GAZING:

A Technique for
Controlling the Use of Rewrite Rules

Dave Plummer

Submitted for the degree of
PhD.

University of Edinburgh

1987

Table of Contents

1. Natural Deduction and Mechanical Theorem Proving

1.1.

1.2,

1.3.

1.4.

1.5.
1.6.

Introduction

1.1.1. Overview of This Chapter
Logical Preliminaries

1.2.1. Natural Deduction (ND)

1.2.2. Gentzen Sequent Calculus (GSC)
Automating Natural Deduction

1.3.1. Forward and Backward Inference
1.3.2. Completeness

1.3.3. Skolemization and Unification
1.3.4. Rewriting

Alternative Logical Systems

1.4.1. Resolution

1.4.2. The Connection Method

1.4.3. Summary

Why Natural deduction?

Summary

2. The UT Provers

2.1,
2.2.
2.3.

2.4.

2.5. The UT Provers and Natural Deduction
2.6. Summary
3. RUT: A Rational Reconstruction of the UT Theorem Provers
3.1. Overview
3.2. RUT and the UT Provers
3.3. The Rules
3.4. Disjunctive Conclusions
3.5. Interaction
3.6. The Search Strategy
3.7. RUT in Use

3.8.

Overview

The UT Provers

PROVER

2.3.1. The Logical Rules of PROVER
2.3.2. The Non-Logical Rules of PROVER
2.3.3. Summarizing PROVER

IMPLY

2.4.1. The Logical Rules of IMPLY

2.4.2. The Non-Logical Rules of IMPLY
2.4.3. Summarizing IMPLY

Conclusion

00 C WY W

= W o 0

~] =] =1 ~1 -1 O

o

1

4. Gasing:
Using the Structure of the Theory in Theorem Proving
4.1. Overview
4.2. The Problem of Selecting Rewrite Rules
4.2.1. Similarity: The Common Currency Model
4.2.2. Peeking: Function Definitions
4.2.3. Peeking: One-Step Look-Ahead
4.2 .4, Pairs and the Common Currency Model
4.2.5. Summary of the Common Currency Model
4.3. Gazing
4.3.1. Constructing a Theory
4.3.2. The Predicate Space
4.3.2.1. Planning: Paths Through the Gaze Graph
4.3.2.2. Planning: Proofs in Propositional Logic
4.3.3. Planning in the Function/Polarity Space
4.4. Execution and Recovery From Failure in the Full Space
4.4.1. The Permuted Arguments Problem
4.4.2. Shielding Functions Problem
4.4.2.1. Connective Structure Failure
4.4.3. The Plan Assumption Problem
4.5. An Example Proof by Gazing
4.6. Summary
5. Characterizing the Search Spaces of Gazing and RUT
5.1. Overview
5.2. The Savings made by Gazing
5.2.1. “Logic Before Theory”’
5.2.2. The Problem with Splitting
5.2.3. Summary of the Gazing Saving
5.3. The Cost of Gazing
5.3.1. Search in the Predicate Abstraction Space
5.3.2. Search in the Function/Polarity Abstraction Space
5.3.3. Preprocessing The Theory
5.3.4. Summary of the Cost of Gazing
5.4. When is the use of Gazing Beneficial?
5.5. Summary
8. Further Work, Related Work and Conclusions
6.1. Overview
6.2. Further Work
6.2.1. Modifying the Search Strategy
6.2.2. On “Key” Arcs
6.2.3. On Conjecturing
6.2.4. Summary
6.3. Related Work
6.3.1. Natural Deduction Theorem Provers
6.3.2. Abstraction Spaces
6.3.2.1. Planning in Abstraction Spaces: ABSTRIPS and NOAH
6.3.2.2. Abstraction Mappings in Theorem Proving: Input Abstraction and
Generalization
6.3.2.3. Abstraction Mappings in Theorem Proving: The GRAPH Theorem
Prover
6.3.3. Theory Resolution
6.3.4. Summary
6.4. Conclusions

76

76
77
80
81
82
82
83
83
86
90
92
95
96
103
104
106
107
108
108
110

111

111
113
113
115
117
118
120
122
124
125
126
127
129
129
130
130
131
132
133
133
134
139
140
143

149
153

155
157

i

6.4.1. What Has Been Learned
6.4.2. What Has Yet To Be Learned
6.4.3. Summary

Appendix A. Some Results: Exercises in Set Theory

A.l. Introduction

A.2. The Initial Theory
A.2.1 Axioms
A.2.2 Conjectures
A.2.3 Results

A.3. Extending The Theory
A.3.1 Conjectures for the Extended Theory
A.3.2 Results for Conjectures 13 through 33
A.3.3 The Definition of Symmetric Difference and its Associated Conjectures
A.3.4 Conjectures for the Final Theory
A.3.5 Results for Conjectures 34 through 40

A.4. Proving What is Already Known

A.5. Conclusion

Appendix B. Some Example Proofs

B.1. Introduction

B.2. The proof of conjecture 12
B.3. The proof of conjecture 32
B.4. The proof of conjecture 35
B.5. Conclusion

Index of Definitions

158
159
160
162
162
163
164
165
166
168
168
169
171
171
171
172
173
178

176
177
178
180
183

189

Figure 1-1:
Figure 1-2:
Figure 1-3:
Figure 1-4:
Figure 1-5:
Figure 1-6:
Figure 1-7:
Figure 1-8:
Figure 1-9:
Figure 1-10:
Figure 1-11:
Figure 1-12:
Figure 1-13:
Figure 1-14:
Figure 1-15:
Figure 1-18:
Figure 1-17:
Figure 1-18:
Figure 1-19:
Figure 1-20:
Figure 1-21:
Figure 1-22:
Figure 1-23:
Figure 1-24:
Figure 1-25:
Figure 1-26:
Figure 1-27:
Figure 1-28:
Figure 1-29:
Figure 1-30:
Figure 1-31:
Figure 1-32:
Figure 1-33:
Figure 1-34:
Figure 1-35:
Figure 1-36:
Figure 1-37:
Figure 1-38:
Figure 1-39:
Figure 2-1:
Figure 2-2:
Figure 2-3:
Figure 2-4:

List of Figures

A-E
A1
V-1
Vv-E
—-E
—-1
-1
~-E
~E
|
V-E
V-l
3E
31
Absurdity Rule
Law of Excluded Middle
First Partial Proof of the Conjecture
Completed Proof of the Conjecture
A
A+
V-
v
|—-—r

~
-V
V-—
3
T
Absurdity rule for GSC
Law of Excluded Middle for GSC
Matching Rule for G5C
The Abbreviated Representation of a Rewriting Step
The Resolution Rule
Matrix form of (2)
Matrix form of (2) showing connections
The rules of Imply - a subroutine of PROVER - Part 1
The rules of Imply - a subroutine of PROVER - Part 2
The Rules of Hoa - Part 1
The Rules of Hoa - Part 2

=R ==~ - -~

10
10
10
10
10
10
11
11
11
12
13
13
13
13
13
13
13
13
14
14
14
14
14
14
14
14
14
24
25
27
28
36
37
38
39

Figure 2-5:
Figure 2-8:
Figure 2-T:
Figure 2-8:
Figure 2-9:
Figure 2-10:
Figure 2-11:

Figure 2-12:
Figure 2-13:
Figure 2-14:
Figure 2-15:
Figure 2-16:

Figure 2-17:
Figure 2-18:
Figure 2-19:
Figure 2-20:
Figure 2-21:
Figure 3-1:
Figure 3-2:
Figure 4-1:
Figure 4-2:
Figure 4-3:
Figure 5-1:
Figure 5-2:
Figure 8-1:
Figure 8-2:
Figure A-1:
Figure A-2:
Figure A-3:
Figure A-4:
Figure A-5:
Figure B-1:
Figure B-2:
Figure B-3:
Figure B-4:
Figure B-5:
Figure B-8:

Applying Match to two Partial Proofs
Cases
The combination of Cases and And-Split

Combined applications of Cases, And-Split and Promote

Or-Split
And-fork
The Rules of Andout
The Rules of Orout
Back-Chain
Flip-H
The justification of Flip-H
Some Logical Reduce Rules of PROVER
Some Database Reduce Rules of PROVER
The Rules of IMPLY - Part 1
The Rules of IMPLY - Part 2
Proof of (H) using PROVER
Back-Chain
The Rules of RUT - Part 1
The Rules of RUT - Part 2
An Example Definitional Gaze Graph
First Resolution Proof of Path from = to €
Second Resolution Proof of Path from = to €
Proof Of (DD), by RUT
Proof Of (DD), by GAZER
Graphical Part of Conjecture
Statement Rule for the Definition of C
Results for the initial theory
Results for the extended theory
Results for conjectures 34 through 40
Results for GAZER in full theory (part 1)
Results for GAZER in full theory (part 2)

The proof of conjecture 12, produced by GAZER

The proofs of conjecture 12, produced by RUT

The proof of conjecture 32, produced by GAZER

The proof of conjecture 32, produced by RUT
Proof of conjecture 35, produced by GAZER

Partial proof of conjecture 35, produced by RUT

40
42
42
43
43
43
44
45
46
47
47
50
50
56
57
58
65
71
72
90
96
96
114
114
134
135
167
170
172
174
175
177
179
180
181
182
182

1

Abstract

This thesis is concerned with the possibility of designing computer programs that can carry
out logical reasoning. The problem is tackled by first defining a logical system which is a set
of rules which may be used to make inferences, and then writing a computer program which

can execute these rules.

I begin by defining two logical systems, ND and GSC. These systems form the basis of the
automatic theorem provers that are discussed in the remainder of the thesis. Two such
theorem provers were developed at the University of Texas by a research team led by Prof.
W. W. Bledsoe. These theorem provers, PROVER and IMPLY, are based on different
formulations of natural deduction. The relationship between the logics of the two programs

and the systems of §SC and ND is discussed.

I have developed a theorem prover, called RUT, which is based on the better ideas in both
PROVER and IMPLY. RUT modifies and extends both PROVER and IMPLY.

Because of the difficulty of the problem of automatic theorem proving it is necessary to
build the program so that it can determine when a particular course of action is likely to lead
to a proof. This notion is completely extra-logical in the sense that there is nothing in the
logical system which would enable a prover, automatic or human, to make such a decision.
While the University of Texas provers have some means of choosing between different courses
of action, these methods are quite weak, and often give the wrong advice. I describe gazing,
a technique which 1 have developed to enable RUT to decide when the application of an

inference rule is likely to lead to a proof of a given conjecture.

The use of gazing is shown to be efficient and effective. Gazing is effective since the
guidance provided by gazing is useful more often than that provided by the techniques used
by the University of Texas provers. Gazing is efficient in terms of the amount of search that
the system must carry out to allow gazing to provide guidance. The main result is that
the use of gazing will cause a theorem prover to carry out less search than might be carried
out if the proof proceeded without the guidance provided by use of the technique. Thus

gazing is a useful technique for an automatic theorem prover to apply.

Finally I present details of work related to that reported in this thesis, and outstanding

problems which remain to be solved concerning gazing.

Some proofs that have been performed by RUT are presented in an appendix. For the
purposes of comparison, the proofs are presented as they are performed both with, and

without, using gazing.

Declaration

I declare that this thesis has been composed by myself, and that the work described in it is

my own.

Dave Plummer
6th April 1987

Copyright © 1987 Dave Plummer

Funding for this research was provided by The Science and Engineering Research Council
of Great Britain from grant number GR/C/20826 and a studentship to the author, and by
grant number DCR-8313499 from The National Science Foundation of the United States.

Acknowledgements

I would like to thank the many people who have helped and encouraged me in the research

reported here, in particular:

e My supervisor, Alan Bundy, for his insightful comments and encouragement at
every stage in the progress of the work. I am pleased to have been one of the
many people influenced by his enthusiasm for the enterprise of building
automated mathematicians.

e My assistant supervisors: Jane Hesketh and Dave Schmidt.

e The members of the PRESS and DREAM projects in the Department of Artificial
Intelligence at the University of Edinburgh.

e Woody Bledsoe for his interest in this research, and for providing me with the
opportunity to continue this research at the University of Texas.

e The members of the ATP project at the University of Texas.

e Peter Mott, John Self and Kit Dodson at the University of Lancaster, who
between them are chiefly responsible for my interest in logic, Al and mathematics.

e The many people who read and commented on early drafts of this thesis: Ernie
Cohen, Jane Hesketh, Natarajan Shankar, Don Simon and Tie-Cheng Wang.

e Bernadette, to whom this work is dedicated, Mum and Dad, Lynda and G1ill, and
my many friends in Edinburgh and Austin, all of whom encouraged and helped,
often without realizing it.

The TOP and EMACS editors, SCRIBE and various implementations of the PROLOG

programming language were used in the course of the research.

Chapter 1

Natural Deduction and
Mechanical Theorem Proving

1.1. Introduction

This thesis is concerned with the possibility of designing computer programs that can carry
out logical reasoning. This enterprise is a subfield of Artificial Intelligence called automatic
theorem proving. The problem is tackled by first defining a logical system which is a set of
rules which may be used to make inferences, and then writing a computer program which can

execute these rules.

In this chapter I define two logical systems from the family of natural deduction. These
systems will form the basis of the automatic theorem provers that are discussed in the
remainder of the thesis. The two particular systems that are discussed are called N and

gsc.

Chapter 2 contains descriptions of two theorem provers developed at the University of
Texas by a research team led by Prof. W. W. Bledsoe. These theorem provers, PROVER and
IMPLY, are based on different formulations of natural deduction. The relationship between

the logics of the two programs and the systems of GSC and N0 is discussed in this chapter.

Chapter 3 contains a description of RUT, a theorem prover which 1 have developed by
modifying and extending the University of Texas provers. The logic of RUT is also a member

of the natural deduction family.

The University of Texas provers have a number of features which are related to the efficient
execution of the inference rules of the logical system. Because of the difficulty of the problem
of automatic theorem proving it is necessary to build the program so that it can determine
when a particular course of action is likely to lead to a proof. This notion is completely
extra-logical in the sense that there is nothing in the logic of the system which would enable a
prover, automatic or human, to make such a decision. The decision must be based on

features of the problem which are not available to the logic. In chapter 4 I describe gazing, a

technique which I have developed to enable RUT to decide when the application of an

inference rule is likely to lead to a proof of a given conjecture.

Chapter 5 contains a justification for using gazing in terms of the amount of search that
the system must carry out to allow gazing to provide guidance. The main result of this
chapter is that the use of gazing will cause a theorem prover to carry out less search than
might be carried out if the proof proceeded without the guidance provided by use of the

technique. Thus gazing is a useful technique for an automatic theorem prover to apply.

Work related to that reported in this thesis, and outstanding problems which remain to be

solved concerning gazing are presented in chapter 6.

Proofs that have been performed by RUT are presented in appendix B. For the purposes of
comparison, the proofs are presented as they are performed both using gazing, and without

the use of gazing.

1.1.1. Overview of This Chapter

This chapter prepares the ground for what follows, providing some necessary logical
preliminaries. No attempt is made to cover the material outlined here in depth as many
excellent books are readily available. These are referenced in the appropriate places in the

text.

Section 1.2 introduces two systems of proof: natural deduction (ND), and Gentzen sequent
calculus (GSC). These systems will form the basis of the automatic theorem provers that are

discussed in the remainder of the thesis.

In section 1.3 I will describe some techniques that have been developed in the study of

automatic theorem proving, but which are not part of the underlying logic.

In section 1.4 I discuss two systems of proof: the connection method and resolution, both of
which are commonly used in automatic theorem proving. The relative merits of these

systems as opposed to ND and §SC are discussed in section 1.5.

1.2. Logical Preliminaries

In this section I present the logical preliminaries required in the remainder of this thesis.
For a detailed discussion of the material of this section the reader is referred to [Chang & Lee

73, Tennant 78, Kleene 67].

The theorem provers which I shall consider all use the first-order predicate calculus to
express the conjectures that are to be proved. This is a formal language which allows the

expression of propositions unambiguously.
Definition 1: The alphabet of predicate calculus.
Expressions of the predicate calculus are constructed from the following
alphabet:
1. Quantifiers: 3, V.

2. Connectives: A, V, —, +, =.
3. Infinitely many predicates: PG, Pl’ A
4. Infinitely many functions: fo, fl' aVifa

5. Infinitely many variables: z

o *

1’

6. Punctuation: (),

While predicates, variables and functions, must formally be members of the sets specified
above, I will often use symbols from mathematics and elsewhere in these roles. These
symbols can be understood as representing some member of the appropriate set. The general
convention that I will follow is that any word beginning with an upper case letter stands for
a predicate. A word beginning with a lower case letter near the end of the alphabet stands
for a variable, and a word beginning with a lower case letter near the beginning of the
alphabet stands for a function. I will use lower case Greek letters to stand for arbitrary

expressions of the calculus, and upper case Greek letters to stand for sets of expressions.
Definition 2: Terms of the caleulus.
e A variable is a term,
e If ¢ is a function, and 7, ... 7 (n > 0) are terms, then B > v
is a term. ¢ is said to be an n-ary function.
e Nothing else is a term.
Definition 3: A constant is a O-ary function.
Definition 4: Atomic formulae

e If m is a predicate, and Ty e Ty (n > 0) are terms, then m(r,, ... ,rn)
is an atomic formula. = is said to be an n-ary predicate.

e | and T are atomic formula (false and true respectively).

e Nothing else is an atomic formula.
Definition 5: Well-Formed Formulae (wffs)

* An atomic formula is a well-formed formula,

e If @ and A are well-formed formulae, then so are:

1. (e A B), (meaning: a and B)

2. (a V B), (meaning: a or j)

3. (o — B), (meaning: o implies F)

4. (a « B), (meaning: « if and only if), and,
5. = a, (meaning: not a).

e If £ is a variable, and « a well-formed formula, then:

1. (3 €.a), (meaning: there is a £ which makes o true)

2. (V€.a), (meaning: all € make a true).

are also well-formed formulae.

e Nothing else is a well-formed formula.

The following definitions will be used in the remainder of this thesis:

Definition 8: The variable £ is said to be bound by the quantifier that precedes

1t.

Definition 7: Any variable that appears in a wif and is not bound by any

quantifier is said to be free in that wif.

Definition 8: A senience is a wif that contains no free variables.

Definition 9: The universal closure of a wif ¢ is the wif VE.VE, . .. ¢ where

each free variable of ¢ appears as £, for some 1.

The universal closure of any wff is a sentence by definition.

Definition 10: Any atomic formula is a literal, and the negation of any atomic

formula is also a literal.

In the remainder of this thesis only well-formed formulae will be considered.

explicitly stated, the word formula shall be read to mean well-formed formula.

The definitions above have described the way in which the class of well-formed formulae

can be constructed from the alphabet of the predicate calculus. In subsections 1.2.1 and 1.2.2

I will describe the proof systems ND and GSC respectively.

1.2.1. Natural Deduction (ND)

A proof system is a set of rules which indicate how to construct proofs of formulae within
the system. The rules of the system that I shall call ND are presented in figures 1-1 through

1-16. For a detailed discussion of these rules and their logical basis, see for example [Tennant
78].

Each rule has a number of hypothesis formulae, a conclusion formula, and an inference bar.
The conclusion appears below the inference bar and the hypotheses above. The rule asserts
that if the hypothesis formulae are known then the rule of inference may be applied and the
conclusion formula deduced. The inference bar may be labelled by the name of the inference
rule. For any connective or quantifier x, the rule y—/ causes x to be Introduced, and x—F

causes x to be Eliminated.

Large [jreek capital letters appear in some of the rules. These represent subproofs with the
formula which appears above the subproof as one of the hypotheses and the formula which
appears below the subproof as conclusion. The subproof may depend on other formulae

which are not shown in the inference rule.

Any formula may be assumed as a hypothesis at any point in the proof. This means that
the proof will depend on the assumed hypothesis, unless it can subsequently be shown that
the proof is independent of this assumption. This occurs by the use of inference rules which
allow hypotheses to be discharged. That a hypothesis has been discharged is indicated by
writing an inference bar above the formula. The resulting proof depends only on the
undischarged hypotheses of the proof. The inference bars which appear as a result of
discharging an assumption are labelled with small foman numerals. All hypotheses
discharged by the same application of an inference rule and the inference bar of the rule are

labelled by the same numeral.

Definition 11: af denotes the formula which is the same as a except that all
occurrences of 7 have been replaced by &.

=]
>
i+
R
>
=

=}
™

Figure 1-1: A-E

o B
a A fB
Figure 1-2: A-I

Q
<
@

aVp
Figure 1-3: V-I

- 0)

I

=< |

a V B

0]
X
Figure 1-4: V-E

Figure 1-5: —-E

a — x
Figure 1-6: —-I

a — f B — «

a — f

Figure 1-7: -]

10

a+— 8

a—f B —a

Figure 1-8: «—-E

4 i
Figure 1-9: —-E

—()

a

I

— (1)

-«
Figure 1-10: —-I

vV o

o

Figure 1-11: VY -E

o

V o

e)

Condition: 7 is a constant which does not appear in any assumption
used in deriving V £.a.
Figure 1-12: V -I

—
T

£

II

Jéa ;
X

(]

Condition: 7 does not appear in o, x
or any undischarged hypotheses of IT

Figure 1-13: 3-E

o

3 £al
Figure 1-14: 3-1

11

1

a
Figure 1-15: Absurdity Rule

aV ~«a
Figure 1-16: Law of Excluded Middle

Figures 1-15 and 1-16 show two rules which do not introduce or eliminate a connective.
For this reason they deserve special comment. The absurdity rule 1-15 indicates that if we
have as a hypothesis the atom |, then we may deduce any consequence that we like. This

may be read as saying that if we are able to prove | then the world is so crazy that we may

assume that anything is true.

The law of excluded middle given in figure 1-18 is not an inference rule, since it has no
hypotheses. The rule consists of a formula which follows from no hypotheses, that is, the
formula is always true. Such a formula is called an aziom. The meaning of the law of

excluded middle is that every formula is either true or false (any middle possibility is

excluded).

The rules of natural deduction presented in figures 1-1 to 1-16 describe the valid inferences
of the proof system. A proof in the system is constructed from these inferences by using the
conclusion of one inference as the hypothesis of another. The unique formula which is not
used as the hypothesis of some other inference is called the conclusion of the proof. The

undischarged hypotheses of the proof are the hypotheses.

As an example of the use of the ND system consider the goal of proving C from hypotheses
AVB, A—C and B— C. The hypothesis formulae may appear as undischarged
hypotheses of the proof. I begin by noting that one of the hypotheses is a disjunction, and
that the rule V—F (figure 1-4) is likely to be of use. Instantiating V—FE with the formula
AV B gives the partial proof of figure 1-17.

=

B
z
5

AV B

6
Figure 1-17: First Partial Proof of the Conjecture

The subproofs, IT and £, which use A and B as hypotheses respectively, must both prove
the same conclusion, and this will be the conclusion of the Vv—FE rule. Using ——FE with A
and A — C we can deduce C. Similarly with B and B — C we can also deduce C by the

same rule. These two applications of ——F complete the proof of figure 1-18.

12

RN
Wl

A—-C
AV B C C
C
Figure 1-18: Completed Proof of the Conjecture

B— C

Notice that the conclusion of the proof is C as desired, and the only undischarged

hypotheses are the hypotheses of the conjecture.

1.2.2. Gentzen Sequent Calculus (GSC)

The Gentzen sequent calculus (GSC) has basically the same rules of inference as ND.
However rather than being phrased in terms of formulae as the rules of ND are, the rules of

GSC are phrased in terms of sequents.

Definition 12: A sequent is written I" |— ©, where I' and © are sets of
formulae.

Definition 13: The symbol, |-, is called the turnstile.

I’ - O means that there is a proof of some formula in € from some subset of I. Clearly

there is a simple mapping between the proofs of XD and the sequent representation: If there is

an ND proof of g with undischarged hypotheses a, ... a , then we write
{a, ..., a,} F {B}. For a more detailed development of GSC the reader is referred to
[Kleene 67].

The rules of GSC are given in figures 1-19 through 1-34. Unlike the rules of ND, the rules
of GSC always introduce a connective or quantifier. There is one rule for introduction into a
formula of the hypothesis, and another for introduction into the conclusion. If a rule
introduces a connective or quantifier x into the hypothesis it is referred to as x—|—, and into

the conclusion as |——x.

13

A — £u{a) I 6u{s)
AUl — {aABJUZUB
Figure 1-19: }—A

{a,}UT I 6
faAB}UT - 6
Figure 1-20: A-|

AUfa} — I eu{p} — I
euAUu{avVvp} - TI
Figure 1-21: V-

A rufeB}
A TI'uf{avp}
Figure 1-22: |—v

AUu{a} = r'u{p}
A ruf{a—p}
Figure 1-23: |——

= eu{a} {Byur — e
{a = B8}ur - e
Figure 1-24: —-|—

Aufe} = {Bjur eu{p} + {ajull
AUB | rullu{a« g}
Figure 1-25: |—«

{a.8}UT" - © A+ Zu{aep}
rvdv{a« g} - 6u’r
Figure 1-26: +—-|—

14

AU{a} - ©
4 | 6u{-a}
Figure 1-27: |—-

A {a}ube

AU{-a} - 6
Figure 1-28: —~|—

I' = 6uU/{a}
'~ éu{véal)

Condition: 7 does not appear freein I |— 6U {V 5.05}
Figure 1-29: |-V

{aVéa}lUl I 6
{(V€a}url - 6
Figure 1-30: V-

I +— {a}ue
' — {3¢a}ue
Figure 1-31: |—-3

rufa} - 6
ru{3éa} ©

Condition: r does not appear free in I"'U {3 E‘af} - e
Figure 1-32: 3-—

Fuil} — &
Figure 1-33: Absurdity rule for GSC

I' - Zu{a,~a}
Figure 1-34: Law of Excluded Middle for GSC

ru{a} — AU {a}
Figure 1-35: Matching Rule for G5C

Figure 1-35 shows that when the same formula appears in both the hypothesis and

conclusion sets then the sequent is true.

15

The rules of GSC are more expressive than those of ND since all of the undischarged
hypotheses of the proof are represented in the set of formulae that appears to the left of the
turnstile symbol. The process of discharging assumptions is reduced to that of eliminating
the formula from the hypothesis set. The sequent representation also can represent the idea
that the conclusion of the proof is some member of the conclusion set of the sequent, while
ND proofs have a unique conclusion. In ND proofs the only formulae that appear in the proof
as hypotheses are those that are used in the proof. The sequent representation allows that
hypotheses that are never used may be members of the hypothesis set. Unused hypotheses

and unproved conclusions are unaffected by any application of an inference rule.

We shall see in this thesis that the more expressive representation of the goal to be proved
that is available in GSC is more useful to an automatic prover. This is because the automatic
prover cannot be sure which of the hypotheses of the proof are necessary in the proof, or
which of the possible conclusions may be proved. The ability to ‘‘carry’ hypotheses which
are not useful without incurring the penalty of having to attempt to use them, is a useful

facility.

In this section I have introduced the logical preliminaries required for the remainder of this
thesis. I have described the first-order predicate calculus, and two natural deduction systems

of proof which I call N0 and GSC.

In the remainder of this thesis I will use the more powerful sequent notation to describe
goals and theorems. It should be understood that this notation can be translated readily into

the notation of NUD if desirable.

1.3. Automating Natural Deduction

There are many implementations of mechanical theorem provers which use a natural
deduction proof system, see for example: (Bledsoe & Tyson 75a, Bledsoe & Tyson 78, Bledsoe
83, Nevins 74, Nevins 75a, Pastre 77, Reiter 76, Reiter 73, Cvetkovic & Pevac 83]. Most of
these represent the goals of the system as sequents and so bear more resemblance to a
G5C-based system than to ND. However there are some features of natural deduction systems
that do not lend themselves to automation. One of the advantages of the sequent
representation of the proof, is that the proof can be seen as a set of subproofs, and that
subproofs are ‘‘glued” together as inferences are made, this is in contrast to viewing the proof
as a series of steps from the hypotheses to the conclusion.

Definition 14: A sequent that the theorem prover is to prove is called the goal,

. . . i *
or sometimes conjecture, and is written: I' I © where I and 6 are sets of
formulae.

16

The superscript f indicates that it is not known whether the sequent is true or false.

When the hypothesis or conclusion of a sequent or goal is a singleton set I will simply write

the formula in place of the set. Thus the sequent {a} |~ {8} may be written a | A.

1.8.1. Forward and Backward Inference

One of the problems with the rules of ND and GSC is that they are too powerful. For
example consider V—|— (figure 1-21) which allows the deduction of o Vv 8, from the
hypothesis a. The problem with this rule is that there is no restriction on the formula that
can be used as the hypothesis. Giving this rule to a theorem prover would be disastrous: for
every formula that the theorem prover was given as a hypothesis, this rule would be
applicable. Moreover, the rule would be applicable in an infinite number of ways, as the
prover could invent a different 8 for each application of the rule. The prover might produce

the following proof when given the hypothesis a.

a - o a - o
aVa |- o a - o
fav(ieavae)l - o a o

{av(av(eva)} - o

Notice that nothing is gained by the application of the rule in this way since a V a is
logically equivalent to a. Clearly giving a theorem prover such a rule would be a bad idea.
However not giving the theorem prover this rule would also be a bad idea, since the prover
would then be unable to prove some theorems. Consider the goal: a I—? aV g 1Itis

necessary for the prover to use V—}— in this case to prove the goal.

One answer to the problem is to distinguish between two different types of inference:
forward and backward. Forward in ference is inference from one hypothesis to another, not
necessarily making reference to the desired conclusion. The application of V—|— above is an
example of this. Backward injference is inference from one conclusion to another. For
example, the step from the above goal to @ |— « is an example of V—}— applied backward.
In this step, the disjunctive conclusion has been replaced by one of its disjuncts. The
interpretation of this step is: ‘‘to show a V A it is sufficient to show a”. Since the completed
proof does not indicate the order or direction of deduction, this backward use of the rule is
indistinguishable from the inference from a to a v 3. The choice of application of this rule
is determined by the conclusion that we hope to reach. For this reason backward inference is
sometimes called goal-directed. Forward inference is correspondingly called data-driven,

since the deductions that are made depend only on the known hypotheses, or data.

17

Most theorem provers are able to use the introduction rules of ND exclusively in backward
inference mode, and the elimination rule exclusively forwards. Similarly the rules of GSC are
usually used backward. It is important to realize that while the rules are constrained to be
used in only one direction, the system has not lost any power. All theorems of NI and GSC
are provable with the directed rules. The constraint of using the rules in a prespecified
direction is merely control of the rules of the system. This control prevents many redundant

inferences from being carried out.

One of the effects of the split between forward and backward inference is that the proof
appears to proceed in a somewhat haphazard manner, as the inferences are made first
forward and then backward. The normal view of proof that is presented is as a gradual
working forward from the hypotheses until the desired conclusion is reached. The effect of
the mixture of forward and backward inference is that the proof appears as the construction
of many partial proofs, which are eventually to be ‘“glued” together somewhere in the middle.
This view of the theorem proving process is surely much nearer the truth. Written proofs,
like so much of mathematics, are rational reconstructions of the actual activity of

mathematics, and as such give little insight to the reader about how to actually do proofs.

In this subsection I have described forward and backward inference, and shown how the
automation of natural deduction requires that some of the inference rules be used in a
data-driven mode, and others in a goal-directed way. This leads to theorem provers which

appear to carry out proofs in a more haphazard way that we would have expected.

1.3.2. Completeness

We would like to design a theorem prover which could decide whether any conjecture is a
theorem or a non-theorem. Such a program would be a decision procedure. A result by
Church [Church 36] based on pioneering work by Godel [Godel 31| shows that no decision

procedures exist for first-order logic. A weaker notion is that of a complete prover.

Definition 15: An automatic theorem prover is said to be complete if every
theorem may, in principle, be proved by the program.

Complete provers exist for first-order logic.

Any prover which is guaranteed to terminate the search for a proof is not complete. This is
because, if the prover were complete it would find a proof of all theorems, and if it
terminated after a finite number of steps without finding a proof, the conjecture would be
shown to be a non-theorem. Thus, the prover would be a decision procedure tur theorems,

which we know to be impossible.

18

Completeness is a double-edged property. If we have a complete provef we can be sure that
if the conjecture is a theorem then we will be able to find a proof. This is clearly a desirable
state of affairs. However completeness inevitably leaves open the possibility of infinite proof
attempts on some non-theorems. Some authors prefer to have an incomplete prover which
will fail quickly on non-theorems, and succeed on many theorems, in preference to a complete
prover which may search infinite paths. The theorem provers which I shall discuss in this

thesis are not complete.

1.3.3. Skolemization and Unification

As a result of the mixture of forward and backward inference in the theorem prover, the
system does not have a complete proof until the whole theorem is proved. The system is, as
observed above, manipulating a number of partial proofs, in order to ‘“‘glue’” them together
into a complete proof of the goal. One of the problems that this approach causes is that the
restrictions on the quantifier rules, described in 1-32 and 1-29 above, cannot be checked. The
restrictions ensure that the objects that are introduced when quantifiers are eliminated or
introduced are arbitrary. But checking that the restrictions are met requires that the whole
proof above the application of the rule is available for inspection, and as we have observed,
this is not the case in general. One of the ways commonly adopted to avoid this problem is

the technique of Skolemization.

Skolemization

Skolemization replaces the quantifier rules by eliminating the quantifiers from the formula
before the proof begins. The idea is that the original conjecture, containing quantifiers, is
skolemized before the proof proceeds. All of the quantifiers are eliminated, and the bound
variables of the formula are replaced by new terms, which record in their structure the
dependencies between the quantifiers in the original formula. The result is a new formula,

which is provable under the same conditions as the original formula.

In order to describe the process of skolemization in detail, it is necessary to introduce the

notion of polarity.
Definition 18: The polarity of a formula is given by the following rules:

1. A formula in the hypothesis (conclusion) of a sequent has polarity - (+),

2. If a formula has polarity + (-) and is of the form:

o (@ A 3), then a and 3 have polarity + (-),
. (Cl' Vv ;3), then o and ,ﬁ' have pOIariLy + (_}’

e (@ — A), then a has polarity - (+) and 2 has polarity + (-),

19
® (- a), then a has polarity - (+),

e (a +=), then the polarities of o and 8 are undefined but opposite to
each other.

e (Vz.a), then o has polarity + (-), and V is called a positive (negative)
quantifier.

® (3z.a), then a has polarity + (-), and 3 is called a negative (positive)
quantifier.

Using these rules we can assign each subformula of a given formula a unique polarity,
providing that the formula contains no subformula involving the «— connective. The reason
that the polarity of biconditionals is undefined can be easily seen. Consider that a « 3 is
equivalent to (e — 8) A (8 — a). By the polarity rules the latter formula has both o and 3
appearing with both polarity + and -. The polarity of a and 8 in the original formula can

therefore not be determined.

Definition 17: The scope of a quantifier x in the formula y7.a, is the formula
o,

The process of skolemizing a formula has three steps.

1. Using the fact that a « f is equivalent to (o — 8) A (8 — a), replace all
occurrences of biconditional connectives with implication arrows.

2. Assign each subformula a polarity (this is now possible since the ++ symbols have
been eliminated).

3. Delete each quantifier and variable of quantification. If the variable is bound by
a positive quantifier then replace it throughout the formula by a new term
sf(fl, ..., €), where &f is a new function symbol (a skolem function), and the

§, are those variables of the whole formula which are bound by negative
quantifiers whose scope includes the quantifier just eliminated.

The technique of skolemization is well-known in the theorem proving literature. For a

more detailed discussion see [Bundy 83a, Chang & Lee 73].

Notice that the above rules cause some of the variables in the formula to be replaced by
skolem terms, and others to be left as variables. The distinction between the two types of
variable is made on the polarity of their quantifier in the formula. The variables that are
left in the formula represent objects that we know nothing about, but we might be able to
determine their identity in the course of the proof. If we do we speak of binding the variable
to a term. This is done in the unification process, which is described in the next subsection.
The skolem terms which are introduced by the skolemization process represent specific

objects, whose exact identity depends on the arguments to the term. If we are constructing a

20

skolem term, that depends on no variables, then we need a function of arity 0, which is just a
new constant. We will represent these new constants by the symbol sc subscripted to

distinguish distinct constants. Consider the 5ee1uen|'s (A) and (B).A

= Vz3yy < x (A)

= 3yVz.y < z (B)

The formula (A) asserts that for any number z, there is another number y that is smaller
than z. This is true in real arithmetic. Notice that y depends on z, that is the choice of y
must be made after the choice of z. (B), on the other hand, asserts that there is a number y
that is smaller than every z, which is false. The skolemized forms of (A) and (B) are the

formulae (C) and (D) respectively.
= y < sc, (©)

= v < sfly) (D)

Notice how (C) clearly shows that we are asked to find a y which is less than a given z by

replacing z by a constant: sc, and leaving y as a variable. In the formula (D) the variable =

0’
has been replaced by a skolem function of y, indicating that the choice of this quantity has to

depend on the choice of y.

The point of eliminating the quantifiers by skolemizing the formula is that the quantifier
elimination rules, and the problems that the conditions on their use pose can then be
discarded. These rules disappear from the logical system, in favour of the skolemization rule.
It is known that this substitution leaves the consistency of the logical system unchanged.
That is, if 7is any theorem of ND then the skolemized form of ris a theorem of NP without

the quantifier rules.

Unification

One further problem with manipulating partial proofs, is the eventual “gluing’ together of
the partial proofs. The idea is that once the conclusion of the sequent has been manipulated
into a particular form, and the hypothesis has been made into the same form, then the proof
is complete. This manifests itself in the ND system as a partial proof of the conclusion from
an intermediate set of hypotheses, and another partial proof, of this intermediate set of
hypotheses from the original hypotheses of the theorem. This situation would be quite hard

to detect. In §SC the completion of the proof is signalled by the appearance of the same

l'Formally speaking these formulae are not well-formed. Two common abuses of notation have been perpetrated:
first the predicate <, is written between its arguments. This is very common practice when dealing with binary
predicates and functions. Consider, for example, =, € ,1U, and N. Second, we have used the symbol < to stand
for some P'. from the formal language. We will allow lurther such abuses of notation to pass without comment.

21

formula in the hypothesis set and in the conclusion set. This is much easier to detect, and is

usually performed by a process called uni fication.

Unification matches one formula with another. It is not necessary that the formulae be
identical, merely that they can be made identical by the replacement of some variables in the
formulae, with some terms, so that the result of making this substitution throughout each

formula is the same. Consider the example below:

Az) A Q(a)
AHb) A Q(y)

These two formulae will unify (match) since if £ were replaced by b, and y by a throughout

the two formulae, then the result would be the same formula in each case.
Az) A (Q(a) V R(z,2))
Ab) A (Qy) V R(b,w))

The formulae above also unify. Again it is necessary to replace z by b and y by a, also it is
necessary to replace z by w or vice versa. The replacement can be made either way round,
since both w and 2 are variables. In fact another way of making the formulae the same
would be to replace both w and 2 by any term we like (the same term in both cases), but this
would be redundant. We seek to make the formulae identical, but do not wish to make more
assumptions about the appropriate substitution for variables than is necessary. This is
because, for example, w might appear in other formulae elsewhere in the proof, and when we
attempt to match the other formula we might require w to be matched to a. If we had left it
as a variable, then this would be possible. If we had unnecessarily replaced w by b, then the

match would no longer be possible.

The formulae below cannot be unified since to match the literals in predicate P, z must be

bound to b, but to match the R literals £ must be bound to a.

Az) A (Q(a) V R(z,2))
Apb) A (Qy) v R(a,w))

Unification is a process which matches two formulae. The formulae unify if the variables in
the formulae can be substituted for terms such that the two formulae become identical. This
substitution is called binding the variables. A substitution is therefore a set of pairs written
a/f, where 3 is a variable and « is the term which is substituted for it. Since each variable
may be substituted by only one value, we seek to finding a matching substitution, called a

uni fier, which binds only those variables that must be bound to make the proof go through.

22

Such a unifier is called a most general uni fier. The unification routine guarantees that there

will be such a (most general) unifier for two formulae that are unifiable.

Definition 18: af denotes the application of substitution ¢ to formula a. af is
the formula a except that the variables in a are simultaneously replaced by the
term to which they are bound in the substitution.

So, if 8 is the substitution, {ﬁ/‘fl’fg/‘fg' ..y 7,/€,}, then af is a;;::'?;

Example: If 8 is the substitution: {a/z,b/y,w/z} and o the formula: Az,y,w,z), then af is

the formula: Ha,b,w,w).

The details of the unification routine are presented below.

Definition 19: A disagreement pair for two formulae is a pair of
subexpressions of the formulae which occur in the same position in the formulae
and are different.

Example: <b,x> and <z,y> are the disagreement pairs of formulae Hz,a,y) and

Ab,a,z).

To unify two formulae o and B given a substitution 6.

1. Find a disagreement pair <7, 7,> of a and B. If no such pair exists then the
formulae unify with unifier 6.

2.If 7, is a variable which does not occur in 7, then unify a{r,/r} with 8{r,/r}
given the substitution 6 U {r,/,}.

3.1f 7, is a variable which does not occur in 7, then unify a{r /7,} with 3{r /7,}
given the substitution 6 U {r,/7,}.

4, Otherwise fail.

The restriction that a variable and term do not unify if the variable occurs within the term
is called the oceurs-check, and has the same effect as the conditions on the quantifier rules.
This, coupled with the fact that skolem functions contain the variables on which they depend,
ensures that these conditions cannot be violated. The technique of unification is standard,
and is discussed in the theorem-proving literature. Refer to [Bundy 83a, Robinson 65, Chang

& Lee 73] for details.

23

1.8.4. Rewriting

When proving theorems, it is often convenient to abbreviate complex formulae by simpler

ones. This is achieved by stating a definition.

Definition 20: A definition is an equivalence in which one side is an atomic
formula. The atomic formula must contain a new predicate or function symbol
which is the defined term , while the other side of the equivalence may contain
only terms already introduced.

For example, (1) allows the theorem prover to abbreviate the quantified implication by a
simple literal involving the predicate C. The meaning of the complex formula, is that z is a
subset of y, and since the definition is an equivalence the simpler formula has the same

meaning.

zCye—Vz(z€Exz—2€Yy) (1)

Conjectures involving these defined terms can be stated and proved. Sometimes the proof
of the conjecture will depend on the definition of the term, but other conjectures can be
proved without reference to these. For example, the conjecture (E) can be proved without
reference to some property of the predicate C whereas (F) cannot. Notice that it may be

possible to reference some fact about the symbol C, not necessarily the definition, to prove

(F).
{¢Ca,aCb} - aCh (E)

{aCbbCc} H aCe (M

Equally useful is the ability to use previously proved theorems as additional hypotheses for
a proof. For example, suppose that /T |— o has been proved, and that the prover has been
given the conjecture [7 i——? a A 8. Clearly all the prover should have to do is show,
7 I—T 3, and the proof would be complete.

Definition 21: Facts that have already been proved and that are useful in the
proof of other conjectures are called lemmas.

The usefulness of a given definition or lemma in the proof of a particular conjecture is not
always easy to spot. One approach to proving theorems would be to conjoin all of the
definitions and lemmas to the hypotheses of the conjecture, and to prove this new conjecture.
To do this explicitly would allow the theorem prover to make many inferences, most of which

would be redundant.

The replacement of formulae by their definitions is justified by a special case of ——}—. We

consider the database to be a set of implications of the form o — 3. These implications are

24

all hypotheses of the theorem, and so ——}— may be used backward at a_ny time. When a
formula which matches a occurs in I, the left subproof suggested by the rule: I’ - 6U {a}
is trivially solved (since a appears in both hypothesis and conclusion). In the right subgoal,

we may introduce 3 as a new hypothesis.
{a,a =8} — 1
{o,8,0 =B} 1T

We will regard the inference of figure 1-36 as an abbreviation of a proof of the form dbove.
The inference bar will be labelled =, indicating the application of the rewriting rule of

inference, and the implication that is used will be left implicit.
{o} — 1T

{B,a} 11
Figure 1-88: The Abbreviated Representation of a Rewriting Step

Formulae that are used to rewrite other formulae are called rewrite rules, There are three
types of rewrite rules corresponding to implications, equivalences and equalities. An equality
is a literal with predicate = of arity 2. This distinguished predicate has special properties,
which are discussed in chapter 2. In particular, if two terms are equal, then any property of
one is true of the other, and thus whenever one occurs it could be replaced by the other
without altering the truth of the formula. This is the basis for using equalities as rewriting

steps. Rewrite rules derived from these three types of formulae are written:

lL.a=7
2.ae 8

J.r==o0o

respectively. Definitions must be equivalences or equalities and so give rise to rewrite rules
of types 2 and 3. Any other formula can be used to rewrite formulae and may give rise to

any of the three types of rule.

Here are examples of rewrite rules which are taken from the theory of sets.

tCyaVz(zez—z€y) (1)
rCyAyCz=zC: (%)
reEP= | (27)
tN(ynz) == (zNy)Nz (iv)

It is usual to orient rewrite rules which arise from equivalences or equalities in one
direction, since enabling the prover to use the rule in both directions could lead to the prover

cycling, first rewriting P to @ and then back to P.

25

Definition 22: [is called the input si_dc of a rewrite rule / = O.

Definition 23: O is called the output side of a rewrite rule / = O.

If a rewrite rule introduces a formula which contains quantifiers, as (i) does, then the
introduced formula must be skolemized before replacing the original formula. This avoids
the possible introduction of quantifiers into the proof, despite their elimination by
skolemization before the proof started. The skolemization must occur as if the definition had
been present as an additional hypothesis in the statement of the conjecture. As an
implementation detail, the rewrite rule is usually stored skolemized both as a hypothesis and

conclusion, and then the appropriate form could be used when performing the rewriting step.

1.4. Alternative Logical Systems

In this section I briefly present two logical systems commonly used in automatic theorem
proving: resolution [Robinson 65| and the connection method [Bibel 81a, Bibel 82a]. These
systems are more commonly used in mechanical theorem proving than ND or GSC based
systems as they are more efficient for a machine to use. This is simultaneously a strength

and weakness, as | shall describe in the next section.

1.4.1. Resolution

The most common logical system used in mechanical theorem proving is resolution
[Robinson 65]. This system has a single inference rule, which is shown, in ND notation in
figure 1-37.

“Vﬁlvﬁzv“'vﬂn SV =X,V X,V ... VX
(a Vv 8)0

m

Where 8 is the most general unifier of all the
,8‘. and X;
Figure 1-37: The Resolution Rule

Resolution based systems are refutation systems. That is, when given a conjecture to
prove, the conjecture is negated and then | is deduced. The resolution rule is sufficient to
refute the negation of all theorems provided that the theorem is first transformed by a
number of standard rewriting steps. Rewriting a formula into the required form involves
eliminating some of the connectives, and reorganizing the remaining connectives into a

standard configuration called clausal-form. Initially the formula is negated.

The elimination of connectives can be performed in two steps:

1. First the + connective is eliminated by means of the rewrite rule
a+— f&(a—B)A(B— a)

26

2. At this point the formula is skolemized to eliminate quantifiers.

3. The — connective is then eliminated by means of the rewrite rule
a— A& -~aVP

The remaining connectives: A, V, and — must be reorganized using the following rules.

1. The negation symbols must be distributed so that they dominate only atomic
formulae. This may be achieved by repeated use of the rewrite rules:

e " a& o
e-(aAf)& ~aVv B
e-(avp)& ~aA-f

2. The conjunction symbols must be distributed so that no disjunction dominates
them. This is achieved by repeated use of the following rewrite rules:

eaV(BAO & (aV B AlaVi)

e(faAB)VES(aVEABVE

Finally, the formula is split into clauses each clause containing only the disjunction of some

literals.

To provide a proof, the system searches through the clauses until it finds a pair of clauses
which can serve as the hypotheses of the resolution rule, that is any two clauses which
contain atoms which unify and the atom appears negated in exactly one of the clauses. The
derived clause is added to the set of clauses, and the process repeated until the clause which
contains no literals (the empty clause) is produced. The empty clause is significant as it
represents the atomic formula | which is always false. Any clause is a disjunction of some
number of literals, and so the literal | can be added to any clause without altering its truth
value. The clause which just contains | is false, and therefore the empty clause must also be

false.

The resolution rule has been augmented in many ways. These augmentations may be

categorized into two classes: strategies and extenstons.

e Strategies limit the clauses that may be considered for resolution, for example:
Linear Input resolution is a resolution strategy in which the clause which has just
been derived is used as one of the parents of the next resolution, and the other
parent must be a clause from the statement of the conjecture (rather than a
derived clause).

o Extensions, allow many inference steps to be collapsed into a single step, or
additional inferences to be made. A simple extension allows many atoms to be
matched at a single step, thus carrying out many applications of the simple
inference rule at once. Another example is paramodulation, which allows the

27

resolution rule to treat equality literals specially, and allow the substitution of
identities.

1.4.2. The Connection Method

In this section I describe the connection, or matrix, method for performing proofs. This
method is due to Bibel [Bibel 8l1a, Bibel 82b, Bibel 81b, Bibel 80, Bibel 82a), and
independently to Andrews [Andrews 81, Andrews 80|. These references should be consulted

for a detailed description and treatment of the material presented here.

In the connection method the formula is viewed as a matrix, with the literals of the formula
as the entries of the matrix. The position of each literal in the matrix is determined by the
connective structure of the formula. Conjunction is represented by the rows of the matrix
(two conjuncts appear in different rows of the matrix), and disjunction is represented by the
columns of the matrix. The identities which allow the expression of other connectives in
terms of these are used to determine the position of the remaining literals. It is important to
note that the formula is not put into normal form in order to produce the matrix., the
positions of the literals in the matrix are merely determined by imagining that the formula

was in normal form.

Man(socrates) A V z. (Man(z) — Mortal(z)) — Mortal(socrates) (2)

The formula (2) is shown in matrix form in figure 1-38.
Man(z)
- Man(socrates) Mortal(Socrates)
- Mortal(z)

Figure 1-38: Matrix form of (2)

As for resolution we negate the conjecture and attempt to show that no assignment of truth
or falsehood to the literals of the formula is consistent. For a conjunction we must show that
for each conjunct the formula is consistent, and the assignment must contain some
contribution from each disjunct. Thus we have to show that each path through the matrix of
the formula contains a contradiction, where a path is a selection of literals, one from each
column of the matrix, and a contradiction is a pair of literals of opposite polarity whose
atoms unify. Such a pair is called a connection. The two connections in the matrix 1-38 are

shown in 1-39.

*
Indeed, the matrix need not be created at all. The literals of the formula may be labelled with their position in
the matrix, without actually creating the structure.

28

Man(z) —

1
- Man(socrates) Mortal(Socrates)

- Mortal(z) !

Figure 1-39: Matrix form of (2) showing connections

Since any path through the matrix must contain one of these connections, the original

formula is a theorem.

The connection method has a number of advantages over resolution and natural deduction
systems. In particular, the connection method requires no normal forming of the conjecture
to be proved, and subgoals to be proved are not explicitly derived. The search for the paths
can be performed by reference only to the original formula. This leads to a considerable

saving of space in the implementation.

One of the perceived disadvantages of the connection method is that proofs are not
produced in a manner that is obvious to humans. In [Bibel 81b], Bibel points out that there
is a simple correspondence between the connection method and natural deduction proofs.
Thus, completed proofs may be described in terms of natural deduction inference rules,

despite the fact that they are not carried out according to those rules.

1.4.3. Summary

In this section I have described two logical systems for performing proofs mechanically.
The resolution method, which is the most common proof method, requires extensive normal
forming before the proof may be attempted. The connection method requires no such normal

forming and is very efficient in the representation of formulae and search for proofs.

1.5. Why Natural deduction?

The question of why natural deduction should be used as the logic for a theorem prover is
an important one, and will be addressed in this section. For an excellent discussion of

non-resolution theorem proving techniques see [Bledsoe 77a).

The reasoning of the prover is easy for the human user to follow. This makes natural
deduction the obvious choice for the implementation of interactive theorem proving systems.
In such systems the prover may accept advice from the user regarding how the proof should
progress. The logic of such systems must be completely comprehensible to users since they
have to be able to interpret the output of the prover before giving advice. If the prover’s

reasoning bears a strong resemblance to the user’s then this interaction will be facilitated.

29

The prover is able to do what the human can. If the theorem prover reasons in a very
similar manner to the humans than a designer of the system can easily improve the system.
Consider the situation where the human would take a particular step that the prover
resolutely refuses to make. This may arise for two reasons: either the prover does not have
the capability to make the step, i.e., the inference rule is missing, or the prover is using some
other inference rule instead. In either case the comparison between human and machine
reasoning facilitates the examination of the program’s abilities, and suggests appropriate

fixes.

Heuristice are very easily spectified within a natural deduction framework. As an
extension of the remarks in the previous paragraph, the heuristics that the human adopts in
the search for a proof can also be more easily programmed into a natural deduction engine.
This is because humans are likely to formulate these heuristics in terms of the inferences that
they would make. Since these inferences bear a strong resemblance to those made by the

prover, the translation of the heuristic into the vocabulary of the prover is facilitated.

Natural deduction also has some disadvantages as the logic for an automatic theorem
prover. The worst of these is its inefficiency compared to the machine-oriented proof systems
of resolution and the connection method. This inefficiency arises from the fact that natural
deduction is connective-based rather than connection-based. A particular rule of natural
deduction is appropriate for any formula with the required major connective. No reference is
made to the desired goal, namely to introduce unifiable formulae into hypothesis and
conclusion. In the resolution and connection methods, these unifiable pairs of formulae are
sought first, and then the appropriate decomposition of the formula is found. This avoids
the redundant decomposition of formulae which occurs in the sequent based systems. For a

more detailed discussion of this question see [Wallen 86].

The connection method is more efficient than resolution since the connection method only
considers the original formula whereas the resolution rule derives new clauses which become
candidates for further resolution steps. Unguided resolution quickly becomes swamped with
clauses and the resulting combinatorics quickly defeat a mechanical prover. Sequent based
systems also require the explicit representation of subgoals, and are also prone to this

problem.

In this section I have outlined three reasons for considering natural deduction as a good
logic for building mechanical theorem provers. These hinge on the observation that for
human users to successfully interact with a prover, the prover should reason in a way that is
similar to that of the human. The interaction between man and machine may be at many

levels: the expression of hints to the prover as to how to perform a particular proof, the

30

comparison of machine proofs and human proofs to identify different proof paths, or the

expression of heuristics for carrying out certain types of inference.

Some drawbacks of sequent and natural deduction based systems have also been pointed
out. In particular they, like resolution, are inefficient in that they require the explicit
representation of subgoals. Unlike resolution, there is additionally a choice of inference rules
within a sequent based system, and the overhead of deciding which of these rules to use does

not occur in connection method or resolution systems.

1.6. Summary

In this chapter I have introduced the first-order predicate calculus, and the natural
deduction proof systems ND and GSC. These systems will form the logical basis for the

automatic theorem proving systems which will be described in the following chapter.

I also described some techniques that have been devised in order to facilitate the
automation of natural deduction theorem provers. In particular the techniques of
skolemization and unification, which enable provers to avoid the restrictions on quantifier
rules, and rewriting were described. These techniques are all in general use and are quite
powerful. The dual notions of forward- and backward-inference were introduced. Most rules
of ND are used by automated provers exclusively in one direction in order to control the
possible choices that could be made. This has the effect of ensuring that when an inference

rule is applied to a goal the resulting subgoals are simpler, in some sense, than the original.

Finally I presented two alternative inference rules for automatically proving theorems,
resolution and the connection method. These are more efficient for automatic provers, but
are thought less natural for a human to follow. Some reasons why a natural proof system is

desirable were also presented in section 1.5.

In chapters 2 and 3 I will describe some theorem proving programs which implement proof

systems from the natural deduction family.

31

Chapter 2
The UT Provers

2.1. Overview

In this chapter I will describe two programs developed at the University of Texas, which
implement natural deduction theorem provers. I will indicate the features of the systems and
the philosophy underlying their design. Where these provers use techniques which are not
part of natural deduction I will describe the techniques and give reasons for their use. The
aim of this chapter is to enable an assessment of the extent to which the programs are

implementations of natural deduction as described in chapter 1.

In section 2.2 I describe the background to the programs and the philosophy behind their
design. Sections 2.3 and 2.4 describe the two programs. Each of these sections is divided
into two parts. The first part of each section describes the rules which have a direct
correspondence to the rules of the logical systems described in chapter 1. In the second part
of each of these sections I describe the extra features of the systems that have been added to

provide control of the search for proofs.

In section 2.5 I compare the provers with the logical systems described in chapter 1.

2.2. The UT Provers

While the titles of [Bledsoe & Tyson 75a, Bledsoe 83] appear to refer to the same program,
“the” UT prover is in fact (at least) two programs. In this section I describe these two
natural deduction theorem provers. Details of certain aspects of the programs may be
found in [Bledsoe & Tyson 75b, Bledsoe et al 79, Bledsoe 77b, Bledsoe & Tyson 78]. The
prover described in [Bledsoe & Tyson 78| is almost identical to that described in [Bledsoe &
Tyson 75al.

These provers are by no means the only natural deduction provers: [Brown 78, Nevins

74, Pastre 77, Reiter 76, Cvetkovic & Pevac 83| contain descriptions of some others.

Definition 24: I shall refer to the prover described in [Bledsoe & Tyson 75a| as
PROVER.

32

Definition 25: I shall call the prover described in [Bledsoe 83] as IMPLY.

The research project which produced PROVER and IMPLY has been in progress for some time,
and is still continuing. Many interesting and significant techniques have been discovered
during the course of this work. The constraints of automation and the devising of new
techniques for reasoning mean that the programs have rules which are derived from those of
ND, rather than the rules of ND itself. My intent in this chapter is to provide a description of
the provers and an assessment of the relationship between the provers and the natural

deduction system of chapter 1.

The guiding principle of the UT provers is that the proof should proceed in a way that is
natural to the human mathematician. In order to achieve this, the provers implement a logic
which is alleged to perform proofs in a more natural way than a system based on resolution,

[Robinson 65], or the connection method [Bibel 82a] which were described in chapter 1
(section 1.4.3). PROVER is an interactive system, meaning that the human user may interact
with the prover to suggest possible courses of action or to perform inferences on the provers
behalf. Clearly for such a system to be workable, the proof attempt carried out by PROVER
must be intelligible to the user, and this is the motivation for the choice of ND as the

underlying logic.

Both programs have a number of rules which may be used when given a goal to prove.
Which particular rule is used depends on the form of the goal. The effect of each rule is
either to complete a branch of the proof or to create subgoals which are in some way simpler
than the original goal. The proofs of the subgoals combined appropriately with the inference
rule that has been used constitute a proof of the main goal. These rules are examined in turn
by the prover until one is found which applies to the given goal. The knowledge that the
prover has of how to prove theorems is therefore in two forms: the inference rules that the

prover has, and the order in which the rules are examined.

The rules may be divided into 3 classes:

1. Logical. These rules correspond in some way to the rules of ND, for example,
——FE.

2. Database. These rules allow the prover to deal with defined terms, and
previously proved facts. An example of such a rule is expanding the definition of a
predicate by use of its defining formula.

3. Special Purpose. These rules allow more complicated inferences to take place.

For example, one of these rules can detect contradictions in assertions about the
values of numerical variables.

The logical rules correspond most directly to the rules of ND. However the prover is

33

restricted to either forward or backward reasoning for each rule. Some augmentation of the
rules has also been allowed, resulting in a more powerful prover than would otherwise have
been possible. This augmentation can be justified by presenting a proof of each of the prover

rules, in terms of the basic ND rules. In this sense the prover rules are derived from those of

ND.

The database rules are those which access the databases of lemmas and definitions described
in section 1.3.4. The prover has many rules which correspond to an application of the
rewriting inference rule. This is because the prover distinguishes different classes of rewrite
rules - in particular predicate definitions, lemmas, and function definitions are all used as
rewrite rules by different rules of the prover. The classification of rewrite rules in this way
enables the prover to limit the use of some rewrite rules while allowing others to be used

more frequently.

In [Stickel 85] the notion of theory is defined as any satisfiable set of formulae that we
want to incorporate into the inference process. The theory that PROVER is working in is
formed by the database of rewrite rules. If this database were empty then the theorem
prover would only be able to prove theorems in first-order logic. It is the contents of the
database, and the intended interpretation of the concepts that are defined which allow us to

interpret the proofs that the provers carry out as meaningful.

The special purpose inference rules implement methods for dealing with commonly
occurring features of the theories that the provers were designed to perform proofs in. While
the database rules simply replace one formula by another, the special purpose rules allow the
provers to carry out more complex inferences, which would involve many applications of the

definitions and axioms of the theory.

Both PROVER and IMPLY are implemented in the programming language LISP. The
inference rules are LISP functions which take the sequent to be proved as an argument, and
return the value of the substitution that is necessary to make the proof go through. The
value T is returned if the proof is propositionally true: no substitution of values for variables
being necessary. NIL is returned if a proof cannot be found. The rules are
Condition/Action/Result triples. These say that if the conditions are true, then perform the
action (typically evaluate some function), and then return the specified result. 1 have given
each rule a name, and when referring to a rule this name will appear in bold type. Some of
these rules were named by Bledsoe in [Bledsoe & Tyson 75a, Bledsoe 83]; I have provided

names here for the remainder.

The next two sections of this chapter deal separately with the rules of each of the provers.

34

Each section is itself divided into two, one dealing with the logical rules and the other ;vith

the database and special-purpose rules.

2.3. PROVER

In this section I shall describe the rules of PROVER, the program described in [Bledsoe &
Tyson 75a). This section is divided into two parts: in 2.3.1 I will describe the rules of logic
that PROVER is able to apply, moving on to the database and special-purpose rules in 2.3.2.
PROVER is divided into two subroutines, called .’mp!y' and Hoa. I will briefly describe the

rules of each subroutine.

Definition 26: A call to the routine Hoa, with hypothesis H and conclusion C
will be written H |} C.

Definition 27: A call to the routine Imply, with hypothesis H and conclusion C
will be written H || C.

Definition 28: Most of the rules of both PROVER and IMPLY have a condition on
the form of one of the formulae of the conjecture. I will represent such conditions
by ¢ = € indicating that the formula ¢ is of the same form as e.

Definition 29: When two subgoals that are given to the prover succeed, each
has as its result the substitution necessary to make the proof go through. The
notation # oo, means the composition of the two substitutions # and o. The
problem of composing two substitutions is discussed in section 2f/,1 on page 60.

Definition 30: Calls to other routines used by the prover will be represented by
the notation R[al, - ,an), where R is the name of the routine, and the a, are

the arguments. These supporting routines are described in the text.

Definition 31: The notation V:= E, means that the program variable V is set
to the value of the expression F.

Hoa stands for Hypothesis Or And. Hoa’s function is to search through the conjuncts of the
hypothesis formula until it finds one which can be used by one of the rules of the system.
The rule is applied to this conjunct, and the recursive call - if any - is made with the original
conjunction. Thus Hoa searches through the hypothesis formula for a useful conjunct, and
then returns a new goal to Imply. Imply simply attempts the proof of the conclusion from
the current hypothesis. All but one of Imply’s rules consider the form of the conclusion and

suggest new subgoals on the basis of this information.

The search for a proof begins by skolemizing the formula to be proved, and then passing

the skolemized goal to Imply. Each rule has three parts: condition, action and result. The

*

The potential for confusion is great here. I will distinguish the subroutine of PROVER from the later version of
the program, by always writing the latter in capital letters. Thus, Imply is a subroutine of PROVER, while IMPLY is
a complete program.

35

prover considers each rule in turn, examining the conditions and actions of the rule. Actions
are simply carried out, they generally construct new formulae for the prover to consider, and
carry out subproofs. Conditions are tests that have to be true before the prover may use the
rule. If any condition is not true of the current conjecture, then the rule is not used and the
next in the sequence is examined. When all of the actions have been completed, and all
conditions have been found to be true, the value specified in the result part of the rule is

returned.

The rules of Imply are given in figures 2-1 and 2-2. The conjecture to be proved is assumed

to have the hypothesis H, and conclusion C.

The rules of the logic of all of the provers discussed within this thesis are presented in
tabular form. These tables present the inference rules in an algorithmic manner, and so the
order, as well as the layout of the rules is significant. Consider, for example, rule 4 (And

Split) from figure 2-1. This rule should be read as:

1. (First line) If the conclusion of the goal is a conjunction of formulae A and B,
then set # to be the value returned by the proof of A from the current hypotheses,
H, using the rules of Imply.

2. (Second line) If # has the value NIL then return the value NIL for this goal.

3. (Third Line) If, on the other hand, # has a non-NIL value, then set X\ to be the
value returned by the proof of B from the current hypotheses, H, using the rules
of Imply.

4, (Fourth Line) If the value of X is NIL then return the value NIL for this goal.

5. (Fifth line) Otherwise, X\ has a non-NIL value, so return the composition of the
values # and X as the result of this proof.

RuleName

1. (Truth)

2. (Typelist)

3. (Cases)

4. (And split)

5. (Reduce)

6. (Or fork)

-~

. (Promote)

a0

. (Prove Equiv)

@

(=0

10. (Flip C)

11. (Inequality)

Figure 2-1:

36

H | C
Condition Action Result
H= | T
C=T T

Typelist (see page 48)

H=(AvV B) NewC:=(A — C)A (B— Q)
T) NewC
C=(AAB) 0:=H - A
§ — NIL NIL
6% NIL N=H | B
A= NIL NIL
A # NIL Aof

NewH := Reduce(H)
NewC := Reduce(C)

NewH 5 H or NewC 5 C NewH | NewC
C=(AVB) H) ©
C=(A—-B) InterimH := Forward-Chain(H,A)

NewC := Andout(B)
NewH := Orout(InterimH A A)

NewH . NewC

C=(A«~B) NewC:=(A — B) A (B — A)

H ! NewC
C=(A=B) 6 := Uni fy(A,B)
85 NIL 9
=-A HAA - L
C=(A<DB Type := Set-Type(— (A < B))
Type has contradiction T
otherwise, H i—; C

The rules of Imply - a subroutine of PROVER - Part 1

RuleName Condition
12, (Call Hoa)

8 7% NIL

6 = NIL

A NIL
13. (Define C)

NewC 5 C
14. (Eq InEq) C=(a=b)

C=(a5b)

15. (Imply Fail)

Figure 2-2:

37

H |

!
Action Result
0:=H |, C
(]
Set Flag,
Ne=H || C
A

NewC := De fine(C)

H ! NewC
NewC:=a<bAb<a

H |} NewC
NewC:=a < bvb < a

H ! NewC

NIL

The rules of Imply - a subroutine of PROVER - Part 2

Hoa is called from Imply by rules 6, 11 and 12. The tables 2-3 and 2-4 give the rules of this

routine.

The call to Hoa is made with the hypothesis called B and the conclusion C. The

call to Imply which resulted in Hoa being called had hypothesis, H.

38

!
B | C
RuleName Condition Action Result
1. (Time) Time Limit Exceeded NIL
2a. (Match) 8 := Uni fy(B,C)
65 NIL 8
2b. (Peek) Flag is set NewH := Peek(H,C)
NewH % H NewH I—E C
3. (Pairs) Flag is set
H=HAr, ...,r), and,
CEF{o’l, ceey0,)
NewC := Pairs(P)
NewC 5£ C T ! NewC
4. (Or Split) C=AvVD NewC := AndOut(C)
NewC 5 C H |} NewC
NewC=C 0:=BA-D A
£ NIL J
6= NIL BA-A ! D
5. (Call Imply) C=A—-D, or,
C=AAD B ¢
6. (And Fork) B=AAD 0:=A) C
854 NIL 9
6= NIL D\ C
7. (Back Chain) B=(A— D) 6 := Ands(D,C)
6 5% NIL Ni=H |-, Af
A # NIL foX
7E. (Back Chain =) B=(A—z=y)
f:=z=y I—:l C
8 = NIL NIL
6 % NIL N=H | Af
A 5% NIL foX
8. (Equiv H) B= (A« D) NewH := (A — D) A (D — A)

NewH |-—~:: C

Figure 2-3: The Rules of Hoa - Part 1

39

B C

RuleName Condition Action Result
9. (Sub =) B=z=y v:= Minus-On(z,y)

v=20 NIL

v is a number T

v is not a number z':= Choose(z,y)

Y :=Other(zy) HY, ! ¥,

10. (Hoa Cases) B = (A Vv D) B ! C
11. (Flip H) B=-A NewC:=AvVC H |, NewC
12. (Hoa Fail) NIL

Figure 2-4: The Rules of Hoa - Part 2

2.3.1. The Logical Rules of PROVER

In this section I discuss the logical rules of PROVER. Each rule suggests 0, 1 or 2 new
subgoals of the original goal which are to be proved. If there are no new subgoals, then the
proof of the goal is complete. If on the other hand there are subgoals to be proved then
completing the proofs of these subgoals will complete the proof of the main goal. When there
are two suggested subgoals one of two situations arise, either both subgoals must be proved,

or a proof of one of the subgoals will be sufficient.

PROVER completes a proof by applying one of the rules: Match (figure 2-3, Hoa rule 2),
Truth (figure 2-1, Imply rule 1), Sub = (figure 2-4, Hoa rule 9), = C (figure 2-1, Imply
rule 9) or Inequality (figure 2-1, Imply rule 11).

Match is used if the conclusion and hypothesis of the goal will unify. The result that is
returned is the most general unifier of the two formulae. That is, the most general
substitution which when applied to both formulae makes them identical (see section 1.3.3 of
chapter 1). The effect of this rule is to join together two partial proofs (either or both of
which might be empty). Suppose that some inference rules have been applied to the original
hypotheses to get NewH, and that some inference rules have been applied to the original
conclusion to get NewC, and that NewH and NewC unify. Then we have the proofs at the
top of figure 2-5 on page 40. The inferences that allow us to change the original conclusion
to NewC are necessarily backward inferences, so the proof is from New(to the original
conclusion. Since NewC and NewH unify, we can compose the two partial proofs by
identifying the formulae in the proofs, and applying the unifying substitution to both proofs

throughout. The result is shown at the bottom of figure 2-5 on page 40.

40

Original Hypotheses NewC
NewH Original Conclusion

Original Hypotheses

II

NewH (= NewC)

2

Original Conclusion
Figure 2-5: Applying Match to two Partial Proofs

The Truth rule implements the absurdity rule of ND, and its dual which does not appear
as a rule of ND. Since PROVER has the ability to rewrite some formulae to truth values using
rewrite rules, the system must be able to deal with the truth formulae. AND contains the
absurdity rule (1-15 on page 11) which allows any conclusion to be deduced from the formula
| . If PROVER has managed to reduce the hypothesis of the goal to be the atom | , then the
goal must be true by this rule. This situation is detected by case 1 of the Truth rule.
Similarly, if the conclusion has been reduced to the atom T then the conclusion is indeed
true, and this fact does not depend on the hypotheses. This situation is detected by case 2 of
Truth. Whenever Truth is used, the value that is returned by the rule is T, indicating that

no binding of variables is necessary to complete the proof.

Sub = (figure 2-4, Hoa rule 8), and = C (figure 2-1, Imply rule 9) can also terminate a
proof. These rules implement the equality axioms which are troublesome for automatic
provers, since they are rather powerful. The rule = C gives PROVER enough power to detect

when the conjecture is proved. This rule represents axiom 1 of the equality axioms given

below:
1.E=¢
E=4
2.9p=¢§
§=v 11(¢)
3 I1(y)

Axiom 1 says that if the same object appears on either side of the equality then the literal is
true. PROVER implements this axiom by allowing the prover to attempt to unify the two
objects if the conclusion of a goal is an equality. If they do unify, then the the conjecture is
true. If they do not unify, then it doesn’t mean that they are different objects; it may mean

that there are two different terms representing the same object (for example, 242 and 3+1

41

are two different terms representing the number 4). This situation may be detected by Sub
=. This rule allows the prover to simplify complex equality expressions, by performing

partial evaluation, and making substitutions of equal objects.

Sub = allows the simplification of equality hypotheses by symbolically subtracting one of
the sides from the other. This subtraction is performed by a routine called Minus-On.
Symbolic subtraction allows the expressions that are to be evaluated to contain non-numeric
constants or variables, and so subtracting two quantities using Minus-On may have one of

three results:

e If the result is 0, then nothing can be deduced, except that the hypothesis is true.
Hoa returns NIL in this case, since none of the subsequent rules can be used when
the hypothesis is a literal.

e If the result is any other number, then we may deduce that the hypothesis is false,
since for the difference to be non-zero, the quantities must be different. Since the
hypothesis is false, the conjecture is proved - this is a special case of the Truth
rule.

e If the subtraction evaluates to a new expression that is not a number then the
prover is able to use axiom 3.

Axiom 3 says that if two objects are equal, and one of them has a certain property, then so
does the other. Thus, it is possible to simplify the conjecture by replacing one of the objects
by the other throughout. Once this is done, some unifications that were not possible may
become so and so the conjecture may be provable. It is permissible to replace either of the
expressions by the other (by equality axiom 2), but PROVER has a routine which decides
which to replace on the basis of simplicity. The functions Choose and Other take the two
equal terms, and return, respectively, the simplest of the terms and the other term, and then
PROVER makes the replacement of the first by the second. The replacement described above
takes place in the original hypothesis and conclusion. That is, the complete conjunction of

which the equality is one conjunct is used as the hypothesis for the recursive call to Imply.

Inequality can complete a proof. A discussion of this rule is deferred until the following

section (2.3.2).

The remaining rules each require that one or more subgoals be proved to complete the proof
of the main goal. The rules Or Split (figure 2-3, Hoa rule 4) and And Fork (figure 2-3,
Hoa rule 6) suggest two different subgoals but require that only one of these be proved to
complete the proof. This situation is called an or-choice, since PROVER has to prove either
one subgoal or the other. And-choices, on the other hand, require PROVER to complete the
proofs of both suggested subgoals before the proof of the main goal is complete. Cases

(figure 2-1, Imply rule 3), And Split (figure 2-1, Imply rule 4), Back Chain (figure 2-3, Hoa

42

rule 7) and Back Chain = (figure 2-3, Hoa rule 7E) all force the prover to make an

and-choice.

Cases is applied on the condition that the hypothesis is a disjunction, o v 8. A recursive
call to Imply is made with the Thypothesis T and the conclusion:
(a — Conclusion) A (8 — Conclusion). In the notation of chapter 1 the rule is as in figure
2-6, where [T is supplied by the recursive call to Imply.

ﬁ
aV B (@ = x)A(B—X)

X
Figure 2-8: Cases

It is clear from the description of the prover that this subgoal will cause the And-Split
rule to be applied when Imply is called to provide /1. This is because the conclusion has been
forced to be a conjunction by the application of the Cases rule and the hypothesis is the
atom . Thus, whenever Cases is invoked an application of And-Split follows
immediately. The combined application of Cases and And-Split is shown in figure 2-7.

{} {}
II, I,
Qv X B—x
aVp X

X
Figure 2-7: The combination of Cases and And-Split

At this stage the choice of the next rule for producing the H's is also forced. Again the
hypothesis is empty, and the conclusions of both goals are implications. The only rule that
applies to conclusions which are implications is Promote (figure 2-1, Imply rule 7) this
causes the antecedent of each conclusion to be added to the appropriate hypothesis set. The
choice of the next rule to be applied is not forced after Promote has been applied, since the

form of the new hypothesis and conclusion will determine the rule to be used.

The total effect of the application of Cases, And-Split and Promote is shown
schematically in figure 2-8. The similarity between this figure and the inference rule of V—F
in figure 1-4 of the previous chapter is obvious. Clearly, since the selection of the inference
rules is forced from the use of Cases it would be much more efficient to perform this proof

directly, and introduce the final subgoals directly. This approach is taken in IMPLY.

43

o B
I z

a = x g — x
aVvp a—=xAB—x
X

Figure 2-8: Combined applications of Cases, And-Split and Promote

The rules Or Split and And Fork both cause two subproofs to be suggested. These
subgoals represent an or-choice for PROVER since the success of either of these goals is
sufficient to prove the main goal. Or Split applies if the conclusion is a disjunction. First
the rule specifies that the conclusion should be rewritten by Andout (see the discussion of
Promote). If this is possible then a call is made to Imply with the original hypothesis and
the new conclusion. Otherwise an attempt is made to prove the left disjunct of the
conclusion, from the conjunction of the hypothesis with the negation of the right disjunct, if
this fails then an attempt is made to prove the right disjunct of the conclusion from the
conjunction of the hypothesis with the negation of the left disjunct. Both of these attempts

are made by invoking Hoa.

nA-B nA-a
I II

e —5—
aVp OR aVp

Figure 2-9: Or-Split

And Fork is invoked if the hypothesis is a conjunction. This rule is central to Hoa since it
is And Fork which allows Hoa to consider each of the conjuncts of a conjunction separately.
Two subgoals are suggested by this rule, the first just uses the left conjunect of the hypothesis,

and if this fails then the proof of the same conclusion is attempted from the right conjunct.
a Ab aAb

a 6
1 1

OR
Figure 2-10: And-fork

Or Fork (figure 2-1, Imply rule 6) is called if the conclusion is a disjunction, the result is a

call to the routine Hoa.

The application of And Split (figure 2-1, Imply rule 4) causes a recursive call to Imply to
be made. The call attempts to show that the hypothesis implies the left conjunct of the

conclusion. If this proof is successfully constructed then a call to show that the hypothesis

44

implies the right conjunct of the conclusion is made. The result of the call is the appropriate
composition of the two substitutions. This is exactly the A — I rule of ND only this is being
applied backward to eliminate the conjunction from the conclusion of the goal. Notice that

the application of this rule represents an and-choice for PROVER.

Although two subgoals suggested by a use of And Split are solved independently, they
may have variables in common. These shared variables make the solution to the goals
dependent, since each variable may be bound to only one term. It may be the case that
solving one of the goals binds a shared variable to some term which prevents the proof of the
other subgoal being completed. This is called trapping, and is discussed in relation to

completeness in section 2.5. For example, consider the goal (G),

Ha) A RB) A Q(b) ' Az) A Q(a) (G)

After splitting, two subgoals arise with a common variable z: namely to prove Hz) and
@(z). There are two choices for binding z in the Hz) goal, either a/z or b/z, but choosing

a/z makes it impossible to prove Q(a).

Imply has no means of dealing with this problem, but in IMPLY a method for analysing the

failure is used. This is described on page 60.

Promote (figure 2-1, Imply rule 7) applies if the conclusion is an implication. Here the
antecedent is conjoined with the hypothesis and this is the new hypothesis for a recursive call
to Imply. The new conclusion is the consequent of the old conclusion. This is exactly the
— — I rule of natural deduction, except that the rule is used for backward inference. The
subproof that is represented by IT in figure 1-6 (page 9) is to be produced by the recursive
call to Imply.

Promote is one of the rules of N0 that has been augmented considerably in the
implementation of PROVER. There are two features of the implementation that must be
noted. The first is that PROVER rewrites the hypothesis and conclusion if possible when
Promote is applied. The rewriting is carried out by the routines Andout and Orout, the
idea of these routines is to attempt to bring conjunctions (respectively disjunctions) toward

the “top” of the formulae.
aVBAX)=(aV B AlaVX)

(A3 VXY=2(aVX)A(BVX)

~(av@)=-aA-3
Figure 2-11: The Rules of Andout

45

The rewrite rules that are used by Andout are given in figure 2-11, and those used by Orout
in figure 2-12. These rewrite rules are applied repeatedly until the formula cannot be
rewritten further. Andout is applied to the conclusion and Orout to the hypothesis of the

new goal.
aABVX)=(aAB)V(aAX)

(aVBAx=(aAX)VI(BAX)

-o(a/\ﬂ):—-qfv—lﬁ
Figure 2-12: The Rules of Orout

The implementation of PROVER records more than just that these rules may be used to
rewrite formulae, but also when it is useful to rewrite a formula to its equivalent form.
Thus these rewrite rules are only applied to the formulae that PROVER is manipulating at the
entry to Promote.

In addition to rewriting both the conclusion and hypothesis, PROVER has the option of
forward chaining when a new conjunct is added to the hypothesis. A call to the routine
Forward-chain is made when the Promote rule is called. This routine references a flag
which is set by the user. If the flag allows, forward chaining takes place. The flag may
specify extra conditions on the new and existing hypotheses which allow forward chaining to
take place only when these conditions are met, or prevent forward chaining completely. If
forward chaining is to take place, the new hypothesis is matched with the antecedent of any
implications which are also hypotheses. If a match can be made, then the consequent of the
implication may also be added as a new hypothesis. Forward chaining corresponds to the use
of the rule of ——F, which is also implemented in PROVER as the Back Chain rule.
Forward chaining in this way is a very powerful technique, and the flag that is used in
PROVER enables its use to be controlled. The need for control is evidenced by the fact that
the inference that is carried out in a forward direction. Under certain circumstances the
prover would be able to deduce many hypotheses which may not be relevant to the goal to be

proved.

The technique of forward chaining is further extended in peek-forward-chaining. Here
when a conjunct of the hypothesis is not an implication the system looks at the definition of
the predicates in the hypothesis. If peeking (see section 2.3.2) shows that the definition of
some predicate contains the predicate of the new hypothesis, the definition is temporarily

expanded and then forward-chaining is attempted with this hypothesis.

Rules Back Chain (figure 2-3, Hoa rule 7) and Back Chain = (figure 2-3, Hoa rule 7E)

apply when the hypothesis is an implication. First an attempt is made to prove that the

46

consequent of the hypothesis implies the conclusion, if this can’t be done then the rule fs-uils.
This subproof is attempted by a simple prover, called Ands. Ands will detect if some
conjunct of the hypothesis that is passed to it will match the conclusion, returning the
substitution necessary to make the match. That is, Ands can detect the truth of goals of the

form:

H A ... NHOA ... NH, |- C8

Where 8 is a unifier for H'. and C.

If the Ands subproof succeeds, then the antecedent of the implication becomes the
conclusion of a new subgoal to be proved by Imply. This goal is to be proved using the
original hypothesis. If the subproof of the conclusion fails, then there are two alternatives,
first is to apply Back Chain =—. This is only possible if the consequent of the implication is
an equality literal. Remembering that the proof of this literal has not been proved by Ands,
the proof attempt is made by Hoa. Hoa includes a routine which can manipulate equalities:
Sub ==, and it is this rule that is expected to provide the proof. Otherwise the back

chaining attempt is unsuccessful.

7
I
o

a— 8

B
X
Figure 2-13: Back-Chain

Notice the similarity between forward- and backward-chaining. Both of these rules apply if
the hypothesis is an implication, and implement the ND rule of ——FE. The difference is that
forward-chaining is making inferences in a forward direction: from the hypotheses to new
hypotheses, while the use of back-chaining depends of the conclusion and consequent of the
implication being related. This is a backward inference, since a new conclusion is suggested

by the prover once the proof of the existing conclusion has been found.

Hoa Cases (figure 2-4, Hoa rule 10) is invoked if the hypothesis is a disjunction and the
result is a call to Imply with the hypothesis and conclusion unchanged. Thus the conjuncts
of the hypothesis that Hoa might have ignored by use of the And Fork are not available in

the proof of this subgoal.

Flip C (figure 2-1, Imply rule 10) corresponds exactly to the rule of = —I, or reductio ad
absurdum. This says that, to show that a formula is not true, assume that it is, and then

deduce a contradiction. The ND rule is given in figure 1-10 (page 10).

47

If the hypothesis of the current goal is a negation, then this conjunct can be deleted from
the hypothesis and a new conclusion proved from the remaining hypotheses. This new
conclusion is formed by disjoining the unnegated hypothesis with the old conclusion.
Schematically, the rule is as in figure 2-14. This rule is Flip H (figure 2-4, Hoa rule 11), and
does not have an equivalent in the ND system.

n /iI_‘ a
avVx
X
Figure 2-14: Flip-H

Flip-H may be justified by the ND proof of figure 2-15.
Aa
q_._.. —) - (i) — i)

a X =X

aVvX L X

-

)

—Gi)
X
Figure 2-15: The justification of Flip-H

The two rules which deal with equivalences, Prove Equiv (figure 2-1, Imply rule 8) and
Equiv H (figure 2-3, Hoa rule 8), correspond exactly to the rules of ND. However since the
formula that is to be proved is skolemized before the proof is attempted, and the
skolemization step requires that all biconditional connectives are eliminated, these rules can
never be used. The presence of these rules in PROVER, since they do not effect the behaviour

of the prover in any way, is something of a mystery.

2.3.2. The Non-Logical Rules of PROVER

As remarked earlier, PROVER includes a number of inference rules which cannot be found in
a natural deduction system. I will divide these into two types, database and special-purpose.
The first type enable the prover to handle defined terms, and to use previously proved facts.
The special-purpose rules allow the prover to use very efficient procedures to make inferences
about certain formulae. For example, the Typelist rule of Imply, allows the prover to detect
a contradiction which would involve a large amount of inference if it were to be detected by

more ‘‘conventional’ means.

Failure Rules

There are a number of ways in which the proof can be artificially terminated with failure.
The rules Imply Fail (figure 2-2, Imply rule 15) and Hoa Fail (figure 2-4, Hoa rule 12) are
the most obvious, these are the last rules of each of the subroutines, and as such tells the

prover what to do if all of the other rules have not produced a proof. Time (figure 2-3, Hoa

48

rule 1) is another example of a failure rule. The programmer is allowed to specify a time
limit on the search for the proof, if this is exceeded then PROVER fails the proof, returning to
the user for advice. Obviously none of these rule have analogues in ND, since they are

concerned solely with the control and implementation of the search for a proof.

The Typelist

PROVER maintains a representation of the “type’’ of each of the variables in the conjecture.
A type is usually a record of what the object is; for example a set or a number, however in
PROVER this notion is taken further. If the object is a number, then the type of the object
records the bounds within which the number may lie. For example; if the hypotheses z < 4
and 2 < z were known then the type of z would be the interval [2,4]. If later the hypothesis
z < 1 were deduced, then it would be impossible to represent the type of z, and so PROVER
would report a contradiction. This is exactly the same as reducing the hypothesis to | . The
Typelist rule checks the types of all of the objects for consistency, and if any object is found
with an inconsistent type then the proof is completed. It is important to notice that the
inference that is performed by the Typelist rule, could be carried out by a prover in other

ways. The Typelist rule is powerful for the following reasons:

e The updating and consistency checking of the types of the objects can be
performed very efficiently,

e By recording the types of the objects in the typelist, many explicit hypotheses can
be eliminated from the conjecture. This results in the number of choices that are
open to PROVER being decreased, and,

e The ordering axioms of the real numbers are not represented explicitly in the
prover.

The PROVER rules Typelist (figure 2-1, Imply rule 2), Inequality (figure 2-1, Imply rule
11), and Eq Ineq (figure 2-2, Imply rule 14) relate to this elegant technique. Typelist
allows the prover to perform case analysis on the types of objects. For example, suppose that
the hypotheses of the theorem include the formula (7 <2) Vv (4 <j). In this case PROVER
constructs two typelists one which contains the type recording (7 < 2) and the other recording
(4 <j). The theorem must be proved for both typelists, exactly as the theorem must be
proved for both disjuncts of a hypothesis. This becomes clear once it is recognized that the
typelist is merely an alternative representation of formulae. This type of case analysis is

performed by the Typelist rule. This rule is described in detail in [Bledsoe & Tyson 75b].

Inequality is used when the conclusion is an inequality. The inequality is negated and the
representation of this type is added to the existing typelist, by using the routine Set-Type. If
a contradiction is deduced then the theorem is proved and the result T is returned. However

if no contradiction can be deduced Hoa is called with the updated typelist. This is justified

49

since if there is a contradiction in assuming that the conclusion is false while the hypotheses

are true then the theorem must be true.

Eq Ineq manipulates equality literals which appear in the conclusion into a form where the
information that they contain can be used by the typelist. An equality literal a = b is
replaced by the formula (@ <b) A (b<a). A literal of the form a5 b is replaced by
(@ < b) V(b < a). In both of these cases the typelist routines can use the new formula to
update the typelist, while the equality form could not be so used. This rule is a special case
of Define C, since equality of numbers could be considered to be defined in terms of these
inequalities. The use of a special rule to do these particular expansions means that when

these symbols occur in the hypothesis, they may not be rewritten using these definitions.

Rewriting Rules

There are a number of PROVER rules which rewrite the goal to be proved using rewrite rules
from the databases. The separation of the rewrite rules into different databases allows the
prover to distinguish between the different types of rules, and to use rules which are
appropriate given the context. For example, expanding a definition is performed by using a
rewrite rule, but this inference is one that PROVER is reluctant to make, since it can lead to
explosive search. The PROVER rule which applies rewrite rules from the database of
definitions thus applies late in the rule ordering. The simplification of formulae using logical
truths however, is a step that PROVER is more willing to take, since it does not usually have

disastrous consequences, so the rule which applies rewrite rules of this class appears earlier.

Reduce (figure 2-1, Imply rule 5) allows the implementation of two types of inference. The
first type is the simple rewriting of formulae to their equivalents by the identities of logic.
Such rewritings are very important, since they allow the prover to simplify its hypotheses and
conclusion. The set of rules available to PROVER are given in 2-17 and 2-16. Notice that, for
example, the use of the last rule in figure 2-16 could save the prover much work, since if a
duplicated conjunction occurred in the conclusion of a sequent and it was not rewritten then
the prover would have to prove this conjunct twice. The proof would be exactly the same,
and the work involved would be completely redundant. The first rule of 2-16 is the law of

excluded middle, which we saw as an axiom of ND (1-16).

50
aV=-a=T
aA~a= |
aA] =a
avV =T
o Nl . L
aV | =a

alMNa=ua

Figure 2-18: Some Logical Reduce Rules of PROVER

A second type of rewriting that Reduce may carry out is that of function definitions. For
example, the first reduce rule of figure 2-17 allows the prover to ‘‘understand” the
set~-theoretic symbol M. Notice that both types of rewriting carried out by Reduce are
applications of ——FE where the implication is an implicit hypotheses of the theorem stored as
a reduce rule (this was discussed in chapter 1 section 1.3.4). The rewrite rules should be

considered as extra hypotheses of the theorem.
TEYNz=zx EYyAz €z

rE€EyUz=z€yVzreEz:
rNzr=zx

zNP =10

zUP =z

§Cz=T
z€{y=z=y

Figure 2-17: Some Database Reduce Rules of PROVER

Dave Schmidt [Schmidt 83| has investigated the possibility of using the definitions from set
theory as new inference rules in a natural deduction prover. This indicates an alternative

approach to the use of reduce rules and rewriting.

Define C is also a rewriting step but the set of rewrite rules that are available here is just
the set of predicate definitions in the database. PROVER uses the definition of the predicate
occurring in the conclusion to make a new conjecture. By only allowing a predicate to be
replaced by its defining formula late in the proof attempt, this action is avoided for as long
as possible. This is a good idea, since the definitions of terms are used to hide unwanted

detail from a prover’s consideration. The revelation of this detail should be delayed for as

51

long as possible, since access to the more complex formulae that are invariably introduced
leads to more search for the prover. The name of the routine which performs the rewriting is
Define. If no definition can be expanded this routine returns the original formula. As
observed above, Eq Ineq is a special case of Define C which behaves as if equality was

defined in terms of inequalities.

Peeking and Pairs

Peeking is the name given by Bledsoe to a feature of the prover which provides ‘“‘sensible”
expansion of predicate definitions. The rule allows that the definition of a predicate in the
hypothesis of the goal may be expanded if it appears that this will allow the proof to
progress. Here the assumption is that the program is ‘“‘stuck’” and that expanding the
definition of the hypothesis is one of the few remaining courses that the prover may take. No
similar guidance is available to PROVER when considering the expansion of definitions in the
conclusion. Such definitions are used only when every other rule has failed to produce a
proof. Thus expanding definitions is avoided if at all possible. If a ‘“‘sensible’” expansion of a
predicate in the hypothesis can be found by Peeking this is made in preference to expanding
a definition from the conclusion. The latter course of action is taken by Define C only as a

final resort.

Peeking is invoked by Match only after an initial call to Hoa has failed to provide a
proof, the conjecture is passed back to Hoa but this time with a flag set which allows the
system to use peeking where it was not on the first pass. Expanding definitions can lead to
many choices, since many predicates are defined, and often the definitions are very complex
formulae. Guidance is provided by the program having the ability to “peek’ at the
definition of the hypothesis and decide on the basis of this information whether or not to
expand the definition in the proof. To do this the program maintains a set of peek property
lists. These are ordered pairs: the first element being the predicate which could be
expanded, and the second element the set of all of the predicates occurring in the definition of
that predicate. If one or more of these predicates occur in the conclusion of the theorem then

the program will expand the definition accordingly, if not then no action is taken.

Example: If the prover has been asked to prove the theorem a Cb |— x € a the peek
facility will look at the peek property lists and find the pair (C,[€]). On the basis of this
the prover should decide to expand the definition toget 2z € a - 2 € b |— z € a.

The peek property list is an example of an abstraction of a formula. Abstraction is a very
powerful technique which involves temporarily ignoring some of the detail of a structure. In
the case of the peek property list the detail that is ignored is the connectives and terms of the

formula. The gazing technique, described in chapter 4 uses abstractions extensively. [Plaisted

g \\%\\'..*E%
5 %
ey o \
> x 1
i

\ /
N i /

52

80, Plaisted 86] also reports some work on the use of abstraction in theorem proving which is

discussed in chapter 8.

The Pairs (figure 2-3, Hoa rule 3) rule is very similar. This rule is also unavailable to an
initial call to Hoa, and may only be used after the flag has been set. Here the program has a
database which is consulted when the predicates of the hypothesis and conclusion of the
theorem match but the terms cannot be unified. The database again consists of a set of
ordered triples which have as their first element the predicate which is matched, the second
element is the conjecture to be proved, and the third element is a theorem that may be
proved in order to establish that the matching will go through. The second and third
elements share variables, which ensures that when the goal is matched with the second
element of the triple, the bindings of the variables is transferred to the new goal to be
proved. Notice that more than one pairs property list may be available for each predicate,
and so there is a choice to be made as to which will be used. Each pair property list records
a formula which is sufficient but not necessary to prove the main conjectur(: Thus failure
for one pair property list does not mean that the conjecture is not true. The routine Pairs

performs the rewriting here, if no rewriting is possible then the routine returns NIL.

Example: If the prover has been asked to show Countable(a) I—; Countable(b) this
cannot be done directly, since the arguments of Countable are both constants. The prover
consults the pairs property list for Countable and finds (3) which asserts that to prove that a
and b are both countable we must prove that there exists a bijection between them. The
three parts of the pairs property list record: the predicate of the hypothesis and conclusion
literals, the goal to be proved and the new goal respectively. The original goal is necessary to
ensure the correct instantiation of the new goal.

(Countable,(Countable(z) ! Countable(y)), (3)
3 z. Bijection(z) A Range(z,2) A Domain(z,y))

Notice that the inference rules of Peeking and Pairs depend on more than the major
connective of the formula that is being manipulated. These rules refer to the form of the
entire goal. The reason for this difference is that these rules attempt to implement heuristics
which not only determine whether it is possible to carry out a particular inference, but also
whether the inference is sensible. The criterion for ‘‘sensible’” here is whether the application
of the inference rule will lead to a proof. This judgement is necessarily heuristic, but the idea

of the condition on the rule is to determine if a proof is likely.

In the case of Pairs, the lemmas that may be stored in the pair property list are all of the
form that a particular property is preserved under a certain transformation. Such lemmas

are very common in mathematics, and they are very useful in many proofs. The idea of the

*

One could imagine a system which performed an analysis of lemmas as they are proved to determine whether
they are of the correct form for the Pairs database. However, since PROVER does not have this capability, the
database of Pairs Property Lists must be precoded by the implementors of the theorem prover.

53

condition that the predicates of the hypothesis and conclusion match is to detect that the
desired goal is that some object(s) have a property, and that the hypothesis asserts that some

.
other object has the same property.

In the case of Peeking, the conditions check that the expansion of the definition will
introduce the predicate which appears in the conclusion of the goal. Here the idea is that if
the conclusion is about some objects having a property, and that by expanding the definition
of a hypothesis we will obtain a new hypothesis about some other objects having the same

property, then this is likely to be a useful move to make.

Both the peeking and pairs rules are used after Hoa has failed to prove the conjecture.
They are available to the prover only on Hoa’s second attempt to prove the theorem, when
the flag has been set. Thus the use of either peeking or pairs is considered to be a last
attempt to prove the theorem after the more obvious proof methods have been used. The
only rules which appear after this second call to Hoa are Define C and Eq Ineq, both of

which effect the unguided expansion of predicate definitions in the conclusion of the goal.

The rules Call Hoa (figure 2-2, Imply rule 12) and Call Imply (figure 2-3, Hoa rule 5)
serve to exchange control of the proof from one of the routines to the other. Call Hoa is
invoked when almost all of the rules of Imply have been attempted. The rule says that the
proof should be attempted by Hoa. If the first attempt at a proof by Hoa fails, then a flag is
set which indicates that Hoa may use the Peek and Pairs rules and the proof attempted
again. Call Imply is called by Hoa when the conclusion of the goal is either a conjunction

or an implication. The effect of the rule is to ask Imply to provide a proof of the conjecture.

2.3.3. Summarizing PROVER

In this section I have described PROVER, the UT natural deduction theorem prover described
in [Bledsoe & Tyson 75a]. The prover rules can be divided into three main classes: logical,
database and special-purpose. The logical rules enable the prover to perform deductions
within the ND system, although some of the rules have been modified to combine some rules
together. Each of the ND rules have been given a direction, and this causes PROVER to use

each rule exclusively in either forward or backward reasoning modes.

The database rules allow the prover to handle defined concepts and perform simplifications.

E 3
The objects cannot be the same, otherwise the match rule would have applied.

%
Notice that this time the literal that will be introduced may be the same as the conclusion; there is no way of

telling since the rule considers only the predicates and not the terms of the definition and conclusion.

54

Mathematicians often use definitions to express concisely very complex formulae, the
definitions are used to hide the detail of the statements that would otherwise be very
complex. However it is often necessary to refer to the definitional formulae in order to
complete proofs involving such defined terms. The replacement of defined terms by their
defining formulae is carried out by the rewriting rule of inference, which is justified by the
logical rule ——FE. That is, any proof involving an application of the rewriting rule of
inference can be expressed involving only logical rules. The use of the databases for storing
additional hypotheses allows PROVER to ‘‘concentrate’’ on the conjecture, but to retrieve

extra hypotheses from the databases as and when they are required.

The special-purpose rules are very efficient ways of carrying out inferences about a
particular class of formulae. The Typelist package of PROVER is such a rule which stores
information about the objects that appear in the conjecture in a special form that the
program can manipulate efficiently. The effect of this representation is that the prover can
detect inconsistencies (contradictions) very quickly, and that the conjecture is simplified by
the elimination of some hypotheses in favour of the efficient representation of the same

information.

The Peek rule is very different from the other rules in that it attempts to assess whether a
particular course of action is likely to be successful before carrying it out. Such a rule is
necessarily heuristic, but its use enables the PROVER to prune much potential search from

consideration.

In the next section I describe IMPLY, a later implementation of a natural deduction system
which is very similar in spirit to PROVER, but has some interesting differences. A comparison
of the programs is presented in chapter 3, and a comparison of each of the programs with ND

is presented in section 2.5 of this chapter.

2.4. IMPLY

IMPLY is reported in [Bledsoe 83]. The spirit of IMPLY is the same as that of PROVER, but

there are some differences in the design of the programs.

e The hypotheses are treated as a set in IMPLY rather than as a formula as in
PROVER. This makes the logic of IMPLY closer to G5C than that of PROVER.

E 3
e IMPLY is not interactive .

e IMPLY is not split into two routines as PROVER is. This makes IMPLY much easier
to understand.

- .
Bledsoe has recently implemented an interactive version of IMPLY which is not considered here. This program
has not been the subject of any report.

55

e Some of the database and special-purpose rules have not been implemented in
IMPLY.

The main difference between PROVER and IMPLY is in the treatment of the hypotheses of the
goal. In PROVER the treatment is very like that of ND, where the hypothesis is a single

formula. In IMPLY the hypotheses are represented as a set of formula as in GSC.

Partly as a consequence of the simplified structure of IMPLY, the number of rules that the
prover has is much reduced (IMPLY has 20, PROVER 28). Figures 2-18 and 2-19 give the rules
of the IMPLY program. Like section 2.3 this section is divided into two parts: in 2.4.1 [will

describe the logical rules of IMPLY and then the non-logical rules will be presented in 2.4.2.

Definition 32: Following the notation of the previous section, I will write
r I—; « to denote the goal of proving a from I using IMPLY.

2.4.1. The Logical Rules of IMPLY

Since both PROVER and IMPLY are based on natural proof systems their rules have much in
common, but they differ in some important respects. The complete set of rules is presented

in tables 2-18 and 2-19.

56

?
H |- C
RuleName Condition Action Result
1. (Truth) | is a conjunct of H T
C=T T
2. (Ancestry) 6 := Ancestor(C)
654 NIL 0
H-G-F(C) 5 NIL NIL
3. (And Split) C = (AAB) 0:=H |-, A
0 5£ NIL Ne=H | Bf
A5 NIL foX
4. (Cases) H=(AV B) 0:=A ' C
?
0 7= NIL Ai=B |-, ¢
A 54 NIL o)
5. (Reduce) NewH := Reduce(H)
NewC := Reduce(C)
NewH 5 H, or NewC s C NewH E~} NewC
6. (Or Fork) C=AVB NewC := AndOut(C)
NewC' 54 C H | NewQ
NewC = C 0:=HA-B | A
6 % NIL g
§ = NIL HA-A), B
7. (Promote) C=(A— B) HAA I—} B
8. (Prove Equiv) C= (A« B) NewC:= (A — B) A (B — A)
H) NewC
9. (=0C) C=z=y 0 := Uni fy(z,y)
0 £ NIL 0
10. (Flip C) =-A HAA), L
11. (Inequality) see page 62
12. (Match) NewH a conjunct of H
§ := Uni fy(NewH,C)
0 £ NIL 6

Figure 2-1: The Rules of IMPLY - Part 1

RuleName

13. (Back Chain)

57
?
H |- C
Condition Action Result
(A — B) a conjunct of H,
0 := Uni fy(B,C)

0 54 NIL Ni=H |- Ab
X NIL GoX

130. (Back Chain O)

13S. (Simp Imp)

14. (Sub =)

(A — B) a conjunct of H,
B' is a disjunct of B,

0 := Uni fy(B',C)
f % NIL B" := Delete(B',B),
Ni=H | A0 A-~B®
A 74 NIL ol

(A — (B — D)) a conjunct of H,
NewH := Replace((A — (B — D)),((A A B) — D))

14H. (Back Chain =)

15. (Flip H)

16. (Define C)

17. (IMPLY Fail)

NewH +! ©
=1y is a conjunct of H,

v = Minus-On(z,y)
v=20 NIL
v is a number T
v is not a number z':= Choose(z,y)

y := Other(z,y)

?

= H-f’ = CS
0 5 NIL 0
(A — z=1y) is a conjunct of H,

z' .= Choose(z,y)

Y :=Other(z,y)

?
¢ ‘=H¥' 1 Cf,-"
?
04 NIL Ni=H |-} 49
A4 NIL fox

— A is a conjunct of H,
NewH := Delete(— A,H)
NewH) CvV A
NewC := De fine(C) 5 C H | NewC
NIL

Figure 2-2: The Rules of IMPLY - Part 2

IMPLY and PROVER differ in their handling of hypotheses and uP the database and

special-purpose rules. The logical rules dealing with the conclusion (And Split, Reduce, Or

Fork, Promote, Prove Equiv, = C, Flip C, Inequality (figure 2-18, rules 3, 5, 6, 7, 8,

58

9, 10 and 11), and Define C (figure 2-19, rule 18) all apply under identical conditions to that
of PROVER, and each produce the same subgoal as the corresponding rule in PROVER.
However since there is only one proof routine in IMPLY this routine is always called to
perform the proof of the new goal. Thus the rule Flip C which used to make a recursive call
to Hoa, now makes a call to IMPLY. IMPLY Fail (figure 2-19, rule 17) is exactly the same as
the failure rules of PROVER. Case 2 of the Truth rule (figure 2-18, rule 1) is the same as case
2 of the Truth rule of PROVER.

The treatment of hypotheses in IMPLY is much closer to that of §SC than ND. In GSC both
the hypothesis and conclusion are sets of formulae with each member of the set being
implicitly conjoined with the others. This has the effect of allowing all of the conjuncts to be
treated equally. In ND the hypothesis is a single (nested) conjunction and this means that
hypotheses at a lower level of nesting cannot be reached as easily as those nearer the surface.
The PROVER rule And Fork has the function of liberating the conjuncts which are deeply
nested, since it allows PROVER to weaken the hypothesis of the goal, and attempt to prove the
conclusion from each of the conjuncts of the hypothesis separately. In IMPLY the hypothesis

is treated as in GSC, and there is a routine for selecting conjuncts from the set of hypotheses.

Case 1 of Truth and each of the rules Match, (figure 2-18, rule 12) Back Chain, Simp
Imp, Back Chain O, Sub =, Back Chain =, and Flip H (figure 2-19, rules 13, 130,
13S, 14, 14H and 15), select conjuncts from the hypothesis set, and then apply the rule to
some conjunct that has the appropriate form. The effect of this is that the hypothesis never
has to be explicitly split. By allowing the prover to select a conjunct of the appropriate

form, the splitting of the hypothesis has been eliminated.

(AAB)A(CAD) ' C (H)

For example, to prove the goal (H) in PROVER the steps shown in figure 2-20 are necessary.
(AAB)A(CAD) ' C

(AAB) ' C

A4l o fails

B cC fails
(CAD) e

C I—? C succeeds: T

Figure 2-20: Proof of (H) using PROVER

IMPLY proves the same goal immediately since the conjecture is represented as in (I).

59

{A.B8,0,D} ' © (0

Notice that the sequents that fail in the PROVER proof, are not explicitly attempted by
IMPLY, but they are attempted implicitly in the selection of the conjunct to match. When
IMPLY is applying Match it has to select each of the conjuncts of the hypothesis in turn to
attempt the match until it finds one which succeeds. In IMPLY though, this work is carried

out without constructing explicit subgoals.

IMPLY’s Cases rule is an exception to this handling of hypotheses. This rule requires that
the hypothesis is a disjunction before it will be used. In PROVER the subgoal that results
from an application of Cases to a sequent AVB | Cis T (A— C)A(B— Q).
We saw in the previous section how this new subgoal forced the next two applications of
inference rules so that the eventual proofs that were attempted were of A I—? C and
B ' C. In IMPLY these goals are suggested immediately, thus saving the application of the

two rules which are used in PROVER.

The rule Simp Imp does not have an equivalent in PROVER. The rule allows the
simplification of a conjunct of the hypothesis of the form (A — (B — C)) to the equivalent
form ((A A B) — C). The presence of this rule increases the power of the prover, since in
both PROVER and IMPLY the Back Chain rule attempts to match the conclusion of the goal
with the consequent of an implication in the hypothesis. This will result in failure if the
conclusion is C, and the unsimplified hypothesis is present, but will succeed if the implication
has been simplified. Since this is essentially a rewriting step this rule could have been added
to IMPLY as a reduce rule. This approach would have the property that the conclusion could
be rewritten to this form too, since conclusions are rewritten by the reduce rule as well as the

hypothesis.

Another difference between the back-chain rule of IMPLY and that of PROVER, is that
PROVER used the routine Ands to match the consequent of the hypothesis with the
conclusion. Thus, if the hypothesis were: A — (B A C), and the conclusion were C, then
Back-Chain would be used. In IMPLY the conclusion and consequent are matched by the

unification routine, and so the consequent must be completely unifiable with the conclusion.

Back Chain O (figure 2-19, IMPLY rule 130) and Back Chain = (figure 2-19, IMPLY rule
14H) are special cases of the back-chaining technique. The first applies if the consequent of
the implication is a disjunction where one of the disjuncts unifies with the conclusion of the
goal. In this case the matching disjunct is deleted from the disjunction, and the remaining
disjuncts are negated and conjoined to the antecedent of the implication. Delete is the

routine which will delete a disjunct from a disjunction. This new conclusion is proved from

60

the hypotheses. Back Chain = applies if the consequent of some implication in the
hypothesis is an equality literal. If it is then the system selects the simplest of the equal
terms, and replaces the other with this throughout the goal. The selection of the simplest
term is carried out by the routines Choose and Other which were described in section 2.3.1
on page 41. If the sequent now follows by IMPLY then the system attempts a proof of the

antecedent of the implication. Otherwise the rule fails.

Another new rule is called Ancestry. It comes in two parts: The prover reports success if
it can unify the current goal with the negation of an ancestor goal of the current goal (that is
with a goal that lies on the part of the proof tree between the root and the current goal).
The proof tree is searched by a routine call ancestor. The other part reports failure if the
current goal is the same as an ancestor goal and no new hypotheses have been added to the
goal since the ancestor. This situation is detected by a routine called Higher-Goal-Failure
(abbreviated to H-G-F in table 2-18). The use of higher-goal-failure prevents loops from

occurring in the search for a proof.

Equiv H is not a rule of IMPLY, but Prove Equiv remains. Both these rules are present in

PROVER, but as observed in section 2.3.1 these rules may never be used.

IMPLY incorporates smart backtracking. This is an augmentation of the unification routine
which enables the specification of illegal bindings for variables. The problem is that although
two subgoals are solved independently, they may have variables in common. Recall the
example (G), presented on page 44, recalled below, where the shared variable z makes the
solution to the goals dependent. Imply is unable to detect that certain solutions for one of
the subgoals will preclude a solution for the other. In IMPLY however there is a technique for

dealing with this problem.

Ra) A FB) A Q(b) = Fz) A Q(z) (@)

The And Split rule of IMPLY says that each conjunct of A A B should be proved. Suppose
that B cannot be proved after the substitution resulting from the proof of A has been
applied, but it can be proved before the substitution is applied. Then the system analyses the
substitutions returned from the proof of A and B and determines where the conflict lies. The
system has a smart matching routine which will unify formulae without making bindings
which are specified in an EXCLUDE list. By using this unification routine and specifying
that the binding causing conflict is excluded, the prover attempts the proof again. In the
case of (G), the alternative proof of Hz) which binds b/z will be found and then the proof

will be completed.

Vhile. e composibion of aubskibohim 1 dofuasd 0s kg, ImpLy is able to return

61

generalized bindings for a variable. Consider goal (J). The variable z in the hypothesis has
a universal interpretation; that is it appears universally quantified in the original,
unskolemized conjecture. Thus the conjecture is true. If P is true for all z, then it is

certainly true for a and b.

Az) ' Ra) A AY) ()

The provers will attempt to prove this goal by proving each of the conjuncts separately,
and in the proof of the first subgoal will produce the binding a/z. This substitution must be
applied to the conclusion of the second conjunct, but not to the hypothesis of this subgoal. If
it were then the proof of the second subgoal is prevented, since a will not unify with . This
failure is due to the inability to perform copying which is discussed in relation to
completeness in section 2.5. PROVER and IMPLY can detect this situation and permit the

value {b/z,a/z} as a legal result for this goal.

This is logically correct since the variable z derives by skolemizing a universally quantified
formula. The universally quantified formula V z. Az) can be thought of as an abbreviation
for the (possibly infinite) conjunction At)) A At,) . . ., where the t_ stand for the members
of the universe under discussion. One can think of the two subgoals being proved from two
of the conjuncts in this conjunction, and thus that the two occurrences of z can stand for
different objects. Of course, generalized bindings like this can arise only in this way. IMPLY
cannot return {1/z,0/z} when given z=z }—' 1=0 to prove. This is prevented since the
conclusion of the goal is not a conjunction, and so the incompatible bindings for z would

have to arise from the proof of the same literal.

A number of alternatives to this approach to the problems of splitting are possible. For
example, it would be possible make a copy of the hypothesis when performing such a split,
and then rename the variables in the copied hypothesis, to ensure that distinct variables
occur in the two subgoals. The work of Nevins is an example of an alternative solution to

this problem [Nevins 75b].

2.4.2. The Non-Logical Rules of IMPLY

Some of the database rules of PROVER are not implemented as part of IMPLY. Reduce and
Define C are implemented exactly as in PROVER and so the logical rewriting steps which
may be carried out by Reduce and the expansion of definitions in the conclusion of the
theorem are possible within IMPLY. However Peek and Pairs are not implemented in IMPLY.

The omission of these rules makes IMPLY much less powerful than PROVER.

The omission of Peek means not only that IMPLY is unable make sensible use of the

62

definitions of predicates which appear in the hypothesis of the goal, but that is unable to
make use of these definitions at all. This is because there is no rule for unconditionally

expanding the definitions of predicates in the hypothesis as there is for conclusions (Define
C).

Predicate definitions may be added to the hypothesis of the goal to be proved, and then the
implementation of chaining would allow IMPLY to make definitional expansions. This
approach would cause the definitional expansion to be made under one of two conditions:
when a literal involving a defined term is promoted into the hypothesis, and when the
conclusion matches the definitional formula of some term. In the first case definitions would
be expanded more often than by Peek, since any literal that is added to the hypothesis
would be expanded in terms of the definition of its predicate. The second case, when the
expansion is performed by backward chaining, allows the prover to perform the expansion
much less often than by peeking. This is because Peek requires only that the expansion of
the definition introduces the predicate that appears in the conclusion. Backward chaining
requires that the definitional formula unifies with the conclusion of the goal: a stronger
condition. However, stating the definitions as explicit hypotheses does not allow IMPLY to
implement the peeking heuristic, and thus enables less control over the definitional formulae.

Reiter’s prover [Reiter 76] which is described in chapter 6 takes this approach to definitions.

The omission of Pairs is less serious since the class of lemmas that could be stored in the
pair property lists is quite restrictive and can only be used in quite rare circumstances.
However this leaves the prover unable to apply this class of lemmas in the same way. Again,
these lemmas could be explicitly conjoined to the hypotheses of the theorem, but this
approach would not enable such strong guidance to be placed on their use. The condition on
the use of a pairs lemma in PROVER is that there is a hypothesis and conclusion which have
the same predicate but the atomic formulae do not match. If the lemmas were explicitly
conjoined to the hypotheses of the conjecture then they could be used in back- or
forward-chaining when the conclusion (or hypothesis) was of the appropriate form but when

no corresponding hypothesis (conclusion) were present.

The Typelist and Eq Ineq rules of PROVER are not implemented as part of IMPLY,
however Inequality is implemented. The details of this rule are the same as rule 11 of Imply

(see page) except the the resulting sequent is proved by IMPLY and not by Hoa as in PROVER.

The rules which deal with equality literals: Sub = and = C are present in IMPLY. Sub
= has been changed to select an equality literal from the hypothesis, rather than requiring
that the entire hypothesis is such a literal in accordance with the view of the hypothesis as a

set of conjuncts.

63

2.4.83. Summarising IMPLY

In this section I have described IMPLY, the theorem prover described in [Bledsoe 83]. This
program has many of the rules of PROVER, but some have been considerably changed. The
most important change is that IMPLY does not split conjunctions in the hypothesis of goal
explicitly, but that the rules allow the prover to select appropriate conjuncts at certain times.
This difference makes IMPLY much closer to GS5C than PROVER is, since the hypothesis is
treated as a set of formulae rather than as a single formula. This leads to the elimination of

much of the search caused by And Fork in PROVER.

Some of the database rules of PROVER are not present in IMPLY, and this causes IMPLY to be
much weaker that PROVER. In particular, the peeking and pairs rules of PROVER are not
present, and no ability to perform definitional expansion of predicates occurring in the
hypothesis of goals is available. This weakening can be overcome by stating conjectures with
necessary lemmas and definitions explicitly conjoined, however this solution to the problem
does not allow the use of these explicit hypotheses to be controlled and used sensibly as they

were by the rules of PROVER.

2.5. The UT Provers and Natural Deduction

In this section I discuss the relationship between the UT Provers and Natural Deduction.
The relationship is not merely one of translation from logic formalism into LISP, although
for some of the rules the relationship between the two is quite obvious. Instead many
features have been added to make the provers a viable theorem proving system. In particular

the inference rules are controlled in novel and powerful ways.

Skolemization, unification and rewrite rules have no equivalent in natural deduction. In the
natural deduction system dependencies of objects (variables and constants) on one another are
recorded implicitly in the proof tree and the logician is meant to examine the tree to decide
whether a particular application of a quantifier rule is legal. This is not possible for the
automatic prover as the tree in which the dependencies lie may not yet be constructed
(because the prover runs some of the rules backwards). Thus the dependencies have to be
recorded some other way, and skolemization, where variables are replaced by terms which
explicitly record the dependencies, is a1 answer. The use of skolemization neccesitates the
use of unification: Since the skolemization step replaces variables with terms then it is
necessary to be able to determine when two terms can be made the same. The unification
step is one of the ways in which the UT provers actually infer conclusions - equivalent to

saying that the prover has the match axiom of GS5C (figure 1-35 on page 14).

64

The rewrite rule package has the ability to perform two sorts of rewrite: logical, and
database. The logical rewrite rules allow the prover to simplify formulae according to the

equivalences of logic. For example,

aVa=a

This facility is not available in natural deduction, although proofs of such identities can

easily be found.

The non-logical rewrite rules handle the definitions of functions, including rules like:

$Ean=xEﬁAIEL

These rewrite rules are dependent on the theory that the prover is working in and are not
part of the deduction system. Rather they represent extra hypotheses for the goal, which are
left implicit since they are of general use. The rewrite rules, with the predicate definitions
handled by the Peek and Define C rules of PROVER, enable the provers to work in a
particular theory without having to record the definitions of the symbols explicitly as

hypotheses to the proof.

One of the chief differences between PROVER and IMPLY is the way in which hypotheses are
treated. The rule that PROVER has for matching requires that the entire conclusion and the
entire hypothesis unify. However it is only necessary for some conjunct of the hypothesis to
be unifiable with some disjunct of the conclusion before the goal is proved. The work
involved in splitting the hypothesis and conclusion so that they completely match has been
avoided in IMPLY by allowing the prover to select conjunctions without explicitly splitting the
hypothesis. This has necessitated changes to many of the rules which deal with the
hypothesis. The alteration is however quite routine. In PROVER the rule for backward
chaining, for example, requires that the hypothesis is an implication and that the consequent
of the implication unifies with the conclusion of the goal. In IMPLY the rule applies if there is
a conjunct of the hypothesis which has the same property. The new hypothesis is the

remaining conjuncts, and the new conclusion is the antecedent of the implication.

While PROVER has many features of a sequent based system it is also very close to natural
deduction. The change from PROVER’s handling of the hypotheses to IMPLY’s handling
represents a step away from a natural deduction toward a sequent based system. In section
1.2.2 of chapter 1 I described, §5C, a sequent based system, and this system manipulated a
set of hypotheses, and a set of conclusions. In PROVER the system manipulates a pair of
formulae, and in IMPLY the hypothesis may be viewed as a set while the conclusion remains as

a formula.

65

Both PROVER and IMPLY are incomplete. That is, there are theorems which cannot be
shown so by these programs. ND and GSC are known to be complete so the lack of
completeness must originate in the rules of the theorem provers. In [Bledsoe & Tyson

78| Bledsoe identifies the three causes of the incompleteness of PROVER:

e Trapping,
e Inability to copy hypotheses, and,
e Weak back chaining.
Trapping and the inability to copy hypotheses have been discussed above. In IMPLY these

problems are tackled by the use of ‘“‘smart backtracking’ and the exclusion of bindings

respectively (see pages 60 and on for a discussion of these techniques).

Weak back chaining is the name given to a problem which arises in both PROVER and
IMPLY. Back chaining is the technique of matching the conclusion with the consequent of a
hypothesis implication (see page 45). If this can be done then a proof of the antecedent of the

implication is sought.

I

a—f8

B
x
Figure 2-21: Back-Chain

In PROVER X is found by using the routine Ands, and in IMPLY a simple unification is
attempted. In general, the full theorem prover might be used to provide this subproof, and
using a weaker proof method for doing this causes some possible proofs to be missed. The
reason that Bledsoe gives in [Bledsoe & Tyson 78| for not using the full theorem prover to
provide this proof is that, in the cases where the consequent of the hypothesis and the
conclusion have no relation to one another, too many resources are spent in attempting this
proof. This is a general reason for not placing too much emphasis on completeness of

automatic theorem provers; as Bledsoe and Tyson say:

If we ever expect to prove really difficult theorems in mathematics we must not
strangle the mechanism that does it by making sure that it handles every case.
Rather we believe ... that it should be allowed to fail on a few cases so that it can
succeed on a number of others, especially the hard ones. (Page 79 of [Bledsoe &
Tyson 78]).

86
2.6. Summary

The UT provers [Bledsoe & Tyson 75a, Bledsoe 83) are well-known automatic natural
deduction theorem provers. They are described in sections 2.3 and 2.4. In the description of
these programs I have classified the inference rules that the programs have into three types.
The first type: logical rules, have a very close connection with the rules of 0. The second
type, which I call database rules, allow the provers to manipulate definitions in a manner
which is very similar to that adopted by human mathematicians. The prover records
hypotheses which are global to the theory in which the prover is working, in a number of
databases. These can be accessed by certain routines of the system, and used to rewrite the
conjecture. Finally, the provers have access to special-purpose rules which allow the system
to perform certain classes of inference very efficiently. Both the database and special-purpose
rules can be justified by the rules of ND, and the axioms of the particular concepts that they
manipulate. These inferences could, in principle, be performed by the logical rules. However
there is some advantage to implementing these rules separately, both in terms of efficiency

and the manner in which the proof proceeds.

PROVER and IMPLY are very similar programs, but there are significant differences between
them. Most of these differences are the result of a different method of handling hypotheses:
in PROVER the hypothesis of a goal is viewed as a formula, and in IMPLY as a set of formulae.
This alternate view of the goal does not significantly alter the power of the prover, however
the proofs that are produced by IMPLY can be much more natural than those produced by
PROVER.

The provers both force the rules of natural deduction to be used in one of two ways: either
forward or backward. This means that the provers can always ensure that the subgoals that
an application of an inference rule produces are always simpler than the original goal. This
is important since if the goal becomes more complex, the prover may loop indefinitely. If the

goals are genuinely simpler, then the proof must eventually terminate.

Other examples of natural deduction provers are described in [Brown 78, Nevins 74, Pastre
77, Reiter 76, Cvetkovic & Pevac 83|. Discussion of these provers, where relevant, is deferred

until chapter 6.

67

Chapter 3
RUT:

A Rational Reconstruction of
the UT Theorem Provers

3.1. Overview

In this chapter I continue the investigation into the UT provers of Bledsoe and his team at
the University of Texas [Bledsoe & Tyson 75a, Bledsoe 83]. In chapter 2 it was noted that
the descriptions of the provers were different, as one would expect since they were published 8
years apart. The provers have not merely been extended but some techniques have been
omitted from the later program. In this chapter I describe the Reconstructed UT Theorem
Prover (RUT), a rational reconstruction of these provers which I have implemented. It is
rational in that it is not a copy of either of the UT provers described in the literature but

rather the implementation of the best features of those two programs.

In addition to the best features of PROVER and IMPLY, RUT has some novel features
including:

e The explicit representation of the proof being performed,
e A friendly user interface making communication with the system fairly natural

e Inference rules which implement a slightly different logic to that of either IMPLY
or PROVER, and,

e A backtracking interpreter for the inference rules which allows the RUT to select a
different inference rule if the first inference rule that is chosen fails to lead to a
proof.

It is in the combination of the ideas of the two provers that the reconstruction is most
informative. It was necessary to compare the inference rules of the two UT provers to
determine where the source of the power of the programs lay, and to retain these features in
the rationalized version. Due to the size of the UT provers it was also necessary to omit
some features from the reconstruction. Those features that have been omitted form
self-contained units of the original provers, and I will show that RUT is more powerful in the

areas that I have implemented than either of the UT provers which it rationalizes.

68

The description of RUT in this chapter differs slightly from those in [Plummer
85a, Plummer 84]. This is because RUT has been extended and rationalized still further since
the publication of those papers. The description in this chapter is actually of the ‘“‘rut’” mode
of the VOYEUR theorem proving system. This system emulates RUT in this mode, but can also
emulate GAZER, the prover discussed in chapter 5. The differences between the description in
this chapter and that of [Plummer 85a, Plummer 84| are chiefly the extension to the logic
described here in 3.4, and the set of interactive commands which may be used to alter the

course of the proof. These are described here in 3.5.

3.2. RUT and the UT Provers

In building RUT most of the better features of both PROVER and IMPLY have been retained.
The extra-logical handling of the PROVER system, the rule-base of IMPLY, and a new
interactive system have been incorporated into RUT in order to construct a prover combining
the best of both UT systems. Additional features, for example, the explicit representation of
the proof being constructed, and a slightly improved logic have also been implemented in

RUT. RUT is therefore more powerful than either of the programs that it reconstructs.

It should be noted that the following features of PROVER and IMPLY systems have not been

reconstructed due to the size of the UT provers and lack of time for the reconstruction.

e The Pairs technique for handling a limited class of lemmas (from PROVER)
e The Inequality handling package (from PROVER).

e The Ancestry rules (from IMPLY)

RUT includes the implementation of the peeking technique of PROVER, but not the pairs
technique. This means that while RUT is able to handle predicate definitions in a sensible
way, no guidance on the use of lemmas is available. Also, as in PROVER and IMPLY, no
guidance is provided for function definitions in RUT. Both lemmas and function definitions
have to be stated by the user as rewrite rules for the Reduce rule to use. This means that
whenever Reduce is called any rewrite rule which may be applied will in fact be used. This
is an important problem for RUT and the UT provers. This has the effect that conjectures
are rapidly rewritten into their simplest terms, even when this is not necessary to carry out

the proof.

The omission of the pairs feature of PROVER means that RUT is completely unable to guide
the use of lemmas of any form. This is not a major deficiency over the PROVER system since
the class of lemmas for which the pairs technique can provide guidance is very limited. The

inability to guide lemmas is a practical, but not a theoretical difficulty. In order to utilize

69

previously proved lemmas the user may either conjoin them to the hypotheses of the theorem

or store them as reduce rules. The first of these options is not desirable for two reasons:

e It is then necessary for the user to know which lemmas are necessary for the
proof, in advance of the proof being carried out.

e It is not possible, within any of the provers discussed here, to specify control over
the use of lemmas when they are presented as additional hypotheses.

In chapter 4 I describe a new technique which may be used to control the use of definitions
and lemmas. The technique, gazing, leads to an improved handling of such information when
they are cast as rewrite rules as they are in the UT provers and RUT. While Peeking

appears in RUT, gazing subsumes both the Peeking and Pairs techniques.

The inequality reasoning package, including Typelist and Eq Ineq have been omitted

since their reconstruction is unlikely to yield new insight into the technique.

As in both UT provers the conjecture to be proved is stated by the user in the full
first-order predicate calculus. As a preprocessing step the theorem is skolemized to eliminate

quantifiers. A proof of the skolemized formula is then attempted by the inference engine.

3.3. The Rules

Like the UT provers RUT has a number of rules of inference. FEach rule consists of a
condition part, an action part and a result to be returned. The condition part of a rule
indicates the circumstances under which the rule may fire, and the action part states what
actions are necessary to complete the proof. Unlike the UT provers, RUT does not return as
the value of a rule the substitution necessary for the theorem to be true, rather the result is
the proof of the theorem. So, in RUT the proof is explicitly created rather than performed as
in the UT provers. This means that when RUT completes the proof there is an explicit
representation of the proof structure that may be used in any way that the user desires. In
the UT provers, the representation of the proof tree is implicit in the LISP stack, and the
user may not access this structure. This feature of RUT is considered to be advantageous
because it enables the manipulation of proofs by other systems; for instance, performing

analogical reasoning about proofs.

The RUT interpreter tests each of the rules in turn until it finds one whose condition part is
met by the current goal. When such a rule is found, the actions are carried out. In most
cases, the action of a rule results in the creation of part of the proof. This new proof part is

inserted in the relevant place in the overall proof. The new part of the proof will have

70

“holes” which require filling with further proof pnrt_-s. The proofs of these goals fill in the
proof, just as some of the rules of ND require subproofs to complete the application of the
rule. The goals associated with these holes are added to the agenda of the prover, and when
the proof of the subgoal is complete the prover fills in the main proof. In this way, by
repeatedly creating parts of the proof with an application of an inference rule, details of the
proof are filled in. Of course there are rules which do not leave subproofs to be filled in,

these rules cause the termination of the proof process.

RUT has the ability to perform backtracking on failure. That is, when RUT has applied an
inference rule to a goal, G, yielding some subgoals which cannot be proved, RUT continues to
consider the rules that may be applied to G. If another rule can be found for which the
conditions are true, this is applied and the new subproofs attempted. In both PROVER and
IMPLY the choice of a particular inference rule is binding (see chapter 2 section 2.2). Once a
particular rule has been applied to a goal, the goals suggested by the rule must succeed for
the whole proof to succeed. The ability for backtracking makes RUT a more powerful prover,

and means that the ordering of the proof rules in the program is less critical for RUT.

3.4. Disjunctive Conclusions

The major extension to the logic of IMPLY that is implemented in RUT is the handling of
disjunctive conclusions. It was noted above that the handling of conjunctive hypotheses in
IMPLY is made possible by the fact that conjunction is both commutative and associative.
This makes it possible to treat a conjunction as a set of formulae. Disjunction has exactly
the same properties, and in §GSC the conclusion of a sequent is represented as a set of
formulae, implicitly disjoined. The step from PROVER’s to IMPLY’s handling of hypotheses
can be seen as a step from an ND formalization to a GSC formalization of the logic. In RUT,
the obvious further step of handling the conclusion as in GSC is also taken. This leads to the

following change in the rules which deal with the conclusion.

First of all, the IMPLY rule which splits disjunctive conclusions, Or Fork is no longer
required (as And Fork is not required by IMPLY). Each rule that IMPLY has which deals
with the conclusion of the sequent has to be altered to be used if some disjunct of the
conclusion has the condition, rather than the entire conclusion having the condition. Also,
when formulae are moved into the conclusion, the conclusion is updated by disjoining the new
formula with the existing conclusion rather than replacing it. The complete rule set of RUT is

given in figures 3-1 and 3-2.

Definition 33: A call to RUT, with hypothesis H and conclusion C will be
written H }_2 C.

71

As a result of this change to the rule base, RUT is never forced to make an or-choice in the
application of an inference rule. Whenever two subgoals are suggested by an inference rule,
both of the subproofs must be completed before the main goal is proved. However the ability

to remake the choice of rule to apply, introduces or-choices between inference rules.

RUT(H,C)
Rule Name Condition Action Result
1. (Truth) | a conjunct of H T
T a disjunct of C T
2. (And Split) A A Ba disjunct of C
NewC := Delete(A A B,C)
0:=H I—;? AV NewC
9 % NIL X:=H L BV NewC
X £ NIL 60X
3. (Cases) AV Bconjunct of H
NewH := Delete(A v B,H)
6:=AA NewH |}, C
6 % NIL Xi=BA NewH) C
X £ NIL foX
4. (Reduce) NewH := Reduce(H)
NewC := Reduce(C)
NewH 5 H or NewC 5% C NewH }—:Q NewC
5. (Promote) A — Ba disjunct of C
Disjunct := Delete(A—B,C)
NewC := Andout(B) V Disjunct
IH := Forward-Chain(A,H)
NewH := Orout(IH)
NewH I—;_? NewC
6. (Equal C) A= Bdisjunct of C
¢ := Uni fy(A,B)
8 % NIL 0
7. (Flip C) ~Aadisjunct of C §:=HAA 5 C
§ £ NIL g
8. (Match) H' a conjunct of H
C'a disjunct of C 0 := Uni fy(H',(")
6 4 NIL 6
9. (Back Chain) A — Ba conjunct of H
C* disjunct of C 8 := Uni fy{C',B)
+
f £ NIL X :=(Delete(A — B,H) g A)b
A £ NIL foX

Figure 3-1: The Rules of RUT - Part 1

72

RUT(H,C)
Rule Name Condition Action Result
10. (Sub =) A= Bconjunct of H
y := Choose(A,B),
z := Other(A,B)
0 := Delete(A = B,H]: I—;? C‘;
6 % NIL o
11. (Flip H) = Aa conjunct of H NewH := Delete(—~ A,H)
0:=NewH , AV C
§ £ NIL 9
12. (Peek) A an atomic conjunct of H
Peek(A,C) £ NIL
6 := De fine(A) A Delete(A,H) |}, C
8 5 NIL 9
13. (Define C) A an atomic disjunct of C'
C':= Define(C)
C' 5 NIL 6:=H |5, C'V Delete(A,C)
9 £ NIL 0
14. (Fail) NIL

Figure 3-2: The Rules of RUT - Part 2

3.5. Interaction

When given a goal to prove, PROVER attempts the proof for a pre-specified time. When
this time is over the prover either returns success, or reports the still unproved subgoals. In
RUT a different paradigm of interaction has been adopted, here the system reports to the user
before the application of each inference rule. The user is able to issue commands which may
alter the course of the proof. One of these commands enables the user to state which of the
rules from the rule base is to be applied to the goal. RUT will ignore all of the others and
attempt to apply this rule. In this way the user may prevent the application of a rule which
will to lead to failure in favour of a useful rule which appears later in the rule ordering.

Below is a complete list of the available interactive commands.

Command Action

Abort Abort the proof.

Rule Select a rule to be used.
Ok Carry on.

Unleash Switch off interaction.
Proof Display the proof so far.

In addition to the inference rules that the program may access, the rules Expand H and

73

Succeed are available to the user by use of the ‘“rule’” command. The first of these rules
allows the user to instruct the program to expand the definition of a predicate occurring in
the hypothesis despite the fact that the peek mechanism does not recommend this course of
action. The second allows the user to tell the prover to assume that the current goal is
actually true. This is useful if the user can see that the goal is true, but wants to avoid the
prover carrying out the work necessary to prove it. Since Fail is an inference rule that the
prover uses if no other rule applies, the user may instruct RUT to use this rule, thus avoiding

the search for the proof of a goal that the user can see is false.

The commands that are available to the user of RUT are a subset of those available to the
user of PROVER. Omissions from RUT include the ability to interactively add or delete
hypotheses, and rewrite rules. Another omission is the ability to reorder hypotheses, but
because RUT has the rule set of IMPLY this feature is not required. The “backup points”
option which enables the user to command the prover to back up to a pre-specified point in
the proof is not required in RUT because of the built-in ability for backtracking. When a goal
cannot be proved by RUT the system attempts to apply a different inference rule to the
previous goal. Thus it is as if the user had set backup points at each node in the proof and
there is thus no need for commands to instruct the prover to either set, or return to, a
backup point. The final option of PROVER not implemented in RUT is the ‘“put’ option,

which enables the user to instantiate a variable to a specified term.

3.6. The Search Strategy

Like the UT provers, RUT searches for a proof in a depth-first manner. This strategy is
simplistic and there are many ways in which it might be improved, however I have found
that it is easier to follow proofs constructed in a this way since the ‘“‘train of thought’’ of the
prover is more clear, becoming closer to success for at least one subgoal at a time. A
breadth-first search would lead to a goal being unpacked into subgoals and then these
subgoals being forgotten while some other goal is dealt with. A heuristic search would be
preferable: here the prover might opt to prove the hardest outstanding subgoal in preference
to some easier one, in this way assuring that little redundant work is carried out. Of course
the difficulty with this approach is specifying a workable heuristic. A further option would
be to allow the user to select the next goal to be proved interactively, but this has not been
implemented in RUT. Unlike IMPLY, RUT is not committed to a choice of inference rule once it
has been made. If the subproofs required by a particular application of a rule cannot be

found then another inference rule will be tried.

RUT is incomplete, like both IMPLY and PROVER. RUT includes the implementation of

“smart backtracking’’ and ‘‘generalized bindings” (chapter 2, page 60) which are also present

74

in IMPLY, to enable it to overcome the problems of trapping and copying. The Back Chain
rule of RUT (figure 3-1, RUT rule 9) is weaker than that of IMPLY and PROVER, in the sense
that RUT can only initiate back-chaining if the consequent of an implication in the hypothesis
unifies with the conclusion of the goal. In PROVER, Ands could be called to deduce the
conclusion from the consequent of the implication (figure 2-3, Hoa rule 7), and in IMPLY
Back Chain O (figure 2-19, IMPLY rule 130) and Back Chain = (figure 2-19, IMPLY rule

14H) allow the prover to perform back chaining under more complex circumstances.

3.7. RUT in Use

RUT has been designed with the user in mind. I follow Bledsoe and Tyson in believing that:

As long as the pain in using the system exceeds the help obtained, the potential
user will stay away [Bledsoe & Tyson 75a).

When given a goal to prove, the PROVER system attempts the proof for a pre-specified time.
When this time is over the prover either returns success, or reports the still unproved
subgoals. In RUT a different paradigm of interaction has been adopted, here the system
reports to the user after the application of each inference rule. The user has a number of
options which may be set to control the amount of information that is displayed about the

progress of the proof.

Interaction may be switched on or off. When switched off RUT will work in stand-alone
mode, unable to accept guidance from the user. Although this can lead the prover to making
some decisions which will not enable it to find a proof for some conjectures, the prover in this
mode is still very powerful. Another option is called speak, which determines the output that
the prover makes after the application of a rule. The prover can either be “terse”, printing a
symbol which indicates the rule that has been applied, of “verbose’” when a paragraph of text

1s printed.

All interaction between the user and the RUT system takes place at a high level, so that it is
unnecessary for the user to be a programmer or logician before being able to perform proofs

successfully using the system.

The RUT system has the ability to apply rewrite rules, thus enabling inference within a
mathematical theory. Theories may be constructed using a separate program, called THEORY,
which is discussed briefly in chapter 4 (page 86). These rewrite rules are loaded into the
prover, and define the theory that the prover is working in. In addition to the rewrite rules
of a theory, the user may also store conjectures belonging to that theory. The conjectures

may be retrieved from the database and proved using a user-specified mnemonic name.

75
3.8. Conclusion

In this o.r-mr"&.‘l have described an investigation into the UT theorem provers of Bledsoe's
group at the University of Texas. This work was carried out by building a theorem prover,
called RUT, which is a rational reconstruction of the UT provers. RUT is a rational
reconstruction rather than a copy of the UT provers, in that no system with the same
performance as RUT has previously existed, at the University of Texas or anywhere else to my
knowledge. Rather RUT incorporates the best of the ideas which are embodied in the UT

provers with additional features including;

e The explicit representation of the proof being performed,
e A logic which is an extended version of that of IMPLY,
e a more friendly user interface, and,

e a backtracking interpreter which allows RUT to remake the choice of inference rule
to use.

In order to reconstruct the UT provers from scratch a detailed examination of the
descriptions of the programs has been carried out. This illuminated many features of the
prover, and of the way that the design has changed over time. In particular it was possible
to isolate the strengths of each version of the UT prover, and to build the strong parts of
each into the reconstruction. Broadly, IMPLY has a more efficient logic engine than that of
PROVER, but PROVER is much more adept at handling non-logical information. The logic of
RUT is a further extended version of that of IMPLY, bringing RUT closer to a GSC system,
where PROVER is much closer to ND, and IMPLY lies in between. The reconstruction
highlighted a problem with the design of the UT provers: while a heuristic was specified
which enabled PROVER to determine when the expansion of the definition of a predicate was a
good idea, no similar guidance was specified for the use of lemmas, or the definitions of
functions. This observation led to the development of the technique of gazing, which is

described in the next chapter.

76

Chapter 4

Gazing:
Using the Structure of the Theory
in Theorem Proving

Look be fore you leap.
PROVERB

4.1. Overview

One of the outstanding problems with RUT and the UT provers is the crude means by which
they select definitions and lemmas from their databases for use in a proof. The peeking and
pairs heuristics help PROVER to decide which of a number of rewrite rules might be useful in
the proof, but some rules cannot be selected by these heuristics, since only a certain class of
lemmas can be present in the pairs database. Even if all lemmas were stored in a database
there would still be a problem, since the criteria for selecting such rewritings are not very
discriminating. In a huge database, there might be many rewrite rules which, for example,
introduce a particular predicate, and the problem of choosing between them would become
important. The consequences of performing an inappropriate rewriting step can be
disastrous; leading the prover down a blind alley that requires a lot of resources to explore, or

causing it to loop indefinitely.

In this chapter I describe a new technique, called gazing, which enables a theorem prover to
plan the use of knowledge from its database. This technique arises naturally out of the work
described in chapter 3, in particular by unifying and extending the techniques of peeking and
pairs. Gazing gives a significant improvement over the provers described in chapter 3 since
those provers often make unnecessary deductions, and (worse) fail to make necessary ones.
The descriptions of gazing in [Plummer & Bundy 84, Plummer 85b] differ from the
description given in this chapter. This is a result of some rationalization and extension of the

technique since those papers were written.

Gazing works by considering abstractions of the rewrite rules which indicate the effect of

using the rules on the predicate and function symbols which appear in the goal to be proved.

77

Definition 34: The effect of a rule is the difference in the symbols that sppear_'
in the original formula from those in the rewritten formula.

A plan is then made indicating which rewrite rules are to be used in the proof of the goal,
by determining which symbols need to be introduced, and which eliminated, from the goal.

In this way many irrelevant rewrite rules are eliminated from consideration.

In the next section I will describe the problem of selecting rewrite rules in more detail. I
will introduce the common currency model, and use this to make a critical examination of
the techniques of peeking and pairs. From this examination, it will be possible to see why
these techniques are not as powerful as we would like, and how they may be extended. A full
description of the gazing technique can be found in section 4.3. Some techniques for dealing
with the failure of plans produced by gazing are presented in section 4.4. Finally, in section

4.5, an example of a proof by gazing is shown.

4.2. The Problem of Selecting Rewrite Rules

In chapter 2 I described the three classes of inference rules that the UT provers have
available to them: logical, database and special-purpose. Recall that the UT provers record
definitions and lemmas as rewrite rules which may be accessed by the database rules.
Rewrite rules in the database of a prover will be applicable at many points in the proof of a
given goal, though a rewrite rule may be useful in one context but not in another. For
example, if we are proving a goal which involves a defined predicate then the system will
have the option of expanding that predicate in terms of its definition at each step of the
proof. In many proofs it will be unnecessary to perform this expansion, but in others the
proof will not go through unless this step is taken. The problem that is addressed by the
technique of gazing is that of when to use a rewrite rule, and which of the many available

rules it is useful to use.

The heuristic that is adopted by gazing, is that all possible logical deduction should be
carried out before the use of any database rule. Once the decision has been made that
database rules will be useful (because the theorem hasn’t been proved by logic alone) then an
appropriate set of database rules will be chosen for use and applied before the further
application of any logical rule available to the theorem prover. Making this complete
separation between logical and database deductions makes guiding the decision to make a

database deduction more intuitive.

In the UT provers a very different approach is taken. First of all, because some database

inference is performed by the Reduce rule logical and database deduction is interleaved.

78

Define C, and Pairs both occur after all logical rules have been tried, and so conform to
the heuristic in one respect, but only one rewriting step is performed by these rules, and then
logical rules may immediately be used in the proof of the subgoals set up. This approach, in

contrast to “logic before theory” I call “logic between theory™.

The idea of the “logic before theory” heuristic is to work with the symbols which have been
used to express the conjecture, before looking to the database rules to exchange them for
other symbols. This ensures that the proof takes place at the level that it is stated if this is

possible. Three reasons for adopting this approach are:

1. Performing a proof in terms of the concepts used to state the conjecture, if this is
possible, will make the proof more intelligible for the human reader.

2. The search that can be carried out without using database inference is quite small
compared to that when database inference is allowed. The reason for this is that
most of the logical rules decrease the number of connectives that may be acted on
by further logical rules, and so eventually we should ‘run out’ of connectives to
work on'. Thus if the proof requires database inference, we should be able to
determine that fact very quickly, and if it does not the proof will be completed
equally quickly.

3. Keeping the conjecture at a high level often means that a single inference will
suffice, where many would be needed if many database rules had been used. For
example, one class of database rules, definitions, are used to abbreviate complex
formulae. These abbreviations enable conjectures to be stated at a high level, and
unpacking the abbreviations has the effect of making the proof more complex.

As an example of the third reason for preferring logical over database inference: the goal (L)

results from (K) when all of the definitions of defined predicates have been unpacked.

aCb ' acCh (K)
(zrea—zeb)A-(yEa—yeEbA(yEb—yEa)

}_?
(L)
(r€a—z€bA-(yea—-y€ebA(ycb—y€a)

*

This explanation ignores the role of lforward chaining, which can introduce new connectives into the sequent.
While this can be a source of new connectives, the controls that the user may place on this rule usually prevent many
connectives from being introduced.

79

The simple deduction that has to be made to prove (K), has become transformed into a
number of deductions in (L). The proof would still go through; but it is much more complex

than is necessary, and is much less intelligible as a result.

The drawback of the “logic before theory” rule is that il the conjecture is not provable by
logic alone, the work that is carried out in attempting a logical proof is wasted. There is
clearly a trade-off here, between the possibility of attempting an impossible proof by logic by
adopting the “logic before theory’ rule, and carrying out database deductions which are
redundant by failing to do so. Since the amount of work that can be wasted by using
database rules is much greater than that by using logic, adopting the “logic before theory’

rule can be seen to be the best choice.

Not only is it important to decide carefully when to use a rewrite rule from the database,
but once the decision is made the problem of which of many possible rules to use arises. For
an example of the significance of this choice, suppose that the system is working in the theory
given by the rules (v) and (vi)’.‘

x——*j:tVz.zEa.HzeJ (v)

Consider the following goals:
a=b |- z€a—ze€b (M)

a=b ' aCb (N

In attempting to prove (M) RUT has two options; either to use Promote (chapter 3, RUT
rule 5, described on page 71), or to rewrite the predicate = by using some rule from its
database. As I have already observed RUT prefers logical deduction to expanding the
definition of a predicate, so the Promote rule would be used. The success of the proof of

this goal then depends on the particular definition of equality of sets that the system has.

If the definition of equality is (vi), the prover would make the definitional expansion and
then fail in its proof, since it does not know what to do with the introduced C atoms. An
intelligent prover would recognize that rewrite rule (v) is needed for the proof of (M), but (vi)
for the proof of (N). This observation seems trivial, but it is far from trivial to state a
general technique for providing guidance of this type to an automatic prover. The technique
of gazing attempts to provide this guidance by capturing the intuition that the rewrite rules
which are required are those which will introduce hypotheses which are similar (in a sense to
be made precise) to the desired conclusions. In the next section I describe the type of

similarity that is required between hypothesis and conclusion. I show how the peeking

”

This example is obviously contrived: In any ‘“real-life”” situation the prover would have at least the definition of
the C predicate. However the point remains: that a bad choice of rewrite rule to use can lead the prover down
blind-alleys and sometimes to failure.

80

technique begins to capture this similarity and also that it is too weak to express all the

similarities that are required.

4.2.1. Similarity: The Common Currency Model

I will now describe the common currency model which is due to Alan Bundy [Bundy 83b].
This is the framework within which the notion of similarity, which is necessary for an

intelligent prover, is described.

Definition 85: A concept is either a predicate symbol or a function symbol.

By an abuse of terminology I will use the term concept to refer to the symbol which
represents an idea from mathematics, and the idea itself. The context should make clear

which interpretation is intended.

Definition 38: A currency is some representation of the concepts that appear in
a formula.

We will use two different notions of currency in gazing, but each is an abstraction of a
formula which represents the concepts present. The idea is that unless the hypothesis and
conclusion of a goal contain the same concepts, there is little hope of proving the goal. The
distinction between currency and concept is an important one. A concept is a single predicate
or function symbol, while a currency may be a set of concepts, or objects with even more

structure, which represents the relationships between the concepts in the formula.

Definition 37: If there is a currency which occurs in both the hypothesis and
conclusion of a sequent then this is called the common currency of the sequent.

If there is no common currency then it is necessary to use a rewrite rule to exchange some

currencies in the goal for new currencies, in order to produce a common currency.

The peeking heuristic (described in chapter 3) suggests that a useful similarity between the
output side of the rewrite rule and the goal to be proved, is that they have at least a
predicate in common. This corresponds to representing the currency of an atom as its
predicate. This is a useful notion of currency in many cases, but is often not strong enough.
However, in the examples above this notion will suffice. The currency of the conclusion of
(M) is € while the currency of the hypothesis is =. There is no common currency but we
can consider (v) as a rule whose effect is to exchange = for €. Using this, we can introduce
the currency of € in the hypothesis, thus making it common to both sides. It is the
existence of this common currency which leads us to believe that the use of rewrite rule (v)

will be useful in the proof of the goal, while (vi) will probably not be.

The next subsections describe the drawbacks of the peeking technique in terms of the

81

common currency model. One of the weaknesses of the technique is that the notion of
currency is too weak. The investigation of this fact will motivate the subsequent

development of gazing.

4.2.2. Peeking: Function Definitions

The first observation about the peeking heuristic is that it does not, in general, enable the
prover to guide the use of function definitions. This blind spot is due to the fact that the
function symbols do not appear in the currencies between which we seek similarities. This
often leads to unnecessary inferences being performed. This problem is not too serious, since
this doesn’t lead to the failure of the proof but rather to a more involved proof, requiring a
more complex search, than 1is required. For an example of this consider
z €alUb }—-? z € aUb. In RUT the goal which results from being given this goal to prove
isrEavVz€EDb I—T z€alUb

This is due to two factors: firstly, that the rule which attempts to unify hypothesis and
conclusion occurs later in the rule ordering than that which attempts to simplify formulae.
More importantly, the system has no notion of what it is trying to achieve. It “simplifies”
the formulae blindly, without knowing that it is attempting to introduce the same concepts in
both the hypothesis and conclusion. Here for example it should ‘‘realize” that the same
concepts appear in both the conclusion and hypothesis before simplification, and that

attempting the match is probably a good idea.

For a more serious example of the way in which the peeking heuristic is not strong enough

*
to deal with function definitions consider (O), an elementary theorem from number theory .

Even(z) A Even(y) ' Even(z + y) (0)

Assume that the system has the three ways of rewriting Fven given in formulae (vii) to (ix)
and additionally has knowledge of the definitions of + and X and their properties of

commutativity and associativity.

Even(z) = Jy.(y+ y=1z) (vit)
Even(z) = Jy.(2Xy=1) (vrid)
Even(0) = T (iz)

Even(s(s(z))) = Even(z)
Even(s(o)) =»d.

The peeking heuristic recommends that the prover attempt to reexpress the hypothesis in

*
This example was originally suggested by Alan Bundy in [Bundy 83b|.

82

terms of the predicate which appears in the conclusion. The fact that it is already in this
form should indicate that consideration of the functions would be useful. A mathematician
would have no difficulty in noticing that reexpressing Fven in terms of (vii) would lead to a
trivial proof. The conjecture is after all ‘“‘about’” + and thus the characterization of Fven

which is also expressed in terms of this concept is likely to be useful.

4.2.3. Peeking: One-Step Look-Ahead

Another major drawback of peeking is that the heuristic is short-sighted since it can look
ahead only one level of definition. If the predicate that is to be expanded, P, does not
immediately contain the predicate that we desire to introduce, @, but instead contains a
predicate which, when its definition is expanded, introduces @, then the definitional
expansion of P will not be recommended. For example, consider again (M) above, this time
imagining that we don’t have rule (v), but that the prover has been given the rewrite rule

about C below (i) (repeated from page 23).

xE}*—**V:.zex—vzeﬁ (?)

In this example there is no single rewrite rule which will enable the introduction of €, so
peeking does not give the right guidance and a necessary inference is not performed. To
discover the sequence of rewrite rules which would have the desired effect requires a more

detailed investigation into the effect of rewrite rules on a goal.

4.2.4. Pairs and the Common Currency Model

The Pairs rule from the UT prover (Hoa rule 3, described in chapter 2, page 51) can also
be viewed in the light of the common currency model. Recall (from chapter 2, subsection
2.3.2) that the pairs technique is designed to retrieve a lemma from a database if the
predicates appearing in the hypothesis and conclusion of the goal are the same, but the goal
is not provable. In the common currency model this translates to saying that the goal
already has a common currency - namely the matching predicates - but that the goal could
not be proved within this currency. The pairs property lists record a means of moving to
new currencies within which the proof might be possible. The pair property lists are the
encoding of considerable mathematical experience which leads to the suggestion of these new
currencies. Unfortunately, these are precoded by the implementors of the theorem prover
which means that if none of the pair property lists leads to a proof, or if none are specified,
then the prover has no alternative but to give up. If the prover were itself able to deduce
new currencies which it could move to, then it would not have to rely on correct and

complete specifications provided by the implementor.

83

4.2.6. Summary of the Common Currency Model

In this section I have described the common currency model. This model captures the idea
that in order to prove a goal within a theory it is necessary that there be some similarity
between the hypothesis and the conclusion of the goal. If a planner is to use the database of
rewrite rules intelligently it must take into account that its goal is to introduce the same
concepts throughout the goal to be proved. This is only possible by giving the system some
representation of the concepts that are present, and the notion that it is to introduce these

common currencies.

I have described the peeking and pairs heuristics in the light of this model and I have shown
how these techniques begin to represent this aim, but that the peeking heuristic has 3 main

drawbacks:

1. the representation of a currency that is used is too abstract,
2. some rewrite rules cannot be controlled using these techniques, and,

3. the notion of how to introduce common currencies is too limited.

In the next section I will describe the technique of gazing which overcomes these problems.
Gazing makes a very rough plan which attempts to introduce the same predicate in the
hypothesis and conclusion. To make this plan the system has the same representation of
currency as peeking, but is able to search for chains of rewrite rules which achieve this goal,
rather than being limited to a single step plan. This rough plan is then refined using a more
discriminating notion of currency which includes a representation of the functions which
appear in the goal. If the plan is successfully refined then it is executed to produce a new

goal which should be provable without further use of rewrite rules.

4.3. Gazing

In this section I describe the gazing technique. The idea behind gazing is to produce a plan
indicating which rewrite rules may be useful in the proof of a goal. The program will make a
plan to use rewrite rules so that execution of the plan will introduce a currency which is
common to the hypothesis and conclusion. This plan is created by examining the currencies
of the goal to be proved, and those of the rewrite rules of the theory. The currencies are in
fact abstractions of the formulae of the problem space which represent the concepts that

appear in the formulae.

The gazing technique unifies the ideas of peeking and pairs in the sense that predicate

definitions (handled by peeking in Bledsoe’s system), function definitions (previously

84

unguided) and lemmas (partially handled by the pairs techn;que] are handled uniformly by

the gazing technique. The main extensions to the idea of peeking are:

e Gazing can be used to guide the use of all rewrite rules. The use of a particular
rule does not depend on its status as a definition or lemma, but only on its
potential relevance to the proof.

e The look-ahead of peeking is extended to be arbitrarily deep, and,

e Gazing uses a more discriminating notion of currency.

The idea of using abstract representions of the problem, and using the solution to these
abstract problems to guide the search for a proof of the problem in detail, is not new. It
originated with Minohy [Miasky 63], and, in the theorem proving context, has been
investigated by Plaisted [Plaisted 80, Plaisted 86]. For a discussion of the relationship
between gazing and this work see chapter 6, part 6.3.2.1. The use of abstraction spaces is a
very powerful technique. The key idea is that a problem can be reduced in complexity by
ignoring some aspect of the problem. A solution to the less complex problem can then be
found. Once we have this solution, it may be necessary to refine it in some way because of
the extra detail of the complete problem, but it is easier to do this than to find the solution

“from scratch”.

The gazing system will make its plans in a hierarchy of abstraction spaces. In a
hierarchical system many levels of abstraction are identified. The system begins planning at
the coarsest level and gradually fills in the details at each successive level until all of the
details are completely satisfied. Failure to complete a plan at any level of abstraction causes
the system to replan at the previous (less detailed) level. The whole plan is complete when

the planning in the beaot abstract space is completed.

In gazing three different aims are isolated, and these define the abstraction spaces that the

prover uses to produce the plan.

e In the Predicate Space the currencies of the goal are the predicates in that goal
and the aim of the planner is to introduce a pair of atoms with the same
predicates.

e In the Function/Polarity Space the currencies of the goal represent the functions,
predicates and polarity of the formula. Here the aim of the planner is to
introduce the same function symbols into complementary atoms with the same
predicate.

e Finally in the Full Space, in which all the detail of problem is present, the goal is
to unify two formulae.

These aims are the goals of the three abstraction spaces within which gazing carries out its

85

planning. These aims are increasingly detailed, although the achievement of a more general
aim is neither necessary nor sufficient for the achievement of the more specific aim. In
particular it is not necessary for two formulae to contain the same function symbols before

they can be unified, since a term containing function symbols may be unified with a variable.

It is important to note that a plan produced in abstraction spaces cannot be guaranteed to
produce the desired effect in the full space unless the detail that is ignored in the abstraction
space cannot cause the plan to fail. If the details were irrelevant in this way then the use of
abstraction spaces would be pointless, since solving the abstract problem would be as difficult
as solving the original problem. In the case of gazing, the detail that is ignored may cause
the plan to fail. For example, in no abstraction space are the connectives of the formulae
considered, but the connectives of the formulae can cause unification in the full space to fail.
Thus the plans that are produced by the use of gazing cannot be guaranteed to produce the
proof. On the other side of the coin of course, there is the knowledge that constructing plans
while ignoring detail is simpler than the original problem. Thus, the plan may be produced
more cheaply and more quickly in the abstraction space. This is the reason for preferring to

consider abstractions.

In each space we have abstractions which record the effect of the use of the rewrite rule on
the concepts in the formula being rewritten. The currencies of a formula are the results of
mapping that formula under the abstraction mapping. Thus we have to design this mapping
to remember only the concepts that appear in the formula. Because there are two abstraction

mappings, the currencies of the formula are different in the two spaces.

The system will first make a plan using the abstractions with the least detail. That is, it
will plan to introduce atoms whose predicates are the same into the hypothesis and
conclusion. This plan will be only a sketch since much of the structure of the problem has
been ignored. However the amount of search that is required to make this sketch plan is very
small and can be carried out very quickly. The planner then considers the next level of
detail. Here the system has to consider the functions and polarities of the atoms. The
original plan may have to be amended in order to be applicable, and in the worst case it
must be rejected and a new plan created in the rl'mo.sspace. Assuming that the plan can be
suitably amended it is passed back to the problem space and executed to produce a new goal.

If the new goal is provable then it should be provable without recourse to further rewriting.

The actual strategy that is used to make the plan may be varied depending on various
features of the theory. In the remaining part of this chapter I describe gazing with a
particular strategy in view. This strategy, which I call SS1, has been devised by considering

set theory. Some of the heuristics that have been adopted in SSI may not be general. In

86

chapter 8, I describe extensions that might be made to the implementation which would allow
a user to specify the search strategy that is to be used to make the plan, or allow the
program to choose an appropriate search strategy dependent on the rewrite rules of the

theory.

Since the plan is constructed by considering abstractions there is the possibility that the
execution of the plan in the full space will fail. In section 4.4 I describe 3 ways in which the
plan can fail and show that techniques for recovering from failure are available within the

gazing technique.

The technique of gazing requires that the theory within which the prover is working has a
particular structure. This structure is very general and is described in the next section.
Then the formation of plans in each of the abstraction spaces is described. Plans are made
by finding chains of abstracted rewrite rules which achieve the aims of the gazing system in

that abstraction space.

4.3.1. Constructing a Theory

Gazing requires that the theory that is being developed is presented serially, rather like the
presentation of a theory in a textbook. Such presentations are usually rationally
reconstructed versions of mathematical activity, but the insistence on this mode of

presentation in gazing ensures that theories are well-structured.

As observed above definitions serve only as abbreviations of complex formulae, and we
must ensure two things about them. First, that they do not increase the number of things
that can be proved within the theory, and secondly, that they can always be eliminated in
favour of the primitive notions of the theory. In chapter 8 of [Suppes 57| these principles are

stated formally as follows:

e A formula a introducing a new symbol of a theory satisfies the
criterion of eliminability iff: whenever g is a formula in which the new symbol
occurs, then there is a formula + in which the new symbol does not occur such
that @ — (8 <) is derivable from the axioms and preceding definitions of the
theory.

e A formula o introducing a new symbol of a theory satisfies the
eriterion of non-ereativity iff: there is no formula 4 in which the new symbol
does not occur such that @ — 3 is derivable from the axioms and preceding
definitions of the theory but g is not so derivable.

A database of rewrite rules for use by a program implementing gazing is built by a program
called THEORY. In this program the conditions expressed above are enforced by requiring the

user to construct the theory in the following way:

87

1. The user must state initially, which of the predicates and function symbols in the
theory are to be undefined.

2. The definitional formula of a predicate or function may contain only previously
defined predicates and functions, or those which have been declared undefined.

THEORY can detect when a particular rewrite rule is a lemma by the fact that it contains no

undefined concepts.

These criteria do not allow THEORY to accept recursive definitions. I have carried out no
research on the question of whether gazing may be extended to deal with concepts which are

defined in such a way, but it is my belief that such an extension is possible.

These criteria alone are not sufficient to ensure the satisfaction of the properties above, but
some additional criteria, described in detail in [Suppes 57] are also used. These will not
concern us here. I will call 2 the ordering rule. Rule 1 is only necessary in order to allow
the ordering rule to be checked at each stage. The ordering rule has two effects; first it
ensures, along with other some other conditions, that the definitions that are stated obey the
eliminability criterion. Also it ensures that the definitions of the theory induce a partial

order on the concepts of the theory.

Definition 38: The input concepts of a rewrite rule o = 8 are those concepts
which appear in a.

Definition 39: The output concepts of a rewrite rule a = 4 are those concepts
which appear in 8

Definition 40: The definitional order, <, induced by the definitions of a
theory T, is defined as follows:

C, <pC, if C, is an output concept of the definition of c,

Definition 41: If a concept C has no other concept D such that D <,.C, then C
is unde fined.

The definitional order <r is a partial order. This is ensured by the fact that we insist that

any concept is defined only in terms of previously defined terms.

The partial ordering <, may be extended to a total ordering by arbitrarily choosing an

order between concepts not ordered by <.

Definition 42: The criticality ordering of T is a total ordering <, on the

concepts of the theory T. The criticality ordering may be defined arbitrarily
provided the following condition holds:

C, <;C, — C, €;C,

Definition 43: The criticality of a concept, C, is the number of concepts which
occur before C' in the criticality ordering

88

The intention of criticality is to capture the fact that some concepts are more complex, or
of higher level, than others. This notion is used to orient equivalences in both spaces, and

in the predicate space to guide the search.

Since the criticality ordering < is a total order, we can define maz-crit as follows.
Definition 44: If S is a set of concepts from the theory T, then

maz-crit(S)=C «~ YD € S(D % C — D<)

Formulae which involve high-level concepts are themselves high-level statements and so the
notion of criticality should be extended to formulae. To do this we have to consider briefly

the currencies used in the function/polarity space.

Definition 45: An f/p triple is the abstraction of aiatomic formula in the
function/polarity space. F/p triples are written (Major,Minor,Pol), where,

e Major is the predicate of the atom,

e Minor is the set of function symbols that occur in the arguments of the
L]
atom , and,

e Polarity is the polarity (definition 16 on page 18) with which the atom
occurs in the rewrite rule. This may be unspecified if the rule derives from
an equivalence.

Definition 48: The f/p-abstraction of a formula, F, is the set of f/p triples
which are abstractions of the atomic subformulae of F.

Definition 47: F/p triples are ordered by the ordering < which is defined by:

< B, F,Pol > <5< Py Fyy Pol,> + |
maz-crit(P| U F,) € maz-crit(P,UF,)

This order extends to sets of f/p triples, where a set of triples is greater than another if the
maximum of the triples in the first set is greater than the maximum of the triples in the

second.

Definition 48: If the currency set of a formula is larger than the currency set of
another formula, then the first formula is said to be of higher criticality.

The notion of criticality gives the gazing system the power to orient automatically the
rewrite rules in its database. We need to ensure that the rewrite rules always rewrite
formulae to simpler formulae, i.e. formulae with lower criticality. If we can do this then the
possibility of infinite rewriting will not occur, since the order <r is bounded by the
undefined concepts of the theory. Any sequence of rewriting steps has to terminate with a

rewriting to the simplest concepts of the theory. The use of predicate definitions in PROVER

=
Functions of arity 0 (constants) are not included in this set.

89

ensured that this was true for such rewrite rules, but in the context of gazing we seek to
control the use of all rewrite rules. We have therefore, to orient all equivalences so that the

criticality measure decreases when they are used.

Before considering the orientation of equivalences in general, I consider a special class of

equivalences, the null equivalences.

Definition 49: A null equivalence at a particular level of abstraction is one
which has identical left- and right-hand sides at that level of abstraction.

Notice that an equivalence may be null at one level of abstraction, but not at another.
This is because, at one level of abstraction the differences between the input and output sides
of the rule are not represented, where at less abstract level, those differences are retained.

For example (iv) is a null equivalence at the predicate level, but not at the {/p level.

zN(yNz) == (zNy)Nz (iv)

If an equivalence is null at some level of abstraction then it is not included in the database
for this level. This is because the equivalence could not possibly be of any use at this level of
abstraction. The rewrite rules that derive from equivalences are used to exchange concepts

for other concepts of the theory, and these equivalences do not have this effect.

The orientation of a non-null equivalence @ <« # is made so that the criticality of the
output formula is less than that of the input formula. Since criticality of formulae is a total

order, this definition will ensure a unique orientation for all non-null equivalences.

It is a corollary of this rule that all definitions will be oriented to eliminate the defined

term.

The assumption underlying the orientation rule is that the rewrite rules will be used for
forward-chaining and so the application of a rule oriented by these rules will cause a decrease
in the criticality of the formula. If a rewrite rule is stated as an implication then there is no
choice as to its orientation, but we do have a choice as to whether to use the rule to
back-chain or forward-chain. We use the rule to back-chain if the consequent of the
implication has higher criticality than the antecedent, otherwise we use the rule to

forward-chain.

4.3.2. The Predicate Space

In the predicate abstraction space the only things that the system is concerned with are the
predicates in the goal. Thus the rewrite rules are represented as two sets of predicates: the

input and output predicates of the rule.

For example, (v) and (vi) are abstracted to (x) and (xi) respectively.

=x.=‘9='V1-z€.x.‘-'l€j (v)
:u=j=raa§)/\j§aa. (vi)
{=} ={€} (=)
{=}={S} (xi)

The goal that is to be proved is similarly abstracted to be two sets of predicates, the set of

goal predicates, and the set of hypothesis predicates. For example, (P) is abstracted to (Q).
tCyAyCz - zC:z (P

{S} ' {S} (%)

The result of deduction in this space is a plan which, when executed, will rewrite a goal to a

new goal in which the same predicate appears in both the hypothesis and conclusion.

< can be represented in a structure that I call the definitional gaze graph.

Definition 50: The definitional gaze graph of a theory T is a directed graph
where each node in the graph is labelled with a predicate from T. Arcs exist in the
graph from a node labelled by a predicate P to all of the nodes labelled by the
output predicates of the definition of P.

For example, consider the theory made up of the definitions (v), (i), and (xii). The

definitional gaze graph of this theory is shown in figure 4-1.

x=y=Vzze€x- 2€y (v)
xgj=>vz.xea.—-z.e; (¥)
rCy=rzCyA-(z=y) (zi1)

e\i

Figure 4-1: An Example Definitional Gaze Graph

91

The definitional gaze graph is extended to a full gaze graph by including arcs deriving from

lemmas of the theory to the structure.

Definition 51: The full gaze graph for theory T is a directed graph where each
node in the graph is labelled with a predicate from T. Arecs exist in the graph
from a group of predicates P, to a group of predicates QJ. iff there is a rewrite rule

in T, which has input predicates P. and output predicates Q,‘

Notice that, because rewrite rules derived from lemmas may have more than one predicate
in the input side, the structure of the full gaze graph of the theory may become very
complex. For example the rewrite rule (xiii) has arcs from the nodes labelled by € and C,

to the nodes labelled € and =.

ze,/\acz= zez/\(,%z (ziet)

Facts introduced late in the development of the theory are very high-level, but they often
mention low-level concepts. We wish to indicate that such facts are ‘“‘about’ the high-level
concepts, and is not to be used as a means to rewrite the low-level concepts. For example
(xiv) is primarily concerned with the concepts of Open-Cover and Compactness. The formula
mentions the concepts € and Finite in addition to these, but we understand these to play a

secondary role in the formula.

Compact(s,t) & (z1v)
Y 0. Open-Cover(o,s,t) —
3z (Finite(z) A 2 € o A Open-Cover(z,s,t))

This intuition is captured by distinguishing the predicate in the input side with highest
criticality.

Definition 52: The primary predicate of a formula is the predicate with the
highest criticality in the formula. The remaining predicates are the secondary
predicates of the formula.

The problem of finding a plan in the predicate abstraction space can be thought of in two
different ways. Here we consider the problem as the search for paths through the gaze graph.
The alternative view is as a search for a proof in a simple logical system, a discussion of
which can be found on page 95. The key idea however is the same, we wish to rewrite two

predicates to a common currency.

It should be clear that planning in the predicate abstraction space and peeking have a lot in
common. In fact, the search in the predicate abstraction space is a generalization of peeking.
In peeking only the single application of one predicate definition to the hypothesis was
considered. In gazing, rewriting using a sequence of rules is considered, and both the

conclusion or the hypothesis may be rewritten.

92
4.3.2.1. Planning: Paths Through the Gase Graph

First of all recall that the goal in this space is to prove an abstracted sequent, which
consists of two sets of predicates, the goal set, and the hypothesis set. Since we have
abstracted away the connectives of the formulae that are involved in the proof, we have to
make a decision about what we will consider these sets to represent. We can deduce some
information from the inference rules of the system. Since gazing is being attempted after the
application of all other rules have failed, none of the conditions of the other rules are met.
For RUT this means that the conclusion of the sequent is a disjunction of atomic formulae,
and that the hypothesis is a conjunction in which each conjunct is either an atomic formula
or an implication. This can easily be checked by considering figures 3-1 and 3-2 on pages 71

and 72.

In 551, the simplifying assumption that the conclusion set is a set of disjuncts and the
hypothesis a set of conjuncts is made. That is, the possibility of implications in the
hypotheses will be ignored. This means that we can choose any predicate from the conclusion
set to prove, and we can use all of the predicates in the hypothesis set. Each rewrite rule is
thought of as requiring all of the predicates in the input set to be present in the set to be
rewritten. The assumption is that the predicates are conjoined in the full space. If the rule
may be applied, all of the predicates which appear in the output set of the rule are added to
the rewritten set. These assumptions may lead to a plan that does not apply, since in the
final analysis these assumptions may be false. As observed above, this is an inherent
limitation of the abstraction space technique. The trade-off is that plans may be made very

quickly in the abstraction space.

The first notion that is needed to describe the task of introducing a common currency is

that of a P—Q path in a gaze graph.

Definition 53: A P-Q path in G is a sequence of arcs Al, e ,An from gaze
graph G which obey the following rules:

1. The primary predicate of the input of A is P,
2. The primary predicate of the output of An is @, and,

3. The primary predicate of the output of each A; is the primary predicate of
the input of A pfor1<i < n,

The intuition behind this definition is that a predicate may be rewritten using some arc in
the graph, the result will be a set of predicates which can themselves be rewritten. To

restrict the search, the primary predicate of the output of the rule is the next to be rewritten.

The definition of P—@ path ignores the secondary inputs of the rules. Clearly this would

93

lead to the formation of plans which could not be executed, so the definition needs to be
refined. The idea of a P-/1-Q path is that at each step the secondary inputs must be present
before the path may be followed. For the first step, the secondary inputs must already be
present in the set to be rewritten. For subsequent steps however, the secondary inputs may

derive from the original set, or have been introduced by the previous application of a rule.

Definition 54:

A P-I1-Q path in G is a P-Q path in G, such that,
1. P € I, and,

2.For each A in the path, the secondary inputs of A, occur in
HUOI,U - ,UO'._l,where O_,‘ is the output of A_,'

The definition of a P-II-Q path enforces the following heuristics about the use of rewrite

rules.

1. Suppose the gaze graph includes a lemma L, with primary predicate I, and a set
of secondary predicates S, and that we are seeking a path from [/ to some other
predicate. We can consider using L iff every member of S already appears in the
abstracted goal.

2. Suppose we are searching for a path from predicate A to some other predicate,
and that the gaze graph contains a lemma L, with some input predicate and a set
of secondary predicates which has A as a member. L is not a valid member of the
path.

Heuristic 1 insists that the secondary inputs are present in the goal. This is a way of
limiting the search for a plan. If we allowed the prover to construct subplans to introduce
these secondary inputs, the planning could quickly get out of control. This also specifies that
the rewrite rule that is being used “fits’’ in the sense that it is immediately applicable. For
example, suppose that Open-Cover is the predicate with highest criticality in the input side of
(xv). This rule could be used to rewrite a formula involving Open-Cover only if the other

predicates {Finite, € ,C ,Open-Cover} were immediately present in the formula.

Heuristic 2 enforces the notion that a rewrite rule is “about” the predicate with highest
criticality. The idea is to forbid the use of a rewrite rule as a means for rewriting a predicate
P, if there is a predicate with higher criticality in the input of the rule. This prevents, for
example, the use of (xv) to rewrite anatom involving €, even when all of the other predicates
are present in the formula to be rewritten. It is my contention that this heuristic has great
intuitive appeal. In addition to limiting the search space for gazing, it allows the prover to
consider only those rules in which the concept being rewritten plays an important role in the

input of the rewrite rule.

94

V 0.(Open-Cover{o,s,t) — 3z. (Finite(z) A 2 g 0 A Open-Cover(z,s,t))) (zv)
= Compact(s,t)

Both of these heuristics render the gazing technique incomplete, but restrict the search that
may be carried out in the attempt to construct the proof. This is in much the same spirit as
the arguments about completeness of general theorem provers (see page 17). They are
adopted in order that the search for the proof of non-theorems terminates quickly, rather
than wasting large amounts of resources. This is at the expense of the inability to prove

some theorems.

An alternative to heuristic 1, would be to allow the planner to construct plans which will
introduce any missing subsidiary inputs of the rule. Such an approach would allow the
prover to consider applying many rules which are inappropriate, in the sense that the
subsidiary inputs may never be introduced, and expend possibly a great deal of resources in
trying to make the rule “fit’’. Another possible approach would be to have the prover
attempt rules which fit most closely first, and then revert to less obviously appropriate rules
later. Again, however, the amount of resources used in the attempted proof of non-theorems
may be very large. I prefer that the prover is incomplete, and that when it fails to prove a

conjecture it does so without a large investment of resources in the attempt.

Construction of the plan to introduce a common currency into a goal H }—? C, is exactly
the task of selecting P, € Hand P € C and then finding a P,—H-Q path in G, and a
PC—C—Q path in G for some @. In SS1 we choose P.: and Ph to be the primary predicates
of the conclusion and hypothesis respectively. The justification for this is that the goal is
““about” the concept with the highest criticalities, and that these should be taken as the

starting point of the proof.

The common predicate @ could be one of Pc or Ph’ in which case one of the paths will be
empty. This corresponds to rewriting one of the predicates in terms of the other, and is quite
desirable. Best of all is that a common predicate already exists between the hypothesis and
goal. In this case the paths are both empty. This situation would arise, for example, when

considering (O), where even appears in both the hypothesis and conclusion sets of predicates.

Even(z) A Even(y) ' FEven(z +y) (0)

To return to our examples of earlier this chapter consider the gaze graph 4-1. When asked
to prove (N) the system will find that there is one path from the node labelled by = to the

node labelled C, and that this path represents an application of the rewrite rule (vi).

95

a=b | z€a—z€b (M)
a=b ' aChb (N)
x,=3——->V.1.1€x.-—-z€_oj (v)
X=y=xCyAryCx (vr)
XCy=VILEX~2EY (¥)

Similarly when asked to prove (M) the system will search for a path from the node labelled
by = to the node labelled by € and will find two paths, of which the shortest represents the
application of rewrite rule (v). The other path - representing an application of (vi) followed

by an application of (i) - will not be selected unless the first is rejected at a later stage.

4.3.2.2. Planning: Proofs in Propositional Logic

The problem of finding a plan in the predicate abstraction space can also be construed as
finding a proof in propositional logic.

Definition 55: Propositional logic is the subset of the first order predicate
calculus which admits only predicates of arity 0.

Definition 58: An atomic formula in propositional logic is called a proposition.

The propositions of the abstract system are the predicates of the full space, and the
hypotheses of the proof are the set of hypothesis predicates, and the set of abstractions of
rewrite rules. The goal of the proof is the predicate of the conclusion atom. For example, if
the conclusion predicate is €, the hypothesis predicate is =, and the theory is (v), (vi) and

(i). Then the axioms of the proof system are:

4
I

J

J
N |
< < KL
mIiN m

and the desired conclusion is €.

Unlike the predicate calculus, propositional logic is decidable. That is, there are decision
procedures which will determine whether any statement of propositional logic is a theorem or
non-theorem. We can use such a procedure to prove any theorem of this system. Resolution,
described in chapter 1, is a decision procedure for propositional logic, and is particularly
appropriate, since the axioms are in a normal form. Remember that the input and output
side of the rewrite rules are both considered to be conjunctive in this space. Two resolution

proofs of € from the axioms above would be as in figures 4-2 and 4-3.

\6/ B
_L/

Figure 4-2: First Resolution Proof of Path from = to €

Figure 4-3: Second Resolution Proof of Path from = to €

Extracting the plan from these resolution proofs is not difficult. The steps that are to be
applied are represented by the implications which are resolved against. The order in which
these rules are to be applied in the plan is exactly the order in which the resolutions take
place. To ensure that a unique ordering may be extracted from the plan, the linear input
strategy (described in chapter 1, on page 26) may be used. Should the result of a resolution
contain more than one literal, a particular literal from that set should be chosen. This

should be the literal representing the primary predicate of that set.

4.3.3. Planning in the Function/Polarity Space

When a plan has been constructed in the predicate abstraction space, it is passed to the
function/polarity space. The planner has to check that the plan can be applied when
considering the extra detail of this space. Each planned step is examined in turn in the
context of the abstraction of the current goal. There are two things that are considered here

which were not in the predicate space:

e Polarity, and,

e Function Symbols.

The function symbols present in the goal and rewrite rules must be considered when
planning the rewritings to be carried out, since they may only be exchanged by means of
rewrite rules. We saw in section 4.2.2 (page 81), that one of the drawbacks of the peeking

technique is that it does not consider functions in planning rewriting.

The polarity part of the f/p triple is used to protect the system from performing rewriting

steps which rewrite a provable conjecture into one which cannot be proved. Recall the

97

definition of polarity from cha.pi;er 1, definition 16. The polarity of a formula records the
role that the formula plays in the conjecture. A subformula with polarity + is a conclusion
of the goal, that is, the formula must be shown true before using it. A formula with negative
polarity, on the other hand, may be assumed for use in the proof and so is considered to be a

hypothesis. Consider (R) and the rewrite rule (xvi).

a=1», }—? aChb (R)
L=j=x§3 (zv1)

The goal (R) is provable from the definitions of set theory, but if (xvi) were used to rewrite
the hypothesis the resulting goal would not be provable. This is because (xvi) derives from
an implication, and using it to rewrite a hypothesis causes the hypothesis to be weakened.

On the other hand the use of (xvi) to rewrite the conclusion of (S) does not have this effect.

aChb ' a=b (S)

In general we can weaken the conclusion of a goal as we please since it is impossible to
transform a provable goal into one which is not provable by this type of step. We can
capture this intuition by considering the polarity of the formulae in the conjecture. As
remarked above hypotheses are negative and conclusions are positive. The polarities of (R)

and (xvi) are given as superscripts in (T) and (xvii) respectively.
a="b ' bC*a (7

= “"5 =xCy (zvit)

Notice that the rewrite rule has been treated as a hypothesis in assigning polarities, as the
database plays the role of storing implicit hypothesis. The irreversibility of weakening
hypotheses or strengthening conclusions can be expressed by disallowing the use of a rewrite

rule on a formulae when this would involve matching formulae of opposite polarities.

The definition of polarity does not allow the assignment of a unique polarity to the
subformulae of equivalences. This is because the equivalence may be considered as an
abbreviation for two implications, with each subformulae appearing with opposite polarity in
each implication. Rewrite rules derived from equivalences may be used to rewrite formulae of
either polarity since the rewriting step may use either of the implications that the equivalence
represents, and one of these implications may match. This is equivalent to selecting one of
the implications that the equivalence abbreviates. Thus the problem of polarity did not arise
for the peeking technique, since it was used only to control the use of predicate definitions,

which are necessarily equivalences.

An additional effect of considering polarity at this level of abstraction is that the number of

98

possible causes of connective structure failure (see section 4.4.2.1 on page 107) are lessened.
When connective structure failure occurs, a connective in the rewrite rule does not match the
connective in the formula to be rewritten. This occurs, for example, when attempting to
match A A B against A — B. This difference in connective can be detected by considering
the polarity, but the clash between A v B and A A B cannot, since A and B have the same
polarity in A V B, but opposite polarity in A — B.

Both the polarity and the function symbols can cause a planned step to be reconsidered or
amended. Formulae are represented at this level of abstraction by f/p triples as already

defined. Rewrite rules are represented by triple exchanges.
Definition 57: A triple exchange is the abstraction of a rewrite rule.

Definition 58: The f/p abstraction of the input side of a rewrite rule is called
the tnput set of the rule

Definition 59: The {/p abstraction of the output side of a rewrite rule is called
the output set of the rule

Examples: The rewrite rules (xviii) and (xx) have the triple exchanges (xix) and (xxi)

respectively.
re=zCy (zviid)
{(e, {2}, Pl) } = { (S, {}, —Pol) } (ziz)
TEYy-22TEYA-TEz (22)
{(e€,{-}, Pl)}={(€,{} Pol), (€, {} —Pol)} (zz1)

Suppose that the plan made in the predicate space requires that the predicate P be
rewritten, using some rewrite rule, to predicate Q. In this abstraction space, we will have one
or more {/p triples (P, F, Pol) . This is the abstraction of the atom which was abstracted to
P in the predicate space. The abstraction of the rewrite rule will be of the form
In = QOut where In is a set of f/p triples, of which (P, F' ,Poll) is a member and Out is a
set of f/p triples of which (@, G, Pol2) is a member.

It is necessary to record the predicate of the atom in the corresponding triple despite the
plan created in the predicate space. This is because some triple exchanges are effective only
within the context of a particular major part, for example, if we have a rewrite rule which
rewrites € aN b, then it is not enough to have the function symbol N present, but it must
appear in the second argument of an atom with predicate €. The triples do not record
which argument position the function occur in, but recording the predicate may eliminate

triple exchanges from consideration when attempting to perform the rewriting step.

99

Planning for Polarities

In the f/p space the polarity part of a triple will be one of {+, —, Pol, —Pol}. The polarity
Pol is used to indicate an unspecified polarity when the exchange arises from an equivalence.
All equivalences will contain the polarity Pol which denotes that the polarity of the formula
is not defined. All occurrences in different equivalences are independent. That is, if a
decision is made about the use of a particular equivalence that requires Pol to be, say, + for
that equivalence, this does not effect the value of Pol in any other equivalence. —Pol merely
denotes the opposite polarity to Pol. Consider the rewrite rule (xxii) and its associated triple
exchange (xxiii).

gCyazCyA-(z=yA~-(z=0) (zzit)

{ (C, {}r PO!) }ﬁ { (g! {}’ _POI>! {=l {}: PO!) } (zx"ﬁ}

When (xxiii) is applied to (C, {}, +) the result is { (C, {}, +), (=, {}, =) }, Notice
that Pol has been given the value -, from the match because for (xxiii) to apply the
corresponding triples must have opposite polarities. This constraint has to be propagated
through the resulting currencies, and so Pol in the output side of the f/p exchange has been

replaced by —.

Assigning an unspecified polarity to a value dependent on the polarity of the triple it is
matched against is equivalent to choosing to use one of the implications that the equivalence

represents.

The constraint that the polarities of matched formulae be complementary cannot be
considered in the predicate space. This can lead to plans which require the application of a
rewrite rule which when the polarity is considered cannot be applied. Only in the f/p space

can such a plan be rejected or amended.

The first step in checking a step of the plan in the {/p space is to consider the polarities of
the members of the triple exchange and conjecture. If each member of the triple exchange
has a partner in the conjecture which has the same predicate, and opposite polarity then the
step is accepted on the grounds of polarity. If there are variable polarities in the conjecture
or triple exchange, then these may be assigned values where necessary, or left variable if

possible. This latter case is preferable since this solution is less constraining.

The step may be rejected if there is some member of the triple exchange which has no
corresponding triple in the goal. Since the reason for the step is known (the step must have
had the effect of exchanging some predicate for another), another step is found which will

have the same effect if possible. SSI fails to find a plan if no replacement step may be

100

found, but this is not necessary - a more persistent planner may persevere with this step if
there is no replacement. Recall from the discussion above, that the polarity constraint was
designed to avoid the weakening of a hypothesis to produce an unprovable goal from one
which was provable. If there is no alternative, then this should be tried. The result may be
a provable goal, but we have no guarantee of that. The heuristic is, in general, that we wish
to be assured that we are not destroying our chances of proving the goal, but if there is no

other option then we can perform such ‘‘risky’’ steps.

Planning for Function Symbols

The remaining feature of the f/p space which is not available for inspection at the predicate
level is the set of function symbols, recorded in the minor part of the triples. Two triples are
said to match in the f/p space if they have the same major and minor parts, and
complementary polarities. To apply a triple exchange to an abstracted formula we have to
ensure that each triple in the input side of the exchange can be matched in this way to some

member of the goal.

In SS1 we insist that the secondary inputs of the exchange have partners in the goal
without expending any effort to introduce them. However the system is prepared to invest
some effort to introduce a partner for the primary input of the triple. The system matches
the secondary inputs; if they cannot be matched then the step is rejected and a new step
found which will have the same effect. If they do all match, then that task is to match the
primary input triple. The best case is when the primary triple of the input set of the
exchange has an matching triple in the goal. Then the output set of the rewrite rule is added
to the goal to be proved and the step is accepted by the {/p planner. If the step was
originally planned to introduce the predicate @ into the goal, then the triple which has @ as

its major part is distinguished in the new goal.

Suppose that there is no matching triple in the goal to be rewritten. We are guaranteed by
the predicate space that there is a triple with the same major part, and by the polarity
matcher that this has the opposite polarity, so the difference must be in the members of the

minor parts of the triples.

One simple case is that the minor part of the triple in the goal is a superset of those which
appear in the exchange. In this case the step is accepted, and the extra functions which

appear in the goal, are carried into the output set of the exchange.

Example: Suppose that (xxiv) is the formula to be rewritten, and (xxvi) the rewrite rule
whose use has been planned to move from predicate P to predicate Q. The abstractions are

(xxv) and (xxvii).

101

P(z,/lv).9(2)) A R(y,2) (2ziv)
{(P,{fig}, +). (R, {}, +) } (zzv)

P(z,fly),z) = Q(z,z) A S(y) (zzvi)
(B =))={(e {}L+) (S5 {}+)} (zzvii)

There are no secondary inputs to the rewrite rule, and there are triples with the same
predicate and complementary polarities. However the minor parts of the triples involving P
are not the same, the triple in the formula is a superset of that in the triple exchange.
Clearly the rewrite rule is applicable in this case, the question is where in the output of the
triple exchange g appears. Any decision that is made here has to be arbitrary, since in the
abstraction space we do not have the details of the variables of the full space, we cannot say
where the extra function will appear. In SSI we assume that such extra function symbols
will appear in the minor part of the primary triple of the exchange, so that the output of the
rewrite rule in this example will be { (Q, {g}, +), (S, {}, +) }.

For the example above, this is the correct choice, but this is merely coincidental. Had the
variable z appeared in the S atom of the output of the rewrite rule and not in the @ atom,
then the choice would be wrong. The justification for this heuristic is that it is a ‘“worst
case’’ assumption. This is so since a triple involving @ will be the primary triple of the next

step, and the problems that g will cause if any will arise in this step.

This assumption may result in the plan either,

1. containing steps which are not eventually necessary, or,

2. not being executable.

Case 1 can arise when later in the plan we seek to eliminate the extra function from its

assumed location. If it is not in fact there, then these steps will be unnecessary.

Case 2 arises when a later step requires the function symbol to appear in this location, but
that when the plan is executed, the function appears somewhere else. Then the execution of

the plan will fail.

In either case the failure cannot be detected at the time the planner is working in the f/p
abstraction space, and so we leave it to the program which executes the plan to deal with

these causes of failure (see section 4.4.2.1 on page 107).

The worst case for the f/p planner is when there are function symbols in the primary triple

of the input of the rewrite rule which are not present in the corresponding triple in the

102

formula. In this case the system has to find a sequence of rewrite rules which will exchange
the set of function symbols in the goal triple for those in the exchange triple. If such a
sequence can be found then these steps are added into the plan before the step that is being
checked.

The system has the heuristic that it should not alter the major part of the triples to be
matched in making the minor parts the same. This is because the predicate space plan is
designed to make the predicates the same, and if the [/p planner introduces steps to alter the
major part then the plan may no longer apply. However, if this heuristic cannot be obeyed
the system will move to another major part if it can also find a rewrite rule which does not
alter the minor part, and returns the major part to what it was before. Finally, if the minor
parts can still not be corrected, then the system will attempt to find an exchange which
would help to exchange the functions, but that requires a different major part. If such can be
found, then the system will try to find a sequence of subgoals to move to this new major

part.

Example: The rewrite rule (xviii) has the effect of exchanging (€, {2}, Pol) for
<gs {}r ""POI)

r€W=zCy (zviid)

If this is the only rule that the system has to eliminate the function 2, then it must be used.
The planner will then attempt to find a plan which will rewrite (C, {}, —Pol) to
(€, {}, Pol). The definition of C will do this, so these two steps will be added to the plan,

in order to eliminate the function 2 within the major part, €.
Example: goal (U) has [/p triples:

{((S, {n}-) (S, {},+)}
aCanbd ' aChb ()

The minor parts of the triples cannot be made the same by any of the exchanges that have
been given. The system notices that the only undesirable difference between the two triples is
the function N. It further notes that there is no exchange which will eliminate this symbol
while the major part is C, but that the triple exchange associated with (iv) would eliminate

this if the major part were €.

TEYNL=TEYATER (iv)

{(E,{ﬂ},POf)}:{(E,{},—POI)} (zzm‘iﬂ

103

The program then has to find a exchange that will exchange C for €. (i) will do this.
The plan that results from this search then is the application of (i), followed by the

application of (iv).

In the predicate space the goal was to produce the same predicate as a conclusion and as a
hypothesis, similarly, in the function/polarity space the goal is to introduce triples with the
same major and minor parts, but with complementary polarities. When all of the steps in
the plan have been approved or amended by the function/polarity space planner it remains to
check that there is such a pair of triples in the abstracted goal. If there is, then the plan has
succeeded - at least as far as this level of detail is concerned. If on the other hand, there is
no such pair then there is still more work to be done. We are guaranteed that there will be
two currencies with the same major part (by the predicate space plan); all that remains is to
correct the minor parts by introducing or eliminating elements of the minor parts by using
further exchanges within that major part. A good example of this is (U) above. Since the
predicates of the hypothesis and conclusion are both the same, the predicate space planner
will produce empty plans to be executed. In the f/p space these plans are accepted and only

then does the planner consider matching the hypothesis and conclusion in this space.

4.4. Execution and Recovery From Failure in the Full
Space

When the plan is complete it must be executed in the problem space. This involves
applying each of the rewrite rules in turn to the given goal. Since the plan was created by
virtue of abstractions from the actual rewrite rules there is the possibility that some rule will

fail to apply. The following are common causes of failure:

e The Permuted Arguments Problem: There is unification failure resulting from
functions occurring in different argument places than those required by the rule.

e The Shielding Function Problem: The concepts appear in the right argument
place, but the internal structure of the argument is incorrect for the application of
the rule.

e Connective Structure Failure: There is a difference in connective structure
between the formula to be rewritten and the input of the rewrite rule.

e Plan Assumption Problem: An assumption about the location of a function
symbol has been made in the course of planning, and the function does not appear
in that location.

When any of these problems arise it is necessary to make an analysis of the arguments and
connectives of the formulae, since it must be these features of the goal that cause the plan to

fail.

104

In the following subsections I suggest some techniques to deal with these types of failure’
As with all the problems that were discussed in relation to the previous abstraction spaces,
these problems can cause the plan to fail irreparably. Quite simply, it may be impossible to
apply the step as anticipated. In such a case it is necessary to attempt to replan. Some

degree of failure is inevitable as a result of using abstraction spaces in which to plan.

In general it is the currency exchanges which have no effect at one level of abstraction
which are the most useful at the next level up. These are the null currency exchanges. This
is because the planner has spent some time planning to get a particular currency into the goal
to achieve some result. In the f/p space there was a preference for triple exchanges which
altered the minor part of a triple without altering the major part (predicate). These
exchanges are just the null exchanges of the predicate space. Since the predicate plan has
introduced identical predicates, we do not want to use exchanges which alter them in the f/p
space, unless it is impossible to construct a plan otherwise. The use of the null triple
exchanges in the full space follows this pattern and is a powerful tool for fixing both the

shielding function and permuted argument problems.

Null currency exchanges are never considered in the abstraction space to which they belong.
This is because currency exchanges are chosen on the basis of their effect on the goal to be
proved. The planner will never include a step that has no effect as far as that abstraction
space is concerned. No mechanism is required to ensure that these exchanges are not
considered, it happens as a consequence of the method of planning, and of the view of rewrite
rules as having effects. For this reason, the problems that are associated with, for example,

commutativity and 3yrf?n]=2-Lnlf axioms are competely sidestepped in gazing.

4.4.1. The Permuted Arguments Problem

The permuted arguments problem is the name given to failure caused by arguments not
being in the “‘right” positions for the execution of a planned step. This arises in the use of
gazing because there is no record kept of the argument positions in the abstraction spaces.
Thus the system might try to apply the rule ane=b= C to the atom b=anec. The
abstractions of the input side of the rule and formula to be rewritten are the same in the
abstraction space, so the step appears to be appropriate. This problem can be tackled by
considering the null currency exchanges of the f/p space. In particular, null currency
exchanges in this space arise from facts in the theory which assert for example: symmetry or
transitivity of predicates or commutativity or associativity of functions. If null currency
exchanges exist for the currency under consideration, it is necessary for the system to
determine whether the rewrite rule of which it is an abstraction “‘says the right thing” about

the concept involved. In this case it is symmetricity that is required of the predicate =. The

* ¥ + ot

Each of these techniques may be used to solve failure due to one of the above causes. However, it is difficult to
apply these techniques when these problems occur in combination. The solution to this problem requires more
research.

105

user of the VOYEUR system is allowed to state metafacts about the predicates and functions of

the theory (Eg = is symmetric), and then have the system use these in this way.

Associativity and commutativity present problems for traditional theorem provers which
have been circumvented by the approach adopted in gazing. In particular adding the axioms
to a theorem prover is disastrous unless great care is taken. The problem is that the output
of, for example, the commutativity rule is a term of exactly the same form as the input, and
the commutativity rule may then be applied again. Of course, repeated application of such a
rule is pointless, and should be avoided - at best the prover does redundant work, and at

worst loops infinitely.

One approach to solving this problem is to adopt a canonical form for terms and require
the prover to rewrite all terms into this canonical form. For example, a canonical-form for
the associative and commutative operator +, might be left associative, with the arguments in
alphabetical order. In such a scheme, ((((a +b6)+c)+c)+e) is the canonical-form of

(c+a)+ (b+(e+¢)).

Thus the associative and commutative axiom are only used on terms which are not in
canonical form, and they are used repeatedly on such terms. When matching two terms in
canonical form the properties of the operator can be ignored. There are two objections to
this solution to the problem. The first is the difficulty of defining the canonical form. The
chief constraint on the canonical form is that any two terms that are unifiable when
considering associativity and commutativity have unifiable canonical forms. In some cases
the definition of an appropriate canonical form can be non-trivial. A more important
consideration is that, since it is not possible to determine in advance which terms are going to
require canonicalization, all terms appearing in the proof have to be rewritten. In particular,
if two canonical terms unify with a substitution 6, the result of applying 6 to the terms need
not be another canonical term. Thus it is necessary to canonicalize all terms that are derived
in the course of the proof, as well a those used in the statement of the conjecture. In proofs
involving many complex terms, this may involve a significant amount of work, much of

which may be redundant.

Another approach to the problem of commutativity and associativity is to build knowledge
of the properties of the operators into the unification routine. Thus to build in
commutativity we alter the unification routine so that it will unify aeb with bea if e is
commutative, and not if otherwise. Similarly we allow (aeb)ec unify with ae(bec),
whenever e is associative. There are two problems with this approach. The first is that
when given complex terms, the number of possible ways in which the unification must be

attempted grows rapidly. More importantly, the unification algorithm can no longer produce

106

a single most general unifier of any two terms. To see this consider the terms (z+y)+a
and a+(b+2z). The substitutions: {b\z,z\y} and {b\y,z\z} are both unifying
substitutions, neither of which is more general than the other. The consequence of building
knowledge of these properties into the unification algorithm, is that the algorithm becomes

very complex and thus very slow to execute.

«

The advantage of the approach implemented as part of gazing is that knowledge of the
properties of the operators has been built into the system, and thus the axioms expressing the
properties are not added to the theory, but at the same time the penalty of adding this
knowledge to the unification routine has been avoided. The only time this knowledge is
invoked, is when the proof has almost gone through, and it is worth the effort to check that

manipulating the arguments will lead to a proof.

4.4.2. Shielding Functions Problem

The shielding functions problem occurs when the rule which we are attempting to apply
does not match the formula which we are attempting to rewrite because there is a function
symbol preventing unification. For example, suppose we have the formula
z € complement(aNb) which we are attempting to rewrite with the rule z € anb = A.
Clearly this will not apply because of the presence of the set complementation function. This

situation can arise in the gazing technique in two ways:

e when the function symbol appears in both of the currencies which are to be
connected, and thus the planner has not considered this function symbol.

e when the function symbol is specifically eliminated in a later step of the plan.

For an example of the first kind of failure consider the goal (V):

z € complement(a N b) =t W)
z € complement(a) U complement(b)

In the function/polarity space the currencies of the goal are

(€, {complement, N}, —)and(€, {complement, U }, +).

The planner notes that the difference between the minor parts is only the occurrences of the
functions N,U. The planner should plan to eliminate these functions. When the system
comes to apply the step to eliminate the function N it will fail because of the occurrence of

the complement symbol.

In both cases the problem arises because in the gazing technique the occurrences of

functions in the term structure are flattened into a set. The problems can be dealt with some

107

further analysis of the concepts and exchanges of the theory. In the case where the pl-sn is
badly ordered it is a trivial action to reorder the plan to bring the elimination step forward
to be executed immediately. However, if no such step already exists in the plan, it is
necessary to find a rule in the theory which will effect the elimination of the shielding
function. This can be done in exactly the same way as if the need to eliminate the function
had been detected in the process of constructing the plan. The system should note that in the
case where the function occurs on both sides of the turnstile, but has to be eliminated from
one of its occurrences, the other occurrence should simultaneously be eliminated in order to

keep the currencies the same.

4.4.2.1. Connective Structure Failure

Because the connectives are ignored by the abstraction space planners, it is possible that a
given rule in the plan will not be applicable to the formula that it is meant to rewrite,
Consider attempting to rewrite the formula A A B with the rule A v B = C. This situation
might legitimately arise as a step in the gazing plan, since the only thing that is considered in

making the plan is the presence of the concepts A and B in both the formula and the rule.

This is a problem of logic. Whether it is possible to apply the rule depends only on the
connectives present. For example, in the situation above it is quite legitimate to apply the
rule to deduce C. This is because the formula A Vv B is a logical consequence of the formula
A A B. Similarly we might recognize that a rule which has as input Y — Z would validly
apply to the formula =YV Z. The use of a few inference rules of this type would enable the

prover to patch faulty plans in some cases.

Solving the connective structure problem is the only use for logical inference within the
gazing technique. However the rule set of the theorem prover is not available to solve this
problem, just a small set of carefully selected rules which alter connectives. Thus the “logic
before theory’” heuristic of page 78 has not been violated. This heuristic says that the logical
rules of the theorem prover are not allowed to intervene once the planning of database
inferences has begun. The rules available to solve the connective structure problem are useful

only in this specific context.

The number of cases that can arise to cause the connective structure problem is quite small,
this is because the polarity of corresponding formulae are checked in the function/polarity
space. This causes many of the possible clashes between pairs of connectives to be ruled out
at this level. It is possible, in principle, to supply rules for each of the remaining cases which
determine whether it is possible to complete the application of the rewrite rule, but this has
not been done in the implementation. In the extreme case a theorem prover could be used to
deduce the input side of the rewrite rule from the formula to be rewritten. However this

approach reintroduces the full theorem proving problem. If the

108

rewrite rule may not be applied to a particular formula it is necessary to find a replacement
step for the failed rewrite rule. Since the failed step was to be used for a particular reason
the planner may be guided to find a replacement rule which has the same effect on the
sequent to be proved. The connective structure failure problem, like the other problems
considered in this section, could be dealt with at the abstraction level with a suitably defined
abstraction space. However, I have preferred to allow for these problems at execution time
since otherwise search in the abstraction space could become expensive as more factors have

to be taken into account.

4.4.3. The Plan Assumption Problem

The plan assumption problem arises when the planner has assumed, in the absence of other
information, that a function appears in the primary output triple of a rewriting step when in

fact it does not. This can have two effects corresponding to cases 1 and 2 of page 101.

1. The plan contains steps which are not eventually necessary, or,

2. The plan is not executable.

In either case the plan will fail due to the absence of the required function symbol. In case
1, the step has been planned specifically to eliminate the function. But since the function
does not appear in the assumed location, we can simply ignore the planned step. We have no

need to eliminate the function symbol if it is not already there.

In case 2 the plan requires the presence of the function symbol in order to carry out the
next step. Here we cannot apply the step, since the function is missing, and eliminating the
function is not the intended effect of the step. In this case we must return to the planning
stage and attempt to find a new step which has the required effect. Of course, having got
this far in the execution of the plan, the prover now knows the exact location of the function
symbols in the formula being rewritten, and so may be able to find a new step in the light of

this new information.

4.5. An Example Proof by Gazing

In this section I present an example proof as it is carried out by gazing. The proof is of the
goal (W).

anb=a aChb (W)

We will assume that the database contains (v), (vi), (1) and (iv).

109

x=y=V22Ex <2 €Y (v)
x=y=xCYyA yCox (vi)
xCy=V2.2€x— %€y (1)
zEgﬂ*L=xEJA:Ez (1v)

These are the rewrite rules that are necessary in the proof. The effect on the proof of
having additional rules depends on those rules and their associated exchanges. In particular,
suppose that the prover already had this conjecture in its database as a rewrite rule, then we

would expect that the proof would proceed by the single application of that rule.

The first step is to abstract the goal to the currencies of the predicate space. The result is
as in (X)

=) - () %)

In this case the choice of conclusion and hypothesis predicate is trivial, we will have the
conclusion predicate C and the hypothesis predicate =. Examining the gaze graph shows us
that there is a path directly from = to C, namely the application of the rule (vi). So the
sketch plan uses just this rule. Notice that if the statement of the goal was already in the

database, this would itsell have been a candidate for the path.

Having made a plan in the predicate abstraction space, the system passes this to the

function/polarity space planner. The goal in this space abstracts to (Y).

{(=?{n}!_>} |_? {(gs{}"">} (Y]

Retrieving the function/polarity abstraction of (vi) which is (xxix), and applying it to the

atom involving = gives us the new goal in (Z).

{{(={} Pol) } = { (S, {}, -Pol) } (zziz)
(S, nh =)} (S 3+ (2)

Since all of the plan is now completed, the final step is to attempt to connect the conclusion
and hypothesis triples. However, the system will notice that there is an extra function
symbol in the hypothesis, namely N. The system will first attempt to find a new major part
within which it would be able to eliminate this function, and then attempt to move to that
major part through the use of another rule. (iv) has the effect of eliminating N with the
major part of €, and | i) moves from C to €, so the system would apply first (i) and then

(iv) to the goal, producing first (AA), and finally (BB).

110

{(e.{nh=)h(e, (nh+)} F {(e,{}L-)(e (}1L+)) (A4)

{(e. {},=)(e, {1 +)) (BB)
{(GF{}’_>’<EI{}I+)}

Notice that step (i) was applied to both sides of the sequent, since its aim was to move the
entire goal into another currency since the major parts were already the same in both the

conclusion and hypothesis.

Moving to the full space, and applying the rewrite rules (vi), (i) and (iv) leads to goal (CC),
which is provable by logic alone.

(zr€a—=(z€aAz€Eb)A((zE€EaATED) — 7€ a) (CQ0)

‘_T

(z € a = 2z € b)

4.6. Summary

In this chapter I have described the technique of gazing, which enables a theorem proving
program to select relevant rewrite rules from the mathematical theory within which it is
working in order to prove theorems. The technique works by abstracting from the rewrite
rules of the theory, and using these abstractions to create a plan specifying which rewrite
rules are to be used in the problem space. The plan is made by considering concepts that
appear in the goal and the effect of a rewrite rule on those concepts. A plan is constructed to
obtain the same concepts with opposite polarities in the goal. Since the plan is made using
abstracted information it is possible that the plan cannot be executed as desired. This
problem can often be dealt with in the gazing technique and examples of the recovery

techniques are also presented.

111

Chapter 5

Characterizing the Search Spaces

of Gazing and RUT

5.1. Overview

In chapter 3 I described RUT, a theorem prover which carries out proofs in a natural
deduction system, and in chapter 4 I described the gazing technique which enables the prover
to carry out the database inferences of RUT in a different way. In this chapter I show that
search is saved by carrying out database inferences using gazing rather than using the
techniques of RUT. In so doing, I demonstrate that gazing is a powerful, and at the same

time computationally feasible, inference rule.

The argument of this chapter will fall into two parts. The first part is motivated by the
fact that gazing, by performing all of the necessary database inferences in sequence,
eliminates the possibility of carrying out a number of logical inferences which would be
redundant. This is because the logical inference rules are not applied to the sequents that
occur between the applications of rewrite rules. The effect of this is that the proofs that are

produced by gazing are shorter and involve fewer redundant steps.

The second part of the argument shows that the rewrite rules in the database may be
preprocessed so that the gazing technique can be carried out without search when given a
conjecture to be proved. This means that gazing can be applied very quickly when required.
Clearly the preprocessing step requires computation and this overhead cannot be ignored.
However 1 will show that the preprocessing can be carried out reasonably efficiently. This
means that it is feasible to carry out the search required by gazing when proving a
conjecture. This Is a necessary part of the argument since, if the computation involved in
applying the gazing rule were greater than the saving that is made by using the rule, then its

use would not be advantageous.

In section 5.4 I consider the problem of when the use of gazing is genuinely beneficial.

When given a theory in which the rewriting steps cannot ‘‘go wrong”’, in the sense of leading

112

to an unsuccessful search for a proof, the worst that can happen to a prover not guided by
gazing is that it carries out redundant inferences. In such a circumstance gazing may not aid

the prover.

In this chapter I imagine a prover, called GAZER., which has the same logical inference rules
as RUT, with the exception that all of the database inferences are carried out by gazing.

GAZER differs from RUT in the following ways:

1. Reduce rules which implement database deductions (Eg, the definitions of function
symbols) are not available to GAZER.

2. Peek forward chaining is disallowed in GAZER, although normal forward chaining
is still legal.

3. GAZER is not allowed to use the peek, expand-hypothesis, and expand-conclusion
inference rules.

Also, we will suppose that the gazing inference rule appears last in the database of inference
rules. The effect of this is twofold: first, it ensures that GAZER implements the ‘“logic before
theory” rule (chapter 4, section 4.2) rigorously. Thus the database rules are used only if the
conjecture cannot be proved by the logical inference rules. The second effect is that once
database inferences have been found necessary for the proof, their use is carefully planned,
and the plan is then applied without allowing the application of logical rules until all of the
planned inferences have taken place. This is in accord with the common currency model
which was described in chapter 4 (section 4.2.1). The common currency model suggests that
the goal of database inferences is to exchange the currencies of the conjecture until there is a
currency which is common to both the hypothesis and conclusion. First the proof of the
conjecture is attempted within the given currency, only if this fails is the gazing technique
invoked to introduce a common currency, and only then are the logical rules used to attempt

a proof of the resulting goal.

In section 5.2 I will indicate how the use of gazing, and the ‘“‘logic before theory” heuristic,
cause GAZER to carry out less search, in general, than RUT. However the gazing inference rule
itself involves some search in the abstraction spaces, and if this were computationally
expensive then the technique may still not save search overall. In section 5.3 I will show that
this is not the case, and so demonstrate that gazing is a computationally feasible technique

for adoption by a theorem prover.

l‘Bol.h GAZER and RUT have been implemented as modes of the Voyeur theorem proving system. This system,
when in 'Rut’ mode carries out proofs according to the inference rules of RUT, and in 'Gazer' mode according to the
inference rules of GAZER. For the argument of this chapter it is easier to think of these modes as two separate
programs. Voywsr i implemenkad in the PROLOG 'roarumi:j lamau-nae..

113
5.2. The Savings made by Gazing

The use of the gazing inference rule saves search in two main ways. First, the use of gazing
prevents the redundant application of rewrite rules. This is possible because gazing plans to
use only those rewrite rules which are necessary to the proof. The effect of this is not only
that the rewrite rules themselves are not applied, but also that the complex formula that
would result from the application of the rewrite rule does not appear in the proof. This
results in the saving of logical inference. In subsection 5.2.1 I will give an example of this
saving. Gazing also saves search by not allowing the logical rules to act upon the sequents
that would occur between applications of rewrite rules. In RUT, once a rewrite rule has been
applied, the rewritten goal is ‘‘given back’’ to the entire prover. It is possible that a rewrite
rule will introduce a connective that can be acted upon by a logical rule, where gazing would
have rewritten the new formula by another rewrite rule. The immediate application of the
logical rule might split the rewritten formula into two parts, and the rewrite rule that gazing
would have applied may not apply to the parts. Hence the intervention of the logical rule
might produce goals that cannot be proved, where applying a second rewrite rule would

result in a proof. This is described in more detail in subsection 5.2.2.

5.2.1. “Logic Before Theory”

The implementation of the “logic before theory’ heuristic, which was described in chapter
4, can result in GAZER carrying out much less work than would be performed by RUT. In
particular, some rewriting that is carried out by RUT is redundant. Consider, for example,

sequent (DD).

' (z€an(®Uc)AA) — (z €an(bUc)) (DD)

The reduce rules, which expand function definitions, occur before the matching rule in the
RUT database. This has the effect of causing (DD) to be reduced before the matching of
hypothesis and conclusion is attempted. The proof, which should be quite straightforward,

then becomes quite complex. It is shown in figure 5-1.

I present the proofs here in a standard representation for proof trees. Each proof consists
of a number of lines each of which consists of three parts: the line label, the statement and
the justi fication.

e The line label appears in parentheses to the left of the line, it serves only to name
the line for reference by the justifications.

e The statement is the sequent that is asserted to be true by the line, and,

e The justification is a reference to the line(s) which show that the statement is

114

acl EaANscl €cA " 8cl € aVaeacl €
(8) 1 1 A b
(8) (scl €EaVvaecl Eb)Ascl EcAA ' scl € avacl €b (8)
(10) scl €EaAscl EcAA | scl€c ()
(11) ecl €EbAecl EcAA ' scl €c ()
(7) (scl €avVacl €Eb)Ascl EcAA ' scl €c (10 11)
(5) (scl €avelEbAscl EcAA |
(scl € aV scl € b) A 8cl € ¢ (67)
" (sel€avVecl €b)Nscl EcAA—
4 T ' (sel 1 €b) A
(8¢l € a V scl € b) A scl € ¢ (5)
?(aclEaVaclEb]AaclEcAA—vsclean/\sclec 4
B T HF
2 T !——? (scl €avecl €b)Ascl €EcAA— (scl € (aUb)Nc)(3)

By TR scl EaUbAscl EcANA—scl € (aUb)Ne(2)
0) T ' scl € (aUb)NcAA—

scl € (aUb)Ne (1)

Figure 5-1: Proof Of (DD), by RUT

indeed true. The justification appears to the right of the statement, and may be
empty. If it is empty the statement is true by an axiom of logic.

All of the search in the proof is eliminated in GAZER since the logic before theory rule is
strictly applied. In this case the proof proceeds by promoting the conjunction, and then
matching the conclusion with the appropriate conjunct of the new hypothesis. This proof is
given in figure 5-2.

(1) scl € (anNb)Uc) AA ' scl € ((anb)uc)

(0) T ' scl € (anb)Uc) A A — scl € (anb)Uc) (1)
Figure 5-2: Proof Of (DD), by GAZER

It is important to note that the logic before theory heuristic doesn’t just prevent some
reductions from taking place. The effect is further-reaching than this. Many of the steps in
the RUT proof are performed as a result of applying logical rules to the connectives that were
introduced by applying the reductions. Thus if the formulae that are introduced by the
reductions are complex, then the amount of search that is generated can be very large. In
figure 5-1, sequents (1) to (4) are produced redundantly by the application of rewrite rules.

The remaining sequents are produced by logical rules acting on the reduced goals in order to

x*
The constant scl is a skolem constant in this theorem.

115

perform the required matching. Notice too, that (7) could be proved immediately by
matching, but because the logical rule Cases can act upon the disjunctive hypothesis (10)
and (11) are also produced. This redundancy is caused by the relative positions of the Cases

and Match rules in the rule-ordering, and the use of gazing has no effect on this.

The gazing technique therefore has two effects: first, if a match is possible it will be found
before any database rules can be applied, and secondly, if no match is possible, only those
database manipulations that are necessary to the proof will be performed. So, if the goal had
been (EE) the necessary reduction (expanding the definition of complement) would have been
performed, but the manipulation of the intersection and union symbols would still not be

carried out.

' (z € complement(an(bUc)) A A) — =(z € an(bUc)) (EE)

The use of the gazing technique prevents the application of redundant rewrite rules. This
leads to a considerable saving of search since the result of applying a rewrite rule is often the
production of a complex formula. A number of logical rules might act on this more complex
formula, which would not have applied to the original formula, and thus a large amount of

redundant search may be carried out.

5.2.2. The Problem with Splitting

A further problem with the RUT inference rules is that the logical rules are allowed to act
on formulae between a number of rewriting steps. This is the “logic between theory”
approach discussed in chapter 4, page 78. The interleaving of theory and logical inference
can cause problems for RUT, because the logical rules can split up formulae that ‘“‘belong”

together. For example, consider the axioms (xxx) and (xxxi) and theorem (FF):

Afla)) ' C (FF)
Aflz))= AV B (zz2)
AvB=C (zza7)

In RUT the proof is approached by first using (xxx) to rewrite the hypothesis: the result is
the new sequent (GG).

AVEB ¢ (GG)
Then the logical inference rule Cases is applied to produce two subgoals (HH) and (II).
A cC (HH)

B |- ¢ (I

116

Both of these subgoals are unprovable. Even if (xxxi) were available to RUT as a reduce
rule, the system would not be able to apply it, since the disjunction has been split. After
some search the prover will fail with one of these subgoals. Since RUT has the ability to
backtrack and remake the choice of inference rule, (xxxi) will then be applied to (GG), and
the proof will succeed. Since the UT provers, do not have this ability, they fail to prove this
theorem. The crucial point here is that the Cases and And Split rules break up formulae,
and create two subgoals with part of the broken formula in each goal. If a rewrite rule
applies to the formula, but not to either of its parts, then the application of this rule will be
prevented by a previous application of the logical inference rule. This is an example of the

failure of the ““logic between theory” approach.

Since A, B and C could be complex formulae, the amount of search that might be expended
in the proofs that do not succeed is very large. If, for example, the concepts in A, B and C
are defined in the theory, then the expansion of these concepts will take place. This rapidly
makes it computationally infeasible to carry out this search since the number of definitional
expansions that might be tried, and the logical inferences that might be possible, is very
large. [Exactly how much extra search is performed depends on the criticalities of the
predicates, and on the number of function symbols, which occur in the goal. In either case

when an expansion is carried out the logical prover is called on the new goal.

In GAZER, all of the database inferences that are necessary in the proof of the goal are
planned in advance, and then applied serially. The planner would plan to use (xxx) and
(xxxi) in that order and then apply the two rules without letting the logical rules intervene.
That is, once the proof attempt using logic alone has failed, the planner plans to use some
database inferences, carries out these inferences, and then readmits the logical rules. Thus,
we have “logic before theory”, but once it is determined that the theory must be used, the
inferences are planned and all carried out before retrying a logical argument. The result of

gazing applied to (FF) is the trivial sequent: C LF ¢

Preventing the application of logical inference rules between database rules can never lead
to the failure of a proof which would otherwise have been successful. This is because GAZER
plans to apply the smallest number of rewrite rules necessary to produce a goal which has a
common currency between the hypothesis and conclusion. Therefore, no intermediate goal
can be proved by logic, and so nothing can be gained by applying logical rules to any such

goal.

Goal (GG) above gives an example of the “logic before theory’ heuristic providing the
wrong guidance. If this were the initial goal for GAZER, then the subgoals (HH) and (II)

would be produced, their proofs would fail and only then would gazing be invoked. This is

117

exactly the same as RUT, since Cases appears before Reduce in the RUT rule base. And
Split, which is the only other splitting rule of RUT, also appears before Reduce, and so RUT

will always have exactly the same problem with this type of splitting that GAZER has.

Note that the example above is the result of an optimistic view of the behaviour of RUT.
Firstly, I have assumed that (xxxi) is available as a reduce rule of the system. Because of its
form, it could not be a definition, and it would therefore have to be present in the table of
reduce rules as a lemma. Secondly, if (xxx) had instead been (xxxii), and this rule had been
the definition of the predicate P, then the use of this rewriting would only be available
through the peeking technique (since it is the definition of a predicate occurring in the
hypothesis). However, neither of the predicates occurring in the definitional formula (A and
B) occur in the conclusion of the goal, so the expansion would not have been made, and the

proof would have failed at a much earlier point.

HAz)= AV B (zzai7)

Notice that if (xxx) and (xxxi) are added to the hypothesis of the conjecture, then RUT is
able to find a proof, despite the application of the Or Split rule. This is because the
back-chain inference rule causes the conclusion C, to be rewritten to the antecedent of

(xxxi).
(Az) = AVB)A((AV B) = O) AHAfla) ' C
(Az) =~ AVB)AHAfla) ' AVB
Afla) +' Az)

This indicates an alternative method for solving the problems that gazing solves. The
solution is to add the rewrite rules that are necessary in the proof to the hypotheses of the
goal to be proved, and then let Back Chain do the work of selecting the appropriate rules
to use. This method however requires that the statement of the theorem implicitly contains
the knowledge of the proof. When the user of the theorem prover does not know the exact

pieces of information that are necessary in the proof, then this method is not workable.

5.2.3. Summary of the Gazing Saving

In this section I have shown how the use of the gazing technique in a RUT-like prover, can
save much search over the use of RUT’s theory-inference rules. In particular two main savings
are made possible by the use of gazing. The first is that redundant application of reduce
rules are avoided. This not only saves the application of the rule, but also the logical
inference that might be carried out on the formulae that result from the application. The

second saving is made because the gazing technique plans and applies appropriate database

118

rules serially, without letting the system apply logical inference rules between the

applications.

Having shown that implementing the gazing technique eliminates some of the search of RUT,
it remains to show that the gazing technique doesn’t introduce more search than it
eliminates. In the next section I will show that the amount of search that is necessary to

apply the gazing inference rule is less than that saved by its application.

5.3. The Cost of Gazing

In the previous section I showed that, by using the gazing technique, it is possible to reduce
the amount of search that RUT needs to do to produce proofs. However, no account was
taken of the amount of search that is carried out in the application of the gazing rule itself.
It is clear from the description of the technique in chapter 4 that the application of the rule
to a given sequent involves some search. For example, there may be a number of possible
paths through the gaze graph linking two predicates, and the system must choose one that is
appropriate given the current goal. However, the question that remains is exactly how much

search has to be performed when the rule is applied, and how expensive it is to carry this out.

In this section I show that gazing can be carried out quickly once the conjecture is known.
In addition I show that it is necessary to search the theory only once for each plan that might
be required, since the possible plans depend only on the facts of the theory. This leads to the
conclusion that it is possible to precompute all possible plans in the theory as soon as the
rules of the theory are known. This would make the selection of a preconstructed plan to
prove a particular sequent in the theory an almost trivial operation. The preprocessing step
is not very expensive for the predicate abstraction space, but is more so for the

function/polarity space.

The idea here is to divide the work that is required by the gazing technique into two parts:
that which requires reference to the particular conjecture that is to be proved, and that which
is dependent only on the facts of the theory. The work that is not dependent on a particular
conjecture need be performed only once and the result stored for future use. The task is to
produce a general representation of all plans in each abstraction space, in such a way that the

checking which must be performed when the conjecture is known may be carried out quickly.

To show that this approach is sensible it is necessary to consider two things: first, that the
amount of work that may be done without reference to a particular conjecture is significant,
and therefore leads to a significant saving of work when the conjecture is known, and
secondly, that it is possible to produce a representation of all plans producing a specific

effect.

119

Recall that in both abstraction spaces the strategy for constructing plans is to find a fact
which has the desired effect in the abstraction space, and then to check that it may be
applied in the context of the current conjecture by considering the subsidiary inputs of the
fact. In the predicate abstraction space, the goal might be to exchange P for @, and an
appropriate fact might also require subsidiary inputs S. Whatever the conjecture this fact
will be a candidate for exchanging P for @, but whether the use of this fact is acceptable
depends on the presence of S in the conjecture. The expense of gazing is to determine the
sequence of facts which will cause the desired effect, since this involves search among the facts
of the theory. Once all ways of achieving an effect are known it is necessary only to consider
each of the possible ways, to determine those whose subsidiary inputs appear in the given
conjecture. This is a less expensive step since first, there are, in general many fewer possible
plans for any specific effect than facts in the theory, and second, this checking can be carried

out very quickly.

That it is possible to compute all plans is a corollary of the fact that the currency
exchanges are isomorphic to formulae of propositional logic? This means that whenever we
ask the system to determine all possible paths in either abstraction space, we can be sure that
we will eventually get a result, which will either be that there are no paths, or the set of
paths that have the desired effect. This is not a strong result. While it is important to know
that the task can, in principle, be carried out, it is more important to know whether it is

practical to do so.

In the next two subsections I indicate the extent of the search that has to be carried out in
the gazing abstraction spaces, and the degree to which this search can be carried out
ahead-of-time. Finally I will outline three different approaches to carrying out the search,

and suggest a preferred method.

First, some definitions that aid the discussion of algorithms:

Definition 80: The complezity of an algorithm is a function of the amount of
data that the algorithm is to process. The function describes how the number of
operations required to execute the algorithm changes as the amount of data
changes.

™

Definition6l: The complexity of an algorithm is usually expressed in “Big-Oh”
notation: O(f(n)). If the complexity of an algorith is said to be O(f(n)), this
means that for sufficiently large n, the algorithm requires not more that M| f(n)|
operations, for some positive constant M.

¥ Sea Fa.cmg qmcje,

120

5.3.1. Search in the Predicate Abstraction Space

In the predicate abstraction space, the task is to find a common rewriting of two predicates.
The only part of the planning task that requires knowledge of the goal to be proved is
checking that the required subsidiary inputs are present. Thus all plans which alter
predicates can be precomputed provided that each plan records the subsidiary inputs that are

required for its execution. This preprocessing in not expensive.

In section 4.3.2 of chapter 4 I described how the search for a plan to exchange one predicate
for another is isomorphic to the task of finding paths through the gaze graph. It should be
clear that since the gaze graph is constructed when the theory axioms are stated, the
computation of all paths joining all pairs of predicates may also be carried out at this point.

The implementation of VOYEUR allows this preprocessing step to be carried out as an option.

Clearly the particular representation that is used for the plans will effect the speed with
which the necessary operations can be carried out. As an example of this, the gaze graph
itself represents all of the paths between all nodes, but the information is represented only
implicitly, and computation is required to extract the information that is needed. The goal
of preprocessing the theory is to ensure that the amount of work that is necessary while the
conjecture is being proved is kept to a minimum. The next paragraphs outline a method of

preprocessing the graph which was suggested to me by Don Simon.

The first observation that may be made is that the gaze graph is a multigraph. That is,
the graph may contain many arcs which exchange the same two pairs of predicates. These
arcs will differ in the subsidiary inputs and outputs. Finding all paths through a multigraph
is much more expensive than finding all paths through a monograph (a graph which has only
one arc joining any two nodes), and we can simplify our task by first preprocessing the
multigraph into a monograph. This is done by replacing all ares A, A,, ..., A from Pto
@ by the corresponding multiare muitiarc(P,Q,[Al, Ag, . ,Aﬂ])‘ Each A, must contain a
record of the subsidiary inputs and outputs. The transformation from a graph represented
by a set of arcs, each deriving from a fact of the theory, to a multigraph of this form can be
performed in nlogn time, where n is the number of arcs in the original graph. This is
because the transformation is equivalent to the problem of sorting the set of original arcs,
using their in- and out- nodes as keys, and merging those arcs with identical keys. The
complexity of merging two arcs does not grow with the number of arcs, and sorting using the
quicksort algorithm, [Knuth 73|, is O(nlogn). The number of multiarcs in the resulting

graph is no larger than n.

Once the gaze graph has been transformed into a monograph G, the following algorithm

may be used to construct all possible paths in G:

121

1. Locate a node, N, in G which has no out-arcs, if there is no such node then return
the empty set of paths.

2. Delete this node and all arcs, A; leading to it, forming graph G".

3. Find all of the paths p, in G'.

4. Add to p the set of A, and the paths which may be constructed by adding a

deleted arc to the end of any path in p. The result is the set of all paths in the
complete graph.

This algorithm is of complexity n®, where n is the number of multiarcs in the monograph.

This is because:

e The base case, when no nodes exist in the graph, can be performed in constant
time,

e In the inductive case, we are to add the deleted arcs to some of the paths already
constructed. There may be at most n such paths, and we have to consider each of
them, so the complexity of this step is of order n.

e At each level of recursion at least one arc is deleted, so there can be at most n
levels of recursion.

Since each level of recursion ‘‘costs’” n operations, and there are at most n levels of

recursion, the algorithm is of complexity n>.

A path from Pl to Pﬂ may be represented as a list of multiarcs:
[multiare(P,P)[AAL,, ..., A,
muit!'arc(P2,P3,[A21,A

s Agg)

muitiarc(Pn_l,Pﬂ,[An_l N NPT ’An—1¢])]

Each such list represents all paths through the gaze graph which link P, with P , by
visiting the same sequence of nodes in the graph. For any two predicates there will be a set
of such paths, each visiting a different sequence of nodes. This set represents all possible
paths between the two predicates. These sets of paths may be stored in a two dimensional

array where one dimension represents the initial predicate, and the other the final predicate.

Once all of the paths have been computed, the problem of determining the paths between
two specific predicates when a proof is being performed is a two-stage process. First, all
paths linking the predicates have to be retrieved. This is a simple array access which, as is
well known, can be performed in constant time; that is, the time taken to perform an array
access does not depend on the size of the array, and therefore does not become expensive for
large theories. Secondly, the subsidiary predicates required for each path have to be present

in the conjecture to be proved. Checking this involves comparing the set of predicates that

122

are in the conjecture against those required for each arc in each step of the plan. For
example, if we have a conjecture which involves finding a path from Pl to P and we have
subsidiary predicates S, then we would retrieve the path above, and then check to see
whether S was a subset of the subsidiary predicates of some A,; I it is not, then this plan
would be rejected, since there is no way of getting from Pl to Pg. If there is a least one arc
which enables the transition, then we examine the A,; and so on. As soon as some step does
not go through, this particular plan will be rejected and the next selected (the next plan will
visit a different sequence of nodes, by a different sequence of arcs). At worst we have to
compare S with all n arcs in the original graph‘, and so this step can be performed in linear

time.

To summarize the result of this subsection, the preprocessing that is necessary to produce
an efficient representation of the plans takes in the worst case O{nz) where n is the number

of arcs in the gaze graph. The checking that is necessary when the particular conjecture is

known is O(n).

If, instead of precomputing all paths joining all pairs of predicates, we prefer to wait until
given a specific conjecture to prove, we would need an algorithm to determine any specific
path. Such an algorithm should not be of greater complexity than that to compute all plans,
since in a last resort all plans could be computed and then the desired result selected from the
complete set. However, a sensible algorithm would examine only that subgraph of the whole
graph whose root is the predicate with highest criticality of the two that are to be joined.
Since this is at worst the entire graph, the algorithm is at worst equally expensive as the

computation of all plans.

5.3.2. Search in the Function/Polarity Abstraction Space

The problem of exchanging currencies in the function/polarity abstraction space is much

worse than that in the predicate abstraction space for two reasons:

1. Each triple contains a set of function symbols, and,

2. The set of currency exchanges that are possible depends on the major part of the
triple.

The first point causes a problem because a triple exchange can be used to exchange a
number of different triples for others. Consider the triple that arises from the definition of

N, this is triple (xxviii) from chapter 4 and repeated below.

*
provided that we store the results of comparisons to avoid duplicating effort.

123
zEgnx-:E)A:cEJL (1v)

{{€,{n}, Pol) } = {(€,{}, —Fol) } (zzviii)

This triple exchange can be used to rewrite any currency < ¢ ,Minor,Pol>, provided that
M is a member of the set Minor. The resulting triple will be < ,Minor\{N},—Pol>. So
this triple exchange represents a number of possible exchanges. To determine exactly how
many exchanges are represented by a specific currency exchange, suppose that the theory
contains F function symbols. Suppose further that the function set of the input currency of

the exchange has f members. Then this exchange represents of =/ exchanges.

Point 2 above indicates that the system will have to compute a different set of plans for
each major currency of the theory. That is, it is not enough to have a way of matching two
sets and then assuming that these sets can be matched whatever the major part of the triple
within which the sets appear. The major part plays an active role in determining what

exchanges are available.

First of all we should work out the total number of plans that it would be necessary to
compute to precompile a particular theory. We will assume that the theory has P predicates
and F functions. We will have PX2F different currencies in the theory. Call this number C.
There are C* possible pairs of currencies, but for each pair we can only make an exchange in
one direction. There will therefore be 6‘2{2 plans to compute. This is a very large number
for even very small theories and it will be very expensive to compute all such paths, even if

we could compute each individual path very efficiently.

If the theory is so small that constructing all paths is feasible then the best approach is to
make sure that plans are constructed from early in the order <, working upward. Recall
that the order < orders all f/p triples, and that all rewrite rules rewrite an f/p triple, to
another that is lower in the order. Thus if, Cl’ CQ, 2 'Cn is the list of triples in ascending
order, then the approach is to compute the paths from C, to C| first, and then C; to C,,
followed by 03 to G'l. If this approach is adopted then all subplans of the plan being
computed are already known, and so these results may be reused. This algorithm is however
exponential in the number of concepts in the theory since in finding a plan from G". to CJ. all
subsets of C; which are supersets of Cj must be considered. In the worst case this is all

(2F * P) possible sets of concepts.

Exactly as in the predicate space, when given a particular conjecture and the set of plans
for linking the prime triples of that conjecture, the set of plans must be checked, and those
which require secondary triples not present in the conjecture are discarded. This checking

step is also linear in the number of triples in the conjecture.

124

Computing all plans for a specific pair of currencies in the theory can also be a very
expensive operation. Since in the worst case, when the triples to be joined are the highest and
lowest in the theory, it is exactly the same task as finding all paths. In the general case the
problem is not so serious, since the lower in the triple ordering the given triples are, the less

expensive the task is.

In this section I have described the problems involved in precomputing plans in the
function/polarity abstraction space. This space, like the predicate space, is propositional.
This means that it is, in theory, possible to precompute all possible exchanges for a given
theory. This computation could be done as a compilation step as soon as the axioms of the
theory are stated to the prover, but requires an algorithm which takes time exponential in
the number of symbols in the theory. This makes the precompilation of plans in this space
prohibitively expensive for large theories. Despite the fact that preprocessing is likely to be
out of the question for many theories, it is still the case that each result only has to be
computed once for each theory. I have also shown that the cost of any such computation is
linear. This means that the results of any computation may be stored and reused later if

required.

5.8.8. Preprocessing The Theory

In the previous subsections I have introduced the idea that the theory can be processed to
make the retrieval of plans when a proof is performed a much faster operation. However the
preprocessing of a theory with many predicates and functions may be very expensive. Also,
storing all of the precomputed plans may be expensive in memory. Three possibilities for

addressing these problems are discussed below.

1. Compute the values each time they are required,

o

. Compute the values when they are first required, and then store them for
retrieval if they are required subsequently,

3. Compute all of the values as soon as the axioms are known, and then store them
for retrieval each time they are required.

Each of these approaches has its advantages and disadvantages, the relevant factors being

the time taken to perform the computation and the space required to store the results.

The first approach is not to precompile the theory, and to compute the plans ‘‘on the fly”
each time they are required. This avoids storing the table but might require the prover to
derive the same path (or subpath) many times in different proofs. However all preprocessing
is avoided and no extra storage space is required, at the expense of possibly having to

recompute results that have already been determined. The problem with this is that

125

computing the results becomes an integral part of the gazing inference rule, and thus the
amount of time required to apply the inference rule is greater in this method and there may

be no net gain.

In the third approach there is the possibility that some results that are never required will
be computed. This wastes both the time taken to compute the result and the space taken to
store it. However if enough proofs are performed, that all possible plans are required at least
once then this solution is optimal in the amount of processing that is carried out. A further
effect of this method is that the amount of time perceived by the user of the theorem prover
as required for the application of the gazing rule, and thus the amount of time required to

complete proofs is less.

The second approach combines the best aspects of the other two. The idea here is to carry
out only the work that is required, as and when it is needed, and to then store the result for
future reference. Initially no storage space is required, since no entries are computed in
advance. Whenever the value of some entry is required by the program for a proof, this
entry is computed as in the first method, and then stored as a table entry for immediate
access when it is required in subsequent proofs. This has the advantage of having to compute
the entries only once (as when computing the entire table), but ensures that entries are only
computed on need (as in the first method). The drawback is that whenever the program is
computing an entry for the first time, the time taken to perform this computation will be
added to the time taken to perform the proof. This method should be preferred over the
other two when the theory gets rather large, since this method ensures that only the
information that is required is computed, but the best possible use is made of the results of

the computation.

The current implementation of GAZER allows the user to specify which of the strategies

above is to be adopted by the system.

5.3.4. Summary of the Cost of Gazing

I have demonstrated that the search required to apply the gazing inference rule could be
reduced to a very small amount, providing that extensive preprocessing of the theory were
carried out. This might be done by having a preprocessor which turns the theory axioms into
the possible plans in the theory. This preprocessing step could be performed as soon as all of

the axioms are known and has to be performed once for each theory.

In the predicate abstraction space, all of the plans can be computed in O(nz), where n is the

number of arcs in the gaze graph. This is not a significant overhead. In the f/p abstraction

126

space however, much more work is necessary, - the best possible algorithm must be of
exponential complexity. However, it is possible to compute values only by need and to store
the result. Thus the set of all paths in the f/p abstraction space may be constructed

incrementally.

As an alternative to computing the paths as soon as the axioms are known, it would be
possible to record the results of the search for a particular plan as it was completed. This
would involve the prover in carrying out the search once and only once for each entry, as in
the previous method, but then recording this result in case it were required in a subsequent
proof. This has the advantage of never requiring the system to carry out the computation of
a plan that it does not need, but the disadvantage of requiring the computation of the initial

plan to be carried out as part of the proof.

5.4. When is the use of Gazing Beneficial?

In the preceding sections I have described the savings that are gained by the use of gazing,
and the cost incurred in its use. The question of when gazing is beneficial, in the sense of
saving more than it costs, is still open. In this section I will consider briefly some of the
features that will determine the answer to this question. The main criterion determining this
is the particular theory that the prover is expected to work in. For certain theories it is more
efficient to use the search techniques of RUT, and in others to adopt gazing. One of the open

questions that this work brings to light is how to assess which circumstances are which.

In section 5.2 I described the way in which the use of gazing can save search over the
techniques of RUT. In the example describing the elimination of redundant rewriting steps, I
presented a proof, performed by RUT, which performed many redundant steps (figure 5-1).
Given a very efficient rewriting rule and equally efficient logical inference rules, this proof
could be performed very quickly despite the number of redundant inferences. This is true
since the number of possible rewritings of the formulae in question is very small, in fact it is
impossible to go wrong in the application of the rules that the system knows. Under these
circumstances, the use of gazing itself appears to be redundant since RUT performs well
enough. In the example describing the usefulness of performing rewriting steps without
letting the inference rules intervene, I remarked (page 116) that the size of the space that
would be searched redundantly was dependent on the criticalities of the predicates, and the
number of functions, in the goals that could not be proved. In a theory which has a small
number of predicates and functions (like the set theory that we have discussed) this amount
of search might be tolerable. We might prefer to let the prover search the blind alley, and

then once the subproof has failed return and discover the successful path.

127

From these observations we can conclude that gazing becomes more useful as the theory
becomes more complex. In a simple theory, with few predicates and functions, and few rules
relating these concepts, the amount of redundant search that RUT would carry out is
probably tolerable. Given a theory which has many more concepts and large numbers of
possible rewritings for each combination of them, then the search that gazing can eliminate

becomes .f,ignii'ie:amt.fe

5.5. Summary

In this chapter I have made a comparison of the search that is carried out by RUT with the
search that would be made by a prover which performs database inferences using the gazing

technique.

The main result of this chapter is in showing that the search carried out in GAZER is smaller
than that of RUT, which performs the same inferences in a less structured way. There are
two ways in which the gazing technique effects this: by not allowing the logical rules to be
applied to sequents that occur between applications of rewrite rules, and second by being

computationally efficient in the means of storing information about possible rewritings.

By carrying out all database inferences in the application of one inference rule GAZER is able
to complete the job of making the concepts in the sequent correspond across the turnstile
before attempting any logical deduction. This can cause a considerable saving in the search

for a proof.

Since the gazing technique makes use of information that does not change once the theory is
specified, the system can represent this information efficiently, in particular by computing
paths through the gaze graph and storing the pre-computed results along with the axioms of
the theory. While the pre-computation phase may be expensive, it is possible to carry it out
in background while the user is not waiting for the proof to be completed. An alternative
strategy would be to perform a compute-by-need, and store the result after computation to
be looked up if it is ever needed again. This has the advantage of not requiring the
pre-computation of all paths, but the overhead of having to perform each computation
exactly once during prove-time. Whatever strategy is adopted for the computation of this
information, and whenever it is carried out, we are guaranteed a result in finite time since

the abstraction spaces are isomorphic to propositional logic.

In section 5.4 I observed that the trade-off between the saving made, and the cost incurred,
by gazing depends on the complexity of the theory that the prover is working in. If the

theory is sufficiently complex then gazing is certainly a useful technique. If the amount of

*
In appendix A the savings that can be gained by the use of gazing are demonstrated. I compare the time taken to
perform proofs using the Voyeur theorem proving system emulating first GAZER and then RUT.

128

search that the prover may redundantly perform is limited by the fact that the theory is not
too complex, then it may be more efficient to allow the prover to perform redundant

inferences provided that the system can recover from its errors.

The effect of these observations is to make an argument for preferring the use of the gazing
technique over the techniques of RUT in certain circumstances. The power of GAZER is
not less than that of RUT, and the required search is less in complex theories and can be

performed more efficiently.

Chapter 6

Further Work,
Related Work
and
Conclusions

6.1. Overview

In this chapter I discuss work which is related to gazing, further directions in which
research into gazing might be taken, and finally draw some conclusions from the investigation

presented here.

In section 6.2 I describe some of the questions that arise from the use of the gazing
technique, and some suggestions for extending gazing to answer these questions. I also
describe how the abstract representations of the theory to which gazing is being applied can
be used to deduce more information about the properties of the theory than has been used by

gazing.

In section 6.3 I describe work which is strongly related to that reported in this thesis. This

work falls into 3 categories:

e Natural deduction theorem provers,
e Techniques separating logical and database inferences, and,

e The use of abstraction spaces to construct plans.

Finally in section 6.4 I bring together the main threads of the work reported here.

130

68.2. Further Work

In this section I suggest some possible extensions to the work presented so far. One of the
interesting features of gazing is that the representation of the theory includes the
relationships between the concepts explicitly in the graph structure. We can examine this
graph structure for regularities, and features that might constrain the search for proofs. In
particular we might make the search strategy that we use to perform the gazing step

dependent on the existence of certain features of the theory.

6.2.1. Modifying the Search Strategy

Gazing allows us to select appropriate facts from the system’s database of knowledge
providing a unified method of dealing intelligently with definitions, lemmas and axioms. A

somehmes
side-effect of this is that shorter and more natural proofs are}\produced by the system.

One thing that might be noted about the description of gazing in chapter 4 is that the
strategy used to search the abstraction spaces is a parameter of the technique. Only one
strategy has so far been implemented and tested. This strategy, ssl, was devised by
considering naive set theory, which has a small number of predicates and a slightly larger
number of functions. It is not clear that ssl will behave well in theories with a different
form. For example, in a theory with only one predicate and many functions the predicate
space search will be completely trivial, and the function space search will be very complex.
Indeed the rules presented for searching the function space may not be strong enough to cope
with very large numbers of functions without some other constraints, which can be provided
by the predicate space search. For this reason, the choice of strategy is perceived as a
parameter which may be varied within the gazing technique. The question of deciding which
particular search strategy to use to prove a specific conjecture within a given theory then

arises.

We might conceive of a system which will analyze a given theory according to some
predefined set of features. The analysis is facilitated by the representation of the theory as a
graph. In fact the abstraction level is not important here, but the sort of structure that is
currently used in VOYEUR aids thought about this subject. The gaze graph is the
representation of the theory at the predicate level. Each fact is represented as a set of
directed arcs in a graph which has the nodes labelled with predicate names. Arcs go from a
set of predicates P!N to a set of predicates POUT if there is a fact which rewrites some
formula involving the predicates in P}, to a formula involving those in P . Thus we can
conceive the entire theory as a graph and use graph theoretic concepts to analyze the

structure. The result of this analysis will determine not only how the prover will search for

131

proofs of conjectures, but might also enable the system to recognize certain ‘‘key’’ facts in the

theory, and perhaps even make requests for more information about the theory.

The open question here is what features of the theory are relevant to the choice of search

strategy. In the following subsections I outline a few possibilities.

8.2.2. On “Key" Arcs

One useful concept from graph theory is that of a bridge. An arc in a connected graph is a
bridge if, the graph that results by removing that arc is disconnected. Clearly we can
generalize this concept to apply to sets of arcs, and this allows us to label certain facts about
the theory as crucial to that theory, as without them the theory would literally ‘“‘fall apart”.

As an example, consider the theory formed by the definitions and lemmas given below.

a:.=:j4=er.(z Ear.o-»zE’) (v)

x=,¢=&x§3/\3§x (vi)

xgaﬁVz.(:;Em—szS) ()

z € {y}=r==y (zzziii)
I use the notation ==, to represent equality of individuals as opposed to = for equality of

sets. Without (xxxiii) the whole theory falls into two parts: no rewrite rules exist which allow
us to exchange any concept for ==, Thus this equality might be considered to be “key”.

No other fact in the theory has this property.

It is clear that the property of being a key lemma is relative to the particular conjecture to
be proved. (xxxiii) is clearly only important in proofs that involve concepts from each of the

parts of the graph between which the fact is a bridge, but it is vital in such proofs.

This notion might be used by the prover in one of two ways:

o Altering the strategy,

e Requesting information.

In the first case the system is called upon to notice that certain arcs are bridges in the
theory. The system might then partition the predicates in the graph into the sets which lie
on either side of the bridge, I will call these sets islands. When given a conjecture to prove
which requires deducing a conclusion involving a predicate from one island, from hypotheses
involving predicates from another island the system should then note that the bridge fact will

be needed, and adjust its search strategy to incorporate this fact. This could enable the

132

system to ‘‘turn the search space inside out’, searching from the ends of the bridge to the

hypothesis in one direction and to the conclusion in the other.

If the graph of the theory were originally disconnected then the system could ask the user
to suggest conjectures which would link the islands. One proved, the conjecture could be

used as a rewrite rule and added to the theory.

6.2.3. On Conjecturing

An analysis of the graph might lead the system to suggest facts that it would be useful to
know. The current representation of the theory does not have enough information to make
conjectures as to theorems of the theory, but it could make requests of the user that a direct
link between two predicates would be a useful thing to have, or that a particular weak link

would be more useful if it were supplemented by additional arcs.

There are two occasions when the system might be able to suggest the addition of new arcs.
First, by analyzing its failure to perform particular proofs. In an attempt to find a set of
facts which link two predicates, the system could fail because a required link was not present.
When this happens, the system might request that the user supply some lemma which could
be absorbed into the theory to provide the link. Secondly, as a theory develops, the system
might notice that a particular set of steps is used frequently, or that a particular pair of
predicates has no link, and suggest to the user that a theorem be proved, or a definition

made, to remedy this situation.

One of the first things that happens when the concept of ordered pairs are defined in set
theory, is that a lemma is proved which enables the mathematician to ‘“forget’’ the definition

and to use this property. The definition is given in (xxxiv) and the lemma in (JJ).

T € <yz>ez={y}Vz=I{yz} (zzziv)
H o <zy>=<2yY> cz==2 Ay=—1y (JJ)
The definition provides us with a weak link between € and =. The mathematician clearly

realizes that this link is not of much use, and constructs a much more useful link between =
and == Notice that there is no such link already in the theory, so despite the fact that this
link is still weak (it has no variable arguments at the top level), it creates a new link between

these predicates.

133

6.2.4. Summary

In this section I have described gazing and some of the directions in which it would be
possible to take this work from its current state. 1 have focused on the possibilities of
analyzing the theory through its representation as a gaze graph, suggesting that it might be
possible to characterize theories by such an analysis and use their characterization to
determine the best ways of carrying out proofs in the theory. I have suggested that the
presence of bridges in the graph of the theory is an important feature, since the facts which

result in the presence of bridges are ‘’key” in some important sense.

These factors, and possibly many others, might be used to determine the best strategy to
use in the search for a proof. The presence of bridges in the theory allows us to guide the

search towards the end of the bridges when we know that they have to be crossed.

Important questions for this work are:

e Are the features suggested here powerful enough to provide useful categorizations
of theories?

e What other features are also important?

e Is it possible to devise special purpose search strategies for searching theories of
particular forms?

6.3. Related Work

In this section I describe work that is related to that reported in this thesis. This work may

be related in one of 3 ways:

1. The implementation of natural deduction to produce an automatic or interactive
theorem prover, [Pastre 77, Reiter 76, Reiter 73, Brown 78],

2. The uses of abstraction spaces: to construct plans which when executed will have
specified effects, [Sacerdoti 74, Sacerdoti 77|, or to produce abstract proofs which
can be used to guide search [Plaisted 80, Plaisted 86, Cvetkovic & Pevac 83)].

3. The separation of inferences into what I have called logical, and database,
inferences, [Stickel 85].

I shall consider work in each of these classes in turn.

Cocane

134

8.3.1. Natural Deduction Theorem E_'rovors

In chapter 2 I described two programs which implement natural deduction theorem provers.
These are far from being the only examples of such provers, and in this section I describe the
main features of some other provers. The provers reviewed here were chosen to illustrate

possible means of controlling database inferences.

Pastre’s DATTE
Pastre’s theorem prover, DATTE, [Pastre 77| is very similar to the UT provers and RUT,
however an interesting feature of her program is the use of a graph to represent some

hypotheses.

The basic idea is similar to that of Bledsoe’s inequality mechanism, namely that some
hypotheses may be removed from the conjecture and recorded in a more useful form for the
prover to work with. All binary relations are treated this way in DATTE, they are removed
from the conjecture and stored in a graph representing known relations between objects.
Consider for example the representation of the conjecture (KK) as the goal (LL) and graph
6-1.

t€aAaCbAbCcAHzabe) H z€c (KK)
b &
€
o —= 5 b S 5>

Figure 8-1: Graphical Part of Conjecture

Azabe) — z€c (LL)

The goal is proved by manipulating both the sequent and graph representation of the goal
until one of the representations give a proof. The goal may be manipulated by a set of
inference rules similar to those of RUT or by statement rules. A statement rule is derived
from a fact of the theory and is also represented in graph and formula parts. Statement
rules, like the conjecture, are normal-formed before application. The normal form is similar
to that produced by the inference rules of RUT, namely the conclusion is a disjunction of

literals, and the hypothesis is a conjunction of either literals or implications.

DATTE does not skolemize the conjecture before the proof is attempted, and so there are
inference rules which deal with the quantifiers within the proof. Only the simple quantifier

elimination rules exist in this program, ie only those rules which eliminate quantifiers and do

135

not introduce new constants. Consequently, the conjecture may have universal quantifiers in
the hypothesis and existential quantifiers in the conclusion. These are dealt with by
examining the graph. An existential conclusion is proved if there 2r& objects in the graph
satisfying the conclusion. Universal hypotheses are treated as rewrite rules and converted

into statement rules if possible.

Statement rules which contain defined terms which are not binary, and therefore cannot be
represented in the graph, are expanded by using the definition of the defined term. Thus
statement rules are always expressed in the most primitive terms of the theory, ie. binary

relations or primitive (undefined) terms.

The statement rule for the definition of C is given in 6-2.

o >

Figure 8-2: Statement Rule for the Definition of C

The rule allows the addition of the dotted arc to the graph if the solid arcs are present.
The z and y of the statement rule graph are variables to be bound. The rule may be applied
if all of the hypotheses of the rule are true (ie if the left-hand side of the rule matches the
hypotheses of the goal). This is exactly rewriting, except that the conjecture is split into two
parts, and so is the left hand side of the rule. The output of the rule may, in general, add
hypotheses to the conjecture and add arcs to the graph. The goal is proved when there is a
hypothesis which matches the conclusion, or when there is an arc in the graph representing

the conclusion.

The prover attempts the proof of a conjecture by, first applying the rules of inference of the
system which reduce the conjecture to a set of goals in the normal form described above.
These are exactly like the rules of inference of RUT and the UT provers. Once this is done, if
the conjecture is not proved, the statement rules of the system are applied repeatedly. When
no more rules can be applied, and if the conjecture is still not proved, the definition of
predicates in the conjecture may be expanded and the process repeated. Once definitions
have been expanded, rules which deal with existential and disjunctive hypotheses are used.
Both of these rules can be very expensive. The first may require the addition of new objects

to the graph, and the second a new copy of the graph for use in a case analysis.

DATTE admits no function symbols which means that the system performs in a decidable
subset of first order predicate calculus. In order to represent the union of two sets for
example, the system uses the representation: Union(z,y,z), meaning that r is the union of y

and z. This leads to a greatly simplified graph, but to unnatural expression of conjectures.

136

DATTE is not guided in the application of its statement rules, or definitions expressed as
rewrite rules. As remarked above, the rewrite rules of the theory are preprocessed by normal
forming before the proof commences. One of these normal forming steps involves the
expansion of all defined terms. Therefore, after preprocessing, definitions will always cause
the goal to be rewritten into a new formula involving only primitive terms. The use of the
gazing technique for rules in this form is certain not to produce useful guidance, since all
rules will rewrite to a small subset of terms. The approach that is adopted in DATTE is to
rewrite the formula to be proved into the primitive terms of the theory and then crunch the
resulting set of goals until the proof is found. The rewriting can be performed very quickly
by use of subgraph matching algorithms, and proved goals can be similarly detected. DATTE
demonstrates that this approach is adequate for theories which do not involve very complex
formulae and definitional structures, but the generality of the approach is questionable. As
theories become more complex, the amount of rewriting that can be performed increases
dramatically. The resulting set of goals grows similarly - in short this approach will succumb
to a combinatorial explosion. A final argument against this approach of DATTE is the
observation that the proofs that are produced by the program are unlikely to be the simplest
possible in all but trivial cases. One of the motivations of Gazing is that the amount of

rewriting that is performed should be limited as much as possible.

The graph representation of hypotheses has much in common with Bledsoe’s inequality
work, as remarked above. In addition Bundy, [Bundy 73] has used a similar technique to
control inference in the domain of arithmetic. As remarked by Pastre, the representation of
the hypotheses in this way is more efficient, and the graph can be searched quite efficiently.

However, the power of the prover is not affected by the choice of this representation.

DATTE has been used to prove theorems in many domains, for example: set theory, function

theory, and the theory of orderings.

Reiter’s Prover
Reiter’s prover [Reiter 76, Reiter 73] is again based on a PROVER style logic, however the

system is guided by the use of a model of the semantics of the theory.

Each constant of the theory is mapped to an object in the model. The functions and
predicates of the theory are mapped to sets of tuples in the model which indicate the result of
applying the function or predicate to those objects. For example, the predicate = would be
mapped to a set of pairs in which the first and second objects are equal. The model provides
an example which may be referred to in order to verify the plausibility of the conjecture to
be proved. The best example of this technique is to consider the drawings of mathematicians

proving conjectures in plane geometry. Frequently when proving a conjecture about triangles

137

a mathematician will draw an arbitrary triangle and verify the plausibility of the conjecture,
and subgoals in the diagram. This technique was used in Gelernter’s [Gelernter 59 program.

Reiter’s program is an extension of these ideas to arbitrary domains.

One of the inference rules of the program illustrates the technique. To prove a conjunction,
prove the left conjunct. The result is a substitution making this conjunct true. Apply this
substitution to the right conjunct, and determine whether the resulting formula is true in the
model. If it is not then reject this substitution as a solution for the left conjunct. Otherwise,

prove the right conjunct.

Just as the geometer must choose the diagram carefully in order to avoid coincidental
properties of the diagram, so must the model be chosen carefully. Indeed the prover is able
to update the model in its attempts to refute subgoals. If there is some model which makes
the conjecture false, then this model is chosen for the prover to use. Thus not only can the
prover use the model to guide the search for the proof, but the model is successively updated

in order to refute as many conjectures as is possible.

Reiter’s prover does not have the rewriting rule of inference. Definitions and lemmas can
therefore only be represented by conjoining them to the hypothesis of the goal to be proved.
As discussed in chapter 2 (section 2.4.2), this approach severely limits the power of the
prover. This is because no guidance can be made available to the prover to determine
whether it is likely to be beneficial to carry out the rewriting step. Since definitions and
lemmas occur as implications (equivalences) in the hypothesis of the conjecture, and since all
such definitions must appear for the prover to be general, the prover will carry out many
redundant steps in the proofs that it performs. The motivation for both the peeking and
gazing techniques is that definitions and lemmas, particularly definitions, are too powerful to

allow them to be used whenever possible.

It must be stated, of course, that Reiter’s goal in devising his prover was to show how
the use of the model can guide the search for the proof. The problem of controlling

definition instantiation was therefore not of importance to his experiment.

Reiter’s prover is an implementation of a sequent based logic which has the added ability to
refer to a model of the domain within which the prover is working. The model is used to
prune the search for a proof of obviously false subgoals, thus allowing the prover to be more
directed in the overall proof. The prover requires that all definitions and lemmas are
explicitly conjoined to the hypotheses of the conjecture and therefore no guidance is available,

apart from the model, to determine whether the use of such a rule is appropriate.

138

Brown’s Set Theory Prover

A prover written by Brown [Brown 78] has been used to prove theorems in set theory. The
prover again has a sequent based logic which is implemented by successive rewriting of the
conjecture to be proved. Brown's prover treats both the conclusion and hypothesis of the
conjecture as a set of formulae. This is the approach adopted by RUT, and as remarked in

chapter 2 differs from PROVER's view of the hypothesis and conclusion as formulae.

Brown’s handling of quantified formulae and variable binding is rather novel and should be
mentioned at this point. First of all it is important to note that the prover does not
skolemize the initial conjecture as RUT and the UT provers do. Universally quantified
hypotheses and existentially quantified conclusions are treated specially, effectively causing
them to be skolemized on the fly. The advantage of this approach, and the fact that the
quantified formula is retained after the ‘‘skolemization” step, is that many copies of the same
universal hypothesis may be used in the course of a proof. With skolemization, the skolem
variable that is introduced may only be bound to one value and thus the hypothesis may only
be instantiated once. This is a restriction of natural deduction since universal hypotheses
assert that all objects have a particular property. RUT and the UT provers finesse this
problem by allowing variables to have more than one binding in certain cases (see page 60 of
chapter 2). Under no circumstances is it necessary to a proof to construct two identical
instances of the same quantified formula. To avoid this situation Brown’s prover attaches a
record of the substitutions that have been made to the quantified formula. Before making a
further substitution instance the prover will check that this is a new instance rather than a

repeat of an old instance.

Brown’s prover implements a strategy for guiding the selection for the bindings of variables.
Unification of variables is restricted by a forcing strategy. The idea of this strategy is to
ensure that the binding of a variable makes as much contribution to the proof of the
conjecture as possible. All outstanding subgoals are considered in parallel, and when
attempting to bind a variable, the binding which makes as many subgoals as possible
tautologous is the one that is chosen. This has the effect of reducing the amount of work
that the prover has to do, since the binding will complete the proofs of the maximum number
of subgoals. Additionally this ensures that each sequent has an effect on the eventual
binding. This is a significant restriction since if subgoals are treated in isolation, a binding
that makes one goal true, may prevent the solution of another subgoal. If the subgoals share

a variable, they should both contribute to the decision of a binding for that variable.

Brown’s theorem prover has been used chiefly to prove theorems in the theory of sets, and
is designed to be extensible. That is, whenever a conjecture of the theory is proved, the

conjecture is considered as a rewrite rule and added to the database. Brown’s strategy for

139

guiding the application of the rewrite rules of the theory is to priori;i:e the rules by recency.
That is, whenever a new rule is introduced to the system this is placed at the beginning of
the list of rules to be applied. This approach is also adopted in the Boyer-Moore theorem
prover [Boyer & Moore 79]. This simple heuristic has intuitive appeal, particularly when the
prover is designed to follow the development of a theory as it is being constructed. Brown’s
theorem prover was tested by following the development of [Quine 69]. The prover was
presented with definitions as they are made, and as each theorem is proved it is added to the
theory as a new rewrite rule. Since conjectures are often proved in order to enable the proof
of later conjectures (the use of lemmas in the mathematical sense), the idea of working

chronologically through the rewrite rules seems sensible.

However, there are problems with this approach. In particular, the theory that is being
followed may not be well-behaved, or there may be no theory to follow. In either case, the
guidance gained by the chronological approach may be harmful. A further problem is that
lemmas may be proved, in order to prove a particular conjecture, which are never useful
outside of this proof. In such cases, particularly when the lemma is general, adding the
lemma to the theory as a rewrite rule would be harmful. In such cases the technique of

gazing could be used to avoid the inappropriate use of the lemma.

The generality of theorems is often indicated in mathematics books by the use of labelling,
and sometimes naming, conjectures which are to be referenced later. Making such knowledge
available to a theorem prover could enable guidance of the system which would allow the
avoidance of inappropriate steps. However the gazing technique references mathematically
relevant features of the facts to determine the application of the rules. For these reasons,

gazing is seen as a more powerful tool for selecting applicable facts.

8.3.2. Abstraction Spaces

The technique of planning in abstraction spaces is due to Sacerdoti [Sacerdoti 74], who
devised two programs, ABSTRIPS and NOAH, which are able to construct plans in a hierarchy
of abstraction spaces. While Sacerdoti was interested in the problem of automatic planning,
this technique is generally applicable. In particular Plaisted, [Plaisted 80] shows in theory
how this technique can be applied to the problem of theorem proving by showing how to
define abstraction spaces so that useful guidance of a proof can be gained from the
corresponding proof in the abstraction space. Plaisted’s work leaves open the question of
which of the many abstraction spaces that meet his definition are generally useful, and also
the problem of guiding the abstract proof. These questions are addressed by gazing, and by
the work of Cvetkovic and Pevac, [Cvetkovic & Pevac 83]. Cvetkovic and Pevac use a gaze

graph to guide the selection of facts in a manner reminiscent of gazing, but the work differs

140

from that reported in this thesis in many_ important respects. Most noticibly, their planning

process is much more expensive, and less likely to be accurate than that of gazing.

In this section I describe the work mentioned in the preceding paragraph. [begin by

describing the work of Sacerdoti.

6.3.2.1. Planning in Abstraction Spaces: ABSTRIPS and NOAH

The rules that are used by ABSTRIPS are called operators, and correspond to rewrite rules in
the gazing system. Operators have preconditions which correspond to the input to the rule,
and postconditions, the output of the rule. ABSTRIPS, [Sacerdoti 74], has a fixed number of
abstraction spaces, and each predicate that the program knows about is associated with a
unique abstraction space. In this way, some predicates are recorded as inherently detailed
goals, while others are seen as inherently high-level goals. The operators of each space differ
only in the preconditions: the postconditions of the operator remain the same. In a high-level
abstraction space, only the preconditions which belong to that space are examined before the

operator is accepted into the plan.

When given a goal to prove ABSTRIPS considers the difference between the current state and
the goal state, and then finds an operator which reduces this difference. If the operator had
preconditions which were true in this abstraction space, or if the preconditions could be made
true, then the operator would be accepted into the plan. Once the plan is completed in this
abstraction space the planner moves to the next abstraction space. In the new space the
planner reconsiders each of the steps that are used in the plan, checking that the
preconditions of this new level are, or can be, met. This process is repeated until the plan is

complete in all abstraction spaces.

ABSTRIPS uses the meansa-ends analysis technique of the STRIPS program, [Fikes & Nilsson
71, Fikes et al 72| to construct plans within each abstraction space. This differs greatly from
the techniques employed in gazing and indicates one of the chief differences between ABSTRIPS
and the gazing technique. In the means-end analysis technique, the system compares the
current state of the world with the goal state, and chooses an operator which most reduces
the differences between these two states. ABSTRIPS determines whether the operator can be
applied, if not it is because some preconditions of the operator are not true in the current
world. In this case, these preconditions are set up as a new goal, and the system plans to
make them true. If the operator can be applied then the world that results from applying the
operator becomes the current world, and the planner attempts to plan to reduce the

differences between this world and the goal.

In gazing terms, choosing an operator which reduces the most differences is equivalent to

141

choosing the rewrite rule which produces the currencies which are closest together. Notice
however, that ABSTRIPS performs only a single-step look ahead. It chooses the single operator
which reduces the difference the most, regardless of the fact the the goal world may not be
producible from the new world, or that the solution may take many more steps than are
required if a different operator had been chosen. In gazing this situation is avoided by
considering, for example in the predicate space, all paths through the gaze graph which link
the current sequent and the goal, and then choosing to consider the shortest. Guidance of

this type is not available in ABSTRIPS.

In ABSTRIPS the abstraction space to which a predicate belongs is called the criticality of
that predicate. This notion is very similar to that of criticality as defined in chapter 4, since
in both cases it is the predicate of highest criticality which keys the use of the operator. At
this point however the similarity stops. Consider rewrite rule a (the superscripts indicate the

criticality of the predicates).
__1 2
a.—z=yAzCy=z2Cy
b.zC 2y

c. {—C..r =}

In ABSTRIPS abstraction space 2 the only precondition that has to be met is that z C y, so
the preconditions in this space are b. Once this has been verified, the operator is deemed
usable, and only in the later abstraction spaces is the other precondition considered. For the
gazing planner the preconditions are as in ¢. The step is considered provided the predicate C

is a hypothesis, but accepted only if the predicate = is also present.

Notice that the ABSTRIPS planner has to deal with the arguments of the predicate with
highest criticality, where gazing deals with these only in the less abstract function/polarity
space. The ABSTRIPS planner works through the formula in a depth-first manner, considering
all of the detail of each literal before moving on to the next. The gazing planner searches the
formula in a breadth-first manner, considering only the predicates at the first pass, then the

term structure in later abstraction spaces.

Like the gazing planner, ABSTRIPS completes the plan at each abstraction level before going
on to refine the plan at zl;n *’}{T:vel. This is clearly a good decision, and must be adopted
by any abstraction based planner since, if the plan cannot be completed at any level then
replanning must occur at he prescsslevel. The whole idea of using abstraction spaces is not to
consider the detail until the system is sure that it is on the right track. This information can

only come from completing the plan at some level.

142

The major differences between NOAH and ABSTRIPS are:

1. NOAH attempts to leave the order in which the planned actions are to be carried
out as unconstrained as possible, enforcing an order only when necessary.

2. NOAH has no fixed abstraction spaces - they are determined dynamically, and,

3. NOAH allows for the patching of plans, rather than blindly backtracking.,

The first of these points does not concern us here, since there is no analogous problem in
the gazing technique. Since each rewrite rule is planned to rewrite a subformula introduced
by the previous application of a rewrite rule, the plan is necessarily ordered. Of course, one
must choose whether to rewrite the hypothesis or conclusion first, but this is no importance,
the choice cannot effect the success or failure of the gazing step.

In NOAH the abstraction spaces depend on the goal that is to be proved, and the definitions
of the operators which are available to solve given goals. This is achieved by associating with
each goal a number of operators which may be used to solve that goal. These are the only
operators which are used to attempt to achieve the goal, and so the operators themselves
define the abstraction spaces. Thus, for example, if the initial goal is very low-level, then the
operators which may be used to achieve it will be a small subset of the total number of
available operators, namely those which deal with what were previously considered to be
‘““details”’. Thus planning in NOAH begins in a comparatively detailed abstraction space,
where in ABSTRIPS the more abstract spaces would have been considered although the plans

that they would have produced are trivial.

NOAH, like gazing, allows for the patching of a plan rather than blindly backtracking and
replanning as performed by ABSTRIPS. If a plan produced by ABSTRIPS fails at some
abstraction level, then the planner undoes the work and attempts to make some other plan at
the PI'U'.-‘GE. level. No record of the reason for failure is noted and hence the replanning
attempt cannot be guided by this failure. In the cases of NOAH and gazing the reason for
failure is recorded and this information is used to ensure that the minimum of redundant
work is recreated. This is achieved by recording along with each step of the plan, the reasons
for carrying out this step. When the application of a step is found to be impossible,
replanning can begin by replacing this step with another with the same effect, leaving the rest

of the plan as intact as possible.

The language which is used by both ABSTRIPS and NOAH to represent goals, and world states

is much more restrictive than that used in gazing in two respects:

e ABSTRIPS and NOAH do not allow function symbols, and,

e only conjunctions of facts are allowed.

These facts, when taken together, show that ABSTRIPS and NOAH have no need for a

function/polarity space, such as that used by gazing. Since there is only conjunction no

143

polarity considerations arise, and there are no functions to appear in the f/p triples. This
representation is quite adequate for the robot planning domain that ABSTRIPS and NOAH work
in, since for example, the state of the world may be represented as a conjunction of facts like
In-Room(Robot,Room1). The negation of a fact is represented by its absence from the world
description. At any one time the state of the world is assumed to be known, and so no need
for disjunction arises. The system does have laws which are of more complex form, for
example Connects(Door2,Room4,Room3) < Connects(Door2,Room3,Room4), but these are
used only to check preconditions, and not as part of the world state. In these systems,
therefore, the abstraction spaces are all copies of each other, the only thing that changes from
one abstraction space to the next is the number of predicates that are considered by the
planner. This is in contrast to gazing, where the predicate and function/polarity abstraction

spaces are quite different.

6.3.2.2. Abstraction Mappings in Theorem Proving: Input Abstraction and

Generalization

Gazing consists of two distinet parts: the use of abstraction mappings to simplify the
problem to be solved, and the use of the common currency model to guide the search for the
abstract proof. The work of Plaisted, [Plaisted 80, Plaisted 86], on abstraction mappings is
closely related to the first part of gazing in that abstraction spaces are used to create abstract

proofs which are then used to guide the construction of a complete proof.

In [Plaisted 80] Plaisted describes an approach which he later calls input abstraction. In
this technique, each member of the set of clauses to be refuted is mapped to a set of abstract
clauses by some abstraction mapping. A refutation of these abstract clauses is then sought,
and if found the prover attempts to pull this proof back into the full space. The
generalization technique described in [Plaisted 86] is Plaisted’s attempt to remedy some of
the shortcomings of the input abstraction technique. Here the idea is that each input clause
is abstracted, and then resolutions performed between these clauses. The resolvent is then
mapped under the same abstraction before being added to the set of clauses for further
resolution. This technique allows control of aspects of the search space which are not
accessible to input abstraction. Of these techniques, only input abstraction is directly related

to gazing.

Both input abstraction and generalization are cast in the context of the resolution inference
rule which is used in both the full and abstract spaces. Plaisted asserts, however, that the
techniques are applicable to other logics and inference rules. The main idea of Plaisted’s
work is to formalize the conditions under which it is possible to use abstracted proofs to
guide the search for a proof in the problem space, and to give a strategy for recovering the

full proof from the abstract one.

144

The definition of input abstraction given in [Plaisted 80 is:

Definition 82: An (ordinary) abstraction is an association of a set f{C) of
clauses with each clause C, such that f has the following properties:

1. If clause C3 is a resolvent of C1 and C2 and D3 € f{C3) then there exist
D1 € f{C1) and D2€ f(D2) such that some resolvent of D1 and D2
subsumes D3.

2. fINIL)={ NIL}. (NIL is the empty clause.)

3.If C1 subsumes C2, then for every abstraction D2 of C2 there is an
abstraction D1 of C1 such that D1 subsumes D2,

Notice that each clause maps to a set of abstract clauses. This introduces a tension into
Plaisted’s technique: on the one hand the clauses that are produced by an abstraction
mapping are supposedly simpler in some respect than the original clauses, but in the
abstraction space there may be many more clauses then there were originally. There seems
no guarantee that the search for a proof in the abstraction space will be any simpler than in
the original space. In gazing this tension does not exist, the abstraction spaces are both
decidable, and thus very much simpler than the full problem space. In gazing each formula
abstracts to at most one abstraction, some formulae disappear completely in abstraction
spaces since their input and output sets are the same and they are classified as null lemmas.
Plaisted points out that the input abstraction technique may be used to construct a hierarchy
of abstraction spaces as in ABSTRIPS and NOAH. This is one approach to ensuring that the
abstraction spaces are eventually simpler than the original space, however if at each level the

number of clauses increases then this may compound the problem.

The need to be able to produce a set of abstract clauses from a single input clause appears
to derive from the fact that resolution is used as the inference rule in both the original and
abstract space. Consider, for example, constructing the analogue of the predicate abstraction
mapping on clauses. This mapping ‘“‘forgets’ all detail of the input formula except the

predicates which appear in the formula. Thus the two clauses (4) and (5) both map to the set

(6).

Hz) v Q(a,y) V R(f(a),g(b)) (4)
~(Az2)) V Q(ay) V ~(R(/la)g(b))) ()
{P.Q R} (6)

Under this abstraction mapping any clause containing only literals in the predicates P, Q
and R will map to the set (6), and inferences between any pair of such formulae will be
permitted in the predicate abstraction space. To allow the same inferences Plaisted has to
map each clause first into a clause which has the same literals, but with the arguments

“forgotten”, and then into the set with all permutations of negations included: (7).

145

{PVQVR, Pv@QvV-R,

PV -QVR, Pv-QvV-R,

~PV-QVR, -PV-QV-R, (7)
-PV-QVR, -PV-QV-R}

This is the smallest set of clauses which allows all of the inferences permitted in the gazing
abstraction space. Notice that using this mapping a clause containing L atomic subformulae
is mapped to a set of 2L clauses. Resolution steps which ignore the polarity of atoms in the
original formula may be performed by choosing the abstract formula which allows the
inference. Carrying out such a step clearly involves searching among the formulae in the

abstraction set.

This difference between gazing and Plaisted’s formulation can be summed up by saying that
Plaisted holds the inference rule fixed while abstracting to a set of clauses which will allow
more inferences, while gazing produces a representative abstract formula but uses a different
inference rule to produce the same effect. The amount of search required by gazing is
therefore less than that carried out by Plaisted’s system, implementing the same abstraction

space.

The generality of Plaisted’s work means that this is not a fatal flaw, only that there are
some abstraction spaces, in particular those used by gazing, which cannot be implemented
cheaply in his framework. Some abstractions that Plaisted uses may produce only singleton
sets of formulae in the abstract space, thus no more search need be carried out in the
abstraction space. Careful selection of abstraction mappings is required to ensure that the
technique will be successful. For each abstraction that it is possible to define within
Plaisted’s technique, however, the problem of predicting how it will behave is going to arise.
Even when singleton sets are produced in the abstraction space the abstract search problem
may remain undecidable. In [Plaisted 80| Plaisted cites many examples of abstraction
mappings, for example ‘‘forgetting’”’ the nth argument to a predicate, which produce an
undecidable abstraction space . Plaisted suggests that different abstraction mappings might
be used to create a hierarchy of abstraction spaces in a manner reminiscent of ABSTRIPS. The
problem of expanding the number of clauses might become a problem if this approach were
adopted, but after some number of abstraction steps, the clauses that are produced would be

very much simplified.

The first clause of Plaisted’s definition of abstraction insists that if an inference can be
performed between two full clauses, then some analogous inference can be found in the
abstraction space between the abstractions of these clauses. The abstraction to the predicate
space used by gazing also has this property. In the case of gazing this says that if a formula

may be rewritten by a rewrite rule, the abstraction of that rewrite rule may be applied to the

146

abstraction of the formula. The function/polarity abstraction mapping does not have this
property. This is because to perform an inference in the f/p abstraction space we insist that
the triples contain the same function symbols, and this is not necessary in the full space, thus

some inferences in the full space will not be acceptable in the abstraction space.

Plaisted shows that his abstraction mappings preserve the ability to perform proofs. That
1s, if there is a proof of a set of clauses, then there will be a proof of the set of clauses
obtained by mapping them under an abstraction mapping. This is simply an extension of the
result concerning inferences, and as such can be seen to hold for the predicate abstraction
space of gazing, but not necessarily for the function/polarity space. Further, in Plaisted’s
system the abstract proof is of a similar form to the full proof. The analogy is well defined;
the significant property being that a resolution in the abstraction space corresponds to a

sequence of resolutions in the full space.

The main point of [Plaisted 80] is to give a strategy for guiding the search for a proof in
the problem space when given an abstract proof. Basically the idea is to use the analogy that
I have already described to guide the inferences in the full space. The clauses in the
abstraction space are mapped back to their full space counterparts, and inferences between
these clauses is attempted. When inferences which correspond to those in the abstract proof
can be found, a part of the full proof has been found. This task is non-trivial for two

reasons:

e Many clauses in the full space may abstract to the same clause in the abstract
space.

e Some subgoals may be inherited in the full proof which were not dealt with in the
abstraction space, since in the abstract proof some of the detail has, by definition,
been forgotten.

Neither of these problems may be solved by guidance from the abstract proof produced by
Plaisted’s method. Where many clauses are mapped to the same abstract clause, the theorem
prover will be forced to choose the inference which is analogous to that in the abstraction
space. In the case of an incorrect choice it is to be hoped that the analogy between the
abstract proof and the full proof attempt breaks down quickly. This problem arises in gazing
too, when two or more formulae share the same abstraction. In gazing, the plan is made on
the basis of the abstraction’s effect, and if there is more than one formula with the same
effect then they are equally suited to bring about the desired effect. If in a lass abstract
space the plan breaks down, then there is a record of alternative ways of achieving the same

effect.

Input abstraction allows unconsidered subgoals to arise in the full space, since the definition

147

of abstraction allows that literals from the full clause may be completely absent from the
abstraction. When such subgoals are derived in the full space they may be proved by a
second application of the abstraction technique using a different abstraction mapping.
Alternatively, it may be judged that such subgoals may be proved by a brute-force such as
exhaustive search. The course taken will depend on the precise nature of the abstraction used
in the constructing the abstract proof. This problem cannot arise in gazing, since every
literal is represented by its abstraction in the abstraction spaces. When unification is
attempted between the conjecture and a fact the gazing system is guaranteed that a pair of
literals with matching f/p triples are present in the formula. It is necessary to worry about
the differences between these two literals which are not represented in the abstraction space
when the unification is attempted. There are two possible ways of reducing these differences
suggested by gazing, the first is the use of “null” steps, if the f/p triples are the same, the
second is to introduce additional steps to take care of such differences. The minimal
guarantee offered by the abstraction space is that there will be at least one pair of literals

which are candidates for unification.

A significant difference between Plaisted’s technique and gazing is that the use of input
abstractions does not provide guidance in the search for the abstract proof. That is, once the
abstraction has been performed the system has the same means of solving the problem that
are available to the prover as a whole. The idea is that the abstraction space should be
simple enough to limit the potential search for the abstract proof. As observed above, this is
a questionable assumption, since there is no guarantee that the abstraction space will be any
simpler than the original. In gazing the search for the abstract proof is guided by constraints
on the rules that will be considered for use in the proof. For example, the gaze graph is used
to enable the prover to choose the shortest sequence of rewriting steps which will lead to the
occurrence of complementary predicates in the goal to be proved. A trivial example of how
the use of the gaze graph limits the possible inferences, is that the search strategy does not
allow looping in the plan. An exhaustive search of the abstraction space is infeasible if the
abstraction space can contain loops, as the predicate abstraction space can. An unguided
prover has to use trial-and-error to find an appropriate sequence of inferences. Even
assuming that the prover has enough resources to explore all possible sequences of rewriting
steps, this approach is wasteful when some guidance might be provided. Other examples of
this type of guidance provided by gazing are the heuristics presented on page 93. These
heuristics eliminate many facts from the prover’s consideration when constructing abstract
proofs, while they would be considered in by a prover implementing Plaisted’s techniques.
There is nothing inherent in Plaisted’s work which would prevent a prover from being given

this additional guidance.

148

In [Plaisted 86] a different approach to using abstraction mappings is presented. Plaisted
calls this approach generalization, and it differs from input abstraction in that all resolvants
are mapped under a generalization mapping when they are produced, before they are added
to the clause set. This allows much finer control over the search for a proof. In particular,
Plaisted uses generalization to prevent the clauses present in the proof becoming too
complicated. For example, it is possible using generalization, to specify that no terms of
depth greater than n, for some n, will appear in the proof by ensuring that the generalization
mapping replaces such terms by shallower terms. This is not possible using input
abstractions, since the abstraction mapping only works on the input clauses, and resolution
does not respect clauses abstracted in such a way. That is, even if the abstraction replaces all
terms of depth greater that n with a term of depth exactly n, the application of resolution
may again produce a clause of depth greater than n. Thus in generalization all clauses

produced are generalized, not just those which are in the input set.

The technique of generalization, while an interesting use of abstraction in theorem proving,
is not so directly related to gazing as input abstractions. Generalization is only really
necessary because resolution does not respect the effect of the abstractions. That is, resolving
on two generalized clauses does not necessarily produce a generalized clause. The gazing
abstraction spaces, and the abstraction spaces defined by Plaisted’s input abstractions, are
closed in this way. No inference in either system can produce a formula that does not belong
to the abstraction space. Because of this property of generalization, the technique is

qualitatively different from gazing and input abstractions.

In summary, Plaisted’s work on abstraction mappings, particularly the work on input
abstractions, is closely related to gazing, but differs in many respects. The most important of

these are:

e Neither of Plaisted’s techniques guide the search for the abstract proof, and,

e Neither of Plaisted’s technique guarantee that the abstract space will be any
simpler than the original problem space.

The justification for the lack of guidance of the abstract proof is that the abstraction
mapping will abstract sufficiently to allow the proof to be found without requiring guidance.
I have observed above, that this assumption is questionable, but that careful selection of
abstraction mappings can significantly lessen the complexity of proofs. Of course, there is
nothing in Plaisted’s technique to prevent such guidance being used, but the technique itself
does not require such heuristics to be used. In gazing the analysis of the effects of the
abstracted rules are used to guide the choice of rules to be used in the proof, and therefore

the course of the proof.

149

The fact that there is no guarantee that the abstraction space is simpler than the original
space is somewhat worrying, but is partly a consequence of the fact that the same inference
rule is used in both the abstract and full spaces. This means that certain abstractions can
only be caried out by mapping single clauses into sets of clauses, thus multiplying the number
of possible inferences. Also, the abstraction mapping may define an abstraction space which
is undecidable, and although the clauses are ‘“‘simpler”’ in the abstraction space the amount of
search required to find the proof may still be prohibitive. Indeed, as pointed out by Alan
Bundy, the fact that clauses are simpler means that there are more candidate unifications.
For example, Hz) unifies with more clauses than H f(¢g(z))). Thus in Plaisted’s techniques
search increases because of the increased number of clauses, and the larger number of

candidate resolutions.

6.3.2.3. Abstraction Mappings in Theorem Proving: The GRAPH Theorem Prover

Cvetkovic and Pevac [Cvetkovic & Pevac 83] use a structure which is very similar to a gaze
graph to guide the selection of facts to be applied to a conjecture. While similar
to gazing, their technique differs in many important respects. However the independent
discovery of the graph representation of a theory lends credence to the belief that it is a

powerful tool for guiding the proof of theorems.

Cvetkovic and Pevac have implemented a graph theoretician’s aid. It consists of three
parts: bibliography, algorithms and theorem provers. The system has two theorem provers,
either of which may be called by the other. The interactive prover works by a natural
deduction style logic, while a stand-alone prover uses resolution. Only the interactive natural

deduction theorem prover is of interest to us here.

The interactive theorem prover, GRAPH, has the ability to use facts of graph theory to
transform the current conjecture. The theorem prover has a representation of all of the
predicates of the theory in a graph structure. While they do not call it this, this structure is
the gaze graph of the theory. One slight difference in their representation is that for lemmas
which are equivalences, arcs are added to the graph in both directions, but one set of arcs is
labelled ‘“‘blue’ and the other ‘‘red”. Red arcs correspond to using the conjecture in one
direction and blue to the other. Thus for every red arc in the graph, thereis a corresponding
blue arc linking the same nodes, but in the opposite direction. This is contrary to the
orientation of lemmas in one direction in the gazing technique. Ares which derive from

definitions are uncoloured and are oriented away from the defined term, as in the gaze graph.

I begin by giving some of the definitions from [Cvetkovic & Pevac 83].

Definition 83: A path through the graph is a path which contains only
uncoloured and “blue’ arcs.

150

Definition 84: An antipath is a path which consists of only uncoloured and
“red” arcs.

Definition 85: A trace from a predicate A to a predicate B is a path from A to
some predicate C, followed by an antipath from C to B.

Definition 88: The complezity of a predicate appearing in the conclusion of a
sequent is the length of the shortest trace joining that predicate to some predicate
in the hypothesis.

Definition 87: The complezity of a sequent is the average of the complexities
of the predicates of the conclusion.

The notions defined above correspond very closely to those used in the gazing technique. In
gazing there is no distinction between paths and antipaths since all rules are oriented to
decrease criticality. In gazing, the notion which corresponds to a trace is a pair of paths
(rather than a path and an antipath), but this is a rather slight difference. The complexity
of a predicate in the conclusion of a sequent is the sum of the lengths of the shortest pair of
paths in the gaze graph rewriting the conclusion predicate and the hypothesis predicate to a
common predicate. While this notion is not used explicitly in gazing, when there is a choice

of plan, the shortest is chosen.

If the original sequent is transformed by the use of a fact to a less complex sequent, then
this step is recommended by GRAPH. In GRAPH the strategy is to find those facts a, which

are recommended in this way and then to chose at most two or three such transformations.

For example, if the sequent is (R), and the facts (v), (vi) and (vi) were known, then the path

consisting of only (vi) would rewrite = to C.

a=b ' «Cb (R)
x=y=V2.2EX—2EY (v)
x=ﬁ=>x§3/\3§an (vi)
xCYy=Vz.2Ex— 2€y (v1)

The path (v) followed by (i) would also introduce a common predicate, but the length of
this trace is 2, and the length of the first trace is 1, so the complexity of C is 1 in this

sequent. Notice how similar this is to gazing in the predicate abstraction space.

Once the candidate rewrite rules () have been found in GRAPH these facts are used to
rewrite the sequent (in parallel), resulting in sequents o, Clearly each of the facts (v), (vi)
and (i) may be applied to the sequent, and are thus candidates for .. Suppose however that
these three rules are the chosen a . FEach rule is used to rewrite the sequent to .. Notice
this is very different from gazing, in that a number of candidates are each considered in

parallel, whereas in gazing only the most promising candidate proceeds for further analysis.

151

r€aAz€b |- aCh (MM)
aCbAbCa ' aCh (NN)
a=b | z€a—z€b (00)

The o, are then passed to the logical inference part of the prover, which returns, for each
sequent, a set of subgoals 7, to be proved. For example, when given (MM) the system might
return (PP), and (QQ).

z€a - aCh (PP)

z€b - aCh (QQ)

The complexity of each sequent from 7; is measured and these measures averaged to get a
measure of the complexity of the proof that would have to be performed if the rewriting step
a, were used. The o, which results in the minimum for this measure is chosen as the rewrite
to be performed. In the example above, the rule (vi) would be selected since the complexity
of the resulting sequents is 0, indicating that the same predicate appears in both hypothesis

and conclusion.

The application of this technique clearly involves a lot of work. The complexity of a
sequent may be measured quite quickly by using fast graph searching algorithms, but a
number of a; are to be applied, and logical inference is carried out on each of the resulting
sequents. Only logical inference is allowed here, so the sequent must eventually be proved, or
reduced by logic to a set of outstanding subgoals, however this step could be arbitrarily

complex. Once this is done, choosing the appropriate step can be performed quite quickly.

Since choosing the appropriate step involves partially building the proof of the resulting
sequent. The work that is done for the step that is eventually chosen is not wasted. But
unless the prover makes a wrong decision and remakes this choice, the work performed on the
steps which were not chosen is wasted. It is precisely this work that techniques providing

guidance are supposed to avoid, so the use of this technique comes into question.

It would be acceptable to carry out such wasted work if the step that was eventually chosen

is very likely to lead to a proof. However, in [Cvetkovic & Pevac 83| the authors report:

Such a criterion prevents useless definition instantiations in the hypothesis A of

A= B . On the other hand, simple examples show that the definition

instantiations in B, although promising at the beginning, can lead to a

shortcoming after some steps, simply because the predecessors of elements of L(B)

[the predicates of B] do not have traces of attack any more or have very long
traces.

* ?
Cvetkovic and Pevac’s notation for A " B

152

These remarks are similar in spirit to the critique of Bledsoe’s peeking technique in chapter
4 (section 4.2.3). This is not a coincidence, Cvetkovic and Pevac’s technique suffers from the
same problems as peeking because both techniques only plan one step ahead. It was this

shortcoming that gazing was designed to overcome.

In their attempt to overcome this problem Cvetkovic and Pevac define an improved
complexity measure for predicates.

Definition 88: The direct predecessors of a predicate P are those predicates
which occur in the definition of P.

Definition 89: The tmproved complezity of a predicate, P, of the conclusion of
a sequent is defined to be one larger than the average of the (simple) complexities
of the direct predecessors of P.

However it is clear that this only takes the problem one step further away since this

measure only considers those predicates which are direct predecessors of P.

Another similarity with peeking is evident in Cvetkovic and Pevac’s work. Their technique,
like peeking, does not consider the functions which are present in the sequent in the
complexity measure. This was discussed in the case of peeking in chapter 4 (section 4.2.2).
Clearly the same problems would occur in this technique. This is not a problem for
Cvetkovic and Pevac since the logic that GRAPH deals with does not admit of function

symbols.

The major difference between peeking and gazing is the use of the gaze graph to represent
the entire theory. This leads quickly to the notion of complexity of sequents, and to the
ability to determine steps which decrease the differences between the hypothesis and
conclusion. Peeking does not have this ability: it is an ‘“‘all or nothing” rule. If the use of
the definition does not immediately introduce a predicate which already appears in the

sequent, peeking does not perform the rewriting step.

The complexity of a sequent, as defined above, is also used to guide the logical inference of
GRAPH to a limited extent. There are two cases:

e If the prover is to show A l—! B v C and the complexity of A }—? B is much
9 *
greater than that of A I—T C then the prover tries to show AA-~B | C .

e If the prover is trying to show A A B =" C and there are no traces from the
predicates of C' which end in a predicate of B, then the prover will try to show

A = @

* ?
[Cvetkovic & Pevac 83| gives the new sequent as A A ~C " B but this is surely an error.

153

In summary, the techniques used in the GRAPH theorem prover are very much in the same
spirit as peeking and gazing. The major differences between gazing and the GRAPH

techniques are:

Gazing selects a possible rewriting of the conjecture and explores this to the exclusion of all
others until either it has been successfully applied, or it has failed and some other possible
rewriting must be selected. The GRAPH prover chooses a number of possible courses of action

and carries them all out before determining which is the most promising.

The exploration of the possible rewritings is performed by gazing completely in abstraction
spaces designed to measure the promise of a sequence of rewriting steps. In the GRAPH
prover, before a particular sequence of rewriting steps is chosen all the candidate rewriting
steps are applied to the conjecture, thus incurring the penalty of performing at least some of

the work that the techniques are designed to avoid.

These two points, that the GRAPH prover carries out much more expensive work on a
number of possible options means that the technique is much more expensive than gazing.
Further, since it does not take into account the functions in the conjecture and looks only one

step ahead it is subject to the same drawback as peeking.

68.3.3. Theory Resolution

In this section I describe the work of Stickel [Stickel 85| on a technique called theory
resolution. This work is related to the technique of gazing in that inferences are separated

into two classes: inferences within the theory, and logical inferences.

Theory resolution is a single inference rule. Like resolution the inference rule works on

clauses, which are a disjunction of literals. The theory resolution rule applies to a set of

clauses, O’l, - Cm which are each decomposable into the theory literals K and other literals
Lf: ie C,=K,V L, for all i. Suppose there are unit clauses Rl’ ... R such that
{Kl, % ,Km,Rl, oy Rn} is unsatisfiable within the theory, 7. Then the T-resolvent of the

Oiisle vLmv-«Rlv v--Rn.

The key idea of theory resolution is that it is beneficial to treat inferences with the theory
separately from inferences within the conjecture. This is exactly the approach that I have
taken in the gazing technique. However a contrast between gazing and theory resolution is in
the relationship between the theory and logical inferences. In gazing, theory inferences and
logical inferences are separated. The proof is attempted without using the theory, and only if

this proof fails are theory inferences attempted. Once these have been carried out the system

154

reverts to carrying out only logical inference. Theory resolution is a single operation which
combines theory and logical inference, but the mechanism by which the theory inferences are
carried out, and that by which the logical inferences are performed are different. Stickel
refers to the component that carries out theory inferences as the TBoz, and that which carries

out the logical inference as the ABoz (Assertional).

One advantage of the separation of theory and logical inferences is that each component
need not know how the other performs, only the effect of the other component. Notice that
the theory inference rule does not specify how the prover is to show that the set of clauses is
T-unsatisfiable. The TBox must merely determine whether a set of assertions is unsatisfiable
within the theory. The ABox need not know how this is done, only that it has been done.
This is the case with gazing too: the particular search strategy that has been used to carry
out the theory inferences is not important to the logical component. Clearly the task of
determining the T-unsatisfiability of a set of clauses depends on the theory T. Any special

purpose mechanism which can determine unsatisfiability within the theory may be used.

PROVER embodies the natural deduction equivalent of theory resolution. The decision
procedure for inequalities reported in [Bledsoe et al 79], and in chapter 2 can be considered as
the TBox, and the natural deduction inference rules as the ABox. Rather than the residue of
a TBox inference being rejoined to the conclusion of the inference, as the Ri literals are in

theory resolution, in PROVER the residue is represented by the typelist.

In the natural deduction framework any number of TBoxes may be specified simply by
adding extra inference rules which fire an appropriate decision procedure if the conjecture is
of the correct form. It is a weakness of the uniformity of the resolution rule which has led to
the discovery of the power of specific TBoxes much later than within the natural deduction
framework. This is wholly in accord with the intuition expressed when justifying the study
of natural deduction theorem provers (in chapter 1), namely that the ability to devise and
express heuristics within this framework far outweighs the disadvantage of the inefficiency of

the underlying logic.

In this subsection I have described the theory resolution inference rule. Like gazing, theory
resolution allows the separation of inferences into those within the theory, and logical
inference. This distinction has been used to construct an inference rule which has two
components, one for each type of inference, and allows special purpose techniques to be used
to carry out the theory inferences. This approach is exactly that adopted by gazing and
earlier by Bledsoe in his work on inequality reasoning. The approach of theory resolution
differs from that of gazing in that a prover implementing gazing attempts to prove a

conjecture by using only logical inference initially. If this attempt fails the system uses

155

theory inference to transform the conjecture into one which can be proved by logical
inference alone. Thus the theory is ignored completely for some of the proving process.
Theory resolution by contrast uses a single inference rule which has two components, one for
theory and one for logical inference. Thus the theory may be used at each application of the
rule. The relationship between theory resolution and the natural deduction techniques is
clearly seen when considering PROVER, which implements exactly the theory resolution

technique but within a natural deduction framework.

6.3.4. Summary

In this section I have described work that is related to that reported in this thesis. This
work falls into three categories: natural deduction theorem provers, the use of abstractions to
produce plans and guide theorem provers, and the separation of inference into logical and

database categories.

Other Natural Deduction Provers

In section 6.3.1 I described a number of natural deduction provers. In particular I

concentrated on their handling of definitions and lemmas.

Reiter’s prover [Reiter 76, Reiter 73] explicitly conjoins definitions and lemmas to the
hypothesis of conjectures. This is necessary since the prover has no ability to use the
rewriting rule of inference. As observed in chapter 2 this severely limits the power of a
prover in any significantly complex domain. Since Reiter’s main aim in the construction of
his system was to show how the search for a proof can be guided by a model, this drawback

was peripheral to his experiment.

Brown’s prover [Brown 78|, uses a technique for choosing rewrite rules which is also used by
the Boyer-Moore theorem prover [Boyer & Moore 79]. The rewrite rules in these provers are
stored ordered by recency: Fhe rules at the beginning of the list being the most recently
learned by the prover. The prover attempts to apply each rewrite rule, starting from the
beginning of the list and working down, when a rule is found which applies it is then used to
rewrite the goal. The heuristic is simple, and appropriate for these theorem provers. In both
cases the user of the theorem prover is to develop a theory (or proof) incrementally by
proving conjectures. Since the sequence of conjectures is supposed to mirror the development
of some theory, then the idea that recently proved facts will be more useful is a good
heuristic. The gazing technique does not make such assumptions, and as a result, prefers to
choose rewrite rules on the basis of their effect on the conjecture to be proved. Recency could
however be used to tie-break for a gazing system, although this is not implemented as part of

VOYEUR.

156

Pastre’s prover, DATTE, uses a graph to record certain of the hypotheses of the conjecture.
The deduction of new hypotheses results in updating the graph and adding hypotheses. This
technique allows fast graph matching algorithms to be used to apply rewrite rules, but does
not provide guidance as to the choice of rewrite rules to apply. The rewriting of conjectures
to their primitive terms, and the solution of the resulting goals has be demonstrated as a
plausible method for proving theorems by DATTE provided that theories are not too complex.

The generality of this method is somewhat in doubt.

Abstraction in Theorem Proving

Gazing consists of two parts: the first is the idea of using abstractions to create a simpler
task to prove, and then using the simpler solution to guide the solution of the harder task.
This idea is due to Sacerdoti [Sacerdoti 74], although he originally applied it in the domain of
planning systems. In this work the goal is to produce a plan to carry out a specified action.
The planner works in a hierarchy of abstraction spaces planning to carry out the goal first in
broad generality and then by successively refining the plan to take more details into account.
This is achieved by representing the operators in a number of abstract ways. Each level of
abstraction has associated with it a number of predicates. A predicate is invisible below the
level of abstraction associated with that predicate, thus the fact that the predicate records a
precondition that must be true before the operator may apply is ignored until the planner
gets to this level of detail. The implementation of gazing differs from this in that the
abstractions do not allow whole subformulae to be ignored, rather some detail of the formula,
for example the arguments to predicates, is dropped globally. Thus ABSTRIPS considers the
operators as having numbers of preconditions, while gazing considers the operators a having

increasingly detailed preconditions.

Plaisted [Plaisted 80] applied abstraction to theorem proving, and showed that it is possible
to define abstraction mappings to preserve the property of proof. In gazing this idea has
been extended further by using specific abstraction mappings which allow guidance of the
abstract proof. These abstraction mappings record the concepts that appear in the rewrite
rules of the theory, and the effect that applying such a rule has on the concepts. This leads
to the possibility of, first of all, guiding the search for the abstract proof, and secondly
patching the abstract proof elegantly if it fails when applied in the full space. Gazing also
uses a more liberal notion of abstraction mapping, allowing the system to ignore the

connectives of the formula in the abstract space.

The graph theory prover, GRAPH, of Cvetkovic and Pevac uses a representation of the
theory which is, with minor modification, the same as the gaze graph. This graph is used to
guide the search for a proof by determining lemmas and definitions which it is appropriate to

use in the proof. GRAPH has a notion of complexity of a sequent which corresponds to the

157

length of paths in the graph which join the hypothesis to the conclusion. After exploring
some alternatives, GRAPH chooses the course of action which maximally decreases the
complexity of the sequent. This technique involves expending a great deal of computational
resources in determining the appropriate rule to apply, in particular requiring the application
of more than one of the alternative rewrite rules. This would be acceptable if the heuristic
were more reliable, but the heuristic suffers from the same drawbacks of peeking, namely
that the heuristic embodies only a one-step look-ahead and does not consider function
symbols in the complexity measure. The second of these disadvantages is not a problem for
GRAPH, since its logic does not admit function symbols, but the first can be a problem. Both

factors limit the general usefulness of the technique.

The Separation of Logical and Database Inference

Stickel’s work on theory resolution [Stickel 85] is related to gazing and to Bledsoe’s
inequality reasoning techniques in that it separates inferences relative to a theory from logical
steps. Inferences which are purely logical are performed by the resolution component of the
inference mechanism, and the theory deductions are carried out by a separate, unspecified,
TBox. The gazing technique, in addition to making the distinction between the logical and
theory deductions, proposes the use of abstraction spaces for guiding the theory deductions.

An implementation of gazing therefore provides the theorem prover with a TBox.

6.4. Conclusions

In this thesis I have described a technique, gazing, which enables the control of the use of
rewrite rules in theorem proving (chapter 4). Gazing was described within a natural
deduction framework (chapter 1) and was motivated by some problems which were found
with the guidance techniques suggested by Bledsoe ([Bledsoe & Tyson 75a, Bledsoe & Tyson
78] and chapter 2). In chapter 5 I justified the use of the technique by showing that it is not
expensive to apply, and can behave no worse than an unguided prover. I have implemented
VOYEUR, a theorem proving system which can operate in two modes. In one mode the
theorem prover emulates RUT (chapter 3), a rational reconstruction of the UT theorem
provers (chapter 2). In the other mode, the theorem prover replaces some of the RUT
inference rules with the single gazing rule, which applies the gazing technique to the
conjecture. A comparison of proofs performed by VOYEUR in the two modes is presented in

appendix B.

158

6.4.1. What Has Been Learned

In this thesis I have described gazing, a technique for controlling the use of rewrite rules
within a natural deduction theorem prover. There are two main problems with the peeking

and pairs techniques:

e They consider only the predicates which appear in the conjecture and rewrite
rule.

e They are ‘‘short-sighted” in that they perform only one-step look ahead.

Gazing overcomes both of these problems by providing guidance based on all of the

concepts in the goal and rule, and by allowing the examination of arbitrary rewriting steps.

Gazing constructs a plan of action (a sequence of rewrite rules which are to be applied) by
considering abstractions of the rewrite rules which are available. The abstractions represent
the effect of applying the rule by recording the concepts which are altered by the application
of the rule. The application of rewrite rules is viewed in our system as a means to exchange
the concepts that appear in the current conjecture for a new set of concepts which appear in
the new conjecture. The aim of applying rewrite rules is to make the set of concepts
appearing in the conclusion of a conjecture the same as that in the hypothesis. This way of

viewing the process is called the common currency model by Alan Bundy who devised it.

The gazing technique has much in common with the techniques described in [Plaisted
80, Sacerdoti 74] and [Cvetkovic & Pevac 83]. These techniques all use the concept of

abstraction in order to plan an appropriate course of action.

The use of the gazing technique has been shown to be effective and inezpensive. These

two facts imply that gazing is a useful tool for theorem proving.

e Gazing is effective in that the construction of the plan can limit the redundant
and useless application of rewrite rules as a theorem prover searches for a proof.

e Gazing is inexpensive since search in the abstraction spaces may be carried out
efficiently and is much less explosive than that of the problem space.

The efficiency of the search is made possible by the particular abstraction space that have
been chosen. Searching for a plan in the abstraction space may be reduced to the problem of
searching for paths in a graph, and efficient algorithms exist for this problem. Better yet,
the graph is merely the representation of the rewrite rules of the theory in the abstraction
space. Once all of these rules are known all paths can be computed and stored in a table.
The planning problem then becomes a simple applicability check at prove-time. This
applicability check may be performed in linear time. The ability to precompute all paths is

implemented as an option in VOYEUR.

159

The abstraction spaces are much less explosive to search since they contain only abstract
representations of the rewrite rules. Two distinct rewrite rules may collapse into one abstract
rule in some abstraction space, since in the abstract representation they have the same
effects. Of course, the planner must decide which of the rules to eventually use, but this
decision may be made on the basis of a different abstraction. The problem of deciding
whether a rewrite rule can, and should, be applied may be made much more quickly in the
abstraction space. This is because only the relevant features of the rewrite rule are available

in the abstraction space.

In experiments with the VOYEUR theorem prover the use of the gazing technique can be seen

to lead to shortened proofs. Some of these proofs are presented in appendix B.

8.4.2. What Has Yet To Be Learned

Some questions that are left open by this research into the gazing technique are suggested

below.

1. How can the search strategy used in searching the abstraction spaces be tailored
(mechanically or by hand) to a particular theory?

2. What features of the theory are important in the design of the search strategy for
that theory.

3. How effective is gazing at providing guidance when the number of rewrite rules in
the theory gets very large?

4. Can the abstract representation of the theory be put to use in solving other
problems in theorem proving and mathematical reasoning?

5. Can gazing be extended to deal with other logical inference techniques (eg,
resolution, the connection method, semantic tableaux)?

6. Can gazing be extended to handle recursive definitions?

The first question above is suggested by the observation that ss1, the search strategy whose
development and testing has been reported here, was devised by examining the proofs and
rewrite rules of naive set theory. This theory has certain properties which were used to
develop the search strategy. In particular, the theory has similar numbers of functions and
predicates, and this has lead to the roughly equal division of labour between the predicate
and f/p abstraction spaces. In a theory, for example group theory, where there is only one
predicate and many function symbols ss1 will probably not be so effective, since the number
of possible steps in the f/p space will not be constrained by guidance from the predicate

space.

160

The discussion above leads to the second question. If the system is to use different search
strategies in different theories, what features of the theories are relevant in making the
choice? One feature, as described above, is the relative proliferation of predicates and
functions in the theory. A high proportion of one over the other will place too large a burden

on one of the abstraction spaces of ss1 for the technique to result in useful guidance.

The effectiveness of gazing in theories which have very large numbers of rewrite rules is
clearly an important question. It seems certain that ssl would be inappropriate for such a
theory since the abstract representations of rewrite rules would fail to distinguish between
many rewrite rules, i.e. many rewrite rules would ‘‘collapse” into the same rule in the
abstract space. In this case more refined abstraction spaces might be devised to distinguish
between such rules. It seems that this extension will be necessary in any later

implementation of gazing.

Finally, the extension of gazing to different logical inference systems and to recursive
definitions is of interest to determine the generality of the method. The extension to
handling recursive definitions seems quite straightforward, although I have not attempted
this in the current implementation. Plaisted’s work [Plaisted 80] shows that the technique of
abstraction mappings can be applied to resolution based provers, but he does not use
abstraction mappings to guide the search for the abstract proof, other than to reduce the size
of the problem space. It seems clear that gazing can be applied equally to any logical system

which does not perform extensive normal-forming.

6.4.3. Summary

In this chapter I have presented:

e Work that is strongly related to that reported in this thesis,
e Possible extensions to the work reported here, and,

e Some overall conclusions from this work.

The work that is related to Gazing falls into three categories. I described this related work
in section 6.2, focussing on natural deduction theorem provers which exhibited different
methods of controlling database deduction, the uses of abstraction mappings, and the

separation of logical and database inference.

Possible extensions to the work presented in this thesis include developing new search
strategies which may be used to search for proofs in the abstraction spaces of a theory. This

will be necessary since the success of the ssi search strategy depends to some extent on the

161

structure of the theory. In particular, I hope to develop a strategy for planning in theories
with one predicate and a large number of functions. SsI is not appropriate for such a theory
since the f/p planner is guided by information from the predicate space planner, and such
guidance would not be available in this theory. Identifying features of the theory which can

be used determine the choice of strategy for that theory is also an important task.

Finally the conclusions of this thesis may be summed up by saying that gazing can be an
effective and efficient technique for guiding the choice of rewrite rules to apply to a
conjecture in the course of a proof. It can be effective since the guidance that it produces
cannot cause the program to apply more redundant or useless rewritings than it would if
unguided, and often causes the prover to move more directly to a proof. It can be efficient
since the cost of providing the guidance is small. This is because the abstraction spaces may
be searched for a plan of action very quickly since they are propositional in nature. The
information that is required by the system to produce a plan resides only in the abstract
representation of the theory, and thus as soon as the rewrite rules are known this information
can, in principle, be computed. If the precomputation is carried out, the retrieval of an
appropriate plan during a proof may be carried out only at the expense of a simple
applicability check. Thus, while gazing saves much search the expense of carrying out the

technique is very slight.

162

Appendix A

Some Results:
Exercises in Set Theory

In the country of the blind
the one-eyed man is king

H. G. WELLS

A.l. Introduction

In this appendix I present some results obtained by using the Voyeur theorem prover‘ to
prove simple theorems in set theory. The conjectures are taken from chapter 1 of [Sigler 66],
a book of exercises in naive set theory, designed to accompany [Halmos 60]. [Sigler
66] consists only of definitions and exercises to be attempted by the student. Most of the
exercises in the first chapter are very simple and are well suited as conjectures for the Voyeur

theorem prover.

In order to assess the effectiveness of gazing, statistics are presented for the proof of each
conjecture by Voyeur in RUT mode and in GAZER mode. These two modes can be thought of
as two distinct theorem provers and will be referred to as such throughout this appendix.
The main advantage of using two modes of the Voyeur prover is that the modes share all of
the program that is appropriate to both provers. This factors out advantages that might be

gained by either prover being implemented more efficiently than the other.

RUT has access to only the definitions of any theory, as it is unable to guide the use of
lemmas. This makes the comparison between RUT and GAZER somewhat unfair, since
a. If the prover needs to use a lemma in the proof then RUT will be unable to use it,

and thus a longer proof (or no proof) will be found by RUT than by GAZER, on the
other hand,

b. GAZER has to consider the lemmas in constructing its plan for rewriting, and this
may cause GAZER to be slowed in its proof attempt.

*
The Voyeur program is available on request from the author.

*%
The implementation of GAZER allows the user to choose between the three choices of action (described in

chapter 5): (1) “pre-compile” the plans of the theory, (2) produce the plans on the fly but keep them when they have
been constructed for later use, or (3) simply compute the plans each time they are needed. For the purposes of the
experiments deseribed here, GAZER was used in the third mode. This is slightly unfair to GAZER but either of the
other choices would have made it harder to compare RUT with GAZER.

163

While the results are not presented here, RUT can be used in a mode that allows it to access
lemmas in the Reduce rules. For none of the conjectures presented in this appendix does
this feature improve RUT’s ability to prove the conjecture. RUT is able to prove all of the
conjectures in either mode, however allowing RUT to use lemmas uniformly degrades RUT’s
performance by causing it to attempt to apply the lemmas as rewrite rules at each

application of the Reduce rules.

Chapter 1 of [Sigler 66] divides naturally into three parts. The chapter begins with the
presentation of the basic definitions and exercises 1.1 through 1.8. After these exercises the
definitions of binary union and intersection are given and then exercises 1.9 through 1.32,
concerning these and other concepts. Finally the definition of symmetric difference is stated

and exercises 1.33a through 1.33g relating to this concept are presented.

I have similarly divided the presentation of the exercises to the prover into three parts. In
the first, the prover has to prove the first set of conjectures (1.1 through 1.10) from the
initial axioms. In the second the prover is set the second batch of problems (1.9 through
1.32) and has the previously proved conjectures and all of the definitions to work from.
Finally the prover has the conjectures proved in the first and second parts as lemmas, and all
of the definitions presented in the chapter for the task of proving exercises 1.33a through
1.33g.

The reader will notice that not all the exercises stated in [Sigler 66] are attempted. Those

exercises that are omitted fall into three categories:

e Some of the exercises are concerned with proving that certain objects are sets. |
have omitted the axioms for the concept of being a set from this presentation.

e Some exercises are concerned with proving properties of the natural numbers,
which are recursively defined as: 0=@n+1=nU {n}. Since neither RUT nor
GAZER can handle recursive definitions, these exercises are omitted.

e Some exercises deal with arbitrary sets, e.g. {a,b,c,d,e,f}. No definition for this
appears in chapter 1 of [Sigler 66|, and so the reader, as well as the program,
cannot solve these problems without additional information.

A.2. The Initial Theory

[Sigler 66] begins with the presentation of the initial axioms of the theory. These axioms
are presented in subsection A.2.1. Then some simple propositions about the defined concepts
are set as exercises for the student. These conjectures (1.3a through 1.10) are presented in

subsection A.2.2 and results for Voyeur’s proofs are presented in subsection A.2.3.

164

A.2.1 Axioms

The initial axioms are given below.

Axiom 1: Definition of =
Vzylz=y=Vi2:€z e z €y

Axiom 2: Definition of C
VzylzrCyeaVzz€z— 2z €y

Axiom 38: Definition of C
VzylztCy=zCyA -z=y]

Axiom 4: Definition of generalized intersection
z € gen—inter(y) =2 VzzEy—z € 2

Axiom b: Definition of generalized union
z € gen—union(y) =322 € yAz € 2

Axiom 8: Definition of set difference
TEYy—z8TEYATE 2

Axiom 7: Definition of pair
z € {yz}e@z=yVz=z

Axiom 8: Definition of power set
z€2=zCy

Axiom 9: Definition of #
z€EPs |

This theory is very small and there are no choice points for the provers, i.e., there is at
most one way of rewriting a particular concept to another. This means that, for the purposes
of assessing the success of gazing at selecting facts to use in a proof, the theory is not
sufficiently rich. Gazing will never have any choices to make. However, the results of the
proofs for the conjectures which follow do indicate the extent to which gazing can speed up
the task of proving theorems. The reason for the increase in speed is that GAZER does not
attempt to rewrite the conjecture using these axioms unless the system is applying the gazing
inference rule, and then the prover knows exactly which rules to apply before attempting the
rewriting. RUT attempts to apply the function definitions to the conjecture every time the
Reduce rules are called by the prover, and these appear early in the inference rule ordering.
Thus the attempted application of these rules can slow the prover down dramatically. The

results in section A.2.3 indicate this phenomenon.

165

A.2.2 Conjectures

The first conjectures that are set as exercises in [Sigler 86] are quite simple. Many of them

are proved by gazing simply applying a default rule such as,

e Introduce both polarities if the hypothesis or conclusion of the conjecture is
empty, and,

e Apply any rule if the conjecture is already expressed in a common currency.
RUT too, quickly rewrites these conjectures to T .

Exercises 1.1 and 1.2 prove trivial equivalences of logic which are assumed by Voyeur, and

so it is not interesting to submit these to the prover.

Lemma 1: Reflexivity of = (1.3a)
Vaz. [z =2z

Lemma 2: Symmetry of = (1.3b)
Vzylz=y— y=7z]

Lemma 38: Transitivity of = (1.3¢)
Vzyzlz=yAy=2z—z=12

Lemma 4: Reflexivity of C (1.4a)
Vz.[z Ca

Lemma 5: AntiSymmetry of = (1.4b)
VzulzCyAyCz—z=y|

Lemma 68: Transitivity of C (1.4c)
Vz,yz2(zCyAyCz—zC

Lemma 7: Transitivity of C (1.5)
Vz,yz2[zCyAyCz—2C 2

Lemma 8: Cycle of C implies = (1.6)
Vz,y2[zCyAyCzAzCz—wz=yAy=17

Lemma 9: (1.7a)
Vz,y,2[2C2AyC2zA2Cy— 2—yC z—1]

Lemma 10: (1.7b)
Vz,2.[aCz2—z=2—(2—z)]

Lemma 11: @ is a Subset of all sets (1.8a)
Vz.[0Cz

Lemma 12: The only Subset of @ is @ (1.8b)
Vz.[zC 0 — z=0|

166

A.2.3 Results

The results for the simple initial conjectures (1.3 - 1.8 in [Sigler 66]) are presented in figure
A<l. They indicate the extent to which separating the theory and logical inferences can
speed up the proof of some conjectures. As remarked in section A.2.2 since the prover has no
choices to make in selecting rewrite rules, and the proofs are very simple, these results

indicate how the prover is sped up by virtue of separating inferences in this way.

For each conjecture above the following statistics are given:

e The time taken to perform the proof of the conjecture, and,

e The number of subgoals generated in the course of the proof and the number of
subgoals that were necessary in that proof.

The latter is a measure of the amount of work that was done by the prover which was not
useful to the proof. A ratio of N/N for any N means that every subgoal suggested by the
prover was part of the eventual proof. The number of subgoals in the proof also gives a

measure of the complexity of that proof.

These statistics are given for both RUT and GAZER. These statistics were obtained by a
version of Voyeur running on a SUN 3/50 workstation implemented in Quintus Prolog
version 1.6. Voyeur was run in a non-interactive mode. If the program were run
interactively the program could probably be persuaded to find shorter proofs by using the

interactive commands to prune the search.

With the exception of lemma 4, GAZER performs better than RUT for this set of conjectures.
The reason for the increased time for proving lemma 4 is that RUT simply uses the definition
of C in an application of Define C as its first step, while GAZER uses the Gaze rule to
achieve the same result. The time saved by GAZER because it does not attempt to apply the
function definition rewrite rules in the Reduce rule is lost in the application of the more
expensive Gagze rule. Since both provers apply the definition of C, the rest of the proof,

which involves reducing the resulting implication to T is the same for both provers.

Notice that the proofs produced by GAZER and RUT are not always the same, in particular
they are sometimes of different lengths. This difference arises only because of the different
handling of the rewrite rules. There is a “knock-on”’ effect of this different handling, which
is caused by the logical rules of the prover receiving different sequents to work on. A simple
difference in the order in which inferences are made at one point in the proof, can cause the
proofs to diverge dramatically. This happens most noticeably when one prover applies a

splitting rule, when the other does not. The result is that the prover which makes the split,

167

RUT GAZER
Conjecture Time Subgoals Time Subgoals
Number (in seconds) Used/Gen. (in seconds) Used/Gen.

1 0.55 6/6 0.40 2/2
2 6.83 7/7 3.72 7/7
3 12.50 7/7 7.97 7/7
4 0.50 3/3 0.38 2/2
8.22 7/7 4.47 7/7
8 5.70 4/4 2.97 4/4

7 315.48 44/49 116.28 55/59

8 29.30 14/14 14.95 14/14
9 31.13 10/10 10.17 8/8

10 26.48 17/17 8.75 15/15
11 0.62 3/3 0.53 2/2

12 12.52 20/22 4.53 11/11

Figure A-1: Results for the initial theory

has to do the same work for the two different cases, where if the sequent is provable without

splitting then the work can be done in one case.

The results for the proof of lemma 4 characterizes the tension in the choice to use gazing.
For simple conjectures in simple theories, the cost of gazing can outweigh the cost of “blind”
rewriting. While a plan of appropriate rewriting steps is being crafted by the gazing
inference rule, “blind’’ rewriting can be carrying out many rewriting steps that may quickly
lead to a proof. The utility of gazing is only recognized when the conjecture to prove does
not quickly fall to the “blind” rewriting method. Gazing does however improve the proof
time for all of these conjectures, in many cases by a factor of about 3. This phenomenon is
to be expected when devising a search control technique. When resources are expended to
control search rather than carry out unguided search, it will be more expensive for those
problems which quickly succumb to blind search. However, the ability to guide the search for
a solution to hard problems, thus using considerably less resources far outweighs the degraded

performance on the simpler problems.

168
A.3. Extending The Theory

After the conjectures which are proved in the initial theory, the concepts U and N are

defined. The definitions are given below.

Axiom 10: Definition of U
reyUz=azEyvVere:z

Axiom 11: Definition of N
rTEYNz=SzzEYAZTE 2

After the presentation of these definitions, conjectures 13 through 33 are proved in an
extended theory which consists of the initial axioms, lemmas 1 through 12, and these two
definitions. There are three conjectures that neither GAZER nor RUT can prove. These are
presented here as lemmas 13, 14 and 16. The reason for failure in all three cases is
determinism in the rewriting package. While both provers are able to remake the choice to
use a particular inference rule should the original choice fail to lead to a proof, neither prover
is able to remake choices made within the application of an inference rule. When rewriting,
the provers apply the first sequence of rewrite rules that are applicable, and this choice is
fixed even on backtracking. In the case of these two conjectures, a rewrite rule is applied
which binds a variable to a term which causes failure in another part of the proof. This

choice is not remade, and thus the proof fails.

A.3.1 Conjectures for the Extended Theory

The conjectures to be proved in the extended theory are given in this subsection.

Lemma 13: U is a special case of gen-union
V z,y.[z Uy = gen—union({z,y})

Lemma 14: N is a special case of gen-inter
¥ z,y.[z Ny = gen—inter({z,y})

Lemma 15: @ is an identity for U (1.10)
Vz.zUD =2z

Lemma 18: @ is only identity for U (1.11)
Vz.[zUy=2z — y=1§]

Lemma 17: @ is a fixpoint for N (1.12)
Vz.[zNB =0

Lemma 18: Commutativity of U (1.13a)
VzylzUy=yUz]

Lemma 19: Commutativity of N (1.13b)
VzylzNy=yNa2|

Lemma 20: Associativity of U (1.13¢)
Vz,yz[lzU(yUz)=(zUy)UZ]

169

Lemma 21: Associativity of N (1.13d)
Vz,yzlzN(yNnz)=(zNy)Ns

Lemma 22: Distributivity of N over U (1.13¢)
VzyzlzN(yuz)=(zNy)U(zN2)

Lemma 28: Distributivity of U over N (1.13f)
VzyzlzU(yNnz)=(zUy)N(zU2)

Lemma 24: Idempotency of U (1.13g)
Vz.[zUz=2]

Lemma 25: Idempotency of N (1.13h)
Vz.[zNz=1]

Lemma 26: (1.26a)
Vuzy[(zCuAyCu)— (zCy) = zn(u—y) =0

Lemma 27: (1.26b)
VuzulzCuAyCu)—(=Cy)w (u—z)Uy=u]

Lemma 28: (1.26¢)

Vuzy[zCuAyCu)—(2Cy) = zn(u—y) C(u—2)
Lemma 29: (1.26d)

Vuzy[zSuAyCSu) > (zCy —zn(u-y)Cy

Lemma 30: (1.26¢)
VuwzylzCuAyCu)— (= Cy) o 2n(u—3) C w(u—u)

Lemma 31: (1.27)
VzylzUy=z+« yC 2]

Lemma 32: (1.28)
VzylztNy=z < zCy

Lemma 33: (1.30)
V z,y.[gen—inter(z) N gen—inter(y) C gen—inter(z N y)]

A.3.2 Results for Conjectures 13 through 33

The results for lemmas 13 through 33 are shown in figure A-L.

Gazing is not uniformly successful in reducing the time taken to produce a proof from that
taken by RUT. However for the genuinely hard conjectures gazing gives a significant
improvement to the length of time taken to perform the proof. In this theory, the cost of
gazing is more than it previously was, since there are many more choices to be made in the
abstraction spaces. If the eventual plan to be used is simply to apply rewrite rules that RUT
would have used anyway, then RUT has a computational advantage over GAZER. This shows
in the results for the conjectures where GAZER takes much longer to prove the conjecture than
RUT does, (conjectures 15, 17, 20, 21, 24, 25 and 32) . In some cases it takes GAZER slightly
more than twice as long to complete the proof of the conjecture than RUT (15 20, 21 and 25.
On the other hand, when gazing pays off, the improvement is dramatic, consider, for

example, lemma 23, where RUT takes 20 times as long as GAZER to produce the proof.

Conjecture

Number

13
14

15

16

17

18
19

21
22
23
24
25

26
27
28
29
30
31

32

33

Time

in seconds

2.27

2.12

64.93
3.70
5.90
7.40

168.55
639.20
1.97
2.28

106.28
129.25
140.16
94.13
206.15
34.38
22.77

40.10

Figure A-2:

170

RUT GAZER
Subgoals Time Subgoals
Used/Gen. in seconds Used/Gen.
6/6 6.16 8/8
8/8 3.17 5/5
24/24 8.87 12/12
6/6 9.30 12/12
6/6 15.88 16/16
6/6 18.00 16/16
26/26 32.28 30/30
111/111 32.87 30/30
6/6 5.83 8/8
6/6 5.40 8/8
25/25 44.38 21/21
27/27 88.47 29/29
22/22 46.22 20/20
16/16 48.13 13/13
22/22 81.30 20/20
20/20 39.98 12/12
14/14 40.48 9/9
5/5 11.83 5/5

Results for the extended theory

171

A.3.8 The Definition of Symmetric Difference and its Associated Conjectures

Finally in chapter 1 of [Sigler 66], the definition of symmetric difference (axiom 12) is
stated. The conjectures 34 through 40 are set for the student.

Again, the theory is extended before these conjectures are presented to Voyeur. The theory

for these conjectures has conjectures 1 through 33 added as lemmas.

Axiom 12: Definition of +
zg+y==(z-y)U(y—32)

A.3.4 Conjectures for the Final Theory

Here are the conjectures to be proved in this theory:

Lemma 384: § identity of + (1.33a)
Vz.[z+0=2]

Lemma 35: Commutativity of + (1.33b)
Veylz+y=y+2|

Lemma 36: Associativity of + (1.33c)
Vzyzlz+(y+2)=(z+y)+ 2]

Lemma 37: N distributes over + (1.33d)
VzyzlzN(y+2)=(zNny)+(zN2)]

Lemma 38: — subset of + (1.33e¢)
Vz,ylz—yCz+y

Lemma 39: = iff + is @ (1.33f)
Vzylz=y—z+y=0

Lemma 40: Cancellation of + (1.33g)
Vzyzlz+z=y+2— z=1y|

A.3.5 Results for Conjectures 34 through 40

The results for conjectures 34 through 40 are presented in figure A-3. As before, gazing is
not successful in improving the performance for all of the conjectures, (conjectures 34, 38 and
39, take longer to prove in GAZER) but for the harder conjectures the improvement is
obtained and is quite dramatic. Consider lemma 36 for example, where RUT takes more than

ten times as long to prove the conjecture than GAZER does.

There is one conjecture from this set that neither prover can prove, namely 40. In this case
failure is caused by the provers’ inability to introduce tautologies as hypotheses. Once the

defined concepts in the conjecture have been eliminated the conjecture is as below:

172

(weaA-weEe)V(WEecA-wEa) —
(webA-wEe)V(WEecA-wED)A
(webA-wEe)V(WECcA-~wE) —
(we€aA-wEc)V(wECA-wE a)
= (8)
(s€b—-8s€a)A(6 €Ea—s€ED)

To complete the proof it is necessary to reason by cases. Under first the assumption that
8 € c and later that ~a € ¢, the conjecture can be proved. Once we have this,the conjecture
is proved by the law of excluded middle. The prover fails since it cannot ‘‘invent’ this
argument for itself. The next implementation of VOYEUR will allow the user to have the
prover add additional hypotheses, after first proving them valid. However, even then the

provers will not be able to handle this conjecture alone.

RUT GAZER
Conjecture Time Subgoals Time Subgoals
Number in seconds Used/Gen. in seconds Used/Gen.

34 13.28 7/7 45.10 8/8
35 415.78 125/125 14.43 10/10
36 9 108.18 841/841 910.38 282/282
37 858.31 127/127 340.35 100/100
38 3.52 4/4 34.68 14/14
39 90.10 44/44 1132.93 39/39

40 - - - -
Figure A-3: Results for conjectures 34 through 40

Again we can see that for some conjectures the improvement due to the use of gazing is
dramatic. On the other hand, for some conjectures the use of gazing increases the time taken

to complete the proof.

A.4. Proving What is Already Known

As a final experiment in this theory, I again submitted to both GAZER and RUT each of the
lemmas 1 through 40. This time though, the theory in which the provers were working
contained each of those lemmas as well as the definitions of the theory. Thus the new theory
contains 40 lemmas in addition to the axioms of the theory. The idea behind this experiment
is to determine how effectively the theorem provers are able to utilize the knowledge that is

contained in the database of rewrite rules, It is to be hoped that any theorem prover would

173

be able to find the trivial proof of any conjecture ‘which is identical to some fact that it is
supposed to ‘‘know’”. The idea here is not to ensure that the prover can construct trivial
proofs of conjectures exactly the same as those which it already has access to, but rather to
test whether the prover could prove a conjecture which involves as a subgoal of the proof,
some conjecture which matches what is already known. A good example of this arises, for
example, in the proof of the transitivity of C (lemma 7). One subgoal that arises in the
course of this proof is to prove the transitivity of C (lemma 6). If the prover has already
proved lemma 6, and had this conjecture added to its database, than it should prove this
subgoal trivially. This ability is not, in general, available to provers. RUT, for example
cannot utilize any of the lemmas of the theory because it has no techniques for controlling
their use. If RUT is operated in a mode where it does have access to the lemmas in an
unguided fashion (that is, it will apply them whenever it can) its performance is degraded
considerably because it spends a large amount of time attempting to apply lemmas when it is

impossible so to do.

The results for this experiment are presented in figures A-4 and A-§ GAZER is able to make
quite good use of the database as evidenced by the increased speed with which the proofs are
found. However for come conjectures (for example, 26 through 30) the time taken to prove
the lemma is increased. This is because this theory is much more complex than the previous
theories, and therefore the gazing inference rule is much more expensive to apply. This
increase in complexity is overcome for other conjectures by the ability to access the
appropriate fact needed to prove the conjecture but this isn’t possible in these cases. The
lemmas 26 through 30 are all of the form (PA Q) — (R« S). The real force of these
lemmas when used as rewrite rules should be as an exchange between F to S whenever you
can prove P and Q. This is called conditional rewriting, and is a notion that GAZER lacks.
GAZER sees this as a rewrite rule with P and @ on one side, and R and S on the other.
Further when the proof of the lemma is attempted R and S are split up, and so the rewrite
rule is not seen to apply. In general, GAZER finds it easier to recognize the appropriateness

of simple rewrite rules and fails when they have more complex structure.

A.5. Conclusion

In this appendix I have exhibited the results obtained by using the Voyeur theorem prover
to prove a number of conjectures in set theory. The conjectures were taken from a book of
exercises, [Sigler 66], which is designed to be used by students learning the theory. The
conjectures were presented to the theorem prover in both RUT and GAZER modes, and
statistics gathered which indicate the degree to which the use of gazing is successful in

shortening the proofs produced by the prover.

174

Conjecture Time Subgoals Old Time Old Subgoals J\J'.vu;”[')ig
Number in seconds Used/Gen. in seconds Used/Gen. (time)

1 0.10 2/2 0.40 2/2 0.25
2 0.63 4/4 3.72 7/7 0.17
3 0.95 3/3 7.97 7/7 0.12
4 0.07 2/2 0.38 2/2 0.18
5 12.95 5/5 4.47 7/7 2.90
8 3.97 4/4 2.97 4/4 1.34
7 34.27 20/20 116.28 55/59 0.29
8 37.95 14/14 14.95 14/14 2.54
9 7.23 7/7 10.17 8/8 0.71
10 13.27 3/3 8.75 15/15 1.52
11 0.10 2/2 0.53 2/2 0.19
12 9.32 8/8 4.53 11/11 2.06
13 - - - - "

14 - - - = ~

15 7.10 8/8 6.16 8/8 1.15
16 - = = = -

17 3.53 4/4 3.17 5/5 1.11
18 5.58 8/8 8.87 12/12 0.63
19 5.57 8/8 9.30 12/12 0.60
20 7.63 8/8 15.88 16/16 0.55
21 7.53 8/8 18.00 16/16 0.42
22 42.25 30/30 32.28 30/30 1.32
23 41.93 30/30 32.87 30/30 1.28
24 8.28 8/8 5.83 8/8 1.42
25 8.42 8/8 5.40 8/8 1.56
26 74.83 20/20 44.38 21/21 1.69
27 228.72 29/29 88.47 29/29 2.59
28 152.47 19/19 46.22 20/20 3.30
29 167.20 13/13 48.13 13/13 3.47
30 204.87 19/19 81.30 20/20 2.52
31 16.47 7/7 39.98 12/12 0.41
32 14.77 7/7 40.48 9/9 0.36
33 0.23 2/2 11.83 5/5 0.02

Figure A-4: Results for GAZER in full theory (part 1)

Conjecture

Number

34
35
36
37
38
39

For simple conjectures it was found that gazing has only a small effect.
would expect since gazing is quite expensive to apply. For simple conjectures in simple

theories, a fast, “blind’’ approach will often be successful, since the amount of work that may

Time

in seconds

10.67
5.53
7.63

288.77
0.18
1132.93

Figure A-5:

Subgoals

Used /Gen.

8/8
8/8
8/8
96/96
2/2
39/39

Old Time

in seconds

45.10

14.43
910.38
340.35

34.68
160.93

Old Subgoals
Used /Gen.

8/8
10/10
282/282
100/100
14/14
11/11

Results for GAZER in full theory (part 2)

be performed redundantly or incorrectly is quite small.

For more complex theories the use of gazing can reap considerable benefit, since the chance
of the prover utilizing ‘“‘blind”’ search carrying out redundant work is much larger. This is

seen most dramatically when considering conjecture 36 above.

}\ ’ (. J.'fl ()/ . _';
(time)

0.24
0.85
0.01
0.38
0.01
7.04

This is as we

Some of the proofs of the conjectures in this chapter are presented in appendix B.

176

Appendix B

Some Example Proofs

B.1. Introduction

In this appendix I present some proofs created by the Voyeur theorem prover. I have
elected to present the proofs of three of the conjectures mentioned in appendix A, one from
each of the three groups of conjectures in that appendix. For each conjecture I show the
proof produced by GAZER and that produced by RUT. The proofs are shown here as they are

produced by Voyeur with two exceptions,

e Wherever possible I have simplified the proofs by replacing skolem terms
introduced by the expansion of a definition, by a new constant. For example, in
figure B-1, I have replaced the term sigl.af1(@,sf1) with the constant t1
throughout the proof. This is merely a notational convenience. The skolem

function sigl.sf1 is obtained by skolemizing the definition of =, and is used to
represent an arbitrary term which depends on the two sets which are claimed to
be equal.

e I have broken the lines of output in convenient places, while Voyeur produces a
single line of output for each line of the proof.

Proofs are presented in the form described in chapter 5. In this format a proof is a
sequence of sequents. Each sequent is either an axiom from the logic, or follows from
sequents earlier in the sequence by a rule of logic. Thus in the representation each proof
consists of a number of lines each of which consists of three parts: the line label, the

statement and the justi fication.
e The line label appears in parentheses to the left of the line, it serves only to name
the line for reference by the justifications.

e The statement is the sequent that is asserted to be true by the line, and,

e The justification is a reference to the line(s) which show that the statement is
indeed true. The justification appears to the right of the statement, and may be
empty. If it is empty the statement is true by an axiom of logic.

This presentation of the proof makes it appear that the proof was performed by forward
inference, but as described in chapter 1, the UT provers, RUT and GAZER all produce proofs

by a mixture of forward and backward inference.

177

In addition to the sequents that appear in the proof, the sequents that are suggested by the
prover but which it subsequently fails to prove are also shown., These sequents represent the
“blind alleys” that the prover investigates uselessly. These sequents are distinguished from
those which are successfully proved by the typeface in which their numbers are printed. The
numbers of those sequents that are in the proof are shown in bold face, while those which are

not in the proof are shown in normal face.

B.2. The proof of conjecture 12

The first proofs that I present are of conjecture 12 from appendix A. The proofs are shown
in figures B-1 and B-2.

Conjecture: (Vz.((z C 8) « (z=10)))

6 1LH10

(8) (1eeMA(-(t1€efl)f L (8)
(4) (=(t1 € /1)) = (=(t1 € 8/1)) (5)
(3) (/iSO (s/1=0) (4)

(1) TH{e1S0)— (e/1=0)) (3)
(10) L—=10

(9 (2esmA(=(2esf) L (10)
(8) (=(2 € af1)) - (= (22 € 8/1)) (9)
(7) (efi=0)(s/1CS0) (8)

(2) ThH(s/1=0)—(s/1S0)) (7)
0) TH{(e/1ES0)—(s/1=0)) A((s/1 =0) — (s/1 £ 9))) (1,2)

Note:t1=sigl.sf1(0,sf1)
t2=s1g1.5f2(9,s /1)

Figure B-1: The proof of conjecture 12, produced by GAZER

The proof produced by GAZER is 11 lines long, while that produced by RUT has 20 lines.
The main reason for the increase in length when RUT is used is that RUT does not
immediately recognize that both the predicates = and C must be rewritten to € before the
conjecture can be proved. In the proof produced by GAZER there are two uses of the gazing
inference rule. These produce line 4 from line 3 and line 8 from line 7 respectively.

Considering the step from line 7 to line 8, GAZER has recognized that, to introduce the same

178

predicate the definition of C must be applied to the conclusion, and the deﬁnition of = must
be applied to the hypothesis. Since there are no functions to be considered, these steps
comprise the complete plan. Once the plan has been executed, GAZER calls the reduce rules
on the resulting sequent, and this causes the definition of # to be used and the sequent

simplified to an obvious truth”.

In the RUT proof things proceed much more slowly. Step 15 is obtained from step 14 by the
expansion of the definition of C, then this formula is reduced to obtain line 16. At this point
RUT goes off down a blind alley which is shown in the proof as line 17. RUT has no inference
rule which may be applied and the proof of this goal fails . RUT backtracks and applies
Peek to line 18, causing the expansion of the predicate =. The resulting sequent then

simplifies, and is easily proved.

B.3. The proof of conjecture 32

Next I consider the proofs of conjecture 32 from the second group of conjectures in
appendix A. The proof produced by GAZER is in figure B-3, and that produced by RUT is in
figure B-4.

Again the proof produced by GAZER is shorter than that produced by RUT, but notice that
it took GAZER more time to produce the shorter proof. Both provers are forced to backtrack

in the course of the proof.

The proof produced by GAZER is quite straightforward. After skolemization, there are two
implications to prove. Promoting the hypothesis of the implication gives a goal to which the
gazing inference rule is applied. The hypothesis of line 6 has the predicate T, while the
conclusion of that goal has predicate = and a function symbol N. The gazing inference rule
suggests that the definition of C be applied to the hypothesis, and the definitions of = and
M to the conclusion. After simplification, the goal is proved by promotion and forward

chaining. The proof of the opposite implication is dual.

The RUT proof contains more steps because the concepts in the proof are handled more
warily. This is not, in general, the case for RUT as when many functions appear in a goal to
prove, they are often all eliminated simultaneously by the Reduce rule. In this case, there is

only one function, and this can only be eliminated after the expansion of the definition of the

*
Both GAZER and RUT find this obvious truth a little tricky to prove, since Flip C appears in the rule base before
Match. The conclusion is un-negated and moved to the hypothesis, and then a contradiction deduced.

£l]
There is a similar blind alley in the proof of the other implication: goal 8 also fails.

179
Conjecture: (Y z.(z C 8) = (z = 0)))
(12) L+~ L 0
(11) (1€ sfi)A(~(tl € ef1)) — 1 (12)
(10) (=(t1 € &f1)) = (=(t1 € 8/1)) (11)

(®) (1 esfn)—(t1€0) (=(t1 € 81)) (10)
(8 (1SOA(t1€8/1) - L
(7) (e1C8) - (=(11 € 8f1)) (9)

(6) (s/1CS0) - ((t1 € 8f1)— (11 €0)) (7)

(18) (ef1C0) — T 0

(8) (s/1CS9) | ((t1 €90)— (11 € 8f1)) (18)

(4) (e/1CS8) (((t1 € af1) — (11 € B) A ((t1 € 8) — (1 € 8/1))) (5,8)
(3) (s/1C9) | (sf1=0) (4)

(1) TH{(sNC8) — (s/1=0)) (3)

(21) L + L 0

(20) (t2 €sfl)A(-(12 € afl]) — 1 (21)

(19) (=(2 € &f1)) = (- (22 € s/1)) (20)

(18) (12 €8fl) = (12 € B) A((t2 € 9) — (12 € 6/1)) = (- (12 € 8/1)) (19)
(17) (sf1=0)A (2 € sf1) - L

(18) (s/1=0) (~(2 € sf1)) (18)

(18) (sf1=9) I ((12 € sf1) — (12 € 9)) (18)

(14) (s/1=0) I (s/1 C 9) (15)

(2) T (s/1=0)—(s/1C9) (14)

0 T (e/1S0)— (s/1=0) A ((s/1=0) — (s/1 C9))) (1,2)

Note: t1=sigl.sf1(8,sf1)
t2=s1gl.8f2(0,sf1)
Figure B-2: The proofs of conjecture 12, produced by RUT

predicate =. The RUT proof begins with the same steps as GAZER. The two implications are

proved separately and the antecedents promoted to explicit hypotheses. At line 7, RUT

180
Conjecture: (Vz.(¥y.((zNy) =z) « (z C))))
(6) (1 eefi)A(tl €ef2)A((t1 € 8f1) = (t1 € af2)) |- (t1 € 2f2) ()
(4) ((t1 € &f1) = (t1 € 2f2)) = ((t1 € 8f1) — (t1 € &f2)) (B)
(3) ((efinef2)=2f1) | (sf1 C 8/2) (4)
(1) TE{(e1Nnef2)=s/1) = (/1 C &f2)) (3)
(8) (t2 € 8f1) A (12 € 8f2) A ((var187 € 8f1) — (varlB7 € &f2)) | (t2 € &/2) ()
(7) ((var167 € 8/1) — (varl67 € o2)) |- ((t2 € 8f1) — (22 € 8/2)) (8)
(8) (s/1C &f2) |- ((sfiNaf2)=2sf1) (7)

(2) TH((e/1 S ef2) = ((sf1Nsf2)=2sf1)) (8)
0) TH(((e/tnsf2)=2sf1) — (s/1 C 8/2)) A
(81 S 2f2) — ((s/1 N 8f2) = 8/1))) (1,2)

Note:t1=2s1igl.sf2(s f2,8f1)
t2=s1igl.s f2((2f1 N 8/2),8f1)

Figure B-3: The proof of conjecture 32, produced by GAZER
expands the definition of the predicate =, which results in another conjunction in the
conclusion. GAZER does not see this conjunction, as one of the conjuncts may be quickly
simplified to T. RUT also performs this simplification, but the reduction appears explicitly in
the proof, and is performed after the splitting of the introduced conjunction (between lines 9

and 11).

Once the definition of — has been expanded, and the resulting conjunction split. RUT then
reduces the conclusion by eliminating the function N. The resulting subgoal (line 12) is easily
proved by promotion and peek forward chaining. Note that it is the capability to peek
forward chain that enables RUT to prove this goal without explicitly expanding the definition

of C in the hypothesis.

B.4. The proof of conjecture 35

In this section I give the proofs of conjecture 35 from the previous appendix. The proof
produced by GAZER is only 10 lines long, while RUT produces a proof of 125 lines. For

reasons of space, I do not show the whole of the RUT proof here, but only the first few steps.

The proof produced by GAZER relies on the previously proved lemma that U is commutative

(conjecture 18). The interesting steps are in the proof lines 4-6 and 7-9. These groups are

181
Conjecture: (Vz.(Vy.((zNy) =z) = (z C)

(8) (t1esf)A(t1 €sfl)A((ef/iNaf2)=0f1) |- (t1 € &f2) 0
(6) (t1€sfi)A(t1 € (sfinef2) A((efiNef2)=0f1) = (t1 € 8f2) (8)
(4) ((e/1nsf2)=2ef1) = ((t1 € &f1) = (t1 € &f2)) (5)

(3) ((aftnef2)=0f1) I (sf1 Sof2) (4)

(1) T F ((sf1nsf2)=2f1) — (81 C 2/2)) (3)

(11) (e/1Csf2) = T ()

(9) (e/1Cef2) = ((¢2 € (sf1Nef2)) — (12 € &/1)) (11)

(13) (12 €ef))A(2 € ef2)A(e/1Cef2) |- (2 € 4/2) ()

(12) (a1 S ef2) b ((22 € 8f1) — (2 € 5/2)) (18)

(10) (sf1Csf2) I ((12 € ef1) — (t2 € (s/1 N sf2))) (12)

(8) (s/1C2/2)
= (12 € (s/1n8f2)) — (2 € 8f1)) A

(12 € ef1) = (2 € (s/1 N ef2)))) (9,10)
(1) (N1Cef) - ((efinef)=sf1) (8)
@) T b (1S s/2) — (81N 6f2) = 1)) (7)
© T - ((((sf1nsf2)=sft) — (1 C f2) A

((s/1 C af2) — ((s/1 N 8f2) = s 11))) (1,2)

Note t1=sigl.5f2(sf2,5f1)
t2=sigl.s f1(8f1,(8f1 N 8f2))

Figure B-4: The proof of conjecture 32, produced by RUT

dual, as they are required to prove one half of a biconditional. In line 7 GAZER recognizes
that the hypothesis and conclusion are already in a common currency, and so plans to apply
some rewrite rule to both sides simultaneously. The only applicable rule is the definition of
+ . This produces line 8, to which no other inference rules apply so gazing is again applied.
Here the planner again sees that the hypothesis and conclusion are in a common currency,
but this time recognizes that the conjecture would be proved if it could show that U were
commutative. Since this fact is already known, it applies the commutativity rule to one of
the formulae (the hypothesis) and then the goal is proved, in line 9 by matching. Note that
in line 7 gazing does recognize that the goal could be proved if + were known to be

commutative, but the prover does not already know this fact.

The main reason for the length of the RUT proof compared to that of the proof produced by

182

Conjecture: (Vz.(Vy.((z + y) = (v + 7))

(8) (t1 € ((a/1 — af2)U(ef2 — of1))) | (t1 € ((e/1 = sf2)U(af2 — 2f1))) ()
(8) (11 € ((ef1 — af2)U(sf2 — af1))) = (t1 € ((6/2 — e/1)U(ef1 — &f2))) (B)
(4) (11 € (aft + &f2)) | (t1 € (ef2 + 8/1)) (5)

(2) T H((t1 € (sf1 + 8f2)) — (11 € (872 + 8/1))) (4)

(9) (11 € ((ef2 — af1)U(sfl — 6f2)) = (t1 € ((e/2 — ef1)U(ef1 — &f2))) ()
(8) (t1 € ((ef2 — afl)U(sf1 — 6/2)) - (t1 € ((ef1 — 8f2)U(ef2 — 2f1))) (9)
(7) (t1 € (8f2 + 8f1)) |~ (t1 € (sf1 + &f2)) (8)

(3) T H((t1 € (sf2 + 8f1)) — (t1 € (a/1 + 8/2))) (7)

(1) TH (2 € (/1 + 8f2)) — (t1 € (a2 + /1)) A
(11 € (ef2 + 8/1) = (21 € (a/1 + 2/2))) (2,3)

(0) T H((as1 + af2)=(sf2 + 2f1)) (1)
Note:t1=sigl.s f1((s/2 + &f1),(sf1 + 82))

Figure B-5: Proof of conjecture 35, produced by GAZER

(85) T b (11 € af2) A (= (11 € a/1)) V (£ € 8f1) A (= (1 € 8f2)))) —
(61 € o/1) A (= (11 € s/2)))) V ((((¢1 € 8/2) A (= (¢1 € sf1))) V
(11 € /1) A (= (21 € 8f2)))) —
(11 € af2) A (= (11 € &f1) (08)

@) T (11 € (o2 — sf1)U(sf1 — 8f2))) —
(t1 € (s/1 = a/2)U(s2 — of1)))) (65)

(2) T E (21 € ((s/1 = sf2)U(sf2 — sf1))) — (t1 € ((8/2 — sf1)U (/1 — 8/2)))) A
((t1 € ((8/2 — sf1)U(s/1 — 5f2))) —
(t1 € ((sf1 — sf2)U(sf2 — /1)) (3,4)
(1) T (((af1 = af2)U(sf2 — af1))=((sf2 — sf1)U(s/1 — &f2))) (2)
0 T F (a1 +ef2)=(sf2 + s1)) (1)
Note:t1=s1gl.sf1(((s/2 — sf1)U(sf1 — 5/2)),((sfl — sf2)U(sf2 — sf1)))

Figure B-8: Partial proof of conjecture 35, produced by RUT

GAZER is that RUT expands the definitions of every function that appears in the goal as soon

as it is able. This leads to a very complex formula which must be manipulated in order to

183

prove the conjecture. The very first thing that RUT does to the goal is to expand the
definition of + to produce line 1. This is possible, as the definition of + can be applied
whatever the predicate dominating the symbol. Then, to produce line 2, RUT expands the
definition of =. This gives rise to a conjunction that is split to produce lines 3 and 4. Now
that the predicate is €, and the functions — and U are present, these are eliminated by
Reduce using their definitions. The result is the formula in line 85, which it takes the

remainder of the proof to show because of the complexity of the formula.

B.5. Conclusion

In this appendix I have presented the proofs of three conjectures produced by the Voyeur
theorem prover. For each conjecture I have shown the proof produced by GAZER and that
produced by RUT. In each case, the use of the gazing inference rule simplifies the proof
produced, although GAZER does not always find a proof as quickly as RUT.

The proofs of the remaining conjectures presented in appendix A are available from the

author on request.

[Andrews 80)

[Andrews 81|

[Bibel 80]

[Bibel 81a]

[Bibel 81b]

[Bibel 82a]

[Bibel 82b]

[Bledsoe 77a]

[Bledsoe 77b]

[Bledsoe 83|

184

References

Andrews, P.B.

Transforming Matings into Natural Deduction Proofs.

In Bibel,W. and Kowalski, R. (editors), Proc. 5th Con ference on Automated
Deduction. Springer-Verlag, 1980.

Andrews, P.B.
Theorem Proving via General Matings.
Assoctation for Computing Machinery 28(2), April, 1981.

Bibel, W.

The Complete Theoretical Basis for the Systematic Proof Method.

Technical Report Bericht ATP-6-XII-80, Institut fur Informatik, TU
Munchen, 1980.

Bibel, W.
On Matrices with Connections.
Association for Computing Machinery 28(4), October, 1981.

Bibel, W.
Matings in Matrices.
In Proc. German Workshop on Al. Springer Verlag, 1981.

Bibel, W.
Automatic Theorem Proving.
Vieweg Verlag, 1982.

Bibel, W.
A Comparative Study of Some Proof Procedures.
Arti ficial Intelligence 18:269-293, May, 1982.

Bledsoe, W.W.
Non-Resolution Theorem Proving.
Arti ficial Intelligence 9, 1977.

Bledsoe, W.W.
A Mazimal Method for Set Variables in Automatic Theorem Proving.
Technical Report ATP-33, University of Texas, February, 1977.

Bledsoe, W.W.

The UT Interactive Prover.

Memo ATP-17B, Mathematics Department, University of Texas, April,
1983.

[Bledsoe & Tyson 75a)

Bledsoe, W.W. and Tyson, M.
The UT interactive Prover.
Memo ATP-17, Mathematics Department, University of Texas, May, 1975.

[Bledsoe & Tyson 75b]

Bledsoe, W.W. and Tyson, M.
Typing and Proof by Cases in Program Vert fication.
Technical Report ATP-15, University of Texas, May, 1975.

185

(Bledsoe & Tyson 78]
Bledsoe, W.W. and Tyson, M.
The UT Interactive Prover.
Memo ATP-17A, Mathematics Department, University of Texas, June, 1978.

[Bledsoe et al 79| Bledsoe, W.W., Bruell, P., Shostak, R.
A Prover for General Inequalities.
Technical Report ATP-40A, University of Texas, February, 1979.

(Boyer & Moore 79|
Boyer, R.S. and Moore, J S.
ACM Monograph Series: A Computational Logic.
Academic Press, 1979.

[Brown 78] Brown, F.M.
Towards the Automation of Set Theory and its Logic.
Arti ficial Intelligence (10), 1978.

[Bundy 73] Bundy, A.
Doing Arithmetic With Diagrams.
In Proceedings of the Third IJCAI, pages 56-65. 1JCAI, 1973.

(Bundy 83a] Bundy, A.
The Computer Modelling of Mathematical Reasoning.
Academic Press, 1983.

[Bundy 83b] Bundy, A.
Finding a Common Currency - A New Proof Plan.
January, 1983.
Internal Note 159, Department of Artificial Intelligence, University of Edin-
burgh.

[Chang & Lee 73]
Chang, C-L. and Lee, R. C-T.
Symbolic Logic and Mechanical Theorem Proving.
Academic Press, 1973.

[Church 36] Church, A.
An Unsolvable Problem of Elementary Number Theory.
American Journal of Mathematics 58, 1936.

[Cvetkovic & Pevac 83|
Cvetkovic, D. and Pevac, L.
Man-Machine Theorem Proving in Graph Theory.
Technical Report, University of Belgrade, 1983.

[Fikes & Nilsson 71)
Fikes, R.E. and Nilsson, N.J.
STRIPS: A New Approach to the Application of Theorem Proving to
Problem Solving.
Arti ficial Intelligence 2:189-208, 1971.

[Fikes et al 72| Fikes, R.E., Hart, P.E. and Nilsson, N.J.
Learning and Executing Generalized Robot Plans.
Arti ficial Intelligence 3:251-288, 1972,

[Gelernter 59]

[Godel 31]

[Halmos 60]
[Kleene 87|
[Knuth 73]
& ANevins 74]
[Nevins 75a]
[Nevins 75b]
[Pastre 77|

[Plaisted 80]

[Plaisted 86]

[Plummer 84]

[Plummer 85a)]

186

Gelernter, H.
Realization of a Geometry Theorem Proving Machine.

In Proceedings International Con ference on In formation Processing, pages
273-282. UNESCO, 1959.

Godel, K.

On Formally Undecidable Propositions of Principia Mathematica and Re-
lated Systems.

Monatshe fte fur Mathematik und Physik 38, 1931.

Halmos, P.
Naive Set Theory.
Van Nostrand, 1960.

Kleene, S.C.
Mathematical Logic.
John Wiley and Sons, Inc., 1967.

Knuth, Donald E.
The Art of Computer Programming.
Addison Wesley, 1973.

Nevins, A.J.
A Human Oriented Logic for Automatic Theorem Proving.
Journal of the ACM 4:606-621, 1974.

Nevins, A.J.
Plane Geometry Theorem Proving Using Forward Chaining.
Arti ficial Intelligence 6:1-23, 1975.

Nevins, A.J.
A Relaxation Approach to Splitting in an Automatic Theorem Prover.
Arti ficial Intelligence 6:25-39, 1975.

Pastre, D.
Automatic Theorem Proving in Set Theory.
Technical Report, University of Paris (VI), 1977.

Plaisted, D.A.

Abstraction Mappings in Mechanical Theorem Proving.

In Bibel, W. and Kowalski, R. (editor), 5th CADE, pages 264-280. CADE,
1980.

Plaisted, D.A.
Abstraction Using Generalization Functions.
In Siekmann, J (editor), 8th CADE, pages 365-376. CADE, 1986.

Plummer, D.

RUT: Reconstructed UT Theorem Prover.

Working Paper 165, Department of Artificial Intelligence, Edinburgh, Sep-
tember, 1984.

Plummer, D.
An Investigation and Rational Reconstruction of the UT Theorem Prover.
Research Paper 256, Dept. of Artificial Intelligence, Edinburgh, May, 1985.

[Plummer 85b]

187

Plummer, D.

Gazing: Using the Structure of the Theory in Theorem Froving.

Working Paper 180, Department of Artificial Intelligence, Edinburgh, May,
1985.

[Plummer & Bundy 84]

[Quine 69]

[Reiter 73]

[Reiter 76|

[Robinson 85]

[Sacerdoti 74]

[Sacerdoti 77)

[Schmidt 83]

[Sigler 66]

[Stickel 85]

[Suppes 57|

[Tennant 78|

Plummer, D. and Bundy, A.

Gazing: Identi fying Potentially Use ful In ferences.

Working Paper 160, Department of Artificial Intelligence, Edinburgh,
Feburary, 1984.

Quine, W.V.O.
Set Theory and its Logic.
Oxford University Press, 1969.

Reiter, R.

A Semantically Guided Deductive System for Automatic Theorem Proving.

In Proceedings of the Srd IJCAI, pages 41-46. International Joint Con-
ference on Artificial Intelligence, 1973.

Reiter, R.
A Semantically Guided Deductive System for Automatic Theorem Proving.
IEEFE Transactions on Computers :328-334, April, 1976.

Robinson, J.A.
A Machine-Oriented Logic Based on the Resolution Principle.
Journal of the ACM 12, 1965.

Sacerdoti, E.D.
Planning in a hierarchy of abstraction spaces.
Arti ficial Intelligence 5:115-135, 1974.

Sacerdoti, E.D.
Arti ficial Intelligence Series: A Structure for Plans and Behavior.
Elsevier Computer Science Library, 1977.

Schmidt, D.

Natural Deduction Theorem Proving in Set Theory.

Technical Report, Computer Sciences Dept., University of Edinburgh, July,
1983.

Sigler, L.E.
Van Nostrand Mathematical Studies: Ezercises in Set Theory.
Van Nostrand, 1966.

Stickel, M.E.

Automated Deduction by Theory Resolution.

In Proceedings of the AAAI-85 National Con ference on Al, pages
1181-1186. AAAI, 1985.

Suppes, S.

The University Series in Undergraduate Mathematics: Introduction to
Logic.

D. Van Nostrand Company, Inc., 1957.

Tennant, N.
Natural Logic.
Edinburgh University Press, Edinburgh, 1978.

188

[Wallen 86] Wallen, L.A.
Generating Connection Calculi from Tableaux and Sequent Based Proof Sys-
tems.
In Cohn, A.G. and Thomas, J.R. (editors), Arti ficial Intelligence and ite
Applications. John Wiley and Sons Limited, 1986.

189

Index of Definitions

<r 8

= 34

© (composition of substitutions) 34

= 34

- 34

) 55

! o34

af 22

<, 88

af 8

<, 87

R, ...,a) 34

}—}2 70

Abstraction mapping (Plaisted).
Antipath 150
Atomic formulae 6

Bound (variable) 7

Common Currency 80
Complete (theorem prover) 17
Complexity of a predicate. 150
Complexity of a sequent 150
Complexity of an algorithm 119
Concept 80

Constant 6

Criticality 87

Currency 80

Defined term 23
Definition 23

Definitional Gaze Graph 90
Direct predecessors 152
Disagreement pair 22

Effect (of a rewrite rule) 77

F/P Abstraction of a formula 88
F/P Triple 88

144

Free (variable) 7
Full Gaze Graph 91

Goal (conjecture) 15
Higher criticality 88

IMPLY 32

Improved Complexity 152
Input Predicates 87

Input Set 98

Input side (of a rewrite rule) 25

Lemmas 23
Literal 7

Max-crit 88
Null lemma 89

O(f(n)) 119

Output Predicates 87

Output Set 98

Output side (of a rewrite rule) 25

P-II-Q pathin G 93

P-Q Pathin G 92

Path 149

Polarity (of a formula) 18
Primary Predicate 91
Proposition 95
Propositional Logic 95
PROVER 31

Scope (of a quantifier) 19
Sentence 7
Sequent 12

Terms of the predicate calculus 6
The alphabet of predicate calculus
Trace 150

Triple Exchange 98

Turnstile 12

Undefined (Concept) 87

Universal closure 7

Well-formed formulae (wffs) 7

190

