
Experiments in Competence Acquisitionfor Autonomous Mobile Robots
Ulrich NehmzowPh.D.University of Edinburgh1992cUlrich Nehmzow 1992

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Archive

https://core.ac.uk/display/429716833?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

AbstractThis thesis addresses the problem of intelligent control of autonomousmobile robots, particularly under circumstances unforeseen by the de-signer. As the range of applications for autonomous robots widens andincreasingly includes operation in unknown environments (exploration)and tasks which are not clearly speci�able a priori (maintenance work),this question is becoming more and more important.It is argued that in order to achieve such exibility in unforeseensituations it is necessary to equip a mobile robot with the ability to au-tonomously acquire the necessary task achieving competences, throughinteraction with the world.Using mobile robots equipped with self-organising, behaviour-basedcontrollers, experiments in the autonomous acquisition of motor com-petences and navigational skills were conducted to investigate the vi-ability of this approach.A controller architecture is presented that allows extremely fast ac-quisition of motor competences such as obstacle avoidance, wall andcorridor following and dead end escape: these skills are obtained inless than �ve learning steps, performed in under one minute of realtime. This is considerably faster than previous approaches. Becausethe e�ective wiring between sensors and actuators is determined au-tonomously by the robot, sensors and actuators may initially be wiredup arbitrarily, which reduces the risk of human error during the set-ting up phase of the robot. For the �rst time it was demonstratedthat robots also become able to autonomously recover from unforeseensituations such as changes in the robot's morphology, the environmentor the task. Rule-based approaches to error recovery obviously cannoto�er recovery from unforeseen errors, as error situations covered bysuch approaches have to be identi�ed beforehand.i

A robust and fast mapbuilding architecture is presented that en-ables mobile robots to autonomously construct internal representationsof their environment, using self-organising feature maps. After a shorttraining time the robots are able to use the self-organising feature mapsuccessfully for location recognition.For the �rst time the staged acquisition of multiple competences inmobile robots is presented. First obtaining fundamental motor compe-tences such as wall following and dead end escape (primary skills), therobots use these in a second stage to learn higher levels of competencesuch as the navigational task of location recognition (secondary skills).Besides laying the foundation of autonomous, staged acquisition ofhigh level competences, this approach has the interesting property ofsecurely grounding secondary skills in the robot's own experience, asthese secondary skills are de�ned in terms of the primary ones.KurzfassungDiese Dissertation befa�t sich mit dem Problem der intelligentenSteuerung autonomer mobiler Roboter, insbesondere in vom Ingenieurnicht vorhergesehenen Situationen. Diese Frage gewinnt zunehmend anBedeutung, da das Einsatzspektrum autonomer Roboter sich st�andigerweitert und in zunehmendem Ma�e den Einsatz in unbekannterUmgebung (Exploration) sowie a priori schlecht parametrierbare Auf-gaben (Wartungsarbeiten) umfa�t.Um Flexibilit�at in solchen unvorhergesehenen Situationen zu er-reichen, ist es notwendig, Robotersteuerungen zu entwickeln, die esdem Roboter erlauben, die ben�otigten F�ahigkeiten autonom, in Inter-aktion mit der Umwelt zu erwerben | so die hier vertretene These.Um die Brauchbarkeit dieses Ansatzes zu untersuchen, wurden Ex-perimente mit autonomen mobilen Robotern durchgef�uhrt, die die An-ii

wendbarkeit von selbstorganisierenden, verhaltensbasierten Steuerun-gen f�ur den Erwerb von motorischen F�ahigkeiten und f�ur Navigationuntersucht haben.Eine Steuerung wird vorgestellt, die das extrem schnelle Lernen vonmotorischen F�ahigkeiten wie Hindernisausweichen, Wandfolgen, Kor-ridorfolgen und Entweichen aus Sackgassen erlaubt. Diese F�ahigkeitenwerden in weniger als f�unf Lernschritten in unter einer Minute Echtzeiterworben. Dies ist erheblich schneller als bisherige Ans�atze. Da die ef-fektive Verbindung zwischen Sensoren und Aktuatoren vom Roboterselbst bestimmt wird, k�onnen Sensoren und Aktuatoren anfangs in be-liebiger Weise angeschlossen werden. Dies vermindert die Anf�alligkeitf�ur Bedienfehler w�ahrend der Installationsphase des Roboters. Erstma-lig wurde gezeigt, da� Roboter auf unvorhergesehenen Situationen wie�Anderungen der Robotermorphologie, �Anderungen in der Umwelt oder�Anderungen der Aufgabe reagieren k�onnen, ohne ihre Einsatzf�ahigkeitzu verlieren. Regelbasierte Ans�atze zur Fehlerkorrektur sind dazu nichtgeeignet, da f�ur solche Ans�atze die Fehlersituationen schon von vorn-herein bekannt sein m�ussen.Ein robustes und schnelles Kartographiesystem auf der Grund-lage von selbstorganisierenden Merkmalskarten wird vorgestellt,welches es mobilen Robotern erm�oglicht, in autonomem Betrieb eineRepr�asentation der Umgebung zu erstellen. Nach kurzer Trainingszeitsind die Roboter in der Lage, mit Hilfe dieser Karten eine Ortserken-nung erfolgreich durchzuf�uhren.Erstmalig wird auch der stufenweise Erwerb mehrerer F�ahigkeitendurch Roboter pr�asentiert. Nachdem grundlegende F�ahigkeiten wieHindernisausweichen, Wandfolgen oder Entweichen aus Sackgassen er-lernt sind (Prim�arf�ahigkeiten), verwenden die Roboter diese in einerzweiten Stufe des Lernprozesses zum Erwerb komplexerer F�ahigkeiteniii

wie der der Ortserkennung (Sekund�arf�ahigkeiten). Zum einen ist diesder Grundstein f�ur den autonomen, stufenweisen Erwerb komplexererF�ahigkeiten, zum anderen hat dieser Ansatz die interessante Eigen-schaft, da� die Sekund�arf�ahigkeiten des Roboters in den Erfahrungendes Roboters und nicht in von au�en vorgegebenen De�nitionen ver-ankert sind, da die Sekund�arf�ahigkeiten durch die Prim�arf�ahigkeitende�niert sind.R�esum�eTandis que les applications des robots autonomes mobiles sont de plusen plus nombreuses - par exemple lorsqu'il s'agit d�explorer des terri-toires largement inconnus (par exemple, Mars) ou de travailler dansdes environnements incertains (par exemple pour lutter contre un in-cendie ou pour travailler dans une centrale nucl�eaire) - les syst�emesde contrôle de ces robots vont devoir de plus en plus s'accomoder decirconstances non pr�evues par leur concepteurs.Cette th�ese traite de ce probl�eme, c�est-�a-dire de la question desavoir comment un contrôleur de robot mobile peut s'av�erer exibleen circonstances impr�evues. Alors que les tentatives ant�erieures pourassurer une plus grande exibilit�e en mati�ere de contrôle robotique sesont focalise�es, soit sur des solutions mettant en �uvre des strat�egiespr�ed�e�nies | destine�es �a r�esoudre des situations d�erreur connues apriori | soit sur la construction de contrôleurs �a partir de modulesrobustes, ind�ependants et auto-su�sants, la th�ese soutenue ici est que,pour s'accomoder de situations re�ellement impr�evues par son concep-teur, un robot doit pouvoir acqu�erir des comp�etences et s'adapter �ades circonstances changeantes de facon autonome.Au moyen des robots mobiles Alder et Cairngorm, qui ont�et�e construits dans le cadre du projet "Really Useful Robots" duiv

D�epartement d'Intelligence Arti�cielle de l'Universit�e d�Edimbourg, di-verses exp�eriences ont �et�e r�ealise�es a�n d�e'tudier les m�ecanismes quipermettent �a des robots mobiles d'apprendre �a modi�er leur comporte-ment, par essais et erreurs, si cela s'av�ere n�ecessaire �a la r�ealisation deleur objectif et �a s'auto-adapter en cas de circonstances impr�evues. Cer�esultat a �et�e acquis grâce �a la coop�eration de composants �g�es et decomposants modi�ables au sein des contrôleurs de ces robots, les com-posants �g�es mettant en �uvre ce qu'on pourrait appeler des r�egles in-stinctives (�ex�ecutant des comportements immuables et pr�ed�e�nis) et lescomposants modi�ables �etant impl�ement�es au moyen d'architecturesde calcul connectionnistes (R�eseaux de Neurones Arti�ciels).Au cours d�exp�eriences ayant trait �a l'acquisition d'aptitudes motri-ces fondamentales, Alder et Cairngorm ont appris par essais et erreurs�a �eviter des obstacles, �a s�e'chapper de culs-de-sacs, �a suivre des murset des corridors. Ces robots se sont av�er�es capables de s'accomoderde circonstances impr�evues telles que des changements dans leur en-vironnement ou dans leur propre morphologie: ils se sont remis deces changements et ont repris la tâche qu'ils cherchaient �a accomplir.D'autres exp�eriences ont �egalement montr�e que ces robots peuvent ex-ploiter une information contextuelle et agir intelligemment dans descirconstances di��erentes.Au cours d�exp�eriences portant sur la reconnaissance de lieux,Alder et Cairngorm ont utilis�e des cartes topographiques auto-organise�es comme repr�esentations distribue�es de leur environnement.G�en�er�es �a partir des stimuli d�entre�e provenant de leurs capteurs sen-soriels ou des actions motrices e�ectue�es par les robots, les sch�emasd�excitation �emergents au sein de ces cartes topographiques se sontav�er�es �d�element corr�el�es aux emplacements du monde re�el. De cefait, les robots �etaient capables de reconnâitre les lieux qu'ils avaientv

d�eja visit�es dans leur environnement.En�n, au cours de recherches portant sur l'apprentissage par �etapes,des exp�eriences sur l'acquisition de comp�etences motrices et sur lareconnaissance de lieux ont �et�e combine�es: Cairngorm a ainsi ap-pris d'abord �a �eviter les obstacles, �a s�e'chapper des cul-de-sacs et �asuivre les murs puis, apr�es que ces comp�etences aient �et�e acquises, �ales utiliser pour entrâiner un syst�eme �a base de carte topographiqueauto-organise�e �a reconnâitre les lieux parcourus.Grâce aux contrôleurs auto-organis�es d�ecrits dans cette th�ese, ila �et�e montr�e que des robots mobiles peuvent acqu�erir de mani�ere au-tonome les comp�etences permettant de mener une tâche �a bien et qu'ilspeuvent s'accomoder avec succ�es de situations impr�evues. Pour lapremi�ere fois, il a �et�e �egalement montr�e que des robots peuvent tirerb�en�e�ce de comp�etences acquises ant�erieurement pour r�ealiser ensuited'autres apprentissages. Un tel apprentissage par �etapes est n�ecessairepour le d�eveloppement autonome d'aptitudes plus �elabore�es chez lesrobots.||||||||||{The composition of this thesis and the research re-ported in it are entirely my own work, except where oth-erwise stated.Ulrich Nehmzow vi

AcknowledgementsRobotics is fun. I would not have realised this without the excitingand stimulating company of my friends. I am grateful for inspiringdiscussions I was priviliged to have, most of all with Tim Smithers (Istill remember us using the mirror in our hotel room in Kaiserslauternas a whiteboard), and also with John Hallam. I owe much to both:Tim inspired and directed my work and kept me excited, John helpedme to settle, guided my �rst steps and carefully and helpfully analysedand assessed my work.I am grateful for the many opportunities I was given to meet otherpeople and see their work. I gladly remember the \RUR tour" throughGermany: for two weeks Tim, John, Pete and I visited many researchinstitutions there | animated discussions wherever we were shapedour work and gave directions for the future.My best and most faithful critic from the public was my dear wifeClaudia, who supported me in many special ways.I would not have started and �nished this work without the helpof the Nehmzow Clan. My mother encouraged me to start it and myfather encouraged me to keep going. Thank You to Ama and Max,too.I thank Martin Waite for animated discussions about robotics, inbothies and elsewhere, KP Naidu, Alistair Conkie and Andrew Fitzgib-bon for their help in computer matters all along the way; and Phyl-lis Garden Richardson and Jean-Arcady Meyer for translating the ab-stract of this thesis into French.The simulator of Alder was kindly given to me by members of the\FORANN" project at Bremen University.Thank You to Peter Ross, Brendan McGonigle, Manfred Knick,Chris Malcolm, Peter Forster and Barbara Webb for helpful com-vii

ments. Thank You also to the technical workshops, in particular toTom Alexander, Douglas Howie and Hugh Cameron, and to GillianMorrice and Karen Konstro�er, who all supported this work muchthrough their practical help.I gratefully acknowledge the support from both the Science andEngineering Research Council, who supported the work reported herefor two years, and from the Department of Arti�cial Intelligence, whichprovided a very stimulating and supportive environment.

viii

I dedicate this thesis tomy wife Claudia, my mother and my father, my family.

ix

x

Contents1 Experiments in Competence Acquisition for Au-tonomous Mobile Robots 11.1 Introduction : 11.2 Tools for Investigation : : : : : : : : : : : : : : : : : : 31.3 The Robots : 121.4 Experiments : 131.5 Organisation of this thesis : : : : : : : : : : : : : : : : 162 Background and Review 192.1 Analytical and Synthetical Approach : : : : : : : : : : 192.2 Staying Operational : 202.2.1 Implementations : : : : : : : : : : : : : : : : : 222.3 Navigation : 282.4 Learning : 332.4.1 Reinforcement Learning : : : : : : : : : : : : : 342.4.2 Connectionism : : : : : : : : : : : : : : : : : : 412.5 Coping with Abnormal Situations : : : : : : : : : : : : 482.6 Summary : 523 Reality or Simulation 553.1 Introduction : 553.2 The Dead End Example : : : : : : : : : : : : : : : : : 58xi

3.2.1 The Simulation : : : : : : : : : : : : : : : : : : 593.2.2 The Experiment : : : : : : : : : : : : : : : : : : 633.2.3 Discussion : 673.3 Hardware : 703.4 Summary : 734 Skill Acquisition using Arti�cial Neural Networks 774.1 Introduction : 774.1.1 The Controller Architecture : : : : : : : : : : : 774.1.2 Instinct-Rules : : : : : : : : : : : : : : : : : : : 784.1.3 Input and Output : : : : : : : : : : : : : : : : : 794.1.4 Mechanism : 804.1.5 Problems : 834.1.6 Linear Separability : : : : : : : : : : : : : : : : 844.1.7 Convergence in the Perceptron : : : : : : : : : : 884.2 Outline of Competence Acquisition Experiments : : : : 924.3 Obstacle Avoidance : 934.3.1 Obstacle Avoidance without using the ForwardMotion Sensor : : : : : : : : : : : : : : : : : : : 954.3.2 Summary : 994.3.3 Learning to Avoid Obstacles and to Move Forward1014.3.4 Summary : 1044.3.5 Obstacle Avoidance using the Ultrasonic RangeFinder : 1054.3.6 Summary : 1074.4 Wall Following : 1084.4.1 Summary : 1114.5 Corridor Following : 1134.5.1 Summary : 1144.6 Arbitration of Instinct Rules : : : : : : : : : : : : : : : 115xii

4.7 Context-dependent Learning : : : : : : : : : : : : : : : 1174.7.1 Experimental Results : : : : : : : : : : : : : : : 1184.7.2 Summary : 1214.8 Discussion : 1224.9 Summary : 1235 Location Recognition, using Self-Organising FeatureMaps 1255.1 Introduction : 1255.2 Location Recognition using Sensor Signals : : : : : : : 1285.2.1 Experimental Results : : : : : : : : : : : : : : : 1325.2.2 Discussion of this experiment : : : : : : : : : : 1385.2.3 Summary : 1425.3 Using All Motor Actions for Location Recognition : : : 1435.3.1 Experimental Results : : : : : : : : : : : : : : : 1485.3.2 Discussion : 1495.3.3 Summary : 1515.4 Using \Signi�cant Motor Actions" for Location Recog-nition : 1525.4.1 Experiments : 1545.4.2 The Experimental Results : : : : : : : : : : : : 1555.4.3 Discussion of this experiment : : : : : : : : : : 1615.4.4 Summary : 1665.5 Summary and Discussion of the Location RecognitionExperiments : 1676 Staged Learning 1716.1 Introduction : 1716.2 Corridor Following and Maze Learning : : : : : : : : : 1746.2.1 Results : 176xiii

6.2.2 Summary : 1786.3 Wall Following and Mapbuilding : : : : : : : : : : : : : 1796.3.1 The Experiment : : : : : : : : : : : : : : : : : : 1796.3.2 Summary : 1856.4 Discussion : 1867 Summary and Conclusion 1877.1 Summary : 1877.2 Open questions : 1897.2.1 Scalability : 1897.2.2 Robustness : 1917.2.3 Navigation : 1927.2.4 Learning Sequences : : : : : : : : : : : : : : : : 1937.2.5 Adjustable Plasticity : : : : : : : : : : : : : : : 1947.3 Conclusions : 196Bibliography 199Appendix: Publications 209Really Useful Robots 211.1 Abstract : 212.2 Introduction : 212.3 Self-organising Systems : : : : : : : : : : : : : : : : : : 212.4 Experimental Platform : : : : : : : : : : : : : : : : : : 216.4.1 Preliminary Experiments : : : : : : : : : : : : : 216.4.2 The Computational Structure : : : : : : : : : : 217.4.3 Experimental Results : : : : : : : : : : : : : : : 218.5 Discussion : 219.6 Conclusion : 219A 221xiv

Steps towards Intelligent Robots 221A.1 Abstract : 222A.2 Introduction : 222A.3 Self-organising Systems : : : : : : : : : : : : : : : : : : 222A.4 Experimental Platform : : : : : : : : : : : : : : : : : : 226A.4.1 Preliminary Experiments : : : : : : : : : : : : : 226A.4.2 The Computational Structure : : : : : : : : : : 227A.4.3 Experimental Results : : : : : : : : : : : : : : : 228A.5 Conclusion : 229B 231Mapbuilding using Self-Organising Networks in \ReallyUseful Robots" 231B.1 Abstract : 232B.2 Introduction : 232B.2.1 The place of this paper within the NavigationalSystem of Alder : : : : : : : : : : : : : : : : : : 233B.2.2 What is a map? : : : : : : : : : : : : : : : : : : 234B.3 Self-Organising Networks : : : : : : : : : : : : : : : : : 235B.3.1 The Self-Organising Network used for Mapbuild-ing in Alder : 236B.3.2 The Role of Robot Behaviour : : : : : : : : : : 237B.3.3 The Input Vector : : : : : : : : : : : : : : : : : 237B.3.4 A brief summary of the whole mechanism : : : 239B.4 Experimental Results : : : : : : : : : : : : : : : : : : : 239B.5 Comparison with Bee Navigation : : : : : : : : : : : : 246B.6 Conclusion : 246C 249xv

Location Recognition in a Mobile Robot 249C.1 Abstract : 250C.2 Introduction : 250C.3 The Duality of Sensing and Acting : : : : : : : : : : : 251C.4 Early Experiments : 252C.4.1 Self-Organising Feature Maps : : : : : : : : : : 252C.4.2 Experiments with a 10 x 10 SOFM : : : : : : : 253C.4.3 Location Recognition, using one SOFM : : : : : 256C.5 A SOFM Location Recognition System : : : : : : : : : 256C.5.1 The Experiment : : : : : : : : : : : : : : : : : : 257C.5.2 The Mathematics : : : : : : : : : : : : : : : : : 258C.5.3 Results : 259C.5.4 Changes in Parameters : : : : : : : : : : : : : : 259C.6 Summary and Conclusion : : : : : : : : : : : : : : : : 260C.6.1 Summary : 260C.6.2 Conclusion : 261C.6.3 Open Questions and Future Work : : : : : : : : 261D 263Using Motor Actions for Location Recognition 263D.1 Abstract : 264D.2 Introduction : 264D.3 Behaviour-based Control and Mapbuilding Process : : 266D.3.1 Self-Organising Networks : : : : : : : : : : : : : 267D.3.2 Location Recognition Behaviour : : : : : : : : : 268D.4 The Experimental Results : : : : : : : : : : : : : : : : 268D.4.1 Experimental Setup : : : : : : : : : : : : : : : : 268D.4.2 Experimental Results : : : : : : : : : : : : : : : 270D.5 Discussion : 273xvi

D.5.1 Discovering Signi�cant Environment Structure : 273D.5.2 Setting Thresholds : : : : : : : : : : : : : : : : 273D.5.3 Why `Motor Actions' and not `Sensor Signals'? 274D.5.4 Comparison with Animal Navigation : : : : : : 274D.6 Summary and Future Work : : : : : : : : : : : : : : : 275E 277Learning Multiple Competences: Some Initial Experi-ments 277E.1 Abstract : 278E.2 Introduction : 278E.3 Background: Single Competence Learning : : : : : : : 280E.3.1 Learning Locomotion Competences : : : : : : : 280E.3.2 Learning Simple Navigation Competences : : : 282E.4 Experiments in Multiple Competence Learning : : : : : 283E.4.1 Corridor-Following and Maze Learning : : : : : 283E.4.2 Wall-Following and Mapbuilding : : : : : : : : 285E.5 Related Work : 286E.6 Final Comments and Future Directions : : : : : : : : : 287Index 289
xvii

Chapter 1Experiments in CompetenceAcquisition for AutonomousMobile Robots1.1 IntroductionOne of the most striking features of intelligent beings is that they cancope with situations they have never encountered before, and that theycan apply previously acquired knowledge to such unforeseen situations.This thesis addresses the problem of coping with unforeseen situa-tions in the inanimate world, in mobile robotics. Are there mechanismswe can successfully employ to achieve exibility of mobile robots in un-foreseen situations, and what are the appropriate means to investigatethis research topic? These are the questions I try to answer in thisthesis.When talking about unforeseen situations, I use the word unfore-seen in the strict sense of the word. It describes the fact that a sit-uation has not been anticipated by the designer of a robot controller,and it describes a situation that has neither been identi�ed nor been1

experienced before the actual event.To be able to achieve this exibility in unforeseen situations threeproperties are necessary. The agent must be able to:1. acquire knowledge in the �rst place,2. detect changing circumstances, and3. �nd appropriate actions in the unforeseen situation, possibly us-ing previously acquired knowledge.Why would it be desirable to build robot controllers based on theseprinciples? If such exibility could be achieved in a mobile robot, itwould enhance the robot's capability of staying operational, becausethe robot could recover even if single components fail. It would in-crease the robot's versatility, as such a robot could be used even if theworld it is going to be used in is unknown to the designer beforehand.Examples of possible applications are the exploration of unknownterritory (e.g. planets), performing maintenance work in inaccessibleareas (e.g. blocked pipes) or work in dangerous or contaminated envi-ronments (e.g. nuclear power stations). Finally, setting up such robotswould be easier and less prone to error, as the e�ective wiring betweensensors and actuators could be established autonomously by the therobot itself. The �rst two points, however, lie in the future | thework reported here starts at the very beginning, at the acquisition ofbasic competences in mobile robotics. The last point has already beenachieved to some extent: for the robots described in this thesis sensorsand motors may initially be connected arbitrarily, an e�ective wiringbetween them is established by the robots themselves. The questionsare these: what are the components required for a robot controller thatallow the robot to react exibly and e�ectively in an unforeseen situa-tion? Which are the factors in the robot and its controller that make2

the robot either succeed or fail? Identifying these factors is crucialfor building robots exhibiting task-achieving behaviours, even underunforeseen circumstances.1.2 Tools for InvestigationBefore any attempt to answer this can be made, a fundamental pointhas to be discussed: which are the appropriate means to investigatethe subject? The validity of the investigation method used has to beestablished �rst, as it is obvious that the investigation method willinuence the results. In 1981 Tversky and Kahneman conducted thefollowing experiment on the framing e�ect1 (after [Matlin 89]).Problem 1: Imagine that the United States is preparing forthe outbreak of an unusual Asian disease, which is expectedto kill 600 people. Two alternative programs to combatthe disease have been proposed. Assume that the exactscienti�c estimate of the consequences of the programs areas follows:� If program A is adopted, 200 people will be saved.� If program B is adopted, there is a one-third proba-bility that 600 people will be saved, and two-thirdsprobability that no people will be saved.Out of 152 students given these two options, 72% choseprogram A and 28% chose program B.Problem 2: Now imagine the same situation, with thesetwo alternatives:1The e�ect that the way a question is asked (framed) and the background con-text of the choice itself can inuence the outcome of the decision.3

� If program C is adopted, 400 people will die.� If program D is adopted, there is a one-third proba-bility that nobody will die, and two-thirds probabilitythat 600 people will die.Out of 155 di�erent students given these two options, 22%favoured program C, but 78% favoured program D!The point is obvious: the value of answers received or the validityof results obtained has to be interpreted with respect to the questionasked or the investigation method used, respectively.For scienti�c research in general, and for research in intelligentmobile robotics in particular, two approaches can be taken: simulatingor experimenting2. Simulation tries to reproduce what are judged to bejust the signi�cant events or processes under test conditions. Initiallyspecifying rules, relationships, operating procedures and initial stateof the simulation, the designer of the simulation then tries to relatethe results obtained by simulation to the actual process simulated. Inthe area of autonomous mobile robots simulation almost always meanscomputer-based simulation. Experiment, on the other hand, stands forthe actual experiments, the \real McCoy", without prior judgement asto what is signi�cant. In mobile robotics this means the use of mobilerobots, operating in a niche of the real world (I say niche, becausewhatever the world the robot is operating in is like, it is never goingto be the whole of the whole world).To date, in mobile robotics research computer-based simulation hasbeen used far more often than actual experimentation; for what rea-sons? There are advantages to simulation. It is | or at least was2Throughout this thesis I use the term \experiment" for actual physical exper-iments, conducted with robots. 4

until recently | easier to set up. The equipment for the simulationof intelligent agents can be found in every Arti�cial Intelligence orComputer Science laboratory: the computer. It is often faster than anexperiment. It works within clearly de�ned boundaries, all parametersthat inuence the simulation are de�ned by the designer. Simulation ofidentical environment states is possible, because these states are clearlyde�ned and can be set again and again. This is in fact a major di�er-ence between simulation and experiment: the simulation assumes thatsu�cient information about the current environment state is available,so that the state of the controller can be assumed to be identical to thecurrent environment state. The experiment, on the other hand, showsthat identical world states can never be reached again. Only identicalcontroller states are possible | equivalence of world state and con-troller state cannot be assumed and is not assumed. Because of thisfundamental di�erence, I use di�erent terms throughout this thesiswhen I talk about simulation and experiment: agent and environmentfor simulations, robot and world for experiments.As simulation is often easier to set up and cheaper to implement,as it is often faster than experiments and o�ers very clearly de�nedboundaries which are easier to analyse, as it o�ers the possibility toinvestigate identical environment states again and again in order to�nd a suitable set of parameters, why have I chosen to conduct ex-periments to investigate the question of competence acquisition andexibility in unforeseen situations in mobile robotics? The reason isthis: simulation is only as good as the data it is based on. In order tobuild a scienti�cally useful simulator, one must either� have su�cient data from previous experiments, or� use data obtained directly from the world.5

Following page: simulated turbine wheel, as used in �nite elementanalysis.
6

Here is an example for a scienti�cally useful simulation, based on awealth of experimentally acquired data: at NEI Parsons generator andturbine manufacturers in Newcastle, simulation of turbine blades underthe inuence of pressure, high temperature and centrifugal forces has,in some cases, replaced the `test wheel' which was especially built to betested under realistic conditions. Whereas building a test wheel tookmonths, a simulation is done in days (a simulated turbine blade for the�nite element analysis is shown on page 6). A test wheel cost 250,000pounds, the computer and software for the simulation a fraction of theprice. The simulation used was carefully developed by Rolls Royce,another turbine manufacturer, and yet it was only possible for Parsonsto successfully use this simulator because test wheels were availablethat could be used to �ne-tune the simulation. Without the knowledgebased on experiments, both at Rolls Royce and Parsons, the simulationof turbine blades would have been of little use for the engineering ofnew turbines.Unfortunately, in intelligent mobile robotics this wealth of datafrom experiments is not yet available, nor is the theory that is also anecessary prerequisite to the building of such simulators. Not all es-sential parameters that make a robot succeed in its task in the worldhave been identi�ed yet. This is a di�cult problem. It means that it isimpossible to \simply concentrate on the most important points" whenimplementing a simulation, because to date it is not at all clear to uswhat the most important points are! Obviously, important factors in-uencing a robot's behaviour will be its dimensions, the signals comingfrom its sensors and the e�ects of its actuators. But what about theinuences of wear, backlash, fatigue, slippage, friction, stiction, asym-metries and climate? Can these be ignored in a simulation withouta�ecting its usefulness? 7

Experiments suggest that many of these \minor" aspects of roboticsdo play an important role3.To make things even worse, even including all known aspects willnot guarantee that simulated agent and robot will behave identically.The interaction of robot and world produces e�ects that cannot be as-cribed to properties of robot or world alone (�gure 1.1 gives a graphicaldemonstration of this). For example, pushing hard against an obsta-cle will displace either the obstacle or the robot, thus changing theirrelative positions.Often, stochastic processes help the robot to overcome problems,although one would not have expected this from a theoretical analysis.The following result from an experiment highlights this fact: suppose amobile robot is built that uses two tactile sensors mounted at the frontof the robot to steer away from obstacles. Such a robot is shown in�gure 1.2. Whiskers reverse the turning direction of a motor when theyare on (this is indicated by a \-" in the diagram), which means thatthe robot will turn left when the right whisker is on, right when the leftwhisker is on and reverse when both whiskers are on. Such a vehicleis similar to the ones discussed by Braitenberg ([Braitenberg 84]). InBraitenberg's vehicles, sensor excitation is proportional to the actionof the motor connected to the sensor, whereas in the example shownin �gure 1.2 the sensors are binary sensors, and simply reverse theturning direction of the motors when they are on.I have programmed \Alder" (a robot) to behave that way and, asexpected, the robot turns away from solitary obstacles. Somethingsurprising happens, though, when the robot is put in a dead end, asshown in �gure 1.3: instead of turning left and right forever, possibly3[Malcolm 91] reports that a particular assembly robot \reliably" failed on Mon-day mornings, because of slightly smaller dimensions due to being cold!8

Figure 1.1: Arcimboldo: The interaction of parts produces e�ects thatare not present in the mere collection of them.
9

MOTORMOTOR&' LLLLLL������ {{
'
&

$
%

uuFigure 1.2: Simple, obstacle avoiding vehicle.reversing occasionally, the robot often (not always) eventually touchesthe left wall with its right whisker, or the right wall with its left whisker,which will make it leave the dead end.This is not a result of the wiring between sensors and actuators (infact it happens despite the wiring, rather than because of the wiring),but is due to e�ects that stem from the interaction of the particularrobot with its world. Alder, for example, does not turn symmetricallyto the left and to the right, but has a bias to one side (every robot hassuch asymmetries). If the dead end is not too tight, this will make therobot turn more towards one direction than turning back in the other,so that eventually the robot will be able to leave the dead end.This experiment shows that an intelligent agent cannot be seenindependently from its task and its environment.� The robot,� the task the robot is to achieve, and� the world 10

��
'
&

$
%Figure 1.3: Dead end.have to be seen in perspective. There is no such thing as ageneral purpose robot, nor indeed a general purpose biological sys-tem. Birds, for example, accomplish amazing navigational tasks. Theshort-tailed shearwater, for instance, migrates across the Paci�c fromsouthern Australia as far as the Arctic Ocean, and covers 20,000 to35,000 kilometers doing so. The shearwater is able to arrive at thedesired location by exploiting recurrent wind patterns for navigation([Waterman 1989]). He is well adapted to his particular task of navi-gation and the particular environment he is doing it in.Only if the relevant features in agent, task and world are identi�edis it possible to build scienti�cally useful simulations. The conclusion Idrew from these considerations was that in order to answer the questionof intelligent behaviour of mobile robots, I have to use data obtainedfrom experiments, and use this data either immediately in the robotcontroller, or in some sort of subsequent analysis (which could be a11

simulator).1.3 The RobotsFor the work reported here I have built two mobile robots, Alder andCairngorm4. A photograph of them is shown after page 18.Much of the work described in this thesis was done as part of the\Really Useful Robots" project at the Department of Arti�cial Intelli-gence at Edinburgh University. The title of the project is apt, althoughperhaps misleading without explanation. The aim of the project wasto investigate mechanisms that give higher degrees of exibility in mo-bile robot control, that allow robots to recover from errors withouthuman intervention and to remain operational under changing circum-stances, in the presence of noise and variation inherent in the realworld. The underlying philosophy of the project was to leave as manydecisions as possible to the robot, in other words to avoid prede�ni-tion whenever possible, because we believe that prede�nition limitsthe exibility of robots. The name of the project alludes | somewhattongue in cheek | to Karel �Capek's play \R.U.R. | Rossum's Uni-versal Robots" (Prague 1920), which introduced the term robot5 to awider audience, and to \Thomas, the tank engine"6, where a \reallyuseful engine" is an engine that \gets on with the job, without muchfuss".4Ben Alder and Cairngorm are names of Scottish mountains.5From czech robota, labour.6A popular British children's book. 12

1.4 ExperimentsHaving described the motivation for the work described in this thesis(achieving exibility in unforeseen situations) and having introducedthe tool I used for the investigation (experiments with robots), I cannow explain the experiments conducted in a little more detail.The most important task for mobile robots behaving in some envi-ronment is to stay operational whilst interacting with the world theyare put in. Without this ability no advanced capabilities can be ac-quired, no learning or adaptation can take place and no intelligentbehaviour can develop. Consequently, the �rst set of experiments con-ducted with Alder and Cairngorm concerned the acquisition of basicmotor competences that allowed the robots to stay operational in achanging environment.Using connectionist computing techniques (sometimes also called\arti�cial neural networks"), the robots, through trial and error, ac-quire competences such as avoiding obstacles, escaping from cul-de-sacs, following walls and following corridors. They can cope with un-foreseen situations such as:� changes in their morphology, for example swapped whiskers orswapped motor power supplies,� changes in their task, for example escaping cul-de-sacs after hav-ing learned how to avoid single obstacles, and� changes in their world | for example moving the wall the robot13

has been following from one side to the other7.A second group of experiments concentrated on the problem oflocation recognition as a step towards navigation. Again based onconnectionist computing techniques, the robots used incoming sensordata to train self-organising feature maps to obtain an internal repre-sentation of their experience space. Experience space is the appropriateterm here, because the representation developed in the self-organisingfeature map is not a topological representation of the world the robotis operating in, but a representation of the sensor or actuator stimuli(depending on the experiment) the robot receives in the world. Theexcitation patterns developing in the self-organising feature maps canthen be used by the robots to recognise locations within their world.To obtain the sensory input used in the experiments of this secondgroup, a preprogrammed wall following behaviour was used.The �nal group of experiments combined the �rst two. In what Icall staged learning, the robots �rst acquire the competence to avoidobstacles and follow walls or corridors, and subsequently use this abilityto negotiate mazes or train self-organising feature maps which they canlater use for location recognition, as before.7Compare this to the list shown earlier on page 10. Whilst it might seem unlikelythat the robot will have whiskers swapped or power supplies reversed in operation,it can be an advantage if a robot equipped with a large number of sensors doesnot have to be wired up in a particular way. As regards walls swapping sides: Inan o�ce environment it is conceivable that the robot encounters situations wherethe wall on one side of the robot stops, and a wall on the other side starts (dooropenings on one side), or that the robot changes its direction of travel and thussenses the wall as being on the other side. In warehouses \walls" swap sides all thetime if someone else is restacking boxes.14

These experiments show that mobile robots can:1. autonomously acquire task achieving behaviours,2. detect changing circumstances, and3. behave intelligently, even under unforeseen circumstances.The statement I am making through this thesis is thus:Coping with unforeseen situations is a relevant problem in mo-bile robotics, which has received little attention to date. Usingconnectionist computing techniques, it is possible to achievereinforcement learning | learning by trial and error throughperformance feedback | in mobile robots and enable mobilerobots to exhibit reliable and robust behaviour, even undercircumstances changing in unforeseen ways.The main conclusion of this thesis is that connectionist computingtechniques can indeed successfully be used in mobile robot control, thatthey allow the robot to acquire competences through trial and error,and that they enable the robot to adjust to changes in the robot itself,its task or its world. This approach increases the exibility of mobilerobots greatly, because it allows� exible wiring of sensors and actuators,� recovery from undesired system states,� recovery from unforeseen system states, and� autonomous acquisition of higher level competences in a processof staged learning. 15

1.5 Organisation of this thesisChapter 2 presents work done in mobile robotics to date, relevant tothis thesis. It discusses synthetical and analytical approaches to mobilerobot control, it describes di�erent ways of using sensor informationto control a robot, and it describes mathematical tools that are usefulfor the task of achieving exibility in unforeseen situations.Chapter 3 explains why experimentation is important in roboticsand discusses the advantages and problems associated with simulation.Also in this chapter Driesh, a simulation built after Alder, is presented.Chapters 4, 5 and 6 present the experiments conducted with Alderand Cairngorm, and the results obtained. If exibility in unforeseensituations is to be achieved, a robot has to be able to assess incom-ing information independently from prede�ned knowledge and to au-tonomously determine useful actions. In chapter 4 I describe experi-ments concerning the acquisition of basic competences such as obsta-cle avoidance and wall following. These competences allow the robotto stay operational, even if circumstances change in unforeseen ways.The chapter describes how Alder and Cairngorm cope with changes intheir setup (wiring of sensors and actuators) and changes in their en-vironment, and how they regain the ability to act successfully in theirenvironment after an unforeseen event has occurred.The experiments in competence acquisition described up to thispoint have one problem: whenever the robots operate under a newcontext, as for example in moving from open space with single obsta-cles into a dead end, they have to relearn the appropriate connectionsbetween sensor signals and motor signals in order to stay operational.Section 4.7 describes experiments in which Alder and Cairngorm iden-tify the context they are operating in, and by this can operate success-fully in more than one context without renewed learning.16

Chapter 5 concentrates on a di�erent problem, that of locationrecognition. Here experiments are performed in which the robotsconstruct an internal representation of their environment using self-organising feature maps. The excitation patterns of the net are usedto recognise locations. Three di�erent experiments are presented intotal, each of these with a similar controller architecture, but di�erentinput stimuli to the self-organising feature map. The �rst experimentis based on landmark detection, the following two experiments followan alternative approach and use the motor actions the robot performsin the world instead.Chapter 6 describes experiments in which the robots �rst acquirea particular motor skill, and then use this skill to acquire further com-petences. In a process of staged learning Cairngorm �rst acquires theskill to avoid obstacles and follow corridors, and then uses this abilityto negotiate a maze. In the concluding experiment the competencesdescribed in chapters 4 and 5 are combined: having learned obstacleavoidance and wall following, Cairngorm uses these skills to train aself-organising feature map for location recognition.Finally, chapter 7 recalls the main points of this thesis, raises somequestions related to the work presented in this thesis and points tofurther questions and work still to be done.The aim of this work is to contribute towards the understandingof how task achieving competences in a mobile robot can be acquiredautonomously, rather than being prede�ned by the designer, and howcontrollers for autonomous mobile robots can be built that enable therobot to react exibly and intelligently in a world changing in unfore-seen ways. 17

Following page: Alder (left) and Cairngorm (right).

18

Chapter 2Background and Review2.1 Analytical and Synthetical Ap-proachThe work outlined in section 1.1 draws on research in many areas.Obviously, it is related to previous work done in (mobile) robotics, butmachine learning, connectionism, even neuroscience have a part in it,too. To review all work done in all of these areas is impossible | I haveconcentrated on topics that are directly relevant for the experimentspresented in this thesis, on mobile robots, on connectionist computingparadigms I have actually used and on learning algorithms that havebeen used for similar applications to the ones presented here.To structure this review, I have divided it according to Alder's andCairngorm's four major tasks :1. staying operational,2. navigation,3. learning, and4. coping with abnormal situations.19

2.2 Staying OperationalBefore any higher level competences such as for example navigationcan be achieved in a mobile robot, the robot has to accomplish a muchmore fundamental task �rst: to remain functional, to stay operational.For a mobile robot this mainly means to avoid obstacles and to getunwedged if trapped in a dead end. It could also mean to maintain acertain battery charge level, but neither Alder nor Cairngorm are ableto autonomously recharge their batteries, nor have I found referencesin the literature of robots that exploit such an ability.Of these tasks, obstacle avoidance is the one referred to most oftenin the literature, because it is such a fundamentally important compe-tence. Collision avoidance is a research topic in its own right, see forexample [IEEE 91], where a whole section is dedicated to this topic.Two basic approaches to achieving this goal can be found in the litera-ture: either the robot is controlled by reex-like behaviours, by a directconnection between its sensors and its actuators, or an intermediateplanning process determines which action to take in which situation.The latter is mostly called path planning, because the robot's taskusually is not only to avoid obstacles, but to move to a goal location.However, often pure obstacle avoidance and path planning are identi-cal, because the goal location for the path planner is simply a point onthe robot's path, lying behind an obstacle. These two approaches fallinto two paradigms that can be seen in mobile robotics.On the one hand there is the analytical approach([Nehmzow et al. 89]): the overall control task is broken up by the de-signer into fundamental subtasks, which are then implemented. Thisis a top down approach. [Brooks 85] calls this the functional decompo-sition: the control task is decomposed into a series of functional units;sensor signals percolate through these units until they generate an ac-20

avoid objectswanderexplorebuild mapsidentify objectsplan changes
perceptionmodellingplanningtask executionmotor control
Sensors
Actuators
?????? Sensors Actuators����������������@@RCCCCCCCCWAAAAU

BBBBBBBNAAAAUQQs���3�������������Figure 2.1: Brooks' functional (left) and behavioural (right) decompo-sition ([Brooks 85], after [Malcolm et al. 89]).tion. Planning the robot's path round an obstacle is an example foran analytical approach. On the other hand, a synthetical approach([Nehmzow et al. 89]) combines independent modules to achieve theglobal control task. This is a bottom up approach. [Minsky 88] and[Steels 88] give examples of synthetical architectures, an example ofan implementation in robotics is the behaviour-based subsumption ar-chitecture ([Brooks 85]): the overall control task is implemented bymeans of independent, task-achieving behavioural modules working inparallel, and communicating with each other through channels of lowbandwidth. Sensor signals enter all modules simultaneously, and allmodules may generate robot actions. Avoiding obstacles in a reex-like manner is an example of such a task-achieving module. Brooks'functional and behavioural decomposition are shown in �gure 2.1.Following a synthetical approach o�ers advantages: the perfor-mance of the controller is not dependent on the weakest link in thechain of functional modules (as in the analytical case); also the syn-thetical approach lends itself more readily to incremental development21

of the controller.The distinction between analytical and synthetical approachis only one aspect of a new, emerging paradigm in robotics.[Malcolm et al. 89] characterise this new paradigm by the followingset of features:� Intelligence is emergent through the interaction of the right in-gredients, it is not implemented,� sensing and acting are tightly coupled and not dealt with inde-pendently,� parallelism across the entire range of the robot's information pro-cessing functions,� distaste for symbolic representations,� active use of the world as its own model,� minimalism in use of computational power, and� realisation of the control task by adding independent, self-su�cient components, rather than analysing the whole controltask and constructing a monolithic controller (synthetical ratherthan analytical approach).2.2.1 ImplementationsThe Ipamar mobile robot ([Kacandes et al. 89]) is a good example ofthe analytical approach. It uses a generalised potential �eld methodand a dynamic path planning algorithm to navigate round obstacles.Potential �eld methods ([Khatib 85], [Krogh & Thorpe 86],[Arkin 89]) determine the path between the current position of therobot and the desired position by applying an analogy from physics:22

goal locations exert an (imaginary) attractive force, whilst obstaclesexert repulsive forces on the robot. By following the gradient of theimaginary potential �eld the robot moves to the goal location. Thismethod works well when the robot operates in uncluttered space andencounters only convex obstacles; the robot can get trapped, however,in local minima (concave obstacles), also the potential �eld method canlead to oscillations in the presence of obstacles or narrow passageways([Koren & Borenstein 91])1.The path planning in Ipamar's case works as follows: calculatingobstacle positions using ultrasonic sensor readings, a path planning al-gorithm (BUG) is invoked and determines intermediate goal positions.These intermediate goal positions are then used in the generalised po-tential �eld module to determine the new direction of travel vector.The information computed so far can then be used by the SA (setvalue) module to update the desired vehicle state. All modules com-municate with each other via a blackboard.MACROBE ([Kampmann & Schmidt 89]) is another example foran analytical approach to path planning. The robot is equipped witha prede�ned map which is updated by the robot's sensor readings.Free motion space and obstacle space are determined by �rst apply-ing a Delaunay triangulation (which represents the whole environmentof the robot in terms of abutting triangles, [Lee & Preparata 84]) tothe given map and then converting this Delaunay triangulation into aVoronoi diagram (the straight-line dual to the Delaunay triangulation,[Lee & Drysdale 81]), the latter being a more e�cient representation1[Barraquand & Latombe 90] overcome these problems by using random mo-tions, [Pra�ler & Milios 90] by applying a highly parallel, localised algorithm.23

than the former2. In order to obtain free motion space, the map is thensuperimposed onto the Voronoi diagram, resulting in a representationof free motion channels and obstacle space which is used by the robotto �nd its way. This description is very brief, but even from so shorta summary it becomes clear that this is a computationally expensiveprocess: for navigation in a pilot plant (whose map has 845 vertices,plus 53 edges and 168 further vertices added by the process) it takes82 seconds to compute the Voronoi diagram and another 11 seconds tocompute the motion channel on a MicroVAX II using MODULA II.Obstacle avoidance can also be achieved without using symbolicrepresentations of the world in so-called world models : in the early1950s W. Grey Walter ([Walter 50, Walter 51]) presented his mo-bile robots machina speculatrix and machina docilis. These weresmall robots, not unlike Braitenberg's vehicles ([Braitenberg 84]), thatshowed interesting and unpredictable behaviour because of the varia-tion inherent in the components they were made of and in the worldthey interacted with. They were controlled purely by analogue elec-tronic circuits (using valves) and exhibited a reex-like behaviour. Bymeans of decaying or refreshed charges in a capacitor machina dociliswas even able to associate stimuli with motor actions. From the workwith machina docilis Walter deduced a rule that still applies to alllearning machines: \Extreme plasticity cannot be gained without someloss of stability". Walter's robots showed many features of the newparadigm in robotics, mentioned above.Today, the world's fastest road vehicle controlled solely by com-puter follows the new paradigm, too. VaMoRs, a computer visionguided van, is able to travel autonomously on country roads at speeds2The Voronoi tessellation divides a space into polyhedral regions; the boundariesof which are perpendicular lines to the lines joining distinct points of the map([Hertz et al. 91]). 24

of up to 60 km/h and on motorways at speeds of up to 100 km/h([Dickmanns & Christians 89]). Stopping in front of obstacles has beensuccessfully demonstrated for speeds up to 40 km/h. No internal worldmodel is used, instead a control oriented approach (applying linear sys-tem theory) is pursued, using the world as its own model.The Subsumption ArchitectureThe most prominent advocate of robotics following the new paradigmis perhaps Rodney Brooks at MIT. He disagrees with \classical" Ar-ti�cial Intelligence (AI) approaches, based on the symbol system hy-pothesis ([Simon 69]), which, according to [Brooks 90b], states thatintelligence operates on a system of symbols which represent entitiesin the world. Rather, he supports an approach based on the physicalgrounding hypothesis, which states that in order to build an intelligentsystem it is necessary to have its representations grounded in the realworld. His argument is this ([Brooks 90b]):\Without a carefully built physical grounding any symbolicrepresentations will be mismatched to its sensors and actua-tors. . . .Our current strategy is to test the limitations of thephysical grounding hypothesis by building robots which aremore independent. . ."\Internal world models which are complete representations of theexternal environment", he argues, are not only impossible to obtain,\they are not [even] at all necessary for agents to act in a competentmanner" ([Brooks 91b]). Instead of taking the classical AI approachof conducting search through an internal world model | the agentessentially being a problem solver working in a symbolic abstracteddomain | he proposes a di�erent approach \where a mobile robotuses the world as its own model, continously referring to its sensorsrather than to an internal world model" ([Brooks 91b]).25

To use these ideas to build actual robot controllers, Brooks decom-poses the whole control task into layers of competence, such as0) Avoid contact with objects.1) Wander aimlessly.2) Explore the world.3) Build a map.4) Notice changes in the environment.etc.and implements each layer of competence by using an augmented �nitestate machine (AFSM) dedicated to that particular layer ([Brooks 90b,3.2.1]). This is a behaviour-based approach to control. Once built anddebugged, a layer is, according to Brooks, never altered ([Brooks 85,II.B.]). These AFSMs communicate with each other through channelsof low bandwidth (typically 8 or 16 bit words), constantly broadcastingmessages and constantly listening to them (but, as Brooks points out,missing up to ten out of eleven messages; the functioning of the con-troller does not depend upon each message being received and acknowl-edged). Because higher level behaviours can inhibit (subsume) lowerlevel behaviours, this architecture is called the subsumption architec-ture ([Brooks 85],[Brooks 91b, sect.6]). The subsumption architecturethus is a distributed control architecture, without internal world modelin the classical AI sense (it does have internal representations of statesof the �nite state machines, though; but it does not have traditionalAI representation schemes, nor does it have explicit representations ofgoals, [Brooks 91b]).How higher level behaviours can subsume lower level behaviours isexplained by an example given in [Brooks 85]. First a controller is builtthat achieves level 0 behaviour (avoid contacts with objects). This con-troller uses a number of modules, one of these is the Runaway module26

that takes its input from the Feelforce module. The Feelforce moduleconsiders each detected object as a repulsive force and computes theresulting repulsive force of all detected objects. The Runaway mod-ule monitors this `force' and sends appropriate commands to the Turnmodule, which controls turns of the robot. If level 1 behaviour (wan-der) is to be achieved, two modules, Wander and Avoid are added. TheWander module generates a new heading every ten seconds and sendsthis to the Avoid module. The Avoid module takes this input, as wellas the Feelforce input and computes a new direction, which it sendsto the Turn module, suppressing the output of the Runaway module.The Runaway module is subsumed.A good overview of robots with subsumption architecture basedcontrollers built at MIT is given in [Brooks 90b]. The simplest robotshave just three thresholded infrared sensors (Tom and Jerry), runninga three layer subsumption program. Herbert, on the other hand, hadthirty infrared proximity sensors, a laser light striping system and amagnetic compass ([Connell 89, Brooks 91b, Brooks et al. 88]). Therobot ran a �fteen layer subsumption program and was able to detectobjects having the shape of a drinks can, pick them up with its onboardmanipulator and return to the starting position (the navigational sys-tem of Herbert is described in section 2.3).Mapbuilding was demonstrated with Toto (see discussion in sec-tion 2.3), and learning within a behavioural module with Genghis, alegged robot (see discussion in section 2.4).Discussion of the Subsumption ArchitectureThe work presented in this thesis has much in common with Brooks'approach. It is behaviour based, it does not use traditional AI repre-sentation schemes such as world models, and it does not manipulatesymbols which represent entities in the real world in order to deter-27

mine the robot's actions; rather it uses the world as its own model (asBrooks), referring to sensors, not to symbols.Both Brooks' approach and the work presented in this thesis pro-duce reliable and robust robot behaviour whilst being computationallycheap. This makes them attractive for building small robots, wherecomputing power is limited because of limited payloads. Di�erences,however, are found in the actual controller architectures. In Brooks'case, the synthetic step, the composition of an overall behaviour fromindependent modules, takes place in the designer's mind. The ac-tual layering into independent layers of competences is a manual pro-cess, performed during the construction phase of the controller by thedesigner ([Brooks 85, II.B.]). The controller presented here, unlikeBrooks', attempts to allow the autonomous acquisition of task achiev-ing competences: the synthetic step takes place in the robot controller.This di�erence is, I believe, an important one. Brooks reports thatit is not yet possible to autonomously acquire complete behaviours,using the subsumption architecture ([Brooks 91a, sect.1]):\Progress in learning new behaviours has proven di�cult. To-day, we are constrained to programming each new behaviourby hand."Alder and Cairngorm, however, are able to acquire new behaviours(even if the designer has not thought of them!). The dead end escapebehaviour described on page 49 is an example for this 3.2.3 NavigationStaying operational, wandering around and avoiding getting stuck arecompetences that su�ce whenever the robot's task is to explore an3Here the robot learns that it is quicker to leave a dead end by always turningin one and the same direction, whenever a whisker is on, rather than performingan obstacle avoidance behaviour, in which it turns away from a signalling whisker.28

unknown environment. For a Mars rover, as an example, it is su�cientto transmit pictures to Earth from wherever it is, and to cover as largean area as possible (unless the task is to explore a speci�c area of Mars).For any task that requires the robot to recognise locations and to reachspeci�ed places | delivery tasks are an example | these skills arenot enough. Besides staying operational, the robot needs to have thenavigational skills of location recognition and goal-directed movement.This implies that the robot needs to have an internal representation ofits world (commonly called a map, although it needn't be a map in thesense of a geographical map), and the ability to use this for navigation(if you can't map-read, a map is of no use at all).Concerning maps, two main approaches can be found in the liter-ature: either a prede�ned map is used, or a map is built as the robotexplores its environment. Sometimes a prede�ned map is updated,using information gathered during the exploration, too.[Skewis et al. 91] present an example of a robot using a prede�nedmap. HelpMate is a mobile robot whose task it is to deliver o�-schedulemeal trays in Danbury hospital. The layout of the hospital corridorsare supplied to the navigational system of HelpMate by the designer.Path planning is unnecessary because the robot's only task is to linktwo �xed locations in the hospital (the kitchen and the nursing unit),the path to be taken is also prede�ned by the designer by means ofa mathematically de�ned curve. Two problems remain for the robot:to �nd out whether it still is on the prescribed path or not, and tocircumnavigate any obstacles along the way. To do the former, therobot relies on dead reckoning (using the measurement of left and rightwheel angular displacement), corrected by landmark detection (wallsand ceiling lights can be detected by the robot's sensory system). Forthe latter, the robot will �rst halt for a while if an obstacle is detected.If the obstacle disappears (a person, for example), the path is resumed.29

If the obstacle stays, HelpMate uses its sensors to determine whether itcan go past the obstacle on the left or the right hand side, or not at all(in which case it will halt until the obstacle is removed). To accomplisha speci�c task in an a priori known environment, a prede�ned map isthe best method to use. It is e�cient and usually easy to implement.If, however, unforeseen changes occur, either to the environment (inHelpMate's case this could be the closure of a hallway, for examplebecause of cleaning work), or the task (travelling between two di�erentlocations), or the robot (change of sensors, in HelpMates's case forexample ceiling light being switched o�), then such a scheme will failcompletely.Consequently, work has been done on the autonomous acquisi-tion of maps, rather than using prede�ned maps. [Knieriemen 91],[Knieriemen & v.Puttkamer 91] present one example of this. In athree-stage process, MOBOT III constructs a world model, based onthe readings from its 3D laser range camera. First, raw sensor data isanalysed statistically and abstract, geometrical features (such as theorientation of the robot in relation to the main features within itsworld, usually the walls) are extracted from them. This results in adescription of the structure of walls, obstacles etc., depending on themomentary position of the robot. In the second stage, views from dif-ferent positions of the robot or obtained by di�erent sensors are incor-porated into one consistent world model. This process is called sensorfusion. The resulting map is comparable to a geometrical, prede�nedmap, as was for example used in HelpMate's case. The last stage ex-tracts a symbolic representation from this geometric map (rooms, freemotion space between rooms, pieces of furniture etc), which can beused for tasks of a higher level (\go from room abc to room xyz" etc.).By constructing a map, for example in the way used by[Knieriemen & v.Puttkamer 91, Knieriemen 91], the problems that oc-30

cur when something changes can be avoided. In such a case the mapis simply changed as well. Obviously the ability of the robot to re-liably navigate depends on the quality of the map. In the case of aprede�ned map this is no problem (I assume that the designer of therobot is able to measure the environment accurately). In the case ofan autonomously constructed, geometrical map this is more di�cult.In order to incorporate new sensor data into the map for example, theexact position of the robot has to be known (\A position determina-tion as precise as possible is an essential goal when designing an AGV"([Knieriemen 91, p.93]), otherwise the navigational system will not beable to put the new data \in the right place". Mobot and HelpMateuse dead reckoning and landmark detection for this. This problem inconstructing a geometrical map can be overcome if a topological mapis constructed instead. Such a topological map represents topologicalrelationships (for example neighbourhood relationships) between loca-tions in the robot's world, but it does not represent the exact distancesand angles between these locations. The demands on sensor accuracyare therefore less if a topological map is to be constructed.[Mataric 91] presents a navigational system that uses such a topo-logical representation of the world. Using three layers of competence ina subsumption architecture based controller, the mobile robot Toto ex-plores its environment by following boundaries on its left hand side. Atjunctions, random perturbations let the robot explore di�erent pathsat di�erent times ([Mataric 92]). Using ultrasonic range �nders and acompass, the robot identi�es landmarks along its path and labels themaccording to their type (left wall, corridor and long irregular boundary)and the compass heading of the robot. To construct a distributed spa-tial representation of its environment, Toto assigns a node on the mapto each landmark, linked via an arc to the preceding and succeedinglandmark. The robot's current location is identi�ed by an activated31

network node, a path to a goal loacation is found by spreading acti-vation from the goal node evenly in all directions, until the activationreaches the current robot position (this is similar to the reaction dif-fusion dynamics proposed by Steels ([Steels 88])).This scheme is perhaps the closest to the one used on Alder andCairngorm. Both Mataric's approach and the one presented in chap-ter 5 (see also [Nehmzow & Smithers 91a]) are robust and compu-tationally inexpensive, generate topological rather than geometricalmaps and do not use any centralised reasoning agent. In both casesthe current robot location is represented by an activated node or net-work region, respectively, and both have been implemented on robotsgoverned by behaviour-based controllers.Apart from the fact that Mataric claims that this scheme is mod-elled after the mapping function of the rat's hippocampus (a claimnot made in this work) the biggest di�erence is in how features tobe mapped are detected: in Toto, mapable features are identi�ed bytheir type and the compass heading of the robot, whereas in Alderand Cairngorm they are recognised by the history of preceding events(either previous landmarks or previously executed motor actions), i.e.,by the arriving at a location.[Mataric 91] states that each landmark is associated with a motiondirective, indicating the required motion to reach the next landmark,thus addressing the question of map interpretation. These motiondirectives are derived from the compass bearing associated with thatlandmark. Because each landmark is labelled twice (once for each ofthe two travelling directions of the robot) Toto can turn round if thatis the shorter way to a goal location ([Mataric 92]).As soon as a landmark with an identical label to a previously en-countered landmark is detected, it is assumed that one whole circuitis completed and the landmark is not mapped. This means that the32

algorithm is crucially dependent on the correct labelling of landmarks:variations in sensor readings will result in new labels, and thus in newnodes of the map. Contrary to this, the mapbuilding scheme pre-sented in this thesis is markedly more robust in the presence of noiseand variation because it uses the topological mapping occurring on theself-organising feature map (SOFM): input vectors generated at identi-cal physical locations, but di�ering slightly because of sensor variation,will excite neighbouring areas of the SOFM, resulting only in a slightlydi�erent response of the network. This has been veri�ed experimen-tally, too. Although input vectors often vary at identical locations,locations are nevertheless identi�ed correctly.That simple navigation is possible without any map-like structureat all was shown in [Brooks 91b, 6.2]. Herbert, the can collecting robot,�nds its way back to the starting location by using rules like \whenpassing through a door southbound, turn left". Di�erent sets of ruleswere applied depending on whether the robot's gripper was closed (canin hand) or open (no can in hand), so that the robot would retrace itsoriginal path as soon as the gripper was closed.2.4 LearningBeing independent of prede�ned knowledge increases a robot's exibil-ity not only when it comes to mapbuilding (as discussed in the previoussection), but also when other tasks have to be accomplished. For ex-ample, if the robot is able to autonomously determine the best wayto interpret sensor signals in order to stay clear from obstacles, it cancope with an arbitrary initial sensor connection: one potential sourceof error less! Similarly, if things change (for instance, if in the case ofa wall following robot the wall stops on one side and continues on theother) a robot that is able to learn could adapt to the new situation.33

Sometimes the best (or even any) way to solve a particular problemis unknown to the designer. In those cases it is hard (impossible) toequip the robot with the necessary a priori knowledge to accomplishthe task. A learning robot is a way out in such situations.Whereas in the areas of staying operational and navigation manyexamples from robotics can be found, this is not the case for learning.Very few robots have been built that show a learning capability.Shakey ([Nilsson 69]) is an early example of a robot that could,to a certain extent, learn: it was able to store sequences of actionsas a whole in so-called triangle tables, for later use. These masterplans (calledMACROPS, for MACro OPerator) e�ectively became newoperators which were used by PLANEX, a planner that used the wholeor part of a MACROP to solve a particular problem. Although beingable to generalise and use once learned plans subsequently, Shakey wasunable to cope with situations that could not be expressed in terms ofits prede�ned operators. (More details about the use of these triangletables are given in [Fikes et al. 72]).In the following, I will discuss both actual implementations of learn-ing algorithms in robotics as well as algorithms that might be used forthat purpose, but have not yet been tried on robots.2.4.1 Reinforcement LearningReinforcement learning techniques are particularly suitable for roboticapplications in which mistakes of the robot are not immediately fa-tal and where some sort of evaluation function of the robot's per-formance exists. Reinforcement learning uses such an overall per-formance measure (the reinforcement) to control the learning pro-cess ([Barto 90, Torras 91]), in this it di�ers from supervised learningschemes (for example certain kinds of connectionist computing archi-34

tectures), which use speci�c target values for individual units. Thisproperty can be particularly useful for robotics, where often only theoverall desired behaviour of the robot is known; however at the sametime this can also be a problem, as it can be di�cult to establishwhich parameter within the controller to alter in order to increase thereinforcement. [Sutton 91]:[The term reinforcement learning covers techniques of] \learn-ing by trial and error through performance feedback, i.e. fromfeedback that evaluates the behaviour, . . .but does not indi-cate correct behaviour."It is through this performance feedback that a mapping from state(the representation of a particular situation) to action is learned.[Sutton 91] gives an overview of reinforcement learning architec-tures for intelligent agents. The simplest of the architectures is thepolicy only architecture, in which the policy of the agent is the onlymodi�able structure. These architectures work well only if the rewardsare distributed around a baseline of zero (that is positive reinforcementis a positive number, negative reinforcement a negative number, theycan't both be positive, with the former being bigger than the latter).Reinforcement comparision techniques use a prediction of the rewardas the baseline and are thus able to cope with rewards distributedaround a non-zero baseline. To take non-immediate rewards into ac-count (which neither of these architectures can), the adaptive heuristiccritic architecture uses a predictor of return (the long term cumulativereward), not reward. In Q-learning the predicted return is a func-tion not only of state, but also of the action selected. Finally, Dynaarchitectures are reinforcement learning architectures that contain aninternal world model. For each single step of selecting an action andperforming it in the real world, Dyna architectures perform anotherk steps using the world model (k is an integer number).35

[Sutton 91] reports that in a simulation on path �nding where startand goal location are sixteen squares in a 9x6 grid apart, it takesa Dyna-adaptive heuristic critic 4 steps in the simulated world andanother 100 steps (k=100) per each of those four steps to �nd the path.If a new obstacle is placed in the way, the new path is found in a \veryslow" process. He also presents a simulation of a Dyna-Q system thathas to �nd a path of length 10 (squares). This takes 1000 time steps,and another 800 after an obstacle is moved in the way. At k=10 thismeans 100 steps in the simulated environment, and another 80 to �nda new path. For a real robot this can be too slow a learning rate. Theonly cost to be paid in simulation is that of computing time; in roboticshowever the cost function is a di�erent one: apart from the fact thatdue to their battery capacity robots only operate for a certain length oftime | the Lego robots used in Edinburgh ([Donnett & Smithers 91])typically operate for about twenty minutes before their batteries haveto be recharged4 | certain competences such as obstacle avoidancehave to be acquired very quickly in order to ensure safe operation ofthe robot.The conclusion is: for mobile robotics it is crucial that the learningalgorithm is fast (on the slow speed of reinforcement learning see also[Brooks 91a]).The fact that reinforcement learning can be extremely slow is shownby other researchers, too. [Prescott & Mayhew] simulate the AIVRUmobile robot and use a reinforcement learning algorithm similar to theone described by [Watkins 89]. The sensor input space of the simulatedagent is a continuous function (this is an unusual feature in reinforce-ment learning), simulating a sonar that gives distance and angle tothe nearest obstacle. It should be noted, however, that a sensor as de-4Alder and Cairngorm last for three to four hours, but because they are veryslow they can still only achieve a certain number of \steps".36

scribed in [Prescott & Mayhew] does not exist in reality| a sonar doesnot give readings like the ones used in this simulation! The simulatedworld is 5m x 5m in area, the simulated robot 30cm x 30cm. Withoutlearning, the agent runs into obstacles in 26.5% of all simulation steps,after 50,000 learning steps (!) this rate drops to 3.25%.[Kaelbling 90] compares several algorithms and their performancesin a simulated robot domain. The agent has to stay away from ob-stacles (negative reinforcement is applied if it hits an obstacle), itreceives positive reinforcement if it moves near a light source. Kael-bling reports that all reinforcement learning algorithms investigated(Q-learning, interval estimation plus Q-learning and adaptive heuris-tic critic plus interval estimation) su�ered from the fact that the agentoften acquired an appropriate strategy only very late in the run, be-cause it did not come near the light source in the early stages of thelearning process and thus did not receive positive reinforcement. Af-ter 10,000 runs, the di�erent algorithms obtained average reinforce-ment values of 0.16 (Q-learning), 0.18 (interval estimation plus Q-learning) and 0.37 (adaptive heuristic critic plus interval estimation).A handcoded \optimal" controller obtained 0.83. As in the case men-tioned earlier ([Prescott & Mayhew]), learning took a long time, andthe achieved performance was far below optimal performance.Slow learning rates, �nding the appropriate critic for the reinforce-ment learning architecture and determining how to alter controller out-puts in order to improve performance are the main problems whenimplementing it on robots ([Barto 90]). Another \problem that hasprevented these architectures from being applied to more complex con-trol tasks has been the inability of reinforcement learning algorithmsto deal with limited sensory input. That is, these learning algorithmsdepend on having complete access to the state of the task environ-ment" (([Whitehead & Ballard 90]). For robotics applications this is37

unrealistic and extremely limiting. Neither of these conditions are as-sumed for the work reported in this thesis. Perhaps not surprisingly, todate there are only very few implementations of reinforcement learningcontrollers on real robots. Two examples are described below.[Mahadevan & Connell 91] present a mobile robot (called Obelix)which uses reinforcement learning (Q-learning) to acquire a box-pushing skill. In order to overcome the credit assignment problem5, theoverall task of box-pushing is divided into three subtasks: box-�nding,box-pushing and unwedging. These three tasks are implemented as in-dependent behaviours within a subsumption architecture, box-�ndingbeing the lowest level and unwedging being the highest level. Obelixhas eight ultrasonic sensors and one infrared sensor, in addition to thatthe robot can monitor the motor supply current (which gives an indi-cation whether the robot is pushing against a �xed obstacle). Insteadof using the raw data, Mahadevan and Connell quantise it into an 18-bit-long vector which is then reduced to 9 bits by combining severalbits. This 9-bit input vector is used as an input to the Q-learningalgorithm. The possible motor actions of Obelix are restricted to �ve:forward, left turn, right turn, sharp left turn and sharp right turn.[Mahadevan & Connell 91] present very interesting results that con-�rm the �ndings mentioned earlier, as well as observations made inthe experiments reported in this thesis. After a training time of 2000learning steps, the �nd-box behaviour obtained an average value ofreward of 0.16, whereas a handcoded box-�nder obtained circa 0.25.This con�rms that Q-learning requires a large number of learning steps.This is only a con�rmation of �ndings mentioned earlier, but two otheraspects are very interesting in relation to the work presented here.5How does one correctly assign credit or blame to an action when its con-sequences unfold over time and interact with the consequences of other actions([Barto 90])? 38

Firstly, [Mahadevan & Connell 91] use a hierarchy of independent be-haviours, expressed as behavioural modules within the subsumptionarchitecture. A similar hierarchy is implicitly present in the so-calledinstinct-rules that govern the process of motor competence acquisitionof Alder and Cairngorm6. As soon as an instinct-rule7 is violated,it dominates the robot behaviour until it is satis�ed again. It is thenature of these instinct-rules that generates the hierarchy; the \moveforward!" instinct-rule for example has the lowest priority, because itis only active as long as no other instinct-rule is violated.Secondly, the input and output spaces of Obelix are kept small, as isthe case for the experiments discussed here (the motor action repertoireof the robots I used is restricted to four actions: forward, left, rightand backward move; in some experiments it is further restricted to leftturn and right turn). The input space to Obelix' learning algorithm isnot only kept small, it also contains quantised information (sonar read-ings are grouped according to their \range bin"). This preprocessingof sensor data is, I believe, essential for making reinforcement learningalgorithms in robots work. I have used quantisation as well, for exam-ple to use Alder's sonar sensor for obstacle avoidance (see page 105),or in constructing the input vector for the robots' mapbuilding process(see page 156). In general it is dependent on the actual domain howquantisation can successfully be used.[Maes & Brooks 90] present a six-legged robot |Genghis |which,again by reinforcement learning, learns to coordinate its leg movementsso that a walking behaviour is achieved. Unlike [Brooks 86], who de-termines the arbitration between behaviours by hand, in Genghis the`relevance' of a particular behaviour is determined through a statisti-6This process is described in chapter 4, beginning on page 77.7An example of a set of instinct-rules (the ones used to generate wall followingbehaviour) is shown on page 108. 39

cal learning process. The stronger the correlation between a particularbehaviour and positive feedback, the more relevant it is. The morerelevant a behaviour is in a particular context, the more likely it isto be invoked. In Genghis' case positive feedback signals are receivedfrom a trailing wheel that serves as a forward motion detector, neg-ative feedback is received from two switches mounted on the bottomof the robot (the switches detect when the robot is not lifted fromthe ground). As all reinforcement learning schemes, this scheme canonly work if the search space in which suitable actions are sought issmall. [Kaelbling 90] writes that in experiments with the mobile robotSpanky, whose task it was to move towards a light source, the robotonly learned to do this successfully if it was helped in the beginning,so that some positive feedback was received. Similarly, in Genghis',Alder's and Cairngorm's case the search space is small enough to givethe robot positive feedback at an early stage. Also, like in Obelix',Alder's and Cairngorm's case the input space of Genghis' learning al-gorithm is small.[Daskalakis 91] has replicated and extended the experiments in mo-tor competence acquisition discussed in this thesis in chapter 4, usingLego robots ([Donnett & Smithers 91]), which are faster than Alder,and have di�erent sensors, too (infrared and tactile sensors). His robotsucessfully learns to avoid obstacles and follow walls, even under chang-ing circumstances.All these experiments in reinforcement learning8, including the ex-periments described in this thesis, as well as some of the simulations([Kaelbling 90], for example, uses a 5-bit input vector for the light-�nding task) show the following two features:8[Shewchuk & Viola 90] have built a subsumption-based learning system in arobot which shows similar properties. 40

� Small input space, possibly achieved through quantising raw sen-sor data, and� small output (motor action) space, possibly achieved throughlimiting the number of motor actions (as in Obelix, Alder andCairngorm).2.4.2 ConnectionismConnectionist computing architectures (also called \arti�cial neuralnetworks") are mathematical algorithms that are able to learn map-pings between input and output states through supervised learning,or to cluster incoming information in an unsupervised manner. Theircharacteristic feature is that many independent processing units worksimultaneously, and that the overall behaviour of the network is notcaused by any one component of the architecture, but is emergentfrom the concurrent working of all units. Because of their ability tolearn mappings between an input and an output space, to generaliseincoming data, to interpret (cluster) input information without super-vision (i.e., without teaching signal), their resistance to noise and theirrobustness (the term graceful degradation describes the fact that theperformance of such networks is not solely dependent on the individualunit | losing one will merely mean a degradation, not a total loss ofperformance) connectionist computing architectures can be used wellin robotics. [Torras 91] gives an overview of (largely simulation) workthat has been done in the �eld: supervised learning schemes have beenapplied to the generation of sequences, both supervised and unsuper-vised learning schemes have been used to learn non-linear mappingssuch as inverse kinematics, inverse dynamics and sensorimotor inte-gration, and reinforcement learning has largely been used for tasksinvolving optimisation, such as path planning.41

Simple connectionist computing architectures achieve very fastlearning and therefore overcome the problem of slow learning foundin some reinforcement learning architectures. The Perceptron([Rosenblatt 62]) is an example. Unfortunately, those fast learners can-not learn arbitrary mappings between inputs and outputs, but onlyfunctions that are linearly separable ([Minsky & Papert 88]). SinceAlder and Cairngorm only have to learn linearly separable functions(see section 4.1.6), I could nevertheless successfully use this paradigmfor learning appropriate reactions of the robots to sensor input stimuli.Besides o�ering supervised learning of mappings between input andoutput space, some connectionist computing architectures can learn inan unsupervised manner (the self-organising feature map (SOFM) is anexample): the network structures the incoming data in such a way thata topological representation of the input space is achieved. This can beused to detect structure in the input space; Alder and Cairngorm usea self-organising feature map to represent the world they operate in.After an initial training phase the excitation patterns of the networkare used to recognise locations the robots have visited before.In the following paragraphs I will describe the mathematics of thetwo networks used for the experiments use on Alder and Cairngorm,the Pattern Associator (which is a kind of Perceptron) and the self-organising feature map.Perceptron and Pattern AssociatorThe Perceptron ([Rosenblatt 62]) is a two-layer arti�cial neural net-work that is easy to implement, low in computational cost and fast inlearning. It consists of two layers of computational units: the input andthe output layer (see �gure 2.2). The fact that it learns very quicklyis bought at the price that it can only learn functions that are linearlyseparable ([Minsky & Papert 88]), as said before. The functions Alder42

and Cairngorm had to learn in the particular experiments discussed inthis thesis are linearly separable (see page 84), it was therefore possibleto use the Perceptron (or rather, a Pattern Associator, a network verysimilar to the Perceptron) in these experiments.'
&

$
%����������������������������BBBBB BBBBB BBBBB����� ����� ���������������@@@@@ @@@@@""""""""bbbbbbbb bbbbbbbb Input

Output oj~wj~iFigure 2.2: Pattern Associator.The function of input and output units is as follows: input unitssimply pass the received input signals ~i on to all output nodes, theoutput oj of output unit j is determined byoj =Xk wjkik = ~wj �~{ (2:1)where ~wj is the individual weight vector of output unit j. If the desiredoutput, the target vector ~� , is known, updating the weight vectors isdone according to the following rule:� ~wj = �(�j � oj)~i (2:2)~wj(tk+1) = ~wj(tk) + � ~wj (2:3)43

� is the so-called gain or learning rate, a parameter that determineshow big the changes to the weights are, and therefore how quickly thenet learns. A big � (for example 0.8) will result in a network thatadjusts very quickly to changes, but which will also be \neurotic" (itwill forget all it has learned and learn something new as soon as acouple of freak signals occur). A small � (for example 0.1), on theother hand, will result in a \lethargic" network that takes a long timebefore it learns a function.How the target vector ~� was determined in the experiments de-scribed in this thesis is explained in chapter 4.In the Perceptron, the real-number output of each node is thresh-olded, so that the �nal output is binary. In the Pattern Associator, thisthresholding is not done, the output of each output unit in a PatternAssociator is therefore a real number.Self-Organising Feature MapsUnsupervised learning can be achieved, using self-organisingnetworks ([Willshaw & v.d.Malsburg 76],[Kohonen 82a],[Kohonen 88],[Ritter et al. 89]). These networks develop internal representations oftheir input space by mapping distinct input vectors onto distinct ar-eas of the network. Figure 2.3 shows an example of a two-dimensionalself-organising network.Self-organising feature maps have several properties that makethem interesting for robotics applications: �rstly, they require noexplicit teaching signal in order to structure the input signal space.Instead of associating particular input stimuli with particular out-put states (which have to be de�ned from outside, hence supervisedlearning) | as Perceptron, Pattern Associator (see previous section)and Backpropagation network9 (see appendices 7.3 and A) do | self-9The Backpropagation network allows the supervised learning of arbitrary func-44

'
&

$
%

Inputvector~{ { { { { { { {{ { { { { { {{ { { { { { {{ { { { { { {{ { { { { { {j

� ~{XXXz ~wjoj =~{ � ~wj'&$%ExampleNeighbour-hoodRegionFigure 2.3: A two-dimensional self-organising network.organising feature maps are able to represent statistical informationcontained in the input space and cluster incoming data in such away that topological relationships between input signals are preserved,without external teaching signal. In particular, the resulting map be-comes aligned along those directions in the input signal distributionwith the most signi�cant variance , and the point density of the weightvectors of the map approximates the probability density function ofthe input vectors ([Kohonen 82a],[Kohonen 88, p.154�]).As regards the �rst point, self-organising feature maps perform asimilar task as principal component analysis or Karhunen-Lo�eve trans-form does10. Principal component analysis �nds a set of orthogonalvectors in data space that give the direction of highest variance (�rstprincipal component), second highest variance in a direction orthogo-nal to the �rst principal component (second principal component), andso on. If the input signal distribution is Gaussian, this means max-tions, but it is a slow learner, compared with the Perceptron.10\The map . . .will then become aligned along those directions of the signaldistribution where the variance is most signi�cant. Moreover, the map attains aformat which conforms to the signal distribution" ([Kohonen 82a])45

p pp pp p p p p p p pp` ``̀` `̀ pp p pp pppp p p ``p p p p p pp p p pp p pp p` ``̀`p ppp p p ``p p pp p p pp p` ``̀`p ppp p p ``p p pp p pp p pp pppp p pp p` ``̀`p ppp p p ``p p pp p p pp p` ``̀`p ppp p p ``p p pp p p pp p` ``̀`p ppp p p ``p p pp pp pp p` ``̀`p ppp p p ``p p pp p p pp pp p p p p p p pp` ``̀` `̀ pp p pp pppp p p ``p p p p p pp p p pp p pp p` ``̀`p ppp p p ``p p pp p p pp p` ``̀`p ppp p p ``p p pp p pp p pp pppp p pp p` ``̀`p ppp p p ``p p pp p p pp p` ``̀`p ppp p p ``p p pp p p pp p` ``̀`p ppp p p ``p p pp pp pp p` ``̀`p ppp p p ``p p pp p ����������@@@@@@@@@@@@@
@@@@@IPPXXX ZZ CC PPaaallAAEECC O

A BJJ XXXaaa EE CC,,((hh�� PPFigure 2.4: Principal Component Analysis.imising the information content of the output signal ([Hertz et al. 91],[Linsker 88]). In �gure 2.4 this is shown, OA is the �rst principal com-ponent direction, OB that of the second principal component (after[Linsker 88]).The self-organising feature map after Kohonen structures the inputsignal space along the direction of the �rst principal component; thereare networks that can also extract higher principal components fromthe input data ([Hertz et al. 91, p.206]).Secondly, by mapping a high dimensional input space onto an out-put space which is ususally one or two-dimensional ([Hertz et al. 91,p.236]) self-organising feature maps perform a dimensionality reduc-tion. These properties are exploited in the experiments in locationrecognition with Alder and Cairngorm: self-organising feature mapsare used to cluster the input space (the robots' sensor signals or motoractions, depending on the experiment), retaining the statistical infor-46

mation contained in the input signals.Such topological mappings can be found in biology, too, for examplein the somatosensory cortex ([Churchland 86, pp. 127{130]) or in thevisual cortex ([Willshaw & v.d.Malsburg 76]). The fact that the occur-rence probability of an input stimulus is encoded in the self-organisingfeature map can also be found in biology: body areas with high sensordensity are mapped onto larger cortex areas ([Churchland 86, p. 129]).The functionality of self-organising feature maps after Kohonen([Kohonen 88, ch.5]) is as follows: The input vector ~{ is the same forall the cells. The output oj of cell j is determined by the scalar productof input vector ~{ and the weight vector ~wj of cell j, and is given by:oj = ~wj �~{; (2:4)where ~wj is the individual weight vector of cell j. The weight vectorsare unit vectors: jj ~wjjj = 1.Initially, the elements of the weight vectors are typically set torandomly selected, evenly distributed values ([Kohonen 82a]). Weightvectors are normalised, because the only information used in the self-organising algorithm is information about the spatial orientation ofinput and weight vectors, not their magnitude. Because weight vectorsare randomly initialised one cell of the network is bound to respondmost strongly to a particular input presented to the net. The weightvector of this maximally responding cell, as well as the weight vectorsof all the cells within a de�ned neighbourhood around this cell, arethen `turned' towards that particular input vector. This is done byapplying the following equation:~wj(t+ 1) = ~wj(t) + �(t)(~{� ~wj(t)); (2:5)where �(t) is the so-called `gain', a value that determines the amountof turning towards the input vector (0 < � < 1). � can be chosen47

to be constant over time or time dependent. In the latter case � ischosen large in the beginning, and small later on to produce biggerchanges when the network is newly intialised and small changes whenthe network is approaching a stable state. After updating, the weightvectors are renormalised. Weight vectors outside the speci�ed neigh-bourhood usually remain unchanged, in some schemes they are turnedaway from the input vector (using a suitable function for that purpose,for example a mexican-hat function). The neighbourhood size is oftenchosen to be decreasing over time, in order to achieve bigger changesin the beginning, and only little changes later.After several `epochs', i.e. presentations of input vectors to the net-work, typical dissimilar responses appear for dissimilar input vectors.How much `several' means cannot easily be answered in the caseof Kohonen's self-organising feature map; [Hertz et al. 91, p. 242�]and [Ritter 88, p.40�] discuss the convergence properties of the mapin detail. In the experiments discussed in this thesis, the robots coulduse the SOFM e�ectively for location recognition after three to fourcompleted circuits round their enclosure (see �gure 5.12), which meansthe presentation of twenty-four to thirty-two input vectors. At thatstage the map is not yet completely stable, but stable enough to beused for di�erentiating between di�erent locations.2.5 Coping with Abnormal SituationsTalking about a robot's ability to adjust to changing circumstances,two kinds of situation have to be di�erentiated: that of an undesiredsituation, and that of an unforeseen one. An undesired situation isone that had been identi�ed by the designer before it occurred: therobot is not in the state it ought to be in (not on the prescribed path,battery charge too low, or a similar situation), but the situation was48

somehow anticipated. An unforeseen situation, on the other hand, isunexpected and has not been identi�ed before.Here is an example of an unforeseen situation: Once Alder was�lmed by a television team to produce a �lm for School TV. I wasasked to let Alder move into a dead end after the robot had success-fully learned to avoid obstacles (i.e. the robot turned right when itsleft whisker was touched and left when the right whisker was touched).I had never done this before, nor | strangely enough, because it seemssuch an obvious idea | had it ever even occurred to me before. Asfar as the designer of the robot controller and the controller itself wereconcerned, it was an unforeseen situation. Alder went into the deadend, and got stuck. After several unsuccessful attempts to satisfy allinstinct-rules, the robot found the exit and left the dead end. Surpris-ingly, the robot's behaviour had changed: instead of turning to theopposite side of a signalling whisker, the robot turned in one and thesame direction (left, in that case) whenever a whisker was touched,regardless of which whisker it was. Thinking about it, this behaviouris better suited to escape dead ends than the obstacle avoidance be-haviour (see also section 4.3).Coping with undesired situations is easier than dealing with un-foreseen ones, because a \recipe book" can be supplied by the designerand used by the robot to recover and return to the desired state ofoperation. [Penders 89] gives an example of such an approach. Hede�nes two classes of errors, unmanageable and manageable11. Thislatter class contains the systematic errors of the robot, which are dueto inaccuracies. If such errors occur, a prede�ned recovery plan is in-voked: manageable errors \are those errors for which a recovery plancould be formulated (by us) in terms of the behaviour of the atomic11Presumably the unmanageable errors lead to a halt of the robot, Penders doesnot state this. 49

machines."[Spreng 91] addresses the problem of undesired contacts of a robotarm following a predescribed path. Again, a recipe book is used torecover from such a contact. In what Spreng calls situation analysis�rst a contact hypothesis is formulated (i.e. what sort of contact couldhave occurred?). In the next step, a suitable test motion is determinedin order to verify or refute the hypothesis, the test motion is thenexecuted and, in the fourth and last step, evaluated. The result of theevaluation determines the choice of an appropriate recovery action.Using recipes for error recovery improves robot performance withinknown boundaries, it allows robots to cope with foreseen errors dueto known inaccuracies of the robot. To move towards the stated goalof this thesis | exibility in unforeseen situations | this method isunsuitable, simply because the recipes are not known.Dealing with robot inaccuracy can be done either by applying pre-de�ned error-recovery recipes (see the two examples above), or by usingrobot behaviours that are less prone to error. The SOMASS system([Smithers & Malcolm 87, Malcolm & Smithers 88]) is an example ofthe latter. Without locating parts through computer vision, tactilesensing or other kinds of sensing, an Adept assembly robot is able topick up parts that have been put by a person in a particular location(this means that the parts are more or less where the robot expectsthem, but not in a precisely known place). How is it done? The robot�rst picks up a brush, brushes along the table in a de�ned manner,which will leave the part in a precisely de�ned location, whatever itsoriginal place (within reason) was. Then the robot picks it up. In theexperiments discussed here, I have also tried to use behaviours that arenot very prone to error. In mapbuilding, for example, the robots fol-low the wall of their enclosure, instead of moving arbitrarily. The wallfollowing behaviour is robust, because it basically consists of two sim-50

ple actions: turn to your right (to see whether the wall is still there),and turn back (to be parallel to the wall again). If the robot relied ontravelling across the enclosure at a particular angle, it would fail often,due to the inherent variation in robot and world.[Simon et al. 90] use self-tuning of motion-level robot programprimitives to cope with variation inherent in the world. In their ap-proach, bounded value parameters are adjusted to minimise a costfunction de�ned by the designer.On the engineering side, adaptive control is related to the prob-lem discussed in this section. Industrial controllers (usually PI or PIDcontrollers) are used widely for clearly speci�ed control tasks. Becausetuning these controllers is di�cult and time consuming, they are oftenbadly tuned. To overcome this problem, adaptive controllers whichcould adapt to the control problem were introduced in the early 1980s.In 1988 about 100,000 adaptive loops were running ([�Astr�om 89]).�Astr�om sees the following di�culties in installing adaptive controllers:\To work well, the algorithms require prior information aboutthe sampling period, dead time, model structure, and sig-nal ranges. Knowledge about time scales is particularlyimportant. . .Control theory has been very successful in givingexact answers to precisely stated problems. However, muchless work has been devoted to simple methods that give order-of-magnitude estimates. There has been a strong emphasis onlinear problems, whereas many practically important nonlinearissues have been neglected."This means that if the control problem is understood and if suf-�cient prior information is available, adaptive controllers can be wellused. However, because such information concerning unforeseen situa-tions is not available, adaptive controllers were not used on Alder andCairngorm. 51

2.6 SummaryAlder's and Cairngorm's tasks can be divided into four main areas:staying operational, navigating, learning and coping with abnormalsituations.Staying operational for a mobile robots means to avoid obstacles,to get unwedged if trapped and to avoid potentially hazardous areas.Two main approaches can be seen: the analytical approach analysesthe whole control task and implements it through a series of functionalunits; this is a top down approach. The synthetical approach, on theother hand, achieves the overall control task through parallel operationof independent modules (the global behaviour of the robot is emergentfrom the simultaneous operation of these modules); this is a bottomup approach. Examples of both both approaches and a detaileddiscussion have been given in section 2.2.Navigation comprises two main tasks: knowing the current posi-tion (location recognition), and knowing how to get to a goal position(map interpretation). In order to be able to navigate, a robot needssome sort of internal representation of its environment. Geometricalmaps contain information about distances and angles between loca-tions, and therefore also information about the neighbourhood rela-tionships between locations. Such geometrical maps are usually prede-�ned by the designer and then, in many cases, updated during runtimeof the robot, using sensor readings. Topological maps contain informa-tion only about neighbourhood relationships between locations, for thisreason they are less prone to noise and variation inherent in sensors,actuators and the world. Examples of both approaches, implementedin robots, are given in section 2.3.If the appropriate behaviour of a robot is initially unknown, or ifit is desired to enable the robot to adjust to changing circumstances,52

learning controllers can be used. To date, in particular reinforcementlearning (learning by trial and error through performance feedback) hasbeen used both on real robots and in computer based simulations. InAlder's and Cairngorm's case reinforcement learning is implementedusing a connectionist computing architecture. A discussion can befound in section 2.4.If robots are to be used in changing environments and if they areto stay operational even under the inuence of noise and variation,the ability to cope with abnormal situations is necessary. Abnormalsituations are both undesired situations | these have been identi�edbeforehand and are therefore not unexpected | and unforeseen situ-ations, which have not been identi�ed before. In order to cope withundesired situations, prede�ned strategies, self-tuning controllers oradaptive controllers can be used; however these methods fail if unfore-seen situations occur. Alder and Cairngorm use their learning capabil-ity to cope with the latter. A discussion can be found in section 2.5.

53

54

Chapter 3Reality or SimulationThe length of your legs makes a great di�erence to your life.David McFarland3.1 IntroductionIn section 1.1 I have given the example of two questions being asked,which, although being identical in contents, received completely di�er-ent answers (the example of the Asian disease). The actual wording,not the subject matter of the question determined the outcome of thesurvey.Similarly in robotics the research methodology chosen, and partic-ularly the tool used for investigation will inuence the �nal results andtheir validity. It is therefore a question of importance; I address it inthis chapter.In general, a research methodology comprises three aspects:1. a theory, for example the laws of physics, mechanics, thermody-namics and material sciences,2. a tool, for example that of computer based simulation, and55

3. an evaluation, for example that of comparision of simulation re-sults with experimental results.Whereas laws of physics, mechanics, electrical engineering, math-ematics and related sciences, as well as biology, ethology and neuro-science are widely accepted as (some) underlying theories in roboticsresearch1, practices di�er with regard to the tools used for investiga-tions.The majority of workers in the area of intelligent agents/intelligentmobile robots to date use computer based simulations as tools for theirinvestigations (many examples for this fact can be found, for instance,in [SAB 91]). This fact indicates that there are advantages to thisapproach, as compared to performing actual experiments. The mostimportant reason is, perhaps, that the equipment needed for computerbased simulation (the computer) is available in every AI laboratoryand in every department of Computer Science, whereas the equipmentneeded for experiments (most of all, a robot), is not. However, thereare other reasons which have to do with the fact that dealing with thereal world presents problems that can be bypassed using simulation.[Tyrrell & Mayhew 91, p.263f]:\One approach to examining behaviour has involved the build-ing of robots which can navigate in a selected environment andwhich are given a limited behavioural repertoire. Research ofthis kind not surprisingly requires a large amount of time tobe spent on perception and motor control. Behavioural strate-gies for a robot cannot be tested if the robot is not able toproperly sense its environment or if it is not able to put its cho-sen behaviour into e�ect. We decided that using a simulatedenvironment would allow us to bypass the sensory perceptionproblem (we just provide the animal with the relevant infor-mation about the environment), and also to bypass the motorcontrol problem (we just calculate the e�ects of the animal's1Complete theories however, as to what constitutes relevant parameters in robotbehaviour are as yet very brittle if not missing at all.56

behaviours on the simulated environment without concerningourselves as to how they are achieved). This would allow usto concentrate on behavioural issues."The three main claims given here are that1. simulation is quicker than experimentation;2. simulation allows to bypass the sensory perception problem(noisy sensors; sensor interpretation in general) and the motorcontrol problem (inaccurate actuators); and3. simulation is easier to construct because \the relevant informa-tion" can be provided directly and does not have to be deducedfrom noisy sensor data.[Kaelbling 90, p. 171] supports the �rst point: \The . . . problem[of conducting experiments with robots] is that it takes a long time toconduct the experiments. . . . So, instead of trials on the real robot, wemust substitute a simulation of the robot and its domain.".I do not believe that simulation is generally quicker than experi-mentation. Surely Tyrrell and Mayhew are not speaking about overlysimplistic simulations, but about accurate and faithful models of areal world environment, and models of robot sensors and actuatorsthat are faithful to their physical originals. If simulation is to sayanything about robot behaviour, this is the only possible way. If asimulation is of low �delity, it \ causes this to be a substantially di�er-ent problem than that of running on the actual robot."([Kaelbling 90,p.171]). To build such a simulation of high �delity, however, is nottrivial and requires at least as much time as building a small robot([Donnett & Smithers 91, Martin et al. 90, Nehmzow et al. 89]) andletting it interact with the real world.The other points raised by Tyrrell and Mayhew (\concentratingon behavioural issues by bypassing the sensory perception problem57

��
'
&

$
%Figure 3.1: A robot in a dead end.and bypassing the motor control problem"), however, make computerbased simulation seem an attractive tool for the investigation of robotbehaviour, and for this reason I will take a closer look at this tool inorder to �nd out whether it is suitable for the research outlined insection 1.1. In the next section I will therefore present an experimentin simulation.3.2 The Dead End ExampleThe task I addressed in both a simulation and an experiment wasthat of a mobile robot with two tactile sensors at the front and twomotors, encountering a dead end (see �gures 3.1 and 3.2). This isa simple enough task and it should be relatively straightforward toobtain similar results through simulation and experiment.First I simulated this particular situation, using a simulator which58

MOTORMOTOR&''
&

$
%

uuWhisker SensorsJJ]

�Figure 3.2: The morphology of the simulated and the real robot.had originally been written to imitate Alder's behaviour. Then I repli-cated the behaviour of the simulated agent on a robot, on Alder. Theidea, of course, was to con�rm that both simulation and experimentwould lead to similar results.3.2.1 The SimulationThe simulator was written by members of the \Forann Project" atBremen University's Department of Computer Science, with whosekind permission I used it. Following [Nehmzow et al. 89] and[Nehmzow et al. 90], they copied the basic behavioural patterns ofAlder to the simulation, which I call Driesh2. The simulated agent hasthree whisker sensors, mounted at its front, and is able to move forwardand rotate on the spot. Like Alder, it is also able to learn through trialand error and acquire competences such as obstacle avoidance and wallfollowing. Figure 3.3 shows a typical scene: Driesh has found a wall2Driesh is a mountain in the Scottish Highlands, like Ben Alder and Cairngorm.59

m
Roboter mit instinkbewertetem AssoziativspeicherIdee: Ulrich Nehmzow, Tim Smithers, John Hallam - Universitaet Edinburgh

Realisierung: Projekt FORANN - Informatik - Universitaet BremenStatus:
'
&

$
%��TT

Figure 3.3: Driesh: Alder | simulated.and is following it3.Here I am not concerned with the simulation of competence acqui-sition, that is the simulation of the actual learning algorithm; insteadI used the simulation to �nd out about similarities and di�erences be-tween Alder and Driesh. In order to understand the con�guration ofboth simulation and experiment, I briey have to explain how Alderand Driesh learn from experience. The whole learning process is ex-plained in detail in chapter 4.When Alder encounters a situation in which any of the robot'sinstinct-rules4 are violated, it tries to perform a motor action thatresults in the violated instinct-rule being satis�ed again. Initially, when3This �gure is redrawn from an original screen image.4Constant rules that are used to assess the robot's performance.60

no previous knowledge is available, the robot will perform the motoraction associated with the �rst output node of the arti�cial neuralnetwork that controls the motor actions. This is a left turn. If this leftturn does not yield the desired result (the instinct-rule being satis�edagain), the robot will try the next move, a right turn, for a little longer.If that does not satisfy the instinct-rule, the robot will try the nextchoice (in the simulation and in most experiments another left turn),and again a little longer than the previous right turn. Eventually therobot �nds a motor action that yields a satis�ed instinct-rule, and willassociate that motor action with the initial input stimulus.In order to compare the behaviour of a simulation with that of arobot, an interesting experiment would be to let the simulation and theactual robot perform left and right turns in order, as just described,but not to prolong the execution period each time, and make bothsimulation and robot negotiate a dead end (as shown in �gure 3.1).Figure 3.4 shows the parameter setting to simulate this. The param-eter value of \ucmult"5 is set to one, which will make Driesh prolongthe trial period of each action by factor 1 (i.e., keep the trial periodconstant), whenever a new action is initiated. By the way, this wayto extend the durations of motor actions (multiplication) is unlike themethod used on Alder (Alder and Cairngorm use an additive method),but for this example it does not make a di�erence, because there is tobe no extension of duration. Figure 3.4 also shows the de�nition of thesimulated environment, initial position, obstacles etc.In short, this simulation is con�gured to keep the simulatedwhiskers quiet, and if they do issue a signal, to try left and right turnsof equal and constant duration in sequence in order to move away fromthe obstacle.5\ucmult" determines by which factor trial periods of motor actions are ex-tended if the previously executed action was unsuccessful.61

Number of border pointsborderpoints 4# Number of obstaclesobstaclenum 2# Driesh's starting locationrobotstart 0.3, 0.02# Compass heading in degreesheading 90.0# Length of one step, must be smaller than sensorlenght/2movestep 0.0029# Turning angle in degreesturnstep 6.0# Length of a sensor. Must be greater than 2 x movestepsensorlength 0.030# Angle between middle sensor and outer sensors in degreessensorangle 35.0# Number of iterations before "touch-something" triggerstouchtime 4# Initialise intial trial period of a motor actionucinit 4# Factor to increment trial period if unsuccessfulucmult 1# If gdebug=1, path of Driesh is shown graphicallygdebug 1# If trace 0, no tracetrace 0# Simulated noise lies between 1 und 1 + [0,1[/ Fuzzyfuzzy 10.0# Definition of border pointsborderstart:0.0 , 0.01.0 , 0.01.0 , 1.00.0 , 1.0borderend:# Definition of obstaclesobstaclestart:# Number of obstaclesobstaclepoints 20.2 , 0.0510.5 , 0.051obstaclepointsend:obstacleend:# End of configurationendFigure 3.4: Simulation parameters used for dead end experiment.62

Figure 3.5 shows the outcome of the simulation6 . Driesh has movedforward into the dead end to the facing wall. There it oscillates betweenthe left and the right wall, forever. Even though the turning angles aresubject to arti�cial noise, this oscillation went on for over ten minutes,the simulation was then manually terminated.Roboter mit instinkbewertetem AssoziativspeicherIdee: Ulrich Nehmzow, Tim Smithers, John Hallam - Universitaet Edinburgh
Realisierung: Projekt FORANN - Informatik - Universitaet BremenStatus: Unzufrieden
'
&

$
%m((""̀̀((XXL:1 F:1 R:1Figure 3.5: Simulation of the dead end experiment.3.2.2 The ExperimentThe short program shown in �gure 3.6 intends to replicate Driesh'behaviour on Alder.As in the simulation, the robot is programmed to move forward ifno sensor signals are received, and to turn left and right for equal and6Again, this �gure is redrawn from an original screen image.63

REM THIS IS THE EQUIVALENT CONTROL PROGRAM TO THE SIMULATIONREM CONCERNING DEAD END ESCAPE1 TURNL=62 TURNR=93 AHEAD=105 HALT=06 NOSIGNAL=07 SWITCH=810 XBY(7000H)=HALT15 GOSUB 5000:PRINT SENSOR20 IF SENSOR<> SWITCH THEN GOTO 1530 GOSUB 500040 IF SENSOR=SWITCH THEN GOTO 1050 IF SENSOR=NOSIGNAL THEN XBY(7000H)=AHEAD:GOTO 30REM PERFORM LEFT TURN FOR A WHILE60 IF SENSOR<>NOSIGNAL THEN XBY(7000H)=TURNL70 WAIT=080 GOSUB 500090 IF SENSOR=NOSIGNAL THEN GOTO 50100 WAIT=WAIT+1110 IF WAIT<30 THEN GOTO 80REM PERFORM RIGHT TURN FOR A WHILE120 XBY(7000H)=TURNR130 WAIT=0140 GOSUB 5000150 IF SENSOR=NOSIGNAL THEN GOTO 50160 WAIT=WAIT+1170 IF WAIT<30 THEN GOTO 140180 GOTO 60REM READING THE SENSOR, IGNORING BOUNCING5000 SENSOR=XBY(6C00H)5010 FOR CC=1 TO 55020 IF XBY(6C00H)=0 THEN SENSOR=05030 NEXT CC5040 RETURN6000 ENDFigure 3.6: Alder's control program for the dead end experiment.64

constant durations of time as soon as any of the whiskers gives a signal.From the simulation conducted earlier one would expect the robot toremain in the dead end and oscillate, just as Driesh did.What actually happened is shown in �gure 3.7: very quickly therobot leaves the dead end!�� ���@@���@@
��1. Robot approachesDead End Robot oscillatesfor 22s on averageRobot leavesDead End

@@I R((���
�Robot facesleft hand wall

@@'
&

$
%Figure 3.7: Cartoon of dead end experiment.This behaviour is not a one-o� event, in ten out of ten experimentsthe robot left the dead end, the times this took in each case are shownin �gure 3.8.Trial No. 1 2 3 4 5 6 7 8 9 10Time to escape 28s 14s 43s 17s 9s 26s 56s 8s 9s 13sFigure 3.8: Time needed for Alder to escape from dead end65

Following page: photograph of the dead end experiment (explanationon page 67).
66

The traces of three of these ten experiments are visible in the pho-tograph after page 66, in the experiments marked 1 and 2 Alder leftthe dead end almost immediately, in experiment 3 it took a little longer(the thick semi circle is the result of many left and right turns).3.2.3 DiscussionAlthough the experiment tried to replicate the behaviour observed inthe simulation, it failed to do so. The control programs of robot andsimulation were as equivalent as I could make them, and indeed, whenencountering a single, convex obstacle both robot and simulation dobehave similarly. Yet in the dead end context parameters not repre-sented in the simulation, but implicitly present in the robot and theworld lead to radically di�erent results. In this case, the fact thatAlder does not turn symmetrically, largely due to di�erences in mo-tors and gearboxes, makes the di�erence: each time the robot turns alittle more left than it turns back right, so that eventually it faces theleft wall, and then leaves the dead end. In general real robots tend tobene�t from the fact that noise and stochastic processes are presentin the world, they often allow the robot to recover in situations wheresimulated agents are trapped because of more deterministically de�nedenvironments.This shows how di�cult it is to \just provide the relevant informa-tion about the environment . . . and to just calculate the e�ects of theagent's behaviour on the environment". To get this modelling right isthe crucial part of any simulation; if the relevant parameters of world,task and agent are not identi�ed, the simulation is of very little use.Overly simplistic simulations do not say much about robot behaviour.This is the fundamental problem of any simulation, that the core of itrelies on the designer's ability to identi�y relevant features in the origi-67

nal behaviour that is to be modelled. In cases like the turbine examplethis is possible, because the underlying laws are largely understood. Incases of intelligent mobile robots the intelligence of the robot is to agreat extent not in the robot, nor in the world, but arises through theinteraction between robot and environment. I have said earlier thatthe interaction of individual, simple components can produce e�ectsthat are not present in the mere collection of them (see �gure 1.1).This can be found in biology (e.g., mound building of ants) as wellas in arti�cial systems. Steels, for example, presents a simulation inwhich intelligent overall behaviour is achieved through the interactionof simple agents with a simple environment ([Steels 89]). Similar con-siderations apply to robotics, the factors governing this process arenot yet clearly understood (see also [Brooks 91a]). From this I drewthe conclusion that in order to conduct research in robot behaviour asoutlined in section 1.1, the appropriate means to do this would be toconduct experiments with robots7.However, there is a place for faithful simulation. Simulation is atop down approach to analysis of behaviour: the relevant parametersin agent, task and environment are analysed a priori, modelled andimplemented in the simulation (similar to the analytical approach torobot control, mentioned earlier). On the other hand, the experimentis a bottom up approach to the analysis of behaviour: the behaviouris produced �rst, in the desired environment, by the agent perform-ing the desired task. Then the relevant parameters are analysed, i.e.,a theory is formed. These two approaches can meet in the middle: apostulated theory, derived from experiments, can be evaluated througha simulation if su�cient data from experiments is available. In gen-7Talking about mobile robotics, Rodney Brooks came to the same conclusion:\Don't use simulation as your primary testbed. In the long run you will be wastingyour time and your sponsor's money" ([Brooks 87]).68

eral, computer based simulation is a useful tool if su�cient theory andexperimental data are available (see also �gure 3.9).Foreseen Situations Unforeseen SituationGood Data and Theory Experiment or Simulation ExperimentLittle Data and Theory Experiment ExperimentFigure 3.9: Suitable tools for the investigation of behaviour.Both the top down and the bottom up approaches have weak points.If the modelling of agent, task and environment is inaccurate, if thewrong components were identi�ed as being important, then the sim-ulation is of little value as a tool for the investigation of behaviour.Experimentation, on the other hand, does not su�er from the problemof over-simpli�cation, because by the nature of it all features of bothrobot and particular environment are there. As [Brooks 91b] puts it:\It is no longer possible to argue in conference papers that thesimulated perceptual system is realistic, or that problems ofuncertainty in action will not be signi�cant. Instead, physicalexperiments can be done simply and repeatedly. There is noroom for cheating (in the sense of self-delusion, not in thesense of wrong doing with intent)."However, like simulation, the experiment su�ers from the problemthat the experimenter's own interpretation comes in at some stage,and that it might be wrong. His analysis of an experiment could bewrong, which would mean that the robot would still be doing whatit was doing, but the observer would believe this to be happening forthe wrong reasons. I believe that because the investigation of robotbehaviour is the primary aim, experimentation is at the moment thebetter choice, as it inevitably results in robot behaviour in the realworld.The methodology I chose, therefore, is this:69

� Theory: robot behaviour is determined both by identi�able pa-rameters such as the laws of physics, mechanics, electrical engi-neering etc., and by parameters yet unidenti�ed, arising from theinteraction of agent and environment.� Tool: experimental investigation, using robots.� Evaluation: statistical analysis through repeated experiments.In the next section I describe the two robots I used, Alder andCairngorm, in more detail. The subsequent chapters then describe theexperiments conducted.3.3 HardwareAlder was the �rst of the Really Useful Robots, it is shown after page 74and after page 18 (left). Alder consists of a chassis built from Fischer-technik (a technical construction kit), an ARC 52 controller whichuses an INTEL 8052 eight-bit microprocessor and has an on-boardBASIC interpreter (this controller card is clearly visible on pages 74and 18(left)), an interface card (partly obscured in the photograph afterpage 74) giving independent control for two motors (forward, reverse,and stop for each motor, but with no feedback of distance travelledor angle turned), and up to eight binary sensor inputs. A schematicdiagram of Alder is shown in �gure 3.12. For most of the experimentsI have used two whisker sensors which act as omnidirectional tactilesensors (see �gure 3.10) and push button switches for manual controlof the robot base (the whiskers are mounted at the front of the robotand are clearly visible in the photograph after page 74, the pushbuttonswitches are mounted on the top of the robot).A revolution counter was used for distance measurement in experi-ments on navigation (the cam is visible at the back of the robot, it can70

��������!!!��%%��� @@@RMetal RingQQsMetal Whisker rr bb to Interface'
&

$
%Figure 3.10: Schematic diagram of the whisker sensors used on Alderand Cairngorm.be used to press a pushbutton switch), and the forward movement sen-sor was used in experiments on skill acquisition (see �gure 4.14). Thisforward movement sensor (see �gure 3.11) is a pushbutton operated bythe caster wheel of the robot, it is not shown on the photographs.For some experiments with Alder a Polaroid ultrasonic range �nderwas used, the active range of this sensor is from about 20cm to 3m.The sonar sensor is not shown on the photograph.Cairngorm (see photographs after pages 76 and 18 (right)), thethird8 of the \Really Useful Robots" also uses a chassis built fromFischertechnik, but has a more powerful controller (Flight 68k) basedon a Motorola 68000 CPU and having 128 Kbytes of memory (thecontroller card is clearly shown in both photographs). Its motor controland sensor inputs are similar to that of Alder, but it is programmed inC, rather than BASIC. Otherwise it is essentially the same as Alder.A schematic diagram of Cairngorm is shown in �gure 3.13. Up to sixbinary sensors can be connected to Cairngorm's interface, normally8The second robot in the series is Ben Hope, which was used for a di�erent setof experiments. 71

t XX��Wheel���Pushbutton Switch RPivot -�����@@�����@@ s EE��XXPushbutton Switch R Moving forwardNot moving forward@@ @@}}'
&

$
%Figure 3.11: The forward motion detector of Alder.these are tactile sensors and pushbutton switches. I have not built arevolution counter or a forward motion sensor for Cairngorm, but ifdesired this is possible just as in Alder's case. Cairngorm does nothave an ultrasonic range �nder.Both robots run completely autonomously, they solely use theiron-board computers for control. At the beginning of an experiment,programs are downloaded via a serial link from a workstation, arestarted and then executed on the ARC 52 or Flight 68k controllerboard respectively. It is possible to monitor any messages sent by therobots on the workstation if the link remains connected; this is usuallyonly done during the test phase. For the actual experiments reported inthis thesis the robots operated completely autonomously, with neithercommunication nor power link to a base station.That sensor type and travelling speed are tightly coupled is a prin-ciple that can be found in biology as well as technology. The range ofAlder's and Cairngorm's sensors is short, consequently they travel ata low speed. Alder's maximum speed is about 3 cms�1, Cairngorm'smaximum speed is about 2 cms�1.72

3.4 SummaryIn the experiment presented in this chapter I tried to replicate the be-haviour of a simulated agent encountering a dead end on a robot. How-ever, this failed because the overall behaviour of a robot is governednot only by factors which are immediately obvious, such as sensor sig-nals, motor actions, dynamical properties etc., but also by seeminglyunimportant aspects such as slip, backlash, wear etc., as well as byfactors arising from the interaction of robot and world (pushing hardagainst an obstacle, for example, will either displace the obstacle orthe robot, which changes the relative positions of obstacle and robot).Whilst Driesh (the simulated agent) remained stuck in the dead end,Alder (the robot) escaped.In general, computer based simulation can be a useful tool, pro-vided su�cient theory and experimental data is available. As the re-search topic of this thesis is the investigation of robot behaviour underunforeseen circumstances | an area where little experimental data isavailable | I decided to conduct experiments, using robots.For this purpose I have built two mobile robots, Alder and Cairn-gorm, which are controlled solely by on-board computers and which canoperate completely autonomously. These robots are shown on page 18.
73

Following page: photograph of Alder.

74

'
&

$
%

Power SupplyARC 52 Controller -�? ?Ultrasonic Interface? 6 MotorMotor--6 6 6666666Binary SensorsU/S Sensor Stepper Motor6 ? Interface
Figure 3.12: Schematic diagram of Alder.'

&
$
%

Power Supply68000 Controller Interface-�? ? MotorMotor--6 6 66 666Binary SensorsFigure 3.13: Schematic diagram of Cairngorm.75

Following page: photograph of Cairngorm.

76

Chapter 4Skill Acquisition usingArti�cial Neural Networks4.1 IntroductionHaving looked at the current state of research in intelligent mobilerobotics and having discussed the reasons for doing robotics rather thansimulation I will now, in the following chapters, describe the experi-ments conducted with Alder and Cairngorm. This chapter describesthe experiments I conducted in motor-sensory competence acquisition,in which the robots autonomously determine the e�ective wiring be-tween their sensors and their actuators in order to achieve obstacleavoidance, wall following, corridor following etc. Chapter 5 describesexperiments concerning navigation, and chapter 6 links and combinesthe experiments described in this chapter and chapter 5.4.1.1 The Controller ArchitectureAs mentioned in section 1.1, the goal of the experiments described inthis thesis was to achieve exibility in unforeseen situations in mo-bile robot control. This, I believe, requires the robot's ability to learn77

from experience. I therefore chose to build a controller with a learn-ing capability, so that the robot could determine for itself an e�ectivewiring between sensors and actuators. In Alder's and Cairngorm'scontrollers these associations between sensors (input stimuli) and ac-tuators (responses) are stored in a Pattern Associator, as described insection 2.4.2.Figure 4.1 shows the general structure of the controller used in allexperiments discussed in this chapter. The controller consists of �xedand plastic components, �xed components being the instinct-rules, therobot morphology and various parameters within the controller; theplastic component is the Pattern Associator.'
&

$
%

6 - -6MonitorInput Vector MotorActions Action SignalSelect!Associative Memory Move SelectorInput Vector Generator Teacher- 6Teaching Signals ?Instinct RulesSensors6 - 6
Figure 4.1: Computational Structure of the self-organising Controller.4.1.2 Instinct-RulesAs the Pattern Associator is trained by `supervised learning', a meansof evaluating the robot's behaviour and determining teaching signals78

for the Pattern Associator had to be found. I use �xed rules for thispurpose which I call instinct-rules. They are similar, but not identicalto instincts as de�ned by [Webster 81]: an instinct is a \complex andspeci�c response on the part of an organism to environmental stimuli thatis largely hereditary and unalterable though the pattern through which it isexpressed may be modi�ed by learning, that does not involve reason, andthat has as its goal the removal of a somatic tension or excitation". Thisdescribes behaviour and is therefore di�erent to the instinct-rules usedin the experiments decribed here, as instinct-rules are not behaviour,but constants that guide the learning of behaviour. The goal of instinctand instinct-rules, however, is the same: the removal of a somatictension (in the case of the robot such a `somatic tension' is an externalsensor stimulus, or, in some experiments, the lack of it).Each instinct-rule has a dedicated sensor in order that it can beestablished whether it is violated or not. This sensor can be a physi-cal, external sensor (for example a whisker), or an internal sensor (forexample a clock that is reset every time some external sensor stimulusis received). Even memory can serve as a trigger for an instinct-rule(Touch alternate walls!).4.1.3 Input and OutputCurrent and previous sensor signals constitute the input signals to thePattern Associator1.The output of the network denotes motor actions of the robot. Thenetworks used in the self-organising controller presented here have fouroutput nodes, in most cases denoting just left and right turn (twice),however if required four di�erent motor actions (including forward and1Information about violated instinct-rules could similarly be used; but this hasnot been done in the experiments described in this thesis.79

backward movement as well) can be assigned to the four output units2.The reason for the restriction to two possible motor actions is thatfor tasks such as obstacle avoidance and wall following, left and rightturn are the only motor actions needed. Too many output nodes (i.e.,possible motor actions) can cause the robot to learn functions that,although satisfying the instinct-rules, result in undesired behaviour. Inearly experiments it has happened that the robot acquired an obstacleavoidance behaviour in which it oscillated in front of a wall, movingforward and backward (this also satis�es the instinct-rules shown in�gure 4.11). One way to prevent this was to assign left and right turnsto the �rst two output nodes of the network (in an untrained networkthese are tried �rst, because initially all weights of the network arezero), but it turned out to be more e�ective to restrict the robot'srepertoire of motor actions to left and right turns in the �rst place.The idea behind this controller setup is that e�ective associationsbetween sensor signals and motor actions arise over time through therobot's interaction with the environment.4.1.4 MechanismAs said earlier, the Pattern Associator requires a teaching signal to de-velop meaningful associations between its input and its output. Thisteaching signal is provided by the monitor, a \teacher" that uses theinstinct rules to assess the robot's performance and teach the networkaccordingly: as soon as any of the instinct-rules become violated, aninput signal is generated by the input vector generator, sent to theassociative memory and the output of the network is computed. Themove selector determines which output node carries the highest out-2That I used four output nodes for two motor actions has historic reasons: the�rst controller built used all four motor actions.80

put value and which motor action this output node stands for. Thatmotor action is then performed for a �xed period of time. For Alderand Cairngorm a typical value is about four seconds. If the violatedinstinct-rule becomes satis�ed within this period of time, the associa-tion between original input signal and output signal within the PatternAssociator is taken to be correct and is con�rmed to the network (thisis done by the monitor). If, on the other hand, the instinct-rule remainsviolated, a signal is given from the monitor to the move selector to ac-tivate the motor action that is associated with the second strongestoutput node. This action is then performed for a slightly longer periodof time than the �rst one (in Alder's and Cairngorm's case the increaseis typically two seconds) to compensate the action taken earlier; if thismotor action leads to satisfaction of the violated instinct-rule the net-work will be taught to associate the initial sensor state with this typeof motor action; if not the move selector will activate the next strongestoutput node. This process continues until a successful move is found.The fact that motor actions are tried in turn and with increasingduration is important for making this skill acquisition scheme work.If, to give an example, the robot had two possible motor actionsavailable (left and right turn) and was trying to touch a wall, dueto a built-in boredom instinct-rule being triggered, it would initiallyturn left and perform this action for four seconds. Supposing the wallwas on the left of the robot, but the robot did not touch it withinthe �rst four seconds, the right turn would be initiated and executedfor six seconds. This would leave the robot pointing a further \two-seconds-worth" away from the wall. After these six seconds, the robotwould again move to the left, this time for eight seconds, and touch thewall. This will lead to the association of a left turn with the boredominstinct-rule, which happens to be the correct association. So, althoughthe very �rst left movement of the robot was unsuccessful, the robot81

������������������������JJJJJJZZZZZZZZJJJJJJ

��������6 6 6 6
6 6

Left Right Forward Backward
Sensor Input

'
&

$
%Figure 4.2: Association between sensor stimuli and motor actions.nevertheless was able to discover the correct motor action.Figure 4.2 shows the general structure of the Pattern Associatorused. The actual input to the network may vary from experiment toexperiment (the input vectors are described at the relevant places inthis thesis), the output nodes denote motor actions (the �gure showsthe more general case with four possible motor actions; usually a net-work with just two motor actions | left and right turn | is used).The result of this process is that e�ective associations between in-put stimuli and output signals (motor actions) arise. Obviously, this isonly possible with the right sort of �xed parameters, in particular theinstinct-rules play an important role. The instinct-rules and sensors Iused are described in more detail in the following sections, where I willdiscuss a number of experiments on motor competence acquisition.82

4.1.5 ProblemsThe Perceptron, which I have used to store the associations betweeninput stimuli (sensor signals) and motor actions of the robot has thedisadvantage that it can only learn functions that are linearly separa-ble. These are functions for which the input space can be separatedinto two clusters by a linear function3: into those input vectors thatproduce a \1", and into those that produce a \0" in the output unit.The logical and function is an example for such a learnable function.Here is an example of a function the robot could not learn using aPerceptron: suppose we wanted Alder to escape from a dead end byturning left whenever any of two front whiskers is on, and by reversingwhenever both whiskers are on simultaneously. For the `turn-left out-put node' of the Perceptron this means that it has to be on if either ofthe two whiskers �res, and to be o� in the other two cases. This is theexclusive or function, a function that cannot be separated linearly andis therefore unlearnable by a Perceptron output node. Fortunately, thefunctions Alder and Cairngorm have to learn are linearly separable, asI will demonstrate shortly. This example, however, shows a propertyof Perceptrons that will often enable the robot to remain operationaleven if the correct function cannot be separated linearly: the outputnode learns a function that is similar to the correct function, and oftenit is close enough to the correct function to keep the robot in operation.In this case, the `turn-left node' could learn to be on whenever at leastone whisker is on (or function), this would make the robot leave thedead end as well.3A hyperplane in the most general case.83

-6Right Whisker Left Whiskeronon-6Right Whisker Left Whiskeronon �� �=�� �� �=��Left Turn Right Turn
�=\true" �=\false"'

&
$
%o�o�Figure 4.3: Learning to avoid obstacles is a linearly separable function.4.1.6 Linear SeparabilityI will now take a closer look at the input vectors and the functions to belearned by the robot in the various experiments, to determine whetherthey can be separated linearly and therefore learned by a Perceptron.Obstacle AvoidanceThe simplest experiment is the one in obstacle avoidance. Using a two-bit input vector containing the status of the left and the right whisker(this vector is shown in �gure 4.12) the robot has to turn away froma whisker that is on. That this function can be separated by a lineis shown in �gure 4.3 (this diagram refers to a robot with two tactilesensors, like the one shown in �gure 4.8).If the forward movement of the robot has to be learned as well,using the forward motion sensor, an additional two bits are put intothe input vector: `moving forward' and `not moving forward' (thisinput vector is shown in �gure 4.16). To accomplish this task, the`forward node' of the Perceptron is on if the `moving forward' bit is84

set, the `reverse node' of the net is on if the `not moving forward' bitis set. Again, this is a linearly separable function. Because of theway the controller is set up (the �rst instinct violated dominates therobot actions) one can ignore the signals from the whiskers when therobot is not moving forward. When the robot is moving forward, theadditional `moving forward' bit does not a�ect the linear separabilityof the obstacle avoidance function discussed earlier (just imagine a zeroweight on all lines from that bit).Wall FollowingAlder and Cairngorm use a �ve-bit input vector to learn to follow walls.It contains the current two whisker readings, the previous two readingsand a �fth bit that is only on if the other four bits are o�4. This inputvector is shown in �gure 4.20. It is easy to show that the robots can�nd a satisfactory wall following behaviour by taking into account onlythe current two sensor readings and the �fth bit (bits three and four| the previous two whisker readings | can be used to escape fromdead ends quicker, but for pure wall following they are not needed). Atruth table for this simpli�ed function is shown in �gure 4.4. In thistruth table it is assumed that the wall is on the left hand side of therobot. B1, B2 and B5 stand for the respective bits of the input vectorshown in �gure 4.20.It is obvious from this truth table that the functions the turn-leftnode and the turn-right node have to learn are linearly separable: theturn-left node performs a B1 function, the turn-right node a B1 func-tion. If the wall is on the right hand side of the robot, the respectiveopposite functions are performed.4Instead of this �fth bit, a bias unit which is constantly on could also be used.85

B1 B2 B5 Turn left Turn right0 0 1 on o� Boredom0 1 0 on o� Obstacle1 0 0 o� on Obstacle1 1 0 o� on ObstacleFigure 4.4: Truth table for the wall following function.Corridor FollowingFor corridor following, Alder and Cairngorm use the same �ve-bit inputvector they use to learn wall following (�gure 4.20). Again, it canbe shown that it is possible to �nd a linearly separable function thatresults in a corridor following behaviour. To make the discussion easier,I will make the following assumptions: the robot has been running fora little while, which means that the input vector 00001 (no contact evermade so far) does not have to be considered. I also assume that therobot is not in a dead end, but between two walls, i.e. in a corridor.That means that the input vectors 11xx0 and xx110 (both whiskerson at time t or at time t-1) do not have to be considered. Figure 4.5shows the Karnaugh diagram for the function to be performed by the`turn-left node' of the Perceptron. B1 to B4 denote the �rst four bitsof the input vector shown in �gure 4.20.This function is linearly separable, in �gure 4.6 one can see thatthere exists a plane that separates the three input vectors that switchthe turn-left behaviour on from the remaining �ve that switch it o�.Fast LearningThe advantage of the pattern associator that makes it superior to thebackpropagation network (see appendix A) and reinforcement learning86

@@@B1 B2B3 B400 01 11 1000011110 111 100 0 0'&$%�� � Turn left= B1(B3 + B2)'
&

$
%

Boredomunmarked squares = don't careObstacleObstacleObstacleFigure 4.5: Karnaugh diagram for the function performed by the `turn-left node' in corridor following.is its extremely fast learning. A very small number of teaching experi-ences su�ces to produce the correct associations between stimulus andresponse. A backpropagation network may typically require severalhundred teaching experiences before a function is learned. Re-learning(for example when adjusting to new circumstances) then again takestypically several hundred training steps whereas the pattern associa-tor re-learns as quickly as it learned in the �rst place. This propertyis important in robotics | certain competences, such as for exam-ple obstacle avoidance, have to be learned very quickly, because therobot's ability to stay operational crucially depends on them. In ad-dition to this, [Brooks 91b] identi�es as a further problem that thelearning rate of the backpropagation network has to be set by handin most cases. Consequently, most examples of robot controllers hav-ing a learning capability use techniques other than backpropagationnetworks ([Brooks 91b]). I cannot con�rm the latter �nding regarding87

6�����	 B1
B2

B3 ������ ���uu!!!!�����CCCCCCCC""""" -
'
&

$
%

s= turn leftu
Figure 4.6: This 3D drawing shows that the function given in �gure 4.5,which achieves corridor following, is linearly separable.the manually set learning rate, as I have not used backpropagation net-works here, but reducing the amount of magic numbers5 is importantfor building adaptable and exible robots, this problem has come upin the experiments in mapbuilding reported in chaper 5 of this thesis.That the Perceptron is a fast learner is proven in the followingsection.4.1.7 Convergence in the PerceptronThe following derivation of the convergence speed of the Perceptronis largely based upon [Beale & Jackson 90, pp.54�], but has been aug-5A magic number is a parameter that inuences the success or failure of analgorithm and that is set by the experimenter, using his ingenuity to determine itsvalue. 88

mented by the example shown in �gure 4.7. Errors in Beale and Jack-son's equivalent to the equations before and after 4.4 as well as equa-tion 4.4 itself have been corrected.Assuming that the input patterns to the Perceptron unit come fromtwo classes, F+ (generating a positive response) and F- (generating anegative response). F is the union of these two classes, i.e. the wholeinput space. The input is a vector called ~x, this vector is assumed to beof length one to make the proof easier (this does not a�ect the generalvalidity of the proof). The weight vector of the unit is ~w. Adoptingthe convention that ~x is replaced by �~x if ~x belongs to F-, then thePerceptron learning algorithm can be written as follows:� Start: choose any ~w.� Test: choose any ~x from F.{ If ~w � ~x > 0 goto Test (this is the case where thePerceptron has classi�ed correctly){ otherwise goto Update (this is the case where thePerceptron has classi�ed wrongly).� Update: ~wt+1 = ~wt + ~x: (4:1)Goto Test.The question looked at here is this: how often will the Perceptronlearning algorithm go through the Update step until the error of theoutput unit lies below a particular threshold?Consider �gure 4.7, which shows a simple two-dimensional case.All vectors ~x above the x-axis belong to class F+, all those belowto class F-. The ideal weight vector of the Perceptron that would splitthese two classes is the one orthogonal to the dividing line between the89

1 16~w������������PPPPPPPPPPP � = 0:2 � = 0:2@@@@@@@R~x���������~wClass F+
Class F- Figure 4.7:classes (the x-axis in this case). I call this vector ~w�(again, to makethe proof easier this is assumed to be a unit vector).The input vectors ~x most di�cult to learn are the ones very closeto the x-axis, i.e. furthest away from the ideal weight vector ~w�. Forthese input vectors the scalar product ~w� � ~x would be zero. We cande�ne a small positive threshold � which determines how close to theclass dividing line (the x-axis) input vectors ~x may lie in order to beclassi�ed correctly: ~w� � ~x > �: (4:2)The cosine between the actual weight vector ~w and the ideal weightvector ~w� is cos� = ~w � ~w�j~wjj~w�j :Because ~w� is a unit vector, and because the cosine is never greaterthan one, this can be rewritten to90

cos� = ~w � ~w�j~wj � 1: (4:3)Every time the Perceptron learning rule runs through the Updateroutine, the angle between ~w and ~w� changes, and so does the cosineof that angle. Because of equation 4.1, for one cyle through Updatethe numerator changes such:~w� � ~wt+1 = ~w� � (~wt + ~x)= ~w� � ~wt + ~w� � ~xwhich yields the inequality~w� � ~wt+1 > ~w� � ~wt + �because ~w� � ~x > � (see equation 4.2).For n cycles through Update this becomes~w� � ~wn > n�: (4:4)For one cycle through Update the denominator in equation 4.3behaves as follows:j~wt+1j2 = j(~wt + ~x)(~wt + ~x)j = j~wtj2 + 2~wt � ~x+ j~xj2:As j~xj2 = 1 (~x is a unit vector) and because ~wt �~x must be negative(otherwise the Update routine would not have been called), this canbe rewritten as j~wt+1j2 < j~wtj2 + 1;for n cycles through Update the following inequality holds:j~wnj2 < n: (4:5)91

Using equations 4.4 and 4.5, equation 4.3 can be rewritten ascos�n = ~wn � ~w�j~wnjcos�n > n�pnBecause of cos� � 1 (equation 4.3) this can be rewritten asn � 1�2 : (4:6)This shows that the Perceptron will �nd the weight vector ~w� thatseparates the two classes in a �nite number n of cycles through Update,for � = 0:2 (shown in �gure 4.7) at most 25 learning steps are required.4.2 Outline of Competence AcquisitionExperimentsThe following sections of this chapter describe the various experimentsconducted with Alder and Cairngorm, concerning the autonomous ac-quisition of motor competences.All experiments described in section 4.3 concern the obstacle avoid-ance competence. Section 4.3.1 presents the experiment in which Alderand Cairngorm learn to avoid obstacles, using their whisker sensors. Inthe following experiment (section 4.3.3) Alder learns not only to use itswhiskers to avoid obstacles, but also its forward motion sensor in orderto learn which motor command will result in a forward movement. Thismeans that the wiring of the motor power supply may be arbitrary, be-cause the robot determines the correct motor command autonomously.The acquisition of an obstacle avoidance skill is again demonstrated insection 4.3.5, this time using the ultrasonic range �nder of Alder.Section 4.4 discusses an extension to the previous experiments. Byadding another instinct-rule and enlarging the input vector to the net-92

work, the robots acquire a wall following skill; this is further extendedin section 4.5 by adding yet another instinct-rule, which leads to acorridor following competence of both robots.Finally, section 4.7 describes an experiment where Alder learns dif-ferent mappings between sensors and actuators, depending on the con-text the robot is in (context sensitive learning).4.3 Obstacle AvoidanceOne of the most important tasks to achieve on a mobile robot is ob-stacle avoidance. When implemented on a robot, it becomes clear thateven this seemingly simple task is not an easy one. Sensors give in-consistent readings, actuators depend on changeable factors such assupply current and voltage, wear, temperature, humidity and oth-ers. `Avoiding Obstacles' is by no means a bygone research topic |it is still a widely discussed topic, see for example [Freund et al. 91]and [IEEE 91]).Assume a robot had two whiskers mounted at the front of the vehi-cle and two independent motors that allowed the robot to move forwardand backward as well as turn left or right. Such a robot is shown in�gure 4.8.If the task of this vehicle was to turn away from a touched whisker,that is to turn left if the right whisker is touched and vice versa, onecould simply let the whiskers reverse the motors as shown in �gure 4.9.This would result in a vehicle avoiding obstacles. It could copewith new obstacles (it would, for example, move backwards if bothwhiskers were touched simultaneously, although the wiring may havebeen designed without this situation in mind), however it would not beable to cope with certain other changes. If, for example, its whiskerswere swapped, the vehicle shown in �gure 4.9 would move towards an93

MOTORMOTOR&''
&

$
%

uuWhisker SensorsJJ]

�Figure 4.8: A simple vehicle.obstacle instead of away from it!As described earlier in this chapter, on the Really Useful Robots,I have replaced the coupling between sensor signals and motor actionsby an arti�cial neural network. It is therefore possible for the robotto determine the wiring between sensors and actuators for itself. Asa result of this Alder and Cairngorm are able to cope with unforeseensituations, such as swapped whiskers. This example may seem farfetched and unlikely to occur in reality, but the wiring of sensors canbe error prone if a large number of sensors is to be connected. If therobot can determine the best wiring autonomously, malfunctions dueto wrong sensor connections can be avoided. [Maes & Brooks 90]:\For more complicated robots prewiring solutions become ei-ther too di�cult or impractical. . . .Additionally, it is oftentoo di�cult for the programmer to fully grasp the peculiaritiesof the task and the environment, so as to be able to specifywhat will make the robot successfully achieve the task."This is one of the experiments conducted: after having swappedthe whiskers the robots are confused for a short time (typically they94

MOTORMOTOR&' LLLLLL������ {{
'
&

$
%

uuFigure 4.9: A simple obstacle avoiding vehicle.make about two wrong decisions before they are able to avoid obstaclesagain), but then they re-train the network and acquire the obstacleavoidance competence again6.I performed two experiments on obstacle avoidance | in the �rstone Alder and Cairngorm learn to avoid obstacles, using only theirwhisker sensors, in the second one Alder uses its whiskers, as before,but also its forward motion sensor and therefore learns both to moveforward and to avoid obstacles.4.3.1 Obstacle Avoidance without using the For-ward Motion SensorIn the �rst experiment, which was conducted both with Alder and withCairngorm, the robots were not able to detect forward motion. The6[Waterman 1989, p. 135] reports that North American desert ants Novomersorare able to follow a pheromone trail, albeit crookedly, if their antennae (theirchemoreceptors) are swapped. 95

�rst instinct-rule, mentioned below, therefore could not be monitored7.The robots merely \assumed" that they were indeed moving forwardwhen a `move forward!' command was given. This meant that thewiring of the motors had to be correct (i.e., such that the robot reallywould move forward if a `move forward' command was given).The structure of the controller used for this experiment is shownin �gure 4.10, the instinct-rules contained in the monitor are shown in�gure 4.11.'
&

$
%?6 - -6MonitorInput Vector MotorActions Action SignalSelect!Associative Memory dddd dMove SelectorTeacher- 6Teaching SignalsWhiskersquiet! 6 6��Left Whisker Right WhiskerInput Vector Generator PPPPee ee!!!!!! HHHHHH ---- ee--hhhhhh������((((((XXXXXX

Figure 4.10: Controller used for obstacle avoidance I.|||||||||||||1. (Move forward!)2. Keep whiskers `quiet' !|||||||||||||Figure 4.11: Instinct-rules used for obstacle avoidance I.7I have indicated this by writing this instinct-rule in brackets.96

The network had only two input nodes, the input vector presentedto the network is shown in �gure 4.12.'& $%0=Left Whisker o�1=Left Whisker on 0=Right Whisker o�1=Right Whisker onBit 1 Bit 2time t
Figure 4.12: The input vector for obstacle avoidance behaviour I.Both robots learned the e�ective wiring that would make themsatisfy their instinct-rules very quickly. Within two to three learningsteps the robots were able to turn away from obstacles. This takes lessthan a minute.Using these two instinct-rules for assessing their behaviour, andthe input vector shown in �gure 4.12 the robots are not only able toacquire the obstacle avoidance competence and to re-learn it in the caseof something drastic changing, like, for instance, the position of theirwhiskers; the robots are also able to cope with changed environments.One example of such a changed environment (and task, whicheverway you see it) is that of Alder and Cairngorm �rst learning to avoidobstacles, and then encountering a dead end. On page 49 I have de-scribed this experiment: although the robots enter the dead end withan obstacle avoidance behaviour (i.e., they turn in the opposite direc-tion of a whisker that is touching something), they come out of thedead end turning in the same direction, regardless of which whiskeris signalling. The e�ective wiring of the robots before and after theencounter of the dead end is shown in �gure 4.13, I call the resultingbehaviour dead end escape behaviour.97

tt"""""bbbbbMotor tt"""""bbbbbMotorMotor���� LLLL-- -'
&

$
%Motor bbbbb-a) b)Figure 4.13: The e�ective wiring of Alder and Cairngorm before (a)and after (b) encountering a dead end.A photograph of the obstacle avoidance experiment is shown afterpage 100. When Alder touched the wall with its right whisker for the�rst time (point A), it tried a right turn in order to move away fromthe wall (big line to the right in the photograph). This, of course,did not take the robot away from the wall; but the subsequent leftturn did (curved line to the left). The next time the robot touched thewall with its right whisker (point B), it had learned this association andturned left (curved line to the left again). It maintained this behaviourthroughout the whole experiment (points C and D).

98

4.3.2 SummaryThe Experiment at a GlanceTitle of Experiment: Acquisition of obstacle avoidance compe-tence.Robots used: Alder and Cairngorm.Sensors used: Two tactile sensors, mounted at the front of therobots.Motor actions used: Left and right turn. (Move forward bydefault.)Network used: Two layer Perceptron with two input nodes andfour output nodes.Input vector used: Two bit input vector containing the status ofthe two whiskers (see �gure 4.12).Instinct-rules used: 1. (Move forward!) 2. Keep whiskers quiet!,see �gure 4.11.Magic numbers used: The learning rate � of the Perceptron waschosen between 0.2 and 0.3, its value not being very critical.Results and observations: Alder and Cairngorm successfullyacquire the obstacle avoidance competence. They can adapt tochanging circumstances and regain the obstacle avoidance compe-tence when unforeseen situations occur, for example when whiskersare swapped. When placed in a dead end the robots �nd the wayout, often changing their behaviour from an obstacle avoiding oneto a behaviour where they turn in the same direction, regardless ofwhich whisker is signalling (dead end escape behaviour).99

Following page: photograph showing the robot learning to avoid ob-stacles (explanation on page 97).
100

4.3.3 Learning to Avoid Obstacles and to MoveForwardIn the second experiment Alder was equipped with a sensor to detectforward motion. Both instincts shown in �gure 4.15 were thereforemonitored | the controller for this experiment is shown in �gure 4.14.'
&

$
%?6 - -6MonitorInput Vector MotorActions Action SignalSelect!Associative Memory dddd dMove SelectorTeacher- 6Teaching SignalsWhiskersquiet! 6 6�Left Whisker Right WhiskerInput Vector Generatordddd dddd����� ����������XXXXXHHHHHXXXXX����������̀```̀QQQQQHHHHH����� MoveForward! 6�Forward Sensor�

aaaa
Figure 4.14: Controller used for Obstacle Avoidance II|||||||||||||||||1. Move forward!2. Keep whiskers quiet!|||||||||||||||||Figure 4.15: Instinct-rules used for obstacle avoidance II.As before, Alder was able to acquire the obstacle avoidance compe-tence and cope with swapped whiskers. In addition to that the robotcould now also cope with a reversal of the motor connections. In fact,101

it now didn't matter which way round the motors were connected, nordid it matter which way the sensors were connected. Because of theself-organising structure of the controller Alder was able to �nd theright behaviour to meet its instinct-rules. The input vector used forthis second experiment is shown in �gure 4.16. As the Pattern As-sociator can only process non-zero inputs, a two bit encoding of theforward motion sensor is used. Strictly speaking, the whisker sensorsignals ought to be encoded in two bits as well, but because the no-whisker-touched state is not to be associated with any motor actionother than forward (which the signal from the forward motion sensortakes care of) this is not necessary. If a Perceptron with input signalsof �1 was used, the whole question would not arise, of course.Left Whisker Right Whisker 1=Moving forward 1=not moving forward0=not moving forward 0=moving forward'& $%Figure 4.16: The input vector used for obstacle avoidance behaviour II.Again, as in the experiment mentioned in the previous section,Alder quickly learned the e�ective wiring between sensors and actua-tors. If the caster wheel of Alder is not in the `forward' position whenthe robot is switched on, Alder will try the motor action associatedwith the �rst output node for a while. If in the course of this theforward motion sensor comes on, all instinct-rules are satis�ed and therobot will move forward until one of the whiskers touches something.When this happens, Alder determines the e�ective obstacle avoidancebehaviour as in the previous experiment. Note that in this experimentthe motor actions associated with each of the four output nodes depend102

on the wiring of the motor power supply. For all other experimentsdescribed in this thesis the motors are wired up such that the nodesmean left turn, right turn, forward (or left turn) and backward (orright turn) in that order, but here deliberately the wires are connectedarbitrarily, which means that the e�ect of each node has to be foundout by the robot. To learn to move forward takes the robot abouttwo to three learning steps (which take less than a minute), to learnobstacle avoidance takes about the same amount of time.

103

4.3.4 SummaryThe Experiment at a GlanceTitle of Experiment: Acquisition of obstacle avoidance and for-ward movement competences.Robot used: Alder.Sensors used: Two tactile sensors, mounted at the front of therobot, and one forward motion detector.Motor actions used: Left and right turn, forward and reversemovement.Network used: Two layer Perceptron with four input nodes andfour output nodes(see �gure 4.14).Input vector used: Four bit input vector containing the statusof the two whiskers and the status of the forward motion sensor,encoded in two bits (see �gure 4.16).Instinct-rules used: 1. Move forward! 2. Keep whiskers quiet!,see �gure 4.15.Magic numbers used: The learning rate � of the Perceptron wasset to 0.2, its value was not critical.Results and observations: Alder autonomously learns whichmotor command to issue in order to move forward, it also acquiresan obstacle avoidance competence as in the previous experiment.Because forward motion is detected, the initial wiring of motorpower supplies may be arbitrary, and may be changed during theexperiment, too. As before, the robot is able to adapt to changingcircumstances such as swapped whiskers or encountering a deadend. 104

4.3.5 Obstacle Avoidance using the UltrasonicRange FinderTo show that the algorithm could be used for di�erent types of sensors,the ultrasonic range �nder of Alder was also used in experiments onacquiring obstacle avoidance behaviour. The controller used for thisexperiment was (almost) the same as the one shown in �gure 4.10,but instead of using the signals from the left and the right whisker athree-bit signal constructed from range sensor data was used. A typicalinput vector is shown in �gure 4.17.1=range left < � 1=range middle< � 1=range right< �'& $%Figure 4.17: The input vector used for obstacle avoidance behaviour,using the ultrasonic range sensor.To construct this input vector, Alder performed turns to the leftand to the right at regular intervals and used the ultrasonic range �nderto determine the distance to the nearest object in these directions, aswell as straight ahead. The � shown in �gure 4.17 is a threshold, it istypically set at about 30 cm.The instinct-rules used in this experiment are similar to the instinctrules used in previous experiments. Instead of the Keep WhiskersQuiet! rule, however, the signals from the ultrasonic range �nder trig-ger the second instinct-rule, as shown in �gure 4.18.As in previous experiments, e�ective associations between the inputvector and motor actions evolved, Alder learned successfully to avoidobstacles. Unlike in the previous experiments, where Alder touched105

|||||||||||||||||1. (Move forward!)2. Keep ultrasonic readings below threshold!|||||||||||||||||Figure 4.18: Instinct-rules used for obstacle avoidance with the ultra-sonic sensor.obstacles before it was able to move away from them, here the robotnever touched the obstacles. Even though ultrasonic sensors give vary-ing readings, dependent on the surface structure of the obstacle andthe angle under which it is perceived, the robot always turned awayfrom them before making contact. Due to the nature of the sensorused the turning movement was not always initiated when the thresh-old distance was reached, but always before the robot had arrived atthe obstacle.As before, learning was fast. Within two or three learning stepsthe robot learned the e�ective wiring between the input vector derivedfrom the ultrasonic sensor, and the motor actions.
106

4.3.6 SummaryThe Experiment at a GlanceTitle of Experiment: Acquisition of obstacle avoidance compe-tence.Robots used: Alder.Sensor used: One ultrasonic range �nder, mounted at the frontof the robot. Active range 20cm to 3m.Motor actions used: Left and right turn. (Move forward bydefault.)Network used: Two layer Perceptron with three input nodes andfour output nodes.Input vector used: Three bit input vector, stating whether theultrasonic range reading to the left, the middle and the right of therobot was below a preset threshold. (see �gure 4.17).Instinct-rules used: 1. (Move forward!) 2. Keep ultrasonic read-ings below threshold! | see �gure 4.18.Magic numbers used: The learning rate �=0.2, threshold � forrange�45cm. Both values are not critical.Results and observations: Alder successfully acquires an ob-stacle avoidance competence without actually touching obstacles,using the ultrasonic range �nder.
107

4.4 Wall FollowingA further advantage of a self-organising controller as shown in �gure 4.1is that the behavioural repertoire of the robot can quite easily be ex-panded by adding further instinct-rules (sometimes the input vectorto the associative memory also needs to be changed).The second experiment I conducted showed this: the robot's taskstill was to move away from obstacles, but in addition to that the robotnow also had to stay close to a wall and follow it. This was achievedby using one additional instinct-rule, \boredom", so that the whole setof instincts looked like �gure 4.19.|||||||||||||||||1. (Move forward!)2. Keep whiskers quiet!3. Make whiskers signal after a while!|||||||||||||||||Figure 4.19: Instinct-rules used for wall followingThe input vector used now contained some history, it is shown in�gure 4.20, the controller for this experiment is shown in �gure 4.21.Using this set of instinct-rules and this input vector, the robots wereable to learn to follow a wall successfully. When the robot is started,having been placed near a wall, but not touching it, the internal clockthat triggers instinct-rule number 3 (see �gure 4.19) is reset. Thismeans that neither instinct-rule number 2 nor number 3 trigger, butnumber 1 does: the robot starts moving forward. After about fourseconds the clock triggers rule number 3, and a wall seeking movementis initiated. Eventually the robot will touch the wall, thus satisfyingrule 3 (and taking it o� the \agenda"). Immediately, however, rule 2108

Time t Time t-11=Lft. Wh. on0=Lft. Wh. o� 1=Rgt.Wh. on0=Rgt.Wh. o� 1=Lft. Wh. on0=Lft. Wh. o� 1=Rgt.Wh. on0=Rgt.Wh. o�B1 B2 B3 B4'& $%B5:(B1_B2_ _B3_B4)Figure 4.20: Input vector used for wall following and corridor following.will be violated, and the robot will start an obstacle avoidance action.Every time an instinct-rule is violated, an input vector as shown in�gure 4.20 is generated and a motor action sought that will satisfy thisparticular instinct-rule. It does not matter if in the course of trying tosatisfy this one instinct-rule other rules are violated, too. The robotattends to the �rst violated instinct-rule until it is met again, and thencontinues.The experimental result of this was that after very few negativeteaching signals Alder and Cairngorm learned which way to turn inorder to touch the wall, and which way to turn in order to get awayfrom it. As in the previous experiment in obstacle avoidance, the robotslearn the correct moves after about two teaching steps. The whole wallfollowing competence is acquired in under one minute. The path therobots describe is shown in a photograph after page 112. Initially, theytried to �nd the wall on the left hand side (big turn on the left in thephotograph at point A), but found it to be on the right. To moveaway from the wall the robot used a left turn, which was successful.The photograph then shows small turns to the right to touch the wall(short peaks to the right), and left turns to move away from it (B).Because of their ability to acquire the wall following competence,109

'
&

$
%?6 - -6MonitorInput Vector MotorActions Action SignalSelect!Associative Memory dddd dMove SelectorTeacher- 6Teaching SignalsWhiskersstraight! 6 6�Left Whisker Right WhiskerInput Vector GeneratorClock� --

aaaa
Reset

ddddd dd bbbb!!!!����̀``̀llll ------- ccaaaa####̀``̀bbbbaaaa ((((XXXX((((""""!!!! --
Figure 4.21: Controller used for wall following and corridor following.the robots are not dependent on any particular wiring or experimentalsetup. The way the whiskers are connected to the interface and theside on which the wall is can be chosen arbitrarily, the robots will nev-ertheless learn how to follow the wall. The wall following experimentshows another advantage. Because of the structure of the controller,without any especially given knowledge, the robot can follow walls oneither its left or its right hand side. This makes the robot more ex-ible, and better able to cope with situations such as corridors, wherethe wall on one side suddenly stops (because of a door, for example),but continues on the other side. At such places the robot would betemporarily \confused", but then learn to follow the wall on the oppo-site side and continue its path8. Also, the experiment shows that thebehavioural repertoire of the robots can easily be expanded by addinginstinct-rules, an observation that will be ampli�ed by the followingexperiment.8This, of course, only if the opposite wall was close enough to be reached by awhisker! 110

4.4.1 SummaryThe Experiment at a GlanceTitle of Experiment: Acquisition of wall following competence.Robots used: Alder and Cairngorm.Sensors used: Two tactile sensors, mounted at the front of therobots, and the internal clock.Motor actions used: Left and right turn. (Move forward bydefault.)Network used: Two layer Perceptron with �ve input nodes andfour output nodes (see �gure 4.21).Input vector used: Five bit input vector, containing the currentsignals from the two whiskers and the whisker signals of the previoustime step. Bit �ve is on only if bits one to four are all o� (negatedor function of the �rst four input bits) | see �gure 4.20.Instinct-rules used: 1. (Move forward!) 2. Keep whiskers quiet!3. Make whiskers signal after a while! | see �gure 4.19.Magic numbers used: Learning rate �=0.2 to 0.3, wall seekingmovement sets in approximately every 4 seconds. Both values arenot critical.Results and observations: The robots successfully learn whichway to turn in order to touch a wall, and which way to turn in orderto move away from it. If whiskers are swapped, walls are swappedor the direction of travel is changed, the robots adapt to the newsituation and regain the wall following competence.111

Following page: photograph showing the robot learning to follow a wall(explanation on page 109).
112

4.5 Corridor FollowingAs just stated in section 4.4, it is easy to extend the behavioural reper-toire of the robot by adding further instinct-rules9. In order to obtain acorridor following behaviour, literally the only thing I had to do was toadd a fourth instinct-rule (about �ve lines of program code) | the in-put vector used was the same as the one used for wall following, shownin �gure 4.20, so was the controller architecture. The set of instinctsto acquire the corridor following competence are shown in �gure 4.22.||||||||||||||||1. (Move forward!)2. Keep whiskers quiet!3. Make whiskers signal after a while!4. Make alternate whiskers signal!||||||||||||||||-Figure 4.22: Instinct-rules used for corridor following.The robot now learns which way to turn to touch alternate wallsof a corridor, and which way to turn to move away from either wall.As before, learning is fast, the robots acquire the corridor followingcompetence in less than a minute. This last experiment demonstrateshow easy it can be to \program" the robot to do new tasks, using theself-organising controller described here.9That is, once the required instinct-rule is known, it is easy. See also the openquestions raised in section 7.2.1. 113

4.5.1 SummaryThe Experiment at a GlanceTitle of Experiment: Acquisition of corridor following compe-tence.Robots used: Alder and Cairngorm.Sensors used: Two tactile sensors, mounted at the front of therobots, and the internal clock.Motor actions used: Left and right turn. (Move forward bydefault.)Network used: Two layer Perceptron with �ve input nodes andfour output nodes (see �gure 4.21).Input vector used: Five bit input vector, containing the currentsignals from the two whiskers and the whisker signals of the previoustime step. Bit �ve is on only if bits one to four are all o� (negatedor function of the �rst four input bits) | see �gure 4.20.Instinct-rules used: 1. (Move forward!) 2. Keep whiskers quiet!3. Make whiskers signal after a while! 4. Make alternate whiskerssignal! | see �gure 4.22.Magic numbers used: Learning rate �=0.2 to 0.3, wall seekingmovement sets in approximately every 4 seconds. Both values arenot critical.Results and observations: Alder and Cairngorm learn whichway to turn in order to touch left and right wall of a corridor inturns, and which way to turn in order to move away from themagain. This experiment shows how easy it can be to increase therobot's behavioural repertoire, using this controller architecture.114

4.6 Arbitration of Instinct RulesIt is not always immediately possible to extend the robot's behaviouralrepertoire by adding further instinct-rules. From obstacle avoidance towall following the instinct-rule \Make whiskers signal after a while!"was added; to achieve corridor following, coming from wall following,the instinct-rule \Make alternate whiskers signal!" was added. Thisworked, because none of the instinct-rules contained in the set con-icted with any other instinct-rule. Only one instinct-rule at a timecould be violated, and only that instinct-rule could be satis�ed again.'& $%�	Figure 4.23: Wall and corridor following.If, however, the task of the robot was to, for example, follow a wallor a corridor, as shown in �gure 4.23, then neither the set of instinct-rules shown in �gure 4.19 nor the one shown in �gure 4.22 would makethe robot learn the correct behaviour, because the instinct-rule \Makealternate whiskers signal!" cannot be satis�ed in a non-corridor partof the robot's world.Possible solutions to this problem include1. Use only non-conicting instincts, or2. add further instincts for arbitration, or3. de�ne some other arbitration strategy.In the case of the example just mentioned | a robot follow a corri-dor which does not have continous walls on both sides | the following115

set of instinct-rules could be tried:||||||||||||||||1. Move forward!2. Keep whiskers quiet!3. Make whiskers signal after a while!4. For the �rst n seconds try to make alternate whiskers signal, afterthat period any whisker!||||||||||||||||-I have not tried this set of instinct-rules in an actual experiment,but here is some speculation as to what might happen: rules 1 to 3will result in a wall following behaviour, as described before. Rule 4 isidentical to rule 4 in �gure 4.22, as long as the robot is in a corridor.Therefore, in a corridor the robot should follow it, as described beforein section 4.5, touching alternate walls. As soon as this fails, becauseof one wall ending, the robot will not be able to turn in such a way thatthe required whisker signals, at least not immediately. If the waitingperiod n is large, the robot might turn by 180 degrees and thus satisfyinstinct-rule 4 (that would make the robot turn back whenever there isa gap in either of the two walls of a corridor). If the waiting period n istoo short to allow the robot to turn back, rule 4 will become ine�ective,resulting in a normal wall following behaviour being switched on andthe robot should continue its path, following a wall. As long as thegap in one of the walls remains, this process should continue, untiltwo walls are present again. Then the robot should switch back to abehaviour where it touches alternate walls.116

4.7 Context-dependent LearningOn page 93 I described an experiment in which the robot had �rstlearned to avoid obstacles, and then encountered a dead end. Theobstacle avoidance behaviour is badly suited for leaving dead ends, be-cause inevitably there will be the situation where the robot turns backinto the dead end instead of turning away from it. Alder and Cairn-gorm discover that through the interaction with their environment andchange their behaviour: after having encountered a dead end they turnin the same direction regardless of which whisker is touched. This iswhat I called dead end escape behaviour.In the process of acquiring the dead end escape behaviour the pre-viously acquired knowledge about obstacle avoidance is replaced byknowledge about dead end escape. Consequently, when Alder andCairngorm leave a dead end and encounter an obstacle, they have tore-learn obstacle avoidance behaviour. They lack a notion of context.In this section I describe an experiment done on context dependentlearning in which Cairngorm learns to distinguish two di�erent con-texts and behave appropriately in both.The experimental setup is as shown in �gure 4.24. The robot wasplaced in an enclosure which consisted of two dead ends and a corridorin between. The robot's task was to follow the corridor and to get outof the cul-de-sacs, resuming the corridor following behaviour.��'& $%Figure 4.24: The experimental setup for context-dependent learning.117

To �nd out whether contextual information could be exploited bythe robot I conducted the following experiment. Cairngorm was con-trolled by the same controller that was previously used to acquire thecorridor following competence, as described in section 4.5. The onlydi�erence to the controller described there was an additional bit in theinput vector to the Pattern Associator (see �gure 4.25).Time t Time t-11=Left Wh. on0=Left Wh. o� 1=Right Wh. on0=Right Wh. o� 1=Left Wh. on0=Left Wh. o� 1=Right Wh. on0=Right Wh. o� Switch'& $%Figure 4.25: Input vector for context{dependent learning.This last bit in the input vector was set whenever a switch on therobot was on, and it was reset whenever the switch was o�. As thisswitch was manually operated, the operator could identify di�erentcontexts and make them available to the learning algorithm.4.7.1 Experimental ResultsThe robot was placed in the enclosure shown in �gure 4.24. Wheneverthe robot was in one of the two dead ends, that is in a dead end context,the switch was on. Whenever the robot was in between dead ends, thatis in a corridor following context, the switch was o�. After the robothad learned corridor following (and, in the process, encountered deadends several times), the e�ective wiring of Cairngorm was analysed.The results are shown in �gure 4.26: whenever the switch is o� (cor-118

ridor following context), the robot turns left when the right whiskeris on, and right when the left whisker is on (�gure 4.26a). When theswitch is on (dead end escape context) the behaviour is reversed: therobot turns towards a touched whisker (�gure 4.26b). Both these be-haviours are appropriate for their respective contexts. When followinga corridor, whiskers will only be on after a wall seeking movement. Aturn away from a touched whisker will take the robot back into themiddle of the corridor. In the dead end context this is di�erent, hereit is a turn towards a touched whisker that will take the robot to theexit fastest. tt"""""bbbbbMotor tt"""""bbbbbMotorMotora) Switch o� b) Switch on���� LLLL-- --'
&

$
%Motor

Figure 4.26: Results of context{dependent learning experiment.The purpose of this experiment was to investigate whether the con-troller could successfully exploit contextual information. This is whythe robot was provided with contextual information. A whole seriesof experiments is conceivable in which this contextual information isdetermined by the robot itself, not by the operator. Here are some ex-amples: when the robot follows a corridor, it is highly unlikely that the119

same whisker will signal twice consecutively, because the robot turnsleft, say, but then turns back right and when initiating the next wallseeking move will turn right, therefore the last touch will have beenon the left, the current one on the right. The only situation where thesame whisker will signal more than once consecutively is if the robotis in a dead end: the fact that one whisker has signalled twice in a rowcan therefore be used as a detector for a dead end context. Similarly,if the robot had three front whiskers, one mounted at the left, one inthe middle and one at the right, then the middle whisker would nor-mally only be on in a dead end, not in a corridor. Instead of a middlewhisker, a central sonar sensor would serve the same purpose.

120

4.7.2 SummaryThe Experiment at a GlanceTitle of Experiment: Exploiting contextual information in motorcompetence acquisition.Robot used: Cairngorm.Sensors used: Two tactile sensors, mounted at the front of therobot, and a manually operated switch.Motor actions used: Left and right turn. (Move forward bydefault.)Network used: Two layer Perceptron with �ve input nodes andfour output nodes (see �gure 4.21).Input vector used: Five bit input vector, containing the currentsignals from the two whiskers and the whisker signals of the previoustime step. Bit �ve is connected to a manually operated switch andis on if the switch is on | see �gure 4.25.Instinct-rules used: 1. (Move forward!) 2. Keep whiskers quiet!3. Make whiskers signal after a while! 4. Make alternate whiskerssignal!, see �gure 4.22.Magic numbers used: Learning rate �=0.3 (not critical to set).Results and observations: In this experiment contextual infor-mation is supplied by means of the switch: it is o� in a corridorfollowing context, and on in a dead end context. The e�ective con-nections between sensors and actuators that emerge from this setupare such that the robot turns to the opposite side of a signallingwhisker when the switch is o� (corridor following), but turns to-wards the direction of a signalling whisker when the switch is on(dead end), see �gure 4.26. 121

4.8 DiscussionThree major points contribute towards the fact that this schemeworks:1. Limited input space, possibly using quantised input data,2. limited output space, and3. a robust action selection scheme.Limited input and output spaces means that the search space issmall, it means that an e�ective motor action can quickly be found.The larger the search space, the greater the chance that the Perceptronwill learn a suboptimal behaviour, and the greater also the computa-tional cost.Lastly, as I have already shown earlier on page 81, the action se-lection scheme is robust and �nds e�ective motor actions even if theinitial execution of the `correct' motor actions was unsuccessful. Thisensures that even in situations where the variation inherent in theworld has made a particular action fail despite the fact that it shouldhave succeeded, this action will nevertheless be found later on.The Capacity of the Associative MemoryA Perceptron can reliably store 2N random input-output pairs, withN being the number of input units of the network ([Hertz et al. 91,p.111]).This means that for every network with three or more input units itscapacity (2N) is less than the number of possible input-vectors (2N), i.e.that it is impossible to store an output pattern for every possible inputsignal. The ratio 2N2N becomes worse with increasing N, which meansthat the likelihood of the network's capacity being exhausted beforeall required patterns are stored increases with increasing N. However,122

this is not a problem in the experiments reported here, the network'scapacity is su�cient for all experiments conducted with Alder andCairngorm.How to devise Instinct-RulesHaving accomplished wall following, it was extremely easy to increasethe behavioural repertoire of the robot to corridor following by simplyadding another instinct-rule, a mere �ve lines of code. The questionis: how does one �nd the required set of instinct-rules? There is noalgorithm yet for doing this, but here are some guidelines:1. Instinct-rules are always associated with a sensor which monitorsor measures some speci�ed condition. Sensors in this sense canbe:� Physical sensors (e.g., whiskers),� internal sensors (e.g., a clock), and� memory (e.g., \Make alternate whiskers signal!").2. Instinct-rules are not behaviours. \Move towards the light!",therefore, is not an instinct-rule, but \Increase the reading froma light sensor!" is.3. Instinct-rules generate the desired behaviours, the questiontherefore must be \Which sensor signal can be associated withthe desired behaviour?".4.9 SummaryIn order to stay operational, mobile robots need the ability to moveaway from obstacles, both convex and concave. For higher level tasks123

such as navigation or delivery tasks, robots also need the ability tofollow de�ned paths, as for example by following walls or followingcorridors. In order to achieve exibility in unforeseen situations it isdesirable if the robots can acquire these competences autonomously,as such an ability will allow them to adapt if circumstances change.In a number of experiments in motor competence acquisition, Alderand Cairngorm learn how to move forward (thus determining the e�ec-tive wiring required), how to avoid obstacles, how to follow walls andhow to follow corridors. Using a self-organising controller whose centralcomponent is an associative memory that associates input stimuli withtask-achieving motor actions, the robots are not only able to acquirethe required motor competences in the �rst place, they are also ableto adapt to situations such as reversed motor power supplies, changedsensor wiring and changed environments (such as new obstacle typesor changed wall layout whilst following a wall).The next chapter adresses one of the higher level tasks mentionedabove, that of navigation. In order to navigate a robot needs to knowa) where it is at the moment (location recognition) and b) how to getto the desired location (map interpretation). How location recognitioncan be achieved autonomously, again using connectionist computingarchitectures, is the topic I will now turn to.
124

Chapter 5Location Recognition, usingSelf-Organising FeatureMaps5.1 IntroductionIn the previous chapter I presented experiments on competence ac-quisition. The competences were achieved by establishing appropriatecouplings between sensor signals and motor actions. This chapter ad-dresses a di�erent problem: can self-organising structures be used toacquire simple navigational skills? The task for Alder and Cairngormhere was to recognise locations in an enclosure (see �gure 5.1) afterhaving had some time to explore the enclosure.When I started, Alder was programmed to move around in arbitrarydirections, avoid obstacles it encountered and feed the sensor signalsinto a self-organising network (as described in section 2.4.2). The ideawas that distinctive excitation patterns would develop on the network,a di�erent one for each physical location. But nothing of that sorthappened: instead, the excitation patterns seemed to be arbitrary in125

���������� ������ ��������x(((XXX'
&

$
%

������ ��ppqp pp ppqp ppppqp ppFigure 5.1: The experimental enclosure for location recognition.regard to physical locations.It was in a mountain hut (a \bothy") in February 1990 that Irealised what had to be changed in order to make the scheme work. Ihad fought my way through a blizzard and �nally arrived at the bothy,around midnight. It was pitch black dark, and my torch had broken. Ihad no idea what the hut was like, whether there was any furniture inthere, how big it was. I started moving along the wall, groping in thedark. I followed the wall around the bothy and discovered corners, the�replace and a pile of stones, a chest with mountain rescue equipmentand the window sill (I also discovered that the hut was full of snow. . .).Sensing and acting are tightly coupled | only through appropriateaction can meaningful sensor signals be derived and used for navigationor location recognition. Following the wall, rather than �nding my waystraight across the room had two advantages: it de�ned a canonicalpath, and along that path much more information was to be gatheredthan by going across the room (a rich sensory stream, rather than athin sensory stream). Also, when not wall following it is di�cult tode�ne identical paths, a problem that is particularly relevant if location126

recognition schemes are to be implemented on mobile robots which aresubject to noise and variation. I would not have got a good idea ofthe shape of the bothy by going straight across the room and turningas soon as I touched a wall. The same applies to the robots. Afterthis weekend I changed the behaviour of Alder and Cairngorm to awall following one for training a self-organising network. The schemeworked: unique excitation patterns developed for individual locations.In this chapter I describe three experiments on location recognition.For all of these experiments the basic setup was the same: while therobot follows the perimeter of its enclosure, input stimuli are presentedto a self-organising feature map (SOFM). The developing excitationpatterns are then used to recognise locations in the world (identicalexcitation pattern = identical location).The �rst experiment, described in section 5.2, used informationabout landmarks to train the self-organising net. As the robot ex-plored its enclosure, it detected convex and concave corners, using ahand-programmed corner detector. Whenever such a landmark wasfound, an input vector containing information about current and pre-vious landmarks was generated and used to train the net. This workedsatisfactorily: the robot was able to recognise places.Information about landmarks is specialised information (as opposedto general information). In the second experiment I therefore reducedthe speci�city of the information used to train the net. Instead ofdetecting landmarks, the robot merely registered all motor actions everperformed, and used this to shape the self-organising feature map.Most of the motor actions performed by Alder and Cairngorm havenothing to do with `interesting' places such as corners. They have todo with the process of following a wall | turning right to �nd thewall, turning back left to realign with it | and therefore they carryvery little information that is useful for recognising places. In order127

to succeed, the robots used seven independent self-organising featuremaps, each one of these looking at a di�erent length of history of motoractions. Again, Alder and Cairngorm were able to recognise locations.The experiment is described in more detail in section 5.3.The third experiment is a link between the �rst two. On the onehand it uses just one network and is fairly easy to implement | likethe �rst experiment | on the other hand it does not use landmarks,but motor actions | like the second experiment. Using all motor ac-tions as input to the self-organising network and letting the robot itselfmake the distinction between signi�cant and insigni�cant events is themost general approach that can be taken, and it follows the RUR phi-losophy of avoiding as much prede�ned knowledge as possible closely.However, it is computationally expensive to `get rid of uninterestingmotor actions', and a large number of externally set parameters areneeded, too (more about this, as mentioned, in section 5.3). There-fore, in the third experiment, Alder and Cairngorm take only thosemotor actions into account that are signi�cantly longer than the aver-age | these motor actions usually happen at `interesting locations'1.The third experiment is described in section 5.4.5.2 Location Recognition using SensorSignalsAlder's and Cairngorm's task was to recognise locations in their en-closure after they had explored it for a while. To explore, the robotsfollowed the walls of the enclosure, completing a couple of circuits.`Exploring' means that they followed the wall of the enclosure, detect-1\Signi�cantly longer" here means longer by a certain proportion which is spec-i�ed by the designer. 128

ing convex and concave corners as they went along (detecting cornersis not di�cult: whenever the robot needs more than a certain, presettime to �nd the wall on its right, it has arrived at a convex corner.Similarly, if the robot needs more time than usual to get away from anobstacle, it has arrived at a concave corner).
Landmark DetectionSOFM???

Sensor Signals'
&

$
%Interpretation ofExcitation PatternFigure 5.2: The method used for location recognition.The method of location recognition that I used is depicted in �g-ure 5.2 and it works like this: whenever a convex or concave cornerwas detected, an input vector was created and presented to the self-organising feature map. This input vector contained information aboutthe type of corner the robot had detected, as well as information aboutthe type of the previous corners. The simplest vector used is shown in129

�gure 5.42. The self-organising feature map that was used is shown in�gure 5.3. It was a ring-shaped, one-dimensional network of �fty cells.'
&

$
%

x x x xx x x x xxxppp ppp????????????????????????p p pInput VectorRing of 50 Cells'
&

$
%xx ppp

Figure 5.3: The self-organising network used on Alder.Assuming that features are topologically isolated, the minimumnumber of network cells required can be determined as follows: if cellsare updated within a neighbourhood of two cells around the most ex-cited cell then �ve cells are updated each time and could theoreticallyrepresent one particular area in the robot's enclosure. As there areeight corners in Alder's enclosure, the minimum number of cells re-quired is fourty cells; however in practice a larger number is neededbecause areas overlap. Being one-dimensional, the computational re-quirements are very low because each cell has only two neighbours,instead of eight3 in a two-dimensional net. This is preferable for im-plementing the scheme on a robot with limited computing power, like2Note that it is necessary to encode the information about convex and concavecorners using 2 bits, because arti�cial neural networks can only make use of non-zero input lines (see also equation 2.5). Units giving non-zero outputs of �1 couldalso be used.3See [Kohonen 88, p.132, Fig. 5.11a].130

Alder. The shape of a ring helps avoid border e�ects. The behaviour ofthis network is as previously described in section 2.4.2, the neighbour-hood within which weight vectors are updated is � 2 cells (constantover time). This size of neighbourhood was chosen as a compromisebetween too large a neighbourhood, which means a high computationalload, and too small a neighbourhood, which means that the topologicalmapping of the self-organising feature map will not have any e�ect.The longer the robot went around in the enclosure, the more settledthe ring became and the more precise the response to a particular inputstimulus. After about three rounds a particular corner was `marked'by pressing a pushbutton on the robot. The excitation pattern ~�m thatthe ring showed when the button was pressed was then stored. In orderto detect when the robot had arrived back at the marked location allsubsequent excitation patterns ~� were compared with ~�m by calculat-ing the Euclidean distance jj~�� ~�mjj between them. Obviously, if therobot is able to construct a meaningful internal representation of its en-vironment in the SOFM this di�erence should be small when the robotis at the marked corner, and it should be noticeably larger at any othercorner. Here, the response of the whole network is used to recognise alocation. Alternatively, the property that self-organising feature mapsproduce topology preserving mappings could be exploited: merely thecoordinates of the excitation centres could be compared.
131

In summary, the location recognition mechanism looked like this:1. Initialise the self-organising network (i.e. the ring) by �lling theweight vectors of all cells with randomly chosen, evenly distributedvalues.2. Normalise all the weight vectors.3. Present an input stimulus to the ring.4. Determine the response to this stimulus for each cell of the ring ac-cording to equation 2.4.5. Determine the unit that is responding most strongly.6. Update the weight vectors of the �ve units within a neighbourhood of� 2 cells of the maximally responding cell, according to equation 2.5given in chapter 2.7. Normalise those �ve weight vectors again.8. Continue with step 3.5.2.1 Experimental ResultsWhenever Alder or Cairngorm detected a corner, they generated aninput vector and used it to train the self-organising feature map. The�rst input vector I used is shown in �gure 5.4.This vector contains information about the type of corner the robotis currently at, as well as information about the type of the previouscorner. This is encoded in four binary values. The �fth componentof the input vector is a real number, giving the number of completedwheel revolutions between the two corners, divided by twelve. Twelve,because the longest distance in the particular enclosure used (the dis-tance G-H in �gure 5.5) generates about �fteen revolutions, the short-est, one or two. By dividing this count by twelve the last component of132

'& $%This corner Previous corner D/122bits 2bits scalar1 0 = convex0 1 = concave distancebetweenthese cornersFigure 5.4: A typical input vector.the input vector has roughly the same importance as the other compo-nents of the input vector shown in �gure 5.4. It is obvious that, usingthis input vector, Alder and Cairngorm would only be able to di�eren-tiate between certain types of landmarks. In an enclosure of quadraticshape, for example, all four corners would be taken to be identical, ina non-quadratic rectangular enclosure two corners respectively wouldbe taken to be the same.Figure 5.5 shows the result of one experiment, using this vector: therobot's task was to recognise corner H. The way this and similar �gureshave to be read is this: the length of the bars shown at each locationdenotes the Euclidean distance jj~�� ~�mjj between the excitation vectorsproduced at the corner that is to be recognised and the particularlocation. If this distance is big (that is, the bar in the diagram is high),the marked location and the current location are very dissimilar, if thedistance is small, they are similar. Subsequent bars denote subsequentrounds around the enclosure. In �gure 5.5 one can see that the robotidenti�es corner H after about three rounds without error, and that allother corners can be di�erentiated from corner H without problem.Not all corners can be uniquely identi�ed, however! Figure 5.6shows that corners C and F get confused. A closer look at the input133

'
&

$
%ABCDEFG Hx=Corner not detected 102030 102030102030 102030 x xx102030 102030102030 x102030Figure 5.5: Recognising corner H, looking at one previous corner.vector used (shown in �gure 5.4) explains this: corners C and F look thesame in the input vector, it is therefore not surprising that they evokesimilar excitation patterns on the network. The same problem occurswhen the task is to recognise corner B. Here, for the same reason, therobot confuses corners B and E (see �gure 5.7).The obvious answer to this problem is to increase the informationcontained in the input vector. The next input vector I used to trainthe network is shown in �gure 5.8.This vector contains information not only about the last cornerencountered, but also about the corner before that one. But even thisis not su�cient to di�erentiate between corners B and E, this can beseen in �gure 5.10.Only when information about the current as well as three previouscorners is given to the net corners B and E look di�erent in the inputvector (see �gure 5.9) and the robot is able to distinguish betweenthem (�gure 5.11). In both cases it is easy for the robot to recognise134

'
&

$
%ABCDEFG Hx=Corner not detected 102030 102030102030 102030102030 102030102030 102030Figure 5.6: Recognising corner F, looking at one previous corner.'

&
$
%ABCDEFG Hx=Corner not detected 102030 102030102030 102030 x102030 102030102030 102030Figure 5.7: Recognising corner B, looking at one previous corner.135

'& $%ThisCorner Corner attime t-1 time t-2Corner at Distancetravelledbetw. t & t-1Figure 5.8: Extended input vector.ThisCorner Cornerat t-1 Cornerat t-2 Cornerat t-3 Distancetravelledbetw. t & t-1'& $%Figure 5.9: The input vector, even further extended.corner H.The longer the robot moves around in its enclosure, the clearer theexcitation patterns on the map, and the smaller the Euclidean distancebetween ~�m(t) and ~�m(t+ 1). This is shown in �gure 5.12.In conclusion, this is what happened: having had su�cient timeto explore the environment, the robot was able to recognise particu-lar corners that had been marked by the experimenter, provided thiswas theoretically possible. In cases where the input vector presentedto the self-organising net contained insu�cient information, Alder con-fused corners that looked alike, simply because their input vectors wereidentical. This is not surprising. The robot's ability to recognise themarked corner reliably increased with experience, jj ~�m(t)� ~�m(t+1)jj,the di�erence between excitation of the net at the marked corner at136

'
&

$
%ABCDEFG Hx=Corner not detected 102030 102030102030 102030 xx102030 102030102030 102030Figure 5.10: Recognising corner B, looking at two previous corners.'

&
$
%ABCDEFG Hx=Corner not detected 102030 102030102030 102030102030 102030102030 102030 xFigure 5.11: Recognising corner B, looking at three previous corners.137

'
&

$
%-6102030 RoundsFigure 5.12: jj ~�m(t)� ~�m(t+ 1)jj at corner H.time t and excitation at the marked corner at time t+1, decreasedcontinuously. It eventually became zero.5.2.2 Discussion of this experimentThis experiment has shown that it is possible to use self-organisingfeature maps as internal representations of the `landmark space' of arobot, and to use them for location recognition.Alder has used a one-dimensional network of �fty units for thispurpose, however it is not clear that this is the only possible networkthat could be used. Will one-dimensional networks be su�cient in allcases? Will a smaller network fail in the task? These are questions thatare not directly addressed in this thesis (see also section 7.2), however,there are some guidelines.A rule of thumb to estimate the required size of the net is the num-ber of distinct features in the world that have to be mapped onto theSOFM. If all distinct features are to be mapped onto distinct, non-overlapping regions of the network, then a one-dimensional network138

needs at least (2� + 1) � � units, � being the size of the neighbourhoodregion within which weight vectors are updated, and � being the num-ber of distinct features to be mapped onto the map (this would meanforty units would be needed in this particular example, using a � oftwo and having eight landmarks in the enclosure).One criterion for determining the required dimensionality of thenetwork is the dimensionality of the world the agent is to operatein. In Alder's and Cairngorm's case the world is e�ectively one-dimensional, because the robots follow the wall of their enclosure togenerate the input signals to the SOFM. [Hertz et al. 91, pp.239f] givethe example of a robot arm moving in three-dimensional space, avoid-ing obstacles, and suggest that \here a three-dimensional output arraywould clearly be appropriate". [Ritter 88, sect.9.1] discusses the useof SOFMs to learn the required torque for feedforward control of asimulated robot manipulator (i.e., determining the inverse kinemat-ics and dynamics of the manipulator). This simulated manipulatorhas a two-dimensional workspace and the dimensionality of the net-work used is two-dimensional as well (15 x 24 units). [Kohonen 82b]presents a mapping of a one-dimensional input space (the response sig-nals of twenty di�erent bandpass �lters to a single audio tone) onto aone-dimensional network of ten units. A topology-preserving tonotopicmap develops.Looking at the input vectors used in the experiments just described(on pages 133, 136 and 136), it becomes clear that the network can onlyusefully interpret incoming data if this data contains useful informationabout the enclosure. So, one might argue, the network is superuous,all the information is the input signals anyway. However, whilst itis true that the relevant information has to be present in the inputsignals, the SOFM provides the following additional functions:139

� Greater recognition reliability in the presence of noise: the odom-etry readings on Alder, for example, di�er by as much as 20% foridentical distances.� Dimensionality reduction: here a multi-dimensional input spaceis mapped onto a one-dimensional network.� A common interface between input signals (which can bechanged, according to the experimental requirements) and out-put space (which stays unchanged, therefore allowing the train-ing of the net and the interpretation of the excitation patternsto remain unchanged).� A mechanism requiring little prede�nition, thus following theRUR philosophy (see page 12), where any failure of the loca-tion recognition system can be ascribed to the input vector used(and not to the input vector or the method).The mechanism for location recognition described above bearssome resemblance to the way bees recognise places. As[Cartwright & Collett 83] have found in their experiments, honey bees(Apis mellifera) use nearby landmarks to guide their way to a foodsource.\[Bees] do not �nd their way using anything analogous to aoor plan or map of the spatial layout of landmarks and foodsource. The knowledge at their disposal is much more limited,consisting of no more than a remembered image of what waspresent on their retina when they were at their destination.... Bees �nd their way, the experiments seem to say, by con-tinuously comparing their retinal image with their snapshotand adjusting their ight path so as to lessen the discrepancybetween the two."The two aspects of navigation | location recognition and inter-pretation | are clearly contained in this statement. Unfortunately140

little is said about the latter: how bees lessen the discrepancy betweenstored and perceived image is not described. Alder's method of recog-nising locations shows similarities to the bees' way of achieving this:like bees, Alder does not generate a oor plan (a conventional map),instead it uses `snapshots' (distinctive excitation patterns of the self-organising network as a response to the sensory input) to recogniselocations. How this could be used for map interpretation is an openquestion, some ideas as to how it could be achieved are presented insection 7.2.[Cartwright & Collett 83] also state that \the bee's guidance sys-tem is immune to a considerable amount of noise". To a small extentthat could be observed in the experiments conducted here, too. Asmentioned above, the revolution counter used as a crude means ofmeasuring distance gives, for consecutive visits of the same corners,readings that vary by up to 20%. This means that two consecutiveinput vectors generated at that location are not identical; neverthelessAlder still recognises these locations as identical, largely due to the factthat the self-organising feature map produces a topological mappingin which similar, but not identical input stimuli excite neighbouringareas of the network. How far this immunity to noise can be taken isan interesting question and is one of the open questions discussed insection 7.2.
141

5.2.3 SummaryThe Experiment at a GlanceTitle of Experiment: Using landmarks for location recognition.Robot used: Alder.Sensors used: Two tactile sensors, mounted at the front of therobot, and a revolution counter for odometry.Robot behaviour used: Hardwired wall following and obstacleavoidance behaviour.Network used: Self-organising feature map, implemented as aring of �fty units. Neighbourhood region �2.Input vector used: Three di�erent vectors in three related ex-periments, containing information about the sequence of detectedlandmarks as well as a crude distance measurement between thecurrent and the previous landmark (see �gures 5.4, 5.8 and 5.9).Magic numbers used: Gain � = 5:0, decreasing by a factor of0.95 every epoch (see equation 2.5). Neighbourhood region �2,constant over time. The goal location is identi�ed if the Euclideandistance between target location and current location is less than7.0 (this number 7.0 is then replaced by that di�erence plus 2.0).Results and observations: Exploring an enclosure by followingits walls, Alder trains the self-organising feature map using infor-mation about detected landmarks. The robot reliably recogniseslocations, after the network has settled in a stable state, providedsu�cient information is given in the input vector to the network.142

5.3 Using All Motor Actions for Loca-tion RecognitionWith the experiment described in this section I tried to get away fromhaving to prede�ne how convex and concave corners can be detected.Also, there was another point I tried to make. Sensing and acting aretypically treated as separate functions in robotics. I believe, however,that sensing and acting are two aspects of the same function (the inter-action between the robot and its environment), and that they thereforecannot be successfully analysed in isolation. The actions of a robot,just like those of a person, determine to a large extent the sensory sig-nals it will receive, which will in turn inuence its actions. Breakingthis tight interaction into two separate functions leads, I believe, to anincorrect decomposition of the robot control problem. While particularfeatures of a robot's sensors and actuators do play an important rolein determining its performance, these e�ects cannot be determined bytheir separate analysis. Acting and sensing have to be seen together;neither acting nor sensing alone will make the agent succeed.The input vector I have chosen for the experiments described be-low demonstrates this point: it contains no direct information aboutsensory input. The information it does contain is derived from themotor action commands of the robot controller, which are themselvesinuenced by the sensory signals received by the robot as a result of itsactions. I chose to use information derived from the motor action com-mands of the robot controller, rather than from sensor signals, becausethey form a smaller set of signal types, they are much less subject tonoise, but they still adequately characterise the interactions betweenthe robot and its environment as it seeks to achieve its task | wallfollowing in this case.Again the robot was placed in an enclosure as shown in �gure 5.1;143

it then followed the wall using a preprogrammed wall following andobstacle avoidance behaviour. In other words, the robot is governed byits preprogrammed wall following behaviour which, of course, does usesensory information. The process of constructing the self-organisingfeature map is, however, independent of the wall following behaviour, itsimply \looks" at the motor action commands issued by the controlleras the robot performs this wall following task.Every time a new motor action command is issued (i.e. every timethe motor state changes) due to the wall �nding or the obstacle avoid-ance behaviour becoming active, a motor action vector is generated.This is a nine bit vector which contains information about the state themotors were in until this change, and thus the direction the robot hasbeen travelling up to this moment (forward, left or right)4, as well asinformation about how long it was in this state (see �gure 5.13). Thelast motor command is encoded in four bits, because two bits refer toeach of the two motors, and two bits per motor were used to maintainnon-zero input vectors in all situations. The thresholds for encodingthe duration of a motor action are related to the speed the robot travelsat (3cms�1) and the dimensions of the enclosure. They are chosen sothat all six \time bins" are selected approximately evenly. This motoraction vector forms the input to the self-organising feature map.Thus, from �gure 5.13 we can see that no information concerningsensor signals is directly presented to the self-organising feature map.The only information available to the network concerns motor actioncommands.It is the sequence of motor action commands that have been issuedprior to the arrival at the particular physical location that enables4Strictly speaking, they contain information about the last command from therobot controller. Whether this command was actually obeyed by the robot or notis not sensed. 144

'
&

$
%Motor Action DurationForward 01 01 00000 less than 0.9sLeft 01 10 00001 0.9 - 1.3sRight 10 01 00011 1.3 - 1.7s00111 1.7 - 2.1s01111 2.1 - 2.6s11111 over 2.6sFigure 5.13: The motor action vector.Alder to recognise the location. To achieve this I used a system of sevenindependent, two-dimensional self-organising feature maps5 working inparallel. The number seven was chosen because during one completecircuit round the enclosure about �fty input vectors are generated.The sampling theorem requires to sample at a rate of at least twicethe highest frequency, say 482 , which allows to use input vector lengthsthat follow a geometrical series: 2,4,8,16. Adding in-between vectorsof length 6, 12 and 24 results in seven distinct input vectors for sevenindependent networks. Each self-organising feature map consists of anetwork of twelve by twelve cells. The input vectors to each of thesenetworks are di�erent, but all are built from motor action vectors asshown in �gure 5.13. By combining 2, 4, 6, 8, 12, 16, and 24 of thesebasic motor action vectors, seven self-organising feature map inputvectors were formed which correspond to increasingly longer historiesof the robots motor action changes (see �gure 5.14).The experiment was conducted like this: the robot was set to wallfollow its way around the enclosure. Every time a new motor actioncommandwas issued as a result of the built-in wall following or obstacle5I chose two-dimensional networks to begin with in order not to restrict thesystem, as I could not know whether it would work at all.145

avoidance behaviour of the robot, a motor action vector as describedbelow was generated. This vector, together with the respective num-ber of previous motor action vectors was presented to each of the sevenself-organising feature maps. After a su�cient time, about �ve timesround the enclosure, these feature maps had organized themselves intostable structures well correlated with the patterns of experience of therobot. After this training period the excitation patterns of all sevennetworks at a particular location (the target patterns) were stored. Allsubsequent sets of seven excitation patterns generated by new inputvectors (object patterns) were then compared to the set of seven targetpatterns. This was done by computing the Euclidean distance (or, al-ternatively, the city-block distance) between pairs of target and objectpatterns (see equation 5.2). If the distance values between each of theseven pairs of object and target patterns are less than a threshold de-�ned for each pair, the robot is taken to have arrived back at the targetlocation and thus to have recognised the previously stored location.In mathematical terms, the system works as follows:1. Compute the output oxyj of each cell at position (x; y) of eachnetwork j: oxyj = ~wxyj �~{j j = 1; :::; 7; (5:1)where ~wxyj is the individual weight vector of cell(x; y) of net-work j, and ~{j is the input vector to network j.2. Compute the distance between target pattern and correspondingobject pattern:(a) Either the Euclidean distance is chosen,dej =vuut 12Xx=1 12Xy=1(oxyj � oTxyj)2; (5:2)146

Compute distance between target and object patterns
If all distances are below threshold, object locationis taken to be identical to target location

XXXXXXXXXXXXXy �������������:6PPPPPPPPPi ���������1ZZZZ} �����36SOFM SOFM SOFM SOFM SOFM SOFM SOFM2 4 6 8 12 16 24Nr. ofMotor-Action-Vectorsin input vector

�
'
&

$
%Object PatternsTarget PatternsThresholds �1 �2 �3 �4 �5 �6 �7�1 �2 �3 �4 �5 �6 �7

Motor Action VectorsFigure 5.14: The system used for location recognition.where oxyj is the output value of cell(x; y) of the objectpattern j, and oTxyj is the output value of cellxy in targetpattern j.(b) Or, the city-block distance is computeddcbj = 12Xx=1 12Xy=1 joxyj � oTxyj j: (5:3)3. Determine whether object location and target location are iden-tical: If dj < �j for all j=1 to 7 then object location and targetlocation are taken to be identical. �j is the threshold for net-work j. For the experiments reported here the �j were chosenby the designer so that patterns obtained at target location and147

patterns obtained at other locations could be separated. Thevalues will, of course, depend on the distance metric chosen.5.3.1 Experimental ResultsThe results6 were these: in the experiments conducted, the robot'stask was to identify three particular corners in the enclosure shown in�gure 5.1: corners H, E and F. To do this, the set of seven excitationpatterns of the seven self-organising feature maps at the target cor-ners were stored; all subsequent sets of excitation patterns were thencompared to these by computing the Euclidean distances between re-spective pairs of patterns in the set of seven.Provided a suitable7 set of thresholds was used, the robot recognisedcorner H four times in the subsequent �ve rounds, and corners E andF in �ve out of the �ve times. At no time was a non-target cornererroneously taken to be the target corner.Instead of using the Euclidean distance to estimate similarity be-tween excitation patterns, the city-block distance can be used withidentical results. City-block distance is computationally cheaper thanEuclidean distance. Instead of using two-dimensional networks, one-dimensional networks can also be used. This considerably reduces thecomputational cost of the scheme. I performed experiments using one-dimensional networks (see appendix C), however because the schemewas still computationally expensive I chose to simplify it before usingit in real time on Cairngorm (see section 5.4).6In this experiment computation was done o�-line, using data obtained fromthe robot.7These suitable thresholds were hand-crafted | the fact these many thresh-olds had to be determined was the reason why I later tried a simpler scheme, seesection 5.4. 148

5.3.2 DiscussionThere are two main conclusions that can be drawn from the experi-ment discussed in this section. First, the claim that sensing and act-ing are closely coupled is con�rmed by the success of the robot inrecognising locations based upon the sequence of motor activity whichleads to arrival there. The \sensor" being used to provide features onwhich the recognition is based is actually the behaviour of the robot.Choosing an input vector that contains no direct information aboutsensory signals makes the system independent of the actual sensorsused. Whether tactile, ultrasonic, infrared or other sensors are used:the location recognition system stays the same. Secondly, with thisapproach the features to be identi�ed by the self-organising featuremaps are spread out over time. This contrasts with the experimentson competence acquisition mentioned in chapter 4 in which the robotcontroller learns instantaneous reactions to sensor stimuli.It is not clear that two-dimensional networks have to be used. I havealso used one-dimensional networks of twenty-�ve units each, with theresult that corners H and E were identi�ed as in the two-dimensionalcase, but that corner F was once confused with another corner, aswell as identi�ed correctly �ve times, as before ([Nehmzow et al. 91b]).It seems, therefore, that at the expense of some reliability, one-dimensional networks could be used, which still makes this schemeseven times as costly in terms of computational load as the previousexperiment (and the following one, which also uses one one-dimensionalnetwork).The biggest problem with this scheme is to determine suitablethresholds. Ideally, if true autonomy is to be achieved, these thresholdsshould be determined by the robot, not by the designer. Even thoughthey could probably be learned in a supervised learning scheme (a149

classi�cation system might be able to learn the necessary thresholds),�nding the right set of thresholds in a space with seven degrees of free-dom is very di�cult and time consuming, �nding a single threshold isfar easier (again, it could be determined through a supervised learningscheme). As this experiment has shown, it is possible to manually �nda suitable set of thresholds, but it was not a straightforward and easything to do.The biggest task of the networks was to distinguish between `inter-esting' motor actions (those that are performed at landmark locations)and uninteresting ones (the motor actions that are a result of ordinarywall following behaviour). Essentially the seven networks performed akind of frequency component analysis on the pseudo-periodic sequenceof input vectors generated as the robot completed circuits of its enclo-sure. In the next section I will present an architecture that performsthe same task | distinguishing between interesting and uninterestingfeatures in the world | but uses only one network, which has the ad-vantage of a lower computational load as well as fewer magic numbers(i.e., thresholds).
150

5.3.3 SummaryThe Experiment at a GlanceTitle of Experiment: Using all motor actions for location recog-nition.Robot used: Alder was used to obtain the data, the computationwas done on a Sun3 workstation.Sensors used: Two tactile sensors, mounted at the front of therobot, and the clock of the controller.Robot behaviour used: Hardwired wall following and obstacleavoidance behaviour.Networks used: Seven independent, two-dimensional self-organising feature maps of 12x12 cells each.Input vectors used: Seven input vectors for the seven networks,containing information about the motor actions the robot per-formed, looking back in history to varying amounts (see �gures 5.13and 5.14).Magic numbers used: Gain � = 0:2; seven independent thresh-olds for location recognition (manually determined and di�cult to�nd).Results and observations: Using a set of seven independent self-organising feature maps, it was possible to recognise locations bymerely using information about all motor actions the robot per-formed. One major task of the networks therefore was to separate`interesting' from `uninteresting' motor actions.
151

5.4 Using \Signi�cant Motor Actions"for Location RecognitionIn section 5.2 I used detected corners, i.e. landmarks, to constructthe input vector that trained the self-organising feature map. If su�-cient information was given in the input vector, the robot was able torecognise locations without di�culty.In order to achieve the same result without prede�ning what alandmark looked like, I then used a system of seven independent self-organising feature maps (previous section) and input information solelybased on the motor actions of the robot to recognise locations. Theidea followed the RUR philosophy of avoiding prede�ned knowledge:no feature detector was needed, features were autonomously recognisedthrough the system of networks. A drawback of this approach wasthat the scheme was at least seven times as expensive in terms ofcomputational load as the previous one (which in our case meant thatit was never tried in real time on the robot; instead, real data wasanalysed o� line on a more powerful computer).The major di�culty, however, is to determine a set of seven (insteadof one) appropriate thresholds that allows the robot to identify anddistinguish locations. The question, therefore, was: could this schemebe altered so that it would still perform the same task, i.e. distinguishbetween \interesting" and \uninteresting" locations, but require fewerthresholds and, as a bonus, be computationally cheaper?As [Barlow 89] argues, redundancy is what drives unsupervisedlearning in the biological world:\Redundancy is the part of our sensory experiences that dis-tinguishes [information] from noise; the knowledge it gives usabout the patterns and regularities in sensory stimuli mustbe what drives unsupervised learning. . . .How can somethingbe recognised as new and surprising if there is no preexisting152

knowledge about what is old and expected?"The di�erence between the maximum rate of presentation of usableinformation and the actual rate at which information is delivered iswhat can be exploited by the animal for learning. There are manyways of �nding regularities in the sensory input; the simplest are mean,variance and covariance. I have used the mean for the experimentsdescribed in this section. By introducing the idea of signi�cant motoractions it was possible to train a self-organising feature map and use theexcitation patterns of the map to recognise locations, without havingto set critical thresholds, and at low computational cost.I de�ne signi�cant motor actions as those motor actions whoseduration exceeds the duration of the average motor action. Similartechniques can be found in biology: pigeons, for example, extract thechanges in air pressure generated by changes in altitude of a few feetby ignoring the total strength and only measuring di�erences aroundsome mean, [Gould 82]. The important di�erence between the exper-iments described here and the experiments described in the previoussection is that here input vectors are only generated when a signi�cantmotor action is performed, not when any motor action is performed.As in the very �rst experiment discussed in section 5.2, I haveagain used a one-dimensional, ring-shaped self-organising feature mapof �fty cells with a neighbourhood region of one node on either side.The robot used was Cairngorm. Cairngorm's controller consists ofthree independent behaviours: an obstacle avoidance, a wall seekingand a mapbuilding behaviour. Obstacle avoidance and wall seeking be-haviour were preprogrammed and �xed in the experiments describedin this chapter | later I combined competence acquisition and map-building (this will be described in chapter 6). Obstacle avoidance wasachieved by de�ning the connections between sensors and actuatorsas shown in �gure 4.9; wall seeking was triggered if the robot hadn't153

received any sensor signal for a preset amount of time. In this case therobot was programmed to turn right until either the left or the rightwhisker touched something.5.4.1 ExperimentsAs the robot makes its way around its enclosure, wall following andavoiding obstacles, the average duration for turn actions is computed.If a turn action occurs which takes longer than the current average(a `signi�cant turn action') an input vector is constructed (see vector1 in �gure 5.16), fed into the self-organising network and the modi-�cation to the weight vectors of the net as de�ned in section 2.4.2 isperformed. After about two to three times round the enclosure theone-dimensional ring develops a stable enough structure to be used torecognise particular locations.When the robot arrives at the location that is to be recognised,a pushbutton switch is pressed and the current excitation pattern ofthe network is stored. This stored pattern is then compared with allsubsequent excitation patterns. If the pattern at the current location ofthe robot is found to be su�ciently similar to the stored one, the robotindicates that it has arrived back at the home location. \Su�cientlysimilar" here means that the city-block distance between the excitationvector at the current location and the excitation vector at the storedlocation is less than 13 of the average distance. 13 is an arbitrarily chosenvalue which gives a high safety margin to avoid confusion with otherlocations. If this value is too big, other locations might be confusedwith the target location, and if it is too small, even the target locationmight not be recognised. The city-block distance � is given by:� = 50Xk=1 josk � ock j; (5:4)154

'
&

$
%�	 - �6���6��?���?�- AA0BCDEFG G0 HFigure 5.15: The experimental enclosure for location recognition.where ~os is the stored excitation pattern, and ~oc is the current excita-tion pattern. Note that here the fact that self-organising feature mapsproduce topological mappings is not exploited, as it is not the indexof the most excited cell that is used for similarity measurement, butthe excitation of the whole network. In the early stages of the self-organising process this o�ers advantages, because even if the networkhas not settled in a state where slightly di�erent inputs belonging toone class will excite the very same unit, they will at least excite sim-ilar units. This can be detected by taking into account the excitationof the whole network. Once the network is stable, index informationalone should su�ce to detect similar input vectors ([Lampinen 91]).This has not been established experimentally, however.5.4.2 The Experimental ResultsThe robot is placed in a simple enclosure, containing right-angled con-vex and concave corners as well as straight walls. Figure 5.15 showsthe layout of the enclosure. The letters indicate locations where a turnaction usually exceeds the average duration and therefore where aninput vector to the self-organising feature map is usually generated.155

2 bits 2 bits 3 bits 2 bits 3 bitsInput vector 1: TAt0 TAt�1 �t0�1 TAt�2 �t1�2Input vector 2: TAt0 TAt�1 �t0�1Input vector 3: TAt0 TAt�1Key: Turn Action, TAt = 0 1 for left1 0 for rightTime Di�erence,(in robot time units)�t = 1 1 1 for 800 < �t0 1 1 for 400 < �t < 8000 0 1 for 200 < �t < 4000 0 0 for �t < 200�t0�1 is the time between Turn Actions at t0 and at t�1.�t1�2 is the time between Turn Actions at t�1 and at t�2.Figure 5.16: Input vector de�nition for the self-organising controller.As can be seen from input vector 1 in �gure 5.16, the informationused as input to the self-organising network consists of the type of thecurrent turn action (right or left), and the types of the previous twoturn actions, together with the elapsed time between each pair.In order to investigate the performance of this location recognitionscheme I used two other input vectors, see input vector 2 and 3 in�gure 5.16, each one containing less information than the previousone. Input vector 2 consists of the types of the current and previousturn actions and the elapsed time between them, and input vector 3consists of just the types of the current and previous turn actions. Theexperimental setup when using each of these three kinds of input vectorwas in all other respects the same.Figure 5.17 shows the location recognition results obtained using156

Location Identi�cations Total no. of VisitsH 3 4B 3 3C 3 3D 3 3E 3 3F 3 3G 3 3G' 2 4A 3 3A' 3 3Figure 5.17: Location identi�cation using input vector 1.input vector 1 (see �gure 5.16)8.The letters refer to the locations shown in �gure 5.15. Except for A0and G0, they correspond to the corners of the enclosure. This is becauseturn actions that take longer than average are produced at these places.The locations A0 and G0 are produced because the robot typically takestwo long turn actions to negotiate these particular places, coming fromcorners A and G respectively.The one missed recognition at corner H occurred early on in therun and was due to the network not having settled down enough fora successful recognition to be registered. The two misses at G0 oc-curred because on these occasions the robot got round corner G withone turn action, and so the region of the self-organising feature mapcorresponding to an input vector having G0, G, and F was not excited8Figures 5.17, 5.19 and 5.21 indicate how often the robot identi�ed the respectivecorner as being identical to the goal location, �gures 5.18, 5.20 and 5.22 show whichcorners were erroneously taken to be identical with the goal location.157

Goal# A A0 B C D E F G G0 HAA0 XBCDEFGG0 XHFigure 5.18: Confused locations when using input vector 1.by any input vector.Figure 5.18 indicates the pairs of locations which were confusedduring the run. This �gure is symmetrical about the diagonal, as onewould expect, however �gures 5.20 and 5.22 are not. This is due tothe occurring variation of input vectors generated en route towards therespective locations, making for example corner G \look like" D, butnot D \look like" G (�gure 5.22).In this case it was only locations A0 and G0 which were confused.This occurs because the input vectors at these locations (built fromH, A, A0 and F , G, G0 respectively) are similar, and thus excite theself-organising network in the same way.Figure 5.19 presents the location recognition results when using in-put vector 2. As can be seen, there is a degradation in performancewith missed locations occurring at D, F , and G. The failure to recog-nise location F here was due to an input vector not being generated atlocation E, thus leading to an `odd' vector at F . This occurred only158

Location Identi�cations Total no. of VisitsH 3 3B 3 3C 3 3D 3 4E 3 3F 3 4G 4 5G0 3 3A 3 3A0 3 3Figure 5.19: Location identi�cation using input vector 2.once and was the result of the inevitable variation in actual behaviourexperienced when using real robots (even simple ones) in a real envi-ronment. This was, however, a one-o� event and never observed tooccur again.The degradation in performance can be seen more clearly in �g-ure 5.20, which presents the pairs of confused locations. The bracketedpairs denote occasional confusions.Reducing the amount of information in the input vector still fur-ther, and using input vector 3, I obtained the results presented in�gures 5.21 and 5.22. Here it becomes obvious that the robot is stillable to recognise locations, but its ability to distinguish certain pairsof them is signi�cantly diminished.As one might expect, the performance of the whole system dependson the information put into the self-organising network. This is thesame observation I made earlier on, when using landmark informationfor location recognition. If the input vector contains insu�cient in-159

Goal# A A0 B C D E F G G0 HA X (X) X XA0 X X XBCDEFG X X (X) XG0 X X XHFigure 5.20: Confused locations when using input vector 2.
Location Identi�cations Total no. of VisitsB 3 3C 3 3D 2 2E 2 2F 2 2G 2 2Figure 5.21: Location identi�cation using input vector 3.160

Goal# A A0 B C D E F G G0 HA X X X X XA0 X X X X XB XC XD X X X X XE XF XG X X X XG0 X X X XH X X X XFigure 5.22: Confused locations when using input vector 3.formation, then reliable location recognition is impossible. From theresults presented above one can see that reducing the information con-tent of the input vector does not a�ect the robot's ability to recognisea non-wall type environmental feature (corners in this case), but itdoes a�ect its ability to di�erentiate some pairs of such locations. Theless informative the input vector, the more locations look the same tothe robot. This is not surprising: people also get confused at times,for example in big o�ce buildings where di�erent oors look identical(unless, of course, they look more closely for landmarks such as roomnumbers).5.4.3 Discussion of this experimentThe experiments described in section 5.3 used a set of seven self-organising two-dimensional networks to get the robot to reliably recog-161

nise (and distinguish between) locations9. Yet in the scheme dis-cussed in this section I only need one one-dimensional network (ring)to achieve similar performance results. This e�ect can be explained byobserving that the new scheme works by �ltering the sequence of mo-tor commands so that only those not generated by following a straightwall are used to build input vectors to the self-organising structure,whereas in the previous scheme the set of seven networks had to dothis �ltering work implicitly.Another way of viewing this is to say that the sequence of motorcommands produced as the robot wall follows its way around the en-closure contains two kinds of structure. One kind occurs at a high fre-quency and is produced by the wall following actions. The other kindhas a lower frequency and is produced by the corners of the enclosure.It is this second type of structure in the motor action commands thatcontains information about signi�cant structure in the robot's environ-ment (corners in this case); the �rst type merely reects the fact thatthe robot's environment has straight walls in it | a rather less usefulpiece of information for location recognition.The architecture discussed in section 5.3 is computationally at leastseven times more expensive than the one discussed here, but a biggerproblem is this: seven appropriate thresholds for the seven networkshave to be found in order to recognise a location. Here this number isreduced to one.To make �nding this threshold even easier and more independentfrom speci�c knowledge, I used an automatic scheme for determiningit. When I �rst started to experiment, the turn action time threshold,used to distinguish wall following actions from other actions, was set byhand. I arrived at the particular threshold value by carefully observing9At the cost of smaller reliability, one-dimensional networks could have beenused. 162

the robot's behaviour and choosing it such that it would di�erentiatebetween motor actions performed at a `signi�cant' location (usually acorner) and those performed elsewhere (while wall following). LaterI implemented the average calculation, thus removing the need forthis magic number to be set by hand (the new magic number I haveintroduced by doing this, namely the the proportion by which theduration of a motor action has to exceed this average to become asigni�cant action, turns out to be not very critical; therefore it is fareasier to set). Using this simple device in the robot means that it doesnot need any prede�ned knowledge about thresholds and signi�cantmotor actions, it �nds out for itself.I could not have used a similar scheme to determine the seventhresholds for the networks used in the previous experiment, becausethe task to `reject' certain locations as insigni�cant is shared betweenthe nets. Some of the seven networks would let an insigni�cant location`pass' (i.e., the di�erence between the excitation pattern at the currentlocation and the stored location is smaller than the threshold for thatparticular network), others wouldn't. There are situations where sixout of seven networks (erroneously) `identify' a location as the storedone, but the seventh network rejects it. This indicates that the set ofseven thresholds has to be carefully chosen, which makes it far moredi�cult to �nd appropriate values than it is in the experiment discussedhere.Obviously, in this experiment the robot is only able to recognisesigni�cant locations. Any location between those signi�cant locationscannot be recognised, because no input vector is generated there. The-oretically, the seven-network architecture can recognise any locationwhere a motor action is performed, even parts of a straight wall.Whether this holds in practice, I have not investigated.A similar threshold value is used in the comparison between the163

stored (`home') excitation pattern and all subsequent patterns. Onceagain, I started by determining the required value for this empiricallyand setting the value in the program by hand. But having devised thesuccessful averaging mechanisms to set the turn action time thresholdI decided to try a similar device for the comparison threshold. Insteadof using a �xed maximal city-block distance between the excitationvectors at stored and current location, the robot uses the average ofall those distances: once the distance is smaller than 13 of the averagethe robot assumes it has arrived back at the stored location. The in-teresting aspect about this is that 13 is no absolute value, but a relativeone. Thus it is less prone to errors due to changes in the robot orenvironment; a relative value is also less critical to set (instead of 13 Icould have chosen 12 or 14 , making the robot less or more selective).In this experiment, the average duration of a motor action was com-puted over all motor actions ever executed by the robot. This meansthat the threshold for distinguishing signi�cant from insigni�cant mo-tor actions will change more at the beginning of an experiment, andless towards the end. Normally, this is a desired e�ect. Being moreunstable at the beginning, the threshold gradually settles to a stablevalue and only persistent, long-term changes in the robot or the envi-ronment will make this value change. This property has proven to beuseful for example when the robots' motor actions become slower dueto decreasing battery charge. Although each turn of Cairngorm thentakes longer, the average duration of a motor action also increases, sothat signi�cant locations are still reliably detected.It is conceivable to keep the robot more `alert' to changes by aver-aging over a time window of limited, rather than in�nite length. Thelength of this time window could be modulated by a novelty detector;if a new situation is detected the time window could be shortened tomake the threshold �nding mechanism more susceptible to the change.164

Whether this would be a good or a bad thing, however, depends uponthe particular task and the particular conditions.

165

5.4.4 SummaryThe Experiment at a GlanceTitle of Experiment: Using signi�cant motor actions for locationrecognition.Robot used: Cairngorm.Sensors used: Two tactile sensors, mounted at the front of therobot, and the clock of the controller.Robot behaviour used: Hardwired wall following and obstacleavoidance behaviour.Network used: A ring-shaped self-organising feature map of �ftyunits.Input vector used: Three di�erent vectors in three related ex-periments, containing information about the sequence of signi�cantmotor actions performed by the robot, as well as information aboutthe time that elapsed since the last signi�cant motor action (see �g-ure 5.16).Magic numbers used: Gain � = 0:2 (not critical); three timethresholds for constructing the input vector (see �gure 5.16), relatedto robot speed and chosen so that all time bins are �lled roughlyequally; a location is identi�ed if the Euclidean distance between itsexcitation pattern and the target excitation pattern is less than 13 ofthe average Euclidean distance between other excitation patternsand the target pattern (this 13 is not a critical value).Results and observations: Again, reliable location recogni-tion was achieved; in this experiment the computational load wasdramatically reduced, compared to the previous experiment (sec-tion 5.3), by introducing signi�cant motor actions. These are motoractions that take longer than an average motor action.166

5.5 Summary and Discussion of the Lo-cation Recognition ExperimentsIn three sets of experiments Alder and Cairngorm have autonomouslyacquired the ability to recognise locations within their enclosure theyhad visited before. The experiments were similar in that they all usedself-organising feature maps to represent the experience space of therobots. They di�ered in the input information used to train the net-works.The �rst set of experiments used information about landmarks totrain the network. These landmarks were detected by the robots byusing a prede�ned wall following behaviour: turn actions exceedingcertain thresholds denote concave or convex corners, the landmarks.The second set of experiments still used the prede�ned wall fol-lowing behaviour, however the information used for self-organisationwas derived from the motor actions the robots performed. Every mo-tor action was taken into account, and a set of seven independentself-organising feature maps was used to separate signi�cant from in-signi�cant motor actions, and to recognise locations.The last set of experiments combined aspects of both previous ex-periments: it used just one network, like in the �rst experiment, and itused signi�cant motor actions as inputs to the self-organising featuremap, as in the second experiment. Unlike the previous experiment,signi�cant motor actions were not detected by a set of seven indepen-dent networks, but by comparing the duration of each motor actionwith the average duration of motor actions. Every motor action thatexceeded this average was denoted a signi�cant one and used as inputinformation to the self-organising feature map.Obviously, I have shown that in the particular experimental setup Ihave used it is possible for mobile robots to recognise places they have167

visited before, using self-organising feature maps. However, two moreinteresting features can be seen here. Firstly, in the earlier experimentsin motor competence acquisition, learning was only possible becauseimmediate feedback about success or failure of a particular action wasavailable to the controller. Such information is not always available,sometimes a sequence of actions has to be performed before successor failure are established. In the location recognition experiments,the robots recognised locations by looking at sequences of landmarksor sequences of motor actions. A particular sequence of these eventswas mapped onto a particular area of the self-organising feature mapand could thus be identi�ed. This mechanism could be very usefulfor future experiments, where an immediate feedback function is notavailable. Secondly, the self-organising feature map can be used to per-form a dimensionality reduction by only taking into account the unitresponding most strongly. This is a great advantage for robots withlimited computing power. Every dimensionality reduction causes lossof information, however the self-organising feature maps perform thisreduction in a way that will keep the most important information: theydetect the dimension in input space with the highest variance (whichhas the highest information content, unless the environment is verynoisy) and project the input space onto the output space along thatdimension. \The map . . .will become aligned along those directions ofthe signal distribution where the variance is most signi�cant. More-over, the map attains a format which conforms to the signal distribu-tion", [Kohonen 82a]. Self-organising feature maps provide a suitablemeans to reduce the dimensionality of high dimensional sensor inputspaces, and are thus able to abstract this input information.Having presented a self-organising controller that enables mobilerobots to autonomously acquire basic motor competences (chapter 4),and having discussed ways of using self-organising feature maps for lo-168

cation recognition, using hardwired motor competences of the robot, itseems natural to combine the two sets of experiments and build a robotcontroller that enables the robot to �rst autonomously acquire motorcompetences, and then use these to train a self-organising feature mapfor location recognition. I am going to discuss such an architecture inthe following chapter.

169

170

Chapter 6Staged LearningAll learning tends to utilize and build on any earlier learning,instead of replacing it, so that much early learning tends to bepermanent; and �nally, that the learning of the mature animalowes its e�ciency to the slow and ine�cient learning that hasgone before, but may also be limited and canalized by it.[Hebb 49]6.1 IntroductionGrowing from \weak to strong" ([McGonigle 91]) is one of the key is-sues in animal learning; this should apply to intelligent robotics as well.What is meant by this phrase is that competences once acquired bythe animal or the robot are utilised in the learning that occurs subse-quently to acquire further competences. The whole learning process isseen as a staged process with genetically programmed steps, built uponeach other and depending on each other. There seems to be biologicalevidence to support this view. [McGonigle 91]:\[A] staged view of human cognitive growth has re-ceived strong support from research in the neurosciences.[Thatcher et al. 87], using EEG phase and coherence mea-sures, have picked up a pattern of growth spurts and consoli-dations in the development of cortico-cortico connections be-tween hemispheres in human brain development seen by them171

as evidence of genetically preprogrammed additions of newneural systems. If so, the results imply that many of the im-portant cognitive leaps forward in development are the mainconsequence of such changes in the nervous system and arethus by `design' and not a consequence of earlier antecedentbehaviours."This says that being intelligent cannot be learned, but is the re-sult of an appropriate (genetic) \program". [McGonigle 91] describesthe process of incrementing intelligent systems by design as a processalong two orthogonal trajectories. The vertical trajectory is the direc-tion of functional hierarchy | this describes the potential abilities ofthe system, such as for example obstacle avoidance or mapbuilding |the horizontal one is the actual implementation of each level of compe-tence. In this sense the self-organising controller discussed in chapter 4,used for motor competence acquisition, is the actual implementation(horizontal trajectory) of motor competences (vertical trajectory). Thesame applies to the self-organising feature map (horizontal) and compe-tence of location recognition (vertical). The traversal along the verticalaxis in biological systems seems to be genetically programmed; in thischapter I present an experiment in which a similar traversal along thevertical axis towards higher levels of competence is executed, based ona pre-programmed (designed-in) decision rule that triggers it.In chapter 4 I have discussed experiments concerning the au-tonomous acquisition of basic motor competences by mobile robots.Through trial and error, the robots were able to associate task-achieving motor actions with particular input stimuli. Because of theirlearning capability, the robots were also able to adapt to circumstanceschanging in unforeseen ways. The learning described in chapter 4 wasof the \stimulus-response" type: an immediate response to an externalstimulus was learned, with no intermediate stages of learning involved.172

Then, in chapter 5, I presented a self-organising controller thatenabled the robots to construct a representation of their environmentand use this representation to recognise locations in their world whichthey had visited before. The input stimuli used to develop the self-organising feature map in the controller were either based on landmarkrecognition (i.e., sensory information, see section 5.2) or on the motoractions performed by the robot (see sections 5.3 and 5.4). In all ofthese experiments in location recognition, a preprogrammed and �xedwall following behaviour was used.It seems logical to combine both sets of experiments into one ex-periment; �rstly this would produce a more exible robot controller(prede�nition limits exibility; if preprogrammed behaviour can beavoided, the robot will be better able to achieve its task in the partic-ular environment it is placed in), secondly we would gain more insightinto how a learning in stages, a learning built on previously acquiredknowledge can be achieved.In this chapter I discuss two experiments that address exactly thisquestion: can previously gained competences be used in subsequentlearning stages, and how is the whole learning process to be structuredin order that the di�erent stages do not interfere with each other?It seems immediately obvious | and the experiments have con�rmedit | that one cannot leave the robot to learn everything at the sametime, in other words it is not possible to have a controller consistingpredominantly of adjustable (plastic) components and hope that \ev-erything will fall into place automatically". As will become clear fromthe following, some �xed structure guiding the staged learning processis needed! 173

6.2 Corridor Following and Maze Learn-ingBefore I attempted to combine the experiments on motor competenceacquisition and location recognition, I conducted an experiment whoseprimary aim it was to �nd out how the learning process could be struc-tured in order that once acquired competences could be used subse-quently. I chose to build a controller that would allow Cairngorm to�rst learn how to follow corridors, and then use this skill to detect junc-tions in a maze which consisted solely of T-junctions. Such a maze isshown in �gure 6.1.'
&

$
%Figure 6.1: A typical maze Cairngorm is able to negotiate.To make the experiment a little more interesting, the robot notonly had to recognise junctions in the maze, but also dead ends. Inaddition to that, the robot was to learn which way to turn at eachjunction in order to move towards the exit on the shortest route. Todo this, the acquired corridor following behaviour was to be used. Ifboth junctions and dead ends could successfully be recognised, the174

robot could be made to learn which way to turn at each junction inorder to �nd the shortest way to the exit: whenever a junction wasdetected, that was the time to take a decision; whenever a dead endwas detected, the decision made earlier was wrong, whenever it wasanother junction the decision made earlier was correct.In order to recognise landmarks such as junctions or dead ends, asuitable method is to consider the time a particular motor action lasts.If the robot is trying to move away from an obstacle, that is if a whiskersensor is on, and the time it takes the robot to come free exceedseither some preset threshold or it is longer than the average of obstacleavoidance actions (see chapter 5.4), with high probability the robot isin a dead end. Similarly, if the robot is trying to touch a wall, thatis if the boredom instinct-rule is triggered, and the time it takes therobot to touch the wall exceeds a preset threshold or is longer than theaverage of wall seeking actions, the robot is most likely at a junction.The problem with this approach is, however, that the learning of thebasic motor competences has to be �nished before landmarks can bedetected in this way. Why is this? As discussed in chapter 4, therobot learns its task-achieving motor actions through trial and error.It will try a particular motor action for a preset amount of time, but ifthe violated instinct-rule does not become satis�ed within this periodthe motor action will be abandoned, and another action will be triedinstead. For detecting landmarks, i.e. locations where motor actionsdo exceed the duration of an average motor action, this is unsuitable.Hence the need to terminate the learning of motor actions at somestage.What would be a suitable criterion for determining when to \freeze"the acquired knowledge and terminate the learning of motor actions? Ichose the following method: in order to behave intelligently the robotought to have encountered every possible input signal constellation at175

least once, but preferably more often than that. The input vectorused to train the Pattern Associator in corridor following is shown in�gure 6.2. Time t Time t-11=Lft. Wh. on0=Lft. Wh. o� 1=Rgt.Wh. on0=Rgt.Wh. o� 1=Lft. Wh. on0=Lft. Wh. o� 1=Rgt.Wh. on0=Rgt.Wh. o�B1 B2 B3 B4'& $%B5:(B1_B2_ _B3_B4)Figure 6.2: The input vector used for corridor following.It has four relevant bits1, which means that the number of di�erentpossible input constellations is sixteen. In practice, however, there areless constellations likely to occur: following a corridor hardly ever willboth whiskers be on, instead it will be either none, or the right, or theleft whisker. This means, at the most, nine di�erent input vectors.As, because of the setup of the controller (as described in chapter 4),it is not possible that both at time t and at time t-1 no whiskers areon, the number of possible di�erent input vectors is eight at the most.Therefore I chose the following rule to determine when to �nish thelearning of motor competences: if the robot has not made a mistakeat all in the choice of motor action eight times in a row, the acquiredknowledge is frozen and subsequently used for landmark detection.6.2.1 ResultsThe main thrust of this �rst experiment in staged learning was to �nda method which would allow the robot to determine autonomously1Bit 5 of the input vector ensures that the input vector is always non-zero, butit is practically never on. 176

when to assume that it has learned the required motor competencesand when, therefore, to freeze the acquired knowledge. The exper-iments show that the guiding rule of eight correct motor actions ina row satis�es this requirement. Cairngorm had always acquired acorrect corridor following behaviour when it decided to terminate thelearning of motor actions and continue with learning correct turns atthe junctions of the maze.Having learned how to follow a corridor, Cairngorm usually de-tected junctions and dead ends successfully. At each junction, therobot incremented an internal counter and made a decision whether toturn left or right (the purpose of the junction counter was to allow therobot to associate particular locations with particular turns, either tothe left or to the right). If subsequently another junction was detected,the decision had been correct, if a dead end was detected it had beenwrong. This way the robot associated the correct turn with each junc-tion and was usually able to move through the maze without error.Occasionally, however, Cairngorm did not detect a junction. This, ofcourse, upset the junction count and all subsequent learning of correctturns. As the main point of this initial experiment was to �nd a crite-rion for deciding when to stop the learning of motor actions, I did nottry to remedy this fact.
177

6.2.2 SummaryThe Experiment at a GlanceTitle of Experiment: Staged learning: corridor following andmaze learning.Robot used: Cairngorm.Sensors used: Two tactile sensors, mounted at the front of therobot, and the internal clock.Motor actions used: Left and right turn.Network used: Two layer Perceptron with �ve input nodes andfour output nodes for acquisition of wall following competence (see�gure 4.21).Input vector used: Five bit input vector containing the status ofthe two whiskers at time t and t-1 for motor competence acquisition(see �gure 6.2).Instinct-rules used: 1.(Move forward!), 2. Keep whiskers quiet!,3. Make whiskers signal after a while!, 4. Make alternate whiskerssignal!Magic numbers used: If the robot has performed the correctcorridor following actions eight consecutive times, the corridor fol-lowing competence is assumed to be established. Gain � = 0:3, asbefore. Both values are not critical.Results and observations: In the �rst phase of the experimentCairngorm successfully acquires the ability to follow corridors. Inthe second phase these motor actions are used to detect junctionsand dead ends. Exploring a maze, detecting such landmarks, therobot then associates each junction with its correct turn.178

6.3 Wall Following and MapbuildingAll the mechanisms required for the �nal experiment are now ex-plained: how to acquire the necessary motor competences in the �rstplace (chapter 4), how to train a self-organising feature map (SOFM)so that it can be used for location recognition (chapter 5), and how todecide when to �nish learning the former and start learning the lat-ter (previous section). All that remained, therefore, was to combinethese mechanisms in one controller. The result hoped for was a robotthat would be able to acquire motor competences autonomously, decidewhen this learning process is accomplished and then use the acquiredskills to construct a representation of its world which it could later useto recognise places again it had once visited.6.3.1 The ExperimentTo learn wall following, obstacle avoidance and dead end escape be-haviour, Cairngorm used the controller described in section 4.4. In the�rst phase of the experiment the robot was placed in region R of theenclosure (see �gure 6.3).
L RemovableABCDEFG H'

&
$
%�� R������ Partition

Figure 6.3: Setup for the experiment in staged learning.The reason why region R is partitioned o� and the robot placed179

there is that here the robot can concentrate, as it were, on learningwall following and dead end escape. Once the learning of these com-petences is accomplished, the robot indicates this by switching on anindicator lamp, and the partition is removed by the experimenter. Asbefore, at this time of the experiment the learning of motor actionsceases and the acquired knowledge is frozen. One question not yet an-swered is how the robot decides when this point is reached. A similarconsideration as in section 6.2 goes as follows: the input vector usedfor acquiring the wall following skill is the one shown in �gure 6.2.In the context of this experiment, that is in a world that containswalls and dead ends, all possible input vector constellations (i.e. six-teen) do actually occur in the real world. Cairngorm's initial learningphase of motor competences is therefore ended when the robot hasmade eighteen (sixteen plus safety margin) correct decisions in a row.Whenever a wrong decision is made, this counter starts again fromzero. After completion of the �rst learning phase, Cairngorm uses theacquired competence, follows the wall and develops the self-organisingfeature map it later uses for location recognition. In the experiment de-scribed here, the robot uses the same setup as described in section 5.4.The input vector used for developing the self-organising feature mapis shown in �gure 6.4; it contains similar information to input vector 2in �gure 5.16 (the only di�erence being that the elapsed time betweensigni�cant motor actions is encoded in two bits, not three).After about �ve minutes in region R the robot has usually learnedto follow a wall and not to get stuck in cul-de-sacs. When the robotfollows a wall on its right hand side, it learns to move right in orderto touch the wall, and to turn left whenever any whisker is touched.It can happen, for rare input stimuli, that the robot turns left insteadof right to �nd the wall, which results in a complete turn of the robot.Afterwards normal operation is resumed; this freak behaviour has no180

Time t Time t-1Motor Action Motor Action Time elapsed1 0 = Left turn0 1 = Right turn 1 0 = Left turn0 1 = Right turn 0 0 for t < 20s1 0 for 20s < t < 40s1 1 for t > 40s
'
&

$
%betw. actionsFigure 6.4: Input vector for self-organising feature map.inuence on the mapbuilding process. The acquired behaviour is veryrobust and in all experiments the robot followed the wall successfully.The mapbuilding process takes about another �ve minutes | thetime it takes Cairngorm to complete about three rounds in its enclo-sure. After this time the self-organising feature map is so stable that itcan be used for location recognition. That the SOFM settles graduallyto a stable state and allows more and more di�erentiation between dif-ferent physical locations in the robot's world is shown strikingly by thefollowing observation. I deliberately marked location B as the locationto be recognised very early on in the self-organising process, long be-fore the network had actually settled into a stable state. Within thesame round the robot took locations E and G to be identical to B. Theconfusion with location E is not too surprising | both B and E areconvex corners, which means that similar motor actions are performedby the robot at these locations (which must have led to the confusion),but location G is quite di�erent. Why B and G got confused is di�cultto explain; I suspect that at such an early stage almost all locationsproduce similar excitation patterns of the self-organising feature map(note that the distance between A and B is about the same as the181

distance between F and G, which means that the travel times will alsobe of similar magnitude). One round later, however, the confusion be-tween B and G had disappeared (only B and E were taken to be samelocation), and the round after that location B was uniquely identi�ed.Once the network was organised, various experiments showed that,for example, locations B, G and H were recognised correctly and notconfused with any other location, and that locations F and D wererecognised correctly, but confused with each other. The latter obser-vation is not surprising, because the input vectors generated at thesetwo locations are identical (see �gure 6.4). They are identical, becauseusually the robot does not generate an input vector at location C,which means that the time that elapses between locations B and D isabout the same as the time between locations E and F.Following page 184 there is a photograph of the experiment. Area Ais the part of the enclosure where the robot acquires the wall followingand dead end escape competences. At the beginning of the experimentthe robot is placed at point B. The �rst two times the robot is lookingfor the wall it turns left (peaks going to the left), after that the robotturns right to touch the wall. At location C the �rst obstacle is inthe way, a facing wall. Cairngorm (incorrectly) turns right, then leftto resume its path. The distance from C to the next corner (the oneunder the letter A) is too short to have any wall seeking action. Theobstacle avoidance on this stretch is correct (slight left curves in thephotograph). Shortly after this corner the robot has forgotten how toseek the wall, it turns left instead of right (peak to the left). Eventu-ally, the robot acquires all necessary competences, they get frozen bythe robot and the partition is removed. The short peaks to the right(very clearly visible at point H) indicate (correct) wall seeking move-ments, curves to the left indicate an obstacle avoiding left turn of therobot. The letters correspond to the following locations in �gure 6.3:182

D = corner B, E = corner D, F = corner F, G = corner H.In summary, this experiment presents a mobile robot that uses itslearning and self-organising capabilites to �rst acquire the necessarymotor competences, and then use these to explore an unknown envi-ronment and recognise locations in this environment. To achieve this,no prede�ned world model or prede�ned map is used, instead the robotuses the �xed and plastic components (instinct-rules, arti�cial neuralnetworks) in its controller to build its own representation of the worldit is interacting with.

183

Following page: Photograph of the experiment on staged learning (ex-planation on page 182).
184

6.3.2 SummaryThe Experiment at a GlanceTitle of Experiment: Staged learning: acquisition of wall followingand obstacle avoidance competences and mapbuilding.Robot used: Cairngorm.Sensors used: Two tactile sensors, mounted at the front of therobot, and the internal controller clock.Motor actions used: Left and right turn.Network used: Two layer Perceptron with �ve input nodes andfour output nodes for acquisition of wall following competence (see�gure 4.21), and a ring shaped self-organising feature map of �ftyunits for location recognition (see �gure 5.3).Input vectors used: Five bit input vector containing the status ofthe two whiskers at time t and t-1 for motor competence acquisition(see �gure 6.2), and a six bit input vector containing informationabout the signi�cant motor actions of the robot (see �gure 6.4).Instinct-rules used: 1.(Move forward!), 2. Keep whiskers quiet!,3. Make whiskers signal after a while!Magic numbers used: If the robot has performed the correct wallfollowing and obstacle avoidance actions eighteen consecutive times,the motor competences are assumed to be established. Gains as inprevious experiments (not critical).Results and observations: In the �rst phase of the experimentCairngorm successfully acquires the ability to follow walls, move awayfrom obstacles and get out of dead ends. In the second phase thesemotor actions are used to train a self-organising feature map for loca-tion recognition. As in previous experiments, Cairngorm successfullyrecognises locations it has visited before.185

6.4 DiscussionThe experiments in motor competence acquisition (chapter 4) and lo-cation recognition (chapter 5) are examples of a robot acquiring asingle competence. Most work on learning in arti�cial intelligence hasfocussed on such learning of single competences. Mobile robots, how-ever, require a number of competences in order to achieve their tasksand stay operational (like, as was the case in the experiment presentedin this chapter, to avoid obstacles, to follow walls and to build maps).I have argued earlier (page 173) that the less the robot controller relieson prede�ned knowledge, the more exible it will be. It is thereforedesirable to let the robot acquire as many of the pre-speci�ed com-petences as possible by itself, rather than used prede�ned knowledge.The experiments presented here are a �rst step towards that goal.In the earlier experiments described in this thesis, the skills of therobots were not only single ones, inevitably they also were de�ned interms of external de�nitions. Instinct-rules provided by the designerguided the process of motor competence acquisition, hardwired sensor-motor connections and �xed mapbuilding and location recognition pro-cedures, again provided by the designer, controlled the experiments inlocation recognition. Here this is no longer the case. The competenceof junction and dead end detection builds on the robot's ability tofollow corridors, the location recognition competence is based on therobot's ability to follow walls, to avoid obstacles and to escape fromdead ends. Later acquired competences are, to some degree, de�nedin terms of earlier acquired ones.
186

Chapter 7Summary and Conclusion7.1 SummaryOne way of controlling a mobile robot is to construct a world modelwithin the robot controller, using information derived from sensor data.This world model can then be used to plan the robot's actions in theworld, to monitor them and to correct them (\Sense, think, act" cy-cle, [Malcolm et al. 89]). In this thesis I have shown that many of thetasks that are achieved by today's mobile robots can be implementedwithout any explicit world model and without planning. I have de-scribed experiments in competence acquisition, conducted with themobile robots Alder and Cairngorm. The robots have controllers thatuse arti�cial neural networks, the competences that these robots haveare acquired, not prede�ned. Instinct-rules guide the learning processin which the robots acquire competences such as obstacle avoidance,wall following, dead end escape and corridor following. Because theseskills are acquired, not �xed, the robots can cope with unforeseen situa-tions: swapped whiskers, changed direction of movement whilst follow-ing a wall, changed environment et cetera will not disable the robot,but merely confuse it for a short while until its behaviour has adapted187

to the new situation.By increasing the amount of information presented to the self-or-ganising controller of Alder and Cairngorm it was possible to improvethe performance of the robots in more than one context: the robotswere able to recognise particular contexts and behave accordingly. Thismeant that for example it was possible for them to learn to avoid obsta-cles and to escape from dead ends, without the two contexts interferingwith each other.In a further set of experiments concerning navigation self-organisingfeature maps were used for location recognition. Here the robots traina self-organising feature map, using sensor signals or motor actions.The excitation patterns developing on the self-organising feature mapare then used for location recognition. This scheme proved to workwell for both the case where input information to the self-organisingfeature map was derived from sensory information, and the case whereit was based on the motor actions of the robot: the robots were ableto extract relevant data from the input signal stream and recogniselocations reliably, even in the presence of noise and variation inherentin the real world.The �nal group of experiments on staged learning combined thetwo sets of experiments mentioned earlier. Here the robot used oneacquired competence for the subsequent acquisition of another one.In the experiments Cairngorm for example �rst learned to follow acorridor, and then used this ability to negotiate a maze successfully.Also, in a second experiment the robot acquired the skill to avoidobstacles, escape from dead ends and follow walls, and then used thisto train a self-organising feature map to recognise locations.188

7.2 Open questionsSome questions concerning competence acquisition for mobile robotshave been answered by the work presented in this thesis, but manyalso have been raised by it. Obviously, I cannot answer them in thisthesis, but I will presently discuss them and make some suggestions asto how they might be tackled.7.2.1 ScalabilityAlder and Cairngorm are simple robots, normally using two tactilesensors, occasionally also odometry, ultrasonic range sensors, pushbut-ton switches or internal clocks. They also have a limited repertoireof motor actions: left and right turn, forward and reverse movement.How the experiments described will scale up is an important issue. Inparticular, I see the following �ve aspects of the issue of scalabilty:1. Connecting more sensors, and of di�erent types,2. using robots with di�erent dynamical properties,3. achieving more behaviours by adding further instinct-rules,4. recognising locations in more complex environments, and5. taking the process of staged learning further.I have argued on page 94 that it is an advantage of the presentedcontroller architecture that the e�ective wiring between sensors andactuators is determined by the robot, autonomously. I believe it wouldpresent no particular problem if more sensors of the same kind wereconnected. The associative memory in the controller would grow insize, increasing the computational load, but a lot1 of sensors could be1Considering the increase in computational load alone, in Alder's case this in-crease can be one order of magnitude. 189

connected before even Alder's performance would be impaired by toobig a network. The advantage, of course, of connecting many sensorsof the same type is in the redundancy this brings; broken or ine�ectivesensors, although no longer contributing towards the eventual motoraction taken by the robot, do not inhibit successful performance: othersensor signals take over. Some work has already been done on this ques-tion of portability and scalability: [Daskalakis 91] successfully imple-mented an instinct-rule based self-organising controller as described inchapter 4 on Lego robots ([Donnett & Smithers 91]), which have moresensors than Alder and Cairngorm, and which are also faster.Similarly, sensors of di�erent type could be connected, the neces-sary sensor fusion would be performed by the associative memory. Theadequate relative weighting of di�erent sensors in the input vector isan interesting research topic that arises in this case; weights ought toreect sensor range, reliability and redundancy in data coming fromdi�erent sensors. It is widely accepted in psychology that in humans,for example, sensors de�nitely have di�erent weights (vision being themost important), and that sensors generate complementary, not re-dundant signals.Increasing the behavioural repertoire of the robots by simply addingfurther instinct-rules is an exciting prospect, it makes the design ofrobot controllers much easier. The question, however, of how to deter-mine the required new instinct-rules is not yet conclusively answered.So far I have used rules of thumb which are intuitively easy to under-stand, but a methodology is as yet lacking. Also, as I have arguedin section 4.6, some arbitration procedure or precedence de�nition be-tween instinct-rules might become necessary if more than one instinct-rule can be active at a time. An interesting, open question thereforeis: how complex and how deeply nested can the robot's behavioursbe, using instinct-rule based controllers as outlined in chapter 4? As a190

further extension to this question it would be interesting to investigatewhether the determination of instinct-rules could be automated.The mapbuilding scheme presented here has only been tried in sim-ple environments. How it would perform in a more complicated envi-ronment (for example an environment where more than one canoni-cal path exists)? What sort of input vectors and what sort of self-organising feature maps should be used? These are open questions. Ibelieve that it is possible to use an architecture as described, for ex-ample, in section 5.4, even in a far more complicated world. The size,and possibly also the dimensionality of the network used will have tobe increased, but in principle it should be possible.For the �rst time the autonomous acquisition of multiple compe-tences in a mobile robot has been presented. I believe that this processcan be extended even further than has been done here, for example themapbuilding process could be consolidated at some point and form thebasis for a further competence, that of map interpretation.7.2.2 RobustnessHow robust are the control architectures presented here? Will the map-building, for example, cope with changing environment, with movingobstacles etc.? The experiments presented here have already shownthat the robots can cope with variation inherent in the world, for theacquisition of motor skills, for example, it is not necessary that therobots receive `perfect' teaching signals in order to learn e�ective map-pings from sensor to actuator space. However, more investigations inthe robustness of these schemes, particularly the mapbuilding scheme,is required to establish more clearly the robustness of this type ofscheme. 191

7.2.3 NavigationAs mentioned before, a true navigational skill requires both locationrecognition and map interpretation. The latter, of course, is not im-plemented in Alder and Cairngorm, which is the reason why the robotscan only reach locations along a canonical path (following the wall oftheir enclosure).I think there is a way of implementing a map interpretation skill inmobile robots, using ideas presented in this thesis. The mapbuild-ing process could be performed exactly as described in chapter 5;then, in a second stage, another connectionist computing architecturecould learn to associate changes of excitation patterns perceived onthe self-organising feature map with motor actions performed by therobot. This would happen in an exploratory phase, until this secondmap, representing the relationship between motor actions and exci-tation centres of the self-organising feature map, is stable. It couldthen be used by the robot for navigation, not only along a canonicalpath, but along an arbitrary path. This idea was �rst mentioned in[Nehmzow & Smithers 91a] (see appendix B).Concerning location recognition and the experiments presented inthis thesis, an important question is how big the self-organising featuremap (SOFM) has to be, and of what dimensionality.I have addressed this question in section 5.2.2 and given some guide-lines on determining the required size and dimensionality. Obviously, itis impossible to map a higher dimensional input space onto a lower di-mensional SOFM whilst preserving all the topology. Nevertheless suchmappings ([Hertz et al. 91, p.238] give an example) might be su�cientfor robot control, it is a question worth investigating.192

SG Cmoveable6?
'
&

$
%DFigure 7.1: The rat intelligence test.7.2.4 Learning SequencesImmediate feedback regarding the success of an action is not alwaysavailable; at times a sequence of actions has to be performed beforesuccess or failure are established. Figure 7.1 shows the rat intelligencetest described by Donald Hebb, in which rats have to �nd the shortestway from S to G. A simple strategy by which to do this well is to followthe right hand wall. However, in terms of actual turns at corners,a sequence of actions has to be performed before the rat arrives atlocation G.The instinct-rule based controller which Alder and Cairngorm useto acquire motor skills is not suitable for learning such sequences. Oneway this might be achieved, though, is to use self-organising featuremaps. In the location recognition experiments, the robots recogniselocations not by the mere properties of these places, but by the historyof events that took place along the way towards that location, in otherwords: by the sequence of events. Similarly, sequences of actions couldbe mapped onto units of a self-organising network, and the excitationpatterns of the network be associated with reward or punishment.193

7.2.5 Adjustable PlasticityThe question of habituation is an important one. Even for the acquisi-tion of single motor competences a consolidation of the learning processmay be desirable, to obtain a more stable behaviour of the robot, pos-sibly also to free computational resources for other tasks. To someextent habituation is a side e�ect of the learning process used in Alderand Cairngorm. The longer consistent input stimuli are received, themore a Perceptron settles in a stable state, and the more `forgetting' isrequired before the network learns a new mapping between input andoutput state.In the experiments in staged learning (chapter 6), however, Cairn-gorm acquires one competence, and then completely freezes the ac-quired knowledge to use it for further learning (this is an extreme formof habituation). That is not necessarily a good thing. Obviously, theadvantage that the robot is able to adapt to changing circumstancesis lost if the learning process is stopped. A more exible approachwould be if some ability for learning fundamental competences alwaysremained, even though it would be tuned down in favour of the learningof more complex tasks. Such a learning might be modulated by a nov-elty detector, increasing the learning rate as soon as unusual events aredetected. As the experiment in staged learning stands at the moment,Cairngorm could cope with for example swapped whiskers as long as itwas still learning to follow a corridor or a wall. As soon as this learningis achieved (and therefore frozen), however, swapped whiskers wouldbe fatal: the robot would be performing the wrong actions, withoutever being able to recover.Adjustable plasticity is also an issue in mapbuilding. A single ob-stacle, encountered during the mapbuilding process, should be ignored.If, however, it is encountered persistently, it should be mapped. Such194

behaviour might be achieved by using a time-dependent gain in thelearning algorithm for the self-organising feature map: the learningrate would become less and less, so that the map would eventuallysettle in a stable state. Again, as suggested above, this gain could bemodulated by a novelty detector.

195

7.3 ConclusionsPeople as designers of robot controllers do not have the experience ofa robot, undeniably so, which makes it impossible for them to reliablydetermine all the features a robot controller will require a priori. Themore dependent on designer-de�ned knowledge a robot controller is,the less exible it will inevitably be when in operation. This work hasmade a number of contributions towards the understanding of how tobuild controllers that allow robots to autonomously acquire single andmultiple task-achieving competences, how to become less dependenton designer-de�ned knowledge and how to achieve higher degrees ofexibility in a world that is noisy and subject to variation.Little work has been done to date on actual implementations oflearning algorithms on mobile robots, two examples of related workare presented in [Mahadevan & Connell 91] and [Maes & Brooks 90].Compared to these, and compared to related simulations of rein-forcement learning architectures ([Kaelbling 90, Prescott & Mayhew,Sutton 91]), the self-organising controller presented in this thesis andimplemented on Alder and Cairngorm o�ers extremely fast learning.Motor competences such as obstacle avoidance, wall following, corri-dor following or dead end escape are learned in two or three learningsteps2, requiring under one minute3 of operation of the robot. Becausethe e�ective wiring between sensors and actuators is autonomously es-tablished by the robot, not prede�ned by the designer, setting up ofrobots is made easier and less prone to error. It could furthermore beshown that the behavioural repertoire of the robots can very easily beexpanded through addition of further instinct-rules; to achieve corri-2More than 2000 learning steps are needed in Obelix' case to learn box �nding([Mahadevan & Connell 91]).3Genghis needs ten minutes to learn to walk, if guiding heuristics are given thelearning process is accelerated to 1' 45" ([Maes & Brooks 90]).196

dor following, for example, an addition of a mere �ve lines of code tothe wall following controller is required. Also, the learning achieved isso fast that it o�ers a viable alternative to rule-based error recoverystrategies ([Penders 89, Spreng 91]), built to improve a robot's abilityto cope with abnormal situations.This thesis presents a novel approach to coping with unforeseensituations in mobile robot control, a topic that has not been addressedbefore. It was shown that, through the interaction of �xed and plasticcomponents in the controller, mobile robots can cope with situationstruly unforeseen by the designer, situations such as changes in therobot morphology, changes in the environment and the task. To copewith unforeseen situations is beyond the scope of rule-based systems,simply because the error situation is by de�nition unidenti�ed and hasnever been encountered before.A reliable and e�ective mapbuilding architecture is presented whichcan be used for location recognition. As before, this process is ex-tremely fast. In an enclosure having eight corners as landmarks, thisarchitecture produces usable maps within twenty-�ve input vector pre-sentations which, at the slow travelling speed of Alder and Cairngorm,takes about �ve minutes. The process is reliable in the presence ofnoise and variation and computationally so cheap that it can be exe-cuted in real time using an eight-bit 8052 microprocessor, programmedthrough a BASIC interpreter.For the �rst time the autonomous acquisition of multiple compe-tences in mobile robots has been presented. Such staged learning is thefoundation of autonomous acquisition of higher level competences, forexample navigation or delivery tasks. Cairngorm learns fundamentalmotor skills such as wall following, and subsequently uses these for theacquisition of further competences, such as for example mapbuilding.These secondary skills are de�ned in terms of the primary skills |197

the robot, for example, recognises junctions in a maze through its pre-viously acquired corridor following behaviour | which means that agrounding of competences in terms of the robot's experience space, notin terms of the designer's de�nitions, is achieved. This is a further stepaway from exibility-limiting prede�nition.The architectures used for the acquisition of motor-sensory skillsas well as the ones used for location recognition (apart from the archi-tecture described in section 5.3) are easy to implement, easy to set upand work reliably, even in the presence of noise and variation.The experiments with Alder and Cairngorm showed not only thatit is possible to let robots acquire the skills they need to stay opera-tional, to build internal representations of their world and to recogniseplaces | they also surprised me at times. More than once the robotsbehaved contrary to my expectations, two examples of such incidentsare mentioned in this thesis. When Alder was programmed to turnaway from a signalling whisker, in many cases it did not oscillate foreverin a dead end, but escaped (page 10). When Alder was programmedto imitate its simulator, Driesh, it also escaped from a dead end, un-like Driesh (page 58). The more I worked with the robots, the moreI realised how di�cult it is to precisely predict what will happen inexperiments with robots, interacting with the world. Today I am evenmore convinced than I was at the beginning of my work that actuallymaking (\real") robots is a good way of building better robots.This thesis has addressed the problem of competence acquisition inautonomous mobile robots. The experimental results presented hereare encouraging and show that autonomous competence acquisition isa suitable way towards intelligent behaviour of mobile robots and theirincreased autonomy and exibility in unforeseen situations.198

Bibliography[Albus 84] J.S. Albus, Robotics, in: M. Brady et al. (eds.), Robotics andArti�cial Intelligence, pp. 65-93, Springer Verlag Berlin, Heidelberg, NewYork, 1984.[Allman 77] John Allman, Evolution of the Visual System in Early Pri-mates, in: Progress in Psychobiology and Physiological Psychology 7,pp.1{53, 1977.[Arkin 89] R. Arkin,Motor Schema Based Mobile Robot Navigation, Intern.J. Robotics Research, August 1989.[�Astr�om 89] Karl Johan �Astr�om, Toward Intelligent Control, IEEE ControlSystems Magazine, April 1989.[Babloyantz 91] Agnessa Babloyantz (ed.), Self-Organization, EmergingProperties, and Learning, Plenum Press, New York 1991.[Barhen et al. 89] J. Barhen, W.B. Bress & C.C. Jorgensen, Applicationsof Concurrent Neuromorphic Algorithms for Autonomous Robots, in Eck-miller and von der Malsburg (eds.), Neural Computers, Springer, Berlin,Heidelberg, New York, 1989.[Barlow 89] H.B. Barlow, Unsupervised Learning, Neural Computation 1,295-311, MIT 1989.[Barraquand & Latombe 90] J�erôme Barraquand andJean-Claude Latombe, A Monte-Carlo Algorithm for Path Planning withmany Degrees of Freedom, Proc. IEEE Robotics and Automation, 1990.[Barto et al. 83] Andrew G. Barto, Richard S. Sutton and Charles W. An-derson, Neuronlike Adaptive Elements that can Solve Di�cult LearningControl Problems, in: IEEE Trans. on systems, man and cybernetics,Vol. SMC-13, No. 5,pp. 834 - 846, September/October 1983.[Barto 90] Andrew G. Barto, Connectionist Learning for Control, in[Miller et al. 90].[Beale & Jackson 90] R. Beale and T. Jackson, Neural Computing: An In-troduction, Adam Hilger, Bristol, Philadelphia and New York, 1990.199

[Beer 90] Randall D. Beer, 1990. Intelligence as Adaptive Behaviour, Aca-demic Press.[Braitenberg 84] Valentino Braitenberg, Vehicles, MIT Press, CambridgeMass. and London, England, 1984.[Brooks 85] Rodney Brooks, A Robust Layered Control System for a MobileRobot, MIT AI Memo 864, 1985.[Brooks 86] Rodney Brooks, Achieving Arti�cial Intelligence through Build-ing Robots, MIT AI Memo 899, May 1986.[Brooks 87] Rodney Brooks, Planning is just a way of avoiding �guring outwhat to do next, MIT working paper 303, September 1987.[Brooks et al. 88] Rodney Brooks, Jonathan Connell and Peter Ning, Her-bert: A Second Generation Mobile Robot, MIT AI Memo 1016. January1988.[Brooks 90a] Rodney Brooks, Challenges for Complete Creature Architec-tures, in: Simulation of Adaptive Behaviour, MIT Press Cambridge Mass.and London, England, 1990.[Brooks 90b] Rodney Brooks, Elephants Don't Play Chess, Robotics andAutonomous Systems 6, 3-15, North-Holland 1990.[Brooks 91a] Rodney Brooks, Arti�cial Life and Real Robots, Proceedingsof 1st European Conference on Arti�cial Life 1991, MIT Press CambridgeMass. and London, England, 1991.[Brooks 91b] Rodney Brooks, Intelligence without Reason, IJCAI 91, pp.569-595.[Canny 86] John F. Canny, A Computational Approach to Edge Detection,in: IEEE PAMI 8(6), pp. 679{698, 1986.[Cartwright & Collett 83] B.A. Cartwright and T.S.Collett, LandmarkLearning in Bees, in: Journal of Comparative Physiology 151, pp. 521-543, 1983.[Churchland 86] Patricia Smith Churchland, Neurophilosophy, MIT PressCambridge Mass. and London, England, 1986.[Clark 87] Andy Clark, 1987. Being there: Why Implementation Matters toCognitive Science, Arti�cial Intelligence Review, Vol 1, pp. 231{244.[Clark et al. 88] Sharon A. Clark, Terry Allard, William M. Jenkins andMichael M. Merzenich, Receptive Fields in the Body Surface Map in AdultCortex De�ned by Temporally Correlated Inputs, Nature 332 (31), pp.444{445, March 1988. 200

[Collett 87] T.S.Collett, Insect Maps, TINS, Vol. 10 No. 4, 1987.[Connell 89] Jonathan Hudson Connell, A Colony Architecture for an Ar-ti�cial Creature, MIT AI TR-1151, 1989.[Daskalakis 91] Nikolas Daskalakis, Learning Sensor-Action Coupling inLego Robots, MSc Thesis, Department of Arti�cial Intelligence, Edin-burgh University, 1991.[De Almeida & Melin 89] R. De Almeida and C. Melin, Exploration of Un-known Environments by a Mobile Robot, in [Kanade et al. 89].[Dickmanns & Christians 89] E. Dickmanns and Th. Christians, Relative3D-State Estimation for Autonomous Visual Guidance of Road Vehicles,in [Kanade et al. 89].[Donnett & Smithers 91] Jim Donnett and Tim Smithers, Lego Vehicles: ATechnology for Studying Intelligent Systems, in [SAB 91].[Durbin & Willshaw 87] R. Durbin and D. Willshaw, An Analogue Ap-proach to the Travelling Salesman Problem, Using an Elastic Net Method,Nature (326) No. 6114, pp. 689-691, 1987.[Fikes et al. 72] R.E. Fikes, P.E. Hart and N.J. Nilsson, Learning and Exe-cuting Generalized Robot Plans, AI, 3 (1972), pp. 251-288.[Flynn & Brooks 88] Anita M. Flynn and Rodney A. Brooks, MIT MobileRobots { What's next?, in: Proc. IEEE Conf. on Robotics and Automa-tion, 1988.[Freund et al. 91] E. Freund, R. Mayr, F. Dierks, U. Judaschke, U.Kernebeck, B. Lammen, Safety Aspects for Autonomous Robot Systems,in [Schmidt 91].[Fr�ohlich et al. 91] C. Fr�ohlich, F. Freyberger, G. Karl and G. Schmidt,Multisensor System for an Autonomous Robot Vehicle, in [Schmidt 91].[Giralt et al. 84] G.G. Giralt, R. Chatila and M. Vaisset, An IntegratedNavigation and Motion Control System for Autonomous MultisensoryMobile Robots, in: Robotics Research, 1st international symposium, pp.191 - 214, 1984.[Goto & Stentz 87] Y. Goto, A. Stentz, The CMU System for Mobile RobotNavigation, in: Proc. IEEE Conf. on Robotics and Automation, 1987.[Gould 82] James L. Gould, Ethology: The Mechanisms and Evolution ofBehavior, W.W. Norton and Co., New York 1982.[Gould & Gould 88] James L. Gould and Carol Grant Gould, The HoneyBee, p. 106, Scienti�c American Library, New York, 1988.201

[Hasler et al. 78] Arthur D. Hasler, A.T. Scholz and R.M. Horrall, OlfactoryImprinting and Homing in Salmon, American Scientist 66 (1978) pp. 347{55; quoted in [Gould 82].[Hebb 49] D.O. Hebb, The Organization of Behavior, Wiley, New York1949.[Hertz et al. 91] John Hertz, Anders Krogh and Richard Palmer, Introduc-tion to the Theory of Neural Computation, Addison Wesley 1991.[Hubel 79] David H. Hubel, The Visual Cortex of Normal and DeprivedMonkeys, American Scientist, 67 No 5, pp. 532{543, 1979.[IEEE 91] Proc. IEEE Conference on Robotics and Automation, Sacra-mento 1991, pp. 674-701, 898-925.[Kaelbling 90] Leslie Pack Kaelbling, Learning in Embedded Systems, Stan-ford Technical Report TR-90-04, June 1990.[Kaelbling 91] Leslie Pack Kaelbling, An Adaptable Mobile Robot, Proceed-ings of 1st European Conference on Arti�cial Life 1991, MIT Press Cam-bridge Mass. and London, England, 1991.[Kacandes et al. 89] Peter Kacandes, Achim Langen and Hans-J�urgen War-necke, A Combined Generalized Potential Fields/Dynamic Path PlanningApproach to Collision Avoidance for a Mobile Autonomous Robot Oper-ating in a Constrained Environment, in [Kanade et al. 89].[Kampmann & Schmidt 89] Peter Kampmann and G�unther Schmidt, Mul-tilevel Motion Planning for Mobile Robots Based on a Topologically Struc-tured World Model, in [Kanade et al. 89].[Kampmann & Schmidt 91] Peter Kampmann and G�unther Schmidt, In-door Navigation of Mobile Robots by Use of Learned Maps, in[Schmidt 91].[Kanade et al. 89] T. Kanade, F.C.A. Groen and L.O. Hertzberger (eds.),Intelligent Autonomous Systems 2, Proceedings of IAS 2, ISBN 90-800410-1-7, Amsterdam 1989.[Khatib 85] O. Khatib, Real-Time Obstacle Avoidance for Manipulatorsand Mobile Robots, IEEE Robotics and Automation 1985.[Kohonen 82a] Teuvo Kohonen, Clustering, Taxonomy and TopologicalMaps of Patterns, Proc. 6th intern. Conf. on Pattern Recognition, Octo-ber 1982.[Kohonen 82b] Teuvo Kohonen Self-Organized Formation of TopologicallyCorrect Feature Maps, Biological Cybernetics 43, pp.59-69, 1982.202

[Kohonen 88] Teuvo Kohonen, Self Organization and Associative Memory,Springer Verlag, Berlin, Heidelberg, New York, 2nd edition, 1988.[Knieriemen & v.Puttkamer 91] T. Knieriemen and E. von Puttkamer,Real-Time Control in an Autonomous Mobile Robot, in [Schmidt 91].[Knieriemen 91] Thomas Knieriemen, Autonome Mobile Roboter, BI Wis-senschaftsverlag, Mannheim, 1991.[Koren & Borenstein 91] Yoram Koren and Johann Borenstein, PotentialField Methods and their inherent Limitations for Mobile Robot Naviga-tion, IEEE Robotics and Automation 1991.[Krogh & Thorpe 86] B. Krogh and C. Thorpe, Integrated Path Planningand Dynamic Steering Control for Autonomous Vehicles, IEEE Roboticsand Automation 1986.[Lampinen 91] Jukko Lampinen, Lappeenranta Institute of Technology,personal communication.[Lee & Drysdale 81] D. Lee and T. Drysdale, Generalization of Voronoi Di-agrams in the Plane, SIAM J. Comput. 10, 1981, pp. 73{87.[Lee & Preparata 84] D. Lee and F. Preparata, Computational Geometry| A Survey, IEEE Trans. on Comp. 33, 1984, pp. 1071{1101.[Levi 87] Paul Levi, Principles of Planning and Control Concepts for Au-tonomous Mobile Robots, in: Proc. IEEE Conf. on Robotics and Automa-tion, p. 874, 1987.[Linsker 88] R. Linsker, Self-Organization in a Perceptual Network, Com-puter, March 1988, 105-117.[Long-Ji 91] Lin Long-Ji, Self-Improving Reactive Agents: Case studies ofReinforcement Learning Frameworks, in: [SAB 91].[McGonigle & Chalmers 77] Brendan McGonigle and Magaret Chalmers,Are Monkeys Logical, Nature, vol 267, pp 694{696, 1977.[McGonigle 91] Brendan McGonigle, Incrementing Intelligent Systems byDesign, in [SAB 91].[McGonigle & Chalmers 92] Brendan McGonigle and Magaret Chalmers,Intelligent systems: A Cognitive Analysis, Columbia Press, in prepara-tion, 1992.[Maes & Brooks 90] Pattie Maes and Rodney Brooks, Learning to Coordi-nate Behaviors, Proc. AAAI 1990.[Mahadevan & Connell 91] Sridhar Mahadevan and Jonathan Connell, Au-tomatic Programming of Behavior-based Robots using ReinforcementLearning, 9th National Conference on Arti�cial Intelligence, AAAI 1991.203

[Malcolm & Smithers 88] Chris Malcolm and Tim Smithers, ProgrammingAssembly Robots in Terms of Task Achieving Behavioural Modules: FirstExperimental Results, Proc. Intern. Adv. Robotics Programme, SecondWorkshop on Manipulators, Sensors and Steps towards Mobility, Manch-ester 1988.[Malcolm et al. 89] Chris Malcolm, Tim Smithers and John Hallam, AnEmerging Paradigm in Robot Architecture, in [Kanade et al. 89].[Malcolm 91] Chris Malcolm, personal communication, 1991.[Marr & Hildreth 80] David C. Marr and Ellen C. Hildreth, Theory of EdgeDetection, in: Proc. R. Soc. London 207, pp. 187{217, 1980.[Martin et al. 90] Fred Martin, Mitchel Resnick and Brian Silverman,Braitenberg Bricks: A Lego-based Creature-Construction Kit, Second Ar-ti�cial Life Conference, February 1990, Center for nonlinear studies,Santa Fe Institute, Santa Fe, New Mexico.[Mataric 91] Maja Mataric, Navigating with a Rat Brain:A Neurobilogically-Inspired Model for Robot Spatial Representation, in[SAB 91].[Mataric 92] Maja Mataric, personal communication, June 1992.[Matlin 89] Margaret W. Matlin, Cognition, Holt, Rinehart and WinstonInc., 2nd edition 1989.[Miller et al. 90] W. Thomas Miller, Richard S. Sutton and Paul J. Werbos(eds.), Neural Networks for Control, MIT Press, Cambridge Mass. andLondon, England 1990.[Minsky & Papert 88] Marvin Minsky and Seymour Papert, Perceptrons,MIT Press Cambridge Mass. and London, England, 1988.[Minsky 88] Marvin Minsky, The Society of Mind, Heinemann, London,1988.[Moravec 88] Hans P. Moravec, Sensor Fusion in Certainty Grids for Mo-bile Robots, in: AI magazine, pp. 61-74, Summer 1988.[Nehmzow et al. 89] Ulrich Nehmzow, John Hallam and Tim Smithers, Re-ally Useful Robots, in [Kanade et al. 89]. See appendix 7.3.[Nehmzow et al. 90] Ulrich Nehmzow, Tim Smithers & John Hallam, StepsTowards Intelligent Robots, DAI Research Paper No. 502, Department ofArti�cial Intelligence, Edinburgh, 1990, presented at Workshop on Cog-nition, Biology and Robotics, Gesellschaft f�ur Mathematik und Daten-verarbeitung (GMD), St. Augustin 1990. See appendix A.204

[Nehmzow & Smithers 91a] Ulrich Nehmzow and Tim Smithers, Mapbuild-ing using Self-Organising Networks, in [SAB 91]. See appendix B.[Nehmzow et al. 91b] Ulrich Nehmzow, Tim Smithers and John Hallam,Location Recognition in a Mobile Robot Using Self-organising FeatureMaps, in [Schmidt 91]. See appendix C.[Nehmzow & Smithers 91b] Ulrich Nehmzow and Tim Smithers, UsingMotor-Actions for Location Recognition, Proceedings of 1st EuropeanConference on Arti�cial Life 1991, MIT Press Cambridge Mass. and Lon-don, England, 1991. See appendix D.[Nehmzow & Smithers 92] Ulrich Nehmzow and Tim Smithers, LearningMultiple Competences: Some Initial Experiments, to be presented atworkshop on \Neural Networks and a new AI" as part of ECAI 92, Vi-enna. See appendix E.[Nilsson 69] N.J. Nilsson, Mobile Automation: An Application of Arti�cialIntelligence Techniques, First Intern. Joint Conf. on Arti�cial Intelligence,Washington DC 1969, pp. 509{520.[Penders 89] J. Penders, Error Recovery in a Robot System, in[Kanade et al. 89].[Pra�ler & Milios 90] E.A. Pra�ler and E.E. Milios, Parallel DistributedRobot Navigation in the Presence of Obstacles, IEEE Symposium on Par-allel and Distributed Processing, Dallas 1990.[Prescott & Mayhew] Tony Prescott and John Mayhew, Obstacle Avoid-ance through Reinforcement Learning, to appear in J.E. Moody, S.J. Han-son and R.P. Lippman (eds.), Advances in Neural Information ProcessingSystems 4, Sam Mateo, Morgan Kaufman, no year.[Rembold 88] Ulrich Rembold, The Karlsruhe Autonomous Mobile Assem-bly Robot, in: Proc. IEEE Conf. on Robotics and Automation, pp. 598{603, 1988.[Rembold & Dillmann 89] Ulrich Rembold and R�udiger Dillmann, TheControl System of the Autonomous Mobile Robot KAMRO of the Uni-versity of Karlsruhe, in [Kanade et al. 89].[Ritter 88] Helge Ritter, Selbstorganisierende neuronale Karten, PhD The-sis, Department of Physics, Technische Universit�at M�unchen, 1988.[Ritter et al. 89] Helge Ritter, Thomas Martinetz and Klaus Schulten,Topology-preserving maps for Learning Visuo-motor-coordination, Neu-ral Networks, Vol. 2 , Pergamon Press, 1989.[Rosenblatt 62] Frank Rosenblatt: Principles of Neurodynamics: Percep-trons and the Theory of Brain Mechanisms, Spartan, Washington DC,1962. 205

[Rumelhart & McClelland 86a] David E. Rumelhart, James L. McClellandand the PDP Research Group, Parallel Distributed Processing, Vol.1\Foundations", MIT Press, Cambridge Mass. and London, England,1986.[Rumelhart & McClelland 86b] James L. McClelland, David E. Rumelhartand the PDP Research Group, Parallel Distributed Processing, Vol.2\Psychological and Biological Models", MIT Press, Cambridge Mass. andLondon, England, 1986[Rumelhart et. al 86c] Rumelhart, Hinton and Williams, Learning InternalRepresentations by Error Propagation, in: Rumelhart and McClelland,Parallel Distributed Processing, MIT Press, Cambridge Mass. and Lon-don, England, 1986.[Rumelhart & McClelland 86d] Rumelhart and McClelland, CompetitiveLearning, in: Rumelhart and McClelland, Parallel Distributed Processing,MIT Press, Cambridge Mass. and London, England, 1986.[SAB 91] Jean-Arcady Meyer and Stewart Wilson (eds.), From Animals toAnimats, Proc. 1st Intern. Conf. on Simulation of Adaptive Behaviour,MIT Press, Cambridge Mass. and London, England, 1991.[Schmidt 91] G. Schmidt (ed.), Information Processing in Autonomous Mo-bile Robots, Springer Verlag, Berlin, Heidelberg, New York, 1991.[Sherry & Schacter 87] D.F. Sherry and D.L. Schacter, 1987. The Devel-opment of Multiple Memory Systems, Psychological Review, vol 94, pp439{454.[Shewchuk & Viola 90] John Shewchuk and Paul Viola, Implementing aLearning System for Subsumption Architectures, IBM, T.J. Watson Lab-oratory, Yorktown Heights, New York, May 7th 1990.[Simon 69] Herbert Simon, The Sciences of the Arti�cial, MIT Press, Cam-bridge MA 1969.[Simon et al. 90] David A. Simon, Lee E. Weiss and Arthur C. Anderson,Self-Tuning of Robot Program Primitives, Proc. IEEE Robotics and Au-tomation 1990.[Skewis et al. 91] T. Skewis, J. Evans, V. Lumelsky, B. Krishnamurthy, B.Barrow,Motion Planning for a Hospital Transport Robot, in: Proc. IEEEConference on Robotics and Automation, Sacramento 1991.[Smithers & Malcolm 87] Tim Smithers and Chris Malcolm, A BehaviouralApproach to Robot Path Planning and O�-Line Programming, DAI Re-search Paper 306, University of Edinburgh 1987, published in Journal ofStructural Learning, Vol. 10, pp. 137{156, 1989.206

[Spreng 91] Michael Spreng, Dealing with Unexpected Situations during theExecution of Robot Motions, in: Proc. IEEE Conf. on Robotics and Au-tomation, 1991.[Steels 88] Luc Steels, Steps towards Common Sense, in: Proceedings ofECAI, 1988.[Steels 89] Luc Steels, Cooperation between Distributed Agents through Self-Organisation, Journal on Robotics and Autonomous Systems, 1989.[Steels 91] Luc Steels, Towards a Theory of Emergent Functionality, in[SAB 91].[Sutton 91] Richard S. Sutton, Reinforcement Learning Architectures forAnimats, in [SAB 91].[Thatcher et al. 87] R.W. Thatcher, R.A. Walker and S. Giudice, HumanCerebral Hemispheres Develop at Di�erent Rates and Ages, Science 256,pp. 1110{1113, 1987.[Torras 91] Carme Torras i Gen�is, Neural Learning Algorithms and theirApplications in Robotics, in [Babloyantz 91].[Tsai et al 90] Je�rey J.-P. Tsai, Mark Metea and John Cesarone, AKnowledge-based Navigation Scheme for Autonomous Land Vehicles, in:Applied Arti�cial Intelligence 4, pp. 1{14, 1990.[Tsubouchi and Yuta 87] T. Tsubouchi and S. Yuta, Map assisted VisionSystem of Mobile Robots for Reckoning in a Building Environment, in:Proc. IEEE intern. Conference on Robotics and Automation, p.1978,1987.[Tyrrell & Mayhew 91] Toby Tyrrell and John Mayhew, Computer Simu-lation of an Animal Environment, in [SAB 91].[Walter 50] W. Grey Walter, An Imitation of Life, Scienti�c American182(5), 42-45, 1950.[Walter 51] W. Grey Walter, A Machine that Learns, Scienti�c American51, 60-63, 1951.[Waterman 1989] Talbot H. Waterman, Animal Navigation, Scienti�cAmerican Library, New York 1989, p.183.[Watkins 89] Christopher J.C.H. Watkins, Learning from Delayed Rewards,PhD thesis, King's College, Cambridge, 1989.[Webster 81] Webster's Third New International Dictionary, EncyclopaediaBritannica Inc., Chicago 1981. 207

[Wehner 76] R�udiger Wehner, Polarized-Light Navigation by Insects, Scien-ti�c American 235 No. 1 (1976), pp.106{115.[Whitehead & Ballard 90] Steven Whitehead and Dana Ballard, ActivePerception and Reinforcement Learning, Neural Computation 2, pp.409-419, 1990.[Willshaw & v.d.Malsburg 76] David Willshaw and Christoph von derMalsburg, How Patterned Neural Connections can be set up by Self-organization, in: Proc. R. Soc. Lond. B, 194, pp. 431{445, 1976.

208

The following appendix contains earlier publications concerning thework reported in this thesis. The presentation of these papers has beenadjusted to the format used in the main part of the thesis, but the texthas remained completely unaltered (in one case I point out a spellingmistake in the original paper). Some diagrams appear slightly di�er-ent to the diagrams used in the original papers, because they becameavailable in machine-readable format later. The information containedin the diagrams remained the same. The photographs referred to insome of the papers are identical to the photographs shown in the mainpart of the thesis, therefore I have not included them in the appendix,but point to the appropriate photograph in the main section.All bibliographic references refer to the bibliography beginning onpage 199.

209

210

Appendix AReally Useful Robots1U. Nehmzow, J. Hallam, T. SmithersDepartment of Arti�cial IntelligenceEdinburgh University

1Published in: T. Kanade, F.C.A. Groen and L.O. Hertzberger (eds.), IntelligentAutonomous Systems, Proceedings of IAS 2, ISBN 90-800410-1-7, Amsterdam 1989.211

A.1 AbstractWe propose a self-organizing type of controller for a mobilerobot. Rather than decompose the control task into subtasksand implement these (an analytic approach) we propose to usecompetence generators which generate, through a process ofself-organization, the necessary competences (a synthetic ap-proach). We have built a mobile robot and equipped it with a�rst version of such a self-organizing controller.A.2 IntroductionControlling a mobile robot can be done in several ways: the classical ap-proach is to equip the robot with control circuits, using feedback loopsand traditional control mechanisms to achieve stable behaviour. This isan analytic approach: the control task is decomposed by the designer intosubtasks which are then implemented, using standard control techniques.Alternatively, there is the synthetic approach: generate the desired be-haviour by combining basic competences, but using a `bottom up' approachrather than a `top down' one. In some sense Rodney Brooks [[Brooks 86],[Brooks 85]] at MIT has chosen this approach by constructing robot con-trollers from simple extended �nite state machines. The synthetic step herehas taken place in the designer's mind.We propose to take this approach one step further: is it possible toimplement the synthesis step within the controller itself? We propose touse competence generators (which are driven by what we call instincts) thatsynthesize the competences necessary for the desired robot behaviour. Thisleads to the crucial questions `What is the relationship between global be-haviour and local action?' and `Which combinations of instincts and gener-ated competences instincts2 produce which local actions?'.In a spatial sense Luc Steels has worked on the �rst question. HisReaction Di�usion Dynamics [[Steels 88]] show intelligent overall behaviour(determining the shortest path between two points on a map, regardless ofobstacles), although only local actions are de�ned (the physics of di�usion).However, for a robot controller, de�nition of spatial relationships alone isnot su�cient: time and causality have to be considered as well.A.3 Self-organising SystemsOne promising approach for combining instincts and plasticity to gen-erate competence is that of self-organizing systems. These have beenproposed by various workers (e.g. Willshaw and von der Malsburg2The word \instincts" is a misprint in the original paper and should deleted.212

[[Willshaw & v.d.Malsburg 76],[Durbin & Willshaw 87]] to account for theautogenesis of topographic mappings in the nervous system). The sys-tem we have used shows properties of both Kohonen's self-organizing net[[Kohonen 88]] and Rumelhart, Hinton and Williams' back propagation net-work [[Rumelhart et. al 86c]]. Therefore we will describe these systems �rst.Kohonen's [[Kohonen 88]] self-organizing system consists of a two-dimensional array of cells which all receive the same input, the input vector~{. Each cell has an individual weight vector ~w, the output o of each cell l isdetermined by the scalar product of input vector ~{ and weight vector ~w:ol = nXj=1 wlj{jwhere n is the number of input lines.Self-organization takes place in the following way: after a stimulus ispresented to the net, one cell is bound to respond most strongly to theparticular stimulus, due to the fact that the initial weight vectors are ran-domly chosen. (All weight vectors are unit vectors, so the cell respondingmost strongly has a weight vector which is closest to the input vector.)The weights of this cell and of the cells in its neighbourhood are updatedaccording to the following formula:wl(tk+1) = wl(tk) + �(tk)[{(tk)� wl(tk)](� is the `gain', initial value typically set at about 0.5). Weight vectorsof cells outside that speci�ed neighbourhood remain unchanged. After anumber of input signal presentations and updates the net will show locallydistant responses for di�erent stimuli, i.e. a mapping has taken place.This self-organizing system is used, for example, in Kohonen's `MagicTV' (�gure 1). The input image is a light spot which is detected by a sim-ple camera. This camera consists of a round photocathode which is dividedinto three equal parts. Depending on the position of the light spot on theinput plane, the three parts of the photocathode will receive di�erent pro-portions of light and therefore emit di�erent electrical signals.These signalsare transferred to the self-organizing system as input signals. A number ofdi�erent input signals are generated, the electrical signals are presented tothe net, and the interesting observation is that after a while the position ofthe light spot on the input plane is reproduced on the net, i.e. cells thatare in a similar position as the input light spot are most excited!We de�ne a linear system as a system where the output is a linearfunction of the input, similarly a non-linear system where the output is anon-linear function of the input. In this sense Kohonen's system is a linearsystem. Non-linear systems might also be interesting for our purposes (seesection 4 of this paper).The classical non-linear neural net, as described for example by Rumel-hart, Hinton and Williams [[Rumelhart et. al 86c]] (see �gure 2), consists213

Self-organizing System����k sLight Spot%%%%wJJ�� ����������� ���� OpticLight sensitive Cell Input Plane'
&

$
%as Output PlaneFigure A.1: The `Magic TV' (after Kohonen)

������������������������������������llllZZZZ���� !!!!!!!!,,,, aaaaaaaallllZZZZ���� !!!!!!!!,,,, aaaaaaaa opiopjOutput LayerHidden LayerInput Layer'
&

$
%Figure A.2: Non-linear Neural Net214

of a layer of input units, a layer of hidden units and one of output units.Input units simply pass the received signals on, the output of the hiddenand the output units is determined by the following non-linear formula:opj = 11 + e�(�j+Pi opiwji)where � is a threshold value.Such a net is not self-organizing, but capable of `learning'. If the desiredoutput vector ~t for a given input vector ~{ is known, then learning can beachieved using back-propagation. The error signal for any output unit isdetermined by �pj = opj(1� opj)(tpj � opj):For hidden units the error signal is given by�pj = opj(1� opj) nXk=1 �pkwkjwhere n is the number of output units.Updating of weights is done according to the following formula:�wji = ��pjopiwji(tk+1) = wji(tk) + �wji(again � is the gain, opi the input to cell {.) Note that here the weightvectors are not unit vectors.For our mobile robot we have used a linear system which shows proper-ties of both approaches mentioned above. Our net consists of a number ofinput units (sensor signals) which are directly connected to a layer of outputunits (motor signals), see �gure 3.Again, input units simply pass the received signals on, the output o ofthe output units is determined byoj =Xi wjiiiwhere ~w is the individual weight vector of each output unit. Note that theweight vectors ~w are unit vectors, as in Kohonen's system. If the desiredoutput vector ~t to a given input vector ~{ is known (this vector is determinedby the robot itself, using a generate-and-test method), updating the weightvectors is done according to the following rule:�wji = �(tj � oj)i{wji(tk+1) = wji(tk) + �wjiand ~w is renormalized after this operation.This formula di�ers from the one used in Kohonen's self-organizing sys-tem in the way the input vector ~{ is taken into account. The expression�(tj � oj)ii is proportional to @E@wji with E =Pj(tj � oj)2:215

��CCCCCeeeeeCCCCC�����%%%%%�����%%%%%�����CCCCC\\\\\ZZZZZZZ �������Sensor Signals
Motor Signals'

&
$
%Figure A.3: Linear Net as used in our Self-Organizing ControllerA.4 Experimental PlatformReal-world situations can never be described completely by models. Thereal world often exhibits highly complex behaviour, therefore there will al-ways be assumptions and simpli�cations that have to be made. For thisreason simulation alone will not su�ce. We are interested in robots inter-acting with the real world. Therefore experiments are very important. Ouraim is to achieve true exibility. The robot ought to be truly autonomous,independent from external knowledge as much as possible. The externalknowledge we supply is reduced to some instincts which generate the ba-sic behavioural patterns of the robot. We do not describe the task or thedesired behaviour of the robot explicitly. The more general the task de-scription is, the more information the robot has to �nd by itself, and themore independent it becomes.As we said earlier: we want to look at a real robot, interacting withthe real world, and being as independent from external knowledge as possi-ble. We have therefore built such a robot, equipped with a self-organizingcontroller and some basic `instincts', and watched it moving around in thereal world. Hopefully our experiments will give us answers to the questions`How is exibility in unknown situations achieved' and `What informationis actually important for the robot, from the robot's point of view?'.A.4.1 Preliminary ExperimentsThe mobile robot we use for our experiments is approximately 30 centime-tres long, 25 centimetres high and 15 centimetres wide. Based on a Fis-chertechnik kit, the robot is equipped with two independent motors that216

Memory Unit ThresholdCritic Random Move---- ---- ----6666��������6
-StartInstinctsSensor Signals Motor SignalsTeaching Signals

Generator
'
&

$
%Figure A.4: Computational Structure of the self-organizing Controllercan be used for driving and steering. The driving wheels are located al-most in the middle of the robot so that it can pivot round its own axis.The self-organizing control algorithm is implemented using an ARC50 com-puter board. This is equipped with an INTEL 8052 CPU, 32k RAM andan EPROM Basic Interpreter. We have eight input and eight outputlinesconnected to a specially designed interface. This I/O Interface reads the sen-sory signals and switches the motors on or o�, according to the signals fromthe computer board. Currently we are using tactile sensors only (whiskers):however, any sort of binary or even analog sensor could be used. Examplesof this are infrared sensors or mercury switches. The power is supplied bytwo lead acid rechargeable batteries, giving us a working time of approxi-mately sixty minutes. These batteries are heavy, therefore the vehicle canmove only slowly (approximately 4cms�1).A.4.2 The Computational StructureTo control this mobile robot we use a self-organizing controller. It con-sists of a memory unit and a critic (see �gure 4). The overall behaviour ofthe robot is inuenced by two instincts:1. Do not touch anything, and2. Move forward, whenever possible.These instincts are part of the critic which decides whether an action was217

successful (robot moved away from obstacle) or not (robot is still in contactwith obstacle).As long as no sensory signals are received (`no obstacle ahead') the sec-ond instinct will make the robot move forward. As soon as any of thewhiskers detects an obstacle, however, this is no longer possible. The robotwill therefore try the action that is stored in its memory unit for that par-ticular constellation of input signals. This action will be performed for awhile, typically about �ve seconds. If the action was successful (i.e. therobot has moved away from the obstacle) all is well and a forward moveis again possible. If, however, the input signals still indicate an obstacle(and this might well be an obstacle other than the original one - the robotmight have moved into more trouble) something else has to be tried. Atthis point a generate-and-test procedure is used, similar to the `associativesearch' of Barto and Sutton [[Barto et al. 83]]. A random move out of eitherthe whole set of possible motor actions or a restricted set of motor actionsis selected. This move is then performed for a period of time. After eachunsuccessful attempt to move away from the obstacle this period of time isextended because we assume that unless the robot moves clear of the ob-stacle it might have moved into even deeper problems. If, by following thismethod, a successfull move has been found, this move is stored in the mem-ory unit. The next time the same set of input signals is detected this newlylearned move will be performed, and hopefully be successfull straightaway.Teaching the memory unit is another task of the critic. (We have used thefollowing teaching method in our experiments: if a move that was recalledfrom memory was successful, that particular move is taught once again, tocon�rm it; if a newly found move is to be learned, it is taught three times.The version of the net we have used has three input units (for three sensors)and four output units. The gain � is 0.2 .)Obviously with twomotors that can move either forward, backward or beswitched o� there are nine possible robot actions. The chances of selectinga `good' move out of this set are smaller than picking a `good' move froma restricted set. Such a restricted set could comprise the following actions:forward, backward, swift left and swift right. However, by restricting theset of possible actions exibility may be reduced as well, because moves areruled out that might be useful under certain circumstances. So far we haveused the full set of robot actions.A.4.3 Experimental ResultsWhen switched on the robot starts moving forward, as long as there is noobstacle in the way. It is thus obeying the second built-in instinct. As soonas an obstacle is detected, the experience of the robot comes in: the robottries the learnt move. In the beginning this move is `do nothing' (becausethe memory is empty), and consequently the robot sits still (which does notsolve the problem). Because the obstacle is still touched, the robot now tries218

another, randomly chosen action out of the set of possible actions. If thisaction proves to be successful, the robot will store it in its internal memory,otherwise yet another action will be tried. We observed that if the robot isleft for some time, trying out moves and learning the good ones, the roboteventually behaves very e�ciently. Without hesitation it turns away froman obstacle, usually using the action that will achieve this the quickest way.There are a few very interesting side observations. For example: itdoesn't matter at all which way you plug in the sensors, or the motors(as long as sensors can be read and motors switched on or o�, of course).Because the system is self-organizing it learns what to do, regardless ofwhether a motor is plugged in `a particular way round' or not. The sameapplies to the sensors: whether a sensor is read on the most signi�cantbit, or the least, or whether it is an infrared sensor or a whisker, does notmatter. And it does not matter how many sensors are actually plugged in.The controller will make use of all the information available. Furthermorewe observed that if a learnt reaction was no longer successful, for examplebecause one of the motors had failed or because the polarity of the wireshad been reversed, the control algorithm would �nd new solutions to complywith the built-in instincts.A.5 DiscussionNetworks - regardless of being linear or non-linear - have the advantage thatthe problem of increased complexity can easily be handled. Adding moresensors or output functions to a self-organizing controller simply means in-creasing the size of the net, but not changing the general structure of thecontroller. In the case of our robot, for example, it means that additionalsensors are simply plugged into the net, the additional information is auto-matically taken into account by the system.Although we have so far used a linear net, we intend to use a non-linear net as described above in the future. Non-linear nets have a highersignal-to-noise ratio than linear nets, which increases their reliability greatly.Due to this we can make use of another propertiy of nets: in networks(both linear and non-linear) associations between input signals and reactionsemerge, even if they have not been explicitly taught. Experiments showthat these emergent associations are in some signi�cant relation to theirinput signals. In other words: some sort of learning without teaching takesplace. The high signal-to-noise ratio of non-linear nets is bene�cial for theinterpretation of such a net output.A.6 ConclusionWe designed a self-organizing controller for a mobile robot. Competencegenerators, governed by instincts, generate the necessary competences (a219

synthetic rather than an analytic approach). We have built a mobile robotwhich serves as a �rst experimental platform. The controller of this robotis equipped with a linear net as a memory unit and a critic which providesteaching signals for the memory.

220

Appendix BSteps towards Intelligent Robots1DAI Research Paper No. 502Ulrich Nehmzow, Tim Smithers and John HallamDepartment of Arti�cial IntelligenceEdinburgh University(ulrich@uk.ac.ed.edai, tim@uk.ac.ed.edai, john@uk.ac.ed.edai)cUlrich Nehmzow, Tim Smithers and John Hallam
1Presented at Workshop on Cognition, Biology and Robotics, Gesellschaft f�urMathematik und Datenverarbeitung (GMD), St. Augustin 1990221

B.1 Abstract\Really Useful Robots", a research project in the domainof mobile robots, investigates new ways of controlling robots inorder to achieve exibility in unforeseen situations. This reportdescribes the underlying ideas and mechanisms of that part ofthis research that has to do with competence generation.We propose a self-organizing type of controller for a mobilerobot. Rather than decompose the control task into subtasksand implement these (an analytic approach) we propose to usecompetence generators which generate the necessary compe-tences, using instincts (a synthetic approach). We have builta mobile robot and equipped it with a �rst version of such aself-organizing controller.B.2 IntroductionControlling a mobile robot can be done in several ways: the classical ap-proach is to equip the robot with control circuits, using feedback loops andtraditional control mechanisms to achieve stable behaviour. This is an ana-lytic approach: the control task is decomposed by the designer into subtaskswhich are then implemented, using standard control techniques.Alternatively, there is the synthetic approach: generate the desired be-haviour by combining basic competences, but using a `bottom up' approachrather than a `top down' one. In some sense Rodney Brooks [[Brooks 86],[Brooks 85]] at MIT has chosen this approach by constructing robot con-trollers from simple extended �nite state machines. The synthetic step herehas taken place in the designer's mind. We propose to take this approach onestep further: is it possible to implement the synthesis step within the con-troller itself? We propose to use competence generators (which are drivenby what we call instincts) that synthesize the competences necessary forthe desired robot behaviour. This leads to the crucial questions `What isthe relationship between global behaviour and local action?' and `Whichcombinations of instincts and generated competences produce which localactions?'. In a spatial sense Luc Steels has worked on the �rst question. HisReaction Di�usion Dynamics [[Steels 88]] show intelligent overall behaviour(determining the shortest path between two points on a map, regardless ofobstacles), although only local actions are de�ned (the physics of di�usion).B.3 Self-organising SystemsOne promising approach for combining instincts and plasticity to gen-erate competence is that of self-organizing systems. These have been222

proposed by various workers (e.g. Willshaw and von der Malsburg[[Willshaw & v.d.Malsburg 76],[Durbin & Willshaw 87]] to account for theautogenesis of topographic mappings in the nervous system, and Kohonen[[Kohonen 88]]).Such a self-organizing system consists, for example, of a two-dimensionalarray of cells which all receive the same input, the input vector ~{ (see �gureA.1).'
&

$
%

Inputvector~{ } } } } } } }} } } } } } }} } } } } } }} } } } } } }} } } } } } }j

� ~{XXXXz ~wjoj =~{ � ~wj'&$% ExampleNeighbourhoodRegionFigure B.1: Self-Organizing NetworkEach cell j has an individual weight vector ~wj, the output oj of each cellj is determined by the scalar product of input vector~{ and weight vector ~wj :oj = ~wj~{with both ~wj and ~{ being normalized.Self-organization takes place in the following way: after a stimulus ispresented to the net, one cell is bound to respond most strongly to the par-ticular stimulus, due to the fact that the initial weight vectors are randomlychosen. (All weight vectors are unit vectors, so the cell responding moststrongly has a weight vector which is closest2 to the input vector.) Theweights of this cell and of the cells in a de�ned neighbourhood (which maydecrease over time) are updated according to the following equation:~wj(tk+1) = ~wj(tk) + �(tk)[~{(tk)� ~wj(tk)]Weight vectors ~w are renormalized after this change. (� is the `gain', ini-tial value typically set at about 0.3). Weight vectors of cells outside thatspeci�ed neighbourhood remain unchanged. After a number of input signal2By euclidean distance. 223

presentations and updates the net will show locally distant responses fordi�erent stimuli, i.e. a mapping has taken place. Such a self-organizingstructure performs a clustering of di�erent input vectors, a statistical anal-ysis.Self-organizing structures perform unsupervised learning. If, however,the ability to store data is needed (`memory'), supervised learning schemesare needed.The error backpropagation network [[Rumelhart et. al 86c]] (see �gureA.2) is an example of this class of arti�cial neural networks.'
&

$
%������������ Input layer��������� Hidden layer������������ Output layerOpjOpiBBBBB BBBBB BBBBB����� ����� ���������� ����� �����BBBBB BBBBB BBBBB����������@@@@@@@@@@@@@@@ @@@@@����� �����""""""""bbbbbbbb bbbbbbbb""""""""Figure B.2: Error back-propagation networkIt consists of a layer of input units, a layer of hidden units and one ofoutput units. Input units simply pass the received signals on, the outputof unit j is determined by the following non-linear equation (this equationapplies to both hidden and output units):opj = 11 + e�(�j+Pi opiwji)where � is a threshold value and Pi opiwji is the overall input to a unit.Such a net is not self-organizing, but capable of `learning'. If the desiredoutput vector ~t (the \target" vector) for a given input vector ~{ is known,then learning can be achieved using back-propagation. The error signal �pjfor any output unit j is determined by�pj = opj(1� opj)(tpj � opj):For hidden units the error signal �pj is given by�pj = opj(1� opj) nXk=1 �pkwkj224

where n is the number of output units.Updating of weights is done according to the following equation:�wji = ��pjopiwji(tk+1) = wji(tk) + �wji(again � is the gain, opi the input to cell {.) Note that here the weightvectors are not unit vectors.For our mobile robot we have used a Perceptron-like [[Rosenblatt 62],[Minsky & Papert 88]] system, a so-called \pattern-associator" (see �gureA.3). '
&

$
%���������������������BBBBB BBBBB BBBBB����� ����� ���������������@@@@@ @@@@@""""""""bbbbbbbb Sensors

Actuators
Figure B.3: Linear Net as used in our Self-Organizing ControllerThe net consists of a number of input units which are directly connectedto a layer of output units. The inputs contain the sensor readings at time t(and, for some applications, also the previous sensor readings), the outputsdenote motor actions.Again, input units simply pass the received signals on, the output oj ofoutput unit j is determined by oj = ~wj~{where ~wj is the individual weight vector of output unit j. Note that theweight vectors ~w are unit vectors. If the desired output vector ~t to a giveninput vector~{ is known (this vector ~t is determined by the robot itself, usinga generate-and-test method), updating the weight vectors is done accordingto the following rule: � ~wj = �(tj � oj)~{~wj(tk+1) = ~wj(tk) + � ~wjand ~w is renormalized after this operation.225

(The expression �(tj � oj)ii is proportional to @E@wji with E = Pj(tj �oj)2:)B.4 Experimental PlatformReal-world situations can never be described completely by models. The realworld often exhibits highly complex behaviour, therefore there will always beassumptions and simpli�cations that have to be made if simulation is to beused. Furthermore, we are particularly interested in exibility in unforeseensituations. Obviously, unforeseen situations cannot be simulated. Thereforeexperiments are crucial. Our aim is to achieve true exibility. The robotought to be truly autonomous, independent from external knowledge asmuch as possible. The external knowledge we supply is reduced to someinstincts which generate the basic behavioural patterns of the robot. We donot describe the task or the desired behaviour of the robot explicitly. Themore general the task description is, the more information the robot has to�nd by itself and the more independent it becomes.As we said earlier: we want to look at a real robot, interacting with thereal world whilst being as independent from external knowledge as possible.We have therefore built such a robot called `Alder'(see page 74), equippedwith a self-organizing controller and some basic `instincts', and watched itmoving around in the real world.Hopefully our experiments will give us answers to the questions `How isexibility in unknown situations achieved' and `What information is actuallyimportant for the robot, from the robot's point of view?'.B.4.1 Preliminary ExperimentsAlder is approximately 30 centimetres long, 25 centimetres high and 15 cen-timetres wide. Based on a Fischertechnik kit, the robot is equipped withtwo independent motors that can be used for driving and steering. Theself-organizing control algorithm is implemented using an ARC52 computerboard. This is equipped with an INTEL 8052 CPU, 16k RAM and anEPROM Basic Interpreter. The eight input and eight output lines avail-able on the ARC52 are connected to a specially designed interface. ThisI/O Interface reads the sensory signals and switches the motors on or o�,according to the signals from the computer board. The eight input linescan be connected to any sort of binary sensor, at the moment the robotis equipped with three tactile sensors, a revolution counter to obtain crudeodometry and an \attention" button which can be pressed by the operator.In addition to these binary sensors the robot has an ultrasonic range �nder,mounted either �xed in front of the base or on a stepper motor. The activerange of this sonar is 25 cm to over 300 cm. The power is supplied by two226

lead acid rechargeable batteries, giving a working time of approximatelysixty minutes. These batteries are heavy, therefore the vehicle can moveonly slowly (approximately 4cms�1).B.4.2 The Computational StructureTo control this mobile robot, we use a self-organizing controller. It consistsof an associative memory and a monitor (see �gure A.4).'
&

$
%Move SelectorAssociative MemoryMonitorInstincts�� �� --6- -- �

ActionSignalActionOrderingSensorSignals Teaching SignalsStatusFigure B.4: Computational Structure of the self-organizing ControllerThe overall behaviour of the robot is inuenced by the following in-stincts, the �rst two achieving the `obstacle avoidance' competence, thethird instinct in conjunction with the �rst two achieving `wall following'behaviour:1. Do not have your whiskers bent2. Move forward, whenever possible,and, only for `wall following' behaviour,3. Do touch something after a while.These instincts are part of the monitor which decides whether an actionwas successful (instincts satis�ed) or not (instincts not satis�ed).For obstacle avoidance competence the robot behaves as follows: aslong as no sensory signals are received (`no obstacle ahead') the secondinstinct will make the robot move forward. As soon as either of the whiskersdetects an obstacle, however, a conict arises with the �rst instinct. The227

robot will therefore try the action that is stored in its associative memory forthat particular constellation of input signals. This action will be performedfor a while, typically about �ve seconds. If the action was successful (i.e.the instincts are satis�ed) all is well and a forward move is again possible.If, however, the input signals still indicate an obstacle (and this might wellbe an obstacle other than the original one - the robot might have movedinto more trouble) something else has to be tried. At this point a generate-and-test procedure is used, similar to the `associative search' of Barto andSutton [[Barto et al. 83]]. The move associated with the output node thatis next strongest in excitation is selected and performed for a period oftime. After each unsuccessful attempt to satisfy all instincts this periodof time is extended because we assume that unless the robot moves clearof the obstacle it might have moved into even deeper problems. If, byfollowing this method, a successful move has been found, this move is storedin the associative memory. The next time the same set of input signalsis detected this newly learned move will be performed, and hopefully besuccessfull immediately. Teaching the associative memory is another taskof the monitor. (The version of the net we have used has three input units(for three sensors) and four output units. The gain � is 0.2 .)Obviously with twomotors that can move either forward, backward or beswitched o� there are nine possible robot actions. The chances of selectinga `good' move out of this set are smaller than picking a `good' move froma restricted set. Such a restricted set could comprise the following actions:forward, backward, swift left and swift right. We have used this restrictedset of robot actions.For wall following behaviour the robot, using all three instincts men-tioned above, behaves like this: Starting, the robot obeys the �rst instinctand moves forward. However, after a �xed period of time (about 4 seconds)the third instinct is no longer met, the robot therefore tries to touch some-thing (the wall). In order to be able to do this the robot has to learn onwhich side the wall is to be found. As soon as the wall is touched, it is thesecond instinct that is no longer satis�ed, and the robot has to get awayfrom the wall. So, for wall following behaviour the robot has to learn twothings: First of all, on which side the wall is, and secondly, how to get awayfrom it.B.4.3 Experimental ResultsWhen switched on Alder starts moving forward, as long as there is no ob-stacle in the way. It is thus obeying the second built-in instinct. As soon asan obstacle is detected, experience comes in: Alder tries the learnt move toget away from the obstacle. If this action proves to be successful, the robotwill store it in its internal memory, otherwise yet another action will betried. We observed that if the robot is left for some time, trying out movesand learning the good ones, the robot eventually behaves very e�ciently.228

Without hesitation it turns away from an obstacle, usually using the actionthat will achieve this the quickest way.In the case of the robot learning to follow a wall, something similarhappens: Initially, Alder's behaviour is not at all goal oriented, actions areselected without reasoning based on previously obtained knowledge. Veryquickly3, however, Alder learns which actions will satisfy its three built-ininstincts and the robot will follow the wall successfully, moving alongsidethe wall in a zig-zag manner.There are a few very interesting side observations. For example: itdoesn't matter at all which way the sensors are connected4, or the motors(as long as sensors can be read and motors switched on or o�, of course).Because the system is self-organizing it learns what to do, regardless ofwhether a motor is plugged in `a particular way round' or not. The sameapplies to the sensors: whether a sensor is read on the most signi�cantbit, or the least, or whether it is an infrared sensor or a whisker, does notmatter. Furthermore it does not even matter how many sensors are actuallyplugged in. The controller will make use of all the information available. Wealso observed that if a learnt reaction was no longer successful (for examplebecause one of the motors had failed or because the polarity of the wires hadbeen reversed), the control algorithm would �nd new solutions to complywith the built-in instincts5.Due to the plasticity built in the controller the robot is able to adaptto a changing environment, too. For example, the robot will discover thebest behaviour for escaping a dead end (which is to turn in one and thesame direction every time either of the front whiskers is touched), even if itentered the dead end with the `wrong' sort of behaviour (for example theobstacle avoidance behaviour, i.e. turning away from a touched whisker).Similarly, the robot will successfully re-learn the wall following behaviour ifit is turned round (which, from the robot's point of view, means that thewall is now \on the other side").B.5 ConclusionWe have designed a self-organizing controller for a mobile robot. Compe-tence generators, governed by instincts, generate the necessary competences(a synthetic rather than an analytic approach). We have built a mobile robotwhich serves as a �rst experimental platform. The controller of this robot isequipped with a linear net as a memory unit and a monitor which providesteaching signals for the memory.3Not more than three trials - this can be inuenced by setting the gainappropriately.4i.e. where left, right and further sensors are plugged into the interface.5Always, of course, within the set of possible actions!229

AcknowledgementsThe work reported here is supported by a grant from the UK Science andEngineering Research Council (grant number GR/F/5852.3). We would alsolike to thank Peter Forster, our colleague on RUR, for helpful comments onearlier drafts of this paper.

230

Appendix CMapbuildingusing Self-Organising Networksin \Really Useful Robots"1Ulrich Nehmzow and Tim Smithers2Department of Arti�cial IntelligenceUniversity of Edinburgh5 Forrest HillEdinburgh EH1 2QLScotlandTelephone 031 - 667 1011 ext 2529/2517Telex 727442 UNIVED GE-mail:ulrich@uk.ac.ed.edai tim@uk.ac.ed.edaiSeptember 1990cU. Nehmzow and T. Smithers, May 19901published in: Jean Arcady Meyer and Stewart Wilson (eds.), From Animals toAnimats, pp. 152{159, MIT Press Cambridge Mass. and London, England, 1991.2Names appear in alphabetical order, with both being principal authors on thisoccasion. 231

C.1 AbstractThe Really Useful Robots (RUR) project is seeking to under-stand how robots can be built that develop and maintain thetask achieving competences they require for exible and robustbehaviour in variable and unforeseen situations, as opposed tothese being installed by their designers. In this paper we presentan experimental autonomous robot with a map building com-petence which uses a self-organising network. Map buildingforms a necessary step on the way to development of a navi-gational competence. Some encouraging initial test results arealso presented.C.2 IntroductionThe traditional approach to control in (mobile) robots is to decomposethe task into separate components, and implement these using standardcontrol techniques, see [Levi 87], for example. This we call an analyticalapproach. Alternatively, a control structure can be built `bottom up', �rstbuilding foundational competences (such as `move around and avoid ob-stacles'), and later on top of these more complicated competences (suchas `explore', `map building', and `map using'). This we call a syntheticapproach, see [Brooks 85], for example.At Edinburgh we have adopted a synthetic approach in what we call the`Really Useful Robots' project (RUR) [Nehmzow et al. 89]. This project isattempting to develop a control architecture which supports the develop-ment of task achieving competences by the robot. In other words, we aretrying to understand how a robot can sequentially acquire and maintainthe behavioural competences it requires, rather than have them `installed'by us as its designers. We believe that this autonomous acquisition of taskachieving competences will lead to greater exibility and robustness in thebehaviour of robots with respect to variable and unforseen situations. In in-vestigating this idea we are motivated and informed by the adaptive controlmechanisms we see in simple animals which result in them having exible,reliable, and robust competences well matched to the tasks they are respon-sible for achieving and to the environment in which they are exercised.Trying to get a robot to acquire the skills it needs means that as manydecisions as possible are left to the robot, rather than being prede�ned bythe designer. Alder, the �rst of the `Really Useful Robots' (see �gure B.6)3,3Alder is a mobile robot whose base is built with a Fischertechnik kit. It isabout 25cm long, has an 8052 based microcomputer on board (16k RAM) and is232

is able to adapt to a changing environment, and to acquire useful compe-tences. It uses what we call �xed and plastic components in its controlarchitecture to achieve this, �xed components being the mechanics of therobot, its shape (morphology), the control program, and its so-called `in-stincts', the plastic component being an arti�cial neural net (in the currentsystem). So far we have successfully demonstrated robot acquisition of sim-ple obstacle-avoidance, dead-end-escape, and wall-following competences.The next stage is to get the robot to develop a navigational competence,using a similar approach. This �rst requires a mapbuilding competence.As in controllingmobile robots, so in mapbuilding a traditional approachcan be taken. The traditional approach either uses some kind of �xed struc-ture that is �lled with information as it is obtained by sensory activities,see,for example, [De Almeida & Melin 89], [Moravec 88], [Goto & Stentz 87]or [Tsai et al 90]. We call these `self detailing schemes'. Alternatively, acomplete `ready-made' map may be provided from the start, see, for exam-ple, [Tsubouchi and Yuta 87], which we call `pre-installed map schemes'. Inthese traditional approaches the structure of the map is de�ned by the de-signer, and so is not necessarily the best to store and retrieve the knowledgethe robot needs to have and can acquire about the world. Here, as well asin controlling robots, prede�ning means limiting. Limiting what is repre-sented by a map is not of itself a problem, but knowing what needs to berepresented and what doesn't is. To get around this problem we think thatthe process of constructing a map should be left, as far as possible, to therobot, not to the designer, the idea being, that a map built by the robot islikely to be more useful to it, than one given to it by its designer.Alder uses a self-organising network (see [Kohonen 88]) to constructinternal representations of the world it experiences as it moves around. Inthis paper we describe how this mapbuilding competence is implementedand some early test results which we believe are encouraging.C.2.1 The place of this paper within the Naviga-tional System of AlderThe plan is to design a navigational system as shown in �gure B.1.Fixed components (as mentioned above) within this structure are thesensors, including the higher level interpretation of incoming data (the topblock in �gure B.1), and the behaviour4 of the robot. Plastic componentsare the self-organising network, as described in section B.3, and an arti�cialneural network which associates particular robot movements in the realequipped with up to seven tactile sensors plus odometer. In addition to this a sonarsensor is available, but has not been used to obtain the results presented in thispaper. More information about Alder and the `Really Useful Robots' approach canbe found in [Nehmzow et al. 89].4`Behaviour' here means any �xed pattern of motor-sensory activity, it is there-fore a `�xed' component of the robot. 233

Convex/ConcaveCorner DetectionSelf-OrganizingNetworkPhysical Movement -Change on Net -Relationship
??-

-Sensor Signals
Robot Movement

Input StimulusSensor InterpretationMapbuildingMap Interpretation
'

&

$

%Figure C.1: The proposed Navigational System of Alderworld with changes in excitation of the self-organising network (the bottomblock in �gure B.1). The combination of all these components forms thenavigation system.This paper discusses only one aspect of this system: mapbuilding, usingself-organising networks (the middle block of �gure B.1).C.2.2 What is a map?We take a map to be any one-to-one mapping (bijection) of a state-space onto map-space. Examples of such maps are the plan of the London Under-ground, the Edinburgh telephone directory, and a family tree. The connec-tions between stations, phone owners and numbers, and family members arerepresented in all these cases. A map is therefore not just a representationof a `birds-eye-view' of the world the robot inhabits.In our RUR project the state-space that is represented using a self-organising network has nothing to do with actual physical locations in thereal world, at least not directly. What is represented by these maps isthe result of previous and present motor-sensory experience of the robot.234

'
&

$
%Inputvector~{ z z z z z z zz z z z z z zz z z z z z zz z z z z z zz z z z z z zj

� ~{XXXz ~wjoj = ~{ � ~wj'&$%ExampleNeighbour-hoodRegionFigure C.2: A two-dimensional self-organising networkThe motor actions and sensory actions of the robot are tightly coupled, sotightly coupled in fact that they cannot be viewed independently of eachother! Therefore the state space represented does in the end have somethingto do with actual physical locations of the robot in the real world, but onlyindirectly through motor-sensory behaviour of the robot.Whenever the term `map' is used in this paper it is used in the sense ofthe de�nition given above, i.e. a bijection of state-space on to map-space.C.3 Self-Organising NetworksUnsupervised learning can be achieved, using self-organising networks[Kohonen 88]. These networks develop internal representations of the inputspace by mapping distinct input vectors onto distinct areas of the network(injection). One advantage of these networks is that they can accept redun-dancy in the input vectors. Redundant information is ignored by the netas long as the input vector contains su�cient information for a meaningfulmapping to be generated. Surplus information does not impair performance.This fact makes it easier to de�ne a suitable input space. Figure B.2 showsan example of a two-dimensional self-organising network.The input vector ~{ is the same for all the cells. The output oj of cell jis determined by the scalar product of input vector ~{ and the weight vector~wj of cell j, and is given by: oj = ~wj~{ (C:1)where ~wj is the individual weight vector of cell j. The weight vectors areunit vectors: jj ~wjjj = 1.Initially, the elements of the weight vectors are set to randomly selectedvalues such that they are all unique. Therefore one cell of the network isbound to respond most strongly to a particular input presented to the net.The weight vector of this maximally responding cell, as well as the weight235

vectors of all the cells within a de�ned neighbourhood around this cell, arechanged according to the following equation:~wj(t+ 1) = ~wj(t) + �(~{� ~wj(t)) (C:2)where � is the so-called `gain', a value that determines the amount of change(typically around 0.5). Weight vectors outside the speci�ed neighbourhood5 remain unchanged.After several `epochs', i.e. presentations of input vectors to the network,typical dissimilar responses appear for dissimilar input vectors. Thus amapping arises, whereby di�erent input vectors are mapped onto di�erentregions of the network (bijection). This therefore is a map according to thede�nition given in section B.2.2.C.3.1 The Self-Organising Network used forMapbuilding in AlderObviously, border e�ects can occur if the network has edges. This can beavoided by joining the opposite edges of the network. In the case of atwo-dimensional network this yields a torus-shaped network.As long as a network with a su�cient number of cells is used 6 it isnot necessary to use a network of the same dimensionality as the space theagent acts in (i.e. although the robot moves in a two-dimensional world,a one-dimensional network can be used to obtain the self-organising state-space-representation). Since the computation for a one-dimensional networkis much less 7, and the computational power of Alder is limited, we used aring of 50 cells as self-organising network (see �gure B.3).The behaviour of this network is as previously described in section B.3,the neighbourhood within which weight vectors are updated is � 2 cells(constant over time). A typical response of the network is shown in �g-ure B.4 (in this �gure the ring is cut and shown as a line).The particular response of the network to a particular input stimulus(i.e. the activity pattern of all the cells of the net) can itself be viewed as avector. This is convenient for later analysis, the particular response vectorto a particular vector is called ~� in this paper.5The neighbourhood size is often chosen to be decreasing over time, in order toachieve quick changes in the beginning, and only little changes later.6A rough calculation to determine the minimum number of cells required: Ifthe network is to represent n distinct states, and the neighbourhood size withinwhich weight vectors of cells are updated is m, then the minimum number of cellsobviously is n � m. However, this is the minimum number, in practice a biggernumber is needed.7The number of necessary weight-vector changes is proportional to nm, wheren is the neighbourhood size and m the dimensionality of the map.236

eeeeeeee eeeeeeeeee e q qqqqq ����) One of 50 cellsqqllLL ~wjJĴoj Input Vector ~i'
&

$
%Figure C.3: The self-organising network used on AlderC.3.2 The Role of Robot BehaviourEnvironment, agent (that is robot), and task are very tightly coupled andcannot be treated individually. This became obvious through the followingobservation:The �rst behavioural pattern the robot showed was to wander aroundrandomly and simply avoid obstacles. Distances travelled between obstaclesand sensor readings obtained were used as input vectors to the net (see alsosection B.3.3). The result was that the ~�s of the net in the settled stateshowed no strong correlation to particular physical locations. This is notsurprising since if we were to wander randomly around a darkened roomavoiding obstacles encountered by feeling them, we too would not build upa good `picture' of the room and what is in it and where.When we changed the robots behaviour to a wall-following behaviourthe results became much more interesting: together with an improved in-put vector (see B.3.3) the ~�s did indeed show a correlation with particularphysical locations in the real world. By adopting wall-following behaviourthe robot negotiated its way around the perimeter of its enclosure and the~�s corresponded to corners.C.3.3 The Input VectorA self-organising network clusters the input information presented to itin a (statistically) meaningful way. If the input to the net contains nomeaningful information (meaningful in relation to the task of constructinga state-space representation of the robot in its world, that is) the networkwill not develop any meaningful structure. The very �rst input vector weused simply contained information about whether the robot had \seen"237

6 -50 Cell Number-11Excitation of Cell'
&

$
%Figure C.4: A typical response of the ring after having settled insomething on its left or on its right hand side, plus information about twoprevious sensor readings (again only whether the obstacle was seen on theleft or on the right), plus odometry information. Such information is tooweak to construct a meaningful state-space representation (at least withoutrequiring a great many input vectors), consequently the ~�s in the settledstate of the net had little correlation with particular locations in the realworld.This was obviously due to a lack of su�cient structure in the inputvector presented to the net. We therefore enriched the input vector bypreprocessing the sensory information obtained. Instead of taking datastraight from the sensors and feeding it into the net, sensor readings wereused to detect convex and concave corners8. This information (whether acorner was encountered, and whether this corner was convex or concave) wasthen used as input to the net. The input vector eventually used to obtainthe results shown in section B.4 contained information about the presentcorner and previous corners encountered as well as the distance travelledbetween the present and the previous corner (An example of such an inputvector is shown in �gure B.5)9.8This is very easily achieved: If the time the robot needs to turn towards thewall exceeds a certain threshold time, then it is assumed that a convex corner isdetected. Similarly, if the time it takes the robot to get away from a detectedobstacle exceeds a certain threshold time, it is assumed that a concave corner isdetected.9Note that it is necessary to encode the information about convex and concavecorners using 2 bits, because arti�cial neural networks can only make use of non-zero input lines (see also equation B.2).238

'& $%This corner Previous corner D/122bits 2bits1 0 = convex0 1 = concave distancebetweenthese cornersFigure C.5: A typical Input VectorC.3.4 A brief summary of the whole mechanism1. Initialise the self-organising network (i.e. the ring) by �lling theweight vectors of all cells with randomly chosen values.2. Normalise all the weight vectors.3. Present an input stimulus to the ring (the input stimuli chosen forour experiments are desribed in section B.3.3).4. Determine the response to this stimulus for each cell of the ring ac-cording to equation (B.1).5. Determine the unit that is responding most strongly.6. Update the weight vectors of the �ve units within a neighbourhoodof � 2 cells of the maximally responding cell, according to equation(B.2).7. Normalise those �ve weight vectors again.8. Continue with step 3.C.4 Experimental ResultsThe experiment was conducted as follows: The robot was placed within afence (see �gure B.6) and allowed to explore it, following the wall for severalrounds.Whenever a convex or concave corner was detected an input vector asdescribed in section B.3.3 was created and presented to the ring. The gain �for updating weight vectors (see equation B.2) was initially very high (5.0)and decreased by 5 per cent after every presentation of an input vector.The longer the robot went around in the enclosure, the more settled the239

'
&

$
%�	 - �6���6��?���?�- ABCDEFG HFigure C.6: A typical environment for Alderring became and the more precise the response to a particular input stim-ulus. After about three rounds a particular corner was marked by pressingthe `attention' button on the robot. The ~� of the ring for that particular(`marked') corner was then stored (~�m), all subsequent ~�s were comparedwith ~�m by calculating jj~� � ~�mjj; the smaller this value, the closer the ~�at that particular corner to ~�m. Obviously, if the robot is able to constructa meaningful internal state space representation this di�erence should besmall when the robot is at the marked corner, and it should be noticeablylarger at any other corner.The input vector chosen will determine the quality of the internal rep-resentation obtained. Only information that is actually contained in theinput vector sequence can eventually be found on the internal map! Theresults we obtained highlight this very clearly:Originally we used an input vector that contained information aboutthe current corner encountered and the previous corner to that one, as wellas the distance travelled between these two corners (this vector is shown in�gure B.5). In �gure B.7 we can see that corner H is uniquely identi�ed,using this input10.It is obvious that corner H is the easiest of all corners to recognize,because of the long distance travelled between corners G and H.Looking at corners C and F, on the other hand, one might expect thatthese corners get confused on the internal map, because both C and Fare concave corners, the previous corner in both cases is convex, and thedistances between them is similar. Exactly this is observed (see �gure B.8).The same applies to corners B and E: they are both convex, both have10The bars in these diagrams show jj ~�m � ~�jj. The smaller this value, the closerthe response of the net to the response the net showed at the marked corner.The bigger this di�erence, the more distinct are the marked corner and the cornercurrently encountered. In other words: the smaller the value, the more alike are240

'
&

$
%Corner H is clearly recognised . . . ABCDEFG H102030 102030102030 102030102030 102030102030 102030Figure C.7: Recognizing corner H, looking at one previous corner'

&
$
%. . .but corners C and F get confused. ABCDEFG H102030 102030102030 102030102030 102030102030 102030Figure C.8: Recognizing corner F, looking at one previous corner241

'
&

$
%. . . corners B and E also get confused. ABCDEFG H102030 102030102030 102030102030 102030102030 102030Figure C.9: Recognizing corner B, looking at one previous cornerprevious corners that are concave, and again the distances between themare similar. Again, our expectations that these two corners might havean identical representation on the resulting map are experimentally veri�ed(see �gure B.9). This confusion of corners C and F and B and E respectivelyarises from the fact that the motor-sensory-space of the robot (input-spaceof the network) is not well coupled to the physical space the robot is actingin. According to the de�nition given in section B.2.2 the resulting networkis indeed a map, but a map of the motor-sensory space rather than thephysical space11.The obvious answer to this problem is to increase the information con-tained in the input vector. Taking the example of corners B and E, evenlooking at two previous corners is not going to avoid confusion of these twocorners, because for both corner B and E the respective previous two cornersare of the same type, and the distances travelled are similar too.To verify our theory we nevertheless used an input vector that containedinformation about the present corner as well as two previous corners: asexpected corners B and E still cannot be distinguished (�gure B.10), andcorners H gives no problems, as before (�gure B.11).Only if the input vector contains information about the present corneras well as the three previous corners do corners B and E have di�erent inputvectors, therefore one would expect the map to be able to distinguish them.marked corner and present corner.11The mapping of the physical space onto map-space here is an injection, thatof the motor-sensory space a bijection.242

'
&

$
%Corners B and E still get confused . . . ABCDEFG H102030 102030102030 102030102030 102030102030 102030Figure C.10: Recognizing corner B, looking at two previous corners

ABCDEFG H3010 30103010 301030103010 3010 3010. . . corner H is still recognized without di�culty
'
&

$
%Figure C.11: Recognizing corner H, looking at two previous corners243

ABCDEFG H3010 30103010 301030103010 30103010 Now corners B and E are distinguished!'
&

$
%Figure C.12: Recognizing corner B, looking at three previous cornersThis is exactly what happens (see �gure B.12)!Again, as in all the previous cases, corner H is recognized without anyproblems (see �gure B.13).These observations show the relationship between input vector andresulting internal representation very clearly, they also show that self-organising networks can be used to generate meaningful internal represen-tations of the world.Another observation we made is that the `certainty' increases with in-creasing experience: jj ~�m(t) � ~�m(t + 1)jj decreases continuously as therobot's experience increases (see �gure B.14).In summary, this is what happened: Having had su�cient time to ex-plore the environment, the robot was able to recognize particular cornersthat had been marked by the experimenter, provided this was theoreticallypossible12. In cases where the input vector presented to the self-organisingnet contained insu�cient information, Alder confused corners that lookedalike, simply because their input vectors were (almost) identical. This isnot surprising. The robot's ability to recognize the marked corner reliablyincreased with experience, jj ~�m(t)� ~�m(t+ 1)jj, the di�erence between ex-citation of the net at the marked corner at time t and excitation at themarked corner at time t+1, decreased continously. It eventually becamezero.12Alder signals the recognition of a marked corner by a swift turn, �rst to theleft and then to the right. 244

ABCDEFG H3010 30103010 301030103010 3010 3010. . . corner H still recognized without di�culty.
'
&

$
%Figure C.13: Recognizing corner H, looking at three previous corners'

&
$
%102030

Figure C.14: jj ~�m(t)� ~�m(t+ 1)jj245

C.5 Comparison with Bee NavigationAs [Cartwright & Collett 83] have found in their experiments, Apis mellif-era use nearby landmarks to guide their way to a food source. \[Bees] donot �nd their way using anything analogous to a oor plan or map of thespatial layout of landmarks and food source. The knowledge at their dis-posal is much more limited, consisting of no more than a remembered imageof what was present on their retina when they were at their destination. ...Bees �nd their way, the experiments seem to say, by continuosly comparingtheir retinal image with their snapshot and adjusting their ight path soas to lessen the discrepancy between the two." We do not claim that themechanism used for landmark learning in Alder is identical to the one usedin bees; however, there are similarities. Like bees, Alder does not generate aoor plan (a conventional map), instead it uses `snapshots' (distinctive ex-citation patterns of the self-organising network as a response to the sensoryinput) to recognize locations.Another similarity to bee navigation is the fact that the mechanism de-scribed in this paper is very robust and fairly immune to noise. `Undetected'corners, varying distance measurements and even moving the robot to a dif-ferent location (without the control algoithm realising this) do not impairAlder's ability to recognize locations. [Cartwright & Collett 83]: \The bee'sguidance system is immune to a considerable amount of noise".C.6 ConclusionBuilding an internal state space representation (a map) is an essential steptowards developing a navigational competence in a mobile robot. We haveshown that it can be achieved, using self-organising networks. Particularinput stimuli result in distinct reponses of the (ring-shaped) self-organisingnetwork, distinct physical locations in the real world can thus be distin-guished, provided that robot behaviour and sensing are well coupled to theenvironment and the task of mapbuilding. The mechanism presented issimilar to the `feature recognition' mechanism used by bees to navigate|bees compare stored retinal patterns to the current retinal pattern to cal-culate a ight direction vector ([Gould & Gould 88] [Waterman 1989] and[Cartwright & Collett 83]).The next step in the RUR project is to develop a network that can learnthe relationships between physical movements in the world and observedactivity changes in the self-organising network (the bottom block shown in�gure B.1), which will make true navigation possible.246

AcknowledgementsThe work reported here is supported by a grant from the UK Science andEngineering Research Council (grant number GR/F/5852.3). We would alsolike to thank John Hallam and Peter Forster, our colleagues on RUR, andMitch Harris for helpful comments on earlier drafts of this paper.

247

248

Appendix DLocation Recognitionin a Mobile Robot1Ulrich Nehmzow, Tim Smithers and John HallamDepartment of Arti�cial IntelligenceUniversity of Edinburgh5 Forrest HillEdinburgh EH1 2QLScotlandE-mail: ulrich@uk.ac.ed.edai
1Published in: G�unther Schmidt (ed.), Information Processing in AutonomousMobile Robots, Springer Verlag, Berlin, Heidelberg, New York, 1991249

D.1 AbstractSelf-organising structures are a dominant feature of the exper-imental mobile robots built in our\Really Useful Robots" project. This paper continues where[Nehmzow & Smithers 91a] �nished. It explains some initialexperiments using self-organising feature maps, and how thosemaps can be used by a mobile robot to recognise locations in itsenvironment. This location recognition capability is achievedwithout using sensory information. Instead information derivedfrom the motor actions of the robot is used, and shown to besu�cient.D.2 IntroductionSelf-organising feature maps (SOFMs), [Kohonen 88], can be used for simplenavigation tasks. In earlier work, [SAB 91], we have shown that \Alder",the �rst of the \Really Useful Robots" (RUR) (see page 74), is able to usea SOFM to recognize particular locations in a simple enclosure after it hashad su�cient time to explore and to \learn" about this enclosure. In theseearlier experiments the input that was presented to the SOFM was derivedfrom sensor signals and contained explicit information about \landmarks"that the robot encountered, and the distance travelled between them. Theselandmarks were the concave and convex corners in the robot's enclosure.In the RUR project, we are investigating ways to make mobile robotsmore exible, and in particular, to make them more able to cope withunforeseen situations. We believe that in order to achieve this as many de-cisions as possible should be left to the robot; in particular decisions aboutwhat and how information derived from sensors or other sources internal tothe robot should be interpreted for the purposes of control in task achievingbehaviour. For the same reason we aim to equip the robot with as little pre-de�ned knowledge about its environment as possible [Nehmzow et al. 89].Information concerning landmarks is specialised information. Therefore, wedecided to try to achieve similar results to those reported earlier, but thistime using less speci�c input information. Whereas before we used processedsensor information (denoting corner types) to achieve location recognition,we now use no sensor information at all! Instead we use information aboutthe history of the motor action commands of the robot controller. In thispaper we describe how we achieved this, again using self-organising net-works. 250

D.3 The Duality of Sensing and ActingSensing and acting are typically treated as separate functions in robotics.We believe, however, that sensing and acting are two aspects of the samefunction, and that they therefore cannot be successfully analysed in isola-tion. The actions of a robot, just like those of a person, determine to a largeextent the sensory signals it will receive, which will in turn inuence its ac-tions. Breaking this tight interaction into two separate functions leads, webelieve, to an incorrect decomposition of the robot control problem. Whileparticular features of a robot's sensors and actuators do play an importantrole in determining its performance, these e�ects cannot be determined bytheir separate analysis. Acting and sensing have to be seen together; neitheracting nor sensing alone will make the agent succeed.The input vector we have chosen for the following experiments demon-strates this point: it contains no direct information about sensory input.The information it does contain is derived from the motor action com-mands of the robot controller, but these, as we have said, are themselvesinuenced by the sensory signals received by the robot as a result of itsactions. We chose to use information derived from the motor action com-mands of the robot controller, rather than from sensor signals, because theyform a smaller set of signal types, they are much less subject to noise, butthey still adequately characterise the interactions between the robot and itsenvironment as it seeks to achieve its task|wall follow, in our case.For the location recognition experiments the robot is placed in an enclo-sure as shown in �gure C.1; it then follows the wall using a preprogrammedwall-following and obstacle-avoidance behaviour (alternatively these skillscould be acquired by learning, see [Nehmzow et al. 89]). In other words,the robot is governed by its preprogrammed wall following behaviour which,of course, does use sensory information. The process of constructing theSOFM is, however, independent of the wall following behaviour, it simply\looks" at the motor action commands issued by the controller as the robotperforms this wall following task.Every time a new motor action command is issued, that is, every timethe wall-following or the obstacle-avoidance behaviour forces the robot tochange direction a motor action vector is generated. This is a nine bitvector which contains information about the state the motors were in untilthis change, and thus the direction the robot has been travelling up to thismoment (forward, left or right)2, as well as information about how long itwas in this state (see �gure C.2). This motor action vector forms the inputto the SOFM.Thus, from �gure C.2 we can see that no information concerning sensor2Strictly speaking, they contain information about the last command from therobot controller. Whether this command was actually obeyed by the robot or notis not sensed. 251

'
&

$
%�	 - �6���6��?���?�- ABCDEFG HFigure D.1: A typical environment for Alder'& $%Motor Action DurationForward 01 01 00000 less than 0.9sLeft 01 10 00001 0.9 - 1.3sRight 10 01 00011 1.3 - 1.7s00111 1.7 - 2.1s01111 2.1 - 2.6s11111 over 2.6sFigure D.2: The motor action vectorsignals is directly presented to the SOFM. The only information availableto the network concerns motor action commands.D.4 Early ExperimentsD.4.1 Self-Organising Feature MapsThe mathematics for the kind of self-organising feature maps (SOFMs) thatwe use can be found in [Kohonen 88] or in [Nehmzow & Smithers 91a]. Basi-cally, they conform themselves to the structure of the space of input signals,clustering input signals in such a way that related inputs excite neighbouringareas of the network (they are topology preserving), and so that the relativesizes of these areas reect the relative probabilities of the di�erent inputs inthe data presented. By making use of these two properties of SOFMs theycan be used to perform a kind of unsupervised learning.252

To investigate how this might be done using only data derived frommotor commands we �rst carried out the following experiment in which weused a two-dimensional SOFM of ten by ten cells.D.4.2 Experiments with a 10 x 10 SOFMThe robot was left to explore its enclosure (�gure C.1) by following the walls,generating input vectors as shown in �gure C.2 each time a new motor actioncommand was issued by the robot controller for any reason. The followingpictures show the response of a ten by ten cell SOFM to di�erent inputstimuli; the terms \right", \left" and \forward" describe the motor actioncommand that was performed, followed by a number that indicates thelength of time for which this action was performed (see �gure C.2).

253

------------ ------------ ------------ ------------|. ..| || |///| | ../////||..| | /..///..| | ..//////| | ../+++//||//.| |++/..///..| |//////////| |/////+*+//||//. ... | |*+/../// | |////////..| |/////+++..||///..... | |+++///// | |//+++///..| |///+++++..||++///.. | |///////. | |//+*+///..| |.//++++/..||*+//. | |/////... | |//+++//...| |.//+++////||++/.. | |/////.....| |./+++/////| |..////////||.. | || | ..././//| | ...///..||.. | || |////| |/...|------------ ------------ ------------ ------------Forward, zero Forward, one Forward, two Forward, three------------ ------------ ------------ ------------| ..//+++| | .//+++| | | | || ...+++++| | ...//+++| | | | ||//../+++++| |....////+*| | | |.. .. ||/////+++//| |....//////| | ..| |..||/////+*+//| |..///+++//| | ..| |..... ...||..///+++//| |..///+++//| | ..| |||..////////| |..////////| |.| | ...////.||..////////| |..///./...| |..........| |..////////|| //...| || |++////..//| |//+*+/////||| || |*+////.///| |//++++////|------------ ------------ ------------ ------------Forward, four Forward, five Left, zero Left, one------------ ------------ ------------ ------------| ...| || | ..///| | ..///||| | ///..| | /////| | .////||..| |.. ..///..| | ./////| | ...///||...//| |...../////| | .///++| | .///++||..///...//| |....//////| | ...///++| | ...///+*|| ///..///| | ..//////| | ...//+++| | ...///++|| ////////| | ../+++++| | .../++*+| | ...//+++|| .///+++++| | ///+*+++| | /.//++++| | .../////||/////+++*+| |..///+++//| |..////+///| |...../////||/////+++++| |..////++//| |..////////| |...../////|------------ ------------ ------------ ------------Left, two Left, three Left, four Left, five------------ ------------ ------------ ------------|*++//.. | |//+*+//. | |///++//...| |..///++/..||++/// | |//+++... | |//+++//...| |../+++//..|| //. | |..+//... | |..+*+/....| |../+*///..|| ... | |..///... | |..+++/.. | |../++///..|| | |..... | |..///... | |.../////..|| | | ... | | ///... | | ...//...|| | | ... | | ///.. | ||| | | ... | | ... | ||| | | | | | | ... || | | | | | | . |------------ ------------ ------------ ------------Right, zero Right, one Right, two Right, three------------ ------------|..///+*///| |...//+*+//||..////////| |..////////|| //+/////| | ////////|| //////..| | ////////|| ...///..| | .../////|| ...///..| | .../////||| |||| | || . | | . || | | |------------ ------------Right, four Right, five254

The �gure is shown on page 254Figure D.3: Excitation patterns of the SOFM for di�erent types ofmotor action vector inputs. The cell with the largest excitation isindicated by *", \+" means that the excitation of a cell is higher than0.9, \/" denotes excitations between 0.9 and 0.7 and \." excitationsbetween 0.7 and 0.5.Two observations can be made from these pictures of the response ofthe SOFM to di�erent types of input vector:� The size of the excited area is roughly proportional to the frequencyof occurence of the input signal that caused the excitation.� Related inputs excite neighbouring areas. In this example, we cansee that \forward" movements stimulate the central region of thenetwork, \left" movements stimulate the lower region and \right"movements the top region of the net. Within these basic regionsthere are variations, depending on the duration of the movement.Topographic mappings such as these are common in biological nervoussystems. The striate cortex, for example (one part of the visual system ofprimates) is organized in topographic fashion, each half of the visual �eld (ofa macaque monkey) is projected onto the striate cortex in a systematic map[Hubel 79]. [Churchland 86] gives a good survey of topographic mappingsin neural systems (for topographic mappings of the visual cortex see, forexample, [Allman 77]).Similarly, somatotopic3 maps can be found in the cortex. Very simi-lar observations to those stated above can be made about such biologicalsystems, ([Churchland 86]):� Map distortion is based on the population of neurons representing aparticular body area. Areas with a higher density of receptors arebigger. [A higher density of receptors will result in a greater numberof sensory signals].� A precise mapping of the body surface onto neurons of the somatosen-sory cortex is found. Neighbourhood relations of body parts are pre-served.If the nature of input stimuli is altered, for example by joining two�ngers of a hand together, the mapping in the somatosensory cortex changesaccordingly, see ([Clark et al. 88]).The question that arose for us from these observations was: \Can weuse this sort of SOFM to achieve location recognition?" In other words, can3From �~!��, body. What is meant here is that touch, pressure, vibration,temperature and pain sensors are mapped onto the cortex in an orderly fashion.255

the mapping of di�erent motor action types onto di�erent regions of theSOFM network, as shown in �gure C.3, be used in a system for recognisinglocations? Our tentative answer is that it seems they can be. In the nextsections we explain experiments we devised to do this, the system we �nallyused and the experimental results of the tests we have carried out so far.D.4.3 Location Recognition, using one SOFMHaving done these initial experiments with a ten by ten cell SOFM, us-ing the motor action vectors directly as an input to the network, we thentried to combine several of these vectors as input to a network of twelve bytwelve cells. The idea was that the response of the network would be cor-related with Alder's arrival at a physical location, thus allowing the robotto recognize particular locations. As it turned out, the number of motoraction vectors within an input vector that gives best recognition resultsvaries from location to location. Some locations are easy to identify usingjust a short history (i.e. small numbers of combined motor action vectors),others need a longer history (i.e. a large number of combined motor actionvectors). There was no one length of input vector which gives equally goodrecognition performance with all the corners in the robot's enclosure.In retrospect, this is not a particularly surprising result. The meansby which locations are identi�ed | their \signatures" | are patterns ofactions extended over time. As the rate at which motor action commandsare issued goes up at corners (obstacle avoidance), the temporal scale ofthese signatures is dependent upon the distances between corners. In or-der to be able to identify arbitrary locations it is therefore necessary touse input vectors of di�erent lengths. A �xed size of input vector, what-ever it is, will either include extraneous information (complicating the taskof the SOFM) or miss possibly crucial signature components (eliminatingnecessary distinctions).In some respects, the problem is similar to that encountered in theanalysis of natural images in vision: the data is intrinsically multiscalar(though here it is temporal scale that is critical) and so must be subjectedto amultiscalar analysis (for this analysis in images see [Marr & Hildreth 80]and [Canny 86]). This motivated our next experiments, in which di�erentsized histories of actions were presented to separate SOFMs in parallel.D.5 A SOFM Location Recognition Sys-temAs in our earlier work on location recognition (see [SAB 91]), the methodused is one in which location recognition is based upon the robot recognisingits arrival at some location. In other words, location recognition is notbased upon recognizing some structural feature of the particular physical256

location, but on the sequence of actions that have taken place prior toarriving at the particular location. In our earlier work it was the sequenceof previous features (corners) that had been detected immediately prior tothe current feature (corner) that was used to determine recognition. Inthis work it is the sequence of motor action commands that have beenissued prior to the arrival at the particular physical location that enableAlder to recognize the location. To achieve this we used a system of sevenindependent, two-dimensional SOFMs, working in parallel. Each SOFMconsists, as in section C.4.3, of a network of twelve by twelve cells. Theinput vectors to each of these networks are di�erent, but all are built frommotor action vectors as shown in �gure C.2. By combining 2, 4, 6, 8, 12, 16,and 24 of these basic motor action vectors we formed seven SOFM inputvectors which correspond to increasingly longer histories of the robots motoraction changes, (see �gure C.4).The lengths of histories are chosen to cover adequately the expectedspectrum of action periodicity. If we think of the sequence of actions gen-erated as the robot circles its enclosure as a pseudo-periodic series, withperiod roughly equal to the average number of action-vectors generated in asingle circuit, then the use of SOFMs tuned to di�erent \frequency bands"allows us to sample the temporal structure of the series across its spectrumand associate these samples with the physical locations whose signaturesthey are.In other words, the set of excitation patterns of the seven SOFMs pro-duced as the robot arrives at a particular location (a corner, say) in itsenclosure can be used to distinguish this location from all other locationsthe robot passes through as it wall-follows its way around the enclosure.D.5.1 The ExperimentThe robot was set to wall-follow its way around the enclosure. Every timea new motor action command was issued as a result of the built in wall-following or obstacle avoidance behaviour of the robot, a motor action vectoras described in section C.3 was generated. This vector, together with therespective number of previous motor action vectors was presented to eachof the seven SOFMs. After a su�cient time, about �ve times round theenclosure, these feature maps had organized themselves into stable struc-tures corresponding to the topological interrelationships and proportionaldensities of the input vectors.After this \learning" period the excitation patterns of all seven networksat a particular location (the target patterns) were stored. All subsequentsets of seven excitation patterns generated by new input vectors (objectpatterns) were then compared to the set of seven target patterns. This wasdone by computing the Euclidean distance (or, alternatively, the city-blockdistance) between pairs of target and object patterns, see equation C.2 insection C.5.2. If the distance values between each of the seven pairs of257

'
&

$
%SOFM SOFM SOFM SOFM SOFM SOFM SOFM2 4 6 8 12 16 24���Nr. ofMotor-Action-Vectorsin Input VectorObject patternsTarget patternsThresholds � � � � � � �

Motor-Action-VectorsXXXXXXXXy PPPPPPi @@I 6����*������1��������:Compute distance between target and object patternsIf all distances are below threshold object locationis taken to be identical to target location
Figure D.4: The System used for Location Recognitionobject and target patterns are less than a threshold de�ned for each pair,the robot is taken to have arrived back at the target location and thus tohave \recognized" the previously stored location.D.5.2 The MathematicsIn mathematical terms, the system works as follows:1. Compute the output oxyj of each cell at position (x; y) of each net-work j: oxyj = ~wxy �~{j j = 1; :::; 7; (D:1)where ~wxy is the individual weight vector of cell(x; y), and ~{j is theinput vector to network j.2. Compute the distance between target pattern and corresponding ob-ject pattern:(a) Either the Euclidean distance is chosen,dej = 12Xx=1 12Xy=1(oxyj � oTxyj)2; (D:2)where oxyj is the output value of cell(x; y) of the object patternj, and oTxyj is the output value of cellxy in target pattern j.258

(b) Or, the city-block distance is computeddcbj = 12Xx=1 12Xy=1 joxyj � oTxyj j: (D:3)3. Determine whether object location and target location are identical:If dj < �j for all j=1 to 7 then object location and target locationare taken to be identical. �j is the threshold for network j. Forthe experiments reported here the �j were chosen by the designerso that patterns obtained at target location and patterns obtainedat other locations could be separated. Note that the actual valueswill, of course, depend on the distance metric chosen. Schemes canbe devised that determine these thresholds automatically, but notwithout supervision.D.5.3 ResultsData recorded from the robot was used to compute these results, howeverthe actual computation was done o�-line on a workstation.In the experiments conducted so far the robot's task was to identifythree particular corners in the enclosure shown in �gure C.1: corners H, Eand F. To do this the set of seven excitation patterns of the seven SOFMsat the target corners were stored; all subsequent sets of excitation patternswere then compared to these by computing the Euclidean distances betweenrespective pairs of patterns in the set of seven.Provided a suitable set of thresholds was used (see paragraph 3 in sec-tion C.5.2), the robot recognised corner H four times in the subsequent �verounds, and corners E and F in �ve out of the �ve times. At no time was anon-target corner erroneously \identi�ed" as a target corner.D.5.4 Changes in ParametersDi�erent MetricsInstead of using the Euclidean distance to estimate similarity between exci-tation patterns, the \city-block" distance can be used with identical results(see equation C.3 in section C.5.2). City-block distance is computationallycheaper than Euclidean distance.One-dimensional NetworksInstead of using two-dimensional networks, one-dimensional networks canalso be used. This considerably reduces the computational cost of thescheme. We used one-dimensional networks of twenty-�ve cells to test this.259

In the case of corners H and E the results were the same as the ones pre-sented above. In the case of corner F, one erroneous identi�cation tookplace, as well as the �ve correct ones as before. This seems to indicate thatone-dimensional networks can be used instead of two-dimensional ones inthis task, except with slightly less reliability. A plausible conjecture for thisis that the neighbourhood relationship plays an important role: each cell ina two-dimensional network has eight neighbours, through which excitationcan spread, whereas a cell in a one-dimensional network has but two neigh-bours. The actual number of cells (twelve by twelve as opposed to one bytwenty-�ve) will have some inuence, too; but in our experience this is notas important as the neighbourhood relationships.D.6 Summary and ConclusionD.6.1 SummaryThe robot's task was to recognize particular locations (for example cor-ners) in its world|a simple enclosure. In an earlier publication ([SAB 91])we showed that this task can be accomplished using self-organising featuremaps. The input vector used then contained explicit information aboutlandmarks encountered: that the robot was at a corner, what sort of corner(convex or concave) it was, and information about previous corners encoun-tered.In the subsequent experiments reported here we tried to reduce theexplicit information content in the input vector. We also tried to generateinput vectors to the network(s) that contain no direct information aboutsensor signals. The motivation for the �rst was to avoid using prede�nedknowledge, because we believe that prede�nition of knowledge limits therobot's exibility; the reason for the latter was to prove our claim thatsensing and acting are in fact closely related.The input vector we chose thus contained information only about themotor commands of the robot controller, and their duration. Vectors puttogether from varying numbers of these motor action vectors (2,4,6,8,12,16and 24) were presented to seven separate self organising feature maps, eachtwo-dimensional of size twelve by twelve cells. In order to identify a par-ticular corner, all seven excitation patterns had to be close enough to astored set of target patterns. If this was the case, the robot was said tohave identi�ed the target location.The location recognition system performed well in this experiment, rec-ognizing corner H (see �gure C.1) in four out of �ve times, corners E andF in �ve out of �ve times, with no erroneous identi�cations in either case.Using self-organising feature maps to recognize locations adds a high de-gree of freedom to the robot controller. The robot is able to build its ownrepresentations of the environment, independently of the designer.260

D.6.2 ConclusionThere are two main conclusions we can draw from the work presented. First,our claim that sensing and acting are closely coupled is con�rmed by thesuccess of the robot in recognizing locations based upon the sequence ofmotor activity which leads to arrival there. The \sensor" being used toprovide features on which the recognition is based is actually the behaviourof the robot.Choosing an input vector that contains no direct information aboutsensory signals makes the system independent of the actual sensors used.Whether tactile, ultrasonic, infrared or other sensors are used: the locationrecognition system stays the same.Second, with this approach the features to be identi�ed by theSOFMs are spread out over time. This contrasts with our early work[Nehmzow et al. 89] in which the robot controller learns instantaneous re-actions to sensor stimuli. The idea, successfully demonstrated here, of usingmultiple channels to avoid an assumption of a single natural timescale, mer-its considerable further investigation since, at �rst sight, it should be capableof wide application to problems of eliciting temporal structure.D.6.3 Open Questions and Future WorkWe intend to implement a whole system as described above on a mobilerobot. This will show us how feasible it is to use this method in applicationswhere real-time processing is important, and where signal noise can bringproblems. Implementing such a system on a mobile robot will also enable usto investigate further the questions concerning network size and structureof input vector.The question of identifying relevant structure over time merits furtherstudy and we intend to investigate the limitations of the method used hereas well as test alternative approaches.AcknowledgementsWe thank Peter Forster, our colleague on RUR, for his constructive andhelpful contributions to this work, and for his comments on earlier versionsof this paper.The work reported here is supported by a grant from the UK Scienceand Engineering Research Council (grant number GR/F/5852.3). Otherfacilities were provided by the University of Edinburgh.261

262

Appendix EUsing Motor Actionsfor Location Recognition1Ulrich NehmzowDepartment of Arti�cial IntelligenceUniversity of Edinburghulrich@uk.ac.ed.aifhTim SmithersArti�cial Intelligence LaboratoryVrije Universiteit Brusseltim@be.ac.vub.arti1c U. Nehmzow & T. Smithers 1991
1Published in Proceedings of 1st European Conference on Arti�cial Life 1991,MIT Press Cambridge Mass. and London, England, 1991.263

E.1 AbstractWe present a Behaviour-based mobile robot that is able to autonomouslybuild internal representations of its environment and use these for locationrecognition. This is done by a process of self-organisation, no explicit world-model is given. The robot uses an arti�cial neural network for mapbuildingand additional adaptive processes to achieve successful location recognition.The robot reliably recognises locations in the world and can cope with thenoise inherent to the real world.E.2 IntroductionIn an ongoing series of experiments we are using simple mobile robots toinvestigate mechanisms to support the autonomous acquisition of speci�edcompetences. These experiments form a part of our \Really Useful Robots"(RUR) project, the aim of which is to develop adaptive control schemes forautonomous mobile robots which are both exible and robust with respect tovariable and unforeseen situations. So far we have investigated schemes forlearning obstacle avoidance, dead-end escape, wall-following and corridor-following competences, [Nehmzow et al. 89], learning location recogni-tion using sensor-based feature detectors, [Nehmzow & Smithers 91a],and learning location recognition using motor command sequences, see[Nehmzow et al. 91b]. In this paper we present a new location recogni-tion scheme which is not only more robust and reliable, but also simplerthan our previous schemes. It again uses information derived from motorcommands, rather than directly from sensors, which we believe to be novelin autonomous systems research.Our previous experiments were done using \Alder", the �rst of our Re-ally Useful Robots (see page 74). Alder consists of a chassis built fromFischertechnik, an ARC52 controller which uses an INTEL 8052 eight-bitmicroprocessor and has an on-board BASIC interpreter, an interface cardgiving independent control for two motors (forward, reverse, and stop foreach motor, but with no feedback of distance travelled or angle turned),and up to eight binary sensor inputs. For most of our experiments wehave used two whisker sensors which act as omnidirectional tactile sen-sors. For the obstacle avoidance, dead-end escape, and wall following weused a behaviour-based controller together with a perceptron-like networkto provide the necessary plastic element in the learning mechanism (see[Nehmzow et al. 89] for more details).For the location recognition experiments we have been using self-organising networks (see section D.3.1). In our �rst experiment the self-organising process was fed with input vectors derived from a sensor-basedfeature detector programmed into the robot, [Nehmzow & Smithers 91a].The features that were detected and identi�ed were the convex and concave264

corners of its enclosure (see �gure D.2), which it came across as it followedthe wall around the internal perimeter. Although this scheme proved to besuccessful, we were dissatis�ed with having to base it upon a hard-wiredfeature detector|we would prefer not to have to `tell' the robot so muchabout its environment. In an attempt to do away with the feature detectorwe devised a location recognition scheme which uses vectors based uponmotor commands. In this scheme an input vector to the self-organising net-work was constructed each time the motor states changed as a result of anew command. This meant that the number of input vectors produced wassigni�cantly larger than in the previous scheme. It also meant that it washarder to derive the information necessary to demonstrate location recog-nition. In the �nal scheme we used seven two-dimensional self-organisingnetworks all working in parallel. Essentially this scheme performed a kindof frequency component analysis on the pseudo-periodic sequence of inputvectors generated as the robot completed circuits of its enclosure. Althoughthis scheme was successful, and it did remove the need for the explicitlyprogrammed feature detector, we were again dissatis�ed with it because ofits high complexity and computational cost relative to the previous featuredetector-based scheme. We also disliked the fact that the seven thresh-olds for the seven networks for location recognition had to be set by hand,thus making it dependent on `magic numbers' which have to be set by theprogrammer.This led us to devise a new location recognition scheme which is thesubject of the experiments presented here. For this scheme we have used anew robot, `Cairngorm', the third of the Really Useful Robots2, shown onpage 76.Cairngorm also uses a chassis built from Fischertechnik, but has a morepowerful controller based on a Motorola 68000 CPU and having 128 Kbytesof memory. Its motor control and sensor inputs are similar to that of Alder,but it is programmed in C, rather than BASIC. Otherwise it is essentiallythe same as Alder.In the next section we describe the Behaviour-based controller and self-organising scheme used to support the new location recognition scheme.We then describe the experimental setup and procedure adopted; followingthat, we present our experimental results. We �nish with a brief discussionand conclusions.2A much larger mobile robot called `Ben Hope' is the second in the series andis still under construction. 265

E.3 Behaviour-based Control and Map-building ProcessCairngorm's control structure consists of three independent behaviours.They are responsible for obstacle avoidance, wall seeking, and mapbuilding,respectively. There is no direct communication between these behavioursexcept through the world. In combination they lead to successful locationrecognition behaviour. The mechanisms used in each of these behaviourswill now be described in a little more detail.The obstacle avoidance behaviour is a preprogrammed and �xed be-haviour that makes the robot turn left for as long as either or both of thetwo whisker sensors (one on the left and one on the right) are on, i.e., are incontact with an obstacle (the robot is designed to follow a wall on its righthand side). As soon as there are no signals from the whisker sensors therobot resumes moving forwards.The wall seeking behaviour is also a preprogrammed and �xed behaviour.If the robot has not experienced a whisker contact for some preset period oftime (about three seconds in our experiments) it makes a right turn (towardsthe wall). It continues to turn until a signal from the right whisker, or boththe right and left whiskers, is received (typically it is just the right-hand-side one), upon which the obstacle avoidance behaviour introduces a leftturn away from the wall. The robot then continues to move forward untileither the set period of time has elapsed again or it makes contact with anobstacle. In this way, the robot is able to both avoid obstacles, follow walls,and negotiate the corners of its enclosure without these being explicitlyspeci�ed tasks achieved using explicitly programmed strategies. In thissense they are examples of emergent functionality as de�ned by [Steels 91].In the experiment presented here both the obstacle avoidance and wallfollowing behaviours were preprogrammed. However, we have previouslyshown that our robots can acquire this kind of obstacle avoidance and wallfollowing competences through learning from interaction with their environ-ments (see [Nehmzow et al. 89] for details).The third behaviour is mapbuilding. By `mapbuilding' we mean some-thing more like taking notes of particular experiences, rather than construct-ing a geographical map or oor-plan. For this a self-organising network (see[Kohonen 88]) is used. It is constructed (`trained') using input vectors de-rived from the motor action commands produced by the obstacle avoidanceand wall-seeking behaviours. We next briey review the details of thiskind of network before describing in more detail the location recognitionbehaviour. 266

'
&

$
%

Inputvector~{ { { { { { { {{ { { { { { {{ { { { { { {{ { { { { { {{ { { { { { {j

� ~{XXXz ~wjoj =~{ � ~wj'&$%ExampleNeighbour-hoodRegionFigure E.1: A two-dimensional self-organising network.E.3.1 Self-Organising NetworksConsider the two-dimensional self-organising network (SON) given in �g-ure D.1.Each cell j of the SON has an individual weight vector ~wj of unit length.Each normalised input vector, ~{, is fed to all cells3. The output oj of cell jis determined by the dot product of input vector ~{ and the weight vector ~wjof cell j: oj = ~wj �~{ (E:1)The cell with the strongest response, the largest output value, is selected.This cell as well as all neighbouring cells within a de�ned neighbourhoodregion are then modi�ed according to the following equation:~wj(t+ 1) = ~wj(t) + �(~{� ~wj(t)) (E:2)where � is the so-called `gain'|a value that determines the amountof change (it is typically set at 0.2). Weight vectors outside the speci�edneighbourhood4 remain unchanged. After several `epochs', i.e. presenta-tions of input vectors to the network, the net develops regions which respondmost strongly to particular types of input vectors. In this way a mapping isdeveloped whereby di�erent input vectors are mapped onto di�erent regionsof the network (always an injection, often a bijection).3For self-organisation, normalising the input vector is not strictly necessary.However, for numerical comparison of two responses of the network, which we do,it is.4The neighbourhood size is often chosen to be decreasing over time, so thatself-organisation occurs over larger areas of the network early on and then becomesmore local, but in our case we keep the neighbourhood region �xed.267

E.3.2 Location Recognition BehaviourOn Cairngorm we have used a one-dimensional, ring-shaped SON of 50cells, as in earlier experiments with Alder, with a neighbourhood regionof one node either side. As the robot makes its way around its enclosure,wall-following and avoiding obstacles, a moving average of durations of turnactions is computed. If a turn action occurs which takes longer than thecurrent average (a `signi�cant turn action') an input vector is constructedand fed into the self-organising network and the modi�cation to the weightvectors of the net as de�ned above is performed. After about two to threetimes round the enclosure the one-dimensional ring develops a stable enoughstructure to be used to recognise particular locations. This is demonstratedby instructing the robot (by pressing a microswitch mounted on it) to storethe excitation pattern of the self-organising ring when the robot is at thelocation that is to be recognised (`home' location). This stored pattern isthen compared with all subsequent excitation patterns. If the pattern atthe current location of the robot is found to be su�ciently similar to thestored one, the robot indicates that it has arrived back at the home location.The comparison is computed using the `city-block' distance � between twoexcitation patterns, and is given by:� = 50Xk=1 josk � ock j; (E:3)where ~os is the stored excitation pattern, and ~oc is the current exci-tation pattern. By using the city-block distance measure (or Euclideandistance measure, for that matter) we are e�ectively performing a vectorquantisation, so the property of topology-preserving mapping of SON is notexploited. The advantage of this is that the network can be used for locationrecognition even in the early learning stages. However, once the net is wellsettled the index information of the most excited cell alone should su�ce torecognize locations.E.4 The Experimental ResultsIn this section we present our experimental results. We begin by describingthe experimental setup.E.4.1 Experimental SetupThe robot is placed in a simple enclosure, containing rightangled convexand concave corners as well as straight walls. Figure D.2 shows the layoutof the enclosure. The letters indicate locations where a turn action usuallyexceeds the average duration and therefore where an input vector to theSON is usually generated. 268

'
&

$
%�	 - �6���6��?���?�- AA0BCDEFG G0 HFigure E.2: The experimental enclosure for location recognition.Once started, the robot follows the wall on its right hand side round theenclosure. This is achieved, as we mentioned before, by a combination of theobstacle avoidance and wall seeking behaviours. The mapbuilding behaviourmonitors the turn actions commanded by the other two behaviours. When-ever a turn action takes longer than the current average turn action time, aninput vector (see input vector 1, in �gure D.3), is generated and presentedto the SON. The response of each cell in the ring is then determined andthe relevant weight vectors are updated, as described in section D.3.1. Therobot is left to wall follow its way around the enclosure for typically two tothree rounds, then a \home" corner is selected by pressing the microswitchmounted on the robot. This results in the current excitation pattern beingstored in memory. From this point on all subsequent excitation patternsof the SON are compared to the stored pattern. If the city block distancebetween the goal-pattern and the current excitation patterns is less than 13of the average city-block distance, the robot assumes it is back at the goallocation and a red light (mounted on the interface board) lights up.As can be seen from input vector 1 in �gure D.3, the information usedas input to the self-organising network consists of the type of the currentturn action (right or left), and the types of the previous two turn actions,together with the elapsed time between each pair.In order to investigate the performance of this location recognitionscheme we used two other input vectors, see input vector 2 and 3 in �g-ure D.3, each one containing less information than the previous one. Inputvector 2 consists of the types of the current and previous turn actions andthe elapsed time between them, and input vector 3 consists of just the typesof the current and previous turn actions. The experimental setup when us-ing each of these three kinds of input vector was in all other respects thesame.The results obtained for all three input vectors are presented in the nextsection. 269

2 bits 2 bits 3 bits 2 bits 3 bitsInput vector 1: TAt0 TAt�1 �t0�1 TAt�2 �t1�2Input vector 2: TAt0 TAt�1 �t0�1Input vector 3: TAt0 TAt�1Key: Turn Action, TAt = 0 1 for left1 0 for rightTime di�erence,(in robot time units) �t = 1 1 1 for 800 < �t0 1 1 for 400 < �t < 8000 0 1 for 200 < �t < 4000 0 0 for �t < 200�t0�1 is the time between Turn Actions at t0 and at t�1.�t1�2 is the time between Turn Actions at t�1 and at t�2.Figure E.3: Input vector de�nition for the Self-Organising Controller.E.4.2 Experimental ResultsTable 1 shows the location recognition results obtained using input vector1 (see �gure D.3).Location Recognitions Total no. of VisitsH 3 4B 3 3C 3 3D 3 3E 3 3F 3 3G 3 3G' 2 4A 3 3A' 3 3Table 1: Location recognition using input vector 1.The letters refer to the locations shown in �gure D.2. Except for A0 andG0, they correspond to the corners of the enclosure. This is because turnactions that take longer than average are produced at these places. Thelocations A0 and G0 are produced because the robot typically takes two longturn actions to negotiate these particular corners.The one `missed' recognition at corner H occurred early on in the runand was due to the network not having settled down enough for a successful270

recognition to be registered. The two `misses' at G0 occurred because onthese occasions the robot got round corner G with one turn action, and sothe region of the SON corresponding to an input vector having G0, G, andF was not excited by any input vector.A A0 B C D E F G G0 HAA0 XBCDEFGG0 XHTable 2: Confused locations when using input vector 1.Table 2 indicates the pairs of locations which were confused during therun.In this case it was only locations A0 and G0 which were confused. Thisoccurs because the input vectors at these locations (built from H , A, A0and F , G, G0 respectively) are similar, and thus excite the self-organisingnetwork in the same way.Table 3 presents the location recognition results when using input vector2. As can be seen, there is a degradation in performance with `missed'locations occurring at D, F , and G. The failure to recognise location Fhere was due to an input vector not being generated at location E, thusleading to an `odd' vector at F . This occurred only once and was the resultof the inevitable variation in actual behaviour experienced when using realrobots (even simple ones) in a real environment. This was, however, aone-o� event and never observed to occur again.Location Recognitions Total no. of VisitsH 3 3B 3 3C 3 3D 3 4E 3 3F 3 4G 4 5G0 3 3A 3 3A0 3 3Table 3: Location recognition using input vector 2.271

A A0 B C D E F G G0 HA X (X) X XA0 X X XBCDEFG X X (X) XG0 X X XHTable 4: Confused locations when using input vector 2.The degradation in performance can be seen more clearly in table 4,which presents the pairs of confused locations. The bracketed pairs denoteoccasional confusions.When we reduce the amount of information in the input vector stillfurther, and use input vector 3, we obtain the results presented in tables 5and 6. Here we can see that the robot is still able to recognise locations, butits ability to distinguish certain pairs of them is signi�cantly diminished.Location Recognitions Total no. of VisitsB 3 3C 3 3D 2 2E 2 2F 2 2G 2 2Table 5: Location recognition using input vector 3.A A0 B C D E F G G0 HA X X X X XA0 X X X X XB XC XD X X X X XE XF XG X X X XG0 X X X XH X X X XTable 6: Confused locations when using input vector 3.As we would expect, the performance of the whole system depends onthe information put into the self-orgainsing network. If the input vectorcontains insu�cient information, then reliable location recognition is im-possible. From the results presented above we can see that reducing theinformation content of the input vector does not a�ect the robot's ability torecognise a non-wall type environmental feature (corners in this case), but272

it does a�ect its ability to di�erentiate some pairs of such locations. Theless informative the input vector, the more locations \look the same" to therobot.E.5 DiscussionE.5.1 Discovering Signi�cant EnvironmentStructureIn our previous location recognition scheme based upon motor actions werequired a set of seven self-organising two-dimensional networks to get therobot to reliably recognise (and distinguish between) locations. Yet in thescheme we presented above we only need one one-dimensional network (ring)to achieve similar performance results. We can explain this e�ect by observ-ing that our new scheme works by �ltering the sequence of motor commandsso that only those not generated by following a straight wall are used tobuild input vectors to the self-organising structure, whereas in the previousscheme the set of seven networks had to do this �ltering work implicitly.Another way of viewing this is to say that the sequence of motor com-mands produced as the robot wall follows its way around the enclosurecontains two kinds of structure. One kind occurs at a high frequency andis produced by the wall-following actions. The other kind has a lower fre-quency and is produced by the corners, or non-straight-wall features of theenclosure. It is this second type of structure in the motor action commandsthat contains information about signi�cant structure in the robot's environ-ment (corners in this case); the �rst type merely reects the fact that therobot's environment has straight walls in it|a rather less useful piece ofinformation for location recognition.E.5.2 Setting ThresholdsWhen we �rst started to experiment with the scheme presented above, theturn action time threshold, used to distinguish wall-following actions fromother actions, was set by hand. We arrived at the particular threshold valueby carefully observing the robot's behaviour and choosing it such that itwould di�erentiate between motor actions performed at a `signi�cant' loca-tion (usually a corner) and those performed elsewhere (while wall following).Later we implemented the moving average calculation, thus removing theneed for this `magic number' to be set by hand (by doing this we have ef-fectively introduced two other values to be set: the time window over whichthe average duration of motor actions is computed and the proportion bywhich the duration of a motor action has to exceed this average to becomea \signi�cant action". However, both these values are not very critical andfar easier to set than the previously needed thresholds). Similar mecha-273

nisms are found in biology. Pigeons, for example, extract the changes in airpressure generated by changes in altitude of a few feet by ignoring the to-tal strength and only measuring di�erences around some mean, [Gould 82].Using this simple device in our robot means that it does not need any prede-�ned knowledge about thresholds and signi�cant motor actions, it �nds thisout for itself. This approach has further advantages: The robot is able to ad-just its assessment if the world or the robot change. Cairngorm's moves, forexample, become slower with decreasing battery charge. If a �xed thresholdfor determining signi�cant moves was used, the performance of the robotwould change, simply because motor actions take longer. However, becausethe average turn action will also take longer, Cairngorm is able to adjustfor this and so maintain its performance.A similar threshold value is used in the comparison between the stored(`home') excitation pattern and all subsequent patterns. Once again, westarted by determining the required value for this empirically and settingthe value in the program by hand. But having devised the successful aver-aging mechanisms to set the turn action time threshold we decided to trya similar device for the comparison threshold. The robot thus computes amoving average of all the city-block distances between the stored and cur-rent excitation patterns. Once a distance is smaller than 13 of this averagedistance, the robot indicates that it recognises the current pattern as be-ing the same as the stored pattern, and thus that it recognises its currentlocation as the `home' location.E.5.3 Why `Motor Actions' and not `Sensor Sig-nals'?Sensing and acting are so tightly coupled that it seems fair to say that theyare two sides of the same coin. In earlier experiments we have used schemesbased on sensory information to recognise locations (see section D.2). Inthe experiments reported here we have obtained the same results as in theearlier work, using motor information rather than sensor information. Thiswas done to prove exactly this point: that sensing and acting are tightlycoupled.There can be practical advantages in using motor action information:the amount of information to be processed is often smaller because the robotis e�ectively acting as an analog computing device. Also (and perhaps moreimportantly for practical applications), the controller becomes independentof the actual sensors used. If necessary, sensors can be replaced withouta�ecting the actual controller.E.5.4 Comparison with Animal NavigationThere are numbers of well studied examples of navigation by learned lo-cation recognition in the biological literature. In an exploratory phase274

bees store visual images, which are then associated with a motion vec-tor that gives the direction towards the hive, see ([Waterman 1989],[Gould & Gould 88] and [Cartwright & Collett 83]). When released somedistance away from the hive, bees can �nd their way back using these ac-quired visual images by comparing them with the current images and calcu-lating the appropriate ight direction to take them to their hive, [Collett 87].In a similar way our robot stores \motor action images" and later comparesstored images with current ones in order to recognise locations it has been atbefore. However, no vectors pointing homewards are associated with theseimages.Other kinds of sensor-based navigation behaviour schemes have alsobeen documented. For example, pigeons and salmon navigate using olfac-tory information ([Gould 82], [Hasler et al. 78]), and it seems possible thatpigeons also use acoustic (infrasound) and magnetic sensors to �nd theirway home [Gould 82]. Bees and ants also use the polarisation of the light ofthe sky to navigate [Wehner 76].All these biological examples appear to just use sensor information andthey are clearly reliable and robust. However, our experiments with simplerobots have shown that motor-action based schemes can be used as well inorder to achieve high degrees of reliability and robustness. The reasons forthis apparent di�erence are not clear to us.E.6 Summary and Future WorkIn earlier work we demonstrated location recognition schemes using sensor-based feature detectors and using motor action changes. In this paper wepresent a new location recognition scheme, which again uses informationabout motor actions, but which is simpler and yet equally reliable and ro-bust. As a part of this new scheme we have also incorporated automaticadaptive threshold setting mechanisms to reduce the number of parameters(`magic numbers') which have to be set by hand.In our ongoing series of experiments to investigate the autonomous ac-quisition of speci�ed competences we have demonstrated in separate schemesthe acquisition of obstacle avoidance, wall-following, corridor following andlocation recognition competence by the robot. Our plan for the future is toput all these schemes together in one robot to demonstrate the staged learn-ing of all the competences required for simple navigation in an autonomousrobot.AcknowledgementsThe work reported here is supported by a grant from the UK Science andEngineering Research Council (grant number GR/F/5852.3). Other facili-ties were provided by the Department of Arti�cial Intelligence at Edinburgh275

University. We would like to thank John Hallam for the stimulating discus-sion about this work. We thank Claudia Alsdorf, Peter Forster and BarbaraWebb for reading earlier versions of this paper and their helpful comments.Thanks also to the sta� of the mechanical, electronic, and photographicworkshops of the Department of Arti�cial Intelligence for their help andsupport.

276

Appendix FLearning Multiple Competences:Some Initial Experiments1Ulrich NehmzowDepartment of Arti�cial IntelligenceUniversity of Edinburghulrich@uk.ac.ed.aifhTim SmithersArti�cial Intelligence LaboratoryVrije Universiteit Brusseltim@arti1.vub.ac.bec U. Nehmzow & T. Smithers 199221To be presented at workshop on \Neural Networks and a New AI", August3rd, 1992, as part of the European Conference on Arti�cial Intelligence, Vienna19922Names appear in alphabetical order, with both being principal authors on thisoccasion. Tim Smithers currently holds the SWIFT AI Chair in the VUB AILaboratory. 277

F.1 AbstractThe vast majority of work on learning in arti�cial intelligence has focussedupon techniques for developing a single competence. Autonomous systems,however, have to possess a number of competences in order to operate ef-fectively. How learning of multiple competences is to be achieved in au-tonomous robots is thus of fundamental importance to any understandingof learned autonomous behaviour which involves more than one competence.In this paper we present some initial experiments to investigate the stagedlearning of multiple competences in an autonomous mobile robot. Thiswork combines our previous work on the separate learning of locomotioncompetence and a simple navigation competence.F.2 IntroductionIn 1949 Donald Hebb wrote:\All learning tends to utilize and build on any earlier learning,instead of replacing it, so that much early learning tends tobe permanent ... the learning of the mature animal owes itse�ciency to the slow and ine�cient learning that goes on before,but may also be limited and canalized by it." | [Hebb 49].Despite Hebb's widely acknowledged contribution to modern connec-tionist learning research, the vast majority of work on learning in arti�cialintelligence (AI) has focussed upon techniques for developing a single com-petence. This is true of research in both symbol processing machine learningand connectionist learning. Autonomous systems, however, generally haveto possess a number of competences in order to operate e�ectively. In thecase of an autonomous mobile robot, for example, it must be able to getaround while avoiding obstacles and not getting stuck, and it must also beable to navigate in its environment, to recognize and �nd its way to andfrom locations. How learning of multiple competences is to be achieved inautonomous robots is thus of fundamental importance to any understandingof learned autonomous behaviour which involves more than one competence,just as it is in understanding the biological examples Hebb was writing aboutin 1949.The sequential development of multiple competences in humans andprimates has received attention in both comparative psychology and theneurosciences. McGonigle and Chalmers ([McGonigle & Chalmers 77] and[McGonigle & Chalmers 92]) working in Edinburgh on a comparative anal-ysis of the staged development of non-linguistic skills in children and mon-keys, have identi�ed comparable staged sequences of skill development.Thatcher et al., [Thatcher et al. 87], using EEG (electroencephalogram)278

phase and coherence measures, have o�ered evidence for sequential peri-ods of rapid growth and consolidation in the development of cortico-corticoconnections between hemispheres in human brain development. An im-portant conclusion of this psychological and neurological work is that thesequential development of multiple competences is the result of geneticallydetermined changes in the nervous system and not just a consequence of an-tecedent experience: their development is a matter of `design' not chance,[McGonigle 91].A related question concerns the modularity of the underlying controlsystem and its architectural organization. Again, work in the neuroscienceso�ers strong evidence for the decomposition of biological nervous systemsinto psychobiological subsystems working concurrently, each dedicated tosupporting particular competences. For example, clinical studies of amnesiain humans point to the existence of distinct memory systems|proceduralmemory and episodic memory systems. The idea of multiple memorysystems is in marked contrast to the single monolithic idea of memory func-tion found, almost universally, in AI research, both symbol processing andconnectionist. The partiality of memory degradation found in the clini-cal studies suggests that (human) memory is a collection of subsystemseach having evolved to meet speci�c requirements. As Sherry and Schac-ter ([Sherry & Schacter 87]) argue, these requirements collectively may befunctionally incompatible thus necessitating separate memory systems tosatisfy them.Contrary to recent trends (see [Brooks 86] and [Beer 90], for example)we believe that these results from human and primate cognitive neuroscienceresearch o�er pointers to important design principles for autonomous robots.While the investigation of legged locomotion through robot constructionand simulation, as pursued by Brooks and Beer, is in itself interesting, andprobably of engineering import, we do not believe it can lead to the identi�-cation of strong constraints on the processes and mechanisms necessary forintelligent behaviour. We do, however, believe in a `bottom-up' approach tothe construction and testing of controllers for autonomous robots and themodularity of single competence supporting subsystems, as advocated byBrooks.In this paper we present some initial experiments to investigate thestaged learning of multiple competences in a simple autonomous mobilerobot. This work combines our previous work on learning a locomotioncompetence and a simple navigation competence. In the next section webriey review the control architectures and connectionist techniques used inthis previous work. In section E.4 we describe the controller used to supportthe sequential learning of multiple competences and the results obtained sofar. We then discuss some related work on learning in autonomous robotsand conclude with some �nal comments and further research directions.279

F.3 Background: Single CompetenceLearningIn an ongoing series of experiments we have been using simple autonomousmobile robots to implement and test mechanisms to support the autonomousdevelopment of speci�c (single) competences. The aim of this research is toinvestigate adaptive control schemes for autonomous mobile robots that areboth exible and robust with respect to variable and unforseen situations.Here, unforseen situations are those that have never before been experiencedby the robot nor anticipated (and so catered for) during its design.So far we have implemented and tested control schemes for learning alocomotion competence | for obstacle avoidance, dead end escape, wall-following, and corridor-following, [Nehmzow et al. 89] and [Daskalakis 91],and learning a simple navigation competence using sensor-based feature de-tectors, [Nehmzow & Smithers 91a], and, alternatively, motor command se-quences, [Nehmzow et al. 91b] and [Nehmzow & Smithers 91b]. Through-out these experiments we have used self-organizing processes implementedusing connectionist computing techniques (see below for more details).The robots used have onboard microprocessors connected to two drivemotors and simple (binary) sensors, see [Nehmzow & Smithers 91b] and[Donnett & Smithers 91] for details.F.3.1 Learning Locomotion CompetencesThe self-organizing controller used for learning the locomotion competenceis based upon a perceptron network used as an associative memory togetherwith a performance monitor, and an action selector, see �gure E.3.1.The associative memory is used to relate input signals derived fromsensors to motor command signals which produce forward motion, reversemotion, and left and right rotation motions. The monitor compares thecurrent motor and sensor signals with a set of instinct-rules which de�nethe internal conditions that the controller continuously tries to satisfy. Theaction selector selects which motor action to actually perform at any time.If the monitor detects that an instinct-rule is not satis�ed the currentinput vector (derived from the sensor signals) is applied to the associativememory which then produces an ordering of the four possible motor actionsit currently associates with the particular input vector. The action selectorthen picks the �rst action in the list and it is executed for a �xed periodof time. If after this action the violated instinct-rule is now satis�ed thecurrent association is con�rmed by `teaching' the perceptron network withthe input vector motor action pair. If, on the other hand, the instinct-rule isstill not satis�ed the action selector picks the next action in the ordered listand executes it. This action is executed for a longer time in an attempt tocancel the e�ect of the previous (unsuccessful) motor action. This pattern280

Instinct-rulesAssociative Memory Action Selector6Teaching Signals--SensorSignals �� �� -Status-ActionOrdering -�
ActionSignal

Monitor
'
&

$
%Figure F.1: Self-organizing controller for locomotion competence learn-ingof activity is repeated until an action is executed which does result in theviolated instinct-rule being satis�ed. This successful motor action is thentaught to the associative memory, thus modifying the controller in a waythat is intended to result in a fast restoration of the violated instinct-rulethe next time it occurs.In this way the robot is able to both learn and to subsequently adaptsensory-motor relationships that enable it to achieve various tasks encoun-tered during locomotion. The advantage of this type of self-organizing con-troller, over more conventional schemes, is that it o�ers greater exibilityin the face of variable and unforseen situations. If the situation changes sothat its current sensory-motor associations become maladapted it is able toadjust itself until competent performance is restored. This controller caneven deal with such radical changes as swapping the sensors over from oneside of the robot to the other. At �rst, it performs the wrong actions, butit soons adjusts the mapping to deal with the new situation.Obstacle Avoidance Wall Following Corridor Following� move forward � move forward � move forward� avoid contact � avoid contact � avoid contact� make contact � make contactafter a while after a while� make contact onalternate sidesTable 1: Instinct-rule sets for di�erent locomotion competence learning281

The sets of instinct-rules used for learning obstacle avoidance and deadend escape, wall following, and corridor following are presented in table 1.As can be seen from these three sets, the wall following and corridor follow-ing competences are achieved by the simple addition of extra instinct-rules.No other modi�cations to the controller are necessary. It should also benoted that each set contains mutually incompatible rules. It is the inter-actions which are produced by these incompatibilities that give rise to thelearning of the desired locomotion competences. Another aspect of thiscontroller is that it depends upon the set of motor actions used being suf-�ciently orthogonal in the sense that forward and reverse actions produceno rotations and can be used to cancel the e�ects of the other, and thatleft and right rotations produce no forward or reverse motion and can againbe used to cancel each other. This is achieved by careful design of thephysical con�guration of the robot and by keeping the speed of the robotlow. Daskalakis, [Daskalakis 91], reports on what can be done when theseconditions are not su�ciently satis�ed.F.3.2 Learning Simple Navigation CompetencesIn a second series of experiments we have been investigating the use ofself-organizing maps based upon the techniques of Willshaw and von derMalsburg, [Willshaw & v.d.Malsburg 76], and Kohonen, [Kohonen 88] tosupport the learning of simple navigation competences.For these experiments the robot was given (rather than expected tolearn) a wall following competence. It was then placed in an enclosure, builtof straight walls and rightangle corners, and left to �nd its way around theperimeter. Several di�erent schemes have been investigated for supportingmap learning in this robot. First we used a hard wired feature detector toenable the robot to detect the convex and concave corners in its environmentas it moved around the walls of the enclosure. As each corner was detected,information about its type (concave or convex) and the distance from theprevious corner and its type, was used to constructed an input vector fora one-dimensional self-organizing network. After several times round theenclosure the robot was able to use this network to recognize when it hadreturned to a nominated location. By extending the input vector to includein formation about the previous two and three corners we were able toimprove the accuracy of the location recognition until it was perfect (in theexperimental enclosure used), [Nehmzow & Smithers 91a].In an attempt to move away from this rather inexible feature detector-based scheme, we implemented a scheme which used motor commands asthe basis for the input vectors to the self-organizing network. In this versionan input vector to the self-organizing network was constructed each timethe motor state changed as a result of a new motor command. This meantthat the number of input vectors generated increased signi�cantly over theprevious scheme. It also meant that it was harder to derive the informa-282

tion required to achieve reliable location recognition. In its �nal form weused seven two-dimensional self-organizing networks all working in parallel.Essentially this scheme performed a kind of frequency component analysison the pseudo-periodic input vector sequence generated as the robot wallfollows its way around its enclosure, [Nehmzow et al. 91b].Although this scheme was successful, and it did remove the need for anexplicitly programmed feature detector, we were dissatis�ed with its largecomputational cost relative to the �rst scheme. We also disliked the needto have to set seven di�erent threshold values (magic numbers) by hand inorder to get the scheme to work well. This led us to devise a third map-building scheme which again used no hardwired feature detectors but whichwas computationally much cheaper than the second scheme. In this thirdmap-building system the robots calculates a moving average of the durationof the turn actions it executes to make contact with the wall as part of itswall following behaviour. Then, if a turn action occurs that is signi�cantlydi�erent from this average, (a signi�cant turn action) an input vector isgenerated using information about the type of turn (left or right) and thetime since the last signi�cant turn action, [Nehmzow & Smithers 91b]. Thisscheme proved to be as reliable as our �rst scheme and only a little moreexpensive in terms of computation. The use of the moving average calcula-tion also proved to be an e�ective way of implementing the required novelty�lter since it was robust with respect to the change in the average timetaken by the robot to make turns of the same magnitude as the batteriesdrained.F.4 Experiments in Multiple Compe-tence LearningHaving implemented and tested self-organizing controllers to support thelearning of locomotion and simple navigation competences separately, wewere in a position to attempt to put them together to form a controllerwhich could support the learning of both competences. This attempt tocombine two learning schemes raises the question of how we prevent themfrom interfering with each other. In other words, how is the controllerto structure the combined learning of these two competences? It was clearfrom our previous experiments that we could not leave the robot to learningeverything at the same time, and expect everything to sort itself out auto-matically. What is required is some predetermined control of the staging ofthe two types of learning.F.4.1 Corridor-Following and Maze LearningBefore attempting to combine learning of the locomotion and navigationcompetences, we decided to carry out a preliminary experiment in which to283

'
&

$
%Figure F.2: A typical simple maze used in the corridor-following andmaze learning experimentstest a staged learning controller. To do this we built a controller that couldlearn corridor following and which would then use this competence to detectjunctions in a simple maze consisting solely of T-junctions, see �gure E.2.To make the experiment more interesting, the robot not only has torecognise junctions in the maze, but also the dead ends. In addition we alsowanted the robot to remember which way it has to turn in order to take themost direct route through the maze a second time. It did this by makinga random choice of direction to turn in every time it detected a junction,then if it next detected a dead end it knew the choice was wrong and it hadto backtrack to the previous junction, but if it detected a junction next itknew that the previous choice was correct, and this was recorded in a listof turns to make at each junction.The junction and dead end detection was achieved in a way similar tothe corner detection mechanism used in our third map-building scheme. If,during corridor following a turn was made that took signi�cantly longerthan the current average turn time needed to make contact with the wall,a junction was taken to have been detected. If the time taken to moveway from contact with the wall took signi�cantly longer than the currentaverage time for obstacle avoidance, then a dead end was taken to have beendetected.Now for this scheme to work, the learning of the obstacle avoidance andcorridor following competences must be completed and representative aver-age times for obstacle avoidance and wall seeking established. If this werenot the case, the self-adapting modi�cations made by the controller to try toestablish the appropriate sensory-motor relationships for e�ective locomo-tion (forward motion with obstacle avoidance and corridor following in thiscase) would interfere with the junction and dead end detection strategies.It is therefore necessary, in this setup, to terminate further learning by the284

locomotion controller before maze learning starts.The following simple strategy was used to decide when to terminate this�rst stage of learning. In order to have developed an e�ective locomotioncompetence the robot needs to have encountered every possible input sig-nal con�guration at least once, but preferably more than once. The inputvector used in the corridor following version of out controller contains fourbits3 which means that the number of di�erent possible con�gurations issixteen. In practice there are, however, less con�gurations since a condi-tion in which contact on the left and right is hardly ever made in corridorfollowing. Also, because, given the way the controller is set up, it is notpossible for no contact to be represented in an input vector, the number ofpossible con�gurations is eight. Locomotion competence learning was there-fore terminated if the robot has only selected motor actions that directlyrestore instinct-rules as they become violated eight times in a row. Whenthis occurs no further modi�cations are made to the associative memory ofthe locomotion controller, and maze learning begins.In a series of runs the robot was placed at the beginning of the �rstcorridor of the maze and allowed to learn the required locomotion compe-tence and to then �nd its way through the maze. It was then replaced atthe beginning to see it would then take the most direct route through themaze, that it should have discovered the �rst time. On all occasions that thelocomotion learning had taken place and been terminated before the �rstjunction maze learning proved to be successful. Only on those occasionsthat locomotion learning had not been completed before the �rst junctiondid the robot run into trouble, sometimes so much so that maze learningdid not take place (at least not in the length of time we were prepared towait for it to do so). From these results we concluded that the simple stagedlearning controller used was suitable for application in an attempt to learnlocomotion and navigation competences.F.4.2 Wall-Following and MapbuildingIn this experiment the robot was equipped with a controller formed froma combination of the locomotion competence learning controller describedin section E.3.1, the the third version of our navigation learning controllerdescribed in section E.3.2, and the stage controller tested in the preliminaryexperiment described above.For this experiment an enclosure similar to that used in the previousnavigation learning experiments was used. It was formed of straight wallsections and rightangle concave and convex corners. In addition a remov-able barrier was installed to form a simple rectangular subenclosure. The3The four bits are used to represent left contact or no left contact, right contactor not right contact, plus four bits representing the same information but for theprevious input time. 285

robot was then placed in the subenclosure and allowed to learn the requiredobstacle avoidance and wall-following locomotion competence. When thishad been completed, according to a similar criterion of that used above, therobot indicated (with a small lamp mounted on the robot) that the locomo-tion controller had been �xed. The barrier was then removed and the robotallowed to wall follow its way around the full enclosure. After about threecomplete circuits of the full enclosure the self-organizing map used stabilisessu�ciently for location recognition to then successfully take place.In a series of repeated experiments the robot was able to learn the requirelocomotion competence in the rectangular subenclosure and to then success-fully support e�ective mapbuilding behaviour for its navigation learningphase. We were therefore able to demonstrate successful structured learn-ing of locomotion competence learning and simple navigation competencelearning, albeit for a simple robot in a simple environment, using a combi-nation of the controllers developed to support separate competence learningtogether with a simple learning staging controller.F.5 Related WorkThe use of connectionist learning techniques in control is now a wellestablished research area, see [Miller et al. 90] for a survey of recentwork. Much of this work is conducted only as computer basedsimulations4, see [Sutton 91], [Long-Ji 91], [Prescott & Mayhew], and[Tyrrell & Mayhew 91], for example, and are all aimed at learning what wecall single competences. Another important di�erence between the learn-ing controllers we describe here and those based upon the reinforcementlearning techniques typically used is that our controllers learn much muchfaster in real environments. Kaelbling, [Kaelbling 91], represents an impor-tant exception in that she has also tested her algorithms on a real robot, ashave Mahadevan and Connell, [Mahadevan & Connell 91], who have usedreinforcement learning techniques in a subsumption type architecture (seebelow). Though their robots learns several behaviours it still only learnsone competence in our terms.The `layered' structure of our multiple competence learning controlleris similar in style to Brooks' Behaviour-based subsumption architecture,[Brooks 85] and [Brooks 86], though di�erent in implementational detail. Inparticular, we do not decompose task achieving competences into separatebehaviours and nor are the two parts of our controller so tightly integratedas the individual behaviours typically are in a subsumption architecture.A related mapbuilding scheme developed for a mobile robot is that ofMataric, [Mataric 91]. This scheme, which is claimed to be modelled after4They are called simulations, though often they cannot fairly be described assuch since no attempts are made to validate them against the real world behaviourthey are presumed to model. 286

the mapping function of the rat hippocampus, is similarly computation-ally simple and reliable in practice. It is also based upon the subsumptionarchitecture of Brooks. It di�ers from our scheme in that it works by iden-tifying physical locations in terms of recognising features of the location,as opposed to recognising the arriving at locations, as is the case in ournavigation scheme.Though related in the sense that it either uses reinforcement type learn-ing schemes, connectionist techniques, or similar mapbuilding techniques,none of the above work deals with the problem of learning multiple compe-tences. The question of how any of these other systems might be combinedinto larger systems that do support multiple competence learning thus re-mains an open question.Finally, and on a slightly di�erent theme, the work we present here isclosely related to some ideas presented by Clarke in a somewhat neglected,but important, paper called \Being there: why implementation matters tocognitive science", [Clark 87]. In this paper Clarke argues cogently that \...action and cognition may need to be treated as inextricably inter-relatedparts of complex systems which understand their environment." In doingso, he questions the almost universal adoption by cognitive science, andwe can say by arti�cial intelligence (AI) as well, of the philosophical doc-trine of machine functionalism. This asserts that the study of the mind canbe safely disconnected from any consideration of the details of its physicalimplementation. The point is not that particular algorithms don't have acertain implementation independence, that they can be be properly imple-mented in a variety of di�erent ways. It is that as far as what Clark calls the`cognitive content' is concerned \... both the perceptual and motor capac-ities of the system in which implementation occurs are crucial." Our workon building real robots that work reliably in real environments con�rms thisinsight. In particular, our use of motor actions, not just sensor signals, asinput to the self-organizing controllers we have developed demonstrate hispoint about both the perceptual and motor capacities of the system beingcrucial to its learning of e�ective competences. Of course, the robots we de-scribe here are not able to develop the cognitive capacities Clark discusses inhis paper, nevertheless, we believe that, in this respect, there is no di�erencebetween what it takes to learn e�ective locomotion and simple navigationcompetences and other, so called higher, cognitive competences.F.6 Final Comments and Future Direc-tionsThe experiments described here, and the self-organizing controllers testedin them, are simple as are the robots used and tasks they perform. This isboth deliberate and necessary. It is deliberate in the sense that we wanted287

to keep things simple so that we could more easily see what was going on|something that is never very easy to do when using real robots operatingin the real world. It is necessary in the sense that given our present under-standing we are not able to build more complex controllers which work, atleast not in real robots. Despite this simplicity we believe that the resultswe present here o�er a signi�cant start to our understanding of multiplecompetence learning.Future research must include more extensive testing of the controllersand stage learning scheme presented here. This must include tests in morecomplex environments and the learning of more competences. We plan tocarry out such experiments using robots constructed from second generationof Lego vehicle technology5 that we are currently developing at the VUBAI Lab in Brussels.AcknowledgementsThe work reported here was supported by a grant from the UK Science andEnginering Research Council (GR/F/5852.3). Other facilities and technicalsupport were provided by the Department of Arti�cial Intelligence, Edin-burgh University. John Hallam and Pete Forster were also involved in thefunded project and we acknowledge their contribution.

5see [Donnett & Smithers 91] for a description of �rst generation Lego vehicletechnology. 288

IndexAbnormal situations, 48, 53Action selection, 81, 122Adaptive control, 51, 53Adaptive heuristic critic, 35Alder, 12, 36, 70, 216, 226Alder, controller, 77Alder, description, 70Alder, hardware, 70Alder, photograph, 12, 71Alder, schematic diagram, 72Alder, simulator, 59Analytical approach, 20, 52, 212,222Apis mellifera, 140Arbitrary connection of sensors, 2,15, 33Arcimboldo, 8Arti�cial neural networks, 13, 41Asian desease example, 3, 55Associative Memory, 80Associative memory in RUR, 280Backpropagation network, 45, 86,87, 213, 224Backpropagation network, prob-lems, 88Bees, 140Behaviour is information, 149Behaviour-based control, 26Behavioural decomposition, 21Behaviours, task achieving, 286Ben Hope, 71Boredom, 108Bothy, 126Box-pushing, 38Cairngorm, 12, 36, 71Cairngorm, controller, 77Cairngorm, description, 70

Cairngorm, hardware, 70Cairngorm, photograph, 12, 72Cairngorm, schematic diagram, 72Cognitive neuroscience, 279Collision avoidance, 20Competence acquisition (motoractions), 77Competence generator, 212Competence, layers of, 25Connectionism, 13, 41Context dependent learning, 117Corridor following, 113, 283Corridor following and mazelearning, 174Corridor following, linearly sepa-rable, 86Credit assignment problem, 38Dead end escape behaviour, 49,97, 117, 229Dead end example, 58Dead end, escape due to stochas-tic processes, 8Dead ends, detection of, 284Dead reckoning, 29, 31Delivery tasks, 29Desert Ants, 95Dimensionality reduction, 168Distributed control, 26Driesh, 59Dyna architectures, 35Dynamics, inverse, 41Emergent functionality, 22, 41, 52,67, 68Experimentation, 4, 55Exploration, 2, 29Finite state machines, 26Fire�ghting, 2289

Flexibility in unforeseen situa-tions, 77Forward-motion-detector, 71, 101Framing e�ect, 3Functional decomposition, 20Genghis, 27, 39Graceful degradation, 41Habituation, 164, 194HelpMate, 29Herbert, 27, 33Hippocampus, 286Honey bee, 140Input Vector Generator, 80Instinct, 79Instinct-rules, 39, 60, 79, 212, 227,280Instinct-rules used for corridor fol-lowing, 113Instinct-rules used for obstacleavoidance, 96Instinct-rules used for wall follow-ing, 108Instinct-rules, arbitration of, 115Instinct-rules, determination, 123Inverse dynamics, 41, 139Inverse kinematics, 41, 139Ipamar, 22Junctions, detection of, 284KAMRO, 50Karhunen-Lo�eve transform, 45Kinematics, inverse, 41Landmark detection, 29, 31, 129,175Landmarks, 127, 250Landmarks for Location Recogni-tion, 128Learning capability, controllerswith, 88Learning in mobile robots, 33Learning, unsupervised, 44Linear separability, 42, 83, 84Location recognition, 14, 52, 124,125, 140, 192

Location recognition in bees, 140Location recognition mechanism,132Location recognition using land-marks, 128Location recognition using motor-actions, 143Location recognition using signi�-cant motor-actions, 152Machina docilis, 24Machina speculatrix, 24Machine functionalism, 287Macrobe, 23Magic numbers, 88, 150, 152, 162,283Magic TV, 213Map, 29Map interpretation, 52, 124, 140,192Map, acquired, 30Map, geometrical, 31, 52Map, prede�ned, 29Map, somatotopic, 255Map, topological, 31, 47, 52, 255Maze, 174Maze learning, 283Memories, multiple, 279Memory systems, human, 279MOBOT III, 30Modelling, 25Monitor, 80, 227Monkeys, 278Motor-Actions for LocationRecognition, 143Move Selector, 80Multiple competences, 186Multiple competences, acquisitionof, 277Multiple competences, sequentialdevelopment, 278Multiple memories, 279Navigation, 28, 33, 52, 124, 140,192, 282New paradigm in robotics, 22Noise helps, 8, 67290

Novelty detector, 165, 195Novomersor, 95Nuclear power stations, 2Obelix, 38, 286Obstacle avoidance, 20Obstacle avoidance in RUR, 93Obstacle avoidance, linearly sepa-rable, 84Obstacle avoidance, photograph,97Obstacle avoidance, using sonar,105Obstacle avoid-ance, using whiskers, 95,101Operational, staying, 13, 20Paradigm, new, 22Path planning, 20Pattern Associator, 42, 78, 80, 81,225Perceptron, 42, 86, 215, 225Perceptron learning, 43Perceptron learning rule, 43Perceptron, capacity, 122Perceptron, convergence, 88Physical grounding hypothesis, 25Pigeons, 153Plasticity, adjustable, 194Policy only reinforcement learn-ing, 35Potential �eld methods, 22Prede�nition, 12, 173, 186Principal component analysis, 45Probability density distribution,45Q learning, 35, 38Quantisation, 39Rat intelligence test, 193Reaction di�usion dynamics, 32,212Really Useful Robots, 12, 211,222, 250Recipe books for error recovery,49, 50

Redundancy, 152Reinforcement comparision tech-niques, 35Reinforcement learning, 34, 53,286Reinforcement learning,problems, 37Reinforcement learning, speed, 36Revolution counter, 70RUR, 12Scalability, 189Self-organising feature map onAlder, 130Self-organising feature map onCairngorm, 153Self-organising feature map, con-vergence, 48Self-organising feature map, func-tionality, 47Self-organising feature maps, 42,44, 212, 222, 250Self-organising feature maps, di-mensionality, 139, 149,161, 259Self-organising feature maps, size,138Sensing and acting, coupled, 22,72, 149, 251Sensor fusion, 30, 190Sensor range correlated withspeed, 72Separability, linear, 84Sequences, learning of, 168, 193Shakey, 34Short-tailed shearwater, 11Signi�cant motor action, 153, 283Signi�cant Motor actions for loca-tion recognition, 152Simulation, 4, 55, 286Simulation and experimentation,di�erences, 67Simulation of Alder, 59Simulation, advantages, 57Simulation, faithful, 68Simulation, overly simplistic, 57,67291

Somass, 50Somatosensory cortex, 47Spanky, 40, 286Speed, correlated with sensorrange, 72Staged learning, 14, 171Staged learning, photograph, 183Staying operational, 13, 20, 52Striate cortex, 255Subsumption architecture, 21, 27,286Symbol system hypothesis, 25Synthetical approach, 21, 52, 212,222Tactile sensors, 70Threshold, automatic determina-tion, 162, 164Tom and Jerry, 27Toto, 27, 31, 286Turbine example, 5Ultrasonic range �nder, 105Ultrasonic sensor of Alder, 71, 92Undesired situations, 48, 53Unforeseen situations, 2, 48, 53,250Unforeseen situations, example,13, 94Unforeseen situations, exibilityin, 77, 281Unsupervised learning, 44VaMoRs, 24Visual cortex, 47Walking robots, 39Wall following, 108, 228, 282Wall following and mapbuilding,179Wall following, advantages, 126Wall following, linearly separable,85Wall following, photograph, 111Whisker sensors, 70, 216Wiring of robots, complicated, 94World model, 25, 187 292

