
An automati translator from KIF to PDDLFiona MNeill, Alan Bundy, Chris WaltonCISA, Shool of Informatis, The University of Edinburgh, Appleton Tower,11 Crihton Street, Edinburgh, EH8 9LE, United Kingdom.ff.j.mneill,a.bundy,.d.waltong�ed.a.ukOtober 4, 2004AbstratIn this paper, we present a translation proess that we have developed to onvert KIFontologies into PDDL. This allows us to de�ne KIF-based agents that an plan eÆiently. Wedisuss the diÆulties inherent in suh a translation proess, and the steps we have taken tooverome them. This proess is translates from only a subset of KIF to a orresponding subsetof PDDL.1 IntrodutionIt is a fairly ommon senario that agentswithin a multi-agent ommuniation system re-quire the ability to form plans. However, inmost irumstanes, a di�erent representationis required for the planner input than for theagent's internal ontology.More generally, sharing and reuse of knowl-edge, and shared voabularies are beoming in-reasingly important issues. If state-of-the-artPDDL planners an be made to be usable withknowledge that is not originally representedin PDDL, through translation proesses, thenthey will be of muh greater use to the broaderAI ommunity.We are working with agents that have knowl-edge represented in KIF [3℄, whih is a full �rst-order ontology language. However, KIF ontolo-gies annot be used as input for any state-of-the-art planner; full �rst order planners are in-eÆient and slow. Instead, we wish our agentsto use a PDDL-based planner so as to able toplan eÆiently. PDDL (Planning Domain Def-inition Language) is the language developed bythe AIPS-98 Competition Committee for use in

de�ning problem domains, and is a ommunitystandard for the representation and exhange ofplanning domain models [2℄. We have thereforedeveloped a translator that will onvert the es-sential features of a KIF ontology into a PDDLrepresentation. We an then use any PDDLbased planner to produe a plan for ahievinga given goal, and exeute this plan within theKIF based agent system. This is urrently onlya one-way proess: the translator will onverta KIF ontology into a PDDL representation sothat planning an be performed, but the re-verse translation from PDDL to KIF annoturrently be performed. We have not writtena reverse translation bak to KIF beause thisis not neessary in our system. The plan thatis produed, the format of whih will dependon the planner used, will need to be translatedinto a format that is readable by the KIF agent;however, this is a small problem beause theformat of the plan is not omplex, but simplya sequene of ations.KIF is a representation that supports full�rst-order logi, and PDDL is basially a �rst-order logi language [4℄, although PDDL onlyallows quanti�ation over �nite domains. It

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Archive

https://core.ac.uk/display/429716962?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

is not possible to diretly translate KIF state-ments that inlude quanti�ation over in�nitedomains. However, the syntax of PDDL is de-veloped so that it an be onsidered to be a�rst-order representation, with the added pro-viso that uninstantiated variables and quan-ti�ation over in�nite domains are not permit-ted. Hene, as long as we an deal with vari-ables that are uninstantiated in the KIF on-tology and exlude in�nite domains, we anregard this proess as a �rst-order to �rst-order translation proess. By restriting thedomain in suh a way, a PDDL planner is ableto unpak �nite onjuntions and disjuntionsin order to produe a propositional spae tosearh through. This removes the overwhelm-ing searh problems faed by a true �rst-orderplanner.The representation problems surroundingplanning agents have already been reognised:an automati translator between PDDL andDAML has been developed so that DAMLagents an make use of PDDL planners [6℄.DAML is not full �rst-order, so the translationproblem is more onstrained.The aim of this paper is to desribe thetranslator module of our ontologial re�nementsystem [7, 8℄. We demonstrate that this trans-lator, within the restritions of our require-ments, will produe PDDL �les that orretlyorrespond to the original KIF ontology, andthat an be proessed by a PDDL planner toprodue a plan that is exeutable within thisKIF agent system. We are dealing with fairlysimple KIF ontologies that do not utilise thefull sope of the KIF language, and this trans-lation proess is only equipped to deal withsuh ontologies. This has the e�et that, sinethe ontologies are relatively simple, the full a-pabilities of PDDL are not utilised either, be-ause this is not neessary for full translationsof our ontologies. It should be stressed that themotivation for this work is to provide a viableunit for our ontologial re�nement system; thisproblem is not being explored from a generalpoint of view. Most signi�antly, the ontolo-gies we are dealing with do not deal with tem-poral planning, and thus durative ations are

not inluded. This paper disusses the issuessurrounding the translation problem in orderto desribe how the problem has been takledand what the diÆulties are.2 KIF and PDDLThere are six di�erent types of ontologial ob-jets in a KIF ontology: funtions, relations,axioms, lasses, individuals and frames. Notethat the term funtion has a slightly di�erentmeaning in KIF and PDDL. In KIF, a fun-tion refers to a kind of relation (or prediate),that, given instantiations for the �rst n-1 ar-guments, has a preisely determined value forthe nth argument. On the other hand, aPDDL prediate for whih the above holds isonly referred to as a funtion if the nth argu-ment is numerial [2℄. A KIF relation or-responds to a PDDL prediate, with the ex-eptions stated above: PDDL prediates in-lude those that are uniquely determined butnon-numerial, whereas in KIF, these would beonsidered to be funtions and not relations.For the sake of larity, we refer to objets thatare alled funtions in both KIF and PDDL(i.e. uniquely determined numerial funtions)as numerial funtions. A KIF axiom or-responds to a PDDL ation; that is, a ruledesribing the preonditions and e�ets of anamed ation. KIF lasses orrespond toPDDL types. KIF frames and individualsboth orrespond to PDDL objets. A frame isan individual that has initial fats attahed toit; an individual has none. The initial statusof the problem is extrated from informationontained within the frames and individuals ofthe KIF ontology.Our KIF ontologies have been developed us-ing the Ontolingua Ontology editor [1, 5℄. Thisprodues an HTML page ontaining the wholeontology, whih an be saved to a single �le.PDDL requires this �le to be translated intoa domain �le and a problem �le (see Figure 1and the example below). In PDDL, the do-main �le ontains information that is generalto the whole domain: the names of prediates,

the numbers of arguments they take, the ax-ioms, and so on. The problem �le ontains theinformation that is spei� to a partiular prob-lem: the individuals, their lasses, the fatsand the goal. Hene a single domain �le anbe paired with several di�erent problem �les.In KIF the whole ontology is ontained in asingle �le. Some types of KIF ontologial ob-jets are put in the problem �le, and some inthe domain �le, beause the KIF ontology on-tains not only a desription of the domain, butalso fats and individuals. Thus the urrentstate; i.e., what is urrently true, is representedby fats within the KIF ontology. After planexeution has been ompleted, the state willhave hanged. The KIF ontology is not keptup to date during plan exeution; instead, theKIF ontology is updated one plan exeutionis omplete, so that the state represented inthe KIF ontology beomes ompatible with thestate ahieved through exeution of the plan.
Planning Agent

KIF Ontology

Translator

PDDL planner

Plan

Goal Translator

Goal

PDDL readable
goal

Problem File Domain File

Figure 1: Arhiteture of Translation Sys-tem

3 Motivating ExampleConsider the situation in whih a virtual travelagent is given a goal to purhase an on-lineplane tiket. In order to ahieve this goal, sev-eral steps must be arried out. For example,the agent must loate a tiket-selling agent, itmust ensure it has suÆient funds, it must workout the orret origin and destination for theight, and so on. Clearly, before the agent anat, it must have a plan for how to ahieve thegoal. Therefore, as soon as the agent identi�esa goal, it sends the whole ontology, togetherwith a suitable representation of this goal, tothe translator. PDDL �les for the ontology areprodued, whih an then be sent to the plan-ner. The planner will produe a plan for how toahieve this goal, whih an be translated into aformat that is readable by the KIF agent. Onethe KIF agent has the plan, it an then beginto exeute the plan steps. In this short exam-ple, we have the following ontologial objetsin the original KIF ontology:(Define-Frame Travel-Agent :Own-Slots((Instane-Of Agent)) :Axioms ((MoneyTravel-Agent 500)))(Define-Frame Edinburgh :Own-Slots((Instane-Of City)) :Axioms ((FlightEdinburgh London 300)))(Define-Individual London (City) "")(Define-Funtion Flight (?Plae-0?Plae-1) :-> ?Value "" :Def (And(Plae ?Plae-0) (Plae ?Plae-1)(Number ?Value)))(Define-Funtion Money (?Agent-0):-> ?Value "":Def (And (Agent ?Agent-0)(Number ?Value)))(Define-Class Agent (?X) "":Def (And (Thing ?X)))(Define-Class City (?X) "":Def (And (Plae ?X)))(Define-Class Plae (?X) "":Def (And (Thing ?X)))(Define-Axiom Book-Flight "" :=(=> (And (Flight ?Agent-Lo ?Conf-Lo

?Prie)(Money ?Agent ?Amount)(< ?Prie ?Amount))(And (Has-Tiket ?Agent)(= ?Newamount (- ?Amount?Prie))(Money ?Agent ?Newamount)(Not (Money ?Agent ?Amount)))))There are objets referred to in the axiom thatare not de�ned in the ontology setion above:these are omitted for brevity.Our translation would produe the followingPDDL domain �le from the above KIF ontol-ogy:(define (domain domain Ont)(:requirements :strips :fluents :typing)(:prediates(Agent ?Agent)(Plae ?Plae)(City ?City))(:funtions(Money ?Agent)(Flight ?Plae1 ?Plae2))(:ation Book-Flight:parameters (?Agent ?City1 ?City2):preonditions (And(< (Flight?City1 ?City2)(Money ?Agent))(Agent ?Agent)(City ?City1)(City ?City2)):effets (And (Has-Tiket ?Agent)(derease(Money ?Agent)(Flight ?City1?City2)))))and the following PDDL problem �le:(define (problem problemOnt)(:domain domainOnt)(:objets London EdinburghTravel-Agent)(:init

(Agent Travel-Agent)(City London)(City Edinburgh)(= (Money Travel-Agent) 500)(= (Flight Edinburgh London) 300))(:goal(Has-Tiket Travel-Agent)))4 Translation ProessThe translator is written in Prolog and workslargely through pattern mathing. For exam-ple, a key prediate is the mathExpressionprediate, whih takes a setion of haratersand an identi�er that may or may not appearwithin that setion and, if it �nds the identi-�er, returns what omes before and after thatidenti�er, and otherwise fails:mathExpression(-BeforeIdentifier,+Identifier,-AfterIdentifier,+Setion)If the identi�er appears more than onein the expression, the �rst appearane willalways be used. In the above expression,following the Prolog onvention, + indiatesthat this argument is instantiated when theprediate is alled and - indiates that thisprediate is uninstantiated when the prediateis alled and is instantiated by the prediate.That is, mathExpression is passed an identi�erand a setion of ode, and returns what omesbefore that identi�er and what omes after.For example:mathExpression(Before,`Instane-of ',After,`(Instane-of Agent)').will return:Before = `('After = `Agent)'.4.1 Numerial FuntionsThe most signi�ant di�erene between KIFand PDDL is the way that numerial funtionsare dealt with. The example ontologies insetion 3 illustrate that the way in whih KIFfuntions are de�ned does di�erentiate themfrom KIF prediates. The arguments of a

funtion are de�ned, e.g. (?Plae-0 ?Plae-1):-> ?Value rather than simple as (?Plae-0?Plae-1 ?Value). However, when a numerialfuntion is referred to in a KIF ontology, eitherwithin an ation or as an initial fat, it is dealtwith not as a funtion but as a prediate.For example, a numerial funtion might bedesribed as:(Define-Funtion Money (?Agent) :->?Amount ...,that is, as a funtion, but a possible instantia-tion would be:(Money Planning-Agent 100),so that it looks like a prediate.In PDDL, the numerial argument is notinluded in the prediate de�nition, but ratherit is written as a funtion, so that it would bestated:(Money ?Planning-Agent)and would appear within the funtion de�-nitions in the domain �le rather than in theprediate de�nitions.The spei� value of this funtion is notexpliitly mentioned. The PDDL plannerwould be aware that this had a numerialvalue attahed to it beause it would bedelared within funtions rather than withinprediates. Although it appears that informa-tion has been lost here, in fat the value ofthe funtion is traked impliitly by PDDL;thus the information remains but it is nolonger expliitly represented. If there is aninstantiation for this numerial funtion inthis initial state, then the value of this wouldbe stated as follows:(= (Money ?Agent) 100).During the planning proess, the PDDLplanner will keep trak of the value of allthe prediates and these hanging values arenot referred to spei�ally within the axioms.However, in a KIF axiom, these values mustbe referred to and are thus given expliitnames. For example, a Buy rule may have apreondition that the amount of money thebuying-agent has must be greater than theost of the item whih is purhased. In KIF

this would be stated as follows:(Money ?Agent ?Amount) ^ (Cost ?Item?Prie) ^ (> ?Amount ?Prie)whereas in PDDL, this would be stated as:(> (Money ?Agent) (Cost ?Item))A postondition for the same ation might bethat the money that the agent now has is theoriginal amount less the ost of the item. InKIF, this would be:(= ?Newamount (- ?Amount ?Prie)) ^ (Money?Agent ?Newamount) ^ (Not (Money (?Agent?Amount))).In PDDL, this would be:(derease (Money ?Agent) (Cost ?Item))Dealing with this di�erene in represen-tation for numerial prediates is by far themost diÆult aspet of the translation proess.It auses some diÆulties in writing theproblem �le, though these are not partiularlyhard to solve. More omplex are the diÆultiesthis reates in writing the domain �le, andpartiularly in the statement of the axioms.These problems are disussed, together withour solutions to them, in setions 4.3 and4.4.1.4.2 Writing the Problem FileA PDDL problem �le ontains the spei� de-tails of this partiular problem within the do-main desribed in the domain �le. The inputfor this proess is the goal, and the list on-taining all the KIF de�nitions relevant for theproblem �le, whih are those pertaining to indi-viduals. The PDDL problem �le needs to on-tain:� A list of the names of the individuals� A list of what is true initially, whih in-ludes:{ A list of the lasses of individuals{ A list of the initial fats; i.e. initialinstantiations of the prediates� The goal

In KIF, fats are not stated independently butinstead are attahed to the �rst individual towhih they pertain. For example, (LoationAgent1 Timbuktu) would be ontained eitherwithin the de�nition of the individual Agent1or within the de�nition of the informationTimbuktu.The information (ontained in the list sent tothe problem �le) has not been proessed at thisstage, merely sifted for information relevant tothe problem �le. All the de�nitions within thisrelevant list are exatly as they appear in theKIF ontology. The �rst step is to proess thislist by extrating the useful information fromthe KIF de�nitions and forming it into threelists that orrespond to the three items listedabove (exluding the goal). This is done bysearhing for key markers within the de�nition.For example, an individual will either beginwith the statement De�ne-Individual, if thereare no fats attahed to this individual de�-nition, or De�ne-Frame if there are attahedfats. The name of the individual always ap-pears immediately after this initial marker. Ifthe marker is De�ne-Individual, we need onlyextrat the lass of this individual. If the makeris De�ne-Frame, we then need to �nd the fatsattahed to this individual. These appear intwo di�erent plaes, depending on what kindsof fats they are. Some, inluding the lass,whih is indiated by the prediate instane-of,appear in a list soon after the name, and someappear in a separate list of axioms. The for-mer do not inlude the name of the individual,whih must be added in later.Examples are given below:(Define-Individual Isabelle-Paper-Dvi(Dvi-Paper))This line, when proessed, will addIsabelle-Paper-Dvi to the list of individ-uals and (Dvi-Paper Isabelle-Paper-Dvi) tothe list of lasses.(Define-Frame Luas :Own-Slots((Has-Paper Isabelle-Paper-Dvi)(Instane-Of Agent)(Loation Edinburgh)):Axioms ((Money Luas 1000)))

This line will add Luas to the list of in-dividuals, (Agent Luas) to the list of lassesand (Has-Paper Luas Isabelle-Paper-Dvi),(Loation Luas Edinburgh) to the list of fats.The fat (Money Luas 1000) will also be ex-trated from this line. However, beause Moneyis a funtion, it requires further proessing, and(= (Money Luas) 1000) will be added to thelist of fats.One the entire list of relevant de�nitions hasbeen proessed, the lists ontaining this infor-mation, together with the goal, are passed to aprediate whih writes the problem �le. Thiswill �rst write the neessary initial information,suh as the name of the problem that is be-ing de�ned and the name of the domain withinwhih the problem is desribed, to the problem�le. The three lists (of individuals, lasses ofindividuals and fats) are proessed by simplywriting them, member by member, within theorret brakets and initialisers. Finally, thegoal, whih has been translated from the Pro-log format in whih it was input to a formatreadable by PDDL, is inserted into the orretplae.4.3 Writing the Domain FileThe domain �le ontains:� Prediates, whih inludes:{ all prediates that do not have a nu-merial value{ lass names� Funtions (non-numerial prediates)� Ations, whih ontain the following infor-mation:{ a list of all the variables mentionedin that ation{ the preonditions of the ation{ the e�ets of the ationThe relevant lines of de�nitions are thosede�ning KIF funtions, relations, axioms andlasses. As disussed above, KIF funtions do

not orrespond diretly to PDDL funtions,beause PDDL only onsiders KIF numerialfuntions to be funtions; non-numerial fun-tions are onsidered to be prediates. KIF ax-ioms orrespond to PDDL ations. These inputlines are proessed to reate four lists of infor-mation required by the domain �le: a list ofall the prediates (this inludes both numerialand non-numerial prediates, i.e. both KIFrelations and KIF funtions, and both PDDLprediates and PDDL funtions), a list of thelasses, a list of the ations and a list of thenumerial funtions. The format of the list ofall the prediates and the list of the numerialfuntions is di�erent, beause the former arerepresented as prediates and the latter as fun-tions. In the latter, the prediates are listedwith the numerial argument removed (whih ishow they must be expressed in PDDL, see se-tion 2.2), whereas in the prediates list, beausethey are not identi�ed as being numerial, theyare listed as a prediate name, followed by a listof all the arguments and their lasses. In thelist of ations, eah ation is stored as an ationname followed by a list ontaining all the pre-onditions, as they appear in the KIF ontology,and all the e�ets.Writing the domain �le is far more omplexthan writing the problem �le, largely due to thediÆulties with ations, whih are disussed be-low. The �le is initialised by stating the nameof the domain �le and the PDDL requirements.The prediate and lass lists are adapted with-out too muh diÆulty so that they an be writ-ten down in the appropriate plae. The numer-ial funtion list is used to write down the fun-tions. Note that in our system at the moment,numerial funtions are written down both asprediates and as funtions. In the former ver-sion they have an extra argument (the numeri-al argument) whih is not inluded when theyare written as funtions. It is fairly trivial tohek prediates against the numerial predi-ate list and only write down those that are notnumerial in the ordinary prediate slot. How-ever, this is not done for reasons disussed insetion 4.3.1. Expressing these numerial fun-tions twie in di�erent ways and in two di�er-

ent de�nition areas does not raise problems, asthe planner onsiders them to be two di�erentobjets.4.3.1 Pseudo VariablesOne of the limitations of PDDL is that it an-not deal with uninstantiated variables. Thisis beause, although PDDL appears to be a�rst-order language, most PDDL planners arein fat only pseudo-�rst-order, and work by re-ating all possible instantiations of the problemand searhing through it, i.e. in a propositionalmanner. This is a problem for our system, aswe wish to deal with agent plans in whih thereare unknowns after planning. For example, anagent may have a plan to attend a onferenewhih involves registering at the onferene andthereby reeiving a registration number, andthen using that number when atually attend-ing the onferene. Suh on�rmation numbersare useful in an agent system, as they allowthe traking of external objets that the agentspossess, or privileges to whih they are entitled.When forming a plan, it is not neessary, andindeed impossible, to know what these on�r-mation numbers are. These an only be instan-tiated during plan exeution.In order to fore PDDL to deal withthese uninstantiated variables, we have devel-oped a lass alled Confirmation-Number andan individual belonging to that lass alledPseudo-Variable. When writing an ontology,if we are reating an axiom in whih a partiu-lar variable annot be instantiated until planexeution, the individual Pseudo-Variable isinserted in plae of this variable. This vari-able may or may not be numerial; that is,this pseudo-variable will sometimes be found inprediates that PDDL onsiders to be ordinaryprediates, and sometimes in prediates thatPDDL onsiders to be funtions. However, ifwe are using Pseudo-Variable as a plae holderin a prediate in some ation, we do not wantthis prediate to be onsidered to be a funtion,sine this means that PDDL will expet to beable to assign a spei� numerial value to it.When we are dealing with numerial fun-

tions, we either want them to be onsidered asordinary prediates, if the numerial argumentis replaed by Pseudo-Variable, or as fun-tions if it is not. The diÆulty is that thesePseudo-Variable markers do not appear in thede�nition of the prediates, but only withinspei� ations. It is impossible to tell fromthe de�nition of a numerial funtion whetherwe will want to deal with it as a prediate oras a funtion. For this reason, sine it doesnot reate a problem with the planner, we de-�ne numerial funtions as both prediates andfuntions (with one less argument), thus allow-ing PDDL to onsider them as either, depend-ing on the axiom it is urrently dealing with.4.3.2 Creating AtionsOne of the more diÆult tasks involved in writ-ing the domain �le is dealing with the numeri-al funtions within the ations. In ation de�-nitions, it is not simply a ase of inserting de�-nitions. Instead, we must deal with arithmetioperations. An example of a KIF rule ontain-ing arithmeti operations, and its PDDL equiv-alent, are given below:KIF rule:(Define-Axiom Buy "" :=(=> (And (Prie ?Item ?Cost)(Money ?Agent ?Amount)(Loation ?Agent ?Shop)(< ?Cost ?Amount))(And (Has ?Agent ?Item)(= ?Newamount (- ?Amount ?Cost))(Money ?Agent ?Newamount)(Not (Money ?Agent ?Amount)))))PDDL rule:(:ation Buy:parameters (?Item ?Agent ?Shop):preonditions: (And (< (Prie ?Item)(Money ?Agent))(Loation ?Agent ?Shop)(Agent ?Agent)(Item ?Item)(Shop ?Shop)):effets: (And (derease (Money ?Agent)(Prie ?Item))(Has ?Agent ?Item)))

The �rst step is to alter the logi of the KIFto bring it in line with the logi of PDDL.That is, turn the KIF prediates into funtionsby removing the expliit representation of thevalue. For example:(Money ?Agent ?Amount)would be folded to the funtion:(Money ?Agent).It appears that information has been lostin this proess. However, the informationontained in the variable ?Amount still exists,it is just not expliit. PDDL traks the valuesof all of the funtions: a value will have beendelared for (Money ?Agent) either initiallyor in a previous rule. The value ontainedin ?Amount will be assigned impliitly to thePDDL funtion, and thus there is no need torepresent it expliitly. However, we annotimmediately forget about the variable ?Amount,beause this will be used at other stages of therule to refer to the value of (Money ?Agent).It is still neessary to link these funtions tothe variable that represented their value, sothat we know how these should be replaedwithin the arithmeti. ?Amount is a markerfor the value of (Money ?Agent), and one analways refer to ?Amount at any plae in theKIF preonditions or e�ets of that ation,and this will be a referene to the value of(Money ?Agent). Thus, if we wish to hangethe amount of money, we an hange the valueof ?Amount and assert this as the new argumentof the prediate:(= ?NewAmount (- ?Amount ?Cost)) ^ (Money?Agent ?NewAmount) ^ (Not (Money ?Agent?Amount)).When we treat these prediates as funtions,we lose this value marker. In PDDL, it is notneessary to have a marker for the value of afuntion, beause these values are automati-ally traked by the planner. However, whenwe are translating to PDDL, we need to keepa reord of these markers so as to be able todetermine where these new funtions shouldbe plaed. Thus, the following translationtakes plae:

(f ?~x ?y) ^ �) �f?y=(f ?~x)gIn the above expression, f indiates afuntion, ?~x indiates one or more variables,?y indiates a single variable and � indiatesthe whole of the preonditions and e�ets.�f?y=(f ?~x)g indiates the preonditionsand e�ets, with every ourrene of (f ?~x)replaed by the variable ?y; ?y is the markerfor the funtion (f ?~x).The �rst thing to be done is to strip allthe prediates that will beome numerialfuntions from the rule, keeping a reord oftheir markers, and then replae any ourreneof these markers with the numerial funtions.For example::preonditions (And (Money ?Agent ?Amount)(Prie ?Item ?Cost) (< ?Cost Amount)(Loation ?Agent ?Shop)):effets (And (= ?NewAmount (- ?Amount?Cost)) (Money ?Agent ?NewAmount) (Not(Money ?Agent ?Amount)))would �rst of all beome:Preonditions: (And (< ?Cost ?Amount)(Loation ?Agent ?Shop))Effets: (And (= ?NewAmount (- ?Amount?Cost))),with stored information:[?Amount(Money ?Agent),?Cost(Prie?Item),?NewAmount(Money ?Agent)℄The role in KIF of these prediates thathave been removed is to reate an identi�er forthe value. That is, by stating (Money ?Agent?Amount) in the KIF preonditions, we havedelared that ?Amount is the temporary namegiven to the amount of money that ?Agent has.In PDDL, suh delarations are unneessarybeause we do not need an expliit way ofreferring to the value. Thus these delarationsare stripped from the preonditions. Note thatwe now have two di�erent markers for the

numerial funtion (Money ?Agent), beausethe value of this funtion is hanged by therule. In KIF, there is no problem with havingthe same prediate with di�erent markers, asthe markers distinguish them. However, if wewere to replae both these markers by thefuntions to whih they are attahed, we wouldhave two ourrenes of the same funtion,(Money ?Agent), whih would eah time take adi�erent value. For example, this would leadto statements suh as:(= (Money ?Agent) (- (Money ?Agent) (Prie?Item)))whih, sine (Prie ?Item) has a non-zerovalue, is not logially onsistent. The reasonthese inonsistenies our is beause wehave, at this stage, hanged the logi but nothanged the syntax. Sine these prediateshave now beome funtions, we have noneed to assign values to them in the previousmanner: we do not need an equality statement.For this reason, we do not replae markersthat ome immediately after an equals sign.Instead, we leave them in for this stage of therewriting, and remove them later when the syn-tax is altered. So, after we have replaed themarkers with the numerial funtions, we have:Preonditions: (And (< (Prie ?Item)(Money ?Agent)) (Loation ?Agent ?Shop))Effets: (And (= ?NewAmount (- (Money?Agent) (Prie ?Item))))with stored information:[?NewAmount(Money ?Agent)℄We now need to alter the syntax so thatit is also in line with PDDL. There are threedi�erent types of operators that we need toonsider: omparative operators, arithmetialoperators and assignment operators. Foromparative operators, the syntax of KIFmathes the syntax of PDDL: one we havereplaed the markers with the funtions, wealready have a readable PDDL omparator:(< (Prie ?Item) (Money ?Agent))

However, arithmetial and assignmentoperators are rather more omplex. In KIF,assignment operators are always signalled byan equals sign, and the manner in whih theassignment is being made is ontained withinthe equality. For example,:(= ?NewAmount (- ?Amount ?Cost))means assign to the variable ?NewAmount thevalue of ?Amount less the value of ?Cost.The arithmetial operator - gives furtherinformation about the way in whih the valueis assigned: in order to �nd the value of?NewAmount, we derease ?Amount by a ertainamount. In PDDL, there are �ve assignmentoperators: assign, sale-up, sale-down,inrease and derease. So an expression inKIF that requires two arithmetial operators, =and -, an be represented in PDDL by a singleoperator, derease. Likewise, an equalitystatement ontaining a + would orrespond toinrease, one ontaining a * would orrespondto sale-up, and one ontaining a / wouldorrespond to sale-down. We use these fourassignment operators, as opposed to simplyassign, beause the funtion to whih thevalue is being assigned is the same as one ofthe funtions in the arithmeti expression:in this ase, we are �nding a new value for(Money ?Agent) by altering the old value bythe amount represented by (Cost ?Item).However, if we are assigning a value to adi�erent funtion, we use assign. In our aboveexample,(= ?NewAmount (- ?Amount ?Cost))will eventually beome:(derease (Money ?Agent) (Prie ?Item))However, if the variable that was beingassigned a value (in this ase ?NewAmount)did not orrespond to a funtion within theequality statement, we would use assign. Forexample, if ?NewAmount was a marker for afuntion (Random-Value), the above statementwould be onverted to:(assign (Random-Value) (- (Money ?Agent)(Prie ?Item)))or perhaps ?NewAmount refers to the money ofanother agent. We would then have:(assign (Money ?Agent1) (- (Money ?Agent)

(Prie ?Item)))In this situation, beause the arithmetial op-erator is not ontained within the assignmentoperator, as it is in derease, it must be usedexpliitly. Thus arithmetial operators are notalways onsumed by assignment operators;this depends on the situation.Sometimes, KIF statements assign values tovariables that do not orrespond to funtionsat all. For example:Preonditions: (And (Prie ?Item1 ?Cost1)(Prie ?Item2 ?Cost2) (Prie ?Item3?Cost3) (Money ?Agent ?Amount))Effets: (And (= ?Total (+ ?Cost1 ?Cost2?Cost3)) (= ?NewAmount (- ?Amount ?Total))(Money ?Agent ?NewAmount))This is similar to the preonditions ande�ets of the rule above, exept that we havea variable ?Total whih is a plae holder foran expression, rather than a marker for afuntion. This is dealt with in a similar way tothe funtion markers. The variable ?Total isremoved from the expression but informationabout what it is referring to is retained. It anthen be inserted into the statement at a laterstage. This would eventually lead us to:Preonditions: (And ())Effets: (And (derease (Money ?Agent)(+ (Prie ?Item1) (Prie ?Item2) (Prie?Item3))))However, this would still not be orretPDDL. In KIF, the arithmeti funtion +an take two or more arguments, whereas inPDDL, + an only take exatly two arguments.Thus, if we �nd a + expression with more thantwo arguments, they must be nested. So thee�ets would beome:Effets: (And (derease (Money ?Agent)(+ (Prie ?Item1) (+ (Prie ?Item2)(Prie ?Item3)))))

We have similar problems with the otherarithmetial operators, and they are dealt within a similar manner.Although there are ertain ompliationswith the translation of preonditions and ef-fets, some of whih have been disussed above,it is nevertheless relatively straightforward toshow that every ase has been onsidered.There are a small number of KIF operatorswhih orrespond to a small number of PDDLoperators and so, one the translation of somehas been implemented, it is not diÆult to gen-eralise it so that it an apply to any KIF arith-metial statement.One the preonditions and the e�etshave been proessed, all that remains to bedone is to identify the variables used in theation, so that these an be delared. This isdone simply by building a list of variables bystripping all the variables from the proessedpreonditions and postonditions, and thenremoving any dupliates from this list. Thismust be done after the preonditions ande�ets have been proessed, as otherwise wewill delare variables that do not appear inthe proessed preonditions and e�ets, suhas ?NewAmount or ?Total.One these three lines of information:the variables (parameters), the preonditionsand the e�ets, have been developed, theation an very easily be written down in theorret plae in the �le. All that remains is toloate the name of the ation and plae thatin the proper plae.In summary, the main hanges that need tobe made are:1. Remove the numerial argument from KIFnumerial prediates, so that the prediateis folded into a PDDL funtion.2. Remove all ourrenes of that numerialprediate that do not appear in an arith-metial expression from the rule; these arethere to assign values to the prediate, andare not neessary for PDDL funtions.3. Replae all ourrenes of the marker (the

name of the numerial variable in KIF)with the PDDL funtion.4. Rearrange the arithmeti and the assign-ment operators aordingly.5 Evaluation and Fur-ther WorkWe have evaluated the translator from a purelypratial point of view by plugging it in as aomponent of our dynami ontology re�nementsystem [7, 8℄. In suh a ontext, it is requiredto, and has proved apable of, automatiallyreading the KIF ontology, proessing the on-tology to produe the two PDDL �les, passingthese �les to the planner, and reeiving a planfrom the planner. This plan is then interpretedand exeuted within the agent system. Fre-quent manual heks have been made to on-�rm that the PDDL �les orrespond orretlyto the KIF ontology, and that the plan pro-dued by the planner is indeed valid aordingto the KIF ontology. However, we do not laimthat our translation proess urrently providesa full solution to the problem of translationfrom KIF to PDDL. The breadth of ontologiesit has been tested on is not partiularly wide.We know, for example, that some numerial op-erations have not been inluded in the transla-tor beause we do not urrently have any needfor them. More signi�antly, we are not dealingwith temporal ations in our ontologies. Thepurpose of the urrent translator is as a work-ing omponent of the system, rather than as anall-purpose KIF to PDDL translator. However,we believe that these missing operators ouldbe added into the translator without muh dif-�ulty, and we antiipate that, with a limitedamount of extra work, this translator ould bemade to translate from any �nitely quanti�edKIF ontology to readable PDDL-1.2 �les. Wehave not urrently investigated how diÆult itwould be to translate ontologies that ontaintemporal ations and thus make use of the theextensions to PDDL ontained in PDDL-2.1.We have also not investigated what ould be

done with universal quanti�ation in a KIF on-tology so that some version of this ontologyould be represented in PDDL.The next stage of development for the trans-lator would be to prove soundness and om-pleteness for the translation proess. As dis-ussed previously, there is no question that thetranslation proess is sound for the whole ofKIF; there are many KIF expressions that an-not be represented under the urrent transla-tion funtion, sine we are only dealing with on-tologies written in a subset of KIF. However, ifwe restrit the proof to a subset of KIF, then itshould be possible to show that the rules of thetranslation proess will take any KIF ontologywithin this subset and produe a logially validPDDL representation. This an be proved byforming a Herbrand model of a KIF ontologyand showing that this an be translated to amodel of a PDDL representation that is logi-ally equivalent to the KIF and also exeutableby a PDDL planner. This work will be un-dertaken in the near future and, sine we areon�dent that the translation is sound for thesubset of KIF with whih we are working, thisshould not reate diÆulties. The next goalwould be to widen the translation proess to alarger subset of KIF, and eventually produe atranslation funtion that is sound for the wholeof KIF.6 ConlusionsThe aim of the work desribed in this paper isto reate a omponent for our KIF-based ontol-ogy re�nement system that enables our agentsto use a PDDL planner. This aim has beenahieved and the translator has been suess-fully tested on various ontologies. As desribedin the evaluation setion, this development hasbeen pragmati rather than theoretial, andthus we do not laim that the translator is om-plete, but merely that it makes orret trans-lations for the KIF ontologies we are workingwith. The problem of proving this translatorto be sound and omplete is disussed above.

Referenes[1℄ A. Farquhar, R. Fikes, and J. Rie. Theontolingua server: A tool for ollabo-rative ontology onstrution, 1996. ite-seer.nj.ne.om/farquhar96ontolingua.html.[2℄ Maria Fox and David Long. An exten-sion to PDDL for expressing temporalplanning domains. Available fromDurham Planning Group webpage:.http://www.dur.a.uk/omputer.siene/researh/stanstu�/planpage.html.[3℄ M. R. Genesereth and R. E. Fikes. Knowl-edge Interhange Format, Version 3.0 Ref-erene Manual. Tehnial Report Logi-92-1, Stanford, CA, USA, 1992.[4℄ M. Ghallab, A. Howe, C. Knoblok, D. M-Dermott, A. Ram, M. Veloso, D. Weld, andD. Wilkins. Pddl|the planning domainde�nition language, 1998.[5℄ T. R. Gruber. Ontolingua: A mehanismto support portable ontologies, 1992.http://iteseer.ist.psu.edu/gruber92ontolingua.html.[6℄ Drew V. MDermott, Dejing Dou,and Peishen Qi. An automatitranslator between pddl and daml.http://www.s.yale.edu/homes/dvm/daml/pddl daml translator1.html.[7℄ F. MNeill, A. Bundy, and M. Shorlem-mer. Dynami ontology re�nement. In Pro-eedings of ICAPS'03 Workshop on PlanExeution, Trento, Italy, June 2003.[8℄ F. MNeill, A. Bundy, and C. Walton.Diagnosing and repairing ontologial mis-mathes. In Proeedings of the seond start-ing AI Researhers' symposium, Valenia,Spain, August 2004..

