
Relying on critical articulators to estimate vocal tract spectra  
in an articulatory-acoustic database 

Daniel Felps1, Christian Geng2, Michael Berger3, Korin Richmond3, and Ricardo Gutierrez-Osuna1 

1 Department of Computer Science and Engineering, Texas A&M University 
2 Department of Linguistics and English Language, University of Edinburgh 

3 The Centre for Speech Technology Research, University of Edinburgh 
dlfelps@cse.tamu.edu, cgeng@ling.ed.ac.uk, m.a.berger@sms.ed.ac.uk,  

korin@cstr.ed.ac.uk, rgutier@cse.tamu.edu  
 

Abstract 
We present a new phone-dependent feature weighting scheme 
that can be used to map articulatory configurations (e.g. EMA) 
onto vocal tract spectra (e.g. MFCC) through table lookup. 
The approach consists of assigning feature weights according 
to a feature�’s ability to predict the acoustic distance between 
frames. Since an articulator�’s predictive accuracy is phone-
dependent (e.g., lip location is a better predictor for bilabial 
sounds than for palatal sounds), a unique weight vector is 
found for each phone. Inspection of the weights reveals a 
correspondence with the expected critical articulators for 
many phones. The proposed method reduces overall cepstral 
error by 6% when compared to a uniform weighting scheme. 
Vowels show the greatest benefit, though improvements occur 
for 80% of the tested phones. 
Index Terms: speech production, speech synthesis 

1. Introduction 
Approaches for articulatory speech synthesis can be broadly 
divided into methods that rely on physiological models of the 
vocal tract [1-2], and methods that model the articulatory-
acoustic relationship through statistical learning [3-6]. 
Physiologically-derived methods are appealing from a 
theoretical perspective and provide full control of the 
synthesis process, but generally require a large number of 
parameters and rules. Statistical methods sidestep these issues 
through machine learning but rely on the assumption that 
frames with similar articulatory features also have similar 
acoustic features. This assumption is valid if the vocal tract is 
fully specified [7], but may not hold if only a few articulatory 
points are captured, as is the case with electromagnetic 
articulography (EMA). Recent work by Qin and Carreira-
Perpiñán [8], however, shows that the tongue contour can be 
fully recovered from as few as three EMA points.  
Several statistical methods have been proposed to learn the 
articulatory-acoustic relationship from data, including 
codebook methods [3], hidden Markov models [4], Gaussian 
mixture models [5], and neural networks [6]. Among these, 
the codebook method of Kaburagi and Honda [3] can operate 
directly at a sub-phone level (i.e. 30-ms frame) without the 
need for model training (e.g. HMM). The method finds the 
nearest neighbors of an unknown articulatory configuration 
and estimates the acoustic output using a weighted sum of the 
neighbors�’ corresponding acoustic features (i.e., in a table-
lookup fashion). However, neighbors are found using the 
Euclidean distance, which assumes that all articulators are 
equally important regardless of the phone being produced.  
In this paper, we present an extension of Kaburagi and 
Honda�’s method that weights articulatory features according 
to their ability to predict the desired acoustic output. Our 

method is inspired by the linguistic concept of critical 
articulators [9], articulatory features that are essential to the 
production of a phone, e.g., lip location is critical for 
production of bilabial sounds but not for palatal sounds. Our 
approach borrows a technique from unit-selection 
concatenative speech synthesis, where feature weights are 
trained to capture the perceptual suitability of potential units 
[10].  
The paper is organized as follows. Section 2 reviews the 
baseline articulatory method of Kaburagi and Honda [3] and 
describes our proposed training procedure to optimize 
articulator weights. Section 3 describes the articulatory 
database that was used to validate our approach. Section 4 
presents experimental results, including a comparison of 
improvements over the baseline method on a phone-by-phone 
basis, and analyzes whether or not the resulting articulator 
weights are consistent with known critical articulators. 

2. Methods 

2.1. Baseline articulatory synthesizer 

Consider a database containing synchronized recordings of 
articulatory  and acoustic frames 

, where xi is an L-dimensional vector containing 
articulatory positions from EMA recordings and yi is an N-
dimensional vector containing the corresponding acoustic 
features (i.e., MFCCs). In data-driven articulatory synthesis, 
one seeks to estimate the acoustic features  for a novel 
articulatory feature vector  by selecting and combining 
suitable units from the database . Following [3], we 
constrain the search to pairs  with the same phonetic 
identity as the phone to be synthesized, which is assumed to 
be known; these pairs compose the candidate set. Assuming 
that the data has been autoscaled to , the squared 
distance from  to each of the candidates becomes: 

 (1) 

from which we select the  closest neighbors  and 
, . The estimate  is finally found through a 

weighted interpolation of the  neighbors: 

 (2) 

where  subject to the constraint . The 
process is illustrated in Figure 1. 
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2.2. Context-dependent feature weights 

As discussed earlier, and as shown in (1), the baseline 
synthesizer assumes that all articulators are equally important 
regardless of the phone being produced. Instead, we propose 
that the search for nearest-neighbor frames should be weighted 
according to the relevance of each articulator, which is phone-
dependent. This can be achieved by introducing a weighted 
distance measure:  

 (3) 

where  and  is the weight of the 
 feature of the  phone. Our goal is to find a weight 

vector  for each phone such that the nearest neighbors of  
(in articulatory space) are acoustically similar to the acoustic 
target . To find these weights, we adapt an approach 
commonly used for training unit concatenation systems [10]. 
The approach works on 30-ms acoustic units as follows: 
 

1. For each unit of phone k in the database, perform steps 
a-c. 

a. Calculate the cepstral distance between this instance 
and all other units of phone k in the database. 

b. Identify the n-best matches to this instance (n=20). 
c. For each articulatory feature, compute its distance to 

each of the n-best matches 
2. Collect the n-best cepstral distances and the 

corresponding articulatory distances from all instances 
of phone k in the database. 

3. Use non-negative least squares (NNLS)1 [11] to predict 
cepstral distance as a linear combination of the 
individual articulatory distances. Normalize the resulting 
weights  so they sum to one. 

4. Repeat steps 1-3 for each phone in the phone set. 
 
Intuitively, this process assigns higher weights to features that 
are good predictors of the cepstral distance between two units. 
In other words, if the distance for an individual articulatory 
feature is small when the cepstral distance is small and large 
when the cepstral distance is large, then one may assume that 
the articulator is a good predictor and should receive a higher 
weight. After unique weights have been found for each phone, 
equation (3) can then be used to find the nearest neighbors at 
synthesis time. To avoid overfitting, we apply a regularization 
term to the weight matrix as follows: 

 (4) 

where  is the weight vector found through NNLS, 
 is the uniform weighting of the baseline method, and  is 

the regularization parameter ( ). Thus, the 
regularized weights are equivalent to the baseline method 
when  and equivalent to the NNLS solution for . 

3. Experiment 
We tested the articulatory synthesizer on a corpus of EMA 
recordings collected at the Centre for Speech Technology 
Research, University of Edinburgh in Fall 2009 using a 
Carstens AG500 3D-articulograph. The recording contains the 
                                                                 
 
1 Unlike [10], who use ordinary least squares, we restrict the 
solution to have only positive weights so that the squared 
distance calculation in (3) remains positive. We also add a 
column of ones to the articulatory feature matrix to allow for 
an offset, which results in a better overall fit. We discard the 
weight corresponding to this column before normalization. 

position and orientation of ten pellets�— four were used to 
cancel head motion and provide a frame of reference, while 
the other six were attached to capture articulatory movements 
(upper lip, lower lip, jaw, tongue tip, tongue mid, and tongue 
back); the front-most tongue sensor (TT) was positioned 1cm 
behind the actual tongue tip, the rearmost sensor (TB) as far 
back as possible without creating discomfort for the 
participant, and the third sensor (TM) equidistant from TT and 
TB [12]. Audio data were simultaneously captured at a 
sampling rate of 32 kHz with an AKG CK98 shotgun 
microphone. A native speaker of American English (mab) was 
recorded producing 460 utterances, which were subsequently 
partitioned into 200 utterances for weight training, 230 
utterances for candidate selection, and 30 utterances for 
testing. The database pairs  were created by 
downsampling the articulatory channels from 200 Hz to 100 
Hz and performing a 25th order Mel-cepstral analysis of the 
acoustic recordings; the latter were obtained with SPTK�’s 
mcep command [13] (16 kHz, 10-ms frame rate, 20-ms 
Blackman window). We obtained phone boundaries via 
forced-alignment using the HVite word recognizer in HTK 
[14] and acoustic models trained on 284 North American 
speakers [15] coupled with the CMU pronunciation dictionary 
[16]. The acoustic models contained approximately 7,400 tied-
state triphones, 16 Gaussian components per state (32 for 
silence), and were trained using the MFCC_0_D_A_Z 
acoustic features (i.e., 12 cepstra plus the 0th cepstra, delta 
and delta-delta, normalized using cepstral mean subtraction). 

 
Figure 1 Overview of the baseline articulatory-to-
acoustic mapping method (reprinted from [17]).  

4. Results 
The regularization model was evaluated in terms of cepstral 
and articulatory root mean squared error (RMSE) by varying 

 from 0 to 1 in increments of 0.1. Results of the predicted 
cepstral features are shown in Figure 2. The NNLS solution 
reduces cepstral error when compared to the baseline method. 
Though the reduction is modest at this level (about 5% 
compared to the baseline error), a paired, two-tailed t-test 
reveals this difference between test utterances to be 
statistically significant t(29)=7.54, p<0.001. Further 
reductions in RMSE are achieved by the regularized solution 
with ( ); in this case, cepstral error is reduced by 6% 
when compared to the baseline; this reduction was also 
significant t(29)=10.58, p<0.001. These results are somewhat 
surprising when considering that, on average, half of the 
articulatory features are assigned a zero weight by the NNLS 
procedure (see Figure 5).  
Figure 3 shows the relative improvement in acoustic 
predictions (measured as RMSE of MFCCs) achieved by the 
regularized model ( ) when compared to the baseline. 
With the exception of a few stops and fricatives, most phones 
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show an improvement, particularly vowels (monopthongs and 
diphthongs). Oral stops are inherently difficult to synthesize 
because they are created by a sudden release of pressure (a 
small articulatory change yielding a large acoustic change). 
Among the stops, [p] and [b] show significant gains compared 
to [g] and [k]. This result is consistent with indications that the 
relevant critical articulator in [g] and [k] (dorsal constriction) 
is more contextually variable than that in [p] and [b] (bilabial 
constriction); see [18]. 

 
Figure 2 Cepstral error as a function of the 
regularization parameter ( : baseline; : 
NNLS.) Overall error is reduced by 6% for . 

We also analyzed performance in terms of articulatory 
prediction error, measured as: 

 (5) 

where  is the L2 norm. The weighted articulatory estimate, 
, is created by replacing  with  in equation (2) as:  

 (6) 

Results in Figure 4 show that the articulatory errors increase 
monotonically with the regularization term, reaching a 
maximum at the NNLS solution. This is to be expected since 
the articulatory error in equation (5) measures the overall 
distance (i.e. all features are equally important), whereas the 
NNLS solution measures a weighted distance. Interestingly, 
the NNLS solution increases articulatory error with respect to 
the baseline by 41% while reducing cepstral error by 5%; 
likewise, the regularized solution increases articulatory errors 
by 16% while reducing cepstral error by 6%. These results 
indicate that the features incurring an increase in articulatory 
error are inconsequential to production.  
Figure 5 shows the full set of weights per phone, as obtained 
through NNLS. Four phones ([f], [m], [p], and [n]) 
demonstrated weight values in excess of 0.7, a significantly 
large value considering that the weights are normalized. Three 
of these ([f], [m], and [p]) received a large weight for the 
lower lip which, considering that these are bilabial or 
labiodental phones, indicates that the weights are consistent 
with known critical articulatory features. A fourth phone, [n], 
received a tongue tip weight of 0.77. This phone is created by 
closing the oral cavity with the tip of the tongue at the alveolar 
ridge to direct sound through the nasal cavity. Averaging 
weights across vowels reveals the largest weight to be TD-y, 
which corresponds to one of the most important vowel 
descriptors�—height. Our results, however, underplay the role 
of tongue and lip x-positions, which are predictive of backness 

and lip rounding (the other two major vowel descriptors). 
These results may be explained by the fact that the place of 
articulation for vowel phones is not as well-defined as for 
consonants [18]. Alternatively, inconsistencies between 
articulator weights and known critical articulators may be 
indicative of strong non-linearities in the articulator-acoustic 
relationship for specific phones, which cannot be captured by 
our linear weighting scheme. Overall, the results in Figure 5 
indicate that the vertical displacement of the lower lip and 
tongue dorsum are the most reliable estimators of acoustic 
error.  
 

 
Figure 3. Relative improvement in acoustic RMSE 
achieved by the regularized solution  on a 
phone-by-phone basis. This graph was created by 
subtracting the cepstral error from the baseline 
cepstral error; thus, a positive value represents a 
reduction in error. 

5. Conclusion 
We have proposed a phone-dependent weighting scheme for 
data-driven articulatory synthesis that reduces cepstral errors 
by 6% when compared to a baseline articulatory synthesizer 
[3]. The proposed method may further benefit by including 
acoustically derived features (e.g. pitch and loudness) to 
complement information from articulatory position. In a 
preliminary experiment, we found that loudness regularly 
received a significant weight value across all phones (results 
not shown to retain consistency with [3]). Toda et al. [5] have 
shown that including articulatory velocity and acceleration 
improves the articulatory-to-acoustic mapping, so it is likely 
that dynamic features will improve our results for some 
transient sounds (e.g. stops). It may also be beneficial to 
transform EMA data into derived measures that capture 
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known linguistic relevance and anatomical constraints. As an 
example, articulatory phonology describes the basic units of 
production as collaborative articulatory gestures, which are 
specified in terms of tract variables rather than individual 
articulators [19 , 20-21]. For instance, the tract variable �“lip 
protrusion�” is affected by the position of the upper and lower 
lips as well as the jaw.  
This work has focused on optimizing articulator weights to 
improve the accuracy of a data-driven articulatory synthesizer. 
At the time of this writing, we have completed integration of 
the proposed method with a mel log spectral approximation 
synthesis filter [13]; perceptual evaluation of synthesized 
utterances is forthcoming. 

 
Figure 4 Overall articulatory error increases 
monotonically with the regularization term.  

 
Figure 5 Phone-dependent feature weights resulting 
from the NNLS training procedure in Section 2.2. The 
most consistently weighted features are the y-values 
for lower lip, tongue tip, and tongue dorsum.  
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