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Abstract 

The main aim of this thesis is the development of methods for analysing data 

from selection experiments to make inferences about the genetic control of the 

selected trait. A series of methods for data analysis are developed and applied 

to both simulated and experimental datasets under infinitesimal (polygenic) 

genetic models, discrete locus models and mixed inheritance models (which are a 

combination of polygenic and discrete locus models). The experimental dataset is 

from a replicated selection experiment on mice in which an F 2  population formed 

from an inbred cross was divergently selected on body weight for 20 generations. 

The experimental data are initially analysed assuming the infinitesimal model 

using a Derivative Free Restricted Maximum Likelihood package (Meyer) to 

produce estimates of genetic parameters. An extension to the package is then 

developed to allow the variance components to change continuously over time, in 

effect regressing the variance components on generation number. This method 

allow for changes to variance components over and above what would be predicted 

from the infinitesimal model, thereby detecting deviations from the model. When 

applied to simulated data the method detects no change in additive genetic 

variance when a polygenic model with a large number of genes (16384) are 

simulated, but detects significant decreases in the additive variance, as expected, 

when a smaller number (32) are used. Analysis of the experimental data indicates 

that the additive and environmental variance components increase over the course 

of the experiment, significantly so in the Low selected lines. Overall there is an 

estimated increase in phenotypic variance of 56% in the Low lines and 14% in the 
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High lines. This increase in variance indicates the presence of non-additive effects 

within and/or between loci. The exact cause of the observed increase is far from 

clear, but various genetic models which could give such results are discussed. 

Two methods are then developed to analyse multi-generation datasets where 

there is both marker and trait information available throughout the pedigree. The 

aims of the analyses are to provide estimates of the effects and map positions of 

putative quantitative trait loci (QTL) linked to the markers. Standard maximum 

likelihood or regression based mapping techniques are not suitable for datasets 

of this sort because the calculation of the likelihood becomes intractable. The 

methods are again applied to both simulated datasets and the experimental 

dataset, in which information on two coat colour markers was available for all 

animals in the pedigree. The coat colour markers both show directional changes 

in frequency under selection for body weight, indicating linkage to QTL affecting 

the trait. The first, simpler, method uses the decay of the associated effect of a 

marker over time to infer the effect and map distance of a QTL linked to that 

marker. The second method makes more use of the available data; the data are 

analysed using a Gibbs sampling based method in which a mixed inheritance 

model is fitted to the data. The method produces estimates of QTL effect and 

map position relative to a number of linked markers, polygenic additive variance, 

environmental variance, fixed effects and polygenic breeding values. The analysis 

of the experimental dataset indicates a QTL linked to the coat colour gene dilute 

with an estimated additive effect of O.4g ( 0.2 phenotypic standard deviations) 

and a recombination frequency between the QTL and dilute of 12%. The method 

has potential for general QTL mapping with complex pedigrees. 
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Chapter 1 

Introduction 

A trait which is genetically determined to some degree has contributions from 

the individual's genotype and its environment which interact to produce the 

individual's phenotype. Genetic analysis of such a trait typically relies on inferring 

the genetic contribution from an individual's genotype towards its phenotype, and 

to do so requires a model of the genetic mechanisms controlling the trait. The 

simplest model would be for a trait to be controlled by a single gene, and for 

some situations this model appears to be correct as it fits the observations well. 

A well known set of examples of such single gene traits are the traits that Mendel 

studied in peas where plants could be unambiguously assigned into a series of 

discrete categories such as being tall or short or having round or wrinkled seeds. 

Many traits of interest, however, are not so amenable to analysis, being more 

or less continuous in nature. A genetic model for these traits will necessarily be 

more complex than for the simple traits studied by Mendel. The main assumption 

underlying quantitative genetics is that continuous traits are still controlled by 

genes in the same way as simpler traits, the difference being that several genes 

act together to control continuous traits. As the genetic models for quantitative 

traits are more complex, analysis of such traits is more difficult than the analysis 

of simple traits controlled by single genes. 

There are two approaches to modelling the genetics of quantitative traits. One 
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is to treat the genes controlling a trait statistically, considering the properties of 

the group of genes as a whole. The other approach is to explicitly model the 

properties of each individual gene controlling a trait. The two approaches require 

very different techniques and are generally applied to different types of problems. 

For general quantitative trait analysis the first approach, modelling the behaviour 

of all genes statistically, is the method normally used. There are two main reasons 

for this. It is much easier to model genes as a group rather than separately, 

and the distribution of individual gene effects is not known, making accurate 

modelling impossible. There are several drawbacks to this approach, however. 

The many simplifications and assumptions that are necessary to make in order to 

model the genes as a group can lead to substantial deviations between predictions 

made from the model and observations from the real world. Another drawback is 

that the treatment of all genes together makes it difficult to make any inferences 

about the effects of individual genes. Modelling genes individually, however, is 

not automatically a better approach; it is very much more difficult and typically 

cannot be done analytically for more than a couple of genes. Furthermore, to 

model genes individually requires knowledge of the distribution of gene effects 

which is not known, although work on the distribution of mutation effects may 

provide some information on this problem (Caballero and Keightley, 1994). For 

these reasons, studies using discrete gene models have typically been restricted to 

theoretical situations. 

Several methods are presented in this thesis for analysing quantitative data 

in such a way as to allow inferences to be made about the genetic control of a 

quantitative trait. The first method is the analysis of datasets using the statistical 

approach to model the genes, and to detect and estimate deviations from the 

model. The approach presented in this thesis was to estimate any changes in 

variance under selection. These realized estimates of the changes in variance 

could be compared against the predicted changes under the statistical model. 

The nature of any deviations provides information about how the model differs 

from the 'real world'. The second approach is to explicitly estimate the effects 
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of some of the genes controlling the trait. One way to do so is to assume that 

the discrete loci considered contribute all of the genetic variance of the trait. 

Alternatively a hybrid between the group and discrete locus models can be used. 

In these 'mixed inheritance' models the genetic variance is assumed to derive from 

two sources, a number of discrete loci which are modelled individually and a large 

number of polygenic loci, which are modelled together. This allows the explicit 

estimation of the effects of some of the loci with large effects on the trait, while 

accounting for the remainder of the loci en masse. Using this approach for data 

analysis presents several problems, mainly because the calculation of the exact 

likelihood of such models is often intractable. Gibbs sampling is a Markov Chain 

Monte Carlo based technique which can be used for data analysis under mixed 

inheritance models, and a technique for doing so is presented in this thesis. 

The methods developed are applied to the analysis of simulated datasets and 

an experimental dataset. The experimental dataset is from a replicated selection 

experiment on mice, the X Lines, in which an F 2  population was formed by 

crossing two inbred strains. The F 2  was split into 13 replicate lines, 6 of which were 

selected for high body weight and 6 for low body weight, and 1 was maintained as 

an unselected control. Twenty generations of within family selection were carried 

out, with each animal was recorded for both 6 week body weight and coat colour. 

There were two coat colour markers segregating in the F 2 , brown and dilute, which 

could be independently scored. 

The genetic model most commonly used in quantitative genetics is the in-

finitesimal model, in which the genetic variance is assumed to derive from a 

very large number of unlinked additive loci, which are treated together. A brief 

overview of the infinitesimal model, and how it can be extended to incorporate 

individual gene effects, is given in Chapter 2. Chapter 3 is an introduction to 

Gibbs sampling and its uses for genetic analysis. In Chapter 4, a description of 

the mouse lines used for the X Lines selection experiment is presented. The X 

Lines experiment forms the basis for much of the analysis described in this the-

sis. Also described are the genetic models used and the main computer programs 
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written for the analyses performed in the thesis. Chapter 5 presents the initial 

quantitative analysis of the X Lines selection experiment. The responses of body 

weight, litter size and sexual dimorphism to selection on body weight were de-

scribed and, estimates of variance components for 6-week weight were calculated. 

Chapter 6 describes a method for estimating changes of variance under selection 

using restricted maximum likelihood (REML), and its application to the analysis 

of the X Lines. A method for estimating the effects and positions of linked QTL 

fitting mixed inheritance models using Gibbs sampling is presented in Chapter 

7. The method is illustrated by analysing several simulated datasets. Chapter 8 

describes an analysis of the X Lines in order to obtain estimates of the effects and 

positions of the QTL linked to the coat colour loci brown and dilute using a sim-

ple approximate regression method as well as the Gibbs sampling based method 

presented in Chapter 7. Finally, a general discussion and conclusions arising from 

the thesis are presented in Chapter 9. 
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Chapter 2 

The Infinitesimal Model 

2.1 Introduction 

In early experiments on quantitative characters, attempts were made to resolve 

the apparent contradiction between the particulate nkture of Mendelian theory 

and the 'blending' inheritance apparently shown by quantitative traits (Emerson, 

1910) and this lead to the idea that quantitative traits were controlled by a 

large number of Mendelian 'factors' producing a quasi-continuous distribution 

of phenotypes from a series of discrete genotypes. The formulations of models 

showing how quantitative traits could arise from multiple factors led to the 

development of the infinitesimal model (Fisher, 1918), which has now become 

the standard genetic model for quantitative traits. With the infinitesimal model 

a quantitative trait is assumed to be influenced by an infinite number of unlinked 

loci, each with an infinitely small additive effect on the trait. The genetic 

contribution to the trait, G, is produced by summing the contributions of each 

locus; producing a Gaussian distribution of genotypic values when the number 

of loci are infinite. The Gaussian distribution of G has advantages for statistical 

analysis under the infinitesimal model; this fact has contributed a great deal to 

the predominance of the infinitesimal model in quantitative analysis. Changing 

the infinitesimal model to make it more realistic often results in a large increase 
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in the mathematical complexity of analyses. 

2.2 Detection of deviations from the 

infinitesimal model 

It is important to be able to test any model in practice. The infinitesimal model 

can be used to make many predictions which should be tested in biological systems. 

If there is a divergence between what is observed in practice and the predictions 

from the infinitesimal model, then information on how the model failed can give 

clues about the underlying genetic basis of the trait being studied. An important 

source of information on the performance of the infinitesimal model in practice 

can be obtained from artificial selection experiments. 

Selection experiments have been used for much of this century by researchers 

as a means of investigating responses and for estimating genetic parameters (Hill 

and Caballero, 1992). Early selection experiments were designed to investigate 

whether large, permanent changes to quantitative traits could be made by artificial 

selection (e.g., Goodale, 1938; MacArthur, 1944a), and to check the validity of 

quantitative genetic theory by comparing the observed selection responses against 

those predicted by theory (Falconer, 1953). The analysis of long-term selection 

experiments can also be used to make inferences on the nature of the genetics 

underlying a quantitative trait. This last point is of great importance both for 

theoretical understanding of the genetic control of quantitative traits, and for 

practical concerns about the best methods for improving commercially important 

traits in agriculture (Roberts, 1965). Even though the details about the nature of 

the genes controlling a trait could well differ between species, the general methods 

for uncovering the control of quantitative characters will be likely to be applicable 

across species. 

Selection experiments can act as checks of quantitative genetic theory in 

several ways. Genetic parameters can generally be estimated using several 
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different methods, for example heritability can be estimated from the covariance 

of collateral relatives, offspring-parent regressions and the response to selection. 

The different estimates should agree if the infinitesimal model of a large number 

of genes of equal effect is correct. The changes in genetic variance in populations 

can also provide information on the performance of theory. The infinitesimal 

model can be used to predict how the genetic variance should change under 

selection. If the actual changes in genetic variance can be estimated, then these 

estimates can be compared against the model predictions. Of course we cannot 

expect perfect agreement, it is not possible to measure parameters exactly so we 

end up comparing estimates. The difficulty is in deciding whether any observed 

discrepancies are statistically significant or not. 

2.2.1 Comparing genetic parameter estimates 

There have been several studies explicitly designed to test the infinitesimal model. 

Clayton et al. (1957) performed a comparison of the response to short-term 

selection (5 generations) on abdominal sternital bristles with base population 

estimates of genetic parameters in Drosophila melauogaster. Three estimates 

of the base population variance were obtained; from the half-sib and full-sib 

correlations and from the regression of offspring on parent. These three estimates 

were all very close to each other. The comparison with the mean results of short-

term selection response were 'fair', but there was much variation between upwards 

selected replicates. 

A comprehensive review of laboratory and farm animal selection experiments 

was given by Sheridan (1988) where again comparisons were made between base-

population parameter estimates (i.e., from half-sib correlation and offspring-

parent regression) and estimates of realized heritability from the response to 

selection. In general the agreement was poor; a summary of the findings is given 

in Table 2.1 which shows the number of selection experiments which display a 

given level of agreement between the two estimates. The experiments are divided 
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into experiments on laboratory and commercial species, and according to how 

many generations the experiment was carried out over. The number in the boxes 

of Table 2.1 show the number and percentage of experiments that fall into each 

category. For example, 57% (40 studies) of laboratory experiments which were 

run for 6-10 generations had base population and realized heritability estimates 

which differed by more than 30%. Over all the experiments, 29% showed an 

Table 2.1: Level of agreement between base population estimates and realized 
genetic parameters (Sheridan, 1988) 

Type 
Level of Number of generations 

1-5 6-10 11-15 16+ agreement 

Laboratory 
0-10% 6(33%) 16(23%) 24(52%) - 

10-30% 1(6%) 14(20%) 5(11%) - 

species 
30%+ 11(61%) 40(57%) 17(37%) 4(100%) 

Commercial 
0-10% 2(8%) 7(25%) 3(50%) - 

10-30% 11(42%) 3(11%) - - 

species 
30%+ 13(50%) 1 18(64%) 3(50%) 2(100%) 

0-10% 8(18%) 23(24%) 27(52%) - 

Total 10-30% 12(27%) 17(17%) 5(10%) - 

30%+ 24(55%) 58(59%) 20(38%) 6(100%) 

agreement between the base population and realized estimates of under 10% and 

54% showed a variation between the estimates of over 30%. This lack of agreement 

may not be as bad as it appears. It was noted by Hill and Caballero (1992) that 

although agreement would be expected to be highest for short-term experiments, 

in fact Table 2.1 shows better agreement for the longer term experiments. This 

may be due to more precise estimates of realized heritability with the longer term 

experiments. Hill and Caballero (1992) also comment that the sampling errors of 

the estimates was unlikely to have been known accurately for most experiments, so 

the significance of many of the discrepancies is unclear. James (1990) pointed out 

that Sheridan's. (1988) study shows that 57% of the realized heritability estimates 

were smaller than the base population estimates, and 38% were larger. This would. 
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indicate that much of the discrepancy was sampling error since most known factors 

would act to reduce the realized heritability below its expectation. 

2.2.2 Detecting changes in variance 

Another way of testing the performance of the infinitesimal model is to estimate 

the changes in genetic variance under selection. If the genetic variance in a 

population under selection could be estimated in different generations then the 

observed changes could be compared against the predictions of the infinitesimal 

model. Under the infinitesimal model, changes in genetic variance derive from 

two sources, inbreeding and the the build up of gametic disequilibrium under 

selection, the 'Bulmer effect' (Bulmer, 1974; 1976). Both of these effects cause 

the genetic variance to decrease. If the observed changes in variance cannot be 

accounted for by these effects then this is an indication that the infinitesimal 

model assumptions are incorrect. A possible cause for large changes in variance 

than cannot be explained by inbreeding or the Bulmer effect is if there are genes 

of large effect segregating in the population. 

The simplest strategy for estimating the changes in genetic variance is to 

split the data into blocks of generations and obtain separate estimates of the 

genetic variance for each generation block. This can be done with or without 

accounting for the expected changes in variance under the infinitesimal model. 

The difficulty with using this approach for testing the infinitesimal model is that 

estimating the genetic variance requires quite large datasets to achieve any degree 

of accuracy. Splitting the dataset up to obtain separate estimates for different 

generations reduces the amount of data available for each estimate, producing a 

decrease in accuracy. It can therefore be difficult to pick up anything other than 

large deviations from the infinitesimal model using this general method. 'Since 

any discrepancies that do occur will be larger the longer the selection is carried 

out, it is best to carry out this sort of analysis on mid- to long- term selection 

experiments (> 10 generations). 



Variance changes under selection have been estimated in several studies (e.g., 

Rahnefeld et al., 1963; Meyer and Hill, 1991; Beniwal ci al., 1992a), though 

each study used a different way to estimate the changes. The simplest way to 

perform the analysis is to consider the generation blocks as completely separate 

datasets and estimate variances for each block. An early analysis of this type was 

performed by Rahnefeld ci al. (1963) on a selection experiment where a line of mice 

produced from the reciprocal cross of two (unspecified) inbred lines was selected 

for 17 generations on post-weaning growth. An attempt to quantify changes in 

additive variance over time was made by estimating the additive variance for each 

generation using a combined estimate from the sire component of variance and 

parent-offspring regression. The individual generation estimates were, however, 

extremely variable and neither linear nor quadratic regressions of the estimates 

on generation produced a significant trend, though they did indicate a slight 

increase in additive variance over time. The estimates from several generations 

were then pooled together to produce more reliable estimates, which are given in 

Table 2.2. These estimates indicate an increase followed by a decrease, but none 

Table 2.2: Estimates of additive genetic variance by six-generation periods 
(Rahnefeld ci al., 1963) 

Generations 
Estimates for 

Cr 

1-6 0.30 + 0.31 0.08 + 0.24 
7-12 0.75 ± 0.26 0.61 + 0.20 
13-18 0.54 ± 0.34 0.39 ± 0.18 

of the differences are significant so no firm conclusions can be drawn from this. 

This analysis did not take into account the effects of inbreeding and selection 

on the later generation blocks, i.e., the starting generation of each block was 

taken to be the base generation which is defined to be a random mating non-

inbred population. The expected result under the infinitesimal model would be 

for the genetic variance to be smaller in the later generations due to the effects 

of inbreeding and the Bulmer effect. As stated before, there was no evidence for 

10 



any drop in additive variance, but the variance of the estimates were too large 

to conclude that there was a significant deviation from the infinitesimal model 

predictions. 

The method of variance component estimation most commonly used now in 

animal breeding is REML, the theory of which was developed by Patterson and 

Thompson (1971). This allows for the estimation of variance components unbiased 

by selection or inbreeding. Including the numerator relationship matrix (the 

A matrix) accounts for the effect of drift and selection on the additive genetic 

variance under the infinitesimal model (Sørensen and Kennedy, 1983; 1984). It 

is possible to use REML methodology to perform essentially the same analysis 

as Rahnefeld et al. (1963) but accounting for the effect of inbreeding in the later 

generation blocks by including the pedigree back to the base population (Meyer 

and Hill, 1991). This cannot, however, account for the effects of selection because 

the data on which the selection deciäions were made for the early generations are 

not in the analysis. The expected results from this analysis under the infinitesimal 

model would be that the genetic variance estimated in the later generation blocks 

should be slightly less than the variance in the base population (because of the 

Bulmer effect). Meyer and Hill (1991) analysed a selection experiment on mice 

where a population had been divergently selected for 23 generations on appetite. 

The traits food intake and 6 week body weight were analysed using the above 

method, and it was found that there was substantial decreases in the additive 

genetic variance over time. For example, the estimated heritabilities of food 

intake in generations 2-7, 8-13 and 14-23 were 0.24, 0.10 and 0.07 respectively. 

Meyer and Hill (1991) concluded that this decrease was too much to be explained 

by the Bulmer effect, especially since the effect of this should have been to reduce 

the variance in the early generations, rather than to produce the steady reduction 

that was observed in this experiment. 

A more sophisticated analysis was performed by Beniwal et al. (1992a) where 

the variances in two separate blocks of generations were estimated simultaneously 

by separating the covariance matrix for the random effects into two containing the 
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contributions of the animals in each generation block to the additive variance. All 

of the data are used in the analysis so this method should properly account for both 

inbreeding and selection. In this case it would be expected under the infinitesimal 

model that the genetic variance estimated by this method would be the same in 

the early and late generation blocks. Any significant difference would indicate a 

failure of the model. The selection experiment analysed by Beniwal et al. (1992a) 

used mice derived from the same base population as that analysed by Meyer and 

Hill (1991), but in this case selection was on predicted 10 week lean mass in males. 

The analysis of lean mass, body weight and litter size all showed reductions in 

heritability in later generations (Beniwal et al., 1992a; Beniwal et al., 1992b). For 

example in the High lines the additive variance for lean mass decreased from 71g 2  

in generations 0-4 to 12g 2  in generations 15-20. A similar decrease occurred in 

the low selected lines. It was concluded by Beniwal et al. (1992a) that the results 

indicate a failure of the infinitesimal model, the most likely reason being that 

some of the genes influencing lean mass had a non-negligible effect so that their 

gene frequencies altered under selection, causing the changes in variance. 

2.3 Extensions to the basic infinitesimal model 

There are several areas where the basic infinitesimal model can be extended to 

take account of various effects such as non-additive effects, mutation and major 

genes. The problem of all such modifications is that they make the use of the 

model for analysis purposes much more difficult. 

2.3.1 Non-additive effects 

The infinitesimal model can be extended to include non-additive gene action 

(Fisher, 1918). With directional dominance there can be a problem with the 

inbreeding depression becoming infinite unless the dominance variance is zero 

(Robertson and Hill, 1983). Several counter examples to this were demonstrated 
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by Smith and Mäki-Tanila (1990) who showed that some infinitesimal dominance 

models were indeed possible, although the examples they gave were somewhat 

contrived. 

To add dominance and interaction effects to the model, G can be partitioned 

into the additive genetic value and the dominance and interaction (epistatic) de- 

viations. The genotypic variance can likewise be split into additive, dominance 

and interaction variances, as shown below: 

G 	 A 	+ 	D 	+ 	I 

=or 	 + + 	 (2.1) 

(genotypic) 	(additive) 	(dominance) 	(interaction) 

This model can itself be extended by splitting up the interaction effects into 

that due to interaction between the additive effects of loci (additive x additive), 

that between the dominance effects of loci (dominance x dominance), that 

between the additive effects of one loci with the dominance effect of other loci 

(additive x dominance) etc. To analyse data with such a model using mixed 

model methodology, it is necessary to specify the covariance matrices between 

observations for each effect, and the estimation of the variance components 

involves using the inverse of these covariance matrices. For the additive effect 

this is relatively simple to do; the inverse of the additive covariance matrix can 

be calculated directly (Henderson, 1976; Quaas, 1976) and is normally sparse, 

reducing storage and handling requirements. In contrast the covariances matrices 

for non-additive effects are normally much more difficult to calculate and handle; 

even so it should be possible to analyse such a model using standard mixed model 

methodology (Henderson, 1985; Smith and Mäki-Tanila, 1990). 

2.3.2 Changes in genetic variance due to mutation 

The standard infinitesimal model does not allow for the generation of 'new' 

genetic variance from selection. There have been several studies which report 

that the amount of new variance arising from mutation can be substantial (e.g., 
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Lynch, 1988; Keightley and Hill, 1992; Hill et al., 1994) and that this new variation 

can affect the response to artificial selection (Caballero et al., 1991). Hill (1982) 

conducted a simulation experiment on the effect of the response to selection of 

new mutations and concluded that although the effects of mutations were unlikely 

to have much effect on the selection response in early generations, they should 

not be ignored in the analysis of long-term selection experiments. 

A meth'od to modify the additive genetic (co)variance matrix to model the 

increases in variance produced by the accumulation of new mutations was de-

scribed by Wray (1990). It allows the inclusion of mutation effects with standard 

mixed-model methodology for use in estimating variance components etc. This 

method was used by Keightley and Hill (1992) to obtain maximum likelihood 

estimates of the increase in additive genetic variation arising in a inbred line of 

mice due to new mutations under an animal model. The technique probably has 

limited use in more general cases (i.e., where the base population is not inbred) 

because the base population variance and the changes in variance due to causes 

such as changes in allele frequencies are likely to be much larger than the changes 

due to new mutations. 

2.3.3 Mixed inheritance models 

The problems described above with including non-additive effects into the genetic 

model of quantitative traits are much less than the difficulties encountered in 

trying to relax the central part of the infinitesimal model - that the genetic effect 

is caused by the combined effects of a very large number of loci. In producing a 

model with a small number of genes, the first problem is that there are many more 

parameters to consider such as the number of loci, the distribution of additive 

and dominance effects, the distribution of allele frequencies, the distribution of 

genotype frequencies, the disequilibrium between loci, and how the loci might 

interact. Such a model is not made any easier by the fact that several of these 

parameters will change over time depending on a range of factors such as the 
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method and intensity of selection and the population size and structure. Analysing 

data with such a model without many simplifications is much harder than using 

the infinitesimal model. Because of these difficulties, most non-infinitesimal 

models only involve one or two loci, but these are not appropriate for quantitative 

traits because they cannot generate the observed continuous distribution of trait 

values. 

Mixed inheritance models can be regarded as a combination of infinitesimal 

and finite gene models. In the simplest mixed inheritance model an animal's 

genotypic value would be produced by the sum of the contribution from a 

single major gene or QTL and a residual infinitesimal (polygenic) effect. Mixed 

inheritance models were first introduced in human genetics (Elston and Stewart, 

1971; Morton and Maclean, 1974) for the analysis of genetically determined 

diseases. Elston and Stewart (1971) described a general likelihood based method 

for the analysis of genetic data where the genetic contribution could be from a 

range of models from single loci up to a few major loci plus an infinitesimal effect. 

These models are more biologically realistic than either infinitesimal or finite gene 

models, but are more complex to use for data analysis than the basic infinitesimal 

model and, up until recently, it was not possible to use such models except with 

very small pedigrees or nuclear families (e.g., Ott, 1979). The difficulties stem 

mainly from the use of likelihood based techniques for analysing data. 

The problem with likelihood base techniques for mixed inheritance models is 

that usually the genotypes at the discrete loci are not completely known; this often 

makes the likelihood very difficult to calculate because the likelihood has to be 

calculated over all possible genotypic configurations of the pedigree. Throughout 

this thesis, Q is used to represent a particular genotypic configuration. This means 

that g completely specifies the haplotypes for each individual at the discrete loci 

being modelled. Consider a model where there is a vector of observations y on 

a pedigree with genotypic configuration Q, and where 0 is a vector of model 

parameters (i.e., gene effects, recombination frequencies etc.). The likelihood of 
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9 for such a model is of the form: 

L(9) = > p(y,9)p(9I0), 	 (2.2) 

The sum is over all possible configurations of Q that are consistent with y and 9. 

g can refer to either a discrete genotype (i.e., from a one locus genetic model), a 

continuous Gaussian genotype (i.e., a breeding value from an infinitesimal model) 

or a combination of both. Obviously for any model the likelihood cannot be 

evaluated in the form (2.2) except for very small pedigrees. For the infinitesimal 

model the likelihood can be evaluated using matrices which is the method typically 

used in animal or plant breeding applications. An alternative method to calculate 

the likelihood for both infinitesimal and discrete genotype models is to use 'peeling' 

algorithms (e.g., Cannings et al., 1978). The basic idea behind these methods 

is to successively 'peel off' individuals from the pedigree, the information in 

their phenotypes being converted to a function of one or more of the remaining 

members of the pedigree. With mixed inheritance models, however, an animal's 

genotype is neither discrete nor Gaussian, but a mixture of both, making the 

likelihood 'intrinsically unpeelable' (Thompson and Guo, 1991). This means that 

for the mixed inheritance models the exact evaluation of the likelihood requires 

the summation over Q (2.2) which is possible only for very small or very simple 

pedigrees. An example of a very simple pedigree would be an F 2  formed from 

a cross between two inbred lines. In this case the genotype of each individual 

is independent so the likelihood can be calculated for each individual separately, 

and then the likelihoods of all the individuals multiplied together to produce the 

total likelihood. Methods to approximate the mixed inheritance model likelihood 

have been suggested (Hasstedt, 1982; Bonney, 1984; Bonney et al., 1988) and, in 

fact, are widely used in human genetics. It is not known, however, how well these 

approximate methods work with large or complex pedigrees because there is no 

exact method to act as a comparison. 

An alternative approach to using exact calculation methods would be to 

use a sampling based technique to estimate the likelihood. The simplest way 
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this might be done would be to randomly generate g, calculate p(y(g,  6), the 

probability of the observations given Q and 0, and calculate the average of these 

probabilities for a large number of random configurations of g. This is, however, 

very inefficient. There will be a very large number of possible configurations of 

g, only a subset of which will contribute substantially to the average likelihood. 

In addition it will often be the case that a large number of configurations of g 

will be incompatible with the observations so will have a probability of zero. The 

sampling technique can, however, be made to work using Markov Chain Monte 

Carlo (MCMC) sampling methods. With these it is possible to sample only 

from those configurations that are consistent with the observations, where the 

probability of sampling a particular configuration is proportional to the likelihood 

of that configuration; in effect sampling from the distribution of Q conditional 

on y and 6. An estimate of the pedigree likelihood could then be obtained 

by averaging p(ylc,  0) for each of the sampled configurations (Thompson and 

Guo, 1991). This is discussed more fully in Section 3.4. 

As well as their contributions towards likelihood calculation, MCMC methods, 

and in particular Gibbs Sampling, have been used in various roles in the analysis of 

mixed inheritance models (e.g., Guo and Thompson, 1992; Janss et al., 1994b; Guo 

and Thompson, 1994; Janss et al., 1994a), and have been important in making 

such models practical for use with large datasets. 

2.4 Conclusions 

The infinitesimal model is widely regarded as an extreme simplification. Despite 

that, it is the most widely used model for analysing quantitative traits. This is 

due to two main factors, it is relatively straightforward to use and it provides a 

reasonable fit in the short-term to the observed data in many situations. The 

ease of use comes from being able to handle the loci collectively as a group rather 

than having to consider each locus individually. This is only feasible if the overall 

17 



contributions of the loci form some convenient distribution which can be easily 

manipulated. The assumption of a multivariate normal distribution of additive 

breeding values is a key feature in making the variety of statistical analyses 

avaliable for quantitative trait analysis (such as BLUP and REML) possible. 

It is fortunate that the model appears robust with regard to this assumption in 

that predictions derived from assuming normality are still quite accurate even 

when the distribution of breeding values is definitely non-normal due to linkage 

disequilibria produced by selection (Turelli and Barton, 1994). The conclusions 

of Turelli and Barton (1994) were that infinitesimal models can fairly accurately 

predict means and variance changes in the short term; it is only in the longer 

term that the infinitesimal models 'break down'. It appears that after 10 or more 

generations, changes in variance are likely to be dominated by changes in allele 

frequencies, which cannot be accommodated when using infinitesimal models. 

The mixed inheritance model has potential for being a useable, more accurate 

version of the infinitesimal model. If we regard a truly accurate genetic model 

as explicitly considering all genes affecting the trait, with their individual effects, 

frequency dynamics and interaction, then the mixed inheritance model is part 

way between the infinitesimal models and the 'exact' model. Mixed inheritance 

models provide a means of moving to more accurate models as methods improve 

and computing power increases by increasing the number of individual loci 

modelled. Of course how much better mixed inheritance models are than 

the infinitesimal model depends on what the 'true' underlying genetic model 

really is. Probably the most important information required about the genes 

controlling quantitative traits is the distribution of effects. There is, however, 

very little direct information about this, although inferences can be made. Some 

selection experiments have shown decreases in variance under selection that are 

much greater than would be predicted from the infinitesimal model (Meyer and 

Hill )  1991; Beniwal et al., 1992a; Beniwal et al., 1992b). It is likely that these 

decreases are caused by changes in gene frequency which indicates that there 

must be some segregating genes with relatively large effects. There is information 
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available on the distribution of mutant effects; Mackay et al. (1992) obtained direct 

information on the distribution of mutation effects on bristle number and viability 

as a results of P element insertional mutagenesis. This showed a highly leptokurtic 

distribution of mutant effects for the traits with a large number of genes of very 

small effect and a much smaller number with large effects. Evidence for the 

distribution of mutation effects being highly leptokurtic was also presented in an 

analysis by Keightley (1994a). This is not the same, however, as the distribution 

of the effects of segregating genes affecting quantitative traits. The mutations of 

large effect tend to be deleterious, are rapidly eliminated and never reach high 

frequencies, and therefore contribute little to the genetic variance. An analysis of 

Mackay et al.'s (1992) study concluded that most of the genetic variance could 

be attributed to mutations with intermediate effects (between about 0.25 and 

0.5 phenotypic standard deviations) (Caballero and Keightley, 1994). This class 

of mutations contributed more than both the larger effect but lower frequency 

mutants and the high frequency but small effect mutants. A tentative conclusion 

about the distribution of segregating gene effects from this would be that much 

of the genetic variance is provided by a relatively few genes of intermediate effect, 

with a small amount provided by a large number of genes with very small effects. 

This sort of distribution of gene effects could be modelled quite effectively by a 

mixed inheritance model, with the genes of intermediate effect being explicitly 

handled, and the smaller genes being lumped together as a residual infinitesimal 

effect. 
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Chapter 3 

Gibbs Sampling 

3.1 Introduction 

The Gibbs Sampler is a class of Markov Chain Monte Carlo (MCMC) methods 

(Hastings, 1970) developed for the analysis of image-processing models by Geman 

and Geman (1984). It has become widely used in genetics, being used for 

example for estimating likelihoods of mixed inheritance (Thompson and Guo, 

1991), variance component analysis (Wang et al., 1993; Jensen et al., 1994) and 

QTL detection and mapping (Hoeschele, 1994). It is a method for generating 

samples from the joint distribution of several random variables by sampling 

from the conditional distribution of each variable. It can be used in a wide 

range of problems where variables take on values from a small discrete set, 

or have parametric conditional distributions which can easily be sampled from 

(Neal, 1993). The method is useful when the joint distribution is complex and 

difficult or impossible to sample from directly and the conditional distributions 

are known and can be sampled from more easily. 
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3.2 The Gibbs sampling algorithm 

Consider a joint distribution for X = {X1 ,... , X} with distribution given by 

P(X1 = xi,... , X. = x) then this can be sampled from using Gibbs sampling, 

provided the conditional distributions of all X i  given all other variables are known. 

The current values {Xi,... , x,} of the variables are all updated one at a time 

from their conditional distributions. Therefore the current value x j  of the variable 

X1 would be updated with a value sampled from P(X 3  = xl{X1 = x,: i 54 j}), 

the conditional distribution of X3  given all of the other variables. This process 

produces a series of realizations of X that is a Markov chain because the influence 

of the realizations , on the distribution of X(t1)  is solely mediated 

through X(t).  Note that throughout this chapter, subscripts are used to denote a 

particular variable in X and superscripts in brackets (i.e., X(t) ) denote a particular 

realization of X. 

The procedure for producing X('), a new realization of X, from X(t)  would 

be as given in the sequence below. Notice that the new value for X 1  is immediatly 

used for the sampling of X1+i. 

(t+1) 	(t) 	(t) 
• Sample xi+l) from P(x 1 	l2 ,... ,x, ) 

• Sample 	from P(x(t+1) (i+i) (t) 	(t) 
2 	lx i 	, X 3  ,. . . 

• Sample X t1  from P(x(t+1) (t+i) 	(t+i) (t) 	(t) 
: 	11 	, . . . , 	, x,., . . . , x 	) 

from p(5 (t+i) (t+1) 	(t+i)) • Sample v(+i) 
li 	,... 

The variables do not have to be sampled in any consistent sequence as shown 

above; the choice of which variable to update could be made at random. It 

can be shown that under reasonably general conditions as t -i oo, the density of 

{ Si,... , x, } converges to the joint density of X (Geman and Geman, 1984; Casella 

and George, 1992), so for any t large enough, a realization may be regarded 

as a sample from the joint distribution. Moreover, considering any variable X 1  

individually, the samples of X 1  will converge to its marginal distribution, i.e., the 
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distribution of X, averaged over {X, : j 54 i}. For this to be true, it is necessary 

that that the Markov chain has an invariant (stationary) distribution which is 

the joint density of X as required, and that the Markov chain is ergodic, meaning 

that it will converge to the required stationary distribution independent of its 

starting distribution. 

Intuitively it is clear that if X(t)  is drawn from the joint distribution of X then 

Gibbs sampling will leave the distribution invariant, i.e., if X(t)  is drawn from 

the desired joint distribution of X then so will Firstly, sampling x i  leaves 

{x, : j 54 i} unchanged, so the marginal distributions for these will be invariant. 

Secondly, the conditional distribution of x i  given {x3  10 i} is defined to produce 

the desired marginal distribution for x 1 . Together these ensure invariance of the 

Markov chain (Neal, 1993). 

To ensure that the Markov chain is ergodic it is necessary for all transition 

probabilities to be non-zero (Neal, 1993). This means that in one full iteration 

of Gibbs sampling the Markov chain should be able to move to any state with 

• non-zero probability, this property is called irreducibility. If it is possible for 

• Markov chain to become 'stuck' in some subset of the sample space then the 

chain is not irreducible and the convergence property will not hold. This can 

cause problems in some situations, and will be discussed in more detail when the 

use of Gibbs sampling for pedigree analyses is covered in Section 3.4. The fact of 

convergence does not depend on the initial variable values, as long as the initial 

values in X are valid (i.e., the joint density > 0), convergence should occur. If, 

however, the initial distribution is a long way from the equilibrium distribution 

then convergence could take a long time. 

The variables do not have to be sampled individually, several may be sampled 

simultaneously from their joint conditional distributions. This may be advanta-

geous if certain variables are highly correlated; the Gibbs sampler will work most 

efficiently when the sampling sub-units are independent (Neal, 1993). When two 

variables are highly correlated and are sampled independently it can slow down 
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the movement of the Markov chain through the parameter space since each of the 

two variables will be able to move only a small amount each time because they 

are constrained by the other variable. 

3.3 Extracting information from the 

Gibbs sampler 

3.3.1 Sampling from the Markov chain 

When the Gibbs sampler has reached its equilibrium distribution then samples 

can be taken from it for various purposes. There are several practical problems 

involved with the sampling, namely how to tell when convergence to the equilib-

rium distribution has been achieved, and how often to sample. Although samples 

taken from each Gibbs cycle (after convergence) are all samples of the equilibrium 

distribution, there is some auto-correlation between adjacent samples. There are 

two methods to obtaining independent samples, the first way is to run the Gibbs 

sampler for t cycles, sample, and then restart the Gibbs sampler from a separate 

starting point. This is repeated n times. The second way is to run the Gibbs 

sampler for t times then sample, as before, and then continuing with the same 

Markov chain run the sampler for a further m cycles and sample. This last stage 

of m cycles and then sampling is then repeated until n samples have been taken. 

The advantage of the first method is that it prevents any correlation between sub-

sequent samples, but if t has to be large to ensure convergence of the chain then 

the first sampling method will be very wasteful. The numbers of cycles required 

before convergence (t), the total number of samples required (n) and the number 

of cycles between samples (m) (if the second sampling method is used) all depend 

on the complexity of the system and the correlation between parameters as these 

determine how efficiently the chain samples the parameter space. 
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3.3.2 Parameter and density estimation 

Samples of a single variable taken from the Gibbs sampler will converge to samples 

from the marginal distribution of that variable. If an estimate of the mean of the 

marginal distribution, for example, is required, then there are two natural ways 

of obtaining this. If the variable X, has n samples x, Ic = 1,... , n then the two 

estimates of a, the mean of the marginal distribution of X 3  would be: 

n 

[A  1: 
 (k) x i  , 	 (3.1) 

n 
k=1 

n 

ft 
= 	E(xI{x 	: i 	j}). 	 (3.2) 

k=1 

[A (3.1) is called the empirical estimator and ft (3.2) is the mixture estimator. [A is 

the expectation of X3  based on samples from the posterior marginal distribution, 

whereas ft is a mixture of complete data posterior means. It was shown by 

Gelfand and Smith (1990) that for independent samples of x 3  then the variance 

of the mixture estimator will always be less than that of the empirical estimator. 

Their proof, however, did not apply to the case when the sample of x 3  were 

dependently drawn from the Gibbs sampler, however Liu et al. (1994) proved 

that the superiority of the mixture estimator still applied in that case. Note 

that the above procedure can be applied to produce estimates of a function of a 

variable or group of variables. 

Other estimates from the marginal posterior distribution of X 3  can be pro-

duced. The above method could be used to obtain estimates of the mode, median 

or higher order statistics such as the variance of the marginal distribution. It is 

also possible to obtain estimates of the actual marginal posterior density itself. 

For example the mixture estimate of p(X,), the marginal posterior density of X 3  

would be obtained by: 

n 
(k) 

:ij}). 	 (3.3) 
n 

k=1 

Once estimates of the marginal densities of a variable or a function of several 
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variables has been produced, then useful statistics such as confidence limits can 

be produced by numerical means. 

3.4 Applications of Gibbs sampling 

It was stated in Section 3.2 that Gibbs sampling allowed sampling from the joint 

distribution of several random variables and to produce estimates of the marginal 

posterior densities of each variable. These two properties can be useful for a range 

of applications as detailed in the following sections. 

3.4.1 Likelihood calculations for pedigrees: 

As explained in Section 2.3.3, exact calculation of the likelihood for large pedigrees 

can be very difficult when using complex models such as mixed inheritance models. 

It is possible to estimate the likelihood using sampling based methods. For 

example, a large number of random simulations of the genotype structure of the 

pedigree could be produced. The average of the likelihood of the observed data 

given each of these would be an estimate of the overall likelihood of the pedigree 

data. While simulating on pedigrees is simple, simulating on pedigrees conditional 

on observed data is very difficult (Thompson, 1994). MCMC methods provide 

feasible ways of simulating genotypes; the use of such techniques was proposed 

by Lange and Matthysse (1989) and by Lange and Sobel (1991) who outlined a 

MCMC (but not Gibbs sampling) method of simulating di-allelic loci so that the 

genotype structure was consistent with observed data. 

Gibbs sampling provides a simple means of sampling from all genotype 

configurations that are consistent with the observed data and model parameters, 

-where the probability of sampling a configuration 9 is proportional to p(ylc,  0), 

the probability of the observed data given 9 and 0, the vector of model parameters 

(such as recombination frequencies, variance components etc.). The use of Gibbs 

sampling for generating samples of 9 is quite straightforward. Consider a dataset 
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consisting of a number of animals related to various degrees, most of which have 

a series of observations. These observations, y, might be on a continuous trait or 

genotypic data or a discrete phenotypic trait, or some combination of these. In 

this case 9 refers to the genotypes of the animals which, as discussed in Section 

2.3.3 could be either a discrete genotype, a continuous Gaussian genotype or some 

combination of both. The likelihood of 0 would be: 

L(0) =p(y10) = j 
p(y , 9 JO)dg = 

j 
p(yj9 , 0)p(9j0)d9 	(3.4) 

Note that Q could be discrete so the integration in (3.4) could be replaced by a 

summation. Gibbs sampling can be used to sample 9 from P(9I0) so a Monte 

Carlo estimate of the L(9) could be obtained simply by averaging the likelihood 

of Q for a large number of realizations of Q from the Gibbs sampler. 

3.4.2 Sampling of genotypic configurations: 

The implementation of the Gibbs sampler for sampling from g given a vector of 

observations y and additional parameters 0 requires the ability to sample from 

the conditional distribution of each individual's genotype given the genotypes 

of all other individuals, the observations on the individual and 0. This is made 

simple by the fact that the effect on the conditional distribution of an individual's 

genotype of the other individuals is mediated solely through the 'neighbours' in 

the pedigree, i.e., parents, spouses and offspring. 

Therefore, using the notation 9i as the genotype of individual i, Q, as the 

genotypes of all other individuals, 9par  as the parental genotypes, !gspouseij  as 

the genotype of the jth spouse of i, cOff,,k as the genotype of the kth offspring 

of the jth spouse of i, and y j  as the vector of observations on individual i, the 

conditional distribution of 9i would be: 

(cI1, c_, 0) o( 	0)(lg, 0) 	P(cOff,k ic gspousej,) 0) 	(3.5) 
jk 

One important point to note is that the Gibbs sampler can easily and 'naturally' 

handle missing data. If an animal had no observations then the subexpression 
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(yIc, 8) from the likelihood equation (3.5) would just be set to 1. Similarly if 

there were no offspring then the subexpression uk P(cOffIk ic1, 0) would 

be set to 1. In addition, missing data can easily be estimated from the remaining 

data, so if some individuals had genotype data but others did not the missing 

genotypes could be estimated (e.g., Pong-Wong and Woolliams, 1994). 

As discussed before in Section 3.2, one of the conditions for the Gibbs sampler 

to work correctly is that the generated Markov chain should be irreducible, i.e., it 

should not be possible for the chain to become 'stuck' in a subset of the possible 

parameter space. This can potentially be a problem with pedigree analysis. It can 

be shown that with di-allelic loci that the condition holds and the Markov chain is 

irreducible (Lange and Matthysse, 1989; Lange and Sobel, 1991), but multi-allelic 

loci can cause the chain to become reducible (Sheehan and Thomas, 1993). It was 

proposed by Sheehan and Thomas (1993) that this could be avoided by assigning 

a small positive probability p to all zero transmission and zero penetrance 

probabilities. The resultant Markov chain therefore could generate both 'legal' 

(i.e., consistent with the observed data) and illegal samples of 9. Importance 

sampling was then used to make inferences about the equilibrium distribution, 

with legal configurations assigned a weighting of 1 and illegal configurations a 

weighting of 0. There are practical problems with this method. If p is too small 

then moving from one irreducible step to another requires moving through states 

with very low probabilities. Conversely if p is too large then the augmented set 

of genotypic configurations with the modified transmission probabilities becomes 

much larger than the set of valid genotype configurations (Gilks et al., 1993) so 

most of the sampled configurations are illegal and cannot be used. 

Lin et al. (1993) showed that it was not necessary to modify all zero proba-

bilities to achieve irreducibility, it was only necessary to modify the penetrance 

probabilities so that p(dg) > 0 for all phenotypes d and all heterozygote geno-

types g. Rather than using the importance sampling method of Sheehan and 

Thomas (1993), they propose using multiple Markov chains. One chain uses the 

true penetrance probabilities (so is not irreducible) and the other 'companion' 
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chains use the modified probabilities (and are therefore irreducible). These are 

set running together and then every kth cycle an attempt is made to switch be-

tween the standard Markov chain and one of the companion chains. If P( I) 

and P'(cly) are the probabilities of genotype configuration g given the observed 

data y using the true and modified penetrance probabilities respectively, and if 

Q and (j' are the current genotype samples from the standard and companion 

chains respectively, then the chains are switched with probability: 

- 	P(cIy)P'(c'IY)"}' 	
(3.6) 

r - min{ 

P(Q'Iy)P'(QIy) 

i.e., the ratio between the product of the probability of the two chains after the 

potential switch and before the switch. This method is an improvement over that 

of Sheehan and Thomas (1993), but can still be inefficient with the companion 

chains spending a large amount of time in the illegal section of the sample space. 

Lin et al. (1993) noted that the sample space of 9 can be divided into one 

or more irreducible sets or islands with the modified penetrance probabilities 

providing bridges between the islands. Lin et al. (1994) proposed a method that 

explicitly identified all such islands and bridges thus minimizing the number of 

zero penetrance probability that have to be modified and reducing the size of 

the augmented sample space, making the previous method more efficient. An 

improvement in efficiency over the companion chain method was described by 

Lin (1995). This uses the method of Lin et at. (1994) to identify the bridges 

between noncommunicating islands, and switches between different genotype 

configurations for the bridging individuals with probability equal to the ratio of 

the conditional probability of the new configuration to the conditional probability 

of the old configuration. 

3.4.3 Bayesian estimates of parameter distributions: 

Statistical analysis can be broadly split into two approaches, 'classical' and 

Bayesian. In classical analyses, the information used for parameter estimation is 



assumed to come solely from the data, whilst Bayesian estimation combines prior 

information (that was known before the analysis) with information from the data. 

In some respects there is not too much difference in the approaches; in classical 

analysis some implicit prior information is generally used, i.e., with regard to 

parameter distributions - the difference in a Bayesian analysis is that the use of the 

priors is explicit. It is possible to fit priors that are 'naive' so that the estimation is 

the same as in a classical analysis in that all the information comes from the data. 

A further difference in the approaches is that classical methods generally produce 

point estimates of parameters while Bayesian approaches produce estimates of 

the posterior distributions of the parameters. 

The use of Gibbs sampling for parameter estimation is often done from a 

Bayesian perspective. One reason for this is because the formulation of the 

conditional probabilities forces the explicit declarations of the prior distributions 

used. Another reason is that Bayesian analysis on complex models is often 

impossible to do analytically, so Gibbs sampling provides a means for performing 

analyses that otherwise could not be done. This is because the typical Bayesian 

approach to estimating a parameter would be to formulate an expression for the 

joint posterior density of all the parameters, and then integrate out all parameters 

apart from the one of interest. This integration can be unfeasible to perform 

analytically, but can be performed numerically using Gibbs sampling. 

3.4.4 QTL detection: 

Gibbs sampling has been used for Bayesian linkage analysis by several authors 

(e.g., Thompson and Guo, 1991; Hoeschele, 1994; Thompson, 1994). The tech-

nique is to use Gibbs sampling to estimate the likelihood ratios between different 

models i.e., fitting a linked versus and unlinked QTL. In terms of the model dis-

cussed in the previous section on pedigree likelihood calculation, this could be 

done to compare a model with parameters 8 against an alternative model with 

parameters Oa by estimating the ratio L(0)1L(0 0 ). 
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3.4.5 Variance component estimation: 

There are two ways in which Gibbs sampling has been used in variance component 

estimation. The first way is in conjunction with more 'traditional' methods of 

estimation such as the EM algorithm, where Gibbs sampling is used to estimate 

some of the conditional expectation terms (Thompson and Shaw, 1990; Guo and 

Thompson, 1991). This is useful because the calculation of these expectations 

otherwise requires the inversion of large matrices. The second way is to use a more 

Bayesian approach (e.g., Wang et al., 1993; Sørensen et al., 1994a); most of these 

are based on the work by Gianola and Foulley (1990) where a Bayesian framework 

for variance component analysis called VEIL (Variance Estimation by Integrated 

Likelihoods) was presented. In that paper it was noted that this analysis was 

very difficult to do exactly and so several approximations were presented. Their 

method is, however, very well suited for the use of Gibbs sampling because it 

involves producing estimates of the marginal densities of the variance components 

by integrating out all of the other model parameters. As discussed earlier, 

these integrations can be extremely difficult to do analytically, but are easily 

handled numerically using Gibbs sampling. For datasets smaller than about 

100000 animals the Gibbs sampling approach has few practical advantages over 

more conventional methods such as REML, though there are some theoretical 

arguments over the relative efficiency of VEIL and REML for variance component 

estimation (Gianola and Foulley, 1990). The Gibbs sampling method is simpler to 

program and typically requires less computer memory than an equivalent REML 

analysis, but can take much longer to obtain parameter estimates. As dataset sizes 

increase the relative speeds of the two processes are likely to converge since the 

time required of the Gibbs sampling approach will increase more or less linearly 

with numbers of animals, whereas for a process such as DFREML (Meyer, 1988) 

the increase will be more like cubic in the number of animals. An analysis of a large 

dataset of over 400000 animals by van der Lugt et al. (1994) indicates that Gibbs 

sampling could be very useful for analysing large datasets. The larger the dataset, 
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the less the speed advantage of DFREML becomes, and the more attractive the 

Gibbs base approach appears given that it requires much less computer memory 

for an equivalent analysis. 

3.4.6 Mixed inheritance models: 

With mixed inheritance models there are the same two approaches to using 

Gibbs sampling as mentioned for variance component analysis, using Gibbs 

sampling to estimate conditional expectations for the EM algorithm (Guo and 

Thompson, 1992; Guo and Thompson, 1994), and using Gibbs sampling to 

implement a Bayesian analysis (Janss et al., 1994a; 1994b). In either case the basic 

method is very similar to that used for the equivalent variance component analysis 

without the QTL. The difference in the model is that the QTL genotype is fitted as 

an additional fixed effect, with the incidence matrix for the QTL genotype being. 

treated as missing data to be estimated from whatever information is available 

(i.e., phenotypic information, genetic markers etc.). As explained earlier, the 

Gibbs sampling lends itself easily to missing data problems. Using these methods 

it is possible to simultaneously detect QTL, estimate their effect and estimate the 

recombination frequencies between the QTL and available markers, potentially 

making these techniques powerful tools for the study of quantitative traits. The 

main drawback of using Gibbs sampling for these types of analyses is the speed, 

adding a QTL to a variance component analysis dramatically slows down both 

the Gibbs cycle time and the convergence time. 

3.5 Conclusions 

Gibbs sampling is a powerful data analysis tool. Its statistical properties which 

make it a simple to use Monte Carlo integration technique give it a large range of 

applications in data analysis, as outlined in the previous section (3.4). Its main 

strengths lie in the simplicity of both the concept and the implementation, and 
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its flexibility in being able to handle a wide range of types of problems. The main 

drawback with the technique is in its speed; for many problems it is not the fastest 

or most efficient method (Neal, 1993). There is therefore a tradeoff between the 

simplicity and flexibility of Gibbs sampling and the increased efficiency and speed 

of more specialized methods. As computing power continues to increase it seems 

likely that the advantages of Gibbs sampling will cause it be used in an ever wider 

spread of applications. 
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Chapter 4 

Materials & Methods 

4.1 The X Lines selection experiment 

4.1.1 Introduction 

There is a long history of selection experiments on mice. They have provided 

checks on quantitative genetic theory and clues about the underlying genetic 

control of quantitative traits (Section 2.2). The earliest selection experiment 

involving mice which included details on the origin of the base population and 

the selection process was described by MacArthur (1944a), where a genetically 

diverse stock formed from seven strains of mice was selected for large and small 

60 day body size over 23 generations. The foundation stocks were set up to try 

to incorporate as much genetic variation as possible in a variety of qualitative 

and quantitative traits. The aim of the experiment was to investigate whether 

large, permanent changes could be made to quantitative traits using artificial 

selection and to look for other characters which showed correlated responses to 

selection on body weight (MacArthur, 1944b). The experiment demonstrated 

that artificial selection could indeed produce substantial permanent changes to 

body weight, and also showed that several other traits such as litter size and coat 

colour displayed correlated responses to selection on body weight. 
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Falconer (1953) described a later selection experiment in which divergent 

within family selection was carried out over 11 generations on an foundation 

population formed from the cross between 4 inbred mouse lines. The within 

family selection reduced inbreeding and simplified the analysis since there could 

be no selection for maternal effects. This experiment to a large extent confirmed 

the results of MacArthur's (1944a) earlier experiment in that substantial and 

permanent changes to populations could be made by selection. The Q Line 

experiment of Falconer (1973) was of a similar design to the previous experiment 

except that the foundation population was made up from five foundation strains in 

order to incorporate a large amount of genetic variance into the initial population 

in a similar way to MacArthur (1944a). Another difference between the Q Line 

experiment and the earlier experiments described here is that the Q Line was 

replicated with 6 replicate lines being set up in each of three groups. These 

were six High lines selected upwards on 6 week weight, six Low lines selected 

downwards on 6 week weight, and 6 non-selected Control lines. The replicate 

structure made it possible to obtain empirical estimates of the sampling error 

of variance component estimates by examining the variability amongst estimates 

obtained from the different replicate lines. 

Subsequent to the Q Line experiment, Garnett and Falconer (1975) searched 

for variation between the High and Low selection lines at 9 loci. They found an 

indication that one allele, Hbb, was associated with body weight since Hbb was 

found to be fixed in all 6 High selected lines. The analysis was made difficult by 

the fact that the genetic structure of the base population was not known because 

a large mixture of lines were incorporated into it. 

The X Lines selection experiment described in this thesis was set up by G. 

Bulfield (Roslin Institute, Edinburgh), and followed on from the analysis of Gar-

nett and Falconer (1975) specifically for the identification of QTL affecting body 

weight in mice. To make the analysis more powerful, the X Lines were estab-

lished from an inbred cross so that the genetic structure of the base population 

was known precisely. It could be assumed that any loci differing between the 
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two founder strains would be at frequency 0.5 in the base population. Associa-

tions between any of these loci and body weight could be tested by screening for 

loci which changed in frequency significantly from 0.5 under selection for weight, 

making the experiment a potentially very powerful screening tool for QTL. 

4.1.2 Inbred strains 

The two inbred founder strains, C57BL/6J and DBA/2J, were obtained from the 

Jackson Laboratory, Maine USA in 1985. Both of these strains had already been 

established for a long time when the X Lines experiment was started; C57BL was 

set up in 1921 with substrain 6 being formed in 1937 and DBA was initially set up 

in 1909 with substrain 2 being formed from crosses between the original substrains 

in 1929-30 (Festing, 1989). The two strains had therefore been separated at least 

since 1909, and it is possible that they were in fact derived from separate sub-

species (Bonhomme et al., 1987). It would be expected that there would be a 

large amount of genetic differences between the two strains, and this has been 

demonstrated by the identification of a wide range of molecular markers which 

vary between C57BL/6J and DBA/2J (e.g., Frankel et al., 1990). Despite this 

genetic variation the strains show very little difference in mean body weight. 

4.1.3 Selection lines 

From the F1  of the cross between C57BL/6J and DBA/2J, 32 breeding pairs 

were selected at random. From the resulting F 2  population 13 selection, lines 

were established. These were divergently selected for 6 week body weight for 20 

generations with 6 lines being selected upwards, 6 lines downwards, and with 1 

unselected control line. In total there were 6503 animals in the Low lines, 8401 

in the High lines and 1208 in the Control line. Selection was on a within family 

basis; each line was maintained with 8 breeding pairs, and 1 from each family of 

each sex were selected. The mating schedule is shown in Table 4.1; this is the 
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same schedule that Falconer used for the Q Lines. Second litters were raised in 

many cases to act as replacements. 

Table 4.1: Mating schedule in the X Lines 

Family of 
origin 

New mating 
number 

1 x 2 1 
3 x 4 2 
5 x 6 3 
7 x 8 4 
2 x 1 5 
4 x 3 

• 

6 
6 x 5 7 
8 x 7 8 

Each family was numbered from 1-8. The table shows how the families of the mice to 
be mated were chosen and the new mating numbers assigned. 

All animals from the F 2  population up to generation 20 were recorded for 6 

week body weight and coat colour. There were two coat colour markers segregating 

in the F 2 , brown and dilute. Both markers were recessive so only two marker types 

could be distinguished for each locus. The two markers acted independently so 

four marker type combinations were possible producing four distinct coat colours, 

wildtype, brown, dilute and brown & dilute. In addition, tissue samples were taken 

from 93 individuals from the Low selected lines and 34 from the High selected lines 

at the end of the experiment (generation 21). Unfortunately due to a procedural 

error in the matings at generation 20 the parents of the sampled individuals from 

the High lines are not known and it is not certain from which replicate each High 

line sample was drawn, although a reconstruction of the replicate structure of 

the High lines using information from the marker frequencies was described by 

Keightley (1994b). 
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4.2 Genetic models 

Throughout this thesis several models are used for analysis, simulations and 

theoretical calculations. This section describes the main models used so that 

the details of the models do not need to be explained each time they occur. 

• Monogenic model: The simplest genetic model of inheritance involves just a 

single gene. The effect of the gene is described by a and d, the additive and 

dominance effects of the gene. As populations derived from inbred crosses 

were analysed in this thesis, only di-allelic models are discussed with the 

allele with a positive effect being denoted by an uppercase letter, and the 

the other allele by a lower case letter. In general the letter M is used for 

marker loci, Q for QTL loci and A for general loci. The frequency of A will 

be denoted by p, and of a by q, therefore the genotypes, frequencies and 

genotypic effects relative to the mean are as given in Table 4.2. 

Table 4.2: Genotype frequencies and values for simple model 

Genotypes AA Aa aa 

Frequency p2  2pq q2  

Genotypic value —a d a 

• Linked QTL model: This model has two linked loci, a QTL and a marker 

with no intrinsic effect on the trait. The recombination frequency between 

the marker and the QTL is given by r. The QTL effect is given by a and d 

as in the previous model. 

• Polygenic model: The polygenic models used are of a large number (typi-

cally several thousand) unlinked additive loci of equal effect to simulate an 

infinitesimal model. The additive genetic variance produced is given by o. 

• Mixed inheritance model: The mixed inheritance model is one in which the 

genetic effect comes form two sources, one or more QTL and a polygenic 
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background. The QTL and polygenic effects are added together to produce 

the genetic value of an individual. There is assumed to be no interaction 

between the polygenic and QTL effects. For more details see Section 2.3.3 

4.3 Computer programs 

Most of the investigations and analyses detailed in this thesis were computer 

based involving an array of different programs. These were either commercial 

i.e., Genstat (Genstat 5 Committee, 1993), free software written by others i.e., 

DFREML (Meyer, 1988), or written by the author. This section briefly describes 

two of the main pieces of software written by the author. 

4.3.1 Simulation 

A 1t of testing of the methods developed in this thesis was performed by 

simulating data structures similar to the X Lines dataset with a variety of different 

genetic models. For this purpose a general simulation program was written to 

simulate selection experiments. The genetic variation came from two sources, 

a polygenic additive effect and one or more QTL. Markers with no intrinsic 

effect could be positioned at various distances from the major genes. The 

polygenic effect was produced by a user-specified number of unlinked additive 

loci of equal effect. In addition a common environment (litter) variance could be 

simulated. The program could therefore produce datasets similar to that of the X 

Lines dataset using polygenic, monogenic and mixed inheritance genetic models 

containing pedigree, trait and marker (but not the actual QTL) information. 

4.3.2 Gibbs sampling analysis 

For the analyses in Chapters 7 and 8, a suite of programs were written. These 

were intended to be used in a similar manner to the DFREML suite (Meyer, 1988) 
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except that they use Gibbs Sampling techniques rather than Mixed Model 

Methodology, and have the ability to analyse mixed inheritance models. 

There are four programs in the suite: 

• recode handles the recoding and processing of the data into a suitable form 

for the other programs. Any number of fixed and uncorrelated random 

effects can be fitted, the only restriction being the amount of memory 

available on the system. Any number of QTL and markers can be fitted, 

though in practice the number of QTL should not be too large, and the 

method has not been thoroughly tested with more than 1 QTL. 

• nrm generates the inverse of the additive genetic relationship matrix using 

the methods of Henderson (1976) and Quaas (1976). The covariance matrix 

of the fixed effects, X'X, is generated and its Cholesky decomposition 

calculated. This is used to speed up the sampling of the fixed effects during 

the sampling process. If very large numbers of fixed effect levels were to be 

fitted it would be better to omit this step since the decomposition of X'X 

is non-sparse so can require a lot of storage. 

• gibbs is the main analysis program which reads in the outputs from the 

other programs and produces a continuous string of Gibbs realizations and 

conditional densities which stored. The program has the ability to be 

restarted if it is interrupted, which is valuable since for complex problems 

it may have to run for several weeks. 

• density reads the output from the gibbs program and calculates estimates 

of the marginal densities of any parameters of interest. Estimates of the 

mean, mode and median and standard distribution of the distributions are 

calculated. 
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Chapter 5 

The Initial Quantitative Analysis of the 

X Line Data 

5.1 Introduction 

This chapter describes the initial quantitative analysis of the X-Line experiment. 

The aim of the analysis was to describe the responses of 6-week body weight 

and litter size to selection on 6-week weight, and to produce estimates of the 

genetic components of 6-week weight. Estimates of the heritability of 6-week 

weight were calculated from the regression of cumulative selection differential on 

response (the 'realized' heritability) and by using the Derivative Free Restricted 

Maximum Likelihood package (DFREML) of Meyer (1988), allowing a comparison 

to be made between the different estimates. An additional aim was to describe 

any unusual or unexpected features of the X Lines data which became apparent 

during the analysis. One of these features in particular, an apparent acceleration 

in the rate of response over time in the Low lines, lead to the analysis described 

in Chapter 6. 
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Figure 5.1: Mean 6-week weights (g) averaged over sex of the the 13 replicate 
lines (6 High, 6 Low and 1 Control). Sublime B of the Low lines (referred to in 
the text) is marked by a 

5.2 Selection response 

The selection responses in 6 week weight are shown in Table 5.1 and Figure 5.1. 

The results shown are the average weight for each replicate line within generation. 

There is a strong indication of directional dominance as the F 1  mean weight is 

well above the average of the parental lines. The response in the High and Low 

lines is broadly similar, but this does not rule out dominance being present. The 

phenotypic standard deviation of 6 week body weight is approximately 2g so the 

total response is about 2 standard deviations in both directions. 

A- 
1 
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Table 5.1: Selection responses 

Rep. No. Animals Mean G Mean G 0  

1 1199 18.67 15.72 
2 986 18.93 14.69 
3 1059 18.50 16.28 

Low 4 1065 19.21 15.59 
5 1143 18.26 15.87 
6 1051 18.57 16.26 

6503 18.64 15.74 

1 1380 19.42 25.83 
2 1548 19.67 23.68 
3 1395 19.86 24.38 

High 4 1448 18.78 24.72 
5 1368 18.84 24.40 
6 1262 19.29 26.38 

8401 19.39 24.51 

rControl 1208 20.34 18.70 

f Means calculated from the uncorrected 6 week weights of each mouse averaged over 
sexes within replicate lines. 
a  G1  After 1 generation of selection. 
b G20 After 20 generation of selection. 

Scale effects, when the variance changes with the mean, are often found in 

growth data. A quick test for scale effects in the X Lines was carried out 

by calculating the means, within line standard deviations and coefficients of 

variance for the last 5 generations of the High and Low lines (Table 5.2). The 

results are presented before and after log e  transformation of the data. The 

coefficients of variance for the untransformed data are around 14%, this reduces to 

approximately 5% after transformation. There appears to be a difference between 

the High and Low line standard deviations using the untransformed data. An F-

test comparing the High and Low line variances indicates a significant difference 

for the untransformed data (F2 .573 , 2201 , 1587  < 0.001). Log transformation reduces 

this heterogeneity (F1 .07,2204 ,1587  = 0.07), so that the difference between the High 

and Low lines is no longer significant. For this reason, subsequent analysis on 
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the X Line data in this chapter was carried out on the transformed data, unless 

otherwise stated 

Table 5.2: Means, within line standard deviations and coefficients of variance for 
6-week body weight calculated from the last 5 generations of the X Line data. 

] 

Untransformed Loge  transformed 

] 

Low Lines High Lines Low Lines High Lines 

Mean(g) 24.3 15.9 3.18 2.75 

Standard Deviation(g) 3.56 2.22 0.147 0.142 

Coeff. of variation(%) 0 4.6 5.2 

Subline B of the Low lines (marked * in Figure 5.1) shows a markedly different 

response from the other Low lines, being at one point (around generation 10) about 

1 s.d. lower than the other Low lines. Although the difference between subline B 

and the other lines reduced later on, at the end of the experiment there is still a 

clear difference between this subline and the others. It therefore seems probable 

that the effect is caused by a rare event which occurred only in that line such as 

a mutation or a rare recombination. 

A further notable feature about Figure 5.1 is that while the response for the 

High lines appears to be almost linear over time, the Low lines show a sigmoidal 

response curve with little response until generation 7, increasing rapidly until 

generation 14 and then slowing down again for the remainder of the experiment. 

Linear regressions were fitted to the loge transformed line means separately for 

generation ranges 0-4, 5-9, 10-14 and 15-20 for the High and Low lines to show 

how the response changed over time. The results of this are shown in Table 5.3. 

The High lines respond strongly at the beginning and end of the experiment, but 

show little response in the middle section. In contrast the Low lines show little 

response at the beginning and end of the experiment, but respond strongly in the 

middle stages. It is not clear what caused this change in response, although the 

changes in variance discussed in section 6 are likely to be connected with it. This 

will be discussed more fully in Section 6. 
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Table 5.3: Linear regression coefficients of the log of the selection response on 
generation, fitted to generations 0-4, 5-9, 10-14, 15-20 separately. 

Line 
Generation 

Range 
Regression 
Coefficient S.E. 

0-4 0.0269 0.0114 
High 5-9 0.0099 0.0081 

10-14 0.0023 0.0081 
15-20 0.0136 0.0061 

0-4 0.0021 0.0130 
Low 5-9 -0.0102 0.0092 

10-14 -0.0273 0.0092 
15-20 -0.0021 0.0069 

Response calculated from the mean body weight averaged within line (High, Low & 
Control), generation and sex. The regression was calculated using the natural log of 
the response. S.E. = the standard errors of the regression coefficients. 

5.3 Sexual dimorphism 

If males and females are considered separately, differences in the selection re-

sponses are seen. In the control lines, both sexes show a slight decrease in body 

weight over the course of the experiment (a further indication of directional dom-

inance). In the selected lines, the males show a roughly equal response in both 

directions, but the females show significantly less response to downwards selec-

tion. The two sexes were therefore converging since the males weighed more than 

the females. This effect was still apparent with log transformed data. Sexual 

dimorphism (measured as the ratio of male to female weights) decreased over the 

course of the experiment in the Low selected lines (Figure 5.2) as shown by the 

regression of male/female weight on generation, but did not change much in the 

other two lines (Table 5.4). Note that the regression was conducted assuming 

that errors between generations were not correlated, which is not the case. The 

t-ratios quoted in Table 5.4 are therefore likely to biased upwards. 

A similar, although less strong, effect was reported by MacArthur (1944a) 

from a selection experiment on mice where in low selected lines the response in 
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Figure 5.2: Sexual dimorphism measured by the ratio of male mean weight to 

female mean weight 

females was proportionally less than that in males. A possible explanation for 

this effect is that fertility in females may depend more strongly on body weight 

than it does in males due to generally higher physiological costs of reproduction 

in females. This could cause the females to respond less strongly to downwards 

selection than males if, for example, the smallest females were unable to produce. 

offspring. 

Another possible scenario to explain the effect is if the selection intensity in 

females was less than that in the males. This could arise if there were on average 

less females in a litter than males. If the selection intensities are examined, 

however, it can be seen that there is little difference between the males and 

females for either High or Low selected lines (Table 5.5). The selection intensity 

for the High lines is larger than that for the Low lines, this is due to the larger 

litter sizes in the High lines (Section 5.4). 
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Table 5.4: Linear regression of sexual dimorphism (male weight / female weight)f 
on generation fitted for High, Low and Control lines separately. 

Regression 
Line Coefficient t-ratio 

High -0.000787 —1.58 

Low -0.003370 _6.78* 

Control -0.000009 —0.01 

f Weights are the mean body weights for each sex averaged within line (High, Low & 
Control) and generation. * = significant at the 0.1% level; the remaining t-values were 
non-significant at the 5% level. The t-ratios were calculated assuming no correlation 
between errors. This would not be the case, so the t-ratios are likely to be biased 

upwards. 

5.4 Litter Size 

The mean litter size at weaning is shown in Figure 5.3. It can be seen that the 

average litter size in the High lines stays more or less constant at around 8, but 

in the Low and Control lines it decreases to around 5 and 6 respectively. The 

response of the Control lines indicates that at least some of the reduction could 

be due to inbreeding depression, although there is really too little data from 

the Control lines to allow any firm conclusions to be made. It seems probable 

that there is a positive correlation between body weight and litter size, but 

the reduction in litter size due to inbreeding may mask the expected correlated 

response in litter size to selection on body weight. 

Table 5.5: Average selection intensities calculated separately for males and 
females in the High and Low selected lines. 

r o 
High 
Low 

1.05 
0.86 

1.05 
0.83 
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Figure 5.3: Mean litter size at weaning for the High, Low and Control lines 

5.5 Realized heritabilities 

Estimates of realized within family heritability were calculated from the regression 

of cumulative selection differential on response using the divergence between pairs 

of Low and High selected lines. A pooled estimate was also obtained using 

the means of all replicate lines. This allowed the comparison of the estimated 

standard error from the pooled regression analysis, and the empirical standard 

error obtained from the replicate estimates. Standard errors from the regression 

analyses were estimated assuming independence of the errors of the observations. 

The selection differentials were calculated from the mean within-sex within-litter 

deviations using the untransformed data. Realized within family heritabilities 

(Table 5.6) give a mean estimate from all replicates of 0.2 with an empirical 

standard error of 0.008. The pooled estimate (achieved by analysing all replicates 

together) was again 0.2 with the standard error of the regression being 0.007. This 

is slightly lower than the standard error of the mean estimate, but underestimates 
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Table 5.6: Realized heritabilities calculated from the regression of response 
against cumulated selection differentials for the divergence between pairs of lines. 

Rep. Pair b S.E. 

A 0.191 0.016 
B 0.215 0.021 
C 0.201 0.018 
D 0.230 0.014 
E 0.219 0.017 
F 0.242 0.014 

Pooled 0.220 0.0074 

Meant 0.216t 0.0077f 

b = regression coefficient. S.E. = standard error of regression except where marked f. 

f Arithmetic mean of regression coefficients among replicates with empirical standard 
error. 

the standard error of the heritability estimate since it assumes independence and 

homogeneity of the residuals (Hill, 1972). 

5.6 REML analysis of heritability of 6-week 

weight 

Further analysis of the heritability of body weight was undertaken using the 

derivative-free REML packages of Meyer(1988; 1989). This has the advantage 

over the realized heritability analysis described earlier of using information from 

the covariance between relatives as well as from the selection response to obtain 

an estimate of heritability. By including the numerator relationship matrix into 

the REML equations, the method can also account for the expected loss in 

additive genetic variance due to inbreeding and selection (Sørensen and Kennedy, 

1983; 1984). An animal model was fitted to the data with generation, sex nested 

within line and generation, parity and litter size as fixed effects, and litter as 

an additional random effect uncorrelated with the main random effect. Sex was 

fitted as a nested effect because of the change in sexual dimorphism in the Low 



Table 5.7: REML estimates of variance components and genetic parameters using 
log transformed data. 

Var. Components x 10 

ui2  
(s.e.) (s.e.) (s.e.) (s.e.) (s.e.) (s.e.) 

3.31 4.38 4.49 0.27 0.36 0.37 
(0.15) (0.18) - (0.01) (0.01) - 

lines over the course of the experiment discussed previously (section 5.3). The 

model was 

y=Xa+Z/3+WA+e 	 (5.1) 

where y is the vector of observations, a is the vector of fixed effects, 3 is the 

vector of additive genetic values, A is the vector of litter effects, and e is the 

vector of environmental effects; a, A, and e have mean zero and are uncorrelated. 

Var(/3) = Aa, where A is the numerator relationship matrix and or  is the initial 

additive genetic variance, Var(A) = Io. 2  where I is the identity matrix and a 2  is 

the litter variance, and Var(e) = Io 2  where a is the environmental variance. X, 

Z, and W are incidence matrices. Phenotypic variance = a = o + 0,2  + o, so the 

heritability = h2 = o/o, and the litter or 'c-squared' coefficient = 	= 

All REML analyses used log e  transformed data to account for changes in variance 

due to differences in means between Low and High selected lines as discussed 

earlier. Standard errors of cr and o 2  were estimated using the second derivatives 

of a polynomial approximation to the joint likelihood function of or and cr. 

The results of the REML analysis are shown in Table 5.7. The heritability 

estimate is larger than the mean realized estimate and the standard error is slightly 

higher (0.012 compared to 0.008). The more complex model used for the REML 

analysis may account for the lower precision of the heritability estimate. The two 

heritability estimates are not of the same quantity since the realized heritability 

is an estimate of within family heritability (h) whilst the REML estimate is of 

the individual heritability (0). To compare the estimates the REML heritability 
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estimate must be converted into the within family estimate using the following 

formula (Falconer, 1989): 

h2  = h(1 - t)/(1 - r) 	 (5.2) 

where r = the relationship between family members (1/2 in this case) and t = 

the intra-class correlation of family members = h2  + c2 . As t 0.5 using the 

estimates obtained from the analysis, h2  and h, are almost identical. 

5.7 Discussion 

The main aim of this initial analysis was to discover whether there was substantial 

genetic variance present in the population and compare the results against earlier 

selection experiments. There were grounds for expecting there to be little genetic 

variation present in the X Lines because they were started from the cross between 

only two lines. Falconer (1973), however, used a large number of lines to form 

his original crosses so his selection lines would have had a much 'broader' genetic 

base. In fact a substantial selection response was achieved for the X Lines, and 

the estimate for h2  of 0.27 that was obtained, although lower than Falconer's 

(1973) estimates of realized heritability (0.37), was still quite high. Since the two 

founder lines for the X Lines were so distinct (Section 4.1.2), however, the cross 

between them would contain a substantial proportion of the variance of the whole 

population, so the result is not as suprising as it at first might appear. 

There were several unusual aspects to the results discussed in this chapter, 

the first of these being the odd behaviour of subline B of the Low lines which for 

most of the experiment is almost 1 s.d. below the other Low lines. There is no 

information available yet to determine the cause of this; possible causes would be 

a rare recombination event or a new mutation. It is not possible to distinguish 

between these possibilities simply on the basis of the data used here. It would 

theoretically be feasible to search for differences in molecular markers between 

subline B and the other lines to see if there was a section of chromosome associated 
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with this difference. Unfortunately there are likely to be many differences between 

the sublines so finding one associated with the weight difference would be very 

difficult, especially since the sublines are no longer available for further study. 

The second unusual feature is the change in sexual dimorphism seen in the 

low lines, with the males responding more rapidly to downwards selection than 

the females so that the male and female means become more similar. Possible 

causes for this have been discussed in this chapter, but no further work on this 

phenomenon has been carried out. The main concern was how to account for this 

effect when performing more sophisticated analyses, this being done by fitting sex 

as a nested effect within generation and line, so allowing the effect of sex to differ 

between generations and selection lines. 

The third peculiarity is the non-linear response curve shown by the Low lines, 

indicating that the response to selection accelerated over the middle portion of 

the experiment. This could indicate an increase in genetic variance for some 

reason over that period. There is, however, a problem with this dataset in that it 

is difficult to separate selection response from environmental change. In theory, 

the Control line should allow this separation, but the relatively small number of 

animals in the Control line means that not too much weight can be placed on this 

information. It is not really possible, therefore, to discount environmental change 

as a factor in the changing rate of response. 

5.8 Conclusions 

The anomalous behaviour of subline B of the Low lines, and the apparent changes 

in the rate of selection response, both indicate a divergence from the predictions of 

the infinitesimal model. Chapter 6 presents methods to modify the infinitesimal 

model allowing changes in variance can be estimated. If estimates of variance 

change are obtained that are significantly different from zero, then this will 

provide firmer evidence of the discrepancies between the X Lines dataset and the 
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infinitesimal model predictions. It is not possible to make firm conclusions about 

the causes of the discrepancies. It is likely that there are QTL which individually 

have a medium to large effect on body weight segregating in the population, and 

it is due to this fact that the infinitesimal model can not adequately explain the. 

data. Chapters 7 and 8 describe methods for the estimation of the effects and 

positions of some of these QTL. 
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Chapter 6 

The Analysis of Changes in Variance 

Over Time Using REML 

6.1 Introduction 

In Chapter 2 the estimation of changes in variance components under selection 

was discussed as a means of detecting deviations from the infinitesimal model. 

This chapter describes a series of modifications to Beniwal et al.'s (1992a) method 

(Section 2.2.2) to produce estimates of the changes in variance over time. The 

basis of Beniwal et al.'s (1992a) method was that the covariance matrices for the 

random effects were split into two blocks allowing separate variance components 

to be fitted to each block simultaneously. The first change to this was that 

the analysis was extended to allow the splitting of the data into an arbitrary 

number of blocks. The second modification was to allow all of the variance 

components within a block to change continuously over time by, in effect, fitting 

a linear regression on generation to all variance components. This is simpler to 

use than Wray's (1990) method (Section 2.3.2). With Wray's (1990) method a 

continuous change in the additive genetic variance per generation can be modelled, 

but the amount of change has to be set before generating the additive genetic 

covariance matrix. To estimate the degree of variance change, therefore, requires 

multiple evaluations of the covariance matrix. With the method described here 
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the covariance matrices have to be evaluated only once, making the procedure 

more efficient. The other drawback of Wray's (1990) method is that it is only 

applicable to the additive random genetic effect, whereas the method described 

here can be used for any random effect. 

The method allows nesting of the regression within genetic groups so, for 

example, changes in variance can be estimated separately for High and Low 

selection lines. This is important because in many cases where the infinitesimal 

model does not hold (i.e., if there was non-additive genetic variance present), the 

size and direction of any changes in variance would be affected by the direction 

and strength of selection and so could differ between the selection lines. 

The data from the X Lines were analysed using these methods. Changes of 

variance were estimated and compared against the predictions from the infinitesi-

mal model and the observed variance changes then used to make inferences about 

the effects of the genes controlling the trait. 

6.2 Method 

The method described here is an extension to the animal model allowing (a) the 

fitting of separate variance components to blocks of animals and (b) variance 

components to change continuously over the course of the experiment (in effect 

fitting the variances as regressions on generation). Parts (a) and (b) can easily be 

combined so that the variance component regressions are nested within blocks, 

allowing the variance to change separately in each block. For the analysis of 

the X Lines the blocks refer to the different selection directions, i.e., variance 

components were fitted separately to High and Low selected lines. 

Beniwal et al. (1992a) described fitting separate variance components to 

two blocks of animals. It is straightforward to extend this so that a larger 

number of blocks can be fitted. The general method for this is to split the 

(co)variance matrices for the random effects that are to be fitted separately into 
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the contributions from the different blocks. For example, let V be the covariance 

matrix for a random effect so the Cholesky decomposition of V can be written 

as V = TDT' where D is diagonal and T is lower triangular. Each element of 

D then corresponds to a level of the random effect, so D can be partitioned into 

a set of sub-matrices according to which block each random effect level is in. If 

there were n blocks then V can be written as follows: 

D 1 	0 	... 	0 

o D2  ... 	0 
V=T 

	
T' 	 (6.1) 

o 	o ... D.)  

Then if Wi is an incidence matrix such that the element w,, = 1 if random effect 

level j is in block i and 0 otherwise and o is the variance component for the ith 

element: 

Variance of random effect = > T(WD)T'o. = 
	

V. 	(6.2) 

When this procedure is applied to the main animal effect, the separate covariance 

matrices for each block can easily be calculated using a slight modification of the 

'normal' method for calculating the A matrix. In this, the diagonal elements of A 

are found using a procedure developed by Quaas (1976) and used to calculate the 

contributions of each animal to the off-diagonal elements of A using the method 

of Henderson (1976). In the modified method, a separate covariance matrix is 

calculated for each block in turn with the calculation being carried out as in the 

original method except that an animal's contributions are added to a given matrix 

only if it belongs to the relevant block. 

The method can also be applied to other random effects if the covariance 

matrix can easily be split up. If it is assumed that there is no correlation between 

levels of the random effect, i.e., the covariance matrix is proportional to the 

identity matrix, then the matrix for each block is simply a diagonal matrix which 

is only non-zero where the corresponding levels of the random effect belong to a 

given group. Applying (6.2) to this produces a modified covariance matrix for the 
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random effect which is diagonal with each element being equal to the variance 

component for the block corresponding to that level of the effect. For example 

the covariance matrix might look something like: 

cr, 0 0 ... 	0 0 

o o 0 ... 	0 0 

o 0 2 ... 	0 0 
V= (6.3) 

o o 0 ... 	72  0 

o o 0 ... 	0 o 
Vn 

This method allows the comparison of variance components in different lines 

and/or different generations. The data were scored as being from Low or High 

lines, and from Generations 0-4, 5-9 7  10-14, or 15-20. Analyses were then 

carried out to investigate differences in variance components between Low and 

High selected lines, different generation intervals, and the interaction between 

these. For each variance 'block', separate values for the additive, litter, and 

environmental variances were fitted. 

The interpretation of the different variance estimates is straightforward when 

considering a random effect which is proportional to I. In this case, the informa-

tion for the estimates come from records on animals within a given block. The 

situation is more complicated when the random effect has a non-diagonal covari-

ance matrix, as is the case with the additive genetic effect. When the additive 

genetic matrix is not split up then the estimate of o 2  obtained is an estimate of 

the variance in the base population. When the covariance matrix is split up then 

the same principle holds, the estimates obtained are still of the base population 

variance. If separate variance components are fitted to generations 0-9 and 10-

20, for example, then both components will be estimates of the base population 

variance, i.e., the variance component for the block containing generations 10-20 

is an estimate not of the variance in generation 10 but the variance in generation 

0. Analysing a dataset which behaves completely as predicted by the infinites-

imal model with this method would be expected to produce the same variance 
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component estimates for each block. 

Part (b), where the variance is allowed to change continuously, was suggested 

by R. Thompson (Roslin Institute, Edinburgh). It requires the calculation of the 

standard covariance matrix plus an additional matrix for each order of regression 

fitted, for example, V = Vo  + by1  for a linear regression. In this case, V o  is 

equal to the normal additive covariance matrix and V 1  is equal to TDRT' where 

Vo  = TDT' and Ris a diagonal matrix with the ith element equal to 1/ri, r 

being the regression variable for level i of the random effect. 

When applied to the main animal effect, this method can again be simply 

incorporated into the methods of Henderson (1976) and Qua.as (1976). When 

calculating the 'regression' covariance matrix the normal procedure is followed 

except that the diagonal elements of A are divided by r (or r' for the nth order 

regression matrix) before calculating the contributions of an animal to the matrix. 

As before, the procedure is simpler when the random effect in question is assumed 

to be proportional to the identity matrix. The linear regression covariance matrix 

for such a case would look like: 

0 0 ... 	0 0 

o o/r1  0 ... 	0 0 

o 0 a2 /r2  
1) : 

 

... 	0 0 
(6.4) 

o 0 0 ... 	o/r 0 

o 0 0 ... 	0 o/r 

The interpretation, again, is simplest when the covariance matrix is diagonal. 

In this case it is assumed that the variance of the effect changes linearly with some 

x variable. With the additive genetic effect the principle remains the same, the 

additive genetic variance after accounting for changes in variance due to inbreeding 

and the Bulmer effect is assumed to change linearly with the x variable. If the 

infinitesimal model holds for a given dataset, then the expected value of the 

regression coefficient is zero. 
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The two methods described above are complementary and can be applied 

together. In the case of the X Lines analysis this allowed the fitting of separate 

variance changes to the High and Low lines. A further refinement was to fit a 

common 'intercept' variance to all lines with separate 'gradient' variances being 

fitted to the High and Low lines. This is appropriate since the lines started 

from a common base population so the initial variances for all lines must be 

the same. The analysis was performed only fitting a linear regression to the 

variance components. This was due to computational requirements and because 

the regression coefficients are highly confounded making higher order regression 

analysis difficult. For each random effect thus treated, therefore, three variance 

components were fitted, a common intercept variance at generation zero (the F 2 ) 

and separate variances for the High and Low lines at generation 20. The additive, 

common environment, and environmental variances were all treated in this way. 

The analysis was implemented by modifying the DFREML code of Meyer 

(1988). This involved modifying three main areas of the original code: 

• The section which calculated the inverse of the A matrix was extended to 

allow the generation of the additional additive covariance matrices required. 

• The setting up of the mixed model equations was modified to allow the 

fitting of multiple equations per level of random effect and to handle the 

multiple variance components per random effect. 

• The calculation of the likelihood was extended to account for the additional 

variance components. 

The analysis involved fitting a large number of variance components so it was 

not feasible to estimate standard errors for all terms simultaneously. For the 

regression model the standard errors for the variance components were estimated 

using quadratic approximations to the individual profile likelihoods (Meyer and 

Hill )  1992). 



Another problem of fitting so many terms into the analysis was that the 

maximization procedure used (the downhill simplex method of Nelder and Mead 

(1965)) became somewhat unreliable, displaying a tendency to 'stick' at sub-

optimal solutions. This could be resolved by restarting the process from the 

best point found until this resulted in no further improvement to the likelihood. 

Note that if the likelihood surface is truly multimodal then this method can only 

ensure that a local maximum has been reached. This is a general problem in 

maximization and there is no simple solution; the easiest procedure is to start 

off the maximization procedure from many different starting points and pick the 

best solution chosen, but this is very time consuming and not guaranteed to work 

(Fletcher, 1987). 

A simulation test of the regression method was performed by analysing 

simulated data produced by the program described in 4.3.1 using (a) a large 

number (16384') of unlinked genes of equal effect (i.e., as an approximation to 

the infinitesimal model) and (b) a smaller number of genes (32). In both cases the 

initial gene frequency was set to 0.5. For case (a), the simulated datasets should 

produce zero estimates for the additive genetic variance regression coefficient, 

since the dataset should closely follow the predictions of the infinitesimal model. 

For case (b), however, the limited number of genes simulated should produce to 

a larger reduction in ti over time (due to changes in gene frequency) that can be 

accounted for under the infinitesimal model, resulting in a negative estimate for 

the regression coefficient. 

The simulated data structure closely followed the real experiment except that 

a litter effect was not simulated or estimated to reduce the computing costs. 

The base population for the simulation was an F 2  formed from a cross between 

two inbred strains. The F 2  was then split into 12 selection lines, 6 which were 

selected upwards and 6 selected downwards for 20 generations. Within each line 

'The number of genes are in multiples of 32 because the simulation program uses 1 bit to 
represent each locus and can process 32 loci simultaneously on 32-bit word machines. It is 
therefore more efficient to set the number of genes to a 'round' number. 
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there were 8 full-sib families/generation and 8 individuals/family. The best 2 

individuals from each family were selected. For all the simulations, the additive 

variance o 2  was set to 1.0 and the environmental variance o was set to 3.0 (these 

being close to the actual values derived from the data). For both cases (a) and 

(b) the simulation tests were replicated 10 times and the mean and empirical 

standard error of the replicate tests were calculated. 

6.3 Results 

6.3.1 Simulated data 

The means and empirical standard errors from 10 replicates of the simulation 

analysis using (a) 16384 genes and (b) 32 genes are given in Table 6.1. For both 

cases the estimated initial values for the variance components were close to the 

Table 6.1: REML Estimates of the additive and environmental variance compo-
nents from simulate4 data using (a) 16384 additive genes and (b) 32 additive 
genes fitting linear regressions to both variance components nested within lines. 
The results given are the mean of ten replicates along with the empirical standard 

errors. 

Initial Low Line High Line 
Values Increments Increments 

a.2 

(s.e) (s.e) (s.e) (s.e) (s.e) (s.e) 

1.02 2.96 0.00 0.04 0.01 0.02 
1638 

(0.02) (0.02) (0.04) (0.03) (0.04) (0.05) 

1.01 3.02 —0.27 —0.04 —0.23 0.02 
32 

(0.03) (0.02) (0.05) (0.04) (0.07) (0.04) 

The simulated values for the components are a 2 = 1.00 and ore  3.00. o should not 

change over time but a 2  should show a decrease when only a few genes are simulated 
due to changes in gene frequency. Note that changes in a due to inbreeding and the 
Bulmer effect are accounted for by inclusion of the A matrix into REML. 
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simulated values and the changes in or were not significantly different from zero. 

There is a difference between the two cases, however, with regard to the change in 

aa  which was not significantly different from zero for case (a) but was significantly 

less than zero for case (b), indicating a reduction in o greater than would be 

predicted under the infinitesimal model. This is to be expected with a small 

number of additive genes affecting the trait because there will be changes in gene 

frequencies away from 0.5 under selection leading to a reduction in o, which is 

at a maximum when gene frequencies are at 0.5. 

6.3.2 Experimental data - fitting variance 'blocks' 

The estimates obtained when the data are divided into 2 blocks for the Low & 

High selected lines are shown in Table 6.2. There are differences between the 

variance estimates for the different lines. The additive variance estimate in the 

Low lines is over twice that in the High lines, whereas the litter variance in the 

High lines is 16% higher than that in the Low lines. The environmental variance 

is over 30% higher in the High lines than the Low lines. 

Table 6.2: Estimates of variance components and genetic parameters for High 
and Low lines using log transformed data. 

Line. 
Variance Components x iO 

h2 -2 

Low 3.50 3.94 5.90 13.34 0.252 0.295 

High 1.56 4.59 4.39 10.55 0.148 0.435 

Variances estimated using the DFREML program fitting separate additive, litter, & 
environmental variances to the Low and High lines. 

The estimates for the analysis with separate variance components fitted to 

Generations 0-4, 5-9, 10-14 and 15-20, taking the High and Low lines together are 

shown in Table 6.3. It shows differences in all the variance component estimates 
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between the different generation ranges. The additive variance estimates differ 

between the ranges, with an initial decrease from the original (generation 0-4) 

estimate shown in generations 5-9, followed by a large increase to over twice 

the original estimate in generation 10-15, followed by a decrease almost back 

to the original estimate. The litter variance shows a decline over the course of 

the experiment with the estimate for generations 15-20 being 86% that of the 

generation 0-4 estimate. The environmental variance does not change much until 

the last quarter of the experiment when it increases by 45% 

Table 6.3: Estimates of variance components and genetic parameters for different 

generation ranges using log e  transformed data 

Gen. 
Variance Components x10 3  
'2 
0 a 

'2 '2 ° e 
'2 

0-4 2.97 4.74 3.96 11.67 0.255 0.406 

5-9 2.02 4.74 3.96 11.67 0.210 0.377 

10-14 6.67 4.48 3.98 15.11 0.441 0.297 

15-20 3.19 4.12 5.76 13.08 0.244 0.315 

Variances estimated using the DFREML program fitting separate additive, litter, & 

environmental variances to generations 0-4, 5-9, 10-14, & 15-20 

The results of splitting the data into 8 blocks so that each of the High and 

Low lines are split into an 4 blocks of generations 0-4, 5-9, 10-14 and 15-20 are 

shown in Table 6.4. The Low lines show a large increase in ora  over the first three 

quarters of the experiment, after which it appears to decrease. This change in or 

can also be inferred from Table 5.3, which shows that the response of the Low 

lines follows a similar pattern. The High lines also show a change in ti which 

again follows a similar pattern to the changes in rate of response noted in Table 

5.3, with c being highest at the beginning and end of the experiment, and lowest 

during the middle sections. The other large change in the variance component 

estimates occurs in the Low lines where o shows a large increase at the end of 

the experiment, with the estimate for generation 15-20 almost double those for 
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the other blocks. The High lines show only a slight increase in o. Although there 

are differences between the o- estimates between lines and generation ranges, a 

pattern to the differences is not readily apparent. 

Table 6.4: Estimates of variance components and genetic parameters for different 
lines and different generation ranges using log e  transformed data. 

Variance Components x10 3  
__________ ___________ __________ 2 ___________ 

a0 01; 

0-4 3.68 4.40 3.92 12.01 0.307 0.367 

4.27 3.31 3.92 11.50 0.371 0.288 
Low 

10-14 11.84 4.82 3.95 20.62 0.574 0.234 

15-20 2.71 3.50 7.85 14.06 0.193 0.249 

0-4 2.52 5.02 3.92 11.47 0.220 0.438 

0.30 3.86 3.92 8.08 0.037 0.478 
L° 

10-14 3.30 4.46 3.92 11.69 0.283 0.382 

15-20 4.35 4.38 4.10 12.83 0.339 0.341 

Variances estimated using the DFREML program fitting separate additive, litter, & 

environmental variances to generations 0-4,5-9, 10-14, & 15-20 in the High & Low 

lines 

6.3.3 Experimental data - fitting continuous variance 

changes 

The results from the analysis of the experimental data fitting linear regression 

coefficients to all variance components (additive, common environmental and 

environmental) nested within the High and Low lines are shown in Table, 6.5a. 

The standard errors presented are calculated using a quadratic approximation to 

the profile likelihood for each component. The main changes are found in the 

Low lines where there is a substantial change in all variance components over the 

course of the experiment. The phenotypic variance in the Low lines increases from 

10.6 x iO to 16.5 x iO; this increase is due to increases in both the additive and 
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Table 6.5: REML estimates of variance components and genetic parameters using 
log transformed data fitting (a) linear regressions to all variance components 
nested within lines and (b) as previous analysis but omitting subline B of the 
Low line. 

Var. Components x 10 

(s.e.) (s.e.) (s.e.) (s.e.) (s.e.) (s.e.) 

(a) Heterogenous variance analysis - all lines 

Initial 
Values 

2.69 
(0.26) 

4.55 
(0.13) 

3.33 
- 

0.25 
(0.02) 

0.43 
(0.00) 

0.32 
- 

Low Line 
Incrementst 

2.66 
(1.15) 

-1.26 
(0.72) 

4.53 
(0.53) 

0.07 
(0.07) 

-0.23 
(0.04) 

0.16 
(0.05) 

High Line 
Increments 

0.96 
(0.84) 

-0.26 
(0.72) 

0.76 
(0.37) 

0.05 
(0.06) 

-0.07 
(0.04) 

0.02 
(0.04) 

(b) Heterogenous variance analysis - omitting Low Subline B 

Initial Values 2.49 4.65 3.53 0.23 0.44 0.33 

Low Inc.f 1.01 -1.08 3.98 0.01 -0.19 0.18 

High Inc. 1.94 -0.48 0.20 0.13 -0.10 -0.03 

f Increments are the estimated differences between components at the start and end of 
the experiment. Variances are assumed to change linearly between their starting and 

finishing values. 

environmental variance with the litter variance, by contrast, decreasing. When 

the variances are considered as proportions of the total variance at the beginning 

and end of the experiment, h2  increases from 0.25 to 0.32 while c 2  decreases 

from 0.43 to 0.20. These results indicate that the response to selection in the 

Low lines should increase over time due to the increases in h2  andc, and the 

observed response (Figure 5.1) does support this, with the Low lines showing an 

acceleration of response over the middle section of the experiment. The analysis 

was repeated omitting subline B of the Low lines (which showed a very different 

response from the other sublines; Table 6.5b). The Low lines show a smaller 
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increase in o than in the previous analysis while the High lines show a larger 

increase, although the differences between the analyses are not significant. 

6.4 Discussion 

A significant increase in additive and environmental variance under selection was 

detected in the low selected lines by both the discrete and continuous variance 

change methods, a result contrary to the predictions of the infinitesimal model. 

There are several possible causes for this increase. It has been noted before 

that inbreeding can result in a reduction in the capacity of organisms to regulate 

developmental processes. This can lead to inbred lines being more variable than 

the outbred parental lines (Maynard Smith, 1989). Most of the increase in variance 

was 'attributed' to an increase in environmental variance. This does not, however, 

necessarily mean that the increase is mainly non-genetic but rather that it is non-

additive genetic in nature. Genetic variance changes that do not fit the model 

of a linearly increasing additive variance may be erroneously partitioned into the 

environmental or litter components. Increases in genetic variance could be caused 

by new mutations, non-additive gene action (i.e., dominance or epistasis) and the 

breakdown of linkage disequilibrium. These possibilities are discussed below. 

Increases in additive genetic variance have been reported in small populations 

undergoing random drift where the infinitesimal model would predict a decrease 

(Bryant and Combs, 1986). A relevant example of this is a study (Rahnefeld 

et al., 1963) of a selection experiment in mice using a cross between two unspec-

ified inbred lines as the foundation population. When the additive variance in 

individual generations was estimated using the average value obtained from the 

sire component and parent-offspring regressions they found a slight (but non-

significant) increase over the course of the experiment. 

The analysis presented here shows that the infinitesimal model cannot ade-

quately explain the results of the X-Line experiment. One possible alternative 
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model would be a trait which is controlled by a relatively few genes. Simply 

reducing the number of genes in the model, however, leads to a poorer fit since 

if gene action is assumed to be exclusively additive then such a model predicts 

that the additive variance should decrease under selection due to changes in gene 

frequency away from 0.5. This is shown by the simulations using 32 genes de-

scribed earlier. Several studies have reported decreases in additive variance under 

selection (Meyer and Hill, 1991; Beniwal et al., 1992a), which is more in line with 

what would be expected if the trait was largely under the control of a few additive 

genes. 

If there was some directional dominance in gene action, as indicated by the 

hybrid vigour shown in the F 1  generation, then this could lead to an increase 

in variance under selection because the maximum genetic variance is no longer 

when the gene frequency is at 0.5. Under this model, however, whilst selection in 

one direction would produce a rise in genetic variance, selection in the opposite 

direction would yield a decrease in variance faster than that under a purely 

additive model, a pattern of variance changes not seen in this study. 

Interaction between rather than within loci can also increase additive variance 

as frequencies shift from 0.5. If a population experiences a bottle neck and 

is then maintained with a small population size so that gene frequencies alter 

under drift, the additive variance can increase substantially for many generations 

(Goodnight, 1988). This can be explained by an epistatic model of gene action 

since epistatic variance is at a maximum at intermediate gene frequencies. As 

genes become fixed by drift or selection, the epistatic variance is converted into 

additive variance. If this is enough to compensate for the loss of initial additive 

variance caused by genes approaching extreme frequencies then the additive 

variance could increase under selection in both directions. 

An increase in genetic variance can also be caused by a breakdown of linkage 

disequilibrium between pairs of loci of opposite effect. When the genes show 

complete association (i.e. the same alleles at both loci always occur together), 
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the variance due to the gene pair will be proportional to the square of the sum 

of the effects of the two genes (assuming additivity), whereas if the genes are not 

associated then the variance due to the pair will be proportional to the sum of 

the squares of the effects of the two genes. If the effects of the genes oppose each 

other then the variance due to the genes with total linkage disequilibrium will be 

less than that with no disequilibrium. Since the F 1  population is in total linkage 

disequilibrium, as the experiment proceeds this should break down, potentially 

leading to an increase in genetic variance. The size and duration of any increase 

are dependent on the degree of linkage; if the genes are tightly linked then a small, 

gradual increase will result and if the genes are loosely linked or unlinked then a 

large, but short lived, increase will occur. 

The main problem with this model is that adjacent genes must be in repulsion 

(having opposing effects). For example, in the simulation described earlier with 

16384 unlinked additive genes, the parental lines were set up with alleles assigned 

randomly to each parent. In this situation there was no change in additive variance 

apart from that predicted by the infinitesimal model, so it is not enough for 

and '-' alleles to be assigned randomly, rather they must be arranged as 

- + - + - +-' etc. A possible mechanism for achieving this is stabilizing 

selection in the parental lines because if an allele becomes fixed at one locus then 

there will be selection for a 'compensatory' allele at another locus to 'balance 

out' the effect of the first allele so that the overall effect of the chromosome is 

minimized (Mather, 1941; Lewontin, 1964). The genes either have to be tightly 

linked, however, or the selection very strong for the gene combinations to depart 

much from a random arrangement (Wright, 1969). 

A further problem is that with this experimental design, most of the initial 

linkage disequilibrium will disappear by the F 2 . Because the F 1  is not produced 

by random mating but by crossing between the two lines only, the disequilibrium 

between any genes that are unlinked will be zero in the F 2  rather than decaying 

at a rate of 0.5 per generation. This means that, again, the + and - alleles 

discussed in the above paragraph must be tightly linked for there to be more 
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than a very transient effect on the variance produced by the breakdown of linkage 

disequilibrium. 

Rather than the increase in variance being due to an unlocking of existing 

genetic variance through changes in gene frequency or loss of disequilibrium, 

mutation could lead to new genetic variance being generated. The anomalous 

response of subline B of the Low lines could be due to a new mutation arising in 

this line during the experiment. Since mutations would enter the population at 

low frequencies, favourable mutations could cause an increase in genetic variance 

as their frequency moved towards 0.5, although this increase would be offset by 

losses due to inbreeding. 

6.5 Conclusions 

It is clear that the infinitesimal model cannot adequately explain the behaviour 

of the X Lines. Phenotypic variance has increased significantly under selection in 

both directions, and several models are presented as possible candidates for this 

increase, although determining which is closest to the actual model is difficult. The 

directional dominance model does not predict the observed pattern of variance 

changes so is unlikely to be the main cause of the increase in variance. It is, 

however, likely to play a role since it is evident that some directional dominance 

is present. The linkage model seems unlikely given the stringent conditions that 

must be met for it to produce the effect seen here. An epistatic model has a 

more plausible explanation for how it could occur. Epistatic variance will be 

highest at intermediate gene frequencies because it is caused by the interactions 

between loci, and as loci become fixed there is less chance of interactions. In the 

inbred founder lines there should be no genetic variance of any type, however, 

crossing the lines restores some of the epistatic variance present in the ancestral 

population from which the lines were originally derived. Drift then acts to convert 

this epistatic variance into additive variance as described earlier. Mutation could 



also be an important source of new genetic variation, although this should have 

resulted in much divergence between the replicate lines and, apart from subline 

B of the Low lines, this divergence is not apparent. 

There is potential for further analysis that could shed light on the causes of 

the increase in variance seen here. The model of analysis could be extended 

to explicitly include non-additive and interaction terms into the estimation 

process. Also, marker frequencies measured at the end of the experiment could 

be used to obtain estimates of gene effects linked to the markers (Keightley and 

Bulfield, 1993) and interactions between genes, eventually producing a distribution 

of gene effects and interactions which may explain the variance increase. A Gibbs 

sampling based approach to estimating QTL effects using trait and marker data 

is described in the following chapter. 
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Chapter 7 

The Estimation of Linked QTL Effects 

with Mixed Inheritance Models using 

Gibbs Sampling 

7.1 Introduction 

This chapter presents a Markov Chain Monte Carlo (MCMC) method for the 

detection and mapping of one or more QTL in a population derived from an inbred 

cross. The population can be large, contain many generations of animals and have 

almost any structure (apart from the restriction that the initial population must 

be formed from a inbred cross). It is not assumed that the QTL contribute all of 

the genetic variance of the trait, instead a mixed inheritance model (2.3.3) is fitted 

which partitions the genetic variance into that due to the QTL and a residual 

additive polygenic effect. The method is suitable for analysing datasets where 

animals are recorded both for a quantitative trait and for one or more genetic 

markers. It is not necessary for all animals to have records, and the method 

can be applied to situations where, for example, there is marker information 

available only on a subset of animals. The genetic model is of one or more linkage 

groups each consisting of a number of linked QTL and markers (multiple linkage 

groups can be fitted with little difficulty since they can be treated independently). 
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Estimates of the effects and positions of the QTL with respect to the observed 

markers in the linkage group are obtained, as well as estimates of the polygenic 

additive and environmental variance components. The method is developed for 

several different discrete gene models, which can be distinguished by the numbers 

of linked genes in a linkage group. The simplest genetic model would be a single 

QTL with no markers linked to it. This is essentially a segregation analysis in 

which the position of the QTL is irrelevant, so the only quantities estimated are 

the QTL effects. The next level of complexity would be a linkage group with two 

genes, a single QTL and a linked marker. In this case it is not possible to map the 

QTL with respect to the marker (because it is not possible to tell on which side 

of the marker the QTL is), so instead the recombination frequency between the 

QTL and marker is estimated. The most complex discrete gene model that could 

be fitted would have multiple linked QTL and markers, however for the analyses 

described here only a single QTL was fitted. The marker positions were assumed 

to be known, and the QTL was allowed to 'float', so it could be anywhere along 

the chromosome. The effectiveness of the method is demonstrated by analysing 

simulated datasets, and in the next chapter the method is used to analyse the 

X-Line data to produce estimates of the effects of putative QTL for body weight 

linked to the coat colour loci brown and dilute. 

7.2 Method 

The method of analysing the data is to fit a univariate linear mixed animal model 

with the animals polygenic value fitted as a random effect and the QTL being 

fitted as fixed effects. Since, however, the QTL genotypes are unknown and must 

be inferred from the trait and marker data, the incidence matrix for the QTL 

effects is itself a parameter to be estimated. The model is therefore 

y=Xa+Z3+QA+e 	 (7.1) 
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where y is an (n x 1) data vector; X is the known incidence matrix of the fixed 

effects apart from the QTL (n x 1 where 1 is the number of levels of fixed effects); 

Z is the known incidence matrix for the polygenic (residual) additive effects (n x u 

where u is the number of animals); ct is the vector of fixed effects apart from the 

QTL (1 x 1); 3 is the vector of polygenic additive effects (u x 1); e is the vector of 

random residual effects (n x 1); Q is the unknown incidence matrix of the QTL 

effects (n x 2m where m is the number of QTL with each QTL having an additive 

and a dominance effect); and A is the vector of QTL additive and dominance 

effects (2m x 1). The model can easily be extended to allow additional random 

effects such as common environmental effects. 

The difficulty with using this model arises from Q being unknown. The 

maximum likelihood method to estimating the model parameters would be to 

find the configuration of all unknown parameters in the model (including Q) that 

maximized the likelihood of the observed data (both trait and marker data). 

Maximizing the likelihood with respect to Q, however, is extremely difficult 

due to the very large number of parameters (the number of genotypes to be 

estimated) and the large degree of dependency between parameters. As discussed 

in Sections 2.3.3 and 3.4, Gibbs sampling provides a simple method of sampling 

from the distribution of Q conditional on the observed data and on the other 

model parameters. The samples of Q from the Gibbs sampling process can 

then be used in a conventional mixed model analysis to obtain estimates of the 

other model parameters (Guo and Thompson, 1992; Guo and Thompson, 1994). 

An alternative approach is to use Gibbs sampling for the whole analysis (Janss 

et al., 1994b; Janss et al., 1994a), producing Bayesian estimates of the posterior 

marginal distributions of the parameters of interest. The method described here 

follows the second approach. 

Gibbs sampling is used to sample the 'missing data' (polygenic breeding values, 

the complete genotypic configuration (which is described in Section 2.3.3 and 

from which Q can be derived), gene positions, fixed effects, QTL effects and 

variance components) from their joint distribution conditional on the data, so that 
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estimates of any or all of these can be obtained. Note that the complete ordered 

genotype of each animal is estimated, i.e., the maternal and paternal alleles are 

estimated separately, so the source of each allele can be traced. This means 

that linkage phase is known, thereby simplifying the estimation of recombination 

frequencies. / 

Gibbs sampling requires that the conditional distributions of all parameters 

are known and can be sampled from. It is therefore necessary to specify these 

distributions and describe the sampling process. The conditional distributions can 

be obtained from the joint posterior distribution p(OIy) (where 0 is the vector 

of model parameters) by regarding all but the parameter in question as known. 

The joint posterior distribution itself is proportional to the product of the prior 

distributions of the parameters and the likelihood function. 

7.2.1 Prior distributions 

The prior distributions reflect what is known about the parameters before the 

analysis. For the method described here, the prior distributions for all effects 

were defined so that little or no prior information was used in the estimation 

i.e., 'naive' prior distributions were used (Wang et al., 1993). The fixed effects 

(including the QTL effects) were assumed to have a uniform prior distribution, 

so that all values were equally likely. 

p(a) x constant 	 (7.2) 

p(A) oc constant 	 (7.3) 

The polygenic values were assumed to be normally distributed about zero with 

variance Aa, where A is the numerator relationship matrix and cr is the 

polygenic additive variance. The residual effects were likewise assumed to be 

normally distributed about zero with variance Icr where 0,2  is the environmental 

variance. These are the same assumptions that are made in a 'classical' statistical 

analysis. The priors for the variance components are also assumed to be uniform 
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distributions. 

	

p()oc 

{o 	

if<O, 	
(7.4) 

constant if o 2 > 0. 

{ o 

if <0, (7.5) 

constant if a 2 ~ 0. 

For linkage groups with just two linked loci (a single QTL linked to one 

marker) the prior distribution assumed for the recombination frequency was 

uniform between 0 and 0.5. For linkage groups with more than two linked 

loci, the position of the QTL relative to any linked markers was assumed to 

be uniformly distributed. Since information on map positions derives from the 

observed recombination rate between loci, it was necessary to specify a mapping 

function to convert from recombination rates to map distances. Haldane's 

mapping function was used which assumes no chiasma interference. With this 

the expected recombination rate between two genes located d Morgans apart will 

be: 

	

r = 	(1 - 	 (7.6) 

The prior distribution of genotypes is uniform so that any genotype is equally 

likely, except in the case of F 2  individuals which are taken to be heterozygous at 

all loci, with all the '1' alleles for all F 2  individuals coming from one parent, and 

all the '0' alleles coming from the other parent. This comes from the definition 

of the F2  as being derived from a cross between two inbreds. This definition does 

not assume that the alleles with positive effects on the trait all come from one 

parent; the '1' alleles can be associated with either positive or negative effects. 

7.2.2 Posterior distributions 

The joint posterior distribution, as mentioned before, is proportional to the 

product of the joint prior distribution and the likelihood function and, following 
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Sørensen et al. (1994b), can be written as 

p(OIy) (_n/2  exp(_-j (y - Xa - Z/3 - QA)'(y - Xa - Z3 - QA)) 

()_u12 exp(_23FA_h,3)p(9J.)p(sI.), 

(7.7) 

where c is the ordered genotype of all animals in the pedigree and r. is the 

vector of map positions of all QTL and markers. p(XI.) refers to the full 

conditional distribution of X. The full conditional posterior distributions for 

a given parameter can be derived from (7.7) by regarding all other parameters as 

fixed. 

From (7.7), the conditional posterior distribution for a will be a multivariate 

normal distribution with a mean vector equal to: 

	

& = (X'X)'X'(y - QA - Z/3), 	 (7.8) 

with variance 

V(&) = (X'X) 1 0. 	 (7.9) 

The conditional posterior distribution for the QTL effects will also be a normal 

distribution with a mean vector given by: 

	

Xa - Z/3), 	 (7.10) 

with variance: 

V(A) = (Q 'Q) 1 cT. 	 (7.11) 

The conditional posterior distribution for the polygenic additive random effects 

will be a multivariate normal with, following the results of Sørensen et al. (1994b), 

a mean vector given by: 

	

= (Z'Zi  + ai)1 (Z(y' - Xa - QA) - 	 (7.12) 
0'2 
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with variance: 

cr2 	1 

	

V(A) = (zz + a2i-j) o. , 	 (7.13) 

where 8 is the polygenic additive genetic effect for animal i, 	is the vector 

of polygenic effects for all other animals, a i  is the row of A -1  corresponding to 

animal i and a 1  is the th  diagonal element of A - '. 

The conditional posterior distribution for a 2  will be: 

p(aIa, /3, A, Q, y) o (cr)'2exp (__-_/31A_1$) 	(7.14) 

which is an inverted gamma with parameters: 

	

= u — 2, s 2 = /3'A/3/v0 	 (7.15) 

Similarly the conditional posterior distribution for o 2  will be: 

p(aIa y) 
OC 

(a)_V2exp(_j(y - Xa - Z/3 - QA)'(y - Xa - Z/3 - QA)) (7.16) 

which is an inverted gamma with parameters: 

Ue =fl2, s(Y_Xa_Z/3_QA)(?/_Xa_Z/3_QA)/i/ e  (7.17) 

The conditional distribution of an individual's genotype depends solely on 

the genotypes of the immediate neighbours in the pedigree and the animals own 

observations (Sheehan and Thomas, 1993), so to calculate this distribution it 

is only necessary to consider the genotypes of the individual's parents and any 

spouses and offspring, as well as the individual's own records. The full conditional 

probability of the genotype for animal i at the QTL and marker loci, 9 i  where 

Qt is the QTL genotype corresponding to c, cb, represent the genotype of the 

neighbours of animal i in the pedigree, is the parental genotypes, Gspousei is 

the genotype of the jth spouse, cOff,k  is the genotype of the kth offspring of the 

jth spouse, ic is the vector of gene positions, yt  is the vector of observations on 
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animal i (including trait and marker data) and Z i  and Xi  are the rows of Z and 

X respectively relating to animal i, will therefore be given by: 

P(q1IO,cb1,s,YI) = 	 (7.18) 

where: 

p(I&, ') OC p(Ic, ' JJP(cOff,kI)cSPOCJ, 
k), 	 (7.19) 

j,k 

exp(_-(y 1  - Xa - QA - Z 2)3)'(y 1  - Xja - QA - Z/3)), (7.20) 

For linkage groups with just two loci, a marker and a QTL, an estimate is made 

of the recombination frequency between the two loci. Treating all recombination 

events as independent, then the number of observed recombinations (R) will be 

distributed as a binomial variable with parameters r and R + R', where r is the 

recombination frequency between the marker and the QTL and R' is the number 

of observed non-recombination events. The sampling procedure for greconstructs 

the ordered genotype of all animals, i.e., it is known from which parent a given 

chromosome derives. It is only possible to observe a recombination between two 

loci if a parent is heterozygous for both loci, so R+R' is equal to the total number 

of parents heterozygous for both the marker and QTL, and R is the number 

of recombinant chromosomes in the offspring of these parents. The conditional 

probability of R given r and R' will be a binomial probability: 

p(RI R', r) - F(R + R' + 1) rR(l - r)'', 	(7.21) 
- I'(R + 1)F(R' + 1) 

and the conditional probability of r given R and R' for the interval 0 <r <0.5 

will be: 

p(RIR', r)p(r)  
p(rIR,R') = f005p 	

(7.22) 
(RIR',r)p(r)dr' 

and 0 everywhere else. The integral in (7.22) evaluates to 1/(R + R' + 1) if taken 

over the interval 0 to 1 1  however in this case we are only integrating from 0 to 0.5. 
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If R + R' is large then this still evaluates to very close to 11(R + R' + 1) except 

when R/(R + R') is close to 0.5. The conditional probability (7.22) can therefore 

be approximated by a beta distribution with parameters R + 1 and R' + 1: 

p(rIR,R) 	
F(R + R' + 2) rR(1 - r)R'. 	 (7.23) 

F(R + 1)r(R' + 1) 

Note that the approximation does not affect the accuracy of the Gibbs sampling. 

Sampling is carried out on the distribution conditional on R and R', and for any 

given set of values for R and R' the integral in (7.22) is a constant. It is only 

necessary to use the exact formula (7.22) when estimating the marginal density 

(Section 7.2.4). 

For linkage groups with more than two loci then the likelihood of gene 

positions, r. , is determined by the number of observed recombinations between 

pairs of adjacent informative genes. These are independent if it is assumed 

that there is no interference, so the probability of observing a given number of 

recombinations conditional on the total number of observable recombinations and 

the distance between all such gene pairs would be the product of the probability for 

each gene pair. Equivalently, the probability can be obtained from the product of 

the probability of each individual's ordered genotype given the parental genotypes 

and i. Considering each QTL separately, then the chromosome containing the 

QTL can be split up into a number of intervals by the loci linked to the QTL. 

For any given interval, the probability in terms of the position of the QTL within 

that interval can be calculated. This is done for each interval in turn to give the 

probability of the QTL position along the whole chromosome. The probability 

for an individual chromosome C conditional on the parental genotypes cpar  and 

,c. is given by: 

P(CIc0,k) ix [I (6ij rij + (1 - )(i - r1 )) 	 (7.24) 

where the product is taken over all pairs of adjacent informative loci, rij is the 

recombination frequency between a pair of loci (given by Haldane's mapping 

function) and bij is 1 if a recombination has occurred between the loci, and 



o otherwise. 8, is determined by examining the parental chromosomes. The 

probability (7.24) conditional on the complete genotype configuration () and k, is 

independent for every haploid genome in the pedigree. An overall probability for g 

can therefore be obtained from the product of (7.24) taken over both chromosomes 

for all animals in the pedigree: 

p(ck) x [Jp(CiIcpar,,i) 	 (7.25) 

The probability (7.24) and, correspondingly, (7.25) can be split into two 

components, one of which involves the QTL and its flanking informative markers, 

and the other which considers the remaining gene pairs. This second part of the 

probability is not dependent on the QTL position within an interval, but obviously 

is affected by which interval the QTL is in. For a given interval, therefore, (7.25) 

can be expressed as the product of a term dependent on the QTL position and 

a constant. The constant has to be included so that the information content of 

the different intervals is the same and the probabilities across intervals can be 

compared. The conditional probability of the QTL position will be given by: 

	

fl.p(Cilgpar,, icy, ;_) 	
(7.26) 

= f fl P(CIc 1 , ij, 

where r,,j is the position of QTL j and sc is the vector of positions of the other 

loci. The integral in the denominator of (7.26) is constant conditional on 	and 

, and can therefore be ignored for sampling purposes, but must be considered 

when estimating the marginal density of ic,. For sampling, therefore, the following 

was used for the conditional probability of icy : 

	

cx [Jp(CiIcpar 1 ,ij,t_j ) 	 ( 7.27) 

Writing Ki as the constant for interval i, Rjk  as the number of recombinations 

between the QTL and locus k when the QTL is in interval i (only counting if 

k is a flanking informative marker of the QTL), R k  similarly as the number of 

non-recombinations and rk as the recombination frequency between the QTL and 

79 



locus k, then the conditional probability (7.27) can be written as: 

cx K1JJr(1 Tk) 'k 	 (7.28) 
k 

where 

- 	 rk = 	- e_2ki_I), 	 (7.29) 

the recombination between the QTL and gene k. 

7.2.3 Sampling scheme 

The basis of the sampling scheme is as follows: the parameters are initialized 

to arbitrary starting values. The only restriction on the starting values is that 

they should be valid, i.e., the likelihood should be non-zero. If, however, the 

starting values are a long way from the equilibrium joint distribution, then it can 

take a long time to achieve convergence of the Markov chain. Producing valid 

initial samples for most of the parameters is not difficult, for example the vectors 

of effects can simply be initialized to zero. Generating an initial valid genotype 

configuration G can be more complex. The method used here was that any animal 

whose genotype at a given locus was not completely known (i.e., all the QTL loci 

and heterozygous marker loci), was assigned an initial heterozygous genotype 

for that locus. This will produce an initial valid unordered configuration of g, 

i.e., the genotypes of all animals will be valid, but the haplotypes may not be. 

For this reason, the first time the genotypes are sampled, the calculation of the 

conditional probabilities of offspring is done without taking account of the source 

of each allele. This allows the production of a consistent ordered configuration of 

ç. 

After initialization, each effect is sampled in turn from its full conditional 

posterior distribution. After all effects have been sampled the cycle begins again. 

One cycle of sampling would therefore entail: 

9 Sample A and update A. 



• Sample a and update. 

• For each individual i in turn, sample /3, and update. 

• Sample ci from (7.14) and update. 

• Sample c from (7.16) and update. 

• For each individual i in turn, sample 1, from (7.18) and update. 

• For each linkage group with two genes (a marker and a QTL) count the 

numbers of informative parents and observed recombinations between the 

two loci. Sample r from (7.22) and update. 

• For each linkage group with > 2 genes, count the numbers of informative 

parents and observed recombinations between a locus and all other loci 

linked to it for each 'floating' locus in turn. Sample r. from (7.28) and 

update. 

Sampling from these distributions is mostly straightforward; routines to 

sample from uniform, normal, gamma and beta distributions are readily available. 

The exception to this is sampling ic from (7.28), because this distribution is 

non-standard being a product of several transformed beta distributions, with 

the transformation function (from recombination frequency to a map position) 

changing depending on which genes are flanking the current position. A further 

problem with sampling from (7.28) is that it is defined separately for each 

interval and is generally multimodal, with a mode in each interval. The sampling 

procedure used samples from each interval in turn and then picks one of the 

samples x with a probability proportional to p(x) (7.28). The method developed 

for sampling from (7.28) is described in more detail in the Appendix. 

Note that some of these sampling sub-units could be further split up. For 

example, if several loci are modelled then sampling all loci simultaneously to 

update 9i will be time consuming. It is much easier and quicker to sample 

each gene individually using the distribution conditional on the current states 
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of any other linked genes. This makes it much easier to 'scale' the procedure to 

handle multiple linked loci. There is the drawback that if there is a high degree 

of dependency between sampling sub-units (which will be the case with tightly 

linked loci), then the movement of the Markov chain through the available sample 

space will be slowed down, making the Gibbs sampler less efficient (Neal, 1993). 

The order of sampling is not rigid and can, in fact, be determined at random 

for each sampling cycle. The order can, however, be very important with regards 

the speed that the Markov chain moves through the sample space. For example, 

when sampling multiple linked loci, this could be done in two ways, either sampling 

individuals within loci or sampling loci within individuals. Either sampling scheme 

is valid, but the second way appears to produce much quicker convergence of 

haplotype frequencies with the datasets used in this study, and was the scheme 

used for the analyses described here. 

After an initial 'burn in' period of m cycles, current values for parameters of 

interest and their predicted values are stored every k rounds of the process. For 

example, if we were interested in estimating the QTL effect A then at every k 

rounds of sampling the current realization of A and A (7.10) would be stored. 

These values are used in estimating the posterior density of A (Section 7.2.4). 

The process is continued until N samples have been stored. The values of rn, k 

and N depend on the data structure and model, in general the larger the dataset 

and the more complex the model, the larger all these parameters will be. If m is 

too small then the samples may still be influenced by the starting values used, if k. 

is too small then subsequent samples will be correlated and if N is too small then 

the estimated distribution will be inaccurate. For all the analyses used here, k 

was set to 10 but m and N were determined on a post-hoc basis for each dataset. 

7.2.4 Density estimation 

After the sampling is completed, there will be N samples of the parameters of 

interest. These are samples from the marginal distribution of that parameter, 



i.e., the distribution irrespective of all other model parameters. An estimate of 

the parameter can be made simply by calculating the mean, mode or median 

of these samples. More information can be obtained by estimating the entire 

posterior marginal density of the parameter (see Section 3.3.2). This can be done 

by calculating the density for a value of the parameter averaged over all of the 

sampled values. Alternatively instead of the sampled values themselves, samples of 

the conditional distribution of the parameter can be used. For example estimates 

of the density of the QTL effects A could either be obtained using A, i = 1,. . . N, 

[1)1 

p(Aa), (i) Q (i) ( 0.2)(i) ,  y(i)), i = 1, . . . N. 	 (7.30) 

Using (7.30) will always result in an estimate with a lower variance (Gelfand and 

Smith, 1990; Liu et al., 1994). The estimate of the marginal density is obtained by 

averaging (7.30) for a range of values of the parameter. For example, an estimate 

of the marginal density of the QTL effect A would be: 
N 

1 
exp((A - A)'(A - A)/2o.) 	(7.31) 

1=1  7~ 
while an estimate of the marginal density of cr 2  would be: 

Ue7 
j3(c) 

- 	
2 (_ _1) 	

N 

±(?)ve/2exp( 
2cr ) 	

(7.32) 
- F(e/2) ( 	2 	

N 
i=1 

where v
, 

= n - 2. 

A check on the accuracy of the density estimation can be obtained by fitting a 

spline-smoothed curve through the estimated points of the marginal density, and 

numerically integrating across the whole range to verify that the total density is 

close to 1. Numerical integration can also be used to yield approximate confidence 

limits for the parameters. 

7.2.5 Simulations 

To illustrate the operation of the method, several simulated datasets were gener- 

ated with the program described in Section 4.3.1 using a range of data structures 
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and parameter values, and these were subsequently analysed. The data structures 

simulated were similar to that of the mouse X Line experiment (described in Sec-

tion 4.1.3) so that it could be seen how well the method performed with this type 

of dataset. The base population for all of the simulations was an F 2  formed from 

a cross between two inbreds. The F 2  was then split into a number of selection 

lines, half of which were selected upwards and the other half selected downwards 

for n generations. Within each line there were 8 full-sib families/generation and 

8 individuals/family. The best 2 individuals from each family were selected. For 

all the simulations, the polygenic variance (o) and the environmental variance 

01, ) were set to 50. 

The first set of simulations demonstrates the analysis for the simplest genetic 

model, where there is a single marker linked to a single QTL and an unlinked 

polygenic effect. Several datasets were generated, varying the QTL effect, 

recombination frequency between the QTL and the marker and the mode of action 

of the marker (recessive/dominant). For all of these simulations 10 generations 

of data and 6 lines (3 in each selection direction) were simulated. Estimates were 

obtained of the additive and environmental variance components, QTL effects (a 

and d) and the recombination frequency between the QTL and the marker. 

The second set of simulations demonstrates the more complex genetic models 

where there are several markers linked to the QTL. For this set, a single linkage 

group of 4 linked markers spaced at 10 cM intervals was simulated, with the first 

marker positioned 10cM and the last 40cM from the end of the chromosome. One 

QTL was simulated at position 15cM. For these examples only 5 generations of 

data and 2 lines (1 in each selection direction) were generated. The QTL effect 

was always additive with an effect (half the distance between the homozygotes) 

of 10 or 5 units. The analyses were carried out using different subsets of the 

available marker information, as detailed below: 

1. Information from all 4 markers available for all individuals. QTL effect set 

to 10 units. 
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Information from all 4 markers available for all individuals. QTL effect set 

to 5 units. 

Information from 1 marker only (at 20cM) used. 

Information from all 4 markers available for individuals in generation 5, 

but information available for only one marker (at 20cM) for the rest of the 

individuals. 

Each of the cases listed above was replicated 6 times. Estimates were obtained 

of the same quantities as for the first set of simulations, except that the QTL 

map position was estimated rather than recombination frequencies. The analyses 

using only 1 marker (case 3) was carried out to (a) compare the standard errors of 

the estimates when single vs. multiple markers are used and (b) to demonstrate 

that the posterior density of map position using a single marker is symmetrical 

about the marker position. 

7.3 Tests on simulated data 

7.3.1 Single marker analyses 

The results from the simulation analyses with single marker-QTL systems (Table 

7.1) show the means and standard deviations from 6 separate simulation runs 

using a range of parameters for the simulations. Each line of results in Table 

7.1 is therefore from a single simulation run. It can be seen that the method 

performs well in estimating the parameters with all of the estimates being within 

2 standard errors of the simulated values. 

7.3.2 Multiple marker analyses 

The multiple marker analyses estimated QTL map position rather than recombi- 

nation frequency relative to a number of linked markers. As described earlier  in 
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Table 7.1: Analysis of simulated data of a QTL linked to a single marker showing 
simulated parameter values and the means and approx. standard errors of the 
parameters. 

Simulated Parameters Estimated Parameters 

o 	f o a d r a d 

Additive Marker 

50 50 10 0 0.1 
50.2 49.9 9.6 1.3 0.11 
(2.4) (1.5) (0.5) (0.7) (0.02) 

50 50 10 10 0.1 
55.0 49.8 9.9 9.3 0.09 
(2.6) (1.6) (0.4) (0.5) (0.01) 

50 50 0 10 0.1 
51.8 49.2 0.5 9.5 0.10 
(2.5) (2.2) (0.3) (0.4) (0.01) 

50 50 10 0 0.02 
49.2 49.2 9.5 0.3 0.03 

 (2.3) (1.5) (0.4) (0.5) (0.01) 

Recessive Marker 

50 50 10 0 0.1 
49.9 46.2 10.6 0.4 0.14 
(2.3) (1.5) (0.5) (0.8) (0.02) 

50 50 10 10 0.1 
50.5 48.2 10.1 9.8 0.11 
(2.4) (1.6) (0.5) (0.6) (0.01) 

the method, 4 separate dataset types with 6 replicates for each type were used. 

Type 1 datasets had information on 4 markers available for every animal in the 

pedigree. Type 2 datasets were the same, except that the gene effect was half 

that for type 1 datasets. Type 3 data.sets had information available only for 1 

marker and type 4 datasets had information available for 1 marker throughout 

the pedigree, and the other 3 markers for animals in the last generation only. The 

results from the analyses of these datasets are presented in Table 7.2, which gives 

the average mean estimates and average standard deviation of the estimates for 

each dataset type. Estimated posterior densities of QTL position are shown for 

one each of the replicate datasets of type 1 and 3 in Figure 7.1. The distribution 

from dataset type 3, the single marker case, is perfectly symmetrical - this comes 

from the definition of the posterior density and is not a reflection of the methods 
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Table 7.2: Analysis of 4 types of simulated datasets with a single QTL and 4 
linked markers spaced at 10cM showing the simulated parameter values, means 
and approximate standard errors of the parameters. The results for each dataset 
type are the averaged results from 6 replicates. 

Type Parameter True Value Estimate s.e. 
 53.8 7.5 
 

or 2  
a 50 

52.0 7.4 
 48.3 7.4 
  56.4 8.2 
 52.2 4.6 
 2  

e 50 
49.6 4.4 

 48.7 4.4 
  48.3 4.7 
 10 9.39 0.97 
 5 5.31 0.89 
 

a 
10 10.53 1.03 

  10 9.27 1.01 
 -0.01 1.13 
 d 0 

0.19 1.05 
 -0.22 1.24 
  1.19 1.21 
 14.6 1.5 
 

xt 15 
14.7 1.5 

 13.2 2.8 
  15.0 1.5 

t The mean and s.e. are only shown for the major mode. In most of the multiple marker 
datasets the major mode accounted for > 95% of the posterior density. 

ability to switch between the two modes! The distribution from dataset type 1, 

the multiple marker case, also has two modes, though most of the density (96%) 

is concentrated in the mode between the markers at 10 and 20 cM. As with the 

first set of simulations, the method appears to be able to produce satisfaetory 

parameter estimates, with the estimates all being within 2 standard deviations of 

the simulated values. - 
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Figure 7.1: Estimated posterior distribution of map position of a QTL from single 
replicates from Datasets 1 and 3. 

7.4 Discussion 

The method described in this chapter allows the analysis of large pedigreed 

datasets using a mixed inheritance model producing estimates of the effect and 

position of a QTL linked to genetic markers. The method presented here is shown 

to work well at estimating the effects of QTL linked to single and multiple markers 

for large complex pedigrees. With single markers, despite the confounding of the 

polygenic additive effect, QTL effect and recombination frequency, the simulation 

results show that the method can successfully disentangle these parameters when 

given the correct model. The ability to do this depends on having multiple 

generations; in an F 2  population, for example, QTL effect and position are 

completely confounded when only a single marker is used. It is interesting that 

there were no large differences detected in the estimated standard errors between 

the different analyses, except for o which has a larger standard error when a = 0 

than when a = 10. Even when using recessive rather than fully informative 

markers there does not seem to be a noticeable drop in the precision of estimation. 

These results are, however, all from single simulation runs; it is not possible to 

draw firm conclusions about the relative sizes of the standard errors without 

replicating the simulation experiment. 

The multiple marker analyses also show good agreement between the estimates 



and the simulated values. Unlike the previous set of examples, the multiple 

marker analyses were replicated, so some inferences about the standard errors of 

the estimates can be made. For the QTL position, all datasets gave very similar 

standard errors except for dataset type 3 when data from only a single marker 

was used. In this case the standard error of the estimated position was almost 

twice that when multiple markers were used. Note that when multiple modes 

were present, the standard error was calculated within the largest mode. The 

larger error when a single marker was used is not, therefore, simply a reflection 

of the posterior distribution being bimodal. 

The standard errors for the variance component estimates appear to be fairly 

similar, though there seems to be an indication that they might be slightly higher 

with dataset type 4, which has information on a single marker available throughout 

the pedigree and multiple marker information available only at the end of the 

pedigree. It is peculiar that analyses on this dataset type appear to perform 

less well than with dataset type 3, which has only a single marker so has less 

information. More replicates would, however, need to be done to test whether 

this difference was significant. 

The standard errors for the QTL effects show a peculiar pattern with the 

ranking between the database types being type 2 < type 1 < type 4 < type 3. 

The fact that the standard errors for dataset types 1 and 2 are less than for type 

4 which is less than for type 3 is not suprising given the differing amounts of 

marker information that is present in each dataset type. It is surprising that the 

standard errors for type 2 are smaller than for type 1 datasets, given that type 1 

datasets have a larger QTL effect. It seems counter-intuitive that a smaller QTL 

effect should be estimated more precisely than a larger one, given that the smaller 

the effect the harder it is to estimate an animal's genotype. The differences are 

not very large, however, so more replicates are required to see if the effect is real. 

Further work that should be carried out would be to assess the method's 

robustness, in particular to fitting the 'wrong' model. QTL mapping procedures 



are prone to giving spurious answers when, for example, two QTL are present on 

a chromosome and only one is fitted. Convergence is another area on which more 

work could be done. Convergence detection at the moment is carried out on a 

post hoc basis. To produce a program for general use, it would be better if the 

number of rounds to convergence could be determined automatically. A method 

to do this is described by Raftery and Lewis (1994). Decreasing convergence times 

could also be a profitable area for future work. Datasets with a large number of 

animals with missing marker data tended to require many more rounds of sampling 

before convergence was achieved. Large differences in convergence speed can be 

obtained by using different starting configurations for the genotype structure. It 

is possible that much improvement in convergence times could be made by using 

better starting configurations. 

7.5 Conclusions 

Although the type of dataset analysed here is quite unusual since marker typing 

is normally expensive, the method could be employed in situations where only 

a proportion of animals in a pedigree are typed. This would allow the use of 

marker information to, for example, increase the accuracy of genetic evaluations 

of animals as well as to help estimate the size and position of QTL as in the present 

study. The method is fairly general, the major assumption being that the base 

population should be formed from an inbred cross. It would be simple to modify 

the procedure to allow other types of base population, although obviously the 

less that is known about the structure of the base population the less information 

can be obtained from the analysis. The main problem that would have to be 

resolved if the base population structure was altered would be the handling of 

multi-allelic loci. Multi-allelic markers can be very useful in mapping studies 

because a high proportion of families will be informative. The drawback is that, 

as discussed in Section 3.2, with more than two alleles the Markov chain becomes 

'reducible'. That is, the genotype sampling procedure can become 'stuck' in a 
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subset of the parameter space because to move from one area to another requires 

changing more than one individual at once. There have been methods proposed 

to handle this situation, but it would complicate the sampling procedure. The 

method could also be easily extended to handle multiple linked QTL and 'floating' 

markers. In this case it would be necessary to impose some order restrictions on 

the floating loci to prevent equivalent loci from exchanging positions along the 

chromosome. Theoretically it should be possible to combine prior information 

about the marker positions with information from the data, however calculating 

the weighting to be given to the two data sources would be very difficult. The 

next chapter describes the application of the single marker method presented in 

this chapter to the analysis of the QTL associated with the coat colour loci brown 

and dilute using the X Lines dataset. 
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Chapter 8 

The Analysis of Putative QTL Linked to 

the brown and dilute Coat Colour Loci 

of Mice 

8.1 Introduction 

It has long been noted that body weight in mice appears to be associated with 

coat colour (Green, 1931; Feldman, 1935; Castle, 1941a; Castle, 1941b; MacArthur, 

1944b; Butler, 1954; Hedrick and Comstock, 1968). This could be explained either 

by the coat colour genes having a direct effect on body weight, or by the coat 

colour genes being linked to QTL for weight. The original founder strains for the 

X Lines, C57BL/6J and DBA/2J, differed at the two coat colour loci, brown and 

dilute, so both loci were segregating in the F 2 . The X Lines data could therefore 

be used as a test of any association between brown and dilute and body weight. 

This chapter presents two methods to estimate the effects and position of 

putative QTL linked to brown and dilute, firstly using information from the 

regression of the estimated effects of the coat colour markers against generation, 

and secondly using the Gibbs sampling method described in Chapter 7. The 

regression analysis estimates the decay of the associated effect of the markers 

over time. This decay is assumed to be caused by the breakdown of linkage 
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disequilibrium between the marker and a QTL affecting the trait. The rate 

of decay provides information about the recombination frequency between the 

marker and the putative QTL, and the intercept of the decay curve with the 

y-axis gives information about the QTL effect. The Gibbs sampling analysis fits 

a mixed inheritance model to the X Lines data thereby partitioning the genetic 

variance in body weight in the X Lines into two components, that due to putative 

QTL linked to the coat colour loci, and that due to a residual polygenic effect. 

The basic strategy is to estimate the QTL and marker genotype of each animal, 

and then use this information to estimate the QTL effect and position. Unlike 

the simple regression analysis, the mixed inheritance model analysis accounts for 

the effects of inbreeding and selection on the genotype frequencies of the QTL, as 

well as allowing for the stochastic changes of QTL and marker frequency within 

each replicate. 

8.2 Estimation of allele frequencies for brown 

and dilute 

The two coat colour genes under investigation, brown and dilute, are both 

recessive, each having two distinct phenotypes. The genes act independently 

on the coat colour phenotype producing 4 distinct phenotypic classes, wildtype, 

brown, dilute and brown dilute. All the animals in the X Lines dataset were 

scored for coat colour and 6-week weight. Any association between the coat 

colour genes and body weight would be expected to lead to a change of frequency 

of the colour alleles under selection for body weight. The frequency of both 

brown and dilute in the F2  can be taken as 0.5 because the alleles were both 

fixed in the original founder strains. Because the genes are both recessive it is 

not possible to calculate the gene frequencies without making some assumptions 

about the distribution of genotypes. The simplest estimates of gene frequency 

can be obtained by assuming that the genotypes throughout the experiment are 
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Table 8.1: Estimated frequency of brown and dilute at generation 20 

brown dilute 
Rep. High Low High Low 

1 0.74 0.52 0.20 1.00 
2 0.98 0.00 0.25 0.72 
3 0.66 0.24 0.00 0.66 
4 0.27 0.00 0.00 0.84 
5 0.62 0.00 0.49 1.00 
6 0.39 0.00 0.39 0.70 

in Hardy-Weinberg equilibrium. An estimate of the gene frequency of a particular 

colour allele can then be made by treating the frequency of animals displaying 

that colour phenotype as an estimate of p2  where p is the frequency of the gene 

in question. 

brown 
1 
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OA 

0.2 

20 
Generation 

dilute 
1 

High - 
0.8 Low ------ 
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0.2 

510 15 20 
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Figure 8.1: Average estimated frequency of brown and dilute 

The assumption of the genotypes being in Hardy-Weinberg equilibrium is 

unrealistic due to the effects of inbreeding and. selection. The gene frequency 

estimates should take account of the expected effects of inbreeding on the genotype 

frequencies, but accounting for selection would be much harder since the effect of 

selection on genotype frequencies depends on a range of factors such as population 

size, selection intensity, size of the effect associated with the locus etc, therefore 

neither correction was done here. 

The estimated frequencies of brown and dilute averaged over replicates for the 

High and Low selection directions are shown in Figure 8.1. When the individual 

94 



brown 

1 

0.8 

0.6 

0.4 

0.2 

0 

1 

0.8 

PION 0.6 

0.4 

0.2 

0 

I 	 I 	 I 

Low 
High 	 - 

5 	10 	15 
Generation 

dilute 

Low 
F-Jig Ii 

5 	10 	15 
Generation 

Figure 8.2: Replicate frequency of brown and dilute 

20 

20 

95 



lines are examined it is found that whilst the changes in frequency for dilute 

are fairly consistent across all replicates, the same is not true for brown where 

several replicates show frequency changes in the opposite direction to the other 

lines being selected in the same direction (Figure 8.2 and Table 8.1). The most 

likely explanation for this behaviour is that brown is only loosely linked to a region 

affecting body weight so that recombinations between brown and the region occur 

reasonably frequently. 

8.3 Estimation of the effects of brown and dilute 

The simplest way to obtain estimates for the effects of brown and dilute would be 

to assume that the coat colour alleles themselves have an effect on body weight 

and analyse them as fixed effects. The problem with this method is that if the 

model is incorrect, and in fact the marker has no direct effect but is linked to a 

QTL affecting body weight, then the associated effect of the marker will change 

from generation to generation as the linkage disequilibrium between the marker 

and QTL present at the beginning of the experiment breaks down. Because of 

these considerations, a model was fitted with brown and dilute as nested effects 

within generation so that separate estimates were produced for each generation. 

The analysis was done using DFREML fitting a similar model to that used in the 

variance component analysis (Section 5.6), except for the addition of the marker 

effects already discussed. 

8.3.1 Inference of the effect and position of a linked QTL 

With this experimental design, if a marker were linked to a QTL affecting body 

weight then initially we would expect to see an effect associated with that marker, 

because the two loci would be in linkage disequilibrium. Over time, however, this 

effect would be expected to decay as recombination breaks up the association, 

with the rate of decay being determined largely by the recombination frequency 



between the QTL and the marker. 

By fitting an exponential curve to the estimated effects and making a number 

of simplifying assumptions it is possible to use the rate of decay of the curve 

to make a rough estimate of the recombination frequency, and the intercept 

of the curve with the y-axis can give information on the size of the effect. 

Assuming a model with a marker linked to a single QTL (see Section 4.2 for 

details), then several conclusions can be made. In this model, the marker-QTL 

genotype frequencies are determined solely by the frequencies of the marker and 

QTL alleles and the disequilibrium between them (i.e., ignoring the effect of 

inbreeding and non-random mating) and the gene frequencies are assumed to 

remain constant at 0.5. Linkage disequilibrium (D) is defined as the difference 

between the equilibrium and actual gametic frequencies and can be estimated by 

f(MQ)f(mq) - f(Mq)f(mQ) where f(xx) is the frequency of gametic type xx, M 

& m refer to the two alleles at the marker locus and Q & q refer to the two alleles at 

the QTL locus. The disequilibrium at generation t, D, is given by Dt  = D0 (l _. r)t 

where D0  is the disequilibrium in the F 2  and r is the recombination frequency. 

To estimate D0  requires having estimates of the gametic frequencies in the F 2  

For the X Lines these are (1 - r)/2 for the non recombinant gamete types (MQ 

and mq), and r/2 for the recombinant types (Mq and mQ). The expected value 

of D0  will therefore be (1 - r) 2 /4 - r 2 /4 = (1 - 2r)/4. 

Table 8.2: Expected gametic frequencies under simple model 

Gametic types MQ Mq mQ mq 

Expected freq. + D 1 - Dt  - + D 

The expected marker-QTL gametic frequencies at generation t are given in 

Table 8.2. The expected frequencies are calculated assuming gene frequencies 

remain constant at 0.5. There are two marker phenotype classes M and m with 

frequencies 0.75 and 0.25, and the expectations of each marker class in terms 
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of a and d can be obtained by calculating the expected genotype frequencies at 

the QTL within each marker class. The expected frequencies and expectations 

in terms of a and d of each marker-QTL genotype and for each marker class are 

given in Tables 8.3 and 8.4 respectively. 

Table 8.3: Expectations of genotype frequencies 

Marker Type Genotype frequency a d 

MQ/MQ ( 	+ D) 2  1 0 

MQ/Mq 2( + D)( - D) 0 1 

MQ/mQ 2( +D)( - D) 1 0 

M MQ/mq 2( 	+ D)2  0 1 

Mq/Mq ( 	- D) 2  —1 0 

Mq/mQ 2( 	- D) 2  0 1 

Mq/mq 2(+D)(—D) —10 

mQ/mQ ( 	- D) 2  1 0 

m mQ/mq 2( + D)( - D) 0 1 

mq/mq ( 	+ D) 2  —1 0 

Table 8.4: Expectations of marker classes for recessive markers 

Marker class frequency a d 

M 
4 3 +D?  

m 1  - 4 —4D t  8D 

By assuming that the QTL acts additively, i.e., that d = 0, the expected 

difference between the two marker classes in terms of a will therefore be: 

duff = (D + 4Dj )a 	Da = D0 (1 - r)t a 	(8.1) 

Estimates of r and a can be obtained by fitting an exponential curve of the form 

y = AB to the REML estimates of the effects of the markers in each generation 
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(i.e., the difference between the two marker classes). The curve parameter B 

will give an estimate of (1 - r) and the parameter A will give an estimate of 

D0a. An estimate of the standard errors could be made using the standard 

errors of the regression, but this is likely to be an underestimate because of the 

many simplifications made in deriving (8.1), and because the regression analysis 

assumes that the errors between generations are uncorrelated and remain constant 

which would not be the case. The error variance from the regression would be 

expected to increase over time for several reasons. The variance of gene frequency 

increases with the inbreeding coefficient, and so would increase over time as the 

population became more inbred. The variance of D t  would also increase over time 

producing another source of increasing error variance. This means that the early 

generations contain more information about the gene effect and position than 

the later generations, so the regression should have been weighted to take more 

account of the data from the early generations. 

The estimates of the associated effects of brown and dilute in each generation 

obtained from the DFREML program are shown in Figure 8.3. In the case of 

dilute it can be seen that the effect appears to decay over time, while this pattern 

is not readily apparent for brown. 

brown 
	

dilute 

0.6 
	

0.6 

OA 
	

0.4 

te 
0.2 
	

0.2 

-0.4 
5 	10 	15 

	
20 
	

5 	10 	15 	20 
Generation 
	

Generation 

Figure 8.3: REML estimates of the effects brown and dilute along with the fitted 
exponential decay curve 

To obtain a more realistic idea of the standard errors that could be expected 

applying this analysis to a dataset of the size and structure of the X Lines data a 

series of simulated datasets were generated using the program described in Section 
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4.3.1. The data structure simulated was similar to that of the actual X Lines with 

the main difference being that there was no variation in litter size with all litters 

being of size 8. The model simulated was 

(8.2) 

where 1a is the overall mean, X is the QTL effect, 8 is the polygenic additive effect 

and e is an error effect. A marker was simulated as being linked to the QTL 

with a recombination frequency r. Twenty replicate datasets were generated and 

then analysed with the above procedure (analysing with DFREML to obtain the 

marker effects in each generation, fitting an exponential curve to the effects and 

estimating a and r from the curve parameters) to get estimates of the QTL 

effect and recombination frequency between the QTL and the marker. The 

curve was fitted using the non-linear regression function FITCURVE in Genstat 

5.3 (Genstat 5 Committee, 1993). Each effect was weighted by the inverse of 

the variance of the REML estimate. The same genetic parameters were used for 

each simulation; i = 1.0, a = 3.0, a = 0.5 and r = 0.1, these being similar 

to the values estimated from the X Lines dataset. The results of the analysis 

of the simulated data are given in Table 8.5. There are several points to note 

Table 8.5: Regression analysis of simulated data. The average estimates of the 
effect (a) of a QTL linked to a marker with recombination frequency (r). 

Simulated Average Mean Replicate I 	Empirical 
Parameter 

Value 	I  Estimate Standard Error I Standard Error 

a 0.5 0.59 0.11 0.26 
r(%) 10 15 5 7 

about the results. The mean results are within one standard deviation from the 

simulated values, however the empirical standard errors are large with respect 

to the effects, indicating that this test would not be very powerful at detecting 

effects of this size in practice. The mean standard errors of the individual replicate 

estimates were calculated from the variance of the regression coefficients and are 

very approximate because of the many simplifications made in the model detailed 
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Table 8.6: Regression estimates of the additive effect (a) in grams of a putative 
QTL linked to brown and dilute and the recombination frequency (r) between 
marker and QTL. 

Af B a(g) s.e.(g)f r(%) s.e. 

brown 

dilute 

0.158 

0.492 

0.852 

0.894 

0.17 

0.47 

0.14 

0.10 

15 

11 

17 

4 

t A & B are the estimated parameters of the curve y = ABt where y is the estimated 
effect of the markers and t is the generation. 
f Calculated from the standard errors of the regression coefficients. 

earlier, and because the variances of the regression coefficients were calculated 

assuming that the errors were uncorrelated and constant. Assuming that the 

empirical standard errors are more likely to reflect the 'true' uncertainty about 

the parameter estimates, it appears that, not surprisingly, the replicate standard 

errors are an underestimate of the actual standard errors. More seriously, several 

of the individual replicates produced answers which are outwith two standard 

errors of the simulated values; this again indicates that this analysis would not 

be reliable as a means of estimating linked QTL effects of the size simulated here. 

The parameters of the fitted curves and the estimated values of a and r (with 

the standard errors from the regression) for the X Lines data are given in Table 

8.6. Following the results of the analysis of the simulated data (Section 8.3.1), 

the standard errors are likely to be underestimates. Given the probable size, 

therefore, of the standard errors of the estimates, few conclusions can be drawn 

about any effect linked with brown. It is possible, however, to make some tentative 

conclusions about dilute in that it does appear to be linked to a region affecting 

bodyweight with an estimated additive effect of about 0.5g situated roughly 10cM 

from dilute, though the confidence limits for these estimates would be large. 
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8.4 Gibbs sampling analysis 

The initial analysis undertaken using the Gibbs sampling method was to compare 

the results described in Chapter 7 in a standard variance components analysis 

(without fitting any QTL) against a conventional REML analysis, fitting the 

same model for both methods. This also allowed the comparison of the variance 

components with and without fitting QTL to the model allowing an estimate to 

be made of the contribution of the QTL to the observed variance. The REML 

analysis used the derivative-free REML packages of Meyer (1988; 1989). The 

model was the same as that used for the initial homogenous variance component 

analysis described in Section 5.6 with the additive genetic animal effect and litter 

fitted as random effects and generation, parity, litter size and sex nested within 

line and generation fitted as fixed effects. Sex was fitted as a nested effect because 

a significant change in sexual dimorphism was noted in the Low lines over the 

course of the experiment (Section 5.3). For the analyses, the untransformed 

data were used because there was little difference found between estimates of 

genetic parameters using log transformed or untransformed data, and it is easier 

to interpret the estimated QTL effects using untransformed data. The animal 

and litter effects were uncorrelated; the covariance matrix for the animal effect 

was the numerator relationship matrix A and for the litter effect was the identity 

matrix I. 

The model was then extended to fit a QTL linked to brown and dilute. The 

markers brown and dilute have been mapped to different chromosomes (brown 

on chromosome 4 and dilute on 9) so it was possible to analyse them without 

considering the possibility either of linkage between the two markers or that they 

were both linked to the same QTL. The QTL linked to brown and dilute were 

analysed separately due to computing limitations. 

The results of the analysis of the X-Line data are given in Table 8.7. These 

show the results of a conventional REML analysis of the data and a Gibbs sampling 

analysis using the same model as the REML analysis. The REML and Gibbs 
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Table 8.7: Analysis of 6 week body weight data from the X Line selection 
experiment using (a) a REML variance component analysis and (b) a Gibbs 
sampling based variance component analysis. The means and approx. standard 
errors of the parameters are given. 

I Analysis o(g2) I s.e.(g2 ) o(g2 ) s.e.(g2 ) o(g2) I 	s.e.(g2) 	I 
REML 1.35 0.06 1.75 0.07 1.68 0.03 
Gibbs 1.31 0.06 1.81 0.08 1.74 0.04 

sampling variance component analyses give very similar results, as expected since 

the same model was used in both cases. The estimates are not expected to 

be exactly the same since the REML estimates are from the joint mode of the 

posterior density of the variance components (assuming flat priors for the fixed 

effects and variance components), while the Gibbs estimates are from the posterior 

marginal means (Gianola and Foulley, 1990). 

The results of the analyses including a single QTL linked to either of the 

coat colour loci brown or dilute are given in Table 8.8. The estimated marginal 

posterior densities for the QTL effects and the recombination frequency between 

the QTL and the marker are shown in Figure 8.4. It can be seen from Tables 8.7 

and 8.8 that fitting the QTL causes a reduction in the additive and environmental 

variance components, but seems to have no effect on the common environmental 

(litter) variance component. 

Table 8.8: Analysis of putative QTL linked to brown and dilute fitting a mixed 
inheritance model. The means and 95% confidence intervals of the model 
parameters are given. 

Marker 0.2 a2 2 d r 

Locus (g2 ) (g2 ) (g2 ) (g) (g) (%) 

1.11 1.80 1.34 -1.70 1.91 45 
brown (1.01,1.27) (1.65,2.01) (1.27,1.44) (-2.03,-1.38) (1.52,2.31) (38,49) 

1.24 1.80 1.67 0.40 0.65 12 
dilute (1.14,1.38) (1.66,2.01) (1.58,1.78) (0.11,0.66) (0.20,1.01) (9,15) 
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Figure 8.4: Estimated posterior marginal densities for QTL linked to brown and 

dilute for QTL effect and recombination frequency 

8.5 Discussion 

It is noted that body weight and coat colour have been reported to be associated 

by several previous authors, and the X Lines data are analysed with a view 

to investigating whether any association can be found between two coat colour 

genes, brown and dilute, and body weight. Both alleles show frequency changes 

under selection for body weight although the frequency changes for brown are 

inconsistent and differ between replicate lines. This could either mean that the 

alleles had a direct effect on body weight or that they were linked to a region 

of chromosome that affected weight. A third possibility would be if the animals 

were being selected on colour rather than on the desired selection criteria. The 

proportion of times the 'best' animal in a litter (with respect to 6 week weight) 

was not selected, however, was less than 4%, indicating that the selection had 

been carried out correctly. A small number of mis-selections is to be expected 

104 



because it may not be possible to mate from the 'best' animal due to infertility 

or health problems. 

A simple method to estimate the effect and position of a putative QTL linked 

to a single marker based on the modelling the decay of the marker's effect due 

to the breakdown of disequilibrium is described and tested with a replicated 

simulation experiment. This appears to show that the method could work but 

the estimates have very large standard errors, so it would probably only be useful 

when investigating QTL that have a large effect or are tightly linked to the marker 

locus. The method is used to analyse the brown and dilute data. The results are 

highly inconclusive in the case of brown, but do give an indication of an effect 

linked to dilute. The method could be made more efficient by taking account 

of the increase in the error variance in the later generations, and weighting the 

regression accordingly. 

The Gibbs sampling based approach described in Chapter 7 was applied to 

the same dataset. The analysis was initially performed with and without fitting 

the QTL. As commented in the results section, it can be seen that the estimates 

of o 2  and o are reduced when QTL linked to brown and dilute are fitted. The 

expected contributions to the additive and dominance variances in the F 2  from a 

QTL are given by a 2 /2 and cP/4 respectively (Falconer, 1989). Assuming that the 

majority of cr in the original analysis was attributed to o, we can predict that 

fitting the QTL linked to dilute should lead to reductions in or 2 and o of around 

0.08g2  and O.11g2  respectively. These predictions compare well quite with the 

observed reduction of 0.07g 2  in both variance components. For brown, however, 

the reduction in variance when fitting a linked QTL is much less than the predicted 

contribution to the variances from the QTL, which are 1 .44g 2  for a2  and 0.91g2  for 

or. Note that the predicted contribution to or. from the linked QTL is greater than 

the total additive variance when no QTL is fitted. An explanation for this is that a 

QTL of large effect becomes fixed very rapidly under selection, so only contributes 

to the variance in the early generations. When analysing multi-generation data 

under the infinitesimal model, information from all generations is used to estimate 
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Table 8.9: Analysis of simulated data; simulating a QTL and analysing under the 
infinitesimal model. 

Parameter 
Simulated Average Empirical 

Value Estimate Standard Error 
o(g2) 1.11 1.54 0.10 
o(g2 ) 1.34 1.54 0.09 
a(g) -1.70 - - 

d(g) 1.91 - - 

the variance in the F 2 . The pattern of change in c when a QTL of large effect is 

segregating is very different from that predicted from the infinitesimal model. 

Information from the early generations would suggest a large amount of o, 

whereas the later generations would show very little o. Analysing such data 

under the infinitesimal model would therefore tend to produce underestimates of 

the variance in the F2 . Table 8.9 shows the results of a simulation experiment 

where a population consisting of 2 replicate lines (1 selected in each direction) 

was selected for 20 generation. The size and structure of the lines were the same 

as in the previous simulation experiments. A single QTL, a polygenic additive 

component and an environmental component were simulated, with the simulated 

values for these effects being taken from the analysis of the effect associated with 

brown presented in Table 8.8. The experiment was replicated 100 times, with the 

simulated datasets all being analysed under a purely infinitesimal model. The 

results show that the estimate of the additive variance in the F 2  is indeed greatly 

underestimated using the infinitesimal model (the predicted value for U2  in the 

F2  would be 1.11 + 1.702/2 = 2.56g 2 ). The average results from the simulation 

analysis are, in fact, not that different from the actual estimates produced from 

the analysis of the X Line dataset under a purely infinitesimal model (Table 8.7). 
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8.6 Conclusions 

Differences between the estimates produced by the regression and Gibbs sampling 

methods would be expected due largely to the many simplifications made in the 

derivation of the regression method. One point to note is that the estimates from 

the Gibbs sampling method indicated a dominant mode of action for both QTL. 

The regression analysis assumed that the QTL was additive; this would lead 

to biased estimates. The results for dilute are quite similar for both methods. 

The regression analysis gives an estimate for the additive effect of the QTL 

linked to dilute of 0.47g with a recombination frequency between the two loci 

of 11%, whereas the Gibbs sampling analysis produced an estimate of 0.40g and 

12%. The estimates from the Gibbs sampling analysis are, however, more precise 

(remembering that the estimated standard errors from the regression analysis 

are underestimates). The results from the two methods do differ greatly for 

brown, with the regression analysis producing estimates of the QTL effect and 

recombination frequency of 0.17g and 15% and the Gibbs sampling analysis 

producing 1.70g and 45%. The results from the regression analysis had very large 

standard errors, however, with the gene effect being not significantly different 

from Og, and the recombination frequency being not significantly different from 

either 0% or 50%. It is, therefore, difficult to draw any firm conclusions from these 

analyses about the QTL linked to brown. There is potentially a source of more 

information which could be used in mapping the QTL linked to brown and dilute. 

As discussed in Section 4.1.3, a group of animals from generation 21 of the High 

and Low selection lines have been typed for a range of genetic markers, several 

of which are linked to brown and dilute. These markers also show differences 

in frequency between the High and Low selected lines. A further analysis could 

be performed utilizing this extra marker information. Chapter 7 describes the 

analysis of a simulated experiment where a QTL linked to several markers was 

simulated. Marker information was available on one marker throughout the 

pedigree, but information on the other markers was available only at the end of 
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the pedigree. This is essentially the same situation that occurs in the X Lines, so 

it should be possible to perform this type of analysis on the X Line data without 

too much difficulty. The major drawback is likely to be computer time; the 

simulated datasets, which were much smaller than the X Lines dataset, required 

several days to produce stable estimates. Analysis of the X Lines would be likely 

to take very much longer. Another potential problem is that with the simulated 

data, the proportion of animals with complete marker information is much higher 

(24%) than in the X Lines dataset (1%). The potential additional information 

content from the additional markers is reduced still further because the High line 

samples have no pedigree data due to a procedural error. These factors lead to 

the conclusion that the additional information from the extra markers is probably 

small compared to the information from the coat colour markers and the trait 

data. 



Chapter 9 

General Discussion and Conclusions 

In this thesis are developed several analytical methods which are applied to 

an experimental dataset from a selection experiment on mice in which an F 2  

population is divergently selected on 6-week body weight for 20 generations. The 

main aim of the analyses was to use the selection experiment data to make 

inferences about the genetic control of body weight in mice. This is done by 

(a) detecting deviations from the predictions of the infinitesimal model and (b) 

explicitly estimating the effects and positions of some of the genes affecting body 

weight. The methods are also applied to simulated datasets with the same general 

structure as the experimental dataset, so that the performance of the methods 

could be assessed. 

Chapter 2 presents a review of the infinitesimal model as applied to genetic 

analysis. The infinitesimal model, for which it is assumed that the genetic variance 

in a trait derives from an infinite number of unlinked additive genes each of 

infinitely small effect, is the standard model for quantitative genetic analysis. 

The reasons for the predominance of the infinitesimal model are ease of use and 

lack of knowledge about the distribution of gene effects. There are several reasons 

why real data might diverge from predictions made using the infinitesimal model. 

The infinitesimal model can be made to account for changes in genetic variance 

due to inbreeding and linkage disequilibrium caused by selection (the Bulmer 
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effect), but it cannot account for the changes in variance caused by changes in 

gene frequency. If there are genes with a significant effect on the trait segregating 

in the population, then selection and/or drift will cause stochastic changes in 

gene frequency which will create changes in genetic variance. Deviations from 

the infinitesimal model brought about by changes in gene frequency are likely to 

become greater the more generations are considered. This expectation was not 

borne out by a literature review of selection experiments (Sheridan, 1988) which 

looked for discrepancies between base population and realized estimates of genetic 

parameters. The results showed a better fit between the two estimates with long-

term experiments. This might, however, have been due to better estimation of 

realized heritability with the longer experiments (Hill and Caballero, 1992). 

One way in which the infinitesimal model could be extended to make it 

more realistic could be to model the genes with larger effects discretely, while 

modelling the remainder as a residual infinitesimal effect. These mixed inheritance 

models are arguably more accurate representations of the actual distribution 

of effects of segregating genes than the basic infinitesimal model. There is 

evidence that the distribution of the effects of mutations on quantitative traits 

is highly leptokurtic with a few genes of large effect and many genes of small 

effect (Keightley, 1994a; Caballero and Keightley, 1994). If the distribution of 

segregating genes was also leptokurtic then a mixed inheritance model would be 

more accurate than a model of equal gene effects (i.e. the infinitesimal model). 

The analysis of data under a mixed inheritance model is more difficult than 

under the infinitesimal model. The main difficulty arising from the use of mixed 

inheritance models is that the calculation of the likelihood is intractable for all 

but very simple pedigree structures (i.e. an F 2  population). Approximations to 

the mixed inheritance likelihood can be obtained (Hasstedt, 1982; Bonney, 1984), 

but how well they perform when used to analyse large complex pedigrees is not 

known (Ouo and Thompson, 1994). Mixed inheritance models can, however, be 

analysed using Monte Carlo sampling techniques. 
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Chapter 3 presents a brief introduction to Gibbs sampling, a Markov Chain 

Monte Carlo method, and its applications for genetic analysis. Gibbs sampling 

is a powerful and flexible technique for data analysis. It is simple to implement 

on a computer and it can handle complex models with ease. If Gibbs sampling 

is compared to more conventional approaches, several advantages and drawbacks 

become apparent. For example Gibbs sampling can be used for variance compo-

nent analyses, an area where the standard analytical method in animal breeding 

is REML. Comparing the Gibbs sampling to REML leads to the following con-

clusions: 

Advantages of Gibbs sampling over REML: 

• Gibbs sampling is computationally simpler which makes it easier to imple-

ment, and it typically requires less memory than a REML analysis. 

• More complex models can easily be analysed using Gibbs sampling, includ-

ing discrete gene and mixed inheritance models. 

Disadvantages of Gibbs sampling: 

• A Gibbs sampling analysis typically requires more CPU time than an 

equivalent REML analysis. This time penalty may become less apparent 

when larger datasets are analysed, and of course Gibbs sampling is most 

useful where there is no equivalent REML analysis. 

• It is difficult to predict convergence of the Markov chain. The number of 

sampling cycles required varies greatly between datasets and models. This 

makes it very difficult to write a fully 'automatic' Gibbs sampling algorithm. 

The initial quantitative analysis of the X Lines experiment is presented in 

Chapter 8. The analysis shows that there was substantial genetic variance present 

in the population resulting in sustained selection response over the 20 generations 

of selection. This is despite the X Lines being derived from a cross of only 

two inbred strains, although the two strains are thought to be genetically very 
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different and are possibly from separate sub-species. The cross between them 

would therefore include much of the genetic variance in the whole population. 

There were several unusual features of the X Lines which were noticed during 

this initial analysis. The first is that subline B of the Low lines showed a markedly 

different response from the other Low lines, being at one point about 1 s.d. 

below the other lines (Figure 5.1). This could be due to a mutation or a rare 

recombination event arising in that subline. It should be possible to search for a 

new mutation in subline B by looking for molecular differences between subline 

B and the other Low lines. Such a search would be very difficult because there 

are likely to be very many genetic differences between the sublines due to drift 

alone. Samples from all sublines at generation 20 have, however, been typed for 

a wide range of genetic markers, and so far no allele has been found that is just 

restricted to subline B (P. Keightley, peTs, corn.). 

Another unusual feature was the marked decrease in sexual dimorphism over 

time which was noticed in the Low lines. There are several possible explana-

tions for the decrease, which are discussed in Chapter 5, but no work was carried 

out to distinguish between these possibilities. It would be interesting to see how 

general this effect is. A literature search only uncovered one other reported in-

stance of a correlated change in sexual dimorphism when selecting for body weight 

(MacArthur, 1944a), and in that case the effect was nonsignificant. Unpublished 

data from another selection experiment conducted on mice at Edinburgh Univer-

sity also shows apparent reductions in sexual dimorphism over time, but the effect 

is not as clear cut as with the X Lines (S. Mbaga, pers. corn.). 

The third unusual feature of the X Lines noticed in the initial analysis was 

the apparent non-linear response of the Low lines, which showed an acceleration 

in response over the middle portion of the experiment. The infinitesimal model 

predicts a linear response to selection. A decline in response over time can be 

caused by the loss of genetic variance due to the fixation of alleles. An increase in 

the selection response is more complicated to explain, but indicates an increase 
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in genetic variance for some reason. Chapter 6 presents a method for detecting 

and estimating changes in variance components under selection over and above 

what would be predicted using the infinitesimal model. The method was tested on 

simulated data.sets of the same general size and structure as the X Line dataset. 

This simulation analysis demonstrated that the method could detect decreases in 

the additive variance produced by changes in gene frequency when a small number 

(32) of genes controlling the trait were simulated. When the method was applied 

to the X Lines, it indicated increases in the additive and environmental variance 

components (significantly so in the Low lines) and decreases in the common 

environmental component. The pattern of changes was the same in both the 

High and Low lines, but the magnitude of the changes was much greater in the 

Low lines. The large increase in variance in the Low lines corresponds to the 

apparent acceleration in the Low line selection response (although this could be 

due to environmental change). Several possible models that could give rise to 

the observed variance changes are discussed in Chapter 6, but it is not possible 

to choose between the models given the available data. One way forward would 

be to attempt to estimate the direct and interaction effects of individual QTL. 

If the effects and positions of all of the genes affecting a trait, or at least the 

genes contributing a large proportion of the genetic variance, are known then this 

should provide an accurate genetic model of the trait. The current situation is 

still a very long way from this, but the large amount of work on QTL mapping 

means that the information required to produce more accurate genetic models is 

becoming available. Utilizing such information for data analysis, however, will 

still be very difficult since it would require the modelling of many discrete loci 

(including their interactions). 

The Gibbs sampling approach developed in Chapter 7 for solving mixed 

inheritance models has potential both as a means of estimating QTL effects and for 

fitting quantitative genetic models which are more realistic than the infinitesimal 

model. The method described in Chapter 7 is, of course, a long way from being 

able to fit a general genetic model with a large number of interacting discrete loci. 
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It is theoretically quite simple to extend the method to handle several discrete 

loci and a residual infinitesimal effect taking account of the other loci. In this 

way, a large proportion of the genetic variance in the trait could be taken account 

of by the discrete loci. It is likely, however, that this approach would have low 

power when fitting several loci. 

There are several areas in which further work is required on the method. The 

method could be generalized by relaxing the restriction on the makeup of the 

initial population. As discussed in Chapter 7, this leads to several problems. 

With the initial population being formed from an inbred cross, the genotypes of 

the base animals are completely known. With any other type of base population 

the amount of information is obviously reduced. A more serious drawback is 

that with a more general base population, there is the possibility of multi-allelic 

loci which can cause the Markov Chain to 'stick' in subsets of the parameter 

space. There are methods that have been proposed to deal with multiple loci 

(Sheehan and Thomas, 1993; Lin et al., 1993; 1994; Lin, 1995), and these could be 

incorporated within the existing method. It is not clear how well these methods, 

which have been developed for human pedigrees, would work with the pedigrees 

typically found in animal breeding analyses. It appears from the work by Lin 

et al. (1994) that one of the pedigree structures that can lead to irreducibility is 

half sib families, which are very common in, for example, dairy cattle data, but 

are less common in human pedigrees. 

Other areas where further work could be profitable are looking at ways 

of increasing the speed of convergence. This can be done by improving the 

initialization of the unknown parameters; if the initial configuration is a long way 

from the equilibrium distribution then this can delay convergence considerably. 

The problem is most acute when setting up the initial genotype configuration 

when there are animals with missing or incomplete marker information. Another 

way of improving convergence would be to decrease the autocorrelation so the 

Markov Chain samples the parameter space more efficiently. This can be done 

by simultaneous sampling of highly correlated parameters, but in many cases this 
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is not practical. For example the QTL and polygenic genotypes and the QTL 

effect are all highly correlated, but simultaneous sampling of all these effects is 

not practical. The most immediate requirement for the method is to test it more 

thoroughly, in particular when data are analysed on purpose with the wrong 

model. Most QTL estimation techniques are vulnerable to bias if there are a 

different number of QTL on a chromosome than are being modelled, and it is 

unlikely that this method is any different. 

In chapter 8 is described the analysis of the associated effect of the coat 

colour loci brown and dilute on 6 week body weight from the X Lines experiment. 

Both loci show directional changes in frequency over the course of the X Lines 

experiment indicating linkage with one or more regions of chromosome that affect 

body weight. The aim of the analyses in this chapter was to model these associated 

effects as single QTL linked to the coat colour loci, and produce estimates of the 

Q TL effects and the recombination frequencies between the QTL and the marker 

loci. This was done in two ways. The first analysis used the log regression of the 

associated effect of the markers against generation to estimate the parameters. 

The associated effect is created by linkage disequilibrium between the marker 

loci and the QTL. There is complete disequilibrium in the F 1 , as this breaks 

down due to recombination the associated effect of the markers will decrease. 

The rate of decay of the effect depends in part on the recombination frequency 

between the QTL and the marker. An estimate for the QTL effect can be 

obtained from the associated effect of the marker in the F 2 . This analysis relies on 

many assumptions about the marker effect (additive), gene frequencies (constant), 

genotype frequencies (in Hardy-Weinberg equilibrium) and the error variance from 

the regression (homogenous). It is consequently not very accurate, but could be 

useful as a quick and simple test for a QTL. The analysis indicated a QTL linked 

to dilute with an additive effect of 0.5g and a recombination frequency between 

the QTL and dilute of 11%. The analysis of brown did not yield a significant 

estimate for the QTL effect. 

The second analysis used the Gibbs sampling based method previously dis- 
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cussed. Only single marker analyses were carried out despite there being multiple 

marker information available on some animals from generation 21. This was for 

several reasons: the multiple marker analyses take longer to converge than the 

single marker analyses, and even the single marker runs on the X Line data took 

over a week to converge. Secondly, there is a much smaller proportion of animals 

with multiple marker data available in the X Lines than in the simulation studies 

where multiple marker information was only available at the end of the pedigree 

(1% vs. 24%). This is likely to have an adverse effect on the convergence time. 

Lastly, for the High lines the parentage of the animals with multiple marker data 

is unknown, so it becomes very difficult to integrate the information from these 

animals with the information from the rest of the pedigree. 

The single marker analysis of dilute produced similar results to the regression 

method, with an estimated additive effect for the QTL of 0.4g ( 0.2c) and a 

recombination frequency between the QTL and dilute of 12%. There were less 

clear results from brown using both the regression and and the Gibbs sampling 

analysis. The regression analysis estimated the QTL as having a small (non-

significant) effect whereas the Gibbs analysis estimated the QTL as having a 

large effect but being only loosely linked to the marker. It is difficult to draw any 

conclusions about the QTL linked to brown. The analyses presented here appear 

to suggest it is either a small QTL situated fairly close to brown, or a large QTL 

located a long way from brown. Information on the marker frequencies from the 

end of the experiment indicate that several markers located very close to brown 

are associated with a large effect on body weight (Keightley et al., 1995). This 

would indicate that the QTL is in fact close to brown. The contradictory results 

may be due to there being more than one QTL linked to brown. It is not possible 

to test between 1 or 2 QTL using just a single marker. Using the information 

from the linked markers available from generation 21, it might be possible to 

distinguish between these two scenarios. The Gibbs sampling method described 

in Chapter 7, however, has not been tested with multiple QTL yet, and its ability 

to distinguish between rival hypotheses is another area which has not yet been 
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touched upon. 

Two general approaches are followed in this thesis for the investigation of 

the genetic control of body weight: detecting deviations from the infinitesimal 

model, and explicitly estimating the effects of individual genes on the trait. The 

conclusions from the first approach are that the experimental dataset displays 

significant deviations from the predictions of the infinitesimal model. The rates 

of response to selection appear to change over the course of the experiment, one 

of the the selection lines displays a markedly different response to the others, 

indicating a mutation or a rare recombination event, and significant changes in 

the additive and environmental variances over the course of the experiment are 

detected. It is not possible to make firm conclusions about the genetics underlying 

body weight, but is is possible to conclude that (a) there are significant non-

additive genetic effects present and (b) there are individual genes segregating with 

a detectable effect on body weight. It would appear from the analysis of the X 

Lines dataset that the infinitesimal model cannot provide an adequate description 

of the behaviour of datasets with more than a small number of generations. The 

largest single cause of the discrepancies between the model predictions and real 

data is likely to be changes in the frequencies of genes affecting the trait. This 

effect can not be accounted for by using infinitesimal models. It seems likely that 

as more information becomes available on the genetic control of quantitative traits, 

such as the distribution of gene effects, then it will become advantageous to use 

more realistic genetic models which can account for gene frequency changes. The 

methods described in this thesis for the analysis of data under mixed inheritance 

model may be regarded as a first step, albeit a limited one, towards the goal of 

such realistic models. 
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Appendix 

Sampling gene positions 

This Appendix describes the method used in Section 7.2.3 to sample the map 

position of a gene conditional on the positions of all other linked genes, and 

on the observed recombinations between the gene and all the other genes. The 

conditional distribution of the map position is given by: 

P(Ig,K_)O( KfJr"(1 — rk) 'k 	 (A.1) 
k 

where K,, Bjk  and Rk  are as defined in Section 7.2.2, is is the locus of the jth 

gene, K..... 3  is the vector of the positions of all other genes on the same chromosome 

and rk is the recombination rate between the QTL and the kth gene given by 

Haldane's mapping function: 

rk = ( l - e 21( i) 	 (A.2) 

A suitable method for sampling from (A.1) is the rejection method. This 

relies on being able to find a function 1(x) which can be readily sampled from 

and which is similar to the desired distribution p, but with p(x) being less than 

f(s) for all points within the desired range of x. A random deviate from p can 

be generated by sampling x from f and accepting or rejecting the sample with 

respective probabilities p(s)/f(s) and 1 —p(s)/f(s) (Devroye, 1986). That is, the 

sample x is accepted with a probability proportional to the ratio of the heights 
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of the two curves at x. The efficiency of this method depends on how often a 

sample is rejected, which in turns depends on how well the generator density f 

matches the required density p. For the method described here, the efficiency of 

the sampling is not that important because relatively few samples are required 

for each Gibbs sampling cycle. It was therefore decided to concentrate on finding 

a simple working algorithm for sampling rather than attempt to optimize the 

sampling for speed. The conditional distribution (A.1) is very 'lumpy', typically 

having a sharp peak in each gene interval 1 . Rather than find a function that 

emulated this, it was decided to sample from each gene interval separately, and 

then pick a sample from one interval with probability proportional to the value 

of (A.i) at the sample point. This allows the Markov Chain to 'jump' between 

gene intervals. 

A useful function for rejection sampling is derived from the Lorentzian distri-

bution: 

p(y)dy= --(1 	
2 )dy 	 (A.3) 

which has the tangent function as its inverse indefinite integral. A general version 

of the function (A.3) is given by: 

f(x)= 
1 + (x -  x o ) 2 /a 
	 (A.4) 

It follows that the x-coordinate of an area-uniform random point under (A.4) can 

be generated for any values of the constants c0 , a0  and x0  by: 

x = a0  tan(irU) + x o , 	 (A.5) 

where U is a uniform deviate between 0 and 1 (Press et al., 1992). This produces 

a bell-shaped distribution with maximum height c0  when x = x0 , with a width 

determined by a0 . This can be made to fit (A.1) reasonably well, with the major 

differences being that (A.4) is symmetrical with long tails while (A.1) has short 

tails and can be asymmetrical (particularly if the mode of the distribution is close 

'A gene interval is simply a locus flanked by two genes or by one gene and the end of the 
chromosome. 
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to a marker). The procedure used for finding values for the parameters Co, a0  and 

xo  and sampling from (A.1) was as follows: 

For each gene interval i: 

Find the maximum2  of (A.1) in the interval. Set x 0  to the location of the 

maximum and set c0  marginally above this maximum value. 

Find the minimum value of a0  required to ensure that f(x) > p(x) at all 

points within the interval. 

Sample x, from (A.4) using (A.5), truncating the distribution so all points 

lie within the desired gene interval. 

Sample a uniform deviate z between 0 and 1. 

Accept the sample xi if z < p(x)/f(x), otherwise repeat from 3. 

One of the samples x 2  is then selected with probability proportional to p(x). 

- 	 2
The maximization/minimization routines used were the line search routines nuibrak() and 

brent from Numerical Recipes (Press eL al., 1992). 
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