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Abstract

Multiple-Input Multiple-Output (MIMO) systems promise higher data rates and better quality of service
for wireless communications, by using multiple antennas atboth the transmitter and receiver. However,
applying MIMO technology at small portable wireless devices is faced with the problem ofmutual
couplingbetween antenna elements due to the limited space to put multiple antennas. It is shown in the
literature that the mutual coupling degrades the MIMO performance.

For a given channel matrix and a known mutual coupling model,usingantenna impedance matching
network(s)between the coupled antenna array and its load or source network is proposed by recent
studies to counteract the mutual coupling effects and maximise the MIMO performance. There are two
issues with the existing matching techniques. First, they employ a model based on open-circuit voltages
that separates the channel matrix and the mutual coupling model. This model is not valid except for a
limited types of antennas (e.g. half-wavelength dipoles).Secondly, there is no solution among existing
approaches that are capable of adapting to variations of thechannel matrix.

This thesis focuses on the mutual coupling problem at the receiver. We first examine the most common
approaches to model the mutual coupling. For instance, we compare various definitions ofcoupling
matrix available in the literature, analyse their relationship and clarify when we can use them. The
mutual coupling effects on MIMO performance metrics and impedance matching are also investigated
using the conventional open-circuit voltage based model and a new method calledreceiving mutual
impedances.

Then we propose the idea of having anadaptive uncoupled impedance matchingtechnique which tunes
the antenna impedance loads to compensate the effects of thepropagation channel and mutual coupling
together by directly dealing with the received signals. Themutual coupling model is unknown, but it is
included implicitly by using the voltages across the real parts of the antenna load impedances to estimate
the total effects. Assumingidentical impedance loads for all receive antennas, several optimisation
techniques such as Gradient-based, Newton-Raphson, and random search methods are investigated to
implement such an adaptive impedance match. We found the random search method to be a simple and
robust solution in comparison to other approaches.

Finally, we extend this adaptive matching technique tonon-identicaltermination case, in which all
load impedances are tuned individually. The performance ofthe adaptive matching networks are com-
pared with the conventional termination scenarios such as:characteristic impedance match, and self-
impedance conjugate match. Simulation results for a3 × 3 MIMO system under different propagation
scenarios show that bothidenticalandnon-identicaladaptive impedance matching networks are capable
of optimising the performance in the presence of strong mutual coupling and time variations of the chan-
nel. The adaptive non-identical match gives a significant improvement in the mean capacity (more than
20% compared to conventional terminations for0.05λ element separation) at the expense of a longer
convergence time compared to the identical match.
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estimateĤmc in (4.11), and (e) channel estimatêHmc in (4.15). Contour plots
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Chapter 1
Introduction

1.1 Motivation

In wireless mobile communications, there is an increasing demand for higher data rates and

better link quality and coverage. However, there are restrictions of the available bandwidth

and limited transmission power. Furthermore, wireless systems communicate through a com-

plex space-time varying channel and they require to overcome channel fading due to multipath

propagation.

By the end of the 20th century, Multiple-Input Multiple-Output (MIMO) systems emerged

which provide better link quality and higher data-rates forwireless communications by using

multiple antennas at both transmit and receive sides of the wireless link [2, 3]. A MIMO system

with N transmit andM receive antennas, as shown in Figure 1.1, can mitigate the channel

fading by using diversity at both the transmitter and receiver, and can increase data rates up to

min(N,M) times more in comparison to the conventional wireless systems.

Figure 1.1: A MIMO system withN transmit andM receive antennas.

However, applying MIMO wireless technology to small portable devices is restricted with lim-

its on the inter-element separation of antennas. An elementspacing less than half a wavelength

leads tomutual coupling, which describes the electromagnetic interactions between antennas.
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This phenomenon can change antenna parameters such as: antenna pattern, and antenna input

impedance. Therefore it influences the performance of MIMO systems. According to previous

studies, in the presence of mutual coupling, each antenna element is considered as a new scat-

terer for other elements of the array. Therefore, it can benefit MIMO diversity for some range of

element separation. However, mutual coupling effect degrades the received power and the ca-

pacity (data rates) due to mismatches between antennas and their termination load impedances.

Recent studies have presented antenna impedance matching approaches to improve the MIMO

performance in the presence of mutual coupling [4–9]. Thesestudies require prior knowledge

of the mutual coupling model and the channel matrix to find a proper impedance match which

maximises the compact MIMO performance. The choices of theses impedances are found to

be dependent on the proportion of the mutual coupling and thepropagation scenario. However,

the mutual coupling model used by the existing studies is notaccurate in general, and it is

only valid for a specific types of antennas such as half-wavelength dipoles. Furthermore, These

studies are not able to adapt to changes of the channel matrix.

Therefore, in this thesis it was decided to study the existing mutual coupling model to find a

more general approach to search for the optimum impedance matching network corresponding

to the propagation channel. It is desired to avoid fitting to explicit mutual coupling model due

to the lack of a widely applicable and accurate mathematicalmodel. Therefore, we proposed

anadaptive impedance matchingtechnique which only relies on the knowledge of the received

signals and training sequences. The proposed technique uses the measured channel matrix

which includes both the mutual coupling and the propagationscenario effects. It searches for

the optimum load impedances iteratively to maximise the compact MIMO performance in the

presence of mutual coupling.

1.2 Contributions

The main contributions of this thesis can be summarised as follows:

• Two methods of modelling the mutual coupling are investigated and the electromagnetic

simulation software FEKO [10] is used to calculate antenna parameters for an array of

two half-wavelength dipoles using both models. The influence of the mutual coupling on

compact MIMO performance metrics such as: antenna element pattern, signal correla-

tion, received power, and capacity are examined by using these two models.
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• The antenna impedance matching technique is investigated as a solution to mitigate the

performance degradation of compact MIMO systems due to the mutual coupling. How-

ever, this technique requires knowledge of the mutual coupling model and the channel

matrix. In general, there is no simple mathematical approach to model the mutual cou-

pling explicitly. An estimation of the total MIMO channel matrix from the knowledge of

the received signals and training sequences, will include the effects of mutual coupling.

• The idea of having anadaptive impedance matchingnetwork is proposed to counteract

the mutual coupling effect on the MIMO performance when there is no knowledge of

the mutual coupling model. The channel estimate is used to take account of the mutual

coupling effects, and three optimisation techniques including Gradient-based, Newton-

Raphson, and random search methods are mathematically and numerically examined to

implement such an idea for the identical antenna load impedances. We found the random

search method to be a simple and robust technique that provides the best performance.

• The adaptive impedance matching technique is extended to the non-identical load imped-

ances. Simulation results for several propagation scenarios under different conditions

such as: slow and fast fading proved the performance of the proposed technique.

1.3 Thesis Structure

The remainder of this thesis is organised as follows:

Chapter 2 provides background information related to this thesis. Itreviews some basic char-

acteristics of the wireless propagation channel. Then, a general overview of MIMO wireless

systems, followed by descriptions of the MIMO system model and MIMO capacity under dif-

ferent conditions are presented. Antenna matching circuits and the mutual coupling are also

discussed briefly at the end of this chapter.

Chapter 3 presents an overview of existing methods of mutual couplingmodelling, and dis-

cusses the accuracy conditions of such methods. Then, the impact of mutual coupling on MIMO

performance metrics such as: antenna pattern, signal correlation, received power, and capacity

are evaluated. The antenna impedance matching technique isalso investigated as a solution to

mitigate the performance degradation due to the mutual coupling effect for two mutual coupling

models.
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Chapter 4 explains the necessity of having anadaptive impedance matchfor compact MIMO

systems. It then proposes the adaptive impedance matching technique, and examines required

conditions to implement such an idea. Some estimation methods for the capacity and the

received power are addressed and three optimisation techniques: Gradient-based, Newton-

Raphson, and random search methods are examined for implementing the adaptive impedance

match assuming identical antenna load impedances.

Chapter 5extends theadaptive impedance matchingapproach to the non-identical load impeda-

nces. It then numerically evaluates the performance of the proposed technique for identical and

non-identical load impedances, by comparing their resultsto the conventional terminations such

as: the characteristic impedance match and the self-impedance conjugate match. The effect of

channel fading (slow and fast fading), and channel estimation error are also considered in the

numerical results.

Chapter 6 presents some concluding remarks and suggestions for future research.
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Chapter 2
Background

2.1 Introduction

In this chapter, we first describe some basic characteristics of the wireless propagation chan-

nel. Then, the advantages of Multiple-Input Multiple-Output (MIMO) wireless systems over

conventional systems are reviewed. Next, we introduce the MIMO system model followed

by MIMO capacity descriptions under different conditions.Finally, the problem of mutual

coupling for small size MIMO systems is addressed. This phenomenon degrades the MIMO

performance. Therefore, the rest of this thesis is allocated to find a solution to counteract the

mutual coupling in compact MIMO systems.

2.2 Wireless Communications

Wireless communication is one of the fastest growing technologies in our time. However, com-

munication in a wireless channel is faced with a number of challenges including limited power

and bandwidth, and a complex space-time varying channel [1,11–13]. As shown in Figure 2.1,

wireless signals pass through multiple paths from the transmitter to the receiver. Each multi-

path component may experience a change of its amplitude, phase delay and frequency. These

signals are added up in the receiver and they interfere with each other in a constructive or de-

structive way. The amplitude variation of the total signal at the receiver is calledfading [12].

In general, the variation of the total received signal in terms of different temporal and spatial

scales is categorised into:large-scaleandsmall-scale fading[12, 13].

2.2.1 Large-scale fading

Large-scale fading is the variation of the received power over large distances due to path

loss and shadowing.Path lossis the propagation loss of the radiated electromagnetic wave

in free space which occurs over long distances (100-1000m) between the transmitter and the
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Figure 2.1: Multipath propagation in wireless communications

receiver [13]. Shadowingis the attenuation of signal power caused by large objects between

the transmitter and the receiver. Shadow fading occurs due to different phenomena such as

absorption, reflection, diffraction, and scattering on a large scale of few hundred wavelengths

(10-100m in outdoor and less for indoor communications) [12, 13].

Path Loss

Consider a transmitter and a receiver separated with a distance ofd in free space, and with no

objects between them. The ratio of the received powerPr to the transmit powerPt is given

by [13]
Pr
Pt

=

(
λc
4πd

)2

GtGr (2.1)

whereλc is the carrier frequency wavelength, andGt andGr are the transmit and the receive

power gains, respectively. However, most of wireless systems communicate through a complex

propagation environment. Therefore, unlike the free space, modelling the path loss is not easy

and its effect is combined with shadowing and multipath fading. Several empirical models are

obtained by averaging the received power at given distancesover a few wavelengths [13]. As an

example, piecewise linear approximation from measurements is a common approach to model

path loss in microcell outdoor and indoor channels [12, 13].

6



Background

Figure 2.2: Illustration of channel fading versus distance.

Shadow Fading

The received signal is attenuated randomly due to blockage from large objects between the

transmitter and the receiver, or variation of reflecting surfaces and scatterers [13]. This phe-

nomenon is calledshadow fadingor shadowingand it is modelled by assuming the ratio of

transmit-to-receive powerψ = Pt/Pr as a random variable with log-normal distribution [12,

13]. However, the distribution ofψ values in dB is converted to a Gaussian distribution given

by [13]

p(ψdB) =
1√

2πσψdB

exp

[
−(ψdB − µψdB

)2

2σ2ψdB

]
. (2.2)

whereψdB = 10 log10(Pt/Pr) in dB is the random variable,p(ψdB) is the probability density

function (pdf) ofψdB , andµψdB
andσψdB

are the mean value and the standard deviation of

ψdB , respectively.

2.2.2 Small-scale fading

Fluctuations of the received signal due to the constructiveand destructive interference of mul-

tipath components is calledsmall-scale fading. This fading happens over very short distances

on a scale of a few signal wavelength. As an example for a 2GHz carrier frequency, moving

from a point by less than 10cm changes a constructive interference to be destructive, or vice
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Figure 2.3: Sketch of a wireless communication system.

versa [12]. Figure 2.2 illustrates path loss, shadowing, and multipath fading versus distance.

As can be seen from the figure, for multipath fading, the signal amplitude fluctuates around a

local mean value, which is determined by path-loss and shadowing.

As shown in Figure 2.3, the total effect of multipath propagation is modelled by defining a

channel coefficienth(t, τ) which relates the received signaly(t) to the transmitted signalx(t)

as follows:

y(t) =

∫ τmax

0
h(t, τ)x(t − τ)dτ + n(t) (2.3)

whereh(t, τ) is the channel response at timet to a transmitted impulse at time(t− τ), τmax is

the maximum length of the channel response, andn(t) is the receiver noise. With a large num-

ber of independent multipath components and no dominant line-of-sight (LOS) signal compo-

nent, the channel coefficient is modelled as a complex randomvariable with a uniform distri-

bution for its phase, and a Rayleigh distribution for its amplitude r = |h| given by [13]

p(r) =
r

σ2
exp

[
− r2

2σ2

]
. (2.4)

2.2.3 Slow versus fast fading

Time-varying multipath channels are categorised asslowor fast fadingchannels. For the latter

case, the channel impulse response changes rapidly within the symbol period [14]. This can

happen due to movement of the transmitter or the receiver. Assumingfm to be the maximum

Doppler shift, the channelcoherence timeTc is related tofm as follows [14]:

Tc ≈
1

fm
(2.5)

Denoting the symbol/frame period byT , the fast fading condition for a channel with the co-

herence time ofTc is described by(T > Tc). On the other hand, for slow fading the channel

response does not change over the period ofT , and(T ≪ Tc).
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Figure 2.4: Schematic diagram of aN ×M MIMO wireless system.

2.2.4 Flat versus frequency-selective fading

For a time-varying multipath channel in the frequency domain, thechannel coherence band-

widthBc is defined as the frequency difference in which two frequencycomponents are corre-

lated [12]. For a narrowband signal with a bandwidth ofW ≪ Bc, all the signal components

are highly correlated, which means the fading over all signal components is equal. This case

is calledflat-fading. On the other hand, if the signal bandwidthW ≫ Bc, then the channel

behaves differently for different frequencies and we havefrequency-selective fading.

2.3 MIMO Systems

Over the last decade, the use of multiple antennas at both transmit and receive end, popularly

known as MIMO systems, have been one of the most active research areas in the field of wire-

less communication. Figure 2.4 shows a schematic diagram ofa MIMO system withN transmit

andM receive antennas. MIMO technology can increase the data rate and/or improve the qual-

ity (bit-error rate) of communication by exploiting spatial properties as a new dimension to

enhance the performance [1–3, 15, 16].

2.4 MIMO benefits

MIMO technology can provide significant performance gains such asarray gain, interference

reduction, spatial diversity gainand spatial multiplexing gain[1, 11]. In the following, we
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briefly describe these gains and how they can be exploited.

2.4.1 Array gain

Array gain is the increasing of signal-to-noise ratio (SNR)at the receiver due to the coherent

combination of the wireless signals at the receiver or transmitter or both [1, 11]. Arriving

signals at the receive antennas, which have different amplitudes and phases, can be coherently

combined to obtain an enhanced signal quality. The average increase in the SNR at the receiver

is related to the number of the receive antennas [13].

2.4.2 Interference reduction

Interference in wireless channels arises from the sharing of time and frequency resources for

multiple users. In array antennas, the spatial properties of the desired signal and interference

are usually not the same. So we can reduce the interference byexploiting these differences.

However, interference reduction methods usually need channel knowledge for the desired sig-

nal. By the use of array gain and interference reduction techniques, we can improve signal-to-

noise-plus-interference ratio (SINR). Figure 2.5.(a) shows an array that forms the beampattern

by coherent combination of array elements output to maximize in the direction of the desired

signal (array gain) and place a null in the direction of interference (interference reduction) [17].

2.4.3 Spatial diversity gain

The signal level at the receiver in a wireless system fluctuates or fades. Spatial diversity miti-

gates fading (distortion and attenuation of wireless signal) by providing the receiver with mul-

tiple (ideally independent) copies of the transmitted signal in space, frequency or time. So

the probability that at least one of these copies does not experience a deep fade increases dra-

matically. In a MIMO system both transmit and receive array antennas can be used to obtain

diversity gain [1, 13]. Figure 2.5.(b) illustrates the spatial diversity principle, where statistically

independent copies of each signal received by different antennas are added together to mitigate

fading.
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Figure 2.5: A comparison of (a) array beamforming with (b) spatial diversity.

2.4.4 Spatial multiplexing gain

Spatial multiplexing is a specific concept for MIMO systems which allows the transmitter to in-

crease the transmission rate (or channel capacity) by sending parallel independent data-streams

simultaneously on the same radio frequency. Under suitableconditions related to the number of

receive antennas and the channel conditions, the receiver can successfully separate and decode

the transmitted information [1–3, 15, 16].

2.5 MIMO System Model

In order to understand the performance limits of MIMO systems, we should understand the na-

ture of the MIMO channel. Consider a MIMO system withN transmit andM receive antennas,

as shown in Figure 2.4. A linear time-variant MIMO channel response can be represented by

theM ×N matrixH(τ, t) as:

H(τ, t) =




h1,1(τ, t) h1,2(τ, t) . . . h1,N (τ, t)

h2,1(τ, t) h2,2(τ, t) . . . h2,N (τ, t)
...

...
. . .

...

hM,1(τ, t) hM,2(τ, t) . . . hM,N (τ, t)




(2.6)

wherehi,j(τ, t) is the time-variant channel response between thejth transmit antenna and the

ith receive antenna, which is the response at timet to an impulse applied at time(t−τ). Thejth

column of theH(τ, t) is often referred to as the spatio-temporal signature of thejth transmit
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antenna across the receive array. The relation of theN spatial signatures determines the ability

to separate the signals sent from the transmitter to a receiver [1, 11].

We note that in the channel matrix description of (2.6), the effects of antenna array configuration

and frequency filtering (bandwidth-dependent) are included. The MIMO channel input-output

relationship between theN × 1 transmit signal vectorx(t) and theM × 1 receive signal vector

y(t) can be written as [18]:

y(t) =

∫

τ
H(t, τ)x(t− τ)dτ + n(t) (2.7)

wheren(t) is the additive noise (interference and noise) in the receiver.

Throughout this thesis, we assume two options for the time variation of the channel: (a)block

fading model, where the channel matrix is constant over the interval of a transmission block,

and (b)fast fadingmodel where the channel matrix may change over a few symbol periods. Fur-

thermore, we considernarrowbandcommunication, which is valid when the channel response

is constant over the system bandwidth (frequency-flat fading) or when signals are divided into

narrowband bins and processed separately [1, 16]. In this case, (2.7) can be simplified to

y(t) = H(t) x(t) + n(t) (2.8)

whereE{x} = 0 (E{·} is the expectation operator), andE{nnH} = σ2nIM for additive white

Gaussian noisen(t) [1]. This is the case we consider in this thesis, unless otherwise specified.

A variety of channel models have been proposed for MIMO systems in the literature, some of

which are based on measurements [19, 20]. Generally, MIMO channel models can be classified

into (i) physicaland (ii)analyticalmodels [18]. The physical channel model can be constructed

by specifying angle-of-departure (AoD) at transmitter, angle of arrival (AoA) at receiver, path

attenuation, antenna spacing at both ends and other realistic parameters [7]. Analytical models

are statistical-based models which are used to describe theMIMO channel in simulations and

theoretical analysis. We have considered two popular models which characterise the MIMO

channel matrix statistically in terms of the correlation between the matrix entries: classical in-

dependent, identically distributed (i.i.d.) Rayleigh fading, and Kronecker channel models [18].
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2.5.1 Classical i.i.d. Rayleigh fading channel model

Assuming suitable array element spacing and a rich scattering environment, the entries ofH

can be assumed to be independent, zero-mean, unit-variance, circularly symmetric complex

Gaussian random variables [1–3], i.e., the entries are defined as

hm,n = N (0,
1

2
) + jN (0,

1

2
) (2.9)

wherej =
√
−1 andN (µ, σ2) denotes a Gaussian random variable with meanµ and variance

σ2. We getH = Hw as the i.i.d. Rayleigh fading channel model.

2.5.2 Kronecker model

In practice, a low level of scattering in the environment and/or close antenna element spacing

leads to correlation between the entries of channel matrixH [21–23]. Considering the cor-

relation structure, a correlation matrix needs to be constructed upon the correlation model or

measured data [24]. In the case of independent fading statistics for the transmitter and receiver,

this correlation matrix can be created by the Kronecker product of two separated matrices [19].

A common way to include the correlation among the channel matrix entries is to use Kronecker

model as [19, 25–27]

H = Ψ
1/2
R HwΨ

1/2
T (2.10)

whereΨT andΨR are the correlation matrices at the transmit and receive ends, respectively.

This model has been validated by comparing with measured data for small size MIMO systems

such as2× 2 and3× 3 [19, 28, 29].

2.6 MIMO Capacity

Transmission rate and bit-error rate (BER) are two significant performance metrics for any

communication system. In this section, we briefly review theShannon capacity, which shows

the theoretical upper bound of the maximum data rate [13], and the outage probability for

narrowband MIMO systems. Generally, the capacity depends on our knowledge of the channel

gain matrixH or its distributions at the receiver and/or transmitter [30].
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2.6.1 Deterministic MIMO Channel Capacity

For a1× 1 (SISO1) wireless system, the Shannon capacity is given by:

C = log2(1 + ρ|h|2) bits/s/Hz (2.11)

whereρ is the SNR at the RX antenna, andh is the normalised complex gain for the wireless

channel. Here we assume the fading is frequency-flat, therefore the channel gain is just a scalar

number. As we see from (2.11) the capacity only increases logarithmically with the SNR.

Now we consider the capacity for the MIMO wireless channel. Assume that the MIMO channel

H is deterministic and perfectly known at the receiver (this knowledge can be obtained via

transmitting training sequences and tracking these at the receiver). Then the capacity for the

system described by (2.8) is given by [13, 15]

C = max
Rx: Tr(Rx)=PT

log2

[
det(IM +

1

σ2n
HRxH

H)

]
bits/s/Hz (2.12)

whereIM is theM ×M identity matrix,Tr(·) is the trace,PT is the total transmit power,σ2n is

the noise power at the receiver, andRx = E{xxH} is the covariance matrix of the transmitted

signalx. The diagonal elements ofRx represents the transmit power by each antenna, and

therefore the inequalityTr(Rx) ≤ PT defines the total transmit power constraint. Referring to

(2.12), it is clear that the optimisation subject toRx depends on the transmitter’s knowledge of

H. In the following, we consider different cases of channel knowledge at the transmitter.

Channel Known at Transmitter: Water-filling

Let us consider a case that theM ×N channel gain matrixH is known for both the transmitter

and the receiver. By using the singular-value-decomposition (SVD) for the matrixH we have

H = UΣVH (2.13)

where theM ×M matrixU andN ×N matrixV are unitary matrices2, andΣ is anM ×N

diagonal matrix with non-negative entries [11]. The diagonal elements of the matrixΣ, denoted

by σi, are singular values ofH so thatσi =
√
λi whereλi is the ith eigenvalue ofHHH

1single-input single-output
2If N ×N matrixA is unitary, thenAA

H = AA
H = IN
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[13]. The matrixH hasRH nonzero singular valuesσi, which RH is the rank ofH, and

RH ≤ min(N,M).

The MIMO channel can be transformed intoRH independent parallel channels by pre-multiply-

ing the transmit vector by the matrixV, and post-multiplying the receive vector by the matrix

UH . In other words, the channel inputx is created byx = Vx̃, which x̃ is the data stream

vector, and the channel outputy is multiplied byUH , so we have

ỹ = UH(

y︷ ︸︸ ︷
Hx+ n)

= UH(UΣVH(Vx̃) + n)

= Σx̃+UHn

= Σx̃+ ñ

(2.14)

whereñ = UHn. SinceΣ is a diagonal matrix, we havẽy = σix̃ + ñ for i = 1, 2, · · · , RH.

Now, there areRH orthogonal parallel channels so that the transmitter can use the waterfilling

algorithm to allocate power to these channels as an optimum way. The power allocation can be

expressed as

Pi = (µ − 1

σ2i
)+, 1 ≤ i ≤ RH (2.15)

wherePi is the power of̃xi, x+ is equal tomax(x, 0), and the waterfilling levelµ is chosen

to satisfy
∑RH

i=1 Pi = PT . The channel capacity can be obtained by choosing an appropriate

powerPi for eachx̃. The covariance matrix forx which maximises (2.12) isRx = VPVH ,

where theN × N matrix P is a diagonal matrix. If we assume the singular values ofH are

in descending order, thenP = diag(P1, · · · , PRH
, 0, · · · , 0). Substitution ofRx into (2.12)

yields the waterfilling capacity as [11–13]

Cwf =

RH∑

i=1

log2

[
1 +

Pi
σ2n
σ2i

]
(2.16)

It can be seen that the capacity in (2.16) is obtained from thesum of the capacities of subchan-

nels.
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Channel Unknown at Transmitter: Equal Power Allocation

When the channel matrixH is known to the receiver, but unknown to the transmitter, thepower

is equally allocated among the transmit antennas to formN independent streams, orRx =

(PT /N)IN . It results in the equal power capacity given by

Cep = log2

[
det(IM +

ρ

N
HHH)

]
(2.17)

whereρ = PT /σ
2
n is the average SNR at the receiver.

2.6.2 Capacity of fading MIMO Channels

In the previous section, the MIMO capacity for one realisation of the channel matrixH is

considered. Wireless communication system analysis should always include the effect of the

channel fading. In this case, the entries of the channel matrix H are random variables. There

are two different definitions to characterise the fading channel capacity:ergodic capacityand

outage capacity. The channel matrix is known at the receiver, but it may be known or unknown

to the transmitter.

Ergodic Capacity

The ergodic capacity is an expected value of the capacity over all realisations of the channel

matrix [12]. Consider a time-varying channel with random matrix H that is known at the

receiver but not at the transmitter. Ergodic capacity defines the maximum rate, averaged over

all realisations of the channel, which can be realised basedon a fixed transmission strategy (rate

and/or power) [11, 13]. In other words, the problem is to find the optimumRx to maximise

C = max
Rx: Tr(Rx)=PT

EH

{
log2

[
det(IM +

1

σ2n
HRxH

H)

]}
(2.18)

whereEH{·} is the expectation over the distribution of the channel matrix H. For the i.i.d.

zero-mean circularly symmetric and unit-variance channelmodel,H = Hw, the optimum input

covariance to maximise (2.18) isRx = (PT

N )IN . In this case, the ergodic capacity becomes [13]

C = EH

{
log2

[
det(IM +

ρ

N
HHH)

]}
. (2.19)
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Figure 2.6: (a) Ergodic capacity, and (b) 10% outage capacity versus average received SNR
for different MIMO configurations withN transmit andM receive antennas, under
the assumption of i.i.d. Rayleigh-fading channel model andequal power allocation
at the transmitter. These results match Fig.5 and Fig.6 from[1].
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Outage Capacity

The outage capacity is defined over slowly time-varying channels, where the data is transmitted

over a time period that is much shorter than the channel coherence time (i.e.,H is constant over

a relatively long transmission time) [11–13]. Thus, we can compute the (Shannon) capacity for

each realization ofH, and capacity becomes a random variable with an associated cumulative

distribution function (CDF) [12]. Now, we define theq% outage capacityCout,q as the trans-

mission rate that is guaranteed for(100 − q)% of the channel realisations [1]. In other words,

the outage capacityCout,q can be obtained from the follow relation

P (C ≤ Cout,q) = q% (2.20)

whereC is the instantaneous channel capacity, and for the case where the channel is only known

at receiver, can be obtained from (2.17).

Figure 2.6 shows the ergodic capacity and10% outage capacity for different MIMO configu-

rations. We assumed that the channel is known for the receiver but not for the transmitter, and

i.i.d. channel model is applied, i.e.H = Hw. The 10% outage capacity shows the minimum

transmission rate which is achieved over 90% of the time. Therefore, it is expected to be lower

than the ergodic capacity which is an averaged value of the capacity over all the channel real-

isations. We also observe that MIMO systems with a larger number of antennas can achieve

higher data rates. Furthermore, comparing2 × 1 and1 × 2 MIMO configurations reveals that

having more receive antennas is more effective than using more transmit antennas. This is due

to the restriction of equal power allocation at the transmitter.

2.7 Antenna Matching Circuit

The antenna is the interface between the transmitter or the receiver and the wireless propagation

environment which affects the performance of the communication system. Such an effect is

even more for MIMO systems that use multiple antennas at bothsides of the wireless link.

An antenna is a device which convert the radio-frequency (RF) signal into the electromagnetic

wave at the transmitter, and vice versa at the receiver. The performance of an antenna system is

not only dependent on the antenna characteristics, but alsoit is influenced by the transmission

line characteristics. In practice, these characteristicsare not the same [31]. For instance, the
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Figure 2.7: Block diagram of a transmitter or receiver.

characteristic impedance of the transmission line is real (resistive) whereas for the antenna

element it is complex. Therefore, a matching circuit is usedbetween the antenna and the

transmitter or the receiver. This is shown in Figure 2.7 for atypical transmitter or receiver with

a single antenna. Usually, impedance of the transmitter or receiver is equal to the characteristic

impedancez0 of the transmission line [32]. Using Thevenin equivalent circuits, the above

configuration can be simplified as shown in Figure 2.8 for the transmitter or the receiver. As

an example for the receiver, when we have no matching circuit, the load impedancezL is

equal to the transmission line characteristic impedancez0. However, in practice, the matching

circuit is matched to the conjugate of the antenna impedancein order to have maximum power

transfer [31, 32].

In practice, matching networks are used to have either no reflections, or maximum power trans-

fer. In order to explain the concept of matching circuit, we consider a simple electric circuit

with a load impedancezL connected to a sourcevs in Figure 2.9. Without a matching circuit,

according to the circuit theory, maximum power is transferred from the source to the loadzL

whenzL = z∗s . This condition is called theconjugate match. However, for some applica-

tions we can not change the load. Therefore, a matching circuit is used between the load and

the source with an input impedancezM toward the source, as shown in part (b) of Figure 2.9.

Reflection coefficient of the matching circuit is given by

ΓM =
zM − z0
zM + z0

(2.21)

And the conjugate match for this circuit means thatzM = z∗s , and consequentlyΓM = Γ∗
s.

2.8 Mutual Coupling

When two or more antennas are placed close together, whethereach one is transmitting or re-

ceiving, they interact electromagnetically in a complicated way. This phenomenon is called
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Figure 2.8: Simple model of a (a) transmitter, or (b) receiver with a single antenna.

Figure 2.9: A load connected to a source voltage (a) without, (b) with a matching circuit.

mutual coupling[31, 32] and it may change the parameters of each antenna suchas: antenna

gain, beamwidth, pattern, resonance frequency, and input impedance [31–33]. The mutual cou-

pling mechanism for a receive array of two antennas can be explained as shown in Figure 2.10.

A plane wave (0) is incident at antenna 1 and induces current at the antenna. One part of the

incident wave energy is absorbed and it goes through the antenna feed. The other part is re-

radiated into all directions around the antenna as (2). A portion of the re-scattered energy goes

toward antenna 2, shown by (3) in the figure, and adds up to the incident wave energy (0).

Some part of the energy received by antenna 2 is re-radiated again and this process is repeated

infinitely. The amount of the absorbed and re-radiated energy is dependent on the termination

impedances of the antenna elements [31]. The effect of such interactions depends on the lo-

cation of the antenna in the array. Figure 2.11 illustrates the coupling paths between antenna

elements for a linear array of three identical antennas withelement spacing ofd. For such

an array structure, the proportion of mutual coupling for the middle antenna would be larger

than the other antennas. The first and the third antennas are influenced by the mutual coupling

similarly.

In general, the proportion of the mutual coupling for each array-element depends on different

parameters including: inter-element spacing, antenna element pattern, array geometry, relative

positioning of the antenna element in the array, operational frequency, and near field scatter-
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Figure 2.10: Mutual coupling mechanism between two receive antennas.

Figure 2.11: Mutual coupling between antennas.
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ers [31, 33]. Most of these parameters can be measured or estimated except near field scatterers

which are random in nature, and can increase the mutual coupling between antennas [33]. From

now on, we use the termcoupled arrayfor closely spaced antennas, which are affected by mu-

tual coupling.

Implementation of MIMO technology on small personal communication devices require to

place multiple antennas close together. Therefore the mutual coupling affects the MIMO

communication performance. Many studies have investigated the effect of mutual coupling

on MIMO systems. Although it benefits the MIMO diversity gainfor a specific range of

antenna separation by reducing the signal correlation [21,23, 34–36], it degrades the MIMO

received power and the capacity due to mismatch between antennas and their termination

loads [5, 22, 37, 38]. We further investigate this effect on MIMO performance in the follow-

ing chapter and then propose an adaptive impedance matchingtechnique which counteract the

mutual coupling effect by tuning the antenna termination loads.

2.9 Summary

In this chapter we reviewed different types of fading for wireless channels, followed by an

overview of MIMO technology benefits over traditional wireless systems. After that we de-

scribed how a MIMO system can be modelled and the MIMO capacity under different channel

propagation conditions is defined. Then we mentioned the mutual coupling problem which

degrades the MIMO performance in small size wireless devices. In the following chapters

we examine the existing mutual coupling models and propose an adaptive antenna impedance

matching technique in order to mitigate the mutual couplingeffect.
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Chapter 3
Mutual Coupling

3.1 Introduction

It is shown in the literature that mutual coupling between closely spaced antennas mostly has

undesired effects on the performance of compact MIMO systems. For instance, it changes the

input impedance of each array element and therefore the received power will be reduced due to

the increased mismatch between the antennas and their loadsor sources [35]. However, mutual

coupling may also have some beneficial effects such as diminishing spatial channel correlation,

which is desired to be reduced in order to optimise the performance of MIMO communications

[21, 23, 33, 36].

This chapter investigates the impact of mutual coupling on the performance of compact MIMO

systems. First, an overview of existing methods of mutual coupling modelling, and the required

conditions for the accuracy of such models are presented. Then, the influence of mutual cou-

pling on common performance metrics such as:signal correlation, antenna pattern, received

power, andcapacitywould be evaluated.

Next, antenna impedance matching is used as an interesting solution to mitigate mutual cou-

pling effects. There are two kinds of impedance matching network introduced in the literature.

One is a coupled matching network [39] which is also called amulti-port conjugate match

(MCM) [4]. The other one is an uncoupled (or individual-port) impedance match [5–7, 38].

Although the former one is claimed to provide optimal solutions and significant performance

improvement [21], it can only operate effectively over a narrow-bandwidth [9, 37]. It also has a

complicated structure with interconnections between matching network ports, which makes it

difficult to construct practically [37]. The latter one, in comparison, is much easier to construct

and it can achieve sub-optimum matching solutions with a wider bandwidth [37, 38]. There-

fore, throughout this thesis, uncoupled matching networksare used to counteract the mutual

coupling. Finally, we examine the receiving mutual impedance method of mutual coupling

modelling for uncoupled matching networks.
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3.2 Mutual Coupling Effects

Many studies have investigated the impact of mutual coupling on MIMO performance metrics

such as: signal correlation and diversity gain [4, 5, 21, 23,33, 35–37, 40], element pattern and

radiation efficiency [23, 35], received power [4, 5, 21, 40],and capacity [4, 6, 21, 36, 40].

It is shown that the mutual coupling can benefit coupled arrays by reducing the spatial cor-

relation between antennas for some range of element separation [23, 36], and consequently

improve the diversity gain [21, 35]. However, the mutual coupling distorts the antenna element

pattern [4, 23] which in turn degrades the radiation efficiency [35]. Furthermore, it reduces the

received power due to the increased mismatch between the receive antennas and their termina-

tion loads [6].

There are some disagreement in the literature about the effect of mutual coupling on the MIMO

capacity. Some studies claim an improvement in the capacitydue to the mutual coupling for

some range of element separation [36], while some others show a capacity degradation in the

presence of mutual coupling [22]. This is mainly due to ignoring the effect of the received

power on the capacity by the former studies. It has been revealed that the received power and

the correlation both affect the capacity [23, 41]. However,the received power has a stronger

effect on the capacity [40].

The effect of different types of antenna terminations on thecorrelation coefficient, the diversity

gain, and the received power in the presence of mutual coupling is investigated in [21, 35]. Such

an issue is studied in more details in [5, 40] by changing the real and imaginary parts of antenna

termination loads for the correlation, the received power,and the capacity. Interestingly, it is

found that a proper choice of antenna load impedances can mitigate the mutual coupling effect

and improve the performance.

Modelling the mutual coupling is also an important concern in the literature. Most of previous

studies use a method suggested by Gupta and Ksienski [42] to model the mutual coupling using

impedance parameters or the equivalent scattering parameters [43] of the antenna array. In

this method,antennas with open-circuited terminalsare considered to have no effect on other

close proximity antennas. In other words, open-circuited antennas are assumed to have no

influence on other antennas. Consequently,open-circuit terminal voltagesof antennas, while

all are open-circuited,are assumed free of mutual coupling. This is not true in general and

the incident wave can induce currents on the open-circuitedantennas which in turn, they affect
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other antennas [44]. However, for a few cases such as an arrayof half-wavelength dipole

antennas, induced currents under open-circuit condition are so small such that the method in

[42] gives a valid approximation of the mutual coupling [23,44]. We call the above method as

theopen-circuit modeland describe it in the following section.

Despite the simplicity of the open-circuit approach, the accuracy of such a model for coupled

arrays is questioned by several studies [44–49], and alternative approaches are suggested. In

some studies [50–52], the relation between the isolated andcoupled element patterns is used

to model the mutual coupling. Such methods are complicated in general and they fail to model

the mutual coupling for unusual array geometries [44]. Someothers use the method of moment

(MoM) to analyse the mutual coupling [45, 46, 53]. However, such methods require the knowl-

edge of array quantities such as voltages and currents of theelements [54]. In [48, 55], a new

concept ofreceiving mutual impedance, based on the relation of isolated and coupled terminal

voltages, is introduced to model the mutual coupling for receive arrays. The advantage of this

method over other methods is that, like the open-circuit approach, it deals with the terminal

voltages and currents rather than the element pattern or current distribution. It also includes the

effect of loading and external source to calculate the receiving mutual impedances.

This chapter is organised as follows. In Section 3.3, we review the open-circuit and the re-

ceiving mutual impedance methods to model the mutual coupling. Section 3.4 examines the

impact of mutual coupling on MIMO performance metrics such as: the antenna pattern, the

signal correlation, the received power, and the capacity byemploying both the open-circuit and

the receiving mutual impedance models. In Section 3.5, the antenna impedance matching is

used to mitigate the performance degradation due to the mutual coupling. Finally, this chapter

is concluded in Section 3.6.

3.3 Mutual Coupling Modelling

In this section, we first review the circuit equivalent of an isolated (stand-alone) antenna. It

is followed by a circuit model for an antenna element of a coupled array. Then, the coupling

matrix is introduced as the most common approach to take the effect of mutual coupling into

account.
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(a) transmit mode (b) receive mode

Figure 3.1: Equivalent circuits of a stand-alone antenna for the transmit and receive modes.

(a) transmit mode (b) receive mode

Figure 3.2: Equivalent circuits of an array element for the transmit andreceive coupled arrays.
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3.3.1 Antenna Equivalent Circuit

TheInput impedanceof an antenna is defined as the impedance presented by the antenna at its

terminals, or the ratio of the voltage to the current at a pairof its terminals [31, 32]. This can

be written as follows:

Zin = Rin + jXin (3.1)

whereRin is the input resistance of the antenna comprising two components: radiation and

ohmic loss resistances . The termXin denotes the input reactance which represents the power

stored in the near field. For a stand-alone antenna, the inputimpedance is also called the

self-impedance. The equivalent circuit for such an antenna, connected to the corresponding

transmitter/receiver through its terminals, is shown in Figure 3.1. For the transmit mode, the

feeding transmit circuit is simply modelled by a voltage sourceVs and an internal impedance

zs, and the antenna is represented by its self-impedancezA [56]. In the receive mode,Vs

denotes the induced voltage at the antenna due to the incident wave, andzL is the terminal load

impedance. As a result of the reciprocity theorem [31],zA is the same for both transmitting and

receiving modes. The symbolI is the terminal current for both cases.

Assume that we have a transmit/receive array ofM closely separated antennas. Each antenna

elementi for (i = 1, 2, · · · ,M ) with its corresponding transmit/receive circuit can be simply

modelled by the equivalent circuits shown in Figure 3.2. Thecontrolled sourceVmc,i is the

voltage induced at the antenna due to the mutual coupling. For the transmit mode shown in

Figure 3.2(a), the parameters of the transmitter block at the left hand side of the antenna termi-

nal port, are assumed to be known or measurable. But the coupling voltageVmc,i is unknown

and we need to formulate it in terms of known parameters.

Having the transmit and the receive arrays separated far away from each other, the incident

wave at the receiver can be considered as a (far-field) plane-wave. Referring to the receive

mode in Figure 3.2(b), the total induced voltage in theith antenna due to the plane wave and

the mutual coupling effects of the other antennas, can be expressed as [57]

Vind,i = Vs,i − Vmc,i (3.2)

whereVs,i represents the voltage induced by the incident plane wave which is free from the

mutual coupling, andVmc,i is due to mutual coupling effects. In practice, the terminalvoltage

and current of each antennai, are the only parameters which can be measured at the receiver.
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3.3.2 Open-circuit Model

For this model, the impedance parameters of the array antennas are defined as follows. The

self impedanceof each array-element is defined as the ratio of the voltage tothe current of its

terminals while the rest of antennas are open-circuited. The mutual impedancesbetween each

pair of coupled antennas are defined as the ratio of the open-circuit voltage across the terminals

of one antenna to the current flowing through the terminals ofthe other one while it is excited

or loaded, and the rest of antennas are open-circuited [31, 32, 56].

Now we can describe the impedance matrix of a coupled array ofM antennas as follows:

Z =




z11 z12 · · · z1M

z21 z22 · · · z2M
...

...
.. .

...

zM1 zM2 · · · zMM



. (3.3)

wherezii is the self-impedance of theith antenna for (i = 1, 2, · · · ,M ), andzij is the mutual

impedance between theith andjth antennas for (i 6= j, andi, j = 1, 2, · · · ,M ). The self- and

the mutual-impedances of the elements of a coupled array canbe calculated using either the

classical induced electromotive force (EMF) method [31, 56], or numerical methods in compu-

tational electromagnetics (CEM) such as: the method of moments (MoM), and finite-difference

time-domain (FDTD) [38]. Calculation of the mutual impedance matrix using EMF method for

several structures of an array of two dipole antennas is described in detail in appendix B.

By using the impedance parameters of the array, and neglecting the scattering effects of open-

circuited antennas [58], we can rewrite equation (3.2) as follows [42, 57]:

Vind,i = Voc,i −
M∑

j 6=i,j=1

Ijzij (3.4)

whereVoc,i is the terminal voltage forith element while all antennas (including the elementi)

are in the open-circuit condition, and it represents the share of incident plane wave without any

mutual coupling effect. The termIj is the terminal current forjth element, andzij denotes the

mutual impedancebetweenith andjth elements for (i 6= j, andi, j = 1, 2, · · · ,M ) defined

as the ratio of the open-circuit voltage across the terminals of ith antenna (only induced by the

radiated field ofjth antenna) to the current flowing through the terminals ofjth antenna while

28



Mutual Coupling

it is excited or loaded, and the rest of antennas are open-circuited. Referring to Figure 3.2(b),

and using the relationship between the terminal current andvoltage, we have

Vind,i = Ii(zA,i + zL,i). (3.5)

If we substitute (3.5) into (3.4), then we can get the following expression

Ii (zA,i + zL,i) +

M∑

j 6=i,j=1

Ij (zij) = Voc,i (3.6)

or 


zA,1 + zL,1 z12 · · · z1M

z21 zA,2 + zL,2 · · · z2M

...
...

. . .
...

zM1 zM2 · · · zA,M + zL,M







I1

I2

...

IM




=




Voc,1

Voc,2

...

Voc,M




(3.7)

The above equation can be rewritten as

iL = (ZR + ZL)
−1voc (3.8)

whereZR is the mutual impedance matrix of the array,iL is the vector of terminal currents, and

ZL is the diagonal matrix of antenna terminal loads, given by

ZL =




zL1 0 · · · 0

0 zL2 · · · 0
...

...
. . .

...

0 0 · · · zLM



. (3.9)

Using the relationship between the terminal voltages and currents, terminal voltages can be

expressed in terms of the open-circuit voltages as follows:

vL = ZL(ZR + ZL)
−1voc (3.10)

Assuming identical antenna elements which are terminated with the same load impedancezL,
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the above equation is simplified to

vL =
[
zL(ZR + zLIM )−1

]
voc

= CRvoc

(3.11)

whereCR is aM×M matrix and is called thecoupling matrix. This matrix relates and converts

the termvoc, which is free of mutual coupling, to the termvL which includes the mutual

coupling effects. Applying such coupling matrices, is one of the most popular approaches to

model the mutual coupling in antenna array and MIMO applications.

Example

Let us consider a simple array of two identical centre-driven z-directed half-wavelength (λ/2)

wire dipoles, as shown in Figure 3.3, with the wire radius ofλ/300, and the element separation

of d at the frequency of1800MHz. Figure 3.4 illustrates the equivalent circuits of the array

elements using the open-circuit model. Using the theoretical EMF method (refer to appendix

B) and FEKO electromagnetic simulation software [10], selfand mutual impedance values of

the array elements are calculated and shown in parts (a) and (b) of Figure 3.5 for different

element separationsd. FEKO software provides the numerical values of impedance parameters

which are closer to experimental data [38]. As can be seen from Figure 3.5(b) at the right-hand-

side, the self impedance values calculated using FEKO are dependent on the element separation

d. This confirms the results in [38, Chapter 2] and [4], and it means even for half-wavelength

dipoles, the open-circuited antennas can affect other antennas for small inter-element spacing

d. We further investigate this issue using FEKO software. Letantenna 2 be open-circuited and

antenna 1 be terminated in a load impedancezL1. Both antennas are assumed to be excited by a

far field plane-wave coming from the azimuth angleφ = 45◦ and the elevation angleθ = 90◦.

Now, we try different values of the load impedancezL1, and calculateVoc1 from the following

expression

Voc1 = I1(zL1 + z11). (3.12)

This equation is obtained from Figure 3.4 assumingI2 = 0 for the open-circuited antenna 2.

As we can see from Figures 3.6 and 3.7, for a specific element separation, the variation of the

antenna termination load does not change the open-circuit voltage. However, the value ofVoc1

depends on the element separation. This means the open-circuited antenna 2 has a constant

effect on the antenna 1 which is independent of the conditionof antenna 1.
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Figure 3.3: Linear array of two side-by-side half-wavelength dipoles.

Figure 3.4: Equivalent circuit of an array of two antennas, using open-circuit model.
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Figure 3.5: Self and mutual impedances of an array of twoλ/2 dipoles with the separationd
(a) using EMF method, (b) using FEKO software.
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Figure 3.6: Calculated value ofVoc1 from (3.12) when antenna 2 is open-circuited and antenna
1 is terminated in a resistive loadzL1 = (rL+ j0)Ω, for the element separation of
(a) 0.05λ, (b) 0.1λ, (c) 0.2λ, and (d)0.3λ.
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Figure 3.7: Calculated values ofVoc1 from (3.12) when antenna 2 is open-circuited and an-
tenna 1 is terminated in a complex loadzL1 = (50 + jxL)Ω, for the element
separation of (a)0.05λ, (b) 0.3λ.

3.3.3 Receiving Mutual Impedance method

As stated earlier, the open-circuit model uses the mutual impedances between each pair of an-

tennas, while one antenna is connected to a source and the other one is in the receiving mode and

open-circuited, to extract the mutual coupling model. The following issues are associated with

the application of such mutual impedances for the receive arrays. First, the antenna behaviour

may not be the same for the transmit and receive modes [48, 49]. Second, the effect of terminal

loads is not taken into account [48]. An interesting method is introduced by Hui [55, 59] to

overcome the above issues by defining a new mutual impedance called thereceiving mutual

impedance. In the following we describe this method in detail.

Let us consider an array of two dipoles as shown in Figure 3.3,both terminated in a load

impedancezL. The voltage across the terminal load of any of these antennas consists of two

components [48]: the voltage due to the arrived signal alone, and the induced voltage due to the

current distribution of the other antenna (i.e. mutual coupling). The relationship between the

terminal voltagesV1 andV2, and the voltages due to the signal alone,U1 andU2, can be written

as

V1 = U1 − zR12I2 (3.13a)

V2 = U2 − zR21I1 (3.13b)

wherezR12 and zR21 are the mutual impedances between the antennas, andI1 and I2 are the
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terminal currents flowing through the terminal loadszL of the antennas. The terminal voltages

and currents are related by

V1 = zLI1 (3.14a)

V2 = zLI2. (3.14b)

We note that in this new method, equations (3.13a) and (3.13b) are different from the conven-

tional concept in the open-circuit model, and they do not usethe open-circuit voltages which

require knowledge of the self-impedances of antennas. Here, the new mutual impedancezR12

is defined as the ratio of the induced voltage across the terminal load of antenna 1, due to the

terminal currentI2 flowing through the terminal load of antenna 2, to this terminal current, i.e.,

zR12 =
U1 − V1
I2

. (3.15)

It is calledreceiving mutual impedance, and it is distinguished by the superscript(·)R from the

conventional definition in this thesis. Similarly,zR21 can be defined by changing the position of

antenna 1 and antenna 2 in the previous expression forzR12.

In this method, instead of having one antenna in transmitting mode and exciting the others by

the field of this antenna, a plane wave excitation from the horizontal direction in the far field

is used to obtain an estimated current distribution over allthe antennas. This approximation is

accurate for the signals with low elevation angles relativeto the horizon due to the isotropic

pattern of z-directedλ/2 dipole antenna over horizontal plane [59, 60]. Substituting (3.14a)-

(3.14b) into (3.13a)-(3.13b) results in




V1

V2


 =




1
zR12
zL

zR21
zL

1




−1 


U1

U2


 (3.16)

This is an equivalent relationship to equation (3.11), which relates the coupled terminal voltages

Vi, to uncoupled terminal voltagesUi for (i = 1, 2). This means that with knowledge of

the receiving mutual impedances, and the coupled terminal voltages, the uncoupled terminal

voltagesUi can be obtained.
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Figure 3.8: Real and imaginary parts of the receiving mutual impedancesbetween elements
of an array of twoλ/2 dipoles with the separationd = 0.05λ, and an incident
plane wave excitation coming from the horizontal angleφ. Antennas are identically
loaded with load impedancezL = 50Ω.

Example

To investigate the characteristics of receiving mutual impedance, we consider an array of two

dipoles, as described in the example of section 3.3.2. Both antennas are identically terminated

with a load impedancezL, and excited by an incident far-field plane wave from the azimuth

angle ofφ. Figure 3.8 shows the real and imaginary parts of the receiving mutual impedances

zR12 andzR21 versus the plane wave arrival angleφ ∈ [0◦, 360◦], for zL = 50Ω. It is observed

from the figure that the values ofzR12 andzR21 are similar for identical dipoles, although they

may not be the same in general. These values are also roughly independent of the arrival

angle of the plane wave due to the omnidirectional pattern ofz-directed dipoles in horizontal

(xy) plane [55]. The real and imaginary parts of the receiving mutual impedancezR12, and the

conventional mutual impedancez12 using open-circuit model, versus the element separation in

wavelength (d/λ) are shown in Figure 3.9.

The effect of termination load is also depicted in Figure 3.10. It can be seen that the receiving

mutual impedance is significantly influenced by the variation of antenna terminal loadzL. This

is an interesting idea which some studies applied to counteract the effect of mutual coupling in

MIMO systems by finding a proper terminal load which optimises the performance metric in

the presence of mutual coupling [5, 21, 37, 40, 61].

Equation (3.16) can be extended to an array ofM antennas. Assumev = [V1, V2, . . . , VM ]T

is the vector of terminal voltages including the mutual coupling, andu = [U1, U2, . . . , UM ]T
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Figure 3.9: Receiving mutual impedance in comparison to the conventional mutual impedance
(open-circuit voltages) for an array of twoλ/2 dipoles with the separationd. For
the latter case, the antennas are excited by a plane wave fromthe horizontal angle
φ = 45◦, and identically loaded with load impedancezL = 50Ω.

represents the terminal voltages at the receive array without the mutual coupling effect. Using

the new concept of receiving mutual impedances, the relation betweenv andu can be written

as

v = (ZR)−1u (3.17)

where

ZR =




1
zR12
zL

. . .
zR1M
zL

zR21
zL

1 . . .
zR2M
zL

...
...

. . .
...

zRM1

zL

zRM2

zL
. . . 1




, (3.18)

andzRij (i, j = 1, 2, . . . ,M) is the receiving mutual impedance between theith andjth receiv-

ing antennas, as defined in (3.15).
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Figure 3.10: Absolute value, real and imaginary parts of the receiving mutual impedancezR12
versus the real and imaginary parts of the antenna terminal loadszL = rL+jxL.
Antennas are separated atd = 0.05λ, and excited by a plane wave from the
azimuth angleφ = 45◦ and the elevation angleθ = 90◦.
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3.3.4 Coupling Matrix

Most of previous studies take account of the mutual couplingby defining a coupling matrixC to

relate the coupled and uncoupled quantities using either impedance parameters (Z-parameters),

or the equivalent scattering parameters (S-parameters) ofthe coupled array. Such definition is

briefly introduced earlier in (3.11) of section 3.3.2. Before describing the coupling matrix in

details, we note that the Z-parameter or S-parameter representations of a multi-port network

are related as follows[56, eq. (13.3.4)]:

S = (Z− z0I)(Z+ z0I)
−1 (3.19a)

Z = (I− S)−1(I+ S)z0 (3.19b)

whereZ is the impedance matrix,S is the scattering matrix of the network, andz0 is a chosen

characteristic/reference impedance. In other words, having one of the impedance or scattering

representations of a network, the other one can be obtained from the above equations.

Open-circuit Model

There are two different and contradictory ways to define the coupling matrixC using open-

circuit model in the literature. Assuming the receive mode,the first expression is given by

[23, 36]

CR = (zA + zL)(ZR + zLIM)−1 (3.20)

wherezA is the self-impedance, andzL is the terminal load impedance for each antenna el-

ement. The termZR represents the mutual impedance matrix of the receive arrayas defined

in (3.3) , andI is an identity matrix. The Second definition is given by [6, 22, 38, 40]

CR = zL(ZR + zLIM )−1 (3.21)

which is taken from (3.11), wherevL is the vector of antenna terminal voltages when each

antenna is terminated inzL, andvoc is the vector of open-circuited antenna terminal voltages.

Referring to Figure 3.2, we can use the above definitions for acoupled transmit array by re-

placingzL with zs, andZR with the corresponding impedance matrix of the array denoted by

ZT .

Having two different definitions is potentially confusing for researchers working on coupled
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arrays. Some have considered both models in their analysis [62], and some others tried to realise

which model is right [38], or they ignored the coupling matrix definitions and considered the

whole system to find the input-output relationship in their studies [7, 38, 40]. Here we present

an explanation of the link between these definitions and clarify when we can use which one.

Referring to Figure 3.1(b), we can express the terminal voltage vector of the receive array in

the absence of mutual coupling, in terms ofvoc as follows:

vL,nc =
zL

zA + zL
voc. (3.22)

Getting back to equation (3.11), and substituting the aboveequation, the relation between the

terminal voltage vectors with and without mutual coupling effects, can be written as

vL,mc =
[
(zA + zL)(zLIM + ZR)

−1
]
vL,nc

= CRvL,nc

(3.23)

wherevL,mc denotes the terminal voltage vector, taking the mutual coupling into account. This

gives us the first expression for the coupling matrix.

Therefore, it depends which coupled and uncoupled quantities are desired to be related. For

instance, whenever we need to express the terminal voltage vectorvL in the presence of mutual

coupling (the coupled quantity), in terms of impedance parameters of the array and the open-

circuited terminal voltages (uncoupled quantity), we use the second definition ofCR in (3.21).

On the other hand, the first definition in (3.20) relates the coupled terminal voltage vectorvL to

the virtual uncoupled terminal voltages which are assumed to be free of the mutual coupling.

In order to take the mutual coupling into account for MIMO systems, the input-output relation-

ship described in (2.8), can be modified by using the couplingmatrix concept as follows [23]

y(t) = CRHCT︸ ︷︷ ︸
Hmc

x(t) + n(t) (3.24)

whereCT andCR are the coupling matrices for the transmit and the receive array antennas,

andHmc is the modified channel matrix including the mutual couplingeffects. For such an

application, normalisation of the coupling matrix has beenof interest by previous studies.

Normalisation. Now we examine the limiting value of both coupling matrix definitions for
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large element-separation (e.g.d ≫ λ), when there is no mutual coupling. For such a case, the

array impedance matrixZR is diagonal and for identical antennas it would beZR = zAIM .

Therefore, we have

• First definition:CR = IM

• Second definition:CR =

(
zL

zA + zL

)
IM

This issue has been considered in [22] by dividing the coupling matrix, the second definition in

(3.21), by a normalisation factorCR = z∗A/(zA + z∗A) for identical antennas. Therefore, [22]

suggests a modified coupling matrix as

CR =

(
2ℜ(zA)
z∗A

)
zL(ZR + zLIM )−1. (3.25)

This is similar to the normalisation of the received power ofcoupled arrays in [5] to the received

power of a single antenna matched to its self-impedance conjugate.

There is another point from previous studies [7, 40] that in practical MIMO applications the

voltage across the real part of the terminal loadzL is considered as the received signal rather

than the voltage across the complexzL. Therefore, we need to modify the existing coupling

matrix expressions to include such an issue.

Receiving Mutual Impedance Method

Similar to the open-circuit based model, we can define a coupling matrix for the receiving

mutual method. Referring to the relation between the terminal voltage vectorv in the presence

of mutual coupling, and the terminal voltage vectoru in the absence of mutual coupling in

(3.17), the coupling matrix can be expressed as

CR = (ZR)−1 = zL




zL zR12 . . . zR1M

zR21 zL . . . zR2M
...

...
. ..

...

zRM1 zRM2 . . . zL




−1

(3.26)

whereZR is defined in (3.18). In order to relate the voltage across theresistive part ofzL to

the uncoupled voltage vectoru, the above equation has to be multiplied by a factor ofrL/zL,
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whererL is the real part ofzL.

3.4 Impact of Mutual Coupling

Now that the coupling matrix is introduced, we can investigate the influence of mutual cou-

pling on the MIMO performance metrics such as: antenna patterns, signal correlation, received

power, and capacity.

3.4.1 Antenna Pattern

In this section, we use the coupling matrix to take account ofmutual coupling effects on the

antenna element pattern for coupled arrays. Let us considera linear receive array ofM with the

element separation ofd as shown in Figure 3.11. The array steering vector (under narrowband

assumption) in the absence of mutual coupling is given by [63]

e(φ) =




g1(φ)

g2(φ)e
jτ

...

gM (φ)ej(M−1)τ




(3.27)

whereτ = 2πd
λ sin(φ) is the delay between the received signals,φ is the angle between the

direction of arrival and the array broadside, andgi(φ) is the ith antenna pattern for (i =

1, 2, . . . ,M ). Taking the mutual coupling effects into account, the received array steering vec-

tor is written as [34]

emc(φ) = CR e(φ). (3.28)

The array impedance matrix for the open-circuit model is shown to be symmetric Toeplitz [64]

for identical antennas. Therefore the coupling matrix for an array of two identical antennas

could be expressed as

CR =


 a b

b a


 (3.29)
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Figure 3.11: A linear array of M antennas with the element separaion ofd.

and consequently,

emc(φ) =


 e1,mc(φ)

e2,mc(φ)


 =


 ag1(φ) + bg2(φ)e

jτ

bg1(φ) + ag2(φ)e
jτ


 (3.30)

whereemc(φ) is the array steering vector in the presence of mutual coupling. Comparing (3.27)

and (3.30) results in the received antenna pattern vector inthe presence of mutual coupling as

gmc(φ) =


 g1,mc(φ)

g2,mc(φ)


 =


 ag1(φ) + bg2(φ)e

jτ

bg1(φ)e
−jτ + ag2(φ)


 . (3.31)

The above equation describes the complex element patterns of the array in the presence of

mutual coupling. Absolute values ofemc(φ) andgmc(φ) are equal. Their corresponding entries

may differ in phase due to spatial delay between reference point and antenna elements.

Example. Now we consider an array of two identical wire dipole antennas with the separation

of d = 0.05λ, wire radius ofλ/300, and a length ofλ/2. Figure 3.12 shows the element

pattern of antenna 1 in the presence of mutual coupling, calculated by the receiving mutual

impedance (RMI) method, and the open circuit method usingCR1 in (3.20) andCR2 in (3.21)

denoted by OC1 and OC2 in the legend of the figure, respectively. These results are compared

to the antenna pattern simulated by FEKO software [10] when both antennas are identically

terminated with a load impedance ofzL = 50Ω and excited by a far-field plane-wave from the

azimuth angle ofφ from 0◦ to 360◦ with the step size of1◦, in addition to the pattern of stand-

alone antenna 1 terminated withzL = 50Ω and excited by the same plane-wave. As can be

seen, both the RMI and the open-circuit (usingCR1) approaches model the mutual coupling for
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Figure 3.12: Element pattern of antenna 1 for an array of two identical half-wavelength
dipoles with the separation of0.05λ.

λ/2 dipoles accurately. However, for the open-circuit model using the coupling matrix defined

in (3.21), the result is quite different. Here, we should useCR1 which relates quantities in

the same kind such as: coupled terminal currents to uncoupled terminal currents, or coupled

terminal voltages to uncoupled terminal voltages. Therefore, care has to be taken when the

coupling matrix is used for modelling the mutual coupling.

3.4.2 Signal Correlation

The diversity gain of MIMO systems employing coupled arraysis affected by the mutual cou-

pling effect. The signal correlation coefficient is a metricto investigate such effects. There

are three approaches in the literature to compute the correlation between received signals of

two antennas. One approach defines the correlation coefficient in terms of the far-field an-

tenna pattern and the nature of the incident field at the placeof antennas [35]. The former

term can implicitly include the effects of mutual coupling into the definition of the correlation

coefficient [33, 65]. Another approach is based on the scattering parameters of the array an-

tenna [66, 67]. The third and the most practical approach directly defines the correlation based

on the received signals [65].
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Using the Antenna Pattern

For this approach, the correlation coefficient can be expressed as [33]

ρ12 =

∫ π
−π

∫ π
0 e1(θ, φ)e

∗
2(θ, φ)p(θ, φ) sin θdθdφ√∫ π

−π
∫ π
0 |e1(θ, φ)|2p(θ, φ) sin θdθdφ

√∫ π
−π

∫ π
0 |e2(θ, φ)|2p(θ, φ) sin θdθdφ

(3.32)

whereei(θ, φ) is the electric field pattern forith antenna, andp(θ, φ) is the joint probability

density function of the angle of arrival in terms of the both azimuthφ and elevationθ angles.

Envelope correlation is more useful for practical measurements [33] and it is related to the

correlation coefficient by

ρe = |ρ12|2. (3.33)

Equation (3.32) represents a three-dimensional (3D) correlation coefficient. However, channel

measurements have shown that most part of the energy is in theazimuth plane [68]. Therefore,

we can simplify (3.32) into a two-dimensional (2D) version given by [35, 40]

ρ12 =

∫ π
−π e1(φ)e

∗
2(φ)p(φ)dφ√∫ π

−π |e1(φ)|
2 p(φ) dφ

√∫ π
−π |e2(φ)|

2 p(φ) dφ
(3.34)

whereφ is the arrival angle in the azimuth plane,p(φ) is the power azimuth spectrum (PAS)

of the incident field, andei(φ) for (i = 1, 2) is in fact the entries of the array steering vec-

tor in (3.27). There are three common functions to model the PAS for wireless communica-

tions [26, 69, 70]: a truncated Laplacian function, a truncated Gaussian function, and a uniform

distribution, given by

p(φ) =





1

2∆φ
Uniform

c1 exp
(
− (φ−φ0)2

2σ2

)
Gaussian

c2 exp
(
−
√
2 |φ−φ0|

σ

)
Laplacian

(3.35)

wherec1 andc2 are scalars, and for both Laplacian and Gaussian functionsσ is the angular

spread (AS) andφ0 is the mean angle of arrival for the intervalφ ∈ [−∆φ+φ0,∆φ+φ0]. For

the uniform distribution, we have AS= ∆φ√
3

[69]. The scalar valuesc1 andc2 are calculated

such that the integral ofp(φ) with respect to the angle of arrivalφ over the azimuth plane, i.e.

φ ∈ [−π, π), is equal to one. The probability density function of the uniform, Gaussian and

Laplacian distributions with∆φ = 60◦, and AS =30◦ are shown in Figure 3.13.
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Taking mutual coupling effects into account and referring to (3.28) and (3.34), the 2D corre-

lation between two coupled antennas can be obtained from (3.34) by substituting the coupled

steering vector entries in the place ofei(φ). As an example, some simulations are performed

for the three PAS functions in (3.35): uniform, truncated Laplacian, and truncated Gaussian.

Figure 3.14 shows the result for given PAS functions withAS = 30◦, the mean angle of arrival

φ0 = 0◦, and∆φ = 30◦
√
3. It can be seen that in all types of PAS models, mutual coupling

in a specific range of antenna spacingd < 0.4λ, has a positive effect on diversity gain and

decreases the correlation.

Using the Scattering-parameters

AssumingS to be the scattering matrix of two antennas terminated with areference loadz0,

the envelope correlation can be expressed as follows [66]

ρe =
|S∗

11S12 + S∗
21S22|2

(1− (|S11|2 + |S21|2))(1 − (|S22|2 + |S12|2))
(3.36)

Signal-based Approach

The most common expression for the correlation coefficient is given by [5, 60]

ρ12 =
E{V1V ∗

2 }√
E{V1V ∗

1 }E{V2V ∗
2 }

(3.37)

whereVi for (i = 1, 2) is the received signal atith antenna,E{} denotes expectation over the

symbol time, and the superscript(·)∗ denotes the complex conjugate.

Using the open-circuit model, the open-circuit terminal voltages are assumed to be free of

mutual coupling, and they are related to the coupled terminal voltages across the impedance

loads by (3.11). The correlation coefficients of the coupledterminal voltages can be calculated

from (3.37) in terms of the correlation coefficient of the open-circuit voltages. Assumingρ0 as

the complex correlation between the open-circuit terminalvoltages of two identical antennas, a
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closed form expression ofρ12 is calculated in [5] as follows

ρ12 =
1√

|zA + zL|2 + |z12|2 − 2ℜ{ρ0(zA + zL)z
∗
12}

× ρ0|zA + zL|2 + ρ∗0|z12|2 − 2ℜ{(zA + zL)z
∗
12}√

|zA + zL|2 + |z12|2 − 2ℜ{ρ∗0(zA + zL)z∗12}
. (3.38)

In general, such expression can be obtained from the following equation [21]

ρ12 =
RL,12√

RL,11RL,22
(3.39)

whereQL is the covariance matrix of the coupled terminal voltage vector vL, written by

QL = E{vvH}

= CRE{vocvHoc}︸ ︷︷ ︸
Roc

CH
R . (3.40)

On the other hand, for the receiving mutual impedance method, the terminal voltages across

the load impedance of isolated antennas are considered to bethe uncoupled signals, related to

the coupled terminal voltages by (3.17)-(3.18). Therefore, the correlation coefficients of the

coupled terminal voltages could be obtained from equations(3.37) or (3.39). A closed-form

expression for the correlation coefficient is presented in [60, 71] assuming a real correlation

coefficientρ0 for uncoupled terminal voltages, i.e.E{U1U
∗
2 } = E{U∗

1U2}. We can expand

this expression to the complex form ofρ0 as follows

ρ12 =
1√

|zL|2 + |zR12|2 − 2ℜ{ρ0zL(zR12)∗}

× ρ0|zL|2 + ρ∗0z
R
12(z

R
21)

∗ − zL(z
R
21)

∗ − z∗Lz
R
12√

|zL|2 + |zR21|2 − 2ℜ{ρ∗0zL(zR21)∗}
. (3.41)

We also recall that for identical passive antenna elements,we havezR12 = zR21. It is similar to

the conventional mutual coupling for the open-circuit model.
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3.4.3 Received Power

The received power for each element of a coupled array is investigated in [5, 22, 34]. It is shown

that the mutual coupling for small element separation degrades the received power due to the

mismatch between the antenna elements and their terminal loads [37]. Similar to the signal

correlation, the received power can be calculated using antenna patterns, or directly from the

received signals. Using the antenna pattern approach, the mean received power at antennai of

the array denoted byPi, can be written as [34]

Pi =

∫ π

−π
|ei(φ)|2 p(φ) dφ. (3.42)

The mutual coupling effects can be taken into account by employing coupled antenna pattern

from (3.28).

The other method defines the mean power as the expected value of the terminal voltage [22, 72].

Therefore,Pi for each antennai is written by

Pi = E{ViV ∗
i }. (3.43)

Using (3.11) or (3.17) we can express the coupled received power in terms of uncoupled re-

ceived power, or the correlation coefficient of the receivedsignals [5, 22]. However, it is worth

noting that in [5], the received powerPi is defined as

Pi =
E{ℜ{zL}|Ii|2}

P0
=
E{ℜ{zL}|Ii|2}
E{ℜ{z∗A}|I0|2}

(3.44)

whereIi is the terminal current ofith antenna, andP0 is a normalisation factor defined as the re-

ceived power by a single conjugate-matched antenna. The term I0 denotes the terminal current

of the single antenna. Such a definition is due to the fact thatin practical MIMO applications,

the voltage across the real part of the terminal loadzL is considered as the received signal

rather than the voltage across the complex loadzL [38, 40, 73]. This concern is discussed for

defining the coupling matrix in section 3.3.4. Using the open-circuit model and considering an

array of two identical half-wavelength dipoles terminatedidentically with a load impedancezL,
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Andersen and Lau [5] express the element received power as follows

P1 =
4rArL

|(zA + zL)2 − z212|2
(
|zA + zL|2 + |z12|2 − 2ℜ{ρ0(zA + zL)z

∗
12}

)
(3.45)

P2 =
4rArL

|(zA + zL)2 − z212|2
(
|zA + zL|2 + |z12|2 − 2ℜ{ρ∗0(zA + zL)z

∗
12}

)
(3.46)

whererA andrL are the real parts ofzA andzL, respectively.

Using the receiving mutual impedance method, we derive the expression of the received power

for the above scenario of identical antennas. From equations (3.16) and (3.43), it follows that

P1 =
|zL|2

|z2L − (zR12)
2|2

(
|zL|2 + |zR12|2 − 2ℜ{ρ0zL(zR12)∗}

)
(3.47)

P2 =
|zL|2

|z2L − (zR21)
2|2

(
|zL|2 + |zR21|2 − 2ℜ{ρ∗0zL(zR21)∗}

)
. (3.48)

If we assume the received power defined for the voltage acrossthe resistant part of the termi-

nal load, the above expressions would be multiplied by a factor of (|zA|2|rL|2)/(|rA|2|zL|2).
Therefore,

P1 =
(|zA|2|rL|2)/|rA|2
|z2L − (zR12)

2|2
(
|zL|2 + |zR12|2 − 2ℜ{ρ0zL(zR12)∗}

)
(3.49)

P2 =
(|zA|2|rL|2)/|rA|2
|z2L − (zR21)

2|2
(
|zL|2 + |zR21|2 − 2ℜ{ρ∗0zL(zR21)∗}

)
. (3.50)

3.4.4 Capacity

Consider a narrowband MIMO system ofN transmit andM receive antennas, with aM ×N

channel matrixH as shown in Figure 3.15. Assuming a Rayleigh-fading propagation channel

and using the popular Kronecker structure, the channel matrix can be expressed as [12]

H = Ψ
1/2
R HwΨ

1/2
T (3.51)

whereHw is aM × N matrix with independent identically distributed (iid) andzero-mean

unit-variance complex Gaussian entries, andΨT andΨR are the transmit and receive spatial
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Figure 3.15: Block diagram of aN ×M MIMO system including the mutual coupling effects
between antennas, represented by the coupling matricesCT andCR at the trans-
mitter and receiver, respectively.

channel correlation matrices, respectively. These covariances are defined as

ΨR = (1/M)E{HHH}, (3.52)

ΨT = (1/N)E{HHH}. (3.53)

Entries of such matrices can be calculated using the approaches introduced in Section 3.4.2. We

note that the Kronecker model has deficiencies for large number of antennas [28]. However it is

still valid for 2×2 and3×3 MIMO systems which are used in this thesis. The ergodic capacity

(mean capacity) for a MIMO system with a random channel matrix H is given by [12, 13]

C = max
Rx: Tr(Rx)=ρ

EH

{
log2

[
det(IM +

1

σ2n
HRxH

H)

]}
(3.54)

whereEH{·} is the expectation over the distribution of the channel matrix H, σ2n is the noise

power, andRx = E{xxH} is the covariance matrix of the input vectorx. We assume the

channel matrixH is known to the receiver, but the transmitter has no knowledge of the channel.

So the transmit power will be divided equally among all the transmit antennas, i.e.Rx =

(Pt/N)IN [2], wherePt is the total transmit power. Thus, the resulting ergodic capacity can

be written as

C = EH

{
log2 det

(
IM +

ρ

N
HHH

)}
(3.55)
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whereρ = Pt/σ
2
n is the average signal-to-noise ratio at the receiver. In order to take the mutual

coupling into account, a modified channel matrixHmc is created as follows [22, 23]

Hmc = CRHCT = CR(Ψ
1/2
R HwΨ

1/2
T )CT (3.56)

whereCT andCR are the transmit and receive coupling matrices, respectively. Assuming

the voltages across the resistive parts of antenna impedance loadzL as the receive signals,

and considering identical half-wavelength dipole antennas for transmit and receive arrays, with

sufficiently separated transmit antennas, an equivalent tothe above equation is represented as

[7]

Hmc = 2r11R
1/2
L (ZR + ZL)

−1 Ψ
1/2
R HwΨ

1/2
T︸ ︷︷ ︸

Hnc

R
−1/2
T (3.57)

whereZR andZT are the receive and transmit array impedance matrices, respectively with

diagonal entriesZR,ii, ZT,ii being the self impedances and the off-diagonal entriesZR,ij , ZT,ij ,

(i 6= j) denoting the mutual impedances. The real parts ofZL andZT are denoted byRL and

RT , respectively andr11 = RT,11. For the special case of no mutual coupling (ZR,ij = ZT,ij =

0) with matching of all the transmit and receive antennas to their self-impedances, the channel

matrix simplifies to the term represented byHnc. Throughout this thesis, we assume that the

transmit antennas are separated sufficiently, self-impedance matched and thatΨT = IM . Thus

the channel matrixHmc from (3.57) can be simplified as [7]

Hmc = 2
√
r11R

1/2
L (ZR + ZL)

−1 Ψ
1/2
R Hw︸ ︷︷ ︸
Hnc

. (3.58)

From now on, we use this expression of the channel matrix taking the mutual coupling into

account for the open-circuit model.

Now we substituteHmc into (3.55) at the place ofH. Therefore, we have

C = E
{
log2 det

(
IM +

ρ

N
HmcH

H
mc

)}
. (3.59)

To calculate the capacity using the receiving mutual impedance method, we need to define a

coupling matrix for the transmit side as well. Referring to Figure 3.15, the relationship between

the terminal voltages at the transmit antennas with and without the mutual coupling, denoting
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by vT andUT respectively, is written as [72]

vT = (ZT )−1UT (3.60)

whereZT similar to (3.18) is defined by

ZT =




1
zR12
zA

. . .
zT1N
zA

zT21
zA

1 . . .
zT2N
zA

...
...

. . .
...

zTN1

zA

zTN2

zA
. . . 1




, (3.61)

wherezA is the input impedance of the antennas, andzTij (i, j = 1, 2, . . . , NT ) is the transmit-

ting mutual impedance between theith andjth transmitting antennas. As an example,zT12 is

defined as [72]

zT12 =
VT1
I2 Vs1 = 0

(3.62)

It should be noted that the coupled voltageVT1
∣∣
Vs1=0

is the voltage across the antenna input

impedance rather than the open-circuit voltage as in the conventional method [72]. Considering

(3.17) and (3.60), the transmit and receive correlation matrices (including spatial correlation

and mutual coupling) can be expressed as

QT = E{vTvHT } = (ZT )−1E{UTU
H
T }(ZT )−H (3.63a)

QR = E{vRvHR } = (ZR)−1E{URU
H
R }(ZR)−H (3.63b)

whereE{·} is the expectation operator over all multipath scattering directions. We note that

by the correlation matrices of the uncoupled terminal voltages at the transmit and receive sides,

denoted byE{UTU
H
T } andE{URU

H
R } respectively, only the spatial correlation is taken into

account, whereasQT andQR include the mutual coupling as well. Comparing to the spatial

correlation matrices in (3.52) and (3.53), we have

ΨR = E{URU
H
R }, (3.64)

ΨT = E{UTU
H
T }. (3.65)
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Using the Kronecker channel model and taking the mutual coupling into account, the channel

matrixHmc can be expressed as follows

Hmc = Q
1/2
R HwQ

1/2
T

=
(
CRΨRC

H
R

)1/2
Hw

(
CTΨTC

H
T

)1/2 (3.66)

whereCR = (ZR)−1 andCT = (ZT )−1 are the receive and transmit coupling matrices.

Several studies have investigated the effects of mutual coupling on the capacity of MIMO sys-

tems [22, 23, 40, 41, 58]. The capacity is an important performance criterion which is affected

by both efficiency and correlation of the system [40]. Two different types of channel normal-

isations are used in some studies [23, 41] to investigate such effects. Normalisation ofHmc

in (3.56) is one way to remove the effect of the received powerchanges due to the mutual

coupling, and to provide an opportunity to reveal the effects of the correlation or richness of

multipath channel on the capacity. The other approach is to normaliseH in (3.51) which in-

cludes the variation of instantaneous received power into the calculation of the capacity. It is

shown that normalisingH results in the capacity degradation for the element separation less

thand = 0.4λ, while the former normalisation shows an improvement for the capacity in the

same region ofd [23, 41]. However, [40] shows that the received power has a stronger effect

on the capacity in comparison with the correlation, and a stronger received power results in a

better capacity performance.

3.5 Antenna Impedance Matching

Antenna impedance matching is introduced by many studies asan interesting solution to coun-

teract the effect of mutual coupling. Applying a complex coupled matching network [39] known

as the Multiport-Conjugate Match (MCM) [4] is introduced asa decoupling network which

may decouple the signals from closely spaced antennas completely. Using network analysis, a

matching network can be placed between the coupled array andantenna loads (receive mode)

or excitation sources (transmit mode) such that it can be conjugate-matched from one side to

the antenna array and from the other side to the loads/sources. This is shown in Figure 3.16.

However, constructing such a network due to the required interconnections between all ports of

the matching network is complicated and it also offers only narrowband matching performance

[37].
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Figure 3.16: Block diagram of a coupled receive/transmit array employing an impedance
matching network.

Figure 3.17: Schematic diagram of (a) coupled (MCM), and (b) uncoupled matching networks.
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These problems motivate researchers to work on simpler uncoupled termination approaches

[5–9] which are easier to implement and can achieve near-optimal performance with a wider

bandwidth [9, 37]. A schematic diagram of both coupled (MCM)and uncoupled matching net-

works are shown in Figure 3.17. For uncoupled matching approaches, we assume the mutual

coupling model and the random channel matrix are given. Thenwe can find an optimum ter-

minal load for each antenna element such that the performance metric (such as diversity gain,

received power, and capacity) will be maximised. This is themethod we are interested in to

mitigate the mutual coupling.

However, existing studies use the open-circuit approach tomodel the mutual coupling in their

investigations. As discussed in section 3.3, this model is not accurate in general, except for

specific types of antennas such as half-wavelength dipoles.Therefore, we examine the receiv-

ing mutual impedance method, described in section 3.3.3, tomodel the mutual coupling. This

model has not been used for uncoupled impedance matching except in [60] in which the en-

velope correlation is investigated when antennas are identically terminated with a variable real

load impedance.

In this section, we investigate the effect of uncoupled impedance matching on MIMO perfor-

mance metrics (signal correlation, received power, and capacity) in the presence of mutual cou-

pling. We use both open-circuit and receiving mutual impedance approaches to model the mu-

tual coupling. Consider a2× 2 MIMO system of identical half-wavelength dipole antennas as

shown in Figure 3.15, with identical source and terminal load impedances, i.e.zs1 = zs2 = zs

andzL1 = zL2 = zL. For the sake of simplicity, we assume that the transmit antennas are

sufficiently separated to ignore the mutual coupling at the transmit side, i.e.vT = uT , and

ΨT = I2 is considered.

Antennas are considered as wire dipoles with a wire radius ofλ/400, and element spacing

d = 0.05λ at a frequency of 1800 MHz. The receiving mutual impedances for different values

of the terminal load impedancezL = rL + jxL are obtained from FEKO software [10] based

on the method described in section 3.3.3.

We calculate the performance metrics for both mutual coupling models (open-circuit and re-

ceiving mutual impedance methods) over different complex values ofzL. Assume thatρ0 is the
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uncoupled terminal voltage correlation defined by

ρ0 =
E{UR1UHR2}√

E{UR1UHR1}E{UR2UHR2}
(3.67)

For both mutual coupling models in our simulation, the following scenarios are considered for

ρ0: uniform distribution, and two Laplacian distribution cases with(φ0 = 0◦, σ = 40◦) and

(φ0 = 45◦, σ = 40◦). In the case of the uniform distribution,ρ0 = J0(2πd/λ), whereJ0(·) is

the zeroth-order Bessel function of the first kind. A reference SNR of20 dB is assumed for all

scattering distribution scenarios.

Figure 3.18 shows the 3D plot of the absolute value of the correlation in the presence of the mu-

tual coupling under different scattering distribution at the receiver with the right-hand-side sub-

figures (b),(d),(f) for the the open-circuit model, and the left-hand-side sub-figures (a),(c),(e)

for the receiving mutual impedance model. It can be seen thatthe results from both models have

the same trend, and for each propagation scenario we can find azL (or a range ofzL) which

minimises the signal correlation. However, these impedance choices depend on the scattering

scenario.

Similarly, the total received power for all receive antennas in dB is shown in Figure 3.19.

We see that the optimum load impedancezL which maximises the received power is different

for the open-circuit and the receiving mutual impedance models under the same propagation

scenario. Using the open-circuit model, the optimumzL is (2 − j20)Ω at (b), (175 − j50)Ω

at (d), and(2 − j20)Ω at (f). On the other hand, the receiving mutual impedance model gives

a zL = 1Ω as the optimum load for all propagation scenarios at (a),(c),(e). However, there is a

local maximum at(2− j20)Ω as well. Referring back to Figure 3.10, we see that the absolute

value of the mutual impedance for the receiving mutual impedance method has a minimum at

zL = 1Ω. Such an effect makes a maximum peak for the received power atthe corresponding

load impedance value, independent of the propagation scenario.

To further the investigation, the mean capacity calculatedfrom (3.59) by averaging over 1000

channel realisations, is shown in Figure 3.20. Similar to the total received power, the mean

capacity is maximised at different load impedances corresponding to the propagation environ-

ment for the open-circuit mutual coupling model. ThesezL values are(11 − j20)Ω at (b),

(18 − j25)Ω at (d), and(11 − j20)Ω at (f). Using the receiving mutual impedance model, the
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Figure 3.18: Absolute value of the correlation versus the real and imaginary parts of terminal
load zL = rL + jxL for the receiving mutual impedance method at (a),(c),(e),
and the open-circuit model at (b),(d),(f).
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Figure 3.19: The total received power versus the real and imaginary partsof terminal load
zL = rL + jxL for the receiving mutual impedance method at (a),(c),(e), and the
open-circuit model at (b),(d),(f).
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Figure 3.20: The ergodic capacity versus the real and imaginary parts of terminal loadzL =
rL+ jxL for the receiving mutual impedance method at (a),(c),(e), and the open-
circuit model at (b),(d),(f).
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mean capacity always has a global maximum atzL = 1Ω for all propagation scenarios, and a

local maximum at a load impedance corresponding to the propagation environment.

Since the open-circuit model is only valid for specific typesof antennas such asλ2 dipole anten-

nas, we examined the receiving mutual impedance method as analternative model for the use

of antenna impedance matching technique. The above simulation results for a2×2 MIMO sys-

tem of λ2 dipole antennas show that the receiving mutual impedance method yields apparently

erroneous results at1Ω, so it is not clear that this method can be used with confidence.

Therefore, in the following chapters we look for adaptive impedance matching techniques

which use no mathematical mutual coupling model, but its effects is taken into account by esti-

mating the performance of compact MIMO systems from the receiving signals. We investigate

the performance of such algorithms for half-wavelength dipole antennas in which open-circuit

model is valid and the system can be simulated in our numerical studies.

3.6 Conclusion

In this chapter, we addressed the problem of mutual couplingfor compact MIMO systems. We

reviewed the open-circuit and the receiving mutual impedance methods to model the mutual

coupling. The open-circuit model is a simple and popular model in the literature to investigate

the mutual coupling effect. However, it is only valid for specific types of antennas such as

half-wavelength dipoles. Therefore, we studied the receiving mutual impedance method as an

alternative model. Then, we examined the influence of the mutual coupling on MIMO perfor-

mance metrics using both the open-circuit and the receivingmutual impedance methods. After

that we investigated the antenna impedance matching approach to counteract the performance

degradation of MIMO systems due to the mutual coupling. Simulation results for a2×2 MIMO

system of half-wavelength dipole antennas show that the receiving mutual impedance method

is not useful for finding the optimum load which maximises thecapacity or the received power.
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Chapter 4
Adaptive Impedance Matching

Network

4.1 Introduction

As stated in chapter 3, in previous studies antenna impedance matching is presented as a solu-

tion for compensating the performance degradation of compact MIMO systems due to the mu-

tual coupling. For a given channel matrix and a known mutual coupling model, an impedance

load network can be found which can maximise the desired performance metric. However the

channel matrix and the mutual coupling may vary with time, and the impedance match should

be adapted accordingly. There is no solution in the literature to track such issue and find an

optimum load network corresponding to these changes.

In this chapter we present an uncoupledadaptive impedance matchto counteract the effect of

mutual coupling on the performance of compact MIMO systems.

This chapter is organised as follows. We first explain why we need an adaptive impedance

match for compact MIMO systems in Section 4.2. Then, Section4.3 briefly reviews the system

model. Next, the idea of adaptive impedance match is introduced in Section 4.4 and required

conditions to implement such an idea are examined . It follows by introducing some estimation

methods for the received power and the capacity in Section 4.5. After that, the following

optimisation techniques: Gradient-based, Newton-Raphson, and random-search methods are

examined for implementing the proposed adaptive match network in Section 4.6. Finally, we

conclude the chapter in Section 4.7.

4.2 Necessity of Adaptive Impedance Match

Previous studies examined the effect of antenna terminal load impedances on the signal correla-

tion [5, 6], the received power [5, 6], and the capacity [6, 7]for identical load impedances. Then,

[74, 75] extended the concept to non-identical load impedances. It is found that an impedance
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matching network can be applied to a compact MIMO system in order to compensate the im-

pact of mutual coupling, and to maximise the performance metric, for a given random channel

matrix taking the mutual coupling into account. However, such methods require apriori knowl-

edge of the propagation channel and an accurate model of the mutual coupling.

As pointed out earlier in chapter 3, modelling of mutual coupling is a challenging issue for

coupled array applications. Existing matching approachesuse the open-circuit model or the

equivalent scattering model which is not accurate in general, except for specific types of an-

tennas such as half-wavelength dipoles. In addition, it is shown that near-field scatterers (NFS)

around antennas can increase the mutual coupling between array elements [33, 76]. As an ex-

ample, conductive objects within a quarter wavelength proximity of antenna elements can have

the NFS effects. Since the occurrences of NFS are unknown anduncontrollable to array appli-

cations, the mutual coupling model has to be estimated or modified frequently [76]. Fortunately,

although NFS are occurring randomly, the variation rate of NFS is appeared to be much slower

than the channel itself, even for fast-fading channels [33].

Furthermore, existing matching solutions are not designedto track the time variations of the

propagation channel. Therefore, we propose anadaptive uncoupled matchingsolution in this

thesis which includes the changes of the channel matrix and the mutual coupling, by dealing

with the received signals at antenna terminals. The received signals are assumed to be the

currents flowing through the impedance loads of the antenna terminals, or the voltages across

the real (resistive) parts of the impedance loads for array applications. In this thesis, we consider

the latter case which is the most common case for MIMO applications [40].

This chapter presents the possible approaches to have an adaptive uncoupled matching network

for identical terminal loads. It will be extended to non-identical loads in the next chapter.

This method starts from an initial value of the load impedance network and calculates the

corresponding value of the desired performance metric (thereceived power or the capacity).

Then, it changes the load impedance network according to an iterative optimisation technique

to find a value which maximises the performance metric. However, the mutual coupling model

in general is either unknown or it is not separable from the channel matrix. Therefore, the

total channel matrix has to be estimated from the received signal (for example by using training

sequences) to obtain a value of the performance metric corresponding to each change of the

load impedance network.
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4.3 System Model

Consider a MIMO system ofN transmit andM receive antennas, communicating through a

frequency-flat fading channel. Using a discrete-time baseband model, the input-output relation-

ship at time instantk is given by

y[k] = Hmc[k]x[k] + n[k] (4.1)

wherex[k] ∈ C
N is the transmit signal vector,y[k] ∈ C

M is the receive signal vector,

Hmc[k] ∈ C
M×N denotes the channel matrix including the mutual coupling effect, andn[k] ∈

C
M represents a vector of additive white Gaussian noise (AWGN)at the receiver, which is

assumed to be complex Gaussian noise with zero-mean and covariance matrixσ2nIM at the

terminal loads.

As stated in the previous chapter, the channel matrixHmc[k] can be written as

Hmc = CRHCT (4.2)

whereH is the channel matrix without taking the mutual coupling effects into account.CR and

CT are the coupling matrices at the receive and transmit sides,respectively. When there is no

coupling at the transmit side,CT = IN . It is shown in chapter 3 that for a givenH and a known

mutual coupling modelCR, an impedance load networkZL can be found which maximises the

performance metric (diversity gain, received power, or capacity). However, the channel matrix

H and the mutual coupling model may vary with time. Therefore,the choice of the impedance

networkZL should be updated accordingly.

In this thesis, we propose the idea of having anadaptive impedance matchwhich tunes the

terminal load networkZL in order to compensate the effect ofHmc[k] and maximise the desired

performance metric. We perform such an idea by changing the load impedance networkZL, and

obtaining feedback due to this change in load network by estimating the corresponding value

of the performance metric (the received power or the capacity) from the received signals. By

comparing the current metric value and the previously optimum one (the maximum value over

previous steps), the algorithm selects the better impedance network as the optimum termination

until that step. It then changes the terminal impedances according to an optimisation technique

for the next step. This process will be repeated until the algorithm converges to an optimum

termination network, in terms of received power or capacity.
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In order to model the effect of load impedance variations, weuse the channel model in (3.58)

for the open-circuit mutual coupling model. As stated in theprevious chapter, this model may

not be exact for the coupled receive array in general. However, it is still valid for a limited

types of antennas such as half-wavelength dipoles, and it isvalidated by empirical studies [38]

for half-wavelength dipoles. Therefore, it can reveal the total behaviour of the system and the

impact of terminations on the compact MIMO performance. We also note that the adaptive

algorithm is blind to the system model, and it has only a knowledge of the received signals and

the training sequences.

4.4 Adaptive Impedance Match

In this section, we examine the adaptive impedance match approach for aN × M MIMO

system described by (4.1). We assume there is only mutual coupling in the receive array, and the

transmit antennas are spaced sufficiently such that there isno mutual coupling at the transmitter.

As stated earlier, the desired performance metric, either the received power or the capacity, is a

function of received signals, i.e.,

f(y) = f(Hmcx+ n) (4.3)

For simplicity of notation, we drop the time indexk. According to the previous results on

impedance matching solutions [4–8, 35, 40], the total channel matrixHmc which includes the

mutual coupling effects, and therefore influencesf(y), depends on the termination impedance

matrixZL of the coupled array. Denoting the channel matrix with no mutual coupling byH,

we can write our optimisation problem as below

max
ZL

f(H,CR) (4.4)

where the second argument,CR, is dependent onZL. In other words, we would like to find a

terminal impedance networkZL which compensates any performance degradation due to the

mutual couplingand/or changes in thechannel matrix. Here, we are interested in uncoupled
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terminations whereZL is a diagonal matrix written as

ZL =




zL1 0 · · · 0

0 zL2 · · · 0
...

...
. . .

...

0 0 · · · zLM



. (4.5)

During the period of optimisation, the channel matrixH is assumed to be fixed or varying

slowly so that the channel can be estimated at the receiver. The mutual coupling model is also

assumed to be changed only by the variation ofZL. Then, the optimisation problem (4.4) can

be simplified as

max
zL1,··· ,zLM

f(zL1, · · · , zLM ) (4.6)

wherezLi = rLi + jxLi for i = 1, · · · ,M with rLi ∈ R
+ andxLi ∈ R denoting the real

(resistance) and imaginary (reactance) parts ofzLi, respectively. We consider two different

kinds of uncoupled terminations: (i)identical loading, which all diagonal entries are equal to a

loadzL = rL + jxL, and (ii)non-identicalloading in which terminal loadszL1, zL2, · · · , zLM
are individually tuned to optimise the compact MIMO performance.

We letz = [rL1, xL1, · · · , rLM , xLM ]T be the vector ofoptimisation variables. Then, we try

to find an optimalzopt in which f(zopt) has the maximum possible value off . This could

be obtained by producing a maximising sequencez(m), (m = 1, · · · ) wheref(z(m+1)) >

f(z(m)), from the following iterative equation [77]

z(m+1) = z(m) + α(m)∆z(m) (4.7)

wherem denotes the iteration number, the scalarα(m) ≥ 0 is the scale factor, and the vector

∆z(m) determines thedirection of optimisationat iterationm.

In order to implement such an adaptive impedance match, we need to:

1. Estimate or measure the performance metric value per iteration, i.e.f(z(m))

2. Specify∆z according to an optimisation technique.

We further investigate usingGradient-ascent, Newton-Raphson, andrandom searchtechniques

to determine the vector∆z in order to find the choice ofz which maximises the received power
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Figure 4.1: An overview of the adaptive impedance matching algorithm.

or the capacity. We explain these methods in the following sections. In this chapter, we examine

the received power and the capacity of MIMO systems foridentical terminal impedances. It

will be extended to thenon-identicalloading case in the next chapter.

4.5 MIMO Capacity and Received Power Estimation

As stated in the previous sections of this chapter, the adaptive algorithm has no knowledge of

the system except the receiving signals and the terminationload networkZL which is controlled

by the algorithm. Figure 4.1 shows an overview of the proposed idea of the adaptive impedance

matching technique. The algorithm starts from an initial termination load such as characteris-

tic impedance load, and then estimates the total channel matrix Hmc from the knowledge of

training/pilot symbols. Then the performance metric, the capacity or the received power, is

calculated to predict the optimal load networkZL for the next symbol block. This process con-

tinues until it converges to an optimal load network which maximises the performance metric.

In this section, we review some channel estimation approaches. We further consider a time

averaging estimation of the received signals covariance matrix to approximate the capacity or

the received power of MIMO systems. However, using channel estimates are more practical to

implement the adaptive impedance matching algorithm.

The ergodic capacity of a MIMO system described in (4.1), with the channel matrixHmc taking
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the mutual coupling into account, is given by [12, 13]

C = max
Rx

E

{
log2

[
det(IM +

1

σ2n
HmcRxH

H
mc)

]}
. (4.8)

As mentioned in Section 3.4.4, when there is no channel information at the transmitter, equal

power is allocated to each transmit antenna, and the above equation can be simplified as

C = E
{
log2

[
det(IM +

ρ

N
HmcH

H
mc)

]}
(4.9)

whereρ = PT /σ
2
n is the average signal-to-noise ratio at the receiver.

To exploit the capacity benefits of MIMO technology, accurate channel knowledge at the re-

ceiver and/or transmitter is usually required. One of the most popular channel estimation ap-

proaches is the training-based estimator [78, 79] which candirectly estimate the channel matrix

including antenna mutual coupling effects, from knowledgeof the received signals and (trans-

mitted) training signals.

In this chapter, we examine two methods which estimate the channel matrixHmc using training-

sequences. We assume symbols are transmitted in blocks witha length ofL data symbols in

total, and each block containsLp training/pilot symbols. Rewriting the input-output relation

for the transmittedtraining vectorpk at time instantk, we have

yp,k = Hmcpk + nk, k = 1, 2, . . . , Lp (4.10)

For the first approach which is a least-square (LS) estimator, the channel estimate is expressed

as follows [78]

Ĥmc = Yp

(
PH(PPH )−1

)
(4.11)

whereP = [p1,p2, . . . ,pLp ] is theN × Lp training matrix, andYp = [yp1,yp2, . . . ,ypLp ] is

theN ×Lp corresponding received signal matrix. The channel estimation error for this method

subject to a power constraint||P||2 = P for a given maximum transmit powerP , is expressed

by [79]

min
P
JLS = min

P
E
{
||Hmc − Ĥmc,LS||2

}
=
σ2nN

2M

P
, (4.12)

where|| · || is a Frobenius matrix norm. It is obtained under the following condition

PPH =
P

N
I. (4.13)

67



Adaptive Impedance Matching Network

We use a discrete Fourier transform (DFT) matrix to satisfy the above equation in our simula-

tions. From the above discussion, we can express the relationship between the channel matrix

Hmc and its estimatêHmc as follows:

Hmc = Ĥmc +∆H (4.14)

where∆H is the estimation error matrix.

The second estimation approach, which is called therelaxed minimum mean-square-error

(RMMSE) approach [79], is a modified version of the former estimator which reduces the

estimation error. Using this method and having an orthogonal training matrix satisfying (4.13),

the channel estimate is given by [79]

Ĥmc =
N Tr

{
YpY

H
p

}

P
(
Tr

{
YpYH

p

}
+ σ2nNM

)YpP
H . (4.15)

The mean capacity of a3 × 3 MIMO system versus the real and imaginary parts of the termi-

nal impedance load for 200 channel realisations, assuming aknown channel matrixHmc and

estimated channel matrices using the above methods, are shown in Figure 4.2. The capacity

value for each case is normalised to its maximum and plotted in the right-hand-side sub-figures

(b),(d),(f). The channel model in (3.58) is used with element spacingd = 0.05λ, signal-to-

noise-ratios (SNR) of 5 dB, and uniform scattering distribution at the receiver.

The mean capacity is maximised forzL = 13− j34 with the maximum value ofCmax = 2.53

(bits/s/Hz). While the first estimator in (4.11) giveŝCmax = 2.81 (bits/s/Hz) atzL = 9 − j36,

and the second estimator giveŝCmax = 2.72 (bits/s/Hz) atzL = 9 − j36. As we see from

the capacity values and the left hand side contours, the second estimator has a smaller error

estimation in comparison to the first one. Although both estimators give an optimum impedance

load different from the actual value, but the normalised capacity contours for both approaches

have a very similar trend to the actual case with known channel matrix.

In addition to the above estimation methods, we further use asimple time averaging method in

this chapter to estimate the capacity corresponding to eachchoice ofZL. Let Rx denote the

covariance matrix of the input vectorx. Then the output covariance matrixRy associated with
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Figure 4.2: Mean capacity of a3 × 3 MIMO system versus the real and imaginary parts of
the terminal impedance load for: (a) known channel matrixHmc, (c) channel
estimateĤmc in (4.11), and (e) channel estimatêHmc in (4.15). Contour plots of
the capacity values normalised to the corresponding maximum values are shown
in the right-hand-side sub-figures (b),(d),(f).
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the received signal vectory can be written as:

Ry = E{yyH}

= HmcE{xxH}HH
mc + E{nnH}

= HmcRxH
H
mc + σ2nIM (4.16)

where(·)H is conjugate-transpose operator, andx andn are assumed to be uncorrelated. In

other words,E{xnH} = E{nxH} = 0. From the above equation and (4.8) it can be seen that

we could use (an estimation of) the covariance matrix of the received signals to calculate the

capacity, rather than estimating a channel model includingthe mutual coupling effect1. One

way of implementing this idea is substituting a time averaged estimation ofRy given by

Ry = E{yyH} ≈ 1

L

k0+L−1∑

k=k0

y[k]yH [k] (4.17)

into the argument oflog2 det function at (4.8) as follows

Ĉ = log2 det


 1

σ2nL

k0+L−1∑

k=k0

y[k]yH [k]


 (4.18)

wherek0 is the starting sample time,L is the data-block length, andk is the time index for

discrete-time samples. We further assume that the block lengthL is long enough for equation

(4.17) to hold, and thatH does not change over each symbol-block. Now, we have an expres-

sion for the capacity that includes propagation channel properties and mutual coupling effects

by having a block of received data with no further parametersrequired.

The mean capacity of a3× 3 MIMO system versus the real and imaginary parts of the terminal

impedance loads, is shown in Figure 4.3 for the following scenarios: (i) using (4.9) when the

actual channel matrixHmc in known , and (ii) using (4.18) and the estimated covariancematrix

per block. The results are averaged over 100 channel realisations for a block length ofL = 1000

symbols, SNR= 10 dB, andd = 0.05λ. The noise power is assumed to beσ2n = −20 dB for

the simulation results. Although there is a large bias between the capacity values for known

channel matrix and the estimated covariance matrix, we see that the choice of load impedances

to maximise the capacity for both approaches are roughly thesame. Therefore, we can use

this method to find the optimum load impedance which maximises the actual capacity. We

1This estimation is valid when we have a white additive noise at the receiver
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Figure 4.3: Mean capacity of a3 × 3 MIMO system using the covariance matrix estimate
R̂y and the actual channel matrixHmc over 100 channel realisations, with the
symbol-block length ofL = 1000 symbols, SNR= 10dB, and the element spacing
d = 0.05λ .

further investigate this approach by calculating the singular values of the covariance matrix

estimateR̂y andHmcH
H
mc as shown in Figure 4.4 versus the real and imaginary parts ofzL =

rL + jxL. It confirms that such estimation method can be used to track the behaviour of the

actual propagation scenario.

Looking back to Section 3.4.3, and assumingy[k] is the received voltage vector across the

resistive parts of the receive antenna terminal loads, the received power forith antenna can be

71



Adaptive Impedance Matching Network

0.
05

0.1

0.
1

0.15

0.15

0.2

0.2

0.25

0.25

0.25

0.3

R
L
 (Ω)

X
L (

Ω
)

(a)

20 40 60 80 100
−100

−50

0

50

0.5

0.
5

1

1

1.5

1.5

2

2

2.5

2.5

2.5

3

R
L
 (Ω)

X
L (

Ω
)

(b)

20 40 60 80 100
−100

−50

0

50

0.
020.025 0.03

0.035

0.035

0.04

0.04
0.045

0.045

0.045
0.05

0.
05

0.05

0.055

0.055

0.06

R
L
 (Ω)

X
L (

Ω
)

(c)

20 40 60 80 100
−100

−50

0

50

0.05

0.
10.15 0.2

0.25

0.25

0.3

0.3
0.35

0.35

0.35
0.4

0.
4

0.4

0.45

0.45

0.5

0.5

R
L
 (Ω)

X
L (

Ω
)

(d)

20 40 60 80 100
−100

−50

0

50

0.01

0.
01

0.01

0.01

0.01

0.010.01
0.01

0.
01

0.01

0.0101
0.0101
0.0102

R
L
 (Ω)

X
L (

Ω
)

(e)

20 40 60 80 100
−100

−50

0

50

0.0005

0.0005

0.001

0.0010.00150.0020.0025

R
L
 (Ω)

X
L (

Ω
)

(f)

20 40 60 80 100
−100

−50

0

50

Figure 4.4: Averaged singular values of the covariance matrix estimateR̂y, and (HmcH
H
mc)

for a 3 × 3 MIMO system with the symbol-block length ofL = 1000 symbols,
over 100 channel realisations. Singular values are in descending order so that
(σ1 > σ2 > σ3) for: (a) averagedσ1 of R̂y, (b) averagedσ1 of (HmcH

H
mc), (c)

averagedσ2 of R̂y, (d) averagedσ2 of (HmcH
H
mc), (e) averagedσ3 of R̂y, (f)

averaged(HmcH
H
mc).
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written as

Pr,i =

(
1

P0

)
E

{
yi[k]y

∗
i [k]

rL,i

}
, i = 1, · · · ,M (4.19)

where(·)∗ denotes conjugate operator,rL,i represents the real part of the load impedancezL,i

for antennai, andP0 is the power received by a conjugate matched isolated antenna which is

used to normalise the MIMO received power. Assuming identical load impedances, thetotal

mean received powercan be expressed as

Pr =

(
1

P0

)
E

{
1

rL
y[k]yH [k]

}
(4.20)

Similar to the estimation procedure for the capacity, we canestimate the total received power

from the following expression

P̂r =
1

P0


 1

LrL

k0+L−1∑

k=k0

y[k]yH [k]


 . (4.21)

The total mean received power using the covariance matrix estimateR̂y, versus the real and

imaginary parts ofzL for the previous scenario is shown in Figure 4.5. We see that there are

choices ofzL that maximise the received power. Therefore, the adaptive impedance matching

technique can also be applied to improve the received power in the presence of mutual coupling

effects.

4.6 Optimisation Techniques

In this chapter, we examineGradient-ascent, Newton-Raphson, andrandom searchtechniques

to determine the vector∆z for the identical loading. The results can easily be extended to the

non-identicalimpedance termination. We shall now discuss these three methods in turn.

4.6.1 Gradient ascent method

Suppose the functionf , representing the desired performance metric, is differentiable with

respect to the variablesrL andxL. Using the Gradient ascent method [77], we can find a
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solution for (4.6) by substituting∆z = ∇f(z) into (4.7) as follows

z(m+1) = z(m) + α(m)∇f(z(m)) (4.22)

wherez(m) = [r
(m)
L , x

(m)
L ]T is the value of the vector of variables at iteration numberm, and

α(m) > 0 here is called step size. The term∇f(z(m)) represents the gradient off with respect

to the entries ofz at iterationm, given by

∇f(rL, xL) =
[
∂f

∂rL
,
∂f

∂xL

]T
. (4.23)

As stated previously, usually no parameter is known for practical systems except the received

signals, and the termination impedance network (which can be controlled by the optimisation

algorithm). Therefore the gradient term at (4.22) has to be estimated.

One way of calculating the gradient is to use the following forward differences [80]

∂f

∂rL
≈ f(rL +∆r, xL)− f(rL, xL)

∆r
(4.24)

∂f

∂xL
≈ f(rL, xL +∆x)− f(rL, xL)

∆x
. (4.25)

This means for each estimation value of∇f , we need three channel estimates. Such an esti-

mation approach is more suitable for optimising the received power. To examine the Gradient-

based methods for the capacity, we rewrite the instant capacity and change the notation of the

argument oflog2 det function as follows

Cinst(rL, xL) = log2 det(IM +
ρ

N
HmcH

H
mc) (4.26a)

= log2 det(I+AAH) (4.26b)

= log2 det(Y). (4.26c)

Since log(·) is a monotonically increasing function, we considerf(rL, xL) = det(Y) and

maximise it with respect torL andxL. Using the following rule of matrix algebra [81]

∂ det(Y)

∂t
= det(Y)Tr

[
Y−1∂Y

∂t

]
(4.27)
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we have

∇f =




∂f

∂rL

∂f

∂xL


 =




det(Y)Tr

[
Y−1 ∂Y

∂rL

]

det(Y)Tr

[
Y−1 ∂Y

∂xL

]


 (4.28)

where

∂Y

∂rL
=

∂

∂rL

(
AAH

)
=

(
∂A

∂rL

)
AH +A

(
∂A

∂rL

)H
(4.29)

∂Y

∂xL
=

∂

∂xL

(
AAH

)
=

(
∂A

∂xL

)
AH +A

(
∂A

∂xL

)H
. (4.30)

Now we can estimate∂A/∂rL and∂A/∂xL terms from (4.24) and (4.25), where

A =
√
ρ/NHmc. (4.31)

According to the above equations, to calculate an estimate of ∇f(rL, xL), at least three channel

estimates corresponding to the load impedanceszL1 = rL+ jxL, zL2 = (rL+∆r)+ jxL, and

zL3 = rL + j(xL + ∆x) are required. We numerically examined the Gradient-based method

for the capacity of a3 × 3 MIMO system with different∆r and∆x values. This method

can converge to the optimum load impedance if we choose a proper step sizeα(m) for each

channel realisation. Furthermore, convergence rate of theGradient-based method depends on

the quantisation level ofz(m).

4.6.2 Newton-Raphson method

In this subsection, we present the Newton-Raphson method tosolve the optimisation problem

(4.6). Assume thatf is at least twice differentiable with respect to the real andimaginary parts

of the termination impedances. Then∆z from (4.7) for the Newton-Raphson method is defined

as [77]

∆z = [∇2f(z)]−1∇f(z) (4.32)

where∇2f denotes the Hessian matrix off whose entry(i, j) is given by [∇2f(z)]ij =

∂2f/∂zi∂zj when it exists [80]. Substituting (4.32) andα(m) = 1 for the pure Newton-

Raphson method into (4.7), we obtain

z(m+1) = z(m) + [∇2f(z(m))]−1∇f(z(m)). (4.33)
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As mentioned earlier, the functionf is unknown for practical systems. Therefore, we need to

estimate∆z from the knowledge of the received signals and termination network. Assuming

the identical loading case, the gradient term forf(rL, xL) could be estimated from (4.24) and

(4.25). Furthermore, the Hessian matrix∇2f can be estimated by applying the partial derivative

approximations from equations (4.34)-(4.37).

∂2f

∂r2L
≈ f(rL + 2∆r, xL)− 2f(rL +∆r, xL) + f(rL, xL)

∆r2
, (4.34)

∂2f

∂x2L
≈ f(rL, xL + 2∆x)− 2f(rL, xL +∆x) + f(rL, xL)

∆x2
, (4.35)

∂2f

∂rL∂xL
≈ f(rL +∆r, xL +∆x)− f(rL +∆r, xL)− f(rL, xL +∆x) + f(rL, xL)

∆r∆x
(4.36)

∂2f

∂xL∂rL
=

∂2f

∂rL∂xL
. (4.37)

Therefore, for each estimate of the Hessian matrix∇2f , six estimate values off and at least

six channel estimates corresponding to the following load impedances:zL1 = rL+ jxL, zL2 =

(rL+∆r)+jxL, zL3 = (rL+2∆r)+jxL, zL4 = rL+j(xL+∆x), zL5 = rL+j(xL+2∆x),

and ,zL6 = (rL + ∆r) + j(xL + ∆x) are required. We numerically evaluated the Newton-

Raphson method for a3 × 3 MIMO system. This method failed to converge for all possible

conditions we applied to the numerical study. It might be dueto complexity of the second order

derivative approximations.

4.6.3 Random Search method

In this subsection, we explain how the adaptive algorithm can use a random search (moti-

vated by random phase selection [82] and random walk [83] algorithms) for the optimum load

impedance. Assuming an identical loading network, and describing the receive array load net-

work (4.5) asZL = z
(m+1)
L IM at iteration(m + 1), the impedance loadz(m+1)

L is obtained

from the following equation:

z
(m+1)
L = z

(m)
opt +∆z(m), (m = 0, 1, · · · , Ns − 1) (4.38)

wherez(m)
opt is the optimum load atmth iteration (it can be initialised byz(0)opt = Z0), the non-zero

scalar∆z(m) denotes a complex step size randomly selected from the set{±∆r,±j∆x, (±∆r±
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Figure 4.6: Complex step size∆z(m) at iteration m is selected randomly from the set
{±∆r,±j∆x,(±∆r ± j∆x)} with an equal probability.

j∆x)} with an equal probability, andNs is the number of load network variations. An overview

of the choice of step size∆z(m) at iterationm is shown in Figure 4.6. In practice,Ns can be

estimated from the experimental data, or in a similar way thealgorithm can stop after having no

change in the optimal load network for a specific number of iterations while a small step size is

used.

At each iteration(m + 1), the capacity or received power is calculated (or estimatedfrom

the knowledge of the received signals) and compared to the previous value corresponds to

z
(m)
opt . The impedance which corresponds to the higher capacity/received power is held as the

optimum loadz(m+1)
opt for the (m + 1)th iteration. Fig. 4.7 illustrates the flowchart of the

proposed algorithm for identical loading.

4.7 Simulation Results

To investigate the proposed adaptive matching algorithm, some simulations for a3× 3 MIMO

system of half-wavelength dipoles with identical loads at antenna spacingd = 0.05λ is carried

out. We optimize the mean capacity under different propagation environments: 2D uniform,

and 2D Laplacian defined by the meanφ0 and the standard deviationσ of the distribution, for

two SNR values of 5 and 20 dB at the receiver. We assume the transmit antennas to be separated

far enough (negligible mutual coupling effect at the transmit side) and to be self-impedance con-

jugate matched. The mean capacity is calculated using (4.9)for both non-adaptive and adaptive

matching methods. The received signal vectory is calculated from (4.1) by generating a com-
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Figure 4.7: Flowchart of the proposed adaptive termination approach.
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Capacity (bits/s/Hz) Uniform Laplacian (0◦, 40◦) Laplacian (90◦, 67◦)

SNR= 5 dB, zL = 50Ω 2.20 1.87 2.10
SNR= 5 dB, optimumzL 2.58 2.18 2.61
SNR= 20 dB, zL = 50Ω 9.83 8.92 8.98
SNR= 20 dB, optimumzL 10.51 9.56 9.61

Optimum zL(Ω) Uniform (0◦, 40◦) (90◦, 67◦)

SNR= 5 dB 14 − j34 98− j54 9− j34

SNR= 20 dB 32 − j39 44− j33 30 − j37

Table 4.1: Optimized mean capacity and the corresponding load impedanceszL(Ω) for the
uniform and Laplacian (φ0,σ) scattering distributions.

plex Gaussian transmit signalx with zero-mean andσ2x = SNR= {5, 20 dB} variance, and

the channel matrixHmc is given by (3.58). The matrixHw entries are complex Gaussian ran-

dom variables of zero-mean and average power of unity,ΨT andΨR are the spatial correlation

matrices at the transmit and receive ends, respectively. Furthermore, we assumeΨT = I, data

block lengthL = 2000.

Figure 4.8 shows contour plots of the mean capacity versus the real and imaginary parts ofzL =

rL + jxL whererL ∈ (0, 100]Ω andxL ∈ [−100, 50]Ω, for different propagation scenarios:

uniform (a)-(b), and Laplacian with(φ0, σ) = (0◦, 40◦) for (c)-(d), and(90◦, 67◦) for (e)-

(f). We note that the magnitudes of the correlation coefficient for these two set of Laplacian

parameters are equal. The received SNR= 5 dB for the left column (subfigures (a),(c),(e)) and

20 dB for (b),(d) and (f) is considered. It can be seen that themean capacity at any case can

be maximized by selecting a proper loadzL (black square marked points). Maximum values of

the mean capacity and the corresponding terminal loads (optimum zL) are shown in Table 4.1.

The mean capacity values corresponding to the characteristic impedance match (zL = 50Ω) are

also shown to evaluate the performance of the impedance matching approach. We can see that

at least 17% capacity improvement for SNR = 5 dB can be achieved. This improvement for

SNR = 20 dB is about 7%. A brief look at the table reveals that the optimum load depends on

different factors of the propagation environment. Therefore, existence of an adaptive matching

approach would be necessary in practice.

We first investigate using the Gradient algorithm for the adaptive impedance matching tech-

nique. Figure 4.9 shows the convergence behaviour of this method for one channel realisation

applying different values of the step sizeα. Since the mutual coupling model in our problem is

unknown, we can not separate the channel matrixH from the total channel matrixHmc which
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Figure 4.8: Mean capacity versus real and imaginary parts of the antennaload impedanceZL
for uniform ((a) and (b)) and Laplacian distributions with(φ0, σ) = (0◦, 40◦) at
(c)-(d), and(90◦, 67◦) at (e)-(f). Signal to noise ratio 5 dB for (a),(c),(e) and 20
dB for (b),(d) and (f) is considered. The optimum loads whichmaximise the mean
capacity are marked by black squares for all cases.
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includes the mutual coupling effects and can be measured/estimated from the received signals

(refer to (4.2)). However, assuming knownH we applied the following normalisation

H =
√
NM

H

||H||F
(4.39)

to further investigate the Gradient-based adaptive impedance match. As we see from Fig-

ure 4.10, even for normalisedH, we still need to adjust the step sizeα for each channel matrix

using the Gradient-based method. In addition to the above issue, convergence of this method is

affected by the quantisation error of the load impedance. Werecall that for identical impedance

loads, at each iteration we need at least 3 channel estimates.

Alternatively, we use the random search algorithm for the adaptive (identical) impedance match-

ing technique. Such an algorithm can converge to the optimumload for each channel realisa-

tion. Figure 4.11 shows the normalised mean capacity for 200channel realisations for adaptive

identical impedance matching using random search algorithm. In this work, we consider sev-

eral values for the step sizes∆r,∆x from the range of1Ω− 12Ω. Larger values of∆r and∆x

result in a faster convergence but lower steady-state performance compared to the smaller step

sizes. So to obtain improved performance, the algorithm canstart with a large step size and then
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Figure 4.12: Adaptive matching results for 100 runs (asterisk marked points) with initial load
Z0 = 50Ω and normalized mean capacity contour for uniform ((a) and (b)) and
Laplacian distributions with(φ0, σ) = (0◦, 40◦) at (c)-(d), and(90◦, 67◦) at (e)-
(f). SNR = 5 dB for (a),(c),(e) and 20 dB for (b),(d) and (f) is considered.
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decrease the step size after having a completed specific number of load variations. Referring

back to section 4.6.3, the random search algorithm requiresonly one channel estimate at each

step.

The results of 100 Monte Carlo runs of the adaptive matching algorithm with initial load

z0 = 50Ω and 50 steps per execution, are shown with asterisk marked points in Figure 4.12.

Additionally, the mean capacity contours normalized to their corresponding maximum values

are plotted to evaluate the adaptive algorithm results. We observe that the adaptive algorithm

has found an optimum load which gives a mean capacity higher than 97% of the maximum

mean capacity value at Table 4.1 for SNR= 20 dB. For the lower SNR case, the algorithm

still goes to the area of 97% and 95% of the maximumCmean for propagation scenario (c),

and (a) respectively. It means we have more than 16% capacityimprovement for (c), and (a) .

However, this improvement is about 7% for (f). This performance could be improved by trying

different initial load impedances or longer block lengthsL.

As it is shown in the simulation results, the proposed adaptive matching algorithm can be used

to improve the compact MIMO performance by choosing a properantenna load impedance

based on the received signals. This algorithm does not require any knowledge of the channel

or mutual coupling model which are practical issues for previous studies. So, it could be a

practical solution to deal with mutual coupling effects in compact MIMO systems.

4.8 Conclusion

In this chapter we proposed the idea of adaptive impedance match for compensating the per-

formance degradation of compact MIMO systems due to the mutual coupling. Although some

studies have suggested impedance matching networks to counteract the mutual coupling ef-

fects, they can not detect and compensate the time variations of the propagation channel and

the mutual coupling. Simulation results show that a capacity improvement of at least 7% can

be achieved for all propagation scenarios.

In order to implement the adaptive impedance match, we reviewed some estimation methods

for the received power and the capacity. Then we examined three optimisation techniques:

Gradient-ascent, Newton-Raphson, and random-search. We observed that random search tech-

nique can achieve the optimum load for different propagation scenarios.
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Chapter 5
Adaptive Non-identical Impedance

Matching Network

5.1 Introduction

In Chapter 4, we investigated the idea ofadaptive impedance matching networkfor a MIMO

system equipped with a coupled receive array terminated with identical impedance loads.

We examined three optimisation techniques:Gradient-based, Newton-Raphson, andrandom-

searchin order to tune terminal loads iteratively. We found the random-search to be a simple

method converging to the optimum load impedance which maximises the performance metric

(the mean capacity or the received power), while other approaches were not able to find the

optimum load.

In this chapter, we extend the adaptive matching technique to thenon-identicalcase in which all

impedance loads are tuned individually. We evaluate the performance of adaptive identical and

non-identical matching, by comparing their results to the corresponding conventional termina-

tions such as: the characteristic impedance match and the self-impedance conjugate match. We

consider quasi-static, and (slow and fast) fading channel models in our investigation.

This chapter is organised as follows. Section 5.2 introduces the model of fading channels

for our investigation. Then Section 5.3 describes the non-identical adaptive match in addition

to some conventional matching networks such as: characteristic impedance match and self-

impedance conjugate match. Next, the performance of both adaptive identical and non-identical

impedance matching techniques are investigated in Section5.4 by comparing the capacity of

such techniques with the conventional methods for a3 × 3 MIMO system with strong mutual

coupling (d = 0.05λ) at the receiver. The effects of channel fading and channel estimation

errors are also considered in our investigation. Finally, this chapter is concluded in Section 5.5.
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5.2 System Model

In this chapter, we consider theadaptive non-identical impedance matchingtechnique in ad-

dition to theidentical case. In order to investigate the matching performance of both adaptive

matching techniques, we include the fast-fading channel model and the channel estimation error

into our simulations. We remind the discrete-time basebandinput-output relationship described

in Section 4.3 as follows

y[k] = Hmc[k]x[k] + n[k] (5.1)

To describe the time-variation of the channel, we use a Gauss-Markov process model [84] given

by

H[k + 1] =
√
1− ǫH[k] +

√
ǫW[k] (5.2)

whereW[k] ∈ C
M×M includes complex Gaussian entries with zero-mean and unit-variance.

The entries ofW are independent across rows, columns and time indicesk. The parameter

ǫ ∈ R, 0 ≤ ǫ ≤ 1 is introduced to control the coherence time of the channel. In [84], some

practical ranges forǫ have been calculated by fitting the above Gauss-Markov modelinto real

systems measurements. For instance

• 3×10−7 ≤ ǫ ≤ 10−4, for a slow-fading indoor environment with mobile speed 1-5km/h

and carrier frequencies from 800 MHz to 5 GHz.

• 10−4 ≤ ǫ ≤ 1.8 × 10−3, for a slow-fading outdoor environment with mobile speeds of

the order of 5 km/h and carrier frequencies from 800 MHz to 5 GHz.

• ǫ = 1.8 × 10−2, for a fast-fading outdoor environment with mobile speed 50km/h and

carrier frequency 5 GHz.

We considerǫ = 0 for time invariant or quasi-static, andǫ = 1.8 × 10−3 and1.8 × 10−2 for

slow and fast fading channels respectively. We assume that time invariant channel model is

described by (3.58).

5.2.1 Channel Estimation

Some channel estimation approaches are discussed in Chapter 4. Here, we rather assume that

an estimated channel matrix̂Hmc[k] is available. Considering the channel estimation error, we
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can write [85]

Hmc[k] = Ĥmc[k] +E[k] (5.3)

whereE[k] is the channel estimation error matrix, whose entries are zero-mean complex Gaus-

sian random variables with varianceσ2E . For a system with a known channel estimateĤmc and

a known estimate varianceσ2E, a lower bound of (4.9) is given by [85]

Clower = EH

{
log2

∣∣∣∣IM +
1

1 + σ2EPT

ρ

N
ĤmcĤ

H
mc

∣∣∣∣
}
. (5.4)

Throughout this work, we assume that each block includes some training-symbols and at least

one channel estimate is obtained by the receiver per symbol-block from the knowledge of trans-

mitted training symbols.

5.3 Impedance Matching Strategies

Here, we extend the proposed adaptive matching technique inChapter 4 to non-identical case

in which all impedance loads are tuned individually. We notethat the proposed adaptive match

(using either identical or non-identical impedances) onlyrelies on knowledge of the received

signals and a training-based channel estimateĤmc per symbol-block. We compare the perfor-

mance of adaptive matching networks to the conventional terminations such as: characteristic

impedance match, and self-impedance conjugate match. It isfollowed by an investigation to

the effect of different practical issues such as estimationerror, and time-variation of the channel

matrix on the matching performance.

5.3.1 Characteristic Impedance Match

All receive antennas are terminated in a characteristic impedancez0. Therefore, the receive

load networkZL at (3.58) is set toz0IM . This means we have no matching network for this

case.

5.3.2 Self-Impedance Conjugate Match

In this termination case, each receive antenna is terminated in the conjugate of its self-impedance.

In other words,ZL = diag(Z∗
R). This termination would result in maximum power transfer to
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the load network when there is no mutual coupling between array elements [37].

5.3.3 Adaptive Impedance Match

The previous terminations in subsections 5.3.1 and 5.3.2 donot consider the mutual coupling

effects. Here, we extend the proposed adaptive matching technique using random search algo-

rithm described in Chapter 4 to a more general form in which all load impedances are individ-

ually tuned. We call this extended form asadaptive non-identical impedance match. Inserting

diagonal matrixZL from (4.5) into the iterative equation for random search method in (4.38),

we obtain




z
(m+1)
L1 0 · · · 0

0 z
(m+1)
L2 · · · 0

...
...

.. .
...

0 0 · · · z(m+1)
LM




=




z
(m)
opt1 0 · · · 0

0 z
(m)
opt2 · · · 0

...
...

. . .
...

0 0 · · · z(m)
optM




+




∆z
(m)
1 0 · · · 0

0 ∆z
(m)
2 · · · 0

...
...

. . .
...

0 0 · · · ∆z(m)
M




(5.5)

wherez(m+1)
Li , (i = 1, · · · ,M), are the selected terminal impedances at(m + 1)th iteration,

z
(m)
opt,i, (i = 1, · · · ,M) are the optimum loads for themth iteration, and∆z(m)

i , (i = 1, · · · ,M)

are independent random complex step sizes atmth iteration. Each step size∆z(m)
i , similar to

what explained in section 4.6.3, is selected randomly from the set{±∆r,±j∆x,(±∆r±j∆x)}
with an equal selection probability. Let us summarise the algorithm to optimise the capacityC

as follows.

1. Initialise the array termination loadz(0)L = z0 (orZL = z0IM );

2. Estimate the correspondingC from (4.9) for known channel or (5.4) for estimated chan-

nel;

3. SetCopt = C, andzopt = z
(0)
L (or Zopt = Z

(0)
L for non-identical loading);

4. Calculate the next termination for the following symbol-block from (4.38) or (5.5);

5. Estimate the correspondingC from (4.9) or (5.4);

6. If (C > Copt) then (zopt = zL, andCopt = C); otherwisezL = zopt and go back to step

4.
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Figure 5.1: Schematic diagram of the adaptive impedance matching techniques for a compact
MIMO system.

A simplified schematic diagram of the proposed method is shown in Figure 5.1. This method

comprises two major parts. One is an estimator which provides instances of the channel ma-

trix Hmc (or the statistical moments of the channel) including the actual effects of the mutual

coupling and the time-varying propagation channel. The other part is an adaptive matching

network controller which selects the loads to counteract the performance degradation due to

the mutual coupling and/or changes of the channel, based on the performance metric estimates

(capacity or received power).

This algorithm can also be applied to maximise the received power Pr by substitutingPr

from (4.20) or (4.21) forC, andPr,opt for Copt. However, most commonly it is of interest

to increase the data rate and the capacity of MIMO wireless systems rather than the received

power.

5.4 Investigation of the Adaptive Matching Techniques

In this section we provide a numerical study to evaluate the matching performance of the pro-

posed adaptive termination approach for a3 × 3 MIMO system with a coupled receive array.

Here, we consider MIMO capacity optimisation, but the result can similarly be extended to the

received power as well. We assume linear arrays of identicalhalf-wavelength dipoles are ap-
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plied for both transmit and receive sides. The receive arrayantenna element spacing is assumed

to bed = 0.05λ, whereλ is the wavelength, and the transmit antennas are consideredto be

placed far enough such that we neglect the mutual coupling effect at the transmit side.Mutual

coupling impedancesfor the receive array are calculated using the electromotive force (EMF)

method [31]. Following our assumptions in sections 4.2 and 5.2, we apply the channel model

of (3.58) including a time-variant termHw[k], under different scattering distributions: 2D uni-

form, and a truncated 2D Laplacian defined by the mean angle ofincidenceφ̄ and an angular

spread of40◦ for a signal-to-noise-ratio (SNR) 20dB at the receiver. In the following subsec-

tions, we consider (i) perfect channel state information (CSI) at the receiver for quasi-static

channels, and (ii) imperfect CSI at the receiver for fading channels to investigate the effect of

channel estimation error on the performance.

5.4.1 Perfect CSI at the receiver

Let us begin with a simple case that the channel matrix is perfectly known at the receiver.

We generate 200 random time-invariant channel realisations assuming a uniform scattering

distribution such that the entries of the receive spatial correlation matrixΨR are given by

ΨR,ii = 1 (i = 1, 2, · · · ,M) (5.6a)

ΨR,ij = J0

(
2πd

λ

)
(i 6= j), (i, j = 1, 2, · · · ,M). (5.6b)

Figure 5.2 illustrates the average capacity as a function ofreal and imaginary parts of the an-

tenna load for a non-adaptive identical impedance match. Itshows three different terminating

cases of self-impedance match (marked by a square),z0 = 50Ω match (marked by a triangle),

and the numerically optimum match (marked by a circle) and the corresponding average ca-

pacity values. We observe that the average capacity has a maximum for a specific identical

termination called the optimum load [6, 7]. The optimal loadcan be extended to the non-

identical case as well [74]. Although these papers revealedthe relevance of compact MIMO

capacity/received power to the termination, they require prior knowledge of the propagation

channel and the mutual coupling model in order to perform a numerical search over all possible

termination loads for the optimal load. Furthermore, thesestudies perform the optimisation pro-

cess over the mean values of the performance metric(s) with respect to the termination load(s),

whereas our proposed adaptive techniques seek the optimum load network for each channel
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realisation.
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Figure 5.2: Contour plot of the mean capacity versus real and imaginary parts of the antenna
load impedancezL for uniform scattering distribution at the receiver. Threepoints
are marked for: self-impedance matchz∗11 (square),z0 = 50Ω (triangle), and
optimum loadzopt (circle) for the identical loading.

Now, we apply the adaptive uncoupled terminations for the assumed propagation channel sce-

nario. We investigate the effect of having different valuesof step size∆z by choosing fixed

∆r = ∆x values from the set{1, 2, 4, 8, 12}Ω. At each iteration, the algorithm applies an

estimate of the channel matrix including the realistic mutual coupling effects and selected an-

tenna loads. This is provided from the received signal and knowledge of the training signals.

Convergence results of the normalised mean capacity for adaptive identical and non-identical

terminations versus the number of changes of the termination network (mth iteration) are illus-

trated in Figure 5.3. The most significant feature for both termination cases is that applying a

smaller step size leads to a higher steady-state performance but requires a longer convergence

time. Assuming the same step size for both termination cases, the adaptive identical termination

rises sharply and reaches its steady- state about five to ten times faster than the non-identical

termination. However, as depicted in Figure 5.3, the adaptive non-identical termination can

achieve significantly higher steady state capacity performance albeit with a slower convergence

time, for all step sizes except for the case with∆r = ∆x = 12Ω.
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from the set{1, 2, 4, 8, 12}(Ω). We note that part (b) matches Figure 4.11.
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In Figure 5.4, the mean capacity of the system is shown for four different matching networks:

adaptive non-identical, adaptive identical, self-impedance conjugate, andz0 = 50Ω matched

termination networks. Steady state values of the mean capacity for all termination strategies

are shown on the right hand side of the figure. In order to achieve a higher steady-state perfor-

mance in a shorter convergence time, the adaptive algorithmapplies a variable step size for both

termination cases according to the results reported in Figure 5.3. Therefore, initially∆r = ∆x

is assumed to be 8Ω for both termination cases and then reduced to 4Ω, 2Ω, and 1Ω at iterations

100, 400, and 1000 for the non-identical case, and at iterations 30, 80, and 200 for the identical

case respectively. As we see, it takes a longer time for the adaptive non-identical impedance

matching technique to converge to its steady state value in comparison to adaptive identical

matching algorithm and non-adaptive termination scenarios. However, even after a few itera-

tions, the adaptive non-identical matching algorithm can achieve higher capacity improvement.

Any change in the propagation channel or mutual coupling would result in a new optimalZL

which may change with time. In order to track these possible changes, the algorithm can

also decide to update the selected optimum values ofC
(m)
opt ,Z

(m)
opt and to increase the step size,

whenever(C(m) −C(m−1)) is not positive orC(m)
opt is not changed for a large number of steps.

These occurrences may indicate that the optimalZL has changed and the receiver should find

the new best solution.

As we observe from Figure 5.4, both adaptive terminations find an optimum load network which

results in a higher mean capacity than the conventional terminations. The adaptive identical

case reaches to its steady state performance just after 85 iterations while for the non-identical

case it takes about 1000 iterations to achieve to a point above 99% of the steady-state. However,

the latter case achieves about 2 (bits/s/Hz) higher capacity gain in the expense of a longer

convergence time.

Unlike earlier studies, the adaptive termination algorithm performs the optimisation process

over the capacity instances rather than the mean capacity. For further investigation of the

adaptive algorithm behaviour, percentage histogram plotsof the normalised capacity instances

C/C(z0), and the real and imaginary parts of the termination loads for both adaptive termina-

tion cases at iteration number 3000 are shown in Figure 5.5. The y-axes are relative frequencies

for the total of 200 channel realisations. Figure 5.5a showsthat the capacity instances are im-

proved for both adaptive terminations compared to the conventionalz0 = 50Ω match by at least

20% for the non-identical case and by 5% for the identical loading case. As can be seen from
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the results in Figure 5.5b and 5.5c, more than 75% of the channel realisations are optimised by

selecting a non-identical terminal network asZL = diag(6− j35, 1+ j1, 6− j35)Ω, and about

50% of them by having an identical network equals toZL = (32 − j35)I3×3Ω. The antenna

pattern of the array elements for the above optimal load networks are plotted in Figure 5.6 with

φ = 0◦ as the array broadside. The results confirm the beamforming behaviour [9, 74] and

decoupling effect of the antennas by having optimal uncoupled terminations, which is more

effective for the non-identical match.

Furthermore, we examine the eigenvalues ofHmcH
H
mc using the above terminations in addition

to the case with no mutual coupling as shown in Figure 5.7. Thefigure clearly shows that the

non-identical termination tends to improve stronger eigenvalues to achieve higher capacity,

while the identical match has a similar trend for all eigenvalues.

Since the 3rd eigenvalue of the channel in Figure 5.7 is smallin value, and the impedance load

of the middle receive antenna for the adaptive non-identical match is small, one may argue that

the middle receive antenna does not affect the performance.In other words, the middle antenna

can be removed from the system with no change to the performance. This is similar to antenna

selection for the receive array in the presence of mutual coupling in [86] when there is no

impedance matching solution. To investigate this issue, wesimulate the performance of a3× 2

MIMO considering the same propagation scenario as the above, except the element spacing

between the receive antennas which is doubled here, i.e.0.1λ. Figure 5.8 shows the mean

capacity of this system over 200 channel realisations usingthe following matching networks:

adaptive non-identical match, adaptive identical match, self-conjugate match andz0 = 50Ω

match. We see that removing the middle receive antenna does not change the performance

improvement of the adaptive identical match (about 6% abovethe capacity forz0 = 50Ω), while

it reduces the performance of the adaptive non-identical match. To further the investigation, the

element patterns for both adaptive matching networks is shown in Figure 5.9. Both identical and

non-identical match result in the same optimum loads and consequently similar antenna pattern

for such a receiver with two antennas. Comparing Figures 5.6and 5.9 reveals the impact of the

middle antenna (which is terminated in a small load impedance, i.e. roughly short circuited) on

antennas 1 and 3 such that the performance is improved significantly. It can be interpreted as

a beamforming process which antenna currents are sufficiently weighted by employing proper

impedance loads.

To complete our investigation in this subsection, we plot the mean capacity of the assumed
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Figure 5.5: Histogram plots of (a)C/CZ0
instances for both adaptive termination cases, and

the real and imaginary parts of the termination loads for (b)non-identical, and (c)
identical terminations at iteration number 3000.
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Figure 5.6: Antenna patterns for the adaptive non-identical, adaptiveidentical, self-impedance
conjugate, andz0 = 50Ω matched termination networks. Zero degrees corre-
sponds to the array broadside (Refer back to Figure 3.11).
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using the adaptive impedance matching techniques. Resultsfor the non-identical
and identical matching scenarios are similar .
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3 × 3 MIMO system at iteration number 4000 for the above terminations versus antenna el-

ement spacing in Figure 5.10, under the following scattering distributions: (a) uniform, (b)

Laplacian centred at̄φ = 0◦ (broadside), and (c) Laplacian with̄φ = 90◦ (endfire). We observe

that for the element spacing larger than0.3λ, both uncoupled terminations provide roughly the

same capacity improvement for all propagation scenarios. For d < 0.2λ, the non-identical ter-

mination gives a much higher performance improvement but atthe cost of a longer convergence

time.
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Figure 5.10: Mean capacity as a function of element spacing for differentmatching meth-
ods and three different propagation scenarios: (a) Uniform, (b) Laplacian (φ =
0◦, σ = 40◦), and (c) Laplacian(φ = 90◦, σ = 40◦).
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5.4.2 Imperfect CSI at the receiver: channel estimation error

We extend our investigation to the case that the channel matrix is unknown for the receiver

and it has to be estimated. We assume a training-based estimation approach is applied and the

channel estimatêHmc is provided with an estimation error varianceσ2E. The algorithm decides

to select the termination load(s) based on the capacity estimates calculated from the knowledge

of Ĥmc, either by applying (5.4) for block-flat fading channels or directly substitutingĤmc

into (4.9). In order to assess the performance of the algorithm, we calculate and plot the actual

capacity corresponds to the selected terminal network at each iteration. We include Doppler

effects and time-variations of the channel by applying Gauss-Markov channel model described

in Section 5.2.

We consider the block data transmission with a block length of L = 100 symbols, including

Lp = 18 training symbols per block which are split into 6 groups among the block. For each

block, a channel estimatêHmc is obtained by averaging the channel estimates from sub-blocks,

where each sub-block channel estimate has an estimation error σ2E. We also assume a uniform

scattering distribution at the receiver. To investigate the effect of time-variations of the channel,

we use the Gauss-Markov channel model withǫ = 1.8 × 10−3, and1.8 × 10−2 for the slow-

and fast-fading scenarios, respectively.

The mean value of the normalised capacity instances for the adaptive and non-adaptive uncou-

pled terminations are depicted in Figure 5.11 for slow-fading with solid lines and fast-fading

scenario with dashed lines. Capacity instances for all termination cases have been normalised

to the corresponding instances for the50Ω match. Mean capacity values for the adaptive termi-

nations are plotted for three different iterationsm = 100, 500, and2000, in order to evaluate the

convergence behaviour of these termination cases. We observe that for both slow and fast fading

scenarios, better channel estimates (i.e., lowerσ2E) result in larger capacity improvements.

Furthermore, we can see that the adaptive identical termination achieves a slightly better per-

formance than the self-conjugate match for both fading scenarios after sufficient iterations. It

is noted that the self-conjugate match requires the knowledge of the diagonal elements of the

receive array impedance matrixZR, whereas the adaptive identical method presented in this

chapter does not. In comparison, the non-identical termination provides larger capacity im-

provements even for less accurate channel estimation scenarios (i.e. largerσ2E). We recall that

self-impedances of coupled antennas are different than thecase when they are isolated[4, 7],
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and that measuring these impedances is difficult in practice. We also note that practical an-

tenna arrays and consequently their impedance matrices maynot be Toeplitz in structure. The

adaptive non-identical termination would be a reliable solution to optimise the performance for

these corresponding scenarios.

5.5 Conclusion

In this chapter, we extended the adaptive matching technique to a non-identical matching

solution in which all terminal load impedances are tuned individually to find the optimum

impedance network. The performance of the adaptive matching networks are compared with

the conventional termination scenarios such as: characteristic impedance match, and self-

impedance conjugate match. Simulation results for a3 × 3 MIMO system under different

propagation scenarios show that bothidenticalandnon-identicaladaptive impedance matching

networks are capable of optimising the performance in the presence of strong mutual coupling

and time variations of the channel. The adaptive non-identical match gives a significant im-

provement in the mean capacity (more than 20% compared to non-adaptive terminations for

0.05λ element separation) at the expense of a longer convergence time compared to the identi-

cal match. The adaptive non-identical approach can also be suggested as a reliable solution for

non-symmetric arrays whose antenna elements or array parameters may vary along the array.
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Chapter 6
Conclusions

In this thesis, the impact of mutual coupling on the performance of compact MIMO systems is

studied. The use of uncoupled antenna impedance matching techniques is examined as a solu-

tion to counteract the mutual coupling effect on the performance. Existing impedance matching

approaches are shown to be dependent on the mutual coupling model and on the channel matrix.

However, existing techniques are not able to adapt to changes of the channel matrix and there is

no mathematical mutual coupling model in general for coupled arrays. Therefore, we propose

anadaptive impedance matchingtechnique which optimises the received power or the capacity

of compact MIMO systems. The proposed technique uses the channel estimate (obtained from

the knowledge of received signals, and training sequences)to take account of mutual coupling.

The performance of the proposed technique is proved by simulation results for a3 × 3 MIMO

system under different propagation scenarios. In this chapter, we summarise the key findings

of the thesis and suggest some future works.

6.1 Conclusions Summary

Using MIMO technology for small size wireless devices is restricted by limits on the achiev-

able antenna element separation. Element spacings less than one half-wavelength lead to mu-

tual coupling which degrades the performance of compact MIMO systems. Existing studies

have presented an antenna impedance matching approach to compensate the impact of mutual

coupling effects on the performance of compact MIMO systems. These studies require knowl-

edge of the mutual coupling model and the channel matrix to find an optimum load impedance

network which maximises the performance metric (either thereceived power or the capac-

ity) [5, 40]. The values of these load impedances are found tobe dependent on the proportion

of the mutual coupling and on the entries of the channel matrix [7, 38, 40, 74]. However, these

studies use a mutual coupling model based on the open-circuit voltages which is only valid for

specific types of antennas such as half-wavelength dipoles.Furthermore, existing studies are

not capable of adapting to changes of the channel matrix.
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In Chapter 3, two mutual coupling models: the conventional open-circuit based, and the receiv-

ing mutual impedance methods are studied by using the electromagnetic simulation software

FEKO. The existing definitions of the coupling matrix to model the mutual coupling are also

compared, and their relations are clarified. Using the antenna impedance matching technique to

compensate the mutual coupling effects on the signal correlation, the received power, and the

capacity is examined for both open-circuit and receiving mutual impedance models for half-

wavelength dipoles. Simulation results show that the latter method is not suitable for finding

the optimum load impedances to optimise the received power or the channel capacity. We found

no explicit mutual coupling model to be accurate in general,and separable from the channel

matrix, to use for our purpose of impedance matching for coupled arrays.

We proposed theadaptive impedance matchingtechnique in Chapter 4. This technique uses the

received signals, the voltages across the resistive parts of the terminal load impedances, to find

the total effect of the channel matrix and the mutual coupling, and to evaluate any performance

improvement due to impedance matching. It tunes the antennaload impedances according to an

optimisation technique and examine the performance improvement using the received signals.

In order to implement the idea of the adaptive impedance matching solution, several estimation

approaches for the capacity and the received power are discussed, and optimisation techniques

such as: Gradient-based, Newton-Raphson, and random search methods are examined foriden-

tical load impedance scenario. We found the random search method to be simple and robust for

our scenarios.

In Chapter 5, we extended the adaptive impedance matching technique tonon-identicalload

impedances. The matching performance of both the identicaland non-identical adaptive match-

ing approaches are examined and compared to conventional termination approaches: the char-

acteristic impedance match, and the self-impedance conjugate match. The effect of different

conditions in the propagation environment such as slow and fast fading channels, and chan-

nel estimation error are included in our investigation. Simulation results for the capacity of a

3×3 MIMO system of half-wavelength dipoles proved that both theidentical and non-identical

adaptive matching approaches can improve the performance in the presence of a strong mutual

coupling effect (element separation of0.05λ at the receiver) and fast time variations of the

channel. We found that the adaptive non-identical match cangive a significant capacity im-

provement (more than 20% to the conventional terminations for 0.05λ element separation)

Previous studies on non-adaptive impedance matching networks, showed that the performance
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of such approaches are very sensitive to the array geometry and the antenna element struc-

ture [38, 74]. However, our proposed techniques can be adapted to the actual conditions of the

propagation environment and the array structure (the mutual coupling, and the channel matrix),

and optimise the performance.

6.2 Future Work

During the time of writing this thesis, we found some commercial products [87, 88] which use

the adaptive impedance matching approach for a single antenna. However, no such product

or paper found for MIMO systems, except a patent [89] proposed by Lau and Andersen who

introduced the idea of using the uncoupled impedance matching networks [5, 40]. Although,

this patent introduces several possible ideas to have an adaptive impedance match, no practi-

cal approach is examined. Therefore, the use of the proposedadaptive impedance matching

approaches can be a promising solution for small devices in wireless mobile communication

industry.

Here are some extensions to this thesis for future works:

• The proposed adaptive impedance matching techniques can beinvestigated for planar

array structures. Although a simple circular array is studied in [74] for non-adaptive

impedance match, it would be more useful to examine the adaptive match for different

planar array geometries. It would benefit the coming wireless systems which are faced

with a rising demand for higher data rates, by using more antennas.

• The performance of the adaptive matching approaches can be examined for more general

cases in which the antennas are not identical, and the array parameters such as impedance

matrix are non-symmetric. We suggest the use of the adaptivenon-identical impedance

match for such scenarios.

• Due to the limit of mutual coupling modelling and a non-separable channel model for

MIMO configurations larger than3× 3, it would be beneficial to construct a prototype to

validate the performance of the proposed adaptive match using empirical measurement

results.
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Publications

The author of this thesis has the following publications:

• R. Mohammadkhani, J. S. Thompson, “MIMO capacity improvement in the presence of

antenna mutual coupling”,18th Iranian Conference on Electrical Engineering (ICEE),

pp. 167-171, Isfahan, Iran, May 2010.

• R. Mohammadkhani, J. S. Thompson, “Adaptive matching for compact MIMO systems”,

7th International Symposium on Wireless Communication Systems (ISWCS), pp.107 -111,

York, UK, September 2010.

• R. Mohammadkhani, J. S. Thompson, “Adaptive Uncoupled Termination for Coupled

Arrays in MIMO Systems”,IEEE Transactions on Antennas and Propagation, paper

under revision in preparation for second round review.
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Appendix B
Mutual Impedance of Thin Wire

Dipoles

As mentioned in Chapter 3, the mutual impedances between twoantennas using open-circuit

voltages, can be expressed as follows:

z21 =
V2
I1

∣∣∣∣∣
I2=0

=
Voc,2
I1

(B.1a)

z12 =
V1
I2

∣∣∣∣∣
I1=0

=
Voc,1
I2

(B.1b)

For identical antennas due to the reciprocity theorem,z21 = z12. Assuming a linear array

of two identical thin wire dipoles, placed in a side-by-sideconfiguration and separated by a

distance ofd, the real and imaginary parts of the mutual impedancez21 = r21 + jx21 using the

classical induced electromagnetic force (EMF) method are given by [31, 56]:

r21 = 30[2Ci(u0)− Ci(u1)− Ci(u2)] (B.2a)

x21 = −30 [2Si(u0)− Si(u1)− Si(u2)] (B.2b)

whereCi(u) andSi(u) are the cosine and sine integrals defined as:

Ci(u) =

∫ u

∞

cos(x)

x
dx (B.3a)

Si(u) =

∫ u

0

sin(x)

x
dx (B.3b)

and

u0 = kd (B.4a)

u1 = k(
√
d2 + l2 + l) (B.4b)

109



Mutual Impedance of Thin Wire Dipoles

u2 = k(
√
d2 + l2 − l) (B.4c)
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