcf2 gene for transcription factor 2, complete sequence 

comp75670_c0 73.87 111 352 459 1.00E-06 64.4 Homo sapiens BAC clone RP11-320M2 from 2, complete sequence 

comp20945_c0 62.5 56 461 294 1.00E-08 63.5 PREDICTED: hypothetical protein LOC100743197 [Bombus impatiens] 

comp24597_c2 34.95 103 2 295 1.00E-08 63.5 Acidic mammalian chitinase [Camponotus floridanus] 

comp11515_c0 31.78 129 2 382 3.00E-08 63.2 carbonic anhydrase II [Culex quinquefasciatus] 

comp27958_c0 63.83 47 394 534 2.00E-07 63.2 hypothetical protein EAG_09607 [Camponotus floridanus] 

comp107313_c0 26.67 180 546 1049 1.00E-07 62.8 hypothetical protein TcasGA2_TC004227 [Tribolium castaneum] 

comp15699_c0 82.26 62 318 379 4.00E-06 62.6 PREDICTED: Strongylocentrotus purpuratus similar to 5-amp-activated 
protein kinase, beta subunit (LOC764925), mRNA 

comp15808_c0 82.86 70 14 81 3.00E-06 62.6 Zebrafish DNA sequence from clone CH211-123B7 in linkage group 22 

Contains the 5' end of the gene for a novel protein similar to vertebrate 
chondroitin sulfate proteoglycan family (CSPG) and three CpG islands, 
complete sequence 

comp66187_c0 83.87 62 37 94 4.00E-06 62.6 Zebrafish sequence clone CH211-84M6 in linkage group 17, complete  
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comp94358_c0 36.62 71 1038 1244 4.00E-07 61.2 hypothetical protein EAG_01936 [Camponotus floridanus] 

comp10820_c0 44.07 59 179 3 1.00E-07 60.5 IP20720p [Drosophila melanogaster] 

comp21532_c0 34.15 123 5 346 1.00E-07 60.5 carbonic anhydrase 6 precursor, putative [Pediculus humanus  corporis] 

comp16052_c0 50 60 188 9 1.00E-07 60.1 predicted protein [Nematostella vectensis] 

comp7526_c0 21.84 261 810 127 1.00E-06 59.7 hypothetical protein DDB_G0293586 [Dictyostelium discoideum AX4] 

comp23869_c0 33.33 123 6 359 2.00E-07 59.3 Carbonic anhydrase 7 [Harpegnathos saltator] 

comp7902_c0 27.22 180 976 485 1.00E-06 59.3 hypothetical protein [Paramecium tetraurelia strain d4-2] 

comp25474_c0 45.79 107 2 322 2.00E-06 58.5 hypothetical protein EAG_12773 [Camponotus floridanus] 

comp19740_c0 39.39 99 618 866 4.00E-06 57.4 hypothetical protein TcasGA2_TC002128 [Tribolium castaneum] 

comp22015_c0 35.56 135 3 401 1.00E-06 57 hypothetical protein KGM_07092 [Danaus plexippus] 

comp49700_c0 33.03 109 385 74 2.00E-06 57 conserved hypothetical protein [Streptomyces clavuligerus ATCC 27064] 

comp56586_c0 26.73 202 209 754 4.00E-06 57 GF17129 [Drosophila ananassae] 

comp32925_c0 52 50 258 115 2.00E-06 56.2 PREDICTED: hypothetical protein LOC100679142 [Nasonia vitripennis] 

comp24290_c0 48.28 58 572 745 9.00E-06 55.8 predicted protein [Nematostella vectensis] 

comp7206_c0 41.25 80 270 34 2.00E-06 55.8 carbonic anhydrase [Clonorchis sinensis] 
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GO-ID Term Category FDR P-Value #Test #Ref #not in Test #not int Ref 

GO:0008283 cell proliferation P 1.32E-35 1.71E-39 56 181 265 12522 

GO:0051301 cell division P 2.60E-34 6.73E-38 67 324 254 12379 

GO:0000910 cytokinesis P 9.01E-34 3.50E-37 54 183 267 12520 

GO:0033205 cell cycle cytokinesis P 2.34E-32 1.21E-35 50 158 271 12545 

GO:0000911 cytokinesis by cell plate formation P 7.76E-32 5.02E-35 49 154 272 12549 

GO:0007049 cell cycle P 1.28E-31 9.95E-35 89 725 232 11978 

GO:0051322 anaphase P 4.81E-29 4.36E-32 37 75 284 12628 

GO:0007017 microtubule-based process P 9.04E-29 9.37E-32 55 256 266 12447 

GO:0022402 cell cycle process P 6.14E-27 7.16E-30 77 625 244 12078 

GO:0000226 microtubule cytoskeleton organization P 3.33E-26 4.32E-29 48 206 273 12497 

GO:0051567 histone H3-K9 methylation P 1.48E-25 2.11E-28 42 148 279 12555 

GO:0016570 histone modification P 2.78E-25 4.33E-28 57 338 264 12365 

GO:0022403 cell cycle phase P 1.48E-24 2.49E-27 61 412 260 12291 

GO:0016568 chromatin modification P 2.46E-24 4.45E-27 61 417 260 12286 

GO:0016569 covalent chromatin modification P 2.95E-24 5.73E-27 59 388 262 12315 

GO:0000279 M phase P 3.35E-23 6.95E-26 52 304 269 12399 

GO:0006325 chromatin organization P 3.70E-23 8.14E-26 64 493 257 12210 

GO:0006275 regulation of DNA replication P 1.22E-22 2.83E-25 33 91 288 12612 

GO:0034968 histone lysine methylation P 3.07E-22 7.55E-25 44 213 277 12490 
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GO:0051726 regulation of cell cycle P 1.01E-21 2.62E-24 43 208 278 12495 

GO:0016572 histone phosphorylation P 5.92E-21 1.61E-23 25 42 296 12661 

GO:0051052 regulation of DNA metabolic process P 9.51E-21 2.71E-23 37 150 284 12553 

GO:0016571 histone methylation P 1.65E-19 4.91E-22 44 256 277 12447 

GO:0006260 DNA replication P 2.38E-19 7.38E-22 44 259 277 12444 

GO:0051276 chromosome organization P 3.17E-19 1.03E-21 68 675 253 12028 

GO:0006479 protein methylation P 3.61E-19 1.26E-21 44 263 277 12440 

GO:0008213 protein alkylation P 3.61E-19 1.26E-21 44 263 277 12440 

GO:0010389 regulation of G2/M transition of mitotic cell 
cycle 

P 2.20E-18 7.97E-21 22 37 299 12666 

GO:0000086 G2/M transition of mitotic cell cycle P 3.28E-18 1.23E-20 22 38 299 12665 

GO:2000602 regulation of interphase of mitotic cell cycle P 7.35E-18 2.85E-20 22 40 299 12663 

GO:0006270 DNA-dependent DNA replication initiation P 1.06E-17 4.25E-20 23 48 298 12655 

GO:0006306 DNA methylation P 4.13E-17 1.77E-19 33 151 288 12552 

GO:0006305 DNA alkylation P 4.13E-17 1.77E-19 33 151 288 12552 

GO:0006304 DNA modification P 5.68E-17 2.50E-19 33 153 288 12550 

GO:0007346 regulation of mitotic cell cycle P 1.90E-16 8.60E-19 25 74 296 12629 

GO:0048451 petal formation P 3.38E-16 1.58E-18 19 30 302 12673 

GO:0048446 petal morphogenesis P 8.09E-16 3.88E-18 19 32 302 12671 

GO:0060255 regulation of macromolecule metabolic 

process 

P 1.47E-15 7.23E-18 101 1621 220 11082 
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GO:0048465 corolla development P 1.81E-15 9.48E-18 20 41 301 12662 

GO:0048441 petal development P 1.81E-15 9.48E-18 20 41 301 12662 

GO:0006261 DNA-dependent DNA replication P 1.81E-15 9.59E-18 34 189 287 12514 

GO:0007010 cytoskeleton organization P 1.83E-15 9.95E-18 49 428 272 12275 

GO:0040029 regulation of gene expression, epigenetic P 2.48E-15 1.38E-17 47 396 274 12307 

GO:0048453 sepal formation P 2.88E-15 1.68E-17 18 29 303 12674 

GO:0048447 sepal morphogenesis P 2.88E-15 1.68E-17 18 29 303 12674 

GO:0000278 mitotic cell cycle P 2.97E-15 1.77E-17 37 236 284 12467 

GO:0006259 DNA metabolic process P 3.74E-15 2.28E-17 62 695 259 12008 

GO:0048464 flower calyx development P 6.39E-15 4.06E-17 18 31 303 12672 

GO:0048442 sepal development P 6.39E-15 4.06E-17 18 31 303 12672 

GO:0009908 flower development P 7.22E-15 4.67E-17 59 643 262 12060 

GO:0000280 nuclear division P 8.05E-15 5.31E-17 24 81 297 12622 

GO:0009886 post-embryonic morphogenesis P 1.23E-14 8.31E-17 42 329 279 12374 

GO:0006342 chromatin silencing P 1.35E-14 9.28E-17 35 220 286 12483 

GO:0045814 negative regulation of gene expression, 

epigenetic 

P 1.93E-14 1.35E-16 35 223 286 12480 

GO:0009887 organ morphogenesis P 3.29E-14 2.34E-16 43 357 278 12346 

GO:0010564 regulation of cell cycle process P 6.70E-14 4.86E-16 26 113 295 12590 

GO:2000026 regulation of multicellular organismal 

development 

P 7.86E-14 5.80E-16 53 557 268 12146 
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GO:0051239 regulation of multicellular organismal process P 8.87E-14 6.66E-16 53 559 268 12144 

GO:0006468 protein phosphorylation P 1.39E-13 1.07E-15 64 803 257 11900 

GO:0051225 spindle assembly P 2.39E-13 1.86E-15 16 27 305 12676 

GO:0016458 gene silencing P 2.87E-13 2.26E-15 41 347 280 12356 

GO:0048449 floral organ formation P 3.47E-13 2.78E-15 25 111 296 12592 

GO:0048645 organ formation P 5.73E-13 4.67E-15 26 126 295 12577 

GO:0048646 anatomical structure formation involved in 
morphogenesis 

P 7.43E-13 6.16E-15 32 210 289 12493 

GO:0050789 regulation of biological process P 1.65E-12 1.39E-14 154 3498 167 9205 

GO:0048285 organelle fission P 1.84E-12 1.57E-14 24 109 297 12594 

GO:0006996 organelle organization P 1.90E-12 1.65E-14 99 1770 222 10933 

GO:0019222 regulation of metabolic process P 1.95E-12 1.72E-14 106 1974 215 10729 

GO:0051329 interphase of mitotic cell cycle P 2.13E-12 1.93E-14 27 148 294 12555 

GO:0051325 interphase P 2.13E-12 1.93E-14 27 148 294 12555 

GO:0000087 M phase of mitotic cell cycle P 2.20E-12 2.02E-14 20 67 301 12636 

GO:0070925 organelle assembly P 2.20E-12 2.05E-14 16 33 305 12670 

GO:0048563 post-embryonic organ morphogenesis P 2.25E-12 2.16E-14 25 123 296 12580 

GO:0048444 floral organ morphogenesis P 2.25E-12 2.16E-14 25 123 296 12580 

GO:0007051 spindle organization P 3.04E-12 2.95E-14 16 34 305 12669 

GO:0050793 regulation of developmental process P 3.05E-12 3.00E-14 55 661 266 12042 

GO:0080090 regulation of primary metabolic process P 5.16E-12 5.20E-14 93 1633 228 11070 
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GO:0031048 chromatin silencing by small RNA P 5.16E-12 5.21E-14 23 104 298 12599 

GO:0006346 methylation-dependent chromatin silencing P 6.08E-12 6.22E-14 23 105 298 12598 

GO:0048731 system development P 1.36E-11 1.41E-13 85 1439 236 11264 

GO:0043414 macromolecule methylation P 1.52E-11 1.60E-13 45 477 276 12226 

GO:0048513 organ development P 2.34E-11 2.48E-13 84 1427 237 11276 

GO:0050794 regulation of cellular process P 2.56E-11 2.75E-13 135 2976 186 9727 

GO:0016043 cellular component organization P 3.30E-11 3.59E-13 123 2597 198 10106 

GO:0065007 biological regulation P 3.33E-11 3.67E-13 159 3807 162 8896 

GO:0071842 cellular component organization at cellular 
level 

P 3.37E-11 3.75E-13 104 2012 217 10691 

GO:0019219 regulation of nucleobase-containing 
compound metabolic process 

P 3.62E-11 4.08E-13 79 1305 242 11398 

GO:0031323 regulation of cellular metabolic process P 6.09E-11 6.94E-13 93 1709 228 10994 

GO:0003777 microtubule motor activity F 6.70E-11 7.78E-13 15 36 306 12667 

GO:0048856 anatomical structure development P 6.70E-11 7.80E-13 115 2373 206 10330 

GO:0051171 regulation of nitrogen compound metabolic 
process 

P 7.65E-11 9.01E-13 79 1326 242 11377 

GO:0010556 regulation of macromolecule biosynthetic 
process 

P 1.12E-10 1.35E-12 77 1283 244 11420 

GO:2000112 regulation of cellular macromolecule 

biosynthetic process 

P 1.12E-10 1.35E-12 77 1283 244 11420 

GO:0010558 negative regulation of macromolecule 
biosynthetic process 

P 1.13E-10 1.39E-12 37 351 284 12352 
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GO:2000113 negative regulation of cellular macromolecule 
biosynthetic process 

P 1.13E-10 1.39E-12 37 351 284 12352 

GO:0045892 negative regulation of transcription, DNA-

dependent 

P 1.16E-10 1.46E-12 36 333 285 12370 

GO:0051253 negative regulation of RNA metabolic process P 1.16E-10 1.46E-12 36 333 285 12370 

GO:0031327 negative regulation of cellular biosynthetic 
process 

P 1.74E-10 2.21E-12 37 357 284 12346 

GO:0009653 anatomical structure morphogenesis P 1.80E-10 2.31E-12 74 1217 247 11486 

GO:0009890 negative regulation of biosynthetic process P 1.84E-10 2.39E-12 37 358 284 12345 

GO:0045934 negative regulation of nucleobase-containing 
compound metabolic process 

P 2.46E-10 3.21E-12 36 343 285 12360 

GO:0051172 negative regulation of nitrogen compound 

metabolic process 

P 2.63E-10 3.47E-12 36 344 285 12359 

GO:0010629 negative regulation of gene expression P 2.94E-10 3.92E-12 42 464 279 12239 

GO:0010468 regulation of gene expression P 3.13E-10 4.22E-12 80 1396 241 11307 

GO:0010605 negative regulation of macromolecule 
metabolic process 

P 4.24E-10 5.76E-12 44 512 277 12191 

GO:0032502 developmental process P 4.87E-10 6.68E-12 125 2774 196 9929 

GO:0031047 gene silencing by RNA P 5.30E-10 7.34E-12 32 280 289 12423 

GO:0031326 regulation of cellular biosynthetic process P 5.69E-10 7.96E-12 78 1359 243 11344 

GO:0009889 regulation of biosynthetic process P 6.95E-10 9.81E-12 78 1365 243 11338 

GO:0031324 negative regulation of cellular metabolic 

process 

P 9.83E-10 1.40E-11 38 402 283 12301 

GO:0007275 multicellular organismal development P 1.17E-09 1.68E-11 118 2584 203 10119 
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GO:0009892 negative regulation of metabolic process P 1.30E-09 1.88E-11 44 532 277 12171 

GO:0048437 floral organ development P 1.41E-09 2.06E-11 36 368 285 12335 

GO:0003774 motor activity F 1.97E-09 2.91E-11 15 49 306 12654 

GO:0071840 cellular component organization or biogenesis P 2.22E-09 3.31E-11 127 2906 194 9797 

GO:0016310 phosphorylation P 3.45E-09 5.18E-11 69 1167 252 11536 

GO:0048580 regulation of post-embryonic development P 4.10E-09 6.21E-11 35 364 286 12339 

GO:0048438 floral whorl development P 9.12E-09 1.39E-10 31 298 290 12405 

GO:0071841 cellular component organization or biogenesis 

at cellular level 

P 1.71E-08 2.64E-10 112 2503 209 10200 

GO:0048569 post-embryonic organ development P 2.01E-08 3.12E-10 38 451 283 12252 

GO:0032501 multicellular organismal process P 2.54E-08 3.97E-10 118 2716 203 9987 

GO:0005874 microtubule C 4.69E-08 7.41E-10 16 76 305 12627 

GO:0009909 regulation of flower development P 6.13E-08 9.76E-10 29 286 292 12417 

GO:0036211 protein modification process P 6.67E-08 1.08E-09 93 1961 228 10742 

GO:0006464 cellular protein modification process P 6.67E-08 1.08E-09 93 1961 228 10742 

GO:2000241 regulation of reproductive process P 7.82E-08 1.28E-09 30 309 291 12394 

GO:0032259 methylation P 8.76E-08 1.44E-09 45 639 276 12064 

GO:2001141 regulation of RNA biosynthetic process P 2.17E-07 3.63E-09 65 1182 256 11521 

GO:0006355 regulation of transcription, DNA-dependent P 2.17E-07 3.63E-09 65 1182 256 11521 

GO:0009791 post-embryonic development P 2.69E-07 4.53E-09 79 1592 242 11111 

GO:0051252 regulation of RNA metabolic process P 2.76E-07 4.68E-09 65 1190 256 11513 
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GO:0048608 reproductive structure development P 8.64E-07 1.48E-08 67 1284 254 11419 

GO:0048638 regulation of developmental growth P 8.90E-07 1.53E-08 23 210 298 12493 

GO:0048523 negative regulation of cellular process P 8.94E-07 1.56E-08 42 620 279 12083 

GO:0007067 mitosis P 8.94E-07 1.56E-08 13 58 308 12645 

GO:0015630 microtubule cytoskeleton C 9.76E-07 1.72E-08 18 127 303 12576 

GO:0090304 nucleic acid metabolic process P 1.01E-06 1.80E-08 110 2627 211 10076 

GO:0043412 macromolecule modification P 1.16E-06 2.07E-08 99 2274 222 10429 

GO:0010374 stomatal complex development P 1.47E-06 2.64E-08 18 131 303 12572 

GO:0007018 microtubule-based movement P 1.62E-06 2.93E-08 12 50 309 12653 

GO:0032774 RNA biosynthetic process P 4.07E-06 7.42E-08 67 1341 254 11362 

GO:0048519 negative regulation of biological process P 4.86E-06 8.94E-08 52 924 269 11779 

GO:0040008 regulation of growth P 5.52E-06 1.02E-07 23 235 298 12468 

GO:0010075 regulation of meristem growth P 6.32E-06 1.18E-07 18 146 303 12557 

GO:0006351 transcription, DNA-dependent P 7.22E-06 1.36E-07 66 1334 255 11369 

GO:0006796 phosphate-containing compound metabolic 
process 

P 9.79E-06 1.86E-07 72 1525 249 11178 

GO:0035266 meristem growth P 9.79E-06 1.86E-07 18 151 303 12552 

GO:0006793 phosphorus metabolic process P 1.02E-05 1.95E-07 72 1527 249 11176 

GO:0044430 cytoskeletal part C 1.26E-05 2.43E-07 18 154 303 12549 

GO:0022414 reproductive process P 1.28E-05 2.50E-07 78 1721 243 10982 

GO:0000003 reproduction P 1.46E-05 2.86E-07 78 1727 243 10976 
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GO:0048509 regulation of meristem development P 1.50E-05 2.94E-07 19 174 302 12529 

GO:0001708 cell fate specification P 3.96E-05 7.84E-07 8 24 313 12679 

GO:0003006 developmental process involved in 
reproduction 

P 4.89E-05 9.76E-07 69 1503 252 11200 

GO:0005856 cytoskeleton C 7.21E-05 1.45E-06 18 176 303 12527 

GO:0042023 DNA endoreduplication P 9.92E-05 2.00E-06 12 78 309 12625 

GO:0000079 regulation of cyclin-dependent protein kinase 
activity 

P 1.48E-04 3.01E-06 7 20 314 12683 

GO:0007169 transmembrane receptor protein tyrosine 
kinase signaling pathway 

P 2.42E-04 4.98E-06 12 86 309 12617 

GO:0007167 enzyme linked receptor protein signaling 

pathway 

P 2.42E-04 4.98E-06 12 86 309 12617 

GO:0045165 cell fate commitment P 2.83E-04 5.87E-06 8 33 313 12670 

GO:0009855 determination of bilateral symmetry P 3.15E-04 6.61E-06 13 105 308 12598 

GO:0009799 specification of symmetry P 3.15E-04 6.61E-06 13 105 308 12598 

GO:0006928 cellular component movement P 3.24E-04 6.85E-06 12 89 309 12614 

GO:0010073 meristem maintenance P 3.87E-04 8.21E-06 20 243 301 12460 

GO:0010103 stomatal complex morphogenesis P 4.09E-04 8.73E-06 13 108 308 12595 

GO:0009524 phragmoplast C 0.001085499 2.33E-05 8 41 313 12662 

GO:0006139 nucleobase-containing compound metabolic 

process 

P 0.001232245 2.66E-05 115 3222 206 9481 

GO:0044427 chromosomal part C 0.0014233 3.10E-05 12 105 309 12598 

GO:0009888 tissue development P 0.001627873 3.56E-05 40 791 281 11912 
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GO:0009059 macromolecule biosynthetic process P 0.001786996 3.93E-05 99 2687 222 10016 

GO:0010143 cutin biosynthetic process P 0.003054561 6.76E-05 4 6 317 12697 

GO:0034645 cellular macromolecule biosynthetic process P 0.003419438 7.62E-05 96 2628 225 10075 

GO:0004674 protein serine/threonine kinase activity F 0.003839808 8.60E-05 34 654 287 12049 

GO:0071900 regulation of protein serine/threonine kinase 

activity 

P 0.004004757 9.05E-05 7 37 314 12666 

GO:0010016 shoot morphogenesis P 0.004004757 9.07E-05 21 315 300 12388 

GO:0005694 chromosome C 0.004542393 1.04E-04 14 160 307 12543 

GO:0009957 epidermal cell fate specification P 0.004547407 1.04E-04 4 7 317 12696 

GO:0007166 cell surface receptor signaling pathway P 0.004732981 1.09E-04 12 121 309 12582 

GO:0007000 nucleolus organization P 0.005561425 1.30E-04 5 16 316 12687 

GO:0000793 condensed chromosome C 0.005561425 1.30E-04 5 16 316 12687 

GO:0048589 developmental growth P 0.005778392 1.35E-04 28 505 293 12198 

GO:0034641 cellular nitrogen compound metabolic process P 0.006271806 1.48E-04 119 3495 202 9208 

GO:0043170 macromolecule metabolic process P 0.007124757 1.69E-04 166 5271 155 7432 

GO:0044260 cellular macromolecule metabolic process P 0.007207077 1.72E-04 157 4926 164 7777 

GO:0048507 meristem development P 0.007236161 1.73E-04 24 407 297 12296 

GO:0042325 regulation of phosphorylation P 0.009310437 2.24E-04 13 152 308 12551 

GO:0007389 pattern specification process P 0.009548186 2.31E-04 19 289 302 12414 

GO:0008356 asymmetric cell division P 0.010466792 2.55E-04 5 19 316 12684 

GO:0005576 extracellular region C 0.011130584 2.72E-04 43 964 278 11739 
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GO:0000914 phragmoplast assembly P 0.011410855 2.81E-04 3 3 318 12700 

GO:0071844 cellular component assembly at cellular level P 0.013040885 3.23E-04 33 675 288 12028 

GO:0006807 nitrogen compound metabolic process P 0.015655496 3.89E-04 119 3576 202 9127 

GO:0032993 protein-DNA complex C 0.018592286 4.65E-04 6 35 315 12668 

GO:0000912 assembly of actomyosin apparatus involved in 

cell cycle cytokinesis 

P 0.01920032 4.82E-04 3 4 318 12699 

GO:0031225 anchored to membrane C 0.020061757 5.08E-04 9 85 312 12618 

GO:0045859 regulation of protein kinase activity P 0.020061757 5.12E-04 12 145 309 12558 

GO:0043549 regulation of kinase activity P 0.020061757 5.12E-04 12 145 309 12558 

GO:0022607 cellular component assembly P 0.020594265 5.28E-04 33 695 288 12008 

GO:2000123 positive regulation of stomatal complex 
development 

P 0.023420031 6.06E-04 2 0 319 12703 

GO:0001932 regulation of protein phosphorylation P 0.023420031 6.07E-04 12 148 309 12555 

GO:0006633 fatty acid biosynthetic process P 0.023590555 6.14E-04 15 216 306 12487 

GO:0004672 protein kinase activity F 0.023721585 6.20E-04 38 851 283 11852 

GO:0051338 regulation of transferase activity P 0.024393669 6.41E-04 12 149 309 12554 

GO:0048466 androecium development P 0.025120045 6.67E-04 10 108 311 12595 

GO:0048443 stamen development P 0.025120045 6.67E-04 10 108 311 12595 

GO:0006323 DNA packaging P 0.027027594 7.21E-04 7 54 314 12649 

GO:0040007 growth P 0.027838448 7.46E-04 31 651 290 12052 

GO:0031032 actomyosin structure organization P 0.028130464 7.58E-04 3 5 318 12698 
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GO:0016070 RNA metabolic process P 0.028260351 7.65E-04 79 2206 242 10497 

GO:0042127 regulation of cell proliferation P 0.033869426 9.21E-04 9 93 312 12610 

GO:0010467 gene expression P 0.037562356 0.001026241 89 2579 232 10124 

GO:0009955 adaxial/abaxial pattern specification P 0.038539463 0.001057926 7 58 314 12645 

GO:0071103 DNA conformation change P 0.038794827 0.00106996 8 76 313 12627 

GO:0000786 nucleosome C 0.042820307 0.001186527 5 28 316 12675 

GO:0044267 cellular protein metabolic process P 0.04302975 0.001197902 98 2913 223 9790 

GO:0003002 regionalization P 0.049487829 0.001384096 13 187 308 12516 
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GO-ID Term Category FDR P-Value #Test #Ref #not in 
Test 

#not in Ref 

GO:0009834 secondary cell wall biogenesis P 8.65E-13 1.05E-16 16 39 310 20988 

GO:0042546 cell wall biogenesis P 6.75E-12 1.64E-15 33 357 293 20670 

GO:0009832 plant-type cell wall biogenesis P 3.41E-10 1.24E-13 23 184 303 20843 

GO:0010383 cell wall polysaccharide metabolic process P 8.84E-08 4.29E-11 23 251 303 20776 

GO:0070592 cell wall polysaccharide biosynthetic process P 1.01E-07 6.11E-11 20 186 306 20841 

GO:0070589 cellular component macromolecule 
biosynthetic process 

P 1.02E-07 8.65E-11 20 190 306 20837 

GO:0044038 cell wall macromolecule biosynthetic process P 1.02E-07 8.65E-11 20 190 306 20837 

GO:0044036 cell wall macromolecule metabolic process  P 1.02E-07 9.85E-11 26 341 300 20686 

GO:0070882 cellular cell wall organization or biogenesis P 1.11E-07 1.21E-10 39 752 287 20275 

GO:0010382 cellular cell wall macromolecule metabolic 
process 

P 1.68E-07 2.04E-10 22 248 304 20779 

GO:0045491 xylan metabolic process P 3.95E-07 5.27E-10 19 189 307 20838 

GO:0010413 glucuronoxylan metabolic process P 5.30E-07 7.71E-10 18 171 308 20856 

GO:0045492 xylan biosynthetic process P 5.33E-07 8.40E-10 18 172 308 20855 

GO:0010410 hemicellulose metabolic process P 7.43E-07 1.26E-09 19 200 307 20827 

GO:0009698 phenylpropanoid metabolic process P 2.84E-06 5.17E-09 26 416 300 20611 

GO:0071669 plant-type cell wall organization or biogenesis P 5.59E-06 1.08E-08 27 464 299 20563 

GO:0009808 lignin metabolic process P 7.34E-06 1.51E-08 13 98 313 20929 

GO:0009699 phenylpropanoid biosynthetic process P 3.94E-05 8.61E-08 21 323 305 20704 

GO:2000652 regulation of secondary cell wall biogenesis P 4.19E-05 9.64E-08 5 4 321 21023 

GO:0071554 cell wall organization or biogenesis P 4.50E-05 1.09E-07 40 1013 286 20014 

GO:0071843 cellular component biogenesis at cellular level P 1.12E-04 2.84E-07 33 772 293 20255 

GO:0010089 xylem development P 1.13E-04 3.01E-07 10 68 316 20959 

GO:0019748 secondary metabolic process P 3.43E-04 9.55E-07 34 857 292 20170 
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GO:0016491 oxidoreductase activity F 3.59E-04 1.05E-06 73 2663 253 18364 

GO:0051213 dioxygenase activity F 6.78E-04 2.05E-06 14 182 312 20845 

GO:0006725 cellular aromatic compound metabolic 
process 

P 0.001237582 3.90E-06 37 1043 289 19984 

GO:0044550 secondary metabolite biosynthetic process P 0.001694758 5.55E-06 23 496 303 20531 

GO:0015698 inorganic anion transport P 0.002244655 7.62E-06 15 235 311 20792 

GO:0010087 phloem or xylem histogenesis P 0.002437041 8.57E-06 10 102 316 20925 

GO:0009809 lignin biosynthetic process P 0.003594891 1.39E-05 8 64 318 20963 

GO:0034637 cellular carbohydrate biosynthetic process P 0.003594891 1.39E-05 28 723 298 20304 

GO:0006624 vacuolar protein processing P 0.003594891 1.39E-05 3 1 323 21026 

GO:0016701 oxidoreductase activity, acting on single 
donors with incorporation of molecular 
oxygen 

F 0.005636982 2.26E-05 10 115 316 20912 

GO:0033692 cellular polysaccharide biosynthetic process P 0.007898068 3.26E-05 26 677 300 20350 

GO:0016706 oxidoreductase activity, acting on paired 
donors, with incorporation or reduction of 
molecular oxygen, 2-oxoglutarate as one 
donor, and incorporation of one atom each of 
oxygen into both donors 

F 0.007898068 3.38E-05 10 121 316 20906 

GO:0050734 hydroxycinnamoyltransferase activity F 0.007898068 3.45E-05 3 2 323 21025 

GO:0015103 inorganic anion transmembrane transporter 
activity 

F 0.015326009 6.87E-05 9 106 317 20921 

GO:0044264 cellular polysaccharide metabolic process P 0.019856149 9.15E-05 27 765 299 20262 

GO:0005506 iron ion binding F 0.023536467 1.13E-04 21 526 305 20501 

GO:0045488 pectin metabolic process P 0.023536467 1.14E-04 7 65 319 20962 

GO:0016760 cellulose synthase (UDP-forming) activity F 0.024574769 1.22E-04 6 45 320 20982 

GO:0071702 organic substance transport P 0.027901707 1.49E-04 23 619 303 20408 

GO:0016759 cellulose synthase activity F 0.027901707 1.52E-04 6 47 320 20980 

GO:0055114 oxidation-reduction process P 0.027901707 1.52E-04 64 2606 262 18421 

GO:0046274 lignin catabolic process P 0.027901707 1.56E-04 5 29 321 20998 

GO:0046271 phenylpropanoid catabolic process P 0.027901707 1.56E-04 5 29 321 20998 
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GO:0005976 polysaccharide metabolic process P 0.028377924 1.62E-04 31 971 295 20056 

GO:0016705 oxidoreductase activity, acting on paired 
donors, with incorporation or reduction of 
molecular oxygen 

F 0.032494219 1.89E-04 19 467 307 20560 

GO:0016051 carbohydrate biosynthetic process P 0.033619226 2.00E-04 33 1075 293 19952 

GO:0005576 extracellular region C 0.035752614 2.21E-04 44 1610 282 19417 

GO:0042538 hyperosmotic salinity response P 0.035752614 2.22E-04 9 125 317 20902 

GO:0044262 cellular carbohydrate metabolic process P 0.035752614 2.25E-04 35 1176 291 19851 

GO:0003834 beta-carotene 15,15'-monooxygenase activity F 0.03616837 2.32E-04 2 0 324 21027 

GO:0019438 aromatic compound biosynthetic process P 0.039346117 2.61E-04 26 774 300 20253 

GO:0000271 polysaccharide biosynthetic process P 0.039346117 2.76E-04 26 777 300 20250 

GO:0046524 sucrose-phosphate synthase activity F 0.039346117 2.77E-04 3 6 323 21021 

GO:0009815 1-aminocyclopropane-1-carboxylate oxidase 
activity 

F 0.039346117 2.77E-04 3 6 323 21021 

GO:0015020 glucuronosyltransferase activity F 0.039346117 2.77E-04 3 6 323 21021 

 

 
 
 

 
 



 

203 

Chapter 4: Cynipid gall wasp genome 

sequencing reveals potential horizontal gene 

transfer events 

 

4.1 Introduction  

 

Horizontal gene transfer (HGT) is the non-sexual exchange of genetic 

material between two organisms (Keeling et al., 2009). Widespread 

horizontal gene transfer across great phylogenetic distances among 

eukaryotes is an unexpected discovery of the recent explosion in genome 

sequencing (Keeling, 2009). These genes potentially have great adaptive 

importance to the species receiving them (Keeling, 2009). Several examples 

of horizontal gene transfer have been identified in the genomes of eukaryotic 

plant parasites (Dunning Hotopp, 2007; Mitreva et al., 2009; Sommer and 

Streit, 2011; Acuña et al., 2012; Kirsch et al., 2012; Pauchet and Heckel, 

2013); suggesting similar processes could be important in cynipid galling.  

 

4.1.1 Plant pathogen derived plant cell wall degrading enzymes 

 

Many horizontal gene transfers have been identified in the plant-parasitic 

nematodes of the Meloidogyne, Heterodera, Globodera, and Pratylenchus 

genera (Dunning Hotopp, 2007; Mitreva et al., 2009; Sommer and Streit, 

2011). Commonly, these genes are potential plant cell wall degrading 

enzymes (PCWDEs) of prokaryotic or fungal origin. (Sommer and Streit, 

2011). Such genes could be crucial to successful parasitism by metabolising 

the components of the plant cell wall. Horizontal gene transfers into insect 

genomes have also been hypothesised (Keeling, 2009). Several species of 

plant-parasitic beetle genomes have been found to encode key enzymes of 

prokaryotic origin, including cellulase (Pauchet et al., 2010; Acuña et al., 

2012; Pauchet and Heckel, 2013). The transfer of a prokaryotic mannanase 
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gene into the coffee berry borer beetle, Hypothenemus hampei, a worldwide 

pest of coffee may have facilitated its adaptation to feeding on coffee beans 

(Acuña et al., 2012). The polysaccharide mannan occurs in high proportions 

in coffee beans and HGT to the beetle of mannanase allows it to metabolise 

this substrate (Acuña et al., 2012). The genome of the mountain pine beetle, 

Dendroctonus ponderosae, encodes the most extensive number of plant cell 

wall degrading enzymes known in an insect at 52 (Keeling et al., 2013). In 

total, Keeling et al. (2013) found six glycoside hydrolase family 48 proteins, 

seven polysaccharide lyase family 4 proteins, eight endo-b-1,4-glucanases, 

nine pectin methylesterases, and twenty-two endopolygalacturonases 

(cellulases). 

Other candidate horizontally transferred plant cell wall degrading 

enzymes in animals are cellulases, hemicellulases including xylanases, 

pectinases, and ligninases (Calderón-Cortés et al., 2012). As more genomes 

are sequenced the importance of horizontal genetic transfer to eukaryotic 

macroevolution, particularly from prokaryotes to invertebrates, will become 

clearer (Dunning Hotopp, 2011). The mechanism by which these prokaryotic 

genes are transferred into plant parasites is unknown, but must occur into the 

recipient species germline (Keeling, 2009). Symbioses involving gut fungi or 

bacteria in their guts are common in insects, and are well understood in 

termites (Calderón-Cortés et al., 2012). Indeed, for some time this was the 

only known insect mechanism of degrading plant cell walls (Martin, 1991). 

The symbionts provide the necessary PCWDEs for host digestion of plant 

cell walls. Horizontally transferred PCWDEs of prokaryotic origin in insect 

genomes could be the relics of ancient symbioses. Enzymes with potential 

plant cell wall degrading activities were also present in the last common 

ancestor of bilaterian animals (Calderón-Cortés et al., 2010; Davison & 

Blaxter 2005; Lo et al., 2003; reviewed in Calderón-Cortés et al., 2012). 

Evidence for such genes in the Arthropoda was previously overlooked, as 

they are absent in insect model organisms such as Drosophila melanogaster 

and Tribolium castaneum (Pauchet et al., 2010). Thus there are three 

mechanisms by which insects can degrade plant cell walls: 1) ancient 
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endogenous genes, 2) symbioses with bacteria, fungi, protists or archaea 

and 3) horizontal genetic transfer of PCWDEs. Discriminating between the 

three possible origins of PCWDEs is essential to correctly identify horizontal 

genetic transfers.  

 Eggs of the oak gall wasp B. pallida are known to have cellulase and 

pectinase activity (Bronner and Plantefol, 1973). Enzymes coating the egg 

lyse plant cells immediately beneath it at oviposition, creating a cavity into 

which the larva emerges on hatching. Other potential roles of these enzymes 

are in digestion of nutritive cell walls by feeding larvae, or for genera l re-

modelling of plant tissues at the start of gall induction. By identifying genes 

encoding PCWDEs in gall wasp genomes and transcriptomes their origin can 

be ascertained. PCWDE genes in gall wasps that are most similar to beetle 

genes encoding endogenous PCWDEs will also reflect potential horizontal 

gene transfers (Pauchet et al., 2010), as beetles have acquired these genes 

by HGT from prokaryotes. Differentiating between symbiotic and horizontally 

transferred PCWDE is difficult, because the draft genome assemblies used 

here (table 4.2) are not contiguous enough for multiple exons per contig. 

Furthermore, if the PCWDE has a symbiont origin then identifiable conserved 

genes of the symbiont genome, like 16s rRNA for prokaryotes, are expected 

in the reference genome assemblies. If only the PCWDE genes are detected 

horizontal transfer is indicated, but not confirmed. 

 

4.1.2 Plant genes in gall wasp genomes 

 

The physically intimate relationship between host and galler could provide an 

environment in which plant genes are passed to the galler. Unlike horizontal 

gene transfer from prokaryotes to insects there is no evidence for plant to 

insect transfer as yet. It may be a more rare occurrence than gene transfer 

from prokaryotes to insects, with examples emerging over time. Plants do 

exchange genes, from host to parasitic plants for example (Mower et al., 

2004; Richardson and Palmer, 2007). In the obligate parasitic plant genus 

Rafflesia 24-41% of the mitochondrial genomes are derived from horizontal 
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genetic transfer depending on the species (Xi et al., 2013), as is 2.1% of the 

nuclear genome (Xi et al., 2012).  

Presence of genes of plant origins in gall wasp genomes potentially 

gives great insights into galling. Any horizontally transferred genes could 

reflect the plant host of an ancestral gall wasp rather than the current host. 

For example, an oak gall wasp genome containing genes orthologous to 

poppy family genes, as a species of poppy is the proposed ancestral host of 

the Cynipidae (Ronquist and Liljeblad, 2001).  

 

4.1.3 Virus-like-particles 

 

Known examples of horizontal genetic transfer in the order Hymenoptera are 

genes encoding proteins that produce the virus-like-particles (VLPs) of 

braconid parasitoid wasps (Espagne et al., 2004; Bezier et al., 2009). These 

wasps oviposit VLPs (also known as polydnaviruses) into the host along with 

parasitoid eggs. The genome within the VLP encodes for immune-

suppressive genes needed for successful parasitism (Espagne et al., 2004). 

VLP-carrying wasps have incorporated the viral coat as a means of 

delivering their own genes, which in turn, enhance the wasp’s parasitic 

abilities (Bezier et al., 2009). However, genes for packaging, assembling and 

enveloping VLPs in the wasps Chelonus inanitus and Cotesia congregata 

(family: Braconidae) are derived from an ancestral virus of the Nudivirus 

family (Bezier et al., 2009). The original virus was integrated into an ancestral 

braconid genome and the VLP genomes have diversified but the nudiviral 

structural genes are conserved (Bezier et al., 2009). Cornell (1983) first 

suggested a role for VLPs in gall wasps as a mechanism for transferal of the 

key gall-inducing substances. However, no evidence was found for VLP 

related expression in larval transcriptomes (see Chapter 3). But cynipid VLPs 

could act as a maternal affect, analogous to braconid wasps. In this case 

VLP producing genes would be expressed in adult females and not the 

larvae and can be identified in genome assemblies. Genes with similarities to 

viral production and capsid genes found in braconid wasps (Bezier et al., 
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2009) is evidence for cynipid VLPs.  

 

4.2 Testing for horizontal genome transfer events in cynipid genomes 

 

4.2.1 Gall wasp resources 

 

Three cynipid genome assemblies were queried for potential horizontal 

transfer events. Two are closely related oak gall wasps (tribe: Cynipini), 

Biorhiza pallida and Belizinella gibbera, and the other a rose gall wasp 

Diplolepis spinosa (section 4.2.2) (tribe: Diplolepidini). Transcriptomes from 

two gall wasp species, one on oak, Andricus quercuscalicis and the other on 

Acer, Pediaspis aceris (tribe: Pediaspini) were provided by the 1KITE project 

(1K Transcriptome Evolution: www.1kite.org/). The Pediaspini are a sister 

tribe to the Cynipini, and the Diplolepidini are the next most closely related 

tribe forming a monophyletic clade within the Cynipidae (figure 4.1) (Ronquist 

and Liljeblad, 2001). A third transcriptome of a figitid parasitoid, Leptopilina 

clavipes, also from the 1KITE project, serves as an outgroup for analyses of 

the cynipid datasets, albeit an imperfect one. This is because the 

transcriptomes, created from adult wasps will not be expressing their full 

gene sets. Chapter 3 demonstrated that gall wasps have very different 

expression profi les across larval stages. Adult gall wasps probably have just 

as distinct expression from larval stages. The genomes of the transcriptome-

sequenced species may therefore contain horizontally transferred genes that 

are not detected because they are not expressed. Thus it is not possible to 

say with certainty if candidate horizontally transferred genes are exclusive to 

the Cynipidae, as the outgroup figitid data are transcriptomic and not 

genomic. Statistics for all assemblies used including N50s and Core 

Eukaryotic Genes Mapping Approach (CEGMA) (Parra et al., 2007) 

completeness scores are shown in tables 4.2-3.  

 

 

 

http://www.1kite.org/
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Aylacini

Diplolepidini

Cynipini

Pediaspini

Insect parasitoid cynipoidea

Figure 4.1. Phylogeny of gall  wasp tribes demonstrating paraphyly of the Aylacini; Synergini 
inquilines not included, as they are unresolved. Adapted from Ronquist & Lil jeblad (2001).  
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4.2.2 Sequencing and Assembling the D. spinosa genome and other 

genomic resources  

 

D. spinosa is asexual so diploid females were sequenced. Four individuals 

were extracted and combined for 454 sequencing and three extracted for 

Illumina sequencing. The specimens were collected in Ontario, Canada by Dr 

Joe Shorthouse (Laurentian University, Ontario Canada). DNEasy (Qiagen) 

extractions were made of the samples and quality controlled by 260/280 ratio 

and DNA concentration. Three paired-end libraries were prepared for 

Illumina sequencing by the GenePool (University of Edinburgh) at 50, 75 and 

100 base pairs (bp). The 50bp library was sequenced over two lanes of the 

Illumina GAIIx and the 75bp and 100bp sequenced on one lane each. After 

Fastqc inspection, only Q20 filtering using an in house perl script (courtesy S. 

Kumar) was run on the data; singles were not retained (table 4.1) 

 

 

 

Pre-existing B. pallida and B. gibbera assemblies (chapter 3) were 

used in this chapter (table 4.2). The D. spinosa genome was assembled 

using CLC bio (version 3.3.0, http://www.clcbio.com/products/clc-assembly-

cell/) de novo de Bruijn graph based assembler with a paired-end insert size 

range of 0-400. Illumina reads were quality trimmed to Q20 (data used in 

assembly, table 4.1) and combined with 587 132 raw 454 reads to create a 

hybrid assembly. 

Tables 4.2 and 4.3 show several metrics used to assess the 

Lane Read Length Pairs (millions) Bases (Gb) Filtered Pairs (millions) Filtered Bases (Gb) 

1 50 14.9 1.49 12.1 1.16 

2 50 18.8 1.88 18.0 1.82 

3 75 23.3 3.50 22.3 3.28 

4 100 38.1 7.63 37.2 7.27 

Combined mixed 95.1 14.5 89.6 13.53 

Table 4.1. Il lumina read statistics for each lane of D. spinosa genome sequencing. Combined data is in the 
bottom row. 
  

http://www.clcbio.com/products/clc-assembly-cell/
http://www.clcbio.com/products/clc-assembly-cell/
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assemblies. In addition to the N50 and other simple metrics, Core Eukaryotic 

Genes Mapping Approach (Parra et al., 2007) scores were also evaluated. 

Parra et al. (2007) identified a set of core eukaryotic genes (CEGs) present 

in all available eukaryote genomes, and the version used here (2.4) contains 

248 of these CEGs. CEGs are supposed to represent single-copy nuclear 

genes. CEGMA combines BLAST (Altschul et al., 1990), GeneWise (Birney 

et al., 2004) and geneid (Parra et al., 2000) searches and HMMER (Finn et 

al., 2011) to identify orthologs of the CEGMA gene set in the tested dataset. 

Although, CEGMA is intended for genomes, under the assumption that core 

genes will be constitutively expressed it is applied here to transcriptomes. 

Tables 4.2-4.3 provide estimates of the percentage completeness for the 

CEGs (the percentage of complete CEGs in the dataset), the average copy 

number of orthologs per CEG and percentage of CEGS with more than one 

ortholog. The final two metrics indicate an excess of orthologs in the dataset. 

Haploid assembly of the data can explain this, when two copies of a gene 

assembled for a diploid genome instead of one due to sequence divergence. 

Alternatively, these metrics are explained by sequences of more than one 

species present in the dataset inflating the scores.  
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Genome assemblies B. pallida B. gibbera D. spinosa 

N50 1 075 643 1 729 

Number of contigs 1 163 314 817 710 302 575 

Assembly length 805 102 378 443 963 639 329 859 230 

Average GC 32.9 35.84 32.8 

Number of N's 4 203 182 2 525 790 2 286 759 

CEGMA % completeness 37.9 25.0 79.8 

Average copy number 1.19 1.23 1.15 

% orthology 17.02 19.35 11.62 

    

    

Transcriptome assemblies A. quercuscalicis P. aceris L. clavipes 

N50 2495 2115 1819 

Number of contigs 22651 31282 21313 

Assembly length 30 260 505 36 365 349 22 931 017 

Average GC 39.6 38.6 36.8 

Number of N's 3 607 3 718 1 281 

CEGMA % completeness 95.56 97.18 96.77 

Average copy number 1.94 1.85 1.81 

% orthology 50.21 46.06 50.42 

 

 

The D. spinosa genome assembly is superior to the Cynipini (oak gall 

wasp) assemblies. D. spinosa has a higher N50 indicating greater contiguity. 

Far more CEGs are complete at 80% than B. pallida (38%) and B. gibbera 

(19%) and these CEGs have lower copy number and % orthology. This is 

despite the greater number of Illumina reads used for the cynipid genomes. 

The final D. spinosa assembly is also substantially smaller than the Cynipini 

assemblies, and its CEGMA scores better. A lower genome size in D. 

spinosa genome size compared to B. gibbera and B. pallida explains these 

observations. The genome size of D. spinosa is estimated at 0.63 gigabases 

(Lima, 2012) while the average oak gall wasp genome size is much larger at 

1.71Gb (± 0.286, n = 4) (Lima, 2012). The discrepancy between the D. 

spinosa assembly length (number of bases in the assembly) and measure 

genome size may be explained by insufficient sequencing.  

Table 4.2 & 4.3 Assembly metrics for cynipid genome assemblies and transcriptomes used in this 
chapter. Metrics generated using a perl script (courtesy S. Kumar) and CEGMA (version 2.4 ) (Parra et 
al., 2007).  
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 The transcriptome assemblies are all very close to CEGMA 

completeness as all are >95% complete. They have higher average CEG 

copy number and % orthology than the genome assemblies; this could result 

from isoform expression of the CEGs. If a CEG has more than one isoform 

expressed in the transcriptome this will inflate both copy number a nd 

percentage orthology. 

 

4.2.3 BLAST searches for candidate horizontally transferred genes 

 

The analysis is a simple presence or absence test for genes with a possible 

origin in a different Kingdom of life. Potential horizontally transferred genes 

were identified from BLAST (version 2.2.25) (Altschul et al., 1990) outputs 

against the NCBI non-redundant nucleotide (nt) and protein (nr) databases 

(databases downloaded January 4th 2012) using an e-value cut-off of 1e-5 

and low sequence complexity filtering. All searches were performed using the 

Edinburgh Compute and Data Facility (ECDF), University of Edinburgh. 

Contigs or transcripts most similar to fungi, plants, bacterial or viral genomes 

were selected for further analysis. Bit scores were chosen because they can 

be compared across separate BLAST analyses, unlike e-values. 

InterProScan (Zdobnov and Apweiler, 2001) was used for further annotation 

of candidate genes. The insect symbiont Wolbachia (order: Rickettsiales) is 

present in all three species’ genomes (table 4.4).  

 Equivalent Potential horizontal transfers identified in gall wasp 

resources were tested for in the Nasonia vitripennis genome as a non-galling 

control using the EvidentialGene 

(http://arthropods.eugenes.org/EvidentialGene/) annotator predictions (which 

incorporates BLAST predictions) (downloaded from 

http://arthropods.eugenes.org/EvidentialGene/nasonia/genes/nvit2_evigenes

_pub11u.attr.simple.txt).   

 

 

 

http://arthropods.eugenes.org/EvidentialGene/nasonia/genes/nvit2_evigenes_pub11u.attr.simple.txt
http://arthropods.eugenes.org/EvidentialGene/nasonia/genes/nvit2_evigenes_pub11u.attr.simple.txt
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Species Number of 

contigs 

Combined 

length of 

contigs 

(megabases) 

Most closely 

related 

Wolbachia 

Genome 

size (Mb) 

Wolbachia 

supergroup 

B. pallida 561 1.53 Drosophila 

melanogaster 

1.27
1 

A 

B. gibbera 858 1.40 D. melanogaster 1.27
1 

A 

D. spinosa 471 1.66 Culex 

quinquefasciatus 

1.48
2 

B 

 

 

Wolbachia nuclear insertions into insect genomes are known to occur 

(Klasson et al., 2009). However, within the Cynipidae, Wolbachia is not 

present in all species (Stone, personal communication). Indeed, the 

supergroup of Wolbachia differs, for D. spinosa it is ‘B’ and for B. pallida and 

B. gibbera it is ‘A’. Suggesting Wolbachia entered the Cynipidae more than 

once and possibly after evolution of the Cynipidae. Therefore Wolbachia 

were most probably not essential to the evolution of galling. For this reason, 

potential Wolbachia horizontal genetic transfers were not searched for in the 

available datasets. 

 

4.2.4 Viral packaging proteins and horizontally transferred genes of 

plant origin 

 

No viral packaging proteins or genes of plant origin were discovered that are 

shared across the genomes or transcriptomes. In B. pallida there are 27 

contigs of putative Quercus and Castanea (the chestnuts) origin. These 

contigs are, on average of percentage BLAST identities normalized by 

alignment length, >97% identical to their most similar Quercus and Castanea 

sequences. They mainly encode for chloroplast and ribosomal associated 

genes. These contigs are not found in the B. gibbera or D. spinosa 

Table 4.4. Wolbachia statistics for contigs in each genome assembly, including host of the most closely 

related Wolbachia genome, its genome size and supergroup. 1. Wu et al., 2004; 2. Klasson et al., 
2008). 
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assemblies. They are probably remnants of Q. robur tissue on the body 

surface, or from gut of B. pallida individuals sequenced.  

Neither plant horizontal transfer events nor a VLP-like system are 

detectable in any of the datasets tested.  

 

4.2.5 Plant cell wall degrading enzymes of bacterial origin 

 

BLAST searches revealed several genes encoding plant cell wall degrading 

enzymes (PCWDEs) of prokaryotic origin in all cynipid species tested. As 

expected the genomes have a greater number of unique matches than the 

transcriptomes. The outgroup figitid transcriptome had no corresponding 

expression. The B. pallida and B. gibbera genomes have the most potential 

PCWDEs, at 35 and 37 contigs respectively (BLAST best matches organized 

by PCWDE gene type, table 4.5); D. spinosa has less with 13 contigs (table 

4.5).  

 The BLAST results also indicated many genes encoding 

polysaccharide lyase family 4 genes in several cynipid species. These genes 

are most similar to polysaccharide lyases found in the mountain pine beetle, 

Dendroctonus ponderosae. In D. ponderosae, based on phylogenetic 

analysis these polysaccharide lyases are hypothesized to result from 

horizontal gene transfer from plant pathogenic bacteria (Pauchet et al., 2010; 

Pauchet and Heckel, 2013). Therefore, these genes were included in table 

4.5 and further analyses. 

 The N. vitripennis control genome only contains one potential 

PCWDE gene, an endoglucanase E-4-like, a glycosyl hydrolase 9 family 

cellulase (GH9). This gene only has protein BLAST homologs to other 

metazoans. Best matches are to the hymenoptera species Bombus 

impatiens (bit score 765) and Apis mellifera (bit score 764). Additionally, the 

three gall wasp genomes all contain contigs with endoglucanase E-4-like 

matching best to either of the bumblebees Bombus terrestris and B. 

impatiens. Davison & Blaxter (2005) provided phylogenetic evidence for an 

ancient eukaryotic origin for GH9 family cellulases a eukaryotic cellulase of 
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ancient origin. Endoglucanase E-4-like cellulase was discounted from the 

candidate HGT set, and therefore no PCWDE genes of potential prokaryotic 

origin were found in the control N. vitripennis genome. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.5. BLAST results for each cynipid species sorted by PCWDE type. It includes Accession, 1) % 
identity, 2) alignment length to target, 3) mismatches, 4) gaps opened, Q. start = query start, Q. 
end = query end, R. start = reference start, R. end = reference end, e-value, bit score and 

referenc e (target) description. Contaminant sequences (section 5.2.6) have been removed from 
this l ist. 
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Contig Accession 1 2 3 4  Q. 
start 

Q.  
end 

 R. 
Start 

R. 
End 

E-value Bit 
score 

Target description 

Belizinella gibbera 

Cellulases             

contig_122111 gi|192360233|ref|YP_001983438.1| 65.02 303 99 5 567 1466 36 334 6.00E-107 393 endo-1,4-beta glucanase [Cellvibrio japonicus 
Ueda107] 

contig_229402 gi|90022879|ref|YP_528706.1| 60.8 301 113 3 368 1264 37 334 1.00E-104 385 cellulase [Saccharophagus degradans 2-40] 

contig_118239 gi|90022881|ref|YP_528708.1| 65 260 90 1 1 780 80 338 9.00E-101 372 cellulase [Saccharophagus degradans 2-40] 

contig_63378 gi|269965254|dbj|BAI50016.1| 58.72 298 122 1 918 25 36 332 4.00E-100 370 endoglucanase [Saccharophagus sp. JAM-R001] 

contig_133195 gi|90022879|ref|YP_528706.1| 67.07 249 82 0 1 747 84 332 1.00E-97 361 cellulase [Saccharophagus degradans 2-40] 

contig_133196 gi|192360233|ref|YP_001983438.1| 66.54 257 85 1 83 853 40 295 1.00E-96 358 endo-1,4-beta glucanase [Cellvibrio japonicus 
Ueda107] 

contig_131985 gi|269965254|dbj|BAI50016.1| 61.07 298 114 2 6 896 37 333 2.00E-95 353 endoglucanase [Saccharophagus sp. JAM-R001] 

contig_302705 gi|90022879|ref|YP_528706.1| 62.14 206 78 0 137 754 49 254 2.00E-70 271 cellulase [Saccharophagus degradans 2-40] 

contig_266172 gi|90022881|ref|YP_528708.1| 56.45 186 78 2 715 158 121 303 4.00E-50 203 cellulase [Saccharophagus degradans 2-40] 

contig_270499 gi|192360233|ref|YP_001983438.1| 40.21 97 51 3 153 422 225 321 7.00E-09 64.3 endo-1,4-beta glucanase [Cellvibrio japonicus 
Ueda107] 

Pectinases             

contig_372460 gi|308068153|ref|YP_003869758.1| 50 320 146 4 1073 147 29 345 2.00E-75 288 pectin lyase [Paenibacillus polymyxa E681] 

contig_240234 gi|357201957|gb|AET59854.1| 46.46 226 106 4 303 944 29 251 7.00E-50 202 pectin lyase [Paenibacillus terrae HPL-003] 

contig_326134 gi|307129345|ref|YP_003881361.1| 47.25 218 112 2 647 3 3 220 1.00E-49 202 pectate lyase [Dickeya dadantii 3937] 

contig_120058 gi|357201957|gb|AET59854.1| 46.19 210 98 4 308 901 35 241 2.00E-44 184 pectin lyase [Paenibacillus terrae HPL-003] 

contig_167362 gi|307129345|ref|YP_003881361.1| 49.21 189 93 2 560 3 3 191 1.00E-41 174 pectate lyase [Dickeya dadantii 3937] 

contig_312349 gi|343096079|emb|CCC84288.1| 41.92 229 114 4 654 1 17 237 2.00E-38 164 pectate lyase [Paenibacillus polymyxa M1] 

contig_330331 gi|310640947|ref|YP_003945705.1| 47.62 189 85 5 1 543 126 308 1.00E-34 152 pectate lyase, polysaccharide lyase family 1 
[Paenibacillus polymyxa SC2] 

contig_203617 gi|357201957|gb|AET59854.1| 45.33 150 71 2 4 426 26 173 1.00E-28 129 pectin lyase [Paenibacillus terrae HPL-003] 

contig_27409 gi|16078925|ref|NP_389746.1| 48.03 127 65 1 10 390 219 344 4.00E-27 129 pectin lyase [Bacillus subtilis subsp. subtilis str. 168] 

contig_745810 gi|350266199|ref|YP_004877506.1| 48.97 145 69 2 3 431 204 345 4.00E-27 124 pectin lyase [Bacillus subtilis subsp. spizizenii TU-B-
10] 
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contig_744443 gi|357201957|gb|AET59854.1| 56 100 41 1 3 302 194 290 5.00E-26 121 pectin lyase [Paenibacillus terrae HPL-003] 

contig_209160 gi|357201957|gb|AET59854.1| 41.77 158 66 3 92 493 10 165 6.00E-24 114 pectin lyase [Paenibacillus terrae HPL-003] 

contig_644178 gi|1230540|gb|AAA92512.1| 44.53 128 71 0 37 420 3 130 1.00E-23 113 pectate lyase [Pseudomonas marginalis] 

contig_301755 gi|229589782|ref|YP_002871901.1| 45.74 129 70 0 389 3 2 130 7.00E-23 110 pectin lyase [Pseudomonas fluorescens SBW25] 

contig_430430 gi|310640947|ref|YP_003945705.1| 47.47 99 52 0 439 143 210 308 5.00E-20 101 pectate lyase, polysaccharide lyase family 1 
[Paenibacillus polymyxa SC2] 

contig_619773 gi|253687763|ref|YP_003016953.1| 43.52 108 57 3 344 33 70 177 5.00E-16 88.2 pectate lyase/Amb allergen [Pectobacterium 
carotovorum subsp. carotovorum PC1] 

contig_105368 gi|52081406|ref|YP_080197.1| 58.57 70 29 0 215 6 347 416 6.00E-16 87.8 pectate lyase, polysaccharide lyase family 1 [Bacillus 
licheniformis ATCC 14580] 

contig_415386 gi|349594864|gb|AEP91051.1| 51.39 72 35 0 391 176 99 170 4.00E-15 85.1 pectin lyase [Bacillus subtilis subsp. subtilis RO-NN-
1] 

contig_325752 gi|307129345|ref|YP_003881361.1| 49.45 91 43 1 265 2 70 160 2.00E-14 82.4 pectate lyase [Dickeya dadantii 3937] 

contig_461437 gi|52081406|ref|YP_080197.1| 47.56 82 42 1 248 3 191 271 9.00E-14 80.5 pectate lyase, polysaccharide lyase family 1 [Bacillus 
licheniformis ATCC 14580] 

contig_455965 gi|16078925|ref|NP_389746.1| 48 75 39 0 376 152 269 343 1.00E-12 76.6 pectin lyase [Bacillus subtilis subsp. subtilis str. 168] 

contig_671218 gi|308068153|ref|YP_003869758.1| 48.1 79 32 2 76 285 37 115 2.00E-10 69.7 pectin lyase [Paenibacillus polymyxa E681] 

contig_591792 gi|308068153|ref|YP_003869758.1| 45.68 81 35 1 216 1 25 105 5.00E-10 68.2 pectin lyase [Paenibacillus polymyxa E681] 

contig_437115 gi|308068153|ref|YP_003869758.1| 39.05 105 54 2 293 6 7 110 8.00E-10 67.4 pectin lyase [Paenibacillus polymyxa E681] 

Rhamnogalacturonate lyases           

contig_140448 gi|261820229|ref|YP_003258335.1| 35.05 194 118 2 730 170 42 234 2.00E-22 110 Rhamnogalacturonate lyase [Pectobacterium 
wasabiae WPP163] 

contig_646631 gi|307129727|ref|YP_003881743.1| 42.86 63 36 0 11 199 94 156 6.00E-08 61.2 Rhamnogalacturonate lyase [Dickeya dadantii 3937] 

contig_555256 gi|307129727|ref|YP_003881743.1| 39.68 63 38 0 11 199 94 156 8.00E-08 60.8 Rhamnogalacturonate lyase [Dickeya dadantii 3937] 

Polysaccharide lyases            

contig_36809 gi|315570656|gb|ADU33332.1| 46.62 547 271 9 311 1924 30 564 2.00E-145 521 polysaccharide lyase family protein 4 
[Dendroctonus ponderosae] 

contig_56209 gi|315570656|gb|ADU33332.1| 45.08 539 268 7 1644 64 39 561 1.00E-131 475 polysaccharide lyase family protein 4 

[Dendroctonus ponderosae] 
contig_238739 gi|315570650|gb|ADU33329.1| 42.8 542 306 3 43 1659 9 549 2.00E-129 468 polysaccharide lyase family protein 4 

[Dendroctonus ponderosae] 
contig_272997 gi|315570656|gb|ADU33332.1| 48.42 349 173 3 1942 905 217 561 1.00E-95 356 polysaccharide lyase family protein 4 

[Dendroctonus ponderosae] 
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contig_184148 gi|315570656|gb|ADU33332.1| 47.66 363 182 3 1227 154 101 460 2.00E-92 345 polysaccharide lyase family protein 4 
[Dendroctonus ponderosae] 

contig_166411 gi|315570650|gb|ADU33329.1| 43.22 354 181 4 1061 3 8 342 2.00E-76 291 polysaccharide lyase family protein 4 
[Dendroctonus ponderosae] 

contig_100272 gi|315570648|gb|ADU33328.1| 52.63 247 116 1 11 748 78 324 8.00E-71 271 polysaccharide lyase family protein 4 
[Dendroctonus ponderosae] 

contig_229203 gi|315570648|gb|ADU33328.1| 46.35 233 125 0 3 701 111 343 3.00E-53 213 polysaccharide lyase family protein 4 
[Dendroctonus ponderosae] 

contig_166410 gi|315570656|gb|ADU33332.1| 47.22 216 108 3 639 1 345 557 5.00E-51 205 polysaccharide lyase family protein 4 
[Dendroctonus ponderosae] 

contig_137836 gi|315570648|gb|ADU33328.1| 60 140 56 0 422 3 135 274 4.00E-45 184 polysaccharide lyase family protein 4 
[Dendroctonus ponderosae] 

contig_338719 gi|315570650|gb|ADU33329.1| 53.73 134 58 1 52 453 392 521 2.00E-35 152 polysaccharide lyase family protein 4 
[Dendroctonus ponderosae] 

contig_338718 gi|315570656|gb|ADU33332.1| 52.14 117 53 2 1 342 368 484 4.00E-33 125 polysaccharide lyase family protein 4 
[Dendroctonus ponderosae] 

contig_140446 gi|315570656|gb|ADU33332.1| 38.13 139 84 1 411 1 289 427 8.00E-21 103 polysaccharide lyase family protein 4 
[Dendroctonus ponderosae] 

contig_533748 gi|315570656|gb|ADU33332.1| 60.76 79 29 2 37 267 395 473 1.00E-19 99.8 polysaccharide lyase family protein 4 
[Dendroctonus ponderosae] 

contig_563084 gi|315570656|gb|ADU33332.1| 45.05 111 57 2 598 269 457 564 1.00E-17 94 polysaccharide lyase family protein 4 
[Dendroctonus ponderosae] 

contig_347641 gi|315570650|gb|ADU33329.1| 49.25 67 30 1 207 7 459 521 1.00E-11 73.2 polysaccharide lyase family protein 4 
[Dendroctonus ponderosae] 

contig_353796 gi|315570656|gb|ADU33332.1| 49.15 59 30 0 203 27 322 380 4.00E-11 71.6 polysaccharide lyase family protein 4 
[Dendroctonus ponderosae] 

contig_140447 gi|315570656|gb|ADU33332.1| 35.06 77 50 0 231 1 289 365 8.00E-08 60.8 polysaccharide lyase family protein 4 
[Dendroctonus ponderosae] 

  Biorhiza pallida 

Cellulases             

contig_167705 gi|90022881|ref|YP_528708.1| 64.55 299 105 1 1505 609 41 338 4.00E-115 421 cellulase [Saccharophagus degradans 2-40] 

contig_249861 gi|90022881|ref|YP_528708.1| 60.2 304 118 2 1217 306 38 338 2.00E-105 388 cellulase [Saccharophagus degradans 2-40] 

contig_69918 gi|192360233|ref|YP_001983438.1| 62.99 308 107 5 1257 2171 36 339 2.00E-104 385 endo-1,4-beta glucanase [Cellvibrio japonicus 
Ueda107] 

contig_366356 gi|90022879|ref|YP_528706.1| 60 295 113 3 359 1237 34 325 4.00E-101 373 cellulase [Saccharophagus degradans 2-40] 

contig_31255 gi|269965254|dbj|BAI50016.1| 54.68 331 145 2 1402 2382 3 332 5.00E-98 365 endoglucanase [Saccharophagus sp. JAM-R001] 
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contig_17336 gi|192360233|ref|YP_001983438.1| 66.27 255 85 1 1 765 85 338 8.00E-93 346 endo-1,4-beta glucanase [Cellvibrio japonicus 
Ueda107] 

contig_17337 gi|90022879|ref|YP_528706.1| 66.67 195 65 0 3 587 37 231 1.00E-72 276 cellulase [Saccharophagus degradans 2-40] 

contig_331473 gi|269965254|dbj|BAI50016.1| 60.44 182 71 1 547 2 41 221 5.00E-49 197 endoglucanase [Saccharophagus sp. JAM-R001] 

contig_216706 gi|90022879|ref|YP_528706.1| 66.42 137 46 0 554 144 63 199 4.00E-57 192 cellulase [Saccharophagus degradans 2-40] 

contig_173681 gi|192360233|ref|YP_001983438.1| 66.67 93 30 1 280 2 132 223 6.00E-29 130 endo-1,4-beta glucanase [Cellvibrio japonicus 
Ueda107] 

contig_399218 gi|269965254|dbj|BAI50016.1| 65.52 87 30 0 350 610 37 123 7.00E-28 128 endoglucanase [Saccharophagus sp. JAM-R001] 

contig_540965 gi|269965254|dbj|BAI50016.1| 62.5 88 33 0 379 642 37 124 2.00E-27 126 endoglucanase [Saccharophagus sp. JAM-R001] 

contig_501105 gi|806574|emb|CAA60493.1| 32.47 194 99 4 1093 602 143 334 3.00E-16 91.7 endo-1,4-beta-glucanase [Cellvibrio japonicus] 

contig_226353 gi|192360233|ref|YP_001983438.1| 68.66 67 20 1 241 44 218 284 2.00E-13 79.7 endo-1,4-beta glucanase [Cellvibrio japonicus 
Ueda107] 

contig_402741 gi|90022881|ref|YP_528708.1| 53.23 62 29 0 1336 1151 276 337 6.00E-12 77.8 cellulase [Saccharophagus degradans 2-40] 

Pectinases             

contig_441974 gi|350266199|ref|YP_004877506.1| 47.2 339 158 7 773 1753 15 344 3.00E-79 301 pectin lyase [Bacillus subtilis subsp. spizizenii TU-B-
10] 

contig_10790 gi|357201957|gb|AET59854.1| 46.53 346 162 7 2828 1833 8 344 4.00E-76 292 pectin lyase [Paenibacillus terrae HPL-003] 

contig_165961 gi|308068153|ref|YP_003869758.1| 50.31 320 145 4 1671 745 29 345 1.00E-74 286 pectin lyase [Paenibacillus polymyxa E681] 

contig_7692 gi|349594864|gb|AEP91051.1| 43.2 331 173 4 4080 3121 18 344 6.00E-73 281 pectin lyase [Bacillus subtilis subsp. subtilis RO-NN-
1] 

contig_115387 gi|307129345|ref|YP_003881361.1| 49.41 255 125 3 755 3 11 265 2.00E-62 245 pectate lyase [Dickeya dadantii 3937] 

contig_11862 gi|242240781|ref|YP_002988962.1| 45.66 311 163 4 3270 4187 3 312 2.00E-60 241 Pectate lyase/Amb allergen [Dickeya dadantii 
Ech703] 

contig_34168 gi|357201957|gb|AET59854.1| 44.56 285 152 3 916 71 63 344 3.00E-60 239 pectin lyase [Paenibacillus terrae HPL-003] 

contig_481385 gi|357201957|gb|AET59854.1| 44.12 238 127 3 1026 322 110 344 1.00E-48 198 pectin lyase [Paenibacillus terrae HPL-003] 

contig_668987 gi|310640947|ref|YP_003945705.1| 38.85 296 152 4 86 904 19 308 4.00E-46 191 pectate lyase, polysaccharide lyase family 1 
[Paenibacillus polymyxa SC2] 

contig_441114 gi|308068153|ref|YP_003869758.1| 45.3 234 105 7 845 1501 7 232 2.00E-41 175 pectin lyase [Paenibacillus polymyxa E681] 

contig_611491 gi|357201957|gb|AET59854.1| 53.42 161 62 5 2 463 136 290 8.00E-39 163 pectin lyase [Paenibacillus terrae HPL-003] 

contig_188178 gi|52081406|ref|YP_080197.1| 34.98 283 146 5 2485 1745 205 485 3.00E-37 162 pectate lyase, polysaccharide lyase family 1 [Bacillus 
licheniformis ATCC 14580] 
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contig_302522 gi|310640947|ref|YP_003945705.1| 47.17 159 81 1 620 144 153 308 2.00E-37 159 pectate lyase, polysaccharide lyase family 1 
[Paenibacillus polymyxa SC2] 

contig_763479 gi|310640947|ref|YP_003945705.1| 50.93 108 51 1 4 321 201 308 3.00E-25 118 pectate lyase, polysaccharide lyase family 1 
[Paenibacillus polymyxa SC2] 

contig_349598 gi|307129345|ref|YP_003881361.1| 41.43 70 37 1 2002 1793 151 216 6.00E-07 62.4 pectate lyase [Dickeya dadantii 3937] 

Rhamnogalacturonate lyases           

contig_270176 gi|251790809|ref|YP_003005530.1| 41.92 396 222 2 1608 445 27 422 4.00E-95 354 Rhamnogalacturonate lyase [Dickeya zeae Ech1591] 

contig_310874 gi|307129727|ref|YP_003881743.1| 45.71 326 167 4 955 2 28 351 8.00E-83 313 Rhamnogalacturonate lyase [Dickeya dadantii 3937] 

contig_380131 gi|261820229|ref|YP_003258335.1| 57.89 76 32 0 228 1 243 318 1.00E-19 100 Rhamnogalacturonate lyase [Pectobacterium 
wasabiae WPP163] 

contig_319025 gi|307129727|ref|YP_003881743.1| 31.86 113 69 2 879 1196 29 140 4.00E-11 74.3 Rhamnogalacturonate lyase [Dickeya dadantii 3937] 

contig_632138 gi|251790809|ref|YP_003005530.1| 42.53 87 48 1 468 208 485 569 1.00E-09 67 Rhamnogalacturonate lyase [Dickeya zeae Ech1591] 

Polysaccharide lyases            

contig_311700 gi|315570656|gb|ADU33332.1| 46.25 547 273 9 1725 112 30 564 2.00E-143 515 polysaccharide lyase family protein 4 
[Dendroctonus ponderosae] 

contig_211523 gi|315570656|gb|ADU33332.1| 44.42 547 276 8 1036 2655 39 564 1.00E-134 486 polysaccharide lyase family protein 4 
[Dendroctonus ponderosae] 

contig_319529 gi|315570650|gb|ADU33329.1| 42.41 547 309 4 27 1658 6 549 1.00E-128 466 polysaccharide lyase family protein 4 
[Dendroctonus ponderosae] 

contig_211524 gi|315570656|gb|ADU33332.1| 45.21 511 250 8 891 2399 39 527 2.00E-128 465 polysaccharide lyase family protein 4 
[Dendroctonus ponderosae] 

contig_24334 gi|315570656|gb|ADU33332.1| 49.05 367 180 3 1877 786 199 561 2.00E-100 371 polysaccharide lyase family protein 4 

[Dendroctonus ponderosae] 
contig_95640 gi|315570648|gb|ADU33328.1| 43.94 396 215 3 2710 1532 109 500 3.00E-93 349 polysaccharide lyase family protein 4 

[Dendroctonus ponderosae] 
contig_391986 gi|315570656|gb|ADU33332.1| 41.79 347 173 5 47 1078 241 561 3.00E-70 271 polysaccharide lyase family protein 4 

[Dendroctonus ponderosae] 
contig_40263 gi|315570656|gb|ADU33332.1| 46.98 215 111 2 3 638 276 490 3.00E-52 209 polysaccharide lyase family protein 4 

[Dendroctonus ponderosae] 
contig_261197 gi|315570656|gb|ADU33332.1| 42.11 247 130 3 1239 508 328 564 6.00E-47 193 polysaccharide lyase family protein 4 

[Dendroctonus ponderosae] 
contig_399225 gi|315570650|gb|ADU33329.1| 42.98 242 119 3 723 1 8 231 4.00E-46 191 polysaccharide lyase family protein 4 

[Dendroctonus ponderosae] 
contig_366060 gi|315570656|gb|ADU33332.1| 54.47 123 56 0 373 5 221 343 1.00E-37 161 polysaccharide lyase family protein 4 

[Dendroctonus ponderosae] 
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contig_327626 gi|315570656|gb|ADU33332.1| 52 150 67 2 1242 796 419 564 7.00E-36 156 polysaccharide lyase family protein 4 
[Dendroctonus ponderosae] 

contig_321778 gi|315570648|gb|ADU33328.1| 53.54 127 54 2 2699 2328 179 303 3.00E-33 144 polysaccharide lyase family protein 4 
[Dendroctonus ponderosae] 

contig_741455 gi|315570650|gb|ADU33329.1| 48.97 145 70 1 812 378 410 550 2.00E-32 144 polysaccharide lyase family protein 4 
[Dendroctonus ponderosae] 

contig_270175 gi|315570656|gb|ADU33332.1| 42.98 114 63 1 338 3 308 421 6.00E-22 108 polysaccharide lyase family protein 4 
[Dendroctonus ponderosae] 

contig_273713 gi|315570656|gb|ADU33332.1| 64.94 77 26 1 2 229 415 491 5.00E-22 107 polysaccharide lyase family protein 4 
[Dendroctonus ponderosae] 

contig_273714 gi|315570656|gb|ADU33332.1| 64.38 73 25 1 3 218 419 491 5.00E-20 101 polysaccharide lyase family protein 4 
[Dendroctonus ponderosae] 

contig_572545 gi|315570656|gb|ADU33332.1| 63.01 73 26 1 3 218 419 491 4.00E-19 98.2 polysaccharide lyase family protein 4 
[Dendroctonus ponderosae] 

contig_327649 gi|315570656|gb|ADU33332.1| 49.43 87 42 1 259 5 338 424 1.00E-15 87 polysaccharide lyase family protein 4 
[Dendroctonus ponderosae] 

contig_331094 gi|315570650|gb|ADU33329.1| 38.33 120 69 3 491 138 15 131 8.00E-14 82.4 polysaccharide lyase family protein 4 
[Dendroctonus ponderosae] 

contig_379595 gi|315570648|gb|ADU33328.1| 65.38 52 18 0 453 608 175 226 1.00E-13 81.3 polysaccharide lyase family protein 4 
[Dendroctonus ponderosae] 

contig_759421 gi|315570656|gb|ADU33332.1| 45.12 82 42 1 1 246 483 561 9.00E-12 73.9 polysaccharide lyase family protein 4 
[Dendroctonus ponderosae] 

contig_438304 gi|315570656|gb|ADU33332.1| 49.23 65 33 0 208 14 497 561 1.00E-10 70.1 polysaccharide lyase family protein 4 
[Dendroctonus ponderosae] 

Diplolepis spinosa 

Cellulases             

contig_59010 gi|90022881|ref|YP_528708.1| 61.33 300 115 1 2413 3312 39 337 2.00E-106 392 cellulase [Saccharophagus degradans 2-40] 

contig_37918 gi|269965254|dbj|BAI50016.1| 54.43 327 146 2 1567 587 29 352 5.00E-100 369 endoglucanase [Saccharophagus sp. JAM-R001] 

Pectinases             

contig_169528 gi|351470365|gb|EHA30503.1| 50 348 154 5 491 1483 9 353 3.00E-93 347 pectate lyase [Bacillus subtilis subsp. subtilis str. SC-
8] 

contig_101079 gi|242240781|ref|YP_002988962.1| 44.59 314 172 1 705 1640 1 314 1.00E-73 281 Pectate lyase/Amb allergen [Dickeya dadantii 
Ech703] 

contig_128531 gi|242240781|ref|YP_002988962.1| 45.19 312 169 1 1530 601 3 314 4.00E-72 277 Pectate lyase/Amb allergen [Dickeya dadantii 
Ech703] 

contig_58231 gi|343096079|emb|CCC84288.1| 44.51 319 163 3 1174 2097 28 343 8.00E-71 273 pectate lyase [Paenibacillus polymyxa M1] 
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contig_5773 gi|308068153|ref|YP_003869758.1| 51.25 160 76 2 1 480 188 345 2.00E-40 171 pectin lyase [Paenibacillus polymyxa E681] 

contig_116836 gi|307129345|ref|YP_003881361.1| 45.22 157 84 1 468 4 3 159 2.00E-33 148 pectate lyase [Dickeya dadantii 3937] 

contig_145587 gi|307129345|ref|YP_003881361.1| 43.95 157 86 1 127 591 3 159 1.00E-31 139 pectate lyase [Dickeya dadantii 3937] 

contig_48663 gi|308068153|ref|YP_003869758.1| 48.84 129 64 1 279 659 88 216 2.00E-36 119 pectin lyase [Paenibacillus polymyxa E681] 

contig_65337 gi|310640947|ref|YP_003945705.1| 43.14 102 56 1 2 307 210 309 1.00E-18 96.7 pectate lyase, polysaccharide lyase family 1 
[Paenibacillus polymyxa SC2] 

Rhamnogalacturonate lyases           

contig_167541 gi|261820229|ref|YP_003258335.1| 45.9 549 286 4 2724 1111 22 570 3.00E-141 507 Rhamnogalacturonate lyase [Pectobacterium 
wasabiae WPP163] 

contig_58856 gi|227326316|ref|ZP_03830340.1| 43.32 554 304 4 1804 173 10 563 5.00E-131 472 rhamnogalacturonate lyase [Pectobacterium 
carotovorum subsp. carotovorum WPP14] 

Polysaccharide lyases            

contig_84907 gi|315570650|gb|ADU33329.1| 44.55 541 290 5 263 1879 21 553 7.00E-137 493 polysaccharide lyase family protein 4 
[Dendroctonus ponderosae] 

contig_106711 gi|315570650|gb|ADU33329.1| 46.55 537 278 5 466 2073 22 550 8.00E-133 480 polysaccharide lyase family protein 4 
[Dendroctonus ponderosae] 

Andricus quercuscalicis 

Cellulases             

C77523 gi|269965254|dbj|BAI50016.1| 59.42 313 123 2 74 1012 24 332 2.00E-103 380 endoglucanase [Saccharophagus sp. JAM-R001] 

C43076 gi|192360233|ref|YP_001983438.1| 69.62 79 23 1 239 3 158 235 2.00E-25 119 endo-1,4-beta glucanase [Cellvibrio japonicus 
Ueda107] 

Pectinases             

scaffold5068 gi|357201957|gb|AET59854.1| 45.26 285 150 3 205 1050 63 344 1.00E-60 239 pectin lyase [Paenibacillus terrae HPL-003] 

C39706 gi|52081406|ref|YP_080197.1| 47.22 72 38 0 2 217 190 261 2.00E-12 76.3 pectate lyase, polysaccharide lyase family 1 [Bacillus 
licheniformis ATCC 14580] 

Pediaspis aceris 

Pectinases             

C96711 gi|308068153|ref|YP_003869758.1| 49.06 267 130 3 3 797 82 344 4.00E-64 249 pectin lyase [Paenibacillus polymyxa E681] 

scaffold1651 gi|242240781|ref|YP_002988962.1| 49.61 256 127 1 94 855 3 258 6.00E-60 235 Pectate lyase/Amb allergen [Dickeya dadantii 
Ech703] 

scaffold1653 gi|357201957|gb|AET59854.1| 50.65 231 109 2 163 849 63 290 6.00E-58 229 pectin lyase [Paenibacillus terrae HPL-003] 
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scaffold1652 gi|242240781|ref|YP_002988962.1| 50.34 149 72 1 13 453 113 261 4.00E-38 161 Pectate lyase/Amb allergen [Dickeya dadantii 
Ech703] 

Rhamnogalacturonate lyases           

scaffold2513 gi|307129727|ref|YP_003881743.1| 43.37 475 261 1 32 1432 29 503 2.00E-119 434 Rhamnogalacturonate lyase [Dickeya dadantii 3937] 

C48768 gi|271500632|ref|YP_003333657.1| 42.67 75 40 1 222 7 466 540 3.00E-10 68.9 Rhamnogalacturonate lyase [Dickeya dadantii 
Ech586] 

Polysaccharide lyases            

C106083 gi|315570656|gb|ADU33332.1| 43.65 520 281 7 1547 9 34 548 6.00E-129 466 polysaccharide lyase family protein 4 
[Dendroctonus ponderosae] 

scaffold2514 gi|315570656|gb|ADU33332.1| 48.68 152 73 2 5 457 393 540 6.00E-37 157 polysaccharide lyase family protein 4 
[Dendroctonus ponderosae] 
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4.2.6 Probable contaminant sequences 

 

Some top hits to plant cell wall degrading enzymes are due to contamination 

of the sequenced individuals with other organisms. In total there are 1004 

contigs in the B. gibbera assembly most similar to Cordyceps and the closely 

related Beauvaria (Rehner and Buckley, 2005). Cordyceps and Beauvaria 

species are entomopathogenic fungi. This includes the 28s and 18s rRNAs of 

Beauvaria bassiana. Furthermore, Cordyceps and Beauvaria sequences are 

not found in the other genomes or transcriptomes. The contigs indicate the 

presence of a complete, if partially sequenced, Cordyceps or Beauvaria-like 

fungal genome in the B. gibbera assembly and not a HGT event. Fungal 

spores carried by one of the B. gibbera individuals sequenced can explain 

the presence of this genome in the B. gibbera assembly.  

A bacterial contaminant most closely related to, Limnobacter species 

MED105 (http://www.ncbi.nlm.nih.gov/genome/13680?project_id=54689), 

was identified in the B. pallida assembly by its cellulase. In total 2896 B. 

pallida contigs had closest match to this Limnobacter species (Accession: 

NZ_ABCT00000000.1) including 23s and 16s rRNA genes. As was the case 

for Cordyceps in B. gibbera, Limnobacter-like sequences are not present in 

the other datasets. Again the genome of this species was probably 

sequenced alongside B. pallida in one or more of the individuals sequenced. 

 

4.2.7 Shared top hits across cynipid resources  

 

Four plant cell wall degrading functions were identified across the tested 

species, they were: 1) cellulase/endoglucanase, 2) rhamnogalacturonate 

lyase, 3) polysaccharide lyases and 4) pectin lyases. A lyase is an enzyme 

that breaks down a substrate through a mechanism other than hydrolysis or 

oxidation. These enzymes catalyse the break down of plant cell wall 

components cellulose, rhamnogalacturonans, and cell wall pectins. 

Polysaccharide lyases also break down rhamnogalacturonans, which are 

complex pectic polysaccharides of the cell wall.  

http://www.ncbi.nlm.nih.gov/genome/13680?project_id=54689
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The pectinases are the most common contigs occurring in all cynipid 

assemblies. They are most frequent in B. gibbera and B. pallida at 27 and 20 

contigs respectively, with D. spinosa slightly less at 9 contigs. 

Rhamnogalacturonate lyases are found in all three genomes and another is 

expressed in P. aceris. The most similar species to these cynipid PCWDE 

genes are the plant pathogens Dickeya dadantii or Pectobacterium wasabiae 

of the family Enterobacteriaceae. Dickeya species are closely related to 

Pectobacterium species, and they were previously assigned to the genus 

Pectobacterium (Samson et al., 2005).  

Cellulases are present in all gall wasp species except P. aceris 

(though might be present in the genome), most similar to either Cellvibrio or 

Saccharophagus species; they are particularly numerous in B. pallida and B. 

gibbera. In total, only seven genera of bacteria were responsible for best hits, 

five of which are class Gammaproteobacteria (Cellvibrio, Dickeya, 

Pectobacterium, Pseudomonas, and Saccharophagus), and two, most similar 

to the pectinases, are Bacilli (Bacillus and Paenibacillus). 

 

4.2.8 Relationships among HGT candidates: phylogenies of PCWDE 

enzymes 

 

A phylogenetic approach can tell us if cellulase genes from the same species 

are more similar to one another than to cellulases in another species or vice-

a-versa. If such genes share orthologs within species then they have 

duplicated since that species lineage split from other species in the analysis. 

Alternatively, if a gene encoding a cellulase is more similar to a gene in 

another species than it is to cellulases in its own genome assembly, gene 

duplication more ancient than the split between those species is inferred. 

Whether this has happened in the gall wasp genome or an unidentified 

symbiont is not indicated by this analysis.  

Coding sequences overlapping the BLAST hit to PCWDE genes were 

extracted from genomic and transcriptomic contigs for each species using 

EMBOSS getorf (Longden and Bleasby, 2000) and translated into amino acid 
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sequence. The resulting proteins were kept for further analysis if they were at 

least 100 amino acids long. Amino acids were aligned using MUSCLE 

(Edgar, 2004) with default settings. Maximum likelihood phylogenies were 

created in phyML (version 3.0) (Guindon et al., 2009) using the Whelan and 

Goldman (WAG) substitution model hosted at www.phylogeny.fr (Dereeper et 

al., 2008). Branch support was provided by the Shimodaira-Hasegawa-like 

approximate likelihood ratio test for branches (Anisimova and Gascuel, 

2006), branches with less than 50% support were collapsed. Trees were 

annotated using Figtree (version 1.4) 

(http://tree.bio.ed.ac.uk/software/figtree/) and Inkscape (0.48.4) 

(www.inkscape.org). 

 Outgroup sequences were included for cellulase, polysaccharide 

lyase and pectinase trees. For the polysaccharide lyase tree, three 

Dendroctonus ponderosae polysaccharide lyase sequences (Pauchet et al., 

2010) (Accessions: 315570650, 315570648 and 315570656) were used to 

root the tree. These are the three D. ponderosae polysaccharide lyase family 

4 genes most similar to gall wasp contigs and transcripts in table 4.5. For the 

pectinase tree, one pectin lyase sequence was used from Bacillus subtilis 

(Accession 16078925), as all the pectin lyases outgroup sequences in table 

4.5 are outgroup to cynipid sequences when tested (appendix figure 4.11). 

For the cellulases, five outgroup sequences were used, two from Cellvibrio 

japonicus (Accessions: 192360233, 806574) and three from 

Saccharophagus spp. (Accessions: 269965254, 90022879, 90022881). 

These proteins were trimmed to 340 amino acids reflecting the maximum 

alignment position in table 4.5 for cynipid to bacterial cellulase sequences. 

The rhamnogalacturonate lyase was not rooted with outgroup sequences 

(appendix figure 4.10).   

 One can immediately see that broader phylogenetic relationships 

among cynipid tribes are maintained across the four genes (figure 4.1 

compared with figure 4.2-4 and appendix figures 4.11-12), sequences from 

each species are labelled with different colours. B. pallida (coloured red) and 

B. gibbera (blue) intermingle across phylogenies, in many cases genes there 

http://www.phylogeny.fr/
http://tree.bio.ed.ac.uk/software/figtree/
http://www.inkscape.org/
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are pairs of PCWDEs in the phylogenies for these two species. A. 

quercuscalicis (yellow) nestles with the other Cynipini in the pectinase 

phylogeny (figure 4.3), but is unresolved in the cellulase tree (figure 4.2). D. 

spinosa (green) and P. aceris (fuchsia) sequences are consistently separate 

to the other species (figure 4.2-4). The Cynipini and Pediaspini are proposed 

as sister tribes (figure 4.1, and Ronquist & Liljeblad, 2001) within the 

Cynipidae. However the polysaccharide lyase phylogeny (figure 4.4) shows 

D. spinosa and P. aceris forming a monophyletic clade in the tree that splits 

basally from the Cynipini sequences.  
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Figure 4.2. Phylogeny of cellulase genes identified and passing alignment criteria B. gibbera = red, 
B. pallida = blue, D. spinosa = green, A. quercuscalicis = yellow, P. aceris  = fuchsia and outgroup 

sequences = black. Scale bar is substitutions per site and branches are labeled with approximate 
likelihood ratio test support values. 
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Figure 4.3. Phylogeny of pectinase genes identified and passing alignment criteria B. gibbera = red, 
B. pallida = blue, D. spinosa = green, A. quercuscalicis = yellow, P. aceris  = fuchsia and outgroup 

sequences = black. Scale bar is substitutions per site and branches are labeled with approximate 
likelihood ratio test support values. 
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Figure 4.4. Phylogeny of polysaccharide lyase genes identified and passing alignment criteria B. 
gibbera = red, B. pallida = blue, D. spinosa = green, A. quercuscalicis  = yellow, P. aceris  = fuchsia 

and outgroup sequences = black. Scale bar is substitutions per site and branches are labeled with 
approximate likelihood ratio test support values. 
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4.2.9 Expression of PCWDE genes in B. pallida larvae  

 

Plant cell wall degrading enzyme like-genes expressed in the B. pallida larval 

transcriptome in the RNA sequencing experiment (Chapter 3) were identified 

from BLAST annotations of transcripts (Chapter 3, part C). For expressed 

PCWDE candidate genes differentially and highly expressed in early larvae a 

role in gall induction is possible. Alternatively, expression at later stages 

could indicate a role in digestion of host cell walls during feeding by the 

mature larvae.  

A total of thirty-three B. pallida larval transcripts were annotated as 

PCWDE of non-insect origin, of which twenty-four are detectable in the B. 

pallida genome assembly using BLAST (without an e-value threshold) and 

nine are not (tables 4.7-8). Two transcripts encoding cellulase, with divergent 

sequences, are highly expressed through gall development (expression 

counts across replicates, appendix table 4.12), but were not differentially 

expressed in either edgeR or DESeq analyses (Chapter 3, part B) across 

larval developmental stages. Because they are not differentially expressed, 

these cellulases may have a continuous role in gall development.  

Eighteen of the thirty-three transcripts are most similar to PCWDE 

genes in the mountain pine beetle D. ponderosae (table 4.7-8). These D. 

ponderosae genes are hypothesized to result from ancient horizontal gene 

transfers from bacteria (Pauchet et al., 2010). The D. ponderosae-like 

transcripts encode nine polysaccharide lyases, glycoside hydrolase family 

protein 48 (cellulase), endo-beta-1,4-glucanase (xylanase), 

endopolygalacturonase and pectin methylesterase. However, only half (nine) 

of the transcripts most similar to D. ponderosae PCWDE genes have 

corresponding contigs in the genome assembly, and all of these are 

polysaccharide lyases family 4 proteins (table 4.7, B. pallida larval PCWDE 

transcripts without corresponding B. pallida genomic regions).  

The thirty-three expressed B. pallida larval PCWDE encoding 

transcripts were also BLAST searched against the B. gibbera assembly and 

the same twenty-four contigs were detectable as against the B. pallida 
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assembly (appendix table 4.13). Therefore, the same nine transcripts without 

corresponding contigs in B. pallida (table 4.8) have no corresponding contigs 

in the B. gibbera assembly; they may not derive from B. pallida. This 

potential expression from other species is possible in the gall wasp 

transcriptome, as the transcriptome was not filtered for sequences from 

closely related species (Chapter 3, part A). For example, the three D. 

ponderosae glycoside hydrolase family protein 48 (cellulases) transcripts are 

only expressed in replicate 270C (appendix table 4.12). Possible alternative 

sources of this PCWDE expression are parasitoids, cynipid inquilines, and 

other gall inhabiting insects. A parasitoid that eats plant tissue prior to 

feeding on gall wasp larvae could also have acquired PCWDEs, an example 

of a koinobiont lifestyle. The cynipid chalcid parasitoid Eurytoma 

brunniventris is known to eat gall tissue before galler larvae in this manner 

(Askew, 1984). 

None of the B. pallida larval transcripts have high expression other 

than the two cellulases, but three polysaccharide genes and four pectin 

lyases are differentially expressed (DESeq results, table 4.6 and expression 

counts across replicates appendix table 4.12).  

 

Gene Annotation Early 

vs. 
Growth 

Early vs. 

Mature 

P-value Adjusted P-

value 

comp14239_c0 polysaccharide lyase family 
protein 4  

-0.08 1.52 3.46E-05 0.000290757 

comp18312_c0 pectin lyase 0.12 -5.53 0.002830762 0.01425849 

comp20769_c0 pectin lyase -1.89 2.53 0.00162793 0.00892196 

comp20790_c0 pectate lyase -2.20 -6.90 7.43E-06 7.25E-05 

comp26878_c0 polysaccharide lyase family 

protein 4  

-0.84 -3.99 1.22E-07 1.61E-06 

comp26878_c1 polysaccharide lyase family 
protein 4  

-1.92 -6.08 0.002447804 0.012616273 

comp59931_c0 pectin lyase -2.55 -32.89 0.002100293 0.011078433 

 

 
Table 4.7 BLAST best hits for larvally expressed PCWDE-encoding B. pallida transcripts in 
the B. pallida genome assembly. 

Table 4.6. Significantly differentially expressed PCWDE genes in the B. pallida transcriptome (see 
Chapter 3). Early versus Growth and Early vs. Mature indicate fold change in expression. A negative 
value means the gene is more highly expressed in the early stage and vice-a-versa for positive values. 
Adjusted p-value is the p-value for this gene after correction for multiple testing of all  the genes 
analysed in the RNASeq experiment in chapter 4. 
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Transcript Genome tophit % 
identity 

Alignment 
length 

Mism- 
atches 

Gaps  Query 
start 

 Query 
end 

 Ref. 
Start 

Ref. 
End 

E-value Bit 
score 

Transcript PCWDE  

comp103141_c0 contig_10790 99.07 429 4 0 1 429 1773 2201 0 756 pectin lyase 

comp132692_c0 contig_668987 87.77 319 2 1 33 351 38 319 6.00E-119 430 pectin lyase 

comp13836_c0 contig_167705 100 990 0 0 175 1164 1505 516 0 1786 cellulase 

comp14276_c0 contig_165961 98.93 560 6 0 1 560 1163 1722 0 984 pectin lyase 

comp14276_c1 contig_165961 99.8 496 1 0 1 496 690 1185 0 890 pectin lyase 

comp18312_c0 contig_10790 99.66 589 2 0 268 856 2793 2205 0 1054 pectin lyase 

comp20769_c0 contig_441974 99.91 1056 1 0 7 1062 1848 793 0 1900 pectin lyase 

comp20790_c0 contig_11862 99.9 979 1 0 100 1078 3236 4214 0 1761 pectin lyase 

comp258830_c0 contig_763479 99.64 279 1 0 1 279 370 92 1.00E-139 499 pectin lyase 

comp27915_c0 contig_331473 95.62 548 24 0 215 762 548 1 0 881 cellulase 

comp282070_c0 contig_11862 85.57 201 29 0 1 201 3772 3972 2.00E-59 232 pectin lyase 

comp326228_c0 contig_366356 100 239 0 0 1 239 473 711 1.00E-119 432 cellulase 

comp57254_c0 contig_69918 99.9 985 1 0 88 1072 1269 2253 0 1772 cellulase 

comp59931_c0 contig_188178 99.15 468 3 1 15 481 1916 1449 0 823 pectin lyase 

comp98838_c0 contig_331094 99.45 361 0 1 202 560 138 498 0 639 Rhamnogalacturonate lyase 

comp27190_c0 contig_211523 99.84 1893 3 0 102 1994 2872 980 0 3400 polysaccharide lyase family protein 4  

comp14239_c0 contig_319529 100 2208 0 0 77 2284 60 2267 0 3983 polysaccharide lyase family protein 4  

comp26878_c0 contig_310874 100 753 0 0 126 878 973 221 0 1359 polysaccharide lyase family protein 4  

comp24519_c0 contig_40263 95.61 638 28 0 12 649 1 638 0 1025 polysaccharide lyase family protein 4  

comp100388_c0 contig_24334 99.94 1609 1 0 17 1625 1 1609 0 2897 polysaccharide lyase family protein 4  

comp26878_c1 contig_327649 100 248 0 0 219 466 261 14 3.00E-124 448 polysaccharide lyase family protein 4  

comp198252_c0 contig_95640 100 415 0 0 1 415 2356 2770 0 749 polysaccharide lyase family protein 4  

comp53817_c0 contig_327626 90.02 571 49 5 1 570 1092 529 0 758 polysaccharide lyase family protein 4  

comp24519_c1 contig_759421 100 370 0 0 265 634 370 1 0 668 polysaccharide lyase family protein 4  
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Transcript Accession  % 
identity 

length Mismatch Gap Query 
start 

 Query 
end 

 Ref. Start Ref. 
End 

E-value Bit 
score 

Annotation 

comp93909_c0 gi|315570583|gb|HM175791.1| 77.24 769 167 4 1 765 834 70 4.00E-164 587 glycoside hydrolase family protein 48  

comp150589_c0 gi|315570583|gb|HM175791.1| 76.3 422 94 4 8 426 1545 1127 2.00E-77 298 glycoside hydrolase family protein 48  

comp14831_c0 gi|315570583|gb|HM175791.1| 74.51 455 104 3 4 458 1969 1527 2.00E-76 295 glycoside hydrolase family protein 48  

comp136735_c0 gi|315570603|gb|HM175801.1| 70.45 538 153 4 1 535 1036 502 5.00E-60 241 endopolygalacturonase (GH28Pect-5) 

comp151243_c0 gi|315570568|gb|ADU33288.1| 76.56 128 30 0 385 2 23 150 3.00E-47 191 endo-beta-1,4-glucanase 

comp350819_c0 gi|315570565|gb|HM175782.1| 72.08 308 83 1 18 322 37 344 5.00E-38 167 endo-beta-1,4-glucanase 

comp258611_c0 gi|315570574|gb|ADU33291.1| 78.48 79 17 0 4 240 59 137 1.00E-31 139 endo-beta-1,4-glucanase 

comp213754_c0 gi|315570632|gb|ADU33320.1| 55.24 143 57 3 13 438 1 137 3.00E-29 132 endopolygalacturonase 

comp397147_c0 gi|315570640|gb|ADU33324.1| 61.97 71 27 0 213 1 143 213 1.00E-19 100 pectin methylesterase 

Table 4.8 BLAST results for transcripts without corresponding regions in the B. pallida genome assembly. The same nine transcripts also lack 
corresponding regions in the B. gibbera genome assembly (table 4.13). 
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4.3 Evidence for a prokaryotic or eukaryotic origin of the PCWDE genes 

 

4.3.1 Introns are present in some PCWDE genes 

 

Introns are characteristic of eukaryotic genomes, intronless genes do exist 

but are very rare (Sakharkar et al., 2002; Sakharkar and Kangueane, 2004) 

Introns were searched for in B. pallida genomic contigs corresponding to the 

expressed B. pallida larval PCWDEs.  

This was restricted to the twenty-four PCWDEs expressed in the B. 

pallida larval transcriptome with corresponding contigs in the B. pallida 

genome assembly (table 4.7). The expression of these genes is assumed to 

indicate that they are functional. These genes were nucleotide BLAST 

(BLASTn) searched against the B. pallida genome without an e-value 

thresholds or maximum number of hits. The purpose was to identify the 

entire length of the expressed transcripts across one o r more genomic 

contigs. Figure 4.5 explains the logic used to identify introns occurring in the 

genome using PCWDE transcripts. Firstly 1), when different exons of the 

transcript fall in different contigs of the genome assembly. This is because of 

the short average length of contigs in the draft assembly (table 4.3). The 

second scenario, 2) is preferable as the two exons fall along the same contig 

and the intron length can be estimated.  

Only transcripts with alignments to contigs that did not overlap the 

start or end of genomic contigs were considered. This is because a transcript 

alignment overlapping a contig end indicates an incompletely assembled 

genomic fragment in which the start or end of an exon cannot be predicted.  
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Five B. pallida transcripts had evidence for introns in corresponding 

genomic contigs, four of which conform to scenario 1) above and one to 

scenario 2) (table 4.9). Table 4.9 shows that B. pallida Contig_69918-, 

encoding a cellulase (table 4.5) contains an intron 543 bp long, flanked by 

exons for the transcript comp57254_c0. To confirm this, 5’ and 3’ intron 

splicing consensus sequences were identified. At the intron start position 

(base 726, end of first exon) there is a 5’ intron splicing site consensus 

sequence (donor) ‘TGGTAAGT’ and at the end of the intron (base 1269, start 

Figure 4.5. The two scenarios possible when BLAST searching for introns by comparison of 

expressed transcripts (mRNA) against a draft genome (DNA). Sc enario 1) shows the expectation 
when the transcript maps to different genomic contigs, meaning the length of the intron cannot be 
known but intron donor and acceptor sites are identifiable. 

 

mRNA

mRNA

DNA

DNA

intron exon

exon
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of second exon) the 3’ intron splicing site consensus sequence (acceptor), 

‘CAG’. These splice sites were also predicted by the splice site predictor 

SplicePort (Dogan et al., 2007). SplicePort was also used to predict splice 

sites at the boundaries of BLAST alignments occurring for the other 

candidate intron containing contigs (table 4.10). SplicePort classifies intron 

splices sites as donor (5’) or acceptor (3’) and provides a score for predicted 

sites. This score is derived from the number of splice site criteria a site has, 

the higher the score the more confident SplicePort is of correct splice site 

identification (Dogan et al., 2007). For the genomic contigs with scenario 1-

like potential introns  (figure 4.6) the intron acceptor and donor splice sites 

are on different contigs so it is not possible to know intron length. In total 

seven of fourteen potential splice sites had SplicePort detectable splice sites. 
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Transcript Genomic contig containing 
exon 

Scenario Alignment 
length 

Transcript 
length 

Transcript 
start 

Transcript 
end 

Exon start Exon end Contig 
length 

Bit 
score 

comp57254_c0_ Biorhiza_pallida_contig_69918- 2 88 1076 1 88 639 726 2888 159 

comp57254_c0 Biorhiza_pallida_contig_69918- 2 985 1076 88 1072 1269 2253 2888 1772 

           

comp27190_c0 Biorhiza_pallida_contig_560948- 1 88 1909 1 88 110 197 388 150 

comp27190_c0 Biorhiza_pallida_contig_211523- 1 1729 1909 94 1822 2708 980 2872 3104 

           

comp26878_c0 Biorhiza_pallida_contig_864867- 1 68 1150 1 68 187 120 267 123 

comp26878_c0 Biorhiza_pallida_contig_311700- 1 73 1150 70 142 1935 1863 2846 87.8 

comp26878_c0 Biorhiza_pallida_contig_95640- 1 995 1150 146 1140 2958 2001 3626 890 

           

comp20769_c0 Biorhiza_pallida_contig_441974- 1 1056 1175 7 1062 1848 793 2356 1900 

comp20769_c0 Biorhiza_pallida_contig_381950- 1 114 1175 1062 1175 2204 2091 2618 206 

           

comp18312_c0 Biorhiza_pallida_contig_236172- 1 269 856 1 269 1636 1904 2131 486 

comp18312_c0 Biorhiza_pallida_contig_10790- 1 589 856 268 856 2793 2205 4631 1054 

           

comp132692_c0 Biorhiza_pallida_contig_375511- 1 37 351 1 37 1798 1834 2679 62.6 

comp132692_c0 Biorhiza_pallida_contig_668987- 1 319 351 33 351 38 319 1447 430 

 

 
Table 4.9 BLAST results for transcripts with potential introns corresponding regions of the B. pallida genome assembly. Scenario is described by figure 

4.5. There is only one example of scenario 2, in which the intron is on the same genomic contig as the flanking exons. Exon st art and Exon end columns 
refer to the regions within a genomic contig mapping to different regions of an expressed PCWDE tr anscript. 
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Transcript Contig Contig 

position 

Present Donor/ 

Acceptor 

Splice site Score 

comp57254_c0_ Biorhiza_pallida_contig_69918- 726 Yes D tgctggtaagta 1.65797 

comp57254_c0 Biorhiza_pallida_contig_69918- 1269 Yes A ttaacagatgtg 0.81363
7 

       

comp27190_c0 Biorhiza_pallida_contig_560948- 197 No D N/A N/A 

comp27190_c0 Biorhiza_pallida_contig_211523- 2708 No A N/A N/A 

       

comp26878_c0 Biorhiza_pallida_contig_864867- 2001 Yes D cttcagtaagtc 0.59547
5 

comp26878_c0 Biorhiza_pallida_contig_311700- 1935 Yes A ttatcagttgaa 1.88363 

comp26878_c0 Biorhiza_pallida_contig_311700- 1863 Yes D atggtgtaagtc 0.99169
2 

comp26878_c0 Biorhiza_pallida_contig_95640- 2958 No A N/A N/A 

       

comp20769_c0 Biorhiza_pallida_contig_441974- 793 No D N/A N/A 

comp20769_c0 Biorhiza_pallida_contig_381950- 2204 No A N/A N/A 

       

comp18312_c0 Biorhiza_pallida_contig_236172- 1904 No D N/A N/A 

comp18312_c0 Biorhiza_pallida_contig_10790- 2793 Yes A tatgcaggcgct 1.72909 

       

comp132692_c0 Biorhiza_pallida_contig_375511- 1834 Yes D ttttggtgagat 0.56852
9 

comp132692_c0 Biorhiza_pallida_contig_668987- 38 No A N/A N/A 

 

For comparison to cynipid PCWDE genes, the PCWDE 

polysaccharide lyases of the beetle D. ponderosae (Genbank accessions: 

315570650, 315570648 and 315570656) similar to cynipid contigs and 

transcripts were checked for introns. D. ponderosae expressed sequence 

tags (ESTs) of the polysaccharide lyases (Pauchet et al., 2010) were BLAST 

searched against the draft D. ponderosae genome (Keeling et al., 2013) 

(http://www.ncbi.nlm.nih.gov/genome/11242). An EST to genome BLAST 

revealed one of the polysaccharide lyases (Accession: 31557064), 1 778 bp 

long, contained an obvious intron between positions 363 and 416. This was 

confirmed by a GENSCAN  (http://genes.mit.edu/GENSCAN.html) (Burge 

and Karlin, 1997) search for introns in the corresponding genomic contig 

(Accession: 315570648). 

 

Table 4.10 SplicePort predictions from potential intron donor and acceptor s plice sites derived from 
table 4.9. 

http://www.ncbi.nlm.nih.gov/genome/11242
http://genes.mit.edu/GENSCAN.html
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4.3.2 Hymenopteran genes present on genomic contigs encoding 

PCWDEs 

 

Another way of demonstrating a HGT event is when genes of host origin 

surround the candidate HGT genes; i.e. genes shared by other 

hymenopterans and insects for cynipids. This is easiest to demonstrate with 

finished genomes, for example the horizontally transferred PCWDE genes of 

the plant parasitic nematode Meloidogyne incognita (Abad et al., 2008). 

Additionally, in M. incognita the PCWDE genes have evolved introns since 

their acquisition by the nematode (Abad et al., 2008). 

With the draft assemblies available here this is much more difficult, 

PCWDEs of putative prokaryote origin have been detected in contigs of 

~6000 bp maximum length. The relative shortness of these contigs reduces 

the chance of identifying multiple open reading frames per contig. Open 

reading frames were extracted from genomic contigs using getorf from the 

EMBOSS package (Longden and Bleasby, 2000). These ORFs were then 

BLAST searched against the non-redundant (nr) BLAST database.  

One polysaccharide lyase encoding contig of B. pallida 

(contig_321778-, 3 183 bp length) also had an ORF most similar to a 

hypothetical gene of the hymenopteran Nasonia vitripennis (e-value 1 x 10-6; 

LOC100114674; Accession: 156540059). The region of the hypothetical 

gene overlapping the B. pallida contig encodes a non-LTR RNAse H class I 

domain of reverse transcriptase. Additionally, B. pallida contig_11862 (length 

5652 bp) encoding a pectate lyase, also contains a transposase most similar 

to a DDE superfamily endonuclease Caenorhabditis briggsae (e-value 2 x 10-

23). The best hits to the transposase-encoding region of contig_11862 from 

the B. pallida transcriptome (comp157814_c0_seq1, e-value 4 x 10-90), B. 

gibbera, and D. spinosa assemblies are also Caenorhabditis spp. 

transposases of the same DDE superfamily.  
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4.3.3 Codon usage bias of plant cell wall degrading enzyme genes 

 

Codon usage refers to the frequency of each synonymous codon for a 

particular amino acid; if one codon is preferred over the others there is a bias 

in codon usage for that amino acid. Pauchet et al. (2010) used codon usage 

bias as evidence for a coleopteran bias in PCWDEs of hypothesized 

prokaryotic origin identified in beetle ESTs. They demonstrated that codon 

usage frequencies were similar to that observed in other insects and 

contrasted with that of Wolbachia as an example of a prokaryote.  

A similar analysis was repeated here for cynipid PCWDEs using the B. 

pallida larval transcriptome (chapter 3) and jewel wasp (Nasonia vitripennis) 

official gene set version 1.2 (Munoz-Torres et al., 2011) as hymenopteran 

references. For potential donor bacteria species, gene sets of species close 

most similar to the identified PCWDEs were chosen (downloaded from 

http://www.ncbi.nlm.nih.gov/genome). Bacterial species chosen were Bacillus 

subtilis, Cellvibrio japonicus, Dickeya dadantii, Paenibacillus subtilis, and 

Saccharophagus degradans. The program General Codon Usage Analysis 

(GCUA) (McInerney, 1998) analysed codon usage for each dataset. The 

relative synonymous codon usage (RSCU) value was used to compare 

codons among datasets. An RSCU value is the number of times a codon is 

observed divided by the expected number of observations in the absence of 

codon usage bias (McInerney, 1998). Thus a value greater than one 

indicates bias for a particular codon, and a number less than one a bias 

against.  

The results (table 4.11) are equivocal. There is no clear pattern to 

PCWDE codon usage bias with respect to the eukaryote versus prokaryote 

references; some codons are more similar to hymenopteran sequences, 

others to the prokaryotic sequences. However, a principal components 

analysis (PCA) of the RSCU shows clear associations (figure 4.6). The first 

two components of the PCA explain 40 and 32% of variation in the data 

respectively, the third 11%. The PCWDEs are highly correlated with the B. 

pallida transcriptome and the N. vitripennis gene set. The bacteria cluster 

http://www.ncbi.nlm.nih.gov/genome
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together but are not correlated with the hymenopteran sequences and 

PCWDEs.  
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Figure 4.6. Principal components analysis biplot of amino acid (black) usage and species 
included in the RSCU analysis (red). Plant cell  wall degrading enzymes were collated together  

across species and are labelled PCWDEs .  
 

Table 4.11. Codon usage table of RSCU values for each amino acid across the gene sets tested, 
numbers in red are the highest RSCU value for that codon for that species. All  datasets were of 
coding sequence beginning at position 1 forward strand.  
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Amino Acid Codon  Cynipid 
PCWDEs 

B. pallida 
transcriptome 

N. vitripennis B. subtilis P. polymxa C. japonicus D. dadantii S. degradans 

Phe UUU 1.35 0.98 1.04 1.42 1.33 1.28 0.93 1.49 

 UUC 0.65 1.02 0.96 0.58 0.67 0.72 1.07 0.51 

Leu UUA 1.77 0.95 1.10 1.28 0.81 0.64 0.33 1.65 

 UUG 1.17 1.24 1.12 1.28 1.47 1.41 0.90 1.22 

 CUU 1.11 1.17 0.86 0.95 0.88 0.5 0.32 0.99 

 CUC 0.44 1.02 1.03 0.71 0.55 0.71 0.48 0.40 

 CUA 0.75 0.54 0.65 0.53 0.50 0.22 0.18 0.97 

 CUG 0.77 1.09 1.24 1.25 1.79 2.52 3.80 0.78 

Tyr UAU 1.45 0.94 0.92 1.24 1.34 1.13 0.98 0.90 

 UAC 0.55 1.06 1.08 0.76 0.66 0.87 1.02 1.10 

His CAU 1.27 1.05 0.96 1.30 1.44 1.04 0.96 0.82 

 CAC 0.73 0.95 1.04 0.70 0.56 0.96 1.04 1.18 

Gln CAA 1.18 1.08 1.02 1.14 0.98 0.84 0.50 1.28 

 CAG 0.82 0.92 0.98 0.86 1.02 1.16 1.50 0.72 

Ile AUU 1.51 1.26 1.07 1.71 1.66 1.43 1.13 1.68 

 AUC 0.62 0.99 0.98 0.99 0.90 1.22 1.65 0.45 

 AUA 0.88 0.75 0.95 0.30 0.44 0.36 0.22 0.86 

Met AUG 1 1 1 1 1 1 1 1 

Asn AAU 1.38 1.16 1.10 1.19 1.22 1.06 0.78 0.94 

 AAC 0.62 0.84 0.90 0.81 0.78 0.94 1.22 1.06 

Lys AAA 1.35 1.15 1.13 1.41 1.16 1.25 1.32 1.41 

 AAG 0.65 0.85 0.87 0.59 0.84 0.75 0.68 0.59 

Val GUU 1.48 1.27 1.07 1.06 0.98 0.94 0.55 1.18 
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 GUC 0.58 1.02 1.06 0.85 0.74 0.78 0.94 0.22 

 GUA 1.15 0.83 0.90 0.71 1.12 0.77 0.47 1.40 

 GUG 0.79 0.89 0.97 1.39 1.17 1.50 2.03 1.20 

Asp GAU 1.37 1.13 1.06 1.28 1.38 1.33 0.99 1.27 

 GAC 0.63 0.87 0.94 0.72 0.62 0.67 1.01 0.73 

Glu GAA 1.55 1.23 1.10 1.42 1.18 1.18 1.26 1.27 

 GAG 0.45 0.77 0.90 0.58 0.82 0.82 0.74 0.73 

Ser UCU 1.63 1.24 0.92 1.06 1.03 0.63 0.48 1.18 

 UCC 0.63 0.79 0.77 1.20 1.19 1.19 1.20 0.53 

 UCA 1.38 1.04 0.98 0.93 0.82 0.68 0.48 0.61 

 UCG 0.34 0.85 1.02 0.52 0.8 0.76 1.31 0.87 

 AGU 1.21 1.08 1.09 1.07 0.99 1.15 0.60 1.06 

 AGC 0.81 0.98 1.22 1.23 1.16 1.59 1.93 1.75 

Cys UGU 1.38 0.98 0.92 1.10 1.08 0.900 0.67 0.91 

 UGC 0.62 1.02 1.08 0.90 0.92 1.10 1.33 1.09 

Trp UGG 1 1 1 1 1 1 1 1 

Pro CCU 1.23 1.27 0.96 0.92 1.17 0.72 0.41 1.01 

 CCC 0.59 0.63 0.76 1.30 0.62 1.38 0.68 1.00 

 CCA 1.70 1.39 1.29 0.66 0.93 0.63 0.31 1.27 

 CCG 0.48 0.71 0.99 1.11 1.28 1.27 2.60 0.72 

Arg CGU 1.30 0.91 0.73 1.17 1.80 1.42 1.53 1.33 

 CGC 0.57 0.83 0.90 1.38 1.23 3.17 2.59 2.86 

 CGA 1.28 1.04 1.00 0.60 0.75 0.32 0.32 0.61 

 CGG 0.45 0.43 0.53 1.32 0.98 0.61 1.15 0.35 

 AGA 1.69 1.73 1.75 0.98 0.83 0.17 0.22 0.52 
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 AGG 0.71 1.06 1.10 0.55 0.40 0.30 0.19 0.33 

Thr ACU 1.45 1.19 1.02 0.81 0.73 0.56 0.33 0.87 

 ACC 0.67 0.83 0.88 1.30 0.94 2.10 2.17 1.58 

 ACA 1.38 1.13 1.11 1.06 1.15 0.71 0.30 0.93 

 ACG 0.50 0.84 0.99 0.84 1.18 0.63 1.20 0.62 

Ala GCU 1.46 1.31 1.16 0.96 1.15 0.65 0.39 0.89 

 GCC 0.54 0.97 1.03 1.35 0.88 1.61 1.53 1.10 

 GCA 1.48 1.09 1.03 0.80 1.09 0.82 0.36 1.11 

 GCG 0.51 0.64 0.77 0.89 0.88 0.91 1.72 0.91 

Gly GGU 1.42 1.16 1.05 0.92 1.12 1.36 0.80 1.42 

 GGC 0.62 1.05 1.24 1.30 1.03 1.61 2.16 1.84 

 GGA 1.62 1.45 1.31 0.97 1.17 0.45 0.31 0.23 

 GGG 0.35 0.34 0.41 0.82 0.68 0.58 0.73 0.51 
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4.3.4 Identifying potential Shine-Dalgarno sequences in the 5’ 

untranslated region of expressed PCWDEs 

 

Within the 5’ untranslated region (UTR) of most prokaryotic mRNAs is the 

Shine-Dalgarno sequence (AGGAGG) (Shine and Dalgarno, 1975). The 

sequence acts as a ribosomal binding site for 16s ribosomal RNA and occurs 

6-7 bases upstream of the start codon. The 5’ untranslated regions (UTR) of 

the genomic contigs corresponding to expressed B. pallida PCWDE 

transcripts were tested for the Shine-Dalgarno (SD) sequence and 

subsequences (GAGG, AGGA, and GGAG) to account for variation in the SD 

sequence. The presence of a SD sequence would confirm the contigs as of 

prokaryote origin. However, the lack of an SD sequence would not confirm 

the transcripts are eukaryotic as some prokaryotes lack the SD sequence 

(Lim et al., 2012).  

The UTR regions of PCWDE transcripts were extracted, and reverse 

complemented where necessary and the twenty bases adjacent to the start 

codon tested. Twenty-three contigs with UTRs greater than 5 bp were tested. 

No transcripts contained the full SD consensus sequence or any 

subsequences within 20 bases of the start codon. 
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4.3.5 InterProScan predicted structures of cynipid PCWDE genes 

 

Figures 4.7-10 show the InterProScan predicted (Zdobnov and Apweiler, 

2001) structure of the PCWDEs for each enzyme type discovered. The 

cellulase and pectin/pectate lyases have the simplest structure encoding only 

the enzyme domain and a eukaryotic signal peptide. The polysaccharide 

lyases and rhamnogalacturonate lyases have similar structures. They both 

contain a rhamnogalacturonate lyase, a galactose mutarotase-like domain, 

carboxypeptidase and a galactose-binding domain. The polysaccharide 

lyases from genomic contigs also encode eukaryotic signal peptides while 

the rhamnogalacturonate lyase of a P. aceris transcript does not. This P. 

aceris rhamnogalacturonate lyase is the only complete open reading frame 

for this enzyme across genetic resources tested. Incomplete 

rhamnogalacturonate lyases, with the 5’ end present in the other species 

genome and transcriptome assemblies also do not have signal peptides. This 

may reflect variation in signal peptide presence between cynipid PCWDEs 

genes. 
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Figure 4.7. Cellulase protein encoded by comp_13836_c0 and contig_167705 of B. pallida transcriptome and genome assemblies respectively This diagram 
was generated using InterProScan http://www.ebi.ac.uk/Tools/pfa/iprscan/ web search using all  available databases. Length of query sequences is in amino 
acids above annotations. Each row indicates a different annotation to the protein from a different database included in the InterProScan search, the colour of 
the annotation matches the colour of the database from which the annotation is derived.  

 

http://www.ebi.ac.uk/Tools/pfa/iprscan/
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Figure 4.8. Pectin lyase protein encoded by comp_20769_c0 and contig_441974 of B. pallida transcriptome and genome assemblies respectively. This diagram 

was generated using InterProScan http://www.ebi.ac.uk/Tools/pfa/iprscan/ web search using all  available databases. Length of query sequences is in amino 
acids above annotations. Each row indicates a different annotation to the protein from a different database included in the InterProScan search, the colour of 
the annotation matches the colour of the database from which the annotation is derived.  
 

http://www.ebi.ac.uk/Tools/pfa/iprscan/
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Figure 4.9. Rhamnogalacturonate lyase protein encoded by scaffold2513 of the P. aceris transcriptome. This diagram was generated using InterProScan 
http://www.ebi.ac.uk/Tools/pfa/iprscan/ web search using all  available databases. Length of query sequences is in amino acids  above annotations. Each row 

indicates a different annotation to the protein from a different database included in the InterProScan search, the colour of the annotation matches the colour 
of the database from which the annotation is derived.  
 

http://www.ebi.ac.uk/Tools/pfa/iprscan/
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Figure 4.10. Polysaccharide lyase protein encoded by comp_27190_c0 and contig_211523 of B. pallida transcriptome and genome assemblies respectively. 
This diagram was generated using InterProScan http://www.ebi.ac.uk/Tools/pfa/iprscan/ web search using all  available databases. Length of query sequences 

is in amino acids above annotations. Each row indicates a different annotation to the protein from a different database included in the InterProScan search, 
the colour of the annotation matches the colour of the database from which the annotation is d erived.  
 

http://www.ebi.ac.uk/Tools/pfa/iprscan/
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4.4 Discussion 

  

4.4.1 The presence of PCWDE genes in cynipid genomes by horizontal 

gene transfer is strongly indicated but remains unconfirmed 

 

Plant cell wall degrading enzymes are present in genomic assemblies of the 

cynipid gall wasps D. spinosa (Diplolepidini), B. gibbera and B. pallida 

(Cynipini). These genes are not expressed in the transcriptome of an 

outgroup with a parasitoid life history, L. clavipes. Several PCWDEs genes 

are expressed during larval development in B. pallida (tables 4.7-8), and in 

the venom gland of adult cynipids (S. Cambier, personal communication). 

Phylogenies (figures 4.2-4) show these genes to be probable orthologs, and 

the relationships between species are broadly concordant with cynipid tribes 

(figure 4.1). Although, the relationship between tribes is contradicted for the 

polysaccharide lyase family 4 phylogeny (figure 4.4), as the Pediaspini are 

more closely related to the Diplolepidini sequences than to those of the 

Cynipini.  

The prokaryote sequences cynipid PCWDEs are most similar to are 

derived from phylogenetically disparate bacteria in different classes. 

Separate horizontal transfer events from different donors could explain this. 

A hypothesis that can be answered by more in depth phylogenetics, in which 

cynipid PCWDE enzyme genes are placed into a broader bacterial context. 

However, there is very little positive evidence for these genes belonging to 

an unidentified prokaryote symbiont of the gall wasps. Only the PCWDE 

genes are present in the assemblies/transcriptome and not the full 

complement of genes one would expect if a symbiont were present. Highly 

conserved genes, such as ribosomal RNAs should be detectable if a 

symbiont is present. Additionally, the 5’ UTRs of genomic contigs 

corresponding to PCWDE genes expressed in the B. pallida larval 

transcriptome do not contain Shine-Dalgarno sequences expected of 

bacterial mRNAs.  

Furthermore, several expressed PCWDE genes contain potential 
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introns, and one has a confirmed intron. The presence of which is positive 

evidence that these genes are eukaryotic, and therefore encoded in cynipid 

nuclear genomes. The intron containing contig (Contig_69918-) is present in 

the cellulase phylogeny (figure 4.2) and is paired with a B. gibbera contig 

(Contig_122111). However, more introns confirmed in PCWDE genes are 

required to conclude that PCWDEs are a class of nuclear encoded genes; 

this is better explored with superior genome assemblies (see Chapter 5). 

Finding introns in horizontally transferred genes is concordant with the 

process of intron insertion observed for horizontally transferred PCWDEs of 

nematodes and a fungal-derived carotenoid in aphids (Blaxter 2007; Moran & 

Jarvik 2010; Mayer et al., 2011). Except in one case where a N. vitripennis 

transposase is present on the same contig as a PCWDE gene, the genomic 

contigs are too short to contain exons of genes of unambiguously 

hymenopteran origin up- or downstream of PCWDEs. Further, positive 

evidence for being encoded in the cynipid genomes are the InterProScan 

predicted eukaryotic signal peptides of cellulase, pectin lyase and 

polysaccharide lyase, although the rhamnogalacturonate lyases do not have 

this domain (figures 4.7-10).  

Finally, the codon usage analysis indicates a very strong eukaryotic 

codon bias for the PCWDE enzymes in comparison to those bacterial 

genomes containing genes with the greatest homology to cynipid PCWDEs. 

This differentiation between eukaryote and prokaryote codon usage is 

commonly observed (Gustaffson et al., 2004). In particular, arginine appears 

to have a strong effect on the PCA. The arginine codon ‘AGA’ clusters with 

eukaryote (Gustaffson et al., 2004) sequences, while an alternative arginine  

codon ‘CGC’ is close to Dickeya and Cellvibrio sequences.  

 

4.4.2 Gene expression indicates successful co-option of PCWDE genes  

 

Two cellulase genes are expressed highly throughout gall induction, but are 

not differentially expressed. Four pectin lyase genes are differentially 

expressed although at much lower overall levels than the cellulases. For the 
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larval stage, further experiments are required before functions can be 

assigned to these enzymes. Two possible functions are feeding or general 

re-modelling of host cells. Both could be true for different genes in the oak 

gall wasps if sub-functionalization of the PCWDEs has occurred; for 

example, some cellulases re-model host cells during induction, while others 

digest cellulose in the larval gut. These genes do appear to have integrated 

into the biology of the cynipids, one of Blaxter’s (2007) criteria for a 

successful horizontal gene transfer. The second criterion, longevity, is 

indicated by presence of PCWDEs in three cynipid tribes that last shared a 

common ancestor approximately 54 millions of years ago (Buffington et al., 

2012). To confirm this requires phylogenetic analysis of the PCWDEs with 

wider sampling of the Cynipidae (Chapter 5, further work). Such an analysis 

would also indicate whether PCWDEs are shared across all cynipid tribes. A 

hypothesis explaining widespread PCWDE genes in the Cynipidae is that 

their acquisition occurred during the evolution of gall induction in the 

Cynipidae. The phylogenetic differentiation of PCWDE genes into Cynipini, 

Pediaspini and Diplolepidini genomes does support an ancient presence of 

these genes in the Cynipidae before the splitting of these lineages from their 

most recent common ancestor.  
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4.5 Appendix 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.11. Phylogeny of rhamnogalacturonate lyase genes identified and passing alignment 
criteria B. gibbera = red, B. pallida = blue, D. spinosa = green, A. quercuscalicis = yellow, and P. 
aceris = fuchsia. Scale bar is substitutions per site and branches are labeled with approximate 
likelihood ratio test support values. B_pal_a = B. pallida contig_310874-, B_pal_b = B. pallida 

contig_270176-, D_spi_A = D. spinosa contig_58856 and, D_spi_B = D. spinosa contig_167541.  
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Figure 4.12. Phylogeny of pectinase genes including all  possible outgroup sequences identified and 
passing alignment criteria B. gibbera = red, B. pallida = blue, D. spinosa = green, A. quercuscalicis = 
yellow, P. aceris = fuchsia and outgroup sequences = black. Scale bar is substitutions per site and 

branches are labeled with approximate likelihood ratio test support values. 
 

Table 4.12. RSEM generated counts for each expressed B. pallida larval transcriptome PCWDE 
gene for each replicate. The two more highly expressed cellulases are in bold. 

Table 4.13. BLAST genome best hits for larvally expressed B. pallida PCWDE genes in the B. 
gibbera assembly.  
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Transcript Annotation 1 4 8 211 127 148 182 224 234 252 270C 281 

comp103141_c0 pectin lyase 4 3 2 6 0 0 0 0 0 0 0 0 

comp132692_c0 pectin lyase 2 1 1 4 0 1 0 0 0 0 0 0 

comp13836_c0 cellulase 207 60 70 613 462 439 1297 372 1650 302 562 2226 

comp14276_c0 pectin lyase 8 7 3 7 2 3 1 0 1 0 1 4 

comp14276_c1 pectin lyase 8 1 2 6 0 0 1 0 1 0 0 1 

comp18312_c0 pectin lyase 11 2 4 15 6 5 3 2 0 1 0 0 

comp20769_c0 pectin lyase 29 17 25 21 2 2 10 5 626 388 82 54 

comp20790_c0 pectin lyase 33 15 12 14 7 2 2 0 0 1 0 0 

comp258830_c0 pectin lyase 0 1 0 2 0 0 0 0 0 0 0 0 

comp27915_c0 cellulase 1133 857 671 1263 222 198 913 245 2450 527 33 2288 

comp282070_c0 pectin lyase 2 0 1 0 0 0 0 0 0 0 0 0 

comp326228_c0 cellulase 0 1 0 2 0 0 0 0 0 0 0 0 

comp57254_c0 cellulase 2 3 2 6 2 0 6 1 28 5 5 13 

comp59931_c0 pectin lyase 11 6 5 8 2 0 1 0 0 0 0 0 

comp98838_c0 Rhamnogalacturonate lyase 3 8 5 0 2 3 2 0 1 0 0 0 

comp100388_c0 pectin lyase 13 8 5 6 2 4 8 2 2 0 0 2 

comp136735_c0 endopolygalacturonase (GH28Pect-5) 0 0 0 0 0 0 0 0 0 0 14 0 

comp14239_c0 polysaccharide lyase family protein 4  45 30 30 36 27 30 46 19 381 212 19 212 

comp14831_c0 glycoside hydrolase family protein 48  0 0 0 0 0 0 0 0 0 0 21 0 

comp150589_c0 glycoside hydrolase family protein 48  0 0 0 0 0 0 0 0 0 0 10 0 

comp151243_c0 comp151243_c0 0 0 0 0 0 0 0 0 0 2 8 0 

comp198252_c0 pectin lyase 1 1 0 2 1 0 1 0 0 0 0 0 

comp213754_c0 endopolygalacturonase 0 0 0 0 0 0 0 0 0 0 7 0 

comp24519_c0 pectin lyase 30 5 10 6 8 4 10 0 1 1 0 4 

comp24519_c1 pectin lyase 6 2 6 4 7 2 7 0 1 1 0 1 
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comp258611_c0 comp151243_c0 0 0 0 0 0 0 0 0 0 0 3 0 

comp26878_c0 polysaccharide lyase family protein 4  51 38 32 37 20 18 22 7 1 3 2 9 

comp26878_c1 polysaccharide lyase family protein 4  10 8 8 11 0 7 0 1 1 0 0 0 

comp27190_c0 pectin lyase 34 15 14 13 41 116 263 56 143 18 3 331 

comp350819_c0 comp151243_c0 0 0 0 0 0 0 0 0 0 0 4 0 

comp397147_c0 pectin methylesterase 0 0 0 0 0 0 0 0 0 1 2 0 

comp53817_c0 pectin lyase 1 11 3 2 0 3 0 1 2 0 1 0 

comp93909_c0 glycoside hydrolase family protein 48  0 0 0 0 0 0 0 0 0 0 21 0 
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Transcript Genome tophit % 

identity 
length Misma

-tches 
Gaps Query start Query 

end 
Ref. Start Ref. End E-value Bit score Transcript top hit 

comp103141_c0 contig_455965 98.25 285 5 0 1 285 92 376 2.00E-137 491 pectin lyase 

comp132692_c0 contig_644178 95.3 319 15 0 33 351 3 321 2.00E-142 508 pectin lyase 

comp13836_c0 contig_118239 95.76 873 37 0 292 1164 1 873 0 1407 cellulase 

comp14276_c0 contig_372460 96.61 560 19 0 1 560 565 1124 0 924 pectin lyase 

comp14276_c1 contig_372460 94.76 496 25 1 1 496 93 587 0 774 pectin lyase 

comp18312_c0 contig_312349 97.45 589 15 0 268 856 643 55 0 994 pectin lyase 

comp20769_c0 contig_203617 96.77 433 14 0 340 772 434 2 0 719 pectin lyase 

comp20790_c0 contig_330331 96.65 626 21 0 189 814 1 626 0 1034 pectin lyase 

comp258830_c0 contig_330331 82.01 278 49 1 2 279 590 314 5.00E-72 273 pectin lyase 

comp27915_c0 contig_131985 95.91 1051 43 0 204 1254 6 1056 0 1701 pectin lyase 

comp282070_c0 contig_105368 99 200 2 0 2 201 216 17 4.00E-96 352 cellulase 

comp326228_c0 contig_229402 96.23 239 9 0 1 239 473 711 2.00E-107 390 cellulase 

comp57254_c0 contig_122111 96.82 942 29 1 88 1028 579 1520 0 1561 cellulase 

comp59931_c0 contig_330331 75.6 209 51 0 1 209 359 567 8.00E-34 147 pectin lyase 

comp98838_c0 contig_272997 91.67 540 19 2 23 560 1954 2469 0 787 Rhamnogalacturonate lyase 

comp100388_c0 contig_272997 93.28 1638 90 7 1 1625 98 1728 0 2444 polysaccharide lyase family protein 4  

comp14239_c0 contig_238739 96.08 1991 73 2 77 2067 61 2046 0 3234 polysaccharide lyase family protein 4  

comp198252_c0 contig_229203 92.02 351 28 0 1 351 351 1 2.00E-142 508 polysaccharide lyase family protein 4  

comp24519_c0 contig_36809 83.99 893 143 0 1 893 1033 1925 0 966 polysaccharide lyase family protein 4  

comp24519_c1 contig_166410 95.73 234 10 0 401 634 1 234 4.00E-103 378 polysaccharide lyase family protein 4  

comp26878_c0 contig_166411 96.52 804 28 0 179 982 1025 222 0 1324 polysaccharide lyase family protein 4  

comp26878_c1 contig_36809 82.07 463 83 0 4 466 1015 1477 3.00E-128 461 polysaccharide lyase family protein 4  

comp27190_c0 contig_184148 92.4 1302 53 1 507 1808 154 1409 0 1941 polysaccharide lyase family protein 4  

comp53817_c0 contig_454089 93.83 243 15 0 182 424 271 29 5.00E-101 370 polysaccharide lyase family protein 4  
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Chapter 5: Planned and proposed future work 
based on the results of this thesis 
 

 

 

In this short final chapter I propose future experiments to expand on the 

conclusions of this thesis. It is split into three sections concerning (5.1) 

genome wide multi-trophic phylogeography; (5.2) experiments to increase 

understanding of gall induction by cynipid gall wasps; and (5.3) horizontal 

gene transfer in cynipid genomes. 

 

5.1 Genome wide multi-trophic phylogeography of gall wasps, fig 

wasps and their parasitoids 

 

In chapter 2, I demonstrated that it is now possible to generate genome-level 

datasets for three individuals in non-model species to address population-

level questions. The dataset was capable of disentangling population splitting 

from geneflow using maximum likelihood methods over Pleistocene 

timescales.  

The bioinformatic and population genetic methods developed in this 

thesis, by Dr K. R. Lohse (University of Edinburgh) and I are being applied to 

a much larger project on two distinct hymenopteran gall systems, gall wasps 

and fig wasps. For this project I will build and help analyse the datasets. 

From each system several galler species and their parasitoid natural 

enemies will be sampled from different glacial refugia. For gall wasps and 

their parasitoids the Western Palaearctic will be sampled from the same 

eastern, central, and western refugia as for chapter 2. For fig wasps, which 

are also gall inducers, and their parasitoids, samples are to be collected in a 

series of separate latitudinal refugia of the Great Dividing Range, Australia. 

The results of this expanded analysis will be used to infer how species 

assemble temporally into the communities we observe.  

 There are several questions that will be addressed by this project. Do 

species that interact today show concordant phylogeographic histories, 



 

261 

implying sustained interactions? For example, do the parasitoids of B. pallida 

share the East to West via North Africa migration event discovered in chapter 

2? Or have communities been reshuffled by contrasting phylogeographic 

histories among component species? Do particular guilds or trophic levels 

experience contrasting levels of migration during divergence of populations in 

different glacial refugia? The answers to these questions are crucial for 

predicting the strength and direction of coevolution between gallers and their 

parasitoids. They have practical importance in ecology, as stable 

associations predict strong coevolution and high sensitivity of food webs to 

species gain/loss, while instability predicts diffuse coevolution and greater 

food web resilience (Memmott, 2009).  

 Illumina Hi-Seq sequencing of haploid males from a total of 20 species 

will provide the data for this project. In each system, groups of closely related 

species that can act as reciprocal out groups in analyses were selected. In 

the gall wasp system, five gall wasps - Andricus coriarius, A. kollari, A. 

quercustozae, Cynips quercus, C. disticha - and six of their most important 

parasitoids -Megastigmus dorsalis, M. stigmatizans  (family Torymidae), 

Eurytoma brunniventris, Sycophila biguttata (family: Eurytomidae), 

Mesopolobus amaenus and Mesopolobus tibialis (family: Pteromalidae). For 

the fig wasps, fig-specific Pleistodontes pollinating fig wasps and six 

parasitoids (a pair of Sycoscapter and Philotrypesis species associated with 

each fig) have been selected. Because of the possibility of cryptic taxa and 

sample misidentification identifications for gall parasitoids and all fig-

associates will be confirmed using multilocus DNA barcodes.  Each individual 

will be sequenced to a depth of ~6x coverage. Two individuals per refugium 

will be sequenced to check robustness of inferences as was done for B. 

pallida in chapter 2. The methodology of chapter 2 will be adapted to 

assemble the datasets. The bioinformatics criterion remains the same: triplet 

alignments of ingroup individuals plus the outgroup sequence. However, new 

ways of assembling the dataset will be explored to (a) produce more robust 

ortholog groupings and (b) increase parallelization to cope with the much 

greater data throughput. Such as exploring alternatives to the discontiguous 
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megablast (Altschul et al., 1997) reciprocal best hits (RBH) approach. 

Although RBH alternatives will need to work at the level of DNA as much of 

the datasets will consist of non-coding sequence. Automation of dataset 

generation stages through better optimization of scripting will aid 

parallelization of the bioinformatics. 

 

5.2 Proposed experiments to confirm and test candidate gene 

involvement in gall induction 

 

Before attempting further experiments validation of highly differentially 

expressed genes using reverse transcriptase quantitative PCR (rt-qPCR) in 

biological replicates will confirm the RNASeq results. Primers will be 

designed within exonic regions of transcripts tested and a set of control 

housekeeping genes for both plant and gall wasp genes. Rt-qPCR will be 

performed on four biological replicates to mirror the RNAseq experiment.  

RNAseq and rt-qPCR log fold changes can be plotted (with error bars) 

against one another and a correlation coefficient determined. A high 

correlation value and low log fold change values for housekeeping genes will 

validate the results. This analysis can be broadened to other gall wasp 

species for validated genes to test differential expression of candidate genes 

across the Cynipidae. 

 The RNAseq experiment also lacks controls in the form of plant and 

insect tissues at equivalent stages of development. Controls would have 

helped identify gall-specific expression and resulted in less (currently 

unknowable) errors in specifying new hypotheses. Although such 

experiments were planned a lack of resources prevented sequencing of 

figitid larvae for comparison of the gall wasp transcriptome and plant tissue to 

gall tissues. This will be partially rectified for plant tissue by our collaborators 

experiment discussed below. A figitid comparison would confirm if the 

chitinase gene expression pattern is unique to gall wasps. If figitids do have 

similar chitinase expression patterns an alternative explanation is breakdown 

of a chitin containing egg by larvae at hatching. Currently gall wasp eggs are 
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not known to contain chitin, however the eggs of the mosquito Aedes aegypti  

do (Moreira et al., 2007).  They identifiec chitinase activity by A. aegypti eggs 

and newly hatched larvae, although the chitinase itself was not identified 

(Moreira et al., 2007). Eggshell degrading chitinase activity would be 

consistent with the expression pattern and therefore needs to be addressed 

before further the experiments outlined below are attempted. In addition to an 

expression experiment on a non-galling outgroup, gall wasp eggs ovaries 

can be tested for chitin.  

A similar RNA sequencing experiment to that of chapter 3 is underway 

by collaborators of the Stone laboratory at the Chinese Academy of Sciences 

research station at Xishuangbanna Tropical Botanical Gardens (XTBG), 

China. They are sequencing early and growth stage gall tissue and control 

leaf bud tissue sampled from Dryocosmus cannoni (tribe: Cynipini) on 

tropical chestnuts (Castanopis spp.). The bud tissues will indicate normal 

developmental processes occurring in ungalled tissues. By comparing the 

results of their differential expression analysis with the results of chapter 

Chapter 3 orthologous candidates for gene expression can be identified. 

Addtionally, unique gall expression can be identified reducing the gene set 

on which to base further experiments. I hypothesise that gall wasp genes 

differentially expressed in the early stages in this experiment on B. pallida will 

be shared with D. cannoni. If this is the case previously unknown genes, with 

little functional annotations, dominate Cynipini tribe gall induction. 

Confirmation of differential gall wasp chitinase expression is also very 

important on the bases of the hypotheses specified in chapter 3.  

 The two sections below describe separate experiments that can 

indicate if the genes differentially expressed in early stage B. pallida are key 

actors in gall induction. Section 5.2.1 describes an in situ experiment and 

5.2.2 an in vivo experiment. 

 

5.2.1 RNA in situ hybridization of candidate genes and 

immunolocalisation of their proteins 
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Many B. pallida genes with expression patterns that potentially indicate a role 

in induction have no identifiable homologs. This makes inferences about their 

function impossible without further experiment. One route is to find where 

these proteins are expressed, and identify the sites at which they act, 

potentially in or on host cells. This is a test of gall wasp secreted proteins as 

a mechanism of manipulating the host during gall induction. If the hypothesis 

is true, the site of origin of these secreted proteins in the gall wasp is 

identifiable. There are two hypotheses for this: (1) the salivary glands or (2) 

the Malpighian tubules, found in the digestive tract that have 

endoreduplicated secretory cells in cynipid larvae (Harper et al., 2009).  

An experiment, to discern the origin of secretory proteins is possible 

with a combination of RNA in situ hybridization and immunodetection of 

proteins. Fluorescence in situ hybridization has already been performed on 

cynipid gall tissues to identify BCCP in nutritive cells surrounding the larval 

chamber (Harper et al., 2004). However, unlike Harper et al. (2004) staining 

would be of larval RNA and not host DNA. RNA in situ hybridization can 

show where candidate genes are expressed in the larvae using confocal 

microscopy of cross sections of gall tissues as in Harper et al. (2004). 

Subsequently, immunodetection of candidate proteins using antibodies 

raised against them can then show if they act directly on the host after 

secretion from the larvae. This technique has been applied successfully in 

root knot nematodes to identify nematode proteins aggregating in the 

apoplasm (the diffusional space outside the plasma membrane of plant cells) 

and host nuclei (Vieira et al., 2010; Jaouannet et al., 2012). Good candidate 

genes for this experiment are the differentially expressed gall wasp 

chitinases. If they do interact with host cell wall-bound arabinogalactan 

proteins as discussed in chapter 3, chitinases are expected to localize to host 

cell walls or extracellular space (Poon et al., 2012). Antibody labelling of the 

candidate arabinogalactan protein (AGP) makes for an even more sensitive 

test of interaction. In this case, labelled chitinases could be observed 

interacting with labelled AGPs. Confirming an interaction between gall wasp 

chitinases and AGPs is a good pre-condition for the in vitro experiment 
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described below. For those highly differentially expressed genes without 

functional annotations, this experiment will also show where they may act on 

host tissues.  

 

5.2.2 An in vitro experiment to test the effect of AGP and chitinase on 

somatic embryogenesis in Quercus robur 

 

In chapter 3, I proposed that Gall wasp chitinases modify host 

arabinogalactan proteins (AGP) resulting in somatic embryogenesis-like 

dedifferentiation and cell division; this dedifferentiation of host cells is a key 

step in successful development of an early gall. Poon et al., (2012) 

demonstrated that a cotton arabinogalactan protein (AGP) with a phytocyanin 

domain, similar to the Q. robur AGP early nodulation factor identified in 

chapter 3, promotes somatic embryogenesis. Chitinases also increase 

somatic embryogenesis in plant tissue by cleaving AGP (van Hengel et al., 

2001; van Hengel et al., 2002). The high expression of an arabinogalactan in 

oak tissue and chitinase by gall wasp larvae in early stage galls led to the 

hypothesis that they interact to promote somatic embryogenesis-like 

processes in gall tissues. Using the bioassays developed by Poon et al. 

(2012) as a basis, I propose an experiment to test this.  

Q. robur hypocotyl explants (tissues isolated from the stem of a 

germinating seedling and) (Cuenca et al., 1999) can be grown on various 

culture medias and the rates of embryogenic calli  (parenchyma arising from 

cultured explants) development compared. The effect of different culture 

medias on the rate of somatic embryogenesis can be tested. A possible set 

of culture medias are AGPs extracted from early gall tissue, AGPs extracted 

from late gall tissue, developing buds, embryogenic calli, and non-

embryogenic tissue. Replicates of each comparison with AGP pre-treated 

with gall wasp chitinases and subsequently re-precipitated, would assess the 

effect of gall wasp chitinases on inducing somatic embryogenesis-like 

processes (van Hengel et al., 2001). The hypothesis predicts that growth on 

media containing embryonic AGPs (isolated from early gall, developing bud 
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or embryogenic calli) will be significantly enhanced relative to controls and 

non-embryogenic tissue. This effect should be further enhanced by treatment 

with early stage cynipid larval chitinases.  

Each bioassay would need to be run enough times (n = 10, Poon et 

al., 2012) to allow adequate statistical power for the null hypotheses to be 

rejected. The results are analysable using odds ratios: the odds of an explant 

line developing embryogenic calli on each tested medium over the odds of 

explant line development on control medium (Poon et al., 2012).  

Further in vitro experiments could involve RNA interference (RNAi) 

expression suppression of gall wasp candidate mRNAs. This however is 

technically challenging in the gall system. Rose gallers of Diplolepis are good 

candidates as galls have been induced in controlled conditions on roses 

(Harper et al., 2009). RNAi transformed rose callus tissue would act as a 

substrate for induction. Comparing the rate of induction between RNAi 

transformed and untransformed calli would indicate if the candidate gene is 

essential to gall induction. 

 

5.3 Further analysis of plant cell wall degrading enzymes (PCWDEs) 

and their origin 

 

To confirm the presence of PCWDE genes in the gall wasp genomes 

requires very long contiguous sequences (>20 000bp) to identify exons of 

hymenopteran origin, and rule out other possible origins of PCWDE genes. 

This can be achieved by deeper shotgun sequencing of cynipid genomes 

and better genome assemblies, as is occurring for the cynipids chosen for 

multi-trophic genome wide phylogeography (see section 5.1). Alternatively, a 

genomic library, bacterial artificial chromosome (BAC), of gall wasp genomes 

approach can be used. Clones containing PCWDE genes can be identified 

by library screening and sequenced by high throughput technology. For a 

bacterial artificial chromosome (BAC) the clone insert size is up to 350 

kilobases. PCWDE gene containing BACS can be sequenced, assembled 

and any hymenopteran genes present identified. This approach would also 
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confirm if a cryptic prokaryote was responsible for the PCWDEs in gall wasp 

genomes and transcriptomes. If PCWDE genes are as present within the gall 

was genome, and hence horizontally transferred into it, the BAC sequencing 

approach can be replicated in another gall wasp species. This tests for 

synteny among orthologous PCWDEs. Synteny predicts that orthologous 

genes are found up- and downstream of PCWDE orthologs in the genomes 

of the compared species. 

Advances in sequencing and related technologies may also aid 

confirmation by presence of unambiguous hymenopteran genes and PCWDE 

genes on contiguous sequence. Pacific Biosciences technology can produce 

reads up to 10 kilobases (kb) with high error rates, or better quality but 

shorter reads of approximately 2kb (Shin et al., 2013). With further advances 

in length and quality of this technology, identifying multiple exons along a 

single read without the need for assembly should be possible. Optical 

mapping is another alternative for confirmation of PCWDE genes in gall wasp 

genomes. For optical mapping of a genome, a single molecule of DNA is 

stretched onto a slide and digested with restriction enzymes (Dimalanta et 

al., 2004). Each piece of DNA along the slide is fluorescently labelled and its 

size determined using the intensity of fluorescence (Dimalanta et al., 2004). 

Repeating this across thousands of molecules, allows a genome wide 

consensus optical map to be created. Contigs can be mapped to this 

consensus optical map; PCWDE containing contigs that do so are confirmed 

as present in the genome.  

 Further cynipid transcriptomes are being sequenced as part of the 

1KITE project (http://www.1kite.org/) to sequence a thousand insect 

transcriptomes, as is a partial replication of the RNA sequencing experiment 

(chapter 3) in Dryocosmus cannoni (tribe: Cynipini) on tropical chestnuts 

(Castanopis spp). Additionally the deeper sequencing of cynipid genomes 

(section 5.1) will result in better assemblies, and therefore PCWDE gene-

containing contigs of greater average length. This will demonstrate if the 

Cynipini do have higher copy number of particular PCWDEs than found in 

other gall wasp tribes. It wi ll also provide a greater number of sequences for 

http://www.1kite.org/
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deeper phylogenetic analyses of gall wasp PCWDEs. Although, sampling of 

gall wasp genomes from the herb galling Aylacini tribe is needed for better 

representation of cynipid diversity.   

Phylogenetic analysis of a broader sampling of PCWDE genes can 

confirm if PCWDEs in gall wasp genomes are ancient, for the second 

criterion of Blaxter’s (2007) requirements for identifying a successful 

horizontal gene transfer. Hypotheses about the evolution of PCWDEs within 

the Cynipidae can be tested. For example, have the PCWDEs evolved into 

gene families? Have genes evolved for specific roles in gall wasps? More 

specifically, are larvally expressed cellulases of B. pallida and D. cannoni 

(assuming cellulases are present) orthologs? If true, larval cellulases should 

cluster together across species in a phylogeny and adult (venom gland) 

cellulases will form distinct clusters. Furthermore, if the new Cynipini genome 

assemblies also have lots of PCWDEs and large genome assembly sizes 

genomic duplication(s) in the Cynipini should be investigated. To test this, the 

number of genes in gene families of hymenopteran origin should be 

compared to the equivalent number in the D. spinosa rose gall wasp 

assembly.  

 Finally, several expressed PCWDEs were identified in chapter 4 (table 

4.7) that were not identified in either the B. pallida or B. gibbera genome 

assemblies. Several of these PCWDEs are distinct from those confirmed as 

present in the B. pallida assembly and other genetic resources. They encode 

glycoside hydrolase family 48 proteins, endopolygalacturonase, and pectin 

methylesterase. One explanation is that the two assemblies are incomplete, 

however the same transcripts are missing in both species. This is explainable 

if the genes encoding these transcripts are located in difficult to sequence 

regions for Illumina technology. An alternative hypothesis is that these 

transcripts derive from other inhabitants of the gall, which are most 

commonly parasitoids or cynipid inquilines. These candidates for expressing 

cryptic PCWDEs may also have evolved, or acquired by horizontal gene 

transfer, plant cell wall degrading enzymes, as the true extent of HGT in the 

Arthropoda remains unknown. This is testable by searching the parasitoid 
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genomes sequenced in section 5.1 above for PCWDE genes. For the 

inquilines, a tribe Synergini species, Synergus umbraculus, is also being 

genome sequenced (G. Stone, personal communication). The PCWDE 

complement of a cynipid inquiline can therefore be compared to gall inducers 

for losses or gains of particular PCWDEs.  
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