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Abstract

Endothelin-1 (ET-1) is a potent and longlasting vasoconstrictor peptide

synthesised and secreted by the vascular endothelium. Plasma ET-1 levels are

raised 2 to 3 fold in chronic heart failure (CHF), correlating with disease

severity and outcome. Thus, increased ET-1 production may be an important

factor in the maintenance of the peripheral vasoconstriction in CHF. Resistance

arteries, with internal diameters of 50-350 p.m, are the most important blood

vessels of the circulation in setting vascular resistance. Therefore, it is

important to characterise the ET receptors responsible for ET-1 vasoconstriction
in these arteries. The aims of this thesis were i). to characterise the ET receptors

on the smooth muscle of normotensive rats, ii). investigate any changes of the

ET receptor subtypes in a CHF rat model and in CHF patients and iii).

investigate whether there is increased ET-1 synthesis in CHF by measuring

plasma ET-1 and big ET-1 levels and if there is an altered localisation of ET-1

and ECE in the wall of the arteries.

Firstly, the ET-1 receptor subtypes responsible for ET-1-induced

vasoconstriction in endothelium-denuded mesenteric arteries from

normotensive Wistar rats were investigated. Arteries were mounted in a

perfusion myograph and ET-1 or sarafotoxin S6c (SRTX S6c) concentration-

response curves (CRC) were performed. The relative roles of the ETA and ETB

receptors in the ET-1-induced vasoconstrictions were evaluated by using either
the ETa receptor antagonist, BQ-123; the ETB receptor antagonist, BQ-788; the

ETb receptor agonist, SRTX S6c or the non-selective ETA/ETB antagonist,

TAK-044. It was found that both ETA and ETB receptors mediate ET-1
vasoconstriction and that ETA receptors could compensate for the inhibition of

ETB receptors. The results suggested a potential crosstalk mechanism between
the two receptor subtypes.

Any changes in vascular smooth muscle ET receptor responses and subtypes

mediating ET-1 vasoconstriction in resistance arteries in CHF were then



investigated. Two sources of arteries were used; i). mesenteric arteries from

rats at two different time points after the induction of heart failure by left

coronary artery ligation or sham-operation and ii). gluteal arteries dissected
from buttock biopsies obtained from Grade II & III CHF patients and age-

matched controls.

Endothelium denuded mesenteric arteries from rats 5 or 12 wks after the

induction of CHF and the respective sham-operated controls were mounted in a

perfusion myograph and ET-1 CRCs were performed. Sensitivity to ET-1 was

reduced in arteries from 12 wk but not 5 wk post-ligation rats relative to sham-

operated animals. In the arteries from the 12 wk CHF animals sensitivity to ET-

1 was restored by prior desensitisation of ETB receptors with SRTX S6c.
SRTX S6c used as an agonist induced a small constrictor response in sham and

5 wk CHF arteries, which was lost in 12 wk CHF arteries. Antagonist studies

suggest that ETA receptors mediate the ET-l-induced vasoconstriction in all
arteries.

Functional studies in the perfusion myograph on endothelium denuded human

gluteal arteries also demonstrated a reduced sensitivity to ET-1 in the arteries

from the CHF patients. ETB receptor desensitisation had no effect on the ET-1

CRCs in both control and CHF arteries. Again, ETA receptors appeared to

mediate the ET-l-induced vasoconstriction in all arteries. RIA demonstrated

increased big ET-1, but not ET-1 levels in the plasma from the CHF patients.

Immunohistochemistry demonstrated that ET-1 and ECE was localised to the

endothelium, but not smooth muscle, of arteries from both rats and humans.

There was no difference seen in the arteries from the CHF rats and humans.

Overall, responses to ET-1 are attenuated in arteries from CHF patients and

animals. In the arteries from the 12 wk CHF rats there may be up-regulation of

relaxant ETB receptors on the vascular smooth muscle responsible for the

reduced ET-1 sensitivity. However, relaxant ETB receptors were not evident in



the arteries from the human CHF patients suggesting a down-regulation of ET-
1 receptors, most probably ETA receptors. The down-regulation of the ET-1

receptors is most likely as a result of increased ET-1 synthesis, although not

local ET-1 production in these vessels.
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Introduction



A. 1.1. The Arterial Circulation

The principal function of the circulatory system is the transport of oxygen and nutrients

to, and removal of carbon dioxide and other metabolic waste products from, all tissues

of the body. However, the circulation is also involved in temperature regulation and

the distribution of other substances, such as hormones, and cells such as those of the

immune system.

The vascular system is a circuit of blood vessels, comprised of the arterial system,

which leads to the capillaries (the main sites of interchange between the tissues and

blood) and the venous system. Apart from the capillaries, the whole circulatory

system has a common basic stmcture, being made up of three separate layers: the inner

lining tunica intima, which consists of a single layer of endothelial cells; the tunica

media, the intermediate layer of smooth muscle cells; and the outer tunica adventitia

which consists of connective tissue (collagen and elastin) and fibroblasts (Figure 1.1.).

The intima is separated from the media by the internal elastic lamina and acts as a

storage function for all blood vessels, in particular the large conduit arteries and veins.

Blood vessels are innervated by the sympathetic and non-adrenergic, non-cholinergic

neuronal systems, which synapse in the advential and smooth muscle layers.

There are three main types of blood vessel in the arterial system: elastic arteries, which

are the larger, main distributing vessels such as the aorta; muscular arteries, the main

distributing branches of the arterial tree such as the radial arteries; and arterioles or

resistance arteries, the terminal branches of the arterial tree leading to the capillary

beds. There is a gradual change in structure and function between the three arterial

types, as vessel size decreases, the relative amount of elastic tissue decreases and the

smooth muscle layer increases. The flow of blood to various organs and tissues is

regulated by varying the diameter of the arterial system, a function performed by the

smooth muscle layer. It is at the level of the resistance arteries where total peripheral

resistance and blood pressure is mainly controlled. It was believed, until recently, that

the diameter of these arterioles was under the control of the sympathetic nervous

system and circulating hormones alone.

1
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A. 1.2. The Vascular Endothelium

Over the past two decades it has become obvious that the vascular endothelium has a

very important role in regulating vascular tone. The endothelium is a monolayer of

cells lining blood vessels of all sizes and it is in a unique position to detect any changes

in blood flow, pressure and circulating hormones. As a result of the location, the

endothelium helps control the size of blood vessel lumen (along with sympathetic

innervation), therefore blood flow and pressure, by producing a number of important

vasodilator and constrictor substances. In the 1970s, '80s and '90s several potent

vasodilators were discovered to be synthesised and released by endothelial cells,

namely prostacyclin (PGI2; Moncada et al., 1976), endothelial-derived relaxing factor

(EDRF; Furchgott & Zawadzki, 1980) and endothelial-derived hyperpolarising factor

(EDHF; Taylor & Weston, 1988). EDRF has since been identified as nitric oxide

(NO; Palmer et al., 1987), and a putative candidate for the role of EDHF is the

cannabinoid, anandamide (Randall et al., 1996). Due to the discovery of these

endothelial produced vasorelaxants, it was hypothesised that counterbalancing

constrictor factors would also be released from the endothelium.

A. 1.2.1. Endothelin

Experiments on isolated arteries and veins had already demonstrated that endothelium-

dependent contractions induced by hypoxia (Rubanyi & Vanhoutte, 1985) or anoxia

(Detar & Bohr, 1972; DeMay & Vanhoutte, 1983) could be elicited. One of the

substances released, produced a prolonged vasoconstriction lasting more than 60

minutes, and indirect evidence suggested that it was a peptide (Hickey et al., 1985;

Gillespie et al., 1986).

It was in 1988 when Yanagisawa and colleagues isolated and sequenced endothelin

(ET) from the culture supernatant of porcine endothelial cells. It is a 21 amino acid

peptide and is the most potent vasoconstrictor substance ever characterised. However,

it does have some vasodilator properties. In chemically denervated rats, Yanagisawa

and co-workers (1988) showed that intravenously administered ET caused an initial

short-lived decrease, followed by a marked and sustained (> 60 minutes) increase, in

3



blood pressure. This slow onset, long lasting pressor effect made it unique amongst all
other known vasoconstrictors. For example, in contrast to ET, a bolus of angiotensin
II (ANG II) has an immediate vasoconstrictor action which almost immediately returns

back to resting baseline (Clarke et al., 1989). However, similar to ET, ANG II can

also mediate vasodilatation (Gardiner et al., 1988).

The ETs were found to be a family of three isopeptides, simply called ET-1, ET-2 and

ET-3 (Inoue et al., 1989a). The isoform originally characterised was ET-1, with ET-2

and ET-3 being structurally and pharmacologically distinct (Figure 1.2). ET-2 differs

by 2 amino acids from ET-1 and ET-3 by 6 amino acids. All three isoforms are

encoded by different genes on chromosomes 6, 1 and 20 respectively (Gray & Webb,

1996). However, they are all 21 amino acid peptide chains with two intrachain

disulphide bridges between cysteine residues 1 and 15, and 3 and 11. The disulphide

bridges and C-terminal domain present in the endothelins are necessary for their

actions, as their removal leads to substantial loss of biological activity (Kimura et al.,

1988).

The sarafotoxins (SRTX's) are a group of isopeptides isolated from the venom of the

Israeli burrowing asp, Atractaspis engaddensis. These peptides have been found to be

very similar to the ET's both structurally and functionally (Kloog & Sokolovsky,

1989). Indeed, two of these SRTX's, SRTX S6b and SRTX S6c (Figure 1.2) have

proved to be useful tools in the studies of the ETs and their receptors.

A. 1.2.2. Generation of endothelin

ET-1 is the major isoform produced by vascular endothelial cells in humans and is the

most important of the three ETs in the human body (Gray & Webb. 1996). It is

generated in response to physical and chemical forces including vascular shear stress,

hypoxia and to other vasoactive mediators such as adrenaline and angiotensin II

(Yanagisawa et al., 1988). The synthesis of ET-1, and the other two isoforms, is

analogous to other peptides (Figure 1.3). A 212 amino acid polypeptide is the primary

translation product from the human ET-1 gene. It contains a 17 amino acid signal
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11 15 21

3 1

h2 Endothelin-2

11 15 21

Sarafotoxin S6c

Figure 1.2. Amino acid sequences of the three human endothelin isoforms,
and sarafotoxin S6c, one of the sarafotoxin family isolated from snake
venom. Amino acids differing from endothelin-1 are shaded, and the lines
between residues 1 & 15 and 3 & 11 represent the disulphide bridges linking
the cysteine residues.
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PrePro Endothelin-l

1 20 53 74 92 221

I
Pro Endothelin-l

20 53 74 92 203

Figure 1.3. A schematic diagram showing the synthesis pathway of the
endothelin peptides
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sequence which is cleaved once the peptide is secreted from the nucleus (Inoue et al.,

1989a; 1989b). This proET-1 is cleaved by dibasic amino acid endopeptidases at two

recognition sequences (Lys52-Arg53 and Arg90-Arg91), resulting in the 38 amino acid

peptide big ET-1. The mature ET-1 is then generated through an unusual proteolytic

cleavage between Trp21-Val22 of big ET-1 by endothelin-converting enzyme (ECE;

Yanagisawa et al., 1988).

There is a great difference in the biological activities of big ET-1 and the mature ET-1

(ET-1 being at least 100 fold more active). Thus, inhibitors of ECE would be useful

tools in the investigation of the endothelin system, and as potential therapeutic agents.

Elowever, ECE has been difficult to identify. Initially, because of the sensitivity of

ECE to metal ion chelators and its pH optima, two enzymatic families, the aspartyl

and/or metalloprotease families, were suggested to be responsible for ECE activity

(Ikegawa et al., 1990; Lees et al., 1990; Sawamura et al., 1990). Subsequent studies

demonstrated that the aspartyl proteases could not account for ECE activity, since

aspartyl protease inhibitors did not attenuate ET-1 secretion from cultured endothelial

cells (Ikegawa et al., 1990; Shields et al., 1991) or inhibit big ET-1 conversion in vivo

(Bird et al., 1992). Neutral endopeptidase 24.11 (NEP) was also suggested as a

potential candidate for the activity of ECE. However, the NEP specific inhibitor,

thiorphan, was shown to be unable to inhibit big ET-1 conversion (Bird et al., 1992;

Turner & Murphy, 1996). Furthermore, NEP was found to degrade ET-1 more

efficiently than generating ET-1 from big ET-1 (Sokolovsky et al., 1990; Abassi et al.,

1993) and is now recognised as a potential mechanism in the removal of ET-1 from the

circulation (see A. 1.2.3.). In contrast, Gardiner and colleagues (1992a), using SQ

28,603, an NEP and ECE inhibitor, found that in conscious rats, that although the

pressor effects of big ET-1 was inhibited, there was no prolongation of the
cardiovascular effects of ET-1, but there was of ANP.

However, it was found that the metalloprotease enzyme inhibitor phosphoramidon

could consistently inhibit the generation of ET-1 from big ET-1. Phosphoramidon has

been shown to inhibit ET-1 production from endothelial cells in culture (Ikegawa et al.,
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1990), and antagonise the vasoconstrictor effects of big ET-1 in vitro (Hisaki et al.,

1991; Telemaque & D'Orleans-Juste, 1991) and in vivo (Fukuroda et al., 1990;
Matsumura et al., 1990; McMahon et al., 1991). Phosphoramidon, however, does not

affect vasoconstriction and pressor responses induced by the mature peptide.

Furthermore, this enzyme has the ability, albeit less efficiently, to convert the other

precursor endothelin peptides, big ET-2 and big ET-3, to the active peptides (Gardiner
et al., 1992b; Pollock et al., 1993). This implies that there may be different

isoenzymes specifically for each endothelin isoform. Indeed, two forms of ECE have

been cloned, ECE-1 and ECE-2 (Xu et al., 1994; Emoto & Yanagisawa, 1995), both

of which convert big ET-1 more efficiently than big ET-2 and big ET-3. The

differences between the two isoforms are location, pH optimum and affinity to

phosphoramidon. ECE-1 is widely distributed throughout the body, although it is not

found in the neurones or glia of the brain (Xu et al., 1994) and has an optimum activity

of pH 6.8. In contrast, ECE-2 is mainly expressed in neural tissues and has an acidic

pH optimum of 5.5 (Emoto & Yanagisawa, 1995). Both isoforms are Type II integral

membrane proteins with a short N-terminal cytoplasmic tail, a single transmembranal

domain, and a large C-terminal containing a zinc-binding motif in the catalytic domain

(Emoto & Yanagisawa, 1995; Turner &Murphy, 1996).

Recently, it has been found that ECE-1 is a family of at least three isoforms. These

have been called ECE-la, ECE-lb and ECE-lc, and vary at the C-terminal (Valdenaire

et al., 1995). The relative importance of each isoform is unknown, although

experiments have suggested that ECE-la and ECE-lc are probably the most important

physiologically. For the rest of this section, the isoforms will be discussed collectively

as ECE-1.

Both ECE-1 and ECE-2 are believed to be membrane proteins either on the plasma

membrane or on an intracellular membrane site. Experiments in vivo administering

exogenous big ET-1 (McMahon et al., 1991; Haynes & Webb, 1994) suggest that this

conversion to ET-1 is most likely via an ECE present on the plasma membrane of

endothelial and smooth muscle cells. When COS cells were transfected with the ECE-
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1 gene, only 5-10% of the exogenous big ET-1 added was converted to the active

peptide (Xu et al., 1994) and conversion in ECE-2 transfected COS cells was

negligible (Emoto & Yanagisawa, 1995). In contrast, COS cells or endothelial cells

co-transfected with preproET-1 and ECE-1 or ECE-2 secreted 50-90% of the

"endogenous" precursor as the mature peptide (Sawamura et al., 1990; Xu et al.,

1994; Emoto & Yanagisawa, 1995). As a result of these observations, it has been

suggested that once secreted from the nucleus, the endogenous preproET-1 is

processed to the final mature peptide during transit through the intracellular constitutive

secretory pathways, particularly in the Golgi apparatus. Immunohistochemical

staining against ET-1 demonstrating its presence in the cytoplasm of endothelial cells

(Gui et al., 1993) and conversion of big ET-1 to ET-1 by low density intracellular

fractions (Harrison et al., 1993) provide further evidence for this theory. The pH in

the vesicles of the Golgi apparatus is between 5.5-5.7, which is optimal acidity for

conversion by ECE-2 (Emoto & Yanagisawa, 1995).

In these acidic conditions ECE-1 would not efficiently convert bigET-1. However,

using antibodies directed against ECE-1, immunohistochemistry has demonstrated

clusters of ECE-1 on the surface of endothelial cells (Barnes et al., 1995). It is

suggested that these clusters are localised in caveoli, invaginations of the plasma

membrane into which big ET-1 can be secreted for ET-1 generation (Turner &

Murphy, 1996).

Therefore, production of the mature peptide could be via two different pathways.

During upright tilt there is a rapid release of ET-1 (Stewart et al., 1992), this could be

due to a store of ET-1 which is ready for immediate release, perhaps via the prior

conversion of big ET-1 by ECE-2 in some Golgi vesicles. However, ECE-1 may be

responsible for continuous, longer-term conversion of ET-1 at the cell membrane,

whereby both ET-1 and big ET-1 is secreted. Furthermore, ET-1 is secreted in a polar

fashion, preferentially towards the smooth muscle cell layer (Wagner et al, 1992a).
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A, 1.2.3. Clearance and metabolism of endothelin

The metabolism of ET occurs by three different routes: enzymatic degradation,

receptor-mediated clearance and urinary excretion. As alluded to above, membrane

bound NEP 24.11 is more efficient at degrading ET-1 than generating it (Sokolovsky

et al., 1990; Abassi et al., 1993). It is an enzyme which is responsible for the

inactivation of many peptides, including bradykinin, atrial natriuretic peptide (ANP)

and substance P (Turner & Murphy, 1996). The lungs are important in the removal of

ET-1 from the circulation, and porcine lung membrane fractions were found to

hydrolyse ET-1. The enzyme responsible for this was shown to be NEP 24.11

(Murphy et al., 1993). NEP inhibition by SQ-29,072 in humans resulted in increased

urinary excretion and plasma levels of ET-1 (Abassi et al., 1992) and brachial artery

infusion of thiorphan resulted in vasoconstriction of the forearm vascular bed, whereas

phosphoramidon infusion produced vasodilatation (Haynes & Webb, 1994). Other

enzymes have also been isolated which have the ability to breakdown ET-1, including

a protease, probably cathepsin G, which is released from activated polymorphonuclear

lymphocytes (Patrignani et al., 1992), deaminase from bovine aortic endothelial cells

(Jackman et. al., 1993) and a carboxypeptidase-like enzyme isolated from kidney

(Jeng & Deng., 1993). Interestingly a metalloprotease has been found to be released

from the isolated perfused mesenteric arterial bed of the rat (Perez-Vizcaino et al.,

1995). This enzyme is very active at pH 7.4, implying that it may be physiologically

important in the metabolism of ET-1 throughout the vasculature. It was not inhibited

by phosphoramidon or captopril, so it is not NEP 24.11 or angiotensin-converting

enzyme (ACE). However, the authors suggested that it is similar to a membrane-

bound metalloprotease found in the rat kidney which cleaves ET-1 predominantly
17 18

between Leu and Asp (Yamaguchi et al., 1992).

125
In anaesthetised rats, injection of [ I]-ET-1 results in over 60% being removed

during the first minute (Anggard et al., 1989), the majority binding to the lung,

followed by the kidney and liver. In humans, however, the lungs do not appear to be

as important at removing ET-1 from the circulation, although pulmonary clearance

does occur (Stewart et al., 1991). The plasma half-life of ET-1 in humans is less than
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90 seconds, mainly due to extraction from the circulation by the splanchnic and renal
vascular beds (Weitzberg et al., 1991; Gasic et al., 1992). Despite the species

differences in organ extraction, it is accepted that actual removal from the circulation

occurs via the same pathway. The circulating ET-1 binds to cell surface receptors,

which are internalised. The peptide is then degraded within the cell (Anggard et al.,

1989; Shiba et al., 1989; Gandi et al., 1993) by proteases such as deamidase which

has been found in human platelets, vascular smooth muscle cells and endothelial cells

(Jackman et al., 1992; 1993) and rat kidney (Deng et al., 1994; Janas et al., 1994). It

was first suggested that circulating ET-1 was cleared by binding to a receptor, the ETB

receptor, when plasma ET-1 concentrations were increased after rats were treated with
the non-selective ETA/ETB receptor antagonist, Ro-47-2005, but not after selective ETA

inhibition with BQ-123 or FR 139317 (Loffler et al., 1993). Fukuroda and colleagues

(1994c) then demonstrated that the selective ETB receptor antagonist, BQ-788,
125

inhibited the uptake of intravenously administered [ I]ET-1 in the lungs and kidneys
125

in rats. However, the removal of circulating [ I]ET-1 by the liver was significantly
enhanced by ETB receptor inhibition, implying that hepatic uptake occurs via a

receptor-independent mechanism that can compensate for the inhibition of ET-1

removal by the lungs and kidneys (Fukuroda et al., 1994c).

Urinary excretion of ET-1 also occurs, since ET-1 levels can be detected in the urine of

humans (Matsumoto et al., 1994) and bilateral nephrectomy in rats results in a
125

reduction of the disappearance of circulating [ I]ET-1 (Kohno et al., 1989).

A. 1.2.4. Endothelin receptors

Receptors are generally classified on the basis of their differing affinities for agonists

and antagonists. However, the development of endothelin antagonists was slow, so

endothelin receptor subtypes were initially identified using the different properties of
the ETs/SRTXs alone. At present two classes of ET receptor subtype in mammalian
tissues have been established, the ETA and ETB receptors (Arai et al., 1990; Sakurai et

al., 1990). The ETA receptor shows a higher affinity to ET-1 or ET-2, than ET-3

whereas the ETB receptor is non-selective. SRTX S6b has the ability to activate both
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receptors, but SRTX S6c shows 300 000 fold selectivity for the rat ETB receptor

(Williams et al., 1991; Table 1.1).

The genes encoding both receptors were cloned and characterised within two years of

the initial description of ET (Arai et al., 1990; Sakurai et al., 1990). The cDNA

encoding the human ETA receptor predicts a structure of 427 amino acids and the
cDNA for the ETB receptor predicts 442 amino acids (Adachi et al., 1991; Hayzer et

al., 1992; Arai et al., 1993; Elshourbagy et al., 1993). The sequence homology

between the two receptor subtype mature proteins is estimated to be 55 - 64%

depending on the tissue origin of the cDNA (Adachi et al., 1991; Hayzer et al., 1992;
Arai et al., 1993; Elshourbagy et al., 1993). The ETA and ETB receptor genes are

located on chromosomes 4 (Hosada et al., 1992) and 13 (Arai et al., 1993)

respectively, with similar structural organisation implying that they originated from the

same ancestral gene. Functional studies have suggested further ET receptor subtypes

(Bax & Saxena, 1994). For instance, the presence of a third receptor subtype was

suggested by Emori et al. (1990), who demonstrated an ET-3-preferring receptor in
cultured bovine endothelial cells. In 1993 an ET-3 selective receptor, called ETC, was

cloned from the amphibian Xenopus laevis (Karneefa/., 1993). However, if present

in the mammalian genome, it has yet to be cloned. Analysis of the human DNA

genome with specific probes for the human ETA and ETB receptors revealed only two

hybridising fragments (Sakamoto et al., 1991). Therefore, if genes encoding other ET

receptors exist in the mammalian genome, they must have a low sequence homology

with the two established ET receptor genes.

Prior to the cloning of the ET receptors, radioligand-binding studies inferred the

existence of two receptor subtypes (Bax & Saxena, 1994). As mentioned above, the

receptors were then classified based on the actions of agonists. Maggi and colleagues

(1989), used the C-terminal hexapeptide, ET-(16-21), the sequence common to all of
the endothelins, and found that it was inactive when tested on rat isolated aorta, but a
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full agonist in the guinea-pig isolated bronchus. Thus, the receptors were called ETA
for aorta, and ETB for bronchus.

The mammalian ET receptors are of the seven transmembrane-spanning, rhodopsin-

like, G-protein-coupled receptor superfamily (Hosoda et al., 1992; Arai et al., 1993).

Activation of the receptors results in the mobilisation of several intracellular signal

transduction pathways. However, the most important pathway is the G-protein-

mediated activation of phospholipase C (PLC), resulting in formation of inositol

triphosphate (IP3) and diacylglycerol (DAG; Pang et al. , 1989; Griendling et al.

1989). IP3 binds to the IP3 receptor present on the endoplasmic reticulum, opening the

IP3 receptor Ca2+ channel, causing the release of Ca2+ (Berridge, 1993) into the

cytosol. DAG activates protein kinase C (PKC) which may sensitise the contractile

proteins to Ca2+ via phosphorylation (Sunako et al., 1989; Abe et al., 1991). PKC can

also stimulate the sodium-hydrogen antiporter, resulting in extrusion of H+ and

alkalinisation of vascular smooth muscle cells (VSMC; Lonchampt et al., 1991). The

increase in intracellular pH enhances the contractility of the VSMCs, again via

sensitisation of the contractile proteins to Ca2+. During the sustained vasoconstrictor

response to ET, voltage-operated Ca2+ channels are opened (Inoue et al., 1990).

The opposing actions of the two receptor subtypes has been demonstrated at the

second messenger level as well. Transfection of ETA receptors into Chinese hamster

ovary cells, when stimulated by ET-1, induced an increase of cAMP levels by
stimulation of phospholipase A2. In contrast, when ETB receptors were transfected,

there was inhibition of forskolin-induced cAMP turnover (Aramori & Nakanishi,

1992).

Following the cloning of the two receptors, antagonists were developed. Antagonists

against the ETA receptor were the first to be described, most notably BQ-123 (Ihara et

al., 1992) and FR 139317 (Sogabe et al., 1993). These two antagonists, are the

compounds that the majority of research into ET receptor subtypes have been based
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around. Disclosure of non-selective ETA/ETB receptor antagonists were next,

including compounds such as PD142893 and PD 145065 (Warner et al., 1994a,b,c).
The development of specific ETB receptor antagonists took the longest, and indeed the

first one to be described, IRL 1038, was found to have highly variable affinity to the

receptor between batches (Urade et al., 1994). Thus, all data and studies utilising this

compound should be considered with great caution (Bax & Saxena, 1994). It was not

until early 1994 that the potent and novel ETB selective antagonist, BQ-788, provided

the field with a tool to investigate the actions of this receptor subtype (Ishikawa et al.,

1994). It is worth noting that all of these original antagonists described are peptides,

and are therefore of limited use when needed for chronic, oral dosing. Thus, the

search for a non-peptide antagonist, be it selective or non-selective, was intense. The

first orally active, non-peptide compound synthesised and described in the literature

was Ro 46-2005 (Clozel et al., 1993). This structure was optimised to produce Ro

47-0203, otherwise known as bosentan (Clozel et al., 1994). Bosentan is an orally

active, non-selective ETA/ETB receptor antagonist with reasonable potency against both

receptor subtypes. See Table 1.2 for a review of the major antagonists used in the

literature.

The development of these antagonists helped in the characterisation and localisation of
the ET receptors in various tissues, confirming, in some cases, the agonist results but

contradicting the previous conclusions in other studies.

A. 1.2.4.1. Vascular endothelial ETB receptors

A bolus injection of ET-1 into an anaesthetised rat produces an initial, transient

depressor effect, followed by the well-recognised longlasting pressor response

(Yanagisawa et al., 1988). This initial vasodilation is also evident if ET-3 or SRTX

S6c is administered (Warner et al., 1989; Clozel et al., 1992). In vitro tissue

experiments on pre-constricted arterial beds showed that the relaxation by the
ET/SRTX peptides is abolished on endothelial denudation (Douglas & Hiley, 1991),

implying that ETB receptors present on the endothelium are responsible for mediating

the dilatory actions by the ET peptides. Indeed, pre-treatment of anaethetised animals
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with BQ-123 was found to potentiate the depressor effect of bolus ET-1, whilst

inhibiting the majority of the pressor response (Douglas et al., 1992). However, BQ-
788 abolished the vasodilatory response completely (Karaki et al., 1994), as did
desensitisation of the ETB receptors by repeated ET-3 exposure (Le Monnier de

Gouville et al., 1990). Furthermore, reverse transcription-polymerase chain reaction

experiments in cultured human endothelial cells have demonstrated the mRNA

encoding the ETB receptor only (Hosada etal., 1991; Ogawa et at., 1991; Molenaar et

al, 1993).

The mechanism underlying the initial depressor response was found to be by the

release of endogenous vasodilator factors. Inhibition of nitric oxide synthase by L-
G G

NMMA (L-N -monomethyl-arginine) or L-NAME (L-N -nitro-arginine methyl ester)

inhibited the depressor activities of ET-1 (Whittle et al., 1989). Thus, in vascular

endothelial cells, ETB receptor-mediated liberation of Ca2+ results in the activation of

constitutive nitric oxide synthase (cNOS), and the subsequent diffusion of NO to the

vascular smooth muscle cells. However, NO is not the only vasodilator to be released

via stimulation of endothelial ETB receptors (Gardiner et al., 1989; 1990b,c).

Phospholipase A2 (PLA2) can also be activated, thus metabolising arachidonic acid to

prostacyclin (DeNucci et al., 1988). In resistance arteries, it has been suggested that

the release of endothelial-derived hyperpolarising factor (EDHF), an unknown

substance different to NO, is the major endothelial factor liberated by ETB receptor

stimulation (Nakashima & Vanhoutte, 1993).

The release of the vasodilator substances, via endothelial ETB receptor stimulation is
believed to be a counteractive mechanism against the powerful vasoconstrictor actions

of the ETs at the smooth muscle level. However, the physiological relevance is under

question, since ET-1, synthesised by the vascular endothelium is secreted

preferentially abluminally, away from the ETB receptors present on the luminal side of
the endothelium. Thus, under normal physiological conditions these vasodilatory

actions may not be utilised. Although in pathophysiological conditions, where

increased circulating levels of the ET peptides are to be found, e,g, in heart failure (see
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section B. 1.6.1.), they may have a role in counterbalancing the vasoconstrictions
induced.

A. 1.2.4.2. Vascular smooth muscle constrictor ETa receptors
It was originally believed that only ETA receptors were responsible for the
vasoconstrictor actions of the ET peptides (Masaki et al., 1991). Due to the relative

selectivity of the ETA receptor for ET-1, but not ET-3 or SRTX S6c, the classification
of ET receptors mediating vascular constrictions were originally based on the rank
order of potency; ET-1>ET-3>SRTX S6c. As a result, the majority of the early,

functional studies on isolated tissues confirmed the mRNA localisation studies

showing that the ETA receptor was only found to be expressed in vascular smooth
muscle (Arai et al., 1990; Hori et al., 1992; Yang et al., 1993), and mRNA for the ETB

receptors in the endothelium (Hosada et al., 1991; Ogawa et al., 1991; Molenaar et al.,

1993). Thus, the consensus of opinion was that ETA receptors mediate the
vasoconstrictor action of the ETs, which are modified by the release of endothelial ETB

receptor stimulated relaxing factors.

Typical vascular preparations with constrictor ETa receptors include the rat thoracic
aorta (Maggi et al., 1989; Sumner et al., 1992; Warner et al., 1993a,b; Moreland et al.,

1994), guinea pig aorta and pulmonary artery (Hay et al., 1993), rabbit carotid artery

(Moreland et al., 1992 & 1994; White et al., 1993), goat cerebral artery (Salom et al.,

1993), porcine carotid artery and monkey saphenous vein (Moreland et al., 1994). In

vivo experiments also confirmed the major role of the ETA receptor in ET-1-induced

vasoconstriction, the pressor effect of ET-1 infusion being significantly attenuated by

ETa receptor antagonism (Douglas et al., 1992; Bigaud & Pelton, 1992).

Vasoconstrictor ETA receptors also contribute to basal tone in the whole systemic
vasculature. Infusion of BQ-123 alone into anaesthetised rats induced a decrease in

femoral artery mean arterial pressure, accompanied by a systemic vasodilatation

(Bigaud & Pelton, 1992). This has also been demonstrated in humans. Infusion of

18



BQ-123 into the forearm of healthy volunteers produced a vasodilatation, as shown by
an increase in forearm blood flow, of up to at least 40% (Haynes & Webb, 1994).

A. 1.2.4.3. Vascular smooth muscle constrictor ETB receptors

The first data suggesting that ETA receptors are not solely responsible for the

vasoconstrictor activity of the ET peptides, was when Williams and colleagues (1991)
identified SRTX S6c as a specific ETr receptor agonist. Using binding assays, they

125
demonstrated that SRTX S6c only inhibited [ I]-ET-1 binding in the rat

hippocampus and cerebellum, but not in rat atria and aorta. In fact the K] values for
SRTX S6c were 300 000 fold weaker in the aorta/atria preparations than in the

hippocampus/cerebellum. However, when they injected increasing doses of SRTX
S6c into pithed rats, a pressor response was seen. It was comparable in potency to

equivalent doses of SRTX S6b (the non-selective agonist), up to 0.3 nmol/kg. At

doses greater than 0.3 nmol/kg the pressor response to SRTX S6b was significantly

higher. These results were confirmed in other studies using either the specific ETB

agonist [Ala u-n'l5]ET (Douglas & Hiley, 1991; Clozel et al., 1992; Bigaud & Pelton,

1992) or SRTX S6c (Clozel et al., 1992). Furthermore, there were two vascular beds

particularly sensitive to the constrictor properties of these specific ETB agonists,

namely the mesenteric and renal beds (Clozel et al., 1992; Bigaud & Pelton, 1992).

Douglas and colleagues (1992) showed regional differences in ET-1-induced

vasoconstriction which were sensitive to BQ-123. Flow probes placed around the

right carotid artery and the superior mesenteric artery in anaesthetised rats,

demonstrated that both vasculatures were susceptible to ET-1-induced

vasoconstriction. However, BQ-123 inhibited the increase in vascular resistance in the

carotid artery, but had no effect on the mesenteric vasoconstriction. Cristol et al.,

(1993) saw in the anaethetised rat, that renal blood flow was reduced by ET-1, ET-3,

SRTX S6b and STRX S6c equipotently. BQ-123 pre-treatment was ineffective

against all the agonists. Similar results have been shown with the other popular ETA

receptor antagonist, FR 139317 in both the mesenteric and renal beds (Gardiner et al,

1994a). Furthermore, the ETA/ETB receptor antagonist bosentan was shown to

significantly inhibit, although not completely abolished, the renal and mesenteric
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vasoconstrictions to ET-1 in conscious rats (Gardiner et al, 1994b). Thus, implying

the presence of vasoconstrictor ETB receptors in these vascular beds.

It was in veins that vasoconstriction mediated by ETB receptors became evident in

functional, organ bath experiments (Moreland et al., 1992; Sumner et al., 1992). It
was in the rabbit saphenous vein (Moreland et al., 1992) and jugular vein (Sumner et

al., 1992), that constrictions were seen to ET-1 and ET-3, which could not be inhibited

by ETa receptor antagonists (Moreland et al., 1992; Sumner et al., 1992), and that
contractions could be elicted by SRTX S6c (Moreland et al., 1992). The first artery

seen to constrict to ET-1, ET-3 and BQ3020 (a selective ETB agonist) was the rabbit

pulmonary artery (Ihara et al., 1992; Warner et al., 1993a). However, the majority of

constrictor ETB receptors appear to be present in venous smooth muscle (Moreland et

al, 1994).

A. 1.2.4.4. Mixed constrictor ETA/ ETB receptor populations
Vasoconstriction in some blood vessels have been found to be mediated via a mixed

population of ETA and ETB receptors. For complete inhibition of ET-1 constriction in
the rabbit pulmonary artery, both ET receptor subtypes had to be inhibited by BQ-123

treatment in combination with either BQ-788 (Fukuroda et al., 1994a) or ETB receptor

desensitisation by prolonged exposure with SRTX S6c (LaDouceur et al., 1993). The

presence of the ETA receptors was confirmed by radioligand binding studies

(LaDouceur et al., 1993). This is despite the fact that this tissue had previously been

shown to contract exclusively by ETB receptors (Ihara et al., 1992; Warner et al.,

1993a). This has also been shown to be the case in rabbit saphenous vein (LaDouceur

et al., 1993; Sudjarwo et al., 1994) and in the rat renal vasculature (Wellings et al.,

1993). Other tissues containing mixed ETA/ ETB receptor populations described
include porcine coronary artery (Shetty et al., 1993), canine saphenous vein and

monkey iliac artery and jugular vein (Moreland et al., 1994).

To summarise the above review on which receptors mediate vasoconstriction, a

thorough study by Moreland and colleagues (1994) on six different species, both
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arterial and venous preparations demonstrated that, generally, ETA receptors were the

subtype mediating constriction in the high pressured, arterial side of the circulation,
whereas ETB receptors have a role in the low pressured, venous side. They also
showed an in vivo pressor response to SRTX S6c in cynomolgus monkeys, which

they concluded could not occur via constriction of the venous side of the circulation

alone. The authors admit that they were only studying large, pre-resistance arteries in

vitro, and that the pressor response to SRTX S6c could be partially due to constrictor

ETB receptors in the smaller, resistance arteries, as was demonstrated in the canine

coronary bed, where intracoronary infusion of SRTX S6c resulted in a pronounced

decrease in coronary vascular resistance (Teerlink et al., 1994a).

A. 1.2.4.5. Subtypes of ETA and ETB receptors

Some studies have shown an apparent subclassification of both ETA and ETB receptors

based on antagonist studies. Warner and colleagues (1993a,b) were the first to show

that vasodilation to ET-1 in the rat mesenteric bed could be abolished on pre-treatment

with the non-selective antagonist PD 142893. However, ETB-mediated contractions in
the rabbit pulmonary artery and rat stomach strip were unaffected. Due to the

equipotence of the ET/SRTX peptides in mediating these contractions and dilatations, it

was concluded that all these responses were via ETB receptors, which should be
subclassified into ETB1 (PD 142893-sensitive) and ETB2 (PD 142893-insensitive).

A complementary study by Sudjarwo et al., (1994) using vascular tissue, not only

suggested ETB1 and ETB2 receptors, but also ETA] and ETA2 receptors. They suggested
these subclassifications based on the relative vasoconstrictions to ET-1, ET-3, SRTX

S6c and IRL 1620 in the rabbit saphenous vein, and the subsequent sensitivities of
these agonists to inhibition by an assortment of selective ET receptor antagonists.

They, again, proposed ETB] receptors as those sensitive to ETB antagonism (IRL 1038
& RES-701-1-sensitive) and ETB2 as those insensitive to antagonism. However, both
of these ETB receptor subtypes could undergo tachyphylaxis, after prolonged activation

by SRTX S6c. Furthermore, they suggested ETA1 receptors as those which are BQ-

123-sensitive, and ETA2 receptors being BQ-123-insensitive. The overall conclusions
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as to which receptor subtypes are activated by the individual ET/STRX peptides are as

follows; ET-1 induced constrictions via all subtypes, whereas ET-3 activates both ETB

receptors, and also the ETA1, BQ-123-sensitive receptor. These results may explain

why in some studies ET-3 responses can be inhibited by BQ-123, but the ET-1

responses appear to be insensitive (Sumner et al., 1992). Both SRTX S6c and IRL

1620 activated both subtypes of the ETB receptor only.

Using the newly described ETB antagonist, BQ-788, the same group showed, in the
rabbit saphenous vein, that BQ-788 inhibited ET-3 contractions more than

desensitisation by SRTX S6c. They, therefore, concluded that BQ-788 inhibited both

ETbi and ETB2, as well as possessing some weak antagonist properties at the ETA]

receptor (Karaki et al., 1994).

In many functional studies, ET-3 vasoconstriction has been found to be inhibited by

BQ-123 (Sumner et al., 1992), therefore it would suggest that many of the studies

using ET-3 as an agonist delineating between the ETA and ETB receptor should be
viewed with caution. Other suggestions have been that the agonist-binding kinetics are

different. It has been hypothesised that ET-3 has weaker binding characteristics than

ET-1, thus it appears that ET-3 responses are antagonised, whereas ET-1 responses

are not (Bax & Saxena, 1994).

With respect to the ETB receptor subclassification, Sokolovsky and colleagues (1992)
have proposed different affinity sites, relating to the binding properties and second

messenger systems. They suggest that the vasodilatory actions of ETB receptors is
mediated by a "super-high" affinity receptor, which has an affinity for ET-1 in the

picomolar range and does not induce phosphoinositide hydrolysis. They called the

"super-high" affinity receptor the ETB1 receptor, correlating with the vasodilatory, PD
142893-sensitive ETB1 receptor of Warner et al., (1993a,b). The vasoconstrictor
actions are mediated by the conventional "high" affinity ETB receptors, with an affinity

for ET-1 in the nanomolar range, which does induce phosphoinositide turnover. This
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receptor was termed ETB2, again agreeing with the vasoconstrictor, PD142893-
insensitive receptor (Warner et al., 1993a,b).

However, further evidence of these apparent subtypes of the established ETA and ETB

receptors are needed before this nomenclature is accepted. Although it is tempting, in

the case of the ETB receptors present on the endothelium and smooth muscle cell layer,
to call them ETB] and ETB2 respectively.

A. 1.2.4.6. Atypical ET receptors

Studies on isolated rings of arteries and veins have shown discrepancies in receptors

mediating constriction to the ET peptides. Vasoconstrictor receptors not conforming to

the rank order of potency at the respective ETA and ETB receptors have implied further

subtypes (Bax & Saxena, 1994). In the original paper describing the selective ETA

antagonist, BQ-123, it was seen that in the porcine coronary artery, part of the ET-1-

induced constriction was resistant to inhibition. This data implies that another ET

receptor was partly mediating the constriction to ET-1 (Ihara et al., 1992). This BQ-
123 (or FR 139317) resistant portion of the ET-1 curve was found to be mediated by

ETb receptors, since it was sensitive to prolonged SRTX S6c exposure (Seo et al.,

1994). In addition, the non-selective ETA/ ETB receptor antagonist, bosentan, shifted
the whole of the ET-1 curve to the right (Seo et al., 1994).

Harrison and colleagues (1992) also showed that more than one receptor was involved

in ET constriction. However, they described, as well as a typical ETA receptor, an

atypical non- ETA, non- ETB receptor which recognised ET-3 and SRTX S6c, but not
ET-1 or SRTX S6b. Monophasic concentration-response curves (CRCs) to ET-1 and
STRX S6b were observed, but biphasic CRC to ET-3. The authors divided the ET-3
CRC into higher and lower sensitivity components. The higher sensitivity component

was abolished after prolonged exposure to SRTX S6c, converting it to a curve similar

to the ET-1/SRTX S6b CRCs. This is a phenomenon well described for the ETB

receptor (Le Monnier de Gouville et al., 1990). However, it appears that ET-1 could
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not stimulate this ET-3/SRTX S6c receptor, which is unlike the non-selective ETB

receptor. Thus, the authors concluded that there was another subtype of ET receptor.

Whether Harrison and colleagues were describing the putative ET-3 preferring ETC

receptor is unknown. In another study, a non- ETA, non- ETB receptor was described
that contributed to the ET-1 contractile response (Schoeffter & Randriantsoa, 1993).

What is clear, is that ET-1-induced constriction in the porcine coronary artery is both

ETa and ETB receptor mediated. The relevance of ET-3-induced constriction has

generally been ignored, as it is believed that ET-1 is the major isoform synthesised and

released by the vasculature. However, in pathophysiological states, these putative ET-

3 receptors may become important since raised circulating levels of ET-3 have been

measured in conditions such as acute myocardial infarction (Teerlink et al., 1994b).

Other atypical receptors have been described in tissues such as pig pulmonary artery

and veins, goat cerebral artery and rat aorta (Bax & Saxena, 1994).

A. 1.2.4.7, ET receptors in human blood vessels

It appears that the majority of the constrictor actions of the ET peptides in the human

vasculature act via the ETA receptor. ET-1 infused into the forearm produces an

decrease in forearm blood flow (Clarke et al., 1989), which is antagonised completely

by co-infusion of BQ-123 (Haynes & Webb, 1994). Furthermore, infusion of BQ-

123 alone causes direct vasodilation, demonstrating that ET production is involved in

maintaining basal vascular tone (Haynes & Webb, 1994).

Experiments on isolated blood vessels have also demonstrated that the contractile

responses of ET-1 are also mainly mediated by ETA receptors (Davenport & Maguire,

1994). In agreement with the animal studies, larger conduit arteries tend to be

populated almost entirely with ETA receptors mediating constriction. Many studies
have been performed on the coronary arteries taken from explanted hearts. All

functional constrictor responses to ET-1 have been attributed to ETA receptors (Bax et

al., 1993; Davenport et al., 1993; Godfraind, 1993; Bax et al., 1994). Although ETB
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receptor mRNA has been detected in the smooth muscle layer of human coronary

arteries, aorta and pulmonary artery using both reverse transcriptase-polymerase chain

reaction (RT-PCR) and in situ hybridisation techniques (Davenport et al., 1993).

Biphasic competition binding curves using BQ-123 and BQ-3020 against l25I-ET-l
also confirmed the presence of both receptor subtypes, in the ratio of approximately

85% : 15%, ETa : ETB respectively (Davenport et al., 1993). It was concluded that the

ETB receptors detected had no functional constrictor role, since BQ-123 shifted the ET-
1 CRCs to the right in a parallel manner, and BQ-3020 had no constrictor activity

(Davenport et al., 1993). Other human vascular tissue in which ETA receptors

mediated constriction to ET-1, include aorta (Davenport et al., 1993), small omental

arteries (Riezebos et al., 1994), pulmonary arteries (Hay et al., 1993) and umbilical

arteries (Bogoni et al., 1996). Subtypes of ETA receptors have been suggested in
human blood vessels, due to the ability of BQ-123 to reverse SRTX S6b constrictions,

but not ET-1 (Bax et al., 1994).

Constrictor ETB receptors have been seen in some human blood vessels when

challenged with SRTX S6c. However, these ETB receptor constrictions are generally

extremely small, usually less than 20% of ET-1 constriction, and highly variable. For

instance, Maguire & Davenport saw SRTX S6c constriction in only 50% of saphenous

veins (Maguire & Davenport, 1993) and coronary arteries (Davenport & Maguire,

1994) experimented upon. Mixed populations of ETA/ ETB receptors have clearly been

demonstrated in the internal mammary pre-resistance artery and vein (Seo et al., 1994)

and internal mammary resistance artery (Tschudi & Luscher, 1994) and saphenous

vein (Bax et al., 1993).

The ET peptides are potent constrictors of human arteries and veins in vivo (Haynes &

Webb, 1994) and in vitro (Bax & Saxena, 1994). In isolated omental resistance

arteries mounted in a wire myograph, it was shown that ET-1 was 1000-fold more

potent than noradrenaline in inducing constriction (Watt et al., 1989). Furthermore, as

with the animal data, it appears that the majority of constrictions in the conduit arteries

are mediated by ETA receptors, that there may be some ETB receptors present in the
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resistance arteries, and that the venous side of the circulation has a mixed population of

both receptor subtypes.

A. 1.2.5. Other properties of ET

A. 1.2.5.1. Cardiac actions

As described above, ET-1 is a potent constrictor of the coronary bed, producing

marked reductions in coronary blood flow. Due to the long lasting vasoconstrictor

action, myocardial ischaemiais often associated with ET-1-induced reduction in blood

flow (Gray & Webb, 1995). Coronary angiograms reveal that these effects are

primarily due to actions on small coronary arteries (Hirata et al., 1990). Systemic

infusion of ET-1 produces an initial hypotension, resulting in an increase in heart rate

and cardiac output secondary to systemic vasodilation. In contrast, the subsequent

pressor response is associated with bradycardia and a reduction in stroke volume

(Miller et al., 1989). The chronotropic response in vivo appears to be reflex in origin,

because blockade of cardiac efferent neural mechanisms inhibits the increase in heart

rate (Gardiner et al., 1990a). The decrease in stroke volume is as a result of both

systemic vasoconstriction, increasing afterload, and coronary vasoconstriction,

causing myocardial ischaemia (Miller et al., 1989).

In addition to the constrictor effects on the coronary vessels, direct cardiac actions of

ET-1 have been described, including positive inotropic and chronotropic responses

(Hu et al., 1988a), release of ANP (Hu et al., 1988b) and initiation of hypertrophy

(Suzuki et al., 1991). The direct positive inotropic response has been demonstrated in

vitro on cardiac tissue from many species including the rat (Moravec et al., 1989;

Kramer et al., 1991), rabbit (Takanashi & Endoh, 1991) and human (Moravec et al.,

1989), an effect generally mediated by ETB receptors (Kasai et al., 1994; Beyer et al.,

1995).

Furthermore, isolated perfused hearts, and myocardial preparations in vitro show that

ET-1 has both anti- and pro-arrhythmic properties. In ventricular myocytes,

electrophysiological techniques have shown that ET-1, via ETA receptors, inhibits a
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protein kinase A-dependent chloride current (James et al., 1994). This is an action
which should be anti-arrhythmic. However, pro-arrhythmic tendences have been seen

when infused into pigs, whereby fatal ventricular arrhythmias occur (Ezra et al.,

1989). In the rat model of acute ischaemia, ET-1 reduces the threshold for fatal

arrhythmias (Zhao et al., 1994) and increases the severity and incidence of ischaemic

arrhythmias (Garjani et al., 1995). Paradoxically, low dose BQ-123 reduces the

incidence of arrhythmias in the rat model of ischaemia, however high dose BQ-123 is

pro-arrhythmic (Garjani et al., 1995). At these higher doses, BQ-123 may no longer
be ETa receptor selective.

In humans, intracoronary infusion of big ET-1 and ET-1 both induce coronary

vasoconstriction (Pernow et al., 1997). However, systemic ET-1 infusion reduces

cardiac output, possibly via a baroreceptor-mediated decrease in heart rate, and an

increase in afterload as a consequence of peripheral vasoconstriction (Wagner et al.,

1992b).

A. 1.2.5.2. Kidney effects

ET-1 has two main direct actions on the kidney, producing profound renal

vasoconstriction, and affecting tubular sodium and water excretion (Miller et al., 1989;

Lerman et al., 1991). Of all the vascular resistance beds, the renal vascular bed is the

most sensitive to the constrictor actions of ET-1. It constricts both afferent and

efferent glomerular arterioles in vivo, therefore reducing renal plasma flow and

glomerular filtration rate (GFR). This leads to reduced urine flow and Na+ excretion

(anti-diuretic and anti-natriuretic; King et al., 1989; Lerman et al., 1991). Systemic

administration of ET-1 into humans consistently causes renal vasoconstriction

(Weitzburg et al., 1991; Rabelink et al., 1994) which induces Na+ retention.

However, Na+ retention occurs at very low doses of ET-1, even when renal

vasoconstriction is not apparent (Rabelink et al., 1994).

The ET receptor subtype mediating the renal vasoconstriction is dependent on species

under study. For instance, in the rat, renal vasoconstriction to ET-1 is only completely
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inhibited by non-selective ETA/ ETB receptor antagonism, but not by selective ETA

receptor blockers (Cristol et al., 1993; Wellings et al., 1993). Furthermore, SRTX

S6c mimics the renal vasoconstrictor actions of ET-1 (Gellai et al., 1994), thus

implying that the predominant renal constrictor receptor is the ETB receptor. In

contrast, in dogs and rabbits, ET-1-induced renal vasoconstriction is entirely inhibited

by ETa receptor antagonism (Brooks et al., 1994; Telemaque et al., 1993). In

humans, localisation of ET receptor mRNA, shows ETA receptors only in the

vasculature, whereas ETB receptor mRNA was present on the tubules (Karet &

Davenport, 1995).

In animals, it appears that ET-1 can have diuretic and natriuretic effects (King et al.,

1989; Perico et al., 1991). These actions were suggested to be via ETB receptors

present in the tubules and can occur, in rats, despite a fall in GFR and renal blood flow

(Perico et al., 1991). This may be due to stimulation of atrial natriuretic peptide (ANP;

see section B. 1.3.2.; Munger et al., 1991). Furthermore, ET-1 can inhibit Na+/K+
ATPase activity (Zeidel et al., 1989) and vasopressin (see section B. 1.2.3.) effects in

rat inner medullary collecting duct cells (Oishi et al., 1991).

All this data suggests that the net effect of ET-1 on Na+ excretion depends on a balance

between Na+ retaining and natriuretic factors. However, in humans it appears that the

anti-natriuretic effects of ET-1 predominate (Rabelink et al., 1994).

A. 1.2.5.3. Endocrine interactions

ET-1 has a close interaction with the renin-angiotensin-aldosterone system (RAAS; see

section B. 1.2.1). Apart from inhibiting renin release from isolated rat glomeruli

(Rakugi et al., 1988), ET-1 appears to stimulate the RAAS. For instance, ET-1, in the

rat mesenteric bed increases generation of renin and ANG II (Rakugi et al., 1990), and

stimulates conversion of ANG I to ANG II in pulmonary endothelial cells (Kawaguchi

et al., 1990). Furthermore, in the adrenal gland, ET-1 stimulates isolated cortical zona

glomerulosa cells to release aldosterone (Cozza et al., 1989), and adrenaline from

medullary chromaffin cells (Boarder & Marriot, 1989). In vivo administration of ET-1
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into animals augments plasma renin, aldosterone, vasopressin and adrenaline
concentrations (Miller et al., 1989; Nakamoto et al., 1989; Cao & Banks, 1990). The

rise in renin levels could be as a result of renal vasoconstriction. Conversely, ET-1

secretion is potentiated by All (Emori et al., 1991) and vasopressin (Bakris et al.,

1991).

ET-1 also increases circulating ANP (Garcia et al., 1990) and brain natriuretic peptide

(BNP; Horio et al., 1992) levels. Furthermore, ANP inhibition, by pretreatment of

rats with ANP antibodies, potentiates the ET-1 pressor response (Valentin et al.,

1991). Therefore, endogenous natriuretic peptide generation could modulate ET-1

vasoconstriction, although activation of other endocrine systems, such as the RAAS,

may enhance ET-1 constrictor actions.

A. 1.2.5.4. Mitogenic properties

ET-1 is a co-mitogen, promoting cell division, hypertrophy and DNA synthesis in

vascular and non-vascular smooth muscle cells, fibroblasts, mesangial cells and

myocytes (Battisini et al., 1993) by the induction of proto-oncogenes c-fos, c-jun and

c-myc (Simonson et al., 1992). ET-1 has few mitogenic activities upon cells in

culture when incubated alone. However, in combination with other mitogens, e.g.

ANGII, has powerful synergistic properties (Mattana & Singal, 1995). Nevertheless,

ET-1 is a powerful mitogen on melanocytes (Imokawa et al., 1992).

A role for the ET peptides in the hypertrophic process in the formation of a neointima

in the rat carotid artery balloon angioplasty model has been suggested. Following

balloon angioplasty, an infusion of exogenous ET-1 potentiates the size of lesion
formed (Trachtenberg et al., 1993). Furthermore, antagonist treatment, with either

BQ-123 (ETa receptor selective; Douglas et al., 1995) or SB 209670 (ETA/ ETB

receptor; Douglas et al., 1994) reduces the size of lesion. In addition, the expression

of preproET-1, preproET-3, ETA and ETB receptor mRNA is increased after

angioplasty (Wang et al., 1996). Expression of ET-1 is also enhanced in the

endothelium of blood vessels of rats with severe forms of hypertension (Lariviere et
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al., 1995). This increased expression is in association with the vascular hypertrophy
in these animals (Schiffrin et al., 1996).

A. 1.2.5.5. Non-vascular smooth muscle actions

The smooth muscle of the gastrointestinal, respiratory and urogenital tracts are

extremely susceptible to contraction by ET-1. However, in these preparations, the
constrictor actions are mediated by ETA and ETB receptors.

The original agonist classification of the two receptor subtypes was by comparing the

abilities of the ET and SRTX peptides to induce constriction in the isolated aorta and

bronchus. ET-1 was the most potent at constricting the aorta, thus, the ETA receptor

(Maggi et al., 1989). In the bronchus, all ET/SRTX peptides caused contraction with

equal affinity, hence, the ETB receptor (Maggi et al., 1989). It has subsequently been
demonstrated that bronchial tissue from humans also contracts via ETB receptors (Hay
et al., 1993). However, as is comparable to vascular smooth muscle, the larger

airways in the respiratory tract, for example trachea, do contain some ETA receptors,

the relative contribution of either receptor subtype being species dependent (Hay et al.,

1996).

In the gastrointestinal and urogenital tracts, tissues such as the bladder (Maggi et al.,

1990), stomach fundus (Gray and Clozel, 1995), ileum (Warner et al., 1993b,c), and

gall bladder (Battistini et al., 1994) all contract to ET-1. In tissues such as the human

bladder (Maggi et al., 1990), guinea pig ileum (Warner et al., 1993b,c) and rat utems

(Rae et al., 1993), the contractions are mediated by ETA receptors, whereas rat

stomach fundal strips are ETB receptor-mediated (Gray & Clozel, 1995). Furthermore,
these organs are highly innervated and the ET peptides are able to modulate many

neuronal responses (see Section A. 1.2.5.6), as well as induce profound constriction.

Thus, the ET peptides have been implicated in the pathophysiology of many non¬

vascular smooth muscle diseases, such as asthma and Hirschsprung's disease.
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A. 1.2.5.6. Neuronal properties

Subthreshold concentrations of ET-1 potentiate contractile responses to catacholamines
and 5-HT in isolated rat human arteries (Wong-Dusting et al, 1990; Yang et al., 1990).

Furthermore, ET-1 markedly elevates venous tone in vivo in rats, by a reflex increase
in sympathetic nerve activity and activation of a-adrenoceptors (Waite & Pang, 1992).

This has also been demonstrated in hypertensive patients, where sympathetically-

mediated venoconstriction induced by deep breath was potentiated by infusion of ET-1

(Haynes et al., 1994). However, in healthy subjects no augmentation of this reflex

was observed. Perhaps confirming a role for ET-1 in modulating the baroreflex,

binding sites for the peptide have been shown in the carotid bifurcation, where upon

topical application inhibited the baroreceptor, and stimulated chemoreceptors (Spyer et

al., 1991).

ET-1 also has central actions that may contribute to its pressor properties.

Intracerebroventricular administration of ET-1, at doses too low to raise blood pressure

when administered intravenously, increases blood pressure by stimulating central

sympathetic outflow (Ouchi et al., 1989; Matsumara et al., 1991). Furthermore, the

inhibitory, parasympathetic pathway appears to be dampened by centrally administered

ET-1 (Itoh & De Busse, 1991). Injection of NMDA into the periaquaductal grey area

raises blood pressure, an effect that is partially mediated by ET-1. This is through

activation of ETA receptors, since preinjection with FR 139317 inhibited the pressor

response to NMDA (D'Amico & Warner, 1995).

ET-1 also modulates non-vascular smooth muscle neuronal responses. It potentiates

electrically-induced twitches in the rat vas deferens, but dampens twitches in guinea

pig ileum (Warner et al., 1993c). In the rat vas deferens, low concentrations of ET-1

potentiate neurotransmission postsynaptically (Wiklund et al., 1991) by actions on ETA

receptors (Warner et al., 1993c). This response is modified as ET-1 concentrations

become higher, since presynaptic ET receptors inhibit noradrenaline release (Wiklund

et al., 1991). The identity of the presynaptic ET receptor in the rat vas deferens is
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unknown. However, the inhibitory action of ET-1 on the guinea pig ileum
neurotransmission is via a presynaptic ETB receptor (Warner et al., 1993c).

Due to the many actions of the ET peptides described above, they have been suggested

to potentially play a role in many pathophysiological states, in particular in diseases of

the cardiovascular system. Many conditions have been linked with the ET peptides,

including hypertension, chronic renal failure, Raynauld's disease and Hirschsprung's

disease (Webb, 1997). Congestive heart failure (CHF) is a condition which is

characterised by profound peripheral vasoconstriction, fluid retention and cardiac

hypertrophy, all in association with activation of neuroendocrine systems. The ET-1

system may be involved in the pathophysiology of CHF, especially in relation to the

chronic vasoconstriction. This thesis is investigating whether there are any alterations

in vascular reactivity to ET-1 in small resistance arteries from humans and animals with

CHF when compared to controls (see Aims B. 1.7).
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B. 1.1. Congestive Heart Failure

Congestive heart failure (CHF) is a common condition affecting ~ 1-2% of the general

population (Dargie & McMurray, 1994). It is associated with high morbidity and

mortality, and is a major cause of hospitalisation (McMurray & Hart, 1993). As the

disease progresses it becomes more uncomfortable and debilitating, and the life quality

of the patients becomes extremely poor. Current drug therapy helps relieve some of

the symptoms of CHF. However, there is still scope for potential new drugs to

increase the life quality of CHF patients .

B. 1.1.1. Pathophysiology

CHF can be defined as a "cardiac disorder which prohibits the delivery of sufficient

output to meet the perfusion requirements of metabolising tissues" (Timms & Davis,

1992). In Western countries, CHF is usually the result of damaged myocardium by

ischaemia following a myocardial infarct (Dargie & McMurray, 1994). Other causes

include coronary blood flow insufficiency, volume overload by valvular incompetence

or pressure overload such as hypertension or valvular narrowing. It is dysfunction of
the left ventricle which is the main cause of CHF and its symptoms, although right

ventricular dysfunction also occurs. The symptoms of CHF manifest themselves as

fluid retention, fatigue, exercise intolerance and dyspnoea (difficulty in breathing).

The heart, with its damaged myocardium, responds as if combating blood loss and

trauma, rather than myocardial infarction. This is due to evolutionary purposes, to

defend against dehydration and restore perfusion pressure to vital organs (Francis et

al., 1984). The reduced cardiac output, as a result of poor ventricular performance,
activates a series of compensatory neuroendocrine and systemic reflexes in order to

maintain cardiovascular homeostasis. These secondary events begin with the

stimulation of systems to increase blood volume and maintain perfusion pressure to

vital organs. Increased central venous pressure causes augmentation of pre-load and

promotes fluid retention in order to increase cardiac output. However, this results in

increased pulmonary pressure and oedema. The reduced renal blood flow leads to the
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activation of the RAA and arginine vasopressin systems, again promoting sodium and
water retention (Francis et al., 1984).

ANG II and vasopressin are also powerful vasoconstrictor agents and these, along

with activation of the sympathetic nervous system, increase peripheral vascular

resistance in order to maintain perfusion pressure to vital organs and to ensure

adequate venous return. As a result of the raised vascular resistance, afterload, or

outflow resistance, is also increased. The elevated afterload further exacerbates the

ventricular dysfunction. Cerebral and coronary blood flows are usually preserved in

CHF whilst the perfusion of skeletal muscle, renal and pulmonary beds is reduced by

vasoconstriction. It is the skeletal muscle vasoconstriction which impairs vasodilation

during exercise, hence the symptoms of fatigue and exercise intolerance occur (Katz,

1995). As mentioned earlier, the renal vasoconstriction activates the RAA system and

pulmonary vasoconstriction contributes further to pulmonary hypertension and oedema

(Francis et al., 1994).

The pressure and volume overload caused by the increased preload and afterload

stimulates the heart to expand, therefore increasing ventricular volume. However,

because of the decreased contractility of the heart muscle in CHF, the ventricle must be

stretched to a greater degree for a given stroke volume. This increased ventricle size,

in turn, means that a greater tension is needed in the myocardium to expel a certain

volume of blood, as explained by Laplace's Law (Julian & Cowan, 1992). The law of

Laplace says the tension in the myocardium (T) is proportional to the intraventricular

pressure (P) multiplied by the radius of the ventricular chamber (T°cPR). Starling's

law also states that the more myocardial fibres are stretched (the end-diastolic fibre

length), the greater the energy of the ensuing contraction. However, this is within

physiological limits and beyond these limits the energy of contraction falls off. In

heart failure there is reduced contractility due to the loss of contractile tissue, and a

given amount of stroke work is only achieved with a greater end-diastolic fibre length

(see Figure 1.4). In response to the increased tension and volume in CHF, the

myocardium hypertrophies, i.e. it increases in weight as a result of an enlargement of
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Venous Filling Pressure (mmHg)
(or Left Ventricular End-Diastolic Fibre Length)

Figure 1.4. Starlings Diagram for left ventricular heart failure. In CHF, the
curve is depressed due to reduced contractility. At increased venous filling
pressure, the cardiac output is greatly reduced in the failing heart as compared
to a healthy heart. This can be expressed as end-diastolic fibre length,
therefore in CHF, a given amount of stroke work can only be achieved with a
greater end-diastolic fibre length.
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individual muscle fibres (Julian & Cowan, 1992). ANG II and aldosterone are known

to be mitogenic and are possibly involved in the process of hypertrophy in the heart

(Katz, 1995).

Fibrosis frequently develops in hypertrophied muscle. The cause of fibrosis has been

suggested to be a consequence of the thickened muscle fibres, increasing the distance

oxygen has to diffuse from the capillaries. Impaired oxygenation, hypoxia, occurs at

the centre of the fibre and fibrosis develops. Therefore, the heart muscle becomes

even less contractile and less able to pump efficiently.

Vascular remodelling also occurs in CHF, where blood vessel structure alters in

response to chronic alterations of hemodynamic stress. There is an increase in the ratio

of the thickness of tunica media to lumen diameter, in order to maintain raised

perfusion pressure more effectively (Weber et al., 1992). The remodelling process

involves both systemic and local factors, stimulated by the increase in shear stress.

Again, ANG II has been implicated in the vascular remodelling process (Schiffrin,

1995).

Thus, the compensatory reflexes which are initially activated to maintain cardiac output

eventually result in the symptoms of CHF. It is known as the "vicious cycle" of CHF

(Figure 1.5; Francis et al., 1984).

B. 1.2, Neurohumoral Reflexes in CHF

B. 1.2.1. Renin-Angiotensin-Aldosterone System

B. 1.2.1.1. Renin-Angiotensin

The kidneys are the most important source of renin. In heart failure decreased renal

perfusion, due to reduced cardiac output and vasoconstriction, plus direct sympathetic

stimulation of the juxtaglomerular cells increases renin secretion. Renin is a proteolytic

enzyme which converts angiotensinogen, a circulating plasma globulin, to angiotensin

I (ANG I). ANG I is then cleaved by angiotensin-converting enzyme (ACE) to the

active octapeptide ANG II (Cockcroft et al., 1995). ACE is widely distributed

throughout the body, although its concentration is highest in the lung, where most of

36



VASOCONSTRICTION
AND FLUID RETENTION

NEUROENDOCRINE
ACTIVATION

V

INCREASED
AFTERLOAD
AND PRELOAD

DECREASED
CARDIAC OUTPUT C

Figure 1.5. The vicious cycle of heart failure. A reduced cardiac output, usually as
a result of a myocardial infarction, causes reflex neuroendocrine activation.
Vasoconstriction and fluid retention occurs in order to maintain blood flow and

oxygen delivery to the vital organs. The increased afterload, due to the peripheral
vasoconstriction, and preload, courtesy of the fluid retention and venoconstriction,
further reduces the cardiac output, increasing the amount of work the damaged
myocardium has to perform.
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the conversion of ANG I to ANG II takes place. ANG II is a potent vasoconstrictor
which has preferential actions on cutaneous, splanchnic and renal blood flow, all of
which are the vascular beds which are most affected by vasoconstriction in CHF.

Furthermore, ANG II vasoconstriction is more pronounced in arterioles than veins

(Kostis et al., 1987).

Angiotensinogen is predominantly extracellular and is synthesised primarily in the

hepatocytes of the liver, but is also found in a variety of cells, including adipocytes,

astrocytes and vascular smooth muscle cells (Naftilan et al., 1991; Cockcroft et al.,

1995). The presence of mRNA for both renin and angiotensinogen in the walls of

blood vessels suggests that there is also a local vascular RAA system, therefore being

in an ideal location to interact with the sympathetic nervous system (Cockcroft et al.,

1995).

The actions of ANG II are mediated by angiotensin receptors, of which two have been

pharmacologically characterised, cloned and defined as AT, and AT2. The majority of
the effects of ANG II are via the AT, receptor, although the specific functions of the

AT2 receptor are unclear (Matsusaka & Ichikawa, 1997). It has been suggested that

the AT2 receptor has an antiproliferative role in some tissues, including vascular
endothelial cells and some neuronal cells (Helin et al., 1997). Both receptors are G-

protein-linked.

ANG II infusion causes an increase in arterial pressure within seconds, an effect that is

sustained as long as the peptide is infused (Clarke et al., 1989). Upon termination of

the infusion, the vasoconstriction disappears due to the rapid degradation of ANG II to
ANG III by angiotensinases. The increased blood pressure induced by ANG II is due

to an increase in systemic vascular resistance by direct contraction of vascular smooth

muscle and potentiation of the sympathetic nervous system (Cockcroft et al., 1995).

ANG II enhances sympathetic transmission by augmenting release of noradrenaline out

of, and blocking reuptake (uptake 1) into, the nerve terminal. Thus, the direct and

indirect vasoconstriction induced by elevated ANG II levels may be part of the
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increased systemic vascular resistance indicative of CHF, further exacerbating poor

cardiac output by increasing afterload.

The anti-diuretic effects of ANG II are also by direct and indirect mechanisms. It

exerts indirect effects on renal tubular function by stimulating aldosterone synthesis

and secretion from the zona granulosa. Good and colleagues (1994) demonstrated that

forearm infusion of ANG II caused dose-dependent rises in plasma concentrations of

both ANG II and aldosterone. Aldosterone induces reabsorption of Na+ and water and

an increase in excretion of K+(see Section B. 1.2.1.2.). The direct action of ANG II

on the kidney is partly due to the renal vasoconstriction, in particular the efferent

glomerular arterioles, increasing renal perfusion pressure, decreasing renal blood flow

and enhancing reabsorption by reducing pericapillary hydrostatic pressure and colloid

pressure (Cockcroft et al., 1995).

As briefly mentioned, ANG II may potentially have a role in the myocardial and

vascular hypertrophy which occurs in CHF. In hypertension it has been shown that

ACE inhibitors can alter small vessel structure in previously untreated hypertensives.

Schiffrin and colleagues (1994; 1995), used gluteal, subcutaneous small arteries from

hypertensive patients before and two years after either ACE inhibition (cilazapril) or (3-

blockade (atenolol). They showed a correction of media-to-lumen diameter by

cilazapril treatment, but not atenolol. This work was confirmed in a separate study,

although this study looked specifically at changes in lumen diameter (Thybo et al.,

1995). Similar alterations were found in coronary small vessels from spontaneously

hypertensive rats (SHR), with perindopril treatment inducing a regression of

hypertrophy and remodelling (Thybo et al., 1994).

In the rat model of coronary artery CHF, where a myocardial infarct is induced by a

ligature around the coronary artery, increased ACE binding and ANG II receptors (by

autoradiography) in the myocardial tissue in and around the infarcted area have been

demonstrated (Sun & Weber, 1994; 1996). The increase in AT receptor density was

also seen in the smooth muscle cells of blood vessels at the site of infarct (Sun &
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Weber, 1994; 1996). In vivo, captopril treatment prevents myocardial remodelling in
the renovascular hypertensive rats (Jalil et al., 1991).

Many studies have demonstrated a substantial activation of RAA system in CHF by

measuring plasma renin activity (PRA; Dzau et al., 1981; Riegger et al., 1982) .

Furthermore, a positive correlation between mortality and increased renin activity and

ANG II levels has also been shown consistently (Francis et al., 1990; Swedberg et al.,

1990). Inhibition of ACE has shown that the RAA system has a major role in the

pathophysiology of CHF in humans. The ACE inhibitor captopril was the first drug of

its class to be granted a licence for use in CHF, and was found to increase cardiac

output, reduce vascular resistance and left ventricular filling pressure, increase exercise

tolerance and decrease mortality (Francis et al., 1984). As a consequence of the

beneficial effects of captopril and other ACE inhibtors in CHF (see section B. 1.5.1.),

they have now become frontline therapy in this condition.

B. 1.2.1.2. Aldosterone

Aldosterone is a steroid hormone derived, via several enzymatic steps, from

cholesterol. It is, therefore, pharmacologically possible to inhibit its synthesis,

although this potential inhibitory mechanism has not been widely explored (Zannad,

1995). ANG II is the most powerful stimulant of its synthesis and secretion, and

consequently, in CHF, plasma levels of both aldosterone and ANGII (or PRA) are

found to be increased (Rouleau et al., 1988; Sigurdsson et al., 1993) concomitantly.

ACE inhibition in patients with CHF produces decreases in plasma levels of

aldosterone as well as ANGII (Brilla et al., 1989). However, it has been shown that

with longterm ACE inhibition aldosterone levels, after an initial decrease, can return

back to pretherapeutic levels. This is a phenomenon called 'escape' (Struthers, 1995).

Aldosterone clearance is closely related to hepatic blood flow and extraction by

parenchymal cells, both of which may be impaired in CHF. As a consequence,

reduced elimination of aldosterone contributes to elevations in plasma aldosterone

levels in CHF patients (Zannad, 1995). Current investigations are underway in order
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to ascertain whether spironolactone, an aldosterone receptor antagonist, should be
administered as adjunct therapy with ACE inhibitors.

The principal and most well characterised action of aldosterone is the Na+ and water

reabsorption. It binds to a specific intracellular steroid receptor and initiates DNA

transcription of specific proteins to activate previously quiescent Na+ channels in the

apical membrane of cells in the cortical collecting tubule. There is also an increase in

the number of Na+/K+-ATPase molecules in the basement membrane (Rang et al.,

1995). This leads to increased K+ excretion.

As well as its involvement in fluid and sodium retention, aldosterone has other

deleterious properties which may contribute to the pathophysiology of CHF. In two

experimental models of hypertension, it has been demonstrated that aldosterone

stimulates collagen synthesis by myocardial interstitial fibroblasts (Weber & Brilla,

1992). Furthermore, direct vasoconstriction induced by aldosterone has also been

hypothesised. In renal failure patients, infusion of AGII resulted in vasoconstriction

which was reversed by spironolactone (Schohn et al., 1993).

Aldosterone also potentiates the action of NA in the heart. By inhibiting NA uptake in

the myocardium, aldosterone may be partly responsible for the arrhythmias and

ischaemia which often cause sudden death in ACE inhibitor treated CHF patients

(Remme, 1995). In addition, aldosterone depresses the baroreflex, the inhibitory,

parasympathetic pathway, (see Section B. 1.3.1.), at concentrations below those

which induce hypertension (Wang et al, 1994).

As with ANG II levels, aldosterone concentrations in plasma have also been

demonstrated to be elevated in CHF patients and animal models (Swedberg et al.,

1990; Weber et al., 1995). In the CONSENSUS trial, investigating the effectiveness

of enalapril in CHF, aldosterone levels were reduced alongside ANGII concentrations

(Swedberg et al., 1990).
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B. 1.2.2. Sympathetic Nervous System

A systemic injection ofNA raises blood pressure by increasing heart rate and causing

vasoconstriction (Rang et al., 1995). The vascular beds most affected by NA are the

splanchnic and skin beds whereas the cerebral, coronary and pulmonary vascular beds

are relatively unaffected. Large arteries, arterioles and veins are constricted by actions
on a,and a 2 adrenoceptors present on the vascular smooth muscle (VSM). a,

receptors are mainly responsible for mediating the vasoconstriction via

phosphatidylinositol (PI) metabolism, increasing IP3 and DAG resulting in Ca2+
liberation and sensitisation of contractile proteins. However, stimulation of (32

adrenoreceptors, also present on VSM, causes relaxation through increases in cAMP
levels. a2 adrenoceptors are also located presynaptically, on the nerve terminal where

they have negative feedback control on the release on NA, by reducing intracellular

cAMP levels, ultimately decreasing Ca2+ influx and increasing Ca2+ extrusion (Rang et

al., 1995).

Stimulation of (3, adrenoceptors located on the heart raises intracellular cAMP levels.

This results in both the heart rate (chronotropic effect) and the force of contraction

(inotropic effect) being increased, thus raising cardiac output and cardiac oxygen

consumption. It has been shown that raised circulating levels of NA can lead to

cardiomyopathy in animal models and humans (Francis et al., 1984). Furthermore, it

is hypothesised that augmented NA release is possibly responsible for the fatal

arrhythmias which are the major cause of death in CHF patients (Francis et al., 1984).

In heart failure sympathetic activation has been shown to predict survival. Plasma

levels of NA increase as the severity of heart failure worsens (Cohn et al., 1984;

Francis et al., 1984; Francis et al., 1990; Swedberg et al., 1990). However, plasma

NA concentrations do not reflect neurotransmitter release, but the balance between NA

spillover into plasma and its clearance (Floras, 1993). In fact, total body spillover was
found to be two-fold higher in CHF patients as compared to controls, and clearance

reduced by a third (Hasking et al., 1986) The kidney and heart contributed to

approximately 60% of the increase in plasma NA (Hasking et al., 1986).
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Peripheral modulation of the sympathetic system by antagonising postsynaptic a!

adrenoceptors demonstrated improvements in CHF patients haemodynamics (Miller el

al., 1977; Colucci et al., 1980). However, these improvements are short-lived, thus
have made no clinical impact (Manolis et al., 1995). Paradoxically (3] adrenoceptor

antagonists are currently the sympathetic modulatory treatment which is under the most

intense scrutiny. Clinical studies have shown a beneficial effect by reducing heart rate,

improving relaxation and reducing ischaemia (Remme, 1995; See section B. 1.5.4.)

B. 1.2.3. Vasopressin

Vasopressin is another hormone whose circulating concentration are raised in CHF

(Francis et al., 1984; 1990). It has powerful effects in the kidney, explaining its

alternative name of antidiuretic hormone (ADH), but is also a powerful

vasoconstrictor. In the kidney vasopressin increases water reabsorption in the distal

tubules and collecting ducts by increasing water permeability. Action on V2 receptors

raises internal cAMP levels which increase the number water channels in the cell

membrane, promoting water re-absorption. Its vascular actions are mediated by
stimulation of V) receptors, which are coupled to IP3 turnover. Vasopressin produces

vasoconstriction in all vascular beds including the coronary and mesenteric circulations

(Rang et al., 1995).

Vasopressin is a nanopeptide synthesised in the posterior pituitary. Its release is

principally under the control of the hypothalamus which monitors blood osmolality by

osmoreceptors. However, both stretch receptors present in the walls of large veins

and ANGII also stimulate the release of vasopressin (Lamb et al., 1991).

Experiments into the role of vasopressin in CHF have been hampered by lack of non-

peptide antagonists at the receptor sites and results have been controversial. In animal

models, antagonism of the V2 receptor has proved more beneficial in restoring

haemodynamics by increasing fluid excretion (Wang et al., 1991; Nishikimi et al.,

1995) , than inhibition of the V, receptor (Nishikimi et al., 1995). In patients, a
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specific Vi antagonist did reduce systemic vascular resistance (SVR), but only in 3 out

of 11 CHF patients treated. The decrease in SVR occurred in the patients with

extremely high plasma levels of vasopressin (Creager et al., 1986). Therefore, it

appears that inhibition of the vasoconstrictor properties of vasopressin has a less

important role in CHF, than the kidney effects.

B. 1.3. Inhibitory Pathways in CHF

B. 1.3.1. The Baroreflex

As well as an increase in sympathetic drive in CHF, there is a depression of the

physiological antagonist mechanism, the baroreflex parasympathetic nervous system.

The baroreflex consists of arterial mechanoreceptors present in the carotid sinus and

aortic and pulmonary arches and some main arteries near the heart which detect high

pressure, and low pressure receptors in the atria and large veins which detect changes

in volume. As blood pressure rises, the arterial baroreceptors increase rate of firing.
The impulses travel to the area of the brain, in the upper medulla, which is involved in

the nervous control of the heart and blood vessels. This parasympathetic mediated

afferent pathway causes a lowering of blood pressure by reducing efferent sympathetic

vasoconstrictor discharge to the heart and vascular system, and increasing efferent

parasympathetic discharge to the heart. Thus, as occurs in CHF, if there is impaired

parasympathetic nervous control, either by changes in the inhibitory afferent pathway,

efferent innervation to the heart or both, the restraining influence on sympathetic

activation is lost. Hence, there is raised sympathetic pathway activity (Lamb et al.,

1991; Floras, 1993) .

The loss of baroreflex control in CHF has been demonstrated consistently (Floras,

1993). Reduced baroreceptor firing initially occurs due to the fall in cardiac output,

resulting in a decreased stimulus on the arterial baroreceptors which, in turn, increases

heart rate and total peripheral resistance (Zucker et al., 1993). Direct measurement of

nerve firing, by a technique called microneurography, has demonstrated that the loss of

parasympathetic baroreflex control occurs relatively early on in the pathogenesis of the
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disease (Ferguson et al., 1992; Grassi el al., 1995). Abnormalities in the central

regulation of parasympathetic outflow has also been suggested (Porter et al., 1990).

ANG II has been implicated in decreased baroreflex control. ANG II infusion in

humans was demonstrated to inhibit the forearm vascular response to increased arterial

pressure (Goldsmith & Haskings, 1995). Furthermore, ANG II inhibition in animals,

by either ACE inhibition (Noshiro et al., 1993) or AT receptor blockade (Murakami et

al., 1996), enhanced baroreflex control of sympathetic outflow .

Overall, the removal of the restraining influence of the parasympathetic baroreflex in

CHF allows increased sympathetic activation. The depressed baroreflex occurs early

in heart failure, and, as with many of the pathways known to be activated in this

disease, has been correlated with a poor prognosis (Osterzial et al., 1994).

B. 1.3.2. Natriuretic peptides

The natriuretic peptides are a family of three peptides, which circulate in plasma. The

first of these peptides to be described and sequenced was atrial natriuretic peptide

(ANP; Kangawa & Matsuo, 1984). It is secreted from the cardiac atria, possessing

profound natriuretic and diuretic properties. It has also been shown to have

vasodilatory actions, in particular being a potent coronary vasodilator (Davidson &

Struthers, 1996). Following ANPs discovery, brain natriuretic peptide (BNP) was

isolated from porcine brain (Sudoh et al., 1988). In contrast to its name, in humans

BNP is secreted almost exclusively from the heart, and in particular the ventricles

(Mukoyama et al., 1991). It has similar properties to ANP, and has had its name

modified to B-type natriuretic peptide. The final peptide of the family, C-type

natriuretic peptide (CNP), is located mainly in the central nervous system, although it

is found in the vascular endothelium. However, CNP appears to have extremely

limited natriuretic and vasodilatory effects (Hunt et al., 1994). Thus, CNP will not be

discussed further.
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They are stored as relatively high molecular weight peptides, which are cleaved to the
active form on release into the circulation. ANP and BNP are released from storage

granules in the myocardium, the main stimulus for secretion being stretching of the

atrial and ventricular walls (Kinnunen et al., 1993). Their actions are mediated by

three different natriuretic peptide receptors, designated A, B and C. The A- and B-

receptors are linked to guanylate cyclase, raising cGMP levels, the second messenger

system responsible for the majority of the biological effects of these peptides

(Davidson & Struthers, 1996). The C-receptor was originally believed to be

responsible for the clearance of the natriuretic peptides, however it is now thought that

it may have some other biological functions, although these have not been defined yet

(Levin, 1993). All three receptors are widely expressed throughout the body, in

particular the kidneys, heart, vascular endothelium and the adrenals (Levin, 1993).

The plasma half-lives of ANP and BNP are 3 mins and 22 mins respectively (Yandle et

al., 1986). There are two mechanisms by which the natriuretic peptides are removed

by the circulation; firstly, as mentioned above, by C-receptor-mediated endocytosis,

and secondly by degradation by NEP 24.11 (Kenny et al., 1993). In the plasma of

normal, healthy subjects both peptides are detectable at picomolar concentrations,

however these levels are markedly increased in the plasma of CHF patients (Grantham

& Burnett, 1997). As with the previously described markers of CHF, ANP and BNP

concentrations show a close negative correlation with LVEF and CO (Richards et al.,

1993; Benedict et el., 1994). Furthermore, the release of ANP and BNP is regulated

by the tension of the wall of the left ventricle (Yasue et al., 1994).

Apart from the obvious physiological antagonistic properties of the natriuretic peptides

to the activation of the RAA system, sympathetic nervous system and vasopressin, of

vasodilatation and fluid excretion, they have other important mechanistic interactions.

ANP and BNP produce natriuresis and diuresis in the kidney by a direct action in the

collecting duct, however, they also act on the glomerular and tubular cells inhibiting

vasopressin (Raine et al., 1989). Furthermore, the natriuretic peptides can interrupt

the RAA system at three different sites. ANP can inhibit renin secretion from the

46



juxtaglomerular cells (Kurtz et al., 1986) in vitro, attenuate ACE activity in vitro

(Kawaguchi et al., 1992) and inhibit ANG II-mediated release of aldosterone from the

adrenal cortex in vivo (Delkers et al., 1988). ANP has also been shown to modulate

the activity of the sympathetic nervous system by inhibiting sympathetically mediated

tachycardia (Ebert & Cowley, 1988), and reducing circulating catecholamines (Racz et

al., 1989).

The stimulation of the release of natriuretic peptides by the stretching of the heart

walls, therefore, is a counterbalancing mechanism in order to modulate the excitatory

pathways activiated in CHF. Potentiation of this pathway has been suggested as a

possible new avenue of therapy in CHF, but there are currently no non-peptide A- or

B-receptor agonists available for experimentation. Decreasing the breakdown of these

peptides has been investigated using an NEP inhibitor, candoxatril. However, due to

the non-specific nature of NEP to degrade other peptides such as ANG II and ET-1,

the actions of these aggrevating peptides is also potentiated, partially counteracting the

beneficial effects of increased natriuretic peptide levels.

B. 1.3.3. Nitric oxide

NO and its co-product L-citrulline, are synthesised by the conversion of the amino

acid, L-arginine by the enzyme nitric oxide synthase (NOS; Palmer et al., 1988).

Three isoforms of NOS have been characterised, of which constitutive NOS (cNOS) is

present in normal vascular endothelial cells, producing basal release of NO (Bredt &

Snyder, 1990). The other forms of NOS are neuronal NOS (nNOS) present in the

CNS and PNS, which synthesises NO to act as an inhibitory neurotransmitter (Bredt et

al., 1990), and inducible NOS (iNOS), which is induced in many cells, including

endothelial cells, smooth muscle cells and activated macrophages in response to

cytokines (Gross et al., 1991). iNOS is a defence mechanism, synthesising large

amounts of NO to act as a cytotoxic agent. Both cNOS and nNOS require calcium,

calmodulin, NADPH and tetrahydrobioptrin (BH4) as co-factors in order to produce

NO, however, iNOS only requires NADPH and BH4(Moncada et al., 1991).
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NO, once released from endothelial cells, diffuses to the underlying smooth muscle,

and activates soluble guanylate cyclase. Vasodilatation occurs by raised cGMP levels,

which has actions on myosin light chain kinase, protein kinases, phosphodiesterases
and ion channels resulting in reduced intracellular Ca2+ (Moncada et al., 1991).

Endothelial synthesis of NO is induced by hormonal, receptor-mediated stimuli,

including ACh, bradykinin, 5-HT, histamine, ATP and NA (Moncada et al., 1991),

and by mechanical forces, such as shear stress caused by pulsatile blood flow.
Continuous basal release of NO by shear stress is an important phenomenon in the

regulation of blood pressure, since inhibition of NOS raises mean arterial blood

pressure and peripheral vascular resistance in animals (Rees et al., 1989) and humans

(Vallance et al., 1989). The mechanism by which increased flow activates cNOS

appears to involve the activation of voltage-dependent K' channels (Hutcheson &

Griffith, 1994).

NO is extremely labile, courtesy of it being a free radical. It is oxidised by superoxide

anions to peroxynitrite (ONOO ), then to nitrate (N03~) and excreted. Superoxide

anions are produced endogenously in many physiological processes, including cellular

respiration and as a produce of arachidonic acid metabolism (cycloxygenase and

lipoxygenase). However these superoxide anions are scavenged by superoxide

dismutases present in mitochondria and the cytoplasm of cells (Freeman & Crapo,

1982).

In experimental animal models of CHF, agonist-induced NO production has generally

been shown to be impaired as compared to controls. In several studies using either the
canine rapid ventricular pacing model (RVP; Kaiser et al., 1989; Eisner et al., 1991;

Kiuchi et al., 1993; Wang et al., 1994) or the coronary artery ligation rat model of

CHF (Ontkean et al., 1991; Teerlink et al., 1993; 1994c), ACh-induced vasodilation is

attenuated in coronary (conduit and resistance), femoral and pulmonary arteries and

thoracic aorta. In all but one of these studies (Wang et al., 1994), the vasorelaxations
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to the endothelium-independent vasodilator nitroglycerin were similar to those of
control dogs. Thus implying that agonist-induced NO release is impaired in CHF.

In contrast to the above studies, a small number of investigations have indicated that

agonist-mediated synthesis of NO was unaffected in CHF. There was no change in

ACh-induced relaxation in isolated coronary, renal and femoral arteries from dogs with

mild CHF induced by 11 days of pacing (O'Murchu et al., 1994). In agreement with

the lack of impairment of endothelial NO dysfunction in mild CHF, it was seen that in

rats with less than 40% infarcted tissue of the left ventricle (LV), ACh-induced

vasodilation to was the same as control. However, in more severe CHF (>40%

infarcted LV tissue), there were blunted relaxations to muscarinic receptor stimulation

(Drexler & Lu, 1992).

Results of experiments investigating basal release of NO have been even more

disparate. Vasoconstriction to systemic infusion of the NOS inhibitor, L-NMMA, was

significantly attenuated in conscious CHF dogs when compared to control dogs in two

independent studies after 11 days (Eisner et al., 1991) or 4 to 7 weeks (Kiuchi et al.,

1993) of RVP. Furthermore, the reactive hyperaemic response, where a reflex

vasodilation is induced by hypoxia, has also been seen to be inhibited in the coronary

circulation in RVP dogs (Wang et al., 1994). In this study, aortic endothelial cells

harvested from CHF dogs had reduced mRNA for cNOS. In contrast, an elegant

study using microspheres indicated that L-NMMA infusion reduced blood flow to

cerebral, splachnic and renal circulations to similar proportions in both 8 weeks post-

Mi rats and sham-operated controls (Drexler et al., 1992a). However,

vasoconstriction to L-NMMA in the coronary bed was reduced. In another study

involving the infusion of L-NMMA into the hind-limb preparation of CHF rats, there

was no significant difference in the amplitude of vasoconstriction. This study

compared rats with a myocardial infarct of >40%, <40% and sham-operated controls,

showing that in this vascular bed, basal release of NO was unaffected by severity of

CHF.
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A few studies have demonstrated enhanced NO production in CHF. In

cardiomyopathy hamsters, vasoconstriction to NA is enhanced when in the presence

of L-NMMA, whereas in the control animals it remained the same (Noll et al., 1994).

However, this potentiation was only seen in the aorta, but not in the mesenteric arteries

from the same animals. In accordance with these findings, NA-mediated NO release

via a2 adrenoceptors in coronary arteries from a canine model of CHF was also

enhanced (Main et al., 1991).

Therefore, overall in animal studies there have been mixed results. However

generally, reduced NO release, either agonist-mediated or basally produced, is

associated with animals with larger myocardial infarcts and therefore severity of CHF.
In the human setting, results have been slightly more consistent. Many reports

demonstrate reduced receptor-mediated NO release from isolated arteries, such as the

epicardial coronary artery (Forstermann et al., 1988), and from intact circulations

including the coronary bed (Treasure et al., 1990), skeletal muscle, lower limb (Katz et

al., 1992) and forearm circulations (Kubo et al., 1991). However, basally released

NO is most probably preserved or even enhanced. Drexler and colleagues (1992b)

infused L-NMMA into CHF patients and saw a greater decrease in forearm blood

flow, as compared to healthy controls. In agreement, Habib et al. (1994) infused

systemic doses of L-NMMA in CHF patients. They showed that the increase in

systemic vascular resistance in response to L-NMMA was greatest in the most severe

heart failure patients. Although they did not have data in healthy controls to properly

validate the study. Furthermore, increased plasma nitrate levels were shown in

patients with heart failure, as compared to controls (Winlaw et al., 1994). Although

this latter observation may be due to activation of the iNOS pathway, since it is known

that there are increased circulating levels of cytokines, such as tumour necrosis factor,

in heart failure. However, it appears that there could be regional vascular differences.
For instance, in the coronary circulation, the basal release of NO was shown to be

decreased in CHF patients, as compared to control patients (Mohri et al., 1997).
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Thus, although findings have been controversial, overall it appears that receptor-

mediated liberation of NO is impaired in both animals and humans with CHF.

However, basal production is preserved, and may even be enhanced.

B. 1.3.4. Prostaglandins

Prostaglandins (PGs) are a family of vasoactive substances derived from arachidonic

acid (AA). The biosynthesis of PGs is initiated, generally, by the activation of

phospholipase A2, by receptor-G-protein stimulation, which liberates AA from the

endothelial cell membrane (Moncada & Vane, 1979). This is the rate limiting step for

any PG synthesis. The AA is converted, via cycloxygenase (COX), to the

intermediate prostaglandin endoperoxidases, and to the subsequent PGs by their

specific synthase enzyme.

The most well recognised PGs are prostacyclin (PGI2), prostaglandin E2 (PGE2) and

thromboxane A2 (TxA2). The first two metabolites are principally vasodilators, by

activating adenylate cyclase and increasing cAMP levels. In contrast, the latter, TxA2,

is a vasoconstrictor acting on its receptors inducing phosphatidylinositol (IP3) turnover

and increasing intracellular Ca2+ levels. They are often considered to be physiological

antagonists to each others actions. However, in most venous preparations, and in the

lung, PGI2 has little or no dilator activity, whereas TxA2 is always a potent constrictor

(Coleman, 1994). This may have some importance in the setting of CHF.

Furthermore, the PG formed varies from cell to cell. In the vascular endothelium PGI2

is the isoform predominantly synthesised, but in platelets TxA2 is the major metabolite

product. Their biological half-lives are less than 1 min, being rapidly hydrolysed to 6-
keto PGFla (PGI2) and TxB2 (TxA2). As a consequence of their instablity, their levels

in plasma and urine are often measured by the stable metabolites (Coleman, 1994).

In CHF, it has been demonstrated that PGE2 has a major role in maintaining renal

blood flow. Inhibition of COX with indomethacin in CHF dogs had no effect on

cardiac output or systemic vascular resistance, however decreased renal blood flow by

more than 25% (Oliver et al., 1981). This has also been demonstrated in humans,
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where urinary PGE2 concentrations are raised 3-4 times in CHF patients with

hyponatremia, but not in those with normal semm sodium concentrations (Dzau et al.,

1984).

The presence of a constrictor PG has been detected in CHF in both animal and human

studies. The vasodilatory responses to ACh are significantly potentiated in the femoral
arteries of CHF dogs (Kaiser et al., 1989), and in the forearm vasculature in CHF

patients (Katz et al., 1993) when COX is inhibited by indomethacin. The identity of

this vasoconstricting COX product in currently unknown. However, it has been seen

in canine basilar arteries, that superoxide anion is generated by the hydroperoxidase

activity of COX (Katusic & Vanhoutte, 1989). The authors suggested that the

superoxide anion could produce vasoconstriction in three ways. Firstly any NO

produced could be scavenged, secondly, PGI2 synthesis can be inhibited and thirdly,

that there could be a direct vasoconstrictor action on the smooth muscle. Furthermore,

it is known that there is enhanced free radical production in CHF patients (McMurray

et al., 1990).

In summary, the vasodilator PGE2 has an important role in renal blood flow in severe

CHF, in the presence of renal dysfunction. However, in stable, less severe CHF

patients with normal kidney function, agonist-induced vasodilation is counteracted by

the release of a vasoconstricting COX product, the identity of which remains elusive

(Katz, 1995).

B. 1.4. Diagnosis of CHF

CHF in the Western world is generally a consequence of ischaemic heart disease.

When presented with the full blown symptoms of fluid retention, fatigue, dyspnoea
clinical diagnosis is relatively simple. Other symptoms, less common, include

tachycardia, a third heart sound and cardiomegaly (Dargie & McMurray, 1994).
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There is no single test for CHF; the diagnosis depending on a combination of the

symptoms and signs, with confirmatory evidence of impaired cardiac function from a

chest x-ray or echocardiogram (Timms & Davies, 1992). A chest x-ray is used for
evidence of pulmonary oedema or venous hypertension, and may show an enlarged

heart, although little other information can be gleaned from the radiograph.

Echocardiography is possibly the most useful non-invasive technique for helping in a

diagnosis of CHF. An echocardiogram permits direct measurement of the dimensions

of all the cardiac chambers and allows a dilated poorly contracting left (or right)

ventricle to be identified (Dargie & McMurray, 1994).

There are invasive methods of investigating the causes of CHF, including angiography

where a contrast medium is introduced by a catheter into the heart, via the femoral

artery and cine films taken at 25-50 frames per second (Julian & Cowan, 1992). The

pressures within the heart and great vessels and cardiac output can also be measured

using a cardiac catheter. However, radionuclide ventriculograms are the most accurate

measure of left ventricular function, including contractility of the ventricle, end-systolic

and end-diastolic volumes. Ventriculography involves technetium-labelled red cells, so

the pool of blood and its movements in the left ventricle can be detected (Julian &

Cowan, 1992).

Blood samples measuring the neuroendocrine factors of noradrenaline and renin can be

used since their levels are directly related to prognosis. However, these are not widely

used in clinical practice, although interest in the cardiac natriuretic peptides as a reliable

marker of left ventricular dysfunction has been growing (Barnett, 1993). Many

studies have shown a strong correlation between both atrial and brain natriuretic

peptides and the severity of heart failure and that during exercise, levels rise in CHF

patients but not in control subjects (Chati et al., 1996; Steele et al., 1997). Indeed,

exercise can also be used as a test for the severity of CHF, measuring peak oxygen

uptake and the ability of the patient to perform exercise. However, exercise testing is

not generally used, instead the patient is asked the amount of exercise he/she can

endure before becoming uncomfortable.
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B. 1.4.1. Severity of Heart Failure and NYHA Class
The standard method for categorising the severity of heart failure once diagnosed is

grading the patient by their symptoms. The classification used is the New York Heart
Association grading, which was first proposed in 1964, and updated in 1973. Patients

are categorised as NYHA Class I, II, III or IV (see table). Classes II, III and IV are

regarded as mild, moderate and severe heart failure respectively, patients in class I are

effectively normal (Timms & Davis, 1992).

NYHA Grading of Symptoms

Class Symptoms

I Cardiac disease but without resulting limitation of physical activity.

II Cardiac disease with slight limitation of physical activity, comfortable at rest.

Ordinary physical activity results in fatigue, palpitation, dyspnoea or anginal

pain.

III Cardiac disease resulting in marked limitation of physical activity but

comfortable at rest.

Less than ordinary physical activity causes fatigue, palpitation, dyspnoea or

anginal pain.

IV Cardiac disease resulting in the inability to perform any physical activity

without discomfort, often discomfort at rest.

If any physical activity is undertaken, discomfort is increased.

B. 1.5. Current Drug Therapies

The most effective drugs used in the treatment of CHF has been those which decrease

systemic and pulmonary vascular resistance, by direct action on resistance arteries

interrupting the neuroendocrine vasoconstrictor reflexes. Reduction of blood volume

also helps alleviate symptoms, and improves general well-being.
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B. 1.5.1. Angiotensin Converting Enzyme Inhibition

The most effective treatments in helping alleviate the symptoms of CHF and slow
down the progression of the disease have been those drug therapies which decrease

systemic and pulmonary vascular resistance. The class of drug which has had the

greatest impact are the angiotensin converting enzyme (ACE) inhibitors, blocking the

conversion of ANG I to ANG II and therefore stopping the vasoconstrictor and anti-

naturetic actions of ANG II (Cockcroft et al., 1995).

In healthy volunteers, brachial artery infusion of the ACE inhibitors, enalaprilat (Webb

et al., 1988) and ramiprilat (Webb & Collier, 1987) had no effect on forearm blood

flow. This suggests that the RAA system has no role in maintaining resting, basal

vascular tone in healthy subjects. Unfortunately, these simple experiments have not

been repeated in CHF patients. However, trials with ACE inhibitors have consistently

shown the beneficial effects of the inhibition of the RAA system in heart failure. The

Co-operative North Scandinavian Enalapril Survival Study (CONSENSUS, 1987)

was the first large trial to show a reduction in mortality in patients with severe (NYHA

class IV) heart failure when treated with the ACE inhibitor, enalapril. It was then

demonstrated that enalapril improved survival in patients with less severe heart failure,

where 57% and 31% of patients studied were NYHA class II and III respectively

(SOLVD, 1991).

The enzyme ACE does not exclusively convert ANG I to ANG II, it is also known as

kininase II, having a major role in the breakdown of bradykinin (BK; Cockcroft et al.,

1995). BK is an endothelium-dependent vasodilator. It has been shown to produce
vasodilation by the production of NO (O'Kane et al., 1994) and PGI2 (Pitt et al.,

1997). ACE inhibition has been shown to improve endothelial dysfunction in animals

(Clozel et al., 1990) and in humans (Hirooka et al., 1992). Therefore, decreased

breakdown of BK may contribute to the beneficial effects of ACE inhibition. BK,

however, may be responsible for some of the side effects of ACE inhibition, including

cough and hypotension. The AT] receptor antagonist losartan, in clinical trials has

proved to better tolerated than captopril, with no incidences of cough and fewer
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incidences of initial dosing hypotension (ELITE study; Pitt et al., 1997). In this study,
losartan treatment reduced mortality rates, as compared to those on captopril (9.4% vs

13.2%). The authors suggested that the lowering of sudden deaths was potentially due

to an increased inhibition of ANG II and its effects. It is known that ANG II can be

formed by non-ACE-dependent pathways, therefore captopril may not be suppressing
ANG II production completely. Thus blockade at the AT] receptor inhibits ANG II

actions in a more complete manner than captopril. Furthermore this study implies that

bradykinin may have no involvement in the beneficial effects of ACE inhibitors, but is

probably responsible for at least one of the side-effects, cough.

B. 1.5.2. Diuretics

Diuretics are extremely effective as a symptomatic treatment for CHF. By increasing

the excretion of Na+ and water, thus reducing the circulatory volume, preload and

oedema are decreased (Dargie & McMurray,1994). Until recently, they were used as

initial therapy following diagnosis of CHF, however they are now generally used as

adjunct treatment with ACE inhibitors. Loop diuretics, such as frusemide, are the

main class of diuretics prescribed and are the most powerful of all diuretics, capable of

causing 15-25% of Na+ in the filtrate to be excreted. However, reduced diuretic

efficacy to loop diuretics can occur, upon which a second diuretic, either a thiazide (eg.

bendrofluazide) or thiazide-related metolazone is used in combination (Dargie &

McMurray, 1994).

The loop diuretics inhibit Na+ reabsorption in the ascending loop of Henle, by

inhibiting the Na+/K+/2Cf carrier in the luminal membrane. This effectively removes

the osmotic gradient in the renal medulla, (since the filtrate is now not hypertonic) and

therefore water reabsorption does not occur. An additional effect of the loop diuretics

is that because more solute is delivered to the distal portion of the nephron, the osmotic

pressure further reduces water reabsorption (Rang et al., 1995).
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The thiazides are moderately powerful diuretics and increase Na+ excretion (and CI)

by inhibiting the Na+/Cl~ co-transporter in the distal convoluted tubule. They do not

have any action on the thick ascending loop of Henle (Rang et al., 1995).

Both types of diuretics have some actions on blood vessels. Loop diuretics have

venodilator actions, although the mode of action is unknown. When intravenously

infused into patients with acute CHF, a venodilation occurs before the onset of the

diuretic effect, thus reducing preload on the heart. Thiazides, however, have direct

vasodilator actions after the diuretic effects by opening K+ channels (Rang et al.,

1995).

B. 1.5.3. Nitrates

The nitrates act by releasing NO. Some nitrates, such as nitroprusside, produce

arteriolar dilatation, reducing peripheral vascular resistance, thus improving cardiac

output. Other nitrates, such as nitroglycerin, cause venous dilatation, increasing

venous pooling, reducing venous return to the heart, therefore decreasing left

ventricular end diastolic pressure (LVEDP). Overall, all nitrates improve cardiac

output and, more importantly, do not produce a reflex increase in heart rate (Elkayam,

1996).

There are two mechanisms by which nitrates donate NO. The organic nitrates, a group

of compounds which include nitroglycerin and isosorbide dinitrate, are converted by a

thiol-containing enzyme present at, or near, the plasma membrane of VSMCs (Seth &

Fung, 1993). The final bioactive product of this enzymatic process is probably not

NO itself, but a closely related molecule, nitrosothiol, which is also able to activate

soluble guanylate cyclase. Nitroprusside and molsidomine are compounds which

donate NO in a non-enzymatic manner, they simply breakdown to NO directly

(Abrams, 1996).
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The different mechanisms by which the two classes of NO-donating drugs produce

vasodilation possibly explains why the organic nitrates act preferentially on the venous

circulation, whereas nitroprusside is both an arterial and venous dilator. The organic

nitrates are taken up into the VSMC layer more avidly by veins than arteries, therefore
at lower concentrations the benefical effects are due to reduced preload, by increased

venous capacity. At higher concentrations, the organic nitrates do produce arterial

dilation. However they have little effect in the microcirculation possibly because of the

lack of the thiol-containing enzyme in the VSMCs of these arterioles (Harrison &

Bates, 1993).

Unfortunately, long term treatment with the nitrates lead to tolerance, where the

dilatory actions become less over a period of time. The mechanisms behind this

phenomenon are currently unknown (Abrams, 1996). Haemodynamic benefits of

nitrates in CHF during exercise include significant increases in stroke volume and

work indexes, as well as decreases in pulmonary wedge and arterial pressures,

systemic vascular resistance and heart rate (Hecht et al., 1982). Furthermore, the

Veterans Administration Heart Failure Trials (V-HeFT) showed a small, but significant

improvement in maximum oxygen consumption in patients when treated with

isosorbide dinitrate in combination with hydralazine (Cohn et al., 1987).

The effects of nitrate therapy alone on survival in CHF patients has never been studied.

However, the V-HeFT studied the effects when in combination with hydralazine,

showing significant reduction in mortality in comparison with the placebo and prazosin

groups. In comparison to ACE inhibition with enalapril, lower mortality rates due to

sudden death was found in the enalapril group versus direct vasodilation therapy

(Cohn et al., 1991). Thus, nitrate therapy is a useful treatment in CHF, but is

secondary to ACE inhibition. However, some patients cannot tolerate ACE inhibitors,
so nitrate therapy, in combination with hydralazine, is a useful alternative, although

care should be taken to avoid nitrate tolerance (Elkayam, 1996).

58



B. 1.5.4. Beta-blockers

In recent years, the use of (3-adrenoceptor blockers in the treatment of CHF has
received increasing attention. Inhibition of the positive inotropic pradrenoceptors may

be surprising in CHF, however the results of several clinical trials have demonstrated a

significant reduction in mortality in those groups of patients assigned a p-blocker

(BBPP, 1988; CIBIS, 1994).

As described earlier, raised NA plasma levels from CHF patients have consistently
been described, often correlating with many of the parameters of the disease (Krum,

1997). There is generalised sympathetic activation, however NA spillover is

specifically increased in the heart. There is depletion of catecholamines from storage

vesicles in the cardiac nerve terminals (Chidsey et al., 1965) and downregulation of P-

adrenoceptors, in particular the Pi-adrenoceptors on myocardial cells, as well as

adenylate cyclase uncoupling (Bristow et al., 1990).

In acute heart failure, sympathetic activation is important to increase force of
contraction and maintain cardiac output. As the disease progresses this sympathetic

activation contributes to the disease by several actions including, myocardial toxicity,

increased myocardial oxygen consumption, and activation and potentiation of other

aggrevating systems. However, the reduction in the threshold for the induction of

arrhythmias is probably the most important detrimental mechanism, since it is believed

that sudden death, caused by fatal arrhythmias, in CHF patients is most likely mediated

by NA. This is implied by the clinical trials of xamoterol, a partial P-agonist

(Xamoterol study group, 1990), and milrinone, a phosphodiesterase inhibitor (Packer

et al., 1991), which were both associated with adverse mortality outcomes.

Furthermore, as mentioned above, of the few published studies into P-blockers in

CHF, all of them demonstrate reductions in mortality (CIBIS, MDC, US Multi-centre

carvedilol study program). Hospitalisation rates of these groups of patients were also

reduced (US Multi-centre carvedilol study program).
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The clinical benefits of (3-blockade occur after long-term therapy, that is treatment of

more than 2 months duration. To avoid sudden interference of the inotropic support to

the failing myocardium commencement of (3-blocker therapy has to be of extremely

low doses (Krum, 1997). In the long-term, improvements described include increased

ejection fractions and patients overall well-being. However, effects on exercise

tolerance have been variable. This is most likely due to the heart-rate limiting effects of

this class of drugs. Furthermore, (3-blockade inhibits other neurohormonal systems

activated in CHF, such as the RAA system (Krum et al., 1995), and the ET system

(Krum et al., 1996) as well as improving parasympathetic activity (Goldsmith et al.,

1993).

Some of the [3-blockers, for instance carvedilol, have other pharmacological

properties. Carvedilol possesses a vasodilator component, albeit a modest one which

possibly helps initial toleration by the patient of the drug (Krum, 1997). It also has

anti-proliferative and anti-oxidant properties, which could potentially help slow the

progression of the disease. However, these ancillary properties, in combination with

[3-blockade appear to produce clinical and mortality benefits in CHF. Thus the use of a

(3-blocker in the treatment of CHF is now becoming standard therapy, despite the exact

mechanism of benefit being unknown.

B. 1,5.5. Cardiac glycosides

Digoxin and digitalis have been used in the treatment of CHF for over 200 years

(Anand, 1995). They are members of a group of drugs called the cardiac glycosides,

which are the active principles from the leaves of the foxglove. The mechanism of

action of the cardiac glycosides is by direct action on the myocardium. They increase

the force of contraction by raising the size of the intracellular Ca2 gradient by binding

to the K+ binding site in the Na+/K+ ATPase pump. Inhibition of the pump results in a

rise in [Na ]), which, in turn, slows down the Na /Ca exchanger. Under normal

conditions the Na /Ca+ exchanger pumps Na+ into the cell, whilst extruding
intracellular Ca2 . Therefore, because there is increased [Na+]j during cardiac
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glycoside blockade, the gradient for Na+/Ca2+ exchange is reduced. Thus the [Ca ]j is
retained for longer within the cell (Rang et al., 1995).

In CHF the oedema is partly relieved by the cardiac glycosides due to the extra-cardiac

property of venous dilation, reducing preload. There is also an overall reflex
vasodilation in response to the increased cardiac output and arterial pressure. The

diuresis seen to cardiac glycoside treatment is also partly due to the increased renal

blood flow, as well as inhibition of the Na+/K+ ATPase in the renal tubules, similar to

the diuretics (see Section B. 1.5.2.). Cardiac glyocosides increase the efficiency of the

failing myocardium with regard to oxygen consumption. This is possibly as a result of

a reduction of excessive diastolic stretching of the myocardium. They also depress AV

conduction, which has beneficial effects in CHF due to reducing the likelihood of

arrhythmias and sudden death.

Several small and large trials have demonstrated the beneficial effects of digoxin in

CHF. Withdrawal of digoxin therapy increases the chances of deterioration of the

condition (Captopril-Digoxin Trial, 1988; Guyatt et al., 1988; Pugh et al., 1989;
Packer et al., 1993). However, the worsening heart failure in some patients could be

controlled by increasing diuretic therapy (Pugh et al., 1989). In some studies digoxin

treatment also significantly improves exercise capacity, breathlessness and NYHA

class (Guyatt et al., 1988; DiBianco et al., 1989; van Veldhuisen et al., 1993), but in

others digoxin appears to have no effect on these symptoms at all (Captopril-Digoxin

Trial, 1988; German & Austrian Xamoterol Study Group, 1988; Just et al., 1993). In
all of these studies, however, improved contractility due the inotropic properties of

digoxin was clearly demonstrated.

Overall, the most effective drug therapies in the treatment of CHF are those which

produce peripheral vasodilation causing decreased after and preload, therefore reducing

the amount of work the heart has to perform. The ACE inhibitors are currently the

most successful group of drugs in CHF at present. However abolition of the actions
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of the RAA system does not halt the symptoms and progression of the disease

completely. Thus, there is still room for improved drug therapy.

B. 1.6. Endothelin and CHF

As described earlier, ET-1 has several different actions which implies that it could have

a potential role in CHF. The most obvious, direct actions implicating ET-1 are i). its

long-lasting vasoconstrictor actions on both the arterial and venous beds (Yanagisawa

et al., 1988), and ii). its powerful effects on the kidney, reducing both renal plasma

flow and glomerular filtration rate and causing sodium retention (Miller et al., 1989;

Lerman et al., 1991).

ET-1 also has indirect effects suggesting its involvement in CHF including interactions

with the other neuroendocrine mediators released in CHF. Subthreshold concentrations

of ET-1 potentiated contractile responses to catecholamines and 5-HT (Yang et al.,

1990) in isolated human arteries, and the pressor response to AGII infusion in rats

(Yoshida et al., 1992). Thus basal, physiological levels of ET-1 could also enhance

sympathetic tone and other vasoconstrictor reflexes in CHF. Indeed, ET-1 potentiation

of neuronal contractile responses to catacholamines has already been demonstrated in

hypertensive patients (Haynes et al., 1994) whereby the sympathetically mediated

venoconstriction was elicited by a deep breath, infusion of ET-1 enhancing this reflex

in the hypertensive but not normotensive subjects.

The circulating levels of ANG II, vasopressin and catecholamines can also be

modulated by ET-1. In pulmonary artery endothelial cells, ET-1 stimulated the

conversion of ANG I to ANG II (Kawaguchi et al., 1990) and furthermore,

intravenous infusion of ET-1 in vivo augmented plasma renin activity (Miller et al.,

1989). Increased adrenal synthesis of both adrenaline (Boarder & Marriot, 1989) and

aldosterone (Cao & Banks, 1990) by ET-1 has also been demonstrated. Conversely,

ET-1 secretion from cultured endothelial cells is augmented by ANG II (Emori et al.,

1991) and arginine vasopressin (Bakris et al., 1991). Thus, RAA system activation,
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catacholamine and ET-1 secretion may potentiate each other, synergistically

augmenting vasoconstriction and sodium retention in CHF.

As described earlier, the renal vasculture is extremely sensitive to ET-1, constricting

both afferent and efferent renal arterioles in vitro (Edwards et al., 1990). In contrast to

animal data, a low dose infusion of ET-1 in healthy volunteers is anti-natriuretic in the

absence of significant reductions in renal plasma flow and GFR (Rabelink et al.,

1994). Infusion of higher concentrations of ET-1 sufficient to increase plasma levels

threefold, such as are seen in experimental and human CHF, causes more profound

sodium retention and reductions in both renal plasma flow and GFR (Rabelink et al.,

1994).

ET-1 is also a co-mitogen, promoting cell division, hypertrophy and DNA synthesis in

vascular smooth muscle cells and myocytes via the induction of proto-oncogenes c-fos

and c-myc (Battistini et al., 1993). Thus, similar to AGII, ET-1 may have a role in

myocardial and peripheral vascular remodelling in CHF. ET-1 also has direct cardiac

actions. Infusion of low concentrations into animals results in heart rate and cardiac

output to rise. However higher doses cause cardiac output to fall as a result of direct

coronary vasoconstriction and increased systemic vascular resistance (Lerman et al.,

1991; Miller et al., 1989).

The properties of ET-1 described implies that it could have a potential role in all aspects

of the pathophysiology of CHF, from the obvious vasoconstriction and renal

dysfunction, to potentiation of neuroendocrine reflexes, ventricular and vascular re¬

modelling whilst also depressing myocardial contractility.

B. 1.6.1. Plasma endothelin concentrations in CHF

The first paper describing ET-1 concentrations in the plasma from CHF patients

demonstrated that there was not a significant difference in ET-1 levels as compared to

healthy controls (Cernacek & Stewart, 1989). However, this study only assayed the

plasma from 5 CHF patients, who were in mild to moderate heart failure (NYHA Class
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II). Furthermore in the same study, it was found that there were elevated plasma levels

of ET-1 in patients with cardiogenic shock (fourteen fold) and pulmonary hypertension

(six fold). The latter finding is important, since pulmonary hypertension manifests

itself as heart failure becomes more severe. Indeed, plasma ET-1 correlates with the

extent of pulmonary hypertension in CHF patients (Cody et al., 1992; Cacoub et al.,

1993).

Following the findings of Cemacek & Stewart, most reports on plasma ET-1 levels in

CHF patients have been shown to be increased between 2-3 fold (Table 1.3). These

studies have tended to concentrate on the more severe CHF patients, those in NYHA

Class III - IV. Rodeheffer and colleagues (1992), were the first study to report a

correlation between plasma ET-1 concentrations and severity of CHF. They split their

patients into 2 groups; mild CHF, which constituted NYHA I and II, and severe CHF,

NYHA III and IV, with a third group of age- and sex-matched controls. The plasma

ET-1 from the mild CHF group was significantly raised from controls (11.1 vs 7.1

pg/ml, P<0.001), and the levels in the severe CHF group were then significantly

higher than those from the mild group (13.8 vs 11.1 pg/ml, p=0.03). In addition, they

saw a negative correlation between left ventricular ejection fraction and plasma ET-1.

This study was then followed by a report showing that patients with end-stage heart

failure, who had undergone cardiac transplantation, had significantly higher ET-1

levels than patients with severe, but stable CHF (Lerman et al., 1992). The plasma

ET-1 remained chronically elevated for at least 12 months. ET-1 plasma levels are also

predictors of mortality. Tomoda (1993) showed that in the group of severe CHF

patients studied, those who died had greater than 2 fold higher circulating ET-1, than

the patients who were stable.

Animal studies have demonstrated similar findings (Table 1.4). In dogs with heart

failure induced by pacing (RVP; Cavero et al., 1990; Marguiles et al., 1990; Calderone

et al., 1993) or by thoracic inferior vena caval constriction (TIVCC; Underwood et al.,

1992) ET-1 levels are raised 2-3 fold. In rats with CHF following coronary artery

ligation ET-1 levels are raised significantly at 1 week, 4 weeks and 16 weeks post-
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STUDY

CONTROLSUBJECTS
CHFSUBJECTS

NYHA
_

CLASS

DIFFERENCE
ANTIBODY

X
-

REACT
IVIT
Y

Cernacek
&

Stewart,
1989

0.29
±

0.24
pg/ml
(n=14)

0.46
±

0.36
pg/ml

II,

n=5

ND

DNS

Cody
et

al.,

1992

3.7
±

0.6

pg/ml
(n=12)

9.07
±

4.13
pg/ml

II

(3),

111(14),
IV
(3),

n=20

2.5
fold
T

bigET-1
=

17%

Stewart
etal.,
1992

0.74
±0.11

pg/ml
(n=9)

3.7
±

0.47pg/ml

III,
n=6

5

fold
t

bigET-1
-

10%

McMurray
etal.,
1992

6.4
±

0.3

pmol/1
(n=16)

12.4
±

0.6
pmol/1

II

(9),
III

(32),
IV
(6),

n=47

2

fold
T

DNS

Lerman
et

al.,

1992

6.8
±

0.3

pg/ml
(n=24)

11.7
±

1.1
pg/ml

III-IV,
n=24

1.7

fold
t

bigET-1
<37%

VOMD

bigET-1
=

17%

Tomoda,
1993

1.51
±

0.39
pg/ml
(n=
12)

2.74
±

1.02
pg/ml

DNS

1.8

fold
T

Cacoub
et

al.,

1993

4.4
±

0.3

pg/ml
(n=20)

7.7
±

0.3pg/ml

II

(6),
III

(27),
IV
(9),

n=39

1.8

fold
T

bigET-1
<5%

Wei
et

al.,

1994

~7

pg/ml
(n=6)

~8
-

9

pg/ml
I

(14),
II

(5),
III

(7),
IV
(4),

n=30

ND

bigET-1
=

37%

Krum
et

al.,

1995

~3

pg/ml
(n=
10)

-10
pg/ml

II

(4),
III

(8),

n=12

-3

fold
T

DNS

Table
1.3.

Plasma

endothelin-1
levels,
as

measured
by

radioimmunoassay,
in

chronic
heart
failure

patients
as

compared
to

normotensive,
control

subjects.

Abbreviations
include
ND,
no

difference;
DNS,
did

not

specify



STUDY

MODEL

DIFFERENCE
IN

ET-

ANTAGONIST
ET-1

LEVELS
AFTER

__
_

__

1

LEVELS
_
_

_

TREATMENT

TREATMENT

Cavero
etal.,
1990

RVP
in

dogs

3

fold
t

-

-

Marguiles
et

al.,

1990

RVP
in

dogs

2

fold
t

-

-

Underwood
et

al.,

1992

TIVCC
in

dogs

2.5
fold
t

-

-

Calderone
etal.,
1993

RVP
in

dogs

3

fold
T

-

-

Fu
et

al.,

1993

LCAL
in

rats

DNS

-

-

Loffler
etal.,
1993

AVIAS
in

rabbits

29

fold
T

-

-

Teerlink
et

al.,

1994b

LCAL
in

rats

1.5

fold
T

Bosentan

DNS

Clavell
et

al.,

1996

TIVCC
in

dogs

1.5

fold
T

FR

139317

DNS

Sakai
etal.,
1996b

LCAL
in

rats

3

fold
t

BQ-123

DNS

Cannan
et

al.,

1996

TIVCC
in

dogs

2

fold
T

-

-

Shimoyama
etal.,
1996

ICE
in

dogs

DNS

Bosentan

8-10
fold
T

Mulder
et

al.,

1997

LCAL
in

rats

<->

Bosentan

2.5
fold
T

Spinale
et

al.,

1997

RVP
in

rabbits

2

fold
T

PD

156707

3

fold
T

Table
1.4.

Change
in

plasma

endothelin-1
levels
in

various
animal
models
of

CHF
as

compared
to

sham-operated
animals.
The

effects
on

plasma

ET-1
levels

after

endothelin
receptor
antagonism
are
also

shown.

Abbreviations
include,
AVIAS,

aortic
valvular

insufficiency
and

stenosis;
ICE,

intracoronary
microembolism;
LCAL,
left

coronary
artery
ligation;
RVP,

rapid

ventricular
pacing;
TIVCC,

thoracic
inferior

vena
caval

constriction;

DNS,
did

not

state.



infarct (Teerlink et al., 1994). Furthermore, the plasma ET-1 levels were found to

correlate with the size of infarct and right ventricular hypertrophy. Interestingly in this

study, plasma ET-3 levels were also assayed, and it was found that there was a

transient rise in ET-3 levels at 1 week. This latter response was suggested to be as a

result of the acute myocardial infarction. However, rises in plasma ET-3 levels were

not seen in humans with acute myocardial infarcts (Miyauchi et al., 1991), although

both ET-1 and bigET-1 concentrations were increased. In rabbits, where CHF was

induced by aortic valvular insufficiency and stenosis, again, plasma ET levels were

significantly augmented (Loffler et al., 1993).

The physical levels of ET-l-immunoreactivity detected in plasma described vary from

paper to paper, this may be due to several reasons. The levels of ET present in plasma

are detected using the radioimmunoassay (RIA) technique (see methods B3.1). RIA is

where an antibody (Ab) specific for the substance, in this case ET-1, to be assayed, is
125

added to the sample. A known amount of radiolabelled antigen (Ag), usually I-ET-

1, is then added. Thus, the Ag present in the sample competes with the labelled Ag for

binding to the specific Ab. This means that the higher the amount of endogenous Ag

present in the sample, the lower the binding of labelled Ag. After separation of the free

and bound labelled Ag, the amount of bound radioactivity is measured. The amount of

ET-1 present in the sample is deduced by comparing against a standard curve which is

run at the same time as the assay is being performed. Standards contain known

concentrations of ET-1, the radioactivity in each tube is measured and the standard

curve constructed.

The reasons for the differences between the levels measured in plasma, are probably

due to differences in either extraction procedure or the specificity of primary Ab used.

The latter explanation is the most likely, since the crossreactivity with other members
of the ET family and the precursor big ET-1 varies from Ab to Ab. The most common

ET-1 Ab used in RIAs described in the literature, has been the Amersham

International, polyclonal anti-ET-1 Ab. This Ab has a cross-reactivity to ET-2 =

100%, ET-3 < 1% and big ET-1 = 37%. It is known that ET-2 is not present in
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plasma, therefore the immunoreactive ET detected is likely to be a combination of ET-1
and big ET-1.

As a result of this cross-reactivity with big ET-1, it is recognised that in CHF, the rise

in ET-l-immunoreactivity is probably an increase in big ET-1 as well (Table 1.5;

Pacher et al., 1993; Wei et al., 1994). Pacher and colleagues (1993) were the first to

delineate this. They used an Ab specifically raised against the C-terminal of big ET-1,

which has a crossreactivity with the mature isoforms of ET of less than 1%. They saw

that hypertensive non-CHF patients had similar levels of circulating big ET-1 to age-

matched controls. However, in CHF patients there was a significant augmentation of

plasma levels. Again, the big ET-1 levels correlated with the severity of CHF. Wei
and colleagues (1994), also demonstrated that the rise in immunoreactive ET was due

to increased big ET-1. They used a gel permeation chromatography (GPC) technique,

and saw equivalent peaks for ET-1 in samples from both CHF patients and healthy,

age-matched controls. However, a peak correlating to bigET-1 was seen only in the

plasma from the CHF patients.

In all the studies investigating plasma ET-l/big ET-1 levels, there was no difference

seen between patients with different aetiologies i.e. generally, ischaemic

cardiomyopathy or idiopathic dilated cardiomyopathy.

B. 1.6.2. Increased production of ET-1 in CHF

As described above, it appears that there is elevated circulating big ET-1 in CHF,

implying that there is the potential for increased production of ET-1. It has been

shown in the RVP CHF dogs that there is a correlation between immunoreactive

plasma ET levels and elevated right and left atrial pressures. Furthermore, in humans
there is a correlation with pulmonary hypertension (Cody et al., 1992). Therefore, this
elevated production could be stimulated by raised cardiac pulmonary pressures. In

accordance with this, mRNA for ET-1 in the lungs and hearts of dogs with CHF, have

been shown to be increased (Wei et al., 1994). In contrast, higher levels of plasma ET

have been observed in the TIVCC dog model of CHF, than in the RVP dog model.
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STUDY

CONTROLSUBJECTS
CHF

SUBJECTS
NYHA
CLASS

DIFFERENCE
ANTIBODYCROSSREACTIVITY

Pacher
etai,
1993

1.3
±

0.3

fmol/ml(n=22)~5.6
pg/ml

3.1
+

0.9

fmol/ml
*

-13.3
pg/ml

5.2
±

2.3

fmol/ml
*

-22.4
pg/ml

2.7

±0.9
fmol/ml
**

-11.6
pg/ml

5.1
±

3.3

fmol/ml
**

-24.5
pg/ml

11(13)III-IV
(14)11(19)III-IV

(7)

2.4
fold
T

4

fold
T

2.1

fold?
4.4
fold
T

ET-1
<

1%

Wei
et

al.,

1994

ND
(n=4)

14.6
+

2.4

pg/ml

IV
(4)

ET-1
-

100%
BigET-1

=37%
S

Table
1.5.

Studies

investigating
big

ET-1
plasma
levels.
Pacher

and

colleagues
studied
both

mild
(II)

and

severe
(III-IV)
CHF

patient
bigET-1

levels
without
(*)or

with
(**)

concomitant
hypertension.
The

study
by

Wei
et

al.,

1994,
used
gel

filtration

chromatography
to

distinguish
the

relative
amounts
of

ET-1
and

bigET-1
contributing
to

the

final
levels
of

immunoreactive
ET
in

severe
CHF

(NYHA
IV

only)
and

normal
subjects

plasma
samples.
In

healthy
controls,
there
was
only
one
peak
seen,

correlating
to

the

ET-1

fraction,
however
in

the

plasma
from
the

patients
with

CHF,
two

peaks
were

detected,
the

largest

representing
bigET-1.
It

was

calculated
that
of
the

total

immunoreactive
ET,

62+7%
was

bigET-1
and

38±5%
was
ET-1.



The TIVCC is a model without atrial distension, as demonstrated by the lack of raised

ANP levels, suggesting that increased cardiac filling pressures are not essential for
increased plasma ET-l-immunoreactivity in CHF (Underwood et al., 1992).

In heart failure, there is low cardiac output, and often hypotension, which results in

reduced vascular shear stress. Sharefkin and colleagues (1991) demonstrated an

inverse relationship between shear stress and ET synthesis and release in cultured

human endothelial cells. This observation was corroborated by a study in vivo, where

chronic increases in blood flow in canine femoral arteries, secondary to a fistula,

resulted in a decrease in ET-1 content in the arteries exposed to increased shear stress

(Miller & Burnett, 1992).

There is widespread expression of ET-1 mRNA throughout many tissues of the body,

which could be the potential sources of excessive ET-1 production (Nunez et al.,

1990). Of particular focus, especially in the setting of CHF and its reduced blood

flow, the kidney has come under scrutiny. Suprarenal aortic constriction, reducing

renal perfusion pressure, markedly increased circulating ET-1 (Sandok et al., 1992).

The rise in ET-1 may be due to decreased shear stress in the renal vascular bed, but

could also be as a result of activation of the RAA system. It has been shown that ANG

II stimulates ET-1 production in vitro (Dohi et al., 1992). Moreover, in the two dog

models of CHF, the TIVCC dog model (Underwood et al., 1992), which is a high

renin model, there is greater increases in plasma ET, than in the low renin model,

produced by RVP (Cavero et al., 1990; Marguiles et al., 1990). However, this

phenomenon may be as a result of the lack of the restraining hormone ANP being

produced in the TIVCC model. Although, some studies in animals (Clavell et al.,

1994) and humans (Galattins Jensen et al., 1996) have shown an inhibition of the

activation of the ET system on ACE inhibition.

Reduced clearance of ET-1 has been suggested to be involved in CHF. In renal

failure, massive increases in circulating ET-1, but not big ET-1, has demonstrated that

impaired renal performance affects the bodys ability to remove circulating ET (Webb,
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1997). This could become an important mechanism in the later stages of CHF.

Exogenous bolus ET-1 produced greater increments in plasma ET-1 in experimental

CHF, than in sham-operated controls (Cavero et al., 1990). Although that may be due
to clearance and metabolism mechanisms already performing to maximum capacity in

the CHF animals. However, using a rabbit model of CHF, Loffler and colleagues

(1993) measured tissue ET-immunoreactivity and density of ET receptors in the kidney

and cardiac ventricles, and saw a decrease in both tissue ET-1 content and density of
ET receptors. Since the ETB receptor is known to be important in clearance of the ETs

(Fukuroda et al., 1994c), downregulation in the kidney could be an important

mechanism contributing to the increases in circulating ET. However, in the human

condition, McMurray et al., 1992, measured plasma ET-1 levels from two sites, aorta

and renal vein, and found that there was significant renal extraction in CHF patients.

B. 1.6.3. Functional effects of ET-1 in CHF

The significance of elevated, pathophysiological levels of circulating ET-1 was

addressed by Lerman and colleagues (1991), who infused ET-1 into anaesthetised

dogs producing a twofold increase in circulating ET-1, as is comparable with the levels

seen in CHF. This ET-1 resulted in significant systemic and renal vasoconstriction, in

association with a decrease in heart rate and cardiac output. There was no increase in

mean arterial pressure. However, this model does not truely reflect the

pathophysiological condition since there will probably be increased levels of ET-1 at

the VSMC interface due to the polar secretion of ET-1 from endothelial cells in CHF

(Wagner et al., 1992a)

In RVP, CHF dogs, with 2 fold raised plasma ET-1 levels, systemic and renal

vasoconstrictor responses to low dose exogenous ET-1 were attenuated in comparison

to control dogs (Cavero et al., 1990). However, the decrease in glomerular filtration

rate was preserved in CHF animals. This suggests that there is downregulation of ET-

1 receptors when chronically exposed to high levels of ET-1, or that there is up-

regulation of an effective counterbalancing factor, such as ANP. This last point was

addressed, again comparing the TIVCC and the RVP models of CHF. In the TIVCC
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model, there is no atrial stretch, thus there is no rise in ANP levels. Hence,

Underwood and colleagues (1992) administered low doses ET-1 and saw no

attenuation of the vasoconstrictor actions in these animals when compared to controls.

They then co-infused ANP and ET-1, and the vascular responses were markedly

reduced, similar to those seen in the RVP model. In contrast to the systemic

circulation, there was little modifying effect of ANP on ET-1 action in the kidney, in

accordance with the response seen in RVP dogs.

Other studies have suggested down-regulation of ET receptors (Calderone et al., 1993;

Loffler et al., 1993; Fu et al., 1993) in the face of chronic exposure to high circulating

levels of ET-1. As mentioned previously, in rabbits with CHF, the density of ET-1

receptors (they did not discriminate between the ETA or ETB receptor) was reduced in

the ventricles of the heart and in the kidney (Loffler et al., 1993). However, the

receptor affinity remained unaltered in the cardiac tissue, but was increased in the

kidney. They also demonstrated that in the left ventricle of the heart and the kidney,

that there was reduced tissue immunoreactive ET, when compared to the non-CHF

animals. In the right ventricle tissue ET-1 levels were increased 60% in comparison to

control rabbits. Unfortunately, the functional importance and consequence of the

alteration in the balance of plasma, tissue ET-1 levels and the receptor number and

affinity were not addressed (Loffler et al., 1993).

In an interesting study by Calderone and colleagues (1993), it was demonstrated that in

the the circumflex coronary artery (CCA) in the RVP dog model of CHF, there is

reduced basal accumulation of inositol phosphates (IPs) and ET-1-induced activation

of phosphatidylinositol turnover. Furthermore, in CCA taken from normal, healthy

dogs, when exposed to ET-1 for 60 minutes, there was also a decrease in ET-1-

induced IP production. The authors went on to evaluate the role of protein kinase C in
this phenomenon, using the phorbol ester, phorbol 12-myristate 13-acetate (PMA),

which actives PKC. They incubated the CCA for 60 minutes with PMA and saw a

similar reduction of ET-1-induced IP accumulation. Thus it implies that chronic

exposure to ET-1 desensitises the ET receptors present in the CCA, by reducing PI
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turnover. The authors suggest that PKC could be acting as a negative feedback

mechanism regulating the responsiveness of the CCA, when under chronic exposure to

an agonist (Calderone et al., 1993). A similar effect has been demonstrated to chronic

exposure of other agonists to their respective receptors, including a, adrenoceptors

(Fredrik Leeb-Lundberg et al., 1985) and ANG II receptors (Pfeilschifter et al., 1989).

In the rat coronary artery ligation model of CHF, a reduced pressor response to bolus

injection of ET-1 was shown (Fu et al., 1993), whilst the vasodilatory action was

preserved. It was found that there was a reduced ET-1 receptor density in the

mesenteric arteries of these animals, but no alteration in the myocardium.

Furthermore, the dissociation constant was increased approximately 3-fold in the

mesenteric arteries from the CHF rats. Thus there appears to be a preferential loss of
vascular smooth muscle ET-1 receptors, but not of endothelial (ETB) or myocardial

ET-1 receptors. However, in the cardiomyopathic hamster no alterations in cardiac

tissue ET-1 density or dissociation constants were shown (Bolger et al.,

1992).Furthermore, although not significant, there was a trend towards an increased

vasoconstrictor response to exogenous ET-1 in mesenteric arteries taken from this

model (Noll et al., 1994).

B. 1.6.4. ET-1 Antagonists in CHF

Despite the suggestion of down-regulation of ET receptors, antagonism of the ET

system has shown improvement in CHF animals. In the TIVCC dog model, ETA

receptor antagonism resulted in a marked decrease in arterial pressure, affecting both

renal and systemic vasoconstriction (Clavell et al., 1994). The newly developed orally
active non-selective ETA/ETB receptor antagonist, bosentan, proved extremely

successful in reducing mean arterial blood pressure in coronary artery ligated rats

(Teerlink et al., 1994b). This study demonstrated the importance of the ET system in

maintaining blood pressure and systemic vasoconstriction as heart failure progresses,

because bosentan had a greater effect at reducing blood pressure and systemic

vasoconstriction at 16 weeks post-MI, than at the earlier time points of 1 and 4 weeks.
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More importantly, bosentan produced improvements in haemodynamics when
administered in the presence of ACE inhibition.

Therefore, on the evidence described above it appears that the ET system is an

attractive target for drug intervention in the management of CE1F. Reduction in

peripheral vaso- and venoconstriction will help to reduce afterload and preload,

therefore reducing the amount of work the already damaged myocardium has to

perform. Antagonism of the system in the kidney, improving renal perfusion and

GFR, could help in natriuresis and inhibit the stimulation of the RAA system. ET-1

may also be involved in hypertrophy and re-modelling, so that ET inhibition could

slow any structural changes. Hence, overall, ET system antagonism could be of

potential therapeutic value in slowing the progression of CHF.

The ET system can be inhibited at two levels, either at the production of the mature

peptide, by inhibiting endothelin-converting enzyme, or the actions of ET-1 by

antagonism at the receptor level. Due to the recognition that it is raised production of

ET-1, as demonstrated by increased circulating big ET-1 levels, it is an attractive idea

to inhibit conversion, a situation comparable to ACE inhibition. However, firstly,

selective, potent inhibitors against ECE have not been forthcoming and secondly, the

knowledge on the subtypes of ECE, and which form is the most physiologically

important is confused. Thus, this possibility as potential therapy, although attractive,

has tended to be upstaged by the alternative mechanism, receptor antagonism. There

are problems with receptor antagonism as well. Initially it was believed that ETA

receptors solely mediated vasoconstriction. However, since the discovery that some

vascular beds also have constrictor ETB receptors, the question arises whether both

receptor subtypes should be antagonised. Unless an antagonist can be synthesised

which discriminates between the endothelial and smooth muscle ETB receptors, the

vasodilatory actions of ET-1 will be lost. Because it is believed that ET-1 is released

abluminally, the loss of the vasodilatory ETB receptor by inhibition may not be as

important. However, due to the increased circulating levels of big ET-l/ET-1, one

would expect the endothelial ETB receptors to play some modulatory role. One of the
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clearance mechanisms of ET-1 is the ETB receptor, and as has been demonstrated in

vivo, inhibition of this receptor subtype results in massive increases in circulating ET-
1. Furthermore, the relative contribution of smooth muscle ETB receptors to peripheral

vasoconstriction is also unknown.

B. 1.7. AIMS OF THESIS

It was suggested in 1990 (Cavero et al. & Marguiles et ai), that the ET system could

also be activated in heart failure, being a major mediator of the peripheral

vasoconstriction . It is the aim of this thesis to investigate whether ET-1 has a role in

heart failure, and if there is an alteration of ET receptor responses and subtypes

mediating the responses in small resistance arteries. The small resistance arteries have

an internal lumen diameter of between 100 - 400 |im (Schiffrin, 1995) and are the most

important blood vessels of the circulatory system in controlling the vascular resistance.

Raised peripheral vascular resistance is an important aggravating phenomenon in heart

failure. Therefore, if ET-1 and its receptors are involved in the overall

vasoconstriction responsible for the increased vascular resistance, antagonists of the

ET pathway could be potential novel therapies in the treatment of heart failure. Thus, it

is important to identify which ET receptors mediate ET-1 vasoconstriction in CHF.

Two sources of arteries have been used in this thesis, i). mesenteric arteries from the

coronary artery ligation rat model of CHF at two different time points after the
induction of heart failure, and ii). gluteal arteries dissected from buttock biopsies
obtained from Grade II and III CHF patients and age-matched controls.

The aims of this thesis were;

1. To characterise which ET receptor subtype(s) mediate ET-1 vasoconstriction on the

smooth muscle of mesenteric resistance arteries from normotensive rats.

2. To investigate whether there are any changes in the ET receptor subtypes mediating
ET-1 vasoconstriction on the smooth muscle of mesenteric resistance arteries from a rat

model of CHF at two different time points (5 and 12 weeks) after the induction of

CHF.
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3. To investigate the vasoconstrictor ET receptor subtype(s) on the smooth muscle of
resistance arteries removed from Grade EI and III CHF patients.

4. To ascertain whether there are increased circulating levels of big ET-1 and/or ET-1

in the plasma of CHF patients.

5. To assess if there is an altered localisation of ET-1 and ECE in the walls of the

arteries from both the rat model and human CHF patients when compared to the

respective control arteries.
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C. 1.0. Functional studies of the endothelin system

It has long been known that small arterial vessels - the resistance arteries - are chiefly

responsible for regulating blood flow and capillary pressure, thereby controlling total

peripheral resistance (Furness & Marshall, 1974). However, most in vitro studies

using isolated vessels have concentrated on responses of large conduit arteries, such as

the aorta. In 1976 a new technique called wire myography was published which
allowed the study of resistance arteries in isolation (Mulvany & Halpem, 1976). Wire

myography involves mounting the resistance artery as a ring preparation between two

fine wires which are passed through the lumen. The response to agonists are then
recorded as a change in wall tension as measured by isometric force exerted on the

wires. It is, therefore, similar to organ bath experiments on larger vessels, but on a

smaller scale. This method is an extremely useful way of studying resistance arteries.

However, recently a more physiological technique has been introduced, the small
vessel arteriograph, which is also known as the perfusion myograph (Halpem &

Kelley, 1991). It is this technique, the perfusion myograph, which has been used

throughout this thesis in order to study any changes in the endothelin receptor

population in resistance arteries before, during and after the onset of congestive heart
failure in rats, and in patients with established heart failure as compared to controls.

C. 1.1. Source of tissue

C. 1.1.1. Rat mesenteric vessels

Male Wistar rats were used from an in-house stock bred at the Biomedical Research

Facility (Western General Hospital, Edinburgh) and maintained on standard chow and

tap water ad libitum. The animals (10-16 weeks old) were killed by exsanguination
and a ventral midline incision was made. The mesenteric bed was immediately excised
and pinned out in a silicone-coated (Sylgard, Dow-Coming, U.K.) dissecting dish

containing Krebs-Henseleit solution (mM: 118 NaCl, 4.7 KC1, 2.5 CaCl2, 1.2

MgS04, 1.2 KH2P04, 25.0 NaHC03 and 5.5 glucose; BDH-Merck, Dorset, U.K.) at

room temperature (22-24°C).

77



For resistance arteries of internal diameter 200 - 350 pm, third order branches of the
mesenteric artery, i.e. those appearing after the 3rd branch of the superior mesenteric

artery (Figure 2.1), were excised under a dissection microscope (Zeiss, U.K.) using
No.5 watchmaker forceps and fine ocular scissors (Altomed Ltd, Tyne & Wear,

U.K.). In order to avoid touching the section of vessel to be studied, the surrounding
fat was gently pulled away exposing the thin membrane running between the fat and
the artery. This membrane was cut, therefore clearing the fat from the artery. The

artery was removed, but a small area of fat was left intact in order to mark the proximal
end of the vessel. This was so the ends of the vessel could be differentiated in order to

mount the artery in the correct orientation (proximal to distal) in the myograph, thus

any flow through the lumen would be in the same direction as that of blood in vivo.

Mesenteric arteries were studied for several reasons. The mesenteric bed receives a

relatively high proportion of cardiac output (-10%) and so any change in resistance in

this vascular bed can affect the total peripheral resistance and blood pressure

profoundly. Due to the structure of the mesenteric tree (Figure 2.1.), 3rd order

arteries, which are usually between 200-350 pm, are easy to identify and dissect. Also

there are many branches (which consistute the 1st order arteries) off the superior
mesenteric artery, hence many preparations can be obtained from one bed, thus

reducing the number of animals sacrificed.

C. 1.1.2. Mesenteric vessels from rat congestive heart failure model
Male Wistar rats were used from an in-house stock bred at the Department of

Pharmacology Animal Unit (George Square, Edinburgh) and maintained on standard
chow and tap water ad libitum. The animals had surgery performed on them at 5

weeks of age. The animal was anaethetised with sodium pentobarbital (60 mg/kg

Sagital), and when fully unconscious placed on a small animal respirator to aid

breathing (60 breaths/min). An incision down the chest of the animal exposed the ribs,
where upon the ribs were opened and the heart exteriorised. A ligature was tied round
the proximal left coronary artery, in rats selected for heart failure, or pulled out through
the heart muscle in the sham-operated control animals. The chest was closed, and
animals allowed to recover (Selye et al., 1960; Pfeffer et al., 1979). Surviving rats
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Figure 2.1. Photograph of an excised rat mesenteric bed pinned out on a silicone-
coated dissecting dish, showing the location of 1st (1), 2nd (2) and 3rd (3) order
mesenteric arteries. G = gut wall. (x3 magnification).
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were divided into groups of 5 and 12 weeks post-ligation, whereupon the animals
were sacrificied and studies performed on the vessels. Heart failure was verified by

placement of a pressure transducer tipped catheter (Millar, U.K.) in the left ventricle
for the measurement of left ventricular end diastolic pressure (LVEDP). Rats with

LVEDP >15 mmHg were considered to have CHF. After sacrifice, the mesenteric
bed was removed and treated as descibed above. In addition to the vessels removed

for functional myography studies, several other 3rd order branches were dissected and
fixed in 10% formalin for 36 hours for immunohistochemical staining. However, for

this dissection the fat was left intact around the artery (and vein) to protect it as much

as possible from handling damage.

All surgical and in vivo procedures were performed by Dr Gillian Gray, Department of

Pharmacology, George Square.

C. 1.1.3. Human vessels from gluteal buttock biopsies
The protocol of this study was approved by the Lothian Research Ethics Committe.

Written, witnessed, informed consent was obtained from each subject. All subjects
were asked to abstain from their usual course of therapy 24 hours before the procedure
and from caffeine-containing drinks or alcohol 12 hours before the biopsy was taken.
A 20 ml venous blood sample was taken from each subject for measurements of ET-1
and big ET-1. The blood samples were immediately stored on ice until centrifugation at

4°C, 3 000 g for 20 minutes, the plasma separated into tubes and stored at -80°C until

assay. A further 10 ml blood sample was taken for basic haematology and clinical

chemistry tests (glucose, creatinine).

Skin biopsies, approximately 2cm long, 0.75 cm wide and 0.75 cm deep, were

removed from the gluteal region of the left buttock under local anaesthetic (1%

lignocaine, Astra Pharmaceuticals Ltd., U.K.) by Mrs Fiona Strachan or Dr Charlie
Ferro at the Clinical Pharmacology Unit and Research Centre, Western General

Hospital. Upon excision, the biopsy was immediately placed in cold Krebs-Henseleit
solution. Small arteries were carefully dissected from the biopsy, in a manner similar
to that described above for rat mesenteric blood vessels. However, it was not possible
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to know which direction the blood passed through the lumen. The biopsy usually

yielded more than one vessel. If there were two or more arteries, one was mounted

immediately in the myograph and the second stored in the refrigerator overnight for

experimentation the next day. To avoid any influence of overnight storage on the

results, the order of experiments was randomised. Any surplus vessels were snap

frozen in isopentane (BDH-Merck) prechilled in solid C02 and stored at -80°C until
immunohistochemical staining was performed (see Section C. 2.).

C. 1.2. Perfusion myography

As mentioned earlier, two different techniques have been described which allow the

study of isolated resistance arteries, i.e. the wire myograph and the perfusion

myograph. When a vessel is mounted in the wire myograph the wires pull at the
vessel walls pulling it into two flat planes. The perfusion myograph however,
involves the cannulation of both ends of a length of vessel, pressure is applied

intraluminally (by infusing a physiological solution) allowing the blood vessel to

assume its natural cylindrical shape (Figure 2.2).

There are several advantages of the perfusion myograph over the wire myograph

(Halpern & Kelley, 1991; Schiffrin, 1995), allowing the vessels to be studied under

physiological pressurised conditions, these include:

a). Allowing the diameter of the vessel to change when contracting and relaxing

b). An equal transmural pressure across the vessel wall, whereas in the wire

myograph the wall is subject to distension from two ends resulting in unequal
stretch and pressure

c). The pressurised vessel is able to assume a more physiological shape

d). The endothelium is untouched and the rest of the vessel wall is less likely to

be damaged, whereas wires cause local damage to the endothelium

e). The axial length can be set to compensate for the extension or retraction of
arteries after dissection and mounting

f). Agonists and antagonists can be perfused luminally or superfused

g). Allows myogenic and spontaneous tone to develop, which is rarely seen in
vessels mounted in the wire myograph
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Wire Myograph Perfusion Myograph

Top View

Glass Cannula

Arterial length 4mm

End View

Figure 2.2. A schematic diagram comparing wire and perfusion myography.
The views from above and side demonstrate the shapes of the blood vessel
segments once mounted. As shown, the wire myograph pulls the vessel flat,
whereas the perfusion myograph cannulation forms a cylindrical shape.
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The sensitivity of the vessels to agonists has also been demonstrated to vary between
the two methods. For example, it has been shown that vessels mounted in the

pressure myograph are significantly more responsive to a-adrenoceptor agonists than

those mounted in the wire myograph (Buus et al., 1994; Falloon et al., 1995). This

implies that responses found using the pressure myograph may be ofmore relevance to
an in vivo situation. Some results described in this thesis also demonstrate a similar

finding, see Section 2.4.

The perfusion myograph does have its disadvantages. In the pressurised system a

length of artery (usually 3-4 mm) is needed which is intact, without holes or branches
in order to maintain the pressure. However many small vessels, such as coronary and
renal arteries, have small branches which can be difficult to see, even under the

microscope, thus introducing holes, when isolated, into the vessel wall. In these

situations it may be advantageous to study these vessels using the wire myograph

(Schiffrin, 1995). However, because the perfusion myograph allows a closer

approximation to in vivo conditions, the small vessel arteriograph is the technique

employed throughout this thesis for the functional studies performed on the resistance
arteries from rat and humans.

C. 1.2.1. Mounting and pressurising of the vessels in the myograph
After dissection, the arteries were transferred to the myograph vessel chamber (Living

Systems Instrumentation, Burlington, Vermont, U.S.A) containing 10ml of Krebs-
Henseleit solution. The resistance artery was then mounted onto the two fine glass
cannulae (~ 100-150 pm tip diameter), and secured by single-fibre silk threads. The

procedure of mounting the vessel was as follows. The proximal end of the vessel was

gently pulled onto the cannula tip until approximately 200 pm of the tip was inserted
into the lumen of the vessel and secured by two silk threads, which had already been

looped onto the cannula. Any blood present in the lumen of the artery was removed by

opening the stopcock to the proximal cannula and infusing a slow flow of Krebs-

Henseleit solution through the lumen by means of a miniature peristaltic pump

(PS/200, Living Systems Instrumentation Inc., Burlington, Vermont, USA). Care
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was taken not to allow the intra-luminal pressure to rise above 10 mmHg , in order to
avoid damage to the endothelium and vessel wall. After the blood had been removed,
the stopcock was closed and the distal end of the artery was tied onto the distal cannula
in the same way as described for the proximal end.

An intraluminal pressure of 60 mmHg was reached by slowly introducing Krebs-
Henseleit solution into the vessel lumen using the miniature peristaltic pump,

connected to a pressure servo unit (Figure 2.3). This pressure was chosen because it
has been estimated that vessels of this size would experience pressures approximately

50% of mean arterial pressure in vivo (Halpern & Kelley, 1991). As the pressure

increased, the vessels usually developed a bend as a consequence of axial lengthening.
These buckles were removed by gently retracting the proximal cannula, using the

length transducer, to the original axial length prior to dissection, being careful not to
introduce any axial stretch. The vessels were checked for leaks by changing the

pressure servo unit from automatic to manual mode, this means that any change in

pressure will not be compensated for by the pump infusing Krebs solution. If a drop
in pressure occurred, either the ties were re-secured or the artery was discarded and
another one mounted. Throughout the experiments, the pressure servo unit was kept
on automatic and maintained at the set intraluminal pressure, with checks at random to

make sure no leaks had appeared during the course of the experimental procedure.

The myograph was placed on an inverted stage microscope (Nikon TMS-F, Japan)
which was connected to a monochrome television camera (Burle, USA), and the vessel

visualised on a television monitor (Figure 2.3). The lumen diameter and wall

thickness were measured using a video diamension analyser (Living Systems

Instrumentation, Burlington, Vermont, USA) which had been calibrated against a stage

micrometer (resolution = 1pm). The video dimension analyser senses changes in

optical density of the vessel at a chosen scan line. The walls have a higher optical

density than the rest of the vessel, appearing on the television screen as two thick

bands, so continuous measurements of both wall thicknesses and lumen diameter can

be made. However, smaller lumen diameters were measured by hand using a

calibrated micrometer since the differences in the optical density at diameters of > 150
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Figure 2.3. Photograph showing the components of the small vessel arteriograph
(perfusion myograph): Watson-Marlowe pump (A); minature peristaltic pump (B);
pressure transducer (C); inverted stage microscope with camera unit (D); vessel
chamber (E); pressure servo unit (F); video dimension analyser (G); and television
screen (H).
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Jim were not distinct enough for the optical dimension analyser to detect and was,

therefore, unable to measure the distances between the vessel walls.

After mounting and pressurisation, the arteries were continuously superfused with
Krebs-Henseleit solution which was gassed with 95% 02 and 5% C02. The

temperature of the Krebs-Henseleit solution was raised by passing through a glass-

jacketed heating coil which was warmed with circulating water from a water bath

(Grant Systems, UK) so the temperature in the myograph chamber was 37°C, as

monitored by a digital thermometer (TM-903, Lutron Equiment, UK).

C. 1.2.2. De-endotlielialisation

In larger arteries, the most common method for removing the endothelium is by
mechanical disruption, usually by rubbing the luminal surface with a cotton bud.
However, this technique is not applicable to small resistance arteries because of their
size and fragility. Methods which have been employed to remove the endothelium
have included perfusion with detergents such as 3-[(3-cholamidopropyl)dimethyl

ammonio]-1 -propane sulphonate (CHAPS) (Hiley et al., 1987; Takase et al., 1995) or
sodium deoxycholate (Byfield et al., 1986), dissolving the intracellular matrix with

enzymes such as collagenase (Carvalho & Furchgott, 1981), rupturing endothelial cells

osmotically with distilled water (Criscione et al., 1984) or perfusion with 40 mM

potassium chloride (Griffith el al., 1985). These chemical and enzymatic techniques
are difficult to control i.e. exposure time, shear rate and carry the risk of damaging the

adjacent smooth muscle cells, and so any changes in vessel response cannot clearly be
attributed to endothelial cell removal.

However, mechanical techniques have also been devised which denude resistance
arteries of their endothelium. Osol et al., (1989) demonstrated that the introduction of

a single human hair into the vessel lumen was an effective method of denudation. An

alternative technique of passing an air bubble through the lumen of vessel is possibly
the most common method used in perfusion myography (Ralevic et al., 1989; Bjorling
et al., 1992; Falloon et al., 1993; Touyz et al., 1995) and it is this procedure which
was employed throughout this thesis.
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C. 1.2.2.1. Air bubble denudation technique
The endothelium was removed by perfusion of an air bubble through the lumen of the
mounted vessel, in a method similar to that described by Falloon et al., (1993).

Firstly, the axial length of the vessel was noted by recording the setting on the length

transducer, so the vessel could later be reset to its original length. The intraluminal

pressure was slowly reduced manually, whilst the axial length was simultaneously re¬

adjusted to prevent any axial stretch on the artery. The distal stopcock of the chamber
was opened and an air bubble approximately 2 centimetres in length was introduced
into the tubing (Tygon: I.D. 1/32") feeding the proximal cannula at the proximal end.
This was done by disconnecting the proximal end luer fitting and absorbing some of
the Krebs-Henseleit solution in the tubing using a tissue, and re-inserting the luer

fitting. The air bubble was infused slowly through the tubing, proximal cannula,

artery, distal cannula, tubing and stopcock by switching the pressure-servo box to

flow mode, at a flow rate which produced a pressure of 20-25 mmHg. This procedure

resulted in a series of small air bubbles, usually between 10 and 15, being passed

through the lumen of the vessel. Once the air bubbles had passed through, flow was

maintained for a further 5 minutes to ensure all endothelial debris was washed away.

The pressure-servo box was then switched back to pressure mode, the distal stopcock
closed and the vessel restored to its original axial length and pressure.

In all experiments the removal of the endothelium was assessed by utilising the

endothelium-dependent vasodilator, acetylcholine (ACh 10~6M) after pre-contraction to

the ai-adrenoceptor agonist phenylephrine (PE, 10~5M). This air bubble method of

endothelial denudation has previously been demonstrated to completely disrupt and
remove the endothelium using confocal, scanning and transmission electron

microscopy (Smith, 1995) without causing damage to the underlying smooth muscle.

C. 1.2.3. Reperfusion circuit

In organ bath studies, cumulative concentration-response curves are performed by
direct addition of increasing concentrations of drug to the bathing solution. The
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temperature of the bathing solution is maintained at 37°C by the jacketed organ bath.
However in the perfusion myograph, the chamber in which the vessel is mounted is
not heated; the temperature of the Krebs-Henseleit solution is maintained by being
circulated through a heating coil. This means that the concentration-response curve

cannot be performed by direct addition to the chamber, since the superfusate would
have to be switched off (the time required to complete an ET-1 response curve is

approximately 40 minutes) resulting in a steady decline in chamber temperature. Thus
a 'reperfusion circuit' technique was used for generation of a cumulative-response
curve.

In all experiments, after the preliminary viability checks (see C. 1.2.1.), a reperfusion
circuit was set up. This was a closed system with a total volume of 30 mis of Krebs-
Henseleit solution being constantly superfused at a flow rate of 5 mls/min. It was to

this reservoir of Krebs-Henseleit solution that the agonists and antagonists were

applied, keeping the volume at 30 mis by removing one ml of Krebs and adding one

ml of the drug in a stepwise fashion. Responses were recorded 5 minutes after
addition of each agonist concentration.

C. 1.2.4. General experimental protocol
After mounting, the vessels were allowed to equilbrate for 60 minutes and then

exposed to the general 'wake up' procedure described as follows. All vessels were

then exposed to 60 mM potassium chloride (KC1, equimolar replacement of NaCl with

KC1), by changing the superfusate from Krebs-Henseleit solution to 60 mM KC1
solution. After the maximum constriction was reached (usually 3 minutes after the
commencement of superfusion with 60 mM KC1 solution), the superfusate was

changed to Krebs-Henseleit solution for washout. Following a 10 minute washout,
the superfusion circuit was stopped and phenylephrine (PE; 10~5M; Sigma, Dorset,

U.K.) added directly to the vessel chamber, to produce a contraction <35% of resting

lumen diameter. After washout, the vessels were exposed to 60 mM KC1 for a second

time, to ensure maximum constriction had been reached, all constrictions were

compared to this KC1 response. The presence of endothelium was confirmed by pre-
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constricting with PE (10~5M) and subsequent addition of acetylcholine (ACh; 10"6M)
directly to the vessel chamber.

In all experiments the endothelium was removed by the passing of an air bubble (see

above), and confirmed functionally by the loss of ACh-induced relaxation during PE-
induced constriction. Following denudation, the vessels were exposed to 60 mM KC1
for a third time to check that the smooth muscle had not been damaged.

This initial viability check and endothelial removal protocol was used in all functional

experiments throughout the thesis. In all the subsequent studies undertaken, the

experimental procedure is described in each individual chapter.

C. 1.3. Validation study:

A comparison of techniques; wire myography vs perfusion myography
for demonstration of constrictor ETB receptors

The wire myograph differs from the perfusion myograph by the vessel being mounted
as a ring preparation, as opposed to an even cylindrical shaped preparation. The

response of the vessel to agonists in the wire myograph is recorded by isometric force
exerted onto the wires, whereas the responses in the perfusion myograph are measured
as differences in lumen diameter. This study was designed to compare the two

methodologies in the detection of constrictor ETB receptors in the mesenteric artery

from the normotensive rat.

C 1.3.1. Wire myograph
Third order rat mesenteric small arteries were dissected as described above (section

C. 1.1.1.) and mounted in a wire myograph (Mulvany & Halpern, 1976). Segments
~2 mm in length were mounted, using a light microscope, in the wire myograph by

carefully feeding the two fine wires through the lumen of the vessel. Once mounted,
the vessels were incubated in Krebs-Henseleit solution, warmed to 37°C and allowed

to equilibrate for 30 minutes. During this period, to ensure endothelial cell removal, a

third wire was passed through the lumen and gently agitated to carefully rub the

endothelium off without damaging the smooth muscle layer. After this initial
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equilibration period, a set tension of 200mg had been applied and which was

maintained throughout the whole experiment, being re-adjusted if the tension dropped
below 200mg.

Following a further equilibration period of 30 minutes after tension had been placed on

the vessels, the vessels were exposed to the same preliminary checks as the vessels
mounted in the perfusion myograph as described above. As for the perfusion mounted

vessels, denudation was confirmed by the lack of relaxation to ACh following PE pre-

constriction.

All experiments in the wire myograph were performed by Mr Philip Swan, Vascular

Laboratory, Department of Medicine, University of Edinburgh, Western General

Hospital, Edinburgh.

C. 1.3.2. Perfusion myograph

The vessels were dissected, mounted and pressurised as descibed in sections C. 1.1.1.
and C. 1.2.1., and the prelimary checks and de-endothelisation procedures carried out

(sections C. 1.2.1. & C. 1.2.2.).

C. 1.3.3. Experimental protocol for comparison of detection of
constrictor ETB receptors in both wire and perfusion myography

Following confirmation of endothelial denudation and smooth muscle integrity,

concentration-response curves to SRTX S6c (10"12-10"7M) were constructed on

vessels in both types of myograph. The effects of partial pre-constriction to the
thromboxane A2 mimetic, U46619 (3xl0~8M) on SRTX S6c concentration-response

curves was investigated to demonstrate whether partial tone could unmask a SRTX
S6c response.

In the perfusion myograph, a reperfusion circuit was set up 30 minutes before starting
the SRTX S6c curve in the absence or presence of U46619. The SRTX S6c

concentration-response curve was then performed in the manner described in section
C. 1.2.3.
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In the wire myograph the cumulative concentration-response curve was performed by

draining the chamber and adding pre-heated Krebs-Henseleit solution (in a water bath
to 37°C), with or without U46619, to the vessel. The concentration of SRTX S6c was

then added directly to the chamber. In the experiments with U46619, following the
first exposure to U46619 the constriction was extremely stable, and between changes
of Krebs-Henseleit solution remained constricted. Once the constriction to U46619

was established the SRTX S6c CRC was constructed. All the responses on the wire

myograph were recorded on a MacLab system (MacLab, Australia).

C. 1.3.4. Results of validation experiments

All responses were calculated as a percentage of the maximum constriction obtained
with the second exposure to 60mM KC1 solution (see section C.4.O.).

SRTX S6c did not induce any constrictions in the rat mesenteric arteries when

mounted in the wire myograph (n=7). However, a pre-constriction with U46619
resulted in a concentration-dependent response to SRTX S6c (n=7; Figure 2.4.A.).

When mounted in the perfusion myograph, in the absence of pre-constriction,

concentration-dependent responses to SRTX S6c were seen in 9 out of the 17 vessels

(Figure 2.5) studied. A vessel was classified as being a responding artery if SRTX
S6c produced a constriction of > 4% of KC1, this was because electical interference,
such as the water bath switching on/off, could affect the picture of the vessel on the TV

screen, slightly altering the optical density. This meant that the walls of the artery

could be alittle darker than when originally measured, therefore appearing to reduce

lumen size, usually by between 5-10 |im which generally equated to approximately 4%
of a KC1 constriction. In the presence of U46619, there was no potentiation of the
constrictions elicted by SRTX S6c, although all vessels when pre-contracted, did
constrict to SRTX S6c (n=7; Figure 2.4.B.).

91



cot/3COOUXM

25'20"15"100"-5

25120"15"10-5'

10

11

10

"10

10
"9

10
-8

[SRTX6c]
Log
M

Figure
2.5.A.
Wire

Myograph
10
-7

10
"6

10

-11

10

-10

10
"9

10

[SRTX6c]
Log
M

-8

10
-7

Figure
2.5.B.

Perfusion
Myograph

Figures
2.5.A.
&

2.5.B.
The

effects
of

pre-constriction
with

U46619
on
the

constrictor
actions
of

SRTX
S6c
on
rat

small

mesenteric
arteries

when

mounted
in

either
a

wire

myograph
(2.5.A.)
or

perfusion
myograph
(2.5.B.).
In

the

wire

myograph,
constrictions
to

SRTX
S6c
<■)
were

only
seen
after
the

artery
had
been

partially

pre-constricted
with

U46619
(□

,*

P>0.05,
Students

t-test).
However,
U46619
had
no

potentiating

effect
on
the

constrictions
induced
by

SRTX
S6c

when

mounted
in

the

perfusion
myograph.



251

[SRTX
S6c]
Log
M

Figure
2.6.
The

effects
of

SRTX
S6c
on
rat

small

mesenteric
arteries
when

mounted
in
a

perfusion

myograph.
SRTX
S6c

induced

constrictions
in
9

out
of
the
17

rat

arterial
segments
mounted.
The

graph

shows
the

amount
of

constriction
in

the
9

responding
arteries
(□
),

EC50
=

3±

1x10"9M,
Emax=
19±4%)

compared
to

the

non-responding
arteries
(O
),

which
were

classified
on
the

basis
that
the

artery
did

not

constrict
above
4%
of

KCl-induced
constriction.



C. 1.3.5. Discussion of comparison of wire vs perfusion myography
These results suggest that the rat mesenteric small arteries contain a population of
constrictor ETB receptors. These receptors could not be detected in the wire myograph
without an initial pre-constriction by the thromboxane A2 analogue, U46619. This

pre-constriction showed that SRTX S6c could induce up to 20% of the maximum
constriction seen to 60 mM KC1 solution. In the perfusion myograph, SRTX S6c

caused constrictions in 53% of all arteries studied, when no prior tone had been

induced by U46619. Pre-constriction resulted in all vessels responding to SRTX S6c.

However, the constrictions were not potentiated. Similar maximum responses to

SRTX S6c were seen in vessels mounted in the perfusion myograph, whether they had
been pre-constricted or not, as compared with the arteries mounted and pre-constricted
in the wire myograph. It is known that arteries mounted in the perfusion myograph

can develop intrinsic tone (Falloon et al., 1993). Thus, the variability of responses to

SRTX S6c when mounted in the perfusion myograph could be explained by the

development of tone in those arteries which did respond. However, intrinsic tone does
not appear to develop in the wire myograph technique, hence the ineffectiveness of
SRTX S6c to produce a response without the aid of exogenously administered tone via
U46619. This would also explain why all the pre-constricted (by U46619), perfusion

myograph mounted arteries responded to the ETB receptor agonist.

Thus, because the perfusion myograph demonstrated the presence of constrictor ETB

receptors more reliably than the alternative wire technique, this was the methodology
chosen for all functional studies in this thesis .
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C. 2.0. Immunohistochemistal localisation of the endothelin system

Immunohistochemical staining techniques have been described as "another special
stain" (Boenisch, 1989) like that of the classic histochemical stains such as eosin and

haematoxylin. However, what is special about immunohistochemistry is that the

antibody (Ab) is the pivotal reagent used in the methodology. This means that this

technique can be used to detect anything which is antigenic in nature, producing highly

specific results. Because ET-1 is a peptide, both monoclonal and polyclonal Abs can

be raised against it. Polyclonal Abs to ET-1 have been successfully used for

measuring plasma ET-1 levels in radioimmunoassays (RIA; See C. 3.0., Cemacek &

Stewart, 1989; Cody et al., 1992). However, for immunohistochemistry the

monoclonal Ab to ET-1 is favoured, because it is more specific than the polyclonal
antiET-1.

ET-1 is secreted from cells and can then act in a autocrine or paracrine fashion. Thus,

visualising the mature peptide via antiET-1 does not show whether there is an

induction or upregulation of the production of ET-1 in cells that would not synthesise
ET-1 under normal conditions. However, it was hypothesised that there may be an

alteration in the localisation of ECE, perhaps an upregulation of ECE in the vascular
smooth muscle cells. In order to see if there is altered production in CHF, two

monoclonal Abs against ECE have been used. These Abs were a gift from Dr K.
Tanzawa and colleagues (Sankyo Co. Ltd, Tokyo, Japan) who raised them against

purified rat lung ECE. AEC 27-121 (ECE 27) is highly specific to ECE particularly rat

ECE, whereas AEC 32-236 (ECE 32) recognises ECE from various species including
rat and human and is not as specific as ECE 27 (Takahashi et al., 1995).

Furthermore, to identify the particular area and cells in which the ET-1 and ECE

immunoreactivity is found, other monoclonal Abs have been used. These Abs are

directed against specific targets characteristic of different cell types and are then used
on adjacent tissue sections. Due to the simple structure of blood vessels, only the
endothelial and smooth muscle layers need to be visualised. An Ab raised against
smooth muscle a-actin has been used to detect the smooth muscle cell layer. For the

endothelial cells, Ulex europaeus agglutinin 1 (UEA 1), which is a glyocoprotein
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isolated from Ulex europaeus (Furze gorse) seeds was used. UEA 1 has been
established as excellent marker for endothelial cells, which cross-reacts with a specific
lectin present on the endothelial cell surface (Roussel & Dalion, 1988). The UEA-1
used was previously biotinylated, hence, a secondary biotinylated Ab directed against
the UEA-1 molecule was not needed. Although UEA-1 is not an Ab per se, and is

being used as an alternative to a primary Ab, for the simplicity of the text it is referred
to as a primary Ab.

C. 2.1. ABC Peroxidase Method

The method of immunohistochemistry chosen for this thesis was the three-step indirect

method. In this technique, the unconjugated primary Ab binds to the antigen (e.g. ET-

1). A biotinylated-labelled secondary Ab directed against the primary Ab (which is
now the antigen) is then applied, followed by the avidin biotinylated enzyme complex

(ABC) conjugated to peroxidase. Finally the chromogen, 3,3'-diaminobenzidine

tetrahydrochloride (DAB) is added as the substrate to the peroxidase, producing a

brown, highly insoluble precipitate (Figure 2.6; Hsu et al., 1981a, b). It is a highly
sensitive technique, being more sensitive than a one Ab, direct method, because the

secondary Ab usually binds to several different epitopes on the primary Ab,

consequently attaching more enzyme molecules at the site of antigen.

Use of the ABC peroxidase method also increases sensitivity because of the unique,

high affinity (1015M_1) of avidin, a 68 000 molecular weight protein, for the vitamin
biotin. In fact, the affinity of avidin for biotin is over a million times greater than the

affinity of antibodies for most antigens, and is essentially irreversible. As well as this

extraordinary affinity, the ABC method has two other properties to enhance sensitivity.

Firstly, avidin has four binding sites for biotin, and secondly the enzyme, peroxidase

(and all other enzymes) can be conjugated to several molecules of biotin (Hsu et al.,

1981a, b). Thus, due to the multiple linkages, macromolecular complexes can be
formed between avidin and biotinylated enzymes. The exact structures of these

complexes are not fully known, but it is believed that there are three dimensional

crosslinkages between many enzyme and avidin molecules. These complexes have
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few exposed biotin residues, but have one or more available biotin binding sites for

potential crosslinking with the biotinylated secondary Ab (Beltz & Burd, 1989).

C. 2.2. Tissue Fixation and Embedding
The majority of published studies using immunohistochemical techniques localising
ET-1 have utilised the ABC peroxidase method (Giaid et al., 1989; Giaid et al., 1991;
Li et al., 1994; Giaid et al., 1995; Timm et al., 1995). However, in many of these

studies (Giaid et al., 1989; Giaid et al., 1991; Timm et al., 1995), the

immunohistochemical procedure was performed on fixed, frozen tissues, cryostated to

between 5 - 10mm and thaw-mounted onto poly(L-lysine)-coated glass slides. For

this thesis it was decided to perform the technique on 4% paraformaldehyde fixed,

paraffin-embedded tissue (Li et al., 1994; Giaid et al., 1995), since the tissues can be

cut into 3mm sections, resulting in easier handling, finer focussing and better

histology.

The tissues were initially isolated, and snap frozen in isopentane (BDH-Merck) which
had been chilled by solid CO2 and stored at -80°C until required for fixation. The

vessels were fixed for 24 hours in 4% paraformaldehyde at room temperature.

Following fixation, the tissues were infiltrated with paraffin-wax using the paraffin-
wax processing machine (Pathology Department, Western General Hospital) on an

overnight cycle and mounted into wax blocks the next day.

Formaldehyde fixation preserves the tissues by forming 'methylene bridges' with basic
amino acids in the tissue. This results in conservation of the intracytoplasmic proteins
and low permeability to macromolecules. However, formaldehyde fixation can result
in low exposure of antigens, due to decreased penetrating ability of the Ab to the

antigen. However, this can be overcome by proteolytic digestion. Trypsin has been
used in this thesis to counteract any potential masking of antigens to the Abs, which
cleaves adjacent to lysine and arginine, the two amino acids most likely to react with

formaldehyde (Beltz & Burd, 1989).
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Following the embedding procedure, tissues were cut (3pm thick) using a microtome

(Pharmacology Department, George Square) and a ribbon of sections floated on a

water bath (R.A. Lamb, London, U.K.) at 35°C, and left to flatten for 20 minutes

before being mounted onto glass slides (BDH-Merck).

C. 2,2.1. Immunohistochemical Experimental Procedure
Sections were dewaxed by immersing in xylene (BDH-Merck) for 10 minutes twice,

and rehydrated by rinsing in absolute alcohol for 5 minutes twice and 90 % methanol

for 5 minutes and washing in distilled water. Endogenous peroxide production was

suppressed by incubating the tissues in methanolic H202 (1 part 3 % H202 in 4 parts

absolute methanol; BDH-Merck) for 10 minutes and washing in distilled water.

Tissues were then trypsinised. Sections were brought up to 37°C by immersing in a

prewarmed coplin jar filled with distilled water. The sections were transferred to a

coplin jar containing 0.1 % trypsin (Sigma) in 0.05 M Tris buffer solution (TBS; see

section 2.2.4.1; pH 7.8) at 37°C and incubated for 2 minutes. All tissues were

washed for 30 minutes in TBS + 0.1 % CaCl2, pH 7.8.

After washing, sections were ringed and isolated on the slide by drawing round the

tissues with a paraffin-wax pen (Dako Ltd, Buckinghamshire). This is to reduce the
volume of antibody needed to be added to the tissues. A solution of blocker was

applied to sections for 30 minutes. The blocker contained 1% normal horse serum

(Vector Laboratories, Peterborough) in phosphate buffer solution (PBS; see section
2.2.4.1. for solutions recipes). This step is included in order to reduce background

staining due to hydrophobic interactions of the primary antibody with irrelevant

proteins.

Following blocking, the primary antibodies were applied and the tissues incubated

overnight at 4°C. The primary antibodies used were;

a), mouse Anti ET-1, IgG isotype (ams Biotechnology, Witney, Oxon),

working dilution 1/500.
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b). mouse Anti Smooth Muscle Actin, IgG isotype (Novocastra Labs Ltd,
Newcastle upon Tyne), working dilution 1/50.

c). mouse Anti ECE, AEC 27-121, IgG isotype (donated by Dr M Takahashi,

Sankyo Co. Ltd, Tokyo, Japan), working dilution 1/10.

d). mouse Anti ECE, AEC 32-236, IgG isotype (donated by Dr M Takahashi,

Sankyo Co. Ltd, Tokyo, Japan), working dilution 1/20.

e). Biotinylated Ulex europaeus agglutinin 1 (Vector Labs, Peterborough),

working dilution 1/100. This Ab was previously biotinylated, and did not require
addition of the secondary biotinylated Ab.

All the primary Abs were diluted in 1% normal horse serum in PBS. The negative
control used the 1% normal horse serum in PBS alone.

Following primary antibody incubation, all sections, except the sections being stained
for endothelial cells, were washed in PBS for 10 minutes and the secondary anti

mouse biotinylated IgG, diluted 1/200 in 1% normal horse serum PBS, was applied,
and incubated for 60 minutes at room temperature. The sections for endothelial cell

staining were washed and retained in PBS, until addition of the ABC complex.
Tissues were rinsed of excess secondary antibody by washing in PBS for 10 minutes
and incubated with ABC complex (see section 2.2.4.1.; Vector Stain ABC kit, Vector

Labs, Peterborough) at room temperature for 30 mins. After washing in PBS for 10

minutes, sections were exposed to DAB solution (Sigma) for 5 minutes. After a PBS

wash, the tissues were counterstained using haematoxylin (BDH-Merck) for 3 minutes
and rinsed in tap water. All sections were dehydrated through alcohols (70%, 80%,

90%, 100%), cleared in xylene (to remove paraffin pen markings) and coverslipped

using DPx mountant (BDH-Merck).

The results were viewed under a light microscope (Nikon) and photographs taken.
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C. 2.2.2.1. Solutions

Phosphate Buffer Solution (PBS) usedfor washes

1). 63.5g of disodium hydrogen orthophosphate (BDH-Merck) was dissolved
in 400 mis of deionised water by microwaving on full power for 5 minutes.

2). 8.5g of sodium dihydrogen orthophosphate (BDH-Merck) was dissolved in
400 mis of deionised water.

3). The two solutions were mixed and volume made up to 5 litres with

deionised water.

4). The pH was adjusted to 7.6 using 4N HC1 (BDH-Merck).

0.05M Tris bufferfor trypsinisation

1). 6.04g of Tris (hydroxymethyl)-methylamine (BDH-Merck) was dissolved
in 80 mis of deionised water.

2)2.11 ml of 4N HC1 was added to Tris solution.

3). 8.1 g of NaCl (BDH-Merck) was dissolved in 900 ml of deionised water.

4). The two solutions were mixed, pH adjusted to 7.8 using 4N HC1 and the
volume made up to 1 litre.

Vector ABC complex kit

1). To 5 mis PBS 2 drops of solution A was added.

2). To the PBS + solution A mix 2 drops of solution B was added.

3). The solution was left to stand for at least 30 minutes before use.

C. 2.3. Alkaline phosphatase staining

To validate the specificity of the ABC peroxidase immunohistochemical methodology,
an alternative enzyme/substrate protocol was used in some tissues. Instead of

biotinylated IgG, the secondary Ab used was IgG conjugated to alkaline phosphatase

(AP-IgG; Dako Labs). The revealing substrate was New Fuschin (Dako Labs), which
is converted to a pink precipitate. The protocol followed was exactly as for the ABC

peroxidase technique, except that the AP-IgG, instead of biotinylated IgG, was

incubated on the tissues for 60 minutes at room temperature. After washing, the
tissues were exposed to the New Fuschin substrate for 15 minutes. The sections were
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then washed in PBS and counterstained with Mayers haematoxylin for 3 minutes. The
new fuschin substrate is soluble in alcohol, unlike the sections stained with DAB, so

the tissues were not dehydrated through alcohols, but immediately coverslipped using
an aqueous based mountant, Faramount (Dako Labs).
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C. 3.0. Radioimmunoassay of ET-1 and bigET-1 from human plasma
Introduction

Radioimmunoassay (RIA), is a well validated technique used to measure any antigenic

component present in a liquid sample. Similar to immunohistochemistry, this

technique utilises specific Abs raised against the antigenic substance in question,
followed by the addition of radiolabeled antigen (Ag). The radiolabeled, precipitated

Ag/Ab complexes are then measured in a gamma counter. Therefore, the higher the
concentrations of endogenous antigen, the lower the amount of bound radiolabeled

antigen and the subsequent radiation counts. For this thesis, both ET-1 and big ET-1
levels were measured in the plasma samples from the human CHF patients and control

subjects to ascertain whether there was increased circulating production of the peptide.

Increased circulating levels of ET-1 have been demonstrated in many studies (see

Section B. 1.6.1; Table 1.3). However, it is controversial whether these raised levels

are ET-1 or the precursor big ET-1 (Pacher et al.; Wei et al., 1994). It is important to
delineate between the two forms of the peptide, since it may help in demonstrating
whether there is an up-regulation of the production of ET, or reduced clearance and
elimination of the mature peptide in CHF. In order to answer this question, primary,

polyclonal antibodies raised in rabbits against human ET-1 and big ET-1 (Peninsula

Labs, USA) were used. The ET-1 Ab had a crossreactivity with big ET-1 of 10%, and
the big ET-1 Ab had a crossreactivity with ET-1 of 8%.

C. 3.1. Sample collection

As described previously (Section A. 1.1.3.), two 10ml blood samples were collected

in a tube containing Na+EDTA (20mg; Sigma) and aprotinin (1000 KIH units; Sigma)
and immediately placed on ice. The plasma was separated from the cellular

components of blood by centrifugation at 4°C, 3000 rpm for 20 minutes. The cell free

plasma was pipetted into a storage tube, and stored at -80°C until assay.

C.3.2. RIA technique

There are two main components to the measurement of ET-1 or big ET-1 from the

plasma samples in the RIA technique. These are, the extraction of either ET-1 or big
ET-1 from the sample, and subsequent RIA of the extracts.
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C. 3.2.1. Extraction

The ET-1 and big ET-1 had to be extracted from the plasma samples due to the

extremely low circulating levels of these peptides. The peptides were extracted using
Bond Elut Extraction Cartridges (Varian Sample Preparation Products, Switzerland).
These cartridges, similar to the shaft of a syringe, are internally coated with a silica
sorbent. The sorbent is a covalently bonded silica gel with functional groups which
have polar characteristics to interact with any compounds also containing polar groups,
such as ET-1 and big ET-1.

Prior to extraction of the sample, the extraction columns had to be activated to obtain
the correct conditions for the extraction of either ET-1 or big ET-1. For ET-1

extraction, 3ml of 100% methanol (BDH -Merck) was added to the column and

allowed to flow through. The columns were washed with deionised water, and then

brought to pH 5.5, by the addition of 2ml of 10% acetic acid (BDH -Merck). After

thawing, the plasma samples were acidified with 20% acetic acid (1:1 v/v;

2.5ml:2.5ml), added to the column for extraction and left to flow through by gravity.
The column was washed with 2ml of 10% acetic acid, followed by 3ml of ethyl
acetetate (BDH -Merck) to remove any unwanted proteins or lipids from the column.
To elute the ET-1 fraction from the silica gel, collection tubes were placed under the
extraction columns, and 1.5ml of elution buffer (80% methanol/20% 0.05M

ammonium bicarbonate solution; BDH-Merck) was added to the columns (Rolinski et

al., 1994).

For the big ET-1 extraction, a slightly different protocol was followed due to the larger
nature and slightly different properties of the 38 amino acid peptide. Instead of using
acetic acid, the column was acidified with trifluoroacetic acid (TFA; BDH -Merck) in

order to obtain pH 2. Furthermore, the elution buffer used was 80% methanol/20%
TFA (Rolinski et al., 1994).

Following the collection of the eluted ET-1 or bigET-1 extracts, the eluates were dried

down under nitrogen (BOC) at 37°C. The dried elutes were reconstituted with 0.4ml
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assay buffer (see Section C. 3.2.2.4.), and stored at -40°C until assay (generally the
next day).

Previous validation studies in the laboratory, have demonstrated that the

extraction/recovery rate is 89% for the ET-1 protocol and 63% for the big ET-1

methodology.

C. 3.2.2. Radioimmunoassay protocol

As described in Section B. 1.6.1., the samples are incubated with a primary Ab, and

the appropriate radiolabelled antigen. The resulting complexes are separated from the
unbound label, the radioactivity measured and compared against standards of known
concentrations.

C.3.2.2.1 Standard curves

The standard concentrations used in the ET-1 and big ET-1 RIAs were as follows;

The stock concentration of ET-1 (Peninsula Labs, USA) was 64 pg/ml, this was the

highest standard (S64) used. Serial 1:1 dilutions using assay buffer were performed,

giving concentrations of 32 pg/ml (S32), 16 pg/ml (S16), 8 pg/ml (S8), 4 pg/ml (S4), 2

pg/ml (S2) and 1 pg/ml (Si).

The stock concentration of big ET-1 (Peninsula Labs) was 128 pg/ml (S]28), as for the
ET-1 standard curve, serial 1:1 dilutions using assay buffer gave standards of S64, S32,

Si6, S8, S4, S2 and S|.

Duplicates of 100|il of each sample and standard were assayed. Furthermore, 3 other

control tubes were made up and assayed. These were the 'Blank', which contained
125

only assay buffer solution, I-ET-1 or bigET-1 and Amerlex (see Section C.
125

3.2.2.2.), a 'Reference' tube which contained assay buffer solution, primary Ab, I-
ET-1 or bigET-1 and Amerlex and the 'Total Counts' tube which consisted of assay
buffer and 125I-ET-1 or bigET-1.
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C. 3.2.2.2. ET-1 RIA protocol
After thawing of the ET-1 extracts, 100|ll of the primary anti-human ET-1 Ab (1: 20

000; Peninsula Labs) was added to 1OOpl of sample, standard and reference tube (but
not the blank or total tubes), vortexed and left to incubate at room temperature for 4
hours. The ET-1 Ab had previously been diluted 1:20 in 0.1% Triton X (BDH-Merck)

125
in assay buffer solution. Following incubation, 100(ll of I-ET-1, which is diluted to

contain 6000 cpm, was added to the samples, standards, reference, blank and total

counts tubes, vortexed and allowed to incubate overnight at 4°C.

125
In order to separate out the Ag/Ab complexes from the unbound I-ET-1, 200|ll of
Amerlex (Amersham International, Buckinghamshire) was added to all tubes, except

the total tube, vortexed and incubated for 30 minutes at room temperature. Amerlex is
a separation reagent, which consists of magnetizable polymer beads coated with

donkey, anti-rabbit IgG, which binds to the bound Ag/Ab complex. Ideally, the

separation of the free and bound fractions are carried out using a magnetic separator,

where the beads migrate to the base of the tube, taking with them any bound, labelled

complex. However, a magnetic separator was not available at the time of assay, thus
the samples were separated by centrifugation at 2500rpm for 20 minutes at 4°C. The

125
unwanted supernatant containing any unbound I-ET-1, as well as any other

substances present in the sample, was aspirated off and the resulting pellets were

counted for radioactivity in the Gamma counter (Wallac, Finland). The standard
curves were plotted using the programme within the counter, and the levels of ET-1

present in each sample calculated from the standard curve.

C. 3.2.2.3. Big ET-1 RIA protocol

A similar methodology to the ET-1 RIA was performed for measurement of bigET-1
levels. However, 100pl of rabbit anti-human bigET-1 Ab (Peninsula Labs) was added
to the relevant tubes and samples and left to incubate overnight at room temperature.

125
100|ll of I-bigET-1 was added on the second day of the assay. After overnight
incubation at 4°C, 200pl of Amerlex was added to each tube (except the Total), and the
rest of the protocol performed as for the ET-1 RIA.
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C. 3.2.2.4. Solutions

RIA buffer
To 1 litre of deionised water the following compounds were added;

3.853g of sodium dihydrogen phosphate (BDH -Merck)

18.07g of disodiumhydrogen phosphate (BDH -Merck)

2.927g of sodium chloride (BDH -Merck)

lg bovine serum albumen (Sigma)

lOOmg sodium azide (BDH -Merck)

lml Triton X-100 (BDH-Merck)

All RIAs performed were with the assistance and under the supervision of Mr Neil

Johnston, Clinical Pharmacology Unit, Western General Hospital.
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C. 4.0. Data analysis
For all experiments described in section C. 1.

a), the results are calculated as a percentage ofmaximum constriction obtained with the
second exposure to 60 mM KC1 Krebs-Henseleit solution and are expressed as mean +

s.e.mean

b). where a maximum response to the agonist was obtained, the negative log of the
concentration causing half-maximal contraction (pD2) was calculated by linear

regression analysis, and compared using a Student unpaired two-tailed t-test

c). concentration-response curves were compared by one-way ANOVA followed by
Fisher's least significant difference test.

d). Significance was taken at P<0.05.

In section C. 3. all plasma levels of ET-1 and big ET-1 were compared by unpaired
Students t-test, and significance taken at P<0.05.
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Results Chapter 1

Activation of endothelin ETA receptors masks the
constrictor role of endothelin ETB receptors in rat

isolated small mesenteric arteries



D. 1.1. Introduction

It is now well established that the vasoactive effects of the peptide endothelin-1 (ET-1)

are mediated via both ETA (Arai et al., 1990) and ETB receptors (Sakurai et al., 1990)
as discussed in section A. 1.4. Administration of ET-1 to anaesthetised or conscious

rats leads to a brief decrease, followed by a long lasting increase, in blood pressure

(Yanagisawa et al., 1988) that is accompanied by increased resistance in virtually all

vascular beds studied (Gardiner et al., 1994; Allcock et al., 1995). Prior administration

of an ETa receptor antagonist, e.g. BQ-123 or FR 139317, enhances the initial

depressor effect of ET-1 (an ETB receptor mediated effect) and reduces the pressor

effect (McMurdo et al., 1993; Gardiner et al., 1994). However, the pressor and

regional constrictor effect of ET-1 is not fully inhibited by ETA receptor antagonists,
even with high doses, implying that ETB receptors may also have a vasoconstrictor role

(McMurdo et al., 1993). Consistent with this possibility, the ETB receptor selective

agonist, sarafotoxin S6c (SRTX S6c) was found to produce vasoconstriction in pithed

rats (Williams et al., 1991; Clozel et al., 1992).

In vitro experiments have also demonstrated ETA receptor antagonist resistant

responses to ET-1 (Ihara et al., 1992; Sumner et al., 1992; Fukuroda et al., 1994b)

and constrictions to SRTX S6c (Moreland et al., 1992; Sumner et al., 1992; La

Douceur et al., 1993; Gray et al., 1994). As a consequence of these in vitro data, it has

been suggested that constrictor ETB receptors have a role only in large calibre vessels
and in the venous circulation (Moreland et al., 1992; Davenport & Maguire, 1995).

However, in the conscious rat (Gardiner et al., 1994) and the anaesthetised ganglion-

blocked rat (Allcock et al., 1995), ET-1 induced reduction of blood flow to the

mesenteric resistance bed is partly resistant to ETA receptor inhibition. Reduction of

regional blood flow in response to SRTX S6c is also most marked in the mesenteric

bed of the pithed rat (Clozel et al., 1992). In humans, ET-1 constrictions in forearm

blood vessels are also partly resistant to BQ-123 and constrictions to SRTX S6c can be

seen (Haynes et al., 1995; Strachan et al., 1995). Thus, there may be an important

109



role for constrictor ETB receptors in mediating vascular resistance and blood pressure.

Indeed, the recently described non-peptide ETB receptor antagonist, Ro 46-8443,

produced a reduction in blood pressure in anaesthetised, normotensive rats (Clozel &

Breu, 1996).

In contrast to the evidence for ETB receptor mediated constriction of the rat mesenteric

bed in vivo, in vitro studies of perfused mesenteric beds or isolated human and rat

mesenteric arteries mounted in wire or perfusion myographs have led to the conclusion

that constrictor ETB receptors have little (Tschudi & Luscher, 1994; Tasake et al.,

1995; Deng et al., 1995; Touyz et al., 1995) or no role (D'Orleans-Juste et al., 1993)

in this vascular bed. All of these studies have based their conclusions on inhibition of

ET-1-induced contraction by ETA receptor antagonists, or responses to ETB selective

agonists. The aim of the present study was to further investigate the role of ETB

receptors in mediating constriction in pressurised rat mesenteric arteries using ET-1,

the ETa receptor antagonist, BQ-123 (Ihara et al., 1992), the ETB selective agonist
SRTX S6c (Williams et al., 1991), the ETB receptor selective antagonist, BQ-788

(Ishikawa et al., 1994) and the ETA/ETB antagonist, TAK-044 (Kikuchi et al., 1994).

D. 1.2. Methods

Male Wistar rats (10-16 weeks old) were killed by exsanguination and the mesenteric

bed immediately excised and placed into cold, oxygenated Krebs-Henseleit solution.

Third order branches of the mesenteric artery (internal diameter 150 - 350 (im) were

dissected (~3 mm length; section C. 1.1.1.) and mounted between two glass

microcannulae in the perfusion myograph chamber, as described in section C. 1.2.1.
The vessel was constantly superfused with warmed (37°C), oxygenated (95% 02; 5%
C02) Krebs-Henseleit solution. The intraluminal pressure of the vessel was raised to
60 mmHg and maintained at this pressure without further intraluminal perfusion.

Luminal diameter was measured using a video dimension analyser and by hand, using

a calibrated micrometer, when the optical dimension analyser was unable to detect
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differences in optical density at smaller lumen diameters (i.e. constriction; C. 1.2.2.).
After an equilibration period of 60 min, the initial "wake up" procedure was followed
as described in section C. 1.2.4. Briefly, the vessels were exposed twice to modified
Krebs-Henseleit solution containing 60mM KC1. The endothelium was removed by

passing an air bubble through the lumen of the vessel (Falloon et al., 1993; Smith,

1996; C. 1.2.2.) and complete denudation was confirmed by addition of acetylcholine

(ACh 10 6M) to vessels pre-constricted with phenylephrine (PE 10 5M). In all vessels,

the relaxation induced by ACh prior to the passage of an air bubble (usually back to

resting diameter), was completely abolished after endothelial denudation. A maximum

constriction to 60mM KC1 was also obtained after denudation to confirm that the

smooth muscle had not been damaged, and for the standardisation of all constrictor

responses. After washing, the reperfusion circuit of Krebs-Henseleit solution was set

up and constantly superfused at a constant flow rate of 5 ml/min (C. 1.2.3.). It was

this reservoir of Krebs-Henseleit solution to which the agonists and antagonists were

applied, keeping the volume at 30 mis by removing one ml of Krebs and adding one

ml of the drug in a stepwise fashion (C. 1.2.3., Smith et al., 1995). Responses were

recorded 5 min after addition of each agonist concentration, which was sufficient time

for an equilibrium response. All of the following studies were carried out in random

order and only one concentration response curve to ET-1 or SRTX S6c was performed

per tissue.

D. 1.2.1. ET-1 and SRTX S6c Study

In the first set of experiments cumulative concentration-response curves to ET-1 (1013-
3x10"8M, n=8) or SRTX S6c (10 12-10?M, n=17) were obtained as described above.

D. 1.2.2. Receptor Antagonism Study

In the second set of experiments, vessels were exposed to either BQ-123 (106 M,

n=8), BQ-788 (3xlO"8M, n=8), TAK-044 (108 & 3xlO"7 M, n=4 & 8 respectively),

BQ-123 + BQ-788 (concentrations as before, n=8) or vehicle (n=8) for 30 min, before
-13 -8

obtaining concentration-response curves to ET-1 (10 -3x10 M). For these

experiments, agonists were prepared in a solution of antagonist so that addition to the
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perfusion circuit did not dilute the antagonist solution superfusing the tissue. In some
-8

experiments, the vessels were exposed for 30 min to SRTX S6c (3x10 M) twice (a

wash out period of 10 min between each exposure), in order to desensitise the ETB

receptor prior to commencement of the ET-1 concentration-response curve. This was

carried out both in the absence and in the presence of BQ-123 (n=8 each). In all

experiments, the time-course of the protocol was the same; 2 hours after verification of

the removal of the endothelium, the concentration-response curve to ET-1 was begun.

D. 1.2.3. Materials

ET-1 and SRTX S6c were purchased from Novabiochem (Nottingham, U.K.) and

BQ-788 (N-cis-2,6-dimethylpiperidinocarbonyl-L-g-MeLeu-D-Trp(COOCH3)-D-Nle,
sodium salt) from Neosystems (Strasbourg, France) and were reconstituted in 50:50

methanol:distilled water. BQ-123 (cyclo[D-Trp-D-Asp-L-Pro-D-Vel-L-Leu]) from

Neosystems (France) and TAK-044 (cyclo[D-a-Asp-3-[(4-phenylpiperazin-l-

yl)carbonyl]-L-Ala-L-a-Asp-D-2-(2-thienyl)-Gly-L-Leu-D-Trp] disodium salt)

synthesised by Takeda Chemical Industries (Osaka, Japan) and were reconstituted in

0.9% saline, aliquoted and stored frozen at -20°C until use. All peptide agonists and

antagonists were diluted in Krebs-Henseleit solution containing 0.1% bovine serum

albumin (BSA: Sigma, Poole, U.K.). In all antagonist experiments the ET-1

concentrations were diluted in 0.1% BSA Krebs-Henseleit solution with the

appropriate antagonist. ACh (Chloride salt) and PE (Hydrochloride salt;BDH-Merck,

UK) were prepared in saline at stock concentration of 10~2M, aliquoted, and stored at -

20°C until use when diluted in Krebs-Henseleit solution. These were the sources for

all materials used throughout the thesis.

D. 1.3. Results

D. 1.3.1. Effects of 60mM KCl

In all experiments 60mM KCl superfusion constricted the arteries, an effect which was

reversible back to initial resting diameter on washout (Table 3.1.). The initial diameter

remained constant until agonist-induced constriction was generated.
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D. 1.3.2. Effects of ET-1 and SRTX S6c

ET-1 constricted the pressurised arteries in a concentration-dependent manner (Figure

3.1, pD2 9.8 , Emax 101.9± 2.6 % KC1 induced contraction at 10 M ET-1, n=10).
SRTX S6c also produced concentration dependent contraction (Figure 3.1.), but the

-8

response was extremely variable, the maximum response obtained with 3 x 10 M

SRTX S6c ranging from 0 to 39% of KC1 contraction (mean response =10.7 + 2.9%,

n=17). In fact, only 9 of the 17 vessels (53%) constricted to the SRTX S6c

concentration-response curves.

D. 1.3.3. Effect of ET\ receptor blockade

Incubation with BQ-123 (10 6M) before and during exposure to ET-1 (Figure 3.2.) had
-13 -11

no effect on contractile responses to low concentrations of ET-1 (10 to 10 M) but

resulted in inhibition of responses to concentrations of ET-1 between 10 and 3 x 10

8M. Incubation with BQ-123 significantly inhibited the constrictions to 10~9 and 3x10"

9M ET-1 (P=0.006 & 0.01 respectively) when compared using ANOVA. However,

the effect of BQ-123 on the overall pD2 of the ET-1 concentration response curve did

not reach statistical significance (pD2 9.2, n=8 vs 9.8, n=10, n.s., P=0.094).

D. 1.3.4. Effect of ETb receptor desensitisation or blockade

ETb receptor desensitisation, by exposure to supra-maximal concentration of SRTX
S6c (3x10'8M), produced an initial constriction in 4 out of the 8 vessels studied (mean

response = 8.1 zh 3.5 % KC1 constriction). During the first 30 min exposure to SRTX

S6c, the vessel diameter returned to the initial resting value. No constriction was seen,

in any of the vessels studied, during the second exposure to SRTX S6c confirming
that tachyphylaxis had occurred. The ET-1 concentration response curve was not

significantly altered by either ETb receptor desensitisation (Figure 3.3.A, pD2 = 9.9,

n=8) or following incubation with the selective ETb receptor antagonist, BQ-788

(3x10"8M, Figure 3.3.B, pD2 = 10.0, n=8), although both treatments tended to shift
the ET-1 concentration response curve to the left (P=0.5 & 0.34 respectively).
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D. 1.3.5. Effects of combined ET\ and ETb receptor blockade

Co-incubation of vessels with BQ-123 (10 &M) and BQ-788 (3 x 10 8M) resulted in a

parallel shift of the ET-1 concentration response curve to the right (Figure 3.4, n=8).
Incubation with BQ-123 (10"6M) following desensitisation of ETB receptors with 10"7
M SRTX S6c caused a similar rightward shift (Figure 3.4, n=8). Incubation of vessels
with the ETa/ETb receptor antagonist, TAK-044 (Figure 3.5., 10 8M, n = 4 and 3 x 10

7M, n = 8) also caused a parallel concentration-dependent shift to the right of the ET-1

concentration-response curve. As the maximum response to ET-1 was not reached

within the concentration range studied it was not possible to calculate pD2 values for
ET-1 in experiments with BQ-123 plus either BQ-788 or SRTX S6c desensitisation or

with TAK-044 (both concentrations).

D. 1.4. Discussion

Previous in vivo studies have clearly indicated a role for ETB receptors in mediating

vasoconstriction in resistance beds, but their role has been difficult to demonstrate in

isolated resistance vessels. In the present study it was seen that a role for ETB receptors

in isolated rat mesenteric arteries emerges when both ETA and ETB receptors are

blocked, whereas blockade of ETA receptors alone only partially inhibited ET-1
induced contraction and inhibition of ETB receptors alone had no effect. This

phenomenon is similar to previous observations in rabbit pulmonary artery (Fukuroda

etal., 1994a), rat trachea (Clozel and Gray, 1995) and human bronchus (Fukuroda et

al., 1996), and may be explained by the existence of a 'crosstalk' mechanism between

the ETa and ETB receptors.

In initial experiments the highly selective ETB receptor agonist SRTX S6c (Williams et

al., 1991) was used to investigate the presence of ETB receptors in pressurised
mesenteric arteries. SRTX S6c produced concentration-dependent constriction but the

maximum constriction reached only -10% of that routinely seen with ET-1, much less

than would have been predicted from previous in vivo experiments (Clozel et al.,

1992). However, the magnitude of responses to SRTX S6c is in agreement with
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responses obtained by Takase et al. (1995) and Deng et al. (1995), in rat mesenteric

arteries studied in the perfusion and wire myograph respectively. Interestingly, in all

three studies, the contractions to SRTX S6c occurred at relatively high concentrations

(lOnM). The ETB receptor agonists BQ-3020 and IRL 1620 were equally ineffective in
the perfused rat mesenteric bed at concentrations up to 1 nM (D'Orleans-Juste et al.,

1993). This is quite different to the ETB agonist responses induced in large blood

vessels, which are generally larger and occur at lower concentrations (Moreland et al.,

1992, Sumner et al., 1992, La Douceur et al., 1993, Gray et al., 1994). Another

interesting feature of the results, not mentioned by previous investigators, is the

variability in responsiveness to SRTX S6c. While some vessels failed to respond,

others gave up to -40% of the maximum contraction obtained with ET-1. This might

be explained by differential distribution of ETB receptors in the mesenteric bed,

although 3rd generation branches of the main mesenteric artery were routinely used for

these studies. Another possibility is variation in intrinsic myogenic tone that these

vessels can develop when pressurised. As seen in the validation study (C. 1.3.),

using vessels mounted in the wire myograph, no responses were obtained to SRTX

S6c until some tone was introduced by a low concentration of the stable thromboxane

analogue, U46619 (Mickley et al., 1995).

It has been suggested that SRTX S6c produces a pressor effect in rats via a receptor

which is not of the ETA or ETB receptor subtype (Flynn et al., 1995). In pithed rats

SRTX S6c induced a depressor, followed by pressor response. The depressor

response was blocked by BQ-788 administration, as was part of the pressor response.

However, a significant part of the pressor response remained. Co-administration of

BQ-123 with BQ-788 produced no further antagonism of the SRTX S6c-mediated

pressor response, although the pressor response to ET-1 was completely abolished

(Flynn et al., 1995). The authors concluded that SRTX S6c was either acting on a

novel ET-1 receptor, or was producing a non-specific effect. However, Giller and co¬

workers (1997), using Piebald-lethal (s1) mice, a naturally occurring mutant with an

inheritant deletion of the ETB receptor gene, showed that the pressor response to an

infusion of SRTX S6c was absent. Thus, they demonstrated that SRTX S6c induces

115



constrictions by ETB receptors only (Giller et al., 1997). Furthermore, the

heterogenous responses to ETB receptor agonists, of vasodilatation and constriction,

are mediated by receptors derived from the same ETB receptor gene (Giller et al., 1997;

Mizuguchi et al., 1997) because the transient vasodilatation was also abolished.

An alternative approach to investigation of the role of ETB receptors is to remove the
influence of ETB receptors, either by desensitisation (LaDouceur et al., 1993) or by use

of a selective ETB receptor antagonist like BQ-788 (Ishikawa et al., 1994). In the

present study, neither of these interventions inhibited ET-1 induced contraction, a

result which would support the view that ETB receptors have little or no role in rat

mesenteric arteries. Interestingly, both desensitisation and BQ-788 treatment seemed to

slightly potentiate responses to ET-1, although this effect was not significant. Seo

(1996) recently reported similar potentiation of ET-1 induced constriction by the ETB

receptor antagonist, Res 701-1 in human gastroepiploic arteries. There are several

possible explanations for these observations. Potentiation of contractions by ETB

receptor antagonists would be expected in the presence of the vascular endothelium due

to blockade of endothelial ETB receptor mediated release of relaxing factors by ET-1.

However, this is an unlikely explanation for the present results as the endothelium was

effectively removed by passing of an air bubble through the lumen of the vessels, as

evidenced by the loss of relaxant responses to acetylcholine.. Previous histological

studies in the laboratory have also shown complete removal of the endothelium by this

method (Smith, 1996) and also immunohistochemical evidence as demonstrated in

section E. 1.4.1., Figure 4.1. The experiments of Seo (1996) were also conducted in

endothelium-denuded vessels. Alternatively, potentiation might have been caused by

displacement of ET-1 from low affinity ETB clearance receptors (Fukuroda et al.,

1994c) by BQ-788, but this would not account for the similar effect of receptor

desensitisation. Another alternative, suggested by Seo (1996), is the presence of
sensitive ETB receptors on smooth muscle which inhibit or negatively modulate ETA

receptor-mediated constrictions to ET-1.

116



From the results obtained with SRTX S6c, BQ-788, and desensitisation alone, one

would predict that blockade of ETA receptors, using a selective competitive antagonist,

like BQ-123 (Ihara et al., 1992) would cause a parallel rightward shift of the ET-1

concentration response curve. However, in the presence of BQ-123 the ET-1

concentration-response curve in pressurised mesenteric arteries was biphasic, only

responses to high concentrations of ET-1 being shifted to the right in a parallel manner

by BQ-123, consistent with competitive antagonism at the ETA receptor. Interestingly,
the BQ-123 resistant, possibly ETB mediated, responses to ET-1 were at the lower end
of the dose-response curve, consistent with the presence of a high affinity ETB

receptor. Takase et al. (1995) reported similar results with the ETA receptor

antagonist, FR139317 in rat mesenteric arteries, although in that case the ETA resistant

component was smaller than seen here. Takase et al. perfused the vessels at a pressure

of 30 mmHg, half of that used in the present study. Given the observation that

increased tone may reveal constrictor ETB receptors, as implied by the responses to

SRTX S6c (Mickley et al., 1995), the lower pressure used by Takase et al. (1995)

may account for the smaller ETA receptor antagonist resistant element of the ET-1
curve. The results of the present study are consistent with the reported ETA receptor

antagonist resistant reduction in mesenteric blood flow induced by ET-1 in vivo

(Gardiner et al., 1994, Allcock et al., 1995).

In order to investigate whether the residual ETA antagonist resistant portion of the ET-1

response was mediated by ETB receptors combined treatment with BQ-123 and either
desensitisation or BQ-788 was used. Both of these combination treatments resulted in

a parallel shift of the ET-1 concentration response curve. In fact, the BQ-123 sensitive

portion was moved further to the right than with BQ-123 alone, in agreement with

Fukuroda et al. (1996) who described a similar phenomenon in human bronchi.

Responses to ET-1 were also inhibited, in a concentration dependent manner, by TAK-

044, a peptide antagonist with similar potency at both ETA and ETB receptors (Kikuchi
et al., 1994). Ironically, in a study by the group who synthesised and described TAK-

044 (Awane-Igata et al., 1997), ET-l-induced constrictions in canine mesenteric

arteries were not inhibited by TAK-044.
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These results demonstrate a clear role for ETB receptors in mediation of constrictor

responses to ET-1 in small mesenteric arteries that is only revealed when ETA

receptors, in addition to ETB receptors, are blocked. The lack of effect of ETB receptor

blockade or desensitisation alone seems to indicate that ETA receptors can somehow

compensate for the inactivation of ETb receptors. Similar observations have been

reported in vascular (Fukuroda et al., 1994a) and non-vascular (Clozel & Gray, 1995;

Fukuroda et al., 1996) tissues. The concept of receptor 'crosstalk' has been proposed

to explain these observations. The mechanism is not fully understood, although

interactions at the second messenger level have been suggested, such that blockade of

the ETb receptor releases an inhibitory mechanism acting at the ETA receptor (Fukoroda
et al., 1996). Allosteric interactions between ET receptors have been suggested to

account for the results of radioligand binding studies in rat heart (Sokolovsky, 1993).

Further biochemical studies are required to elucidate the interactions between ET

receptors co-existing in the same tissue and the mechanism of the apparent crosstalk

phenomenon. Interestingly, similar interactions have been reported between a, and a2

adrenoceptors activated by noradrenaline (Daly et al., 1988).

In the rat, the mesenteric bed receives up to 10% of cardiac output and thus resistance

in this bed is an important determinant of total peripheral resistance and of blood

pressure. The present results show that simultaneous blockade of both ETA and ETB

receptors is required for complete inhibition of constrictor responses to ET-1 in the rat

mesentery in vitro. This agrees with observations that blockade of both receptors is

required to inhibit ET-1 induced increases in blood pressure in vivo (McMurdo et al.,

1993). The role of ETB receptors in regulating constrictor responses to ET-1 might be
even greater in human resistance vessels, where ETB agonists have a greater direct
effect than in other species in vitro (Takase et al., 1995) and in vivo (Haynes et al.,

1995).

In some pathophysiological states associated with increased peripheral resistance and

increased plasma concentrations of ET-1, there is evidence for an upregulation of
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smooth muscle ETB receptor; most notably in heart failure in dogs (Cannan et al.,

1996) and humans (Love et al., 1996); in atherosclerosis (Winkles et al., 1993;

Dagassan et al., 1996) and in hypertension (Kanno et al., 1993, Batra et al., 1993).
The results of the present study suggest that blockade of both ETA and ETB receptors

may be required for effective inhibition ofET-1 induced constriction in these diseases.

This study was conducted in vessels without endothelium. However, in the presence

of endothelium, ETB receptor blockade can actually enhance responses to ET-1 by

blocking the release of nitric oxide and prostacyclin through endothelial ETB receptor

stimulation (De Nucci et al., 1988). Thus, the effectiveness of endothelin receptor

blockade therapeutically will depend on the level of endothelial ETB receptor

stimulation and on the relative selectivity of the antagonist for endothelial and smooth

muscle ETB receptors, the ideal antagonist allowing ET-1 to act at the endothelial ETB

receptor while blocking its effects at smooth muscle ETA and ETB receptors.
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Figure 3.1 Comparison of the contractile responses to endothelin-1
(ET-1P) and sarafotoxin S6c (SRTX S6c,A) in rat small mesenteric
arteries. ET-1 (n=T0) produced a maximal constrictions of similar
proportions to 60mM KC1 at 3xlO"9M. SRTX S6c (n=17) induced
small constrictions at the highest concentrations, suggesting a small
population of ETB receptors present on the smooth muscle of the
resistance arteries. All values shown are mean + s.e.mean.
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Figure 3.2. Effect of the ETA receptor antagonist BQ-123 on the
ET-1 concentration-response curve in rat small mesenteric arteries.
Pre-incubation with BQ-123 (10"6M) for 30 minutes (Q , n=8)
shifted the responses to the higher concentrations of ET-1 in a

parallel fashion to the right. All values are mean + s.e.mean.
*P<0.05 compared to control (O) ET-1 responses.
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Figure 3.3.A. The effects of selective ETB receptor blockade on
ET-1-induced constrictions in rat small mesenteric arteries. The
vessels were exposed to SRTX S6c (10_7M,A, n=8) twice for 30
minutes (each exposure) prior to the start of ET-1 concentration-
response curve. The ET-1 concentration response curves tended to
be shifted slightly to the left as compared to control (O), though not
significant, P=0.54 as compared using ANOVA. All values are
mean + s.e.mean.

123



Log [ET-1] M

Figure 3.3.B. The effects of selective ETB receptor blockade on
ET-1-induced constrictions in rat small mesenteric arteries. The
vessels were exposed to BQ-788 (Figure 3b, 3xlO-8M,H , n=8)
pre-incubated for 30 minutes prior to the start of ET-1
concentration-response curve. The ET-1 concentration response
curve tended to be shifted slightly to the left as compared to control
(O), though not significant, P= 0.42 as compared using ANOVA.
All values are mean + s.e.mean.
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Figure 3.4. The effects of non-selective ETA/ETB combination
treatment on ET-1-induced constrictions in rat small mesenteric
arteries. The vessels were exposed to either vehicle (Q), BQ-123
plus BQ-788 (10"6M & 3xl0"8,D, n=8) or pre-incubated with SRTX
S6c twice (each 10"7M) plus BQ-123 (10"6M, I , n=8). Both
treatments significantly shifted the ET-1 concentration-response
curve to the right in a parallel fashion (P=0.0001 for both). All
values are mean + s.e.mean.
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Figure 3.5. The effects of the non-selective ETA/ETB receptor
antagonist TAK-044 on ET-l-induced constrictions in rat small
mesenteric arteries. The vessels were pre-incubated for 30 minutes
with either 10"8 M (A . n=4) or 3 x 10~7M (^, n=8) TAK-044. Both
treatments significantly inhibiting the ET-1 concentration-response
curve (P=0.0002 & 0.0001 respectively) as compared to control (Q).
All points are mean ± s.e.mean.
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Results Chapter 2

Evidence for an inhibitory endothelin ETB receptor
on the smooth muscle of small mesenteric arteries

from a rat model of CHF



E. 1.1. Introduction

The ET system has been investigated in several different models of CHF, including

dogs, rabbits, hamsters and rats. In all of the animals models used, circulating plasma
ET-1 levels are consistently elevated. As discussed in Section B. 1.6.3., several

studies have demonstrated decreased ET receptor density in cardiac, renal and arterial

tissues from various animal models of CHF in association with the raised circulating

ET-1 levels (Loffler et al., 1993; Fu et al., 1993). Furthermore, in anaesthetised CHF

dogs, cardiorenal vasoconstrictor responses to exogenously administered ET-1 were

significantly attenuated in comparison to control dogs (Cavero et al., 1990). In

agreement, in pithed CHF rats there was a reduced pressor response to a bolus

injection of ET-1 (Fu et al., 1993). Interestingly, the vasodilator response was

preserved (Fu et al., 1993). However, despite the apparent down-

regulation/desensitisation of ET receptors in CHF, ET antagonists, both selective ETA

and non-selective ETA/ETB receptor antagonists, have improved survival in CHF

animals (Shimoyamaeta/., 1996; Sakai et al., 1996b) perhaps in part by reducing the

raised vascular resistance (Clavell et al., 1996).

In the previous chapter it was shown that both ETA and ETB receptors are involved in

the vasoconstriction to ET-1 in endothelium denuded mesenteric resistance arteries

from normotensive, Wistar rats (Mickley et al., 1997). Furthermore, there could

potentially be a crosstalk mechanism between the two receptor subtypes

communicating (Mickley et al., 1997), most probably, at the G-protein second

messenger level (Ozaki et al., 1997). The ETA receptor had the ability to compensate

for the "loss" of smooth muscle constrictor ETB receptors when either inhibited with

BQ-788 or desensitised by prolonged exposure to STRX S6c. It has been suggested

that selective ETA receptor blockade would be desirable in reducing peripheral vascular

resistance in CHF, since concomitant inhibition of ETB receptors would lead to the loss

of the counterbalancing vasodilatory actions of the endothelial ETB receptors and
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would further increase circulating ET-1 by inhibiting ETB receptor clearance

(Davenport &Maguire, 1994). However, BQ-123 in the small mesenteric arteries of
normotensive rats antagonised responses only at the higher concentrations of ET-1-

induced vasoconstriction (Mickley et al., 1997). Only when both ETA and ETB

receptors were inhibited were the vasoconstrictions to all concentrations of ET-1

antagonised, suggesting that for effective removal of ET-l-induced vasoconstriction

both ETa and ETB receptors should be inhibited. Thus, it is important to identify the

receptors involved in the constrictor responses to ET-1 in arteries in heart failure.

In this chapter, any changes in responses to ET-1, and the receptor subtypes mediating

ET-l-induced vasoconstriction, have been investigated using the rat coronary artery

ligation (LCAL) model of CHF (Pfeffer et al., 1964). Furthermore, since heart failure

is a progressive disease and the rise in circulating ET-1/big ET-1 levels occur during

the later stages of the condition (Rodeheffer et al., 1992; McMurray et al., 1992;

Cacoub et al., 1993; Wei et al., 1994), any alteration in arterial responsiveness was

followed using arteries taken from animals with heart failure at two different time

points of 5 weeks and 12 weeks post-ligation. This model has proved useful in

studying the mechanisms involved in CHF (Witchel, 1997) as it mimics the human

pathophysiology including cardiac dilatation, hypertrophy, infarct thinning and

collagen deposition and the animals respond to drug therapies, such as ACE inhibitors

and p-blockers (Witchel, 1997).

It has been reported that ET-1 produces its characteristically long-lasting

vasoconstriction by binding to its receptors and the receptor-ligand complex being

internalised (Resink et al., 1990). Autoradiographic studies have indicated the

existence of ET-1 receptors in both the plasma membrane and intracellular

compartments of rat aortic smooth muscle cells (Resink et al., 1990). After the

receptor-ligand complex has been internalised and the intracellular second messenger
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systems triggered, the ET-1 is degraded and the receptor is recycled back to the cell
surface (Marsault et al., 1993). It has been estimated that ~ 40% of receptors are

recycled after 1 hour once ET-1 has been dissociated or degraded from its receptors

following internalisation (Marsault et al., 1993). Thus, it has been suggested that ET-

1 receptor antagonists cannot reverse established ET-1 vasoconstriction until the ET-1

receptors have been recycled back to the cell surface. In rat aortic rings, BQ-123 took

over 40 min to reverse an established ET-1 constriction (Marsault et al., 1993; Warner

et al., 1994). This was investigated using the small arteries which were exposed to the

ET-1 CRC alone. Once the vessel had been exposed to the highest concentration of

ET-1 and maximum constriction established, either BQ-123 or the non-selective

ETa/ETb receptor antagonist, TAK 044 was added to the reperfusion circuit in order to

ascertain whether the ET-1 tone could be reversed.

E. 1.2. Methods

E. 1.2.1. Left Coronary Artery Ligation Rat Model of Heart Failure

Heart failure was induced by ligation of the left anterior descending coronary artery in

6 week old male Wistar rats as described in Section C. 1.1.2. Either 5 weeks or 12

weeks after ligation, the right carotid artery was was cannulated and a transducer-

tipped catheter fed into the left ventricle to measure the left ventricular end diastolic

pressure (LVEDP) to confirm CHF. Animals were classified as having CHF if the

LVEDP was >15 mmHg. The mesenteric bed was excised and placed immediately
into cold Krebs solution. Sham-operated rats were used as controls, where the ligature

was pulled out of the heart.

All operational procedures and haemodynamic measurements were performed by Dr

Gillian Gray, Department of Pharmacology, George Square, Edinburgh.
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E. 1.2.2. Perfusion myograph studies

Arteries were dissected from the mesenteric bed whilst immersed in cold Krebs-

Henseleit solution. All of the following studies were carried out in random order and

only one ET-1 CRC was performed per tissue.

E. 1.2.2.1. ET-1 and SRTX S6c study

After dissection, arteries were mounted in a perfusion myograph and the initial 'wake

up' and denudation procedures performed. After the reperfusion circuit had been

started, arteries were superfused for 1 hour with Krebs-Henseleit solution and a ET-1

CRC (1013-3xl0"8M) was obtained. Cumulative CRCs to SRTX S6c (10-12-3xlO8M)

were also performed in different arteries. However, in these arteries the SRTX S6c
CRC was constructed 5 min after the reperfusion circuit had been set up because these

arteries were used as the SRTX S6c desensitisation group (See below F. 1.2.2.2.).

E. 1.2.2.2. Receptor antagonism study

Some arteries, after mounting and denudation procedures, were exposed to 30 min

reperfusion of Krebs-Henseleit solution followed by a 30 min incubation with BQ-123

(10 6M) and an ET-1 CRC (10I3-3xl0"8M) obtained. In the arteries which had been

exposed to the SRTX S6c CRC, the arteries were washed with Krebs-Henseleit

solution, a new reperfusion circuit started and challenged with SRTX S6c (3xl0 8M)

for 30 min and an ET-1 CRC constructed. This constituted the ETB receptor

desensitisation group. For the non-selective ETA/ETB receptor antagonist group,

arteries were challenged with SRTX S6c (3xl0-8M) for 30 min twice (with a wash out

period of 10 min between each exposure) plus BQ-123 (K>6M) in the second 30 min

period prior to a ET-1 CRC.
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E. 1.2.2.3. Reversal study

In the vehicle control vessels which only had an ET-1 CRC performed, once the

maximum constriction to the highest concentration of ET-1 (3x108M) had been

obtained BQ-123 (105M) or TAK-044 (105M) or vehicle control (Krebs-Henseleit

solution) was added to the reperfusion circuit and reperfused for 20 min, with lumen

diameter measurements taken at 0, 5, 10, 15 and 20 min after the addition of

antagonist.

E. 1.2.2.4. Intrinsic tone

As described in the previous chapter, SRTX S6c induced constrictions in 53% of

arteries challenged with a SRTX S6c CRC. It was suggested that the arteries which

constricted to SRTX S6c may have some intrinsic tone, thus revealing the presence of

constrictor ETB receptors as demonstrated in the wire myograph studies (Section C.

1.3.5.). The presence of intrinsic tone was investigated in the arteries studied by

exposing all arteries to Ca2+-free Krebs-Henseleit solution (by addition of 104 M

EDTA) and 105M sodium nitroprusside (SNP) at the end of each experiment. The

lumen size after the subsequent relaxation was compared to the lumen size at the

beginning of the experiment, before the SRTX S6c CRC and ET-1 CRC.

All experiments were performed in the presence of indomethacin (104M) added

directly to the superfusing Krebs-Henseleit solution.
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E. 1.3. Results

E. 1.3.1. Effects of coronary artery ligation

During the study period none of the sham-operated animals died. However, in the

coronary artery ligation group mortality usually occurred during the 24 hour period

after the ligation procedure had been performed. The average survival 24 hour post-

ligation was 70%. There was no difference in weight between the sham-operated rats

and the 5 week CHF rats (454.3±12.2g vs 466.5±16.5g) or 12 week CHF rats

(521.7±36g vs 553.9±7.2g). The mean LVEDP for the sham-operated animals

was4.4±0.9 mmHg. Consequently the rats with heart failure had significantly raised

LVEDP of 20.8±1.9 mmHg. The area of infarcts, between 30-40% of the left

ventricle, in the ligated rats were clearly thinner than the ventricles of the sham-

operated rats, with collagen and fibrous scar tissue replacing healthy myocardium.

E. 1.3.2. Effects of 60mM KCl and PE

There was no difference in the maximum constrictions to KCl or PE in the arteries

from the 5 and 12 week CHF rats and the respective controls (Table 4.1.).

E. 1.3.3. Effects of ET-1 and SRTX S6c

ET-1 constricted all arteries in a concentration-dependent manner (Figures 4.1.A. and

B.).

In the arteries from the 5 week sham-operated rats (n=8; mean lumen dia =

307±17(im) there was a biphasic response, with a shallow, gradual vasoconstriction

with the lower concentrations of ET-1 < 1010M, and a sharper vasoconstriction to

maximum at the higher concentrations > lO10M. There was no difference in the

sensitivity to the ET-1 CRC in the 5 week post-ligation rats (n=8; mean lumen dia =
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301±10.5 pm) in comparison to the 5 week sham-operated controls (Figure 4.l.A.)

when compared by ANOVA (P=0.5). Furthermore, the pD2 values were similar

(Table 4.2.) when compared using a Students two-tailed t-test. However, the

constrictions to the lower concentrations of ET-1 appeared to be attenuated in the

arteries from the 5 week post-ligation rats (Figure 4.l.A).

The response to ET-1 in the 12 week sham-operated rats (n=8; mean lumen dia =

280±18.8 pm) was also biphasic in nature (Figure 4.1.B.). However, the arteries

from the 12 week post-ligation rats (n=8; mean lumen dia = 305±17 pm) were

significantly less sensitive to the ET-1 CRC than the arteries from the 12 week sham-

operated controls (ANOVA P=0.04) and the response was monophasic in nature. The

pD2 values were also significantly different (Table 4.2.).

SRTX S6c induced small constrictions in some of the arteries studied, similar to

responses described in Chapter 3.

In the 5 week sham-operated rats, SRTX S6c induced small constrictions in 3 out of

the 6 arteries exposed to the SRTX S6c CRC (Figure 4.2.A.; mean lumen dia =

286.7±26.8 pm), with constrictions to the highest concentration of SRTX S6c (107M)

ranging from 0% to 20% ofmaximum KC1 constriction, Emax=7±4.8%. In the 5 week

CHF rats, SRTX S6c induced small constrictions in 3 out of the 4 arteries exposed to

an SRTX S6c CRC (Figure 4.2.A.; mean lumen dia = 274±21.1 pm), Emax=7.3±1.8%

max KC1 constriction. In the 5 week CHF arteries tachyphylaxis of the ETB receptors

to the two highest SRTX S6c concentrations could be seen to be occurring.
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SRTX S6c-induced constrictions in 4 out of 6 arteries dissected from 12 week sham-

operated rats with tachyphylaxis occurring at the highest concentration (Figure 4.2. B.;

mean lumen dia = 281±23.2 pm). Responses to SRTX S6c ranged from 0% to 17%

KC1 constriction, Emax=10±2.2% KC1 constriction. In contrast, only 1 out of 6 arteries

removed from 12 week CHF rats constricted to SRTX S6c, this response was only

7% KC1 constriction (Figure 4.2.B; mean lumen dia = 286±28.9 pm).

E. 1.3.4. Effects of ETA receptor antagonism

ETA receptor antagonism with BQ-123 inhibited the ET-1-induced constrictions in the

5 week sham-operated rat arteries (n=6, Figure 4.3.A.; mean lumen dia = 311±13.5

pm). The whole ET-1 CRC was significantly shifted to the right in a parallel manner

(ANOVA, P=0.0008) and threshold concentration for constriction was shifted from

10I2M to 3xlOuM. The ET-1 CRC was also significantly inhibited in the arteries

from the 5 week CHF rats (n=6, P=0.0001; mean lumen dia = 305±15.2 pm).

However, the constrictions to the lower concentrations of ET-1, up to 10IOM remained

in the presence of BQ-123, with the threshold constrictions occurring at 1012M ET-1

in both the vehicle control ET-1 CRC and the BQ-123 treated ET-1 CRC (Figure

4.3.B.). The pD2 values could not be calculated as maximum ET-1 constrictions were

not reached in either group.

BQ-123 inhibited the ET-l-induced constrictions in the vessels from the 12 week

sham-operated rats (n=6; ANOVA P=0.0008; mean lumen dia = 315±10.6 pm).

Similar to the results in 5 week sham-operated rat arteries, the threshold constrictions

were shifted from 1012M to 3x10 ''M in the 12 week sham-operated arteries (Figure

4.3.C.). The ET-l-induced vasoconstrictions were also significantly inhibited in the

arteries from the 12 week CHF rats (n=6; ANOVA P=0.003; mean lumen dia =

315±23.8 pm). Interestingly, the ET-1 CRC in the 12 week CHF vessels was
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inhibited by BQ-123 to a similar point on the graph as the ET-1 CRC in the 12 week

sham-operated vessels. For instance the constrictions at 108M ET-lwere 28±5.8% vs

20+6.1%, and at 3xl07M ET-1 83±12% vs 88.5±8.1% (sham vs CHF). Again, the

pD2 values could not be calculated as maximum ET-1 constrictions were not reached in

either group.

E. 1.3.5. Effects of ETB receptor antagonism

ETb receptor down-regulation using SRTX S6c had no effect on ET-1

vasoconstrictions in the arteries from 5 week sham-operated rats (n=6; Table 4.2.;

Figure 4.4.A; ANOVA P=0.4; mean lumen dia = 286.7±26.8 pm) or 5 week CHF

rats.(n=5; ANOVA P=0.6; mean lumen dia = 274±21.1 pm).

In the 12 week sham-operated rat arteries ETB receptor down-regulation had no effect

on the ET-1 response (n=6; Table 4.2; Figure 4.4.B; ANOVA P=0.57; mean lumen

dia = 281.7±23.2 |im). However, ETB receptor desensitisation restored the biphasic

ET-1 response in the 12 week CHF rat arteries, similar to the vasoconstrictions in the

12 week sham-operated arteries. The ET-1 CRC was significantly shifted to the left

(ANOVA P=0.037; mean lumen dia = 286±28.9 pm) and the pD2 similar to the sham-

operated arteries (Table 4.2.). In particular, the vasoconstrictions to the lower

concentrations of ET-1 (<10 !0M) were enhanced (Figure 4.4.B.).

E. 1.3.6. Effects of ETA andETB receptor antagonism

Non-selective ETA and ETB receptor antagonism significantly inhibited the entire ET-1

CRC in the 5 week sham-operated arteries (n=6; Figure 4.5.A; ANOVA P=0.0006;

mean lumen dia = 271.7+18.2 pan). Threshold constrictions were moved from 1012M

to lO10M. ET-1 vasoconstrictions in the 5 week CHF rat arteries were also inhibited
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to a similar extent (n=4; ANOVA P=0.0001; mean lumen dia = 292.5±14.9 |im).

Since maximal constrictions to ET-1 were not reached the pD2 values could not be

calculated.

ET-1-induced vasoconstrictions were significantly shifted to the right by non-selective

ETa and ETB receptor antagonism in the 12 week sham-operated rat arteries (n=6;

Figure 4.5.B.; ANOVA P=0.0006; mean lumen dia = 276.7±13.3 pm). Threshold

constrictions were moved from 1012M to lO10M. Non-selective ETA and ETB receptor

antagonism also significantly inhibited the entire ET-1 CRC in the arteries from the 12

week CHF rats (n=6; ANOVA, P=0.003; mean lumen dia = 285+29.7 pm), again to a

similar point on graph as the responses of the 12 week sham-operated rat arteries

(Figure 4.5.B.).

E. 1.3.7. Reversal study

Unfortunately, due to the small numbers (8 per group) exposed to an ET-1 CRC only,

there were not enough arteries per animal group to divide into the 3 reversal treatment

groups of BQ-123, TAK-044 or vehicle to perform any analyses on the results. As a

consequence the reversal data has been combined for the 5 week animals (sham &

CHF; Figure 4.6.A.) and 12 week animals (Figure 4.6.B.).

As can be seen in Figures 4.6. A and B established ET-l-induced vasoconstrictions

were reversed in arteries from all experimental groups within 20 minutes of application

of the appropriate antagonist to the reperfusion circuit. However, if no antagonist was

applied, the vasoconstriction to the maximal concentration of ET-1 remained constant

for at least the duration of the reperfusion time. BQ-123 effectively reversed the ET-1

vasoconstriction within 15 minutes, however, a small constriction remained of 28.3 ±
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8.4 pm and 28 ± 4.2 |lm (5 and 12 week rats respectively). At 20 min, TAK-044

appeared to reverse the ET-1 tone slightly more effectively than BQ-123 (although not

to a significant extent) with a small constriction remaining of 9.4 ± 7.1 |im and 15.3 ±

9 fim (5 and 12 week rats respectively).

E. 1.3.8. Intrinsic tone investigation

None of the arteries from any experimental group had intrinsic tone present. The

combination of Ca2+ -free Krebs and chelation using EDTA and direct smooth muscle

relaxation with SNP immediately relaxed the arteries to the initial resting tone measured

at the beginning of the experiments and prior to the SRTX S6c or ET-1 CRCs (data not

shown).

E. 1.4. Discussion

Ligation of the left descending coronary artery in a rat causes ischaemia of the

myocardium of the left ventricle, resulting in an infarcted area and compromised

cardiac output, thus triggering the neurohumoral reflexes which begin the 'vicious

cycle' of CHF. In this way the effects of left coronary artery ligation are similar to the

main cause of CHF in humans. A myocardial infarction produced by the rupture of
atheroma in one of the coronary arteries perfusing the left ventricular myocardium and

occlusion by the subsequent formation of a blood clot also results in myocardial

ischaemia.

The LCAL rat model of heart failure has been demonstrated previously to mimic the

pathophysiology of the disease in man. For instance, both plasma ANG II and NA
levels are increased up to 9 months post-ligation (Mulder et al., 1996; 1997) and the

animals respond favourably to ACE inhibition (Mulder et al., 1996). Due to the
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similarities between the ANG II and ET-1 systems, it is reasonable to assume that this

rat model is useful for the study of the ET-1 pathway in CHF. Indeed, in the rat

LCAL model of CHF it has been shown that ET-1 production is up-regulated (Teerlink

et al., 1994b; Sakai et al., 1996a & b). Sakai and colleagues (1996a) saw that 3 weeks

post-ligation, plasma ET-1 concentrations were >3 fold higher than those of the sham-

operated rats, and was significantly correlated with LVEDP. Raised plasma ET-1

levels persist as the condition progresses in this model since Teerlink and co-workers

(1994b) found that from 1 to 16 weeks post-ligation circulating ET-1 levels were 1.5

times greater than the sham rats. In contrast, one study saw no increase in plasma ET-

1 levels (Mulder et al., 1997) at 2 or 9 months post-ligation. It was suggested that this

may be as a result of the rats having only moderate cardiac dysfunction due to the

induction of smaller infarcts, whereas in the previous studies described the infarcts

were larger leading to more severe cardiac dysfunction (Mulder et al., 1997).

Unfortunately the plasma ET-1 concentrations were not measured for this thesis

because the amount of plasma needed in the RIA protocol was too large to be obtained

per animal. A commercial ELISA kit is available which uses a smaller volume of

plasma, but during validation studies of the kit in the department it was found that the

reliability of the results was questionable. Therefore, activation of the ET-1 system

could not be quantified, although immunohistochemical studies (see Sections G.

1.3.1.) have been performed in order to visualise whether there is an alteration in ET-1

production in the vascular smooth muscle layer. Nevertheless it has been assumed that

the ET-1 system is activated during the progression of CHF in these rats based on the

results of Teerlink et al., (1994b) and Sakai et al., (1996a,b). Thus, the main aim of

this chapter was to assess whether there was any alteration in ET-1 receptor

characteristics at two time points after the induction of heart failure, since down-

regulation of receptors commonly occurs during prolonged agonist exposure.

In all mesenteric arteries studied, ET-1 was a potent constrictor. The constrictions to

ET-1 in the sham-operated rats from both groups were biphasic in nature, with a
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higher affinity first shallow component to the lower ET-1 concentrations, followed by

a lower affinity steeper second component to higher concentrations. The shapes of

these ET-1 CRCs would suggest a heterogenous population of ET-1 receptors with

constrictor ETB receptors responsible for the high affinity phase and ETA receptors

producing the lower affinity phase (Mickley et al., 1997). Although not overall

significantly different from the sham-operated constrictions in sensitivity (as

determined by pD2) and maximum response, the shape of the ET-1 CRC in the 5 week

CHF rat mesenteric arteries appears to be different. The first shallow component is

attenuated in the 5 week post-ligation rat arteries, suggesting a down-regulation of the

high affinity constrictor receptors. As mentioned above, protracted exposure to a

specific agonist can lead to receptor down-regulation and this appears to be borne out

as the constrictions to ET-1 in the arteries removed from the 12 week CHF rats were

significantly different, the whole CRC being shifted to the right. Furthermore, not

only is the sensitivity to ET-1 reduced, but the curve is clearly monophasic in nature,

with the shallow component completely lost. Thus, the responses to ET-1 alone tend

to suggest that as the disease progresses, the receptors responsible for the constrictions

to the lower concentrations of ET-1 are down-regulated.

Down-regulation of ET receptor binding sites has been observed following incubation

of ET-1 with cultured vascular smooth muscle cells (Hirata et al., 1988) and

cardiocytes (Hirata et al., 1989). More specifically, it has been demonstrated that ETB

receptor mRNA is down-regulated by prolonged exposure to ET-1 by a decrease in

stability of the mRNA in rat osteosarcoma cells (Sakurai et al., 1992). ETB receptors

undergo tachyphylaxis readily, and it is the possible down-regulation of these

receptors which results in the loss of the high affinity phase of the curve. At 12 weeks

post-ligation the lower affinity part of the curve is also shifted, therefore suggesting

that ETa receptors are also down-regulated as the disease state progresses. In the

previous chapter, it was demonstrated that the ETA receptor could accommodate the

antagonism/desensitisation of the ETB receptors by receptor crosstalk. The overall ET-
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1 CRC in the 5 week CHF arteries was found not to be significantly different from that

of the sham-operated controls. Therefore at this time point of heart failure, the ETA

receptors could be partially compensating for the down-regulated ETB receptors. If the

ETa receptors were beginning to downregulate at 5 weeks post-ligation, this could

explain why the constrictions to the lower concentrations of ET-1 were not completely

restored. Therefore, it would be interesting to investigate the responses to exogenous

ET-1 in arteries removed from CHF rats at a slightly earlier time point after artery

ligation such as 2 or 3 weeks post-ligation.

One study has investigated the ET-1 receptor density and affinity in mesenteric arteries

and ventricles from 4 weeks post-LCAL rats, using binding assays and Scatchard

analysis (Fu et al., 1993). The Scatchard plots revealed a single population of ET-1

binding sites in both vascular and ventricular membranes. However, in the mesenteric

artery membranes from rats with CHF the density of ET-1 receptors was significantly

decreased by 59% as compared to sham animals (Fu et al., 1993). Furthermore, the

dissociation constant was significantly increased 2.8 times in the mesenteric arteries

from the CHF rats. In contrast, neither the density or dissociation constant of ET-1

receptors in the ventricular membranes from the CHF rats were different from the

controls (Fu et al., 1993). Unfortunately, this study did not investigate specifically the

vascular responsiveness of the mesenteric arteries from these animals to exogenous

ET-1. However, a bolus injection of ET-1 into pithed animals showed that there was a

decreased pressor response but a preserved depressor response in the CHF animals

when compared to control animals (Fu et al., 1993). It was therefore concluded that

there is down-regulation of ETA receptors responsible for vascular constriction, but not

relaxant ETB receptors (Fu et al., 1993).

Other studies have investigated regulation of ET-1 receptors in CHF, although these

studies have primarily focused on the receptors present in cardiac and renal tissue.
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Raised circulating and tissue ET-1 levels in CHF rabbits were found to be associated

with reduced density of ET-1 receptor binding sites in both heart and kidney tissues

(Loffler et al., 1993). In another rabbit model of CHF (3 weeks of RVP), Spinale and

co-workers (1997) studied the isolated myocyte inotropic response to exogenous ET-

1. They found that the ET-1 response was significantly reduced in the myocytes from

the CHF rabbits, and this was restored to control levels in CHF rabbits treated with the

ETa receptor antagonist PD 156707 (Spinale et al., 1997). However, in a previous

study from the same laboratory no change in myocyte ETA receptor density of affinity

was found in pacing-induced CHF (Thomas et al., 1996). The reduced

responsiveness to ET-1, if not by receptor down-regulation, has been suggested to be

via the desensitisation of the ET-1 transmembrane signalling pathway (Calderone et

al., 1993). A reduced generation of ET-1 stimulated IP3 accumulation via decreased

activiation of PI turnover in the circumflex coronary artery (CCA) of RVP dogs (4-7

weeks of RVP) has been demonstrated (Calderone et al., 1993). Receptor

phosphorylation by protein kinase C (PKC) activation resulting in receptor uncoupling

was suggested to be acting as a negative feedback mechanism regulating the functional

responsiveness of the CCA to ET-1 (Calderone et al., 1993).

In contrast, responsiveness to exogenous ET-1 has been shown to be enhanced in the

papillary muscle from RVP dogs (Li & Rouleau, 1996). The sensitivity to ET-1 was

augmented in the tissues from the dogs 4-7 weeks after pacing began (Li & Rouleau,

1996). Furthermore, in LCAL rats an increase in myocardial ET receptors was found
in association with enhanced ventricular ET-1 mRNA and mature peptide (Sakai et al.,

1996a & b). It has been suggested that ET-1 is involved in the maintenance of cardiac

function in early heart failure, but all the studies described have been performed

between 3 and 7 weeks after the induction of heart failure. Therefore, it appears that
ET receptor regulation and responsiveness varies from tissue to tissue, study to study,

and model to model.
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In order to investigate the receptor subtypes involved in the altered constrictions seen

to ET-1, either SRTX S6c, BQ-123, or a combination of both drugs were used to

antagonise the ET-l-induced constrictions. Similar to the previous chapter, SRTX S6c

was used both as an agonist and antagonist of the ETB receptor in order to evaluate the

relative contribution of the ETB receptor to the vasoconstrictor response. As an

agonist, SRTX S6c evoked small constrictions in 50% and 66% of the 5 and 12 week

sham-operated rats respectively of approximately 10% of maximum KC1 constriction

comparable to those seen in the previous chapter. Small constrictions to SRTX S6c

were also seen in 75% of the arteries from the 5 week LCAL rats. However, only one

artery from the 12 week LCAL rats constricted (and only 7% of max KC1) to SRTX

S6c. It was suggested previously that the arteries which did respond to SRTX S6c

had some intrinsic tone. This was investigated by exposing the arteries, at the end of

the experiment, to Ca2+-free Krebs-Henseleit solution plus SNP. All arteries, whether

exposed to ET-1 alone, SRTX S6c as an agonist or antagonist or any of the other

treatments relaxed back to the resting tone measured at the beginning of each individual

experiment. Thus, it appears that these arteries had no intrinsic tone present. It has

been suggested that constrictor ETB receptors are present only in the low pressure

venous side of the circulation though some may be present in the pre-capillary
arterioles. Thus, the arteries in which SRTX S6c induced a constriction could have

been of a smaller lumen diameter than those arteries which did not respond. However,

all the arteries experimented upon were of a similar size, there was no difference in the

lumen diameter of those vessels which responded and those that did not.

Another explanation for the presence of constrictor ETB receptors in some of the

arteries could be the 'plasticity' phenomenon first described for contractile ETB

receptors by Adner and colleagues (1996). They demonstrated that constrictor ETB

receptors become apparent in human omental arteries after being left for up to 5 days in
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serum-free medium, which they called cultured arteries. In organ baths they showed a

significantly weaker and less potent constriction to ET-3 than ET-1 in fresh omental

arteries, of which FR 139317 induced a parallel rightward shift. However, in the

cultured arteries contractions to ET-3 were significantly greater in magnitude (100 fold)

and sensitivity than the fresh arteries, and there was now no significant difference

between the potency of ET-1 and ET-3 in the cultured arteries (Adner et al., 1996).

Furthermore, FR 139317 shifted the responses to the high concentrations of ET-1, not

the whole ET-1 CRC as seen in the fresh arterial segments. RT-PCR showed mRNA

encoding both receptor subtypes of equal intensity in the fresh segments, but in the

cultured arteries the band representing the ETB receptor was a more intense signal than

that for the ETA receptor. The authors concluded that in fresh arteries, despite the

presence of mRNA for both receptor subtypes the ETA receptor only is responsible for

contraction. However, after organ culture an increase in mRNA for the ETB receptor

occurs, and there is a corresponding appearance of a functional response (Adner et al.,

1996). It was hypothesised that during the organ culture period, the arteries are in an

inactive environment where there is no blood flow or nervous or humoral stimulation,

and this may result in an up-regulation of functional ETB receptors (Adner et al.,

1996). The loss of pressure on the arterial wall, it was theorised, may reflect the low

pressure venous system where ETB receptors are known to have an important

functional constrictor role (Moreland et al., 1994; Haynes et al., 1995).

This 'plasticity' phenomenon may be occurring in the rat mesenteric arteries during this

study, since varying times elapsed between removal of the mesenteric bed and the

mounting of the arteries in the perfusion myograph. Furthermore, these experiments

per mesenteric bed were conducted over a period of two days since there were 4

experimental conditions (ET-1 control, SRTX S6c desensitisation, BQ-123 and

combination antagonism), but only two perfusion myographs. Thus, 2 experiments

were performed on day 1 with the intact mesenteric bed stored in Krebs solution

overnight at 4°C for the second 2 experiments to be performed on Day 2.
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Experimental protocols were randomised and studying the data there were reponses to

SRTX S6c on both Days 1 and 2 (6 & 4 out of 22 responded on Days 1 & 2

respectively, and 6 & 6 out of 22 did not respond on Days 1 & 2 respectively).

However, this explanation cannot be ignored due to the transportation of the
mesenteric bed after removal from the Pharmacology department to the laboratory at

the Western General Hospital varied from between 1 hour to 3 hours, thus, plasticity

of the ETb receptor could be occurring over this period.

Interestingly, the results of the SRTX S6c used as an agonist do suggest that the

arteries from the 12 week CHF rats have no functional contractile ETB receptors,

which could partially explain the reduced ET-1 vasoconstriction. However, when

STRX S6c was used as an antagonist, whereby the ETB receptors were desensitised,

the lack of vasoconstriction to STRX S6c as an agonist became more understandable.

Comparable to the previous chapters results, STRX S6c desensitisation in the arteries

from the sham-operated rats and the 5 weeks post-ligation animals had no effect on the

ET-1 CRCs, but the ET-1 CRC in the 12 week CHF arteries was shifted to the left. In

fact, the ET-1 response, after SRTX S6c desensitisation, was now biphasic and

similar to the vasoconstrictions in the sham-operated control arteries. These results

suggest that an inhibitory, ETB receptor on the VSMC layer has become active by

either up-regulation or an alteration of the second messenger systems associated with

the ETb receptors already present on the VSMC layer. Indeed, inhibitory ETB

receptors have been demonstrated previously (Seo, 1996; Mickley et al., 1997).

Inhibition of ETB receptors with Res 701-1 in human denuded gastroepiploic arteries

potentiated ET-1 constrictions suggesting the presence of inhibitory ETB receptors

negatively modulating ETA receptor stimulation (Seo, 1996). Similarly in the previous

chapter, SRTX S6c desensitisation or BQ-788 pretreatment slightly, but not

significantly, enhanced ET-1 vasoconstrictions (Mickley et al., 1997).
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The endothelial ETB receptor produces vasodilatation by stimulating the release of NO,

PGI2 and possibly EDHF. Whether this putative inhibitory VSMC ETB receptor acts

via similar mechanisms should be investigated by the repeating experiments when in
the presence of a NOS or EDHF inhibitor. More specifically, the experiments should

be repeated using a cNOS inhibitor since it is believed that the inducible form of NOS

is up-regulated in heart failure (or comparison of a non-specific NOS inhibitor such as

L-NAME and a specific iNOS inhibitor, e.g. aminoguanidine). However, it is

unlikely that these ETB receptors activate cNOS, since it is usually located in the

endothelium, but not in VSMC layer of blood vessels. A COX product like PGI2 is

unlikely to be relevant, as all experiments were performed in the presence of

indomethacin.

Intracellular crosstalk might also be involved where the ETB receptor may lower the

affinity of ET-1 for ETA receptors. Ozaki and colleagues (1997) performed an

interesting experiment using transfected human Girardi heart cells. Girardi cells are

derived from human atria and are a unique cell line which express ETB, but not ETA

receptors. Transfection of ETA receptor cDNA into Girardi cells resulted in co-

expression of ETa/ETb in the ratio of 4:6. Using binding experiments they showed in

the transfected cells that ETB receptor ligands (BQ-3020 and BQ-788) had low binding

affinities, especially when compared to the binding affinities in the non-transfected,

ETb receptor Girardi cells. BQ-123 displaced 125I-ET-1 in the transfected cells in a

biphasic manner. However, BQ-3020 and BQ-788 had high affinities for the ETB

receptors in binding experiments where the ETA receptors had been masked using BQ-

123 (Ozaki et al., 1997). The functional abilities of the ET receptors in these cells
were assessed by measuring intracellular Ca2+ concentrations. It was demonstrated

that BQ-123 inhibited 80% of the ET-1-induced increase in intracellular Ca2+

concentrations in the transfected cells, whereas BQ-788 had no effect at all. However

when BQ-123 and BQ-788 were combined, ET-l-mediated increases in intracellular

Ca2+ concentrations were completely abolished. In a further experiment, investigating
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the inhibitory effects of ET-1 on forskolin-stimulated cAMP accumulation, in the non-

transfected cells BQ-788 abolished the ET-1-induced decrease in cAMP levels.

However, there was no significant effect of BQ-788 in the transfected cells.

Interestingly, there was also no inhibition by BQ-123 of the ET-1 inhibition of

adenylate cyclase activity in the transfected cells, but once again, when in combination

with BQ-788, BQ-123 completely blocked the ET-1 inhibition of forskolin-induced
cAMP accumulation (Ozaki et al., 1997). The authors concluded from these

experimental results that intracellular crosstalk mechanisms were occurring, and that

stimulation of ETA receptors induces a characteristic change in ETB receptors through

intracellular signalling (since similar experiments performed using only the cell

membranes resulted in no lowering of affinity of the ETB receptor ligands). Thus, this

change alters the affinity of the ETB receptor ligands for the ETB receptor possibly by a

partial desensitisation of the ETB receptor (Ozaki et al., 1997). Although these results
show an action of the ETA receptor on the ETB receptor, it is quite plausible that the

ETb receptor could have an action, via the intracellular G-proteins, on the ETA

receptor. Therefore, the inhibitory ETB receptor present on the 12 week CHF rat

mesenteric arteries could be acting by either: i) inducing a slight conformational change

in the ETA receptor such that it lowers the binding affinity of ET-1; or ii) acting as a

break on the stimulatory G-proteins of the ETA receptor, by part of the ETB receptor

inhibitory G-protein (a or py-subunits) binding to that of the ETA receptor apparatus.

Deglycosylation of ETB receptors can result in a decreased ability of the receptor to

bind ligands (Sokolovsky et al., 1992). Furthermore, it has been demonstrated that

ET-1 can induce ADP-ribosylation of the inhibitory subunit of G-protein complexes

(Kelly et al., 1990; Sokolovsky, 1993). Hence, stimulated ET-1 receptors have the

ability to influence G-protein complexes. The paper from Ozaki and colleagues (1997)

may also provide a partial explanation for the results in the previous chapter. This will

be discussed in the General discussion as this paper was not published until after the

completion of the work for the last chapter.
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BQ-123 was used to investigate the role of the ETA receptor. In the sham-operated rat

mesenteric arteries BQ-123 inhibited the whole ET-1 vasoconstriction, shifting the

whole ET-1 CRC to the right. In contrast to the results of the previous chapters, there

was not a biphasic inhibition. The reasons for this are not clear. Although it may be

due to the different environments where the animals were bred and housed, as well as

seasonal changes and the animals being of different ages. Furthermore, the sham-

operated rats did have a surgical procedure performed on them, whereas the rats in the

previous chapter did not. The only difference in the experimental conditions, was the

presence of indomethacin in the Krebs-Henseleit solution in this study, suggesting that

the ETB receptors in the previous study were releasing a constrictor COX product.

However, in this study, in these arteries it appears that ETA receptors mediate the

majority of ET-1-induced vasoconstriction despite the apparent biphasic shape of the

ET-1 CRC, although ETB receptors may play a minor role in the constrictions, as

suggested by the small constrictions seen to SRTX S6c. The ET-1 CRC was also

shifted to the right by BQ-123 pretreatment in the 5 week post-ligation rat mesenteric

arteries. On close examination of the graph the biphasic nature of the CRC appears to

be retained, with similar vasoconstrictions to the lower concentrations as those of the

control ET-1 CRC,.but with the higher concentrations shifted to the right. This BQ-

123-insensitive portion of the ET-1 CRC is probably ETB receptor mediated.

However, as with the sham-operated rat arteries it is the ETA receptor which mediates

the majority of the ET-1 vasoconstriction. The whole monophasic ET-1 CRC in the 12

week CHF rat arteries was shifted to the right in a parallel manner, implying that there

were no functional constrictor ETB receptors present. Curiously, the CRC in the 12

week CHF arteries was shifted less than the CRC in the 12 week sham-operated

vessels, but to the same point on the graph such that they were superimposed. This is

surprising if there are inhibitory ETB receptors present. It would be expected that once

the ETa receptors are antagonised that the ET-1 CRC would be shifted further to the

right since the inhibitory ETB receptors would be stimulated and ET-1 will be

competing with the antagonist to stimulate the ETA receptors. A simple explanation for

this could be because there are more molecules of ET-1 to bind to the ETB receptors

147



when the ETA receptor binding sites are occupied by BQ-123, the ETB receptors

undergo tachyphylaxis and the restraining influence on the ETA receptors is removed.

Thus, at the higher concentrations of ET-1 and the BQ-123 blockade is being

overcome, the ETA receptors are now free to induce constriction.

Combination non-selective blockade of the ET receptors by BQ-123 and SRTX S6c

desensitisation inhibited the entire ET-1 CRC in the sham-operated rat arteries in a

parallel manner. In the arteries removed from the 5 week CHF rats the ET-1 CRC was

also shifted in a parallel manner, with the vasoconstrictions to the lower concentrations

of ET-1 inhibited. This suggests that, similar to the observations in the previous

chapter, ETB receptor inhibition alone (by desensitisation) was compensated for by the

ETa receptor (Mickley et al., 1997), although the ETB receptor constrictor contribution

in these vessels was less than that reported before. Finally, non-selective blockade in
the 12 week CHF rat arteries also shifted the ET-1 CRC to the right in a parallel

manner.

As has been demonstrated by the acute infusion studies, ET-1 receptor antagonists

reverse established ET-1-induced tone (Warner et al., 1994). However it is not known

how quickly ET-1 vasoconstriction is reversed by ET-1 receptor antagonism,

especially as it believed that ET-1 binding, once it occurs, is essentially irreversible

(Marsault et al., 1993). Furthermore, it is believed that the ET-l-receptor complex is

internalised where ET-1 is degraded slowly off the receptor which is then externalised

for further stimulation (Marsault et al., 1993). Thus, an additional aim of this chapter

was to investigate how quickly the antagonists BQ-123 or TAK-044 reversed the

established constriction to the highest concentration of ET-1 (3xl08M).
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Both BQ-123 and TAK-044 reversed ET-l-induced tone. With both antagonists there

remained a partial constriction, although TAK-044 apparently reversed the tone faster
and in a more complete manner than the BQ-123. This might reflect the dual inhibitory

properties of TAK-044, blocking the constrictor ETA and ETB receptors since

combination antagonist pretreatment resulted in greater inhibition of the ET-1 CRC
than BQ-123 alone. However, it could also reflect the different potencies of the

antagonists at the ETA receptor. The IC50s for BQ-123 (Ihara et al., 1991) and TAK-
044 (Kukuchi et al., 1994) at the ETA receptor are 7.3xl09 & lxl010M respectively.

The concentration of both antagonists used was 10 5M which is clearly greater than the

estimated IC50s. In rat aortic rings established ET-1 constrictions were reversed

slowly by BQ-123 (105M) and PD 145065 (105M), a non-selective ETA/ETB receptor

antagonist (Warner et al., 1994). However, in this preparation it took approximately

40 min to reverse the tone to similar levels that were attained in the mesenteric arteries

within 20 minutes in this study. Furthermore, a lOx higher concentration of ET-1 was

used in this study prior to reversal, than was used in the rat aortic ring study (Warner

et al., 1994). These results could imply that the whole ET-1-receptor complex

internalisation, degradation and subsequent receptor externalisation might occur at a

faster rate in resistance arteries than in the larger conduit arteries.

To summarise the results, it appears that in the earlier stages of CHF there is no

difference in sensitivity to ET-1 in the resistance arteries of the mesenteric bed. ETA

receptors on the YSMC layer mediated the majority of the response, if not all to ET-1

in the arteries from the sham-operated animals. In the arteries from the 5 week CHF

rats, some constrictor ETB receptors were evident, although ETA receptors were

responsible for most of the constrictions to ET-1. However, at 12 weeks post¬

infarction the mesenteric arteries have a reduced sensitivity to ET-1 which is not due to

receptor down-regulation but appears to be mediated by the emergence of a inhibitory

ETb receptor on the VSMC layer. As a consequence of these results it would suggest

that dual non-selective ETA/ETB receptor antagonism would be a less advantageous
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method than selective ETA antagonism to reduce ET-1 vasoconstriction in heart failure.

Furthermore, it must be stressed that these studies were performed in denuded arteries

and the actions of the dilatory endothelial ETB receptor in counterbalancing ET-1

vasoconstriction have not been investigated. Thus, if in heart failure the endothelial

ETb receptor is preserved, it would be sensible not to inhibit ETB receptors. In

addition, ETB receptors are partly responsible for the removal of circulating ET-1 and

antagonism would result in the further rise of plasma ET-1 levels (Fukuroda et al.,

1994c).

Other studies have demonstrated a blunted vasoconstriction to exogenous ET-1 in CHF

in vivo usually by infusion of ET-1 into anaesthetised animals. A reduced pressor

response to ET-1 was shown in 3 week post-ligation CHF rats (Fu et al., 1993) and
attenuated systemic and regional vascular constrictor responses in the RVP dog model
were also demonstrated (Cavero et al., 1990). In the TIVCC dog model of CHF an

intracoronary infusion of ET-1 produced an attenuated reduction of coronary blood

flow and vascular resistance when compared to control dogs (Cannan et al., 1996).

Curiously, it was found that intracoronary SRTX S6c induced a significant decrease in

coronary blood flow and vascular resistance in the TIVCC dogs, whereas in the

control animals there was no effect on the coronary vasculature. Furthermore, SRTX

S6c induced a 2 to 3 times greater coronary vasoconstriction in the CHF dogs than ET-

1. Therefore, in this model of CHF in the coronary bed, there may have been an

hypotensive ETA receptor modulating the vasoconstrictor actions of up-regulated ETB

receptors. If this occurs in the human setting of CHF, it would obviously be

advantageous to inhibit ETB receptors.

Endothelin receptor antagonists have been used in several animal models of CHF to

assess whether blockade of the ET system lowers vascular resistance, reduces cardiac

hypertrophy and improves survival. The first study investigating the usefulness of ET
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antagonists in heart failure using the LCAL rat model was Teerlink and colleagues

(1994b) utilising the orally active non-selective ETA/ETB receptor antagonist bosentan.
A single high dose of bosentan (lOOmg/kg) administered to rats 2, 4 and 8 weeks post-

ligation significantly decreased mean arterial pressure in conscious CHF rats over a 48

hour period, with the effect on MAP increasing in the later stages of heart failure.

However, it was found that bosentan also lowered that MAP in the respective sham-

operated rats to a similar degree. Thus, bosentan was acting as a hypotensive agent.

However, similar results were seen using a single dose of the ACE inhibitor cilazapril.

The most important finding of this study was that a combination therapy of bosentan
and cilazapril reduced the MAP to a greater extent than when given alone, having

synergistic effects on each others actions (Teerlink et al., 1994b).

Acute administration of BQ-123 for 2 hours in 3 week CHF rats (Sakai et al., 1996a)

resulted in a decrease in heart rate and myocardial contractility, but did not affect MAP

or any of the haemodynamic parameters in the sham-operated rats. Since the heart rate

of the CHF rats was similar to the sham-operated rats prior to, and was significantly

reduced after, BQ-123 infusion, and the LVEDP was increased by BQ-123, it was

suggested that the activation of the ET-1 system at this early time-point in heart failure

was to maintain cardiac function.

ETa blockade by an acute infusion of FR 139317 into TIVCC dogs resulted in

significant decreases in MAP and, more importantly in relation to this thesis, systemic

vascular resistance (SVR). However, the renal vascular resistance (RVR) was

increased (Clavell et al., 1996). In the microembolism dog model of CHF, bolus dose

of bosentan also significantly atttenuated SVR, as well as LVEDP, and as a result

increased cardiac output (Shimoyama et al., 1996). However, in both studies heart

rate in the CHF dogs was unaffected by ETA receptor inhibition, as were all the

haemodynamic parameters in the sham-operated control dogs (Clavell et al., 1996;
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Shimoyama et al., 1996). Therefore, in these studies it is clear that ET-1 is involved in
the increased SVR, and the antagonists were not acting simply as general hypotensive

agents. Thus, the ET-1 system is activated and is involved in the systemic

vasoconstriction characteristic of CHF.

Sakai et al. (1996b) were the first group to demonstrate the beneficial effects of ET-1

receptor antagonism in heart failure. In LCAL rats, BQ-123 was administered using a

subcutaneously implanted mini osmotic pump for 12 weeks. BQ-123 administration

almost doubled the number of CHF rats surviving. The 12 week survival of rats

treated with BQ-123 was 85% as compared with 43% of the CHF animals treated with

saline (Sakai et al., 1996b). The LVEDP was significantly reduced and myocardial

contractility improved in the treated CHF group. Furthermore, the raised central

venous pressure was completely reversed back to that of the sham-operated animals

(Sakai et al., 1996b). In addition, BQ-123 treatment significantly slowed the

progression of left ventricular dysfunction and prevented ventricular remodelling

(Sakai et al., 1996b).

In an impressive study by Mulder and colleagues (1997), LCAL rats were treated for

either 2 or 9 months with bosentan or placebo control. Two doses of bosentan were

used, 30 or 100 mg/kg/day taken in the food. Only the highest dose had any effect

(Mulder et al., 1997), so all the results discussed are concerned with the animals

treated with 100 mg/kg. At 9 months, bosentan significantly improved survival (47%

untreated vs 65% bosentan). At 2 months, bosentan treatment had no effect on

mortality, because survival was so high (Mulder et al., 1997). Furthermore, bosentan

treatment had significant effects on the haemodynamics of CHF rats. MAP, heart rate,

central venous pressure, LVEDP, plasma catecholamines, urinary cGMP, left

ventricular (LV) collagen, LV dilatation and hypertrophy were all significantly reduced

and contractility of the non-infarcted LV wall improved by treatment. Therefore, high
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dose bosentan reduced afterload and preload via arterial and venous dilatation, and

improved cardiac output through a combination of the arterial and venous effects and

the cardiac effects of reduced hypertrophy, fibrosis and dilatation (Mulder et al.,

1997).

From the results of Sakai and colleagues (1996b) and Mulder and co-workers (1997) it

is obvious that ET-1 receptor antagonism is beneficial in heart failure. However, it is

still unclear whether a selective ETA or non-selective ETA/ETB antagonist should be

used for the treatment of CHF. It was the aim of this chapter to elucidate the receptors

present on the VSMC wall of resistance arteries removed from CHF rats at two

different time points. In the earlier stage of CHF there was no alteration in the

sensitivty to ET-1, although there was an emergence of an ETB receptor mediating the

constrictions at the lower concentrations of ET-1. However, as in the sham-operated

healthy mesenteric arteries, the ETA receptor mediates the majority of the

vasoconstriction. At a later stage of CHF there was a reduced vasoconstrictor

response to ET-1 which could be attributed to the emergence of an inhibitory ETB

receptor on the VSMC layer. This result is in agreement with in vivo studies showing

a reduced pressor response to exogenous ET-1 although no other study has

investigated the functional ET-1 receptors present on the vasculature of CHF animals.

Therefore, these findings are novel and suggest that an ETA receptor antagonist, rather

than a combined ETA/ETB receptor antagonist, should be more effective in reducing the

peripheral vascular resistance characteristic of CHF. Furthermore, despite powerful

constriction to ET-1 in these vessels the established constrictor response can be

reversed quite readily. This latter observation might be important in other clinical

conditions, such as acute renal failure or subarachnoid haemorrage, where rapid

reversal of ET-1 constriction of renal and cerebral resistance vessels would be

required.
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5 week Sham-
Operated

5 week Post-

Ligated
12 week Sham-

Operated
12 week Post-

Ligated

Resting
Diameter

292 ± 9.8 294.4 ± 7.6 284.8 ± 8.8 304.6 ± 12.1

KC1
Diameter

57.6 ± 2.8 55.5 ± 1.8 55.6 ± 2.2 59.6 ± 2.9

PE
Diameter

54.4 ± 2.4 52.6 ± 2.8 56 ± 2.8 61.7 ± 2.7

Table 4.1. Lumen diameter of arteries (|im) from all experimental groups when resting,
during maximum 60 mM KC1 constriction and maximum PE 10-5 M constriction. No
difference in maximal KC1 or PE induced constrictions was observed in the arteries from
the 5 week and 12 week CHF rats when compared to the respective sham-operated
controls.

5 week Sham-
operated

5 week Post-
ligated

12 week Sham-
operated

12 week
Post-ligated

pD2 value for
ET-1 CRC 9.29 9.2 9.49 8.87 *

pD2 value for
SRTX S6c

desensitisation
9.33 9.25 9.42 9 4 **

Table 4.2. Table comparing the pD2 values of the control ET-1 CRCs and after SRTX
S6c desensitisation in 5 week and 12 week CHF rat arteries compared with the respective
sham-operated controls. The pD2 value for the ET-1 CRC in the arteries from the 12 week
CHF rats is significantly lower than the pD2 value for the ET-1 CRC in the respective
sham-operated control (* P=0.04, Students t-test). After SRTX S6c desensitisation in
these 12 week CHF rat arteries the pD2 value was restored to similar value of the 12 week
sham-operated controls, and is now significantly different from the control ET-1 CRC pD2
(** P=0.04).
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Figure 4.1.A. Comparison of the contractile responses to ET-1 in
small mesenteric arteries from 5 week post infarct, CHF rat (• ,

n=8) and control 5 week sham-operated rats ( O > n=8). There was
no difference in the sensitivity of the arteries to ET-1 from the
CE1F rats when compared with the sham-operated animals (P>0.05
ANOVA).
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Figure 4.I.B. Comparison of the contractile responses to ET-1 in
small mesenteric arteries from 12 week post infarct, CHF rat (# ,

n=8) and control 12 week sham-operated rats ( O , n=8). The
sensitivity of the arteries from the CHF rats was significantly
reduced when compared with the sham-operated animals (P<0.05
ANOVA).
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Figure 4.2.A. SRTX S6c-induced constrictions in the mesenteric arteries
from the 5 week animal groups. SRTX S6c induced small constrictions in 3
out of 6 of the vessels studied from the 5 week sham-operated rats (O ) and 3
out of 4 of the vessels studied from the 5 week post-ligation rats (• ). In the
latter group, tachyphlaxis of the ETB receptor can be seen at the highest
concentration of SRTX S6c.
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Figure 4.2.B. SRTX S6c-induced constrictions in the mesenteric arteries from
the 12 week animal groups. SRTX S6c induced small constrictions in 4 out
of 6 of the vessels studied from the 12 week sham-operated rats ( O ).
However, only 1 out of 6 of the vessels studied from the 12 week post-
ligation rats ( # ) constricted to SRTX S6c. In the sham-operated rats,
tachyphlaxis of the ETB receptor can be seen at the highest concentration of
SRTX S6c.
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Figure 4.3.A. The effect of the ETA receptor antagonist BQ-123 on the
ET-1 concentration-response curve (CRC) in the small mesenteric arteries
from 5 week post- infarct, CHF rats (#, n=8) and 5 week sham-operated
control rats ( O , n=8). Preincubation with BQ-123 (10'^M) for 30 min
shifted the entire ET-1 CRC in the mesenteric arteries from both the CHF
rats ( ■ , n=6) and sham rats (□ , n=6). P<0.05 as compared to the
respective control ET-1 CRCs.
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Figure 4.3. B. The effects of BQ-123 on the lower concentrations of ET-
1-induced constrictions in arteries from 5 week post-infarct CHF rats and
sham-operated controls. In the sham-operated rat arteries the constrictions
to ET-1 ( D ,n=8) were significantly inhibited by BQ-123 ( O , n=6,
**P=0.003, ANOVA). However, the constrictions to the lower
concentrations of ET-1 ( M , n=8) in the CHF rat arteries were not
significantly (NS) inhibited by BQ-123 (• , n=6) when compared by
ANOVA (P=026).
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Figure 4.3.C. The effect of the ET^ receptor antagonist BQ-123 on the
ET-1 concentration-response curve (CRC) in the small mesenteric arteries
from 12 week post- infarct, CHF rats (#, n=8) and 12 week sham-operated
control rats (O , n=8). Preincubation with BQ-123 (lCT^M) for 30 min
shifted the entire ET-1 CRC in the mesenteric arteries from both the CHF
rats ( ■ , n=6) and sham rats (□ , n=6). P<0.05 as compared to the
respective control ET-1 CRCs.
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Figure 4.4.A. The effect of ETB receptor desensitisation on ET-1-induced
vasoconstrictions in the small mesenteric arteries from 5 week post-infarct,
CHF rats and 5 week sham-operated rats. ETB receptor desensitisation by
prolonged SRTX S6c exposure had no effect on the ET-1 CRC in the sham-
operated arteries (□ , n=6) as compared to the arteries challenged with ET-
1 CRC alone (O , n=8) or in the 5 week CHF rat mesenteric arteries (■ ,

n=5) when compared to the vehicle control ET-1 CRC (•, n=8).
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Figure 4.4.B. The effect of ETB receptor desensitisation on ET-l-induced
vasoconstrictions in the small mesenteric arteries from 12 week post-
infarct, CHF rats and 12 week sham-operated rats. ET„ receptor
desensitisation by prolonged SRTX S6c exposure had no effect on the ET-1
CRC in the sham-operated arteries (O , n=6) as compared to the arteries
challenged with ET-1 CRC alone (O, n=8). However, the sensitivity to ET-
1 was restored by ETB receptor desensitisation in the 12 week CHF rat
mesenteric arteries (H , n=6), being significantly shifted to the left when
compared to the vehicle control ET-1 CRC (•, n=8; ANOVA P<0.05).
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Figure 4.5.A. Non-selective ETA/ETB receptor antagonism shifted
the ET-1 CRC in arteries from both 5 week animal groups to the
right. The constrictions to ET-1 after BQ-123 and SRTX S6c
exposure in the 5 week CHF (A , n=4) and sham-operated controls
(A, n=6) were significantly difference from the respective ET-1
CRC controls, 5 week CHF (# , n=8) and sham-operated rats (O ,

n=8), P<0.05 ANOVA.
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Figure 4.5.B. Non-selective ETA/ETB receptor antagonism shifted
the ET-1 CRC in arteries from both 12 week animal groups to the
right. The constrictions to ET-1 after BQ-123 and SRTX S6c
exposure in the 12 week CHF (A, n=6) and sham-operated controls
(A , n=6) were significantly difference from the respective ET-1
CRC controls, 12 week CHF (# , n=8) and sham-operated rats (O ,

n=8), P<0.05 ANOVA.
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Figure 4.6. A. Reversal of established ET-1 -induced tone in arteries from 5 week
CHF and sham-operated rats. After maximum constriction was established with
the highest concentration of ET-1 either BQ-123 (10"5M, n=5,D ), TAK-044 (10"
5M, n=6ji ) or vehicle ( n=5,# ) was added to the superfusate and reperfused for
20 minutes with lumen diameters recorded at 0, 5, 10, 15 and 20 minutes. *
indicates P<0.01 ANOVA when either BQ-123 or TAK-044 reversal curves were

compared to the vehicle control curve.
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Figure 4.6. B. Reversal of established ET-l-induced tone in arteries from
12 week CHF and sham-operated rats. After maximum constriction was
established with the highest concentration of ET-1 either BQ-123 (10'5M,
n=5,C3 ), TAK-044 (10"5M, n=6,H ) or vehicle ( n=5,# ) was added to the
superfusate and reperfused for 20 minutes with lumen diameters recorded
at 0, 5, 10, 15 and 20 minutes. * indicates P<0.01 ANOVA when either
BQ-123 or TAK-044 reversal curves were compared to the vehicle control
curve.
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Results Chapter 3

Attenuated constrictor responses to ET-1 in gluteal
small arteries from CHF patients: A result of raised

plasma big ET-1 levels ?



F. 1.1. Introduction

The majority of studies in human heart failure subjects have focused solely on the

circulating levels of ET-1. Activation of the ET-1 system has been demonstrated

repeatedly in heart failure where plasma ET-1 (Cody etal., 1992; Lerman et al., 1992;

McMurray et al., 1992; Rodeheffer et al., 1992) or big ET-1 (Pacher et al., 1993; Wei

et al., 1994; Pacher et al., 1996) levels are raised. However, functional studies, where

locally acting doses of ET-1 and SRTX S6c were infused into the forearm resistance

bed (Love et al., 1996a), have also been performed. Consistent with increased ET-1

generation in CHF, there was a reduced vasoconstrictor response to ET-1 in the

resistance beds of the CHF patients when compared to the normal control subjects. In

contrast, the vasoconstriction to SRTX S6c was enhanced in the CHF patients (Love et

al., 1996a). This work suggests there is an up-regulation of constrictor ETB receptors

in human CHF. Furthermore, similar observations were reported in the coronary

resistance bed in a dog model of CHF (Cannan et al., 1996; See E. 1.4.).

A handful of ET antagonist studies have recently been performed in human heart

failure. Forearm infusions of the ECE inhibitor phosphoramidon and the ETA receptor

antagonist BQ-123 both increased forearm blood flow (vasodilatation; Love et al.,

1996a) in CHF patients. Intriguingly, the selective ETB receptor antagonist BQ-788,

when infused into the brachial arteries of CHF patients, induced a decrease in forearm

blood flow (Love et al., 1996b). This observation implies that the endothelial ETB

receptor dilator response predominates in the vasculature of CHF patients despite

possibly up-regulated ETB constriction. Nevertheless, the first clinical trial of an ET

antagonist in CHF showed that a systemic infusion of the non-selective ETA/ETB

antagonist bosentan increased cardiac output and decreased systemic and pulmonaiy

vascular resistance (Kiowski et al., 1995).

In vitro experiments on resistance arteries from heart failure patients have shown

impaired constrictions to various agonists (Angus et al., 1993). Arteries were obtained

from CHF patients by means of a skin biopsy from the buttock area and maximum
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contractions to KC1, NA, ANG I and ANG II were significantly reduced compared to

the responses seen in arteries from healthy volunteers. These observations may reflect
the activation of the sympathetic nervous and RAA systems in CHF.

The aim of this chapter was to assess the reactivity and sensitivity to ET-1 of small

arteries from gluteal biopsies in patients with heart failure and age-matched controls.

Furthermore, up-regulation of constrictor ETB receptors in the arteries from the CHF

patients was investigated using STRX S6c as an agonist. The relative contributions of

the ET-1 receptors were also assessed using BQ-123, SRTX S6c desensitisation and a

combination of both treatments. The reversal of established ET-1 tone was

investigated using BQ-123 and TAK-044. Furthermore, in order to ascertain whether

there is an activation of the ET-1 system in the CHF patients, radioimmunoassay for

ET-1 and big ET-1 was performed on plasma samples from all subjects.

F. 1.2. Methods

F. 1.2.1. Biopsy procedure

All biopsies were undertaken in the morning and the subjects were asked to abstain

from eating and drinking caffeine-containing beverages from 12 hours prior to the

biopsy being performed. Furthermore, the CHF patients were asked to refrain from

taking their medication on the morning of the biopsy. In all subjects an ECG, blood

pressure and heart rate were measured and blood samples were taken before starting

the biopsy procedure. The gluteal biopsy (-0.75 cm wide x 0.75 cm deep x 2 cm

long) was removed from the right buttock under local anaesthesia and immediately

transferred to cold Krebs-Henseleit solution (See Section C. 1.1.3.)

F. 1.2.2. ET-1 & big ET-1 radioimmunoassay

Plasma ET-1 and big ET-1 levels were measured by radioimmunoassay. ET-1 and big

ET-1 were extracted by acidification of the plasma samples using 20% acetic acid

(2.5ml:2.5ml) and applied to preactivated extraction columns (using 10% acetic acid or

trifluoroacetic acid for ET-1 or big ET-1 extraction respectively) and eluted with the
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appropriate elution buffer (See Section C. 3.2.1.). The eluates were dried under

nitrogen and reconstituted with assay buffer. The samples were incubated with the

appropriate antibody (Ab). The anti-human ET-1 Ab was incubated for 4 hours at

room temperature or with the anti-human big ET-1 Ab overnight at room temperature.

Following Ab incubation, 125I-ET-1 or 125I-big ET-1 were added to the samples and

incubated overnight at 4°C. The Ag/Ab complexes were separated using Amerlex, the

supernatant aspirated and the radioactivity of the resulting pellets counted in a Gamma
counter.

F. 1.2.3. Perfusion myograph studies

Arteries were dissected from the biopsy whilst immersed in cold Krebs-Henseleit

solution. All of the following studies were carried out in random order and only one

ET-1 CRC was performed per tissue.

F. 1.2.3.1. ET-1 and SRTX S6c study

After dissection, arteries were mounted in a perfusion myograph and the initial 'wake

up' and denudation procedures performed. After the reperfusion circuit had been

started, arteries were superfused for 1 hour with Krebs-Henseleit solution and a ET-1

CRC (10-13-3xlO8M) was obtained. Cumulative CRCs to SRTX S6c (1012-3xl0-8M)

were also performed in different arteries. However, in these arteries the SRTX S6c

CRC was constructed 5 min after the reperfusion circuit had been set up because these

arteries were used as the SRTX S6c desensitisation group (See below F. 1.2.3.2.).

F. 1.2.3.2. Receptor antagonism study

Some arteries were exposed to 30 min reperfusion of Krebs-Henseleit solution

followed by a 30 min incubation with BQ-123 (106M) and an ET-1 CRC (10"13-3xl0-

8M) obtained. In the arteries which had been exposed to the SRTX S6c CRC, the

arteries were washed with Krebs-Henseleit solution, a new reperfusion circuit started

and challenged with SRTX S6c (3x10 8M) for 30 min and an ET-1 CRC constructed.

This constituted the ETB receptor desensitisation group. For the non-selective ETA/ETB
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receptor antagonist group, arteries were challenged with SRTX S6c (3xl08M) for 30
min twice (with a wash out period of 10 min between each exposure) plus BQ-123 (10-

6M) in the second 30 min period prior to a ET-1 CRC.

F. 1,2.3.3. Reversal study

In the vehicle control vessels which were exposed to an ET-1 CRC only, once the

maximum constriction to the highest concentration of ET-1 (3x10 8M) was established,

either BQ-123 (105M), TAK-044 (105M) or vehicle control (Krebs-Henseleit

solution) was added to the reperfusion circuit and reperfused for 20 min. Lumen

diameter measurements were taken at 0, 5, 10, 15 and 20 min after the addition of the

antagonist.

F. 1.2.3.4. Intrinsic tone

At the conclusion of all experiments, arteries were exposed to Ca2+-free Krebs-

Henseleit solution (by addition of 104M EDTA) and 10 5M SNP. The lumen size of

the relaxation was compared to the lumen size at the beginning of the experiment,

before the SRTX S6c CRC and ET-1 CRC.

F. 1.3. Results

F. 1.3.1. Haemodynamic parameters

BP, HR and ages were similar between the CHF patients and control (Tables 5.1. &

5.2., mean ages were 67.9±3.6 vs 66.7+3.0 years, controls vs CHF; P=0.8, Students

t-test). Mean heart rate 67.7+2.3 vs 71.6+4.3 beats per min, controls vs CHF; P=0.5,

Students t-test), systolic blood pressure (136.2+5.9 vs 137.5+7.9 mmHg, controls vs

CHF; P=0.9, Students t-test) and diastolic blood pressure (80.0+2.7 vs 77.5+3.7

mmHg, controls vs CHF; P=0.6 Students t-test) were all similar. Serum creatinine,

urea and glucose were all within normal limits, confirming the lack of renal impairment

in the CHF patients. The NYHA Class and drugs prescribed were all obtained from

the patients' notes (Table 5.1.). One patient was NYHA Grade I, seven patients were

NYHA Grade II and four patients were NYHA Grade III (See Table 5.1). All patients
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took aspirin and 11 out of 12 patients took diuretics. All patients were using ACE

inhibitors, except for one patient who was administered losartan as an alternative.

Other drugs administered were nitrates (5 out of 12), digoxin (3 out of 12) and [)-
blockers (1 out of 12). Ischaemic heart disease was the cause of heart failure in all

patients.

F. 1.3.2. Plasma ET-1 and big ET-1 levels

The plasma ET-1 levels were similar between age-matched controls and CHF patients

(3.4±0.3 vs 3.3±0.1 pg/ml patients vs controls; P=0.7, Students t-test; Figure 5.1.).

However, the levels of big ET-1 were significantly higher in the plasma from the CHF

patients as compared to the age-matched controls (8.9±1.3 vs 17.1±1.7 pg/ml controls

vs patients, P=0.002, Students t-test).

F. 1.3.3. Effects of KCl, PE and ACh

There was no difference in the maximum constrictions to KCl or PE in the arteries

from the age-matched controls and CHF patients. Furthermore, the relaxations to ACh

in PE preconstricted arteries before endothelial denudation were similar between the

two experimental groups (Table 5.3.). After denudation the relaxation to ACh was

abolished (Table 5.3.).

F. 1.3.4. Effects of ET-1 and SRTX S6c

ET-1 constricted all arteries in a concentration-dependent manner (Figure 5.2.).

However, the arteries dissected from the CHF patient biopsies were significantly less

sensitive to ET-1 (pD2s = 9.4 vs 8.7 controls vs CHF; n=8 each group; P=0.025

ANOVA; Table 5.4.). The maximal constrictions to ET-1 were not different between

the two groups (Figure 5.2.) nor were the mean lumen diameters (227.1±21.6 vs

218.6+20.2 p.m control vs CHF).

SRTX S6c induced constrictions in all arteries from both groups (Figure 5.3.). SRTX

S6c constricted the arteries from the control subjects (n=5, mean lumen dia =
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178.3+15.9 |im), Emax=14±7 % max KC1 constriction at 3xlO'8M. The mean

constrictions to SRTX S6c in the arteries from the CHF patients (n=6, mean lumen dia
= 204.3±6.2 |im) tended to be slightly enhanced when compared to the control

arteries, Emax=21.1±9.4 % max KC1 constriction at lxlO+M, however, this effect was

not significant (P=0.4, ANOVA).

F. 1.3.5. Effects of ETA receptor antagonism

ETa receptor antagonism by pre-incubation with BQ-123 (n=6; mean lumen dia

=235±30 |im) shifted the ET-1 CRC in the control arteries significantly to the right

(Figure 5.4.; P=0.0001 ANOVA). The ET-1 constrictions in the arteries from the

CHF patients were also significantly inhibited by BQ-123 (n=6; P=0.015; mean lumen

dia = 221.7±11.4 |im), although the shift was less marked than the control arteries.

The pD2 values could not be calculated as maximum constrictions to ET-1 in some

arteries were not reached.

F. 1.3.6. Effects of ETB receptor desensitisation

SRTX S6c desensitisation (Figure 5.5.; Table 5.4.) had no effect on the ET-1

constrictions and sensitivities in the arteries from the control subjects (n=6; P=0.52

ANOVA; mean lumen dia = 178.3±15.9 Jim) or from the CHF patients (n=6; P=0.49

ANOVA; mean lumen dia = 204.3±6.2 Jim).

F. 1.3.7. Effects of ETA/ETB receptor antagonism

Combined inhibition with BQ-123 and SRTX S6c desensitisation (Figure 5.6.A.)

significantly inhibited the vasoconstrictions to ET-1 in the arteries from the control

subjects (n=4; P=0.0004 ANOVA; mean lumen dia = 190±26.5 Jim). Combined

antagonism also significantly inhibited the ET-1 CRC in the CHF arteries (n=6;

P=0.0003 ANOVA; mean lumen dia = 203.3±26.5 Jim). In control arteries, the non¬

selective ETa/ETb receptor antagonism inhibited the ET-1 constrictions to a similar

extent as with BQ-123. However, in the CHF arteries, non-selective ETA/ETB receptor
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antagonism was more effective in inhibiting the ET-1 CRC than BQ-123 (Figure

5.6.B.), the whole curve being shifted further to the right.

F. 1.3.8. Reversal study

Similar to the previous chapter, due to the small numbers exposed to an ET-1 CRC

only, there were not enough arteries per group to divide into the 3 reversal treatment

groups of BQ-123, TAK-044 or vehicle to perform any analyses on the results. As a

consequence the reversal data have been combined (Figure 5.7.).

Established ET-1-induced vasoconstrictions were maintained for the 20 min period

when vehicle control (Krebs-Henseleit solution; n=4; Figure 5.7) was added to the

reperfusion circuit. BQ-123 reversed the ET-1 vasoconstriction to 11.3±6.6 % max

KC1 constriction after 20 min of reperfusion (n=6; P=0.004 ANOVA), however,

TAK-044 completely reversed the established ET-1 tone by 15 min of reperfusion (-

4.0±2.5 % max KC1 constriction; P=0.0001 ANOVA). However, statistically

(ANOVA) there was no diference between the reversal abilities of BQ-123 and TAK-

044 (P=0.13).

F. 1.3.9. Intrinsic tone investigation

There was no intrinsic tone in any of the arteries studies. The combination of Ca2+-free

Krebs and chelation using EDTA and direct smooth muscle relaxation with SNP

immediately relaxed the arteries to the initial resting tone measured at the beginning of

the experiment (data not shown).

F. 1.4. Discussion

The gluteal biopsy was an effective method of obtaining resistance arteries from human

subjects with relatively little discomfort to the subject. The vessels were obtained from

either CHF subjects who had established heart failure as a result of ischaemic heart

disease, or healthy age-matched controls. Dissecting small arteries from a gluteal

biopsy is a well-established technique, and has been used mainly in studies
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investigating vascular hypertrophy in hypertension (Schiffrin et al., 1994; Thybo et

al., 1994; 1995). Although it is not known how much these arteries contribute to

peripheral vascular resistance, the studies using small arteries from hypertensive

subjects showed that there is an increase in the media thickness of the vessels from the

hypertensives as compared to the normotensive control arteries (Aalkjaer et al., 1987;

Schiffrin et al., 1994; Thybo et al., 1994; 1995). Furthermore, ACE inhibitor therapy
corrects these structural changes (Schiffrin et al., 1994; Thybo et al., 1994; 1995).

Thus, it is suggested that these arteries are involved in the pathogenesis of

hypertension and that the structural alterations in these vessels could account for part of
the increased peripheral vascular resistance (Aalkjaer et al., 1987).

In a previous study investigating agonist-induced constrictions in resistance arteries

from CHF patient gluteal biopsies, greatly reduced responses to NA, ANG I and ANG

II were found (Angus et al., 1993). It was concluded that the attenuated responses

were as a result of the marked activation of the sympathetic nervous and RAA systems

in CHF (Angus et al., 1993). Thus, the aims of this study were to investigate whether

there was activation of the ET-1 system, by measurement of plasma big ET-1 and ET-1

levels in CHF and if there was an associated reduction in vascular responsiveness to

exogenous ET-1 in resistance arteries from CHF patients.

Circulating ET-1 levels were not found to be raised in the CHF patients. In contrast,

the levels of the precursor peptide, big ET-1, was significantly higher in the plasma of

the CHF patients when compared to the healthy controls. This result is in agreement

with Wei and colleagues (1994) and Pacher and co-workers (1993; 1997) and shows

there is an activation of the ET-1 synthesis pathway. The raised big ET-1, but not ET-
1 levels in the plasma of the CHF subjects suggests an accelerated expression of

prepro ET-1, but a decreased conversion of big ET-1 to ET-1 by reduced ECE activity.

However, there could be an up-regulation of ECE within the VSMCs, such that an

increase in big ET-1 secretion may result in increased concentrations of ET-1 at the

VSMC layer by being converted locally in the media. This is investigated using
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immunohistochemistry in the next experimental chapter (Section G. 1.2. & 1.3.3.).

Furthermore, since ET-1 is preferentially secreted towards the VSMC layer (Wagner et

al., 1992a), the raised big ET-1 may reflect an overspill of endothelially produced big

ET-1 (Wei et al., 1994). Any overspill of the mature form of the peptide may not be

evident due to an increase in clearance/degradation mechanisms.

The RIA results of this chapter show raised big ET-1 levels in the plasma of CHF

patients, the majority of whom are in moderate heart failure (NYHA Grade II). There

is a doubling of big ET-1 levels, which is in agreement with Pacher and colleagues

(1993). This group found that there is a further increase in big ET-1 levels as the

condition deteriorates, correlating with the severity of CHF (Pacher et al., 1993).

Moreover, it was found that plasma big ET-1 levels predict 1 year mortality better than

haemodynamic parameters and levels of plasma ANP (Pacher et al., 1997). Thus, it

has been suggested that plasma big ET-1 levels may be of prognostic value in

determining heart failure severity and outcome.

The viability of the smooth muscle layer in the CHF patients was assessed first, using

agonist-dependent and independent constrictors. The maximum constrictions induced

by KC1 solution or PE were not different between the arteries removed from CHF

subjects and age-matched controls. Furthermore, the endothelium-dependent
relaxations induced by ACh were also similar, showing that vascular integrity is

maintained in the small arteries from CHF patients. This is in contrast to the study by

Angus and colleagues (1993) who found that maximal constrictor responses to KC1

(124 mM solution) and NA (l|lM) were significantly attenuated, as were the

relaxations induced by ACh. The main difference between the two studies is that

Angus et al., (1993) used the wire myograph in contrast to the perfusion myograph
utilised in the present study. However, the CHF patient groups used in both studies

are similar (NYHA II-III). Therefore, severity of heart failure is unlikely to be the

cause of the discrepancies. Nevertheless, in the present study, agonist-dependent and

independent maximal constrictions are similar in the arteries from the CHF patients and
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the control subjects demonstrating that there is no overall damage to the VSMCs in the

resistance arteries from the CHF patients.

ET-1 was a potent constrictor in arteries from both groups, with the maximal

constrictions to ET-1 no different between heart failure and control subjects. In both

experiemental groups of arteries, there is a biphasic response to ET-1, similar to that

demonstrated in the rat arteries in the previous chapter, with a shallow, high affinity

phase and a steeper, low affinity phase. However, the sensitivity to ET-1 was

attenuated in the CHF arteries. Despite the reduced sensitivity of the CHF arteries, the

biphasic CRC to ET-1 remained. Cowburn and co-workers (1996) also saw a reduced

sensitivity to ET-1 in isolated arteries from CHF patients. However, in their study the

maximal constriction to ET-1 was not achieved in the vessels from the CHF patients

(Cowbum et al., 1996). Furthermore, they also saw no difference in the contractile

responses to other constrictor agents (KC1, NA & ANG II). In contrast, gluteal small

arteries from hypertensive patients have an attenuated maximal constriction to ET-

l(Schiffrin et al., 1992), the maximal responses being normalised to those seen in

arteries from normotensive subjects after 1 year of treatment with cilazapril (Schiffrin

et al., 1994).

The reduced sensitivity to ET-1 in the CHF arteries could reflect the up-regulation of

ET-1 synthesis pathway. Although the plasma levels of ET-1 were not raised,

increased big ET-1 secreted towards the VSMC layer could result in higher ET-1 levels

in the media by conversion to the mature peptide by VSMC located ECE. Thus, the

impairment of ET-1-mediated vasoconstriction could be due to ET receptor down-

regulation as a consequence of chronically elevated big ET-l/ET-1 levels (Cowburn et

al., 1996). The constrictor response to ET-1 is similar to those described in previous

chapter in the arteries from the rat model of CHF, therefore, the reduced sensitivity

could be due to the presence of an inhibitory ETB receptor, as opposed to receptor

down-regulation.
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However, unlike the rat mesenteric arteries, SRTX S6c, used as an agonist,

consistently induced small constrictions in all of the human arteries from both groups.

Furthermore, the mean constrictions to SRTX S6c appear to be augmented in the CHF

vessels, although this was not significant. If the study had larger numbers, this trend

towards enhanced ETB receptor-mediated constriction could become significant and

complement the in vivo results of Love et al. (1996a; human forearm resistance

arteries) and Cannan et al. (1996; canine coronary arteries). Both of these studies saw

a reduced constriction to ET-1, but increased vasoconstriction to STRX S6c (Love et

al., 1996a; Cannan et al., 1996). The RAA system is activated in CHF, and it has

shown that although ANG II levels down-regulate total ET-1 binding sites (Roubert et

al., 1989), it also up-regulates ETB receptor mRNA (Kanno et al., 1993). Thus, it has

been suggested that ETB receptors are up-regulated, and that, perhaps, ETA receptors

down-regulated in heart failure resistance arteries.

The involvement of the respective ETA and ETB receptor subtypes in the constrictions

to the native peptide, ET-1, were investigated using BQ-123, SRTX S6c

desensitisation and a combination of these treatments. Antagonism of the ETA receptor

using BQ-123, inhibited the ET-1 vasoconstrictions in vessels from CHF patients and

age-matched control subjects. In all the arteries, there was no part of the ET-1 CRC

which was resistant to BQ-123 inhibition, suggesting that ETA receptors alone mediate

all of the ET-1 response. This is in contrast to Deng and co-workers (1995), who

found that in subcutaneous arteries from healthy subjects, there was a residual

response to ET-1 (-15-20% of the maximum ET-1 constriction) resistant to ETA

receptor blockade.

Interestingly, the ET-1 CRC was shifted further to the right in the control arteries than
in the CHF arteries, suggesting that BQ-123 was a more potent antagonist in these
vessels. This may simply be due to the reduced sensitivity to ET-1 in the CHF

arteries. Indeed, Love et al. (1996a) observed that vasodilatation to a brachial artery

infusion of BQ-123 in CHF patients was blunted in comparison to control subjects. It
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was cautiously suggested that ETA receptors might be downregulated in CHF. As in

this study, Love and colleagues (1996a) were reluctant to withold drug treatment from

the CHF patients for any longer than 24 hours before the study and it is possible that

the persisting vascular effects of the medication may contribute to the differences

observed between patients and control subjects (Love et al., 1996a).

ETb receptor desensitisation did not affect the ET-1 constrictions in the control arteries.

Furthermore, SRTX S6c desensitisation did not alter the sensitivity to ET-1 in the

arteries removed from the CHF patients. This is in contrast to the results in the 12

week CHF rat vessels where ETB receptor desensitisation restored the sensitivity to

that of the 12 week sham-operated arteries. Thus, in the human condition there is not

the appearance of an inhibitory ETB receptor. The differing vascular beds used in the

two studies may account for this discrepancy. The mesenteric bed can receive up to

10% of the total cardiac output and is extremely susceptible to constrictions induced by

ET-1 and BQ-3020 (ETB receptor agonist; Gardiner et al., 1994), whereas the

subcutaneous/gluteal , vascular bed contributes very little to total peripheral vascular

resistance. Moreover, the rat model of heart failure has developed as a consequence of

left ventricular dysfunction over a period of 3 months, whereas human heart failure has

developed over years. Once again, despite the presence of some constrictor ETB

receptors in the vessels from both groups, as shown by the small constrictions to

SRTX S6c, inhibition of the constrictor actions of the ETB receptors does not affect the

ET-1 constriction. Thus, the ETA receptors could be compensating for the loss of the

ETb receptors, and ET-1 receptor crosstalk may also be a phenomenon in human small

arteries. However, BQ-123 pretreatment did inhibit the entire ET-1 CRC, suggesting

that ETa receptors mediate both the high affinity part of the curve, which is usually

attributed to constrictor ETB receptors (Deng et al., 1995), as well as the low affinity

portion of the curve. Deng and colleagues (1995), who demonstrated an ETA receptor

antagonist resistant portion of ET-1 constriction in human subcutaneous small arteries,

concluded that the constrictions to low concentrations of ET-1 were mediated via

constrictor ETB receptors. Unfortunately, they did not inhibit ETB receptors, either by
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receptor desensitisation or antagonism, but based this conclusion on the constrictions

they saw to SRTX S6c (Deng et al., 1995).

Non-selective ETA/ETB receptor inhibition antagonised the ET-1 constrictions in

vessels from both groups. However, BQ-123 and SRTX S6c pretreatment inhibited

the ET-1 constrictions to a larger extent than BQ-123 alone in the arteries from the

CHF subjects, but to a similar extent in the arteries of the control subjects. These
results imply that both ETA and ETB receptors are actively involved in the constrictions
to ET-1 in the arteries of the CHF patients. If these small arteries are truly

representative of the other vascular beds in the human body, then it would suggest that

both ETa/ETb receptors should be antagonised for effective anti-endothelin therapy in

CHF. Indeed, BQ-123 and TAK-044 both reversed the established ET-1 constrictions

in the human arteries. However, TAK-044 restored the arteries back to resting lumen

diameters within 15 min of exposure, again, suggesting that both ETA and ETB

receptors should be antagonised.

Obviously, these experiments should be repeated in resistance arteries with an intact

endothelium in order to evaluate the balance of the endothelial, dilator ETB receptor and
VSMC constrictor ETB receptor in the response to ET-1. In the forearm resistance bed

of healthy subjects, infusion of either BQ-123 (Haynes & Webb, 1994) or TAK-044

(Haynes et al., 1996) caused vasodilatation. However, TAK-044, the non-selective

ETa/ETb receptor antagonist, produced a smaller increase in forearm blood flow than

BQ-123 (Haynes et al., 1996). This suggests that the endothelial ETB receptors prevail

in the balance of effects to ET-1. Furthermore, BQ-788 infusion resulted in a small,

but significant constriction in this vascular bed, and when co-infused with BQ-123

modulated the vasodilatation, again, producing a lesser degree of vasodilatation

compared to BQ-123 alone (Verhaar et al., 1998). As previously described, SRTX

S6c constriction is enhanced in CHF (Cannan et al., 1996; Love et al., 1996a).

Therefore, the balance of dilator/constrictor ETB receptors might be altered to favour

vasoconstriction. However, BQ-788 infusion into heart failure patients induced a
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vasoconstriction similar to that seen in healthy control subjects (Love et al., 1996b).

Thus, it appears that dilator ETB receptors on the endothelium are functionally more

important than constrictor ETB receptors on the arterial smooth muscle in both healthy

subjects and CHF patients (Love et al., 1996b). However, the constrictor ETB

receptors may be antagonised, and if crosstalk is occurring between the two ET-1

receptor subtypes present on the VSMC layer, then the ETA receptor will be

compensating for its constrictor loss. ETB receptor desensitisation in this study had no

effect on the ET-1 constrictions in the CHF arteries, but non-selective ETA/ETB

receptor blockade had a greater inhibitory influence on the ET-1 CRC than ETA

receptor antagonism alone. Therefore, in the forearm studies, even though the VSMC

ETb receptors are antagonised, the ETA receptors will compensate and it would appear

that the endothelial ETB receptor counteracting vasodilatation is the only mechanism
inhibited. Thus, in order to prove that the dilator ETB receptors are functionally more

important than the constrictor ETB receptors in the resistance arteries of CHF patients,
the responses to selective ETA receptor inhibition and non-selective ETA/ETB receptors

need to be compared.

The systemic haemodynamic effects of the non-selective ET-1 receptor antagonist,

bosentan in CHF patients has been assessed (Kiowski et al., 1995). An infusion of

bosentan reduced the mean arterial pressure, pulmonary artery pressure, right atrial

pressure, systemic vascular resistance and pulmonary vascular resistance. Bosentan

increased cardiac output and stroke volume, but did not alter heart rate (Kiowski et al.,

1995). Thus, these changes in haemodynamics suggest that ET-1 antagonism induced

both arterial and venous dilatation in these patients, although which effect dominated

cannot be delineated. This study was performed in CHF patients whose ACE

inhibition had been withdrawn for four plasma half-lives. Whether ET-1 antagonism
has additional benefits when in combination with ACE inhibition has to be evaluated in

humans. Furthermore, plasma concentrations of ET-1, but not big ET-1, increased at

least twofold after bosentan infusion. It was suggested that this could be due to either

displacement of ET-1 from the receptor sites or a decreased clearance of ET-1 due to
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the inhibition of ETB receptors (Kiowski et ai, 1995). As it appears that dilatory ETB

receptors are preserved in heart failure, and that ETB receptors are involved in the

removal of ET-1 from the circulation, the evidence implies that ETA receptor inhibition

would be more effective as a vasodilator therapy in CHF, despite the evidence for up-

regulation of constrictor ETB receptors.

In summary, the results of the present study demonstrate that resistance arteries from

CHF patients are less sensitive to the constrictor actions of ET-1. Down-regulation of

ETa receptors is the most likely explanation, since ETB-mediated constrictions to

SRTX S6c remained in the CHF arteries. Increased circulating levels of big ET-1

demonstrate that the ET-1 synthesis pathway is up-regulated, although plasma ET-1

levels were not raised. Plasma levels of ET-1 are thought to be as an overspill from
the endothelium, with the majority of the peptide being released abluminally (Wagner

et al., 1992a). Therefore, there might be an up-regulation of ECE on the VSMCs to

convert big ET-1 to the mature, vasoactive peptide, which could be responsible for the
decreased sensitivity of the arteries to exogenous ET-1. It cannot be concluded from

the functional experiments in the myograph that there is receptor down-regulation.

Other techniques, such as in situ hybridisation and binding assays, are needed to

confirm this hypothesis. However, the decreased vascular responsiveness to ET-1 is

not due to the presence of a putative inhibitory ETB receptor as demonstrated in the

arteries of the rat model of CHF. Both ETA and ETB receptors capable of mediating

constriction are present on the VSMCs of resistance arteries from gluteal biopsies from

CHF patients and control subjects. Therefore, these results imply that both ET-1

receptor subtypes should be inhibited to effectively remove endogenous ET-1

vasoconstrictor tone in CHF patients. However, endothelial dilatory ETB receptors

appear to be preserved in the forearm vascular bed of CHF patients, and could be

functionally more important than constrictor ETB receptors (Love et al., 1996b).

Hence, the ideal receptor antagonist would be one that blocked constrictor ETA and ETB

receptors, but preserved endothelial ETB receptors.
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PATIENT NYHA Age Blood Heart Rate Drugs
No. Grade Pressure

1 I 42 112/72 61 ACE I, Di, Ni,
Asp

2 II 73 195/95 NA ACE I, Di, Asp
3 II 62 143/105 56 ACE I, Di, Asp
4 II 77 132/66 68 ACE I, Asp,

Dig
5 II 72 175/80 NA ACE I, Di, Asp
6 III 79 132/74 80 ACE I, Di, Ni,

Asp, (3-B1
7 III 77 134/70 NA ACE I, Di, Ni,

Asp, Dig
8 II 71 140/80 100 ACE I, Di, Asp
9 III 78 112/74 78 ACE I, Di, Ni,

Asp
10 II 64 121/68 62 ACE I, Di, Asp
11 III 52 116/68 68 ACE I, Di, Ni,

Asp
12 II 75 192/96 68 Los, Di, Asp,

Dig

Table 5.1. Demographics of the CHF patients who underwent a buttock biopsy. 1
patient was classified as NYHA Grade I, 7 patients were classified as being NYHA
Grade II and 4 patients were classified as NYHA Grade III as determined by each
individual patients cardiologist. Age, blood pressure and heart rate taken at the time of
biopsy are shown. Drugs prescribed are also shown. All patients took aspirin (Asp),
diuretics (Di) and angiotensin converting enzyme inhibitors (ACE I), except patient 4
who did not use a diuretic and patient 12 who was administered losartan (Los) as an
alternative to ACE I. Other drugs used were nitrates (Ni), digoxin (Dig) and (3-
blockers ((3-B1). NA represents data not available.
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CONTROL Age Blood Heart Rate Drugs
No. Pressure

1 63 145/87 71 None
2 73 117/77 55 None
3 69 135/72 70 None
4 69 132/88 75 None
5 75 NA NA Asp/Ni
6 61 134/80 62 None
7 76 127/64 60 None
8 73 182/92 60 None
9 44 128/80 72 None
10 63 126/80 68 None

Table 5.2. Demographics of the age-matched control subjects who underwent a
buttock biopsy. Age, blood pressure and heart rate are shown. Only one subject,
subject 5, was taking any prescribed medication of aspirin (Asp) and a nitrate (Ni). NA
represents data not available.

184



Control Subject CHF Patient
Arteries Arteries

Resting Lumen Diameter 219±14 221±10

+ 60mM KC1 Lumen
Diameter

70±5 70±4

+ 10SM PE Lumen Diameter 68±5 72±4

+ KHM ACh Lumen
Diameter, endothelium intact 199±11 203±9

+ KHM ACh Lumen
Diameters

after de-endothelialisation
65+5 62+4

Table 5.3. Lumen diameter of arteries (pm) dissected from buttock biopsies
removed from CHF patients and age-matched controls when resting, during maximum
60 mM KC1 constriction and maximum 10"5M PE constriction. Also shown is the
lumen diameter after relaxation with ACh before and after endothelial denudation. No
difference in maximal KC1 or PE induced constrictions or ACh-induced relaxations
were observed in the arteries from the CHF patients when compared to the arteries
from the age-matched controls (Students t-test).

Control Subject
Arteries

CHF Patient
Arteries

pD, value for ET-1 CRC, n=8 9.4 8.7*

per group

pD2 value for SRTX S6c 9.03 8.6**
desensitisation, n=6 per group

Table 5.4. Table comparing the pD2 values of the vehicle control ET-1 CRCs and
after SRTX S6c desensitisation in arteries from age-matched control subjects and CHF
patients. The sensitivity of the arteries from CHF patients to ET-1 is significantly
different when compared to the control subjects in the vehicle control group (*P=0.01,
Students t-test) and after SRTX S6c desensitisation (**P=0.04, Students t-test).
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Figure 5.1.
Bar graph of plasma ET-1 (filled columns) and big ET-1 (striped columns)
concentrations from healthy control subjects and CHF patients. ET-1 plasma
levels were similar in both groups, however the plasma big ET-1 levels from CHF
patients of NYHA Class II/III were significantly higher as compared to controls.
Values are mean ± sem, *P<0.01, students t-test.
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Figure 5.2. Comparison of the contractile responses to ET-1
in small arteries dissected from gluteal buttock biopsies from
CHF patients (#, n=8) and age-matched controls (O, n=8).
The sensitivity to ET-1 of the arteries from the CHF patients
was significantly less than the respective age-matched
control arteries (P=0.04, ANOVA).
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Figure 5.3. SRTX S6c-induced constrictions in the small
arteries from CHF patients (#, n=6) and age-matched controls
(O , n=5). STRX S6c-induced small constrictions in all
vessels. There was no significant difference in the size of
constrictions induced SRTX S6c in the CHF arteries when

compared to the control arteries (P>0.05, ANOVA).
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Figure 5.4. The effects of the ETA receptor antagonist BQ-
123 on the ET-1 constrictions in resistance arteries from
CHF patients and age-matched controls. Preincubation with
BQ-123 for 30 min inhibited the ET-1 CRC in the control
arteries (A , n=6, P=0.0001 ANOVA) when compared to
vehicle control (O , n=8). BQ-123 also inhibited the ET-1
constrictions in the CHF arteries (A, n=6, P=0.02 ANOVA)
when compared to vehicle control (•, n=8).
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Figure 5.5. The effect of ETB receptor desensitisation on ET-
1-induced vasoconstrictions in the resistance arteries from
CHF patients and age-matched controls. ETB receptor
desensitisation by prolonged SRTX S6c exposure had no
effect on the ET-1 CRCs in the vessels from control subjects
(□ , n=6, P=0.52 ANOVA) or in the arteries from CHF
patients (I , n=6, P=0.49 ANOVA) as compared to the
respective vehicle controls (O , n=8 Age-matched controls &
,# , n=8, CHF).
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Figure 5.6.A. The effects of combined BQ-123 and SRTX
S6c desensitisation on ET-1 constrictions. Non-selective

ETa/ETb receptor antagonism shifted the ET-1 CRC in
arteries from both CHF subjects and controls to the right.
The constrictions to ET-1 after BQ-123 and SRTX S6c
pretreatment in the control arteries (A , n=4) and CHF
arteries ( A , n=6) were significantly different when
compared to the respective vehicle control ET-1 CRCs (O,
n=8, P=0.0004 ANOVA, control arteries & # , n=8,
P=0.0003, CHF arteries).

191



1201

Log [ET-1] M

Figure 5.6.B. Comparison of the effects of selective ETa
receptor antagonism (I , n=6) and non-selective ETa/ETb
receptor blockade (A n=6) on ET-1 constrictions (# , n=8
vehicle control) in arteries from CHF patients. Both
treatments were significantly different from the vehicle
control constrictions, * represents P=0.02; ** represents
P=0.0003 ANOVA respectively. The constrictions at the
ET-1 concentrations of 3x10-9 & 1x10-8M in the presence of
BQ-123 or BQ-123 + SRTX S6c desensitisation were

significantly different from each other (***P=0.05, Students
t-test).
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Figure 5.7. Reversal of established ET-1-induced tone by BQ-
123 ( M , n=5) and TAK-044 (A , n-6). Both antagonists
reversed the ET-1 vasoconstriction effectively over the 20 min
reperfusion period(P<0.01, ANOVA), whereas full
constriction was maintained in the arteries reperfused with
Krebs-Henseleit solution as vehicle control (• , n=5).
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Results Chapter 4

Immunohistochemical localisation of ET-1 and
ECE-1 in resistance arteries from rats and humans:

No difference in CHF



G. 1.1. Introduction

It is now well established that ET-1 is synthesised and secreted from the vascular

endothelial cells, but not smooth muscle cells, of healthy blood vessels (Ravalli et al.,

1996). Furthermore, the ET-1 released is secreted from the endothelial cells in a polar

fashion (Wagner et al., 1992a). As a consequence it is postulated that, under normal

physiological circumstances, ET-1 and big ET-1 are secreted from endothelial cells

preferentially towards the underlying smooth muscle cell layer, and not into the

circulation (Yu & Davenport, 1995). This may be the explanation why circulating

levels of ET-1 in healthy humans are so low, below the concentrations needed to

produce any effects in vitro (Frelin & Guedin, 1994) and ET-1 levels measured in

human plasma by RIA probably do not reflect reliably the concentrations of ET-1

present in the media of arteries.

In CHF circulating levels of ET-1 and/or big ET-1 are augmented, reflecting the

severity of the disease (see Section B. 1.6.1.). This suggests that, although a crude

measure, plasma ET-l/big ET-1 concentrations can demonstrate when the ET synthesis

pathway is activated above normal. The increase in ET-1 production could be due to

an induction of the ET synthesis pathway in the SMCs of the vasculature as well as an

upregulation in the endothelium. The induction of mRNA for ET-1 and the mature

peptide has been demonstrated in human and rat VSMCs in culture (Resink et al .,

1990). In human diseased, atherosclerotic coronary arteries, Winkles and colleagues

(1993) showed that ET-1 mRNA is present in the VSMC-containing atherogenic

lesion. Furthermore, diffuse ET-1 immunostaining was seen in transplanted coronary

arteries which had undergone vasculopathy (or graft arteriosclerosis; Ravalli et al.,

1996). The double-labelling immunohistochemical technique employed showed that

the ET-1 staining was predominantly found in the a-actin-positive myointimal cells

(Ravalli et al., 1996). However, in intact, undiseased vessels, such as human
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saphenous vein and left internal mammary artery, ET-1 and big ET-1 were found to be

localised only in the cytoplasm of endothelial cells (Howard et al., 1992).

All these studies suggest that VSMCs can synthesize ET-1 in pathological

circumstances. It was the aim of this chapter to demonstrate whether, in CHF, there is

an alteration of ET-1 localisation in the small arteries from the human gluteal biopsies

between patients and controls, and in the mesenteric arteries from the rat model of

CHF at the two time points. Since it was found that there was an increase in

circulating big ET-1, but not ET-1 levels, it was hypothesised that there maybe an

induction of ECE-1 expression in the VSMCs of the small arteries for local tissue

conversion. Furthermore, ET-1 localised in VSMCs of arteries using

immunohistochemistry may not necessarily demonstrate synthesis of ET-1 in this

layer, but could represent ET-1 bound to its receptors before the complex has been

internalised. Thus, it is important to identify whether ECE is present in the VSMC

layer for local synthesis. Therefore, to investigate the ET-1 localisation in these small

arteries, monoclonal Abs directed against ET-1 and ECE-1 were used.

G. 1.2. Methods

The methods used were as described in Section C. 2.0. Briefly, vessels were isolated

and dissected from either the human gluteal fat biopsies or the mesenteric beds from

the CHF rat model and sham-operated controls (Sections C. 1.1.1., 1.1.2., 1.1.3.),

and snap frozen in isopentane cooled in solid COz. The tissues were stored at -80°C

until the tissues were fixed in 4% paraformaldehyde for 24 hours. The tissues were

infiltrated with paraffin-wax and mounted into blocks. 3pm thick sections were cut

and mounted onto Poly-L-Lysine coated slides, three sections per slide.
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Sections were dewaxed in xylene, rehydrated through a series of alcohol baths and

washed in water followed by phosphate buffer solution (PBS). Endogenous

peroxidase was inhibited with 3% H202 in methanol (1:4) for 10 minutes. The

sections were trypsinised to expose the antigens for 2 minutes per slide, and non¬

specific Ab binding suppressed by incubated with 10% normal horse serum (NHS) in

PBS for 30 minutes. Sections were incubated in a humidifier chamber overnight at

4°C with the relevant primary Ab. These primary Abs were; ET-1 (1:500), ECE 27

(1:20), ECE 32 (1:20), a-actin (1:100) or the lectin, biotinylated Ulex Europeans

Agglutininen (UEA-1). All primary Abs were diluted in 1% NHS in PBS. For all

experiments the negative control used 1% NHS in PBS alone.

All sections, except the UEA-1 treated slides were incubated with the secondary

biotinylated horse, anti-mouse IgG (1:200) at room temperature for 60 minutes. All

sections were incubated with the Vectorstain ABC complex for 30 minutes and

peroxidase activity -visualised with diaminobenzidine (DAB). Sections were

counterstained with Mayers haematoxylin, dehydrated through alcohols and xylene and

mounted with coverslips.

It was found that the lectin marker for endothelial cells, UEA-1, labelled only human

endothelial cells and not rat endothelial cells. An alternative lectin label was used,

Griffonia simplicifolia agglutinin-I (GSA-I), of which the enzyme-substrate was not

peroxidase and DAB, but alkaline phosphatase and New Fuchsin (any

immunoreactivity present stained pink). However, unlike DAB this stain is soluble in

organic solvents so the sections were not dehydrated in alcohols and xylene, but were

directly coverslipped using Faramount, an aqueous based mountant (Dako Labs,

Bucks.).
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In all experiments performed negative controls were included for each tissue.

Furthermore, two positive controls were included during each experiment; i). Sections

of human uterine artery taken from hysterectomy surgery, which had been previously

shown in the laboratory to express ET-1 in the endothelial cell layer (Figure 6.I.D.).

and ii). A human biopsy artery which had been experimented upon in the perfusion

myograph and had, therefore, been exposed to a full ET-1 concentration-response
curve (Figures 6.1. A-C).

G. 1.3. Results

G. 1.3.1. Control Arteries

The control sections used were an endothelium denuded human small artery (HSA)

which had been exposed to a full ET-1 CRC and a human uterine artery (HUA). The

human endothelial cell marker, UEA-1, clearly labelled the endothelium of the HUA

(not shown), however, there was no brown UEA-1 immunoreactivity in the denuded

HSA (Figure 6.l.A). In both arteries a-actin DAB staining was present in the VSMC

layer. In Figure 6.I.B. a-actin staining is shown in the HSA. The surrounding

adventitial and connective tissue, which had not been removed during the dissection of

the artery from the fat biopsy, has no brown staining, the purple/blue of the

haematoxylin staining contrasting against the brown labelled VSMCs. However, in

the HSA section exposed to the ET-1 Ab, the whole section is stained brown including

the connective tissue (Figure 6.I.C.). ET-1 (Figure 6.1.D) and ECE-1

immunoreactivity were localised to the endothelium of the HUA. However, some

discrete areas of ET-1 immunoreactivity are evident in the VSMCs.

G. 1.3.2. Rat Mesenteric Arteries

In the arteries from the sham-operated rats at both 5 and 12 weeks post surgery ET-1

and ECE-1 immunoreactivity was clearly visible in the endothelial cell layer (Figures

6.2.F.,G. and 6.3.F.,G.), as confirmed by the GSA-I marker (Figures 6.2.H. and
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6.3.H.). However, some discreet areas of ET-1 staining were visualised in the

smooth muscle. Furthermore, the adventitia also stained positive for ET-1 and ECE-1,

although the brown staining does not appear to be quite as intense as the

immunostaining in the endothelium (Figures 6.2.F., G. and 6.3.F.G.). No difference

in the localisation of ET-1 or ECE could be seen in any of the mesenteric arteries taken

from animals with heart failure for 5 and 12 weeks (Figures 6.2.A-D and 6.3.A-D).

Both ET-1 and ECE-1 immunoreactivity was clearly seen in the endothelial cell and

adventitial layers, with occasional areas of ET-1 staining in the smooth muscle layer

(n=4 for each group).

G. 1.3.3. Human Gluteal Biopsy Arteries

ET-1 and ECE-1 staining was localised only to the endothelial cell layer in the arteries

from both the CHF patients and age-matched controls (n=5 for both groups; Figures

6.4.A-J). The staining in all the human arteries was not as intense as that seen in the

rat arteries and as a consequence did not photograph as well as the rat arterial sections

(Figures 6.4.C & G). Therefore, in some arterial sections, instead of using DAB as a

chromogen, alkaline phosphatase and New Fuchsin were used as an alternative

chromagen with the idea that better photographs could be obtained (Sections 6.4.B &

H; n=2). There was no adventitial ET-1 or ECE-1 immunostaining seen in any of the

human arteries.

G. 1.4. Discussion

It has been accepted that ET-1 is synthesized in the endothelium, but not the SMCs of

healthy blood vessels (Howard et al., 1992). However, it has been shown that animal

and human VSMCs, in culture at least, do have the ability to synthesize and secrete

ET-1 (Resink et al., 1990; Kanse et al., 1991). For instance, Yu & Davenport (1995),

measured secreted ET-1 levels from cultured VSMCs isolated from different vascular
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beds. Human epicardial coronary artery VSMCs secreted 2, 3 and 6 times greater

amount of ET-1 than human left internal mammary artery, saphenous vein and

umbilical vein VSMCs respectively and double the levels of big ET-1 (Yu &

Davenport, 1995). They had previously shown by immunohistochemistry that ET-1

staining could only be seen in the endothelium of healthy, intact human saphenous vein

and left internal mammary artery (Howard et al., 1992). It was suggested that the

culture environment may approximate pathophysiological conditions explaining the

induction of the ET-1 synthesis pathway (Yu & Davenport, 1995).

One pathophysiological condition shown consistently to alter ET-1 cellular production

is atherosclerosis. Several different studies on human atherosclerotic arteries have

demonstrated ET-1 in cells other than the endothelium. In atherogenic plaques ET-1

expression is present (Winkles et al., 1993), specifically being localised to the

macrophages and intimal and medial VSMCs of the lesions (Lerman et al., 1991;

Zeiher et al., 1995; Ravalli et al., 1997). In contrast Bacon and colleagues (1996) did

not visualise ET-1 staining in the VSMCs of athersclerotic plaques, despite

demonstrating an increase in big ET-1 and ET-1 levels in the plaque by RIA. The

endothelium lining the atherosclerotic coronary arteries consistently stained for ET-1

immunoreactivity. Thus, they suggested that the endothelium is most probably the

source of the raised big ET-1 and ET-1 (Bacon et al., 1996).

Resink and co-workers (1990) induced ET-1 production and secretion in both rat and

human VSMCs, as well as endothelial cells by exposing them to various growth

factors such as platelet derived growth factor (PDGF), vasopressin and ANG II. All
these factors, plus other cytokines known to enhance ET-1 generation, are raised in
CHF as well as hypertension and atherosclerosis and could be involved in the

induction and up-regulation of the ET-1 synthesis pathway in VSMCs and the

endothelium. Thus, it was hypothesised that there might be a change in tissue ET-1
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localisation in arteries from CHF patients and rats as compared to the respective

controls. It was also hypothesised that there might be an induction of ECE-1 in the

VSMCs of the human arteries in particular, since it was seen that circulating levels of

big ET-1, but not ET-1, in the plasma of CHF patients were significantly raised

(Section F. 1.3.). Furthermore, the functional studies on the small arteries from both

CHF patients and rats show that there is decreased responsiveness when exposed to

the exogenous ET-1 concentration-response curve. Therefore, enhanced ET-1

production could be responsible for the down-regulation of ET-1 receptors responses,

as has been demonstrated in a rat model of hypertension (Lariviere et al., 1993a, b).

In the small mesenteric resistance arteries of DOCA-salt hypertensive rats increased

ET-1 mRNA and immunoreactive ET-1 was found in association with a reduced

density of ET-1 receptors, thereby potentially accounting for the receptor down-

regulation (Lariviere et al., 1993a, b).

However, despite the results of the functional and RIA studies, the

immunohistochemical studies appear to show no difference in ET-1 and ECE

localisation in the arteries from both human CHF patients and the two CHF rat groups

when compared to the arteries from their controls. In all arteries studied the

endothelium consistently stained for ET-1 and ECE-1 immunoreactivity. Any brown

staining in the VSMC layer seen with the ET-1 Ab is most probably ET-1 bound to the

ET-1 receptors. However, the monoclonal ET-1 Ab used does not label big ET-1.

Thus, these studies do not eliminate the possibility that there is ET-1 synthesis in the

VSMCs of the human gluteal arteries or rat mesenteric arteries. The only way it is

possible to show whether there is an induction of the ET-1 synthesis pathway in the

VSMCs of resistance arteries in heart failure would be via molecular techniques such

as in situ hybridisation which target ET-1 mRNA expression. However, ECE is

required for full synthesis of ET-1, and no ECE-1 staining was observed in the

VSMCs. Thus, unless another isoform of ECE is present in the VSMCs of the small

arteries of both humans and rats which the ECE-1 Ab does not recognise and react
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with, the results imply that there is no ET-1 synthesis pathway in these arteries from
either "normal" sham-operated or CHF rats.

The endothelium of all arteries stained positively for ET-1 and ECE-1. Unfortunately,

immunohistochemistry is also a non-quantifiable technique, and can not demonstrate

whether there is an increase in ET-1 levels, only whether there is an alteration in

location. Thus, there could be an up-regulation of the ET-1 pathway in the

endothelium alone, as was seen in the DOCA-salt hypertensive rat mesenteric arteries

(Lariviere et al., 1993a, b). Some studies do attempt to semi-quantify

immunoreactivity in immunohistochemical studies using intensity of staining (Wei et

al., 1994; 1997). However, it was not possible to differentiate levels of staining

intensity since all staining was not grossly different.

It is believed that in heart failure there could be general endothelial dysfunction, with

the loss of counterbalancing vasodilatory factors such as NO (Katz, 1995). However,

it is the elusive EDHF, and not NO, which is the major vasodilatory mechanism in

resistance arteries. It is not known whether there is attenuated EDHF in CHF, but if

the counterbalancing dilatory response is lost, then constriction to ET-1 will be

enhanced whether there is an increase in synthesis or not. The immunohistochemical

studies performed were unable to show whether there is an increase of ET-1 synthesis

in the wall of the resistance arteries from CHF rats and patients. However, high

circulating levels of ET-1 and/or big ET-1 have been demonstrated repeatedly,

although the source of the elevated ET-1/big ET-1 remains unclear. The heart has been

suggested as potential source of ET-1 production. Increased ET-1 mRNA has been

reported in the ventricular myocardium of rats with CHF induced by coronary artery

ligation (Sakai et al., 1996b) and in the atria of CHF dogs (Clavell et al., 1996; Wei et

al., 1997). Contrary to these studies, Wei et al., (1994), using immunohistochemistry

to investigate whether there is an alteration of ET-1 production in cardiac atrial and
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ventricular tissue from human failing and healthy hearts, found that ET-1

immunoreactivity was present in similar distribution and intensity in both the healthy
and failing hearts. Furthermore, similar to the findings reported in this thesis, they

also reported a significant augmentation of circulating big ET-1 levels (Wei et al.,

1994).

The lungs may also be responsible for increased ET-1 synthesis in CHF, especially

when pulmonary hypertension occurs, a phenomenon seen in the latter stages of the

disease. In CHF patients ET-1 "spillover" from the lungs has been reported

(Tsutamoto et al., 1994), as has a significant positive correlation between circulating

ET-1 levels and pulmonary vascular resistance (Cody et al., 1992). Furthermore, an

increased expression of ET-1 has been shown in the lungs of patients with pulmonary

hypertension (Giaid et al., 1993). In the TIVCC canine low output model of heart

failure increased tissue expression and concentrations of ET-1 was found in the lung,

which was localised to the pulmonary epithelial cells using

immunohistochemistry.(Wei et al., 1997). However, this study did not exclude

increased pulmonary endothelial generation (Wei et al., 1997).

Interestingly, in the rat arteries, there was ET-1 and ECE staining in the adventitial

layers. It has been suggested that ET-1 might be involved in neuronal responses,

either potentiating or inhibiting neural transmission depending on the tissue and nerves

being stimulted (Warner et al., 1993a,b). Thus, the nerves present in the adventitial

layer of the mesenteric arteries might be synthesising ET-1 in order to potentiate

sympathetic nervous activation. Furthermore, fibroblasts are also present in the

adventitial layer synthesising collagen and other structural components. However,

fibroblasts also have the ability to synthesise ET-1 (Battistini et al., 1993) and they

may be a source of the ECE and ET-1 production. Curiously, no ET-1 or ECE-1
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immunostaining was observed in the human arteries suggesting that the cells present in
the adventitia of gluteal arteries do not synthesise ET-1.

Searching the literature, no immunohistochemistry studies against ET-1 in peripheral

resistance arteries have been reported. Thus, this is the first study specifically

investigating the ET-1 synthesis pathway in these small arteries from both rats and

humans and furthermore, whether there is an alteration of the pathway in CHF. In

conclusion, immunohistochemistry studies performed in this chapter suggest that there

is not an induction of ET-1 synthesis in the VSMC layers of the resistance arteries

from either human CHF patients and CHF rats. These results show that in the human

resistance arteries, the endothelium is the sole manufacturer of ET-1 whereas in the rat

mesenteric arteries the adventita also contributes to ET-1 generation. However, due to

the limitations of the technique, it does not eliminate the possibility that there could be

an up-regulation of ET-1 generation in the endothelium of these arteries in heart failure.
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Figures 6.1. A-D.

Positive control sections. Pictures A, B, C & D are all representative

immunohistochemical images of the positive control slides included in each

immunohistochemical run. Pictures A, B & C are the human resistance artery used as

a vehicle control in one of the perfusion myograph studies. As can be seen in Section

A, the anti-endothelial cell marker UEA-1 did not stain any of the section showing that

the artery had been effecively denuded of its endothelium by the passing of an air

bubble through the lumen. Section B shows the DAB brown staining in the VSMC

layer when using the anti-a-actin Ab, note no staining was seen in the surrounding

adventitia and connective tissue. However, Section C is a section stained with the anti-

ET-1 Ab. The artery had been exposed to a full ET-1 CRC, immediately snap frozen

and stored at -80°C until fixation with paraformaldehyde. The entire section, including

the surrounding adventitial and connective tissue stained brown. Section D is an image

of a human uterine artery immunostained with anti-ET-1. The endothelium is stained

as demonstrated by the arrows. However, some discrete patches of ET-1 can also be

seen in the VSMCs of the artery. All sections are counterstained with haematoxylin.
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Figures 6.2. A-H.

Pictures are representative of the immunostaining seen in mesenteric arteries removed

from 5 week post-ligation rats (n=4) and 5 week sham-operated rats (n=4). All tissues
shown are serial sections from the same artery removed from a CHF rat (Figures A-D)

and a sham-operated rat (Figures E-H). Pictures A & E are the respective negative

controls where the sections were not incubated with a primary Ab. Sections B & F are

arterial sections incubated with the anti-ET-1 Ab and sections C & G exposed to anti-

ECE-27 Ab. In all arteries, both Abs resulted in intense staining in the endothelium

and adventitia, with some discreete patches of staining in the VSMC layer. Section D

is the serial tissue section of the CHF rat artery which was incubated with the anti-oc-

actin Ab where only the VSMC layer was stained brown. Section H is the serial

arterial section from the sham-operated rat incubated with the endothelial cell marker

GSA-1 and stained pink with New Fuchsin. Unfortunately this section has a high

degree of background staining. However, the endothelium is clearly stained a darker

pink.
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Figure 6.3. A-H.

Serial sections of mesenteric arteries from a 12 week post-ligation rat (Sections A-D,

n=4) and a 12 week sham-operated rat (Sections E-H, n=4). Sections A & E are the

negative control tissues. Dark brown staining can be seen to be localised to the

endothelium and adventitia in the sections immunostained with the anti-ET-1 Ab

(Sections B & F) and the anti-ECE-27 Ab (Sections C & G). Sections D & H were

incubated with anti-a-actin Ab (D) and GSA-I (H).
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Figures 6.4. A-J.

Immunohistochemistry performed on human arteries from a CHF patient (Sections A-

E) and control subject (Sections F-J). The staining seen in the human arteries (n=5 for

each experiment groups) was consistently lighter than that seen in the rat arteries.

Sections A & F are the respective negative controls. Sections B & G are arteries

incubated with the anti-ET-1 Ab, although the chromagen used on Section B was New

Fuchsin, but on Section G was DAB. Using either visualising chromagen, ET-1 was

localised to the endothelium alone. Sections C & H were immunostained using ECE-

27 with the chromagen for Section C being DAB and Section H was New Fuchsin.

Once again the faint staining using either chromagen was localised to the endothelial

cell layer. Sections D & I were immunostained with anti-a-actin visualising the

VSMC layer and Sections E & J are stained with the endothelial cell marker UEA-1.
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General Discussion



H. 1.1. Summary

Resistance arteries, with internal lumen diameters of between 100-400 |im, are known to

be the most important vessels in the body in determining total peripheral vascular
resistance (PVR; Schiffrin, 1995). In heart failure, a chronic increase in PVR occurs by
the activation of neurohumoral reflexes such as RAA and sympathetic nervous systems,

inducing vasoconstriction throughout the body increasing cardiac workload (Francis et al.,

1984). Thus, the 'vicious cycle' of heart failure begins. It is now known that the ET-1

system is also activated in heart failure and, because of its powerful constrictor properties,

particularly in resistance arteries, it has been identified as a potential target for therapeutic
intervention. The most effective drugs in slowing the progression of the condition have

been the ACE inhibitors. There are many similarities between the ET-1 and RAA systems,

such as their vasoconstrictor, anti-natriuretic and mitogenic properties, all of which are

aggravating phenomenon in the progression of CHF.

It was the aim of this thesis to investigate the ET-1 system in resistance arteries from rats

and humans with CHF. The initial aim was to investigate the vascular reactivity of

denuded small arteries from normotensive rats to ET-1, and the ET-1 receptor subtypes

mediating constriction. The second aim was to assess whether the sensitivity to ET-1 and

the basic ET-1 receptor population present on the VSMCs of mesenteric arteries are altered

in rats with heart failure. The third aim was to ascertain whether the ET-1 synthesis

pathway is activated in CHF patients by measuring plasma ET-1 and big ET-1 levels. The

fourth aim was to study the responses to ET-1 and the ET-1 receptors responsible for
constriction in human resistance arteries from CHF patients and age-matched controls.

Finally, the fifth aim was to investigate the local pathway for synthesis of ET-1 in the

resistance arteries of rats and humans, and to see if there was an up-regulation of the

synthetic pathway within the medial layer in the arteries from the rats and humans with

CHF. Ultimately, all this information was designed to examine whether the ET-1 pathway

is a viable system against which to target future drugs. Particular attention has been

focused upon which constrictor ET-1 receptor subtypes present on VSMCs of resistance

arteries to antagonise in order to reduce PVR in CHF.
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The results from the first experimental chapter showed that ET-1 is a powerful

vasoconstrictor in endothelium-denuded rat mesenteric arteries. Using STRX S6c, BQ-

123, BQ-788 and TAK-044 it was demonstrated that both ETA and ETB receptors are

responsible for mediating ET-1 constrictions. BQ-123 treatment resulted in an inhibition

only of constrictions to the highest concentrations of ET-1, implying the constrictions to

the lower concentrations of ET-1 are mediated via constrictor ETB receptors. Circulating

ET-1 levels are extremely low, even in disease, and these data suggest that ETB receptors

may be more important under physiological and pathophysiological conditions, as they
mediate constrictions to the lower concentrations of ET-1. However, it was shown that

ETb receptor blockade does not inhibit ET-1 constrictions and only when combined with

ETa receptor antagonism was the entire ET-1 constrictor response inhibited. These

observations suggest that ETA receptors can compensate for ETB receptor "loss" and it was

hypothesised that the phenomenon of "crosstalk" between the ET-1 receptor subtypes was

occurring. Crosstalk interactions have also been described between a,- and a2-

adrenoceptors (Daly et al., 1988) and 5-opioid receptor subtypes and ^.-receptors (Traynor

& Elliott, 1993).

Crosstalk between the ET-1 receptor subtypes had been demonstrated functionally in

several different preparations, including the pulmonary artery (Fukuroda et al., 1994a),

fundal strips (Clozel & Gray, 1995) and tracheal and bronchial rings (Fukuroda et al.,

1996). The mechanism underlying crosstalk was hypothesised to be through interactions

at the second messenger level, and it was Ozaki and colleagues (1997), using co-

transfection studies who demonstrated the involvement of intracellular signalling in this

phenomenon. They showed that when they transfected ETA receptors into ETB receptor-

expressing Girardi heart cells, the binding characteristics of ETB receptor agonists were

altered. However, when the experiments were repeated using only the cell membranes,

the binding characteristics of the agonists were unchanged (Ozaki et al., 1997).

Furthermore in the whole co-transfected cells, ET-1-mediated intracellular Ca2+ increases

could only be completely abolished by a combination of BQ-123 and BQ-788, whereas
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BQ-123 alone inhibited 80% of the response, but BQ-788 had no effect at all (Ozaki et al.,

1997). Thus, these observations support the functional data that has been reported,

including the results of Chapter 3. The precise nature of the crosstalk mechanism warrants

further investigation, particularly if ET-1 receptors communicate in a similar manner in
human tissues, since this experimental chapter, plus the other reports of similar

observations (Fukuroda et al., 1994a; 1996; Clozel & Gray, 1995; Ozaki et al., 1997),

show that for effective ET-1 constrictor antagonism, both ET-1 receptor subtypes need to

be inhibited.

In Chapter 4, the ET-1 receptor subtypes present on the smooth muscle of mesenteric
arteries from a rat model of heart failure was investigated. The rat LV dysfunction model

of CHF was used to assess whether there are alterations in the ET-1 receptor subtypes in

resistance arteries at different time points after induction of heart failure. In rat arteries 5

weeks after left anterior descending coronary artery ligation, the sensitivity to ET-1 was

unchanged. However, there appeared to be a change in the receptor subtypes mediating

the differing components of the ET-1 CRC. BQ-123 inhibited entirely the ET-1 CRC in

the arteries from the sham-operated rats, but a small BQ-123-insensitive part of the ET-1

CRC in the arteries from the 5 week CHF rats remained. This BQ-123-insensitive ET-1

response was only removed on combined ETA/ETB receptor inhibition, but not ETB

receptor desensitisation alone. Thus, in the arteries from the 5 week CHF rats, an ETB

receptor component had been activated, and on specific ETB receptor blockade was

compensated for by constrictor ETA receptors. Therefore, as in Chapter 3, crosstalk

between the ET-1 receptor was occurring, although to a lesser extent.

A further change occurred from 5 weeks post-ligation to 12 weeks post-ligation. The

sensitivity of the arteries from the 12 week CHF rats was significantly reduced in

comparison to control rats. However, BQ-123 antagonism shifted all ET-1 constrictions
in both experimental groups to the right. Thus, the BQ-123-insensitive, ETB receptor was

not present in the 12 week CHF rat arteries. Indeed, when ETB receptors were

desensitised, the ET-1 sensitivity in the 12 week CHF rat arteries were restored to that of
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the sham-operated animals, implying the presence of an inhibitory ETB receptor on the
VSMCs of these arteries, as opposed to a down-regulation of ETA receptors.

In the arteries from the 5 and 12 week sham-operated and the 12 week CHF rats, the

studies with BQ-123 and non-selective ETA and ETB receptor blockade imply that receptor
crosstalk was not occurring. Furthermore, in the 5 week CHF rat arteries, the BQ-123-
insensitive part of the ET-1 constriction was less marked than that seen in Chapter 3. In
the 12 week CHF arteries the crosstalk mechanism may not have become apparent due to

the presence of inhibitory ETB receptors. However, the difference in results between the
two chapters could have been due to the presence of indomethacin in the bathing Krebs-

Heneseleit solution, suggesting that a COX product may have a role in the crosstalk

mechanism between the two receptor subtypes.

Sokolovsky and co-workers (1992) demonstrated the presence of super-high (SH) and

high (H) affinity ETB receptor sites using binding assays. It was suggested that the SH

affinity site represents the vasodilator ETB receptor, whereas the H affinity site is the

vasoconstrictor ETB receptor (Sokolovsky et al., 1992). Interconversion between the two

states of the ETB receptor might occur, and this may partially explain the results of the

CHF rat model. For instance, at 5 weeks CHF, the H affinity, constrictor ETB receptor

may predominate, but at 12 weeks CHF the receptor state converts to the SH affinity,

dilatory ETB receptor. However, manipulation of G-proteins, using Gpp(NH)p did not

affect either SH or H affinity states (Sokolosky et al., 1992). Therefore, it appears that

cycling between the two states does not occur. However, deglycosylation of the H

affinity, vasoconstrictor ETB receptor resulted in a decreased ability of the receptor to bind

ligands, but had no effect on the SH affinity, vasodilatory ETB receptor binding

characteristics (Sokolosky et al., 1992). This is a mechanism by which the crosstalk that

Ozaki and colleagues (1997) described may occur.

Up-regulation of the mRNA for ETB receptors in pathophysiological conditions such as

atherosclerosis (Dagassan et al., 1996), hypertension (Kanno et al., 1993) and post
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angioplasty (Wang et al., 1995) have been demonstrated. However, in these studies the
functional roles of the ETB receptors have not been investigated, and it is not known

whether they possess any constrictor or dilator properties or are expressed in a mitogenic

capacity. The results seen in the 12 week CHF rat mesenteric arteries need to be further

investigated, initially repeating the experiments with the endothelium intact, but also using
molecular techniques to demonstrate whether there is an up-regulation of ETB receptor, or

down-regulation of ETA receptor, mRNA and protein expression.

In Chapter 5 it was shown that human arteries from CHF patients also have attenuated
constrictor responses to ET-1. In contrast to the rat studies, the presence of inhibitory ETB

receptors on the VSMC of the arteries were not responsible for the reduction in sensitivity

to ET-1. Experiments using SRTX S6c as an agonist demonstrated that the small

constrictor responses remained in the CHF arteries, suggesting that down-regulation of

ETa receptors is the most likely explanation for the decreased ET-1 sensitivity. Again,

molecular techniques investigating ET-1 receptor subtype expression need to be

performed. The desensitisation/down-regulation of ET-1 receptors is not wholly

unsurprising as the activation of the ET-1 synthesis pathway was clearly demonstrated by

the doubling of circulating big ET-1 levels. Curiously, there was no concomitant rise in

circulating levels of ET-1, suggesting that local tissue conversion by VSMC expressed

ECE may occur.

Immunohistochemical methods were employed in Chapter 6 to visualise ET-1 and ECE-1

in the vascular wall of the resistance arteries from rats and humans, and whether there is

an alteration in the localisation of ET-1 and ECE-1 in CHF. In the rat arteries intense

staining against both ET-1 and ECE-1 was found in the vascular endothelium and the

adventitial layer, and there was no apparent difference between the vessels from CHF

animals and the sham-operated controls. Interestingly, the staining against both ET-1 and
ECE-1 in the human arteries was much less intense than seen in the rat vessels.

Furthermore, the staining was only localised to the vascular endothelium, and there

appeared to be no difference between the CHF patients arteries and the age-matched
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control arteries. The immunohistochemical studies in the human arteries dispute the idea

that there is up-regulated ECE-1, and there is a greater concentration of ET-1 on the
VSMCs of arteries from the CHF patients. Any staining for ET-1 on the VSMC layer is
most likely ET-1 binding to ET-1 receptors, and if there is a down-regulation of ET-1

receptors in the CHF vessels, as demonstrated functionally, then it may be expected that
less ET-1 staining is likely in the media.

The reduced intensity of staining between the rat and human arteries might be due to the

length of time the arteries from the biopsy or mesenteric bed arteries were snap frozen.

The human arteries used in the histological studies were all dissected and frozen on the day

after the biopsy had been performed. Dissection of the human arteries was a much more

demanding task than the rat mesenteric bed dissection. The physical process of removing

the artery from the surrounding fat of the biopsy was more difficult and time-consuming,

and there was a greater chance of damaging the artery before mounting into the myograph.

Furthermore, there were also fewer arteries within the biopsy of the correct lumen

diameter for the studies. Therefore, the myography experiments were prioritised, and ah

suitable arteries mounted in the myograph first. Myography experiments were performed

over two days. Once viable arteries had been mounted in the myograph on the second

day, the remaining arteries were frozen to be used in the immunohistochemical studies.

However, in the rat mesenteric bed there are many suitable arteries, so once dissected from

the bed (a very fast process), the vessels were snap frozen immediately, within a few

hours of removal from the animal. Therefore, the ET-1 and ECE-1 peptides could have

been degraded in the human arteries over the two day period, such that the intensity of the

staining was reduced. Furthermore, this could also explain why no difference in the

localisation of ET-1 and ECE-1 in the arteries CHF patients and controls were observed.

Where the source of the raised big ET-1 levels originates is unknown. Although this

immunohistochemistry study implies there is no change in ET-l/ECE-1 localisation the

resistance arteries of CHF patients, it does not conclusively show that the vessels

themselves are not the source of the big ET-1. There could be up-regulated synthesis in
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the endothelium which was not shown using immunohistochemistry; a more sensitive

technique being needed to definitively resolve this question.

The failing heart has also been suggested as a source of raised big ET-l/ET-1. Increased

big ET-1, but not ET-1 levels in severe CHF patients were also observed by Wei and

colleagues (1994). Using immunohistochemistry on cardiac atrial and ventricular tissue
removed from human hearts, they found no difference in the intensity or localisation of

staining in tissue from failing and healthy donor hearts. Furthermore, no big ET-1 was

found in any of the heart tissue, and it was suggested that the heart is a target of ET-1, and

not the source of raised circulating big ET-l/ET-1 (Wei et al., 1994). Curiously, a study

from the same group showed that atrial tissue from CHF dogs had significantly raised

prepro ET-1 mRNA and mature peptide as compared to control dog hearts (Wei et al.,

1997). Another potential source of increased ET-1 synthesis is the lung. Pulmonary

tissue prepro ET-1 mRNA and immunoreactivity is raised in CHF dogs (Wei et al., 1997)

and in pulmonary hypertensive patients (Giaid et al., 1993). In the lungs from the

pulmonary hypertensive patients, the prepro ET-1 mRNA and immunoreactivity was

localised to the endothelial cells of pulmonary arteries with medial thickening and intimal

fibrosis (Giaid et al., 1993). Furthermore, plasma ET-1 levels have been shown to

correlate with pulmonary hypertension in CHF patients (Cody et al., 1992). Reduced

clearance of ET-1 may also contribute to the raised circulating ET-1 levels in patients with
the most severe heart failure. Indeed, reduced ETB receptors, but not ETA receptors, have

been shown in the lungs of CHF rats (Kobayashi et al., 1997). Therefore, in the later

stages of the condition a combination of increased synthesis and reduced clearance might

be responsible for significantly increased big ET-1 and ET-1 levels.

What is clear from the results of this thesis is that peripheral resistance arteries have a

reduced sensitivity to ET-1 in heart failure, and this reflects enhanced synthesis in

humans. The clearance of the mature peptide does not appear to be compromised in the
CHF patients sampled, who are in the moderate stages of heart failure. The findings of

this thesis have shown that changes in the vascular responsiveness to ET-1 occur before
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raised plasma levels are evident, suggesting that the involvement of the ET-1 system in the
pathophysiology of CHF occurs earlier than had previously been predicted. In human
CHF the reduced sensitivity seems to be occurring via a down-regulation or

desensitisation of the constrictor receptors, whereas in the rat arteries the presence of an

inhibitory ETB receptor is responsible. As discussed previously, these discrepancies in the

mechanisms by which the resistance arteries from humans and rats adapt to the constrictor

responses to ET-1 could be due to the length of time over which heart failure manifests
itself. However, in both species there is a definite decrease in constriction to exogenous

ET-1.

H. 1.2. Future studies

To strengthen the results and conclusions of this thesis, other experiments should be

performed in these isolated arteries. Complementary to the functional results, molecular

techniques such as in situ hybridisation, rt-PCR or autoradiography should be performed.
In situ hybridisation and rt-PCR against mRNA for prepro ET-1, ECE-1, ETA and ETB

receptors could demonstrate whether there is an alteration in localisation and expression in

the genes for the ET-1 pathway Autoradiography would show whether the mRNA signals

for the receptor subtypes had been translated to the final protein binding sites.

These studies obviously need to be repeated in endothelium-intact arteries in order to

assess any moderating actions of endothelial-derived factors. There is conflicting evidence

concerning the production of counter-balancing factors, such as NO, in CHF, be it

decreased, increased or no different from healthy arteries (Treasure & Alexandra, 1993).

It has often been hypothesised that there is generalised endothelial dysfunction (Treasure

& Alexandra, 1993) favouring constriction. In this thesis, there was no impairment of

ACh-induced relaxation in the arteries from CHF rats or patients implying there was no

agonist-induced endothelial dysfunction. However, this would need to be examined with

different, more physiological agonists (endogenous ACh is highly unlikely to be

stimulating the endothelium) and over concentration ranges to conclude whether there is

agonist-induced endothelial dysfunction or not. Furthermore, the tonic effects of the
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endothelium would also need to be investigated to conclude that there is generalised

endothelial dysfunction. The advantages of using an in vitro technique such as perfusion

myography, allows the removal of influencing factors like the endothelium, allowing
easier and simpler interpretation of the results. The main aim of this thesis was to

investigate ET-1 receptors on the VSMC layers in resistance arteries. Arteries in vivo will
be influenced by phenomena including innervation, blood-bome factors, shear stress and

the endothelium. Therefore, it is important to take the results of this thesis in context, and

to combine these findings with in vivo studies where all of the regulatory mechanisms are

intact.

H. 1.3. Clinical implications of this thesis

Despite the reduced vascular sensitivity in resistance arteries in CHF, the ET-1 system

obviously still contributes to the enhanced vascular tone in man (Kiowski et al., 1995;

Love et al., 1996a, b) and animals (Clavell et al., 1996; Shimoyama et al., 1996). 'To

inhibit or not to inhibit' the ETB receptor has been the conundrum since it was first

suggested that the ET-1 system could be a potential therapeutic target in cardiovascular

diseases such as CHF. The results of this thesis using the rat CHF model would imply
that selective ETA receptor inhibition would be the most advantageous method of reducing

peripheral vascular resistance in heart failure. This would retain the dilator ETB receptors

on the endothelium as well as the up-regulated ETB receptors on the VSMC layer.

However, in the human arteries constrictor ETB receptors were present, possibly

mediating the constrictions to the lower concentrations of ET-1, whereas the constrictor

actions of ETA receptors were down-regulated. Therefore, non-selective ETA/ETB receptor

blockade at the smooth muscle layer would be most appropriate. In addition, this thesis

has further clinical implications in that it was shown that ET-1 constriction could be

reversed relatively quickly in resistance arteries. This is an important finding for use of

ET-1 receptor antagonists in acute vasospastic syndromes such as subarachnoid

haemorrhage or Raynaud's disease.
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As demonstrated by Sakai and colleagues (1996a, b) and Mulder and co-workers (1997),

antagonism of the ET-1 pathway would go further than simply reducing systemic vascular

resistance, by affecting the cardiac, mitogenic, anti-natriuretic and neuromodulating

properties of the peptide. In parallel with the vasoconstriction question, which ET-1

receptor(s) to inhibit for all the detrimental properties of ET-1 has to be elucidated for the
maximum beneficial effects of an anti-ET-1 therapy. Furthermore, at what stage of CHF

should anti-ET-1 drugs be prescribed, since the ET-1 system may be important in the

maintenance of cardiac contractility (Sakai et al., 1996a) in the earlier stages of heart

failure. However, in order for ET-1 antagonism, either inhibition of its synthesis or at the

receptor level, to be accepted as a novel therapy in CHF, it has to be proved that it has

additional vasodilator actions when administered in conjunction with ACE inhibitors.

H. 1.4. Conclusions

The results presented in this thesis demonstrate that CHF causes a disturbance of the ET-1

system under the pathophysiological condition of CHF. Although the physical activation

of the ET-1 system was not demonstrated by measurement of plasma big ET-1 and ET-1

levels in the rat model of CHF and could not be seen using immunohistochemical

techniques, at 12 weeks of CHF there was clearly an alteration in the vascular

responsiveness to ET-1. This was due to a change in the ET-1 receptors on the VSMC

layer of the small arteries. In human CHF, a change in the sensitivity to ET-1 was also
shown and attributed to ETA receptor down-regulation. Furthermore, the synthesis

pathway of ET-1 was increased in the CHF patients, as demonstrated by plasma big ET-1.

Thus, it is likely that the ET-1 system has a role in the raised systemic vascular resistance

in CHF.

The prevalence of CHF is rising in the Western world, and once established impairs the

quality of life more than most other chronic medical illnesses, killing between 60 to 70%
of patients within five years of diagnosis. Although the current vasodilator therapies are

fairly successful in the treatment of the condition there is still scope for new treatments.

ET-1 inhibition is a promising novel therapy for CHF. Since the search for effective,
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selective ECE inhibitors has proved extremely difficult, it is believed that ET-1 receptor

antagonism is the most likely way in which the ET-1 system could be counteracted in
CHF. The results of this thesis, together with the suggestions of complementary, future

work, may help in the understanding of the ET-1 system in CHF, and the development of
future ET-1 receptor antagonists for the treatment of CHF.
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Activation of endothelin ETA receptors masks the constrictor role
of endothelin ETB receptors in rat isolated small mesenteric
arteries

Emma J. Mickley, * 'Gillian A. Gray & David J. Webb

Clinical Pharmacology Unit and Research Centre, University of Edinburgh, Western General Hospital, Edinburgh, EH3 2XU and
♦Department of Pharmacology, University of Edinburgh, 1 George Square, Edinburgh, EH8 9XJ

1 Endothelin-1 (ET-1) produces constriction of the rat mesenteric vascular bed in vivo via ETA and ETB
receptor subtypes. The aim of this study was to investigate the relative roles of these receptor subtypes in
rat isolated, endothelium-denuded, small mesenteric arteries, under pressure, by use of ET-1; the ETA
receptor antagonist, BQ-123; the ETB receptor selective agonist, sarafotoxin S6c (SRTX S6c); the ETB
receptor selective antagonist, BQ-788; and the ETA/ETB antagonist, TAK-044.
2 In 3rd generation mesenteric arteries, ET-1 (10 "13—10 7 m) produced concentration-dependent
contractions (pD2 9.86). SRTX S6c (10-12— 10 7 m) also induced concentration-dependent contractions
in 53% of arteries studied, although the Emax was much less than that obtained with ET-1 (10.7 + 2.9%
vs 101.9 + 2.6% of the 60 mm KCl-induced contraction).
3 Neither ETB receptor desensitization, by a supra-maximal concentration of SRTX S6c (10~7 m), nor
incubation with BQ-788 (3x10"8m), had any significant effect on the ET-1 concentration-response
curve, although both treatments tended to enhance rather than inhibit responses to ET-1.
4 In the presence of BQ-123 (1CU6 m), responses to low concentrations of ET-1 (up to 1CU 10 m) were
unaffected but responses to concentrations of ET-1 above 1(D10 m were significantly inhibited.
5 SRTX S6c desensitization followed by incubation with BQ-123 (KU6 m) or co-incubation with BQ-
788 (3 x 10~8 m) and BQ-123 caused inhibition of responses to all concentrations of ET-1, resulting in a
rightward shift of the ET-1 concentration-response curve. The same effect was obtained by incubation
with TAK-044 (10"8 m and 3 x 1(T7 m).
6 Thus, responses of rat small mesenteric arteries to ET-1 are mediated by both ETA and ETB
receptors. The relative role of ETB receptors is greater than that predicted by the small responses to
SRTX S6c or by resistance of ET-l-induced contraction to ETB receptor desensitization or BQ-788. The
effect of ETb receptor desensitization or blockade is only revealed in the presence of ETA receptor
blockade, suggesting the presence of a 'crosstalk' mechanism between the receptors. These results
support the concept that dual receptor antagonists, like TAK-044, may be required to inhibit completely
constrictor responses to ET-1.

Keywords: Endothelin-1; sarafotoxin S6c; ETA receptors; ETB receptors; BQ-123; BQ-788; TAK-044

Introduction

It is now well established that the vasoactive effects of the

peptide endothelin-1 (ET-1) are mediated via both ETA (Arai
et a/., 1990) and ETB receptors (Sakurai el al., 1990). Admin¬
istration of ET-1 to anaesthetized or conscious rats leads to a

brief decrease, followed by a long lasting increase, in blood
pressure (Yanagisawa et al., 1988) that is accompanied by in¬
creased resistance in virtually all vascular beds studied (Gar¬
diner et al., 1994; Allcock et al., 1995). Prior administration of
an ETa receptor antagonist, e.g. BQ-123 or FR 139317, en¬
hances the initial depressor effect of ET-1 (an ETB receptor-
mediated effect) and reduces the pressor effect (McMurdo el
al., 1993; Gardiner et al., 1994). However, the pressor and
regional constrictor effect of ET-1 is not fully inhibited by ETA
receptor antagonists, even with high doses, implying that ETB
receptors may also have a vasoconstrictor role (McMurdo et
al., 1993). Consistent with this possibility, the ETB receptor
selective agonist, sarafotoxin S6c (SRTX S6c) was found to
produce vasoconstriction in pithed rats (Williams et al., 1991;
Clozel et al., 1992).

In vitro experiments have also demonstrated ETA receptor
antagonist-resistant responses to ET-1 (Ihara et al., 1992;
Sumner et al., 1992; Fukuroda et al., 1994b) and constrictions
to SRTX S6c (Moreland et al., 1992; Sumner et al., 1992; La
Douceur et al., 1993; Gray et al., 1994). As a consequence of

1 Author for correspondence.

these in vitro data, it has been suggested that constrictor ETB
receptors have a role only in large calibre vessels and in the
venous circulation (Moreland et al., 1992; Davenport & Ma-
guire, 1995). However, in the conscious rat (Gardiner et al.,
1994) and the anaesthetized ganglion-blocked rat (Allcock et
al., 1995), ET-l-induced reduction of blood flow to the me¬
senteric resistance bed is partly resistant to ETA receptor in¬
hibition. Reduction of regional blood flow in response to
SRTX S6c is also most marked in the mesenteric bed of the

pithed rat (Clozel et al., 1992). In man, ET-1 constrictions in
upper limb blood vessels are also partly resistant to BQ-123
and constrictions to SRTX S6c can be seen (Haynes et al.,
1995; Strachan et al., 1995). Thus, there may be an important
role for constrictor ETB receptors in mediating vascular resis¬
tance and blood pressure. Indeed, the recently described non-
peptide ETB receptor antagonist, Ro 46-8443, causes a reduc¬
tion in blood pressure in anaesthetized, normotensive rats
(Clozel & Breu, 1996).

In contrast to the evidence for ETB receptor-mediated
constriction of the rat mesenteric bed in vivo, in vitro studies of
perfused mesenteric beds or human and rat isolated mesenteric
arteries mounted in wire or perfusion myographs have led to
the conclusion that constrictor ETB receptors have little
(Tschudi & Luscher, 1994; Takase et al., 1995; Deng et al.,
1995; Touyz et al., 1995) or no role (D'Orleans-Juste et al.,
1993) in this vascular bed. All of these studies have based their
conclusions on inhibition of ET-l-induced contraction by ETA
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receptor antagonists, or responses to ETB selective agonists.
The aim of the present study was to investigate further the role
of ETb receptors in mediating constriction in pressurized rat
mesenteric arteries by use of ET-1, the ETA receptor antago¬
nist, BQ-123 (Ihara et al., 1992), the ETB selective agonist
SRTX S6c (Williams et al., 1991), the ETB receptor selective
antagonist, BQ-788 (Ishikawa et al., 1994) and the ETA/ETB
antagonist, TAK-044 (Kikuchi et al., 1994).

Some of this work has been presented to the British Phar¬
macological Society (Mickley et al., 1995).

Methods

Male Wistar rats (10-16 weeks old) were killed by ex-
sanguination and the mesenteric bed immediately excised and
placed into cold, oxygenated Krebs-Henseleit solution. Third
order branches of the mesenteric artery (internal diameter
150-350 pm) were dissected (~3 mm length) and mounted
between two glass microcannulae in a small vessel arteriograph
(Living Systems Instrumentation Inc., Burlington, U.S.A.).
The vessel was constantly superfused with warmed (37°C),
oxygenated (95% 02; 5% C02) Krebs-Henseleit solution
(composition, in mM: NaCl 118, KC1 4.7, CaCl2 2.5, MgS04
1.2, KH2P04 1.2, NaHCOj 25 and glucose 5.5). The in¬
traluminal pressure of the vessel was raised to 60 mmHg and
maintained at this pressure with a pressure servo unit without
further intraluminal perfusion. Luminal diameter was mea¬
sured with a video dimension analyser (Living Systems In¬
strumentation Inc., U.S.A.) and by hand, with a calibrated
micrometer, when the optical dimension analyser was unable
to detect differences in optical density at smaller lumen dia¬
meters. After an equilibration period of 60 min, the vessels
were exposed twice to modified Krebs-Henseleit solution
containing 60 mM KC1 (equimolar replacement of NaCl by
KC1) in order to produce maximum constriction. KC1 induced
a reduction in lumen diameter but never to the level where the
lumen was completely occluded (see Table 1). The endothelium
was removed by passing an air bubble through the lumen of
the vessel (Falloon et al., 1993; Smith, 1996) and complete
denudation was confirmed by addition of acetylcholine (ACh
10-6 m) to vessels pre-constricted with phenylephrine (PE
10-5 m). In all vessels, the relaxation induced by ACh before
the passage of an air bubble (usually back to resting diameter),
was completely abolished after endothelial denudation. After
washing, a closed system with a total volume of 30 ml of
Krebs-Henseleit solution was constantly superfused at a con¬
stant flow rate of 5 ml min-1. It was this reservoir of Krebs-
Henseleit solution to which the agonists and antagonists were
applied, keeping the volume at 30 ml by removing one ml of
Krebs and adding one ml of the drug in a stepwise fashion (as
previously described, Smith et al., 1995). Responses were re¬
corded 5 min after addition of each agonist concentration,
which was sufficient time for an equilibrium response. All of
the following studies were carried out in random order and
only one concentration response curve to ET-1 or SRTX S6c
was performed per tissue. None of the drug treatments resulted

in complete occlusion of the vessel lumen within the concen¬
tration range studied (see Table 1).

ET-1 and SRTX S6c study

In the first set of experiments cumulative concentration-re¬
sponse curves to ET-1 (10 ,3-3 x 10-8 M, w=10) or SRTX
S6c (10-l2-10-7 M, n= 17) were obtained as described above.

Receptor antagonism study

In the second set of experiments, vessels were exposed to either
BQ-123 (10-6 M, n = 8), BQ-788 (3 x 10-8 M, « = 8), TAK-044
(10-8 and 3 x 10-7 M, n = 4 and 8 respectively), BQ-123 + BQ-
788 (concentrations as before, n = 8) or vehicle (n = 8) for
30 min, before concentration-response curves to ET-1 (10-13-
3x10-8M) were obtained. For these experiments, agonists
were prepared in a solution of antagonist so that addition to
the perfusion circuit did not dilute the antagonist solution
superfusing the tissue. In some experiments, the vessels were
exposed for 30 min to SRTX S6c (10-7M) twice (with a wash
out period of 10 min between each exposure), in order to de¬
sensitise the ETb receptor before commencement of the ET-1
concentration-response curve. This was carried out both in the
absence and in the presence of BQ-123 (n = 8 each). In all ex¬
periments, the time-course of the protocol was the same; 2 h
after verification of the removal of the endothelium, the con¬

centration-response curve to ET-1 was begun.

Data analysis

The results are calculated as a percentage of maximum con¬
striction obtained with the second exposure to 60 mM KC1
Krebs solution and are expressed as mean+ s.e.mean. Where a
maximum response to the agonist was obtained, the negative
log of the concentration causing half-maximal contraction
(pD2) was calculated by linear regression analysis and com¬
pared by unpaired one-tailed t test. The concentration-re¬
sponse curves were compared by one-way ANOVA followed
by Fisher's least significant difference test. Significance was
taken at P<0.05.

Materials

ET-1 and SRTX S6c were purchased from Novabiochem
(Nottingham, U.K.) and BQ-788 (N-cis-2,6-dimethylpiperi-
dinocarbonyl-l-y-MeLeu-d-Trp(COOCH1)-d-Nle. sodium
salt) from Neosystems (Strasbourg, France), all were recon¬
stituted in 50:50 methanol: distilled water. BQ-123 (cyclo[d-
Trp-d-Asp-l-Pro-d-Vel-l-Leu]) from Neosystems (France)
and TAK-044 (cyclo[d-a-Asp-3-[(phenylpiperazin-l-yl)carbo-
nyl]-l-Ala-a-Asp-d-2-(2-thienyl)-Gly-l-Leu-d-Trp] disodium
salt) synthesised by Takeda Chemical Industries (Osaka, Ja¬
pan) were reconstituted in 0.9% saline, placed in aliquots and
stored frozen at — 20°C until use. All peptide agonists and
antagonists were diluted in Krebs-Henseleit solution contain¬
ing 0.1 % bovine serum albumin (BSA: Sigma. Poole. U.K.). In

Table 1 Mean resting lumen diameters and lumen diameters after exposure to 60 mM KC1 solution or after the maximum
concentration of endothelin-1 (ET-1) or sarafotoxin S6c (SRTX S6c) in each experimental group

+ BQ-123
ET-1 +SRTX + BQ-123 +SRTX + TAK-044 + TAK-044
control SRTX S6c + BQ-123 + BQ-788 S6c desens + BQ-788 S6c desens (10 8m) (3xI07m)

Resting diameter 277+15 300±9 261 ± 13 287± 15 281 ±7 273 + 21 304± 19 300+12 301 ±12
+ 60mM KC1 diameter 51 ±3 48±2 53±3 51 ± 1 48±3 55±2 50±3 45±3 50±2
Max ET-I/SRTX S6c
diameter 47±3 273 ± 12 56±7 50±2 48±3 64±8 118 ± 27 118 ± 39 233 ± 31

Data shown are mean ±s.e.mean.
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all antagonist experiments the ET-1 concentrations were di¬
luted in 0.1% BSA Krebs-Henseleit solution with the appro¬
priate antagonist. ACh (chloride salt, Sigma, Poole, U.K.) and
PE (hydrochloride salt; Fisons, U.K.) were prepared in saline
at stock concentration of 1(U2 m, placed in aliquots, and
stored at — 20°C until use when diluted in Krebs-Henseleit
solution.

Results

Effects of 60 mM KCl

In all experiments 60 mm KCl superfusion constricted the ar¬
teries, an effect which was reversible, back to initial resting
diameter, on washout (Table 1). The initial diameter remained
constant until agonist-induced constriction was generated.

Effects of ET-1 and SRTX S6c

ET-1 constricted the arteries in a concentration-dependent
manner (Figure 1, pD2 9.86, Emax 101.9 ±2.6% KCl induced
contraction at 10 8 m ET-1, n = 10). SRTX S6c also produced
a concentration-dependent contraction (Figure 1), but the re¬
sponse was extremely variable, the maximum response ob¬
tained with 3 x 10~8 m SRTX S6c ranging from 0 to 39% of
KCl contraction (mean response= 10.7 + 2.9%, n= 17). In fact,
only 9 of the 17 vessels (53%) responded to SRTX S6c.

Effect of ETA receptor blockade

Incubation with BQ-123 (10~6 m) before and during exposure
to ET-I (Figure 2) had no effect on contractile responses to low
concentrations of ET-1 (10~13 to 10"10 m) but resulted in in¬
hibition of responses to concentrations of ET-1 between 10"10
and 3 x 10~8 m. Incubation with BQ-123 significantly inhibited
the constrictions to 10"9 and 3 x 10~9 m ET-1 (P = 0.006 and
0.01, respectively) when compared by ANOVA. However, the

effect of BQ-123 on the overall pD2 of the ET-1 concentration-
response curve did not reach statistical significance (pD-> 9.15
(n = 8) vs 9.86 (n= 10) NS, T = 0.094).

Effect of ETB receptor desensitization or blockade

Exposure to a supra-maximal concentration of SRTX S6c
(10 7 m), to achieve ETB receptor desensitization, produced
an initial constriction in 4 out of the 8 vessels studied (mean
response = 8.1+3.5% KCl constriction). The vessel diameter
returned to the initial resting value during the first 30 min
exposure to SRTX S6c. No constriction was seen, in any of
the vessels studied, during the second exposure to SRTX S6c
confirming that tachyphlaxis had occurred. The ET-1 con¬
centration-response curve was not significantly altered by ei¬
ther ETb receptor desensitisation (Figure 3a, pD2 = 9.88,
n = 8) or following incubation with the selective ETB receptor
antagonist, BQ-788 (3x1(U8m, Figure 3b, pD2= 10.02,
n = 8), although both treatments tended to shift the ET-1
concentration-response curve to the left (/^ = 0.5 and 0.34,
respectively).

Effect of combined ETA and ETB receptor blockade

Co-incubation of vessels with BQ-123 (10~6 m) and BQ-788
(3 x 10~8 m) resulted in a parallel shift of the ET-1 concen¬
tration-response curve to the right (Figure 4, n = 8). Incubation
with BQ-123 (10~6 m) following desensitization of ETB re¬
ceptors with 10 7 m SRTX S6c caused a similar rightward
shift (Figure 4, n = 8). Incubation of vessels with the ETA/ETB
receptor antagonist, TAK-044 (Figure 5, 10"8 m, n = 4 and
3x 10~7 m, n = 8) also caused a parallel concentration-depen¬
dent shift to the right of the ET-1 concentration-response
curve. As the maximum response to ET-1 was not reached
within the concentration range studied it was not possible to
calculate pD2 values for ET-1 in experiments with BQ-123 plus
either BQ-788 or SRTX S6c desensitization, or with TAK-044
(both concentrations).

log [Agonist] m

Figure 1 Comparison of the contractile responses to endothelin-1
(ET-1, O) and sarafotoxin S6c (SRTX S6c, A) in rat small
mesenteric arteries. ET-1 (n=10) produced a maximal constriction
of similar proportion to 60 mm KCl at 3x10~9m. SRTX S6c
(n=\l) induced small constrictions at the highest concentrations,
suggesting a small population of ETB receptors present on the
smooth muscle of the resistance arteries. All values are mean and
vertical lines show s.e.mean.

log [ET-1] m

Figure 2 Effect of the ETA receptor antagonist BQ-123 on the
endothelin-l (ET-1) concentration-response curve in rat small
mesenteric arteries. Pre-incubation with BQ-123 (10~h m) for
30 min (#, u = 8) shifted the responses to the higher concentrations
of ET-1 in a parallel fashion to the right. All values are mean and
vertical lines show s.e.mean. *P<0.05 compared to control (O) ET-1
responses.
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a

log [ET—1 ] m
b

log [ET—1 ] m

Figure 3 The effects of selective ETB receptor blockade on
endothelin-1 (ET-l)-induced constrictions in rat small mesenteric
arteries. The vessels were exposed to either (a) sarafotoxin S6c
(SRTX S6c; 1CT 7 M, A. « = 8) twice before addition of ET-1 or (b)
BQ-788 (3 x 10~8 M, ■. n = 8) pre-incubated for 30 min before the
start of the ET-1 concentration-response curve. In both treatments
the ET-1 concentration-response curves tended to be shifted slightly
to the left as compared to control (O). (though not significant,
P = 0.54 and 0.42, respectively, as compared by ANOVA). All values
are mean and vertical lines show s.e.mean.

Discussion

Previous in vivo studies have clearly indicated a role for ETB
receptors in mediating vasoconstriction in resistance beds, but
their role has been difficult to demonstrate in isolated re¬

sistance vessels. In the present study, we show that a role for
ETb receptors in rat isolated mesenteric arteries emerges when
both ETa and ETB receptors are blocked, whereas blockade of
ETa receptors alone only partially inhibited ET-l-induced
contraction and inhibition of ETB receptors alone had no ef¬
fect. This phenomenon is similar to previous observations in
rabbit pulmonary artery (Fukuroda et al., 1994c), rat trachea
(Clozel & Gray, 1995) and human bronchus (Fukuroda et al.,

log [ET-1] m

Figure 4 The effects of non-selective ETA/ETB combination
treatment on endothelin-1 (ET-l)-induced constrictions in rat small
mesenteric arteries. The vessels were exposed to either vehicle (O),
BQ-123 plus BQ-788 (10 6 M and 3x10_8m, □, n = 8) or pre-
incubated with sarafotoxin S6c twice (each 10 7 m) plus BQ-123
(10—6 M, ■ n = 8). Both treatments significantly shifted the ET-I
concentration-response curve to the right in a parallel fashion
(P = 0.0001 for both). All values are mean and vertical lines show
s.e.mean.

log [ET—1 ] m

Figure 5 The effects of the non-selective ETA/ETB receptor
antagonist TAK-044 on endothelin (ET-l)-induced constrictions in
rat small mesenteric arteries. The vessels were pre-incubated for
30 min with either 10~8 M (A, n-4) or 3 x 10~7 M (A. n = 8) TAK-
044. Both treatments significantly inhibited the ET-1 concentration-
response curve (P = 0.0002 and 0.0001 respectively) as compared to
control (O). All values are mean and vertical lines show s.e.mean.

1996), and may be explained by the existence of a 'crosstalk'
mechanism between the ETA and ETB receptors.

In initial experiments we used the highly selective ETB re¬
ceptor agonist SRTX S6c (Williams et al., 1991) to investigate
the presence of ETB receptors in pressurised mesenteric ar¬
teries. SRTX S6c produced concentration-dependent con-
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striction but the maximum constriction reached only ~ 10% of
that routinely seen with ET-1, much less than would have been
predicted from previous in vivo experiments (Clozel et al.,
1992). However, the magnitude of responses to SRTX S6c is in
agreement with responses obtained by Takase et al. (1995) and
Deng et al. (1995), in rat mesenteric arteries studied in the
perfusion and wire myograph, respectively. Interestingly, in all
three studies, the contractions of SRTX S6c occurred at rela¬
tively high concentrations (10 nM). The ETB receptor agonists,
BQ-3020 and IRL 1620, were equally ineffective in the rat
perfused mesenteric bed at concentrations up to 1 nM (D'Or-
leans-Juste et al., 1993). This is quite different to the ETB
agonist responses induced in large blood vessels, which are
generally larger and occur at lower concentrations (Moreland
et al., 1992, Sumner et al., 1992; LaDouceur et al., 1993; Gray
et al., 1994). Another interesting feature of our results, not
mentioned by previous investigators, is the variability in re¬
sponsiveness to SRTX S6c. While some vessels failed to re¬

spond, others gave up to ~40% of the maximum contraction
obtained with ET-1. This might be explained by differential
distribution of ETB receptors in the mesenteric bed, although
3rd generation branches of the main mesenteric artery were
routinely used for these studies. Another possibility is varia¬
tion in intrinsic myogenic tone that these vessels can develop
when under pressure. In a separate experiment, in which ves¬
sels mounted in the wire myograph were studied, we found that
no responses were obtained to STRX S6c until some tone was
introduced by a low concentration of the stable thromboxane
analogue, U46619 (Mickley et al., 1995).

An alternative approach for the investigation of the role of
ETb receptors is to remove the influence of ETB receptors,
either by desensitization (LaDouceur et al., 1993) or by use of
a selective ETB receptor antagonist, like BQ-788 (Ishikawa et
al., 1994). In the present study, neither of these interventions
inhibited ET-1 induced contraction, a result which would
support the view that ETB receptors have little or no role in rat
mesenteric arteries. Interestingly, both desensitization and BQ-
788 treatment seemed to potentiate responses to ET-1 slighty,
although this effect was not significant. Seo (1996) recently
found a similar potentiation of ET-1-induced constriction by
the ETb receptor antagonist, Res 701-1 in human gastroepi¬
ploic arteries. There are several possible explanations for these
observations. Potentiation of contractions by ETB receptor
antagonists would be expected in the presence of the vascular
endothelium due to blockade of endothelial ETB receptor-
mediated release of relaxing factors by ET-1. However, this is
an unlikely explanation for the present results as the endo¬
thelium was effectively removed by passing of an air bubble
through the lumen of the vessels, as evidenced by the loss of
relaxant responses to acetylcholine. Previous histological stu¬
dies in our laboratory have also shown complete removal of
the endothelium by this method (Smith, 1996). The experi¬
ments of Seo (1996) were also conducted in endothelium-de-
nuded vessels. Alternatively, potentiation might have been
caused by displacement of ET-1 from low affinity ETB clear¬
ance receptors (Fukuroda et al., 1994a) by BQ-788, but this
would not account for the similar effect of receptor desensiti-
sation. Another alternative, suggested by Seo (1996), is the
presence of sensitive ETB receptors on smooth muscle which
inhibit or negatively modulate ETA receptor-mediated con¬
strictions to ET-1.

From the results obtained with SRTX S6c, BQ-788, and
desensitization alone, one would predict that blockade of ETA
receptors, by use of a selective competitive antagonist, like BQ-
123 (Ihara et al., 1992), would cause a parallel rightward shift
of the ET-1 concentration-response curve. However, in the
presence of BQ-123 the ET-1 concentration-response curve in
mesenteric arteries under pressure was biphasic, only responses
to high concentrations of ET-1 being shifted to the right in a
parallel manner by BQ-123, consistent with competitive an¬
tagonism at the ETa receptor. Interestingly, the BQ-123-re-
sistant, possibly ETB-mediated, responses to ET-1 were at the
lower end of the dose-response curve, consistent with the

presence of a high affinity ETB receptor. Takase et al. (1995)
obtained similar results with the ETA receptor antagonist,
FR139317 in rat mesenteric arteries, although in that case the
ETA-resistant component was smaller than seen here. Takase
et al. perfused the vessels at a pressure of 30 mmHg, half of
that used in the present study. Given our observation that
increased tone may reveal constrictor ETB receptors, as implied
by the responses to SRTX S6c (Mickley et al., 1995), the lower
pressure used by Takase et al. (1995) may account for the
smaller ETA receptor antagonist-resistant element of the ET-1
curve. The results of the present study are consistent with the
ETa receptor antagonist resistant reduction in mesenteric
blood flow induced by ET-1 in vivo found by Gardiner et al.
(1994) and Allcock el al. (1995).

In order to investigate whether the residual ETA antagonist
resistant portion of the ET-1 response is mediated by ETB
receptors, we used combined treatment with BQ-123 and either
desensitization or BQ-788. Both of these combination treat¬
ments resulted in a parallel shift of the ET-1 concentration-
response curve. In fact, the BQ-123-sensitive portion was
moved further to the right than with BQ-123 alone, in agree¬
ment with Fukuroda et al. (1996) who described a similar
phenomenon in human bronchi. Responses to ET-1 were also
inhibited, in a concentration-dependent manner, by TAK-044,
a peptide antagonist with similar potency at both ETA and ETB
receptors (Kikuchi et al., 1994).

These results demonstrate a clear role for ETB receptors
in mediation of constrictor responses to ET-1 in small me¬
senteric arteries that is only revealed when ETA receptors, in
addition to ETB receptors, are blocked. The lack of effect of
ETb receptor blockade or desensitization alone seems to
indicate that ETA receptors can somehow compensate for
the inactivation of ETB receptors. Similar observations have
been obtained in vascular (Fukuroda et al., 1994c) and non¬
vascular (Clozel & Gray, 1995; Fukuroda et al., 1996) tis¬
sues. The concept of receptor 'crosstalk' has been proposed
to explain these observations. The mechanism is not fully
understood, although interactions at the second messenger
level have been suggested, such that blockade of the ET„
receptor releases an inhibitory mechanism acting at the ETA
receptor (Fukuroda et al., 1996). Allosteric interactions be¬
tween ET receptors have been suggested to account for the
results of radioligand binding studies in rat heart (Soko-
lovsky, 1993). Further biochemical studies are required to
elucidate the interactions between ET receptors co-existing
in the same tissue and the mechanism of the apparent
crosstalk phenomenon. Interestingly, similar interactions
have been described between a,- and a2-adrenoceptors acti¬
vated by noradrenaline (Daly et al., 1988).

In the rat, the mesenteric bed receives a high proportion of
cardiac output and thus resistance in this bed is an important
determinant of total peripheral resistance and of blood pres¬
sure. The present results show that simultaneous blockade of
both ETa and ETB receptors is required for complete inhibi¬
tion of constrictor responses to ET-1 in the rat mesentery in
vitro. This agrees with observations that blockade of both re¬
ceptors is required to inhibit ET-l-induced increases in blood
pressure in vivo (McMurdo et al., 1993). The role of ETB re¬
ceptors in regulating constrictor responses to ET-1 might be
even greater in human resistance vessels, where ETB agonists
have a greater direct effect than in other species in vitro (Takase
et al., 1995, Mickley, unpublished observations) and in vivo
(Haynes et al., 1995).

In some pathophysiological states associated with increased
peripheral resistance and increased plasma concentrations of
ET-1, there is evidence for an upregulation of smooth muscle
ETb receptors; most notably in heart failure in dogs (Cannan
et al., 1996) and man (Love et at., 1996); in atherosclerosis
(Winkles et al., 1993; Dagassan et al., 1996) and in hyperten¬
sion (Kanno et al., 1993; Batra et al., 1993). The results of the
present study suggest that blockade of both ETA and ETB re¬
ceptors may be required for effective inhibition of ET-l-in¬
duced constriction in these diseases. This study was conducted
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in vessels without endothelium. However, in the presence of
endothelium, ETB receptor blockade can actually enhance re¬
sponses to ET-1 by blocking the release of nitric oxide and
prostacyclin through endothelial ETB receptor stimulation (De
Nucci et al., 1988). Thus, the effectiveness of endothelin re¬
ceptor blockade therapeutically will depend on the level of
endothelial ETB receptor stimulation and on the relative se¬
lectivity of the antagonist for endothelial and smooth muscle

ETb receptors, the ideal antagonist allowing ET-1 to act at the
endothelial ETB receptor while blocking its effects at smooth
muscle ETa and ETB receptors.

E.J.M. is the recipient of an MRC Studentship. This work was
supported by the British Heart Foundation (Grant No. FS/94003)
and the High Blood Pressure Foundation, Edinburgh.
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