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Abstract

The thesis presents research in the field ofmodel theoretic semantics on the problem of ambiguity,

especially as it arises for sentences that contain junctions (and,or) and quantifiers (every man,

a woman). A number of techniques that have been proposed are surveyed, and I conclude
that these ought to be rejected because they do not make ambiguity 'emergent': they all have
the feature that subtheories would be able to explain all syntactic facts yet would predict no

ambiguity. In other words these accounts have a special purpose mechanism for generating

ambiguities.

It is argued that categorial grammars show promise for giving an 'emergent' account. This is
because the only way to take a subtheory of a particular categorial grammar is by changing one

of the small number of clauses by which the categorial grammar axiomatises an infinite set of

syntactic rules, and such a change is likely to have a wider range of effects on the coverage of
the grammar than simply the subtraction of ambiguity.

Of categorial grammars proposed to date the most powerful is Lambek Categorial Grammar,
which defines the set of syntactic rules by a notational variant of Gentzen's sequent calculus
for implicational propositional logic, and which defines meaning assignment by using the Curry-
Howard isomorphism between Natural Deduction proofs in implicational propositional logic and
terms of typed lambda calculus. It is shown that no satisfactory account of the junctions and

quantifiers is possible in Lambek categorial grammar.

I introduce then a framework that I call Polymorphic Lambek Categorial Grammar, which adds
variables and their universal quantification, to the language of categorisation. The set of syntac¬
tic rules is specified by a notational variant of Gentzen's sequent calculus for quantified proposi¬

tional logic, and which defines meaning assignment by using Girard's Extended Curry-Howard

isomorphism between Natural Deduction proofs in quantified implicational propositional logic
and terms of 2nd order polymorphic lambda calculus. It is shown that this allows an account

of the junctions and quantifiers, and one which is 'emergent'.



Contents

1 Introduction 1

2 Universal Grammar 11

1 Introduction 12

2 Overview of the UG framework 13

3 Syntax in the UG framework 14

3.1 Disambiguated Language 14

3.2 Languages and the Disambiguation Relation 17

4 Semantics in the UG framework 20

4.1 Theories of Meaning 21

4.2 Theories of Reference 23

5 Translation languages 25

6 Polymorphism in Universal Grammar 25

3 Semantic facts about English 27

1 Introduction 28

2 Kinds of semantic data 28

2.1 Truth conditions 29

2.2 Translations 30

2.3 Truth intuitions 31

3 Facts about English 34

3.1 Transparency and Opacity intuitions 34

3.2 Preliminary Truth Intuitions concerning junctions 37

3.3 Preliminary Truth Intuitions concerning quantifiers 40

3.4 Recursive Ambiguity Intuitions for junctions and quantifiers 43

v



vi CONTENTS

3.5 Further Truth Intuitions for creators of Opaque Contexts 48

3.5.1 Truth Intuitions for Sentence Embedders 48

3.5.2 Truth Intuitions concerning VP embedders 49

3.5.3 A truth intuition concerning seek 50

3.6 Junction and Quantifier phenomena that have been ignored 50

4 Introduction to Categorial Grammar 53

1 Basic Concepts of Categorial Grammar 54

2 Ajdukiewicz/Bar-Hillel categorial grammar 56

2.1 Categorising 56

2.2 Assigning a meaning 57

3 Lambek Categorial Grammar 60

3.1 Categorising 60

3.2 Assigning a meaning 65

3.2.1 Working definitions of HI and H'L 68

3.2.2 Decomposition of the Proof-to-Term maps 72

3.2.3 The Natural Deduction system NJ-'and the Curry-Howard iso¬

morphism 73

3.2.4 A map from LJ~~* to NJ-* 78

3.2.5 From to LJ- 80

3.2.6 Multiplicity of proofs as a source of ambiguity 82

3.2.7 The strangeness and potential significance of the string-semantics 84

4 Universal Grammar 86

5 Arguments for locality and minimality 91

1 Introduction 92

2 Arguments for Locality 93

2.1 Basic Montagovian semantics 95

2.1.1 Verbal terms and Proper names 95

2.1.2 Embedding Verbs 97

2.2 Sentential Junctions and Subject Quantifiers 103

2.2.1 Syntax and Semantics for Sentential Junctions 103



CONTENTS vii

2.2.2 Syntax and Semantics for Subject position quantifiers 107

2.3 Some further extensions Ill

2.3.1 Truth predicates 114

2.4 Non-sentential Junctions 117

2.4.1 The non-local approach: Conjunction Reduction 118

2.4.2 The local approach: Cross Categorial Coordination 123

2.4.3 Summary 125

2.5 Non-subject position quantifications 127

2.5.1 The non-local approach: Quantifier Lowering 128

2.5.2 The local approach: Cross Categorial Quantification 136

2.5.3 Summary 140

2.6 Local vs. Non local, a verdict 140

3 Arguments for Minimality 145

3.1 The 'Quantifiers as objects' PTQ typing 145

3.2 The 'Intensions of Quantifiers as objects' typing 153

3.3 Summary 157

4 Conclusions 157

6 The failure of LCG to account for the Logical Constants 161

1 A monomorphic L(/>\)-theory of reference based on minimal types 163

2 A monomorphic L(/A)_theory of reference not based on minimal types . . . 177

2.1 Simple categories, complex typing 178

2.2 Complex categories, simple typing 183

3 A polymorphic l(/>\)_theory of reference based on minimal types 191

4 Conclusion 198

7 Polymorphic Categorial Grammar 203

1 Polymorphic Lambek Categorial Grammar 205

1.1 Polymorphic Lambek Calculus 205

1.2 Assigning Meaning 212

1.2.1 Polymorphic Fregean Algebras 213

1.2.2 2nd order Polymorphic A-calculus 215



viii CONTENTS

1.2.3 Decomposition of the Proof-to-Term maps 219

1.2.4 The Natural Deduction system nj(-+-v) and the extended Curry-
Howard isomorphism 220

1.2.5 The sequent calculus, lj(~1"■*), and the map * to nj(~+>v) .... 224

1.2.6 From to 225

1.2.7 Efficient Meaning Assignment: term associated calculus 226

2 The junctions and determiners in PLCG 227

2.1 A l(/>\>v)_theory of reference for junctions and determiners 228

2.2 Defining the polymorphic junctions and determiners 229

2.2.1 The impossibility of a £(A>A) definition of the polymorphic junc¬
tions and determiners 229

2.2.2 The possibility of a recursive definition of the polymorphic junc¬
tions and determiners 233

3 The semantic assessment of the polymorphic proposal 234

3.1 Unambiguous sentences with Junctions and Determiners 234

3.1.1 John walks and Mary talks 235

3.1.2 John needs and wants to go 236

3.1.3 every man walks 237

3.1.4 John told every man to go 239

3.2 Recursively ambiguous sentences with Determiners 240

3.2.1 a nun liked every boy 240

3.2.2 John believes a man came in 241

3.2.3 every man told a woman to go 243

3.2.4 General recursive ambiguity of S[DET CN] wrt. DET CN .... 246

3.2.5 A way of thinking about how the polymorphic proposal works . 251

3.3 Recursively ambiguous sentences with Junctions 253

3.3.1 a man came in and sat down 253

3.3.2 every man and woman died 254

3.3.3 General recursive ambiguity of S[Xi JUNCT X2] wrt. Xi JUNCT
X2 256

3.4 Ambiguities associated with embedding construction 259
4 Conclusions 263



CONTENTS ix

8 Comparisons with Hendriks' System 269

1 Introduction 270

2 Hendriks' Type Flexibility proposal 270

3 Type Flexibility or Categorial Polymorphism ? 275

4 From Type Flexibility to Quantifier Polymorphism 276

4.1 Category Flexibility 276

4.2 From Type Flexibilty to Category Flexibilty 278

4.3 From Category Flexibility to Quantifier Polymorphism 282

5 Extending LCG to account for logical ambiguity 285

5.1 Using Category Flexibility instead of Type Flexibility 286

5.1.1 A Syntactic Comparison of with Quantifier Polymorphism 286

5.1.2 A semantic comparison of with Quantifier Polymorphism . 288

5.2 Combining Type Flexibility with Lambek Categorial Grammar 290

6 Conclusions 291

9 Conclusions 293



Chapter 1

Introduction

1



2 CHAPTER 1. INTRODUCTION

Succinctly put the aim of the thesis is to provide a solution to the problem of logical ambiguity.
We explain below what 'logical ambiguity' is, and why it is a problem.

There are infinitely many sequences of English words which count as grammatical sentences.
This means that a theory aiming to predict which sequences of English words are grammatical
sentences cannot take the form of a finite listing of the right sequences. Instead a theory must

include some inductive/recursive rules, of which the following is an example:

(1) i/X is a sentence and Y is a sentence, then X and Y is o sentence.

Each of the infinitely many sequences of English words which count as grammatical sentences
also has a meaning. Therefore, one might try to construct a theory predicting what meaning
was assigned to what sentence. A semantic theory of this kind seems vexed by conceptual
difficulties that do not occur in a syntactic theory. A syntactic theory has only ultimately to

assign a yes/no answer to a string, and there is no conceptual difficulty in describing that task.
However, supposing that a semantic theory has ultimately to assign a meaning to a string,
involves one immediately in deciding what 'meanings' are. Because of the conceptual difficulties

here, semantic theorising has often taken for itself a different aim. Examples of such substitute
aims have been (i) the specification of the situations in which the sentence would be true or (ii)
specification of which sentences logically follow from which sentences.

Whatever one might take the aim of semantic theories to be, one aspect remains in common

with syntactic theories: that the number of facts to be explained is infinite. Therefore the theory
must include some inductive/recursive rules, such as:

(2) i/X is true in the situation andY is true in the situation, then X and Y is true in the
situation.

Now the semantic theory could either exploit or ignore the inductive syntactic theory. For

example, if the syntactic theory has inductive clauses defining 'new' sentences from 'old', the
semantic theory might add to this rule a part specifying the semantic properties of the new

sentence from the semantic properties of the old. (2) is such an exploitation of (1). On the other
hand, ignoring the syntactic theory, the semantic theory might start afresh on its own inductive
definition.

Of these two options, it has seemed overwhelmingly more likely that the semantic theory should

exploit the syntactic theory than that it should not. Perhaps one argument for this is that the

ability that humans have to distinguish grammatical utterances from ungrammatical is a rather

pointless ability in isolation. Yet we have it, and plausibly, the reason is that it is a subcapacity

of our capacity for comprehending these utterances: the semantic theory exploits the syntactic

theory.
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However, the phenomenon of ambiguity poses a problem for this plausible view that a semantic
theory should exploit a syntactic theory. Both of the sentences below are ambiguous:

(3) a. I like old men and women

b. Every man loves a woman

The simplest kind of inductive definition of the grammaticality of (3a) (and related sentences

such as I like men, I like old men, I like men and women) is given in (4).

(4) 1. men is a CN and women is a CN
2. if X is a CN, then I like X is an S
3. ifX is a CN then old X is a CN

4. ifX is a CN and Y is a CN, then X and Y is a CN

(4) uses the labels 'CN' and 'S' to classify sequences of words. It is not necessary to try to
attribute a significance to these classifications. (4) simply presents a system for assigning labels
to sequences of words which has the effect that all the sequences labelled 'S' are sequences

speakers of English would recognise as grammatical. On the basis of (4), there Me two different
inductive justifications of the fact that (3a) is a sentence, which is to say, that according to the
theory in (4), (3a) is syntactically ambiguous:

(i) 1,4 => men and women is a CN, (ii) 1,3 =>■ old men is a CN,
.'.3 => old men and women is a CN, .1,4 =► old men and women is a CN,
.I like old men and women is an S .'.2^1 like old men and women is an S.

Therefore (3a) corroborates the view that a semantic theory should exploit a syntactic theory, for
if one could add to the clauses of the theory, specifications of semantic properties of the strings

involved,.then parallel to the above two different inductive justifications of the sentencehood of

(3a) would be two inductive definitions of a semantic property of (3a), and probably these two
definitions would not come to the same conclusion.

The simplest kind of inductive definition of the grammaticality of (3b) (and of related sentences

like a woman loves every man, John loves a woman, every man loves John) is given in (5)

(5) 1. every man is an NP and a woman is an NP
2. ifX is an NP, then loves X is a VP

3. ifX is an NP and Y is a VP, then XY is an S

(5) gives only one inductive justification of the fact that (3b) is grammatical, that is according
to (5), (3b) is not syntactically ambiguous:

1,2 => loves a woman is a VP,

.'.1,3 => every man loves a woman is an S
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(3b) was an example of semantic ambiguity unaccompanied by syntactic ambiguity 1 and there¬
fore gives counterevidence to the view that a semantic theory should exploit a syntactic theory.
The single inductive justification of its grammaticality should imply that it has only one meaning

(or 'semantic property'). There are many other examples of semantic ambiguity unaccompanied

by syntactic ambiguity, such as:

(6) Most stupid and temperamental students cry all day long
Every student did not stay awake all night typing

We will call words like most, every and a, determiners , words like and and or we will call

junctions and words like not we will call negations . Determiners, junctions and negations

together form a group of words often called the logical constants. The presence in a sentence of
one of these expressions is a fairly reliable sign that the sentence will exhibit semantic ambiguity

unaccompanied by syntactic ambiguity. We will dub this phenomenon logical ambiguity. The

objective of the thesis is to give a solution to the problem of logically ambiguous sentences,

in some way that does not discard the principle that the semantic theory should exploit the

syntactic theory.

There are two kinds of solution that have been proposed. The first kind of solution moves

to a 'non-deterministic' kind of exploitation of the syntactic theory by the semantic theory:
associated with a rule defining new syntactic objects from old could be a semantic part defining
a range of possible semantic properties of the new syntactic object given the possible meanings
of the old. The second kind of solution is to revise the syntactic theory so that there are as

many inductive justifications of a sentence as there are possible meanings of it. For example one

might add to the mini-grammar of (5) the following inductive clause:

(7) ifX'is an NP and ... he ... is an S, then ... X ... is an S

According to the expanded version of (5) there will then be three different inductive justifications
of the sentence every man loves a woman, that is, it will be threeways syntactically ambiguous.

The solution to the problem of logical ambiguity that will be put forward in this thesis is an

instance of this second kind of solution. So a syntactic approach will be advocated according to
which there are (at least) as many inductive justifications of a logically ambiguous sentence as

there possible meanings of it. I will argue that my particular syntactic solution is an improvement
both over other syntactic solutions and over solutions of the other above mentioned kind, that
use a non-deterministic exploitation of syntax. The ground on which it will be argued that the
solution is an improvement over others is that logical ambiguity should not be a modular feature
of a theory. This is to say, it should not be possible a take a theory that does accounts for logical

1In describing things this way one has to bear in mind that 'syntactic ambiguity' is not a property that a
sentence has in its own right, it is a property that it has only in relation to some hypothesised syntactic theory.
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ambiguity, among other things, and by simplifying it into a subtheory, to subtract from the

coverage solely the explanation of logical ambiguity (in other words the subtheory would be able
to explain all the same syntactic facts as the larger theory, but to logically ambiguous sentences

it would assign only one reading). If a theory was resistant to such modular simplification, one
would expect that the reason for this would be that its explanation of ambiguity was not due
to some special purpose device but arises from the interaction of several different devices, each
of which has its part to play in the explanation of other phenomena than ambiguity. Therefore,

altering these devices will not only affect the coverage of ambiguity phenomena but the coverage

of other phenomena also. Of such a theory, we will say that it meets the emergence criterion.

Existing accounts seemingly do make ambiguity a modular feature. The option of using a non-

deterministic exploitation of syntax could be said to associate with a syntactic rule a disjunction
of semantic rules. Throwing away all but one of the disjuncts will lose simply the explanation
of ambiguity. The second kind of account, most famously instanced in Montague 73, has the
feature that is possible to cover all syntactic facts with a subset of the syntactic rules proposed.
What is lost if not all the rules are used is the explanation of ambiguity. The justification of
the claim that the solution that I propose meets the emergence criterion will have to wait until
it has been described.

There is nothing I can cite in evidence for the intuition that ambiguity should be an emergent

feature. Nonetheless, it is this feature that makes the theory I propose most unlike other

accounts, and it this feature that makes it more falsifiable than others. For example, if a stroke
could cause a person to lose to the ability to perceive logical ambiguity, but to experience no

other deficit to their language capacity, that would seem to be strong evidence for the modularity
of logical ambiguity, and correspondingly strong falsification of the non-modular theory that I
will propose. A number of other accounts could accommodate such data.

So much by way of introduction to the general argument that will be made in the thesis. It
is difficult without delving into technical terms to give much in the way of introduction to, or

summary of, the finer detail of this argument and the structure of the thesis. There follows a

brief sketch, highlighting what may be found in what follows that is novel.

Chapter 2: 'Universal Grammar' gives an introduction to a general form that a syntactic and
semantic proposal concerning a particular language might take, a general form that was first

proposed in Montague 70 (though almost all the individual parts had been seen before). One of
its most important features is that it delineates a precise sense in which a semantic theory can

exploit a syntactic theory. It also gives a certain form to the non-novel idea that by associating
with expressions certain set-theoretical objects (sets, sets of sets), it is possible to given an

inductive definition of what sentences entail what sentences - that is the valid entailments. It

is by use of just such set-theoretical machinery that the semantic theories to be proposed here
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operate.

Chapter 3, 'Semantic facts about English' more or less identifies the facts about entailment
in English that one would want to account for with a semantic theory couched in the UG
framework described in Chapter 2. There is also some discussion of whether there are any other
kinds of semantic fact, besides entailment, that one could hope to capture with a theory of the

Montagovian kind. This relates to the point made above that there are conceptual difficulties
in stating the aims of a semantic theory simply as a correct pairing of sentences with meanings.
We said above that substitute aims might be (i) to predict the situations in which a sentence is
true or (ii) to predict the valid entailments. One of the things that we do in this chapter is to

argue that (i) is not an aim of a Montagovian theory, though it has often been construed that

way. It is also argued that a corollorary of this is that there is no place in the description of the
data for the terminology of 'scope-ambiguity'.

Chapter 4, 'Introduction to Categorial Grammar', describes the framework of Lambek calcgorial

grammar, briefly LCG (Lambek 58, van Benthem 86, Moortgat 88). The first essential feature
of categorial grammar is that has an infinite, inductively defined language of categories, defined
from some atomic categories and the categorial connectives, / and \. For example it is the
case that if x and y are categories so is x/y. The second essential feature of Lambek categorial

grammar (though not ofother kinds ofcategorial grammar) is that there is an inductive definition
of syntactic rule. This is an important distinction as compared with the illustrations of syntactic
theories that were given above in (4) and (5). (4) and (5), by a finite enumeration of syntactic

rules, gives an inductive definition of grammatical strings. LCG, on the other hand, by means

of a finite device known as a sequent calculus, gives an inductive definition of a set of syntactic

rules, keyed on patterns of connectives. The so defined rules then participate in the inductive

definition, of a set of syntactic strings in the usual way.

It is the structure of the inductive justification of a syntactic rule that a semantic theory in
LCG exploits. It is shown in a preliminary fashion in this chapter that a theory cast in the LCG
framework has some chance of accounting for logical ambiguity, and in a way likely to meet the

emergence criterion. One can get a hint of why ambiguity will not be modularly removable by

reflecting on the fact that the LCG rule set is inductively defined. This inductive definition has
a small set of clauses (in fact 5), and any descriptive success that an LCG has stems from them.

Discarding any one of them can be expected to have far-reaching consequences on the coverage

of the account, more far-reaching than simply eliminating ambiguity. Hence the difficulty of
modular simplification to eliminate ambiguity. Chapter 6 will consider in a more systematic
fashion whether an account of logical ambiguity can be formulated within the LCG framework.

Chapter 5, 'Arguments for Locality and Minimality' is primarily a chapter in which a number of
the accounts that have been given of junctions and quantifiers are described and the descriptive
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adequacy and emergence criteria are applied. The accounts considered do not meet the criteria.
The chapter also serves to introduce some 'basic semantic technology', something one would
have to do at some point in any case.

Chapter 6, 'The failure of LCG to account for the Logical Constants' argues that LCG, despite
the preliminary indications noted in Chapter 4, does not allow a solution to logical ambiguity.

Chapter 7, 'Polymorphic Lambek Categorial Grammar' first introduces an extension of the
LCG framework. This first part of the chapter is general and not concerned particularly with
the problems posed by junctions and determiners - afterwards we formulate a particular account
within the framework and investigate whether it constitutes a solution to logical ambiguity.
It was mentioned above that categorial grauunars have as a definitive feature, an inductively
defined set of categories. Polymorphic Lambek Categorial Grammar (PLCG) extends LCG's
inductive definition of the categories, introducing category-variables and their universal quan¬

tification, (that is allowing for categories such as VX.X/(X\np)). It was also mentioned above
that LCG had the distinctive feature of inductively defining the syntactic rules. This inductive
definition is also widened in the case of PLCG, including clauses to govern the V connective. As
with LCG, it is the structure of the inductive justification of a syntactic rule that the semantic

theory exploits. The effect of PLCG's category notation is that if there were a number of LCG

categorisations one would like to have assigned to an expression, all of which were instances of
a category schema, such as z/(x\np), one can gain the same effect in PLCG by assigning the
categorisation VX.X/(X\np).

After the general description of the PLCG framework, a particular example is formulated, aimed
at accounting for the junctions and determiners. Junctions and determiners are given categori¬
sations that exploit the increased categorial language of PLCG. We then proceed to show that
this PLCG account captures the distributional behaviour of junctions and determiners, and that
it gives a descriptively adequate account of logical ambiguity. We claim that this account also
meets the criterion of emergence: simplifications would not simply subtract from the coverage

of logical ambiguity, but from the coverage of syntactic phenomena also.

Chapter 8: 'Comparison with Hendriks' Type Flexibility proposal' discusses one further account
of the logical ambiguity problem, the type-flexibility proposal of Hendriks 88. This is an account

that takes the evidence that logically ambiguous sentences are not syntactically ambiguous at

face value, and solves the problem by defining a certain way in which the semantic theory non-

deterministically can exploit the syntactic theory. The first point made about this is that it
makes of ambiguity a modular feature. However, the read reason for considering Hendriks' is not

simply to apply the criterion of emergence to it. The main reason for making this comparison
is that there is a strong theoretical affinity between the two proposals, and to try to illuminate

this, a translation is outlined which will transform an analysis within the type-flexibility account
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into an analysis within the PLCG account. This translation also brings to light two further ways
that one could build an account of logical ambiguity on top of LCG, accounts that have been

briefly considered in Moortgat 88 and Moortgat 90. I will give some examples that show that
these possibilities have to be ruled out.

Figure 1.1 gives an indication of the main logical dependencies between the chapters. The reader
may also find it useful to look from time to time to the end of the final chapter, where there is
a certain amount of indexing to the various definitions given in the thesis. There are indices for
the main definitions, the hypotheses, the languages, the models, and the theories. There is also
a general index to help locate 'in-text' definitions.

Montague's 'Universal
Grammr' framework

(Ch 2)

How to test an account

in the UG framework

(Ch 3)

Some earlier UG

accounts of

ambiguity (Ch 5)

The Lambek Categorial The Type Flexibility
attempt to explain account of ambiguity
ambiguity (Ch 4,Ch 6) (Ch 8)

The Polymorphic

Categorial account of
ambiguity (Ch 7)

Figure 1.1: Some logical dependencies amongst the chapters
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1 Introduction

In the 1970 paper Universal Grammar (henceforth referred to as UG) Richard Montague pro¬

posed a general framework in which to describe the syntax of languages and alongside this a

general specification of how to develop a formal semantics for a language whose syntax is char¬
acterised in the way he describes.1 This chapter is nothing more than a recapitulation of the

proposals made in UG. We have gone through this exercise for a number of reasons.

The main aim of the research described in this thesis was to formulate a compositional account

of certain natural language ambiguities and in UG, Montague gave a general form for such ac¬

counts. By making our proposals within this general framework we will be adopting Montague's

interpretation of the terms compositionality and ambiguity. One of the reasons for using Mon¬

tague's definitions rather than relying on the intuitive understanding of these terms is that it
resolves what at least are prima-facie conflicts between the intuitive meanings of the terms. The
intuition behind compositionality is that once the interpretations of the parts of an expression
are fixed, so is the interpretation of the whole. Yet this is just what is not true of an ambiguous

expression - fixing the interpretation of the parts still leaves two possibilities at least for the

interpretation of the whole.

A second reason is that it is only from the perspective of Montague's definition of composition¬

ality that it is possible to relate the kind of compositionality enjoyed by categorial grammars to
the kind enjoyed by other kinds of grammar. In particular, if one had only the 'Rule to Rule'
notion of compositionality, then it would be impossible to say in what sense categorial grammar,
of the Lambek calculus variety, is compositional.

Thirdly, the UG framework gives a kind of level ground on which to compare accounts not
themselves formulated overtly in the framework, by comparing their representatives within the
framework.

In section 2, an overview of the UG framework will be given briefly. This hopefully provides

orientating background for the more detailed material in section 3, concerning the syntactic

aspects of the framework and section 4, concerning the semantic aspects. Section 5 refers very

briefly to a topic which is discussed in the UG paper but will be here largely ignored, namely
the use of intermediate translation languages. Finally in section 6, the notion of polymorphism is
introduced and it is noted the extent to which polymorphism is allowed by the UG framework.

1 The semantical ideas all had more or less long histories: denotational semantics (Frege 1892), possible-worlds
semantics (Carnap 47, Kripke 63), type-theory (Church 41)
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2 Overview of the UG framework

13

The Montagovian picture involves three kinds of objects and two connections chaining them

together. The three objects are languages2, disambiguated languages and semantic

algebras and the two connections Eire the disambiguation relation and the meaning as¬

signment function.

Disambiguation Meaning
Relation Assignment

Function

Figure 2.1: Syntax and Semantics in the UG framework

In the following sections these notions will be defined. Here, by way of introduction, approximate

descriptions will be given, and we will indicate which parts are carrying what burden.

Language Roughly speaking a language can be thought of as a set of expressions. Impor¬

tantly, these expressions are not the primary members of syntactic categories, nor are

they the primary bearers of meaning. The expressions of a language have categories
and meanings only derivatively, once the language has been linked to a disambiguated

language, by a disambiguation relation.

Disambiguated Language Roughly speaking, this can be thought of as a syntactic al¬

gebra plus a grammar. A syntactic algebra is an expression set closed under the

application of certain syntactic operations. Because a disambiguated language in¬

cludes a grammar, it is intrinsic to it that it define categorisation facts concerning its
2Terms are given in small caps when it is important to distinguish Montague's technical definition of the term

from either every day meaning or definitions by other people.
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expressions. A language (that is a set of expressions), C, and a disambiguated lan¬

guage, £, are said to be connected by a disambiguation relation 3 , R, if the domain
of R is C and the range is the carrier set of the algebra of £. Via this relation, C is
understood to inherit categorisation facts from £. For example:

IfC, an expression of C!, is of category 6, and £ is an expression of C such that £R£,
then (I is of category 6.

Semantic Algebra This is a realm of meaning objects, closed under the application of some
semantic operations. The carrier set of the syntactic algebra of a disambiguated

language and the carrier set of a semantic algebra can be linked by an interpre¬

tation function. This function is actually defined only on the lexical expressions. The
meaning assignment function g is the unique homomorphic extension of /, assigning

meanings to all expressions of the disambiguated language.

If C! is a DISAMBIGUATED LANGUAGE, whose expressions are assigned meanings by some

g, then as with categorisation, expressions of a LANGUAGE C can inherit these meanings
via a DISAMBIGUATION RELATION from C to £.

IfC'i an expression ofC!, has meaning m, andC, is an expression of C such that CfRC,' then

£ has meaning m.

By chaining the relational link, R, between C and £ with the functional link, g, between £
and the semantic algebra, one has a relational link, Hog, between language and meaning. One
would expect there to be this kind of relational link between language and meaning because of

ambiguity. However, within Montague's ug framework this relational link is not a 'primitive'

meaning-connection. The 'primitive' relation is the functional meaning assignment function.
The essential feature in the Montagovian architecture that allows a representation of ambiguity
is the relational link between LANGUAGES and DISAMBIGUATED LANGUAGES.

3 Syntax in the UG framework

3.1 Disambiguated Language

It was said above, that a DISAMBIGUATED LANGUAGE was some kind of combination of a syn¬

tactic algebra with a grammar, and on this comment we will now expand.

A syntactic algebra is a pair (.4, (.F7)7€r), where (,F7)7er represents a family of operations,
indexed by T under the application of which A is closed. Roughly speaking, the objects of A
are conceived of as the expressions of the language, with the operations performing the work of

3This is in fact a slight departure from Montague's formulation, in which he spoke of an 'ambiguation' relation,
for which the carrier set of the syntactic algebra is the domain and not the range.
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deriving large, complex expressions from smaller simpler expressions. For example, if the algebra
contains an operation to perform concatenation and contains the objects John and walks, then
the A must also contain John walks, John John and walks walks. Because of this closure property
of A, to call the members of A 'expressions of the language' is something of an extension of the

ordinary usage.

The grammar part of a disambiguated language defines the categorisation facts concerning ob¬

jects of the algebra. There Me two components: (i) the categorisation facts concerning basic
expressions and (ii) syntactic rules.

The categorisation facts concerning basic expressions are given by defining an indexed family
of sets, (Xt)seA, each Xf being the set of objects of A that may be called lexical 6 phrases. A
will be referred to as the set of phrase-set indices.

The syntactic rules are of the form (Ey, (61, ...6„),6n+1), which may be interpreted as stating
that whenever the operation T7 is applied to a n-tuple of representatives of the categories
6i,...,6„, the resulting object is of category <§„+i (this will be made more precise in a moment).

The syntactic algebra and grammar are combined together as a 5-tuple:(.4, (^"7)7er, (<r«)«eA, S, So),
where S is simply the set of syntactic rules and 60> is a distinguished phrase set index, the sig¬
nificance of whose status can only be explained when semantics is turned to.

Not all such 5-tuples qualify as DISAMBIGUATED LANGUAGES: there are some additional char¬
acteristics that reflect the presence of the word disambiguated. Before the definition of these, an

example of what is at least the kind of thing that a disambiguated language is:

Let C1 be the five tuple (.A1, (J"^)7erl i , S1, So), where the elements in this tuple are

defined below :

The ambiguous language C1

1. the set of phrase-set indices A1 = { NP, S, VP, PV, ADV }

2. distinguished phrase-set index Sq = S

3. the family of sets of basic 6-phrases called (TjjjgA
-Tg = 0, A^p = {John, Mary}, A'yp = {died}, A'py = {said}, Tadv = {yesterday}

4. a family of syntactic operations, (/'^)7er1, where T1 = {0}
Whatever a, /?6 A1, = a/3

5. the set, A1, which is the closure of under the operations (^"7)7erl
6. the syntactic rules S1 =
{{T\, (NP, VP), S>, (PV, S), VP), (T\, (VP, ADV), VP)}

The following three points cover general facts that cannot be conveyed by this specific example.
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First it should be noted that although the objects that feature in A1, the phrase-set-indices,
are familiar syntactic labels, they need not be. Also the set phrase-set-indices, A1, the set of

operation indices T1, and the set of syntactic rules S1, though finite in the above, need not be.
In Chapter 4, categorial grammars are represented by disambiguated languages, and the

phrase-set indices, the operation indices and the syntactic rules will all be infinite sets.

Second, we should make clear exactly how (A^agA and S1 combine to define categorisation.
There is a 'once and for all' definition of how this is done for any disambiguated language.

The set A was used to index the family of sets of lexical ^-phrases. A is also used to index a

family of larger sets of expressions, (C< )ie a • This family is the family of phrase-sets 4 and is
defined:

Definition 1 (The family of phrase-sets)
A disambiguated language generates the family of phrase-set (C«)agA if and only if (1)
(£«)«€A is a family of subsets of A, indexed by A; (2) Xs C Cs for all 6 G A; (3) whenever
(P,(6i,...,6n),6n+i) G S and an G CK, T(ai,...,a„) G (4) whenever (C'6) satisfies

(l)-(S), Cs C C's

Forbidding though this appears, what is states is in fact very intuitive. (2) says that lexical

(5-phrases are in the phrase-set indexed by 8. (3) simply says that phrase-sets are closed under

application of the syntactic operations in accordance with the syntactic rules. A rule such as

the first appearing rule in 51 may thus by seen as shorthand for

if a G Cnp, /? G Cyp then, Tl0{a,(3) G Cs

In the 1973 paper, The Proper Treatment of Quantification (henceforth PTQ), Montague gave

syntactic rules in this longhand form.

A third point that needs to be emphasised is that Montague construed the syntactic operations
as extensional objects, which is to say that they are one and the same as certain sets of sequences
of objects. One cannot therefore propose two different syntactic operations which have the same

effect on all sequences of expressions, as the operations would then be identical to the same set of

sequences of expressions. This extensional construal has consequences because Montague goes

on to map the syntactic operations onto semantic ones, with the requirement therefore that

syntactic operations be discriminated at least as finely as semantic ones. Two different semantic

operations must correspond to two 'visibly' different syntactic operations.

We turn now to those characteristics a 5-tuple like Cl must have if it is to qualify as disam-
4We are using 'phrase-set' where Montague used the term 'category'. This is because we wish to reserve the

term 'category' for later use in the discussion of 'categorial grammar'.
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biguated. Consider the following two true identities in the algebra of C1:

17

(1) John said Mary died yesterday

= ^"J(John, .Fj(said, ^"J(Mary, .^(died, yesterday))))
John said Mary died yesterday

= ^"J(John, ^(^(said.^^Mary, died)), yesterday))

These identities say that the object John said Mary died yesterday can be derived in two ways.

The essence of the disambiguation conditions for a 5-tuple like C1 is that there should be one

or less derivations of any object of the algebra. Suppose a is an object of the algebra and one

wants to know whether this object may be derived. In other words one wants to know whether
there are , /?i,..., such that the following identity holds:

a = Jr7(01,...,pn)

In a disambiguated language the following facts about search for a solutions to this equation
are required :

1. If for some 6, a G Xg, (that is a is a basic expression), there is no solution to the above equation.
2. If a is not a basic expression, there is at most one solution to the above equation

3.2 Languages and the Disambiguation Relation

We turn now to languages and their connection with disambiguated languages via a

disambiguation relation. We said above that a language was simply to be taken as an

expression set, not associated directly with any grammatical rules. This is essentially true,

but is not quite how things are defined. The formal definition actually has a language as a

pair, (£,72) where C is any disambiguated language, (A, Xg,S,6o) and R is any binary
relation, with Ran(7L) C A, (referred to as the disambiguation relation).

Henceforth language will be taken in this sense. Its expressions are those objects which stand
in the disambiguation relation to expressions of A.

There is a definition of the way in which a language (£,72) inherits categorisation from C

(where £ is a disambiguated language, and 72 a disambiguation relation):

Definition 2 (Phrase-Set of (£,72)) (£,72) generates a family ofphrase-set (CATs j£ wj)«eA>
where CATs^£ ^ is the set of objects, s, such that sRa for some a G Cg, one of the phrase-sets
generated by £

What one finds in Montague's PTQ paper is not the definition of a disambiguated language

together with a disambiguation relation. Instead one finds the definition of a 5-tuple that
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is very much like C1, in that it meets all the requirements of a disambiguated language

except the disambiguation conditions. However, it is possible to extract from the definition of
the ambiguous 5-tuple the definition of a disambiguated language and a disambiguation

relation. First the disambiguated language will be defined and then it will be explained

how it may be seen as extracted from the ambiguous 5-tuple C1.

C2: a disambiguated version jC1

1. A2 = A1

2. distinguished phrase-set index = S

3. if «i G X] then (si,(),5) G X2
4. (f2)l£P, where T2 = T1

for all 7 G T2, for all (ac), (/?,,) G A2

5. the set -42 which is the closure of under the operations (^)7€r3
6. the syntactic rules S2 are: exactly the same as those of Cl , except for the replacement
of T\ by T2

C2 satisfies the disambiguation conditions. The operations are defined so as to record in the
output of the operation which operation it is and what the inputs were. Nor can basic expressions
be derived as the third coordinate of a basic expression is always a phrase-set index and not an

operation index. For example, concerning Cl there was the identity,

(2) ^(John, J"j(said, ^(Mary^^died, yesterday))))
= ^o(3°^ni ^(.^(said.lF^Mary, died)), yesterday))

Whereas if is changed to T\, the corresponding identity does not hold of the algebra
in C2. One can see this clearly if the triples in A2 are depicted as trees, taking first and third
coordinates are as a mother node and the second coordinate as the sequence of daughters of
that node. See Figure 2.2 and Figure 2.3.

What these pictures also make clear is that the objects of C2 are analysis trees of the objects
of C1 . 5 In general, the way that an ambiguous 5-tuple like Cl can effectively define a

disambiguated language, is by taking the objects of the disambiguated language to be

analysis trees of objects of the ambiguous 5-tuple.

The ambiguous 5-tuple, £ , also effectively defines a language, because one can take as the dis¬

ambiguation relation the relationship which holds between the terminal yield of an analysis
tree and an analysis tree.

5These 'analysis trees' do not depict process of categorisation in .
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John said Mary died yesterday,0

John.NP said Mary died yesterday,0

said.PV Mary died yesterday,0

Mary.NP died yesterday.O

died,VP yesterday,ADV

Figure 2.2: First £2 disambiguation of John said Mary died yesterday

John said Mary died yesterday.O

John.NP said Mary died yesterday.O

^said^M ary_djetbO^^ yesterday,ADV
said.PV Mary died.O

Mary.NP ^ diTd.VP

Figure 2.3: Second C? disambiguation of John said Mary died yesterday

Whilst some pairings of disambiguated language and disambiguation relation can be
seen as effectively defined by an ambiguous 5-tuple, some cannot. The disambiguation rela¬

tion defined by the ambiguous 5-tuple, Cl is a one-to-many relation but the UG framework
allows also for disambiguation relations to be many-to-one or many-to-many, and such
disambiguation relations cannot be regarded as pairings of terminal yield and analysis tree.

Whether or not is appropriate of the UG framework to allow the disambiguation relation

to be other than one-to-many is a question that one might ask. There are some natural lan¬

guage phenomena that lend some support to the unrestricted nature of the disambiguation

relation. The cases where one might exploit this lack of restriction occur when there are, so

to speak, several ways of saying the same thing. In English, one could argue that the active and

passive form of a sentence are just two ways of saying the same thing, and one could reflect this

by having them share the same disambiguation:

7J(John likes Mary,(John likes Mary,di,ei))

72(Mary was liked by John, (John likes Mary, d\, ti))

Another example is provided by the relatively free-word order of the np arguments of a verb
in German. Arguably all the orders are different ways of saying the same thing and one might

explain this by postulating that they share the same disambiguation:
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7Z(er liebte ihn,(er liebte ihn,di,£i))

7^(ihn liebte er,(er liebte ihn, <ii, ei))
There are not the only approaches to passivisation and relatively free-word order, and in point¬

ing them out I am not claiming that these phenomena can only be accounted for by exploiting
the unrestricted nature of the disambiguation relation. The point is simply that if the disam¬

biguation relation were to be restricted to be a one-io-many relation, the above approaches
could not be carried out, and this would not be consistent with the aimed for generality of the
UG framework.

4 Semantics in the UG framework

Having described Montague's conception of syntax in the UG framework, we will now consider

Montague's conception of meaning and the way in which an expression may be linked with its

meaning.

The algebraic theme is prominent again here: Montague proposed that the materials of the
semanticist should form part of an algebra, a closed semantic world of semantic objects subject
to semantic operations. Objects in syntactic algebras are mapped onto objects in semantic

algebras by a meaning assignment function. The pairing of a meaning assignment function with
a semantic algebra is called an interpretation.

The main reason for bringing the algebraic perspective to language and meaning is that the
idea of a compositionality can be given a very exact and general formulation: given a syntactic
and a semantic algebra which are similar, a mapping from the syntactic objects to the semantic

objects is a compositional meaning assignment if it is the homomorphic extension of a mapping
from the basic syntactic objects to the semantic objects.

In section 4.1, 'Theories of Reference', Montague's notions of semantic algebra, interpretation
and compositionality are defined. About the objects inhabiting semantic algebras no assumptions
are made, and as a result there is no notion of truth of a sentence on a given interpretation.
It is in section 4.2, 'Theories of Reference', that semantic algebras are described in which feature
more Fregean and familiar semantic values. These are the algebras of type-theoretical, possible-
worlds semantics, and emergent is a notion of truth of a sentence, relative to a given Fregean
interpretation and possible-world, (or model as such a pairing of a interpretation and

possible world is called).

At this point of section 4.2, one could be forgiven for thinking that to make a syntactic/semantic

proposal concerning a natural language within the UG framework would be to define two things:
a language and a model. However, the final characterisation of syntactic/semantic proposals
is that they should pair a language not with a model but with a set of possible models. This
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is because, it is only with respect to such a pairing that a notion of entailment can be defined.

4.1 Theories of Meaning

A semantic algebra is a pair (B, (<?-y)7gr)- B is a set of objects, the G-y are operations which are

total on B and under which B is closed. The G-y are extensionally conceived. In these respects se¬

mantic algebras are exactly like the syntactic algebras which feature as parts of disambiguated
languages. A difference is that there is no correspondent of the disambiguation conditions for
the semantic algebras.

Now on Montague's conception the fundamental language-meaning connection is between the

syntactic algebra of a disambiguated language and a semantic algebra. One makes such
a connection by specifying an interpretation. An interpretation for a disambiguated

language C, where C = (.4, (•7r7)7gr> (^«)«6A»^»^o)i is defined thus:

Definition 3 (Interpretation for C)
Is a triple (B, ((/7)7gr> f), where

(i) (#, ((77)7€r) and (A, (J"7)7€r) are similar algebras and
(ii)f is a function from U(.T«)igA into B

Here the similarity of the algebras (.4, (^*7)7er) an<i (B, (G-y)-yer) requires that for all 7, and
G-y have the same number of argument places.

The notion of interpretation concerns only the basic expressions. The termmeaning assign¬

ment is used to describe the extension of the mapping to include also the compound expressions
of the disambiguated language:

Definition 4 (Meaning assignment for C)
The unique homomorphism, Q, from (A, (•^"7)7gr) to (5,({?7)7er) that f C []> where f is
the interpretation function defined above.

The / C D part simply says that [] coincides with / on the basic expressions, and the fact that

|J is a homomorphism simply says that for all compound expressions, T1(ocy,... ,a„),

•>"")! = la"l)

One is justified in speaking of the unique homomorphism as it can be quickly proved that there is

only one mapping J] extending / and satisfying the homomorphism property. Though the term

'compositionality' is not mentioned here, the above definition ofmeaning assignment embodies

Montague's conception of 'compositionality'. On the question of whether this corresponds with
the intuitive definition of what is required for a meaning association to be 'compositional', I
offer only the following paragraph.
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The compositionality slogan: 'the meaning associated with a complex whole is a function of
the meaning associated with its parts'. This has can be read as trivial, for given the meanings
of the parts of a sentence and the meaning of the whole there are indefinitely many functions
which may be regarded as relating these as arguments to value. A more significant reading of
the compositionality slogan is that the meanings of sentences S and S' are always the same,

if 5' is derived from 5 by replacing some word with another of the same meaning and same

grammatical category. However, because 5 and S' may well be ambiguous, one cannot speak
of the meaning of 5 being preserved. Possibly at this point one should claim that there is an

intuitive notion of the 'mode of composition' of S, and that one may speak of S and S' 'sharing' a
mode of composition. This view is reflected by modifying the compositionality slogan to include
the phrase, 'a function of the meaning of the parts and their mode of composition'. Such a

reading, the UG framework reflects very well, for a mode of composition is a disambiguation,

and substitutability holds without qualification for objects of the disambiguated language.

Just as a language may inherit categorisation facts from a disambiguated language that it
bears a disambiguation relation to, so a language may also inherit meaning assignment

facts. For this inherited meaning assignment the terminology sx means mx in (£,72) is used
which is defined :

Definition 5 (sx means mx in (£,72))
sx means mx in (£,72) iff there exists a € Ust&Ct such that sx72o and g(a) = mx

The meaning assignment is defined on disambiguated languages. Why is this ?

Given that meanings are assigned by a function, it is clear that a semantically disambiguated

language must supply the arguments to this map, the expressions of which should be related

by an ambiguation relationship to expressions of a language. This argues for the fact that
the intervening language must be semantically disambiguated, but does not argue for it being

syntactically disambiguated.

It is the formulation of compositionality as homomorphism that is at the root of the requirement
that syntactic algebras meet the disambiguation conditions. The relevance is that if the syntactic

algebra meets the disambiguation conditions and one has a similar semantic algebra then any

map from the basic expressions to semantic objects has a homomorphic extension. This is to

be contrasted with when the syntactic algebra fails to meet the disambiguation conditions - in
other words some derivational histories converge to the syntactic same object. Then unless the
semantic algebra reflects these identities there can be no homomorphic connection.6

The definition of 'means in (£,72)' is the last truly 'universal' definition of the UG paper, where
6The relevance of the homomorphism requirement to use of disambiguated algebras should not be overplayed:

an ambiguous syntactic algebra can be homomorphically linked to a semantic algebra, but not to just any similar

algebra.
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no assumptions are made about the nature of the objects in the syntactic and semantic algebras.
In the next section of the UG paper and of this chapter, semantic algebras of a particular kind
are described, the algebras of type-theoretical, possible worlds semantics.

4.2 Theories of Reference

In constructing the sets of objects B of such algebras, there are three degrees of freedom: the
choice of a set, £, of entities, the choice of a set, Z, of possible worlds and a set, of contexts of
use. From the entities £, the worlds Z and the fixed set of truth values, there is fixed construction
of set of possible denotations, and from this and and the cartesian product Z x J, there is a

fixed construction of the set of possible meanings.

The set of possible denotations is a set of sets, each indexed by a type. Montague called the
set of types, T. I shall define a slight enlargement of this set of types and call it tj-*, the reason

for which name will be given later.

Definition 6 (tj-*)
a. e, t and 8 are € tj-*
b. if a and b are € tj~* then (a—>b) is g tj-*

Relative to the sets £ and Z, the set of denotations which has index a, Da is given by 7:

Definition 7 (Denotation set, Da) De = £, D, = 1, Dt = {0,1), £)(0_»4) = Df*

The exponent notation AB refers to the set of total functions from B into A. From the family
of denotation sets (A,)aer, the family of meaning sets (Ma)aeT is defined as

Definition 8 (Meaning set, Ma) Ma —

Therefore the types index both the meaning sets and denotation sets, with a particular
meaning of type a being a set of pairs, whose first coordinate is member of J x J and whose
second coordinate is a denotation of type a. This set of pairs is moreover a function. It is
the objects in U(Afa)aer that serve as objects in a semantic algebra (B, C?7), which we shall a
Fregean algebra . A Fregean interpretation is more or less the application of the notion of
interpretation in the context of above described kind of algebra. What is additional is that a
Fregean interpretation must make reference to a type mapping, u, relating the phrase-set
indices of A to the types in tj-\ Such mappings are arbitrary save for the requirement that

]/(60) = t. Given this, a Fregean interpretation is defined thus (for a disambiguated

language C, where C- (A, (Z"7)7€r, (A«)«€a, S, S0)):

7Another term used for the same thing is type domain.
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Definition 9 (Fregean interpretation of C, associated with
Is a triple (B, (£7)7er, /), where
(*) (B>(Gt)ysr./) is an interpretation, and (#, (£7)7er) is a Fregean algebra
(it) whenever 6 6 A and a G X6,f(a) G MV(S)
(Hi) whenever (6„),e) G S andm,e%) <Aen a7«m,)) € Af*^)

Because of the nature of the objects in Fregean interpretations, it is possible to define
the notion of truth of a sentence, relative to a particular interpretation and a particular

(»', j) Glx J. In fact the notion defined is that of truth in a model, where models are taken
to be a pair of a Fregean interpretation and some (i,j).

Definition 10 (Model for C)
Is a pair(5l, (i,j)), where 3 is a Fregean interpretation ofC associated with some E,T,J, v
and (i, j) el x J

Definition 11 (Truth)
a is a TRUE sentence of C with respect to (3, (i,j)) iff [a]((»,j)) = 1

In a related fashion there is an obvious definition of the denotation of any category of expression
with respect to a model.

Finally a notion of entailment is defined. This is defined not relative to a single model, but
relative to a class K ofmodels:

Definition 12 (a JC-ENTAILS /?)
a AC-ENTAILS P iff for every MODEL (9, (i, j)) in /C, if a is TRUE with respect to (9, (i,j)) then
(3 is TRUE with respect to (9, (i,j))-

It will be convenient in what follows to use the terminology of a theory of reference for
the joint specification of (i) a language, (C,R) and (ii) a class K. ofmodels of C. Note that a
theory of reference is the Montagovian characterisation of a particular language, and not

a general framework for such characterisations.8

The notions of truth in a model and of /c-entailment are the cornerstones of the empir¬
ical dimension of a theory of reference, what enables one to say whether a theory of

reference is right or wrong. This is discussed in Chapter 3.

The definitions of MODEL, TRUTH and /C-ENTAILS are rather similar to ones given in textbooks
in Predicate Logic, with one significant difference. The above notion of MODEL has as a com¬

ponent a semantic algebra, which is a pair (B, (<?7)7gr)- The usual notion of model would have
8When Tarski speaks of a 'truth-definition' (Tarski 32), and when Davidson speaks of a 'theory of truth'

(Davidson 67), it also is in this language particular rather than general sense.
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something corresponding to the B, but not have anything corresponding to the semantic opera¬
tions , ((/7)7er- Now a didactic point often made is that in varying models one should not vary
one's assumptions about how the semantic values of parts combine to give the semantic value
of a complex whole. This point is not intrinsically true on Montague's definition of model,
for varying the models means varying the semantic algebra, and that can mean varying the
semantic operations. However, one can reintroduce the didactic point by suitably restricting the
class K ofmodels. In fact securing the desired performance from a theory of reference is

largely a matter of giving the right restrictions of the class of models.

5 Translation languages

A subject treated in the UG paper that will not be treated here is that of indirect interpretation

by means of translation languages. The idea is that if one defines a translation, t from one

disambiguated language, C, to another disambiguated language, CT, for which one

has defined a meaning assignment, g, then a 'meaning assignment' for £ can be defined
as g o t. The reason for putting 'meaning assignment' in quotes is that generally got will
not be regardable as the homomorphic extension of the interpretation function /, of some
interpretation. However, provided the translation function, t, is a homomorphism then the

'meaning assignment' function, got, will actually be a meaning assignment.

6 Polymorphism in Universal Grammar

A one place function will be said to be polymorphic if two different denotations sets, Da and D\,

are subsets of the domain of the function. Correspondingly for n-place functions.

The algebra of a Fregean interpretation has functions occurring at two levels, the operations
of the algebra and the objects of the algebra, and concerning both one can investigate for

polymorphism.

Concerning the operations: the answer is that every operation of the semantic algebra is poly¬

morphic. This property follows from their totality: every operation has for its domain the entire
set of meanings B and every denotation set is a subset of B.

Concerning the objects: the answer is that no object of the algebra is polymorphic.
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1 Introduction

It is clear how to at least begin a list of pretheoretical facts by which to assess the syntactic

part of a Montagovian theory of reference; the list could be begun by grammaticality

judgements. To be sure there will be problematic borderline cases for which there do not seem
to be hard and fast pretheoretical judgements of grammaticality, but there is still a large group

of uncontroversial judgements the capturing of which may be taken as the first obligation of
the syntactic part of a Montagovian theory of reference. It is less obvious with what

pretheoretical facts one can even begin to assess the semantic part. Section 2 attempts the task
of identifying the appropriate kind of fact. 'Translations into formal languages' are considered,
as well as 'truth conditions'. Both are rejected and it is claimed that the appropriate semantic
facts are 'truth intuitions'. These, as will be explained, Me statements interrelating the truth in

a situation of several sentences, and a special case is a statement of entailment. All this may

seem not at all controversial, but a perhaps surprising consequence of adhering to a view of
semantic data that does not encompass 'translational' facts is that there can be no mention of

the vocabulary of 'scope-ambiguity' in the description of facts about English.

We then proceed in section 3 to set out some particular 'truth intuitions' that we will be making
it our concern in later chapters to capture. In section 3.1 are noted intuitions of the special
kind customarily called transparency and opacity intuitions. In sections 3.2, 3.3 and 3.4 'truth
intuitions' concerning junctions and (determiner + common noun) combinations (= quantifiers)
are given. It is noted that although valid entailments are a potential kind of semantic data,
one cannot make any generalisations over several logical constants if entailments are the only
kind of data. This is simply because the valid inferences for a group of logical constants do not

differ from each other merely by the substitution of one constant for another but are of radically
different forms. However, if one gives data in the more general form of 'truth intuitions', one can

make generalisations over logical constants. In section 3.5, 'truth intuitions' are given intended
to characterise the semantic contribution of embedded sentences, VP's and quantifiers. It is
claimed that to do so a truth predicate must be used and 'higher-order' quantification.

2 Kinds of semantic data

Three kinds of semantic data are considered in this section: 'truth-conditional', 'translational',
and 'truth-intuitional', and only the third accepted as proper for a theory of reference. The

grounds for rejecting 'truth-conditional' and 'translational' facts are given only briefly. However,
it will not matter too much if the reader is not convinced by these arguments, so long as they
are convinced that one possible form of data are 'truth-intuitions'.
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2.1 Truth conditions
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Is the data for semantics, facts about truth conditions ? To answer that question two conceptions
of 'truth condition' will be described below.

The first conception of'truth condition' is the Davidsonian one, and an example of a Davidsonian
'truth condition' is (1) 1 :

(1) snow is white is true iff snow is white.

Note this is an English sentence which refers to another English sentence. It is a biconditional.
A necessary condition for a biconditional to count as the truth condition of snow is white is that
in the righthand side there occur no references to expressions.

Such truth conditions do not form the basic data for a theory of reference. They are

the basic data for another kind of semantic theory, namely a Davidsonian truth theory. This

approach to semantics was proposed first in the 1967 paper, Truth and Meainng and the 1984

book, Inquiries into Truth and Interpretation, collects together essays by him developing and

defending the approach. Just to distinguish such a theory from Montague's conception of a
theory of reference, the following is offered by way of brief description of Davidsonian
truth theories.

In such a theory a definition of an artificial sentence predicate TRUE is given. The aim is that
from the definition one should be able to deduce 'TRUTH conditions', that is biconditionals like

(1), except that TRUE appears in the place of true. Truth conditions may be used as data for such
a TRUTH-theory by requiring that when one can derive a 'TRUTH condition', it should be the case

that when the defined word TRUE is replaced by the real English word true, the biconditional
is correct. There are some further requirements suggested by Davidson on allowable forms
that such a TRUTH-theory might take, but for present purposes these further details are not

important.

What is important to note is that although in the UG framework there is a technically defined
notion of truth, it is not the case that from a theory of reference, truth-conditions will

be derivable. Instead what follows from a theory of reference are statements such as:

For any model, (9, (i, j)),
*"(«!,..., a„) is TRUE with respect to (9, (i,j)) iff £([ail,..., [anl)(»,i) = 1

Such a statement is not a truth-condition for at least two reasons. First, the righthand side
contains many references to expressions, and secondly a relational notion, TRUTH wrt. (i,j)
appears, rather than a monadic one.

1 From amongst the many conventions one might adopt for referring to sentences, we will adopt the convention
that a sentence in sans-serif is a sentence name.
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On the second conception of 'truth condition' a 'truth condition' is not an English sentence. It
is a 'graph of truth against situation', that is record of which situations the sentence is true in.
We have straightaway used an informal term here: 'situation', and it will be used many times in
the sequel. Many questions could be asked seeking clarification of the term, for example whether
counterfactual situations should be considered, or impossible situations, whether situations are

synonymous with possible worlds, whether they are total and so on. However, the points we

will make and the use to which the term will be put in what follows, do not require that such

questions be settled in any particular way.

So to continue: the second conception of 'truth condition' is that of graph of truth against
situation. Under this second conception it also not the case that truth conditions form the basic
data for a theory of reference, though it is often suggested that they are (see for example
DWP 81, p4-7) This is because a theory of reference does not specify for a sentence a graph
of truth against situation, but specifies a graph of truth against model, models were defined
in the previous chapter, and they are primarily a mapping of expressions onto set-theoretical

objects. Whatever a situation is, it is not, prima-facie at least, a model.

The only way that 'truth conditions', under the second conception, could be data for a theory
of reference would be if one gave a way to decode a model into a specification of a certain
situation. Then one could ask whether, under the decoding, the theory of reference entailed
for a sentence the appropriate graph of situation against truth. However, we shall not be putting
forward 'decoding' schemes for models.

2.2 Translations

A consequence of the fact that I shall not be decoding models into situations is that I shall
not attempt to make statments concerning the translation of English into FOL or some other
formal language, statements such as:

(2) every man loves a woman may be translated into First Order Logic (FOL) thus:
Vx(man'(y) —► 3y(woman'(y) a love'(x,y)))

The reason that I will not make such statements is that unless a decoding is given from models

of FOL to situations, it is impossible to say what makes (2) true, for compare (2) with another
kind of translation statement, this time concering translation into French:

(3) every man loves a woman may be translated into French thus: chaque homme adore
une femme

What makes (3) a fact, is that the graph of situations against truth for every man loves a woman

is the same as that for chaque homme adore une femme. Prima-facie at least, the same cannot

be said of (2). There is a graph of situation against truth for the English sentence, but what
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there is for the FOL formula is a graph ofmodel against truth. Without a decoding ofmodels
of FOL into situations, (2) is simply comparing incommensurable things.

The main price to be paid for resolving not to make translation statements such as (2) is that
there is no place in what follows for the vocabulary of scope-ambiguity. It is a standard practice
to use the notion of scope that applies to the language of FOL to define a relation of scope-
alternative holding between expressions of FOL, and then use this scope-alternative relation to

frame hypotheses about the extent of natural language ambiguity. Such hypotheses are called

'scope ambiguity' hypotheses and a typical such hypothesis would be: if the sentence a has
the translation $, then it also has the translation where $' is a scope-alternative o/$. A

typical notion of scope-alternative would have it that the only scope alternative of the formula
mentioned in (2) is:

(4) 3j/(woman'(y) AVx(man'(x) —+ love'(x,y)))

In view of (2) and (4), one might say that every man loves a woman was completely scope

ambiguous, meaning that the set of its 'translations' into FOL was closed under the scope-

alternative relation. However, tidy though this description of the extent of ambiguity in English

is, unless there are 'translation facts' to start with, it cannot be used 2.

2.3 Truth intuitions

We shall give the name 'truth intuitions' to statements such as the following:

(5) For any situation, s, snow is white and grass is green is true in s if and only if Snow is
white is true in s and grass is green is true in s.

(6) For any situation s, a man died is true in s if John is a man is true in s and John died
is true in s

(5) is close to the first conception of truth condition discussed above. However, (5), is not a
truth condition . This because a relational version of true occurs rather than a monadic one,

and the righthand side of the biconditional is full of references to expressions. (6) is not even a

biconditional. Essentially a truth intuition univerally quantifies over situations and interrelates
several instances of the predicate 'true in seach concerning different sentences.

Truth intuitions can be used as semantic data for a theory of reference in a similar fashion

to the way in which truth conditions may be used as semantic data for a Davidsonian truth
2There seems in any case a problem in characterising natural language ambiguity by 'scope-ambiguity' hy¬

potheses, because logically equivalent FOL formulae are presumably all equally 'right' translations, but the scope

alternatives of logically equivalent FOL expressions are not always logically equivalent.
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theory. A theory of reference will entail statements in which figure correlates of some of
the terms in the truth intuition. For example a theory of reference might entail:

(7) For any model, (S), (i,j)) G /C, snow is white and grass is green is true with respect

to (3, (i,j)) if and only if snow is white is true with respect to (3, (t,j)) and grass

is green is true with respect to (3, (i,j)).

(8) For any model, (3, (», j)) € /C, if John is male is true with respect to (91, (i,j)) and
John died is true with respect to (9, (i,j)) then a man died is true with respect to

<9, <*.;»•

Truth-intuitions (5) and (6) can function as data for a theory of reference that entails (7)
and (8) by requiring that (7) and (8) become the correct truth intuitions (5) and (6) under the
substitutions 3 :

'model (9, (», j))' ^ 'situation s'
'TRUE' => 'true'

What we are doing here is not the same thing as providing a decoding scheme from models

into situations, at least not on a model by model basis. It is simply being proposed that an
entailment of a theory of reference that universally quantifies over models can be read as

quantifying over situations.

Judgments about the validity of arguments can also be seen as truth intuitions in other guise:
if when one says 'p validly entails q' one means 'for all situations, if p is true in s, then q is true
in s'. So an equivalent to the intuition about 'truth in s' given in (6) is the following intuition
about validity:

(9) John is a man

John died

.' .a man died is a valid inference

From a theory of reference it either will or will not be the case that (see the definition of
JC-entails given in Chapter 2):

(10) John is man, John died /C-entails a man died

It will be required that if (10) follows from a theory of reference, then (10) should be
transformed into the correct validity intuition (9) under the substitution:

'ai,..., an /C-ENTAILS /?' => 'on a„ ."./? is a valid inference'
3This is not quite true because the objects of which TRUE is predicated are expressions of a DISAMBIGUATED

LANGUAGE and typically therefore will not be expressions of English; the relevance of the disambiguation relation
to the data will be looked at in a moment.
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Truth intuitions can therefore be adopted as a kind of semantic fact by which a theory of reference

can be assessed, and we shall do so. In fact it will be usually be the case that the truth intu¬
itions will be more complex then those illustrated above. This arises because of ambiguity and

context-sensitivity.

Ambiguity

If a truth intuition refers to an ambiguous sentence, it may be a compelling intuition when
we focus on one interpretation of the sentence, but uncompelling on a different interpretation.
Consider for example the following validity intuition:

(11) John did not sleep well

Mary did sleep well

.everyone did not sleep well is a valid inference

Assuming that only the conclusion of the inference is ambiguous, one can say that on one

interpretation of every one did not sleep well the observation is true, but on another interpretation
it is false. For this reason, truth and validity intuitions will often be proposed that mention

readings:

(12) There is a reading of every one did not sleep well on which
John did not sleep well

Mary did sleep well
.' .everyone did not sleep well is a valid inference

The equivalent statement not in inference form is:

(13) There is a reading r of every one did not sleep such that whatever situation s,

if John did not sleep well is true in s

and Mary did sleep well is true in s,

then everyone did not sleep well is true in s on reading r

It will be a convention that if a truth-intuition is given which omits to relativise truth to a

reading, then the sentence of which truth is predicated is an unambiguous sentence. Such
truth-intuitions will become data by taking universal and existential quantifications over dis¬
ambiguations in entailments of a theory of reference and respectively dropping them and

turning them into existential quantifications over readings. So a theory of reference will
be held to have accounted for (13) if it entails:

(14) there is a disambiguation /?i of everyone did not sleep well such that whatever model,
(9, (i,j)), whatever disambiguation /?2 of John did not sleep, whatever disambiguation
/33 of Mary did sleep well, if[= 1 and !&]](», j) = 1, then [/?i](i, j) = 1
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Context-sensitivity

Natural language contains context-sensitive referring expressions, such as that in that is a man.

To give truth-intuitions concerning such expressions, we make appeal to a notion of situations
which is such that a situation is understood to fix a reference of a context-sensitive referring

expression. Using the notation s^at for the situation that differs from a solely in that it fixes
the referent of that a certain way we can formulate truth intuitions such as the following:

(15) Whatever situation a, this is a man is true in sj^"s iff that is a man is true in s^at

There is a problem posed by the formulation of truth intuitions for sentences which have two

occurrences of the same context sensitive expression, such as this goes with this. At one moment

this refers to one thing and at another it refers to another. A crude response to this is to

pretend that English does not have the demonstrative pronoun this but has instead a number

of subscripted pronouns thisi, this2 and so on.4

We turn in the next section from the description of the format of truth intuitions, to the

identification of the crucial truth intuitions that will be used as semantic data.

3 Facts about English

3.1 Transparency and Opacity intuitions

Consider the truth intuitions:

(16) for any situation a, if Cicero is Tully is true is a then Cicero is handsome is true in a

iff Tully is handsome is true in s

(17) there is a situation a such that Cicero is Tully is true is s, Cicero is handsome is true
in a and Tully is handsome is false in a

Using the terminology of Quine (Quine 1963, essay 8), one could say that 'Cicero is Tully is true
in a' is a way of saying that Cicero is co-extensive with Tully in s and that (16) (resp (17)) claims
that Cicero occurs transparently (resp. opaquely) in Cicero is handsome.

Truth intuitions that amount to claims about transparency and opacity constitute a fundamental
core of semantic facts to be accounted for by a THEORY OF REFERENCE. We will first define
the technical terms co-extension, transparency and opacity in terms of truth intuitions, and then

enumerate some of the most important data concerning transparency and opacity.
4 A better response seems to be to regard linguistic objects a real physical events, extended in time. Then all

words are effectively 'subscripted' by their time of utterance.
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First we define the notion: co-extensive in s. There are two cases, the 'referring' expressions,
where these encompass proper names and pronouns, and the 'predicating' expressions, where
these encompass sentences (S), common-nouns (CN), verb-phrases (VP), transitive verbs (TV)
and ditransitive verbs (TTV). In order to be able to give one definition that embraces all

'predicating' expressions, it is useful to define the following function PRED, which maps a

sequence of referring expressions and a predicating expression into a sentence :

PRED((),/3S) = 0s
PRED((-r?p),0vp) = y?p/3vp
PRED((y?p),/3CN) = 7fpis a f3CN
PRED{{^Pn?P),PTV) =
pRED((7r, T?p,T?P),0TTV)=irnTTvir^p

Definition 13 (Co-extension)

Referring terms: For any situation s, a and (3 are co-extensive in s iff a is 0 is true in 8.

Predicating Expressions: For any situation s, a and (3 are co-extensive in s iff for all proper

names and pronoun sequences (■y)( of appropriate length, PRED((y)(,a) is true in s iff
PRED({y)(,0) is true in s, where the appropriate length of sequence is 0 if a and (3 are S's, 1

if they are VP's or CN's, 2 if they are TV's and 3 if they are TTV's.

As it stands this definition does not make sense if applied to ambiguous expressions. For example
ifa is gave everyone a piece of advice and a' is is stupid, then amongst the things that the definition
indicates as crucial to whether a is co-extensive with a' is whether:

John gave everyone a piece of advice is true in s iff John is stupid is true in s

However, owing to the ambiguity of John gave everyone a piece of advice this biconditional cannot
be evaluated. Rather than try to complicate the definition to embrace ambiguous expressions we

will leave matters as they are and will only invoke the concept of co-extension for unambiguous

expressions.

Transparency 5 can now be defined as 'preservation of truth value under co-extensive substitu¬
tion':

Definition 14 (Transparent and Opaque occurrences)
a occurs transparently in S[a] if for all situations s, if a and a' are co-extensive in s then S[a]
is true in s iffS[a'/a] is true in s. Otherwise a occurs opaquely.

(18) a (John)e walks - John occurs transparently
b John wants (to go),- - to go occurs opaquely

5Sometimes 'transparency of occurence' is defined so as to be relative to another expression in the sentence,

which expression is then referred to as a 'creator of a transparent' context. The notion we define is not so

relativised.
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As with the definition of co-extension, the above definition of transparency has glossed over the
issue of ambiguity. This time we will adjust the definition to account for ambiguity. We must do
this because a certain kind of reading distinction uses a notion of reading-relative transparency.

For example, it is often said that there are two readings of John believes the murderer of Smith
used a knife, one according to which murderer of Smith occurs opaquely and one according to

which it occurs transparently.

Formulating a more precise definition is a tricky matter: under what reading of S[a'/a] should
its truth be compared to the truth of S[a] on a given reading r ? The answer cannot be the

reading r, because presumably r is not a reading of S[a'/a] at all. One would like to appeal to
a notion of s«6-readings and substitution of sub-readings, though it is a little strange to bring
such technical vocabulary into what after all are supposed to be the description of intuitions
about sentences. In certain cases, however, the notions of sub-reading and substitution do seem

quite intuitive. Consider for example the conjunction of two ambiguous sentences, Si and S2,
where these have m and n distinct readings respectively. Then it seems intuitive to think of a

reading, R, of Si and S2 as no more than a pairing of readings of the conjuncts, (ri, r2). Then
reading ri of is a subreading of R, and Rt — (r[, r2) is obtained from R by the substitution of
subreading rj for subreading ri. At all events the reading-relativised definition is:

Definition 15 (Transparent and Opaque occurrences)

According to reading R o/S[a], a occurs transparently if for all situations s, for all a',
if a is co-extensive in s with a'
then S[a] on R is true in s iff S[a'/a] on R' is true in s, where R' = R[r'/r], where r' and r
are readings of a' and a. Otherwise, according to reading R o/S[a], a occurs opaquely.

In the data below concerning transparency or opacity of an occurrence, we have marked with a

subscript e those expressions which occur transparently on all readings, with a subscript i those

expressions which occur opaquely on all readings and with a subscript i/e those expressions
which occur opaquely on some readings and transparently on some other readings.

(19) a Johne walkse
b Johne (lovese Davee)e
c DET (CN)e (VP)e
d Johne lovese DET (CN)e
e DET (CN)e (loves), DET (CN)e
f John,, believes (S)j
g Johne wants (VP)<
h John (seeks),a (manj./e
i (S1 )e and (S2)e
j Johne (VP1 )c and (VP2)e
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k John,. (TV1)* and (TV2)* (Mary)*

Besides these assorted observations concerning opacity and transparency, there seems to be at

least one general principal, depicted approximately below and then defined in Hypothesis 1

opacity: (...[...a ...) =>• (...[...a,- ...)

Hypothesis 1 (Downward heritability of opacity) if there is a reading r of (...[... a ... ]
... ) according to which [... a ...] occurs opaquely then there is a reading r' of .a ...]
...) according to which a occurs opaquely

So for example, (19f) and (19g) together with Hypothesis 1 imply (20f) and (20g') below (where
this time the i subscript indicates opacity on a reading):

(20) f John believes (a man,- walks,);
g' John wants (to marry a (blond),-);

A sister property to that of the downward heriiability of opacity might be the property below
of upward heritability of transparency, but this property actually holds by definition of trans¬

parency:

(...[...a ...]*...) and [...a* a* ...]* ...)

As a point of terminology, we will say that a quantified noun phrase, DET CN, has a de-dicto

(resp. de-re) occurrence on a reading if and only if the common noun part CN has an opaque

(resp. transparent occurrence) on that reading. In this terminology, part of the facts observed in

(20) which are the consequences of the downward heritability of opacity might equally be stated
thus: for quantifiers in embedded sentences and embedded VP's, there is a reading according to
which the quantifier occurs de-dicto.

For most expressions, if they have an opaque occurrence on one reading they have an opaque

occurrence on all readings. The main exception to this are the quantifiers: many would assent to

the hypothesis that whatever sentence in which DET CN occurs, there is a reading upon which
the CN occurs transparently:

Hypothesis 2 (Common noun transparency) if a is a sentence in which DET CN occurs

then there is a reading of a according to which CN occurs transparently.

3.2 Preliminary Truth Intuitions concerning junctions

In this section we will present discuss some of the truth intuitions that are going to form the
data which theories in later chapters will aspire to capture. We begin by giving some specific
intuitions concerning particular sentences. Discussion moves then to whether one can state any
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generalisations which would entail the specific observations. We note some difficulties in finding
a vocabulary in which to state generalisations. It is because of these difficulties that the section
is entitled 'Preliminary'. It will be in section 3.4 that I state with more finality what I take the
semantic facts concerning junctions to be.

For and and or the obvious validity intuitions to point out are that the following Eire valid
inferences:

Si and S2 Si

.".Si ." .Si or S2

Factual though these observations are they do not invite generalising across junctions: the
inference do not differ merely be the substitution of one lexical item for another but are actually
of different forms. Better prospects for generalisation are offered by the following pair of truth
intuitions:

(21) There is a reading r of John walks and Mary talks such that for any situation s,

John walks and Mary talks is true on r in s iff
John walks is true in s and Mary talks is true in s

(22) There is a reading r of John walks or Mary talks such that for any situation s,

John walks or Mary talks is true on r in s iff
John walks is true in s or Mary talks is true in s

We can generalise over both of these if we exploit the obvious correspondence between mentions
and uses of a junction:

(23) For any junction, JUNCT, there is a reading r of John walks JUNCT Mary talks such

that, where J corresponds to JUNCT, for any situation s,

John walks JUNCT Mary talks is true on r in s iff
John walks is true in s J Mary talks is true in s,

Having generalised for lexicalmaterial of a junction, we might attempt to generalise for syntactic
context. Consider for example the following instances of sub-sentential junctions.

(24) a John walks^p, JUNCT talksyp,
b John lovesTVj JUNCT hatespvj Mary

For each of these a separate generalisation could be given, along the lines of that just given for
the sentential junctions. There would, however, be a substantial similarity between the general¬
isations for subsentential junctions and the sentential junctions so one could try to formulate a
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single generalisation embracing at once all kinds of occurrence of junctions. Here is a first pass:

(25) Junction generalisation: first attempt

Any instantiation ofS[Xi JUNCT X2] has a reading r such that, where J corresponds
to JUNCT, for any situation s,

S[Xi JUNCT X2] is true on r in s iff

S[Xi/Xi JUNCT X2] is true in s J S[X2/Xi JUNCT X2] is true in s

This generalisation appears to be true of all the junction containing sentences that we have
considered so far, and also of many of the possible instantiations of S[Xi JUNCT X2] that we
have not yet considered. There will also be some rather controversial instances, as for example
in the case of a man came in and sat down. In a little while I discuss further some of these

controversial cases. To give advance warning of the position that I will adopt, however, it
will be that this generalisation (or something rather like it) should be adopted as one of the
entailments one will be hoping to obtain from a theory of reference.

However, there is fundamental problem with this generalisation as it stands, a problem which
means it is not at all apt to be adopted as an empirical yardstick, a problem which I shall call the
Recursive Ambiguity problem. It arises because for many instantiations of S[Xi JUNCT X2], the
instantiations of S[Xj/Xi JUNCT X2] and Sp^/Xt JUNCT X2] are ambiguous and therefore
it does not make sense to predicate the property 'true in s' of them. Such a sentence is: every

man loves a woman and every marriage has a good day. The application of the generalisation (25,
p39) to this involves statements like 'every man loves a woman is true in s' which does not make
sense because the sentence in question is ambiguous. So (25, p39) will not do as a generalisation

embracing all kinds of occurrence of junctions.

Let us call the strings S[Xi/Xi JUNCT X2] and S[X2/Xi JUNCT X2] that are mentioned in (25)
the reducts of S[Xi JUNCT X2]. (25) was aiming to make a true generalisation concering the

triple consisting of S[Xi JUNCT X2] and its two reducts. (25) fails as a generalisation as it does
not anticipate the possibility that the reducts may be ambiguous. If there is a generalisation to

be made, it must a statement connecting together this triple of potentially ambiguous strings,
in some way quantifying over the readings of all three members of the triple.

Now by and large it appears to be the case that for any supposed pair of readings of the reducts,
there is a corresponding reading of S[Xi JUNCT X2]. Therefore one can canvas a generalisation
that has a W3 form:

(26) Junction generalisation: second attempt
Whatever instantiation of S[Xi JUNCT X2], whatever reading r2 of S[Xi/Xi JUNCT
X2], whatever reading r3 ofSP2/X1 JUNCT X2], there is a reading ri ofS[Xi JUNCT
X2], such that, where J corresponds to JUNCT, for any situation s,

Si JUNCT S2 is true on n in s iff Si is true on r2 in s J S2 is true on r3 in s
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(26) succeeds then in being a generalisation which can at least meaningfully be applied to all
junction-containing sentences, and so is an improvement over the first attempt, (25,p39). Still

leaving to one side the question of whether this generalisation is empirically over-generous, it is
from the point of view of testing theories of reference still not ideal on grounds of form
alone. Because of the universal quantification over readings of the reducts, one will have a case

to consider for all the disambiguations that the theory of reference provides for the reducts.

It is easier to test a theory of reference against the kind of truth intuition which mentions

only one ambiguous string, all others that are mentioned having only one reading each. The
instances of (26) are not of this pattern. I will return to this problem after a preliminary
discussion of the truth intuitions for sentences containing quantifiers.

3.3 Preliminary Truth Intuitions concerning quantifiers

As with the junctions, if the determiners are taken one by one then there are obvious validity
intuitions that present themselves as data:

every man is mortal Socrates is mortal no man is mortal most Greeks are men

Socrates is a man Socrates is a man Socrates is a man most Greeks are mortal

.' .Socrates is mortal .' .a man is mortal .' .Socrates is not mortal .' .a man is mortal

There are many more such inferences but as with the junctions the problem with presenting the
semantic data in this form is that it offers no way to make generalisations across determiners:
the argument forms are specific to the determiners in them. There is a better chance of making

generalisations if we start out with truth intuitions such as the following two:

(27) There is a reading ri of every man walks such that for any situation s,
r • ^e1

every man walks is true in s on n iff { x: hex is a man is true in sx 1 }
is a subset of

he1
{ x: hex walks is true in sx 1 }

(28) There is a reading r*i of a man walks such that for any situation s,

a man walks is true in s on ri iff { x: hej is a man is true in sx * }
has a non-null intersection with

{ x: hex walks is true in sx * }

As there was with the junctions there is the possibility of generalising over these two by taking
careful note of the correspondence between mention of a determiner and use of a term describing
a binary relation between sets. To assist with this we define some notation for compactly

describing relations between sets:

'EVERY (Si, S^y means 'Si is a subset of Sy
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'.A(Si, S^)' means 'Si has a non-null intersection with 52'

'NO(Si, S2)' means 'Si has a null intersection with S2'

'MOST(Si, S2)' means '\\Si n S2|| > ||Si||'

Now we can make the following generalisation concerning any subject occurrences of a quantifier:

(29) Whatever DET CN, there is a reading rq of DET CN walks such that, where D corre¬

sponds to DET, for any situation s,

DET CN walks is true in s on rx iff D{ { x: hei is a CN is true in sx * }
he-.

{ x: hei walks is true in 8X }
)

For exactness here is a specification of the correspondence between DETs and D's:

If DET is instantiated to every, all or each, D should be instantiated to EVERY

If DET is instantiated to a, one or some, D should be instantiated to A

If DET is instantiated to no, D should be instantiated to NO.

If DET is instantiated to most, D should be instantiated to MOST.

(29, p41) quantifies over all DET CN. Really the quantification should be over just those DET
that have had a corresponding set relation defined for them.

Moving from generalising over lexical items to generalising over syntactic locations, we might
formulate independent generalisations concerning the two kinds of non-subject occurrence of

quantifiers shown below:

(30) a John loves DET CN
b John told DET CN to go

However these two additional generalisations would be very similar to what we have in (29, p41)
. Rather as with the junctions, we can try to generalise over occurrence of DET's in number of
different syntactic contexts:

(31) Determiner generalisation: first attempt
For any instantiation of S[DET CN], there is a reading r*i such that, where D corre¬

sponds to DET, for any situation s,
he,

S[DET CN] is true in s on ri iff D( { x: hei is a CN is true in sx 1 }

{ x: S[hei/DET CN] is true in sx * }
)

This is true for all the sentences considered so far, and for many other sentences besides. I
will discuss later some potential counter-examples to this generalisation. However, as there was

with out first attempt at a generalisation for junctions, (25, p39), there is a funamental problem
with the generalisation (31) as it stands. For some instantiations of S[DET CN], the sentences
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mentioned in the right-hand side of the biconditional are ambiguous. An example is: every

man gave a policeman 2 flowers. If a policeman is chosen as the instantiation of DET CN then

generalisation (31) will make mention of 'every man gave he; 2 flowers is true in s\ which is
non-sensical:

(32) there is a reading ri of every man gave a policeman 2 flowers such that whatever
situation s, every man gave a policeman 2 flowers is true in s on ri iff

hei
A( { x: hej is a policeman is true in sx }

he-i
{ x: every man gave hei a flower is true in sx }

)

I will for the moment call the strings hej is a CN and S[he</DET CN] that are mentioned in

(31), the redacts of S[DET CN]. (31) was aiming to make a true generalisation concering the

triple consisting of S[DET CN] and its two reducts. (31) fails as a generalisation as it does not

anticipate the possibility that the reducts may be ambiguous. If there is a generalisation to be

made, it must be a statement connecting together this triple of potentially ambiguous strings,
in some way quantifying over the readings of all three members of the triple.

Now, as was the case with the junctions, it appears to be the case that for any supposed pair
of readings of the reducts, there is a corresponding reading of S[DET CN]. Therefore one can

canvas the following hypothesis:

(33) Determiner generalisation: second attempt
For any instantiation of S[DET CN], whatever reading r2 of hei is a CN, whatever
reading r3 of Sfhej/DET CN], there is a reading rj of S[DET CN] such that, where D
corresponds to DET, for any situation s,

he-.
S[DET CN] is true in s on ri iff D( { x: hei is a CN is true in sx 1 on r^ }

hei
{ x: S[hei/DET CN] is true in sx 1 on r3 }

)

The generalisation (33) is an improvement on (31, p41) through being at least meaningful. Still
leaving to one side the question of whether the generalisation is empirically over-generous, it is
from the point of view of testing theories of reference, still not ideal. As with (26, p39),
one will have a case to consider for all the disambiguations that the theory of reference

provides for the reducts. Matters are far easier if a truth intuition mentions only one ambiguous

string.

To summarise what I have said so far concerning junctions and quantifier. For both, I first

suggested simple generalisations, which had many intuitively true instances, but which had

unfortunately a number of non-sensical instances. For the prototype junction generalisation,

(25, p39), the problem arose with a sentence such as every man loves a woman and every marriage
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has a good day. For the prototype determiner generalisation, (31, p41), the problem arose with
a sentence such as every man gave a policeman 2 flowers. I then gave two further generalisations,

(26, p39) and (33, p42), whose instances would be truth intuitions with a W3 format. These

generalisations had many true instances, and did not have the non-sensical instances of the

prototype generalisations, (25, p39) and (31, p41). In other words they had something at least
meaningful to say about every man loves a woman and every marriage has a good day and every

man gave a policeman 2 flowers. However, I observed also that the W3 format of the instances
of generalisations (26, p39) and (33, p42) made them not ideal from the point of view of testing
a THEORY OF REFERENCE. If possible it would be preferrable to have generalisations whose
instances would mentions only one ambiguous string. In the following section I will see whether
there are correct truth intuitions, of the desired form, concerning sentences such as every man

loves a woman and every marriage has a good day and every man gave a policeman 2 flowers.

3.4 Recursive Ambiguity Intuitions for junctions and quantifiers

Although the instances of generalisations (26, p39) and (33, p42) are not truth-intuitions of the
desired form, there are entailments of these generalisations which are are truth intuitions of the
desired form.

For example, the quantifier generalisation, (33, p42), has an instance for every man gave a po¬

liceman 2 flowers, and this will be a truth intuition that mentions the following pair of sentences:

hei is a policeman

every man gave hei 2 flowers

There is no ambiguity of the first. There is a further instance of the quantifier generalisation
for the second, and this will be truth intuition that mentions the following pair of sentences:

he2 is a flower

every man gave hei he2

Again, there is no ambiguity of the first, and there is a further instance of the quantifier gen¬
eralisation concering the second, and this will be a truth intuition that mentions the following

pair of sentences:

he3 is a man

he3 gave hei he2

Neither of these is ambiguous. A truth intuition of the desired form will follow from these three
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instance of the quantifier generalisation, namely the following one:

(34) There is a reading ri of every man gave a policeman 2 flowers such that whatever
situation, s, every man gave a policeman 2 flowers is true in s on iff
A

{ x: hei is a policeman is true in sx * }
he, ,he9

{ x: TWO { y: he2 is a flower is true in sx,y } }
he, ,he5,heo

{ y: EVERY { z: he3 is a man is true in sx,ytZ } }
he, .he^.heo ,

{ z\ he3 gave hei he2 is true in Sr,y,* j

Something similar applies in the case of every man loves a woman and every marriage has a good

day. One first notes the truth intuition concerning this that arises via the junction generalisation,

(26, p39). This truth intuition will make mention also of the following two sentences:

every man loves a woman

every marriage has a good day

One can then note the truth intuitions concering these that arise via the quantifier generalisation,

(33, p42). These will mention still further sentences which are either unambiguous or concerning
which there are truth intuitions arising from the quantifier hypothesis. Then from all these noted
truth intuitions one will able to infer a single truth intuition concering every man loves a woman

and every marriage has a good day.

Therefore, with sufficient application, one can infer from the generalisations given in (26, p39)
and (33, p42), truth intuitions of the desired from. In other words, the two generalisations given
together constitute a kind of declarative specification of truth intuitions of the desired form. I
will be concerned now with a rather more direct procedural specification of these truth-intuitions.

Casting one's mind back to the first attempt at a determiner generalisation, (31, p41), one could
say that there was a non-deterministic rewrite rule implicit in it, a rewrite which may take one

from'S[DET CN] is true in s' to D({x : hei is a CN is true in sj®1}, {x : S[hei/DET CN] is true in s

Also casting one's mind back to the first attempt at a junction generalisation, (25, p39), one
can say that there was another implicit non-deterministic rewrite rule, a rewrite which may take
one from 'S[Xi JUNCT X2] is true in s' to 'S[Xi/Xi JUNCT X2] is true in s J S[X2/Xi JUNCT
X2] is true in s'

Once one has reflected a while on the way in which the desired truth intuitions are inferred from
the junction and determiner generalisations, (26, p39) and (33, p42), it should be clear that the
same truth intuitions could instead be constructed via these non-deterministic rewrite rules, as
follows. One starts with a statement T, which is 'S is true in s\ One recursively applies the

non-deterministic rewrites to T, obtaining some eventual result T„, and one then proposes the
truth intuition 'there is a reading r of S such that whatever situation, s, S is true in s under r
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iff Tn .

Therefore, if we can get more precise about this rewrite procedure, the way is opened to formu¬
late generalisations to the effect that there are concerning junction and determiner containing
sentences all the truth intuitions that one would expect under the rewrite procedure.

To this end I define a relation, HA, which will have 5 arguments: a sentence, an occurrence of
an expression in the sentence, a situation, a statement about the truth of sentences and finally
a number, there to help with subscripting pronouns:

Definition 16 (Recursive Ambiguity Relation)

(i) where p is a sentence containing no junctions or determiners, then whatever string p, what¬
ever situation s, whatever i,

HA(p, P,s,i,p is true on its only reading in s).

(ii) 72.4(S[Xx JUNCT X2], Xi JUNCT X2, s, i, J (T\,T2)), if there exist Pi, Pi such that
HA(S[Xi/Xi JUNCT X2],Pi,s,i, T\) andHA(S[X2/Xi JUNCT X2], p2,s,i, T2)
where J corresponds to JUNCT

(Hi) 72.4(S[DET CN],DET CN, s,i,D({ x: T\ },{ x: T2 })), if there exists Pi, p2 such that
HA(\\ti is a CN, Pi,8*x,i+l,Ti) and 72.4(S[he,/DET CN],/32,s^e',i + 1,T2)
where D corresponds to DET.

Some illustration:

(35) 72.4(every man loves a woman, every man, s,l

EVERY { x: hei is a man is true in sx ^ }

{ x: SOME { y: he2 is a woman is true in } }
{ y: hex loves he2 is true in a®'1'*162 }

)

(36) 72.4(every man loves a woman, a woman,s, 1

SOME { x: hex is a woman is true in }

{ x: EVERY { y. he2 is a man is true in sx,y~ ^ } }

{ y: he2 loves hex is true in s®,y* 2 }
)

(37) There are no other T or P such that 72.4(every man loves a woman,p,s,\,T)

In terms of the 72.4 relation, I will now define a notion: 'a is recursively ambiguous wrt. the

subexpression /?', by means of which it will become possible to refer to certain sets of truth
intuitions that one could have inferred from the junction and determiner generalisations, (26,

p39) and (33, p42).
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Definition 17 (a is recursively ambiguous wrt. (3) a is recursively ambiguous wrt. (3 iff
whatever T such that RA('a,f3, T), there is a reading r of a such that a is true on r iffT.

Truth intuitions (of the desired form) concerning a determiner containing sentence that one
could infer at some length from the earlier junction and determiner generalisations (26, p39)
and (33, p42), one can now infer rather directly from the following hypothesis.

Hypothesis 3 (Recursive ambiguity of Quantifiers) for any sentence (3 that contain a

quantifier, DET CN, /? is recursively ambiguous wrt. DET CN

As I mentioned earlier, I will be adopting the above hypothesis. In other words, Hypothesis 3

will be taken to be one of the desired entailments of a THEORY OF REFERENCE.

As to whether Hypothesis 3 is over-generous, there is at least one widely agreed upon exception
to it, first noted by Rodman (Rodman 76), and it occurs when the DET CN occurs in a syntactic
island: Guinevere has a bone which is in every room is not recursively ambiguous wrt. every room.

This comes down to the fact the following truth intuition is not compelling:

(38) There is a reading r of Guinevere has a bone which is in every room such that for any
situation s,

Guinevere has a bone which is in every room is true on r in s iff
EVERY

{ y: he2 is a room is true in syhei }
{ y: SOME { x: hei is a bone which is in he2 is true in 8he3 } }

{ x: Guinevere has hei is true in s^'fi he3 }

For the main part of the thesis, this exception to Hypothesis 3 will be ignored. It will, however,
receive some consideration in the final chapter.

It should be noted that there is a connection between the recursive ambiguity data and the

transparency data: in claiming that S[DET CN] is recursively ambiguous wrt. DET CN we are

claiming that there is a reading on which CN occurs transparently in S[DET CN]. Therefore
Hypothesis 3(p46) entails Hypothesis 2(p37).

In a similar vein to Hypothesis 3, an hypothesis concerning junctions and recursive ambiguity
will now be framed. From it one will be to infer rather directly those truth intuitions of the
desired form that one could have inferred rather indirectly from the earlier determiner and

junction generalisations, (26, p39) and (33, p42):

Hypothesis 4 (Recursive ambiguity of Junctions) For any (3 that contains an Xi JUNCT

X2, f3 is recursively ambiguous wrt. Xi JUNCT X2.
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As I mentioned earlier, I will be adopting this as one of the desired entailments of a theory of
reference. I consider now the question of whether this empirically over-generous.

I have so far considered only sentences such that outwith the joined elements there is no logical

complexity, in other words sentences with forms like:

(39) a Si JUNCT S2
b John VPi JUNCT VP2

c John TVi JUNCT TV2 Mary

For such sentences the claim of recursive ambiguity with respect to the joined elements seems

uncontroversial. However, Hypothesis 4 also has the following more controversial entailment for
a sentence that is not of the above mentioned form:

(40) a man came in and sat down is recursively ambiguous wrt. came in and sat down

Whether (40) is reasonable comes down to whether the following truth intuition is compelling:

(41) There is a reading such that a man came in and sat down is true iff

AND( SOME { x: hei is a man is true in } )
{ x: hei came in is true in sj!ei }

SOME { x: hei is a man is true in sj)'1 }
{ x: hei is a woman is true in sj?ei }

Undeniably this not the preferred reading of the sentence. The question is whether it is a possible

reading. If it were not a possibility, then one might be inclined to revise Hypothesis 4 (p46) to
apply to only those sentences lacking logical complexity outwith the joined elements. On this

score, I have two observations to make. One is that substitution of different lexical material
seems to change the intuitions for sentences such as (40). The other is that there are quite a

number of other sentences exhibiting logical complexity outwith the joined elements that do
seem to have the reading predicted by Hypothesis 4 (p46).

First, substituting different lexical material into the same syntactic framework. On the subject
of government responses to student demonstrations, one might say:

(42) A brutal police baton charge disrupted considerably the 1963 Paris student demonstations
and dispersed completely the 1990 Tianenmen Square demonstration.

The reading predicted by Hypothesis 4 (p46) seems possible, even preferred. My intuitions are

the same for the following sentence, said on the subject of Napoleonic successes throughout

Europe:

(43) That year, a French flag flew above a captured British fleet in Portugal, fluttered from
the roof of the Austrian parliament building, and draped the gates to St. Petersburg.
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There follow some examples of sentences exhibitting logical complexity outwith the joined items,
and possessing, it seems to me, the readings predicted by Hypothesis 4 (p46):

(44) a. every man and woman died
b. every tall and handsome man died
c. every house in London and Paris has an escalating price
d. the judge will say either that they are guilty or that they are not guilty
e. he wants not to praise Caesar but to bury him

Therefore, as I said above, I will proceed on the assumption that Hypothesis 4 (p46) is something
one should expect as an entailment of a theory of reference. In the concluding chapter, I
will discuss a little further the question of exceptions to the hypothesis.

3.5 Further Truth Intuitions for creators of Opaque Contexts

3.5.1 Truth Intuitions for Sentence Embedders

The truth intuitions for a sentence p that we have given so far have been of the form:

(45) For all situations s, p\ is true in s iff $(gi is true in s, ..., q„ is true in s)

Here $(qi is true, ..., qn is true) has been a logical complex of statements about the truth of
other sentences. Typically if '<7, is true in s' were replaced by a logical equivalent, then the truth
intuition would remain correct. Now no truth intuition for John believes that p of the form 'John
believes that p is true iff $(p is true in s, ...)' can be correct if 'p is true in s' is replaceable in
it by a logical equivalent. This is because if such a truth intuition were correct it would imply
that p occurs transparently in John believes p, whereas, of course, it occurs opaquely.

However, if it is the case that in the truth intuition for John believes that p, 'p is true in s' cannot
be replaced by a logical equivalent, then the truth intuition for John believes that p cannot be
related to truth intuitions for p. Not only does this seem unnatural, it also leaves theories

surprisingly underconstrained: with no link in the data between embedded and unembedded
occurrences of a sentence, there need not be any in a theory that aims to account for the data.

Therefore it would be desirable to give truth intuitions for John believes p containing p is true

in s, and such that p is true in s is replaceable by a logical equivalent. I believe this is possible.
For example, there is a reading of John believes a man died, and a reading of a man died such
that the following inference is valid:

(46) John believes a man died
a man died

.' .A proposition that John believes is true
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The relevant reading of John believes a man died is one according to which man occurs opaquely.
It should be noted that in the truth-intuition above there is an object-language occurrence of
true and quantification over propositions. Since Tarski it has been known that there are profound
difficulties in providing a THEORY OF REFERENCE for a language that contains a truth predicate.
Because of this it may seem a waste of effort to put forward truth intuitions concerning sentences

featuring object language occurrences of true. This issue will receive attention in Chapter 5.
Here we give the generalisation for the embedding verb believes:

Hypothesis 5 (The sentence embedding verb, believe) Whatever reading rembed of p, there
is a reading r of John believes p such that whatever situation s, if John believes that p is true on

r on s and p is true on rembed, then a proposition that John believes is true is true in s

Hypothesis 5 concerns only believes. Formany other sentence-embedding verbs something similar
could be formulated.

By using the kind of inferences referred to by Hypothesis 5 one can distinguish readings which
we have hitherto given no means for distinguishing. For example there is an intuition that there
are two distinct readings of John believes every man loves a woman such that the quantifiers are

interpreted de-dicto. These two readings can be distinguished by considering the validity of the
inference:

John believes every man loves a woman

every man loves a woman

.' .a proposition that John believes is true

There are two readings of Every man loves a woman, one logically stronger than the other.

Suppose rembed is a the logically weaker reading of. Then assuming the reading rembed of the
second premise, one of the de-dicto readings of John believes every man loves a woman is such
that the above inference is valid and on the other de-dicto reading the inference is invalid.6

3.5.2 Truth Intuitions concerning VP embedders

As with the sentence embedders, the opacity of VP occurrence following a verb like wants means

that it is impossible to formulate truth intuitions that relate an opaque occurrence of a VP

biconditionally to a transparent occurrence. That is to say, one can be sure that there will not
be correct truth intuitions of the form

For all 8, John want to VP is true in s iff $( S[VP] is true in s, ...)

where $ supports substitution of logical equivalents and S[VP] is a sentence that has VP occurring

transparently. Such truth intuitions cannot be correct, because they entail that VP occurs

6If rembed were the logically stronger of the readings of the embedded sentence then on either of the de-dicto

readings of John believes every man loves a woman the inference would be invalid.
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transparently in John wants to VP.

Nonetheless there are truth intuitions that relate a transparent occurrence of the VP to the

opaque occurrence. There is reading of John wanted to marry a blond such that the following
inferences are valid:

.an act that John wanted to do, was done by .' .an act that John wanted to do, was done by

The relevant reading of John wanted to marry a blond is one according to which a blond has a

de-dido interpretation. The generalisation is:

Hypothesis 6 (The VP embedding verb, want) Whatever reading rembed of a VP's, there
is a reading r of b wanted to VP such that whatever situation s, if b wanted to VP is true in s

on r and a VP's is true in s on remted, then an act that b wanted to do was done by a is true in

Hypothesis 6 concerns the specific verb want. However, there are many other VP embedding
verbs for which something similar could be formulated.

3.5.3 A truth intuition concerning seek

John seeks a unicorn is recursively ambiguous wrt. a unicorn, a fact which it requires it to have
one reading characterised by following through the RA relation. There is also reading on which
a unicorn is interpreted de-dicto, concerning which, one can say that it is reading upon which
the following inference is valid7:

John sought a unicorn
Dave found a unicorn

.' .an act that John tried to do was done by Dave

This inference is lexically specific to the verb seek.

3.6 Junction and Quantifier phenomena that have been ignored

The data recorded in this chapter will be the data that the subsequently developed THEORIES

OF REFERENCE will be assessed by. It ought to be said at this point, however, that there are

other junction and quantifier phenomena that have been entirely overlooked.

For quantifiers, what is perhaps the most drastic omission has been the 'same per/different pep
7 this assumes seeks is synonymous with try to find.

John wanted to marry a blond
John married a blond

John wanted to marry a blond
Dave married a blond

John Dave
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contrast. Consider the following sentence:

51

(47) most people who graduate from the school can do two things

The 'same-per' reading is one on which requires there to be a pair of accomplishments and a

majority of the school body such that every one in that majority can do both of the things in
the pair.

(48) there is a reading r of (47) such that whatever situation s, (47) is true in s on r iff
there is a pair {x, y) such that
hei is an accomplishment is true in sjei
he2 is an accomplishment is true in syhej
MOST ( {z : he3 is a student is true in } )

{z : he3 does hei and he3 does he2 is true in 8x^*he^ hej}

This reading seems a natural one and is probably more natural than the reading required by
recursive ambiguity wrt. two things - which it is not the same as.

For junctions, what is perhaps the most drastic omission has been the 'non-boolean' interpreta¬
tion of and, that is possible in:

(49) John and Mary met in town

The possibility of these 'non-boolean' coordinations leads to certain kinds of ambiguity, as for

example in:

(50) John and Mary carried a piano upstairs

There is an ambiguity here as to whether John and Mary acted collectively, jointly shouldering
a single piano, or each separately carried a piano. This kind of ambiguity will not be dealt with.
For an approach to them see Link (1983).

/^tt:
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To be introduced in this chapter are the frameworks of Ajdukiewicz/Bar-Hillel categorial gram¬
mar (ABG) and Lambek categorial grammar (LG). These are not overtly simply specialisations
of the UG framework. The UG framework specifies (i) a certain way to define a meaning rela¬
tion between strings and objects residing in semantic algebras and (ii) a certain way to define
a categorisation relation between strings and categories. Both relations are mediated by a dis¬

ambiguated language. The ABG and LG frameworks specify these relations in different

ways to the UG framework, making no (overt) appeal to a disambiguated language. The
emphasis of the presentation will be on the meaning relation, as it is in this respect that the LG
framework is most unorthodox. The meaning relation for ABG's is looked at primarily to point

up the contrast with the meaning relation for LG's. The 'working definition' of the meaning
relation will first be put forward, as propounded by Moortgat and Hendriks. This will then be

subjected to a conceptual analysis in order to highlight the role played in this definition by a

fact drawn from an ostensibly different discipline. The discipline is proof-theory and the fact
is the Curry-Howard isomorphism. This isomorphism comes to the statement that proofs of

Natural deduction and typed A-calculus terms are notational variants.

Once the LG framework has been described 'from the inside' as it were, we will re-examine
the claim that it is not a specialisation of the UG framework. What one finds is that any LG

definition of a categorisation and meaning relation can be duplicated by a UG proposal that
defines the same relations. This means that LG is, by UG standards, compositional, despite
the apparently unorthodox manner of defining the meaning relation. This is a point as much
in favour of the generality of the UG framework as in favour of the LG framework, for it
would be agreed on all sides that the LG framework is 'intuitively compositional', yet is only
the UG formalisation of compositionality that can recognise the LG framework as technically

compositional. In particular, on the 'Rule-to-Rule' formulation of compositionality, it is not

possible to recognise the LG framework as compositional.

1 Basic Concepts of Categorial Grammar

We can begin by introducing what is most distinctive of categorial grammars, the categories.
We will also say a little about the categorial grammarian's use of term syntactic rule, because
it differs from the UG use of the term.

The categories

A distinctive feature of categorial grammars is the language used to categorise expressions. This

language shall be referred to as the set of categories and is inductively defined from a finite
set of basic categories, using categorial connectives. For the following definition of the set of
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bidirectional categories, some set of basic categories, bascat must be assumed. Then, where x

and y are metavariables over CAT^'■ >);

Definition 18 (The categorial language CAT^'^)
(i) bascat c cat*''^
(ii) if x and y are G catCA), then x/y and x\y are € cat*'A).

Thus categorial grammars, assume an infinite number of different syntactic kinds and assume

relationships between the names of these kinds. This might be contrasted with what would be
usual for a simple 1 phrase-structure grammar, where at most finitely many different syntactic
kinds are assumed to exist and no relationships hold between the names of the kinds.

The set of categories, CAT^'A), just defined is in fact just one among a family of others that
we might have given, and represents a certain choice as to what to count as the categorial
connectives. One might instead use only one of the connectives, / or \, defining thereby cat'
or catV cat' is the oldest set of categories having been proposed by Ajdukiewicz in 1935. One

aspect of the development of categorial grammars since then has been the extension of the set
of categories. cat^'A) was first proposed in 57 by Bar-Hillel. By 58, in a somewhat independent

development, Lambek had suggested the set cat^'A-'^ and in 61, cat('A>'>a). Recent years have
seen something of an acceleration in this process, with a number of further binary and unary

connectives being proposed in response to various kinds of syntactic phenomena. In Morril,
Leslie, Hepple and Barry (1990), for example, one finds cat(',\,',a'v,d,0,<^' ■•■) In time, we
also propose a set of categories that is an extension of cat" A), namely cat('A>v), which adds
variables and quantifiers. However, for the purposes of this chapter, the set of categories shall
be cat^'A).

A point of terminology regarding the bidirectional set of categories. We shall say y is the

argument and x is the value in both x/y and x\y . 2

The categorisation relation

In contrast to ug, the inhabitants of categories are not expressions of a disambiguated lan¬

guage but are simply strings. Akin to the specification of the basic phrase sets is the specifics
tion of a categorial lexicon. This lexicon constitutes the definition of the categorisation relation
as it concerns words.

This relation is extended by the set of syntactic rules, where a syntactic rule in categorial

grammar is of the form (where x< and y 6 cat('A)) :

1 By simple we are assuming no attachment to X-bar theory.
2A rival convention governing the use of this notation,(one used by Lambek), says that whilst y and x are

argument and value in x/y, they are value and argument in x\y.



56 CHAPTER 4. INTRODUCTION TO CATEGORIAL GRAMMAR

si,...,x„ => y

Note that this differs from the UG definition of a syntactic rule by lacking a syntactic operation.
UG syntactic rules were read as stating categorisation facts concerning non-basic expressions of
a disambiguated language. The categorial syntactic rule above is read as simply stating a

categorisation facts concerning strings:

ifa i is of category x\, and <*2 *s of category xi, ..., and a„ is of category xn then the concate¬

nation ofais of category y.

This reading of a syntactic rule as making a specifically concatenative commitment is definitive
ofmuch recent work in recent categorial grammar work (see for example, Moortgat 88, Steedman
85, Szabolsci 87), though there are exceptions (Bach 79, 80).

The AB grammarian is free to choose the set of basic categories, bascat, but once that set is

chosen, the set of syntactic rules is fixed. The same goes for the L grammarian, for whom a set

of syntactic rules is fixed once bascat is chosen, though it is a different set from that of the
AB grammarian. In both cases the set of syntactic rules is infinite but specified in a finite way:

rule-schemata for ABG and induction for LG. This implies a certain closure property of the
rule set: if Xi ..., xn => y is a syntactic rule then so also is x[,..., x'n =>• %/, where the primed
categories come from the unprimed by replacing the basic categories with some other set of

categories. In other words, rule-hood is contingent not so much upon the particular categories

present but on the pattern of connectives. As an aside it might be noted that on this count

the grammar part of Montague 73 is not a categorial grammar, though often described as such.
For example, the category part of the 'Quantifying-in' rule is t/IV,t => t, but there is no rule

IVft, IV => IV: rulehood is contingent not simply on the pattern of connectives.

The next section concerns the ABG framework: its particular rule-set and fashion of defining
the meaning relation. For subsequent chapters it is the LG framework that is important but the
ABG framework is first described because it is widely known yet significantly different. To avoid
confusions then, we have presented the ABG framework the better to be able to distinguish the
LG framework from it.

2 Ajdukiewicz/Bar-Hillel categorial grammar

2.1 Categorising

We have already indicated how a categorial syntactic rule is to be read as specifying a categori¬
sation fact about strings. It just remains to say what the rules are. The AB rule set is (based
on a set of basic categories bascat) :

{x/y, y => x : x,y 6 cat^1^} u {j/, x\y => x : x, y e cat(/>\)}
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Thus the rule-set is defined by rule-schemata. These have the respective names: Forward Func¬
tion Application (>) and Backwards Function Application (<). To illustrate the definition of a

categorisation relation by an ABG we will now consider the categorisation relation defined by
the conjunction of the above rule set with the lexicon (supposing bascat= {s,np}):

(1) John :: np

loves :: (s\np)/np
Mary :: np

One can infer from this that s is a categorisation of John loves Mary. It is the presence in the AB
rule set of the two rules: (s\np)/np,np =>■ s\np and np,s\np => s that entails this categorisation
and in the leftmost of the illustrations below we have used a conventional phrase-structure tree

to depict graphically the inferences made in coming to the conclusion that s is a categorisation
of John loves Mary. On the one hand such a tree simply presents categorisation facts concerning
John loves Mary and substrings thereof: the tree has the property that for any node x, the lexical
material dominated by x is of category x. On the other hand, such a tree presents a record of
inferences that have to be made in order to conclude that John loves Mary has category s. It is
more common-place in the categorial literature to present such trees upside down, as illustrated
in the rightmost picture.3

s John loves Mary

2.2 Assigning a meaning

We will assume that the destination for meaning assignment will be as it is for any theory of

reference, namely fregean semantic algebras. A theory of reference specifies indirectly
a meaning relation between strings and objects in a Fregean semantic algebra by defining
two things. First a disambiguation relation between the set of strings and a disambiguated

language. Second a fregean interpretation, (#,(77,/). The meaning relation is defined
directly in the ABG framework. The relation is defined in the case of words by something akin
to an interpretation, which we shall call an AB-interpretation. This will be

where fAB is a function on categorised lexical strings. This is in contrast to /, which was a

3originated by Mark Steedman.
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function on basic expressions of a disambiguated language. As was the case for fregean

interpretations, an AB-interpretation will be associated with a category-to-type map, which

fAB must conform to.

All AB-interpretations which are associated with the same category-to-type map in fact involve
same semantic algebra.4 This is in contrast with the situation for interpretations, where the

design of the semantic algebra is in the hands of the semantic theorist. The algebras associated
with the following two kinds of category-to-type maps will be described below:

Definition 19 (Extensional and intensional category-to-type maps)
v is an extensional category-to-type map if v(x/y) = v(x\y) = (t/(y)—>f(x))
v is an intensional category-to-type map ifi'(x/y) = f(ar\y) = ((«—n/(y))—►f(x))

Superscripting with 'e' will indicated that category-to-type map is extensional, and superscript-

ing with 'i' will indicate that it is intensional. The operations of the semantic algebra that
features in every AB-interpretation associated with a category-to-type map i/e are given by ap¬

plying a certain rule-to-operation map, hAB, to the AB rule set, and therefore the algebra may

be described as (B,{hAB(s) : s is an AB rule}). Similarly each vl is associated with another
rule-to-operation map, hxAB, and therefore with algebras, (B, {hxAB(s) : s is an AB rule}). The

rule-to-operation maps are defined below:

Definition 20 (The extensional AB Rule-to-Operation map, ^AB)
hAB(x/y>y => x) = mi (r/y) m2 (y) (WJ) rn1(w,j)(m2(w,j))

hAB(y>x\y => x) = mi (y) l-f m2 (*^y) (w'j) ^ m3(w,j)(mi(w,j))

Definition 21 (The intensional AB Rule-to-Operation map, hAB)
hAB(x/y> y => x) = mi (r/y) ^ "»2 (V) ^ (WJ) ^ rm(w,j)(u/ >-► m2(w',j))

hAB(y>x\y =>• x) = mi (y) ^ m2 (r^y) ^ (WJ) *-* m2(w,j)(w' i ► mi(w',j))

An AB-interpretation concerns only words, and some means must be given for extending the

meaning relation to compound strings. Recall that given a interpretation, (), a way

was defined in Chapter 2 of extending / to a function [] embracing non-basic expressions of
the disambiguated language: f] was the homomorphic extension of /. The fAB of an AB-

interpretation is not turned into a meaning relation by extension in this way. It cannot be done
in this way, because the strings do not have any algebraic structure. Moreover, fAB must be
extended to a meaning relation. The extension of fAB will still be referred to as |J, but instead
ofwriting [[a]*] = m we will write to emphasise the relational nature. The definition of
how an AB-interpretation leads to a meaning relation given below covers the cases of extensional
and intensional category-to-type maps, according to whether 6 is read as e or i.

4More exactly, one should speak of a family of algebras, indexed by choices of C, i, J.
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Definition 22 (AB meaning relation) Relative to an AB-interpretation, ( B, {/i^B(s) : s is
an AB rule }, fAB) associated with category to type map v6, and relative to a categorial lexicon,
the AB meaning relation, (Q is defined:

WzD/j4B([a]») if a is a basic expression of category z.

[<xff\zWhSAB(x'y ^ z)(m2i m3)> if there exist meanings m2lm3 and categories x,y such that a
may be categorised as x, /? may be categorised as y, [a]*|[|m2, [/?]yDm3> an^ X'V z *s present
in the rule set.

To illustrate the definition, recall the lexicon given in (1) and suppose an AB-interpretation,
{(B, {h\B(s) : s is an AB rule}), fAB). The definitions given so far entail the following concern¬

ing loves, Mary and loves Mary:

[loves](g\np)/np 0 /AB([l°ves](s\„p)/np)
[Mary]np 0 /AB([Mary]np)

•'•[loves Mary]g^np 0 ^B((s\np)/np,np =» s\nP)(/ylB([loves](g\np)/np),(/ytB([Mary]np))
.\poves Mary]g^np Q (w,j) ^ /i4B([loves](^np)/np)(u;,i)(/AB([Mary]np)(u;, j))
Different though it is to the UG definition of meaning assignment, the definition of the AB

meaning relation shares with the UG definition the feature that it accords quite well with the
intuitive notion of compositionality: 'the meaning of a whole is a function of the meaning of
the parts and its mode of composition'. Each possible meaning of a whole is a function of some

possible meanings of its parts and the determinant of which function to apply to the parts is
the categorisation tree for the expression. AB grammars are far from alone in adopting such a

definition of the meaning relation. Meaning relations are so often defined in the above fashion,

particularly by the invocation of a rule-to-operation map 5 , that the format is sometimes

regarded as definitional of 'compositional', as opposed to Montague's definition. This theme
of notions of compositionality will be picked up again when Lambek categorial grammars are

considered in due course.

By an AB-theory we will mean the specification of a categorial lexicon and a set of possible

AB-models, where these are pairings of AB-interpretations and world. context of use pairs.

Without going into details, it may be clear that natural facts about well-formedness or mean¬

ing may outrun the resources of AB-theories, and there have been extrapolations of the AB
framework to respond to this, by the addition of new rule-schemata, and the definition of cor-

5The format is often referred to as the 'Rule-to-Rule' format. The reason for the second occurrence of the

word 'Rule' in place of the word 'Operation' is that by and large semantic algebras are not explicitly used, and
instead of semantic operations there are rules.
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respondingly more inclusive rule-to-operation maps. For example:

(3) Rule x => y/(y\x)
Value of he mi i-» (iu,j) i-+ d2 t-> d2(mi(u>,,;))
Value of /»' mi i—»(w,j) t-td2H d2(tt>)(u/

Rule z/y =>• (x/z)/(y/z)
Value of /»e mi >-+ (w,j) d2 *-*■ d3 |-+ mi(w,i)(d2(ds))
Value of A' mi i-+ (w, j) i—>■ </2 i—»• </3 •—>■ mi(w,j)(w' djftt/Xda))

Rule x/y, y/z x/z
Value of he mi k m2 k >-> d3i-* mi(ic, j)(m2(iy, j)(d3))
Value of ft' mi h m2 h (w,j) i—► d3 i—► mi(u;,j)(u/ m2(iy,,i7)((i3))

The rule-schemata above have the respective names: Type Raising, Geach and Composition,
and papers arguing for the use of some or all of these are: Geach (1972), Ades and Steedman

(1982) and Dowty (1988). These proposals have a kinship with the basic ABG framework via
the use of schemata to define the rule-set and the use of a rule-to-operation maps to define the

meaning relation. No more will be said of these extensions of AB grammar because our goal
is that of explaining Lambek categorial grammar and that destination will not be arrived at

by further extrapolation along the present dimensions. For the LG framework the rule set is
noi defined by schemata, but instead by a sequent calculus, and the definition of the meaning
relation does not invoke a rule-to-operation map but invokes instead a proo/-to-operation map.

3 Lambek Categorial Grammar

3.1 Categorising

Lambek categorial grammar is based on an analogy between syntactic rules and propositional

sequents. These were introduced in Gentzen 34 and are objects U => a, where U, the antecedent
is a possibly empty sequence of formulae and a, the succedent is a single formula.6

What a propositional sequent, U => a, means, is that a follows from the formulae in U. One

of the two proof systems introduced by Gentzen 34 is sequent calculus, which is a proof system

the principal objects of which are such sequents, inductively defining the set of sequents which
make valid statements about entailment. Lambek 58 introduced a sequent calculus, for

categorial sequents, U =£■ x, where U is a sequence of categories and x is a single category.
6One can also have multiply conclusioned sequents and it is in terms of these that the most elegantly sym-

metrical formulations of propositional logic take place.
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Unlike the propositions] case U is not allowed to be empty. lUA)j essentially gives an inductive
definition of 'U ^ x is a syntactic-rule'. The axiom sequents, of form x => x, are the base-cases
of the induction, whilst the inference rules are the inductive cases. Here is the calculus7:

Definition 23 (The Lambek Calculus, l//>\))

(Ax) x =>■ x (Cut) U,x,V => w T => x

U,T, V => w
Cut

(/L) U,y,V => w T => x

U,y/x,T, V => w
/L

(/R) T,x =» y

T =>■ y/x
/R

(\L) T=>x U,y,V=>w
U, T, y\x, V => w

V
(\R) x,T => y

T => y\x
\R

The notation conventions are that U, T, V stand for sequences of categories, with U and V

possibly empty, w, x, y stand for single categories. We will define here a piece of terminology

concerning the two premise rules, though it will not be used for some time: the T =>■ x premise
will be called the minor premise, and the other premise the major premise.

Although the direction of implication is down the page, one invariably unfolds a proof from
conclusion towards premises. Thus one speaks of 'applying' a rule to a sequent where this
means finding the premises from which the sequent could have been inferred by the rule. With
the exception of the Cut rule, one is only in a position to apply an inductive case (= inference

rule) concerning the potential rule-hood of a sequent, T => x, if there is a non-basic category
in the antecedents or succedent. If there is a non-basic category in the antecedent T then one

of the rules (/L) or (\L) may be applied. These are known as 'left' rules, because there must
be a connective on the left-hand side of a sequent for them to apply. If there is a non-basic

category in the succedent x, one of the rules (/R) or (\R) applies. These are known as Tight'
rules, because there must be a connective on the right-hand side of a sequent for them to apply.
One is always in a position to use the Cut rule.

In this way, given a sequent r whose rule-hood is unknown, a tree of sequents can be built up
above it, with r the root of the tree. At each stage of construction of such a tree we will refer to
the uppermost sequent on any branch as a leaf. If all the leaves of such a tree are axioms, then
the tree is a proof and the root, r, is said to be proved.

Some examples of how this inductive definition of rule-hood works follow:
7 In fact this lacks the left and right rules for product which were given in the original calculus. We have not

included product as one of the categorial connectives.
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(4) Function Application: np => np s => s Type Raise: np => np s => s

np, s\np =>• s np, s\np => s
^

np => s/(s\np)

(5) Composition: s ^ s cn ^ cn Geach: s => s cn cn
— /L — / L
s/cn, cn => s np => np s/cn, cn => s np ^ np

/ L / L
s/cn, cn/np, np => s s/cn, cn/np, np => s

/ R / R
s/cn, cn/np => s/np s/cn, cn/np => s/np

/ R
s/cn =>• (s/np)/(cn/np)

The following observations have a bearing on the process of search (proved by Lambek in his
1958 paper. See also Moortgat 88 for exposition):

• The derivability of a sequent in hUA) _ Cut is decidable.

a L(/ A) _ Cut and LA) allow the derivation of exactly the same set of sequents, that is, Cut

may be eliminated.

Together they entail that the categorisation question for an L-grammar is decidable. As the
connection of the above facts with the decidability of categorisation is not immediately obvious,
we will pause awhile to see just why this is.

Take for example the question of whether loves John Mary may be categorised as s, on the lexicon

given in (1).

The first strategy might be called the flat strategy. One looks for a 'special purpose' rule for
the expression, relating the categories of the words in the expression to s. This may be called
a categorising sequent. In the present case it must be checked whether (s\np)/np, np, np => s

is derivable in L«A). Because of Cut elimination, it is sufficient to check for derivability in

if!X) _ Cut. The decidability property of L"A) _ Cut guarantees an effective procedure for

answering this question and using it we find the answer is 'no'. Hence the categorising sequent

is not derivable.

That would be that as far as categorisation went were it not for the existence of a non-flat

strategy, which does not rely on the derivability of the categorising sequent. For example,
because of the concatenative interpretation of syntactic rules, loves John Mary will have category
s if there are categories x, y such that

(i) loves John has category x, Mary has category y

(ii) the sequent x, y =>■ s is derivable in L" A).
The inquiry gone though in the flat strategy does not prima-facie settle the answers to the above

questions. The general non-flat strategy is:8
8The flat strategy is the degenerate case where U is segmented into itself only and the succedent category is
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(1) make the 'current' sequence of categories the sequence of lexical categories.

(2) segment the current sequence of categories U into adjacent subsequences Ui,.. ,,U„

(3) find n succedent categories y\,... ,yn such that each t/< => y,- is derivable in LA), then make
the current sequence yi,... ,yn- If the current sequence is s, stop and if not return to (2).

Now as long as at least two circuits of this loop are made, the non-flat strategy will discover

grounds for the categorisation of an expression that cannot be found by the flat strategy and

so, prima facie at least, the failure of the flat strategy to categorise the expression as s does not

prove that it cannot be so categorised.

However, there is a problem in adopting the more comprehensive non-flat strategy: it is un-

terminating. The problem is at step (2), finding a mother category for a given sequence of

daughters. This will be problematic because if for some x one can derive that T => a: then there
are infinitely many other x' such that one can derive T => x'.

Given these observations it is puzzling how it can be that the categorisation question for Lambek

categorial grammar is decidable. The solution to the puzzle lies in in the fact that each of the

following sentences implies its successor:

(1) The expression is successfully categorised by the non-flat strategy.

(2) There is a Cut based proof of the categorising sequent.

(3) There is a Cut free proof of the categorising sequent.

(4) The expression is successfully categorised by the flat strategy.

It follows that the flat strategy is a complete categorisation procedure: failure to categorise by
the flat strategy implies failure to categorise by the non-flat strategy. The implication from (1)
to (2) requires inspection of the related structure of analyses using the non-flat strategy and
Cut based sequent proofs. There is an illustration of this below.

Suppose the following were a categorisation tree for loves John Mary produced by pursuing the

non-flat strategy.

loves John

(s\np)/np np

x

s

This presupposes that there is a proof Pi of (s\np)/np,np ^ x, a proof P2 of np =>• y and a

proof P3 of x, y => s. One can therefore produce the following Cat-based proof of the categorising

sequent, (s\np)/np,np,np => s:

chosen to be s,

Mary

np

y
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Pi P3

Pi np =► y x,y => s
■Cut

(s\np)/np,np => x x, np => s
Cut

(s\np)/np, np, np =>• s

The implication from (2) to (3) is the Cut elimination theorem and the implication from (3) to
(4) is given simply by the definition of the flat strategy.

String Semantics

For a propositional sequent one would expect to use a semantics for the propositional language
to relate the sequent arrow to a semantically defined entailment relation. With respect to the

semantically defined entailment relation, one could ask whether a given calculus was sound and

complete. One of the most remarkable features of the categorial framework is that there is a

semantics for the categorial language, CAt(/A)( which allows the definition of a semantic entail¬

ment relationship. One can then compare this semantic entailment relationship with syntactic
definitions of a set of sequents, definitions such as the AB rule-schemata or the Lambek calculus.
The semantics for CAT^A) wiU be presented below and the important result of Buskowski 86

concerning the Lambek calculus.

In presenting this so-called 'string semantics', we will revert to the usual conventions observed in

giving ein interpretation to a formal language, and will not reformulate the language of categories,

CAT^M, as an instance of a DISAMBIGUATED LANGUAGE.

The possible interpretations of the language of categories, CAT"1*), are based on algebras (A, •),
where • is a binary associative operation - the most natural example is choosing A to be be

strings and • to be concatenation. The interpretation function, I, may assign to the members
of BASCAT any subset of A, and this function is extended to an interpretation function for the
whole language CAtUA) thus:

Definition 24 (String semantics for CAT^'^) Relative to an interpretation function, I, which
assigns to the members of BASCAT a subset of A,

[*] = I(x), if X € BASCAT

With respect to this notion of interpretation, one can define a semantic notion of categorial

derivability:

Definition 25 (String semantic entailment for CAT^'^)
xi,...,xn string semantically entails y iff for all interpretations, fxi]- • • • -[xnl C |[j/].

\x/y\ = {a : V6 G |[y]],a-& G |[x]} (equivalently {a : a-|[yj C \x\})
|[z\y] = {a : V6 G M,6-a G [zj}
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In the usual way, one sometimes says 'ari,..., x„ => y is string-semantically valid' instead of
'xi,...,xn string-semantically entails y\

Every rule in the AB rule set is string-semantically valid. However, many string-semantically
valid sequents aire not in the AB rule set, for example all instances of the schemata Type-raising,
Geach and Composition, given earlier.

Every L"A) derivable sequent is string-semantically valid, which is to say that i/'A) is sound.

This follows from the fact that axiom sequents are string-semantically valid, and that the rules

of L"A) preserve validity.

Even more significantly, it has been shown by Buskowski that the other direction of implication
also holds: every string-semantically valid sequent is derivable in i/'A^ which is to say that
l(/A) is complete.

Therefore, if one adheres to the string-semantic interpretation of the categorial language cat^A)>
I//A) represents a ceiling to the sequents one can help oneself to.9 The significance I attribute to
this is that to postulate additional rules or axioms would be to postulate entailments that do not

follow from the meaning of the categorial language, CAT" A). However, for balance it must be
said that amongst the practitioners of categorial grammar, the relevance of the string semantics
is not settled. Further discussion of this will be postponed until section 3.2.7, by which time the

question of how meanings are assigned in the Lambek categorial grammar framework will have
been discussed.

3.2 Assigning a meaning

Analogously to the AB grammars, we will suppose that semantic proposals will be made in the

form of the specification of a class of A)_interpretation 10 , where this is (B, (t77)-ygr, fL), with
fL a function on categorised strings, if!A)-interpretations will be associated with a category-

to-type map, and as with the AB-interpretations the only cases that will be considered are

extensional and intensional category-to-type maps. All if!A).interpretations associated with a

particular fe involve the same semantic algebra and all if!A)-interpretations associated with
a particular v* involve the same semantic algebra. Where the algebras associated with par¬

ticular category-to-type maps were defined in the case of AB grammars with the assistance of
extensional and intensional ru/e-to-operation maps, heAB and h'AB, the algebras for l«A) gram¬

mars will be defined by extensional and intensional proo/-to-operation maps, J7£ and H*L. The
definition of the L" A)-meaning relation given below assumes that these maps have been defined.

9 It should be noted that this statement is relative to a particular categorial language. For a more inclusive

language there will additional string-semantically valid sequents.

10These are not to be confused with string-semantic interpretations of the language of categories itself, CAT^'A)
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Definition 26 (i//^ meaning relation)
Relative to an h(l>\)-interpretation, (B,{H6L(P) : P is a proof of^^},fL), associated with the
category-to-type map v6, and relative to a categorial lexicon, the ifIN) .meaning relation, |] is
defined:

[«]*D(/L(H«)) «/« " basic
[a^]t[[H6L{P){Tn2, n»3) if there exist meanings m2,m3, a proof P and categories x,y such that
a may be categorised as x, 0 may be categorised as y, [a]x|[]m2, [/?]yUm3> and P is a proof of
x,y => z.

As with the AB meaning relation, one can ask whether this accords with the intuitive notion
of compositionality. Each possible meaning of a whole is a function of possible meanings of its

parts, but where is the 'mode of composition' that intuitively one expects to be the determinant
of which function is applied to the parts ? Unlike the AB meaning relation, this determinant is
not the categorisation tree. The determinant is in fact the proofof the sequent used to categorise
the expression. To pick up the thread again of notions of compositionality, this means that the
definition of the Lambek meaning relation does not conform to the 'Rule-to-Rule' notion of

compositionality. In fact it appears that the Lambek meaning relation enjoys its own unique
brand of compositionality. In section 4 this compoeitionality will be considered further, and it
will be claimed that the kind of compositionality enjoyed by the Lambek calculus can be easily
fitted to Montague's definition. But before looking on Lambek categorial grammar from the
outside we had will continue the description from the inside.

We take up the deferred matter of the proof-to-operation maps, and H'L. First we will
encode operations by terms of a typed A-calculus language. The task is then transformed into
one of defining proof-to-term maps 11. So, delaying once more, before explaining how to define
a proof-to-term map, the term language will be defined and it will be explained how a term

defines an operation.

To define the set of typed terms, Cx, a set of typed variables, VARA, is assumed.

Definition 27 (Typed Term of Cx)
a. if$a g vara, is g Cx
b. and V are g Cx, then ($(«-*)*■)» e Cx
c. if$a g vara and Vb g Cx then (a$«**)(«-+») e Cx

In specifying the language Cx we have not adhered to the algebraic UG format, but have reverted
to the usual practice for specifying a formal language. For a term of Cx to define an operation,
the language must have a semantics. As with the syntax, we will revert to usual practices in

specifying this semantics.
11 The Rule-to-Operation maps for AB grammars could have been specified by going via a Rule-to-Term map

also.
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We have a choice whether to associate with terms meanings which are functions from a world-

assignment pair to a denotation of type a, or meanings which are a function from an assignment
to a denotation of type (s—»-a). For present purposes it seems the latter choice is more convenient.
It must be borne in mind, however, that it is the intention to use the terms to define operations
on Fregean meanings, which themselves are functions on world-context of use pairs.

The assignments of an interpretation associated with £ and 1 are all the functions g with domain
vara such that </($°) G Da. Let fX be the interpretation function, assigning to variables of
type a a function from assignments to denotations of type a such that: fX($a)(g) = g($a)- The
extension of fX to embrace complex expressions is defined:

Definition 28 (Meaning of Typed Terms of Cx) Relative to an interpretation fX associ¬
ated with £ and T, []A is defined:

I<&a]A(«/) = fX(*a)(g) if*" 6 vara
|A$a.¥6]^(</) is that function d\ G D(a_n) such that for any member d2 G Da, di(d2) =

[*<a^)(¥fc)JX(g) = [*(a_f4)]A(sr)([*4]A(*))

Now to consider how a typed term may define an operation of a Fregean algebra.12 Suppose
is a typed term, the free variables of which are ij1,..., x°". First we substitute for free variables

Xj3, the terms, yj'^"*'\i), where the yj'~*"3^ are variables. Then prefix At to the front and call
the result $*.

Definition 29 (Operation defined by <f>*) Let h be an arbitrary Cx assignment, the opera¬

tion defined by is: (w,j) [$*J(h[u/ mi(w,j)/yi,...,w' mn(w',j)/yn]){w)

Some example of operations defined by terms (some space saving abbreviations of types are used

here, so for example (s—»(e—>t)) may be abbreviated to (s,e,t) or set):

(6) * = *?(«$)
*>* = Ai[j4'-et)t(y^e)0].
Operation: mj >-*■ (w,j) i-> mi(w,j)(m2(w,j))

(7) * = ^(At.*!)
** = At[j/i'',e'^t(At[i/^*'e)t])]
Operation: ,m% ► {vu,j) i-»- mi(w,j)(w' t-+ m2(w',j))

12or more exactly a family of operations across a family of algebras, indexed by choices of £ and I.
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(8) $ = Au^'U^)
V = Ai[Ai»(i*,0.«i(yi',')i)]
Operation: mf i~* (w,j) !-► «4e,<) i-+ di(mi(w,j))

We now finally we come to the heart of the process by which meaning is assigned in a Lambek

the proof-to-operation maps, because the proof-to-term maps are essentially all there is to the
proof-to-operations maps.

First we will describe the method by which in practice one calculates the values of HI and HlL
on a given i/'A) proof. This involves the 'term-associated' calculi that have been proposed by
Hendriks and Moortgat. Subsequently, we will describe what lies in the background of these
practical definitions.

3.2.1 Working definitions of H'L and H'L

To calculate the term to be associated with a given proof according to Hf and HXL one uses

'term-associated' calculi. The term-associated calculus for Hf will be referred to as Lyand
that for H'l will be referred to as L^A\ with L^A) generic between the two. Both L^A) and

are a complication of L.VA) and for them sequents are not built out of categories but out
of category.term pairs. L^A) and l^A) f0n0W below (see immediately after the definitions for
the notation conventions):

Definition 30 (Extensionally Term Associated Lambek Calculus, L^'^)

categorial grammar: the proof-to-term maps. These maps will share the names Hf and H'L with

(Ax) x : A => x : A (Cut) U, x : A, V => w T => x : A
Cut

U, T, V => w

(/L) U, y : Ar, V =» w T => x : T
^ (/R)

U, y/x : A, T, V => w

T, x : C => y : T
;——/R

T => y/x : A<r

(\L) T =}« x : T U, y : Ar, V => w (\R) x : (, T => y : T
U, T, y\x : A, V => w T =$■ y\x : A£T



3. LAMBEK CATEGORIAL GRAMMAR

Definition 31 (Intensionally Term Association Lambek Calculus, )

69

(Ax) x : A => x : A (Cut) U, x : A, V => w T => x : A ^ ^
U, T, V => w

(/L) U, y : A(A».r), V =» w T =» x : T (/R) T> x '■ <(»') => V ' r .R
U, y/x : A, T, V => w T => y/x : A<r

(\L) T => x : T 77, y : A(Ai.r), V => w (\R) x : C(«), T => y : T
~

17, T, y\* : A, V =► w T => y\x : A<r

The notation conventions now differ from those of Definition 23: U,T,V abbreviate sequences

of category:term pairs, U and V possibly empty. w is a single category:term pair, x and y are

single categories. A, T and ( are single A-calculus terms, with C a variable.

The value of H[ on some proof P of «!,..., x„ => y is if (i) there is a proof P6 in
of xi : Cj ..., x„ : (n => y '■ and (ii) P6 is of the same form as P.

van Benthem (1986) proposes a term association for a variant of which is unidirectional
Lambek calculus and has a rule ofpermutation. Moortgat (1988) proposed the extensional term
association for that is the calculus whilst the intensionally term associated calculus

was first proposed by Hendriks (1990).

To illustrate the definitions, we will consider the meaning [Mary walks], would be entailed to
stand in the [| relation to by the lexicon given in (1) and an L^'^-interpretation,
((B, {H£(P) : P is an proof}), fL), associated with the extensional category-to-type map

that maps np to e and s to t. One meaning is obtained from a proof in IA'■ w of the categorising

sequent, np, s\np => s:

(10) np => np s => 8
x \L

np,s\np => s

Then from the definition of the lU'^-meaning relations, assuming Pi is the above proof, one

has the following fact about []:

[Marywalks]8OP£(Pi)(/t([Mary]np,/i([walks]Anp))
To determine HeL(P\) one must find <$' such that (i) the the sequent np : xj,s\np : x^~*^ => s :

is provable in and (ii) the proof in is of the same form as Px. The <!>' that satisfies
these requirements is x%~* (®f) and the requisite proof of follows:
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(11) np : x\ =» np : x\ s : x^'^jxp =» s : x^'t\x{)
np : x\, s\np : x[e,t) => s : x(^'t\x\)

Referring back to (6) for the operation defined by x^~^\x*), we have the following fact about
0:

[Mary walks]8|]K j) t-+ /i([walks]g^np)(u;) j)(/£([Mary]np)(u;, j))
If instead of an extensional '^-interpretation, one took an intensional one,

(() : P is an lU^\) proof}),/1'), associated with the intensional category-to-type map

that still maps np to e and s to t, then the entailed fact about [] and [Mary walks]8 would be:

[Mary walks]8D/ri(Pi)(/i([Mary]np), /L([walks].w))
To determine HlL(Px) one must find such that (i) the sequent np : xj,s\np : => s :

is provable in and (ii) the proof in is of the same form as Pi. This is x^*e,<'(A»Xj),
the requisite proof of being:

(12) np : x\ =» np : x\ s : => « = a?2*',<)(^l'[a?!]).
^

np : x\, s\np : x^e'*\ => s : ^"'^(M*!])

Then consulting (7) for the operations defined by X2*e,''(Ai[x[]), the entailed fact about [] would
be:

[Mary walks]8Q(w,j) >-+ /£([walks]8ynp)(to, j)(w' >-► /^[Mary^pKu/, j))
In use one tends not to have a completed proof of for which one wishes to know the

appropriately associated semantic operation. It is a more likely that one has an incompletely

specified term-associated sequent of the form xx : Ci, •••>*?» : Cr» => V '■ where <!>„ is an

unknown; one is interested in answer substitutions for $n that will make the sequent derivable

in or L^'^. In this situation one uses the calculi to replace the problem with a set of simpler
problems, in unknowns <&„+i, • • •, $r»+m, and some identities relating $n to $n+i, • • •, $r»+m-
One arrives in time at axiom problems which do not allow the generation of further problems,

they simply generate an identity. One then can pool all the identities generated and simultaneous
solution of these will give a solution for original unknown . There follows an example of this

taking 1.1 below as a problem for Le '(for compactness the type information on terms has been

omitted):

1.1: s/s : xx => (s/np)/(s/np) : $!.!

The (/R) rule allows us to replace this with another problem and an understood identity:
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2.1: s/s : xi, s/np : ui => s/np : <J>2.i Id : $n = Aui$2.i

Applying the (/R) rule again produces another problem and another identity:

3.1 s/s : xlt s/np : tii, np : u2 => a : <J>3 j Id : $21 = Au2$31

Use of the (/L) rule will now produce two problems, which share an unknown:

4.1 s/np : «i, np : u2 => s : $4.i

4.2 s : xi($4.i) ^ s : $4.2 Id : $3.i = $42

A strategic question now facing one is which of the problems to work on. Problem 4.1 involves
one unknown and 4.2 involves two. 4.1 can be tackled first and solved, with the result that 4.2

actually then involves only one unknown.

4.1 is tackled by the (/L) rule, generating:

5.1 np : u2 =>• np : $5.i

5.2 s : rii($5.i) => s : $5.2 Id : $4.i = $5.2

The same strategy should be pursued here, and problem 5.1 considered first. It is in fact a

problem that may be solved using the axiom case, giving our first solution, j = u2. This
information can be borne in mind in solving problem 5.2, because where it mentions $5.1 as an

unknown we in fact know the solution. 5.2 is also an axiom case, and gives the next solution,

4>5.2 = u1(u2), and together with the identity, <I>41 = $5.2, this gives a solution for $4.i,
4>4.i = «i(u2). We can now turn to the 4.2 problem. This is another axiom problem, and so the
solution for $4 2 is generated, $4 2 = xi(ui(u2)).

All that now remains to be done is to pool the identities to arrive at the solution:$i.i =

Au1Au2[x1(u1(u2))]

By going through this process one has essentially worked out the following proof of L« .

s : ui(u2) => s : «i(u2) np : u2 => np : u2
/L

s/np : tii, np : u2 =>• s : «i(u2) s : xi(«i(u2)) => s : xi(«i(u2)) /t
/L

s/s : XI, s/np : tii, np : u2 => s : Xi(«i(u2)) ^
/R

s/s : xi, s/np : «i => s/np : Au2Xi(ui(u2))
/R

s/s : xi => (s/np)/(s/np) : AuiAu2xj(ui(u2))

In section 3.1 it was observed that to settle categorisation questions in LCG it is sufficient
to apply what was called the 'flat' strategy - that is simply to look for an •" proof fo the

categorising sequent of a string. There is an analogous issue whether the flat strategy is sufficient
to settly meaning assignment questions. The flat strategy is again sufficient, and showing that
this is so is essentially the task of showing that for every Cut-based proof, P, of a sequent s,

there is a an equivalent Cut-free proof, P', of s, such that H[(P) is the same operation as
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Hl(P'). This has been called the semantic Cut Elimination theorem for L^A), and it has been
shown by Moortgat (1989) and Hendriks (1989).

3.2.2 Decomposition of the Proof-to-Term maps

There is a logical ancestry to the maps H[ and H'L: they constitutes the rediscovery by catego-
rial grammarians of something discovered by proof-theorists: the Curry-Howard isomorphism.
It will be the concern of sections 3.2.3, 3.2.4 and 3.2.5 to lay bare this logical ancestry. The
term-associated calculi were presented as fait-accompli by their originators, with little comment

on why they are the way they are. It is said, for example, that 'Elimination rules ([/L],[\L])
correspond to functional application...Introduction rules ([/R],[\R]) correspond to lambda ab¬
straction' (Moortat 88,p37). But what kind of correspondence is this ? On the face of it nothing
could be simpler: there is the class of if!A) proofs, inductively defined by two kinds of clause,
Left and Right, and on the other hand there is the class of Cx terms, inductively defined by two
kinds of clause, for application and abstraction terms. Yet the inductions cross-cut in a curious

way. Looking at the the Left rules of the term associated calculi, there is a sense in which a

term part of the minor premise and a term part of the conclusion are put together in the major

premise. One of the virtues of laying bare the logical ancestry is that it gives one a better view
of what is going on here. It also casts light on why the semantic Cut-Elimination theorem holds
for l//A).

The essential point is that both HI and H'L may be defined as the composition of three other
maps, as illustrated in Figure 4.1, and defined in Definition 32.

into

\
l(/A) proofs o

!

many to 1

I
lj proofs nj" proofs

lto 1

I
£a terms

Cat-to-Type Curry-Howard

Figure 4.1: The Proof-to-Operation mapping

Definition 32 (The proof-to-term map, H6L)
H*l = L where 13
1. v6 is a map from proofs of sequents over cktUA) to proofs of sequents over tj~* . The
calculus in which the proofs ofTJ~* sequents are constructed will be referred to as lj *. 2. * is

a map from lj '' proofs to Natural Deduction proofs (from assumptions) o/tj-1" propositions.

13([ ]o.o^)(p) = Z*Cs{p)) 1
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The Natural Deduction proof system will be referred to as NJ-'\
3. u j is a map from NJ-' proofs to terms of Cx

The first destination in the sequence of steps from iStM to Cx is LJ-\ This is a sequent calculus
for sequents over TJ—\ Moreover, LJ-'is not just a sequent calculus: it is the implicational part
of Gentzen's sequent calculus for propositional logic (Gentzen 34). One can apply to Gentzen's

sequent calculus rules to sequents over TJ-', the set of types, because types of TJ-'are formally
identical to well-formed formulae of implicational propositional logic. To turn a proof of
into a proof of LJ-' turns out to require nothing more than the application of an extensional or
intensional category-io-type map. It is the choice of extensional versus intensional category-to-

type map that results in the possibility of the two proof-to-term maps, HI and H\. The other
two links in the above three part definition of H6L are constant.

The second link is possible essentially because when Gentzen proposed the sequent calculus
method of proof, it was as a meta-language for the description of Natural Deduction proofs. We

call the map *.

The third fink is the Curry-Howard isomorphism: a remarkable discovery (Howard 1980) that
there is a one-to-one correspondence between the terms of Cx and the proofs of NJ-'. It is part
of the correspondence that one identifies an occurrence of a as a formula in a proof, with an

occurrence of a as the type of a Cx term. We call this map u j .

What the decomposition shows is that to propose a proof-to-operation map is essentially to

re-observe the Curry-Howard isomorphism, modulo the addition of the category-to-type maps.

These mappings will be described in more detail below, the logical progression being from right
to left relative to Figure 4.1. We therefore start by defining NJ-' and the map from proofs of
NJ * to terms of Cx.

3.2.3 The Natural Deduction system NJ-and the Curry-Howard isomorphism

A subpart of the Gentzen's rules for constructing Natural Deduction proofs for propositional

logic (Gentzen 34, Sundholm 83) is presented in the first three rows of Table 4.1. It is the part

concerning only the implication connective —+, and will be referred to as NJ '. This language
of implicational propositional logic is formally identical to the set of types, TJ-', and the a's
and 6's in the table range over types of TJ '. Capital 'I' in a rule name is an abbreviation for

'Introduction', whilst capital 'E' in a rule name is an abbreviation for 'Elimination'.

The rules given in the first three rows of Table 4.1 define a certain set of trees, the leaves of
which are called the assumptions. These assumptions fall into two sets: the discharged, [a],- and
the undischarged, a. The set of trees in turn defines an entailment relationship between a set

of premise propositions {ai,..., an}, and a conclusion b: {ai,..., a„} I- 6 iff there is an NJ~'
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a there is a proof of a from the assumption a

U, la \

b .

(-1): a-+b 1

if you have a proof of b from assumptions U, a, you

can make a proof of a—>6, discharging the assump¬

tion a

u V

a—>b a

(-E): b

if you have a proof of a—*b with assumptions 17,

and a proof of a from assumptions V, you can

make a proof of b with assumptions U, V

ufr] V
: v '■
J_ ; U, a
a—>b a '.

b >6 An Introduction followed by an Elimination is a detour

Table 4.1: Construction and Normalisation of proofs of NJ—*

proof P of 6 such that (i) each a,- occurs 0 or more times as an undischarged assumption, and

(ii) P has no undischarged assumptions that are not members of {aj, The proof may,
and typically will, have many additional discharged assumptions. The relationship I- extracted
from the proofs of NJ * coincides with the semantic entailment relationship as defined by the
standard semantics for implicational propositional logic.

We will have more to say about the bearing of semantics on the language TJ—* in a little while.
The subject that we wish to turn to now is the relationship between NJ-* proofs and terms of
Cx. Before this, attention should be drawn to the fourth row of Table 4.1. This does not define
a further rule for constructing proofs. Instead this turns some complex proof with assumptions

U, V and conclusion a into a simpler proof with the same assumptions and the same conclusion.
Here for example is a rather indirect proof of b from the assumptions a and (a—*b):

a Ca—>6 3 j
(-E): 6 .

(—J): (a—>b)—>b a—*b

(-E): I
Here is a rather more direct proof of b from the same assumptions:

a a—>b

(-E): 6

> will convert the less direct proof into the more direct proof, a process referred to as normal¬
isation.
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Turning now to the relationship between nj-1' proofs and £x terms, the essential point to be
made is that nj-' proofs and Cx terms are notational variants of each other. Also the process

of normalisation in one system corresponds exactly to the notion of normalisation in the other.
This is the content of the Curry-Howard isomorphism.

Part of what it takes to demonstrate this is to define a map, l. j , which given a proof, a, of the

proposition a (with assumptions 6i to 6„), returns a Cx term, (the types of its free variables
being b\ to 6„). The essence of its action is depicted below:
r . t

! : ! = *a

L a J
At one end of the map one has a proof structure in which an item a figures as a formula. At
the other end of the map one has a term structure in which the item a figures as a type. The
'formulae as types' slogan refers to the fact that this identification is crucial in the argument

that nj ' proofs and Cx terms are notational variants.

Definition 33 (One direction of the Curry-Howard isomorphism, l j )
Assumptions The assumptions of the proof (both discharged an undischarged), are associated
with typed variables, the variable having as its type the assumption with which it is associated.
Steps of (-+I) If a proof p(.a~*t) is obtained from a proofPb by an (—*I) step which discharges 0
or more occurrences of assumptions of a in Pb then, (Ara[$6])(<,—1is the term associated with
p>(a—*b) would f,e associated with Pb when x" is associated with each of the occurrences of
a that are discharged by the (—* I) step.
Steps of (-+E) If Pb is obtained by a step of (—*E) from p(a~*t) and Pa, then ($(a—is
the term associated with Pb »/$(0—'*) is the term associated with p(a—'4) and Va is the term

associated with P".

In figure 4.2 there is an illustration.

'Classical' and 'Constructive' semantics

There are two kinds of semantics that might bring to bear on the proof-system nj the
'classical' and the 'constructive'.

The 'classical' semantics would be one that interpreted the propositions of tj-'as sets and gave

the —» connective its usual definition: [a—1-6] = [«]CU lb] The purpose of this classical semantics
is to define valid entailment and so to allow the proof-system to be assessed for soundness and

completeness.

The 'constructive' semantics would be one that interpreted a proposition a as what was defined
in Chapter 2 as Da, and which also interpreted the proofs of nj~', assigning them the same

interpretation as that of the isomorphic Cx terms. The purpose of this constructive semantics
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Assume ! a—>b [ = xa~*b, ! a \ = ya
u.

a—>6 La],

a—+b
L — —J

a—+6

Aj/a [
a—+6 a

]

Figure 4.2: Illustration of the Curry-Howard isomorphism
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is not to define entailment, but is to use the proo/-interpretations to reflect the process of
normalisation.

One way to emphasise the difference between the 'classical' and the 'constructive' semantics is
to see what happens if the 'constructive' interpretation of propositions of tj~~* is used for the
same purpose as the 'classical' semantics, that it is to define entailment. The first thing that is
different to the 'classical' semantics is that there is no uniform operation that will combine the

constructive interpretations of the premises. For the 'classical' semantics the interpretations of
the individual premises Me combined by intersection and the result is then checked for inclusion
in the interpretation of the conclusion. With the 'constructive' interpretation of the propositions,
there are lots of different combining operations that one might try, depending what type-domains
one is trying to combine. If the domains are £>(„—*■») and Da say, the natural operation is
pointwise function application. This will yield a subset of the Dj. On this basis one could say

the nj * defined entailment '{(a—*b), a} b 6' is constructively valid. However, to similarly be
able to say that the nj * defined entailment '{(a—+6),(6—>c)} h (a-+c)' is semantically valid,
the operation combining the domains must be composition. Different premise-sets will invite
different operations, with in fact the space of possible operations that one might apply to the
domains Dai,..., Dam being defined by the Cx terms with free variables of type ai,..., a„. The
definition of entailment on the 'constructive' semantics then wouid have to be:

'{ai,...,an} h 6' is constructively valid iff there is a Cx definable operation which combines

Dai,..., together to make a subset of Di,.

But because of the Curry-Howard isomorphism, this purportedly semantic entailment relation is

just the syntactic entailment in a different guise: there will be a Cx definable operation exactly
when there is an nj-* proof with assumptions ai,..., a„ and conclusion b. Therefore it is going
to be very unrewarding to ask questions of soundness and completeness with respect to the
definition of 'constructive entailment' - nj * is trivially sound and complete on this definition

of entailment.

Of the two styles of semantics, it is the 'constructive' semantics that is of relevance to the

process we are engaged on, that of associating semantic operations with if!M proofs. We have

depicted this process as taking an lproof, transforming it successively into a lj~* proof, a
nj ^proof, a Cx term and then essentially taking the interpretation of this term as the operation.
It amounts to the same thing to transform the if! •« proof into the nj-* proof and then to take
the constructive interpretation of that nj * proof.

This completes the discussion of the relationship between nj * and Cx. In the next two sections
we retrace back further to the left in Figure 4.1.
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3.2.4 A map from LJ~~* to NJ-^

We saw in the above that from the possible proofs of NJ~* an entailment relation between a

set of types and single type can be defined. This same relation can be defined inductively with
a sequent calculus, the system, LJ-"*, presented below. More precisely it should be said that
the sequent calculus defines inductively a relationship, ' => ', between a sequence of types and
a single type and from this can be defined an entailment relationship between a set of types
and a single type, the set being precisely the propositions having at least one occurrence in the

sequence.

Definition 34 (LJ-*, a sequent calculus for TJ-*)
(Ax) a => a (Cut) U,a => c V => a

U.V

(—»L) T => a U,b,V ^ c (-h>R) a,U => b
U, T, a—>6, V => c U =>■ a—>6

U => c U,a,a =$■ c U => c
•Weak Cont Perm

Cut

U,a =>■ c U,a => c

The last three rules are usually called the 'structural rules'. Similar observations were made by

Gentzen about LJ-* in 1934 as were made by Lambek about in 1957:

• leaving Cut to one side, the derivability of a sequent is decidable (there are some compli¬
cations concerning the deployment of the structural rules)

• the Cut rule is superfluous: any proof of a sequent that uses the Cut rule can be replaced

by one that does not use it.

There are several ways to show that the entailment relation defined by LJ-'" and NJ-* are the
same. One is to show that they are both sound and complete with respect to the 'classical'
semantics. Another is to show that proofs of NJ-* and proofs of LJ~~* may be interconverted
14. One of the directions of this conversion is the second of the links involved in defining the

proof-to-operation map, H£. This is the conversion from LJ * to NJ~* and it will be referred to
as *.

The first step in the direction of defining * is made by reading LJ~~'" sequents as making state¬

ments about the existence of NJ~~* proofs:
14Gentzen showed the equivalence by introducing a third corner, a HUbert-style axiom-system, and showing

the possibility of traversing from NJ-^* to U ' to a Hilbert-style system to NJ~'.
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Definition 35 (Proof-theoretic interpretation of sequents) 'U => a' is true iff there is a

nj * proof that has U as its undischarged assumptions and a as its conclusion.

All the sequents derivable in lj"~1' are true on this interpretation. One can see this because the

axioms are true on this interpretation and the inference rules of lj-* are sound on it. (13),

(14), (15) and (16) display the facts about nj * proofs that make lj-' axioms true, and the
rules (—>R), (—t-L) and Cut sound. The same can be done for the structural rules of Weakening,
Contraction and Permutation.

(13) a is proof

u, .Mi
U, a

b .

■ l

(14) if b is a proof then a—*b is a proof.

T U,b,V T
( , ft fl ih

(15) If a and c are proofs, then U,b,V

c is a proof

T U, a, V j,

(16) If a and c are proofs, then U,a,V

c is a proof

Note especially (15). The two premises of the (—>L) inference describe a top and a bottom part of
an nj * proof. This 'corkscrew' in the relationship of lj * tp nj f is the cause of the impression
that one gets from working with the term associated calculi, l£ , that terms 'flow' from the
minor premise into the major premise.

Now making the observation that the derivable sequents of lj-* are all true on the 'proof-
theoretic' interpretation is enough the demonstrate that the entailment relation defined by lj *
is a sub-relation of the entailment relation defined by nj *. However, we persevere and show

that any lj * proof can be converted to an nj * proof.

Let the proof-context of a sequent U =>■ a be understood to be the subtraction of U => a from
a proof of U => a. Since U a plus its proof context is a proof, we can take the map to be
defined upon a sequent and proof-context.

The leaves of a proof have no context. * is therefore defined with reference to the sequent

alone. The leaves must be axiom sequents, a => a, and *(a => a) is simply the nj-'' proof a. All
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non-leaf sequents have as their context the one or more proofs terminating in the premises that
lead to the non-leaf sequent. If one supposes that * has been defined for these premise sequents

(given their context), it is clear to see how to define * for the non-leaf sequent in its context:
one simply refers to the facts about NJ-1" proofs that make the sequent calculus rules sound, as
noted in (14), (15) and (16). This terse description should be made clearer by the example in
Figure 4.3, which illustrates the map * on a certain LJ-'" proof of a => (a—6)—6.

a—*a 6—6

: a, a—>b => b

a a-+b

(-2?)

a—hi 6—6

a, a—6 => 6

a => (a—6)—6

a—+6

a => (a—6)—6

(-£)

(-0

LJ NJ"

Figure 4.3: From LJ * to NJ"

3.2.5 From l('A) to LJ-*

The last link in the chain of mappings defining H[ is the link from l(/A) proofs to LJ * proofs.
HI and H'L differ by the different ways this link is accomplished.

I/7: the extensional link

Imagine applying a ue throughout an \S'A) proof, and deleting the labelling of the steps. The
result is a tree of TJ~~* sequents. One can wonder whether any such tree represents an inference
obtainable in LJ f. The answer is yes. That this is so is obvious for the leaf-trees which will

originate from axiom l^A) proofs. One can also see that the images of (\L) and (\R) steps
are (—L) and (—Ft) steps. Finally, although the images of (\L) and (\R) steps are not simply
(—L) and (—R) steps, they are transitions derivable by (—L) and (—R) in combination with
the Perm rule. In this way one can see how, by making reference to an extensional type-map,
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j/e, a particular LJ-* proof may be associated with a if!A) proof. The details of association are

given in Table 4.2, with notating the conversion.

L</-\) proof image in LJ~f under vc

x => x u'(x) => i/e(x)

Pi Pi

U,T,y\x, V => z
\L

l^(Pi) Pr(P2)
ve(U),ve(T),v'(x)->ve(y),v>(V) => ve(z)

Pi Pi

U,y/x,T, V => z
'/ L

T*(Pi) ^(Pi)
ve(U),ve(T), (i/e(x)-n/e(y)), ve(V) =» „«(*)
"^(^),(/(t)V(y)),i/e(T)/(V) =>

■Pern

Pi

t/ => y\x
\R

^(Pi)
1>°{U) (/(iKCl/))

♦R

U =>- y/x
/R

^(Pi)

i/'(x),i/e(CQ =» i/«(y)
^(C/) =>■ (i>e(x)—n/e(y))

-Perm

»R

Table 4.2: ve: t-+ LJ-*

i/': the intensional link

With reference to an intensional category-to-type map, it is also possible to link if!A) proofs to
LJ * proofs. However, matters do not run so smoothly as for the extensional maps: this time,
when a map vl is applied to an A) proof, the resulting tree of sequents does not represent

derivable transitions within LJ f. For example the image of a (/R) step is unsound on a classical
semantics, and so does not represent a possible transition within LJ *.

That the image of a (/R) step is unsound

The premise sequent will be f'(U), o'(y) => u' (x) and the conclusion sequent v'(U) =$■ ((.»—►1/(x)).
To suppose the premise is valid is to suppose that:

(1) Whatever interpretation, [v'(l/)J n [i/'(y)] C [v'(x)J

For the conclusion to be valid then we require:

(2) Whatever interpretation, [i/' (I/)] C ([s] O [i/'(y)]c) U [i/'(x)]

For a counterexample, suppose on an particular interpretation, [s] = [f*(v)] = ["'l27)] = fa}
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and [v'(U)\ = {a, 6}. This refutes (2) but is consistent with (1) □

Although the tree of sequents obtained by applying the vl map does not represent derivable
transitions in LJ~1\ a simple modification of it will make it do so: s should be added to the

antecedents of all sequents. In Table 4.3 the details of the intensional conversion from L^A) to
LJ * are given, using this device of adding s to the antecedents. The table makes reference to

the derived rules (—+L) and (-^R) and here are the sequences of steps in LJ * that I will be
using these derived rule to abbreviate:

Abbreviated rule Unabbreviated rule

s,T'=>a s,U',b,V' => c ,

s,U',T',(s-Ki)-+b,V' => c

S,T'
V => s—a s,U',b,V'=>c

s,U',T',(s^a)-+b, V' =>c

s, U', a =>■ b

s, U' => ((s—>a)—>6)
^R

=> s 8, U', a => b

s, U',s,(s—ki) => b
s, U', (s—>a) => b

s, U' => ((s-+a)—>6)

Cont

R

l(/A) proof image in LJ * under ul

x => x i/'(x) => v'(x)
s, v'(x) =>■ v'(x)

■Weak

Pi P2

U, T, y\x, V => z
\L

S(Pi) "'(P2)
s,i>f(ir),S(T),((8->i'l(x))-i'(v)),i't(V) => i/'(z)

L

Pi

U => y\x
\R

*{Pi)
s,vl{U) (s-u/(x))-+l/'(j/)

R

Table 4.3: vx: l^A) lj-*

3.2.6 Multiplicity of proofs as a source of ambiguity

The Lambek categorial framework seems to hold some promise for explaining the recursive

ambiguity facts that were described in Chapter 3. For example, to account for the categorisation
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of every man loves a woman, although in LCG only one sequent is needed, the framework cannot
help but provide more than the sequent: it must provide a proof or proofs of the sequent, and
since the if-f'^-meaning relation is 'driven off' proofs, two proofs of a single sequent may lead
to two meaning assignments. We say 'may' rather than 'will lead to two meaning assignments',
because it is often the case that different proofs Me associated with semantically equivalent
terms. Examples of significantly different proofs are given in (17) and (18), where two proofs
are given of s/(s\np), (s\np)/np, s\(s/np) =S> s. This is a categorising sequent for every man loves
a woman on a not unreasonable choice of categorisation for every man, loves and a woman. On
both proof-to-operation maps, these two proofs will be associated with significantly different

operations.

(17) np, (s\np)/np, np => s ^
/R

np, (s\np)/np =>• s/np s =>• s
\L

np, (s\np)/np, s\(s/np) =► s^
s => s (s\np)/np, s\(s/np) =S> s\np /r

/1■*
s/(s\np), (s\np)/np, s\(s/np) =>■ s

The value ofHf on the above proof is x(et,<)(Ati2[z(et|<)(Ati5[y(eet)u5u2])]), assuming y(ee<)
and Me associated with the antecedents. Therefore, the operation defined is:

mi,m,, m3, (to, j) ~ [Ai[y(1,~+(4t't))(i)(Au|[^'-+(et'1))(,-)(AU|[y('^"1)(i)(«5)(U2)])])]](h)(u,)
where h(yi) =w' m1(to', j), h(y2) = to' m2(w',j), h(y3) = w' m3(w',j)
= mi,m2,m3,(w,j) mi(w,j)(ye m3(w,j){xe m2(to, j)(*)(y)))

(18) np, (s\np)/np, np =>•
\R

s^s (s\np)/np, np => s\np^ ^
s/ (s\np), (s\np)/np, np =» s / ^/ R
s/(s\np) (s\np)/np, => s/np s =>■ s(i

\L
s/(s\np), (s\np)/np, s\(s/np) => s

The value of /f£ on the above proof is z(et,,)(Au2.a;('!'',)(Au5.yeetu2u5))
Therefore the operation defined is (where h is the assignment mentioned above):
mi,m2,m3, (to, j) _► [Ai[yi,^(et'0)(i)(Au«[y('-+(e'et))(i)(AU|[y('-+"<)(i)(ti2)(«5)])])]](/,)(to) =
mi> m2,m3 i ► (u;,j) >-► m3(to, j)(x ^ m1(u;,i)(y •-» m2(to, j')(a:)(y)))
This then is an example of the potential of LCG to account for ambiguity. Such potential
has also been noted by others (Moortgat 88, Hendriks 90). It has also been concluded that
these early promising signs are more or less misleading. The question is looked at in some
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detail in Chapter 6. What we will do here is indicate why such an account, should it be

forthcoming, would be especially interesting. There are, after all, other kinds of account of

ambiguity - some will be considered in Chapter 5. The criterion on which a categorial grammar
account might have an advantage over other accounts is the criterion of emergence. This was the
criterion mentioned in the introductory chapter, and it requires that ambiguity should not be a

modularly subtractable part of the coverage of an account. That is, it should not be possible,

by a simplification to make the theory into one that accounts for the very same syntactic facts
as before, but which finds all sentences unambiguous. The reason that a descriptively adequate
LCG account would meet the emergence criterion is that it would owe its success in explaining

ambiguity to the structure of LUM proofs, and these are defined by just 5 clauses. Removing
any of the clauses is likely to not only lessen the extent to which ambiguity is explained, but
also to affect the theory's ability to account for the syntactic facts also. It is not worth laboring
this point until one has on one's hands a descriptively adequate LCG account. Suffice it to say

that LCG arguably holds out the promise of particularly theoretically interesting account of

ambiguity.

3.2.7 The strangeness and potential significance of the string-semantics

It was mentioned in section 3.1 that there is no consensus amongst categorial grammar re¬

searchers on the significance of the string-semantics. This is probably because there seems

something 'inverted' (see below) about the priorities of a string-semantic interpretation. In this
section there are no arguments settling once and for all the significance of the string-semantics.
What there is first is an attempt to articulate what the 'strangeness' of the string-semantics
is. After that there is an acknowledgement of the fact that this 'strangeness' can be see to

lesson the force of the statement made earlier: that to use sequents other than those present in
the Lambek calculus is to use sequents that depart from the meaning of the slash-connective.

Finally, I will try out an argument to the effect that an explanation of a phenomenon in LCG
is especially interesting because of the existence of the string-semantics.

One way to regard a string semantic interpretation is as defining in an unorthodox way a

categorisation relation between strings and categories. As such, it bears comparison with the
orthodox way of defining a categorisation relation, which is by specifying a grammar. The

following vocabulary will be useful in the comparison: a categorisation fact is string-simple if
the string is a word and it is category-simple if the category is basic.

Now a string-semantic interpretation consists in the direct specification of all category-simple

categorisation facts. All the other facts are defined inductively from these. A grammar on

the other hand consists in the direct specification of all string-simple categorisation facts, and
then other facts are inductively defined from these. From the perspective of a grammar based
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definition of a categorisation relation then, the string semantic based definition is bizarre, and
in this resides the difficulty of settling the significance of the string-semantics.

One thing this strangeness does is allow one to be less than persuaded that LA) represents a

genuine ceiling on possible sequents (involving the slash-connective). Consider the significance
of the fact that a particular sequent is not derivable in L^'^. This means that the sequent

describes categorisation facts which do not hold in all 'possible' categorisation relations, where
the possible categorisation relations are given by the string-semantics. If one finds the string-
semantic definition of a categorisation relation bizarre, then the associated notion of possible

categorisation relation will seem bizarre and therefore the fact that the sequent is underivable
in the Lambek calculus need not seem very insignificant.

One final point will be considered in this section. One could argue that once the category-simple
facts have been settled, the issue of which proofs the sentence should be associated with is an

empirical matter, akin to the issue of whether the sentence contains three occurrences of the
letter 'A'. The empirically testable nature of association between a sentence and a proof, may
affect the significance of the discovery that a given phenomenon can be accounted for by an

'induced' categorial grammar. Consider how significant it would seem if one could predict the
number of different readings of a sentence from the empiricalmatter of the number ofoccurrences
of the letter 'A' in it. Such a correspondence would be hard to put down to coincidence, and one

would have to conclude that occurrences of the letter 'A' really are a causal factor in determining
the number of readings of a sentence. Equally if the number of readings of a sentence could be

predicted from the number of proofs associated with it, could one put the correspondence down
to coincidence ?

It is crucial to this line of reasoning that that one be able to claim that the association between
sentence and proof is an empirical matter. If instead one simply defines the association by

proposing a grammar, and then should one obtain a correspondence between the proofs and the

readings, the correspondence could be put down not to coincidence, nor causation, but design.
So its crucial whether string-semantically induced associations of a sentence with a proof are as

empirical a matter as the number of occurrences of the letter 'A' in a sentence. This status is
vitiated by the fact that the string-semantically induced category-complex facts depend on the

specification by a grammar of category-simple facts, and these facts can only be instrumentally

justified. However, even given this, if it should turn out that ambiguity was explicable by
a string-semantically induced categorial grammar, could one put it down to coincidence and
maintain that none the less the induced categorial account had nothing to do with what is

actually at the bottom of ambiguity ? I have to simply leave this as a question.
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4 Universal Grammar

Until now in this chapter, we have ignored the UG definition of the link between an ambiguous

language and a semantic algebra and substituted other definitions. Lambek categorial grammar
has been projected as having a definition special to it of the language-meaning relation: the link
is made at a lexical level by proposing an ^-interpretation, and the link at the non-lexical
level is made via the A) meaning relation. Let us call the combination of a -^-interpretation
with a (w,j) an LC>\).model, and the combination of a l^-^-grammar and a class of possible
l(/A).models an LUA).theory. Therefore to work in the LCG framework is to construct l(/A)_
theories. What we will attempt to do in this section is identify a region within the space of

possible theories of reference that may be thought of as representing every possible i//A)_
theory. We have to say 'representing' as the theories of reference will not actually be
l(/-\)-theories. They will represent L^'^-theories by replicating their syntactic and semantic

entailments.

We begin by noting the kind of entailments that an L^-^-theory has. They are of two forms,

defining the categorisation relation and the meaning relation:

a categorisation of s is x

a meaning of [s]r is m, relative to if!-^-interpretation, (B, {H6L(P) : P is an A) proof}, fL)
Here s is a string, and is not understood to have any algebraic structure. A theory of reference
also entails facts concerning the categorisation and meaning of strings, though the chain of

implication is more extended than for an -^-theory; the most immediate entailments of a

theory of reference concern not strings but expressions of a disambiguated language:

a categorisation of a is x

the meaning of a is m, relative to an interpretation, (B, (Qy)f^r, f)

As explained in Chapter 2, from these central entailments concerning expressions of a disam¬

biguated language, entailments concerning simply strings follow when the disambiguation

relation is taken account of. Therefore a theory of reference has the same kind of entail¬

ments as an L^-^-theory and what we need to do is show given any L^ALtheory, 9, a simulating
theory of reference, T9 can be found.

The disambiguation relation of T9 will be as usual the first argument projection function. To

replicate the syntactic entailments of 9, T9 will be taken to involve the following disambiguated
language:

C9: part of T9, which simulates the L^/A).theory, 9

1. The phrase-set indices, A = CAT^A) (relative to bascat),

2. Set of basic phrase-sets, Xf. (at, (),x) E Xx iff a: is a categorisation of the lexical item
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a according to 9.

3. The operation indices, T = the set of possible proofs in i/ZA).

4. The operations, operate on triples in the usual way, amounting to concatenation
on strings. That is, V7 € T, is an n-place operation, where n is the number of
antecedent categories of the conclusion sequent of 7, and V(t*J ), (a^),...,

W,)' • • • > K»» = <aiai • • •a" ■ (aD> ■■■> (a"„))' T)
5. The set of rules S = {(-^7, U, x) : 7 € T,U => x is the conclusion of 7}

The DISAMBIGUATED LANGUAGES that correspond to '^-grammars we will call DISAMBIGUATED
LAMBEK LANGUAGES.

Now 6 will specify a certain set of possible L^'^-models, each model being ((B,{HSL(P) :

P is an L</-\) proof}, fL), (w,j)). To turn these if!'^-models specified by 0 into MODELS, spec¬

ified by T', it is simply necessary to replace fL with a function / defined on basic expressions
of C9. The relationship between fL and / is:

f((a,(),x))=fL([a)x)

Before we endeavour to show that T9 defined above really does reproduce the categorisation and

meaning relation facts of 0, we will illustrate the above construction by applying it to a particular
L(/A)_theory. The categorial lexicon of the if!'^'-theory will be that given in (1), and for the
models of the L^1^-theory we will allow any(() : P is an L^'^ proof}, fL), (w,j)),
associated with the extensional category-to-type map that maps np to e and s to t.

Now a categorisation entailment ofsuch an lUA)_theory will be that a categorisation of John loves

Mary is s. To show that the same fact is entailed by the corresponding THEORY OF REFERENCE,

an object of the disambiguated language must be found which is in Cs and which stand in the

ambiguation relationship to John loves Mary . The required object is described in (19):

(19) PprooFi((jobn, O.npJ.-FpflooF.UIoves, (),np), (mary, (),np)))

where the operation indices PROOF\ and PROOF2 are the following proofs:

(20) PROOF1: s\np =£■ s\np np => np PROOF2: np ^ np s =>■ s

(s\np)/np, np => s\np np, s\np =>■ s



88 CHAPTER 4. INTRODUCTION TO CATEGORIAL GRAMMAR

The object described in (19) is depicted in tree form below:

(21) loves ,(s\np)/np Mary, np

The tree in (21) should not be confused with the categorisation trees shown earlier in (2).
With respect to an arbitrary hU'^-interpretation allowed by the i//'\)-theory, a possible meaning
of John loves Mary is

(22) apfiooFa(/i([John]np,f?PfiooF1(/I'([loves](^np)/np),/i([Mary]np)))
For a theory of reference, a possible meaning of John loves Mary is the meaning assigned
to any disambiguation of it. Therefore with respect to the corresponding interpretation, a

possible meaning of John loves Mary is

(23) \Tproof, ((john, (), np), Tproof1 ((loves, (), np), (mary, (), np)))]
= ^PROOFa(I(john, (), np)],^pfiooF, (|[(loves, (), np)J, [(mary, (),np)]))
= f/PROOFa(/((john, (), np)),0PROOF, (/((loves, (), np)), /((mary, (), np))))

By the definition of what is for an interpretation to correspond to an i//'^-interpretation,
the above describes the same meaning as that in (22).

Now to compare more generally any l^'^-theory, 0, and what has been defined above as the

corresponding theory of reference. Firstly, it is clear that the theory of reference T9
will agree with 0 on lexical facts concerning categorisation and meaning.

Now suppose that according to 0:

Pi... Pn may be categorised as y

\P\ ■ ■ • ftn\y has possible meaning m according to the L L^'^-interpretation (B, (Gy)yer, fL)
If 6 entails the categorisation fact, it must be the case that (i) there are x\,..., x„ such that the

Pi may be categorised as X{, and (ii) the sequent x\,..., xn => y is provable in L^'^. One can

infer from (i) that in C9 there must be the basic expressions: (/?,-, (),x,). From (ii) one can infer
that there must be a rule {Tp, (zj,..., x„), y), where P is a possible proof of x\,...,xn => y.

These two facts about C9 entail that there is a disambiguation of px... pn that is of category

y, namely Pp((Pi, (),xi),..., (/?„, (),*«))• Therefore, T9 entails the same categorisation fact

concerning Pi ... pn as does 0.

For 0 also to entail the meaning relation fact, it must be the case that there aremi,..., m„ which
are the meanings of the categorised expressions [Pi]Xl, ■ ■ ■, [/?n]x„ according to (B, (£/7)7er, fL)
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and that m = ... mn) = 5p(mi,-..,mn). By definition of the corresponding in¬

terpretation, f), for each of the (ft, (),*,), /((ft, (),*,)) = m, . Therefore by
the definition of the homomorphic extension |J of /,

I-^p((ft, (),«i), • • •, (fti> Oi^n))] = Gp(mi, • • •, m„)

Therefore Te entails the same meaning relation fact as 0.

From now on we will not present '^-theories but instead equivalent theories of reference,
to be called l(/A)_theories of reference.

The discussion of categorisation and Cut elimination can be transferred to the arena of disam¬
biguated Lambek languages. Where we spoke of 'pursuing the flat categorisation strategy'
now we should speak of 'search for flat members of the carrier set'. The flat members are the
basic expressions and those triples < «i, < a,- >, y > where < a,- > is a sequence basic expres¬

sions. Where we observed that any categorisation obtained by the non-flat strategy could be
obtained using the flat strategy and Cut, now we should observe that the ambiguation of any
non-flat member must be the same as the ambiguation of a flat member in whose operation
index the Cut rule is repeatedly used.

To display an expression of a disambiguated LaMBEK language in full is a rather strenuous

task, as witnessed by the picture in (21). Because all syntactic operations of a disambiguated
Lambek language amount to string-concatenation, it is possible to streamline the represen¬

tation. The non-leaf nodes of the tree in (21) are of the form string.proof, where the proof is an

L(/A) proof of some sequent U => x. In the streamlined representation such nodes are replaced

by iv.proof, giving the streamlined version of (21):

In the usual fashion of categorial grammar, we will usually present such a tree upside down:

s, PROOF2

Johti,np s\nP> PROOFl

(24) loves,(s\np)/np Mary,np

(25) John loves Mary
np (s\np)/np np

■PROOFl

s



Chapter 5

Arguments for locality and

minimality

91



92 CHAPTER 5. ARGUMENTS FOR LOCALITY AND MINIMALITY

1 Introduction

In this chapter I will look at some strategies that one may adopt towards accounting for the

junctions and quantifiers. Section 2 considers a certain swathe of the possible accounts and
identifies a criterion according to which one should prefer over these the Polymorphic categorial
account that will be proposed in Chapter 7. The criterion put forward will be called emergence,

where this roughly is whether or not the account has features whose purpose is simply the

explanation of ambiguity. The reason for calling this aspect emergence is the fashion in which
we will test for it: by seeing whether it is impossible, by some easy simplification, to turn
the account from one that explains both the facts concerning semantic ambiguity and the facts

concerning extensive privileges of occurrence, into one that explains only the extensive privileges
of occurrence. An account for which such a simplification is not possible will be called emergent.

The accounts of junctions considered in section 2 are those based on the 'Conjunction Reduc-

tion'(CR) transformation, and those based on Gazdar's Cross-categorial Coordination proposal.
It is convenient to refer to these as the non-local and the local approaches, where locality is

roughly the requirement that the analysis of a sentence builds the sentence from substrings of
itself. The accounts of quantification considered are those based on the 'Quantifier Lowering'

transformation, and another somewhat nameless, though quite familiar account which we will
refer to as Cross-Categorial Quantification. These also will be referred to as the non-local and
the local approaches.

These accounts are considered first from the point of view of descriptive adequacy: a descriptively

adequate account of junctions and quantifiers would be one that captured both the extensive

privileges of occurrence of these expressions and the semantic ambiguities that they engender.
None of these non-local and local approaches to junctions and quantifiers are descriptively

adequate, at least not if given in their simplest form. It is then considered whether elaborations
of the non-local and local approaches can achieve descriptive adequacy. One elaboration is
to combine the non-local and local approaches, and such a combination is probably the most

often given kind of account. This combined account is descriptively adequate. This means that

descriptive adequacy alone cannot be the reason for special interest in the Polymorphic categorial

grammar account and that is why attention is then given to the criterion of emergence. The

Polymorphic categorial grammar account is emergent, though the demonstration of this will
have to wait until Chapter 7. What is seen at the end of section 2 is that the descriptively

adequate combined non-local/local account is not emergent. The possibility of elaborating one

of the non-local approaches in some other way than simply adding the local approaches is also
considered. Such other elaborations are seen to lead semantic overgeneration, however. It is

important to consider such elaborations because the non-local approach though descriptively
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inadequate, is an emergent account.

Therefore, by the end of section 2 a number of accounts of junctions and quantifiers will have
been considered and all seen either to be not descriptively adequate or not emergent. This
discussion will not have encompassed all hitherto proposed accounts, and at the end of the

section we will note the accounts that have been missed out and indicate where in the thesis

these accounts receive consideration.

Section 2 also has two ancillary purposes to the main one of considering whether accounts are

emergent. The first of these is that some of the ground covered should make more readily
understandable the Polymorphic categorial grammar account in Chapter 7. This is because the
local analyses of junctions and quantifiers described in Section 2 involve certain polymorphic

operations, and if these operations are understood then it may help to regard the proposal of

Chapter 7 as a lexicalisation of these operations. The second additional purpose of section 2 is
to introduce certain pieces of basic 'semantic technology'. Amongst these are (i) the relation
between typing and transparency/opacity, (ii) the fundamental denotations for junctions and

(iii) the fundamental denotations for determiners.

The way that a course is charted in section 2 through various accounts ofjunctions and quantifiers
is by means of first specifying a core-account and then growing it in various directions. This core-
account makes certain choices concerning types. Section 3, entitled 'Arguments for minimality',
considers an account that makes a different choice of typing, a so-called 'non-minimal' typing
of verbal terms. This is therefore one of the accounts referred to above as being missed by
the considerations of section 2. Besides pointing out that this account a further non-emergent

account, we make in section 3 some objections to this non-minimal typing. The first objection
is to the explanation of 'intensional' transitive verbs that the typing has been argued to provide.
The second objection is that certain semantic undergenerations can only be got around by

using the non-local account of quantifiers and the result is the correlation of the most natural

interpretation with the most complex of analyses. The relevance to the rest of the thesis of these
criticisms of the non-minimal typing lies in Chapter 6, the project of which is to show that no
account of the junctions and quantifiers can be found using Lambek categorial grammar; the
elimination of the option of using non-minimal typing simplifies this project somewhat.

2 Arguments for Locality

In this section we will consider some of the accounts of the junctions and quantifiers that have
been proposed and identify a criterion for preferring over these the Polymorphic categorial
account that will be put forward in Chapter 7. We will do this by first giving a core-account

which explains a number of phenomena but which does not allow for the extensive privileges
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of occurrence of junctions and quantifiers. A number of different ways of expanding on this
core-account will then be considered. The core-account given is intended to be the simplest

possible one. Sections 2.1, 2.2 and 2.3 specify this core-account. Section 2.1 covers conventional

techniques for handling the syntax and semantics of verbal terms, proper names and sentence

and VP embedding constructions. Section 2.2 gives a preliminary account of junctions and

quantifiers, one accounting only for sentential occurrences ofjunctions and subject occurrences of

quantifiers. This gives an opportunity to show that what one might call the orthodox denotations
for junctions and quantifiers may be seen as more or less emergent from the recursive ambiguity
data recorded in Chapter 3. There is one final development of the core-account in section 2.3.

In order to bring to bear the data in section 3.5, Chapter 3 (the truth intuitions for sentence
and VP embedding verbs), one must allow for truth-predicates and higher-order quantification.
Section 2.3.1 discusses the problem that was postponed from section 3.5, Chapter 3 - the problem
of truth paradoxes.

In section 2.4 we present two broad approaches to expanding the core-account into one encom¬

passing the non-sentential junctions, approaches that may be divided by a locality criterion.
This was mentioned in the above Introduction, and now it will be defined: a disambiguation a

is local if the subparts axe disambiguations of substrings of a (the 'over-line' notation will be used
to refer to a member of the syntactic algebra by mentioning only its string part). The non-local

approach to junctions is that associated with the transformation of Conjunction Reduction, and
this is described in section 2.4.1. Section 2.4.2 describes a local approach to junctions, and it is
the UG embodiment of Gazdar's Cross-categorial Coordination proposal.

Section 2.5 is a sister section to section 2.4, this time concerning quantifiers. The non-local

approach is the UG version of the transformational idea of Chomsky-adjunction and Quantifier

lowering, and this is described in section 2.5.1. The other approach is local and somewhat

nameless, though a familiar enough paxt of semantic 'folk-wisdom'. It will be referred to as

Cross-categorial Quantification, and is described in section 2.5.2.

Each of the sections 2.4.1, 2.4.2, 2.5.1 and 2.5.2 not only describes an approach but also se-

mantically assesses it. None of the approaches is descriptively adequate. In both the case of

junctions and quantifiers, although the non-local approach is a prolific generator of readings,
there remain some problems of semantic undergeneration. The local approaches are less prolific

generators of readings, but the undergenerations of the local approaches do not intersect with
the undergenerations of the non-local approaches.

Section 2.6 considers more fully the accounts that are possible with devices described in sec¬

tion 2.4 and section 2.5, and in particular whether it is possible to obtain a descriptively ad¬

equate, emergent account. A combined account is considered, which remedies the undergen¬
erations of the non-local accounts by adding the local mechanisms. This gives a descriptively
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adequate but not emergent account. Another account is considered which remedies the under-

generations of the non-local approaches in some other way than simply incorporating the local

analyses. This involves introducing several other kinds of non-locality. Objections to these ad¬
ditional instances of non-locality are (i) they cannot be given the syntactic motivation that can
be given for the non-local junction and quantifier analyses, and (ii) they introduce certain kinds
of semantic over-generation of their own.

This completes the task of section 2, which was to show that a number of possible accounts are

not emergent. At the very end of section 2.6 there is an indication of which accounts are left to
be considered and a moral is drawn concerning the direction in which one must go to obtain an

emergent account.

2.1 Basic Montagovian semantics

2.1.1 Verbal terms and Proper names

In this section a simple theory of reference will be defined, accounting for the syntax

and semantics of English sentences consisting of verbal terms and proper names. First the
disambiguated language part :

£4: verbal terms and proper names

1. set of phrase set indices: A = {NP,VP,TV, TTV,S)

2. the family of sets of basic 6-phrases: <Tnp = {(John, (), NP), (Mary, (), NP)}, A'vp =

{(walks, (), VP)}, *TV = {(loves, (>,TV), (is, (>,TV)}, <Vttv = {(gave, (),TTV)}

3. the syntactic operations: T = {<,>} The string part of both TK and Ty is concate¬
nation

4. the syntactic rules: { (F<) (NP, VP), S), {T>, (TV,NP), VP), (Ty, (TTV,NP),TV) }

As was noted in Chapter 2, the least restriction one can expect on a set of possible models is
a restriction relating the operations of the algebras of the models to each other. The easiest

way to do this seems to be define 'algebra^spanning' functions, which take any possible choice
of €, X and J, into some particular operation defined over the meanings sets generated by that
choice of £, X and J. The operations of an allowable algebra associated with a particular £, X
and J are then the values of such 'algebra-spanning' functions at £, X and J. Before giving the
set of possible models to be associated with £4 we will first define four such 'algebra spanning'
functions: 7i^, Ry, R< and Ry. The superscript '£" indicates that R^ and Ry are functions
which when applied to a choice of £, I and J return an operation on denotations, unlike 7t<
and 7i>t which return operations on meanings.
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Definition 36 and H<) For any sets £, I and J, for any types a,b G tj-*, for
any di G Da, any d2 G D(0_>j),
■H*(€,I,J)(dl,d2) = d2(d1),
nf(etx,j)(d2,d1) = d3(dl),
and for any mi G Ma, any m2 G any (w,j) G X x J

n^e, I, J)(m1, m2)(u), j) =Wf (£, J, J-)(mi(u>, j),m2(iu, j)),
R>(£,I, J)(m2,mi)(w,j) = Hf{£,I,J)(m2(w,j),mi(w,j))

These operations, and others that will be subsequently defined, will be assumed to return the
undefined object at arguments of types other than those mentioned in the operation definition.

H>(£,I, J) (resp. 7i<(£,I, J)) will be referred to as the extensional forward (resp. backward)
function application operation. We will now define the set of possible models for £4:

The set AC1 ofpossible models for £4: ((5, (t77)7er, /)> (">,/)) associated with £,1,J, v
is G AC1 iff

1. Type mapping: j/^NP) = e, ^(S) = t, i/1(VP) = (e—►*), j/1(TV) = (e—>(e—d)),

i/1(TTV) = (e->(e-(e->t)))

2. Constraints on /: only the Copula Postulate, defined below. The expressions with

respect to which / is unconstrained are said to be freely interpreted in their type.

3. Algebraic constraints: T = {<,>}, Q< = H<{£,1,J), G> = H>(£,T,J).

To give the Copula Postulate it is convenient to first define an 'algebra spanning' function IS:

Definition 37 (IS) For any £,I,J, for any (w,j) El X J, for any d\,d2 G De,

IS(£ ,1, J)((w, j))(di)(d2) = 1 iffdx = d2

Definition 38 (Copula Postulate) For any model ((B, (£7)7€r,/), (w,j)) G AC1, /((is, (),TV)) =
IS(£,I,J)

T1 will be understood to be the theory of reference defined by the combination of C4 and

AC1. Because of the limited syntactic coverage, T1 can only be assessed by the following data
on transparent occurrences (see (19a,b, p36) in Chapter 3, and recall that subscript e means

transparency on all readings):

(1) a Johne walkse
b Johne (lovese Davee)e

T1 accounts for both of these. Consider (la). Taking into account the fact that T1 provides

only one disambiguation of an expression if it provides any, the condition for T1 to account for
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the unambiguous transparency of the occurrence of John in (la) is

97

(2) there is no a, where a is a referring expression, and no model, (3, (tv,j)) G AC1, such
that (i) [John is a](u>, j) = 1 and (ii) [John walks](tu,j) ^ [a walks](u;, j).

One can show that the co-extension clause (i) entails identity of denotation, whilst (ii) entails
difference of denotation. In other words, (i) and (ii) contradict each other:

(3) Entailments of (i):
[John is a](tu, j) = 1

<->[.F<(John, T> (Ts, <?))](«;, j) = 1

<-+ps[(iu,»([«](«;, j))([JohnJ(u;, j)) = 1 (by definition of Q>, Q<)
<->[John|(u;, j) = [<5](w, j) (by the meaning postulate for is)

(4) Entailments of (ii):
[John walks](u;,j) / pTwalks](w,j)
^a<([John|, [walks])(tu, j) ^ C<([ff], [walks])(u>, j)

([JohnJ(u>, j), [walks](u), j)) ^ (|aj(ti>, j), [walks](u;, j)) (by definition of Q<,
and using the notation for J))

♦-»[John](u>, j) # [a](to, j)

This explanation of the transparency of the occurrence John is often described with the following

phrase: 'the denotation of John walks is a function of the denotation of John'. This is a rather

poor shorthand for 'whatever (w, j), there is function, /, such that whatever referring expression
a, [ a walks](iw,j) = /([«](«>, j))'.
The transparency of the object NP position of (lb) is explained in like fashion. Finally the

unambiguous transparency of the occurrences of walks in (la) and loves in (lb) follow simply
from the definition of transparency.

T1 is an example of free interpretation in the right types accounting for transparency. The

type mapping of T1, vl, embodies what I wish to refer to as the hypothesis of Minimal Types.
This comment will make more sense after the next section has been considered, where other

typings will be considered under which free interpretation would not account for transparency,

and instead careful constraint of interpretation by Meaning Postulates is required to account for

transparency.

2.1.2 Embedding Verbs

With just the two syntactic operations that have so far been introduced, one can widen the

syntactic coverage to encompass sentence embedding constructions simply (if crudely, for the
complementiser that will be ignored) :
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£5: incorporating sentence embedding constructions

1. Phrase set indices: as for £4 , with the addition of PV

2. Sets of basic 5-phrases: as for £4 with the addition of -Vpv = {(believe, (), PV)}

3. Syntactic Operations: as for £4
4. Syntactic rules: as for £4 with the addition of: (?>, (PV,S), VP)

To extend syntactic coverage to the VP embedding constructions presents more difficulty, be¬
cause of the obligatory presence of the infinitising to. However, there are semantic problems
associated with the above syntactic analysis. The use of T> in the rule to combine a sentence

embedding verb with a sentence dictates that the semantic value of the combination be obtained

by using the Q> operation, which in turn dictates that the type associated with such verbs is

(t—>{e—►*)) (otherwise the value returned by Q> will be the undefined object). This will fail
to respect the fact that embedded sentences occur unambiguously opaquely, as noted in (19f),
Chapter 3. For example, to account for the fact that Mary walks occurs opaquely in John believes

Mary walks, we require:

(5) there is an 7S, where a is a sentence, and there is a model, (3, (w, </)), such
that (i) [Mary walks](w,j) = and (ii) [John believes Mary walks](u;,j) ^
[John believes a](w.j)

(ii) contradicts (i), as shown below (using the abbreviation mi for [Mary walks], m2 for [a], J
for [John], B for [believes]):

(6) Entailment of (ii):
[John believes Mary walks](in, j) ^ [John believes a](tu, j)
~G<(J,G>(B,m1))(w,j) 5* G<(J,G>(B,m2))(w,j)
+-+G>(J(w,j),G>(B,mi)(w,j)) ^ gf(J(w,j),G>(B,m2)(w,j))
^*Gf(J(w,j),Gf(B(w,j),m1(w,j))) ^ G?(J(w,j),G?(B(w,j),m2(w,j)))
+->mi(w,j) ^ m2(w,j)
<-»[Mary walks](u;,i;) ^ [a](u>, j)

Because (ii) contradicts (i), (5) is false, and the opacity fact is not accounted for. The standard
1
response to this problem is to change the typing assumption for sentence embedding verbs so

that they have type ((s—>t)—+(e—►<)) and change the semantic operation that is implicated in the
derivation of a disambiguation of believes a to the operation of Intensional Forward Function

Application, the 'algebra^spanning' definition of which is:
1 Montague 68 treats belief this way.
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Definition 39 (7f<.and For any sets £,I,J, for any types a,b £ T]~+, for any rm £ Ma,
m2 G A/((,_+a)—n), any (u;, j) £1 x J,

= m2(w,j)(w' mrfw'J)),
J){m2,mi)(w,j) = m2(w,j)(u/ m^w'J))

It is common to regard t/>( as the combination of G> with a 'taking the intension' operation,
which we shall call Q\. This operation turns a meaning of type t into a meaning of type (s—►<),
the new meaning effectively denoting at every (u>,j) the old meaning (note the definition makes
it the case that G>i(mi,m2) — G>(m1,G\(m2))):

Definition 40 (Wj) For any sets £,I,J, for any type a G TJ-for any mi G Ma, any

(w,j) £l X J, H^£,I,J)(m{) = (w,j) y-fti/ t-f

If the class ofmodels for £5 were defined to associate Q>i with T>, and G < with T<, the opacity
of Mary walks in John believes Mary walks would be accounted for. Referring back to (5), the
condition for opacity, this time from (ii) cannot be deduced the negation of (i):

(7) Entailment of (ii):
[John believes Mary walks](w,y) ^ [John believes a|(t«,y)

w,j) ± g<%(J,G>{B,Tn2))(w,j) =
»G*(J(tv,j),G>i(B,m1)(w,j)) ± Q^(J(w,j),G>i(B,m2)(w,j))
<->Gf(J(wtj),B(w,j)(w' i-f mi(w',j))) ^ Gf(J(w,j),B(w,j)(w' i-» m2(w',j)))
<->(«/ i—► mi(w',j)) ^ (w' i-» m2(w',j))
y+[Mary walks](tn,y) / [a](tn,j)

This explanation of opacity is sometimes summarised as: 'the denotation of John believes
Mary walks is not a function of the denotation of Mary walks'. This is rather poor shorthand for:
'it is not the case that whatever (w, j), there is function, /, such that whatever sentence a, [
John believes a](w, j) = /([<*](io, j))'- It should also be noted that Hypothesis 1 concerning the
downward heritability of opacity, would be respected if the class of models for £5 was as is now

being considered.

This explains how to achieve opaque effects for the combination of a sentence embedding verb
with a sentence. There now arises the problem of how to fit this into a system like the pairing of
£4 and AC1, a system that succeeds in explaining some of the transparency data. The problem
is that syntactically the facts suggest that we use the same syntactic operations to combine a

TV with an object NP as we use to combine a sentence embedding verb with a sentence, the

operation T,. However, to render occurrence of NP complements of TV's transparent it was

necessary to associate T> with the extensional function application operation G>t whereas to
render the occurrence of sentential complements of sentence embedding verbs opaque it would
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be necessary to associate T> with the intensional function application operation, G>r There
are two strategies for responding to this problem.

The first strategy does not alter at all the syntactic choices that together constitute £5. Some of
the semantic choices of K1 are revised, taking the lead from the devices used to achieve opacity
for sentence embedding verbs: the category-to-type mapping is 'intensionalised' and T> and T<

are associated not with and G> but with G<t and G>i- This on the face of it undermines the
account of the transparency data, but these are explained by placing additional constraints on

interpretation functions, constraints that we will call Extensionahty meaning postulates.

The set K? ofpossible models for £5: ((B, (f/7)7eri f), (w,j)) associated with v

is € K2 iff

1. Type mapping: if vl{6) = (a—•►&) then f2(6) = ((«—+a)—h>6). Also i/2(NP) = e, f2(S) =
t, v\PV) =

2. Constraints on /2: expressions of type e are freely interpreted, but with respect to all

expressions of functional type, f2 is subject to the meaning postulates in Definition 42,
below.

3. Algebraic constraints: T = {<.,>«}■ In the usual way Gy = W7(£, J,J).

Before defining the meaning postulates for /C2, it is of some convenience to first define a map,

I" which converts a meaning which in its nth argument place takes denotations of type b to a

meaning which in its nth argument place takes denotations of type (s—*b). 2

Definition 41 (Jn) Whatever types a, b, c € TJ~* whatever meaning whatever
sequence of denotations xt, whatever denotation y('~*b) and whatever (w,j) (El x J,

Definition 42 (Meaning Postulates for K2) Whatever model, (9, (w,j)), whatever a E A5
if a = (is, (),TV), then f2(a) =11I2{1S(£,1,J)) (Revised Copula Postulate)
if a 6 Xyp> ihen Mere exists such that f2(a) = T1(mi)
ifa G <*tv» Men there exists such that f2(a) = llZ2(mi)
ifa € <Tttv» Men there exists such that f2(a) = J1I2I3(mi)
if a 6 <TpV, there exists such that f2(a) =I2(m1)

Extension-

ality
Postulates

Let T2 be the combination of £5 with K2. Note that the Revised Copula Postulate, like the

previous version, rules out all but one of the meanings possible for is given its type, whereas

although the Extensionality Postulates rule out many of the meanings possible for the expressions
2The definition uses the notation of overlining with an arrow several times. This is an attempt to schematize

what properly should be a recursive definition namely: In(m(a'b))(w, j) = in(m(w, j),w); in(Sa'c\ w)(x") =
«n—1 (dfx), w); = d(yw)
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concerned given their type, many possibilities are left remaining. The Extensionality Postulates

basically say of certain expressions that their meaning in a model in AC2 must be derivable by
some applications of the Xn operation from what would have been their meaning in a model

in AC1 . Below is an illustration of how these meaning postulates preserve the coverage of the

transparency data.

That T2 accounts for the transparency of John in John walks

We can show that what is required for the opacity of the occurrence of John in walks is

impossible. For opacity, the condition in (2) is required, repeated below:

theremust bean a and amodel {(B, (G-r)ier, /)> (w, j)) 6 K? such that (i) [John is a](u;, j) =
1 (ii) [John walks](w,j) ^ [a waiks](u>, j)
As before we wish to show that (i) and (ii) contradict each other, only this time the reasoning
is a little different.

Entailments of (i):
•-+ [5](w',j))(w' >-► [JohnJ(m', j)) = 1

—► [John](u>, j) = [5](ur, j) (because of the Revised Copula Postulate)

Entailments of (ii):
-♦ [walks](w, j)(w' !-► [John](V, j')) ^ [walks](u/, j)(w' >-* [5](w',j))
—► there is an such that Z1 (m)(w,j)(w' [John](tt/,j)) / Z1(m)(w,j)(w' >->

[a](tn',j)) (because of the Extensionality Postulate)
-* there is an m(e—such that m(w, j)([John](w, j)) ^ m(w, j)([5](ti;,i))
-♦ [John](w, j) ^ [S](w,J)

So (i) and (ii) contradict each other, and the condition for opacity is impossible □

The second strategy for achieving coverage of both the transparency and opacity data is to

import the distinction between transparent and opaque occurrence into the syntactic domain in
some form or another: though one can use the same syntactic operations to combine a TV with
an object NP as is used to combine a sentence embedding verb with a sentence, one does not

have to use the same operation. For the sentence embedding case one can define another kind
of concatenation, , one made invisibly different in its effects from other kinds by means of
the disambiguation relation. T> can then be associated with G>y whilst T>. is associated with

G>r Alternatively, one could view the embedding verb as not being combined with sentence
but with a derivative of a sentence, in the derivation of which the operation is implicated.

This is what is done in the disambiguated language defined below.

£6: a revision of £5 which recognises 'intensionalisation' as a syntactic oper¬

ation

1. Phrase-set indices: as for £5 , with the addition of SC, (for sentential complement)

2. Basic Phrase sets: as for £5
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3. Syntactic Operations: T6 = {<, >, |, }. T< and T> are as before. Fj as an operation
on strings simply prefaces a string with that

4. Syntactic Rules: as for £5 except that the PV rule now features the category SC:

(■Fj., (PV,SC), VP), and there is the additional rule: (Fj, (S),SC)

The set AC3 of possible models for C6: ((B, /)> (w> J)) associated with £, J, J, u
is G AC3 iff

1. Type Mapping: extension of the Minimal Types mapping given for AC1 as follows:

i/3(PV) = ((s_*)->(e^)), i^(SC) =
2. Constraints on f3: only that f3 is subject to the Copula Postulate, Definition 38.

Other than this all expressions are freely interpreted in their type.

3. Algebraic Constraints: T = {<,>,{}• Iu the usual way = 7iy(E,T, J)

Let T3 be the combination of C6 and AC3. One could proceed to the consideration of the VP-

embedding verbs on the basis of either T2 or T3. The latter will be adopted, the reason being
the greater simplicity of the definition of AC3 than the definition of AC2 . In particular, the

interpretation function for models in AC3 is constrained only with respect to is, whereas that for
models in AC2 is constrained with respect to almost every expression.

To increase the linguistic coverage to cover VP embedding constructions it should be recalled
that the VP complement position was an opaque one (see section 3.1 ofChapter 3, example (19g),
p36). Therefore the VP embedding verbs will have as an argument type (s—>(e—►<)). Mirroring
the syntactic analysis of the sentence embedding verbs we will suppose that the embedding verb
is not combined with a VP directly but with a descendant of the VP. The descendant is the
infinitised form, and the associated semantic operation is <7 j.

C7: incorporating VP embedding constructions

1. Phrase-set indices: as for C6 , with the addition of VVP,TVVP and VPC.

2. Basic phrase-sets: as for C6 with the addition of: <VvVP = {wants,
0, VVP)}, 4wp = {(told, (),TVVP>, (asked, (),TVVP)}

3. Syntactic Operations: as for £6 with the addition of F(Vp j) •' -^(vp {) 38 an
operation on strings simply prefaces the string with to.

4. Syntactic Rules: as for £6 with the addition of (TVVP, NP), VVP),
(T>, (VVP, VPC), VP), {T{vp> T), (VP), VPC)

The set AC4 ofpossible models for C7: ((B,(Gy)-yer, f), (w>j)) associated with £,1,J, v
is G AC4 iff
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1. Type mapping: the extension of that for K3 as follows: y4(VVP) = ((s—+(e—♦<))—>(e—►<)),
j/4(TVVP) = (e-»((«-»(e->f))-»(e—<))), i/4(VPC) = (s-+(e-+t))

2. Constraints on f4: only that f4 is subject to the Copula Postulate, Definition 38.

3. Algebraic constraints: as for K3 . Additionally also bears the index (up, f).

Let 7~4 be the the combination of C? and K.4. T4 is a THEORY OF REFERENCE that accounts

for the syntactic and semantic properties of a fragment of English. In fact, the only 3 semantic
facts brought to bear so far have concerned transparency and opacity, and on a particular typing

assumption, (f4), this data has been accounted for invoking only a meaning postulate to fix the
denotation of is. This is, however, is only the first of three phases of the development of the core-

account from which we will go on to consider the extensive priveleges of occurrence of junctions
and quantifiers. What we shall do now is turn to more extensive fragments of English that
include junctions and quantifiers, but only in limited contexts, in particular, junctions between

sentences, and quantifiers in subject position. More of the data set forth in Chapter 3 may then
be brought to bear, including additional transparency data and recursive ambiguity data for

junctions and quantifiers. We shall see once again that a certain typing assumption allows the
explanation of the transparency data without the invocation of meaning postulates. We shall
also see that to explain a small part of the recursive ambiguity data, the interpretation function
with respect to junctions and quantifiers must be subject to the same kind of strict constraint
as already been seen in the Copula Postulate, in effect requiring the constants to have the same

denotation in every model.

2.2 Sentential Junctions and Subject Quantifiers

2.2.1 Syntax and Semantics for Sentential Junctions

What denotations should be chosen for sentential junctions ? Historically the answer comes

from the truth-functional semantics for propositional logic. What we will do in this section is
to see how the denotations are basically determined by a small part of the recursive ambiguity
data that was set forth in Chapter 3. To do this, however, we must make some assumptions
about the syntax of the structures using junctions. 4 Firstly junctions will be assigned their
own category JUNCT. For rules we have two choices. On the one hand we could continue to

have just binary rules and add the following:

(T>, (JUNCT,S), JUNCTS), {F<, (S, JUNCTS),S)
3The further data concerning sentence embedding verbs that is expressed in Hypothesis 5 cannot be brought

to bear because the language is too impoverished to express the conclusions of the inferences involved.
4
one can alternatively assume the denotations and let the data determine the semantic operations.
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On the other hand, we can use a ternary rule which implicates a syntactic operation that has
not been encountered before:

(Fj, (S, JUNCT,S),S)
On grounds of theoretical economy there is nothing to chose between them: using the binary

approach requires no extension of the pool of syntactic operations but does require an increase
in the pool of phrase-set indices, (to include JUNCTS), whereas the ternary approach requires
an extension of the syntactic operations, (to include Tj), but preserves the phrase-set indices.
We will adopt the ternary approach. Tj will be associated with a semantic operation Qj.
As was the case with Q> and QK, this operation will be required to be definable in terms of a
certain operation on denotations, Gj• The following definition of Qj defines it only at triples
of arguments of type t, ►*)),<, leaving it to return the undefined object at arguments of
other types. Later the range of types of arguments at which Gj returns a significant value will
be increased.

Definition 43 {Wj and Tij) For any £, 1 and J,
whatever d2 £ £<•-*-«», dl £ D\ d3 £ D*, 7ij(£, I, J)(di, d2, d3) = d2(d3)(di)
whatever m2 £ t mi £ M*, m3 £ M*, (w,j) £ T x J

Hj{£,1, J")(mi, m2,m3)(tu,j) = 7iEj{£,I, J)(m1(w,j),m2(w,j),m3(w,j))
This dictates that the type correspondence be (<—►(<—►<)) for JUNCT. This type correspondence
does not determine which of the 16 possible objects of type (t—*(t—4)) should be given as

denotations in any particular model to a junction. The set of possible models about to be
defined will make reference to the Junction Meaning Postulate, but this postulate will not be

given for a little while. As the recursive ambiguity data is considered, it will become clear what
constraint on interpretation functions of possible models must be specified by the Junction

Meaning Postulate.

£8: including sentential junctions

1. The set of phrase-set indices: as for C7 , with the addition of JUNCT.

2. Basic phrase-sets: as for C7 , with the addition of:

ajunct = {(and, (), JUNCT), (or, (), JUNCT)}
3. Syntactic operations: as for C7 , with the addition oiTj, which as an operation on

strings is a 3 place concatenation operation.

4. Syntactic rules: as for C7 , with the addition of, (Tj, (S, JUNCT, S), JUNCT)

The set IC5 of possible models of £8: ((#, (Uy)yer, /), {u>, j)) associated with £,l,J,v
is € K5 iff
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1. Type mapping: the extension of the mapping given for KA , as follows: i/5(JUNCT) =

2. Constraints on /5: as for AC4 , with the addition of restrictions wrt. (and, (), JUNCT)
and (or,(),JUNCT) as specified in the Junction Meaning Postulate, forthcoming in
Definition 45.

3. Algebraic constraints: T = {<, >, (t, vp), J}. In the usual way, Q7 =7iy(£,I,J).

The THEORY OF REFERENCE T5 will be understood to be the combination of C8 and Ks. Data

concerning transparency and recursive ambiguity can be brought to bear on T5. Firstly the
transparency behaviour of sentential junctions noted in (19f, p36) of Chapter 3, section 3.1,
an instance of which is (8i) below. Secondly, there is the recursive ambiguity data that is a

consequence of Hypothesis 4 (p46), an instance of which is (8ii) below:

(8) i (John walks)e JUNCT (Mary talks)e
ii John walks JUNCT Mary talks is recursively ambiguous wrt. John walks JUNCT

Mary talks.

The transparency fact (8i) is accounted for in the way familiar from section 2.1: (a) co-extension
of sentences implies identity of denotation and (b) denotation of a junction-containing sentence
is given by the application of the semantic operation Qj- to the denotations of the junction, and
the joined sentences. Because the explanation of the transparency of the sentential arguments
of junctions is of a piece with the explanation of the transparency of the subject and object

argument positions of verbs, the explanation holds with the junctions freely interpreted in their
type, just as it holds for verbs, which are freely interpreted.

The recursive ambiguity claim of (8ii) above is equivalent to the claim that:

(9) There is a reading of John walks JUNCT Mary talks such that, where J corresponds
to JUNCT, whatever situation s,

John walks JUNCT Mary talks is true in s iff J (John walks is true in s,

Mary talks is true in s)

In the way indicated in section 2.3 of Chapter 3, to the above there corresponds a condition on

T5 (where John walks and Mary talks refer to the only possible disambiguations):

(10) there is a /? such that ft(John walks JUNCT Mary talks,/?) and such that, where J

corresponds to JUNCT, whatever model /), (w, j)) g A5,
[/?l((tu,j)) = 1 iff

J([(John walks](tn,j) = 1,

UMary talks)](tA>, j) = 1)
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Now does T5 entails (10) ? There is only one /? such that 72(John walks JUNCT Mary talks,/?),
and T5 ensures that its denotation according to an arbitrary model (3, (w,j)) £ /C5 will be:

(11) [JUNCT](ti;,/)([John walks](tn,,/))([Mary talks) (to,/))

Therefore T5 entails the following:

(12) there is a /? such that "£(John walks JUNCT Mary talks,/?) and such that whatever
model {(B,Gy,f),(w,j)),
[/?l((u,,i» = 1 iff [JUNCTJ(to,/)([John walks](u>, /))([Mary talksJ(to,/)) = 1

Clearly the way to bring (12), what T5 does entail, into line with (10), what T5 must entail, is
to make adjustments so that the following holds:

(13) where J corresponds to JUNCT, whatever model ((B, Gy,f), (to, j)) £ AC5,
[JUNCT](to, j) ([John walks](ty, /)) = 1 iff J ( [John walks](to, j) = 1

([ Mary talks](u), j)) [Mary talks](u>, j) = 1)

This splits into 4 cases according to the 4 possible combinations of value of John walks and
Mary talks at (w,j):

(14) [Junct](tn,j)(0)(0) = 1 iff J(0 = 1,0 = 1)
P^t](w,j)(0)(l) = 1 iff J(0 = 1,1 = 1)
[Junct](u>, j)(l)(0) = 1 iff J(1 = 1,0 = 1)
[Junct](u;, i)(l)(l) =1 iff J(l= 1,1 = 1)

Substituting and and AND into these 4 schematic biconditional dictates that the value of and
at (w,j) be the familiar Boolean truth function. Likewise for substituting or and OR. This is
the content of the next two definitions.

Definition 44 (AAfV,OR) For any S,T and J, whatever (w,j) £ T x J
AJ/T>(€,1, J)(w, j) (0)(0) = 0 J)(w, j) (0)(0) = 0

oIIi-H0s (0)(1) = 1
oIIo"r-H rHII0s

(f)(1) = 1 (f)(1) = 1

Definition 45 (Junction Meaning Postulate) Whatever model {(B, (Q-y)y^r, /), (Wy 9))e
AC5, /(and) = AAfV(£,I, J), /(or) = OK(£,J, J)
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2.2.2 Syntax and Semantics for Subject position quantifiers
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What denotations should be chosen for quantifiers ? Up until the innovation of Generalised

Quantifier theory 5 there was no satisfactory answer to this: the prevailing view was that

quantifiers had in fact no denotation, but instead made a syncategorematic contribution to

sentences in which they find themselves. However, using similar methods to those just used in

the case of junctions, it can be seen how a particular denotational hypothesis is forced upon

one, and that is the Generalised Quantifier denotational hypothesis.

One will be forced to this hypothesis if the following simple syntactic assumptions are made.

Quantifier phrases will not be assigned the category NP. Quantifiers instead shall have their own

category, QNP, which a determiner DET and a common noun phrase CN may combine to form.
DET and CN are further phrase-set indices that we will use and we will assume that the type

correspondence for CN is (e—►<). We will also assume that the rule deriving QNP's from DET's
and CN's implicates the syntactic operation T>. Because this operation is associated with the
semantic operation (7>, this means that the type for DET must be ((e—►<)—>a), for some a. Not

identifying QNP with NP means that none of the rules for combining NP's with verbs can be
seen as saying anything about the quantifiers. Therefore in order to account for the distribution
of QNP's it appears to be necessary to define versions of all the rules that make mention of

NP's, mentioning QNP's instead. For the moment, we shall only make provision for QNP's in

subject position, and will do so by adapting the rule that generates NP's in subject position.

The revised rule for QNP's differs not only by replacing mention of NP by mention of QNP but
also by replacing mention of the syntactic operation T< by mention of the syntactic operation

T,. This dictates that the type of QNP's be ((e—►<)—►*) and therefore ((e—►<)—>((e—►<)—4)) for
DET. This type association is a general tenet of Generalised Quantifier theory.

Having a type correspondence still does not determine which objects of type ((e—)—>((c—►!)-+<))
should be the values of the determiners, and there are very many to chose from (if the set S
has just 2 individuals, there are 216 different such functions). The definition of the class of
models will make reference to the Determiner Meaning Postulate, and the specification of this

postulate will be held back for a little while. As was the case with junctions, when we consider
the recursive ambiguity data, the necessary constraints on the interpretation function become
clear.

To bring to bear the recursive ambiguity data concerning subject occurrences of quantifiers,
there must be disambiguations of sentences such as hei is a man. It will be assumed for the
moment that ridded to the set of basic expressions of category NP is a set of numbered nominal

5see Barwise and Cooper 81, Keenan and Stavi 86, both anticipated somewhat by Montague 73.
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proforms, called NPPRO. Where the number of these nominal proforms is N, the set is defined:

NPPRO = {(he„, (), NP) : n < N}

Dealing with semantics of these involves placing some constraints of the contexts of use, J,
until now unconstrained. Henceforth the contexts of use associated with a possible model will

be required to be the set of functions from NPPRO to £: £NPPRO q^e js a construction will
be treated syncategorematically.

C9: including pronouns and subject position quantifiers

1. The set of phrase-set indices: as for C8, with the addition of { DET,CN,QNP}

2. Basic phrase-sets: as for C8, with the addition of

*det = {(a> 0. DET), (every, (), DET), (most, (), DET), (no, (), DET)},
<*"cn = {(man, (),CN), (woman, (), CN), (beer, (),CN), (pie, (), CN)},
•^QNP = 9

3. Syntactic operations: as for C8, with the addition of which as an operation on

two strings si,«2) simply inserts is a between si and s2.

4. The set of syntactic rules: as for C8 with the addition of

{(T>, (DET, CN), QNP), (T>, (QNP, VP), S), {Tit., (NP, CN), S)}

The set AC6 of possible models for C9 ((B, ({/7)7er, /), (f, </)) associated with £,I, J, v
is G AC6 iff

1. Type Mapping: the extension of the mapping given for AC5 , as follows: i/(DET) =
((e~*t)—*((e—>t)—*t)), i/6(CN) = (e—d), i/«(QNP) = ((e-*)-»0

2. Constraints on /6: f6 is subject to the Copula Postulate, the Junction Postulate, the
Pronoun Postulates (Definition 46) and the Determiner Postulate (Definition 48.

3. Algebraic constraints: T = {<, >, |, (T, vp), J", isa}. In the usual way £/7 =H(£,1 ,J).
Qk also bears the index isa.

Definition 46 (Pronoun Postulates) For any model, ((B, (£7)7eri /), (w, g)), associated with
£,T,J, whatever (w,g),(w,g') G T x J, whatever n < N

(i) If a g NPPRO then f(a)(w,g) = f(a)(w,g')

(ii) If a is the pronoun (hen,(),NP), /(he„)(u;, g) = g(he„)
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By T6 we will intend to refer to the combination of C9 and AC6. Given the syntactic coverage

of C9, semantic data can be brought to bear of two kinds. Firstly there are the unambiguous

transparency facts concerning unembedded subject position quantifiers that were noted as (19c,

p36) in Chapter 3, and an example of which is given below in (15i). Secondly, there are the re¬

cursive ambiguity facts concerning subject position quantifiers that are entailed by Hypothesis 3

(p46), an example of which is (15ii) 6

(15) i DET (man),. (walks)e
ii DET man walks is recursively ambiguous wrt. DET man

(15i) is accounted for. To account for (15ii) the Determiner Meaning Postulate is required.

Unambiguous transparency facts for unembedded quantifiers

T6 is such that there is at most one disambiguation of any expression. Therefore, the condition
for T6 to render the occurrence of man opaque in DET man walks is:

(16) there is an 7F, where a is a CN, and there is a model, (9, (w, g)), such that (i)
whatever proper name or pronoun /?, [/3 is a man](u;, g) = [/? is a a](tu, g) and (ii)
[DET man walks](w, g) ^ [DET a walks](u>, g).

(i) entails that [man]](u;, g) = [<T](u>, g), whilst (ii) entail the negation of this. Therefore the
condition for opacity is impossible and man is predicted to occur transparently in DET man

walks. In a similar way the transparency of the occurrence of walks will be accounted for.

Recursive ambiguity data

(15ii) amounts to the claim that:

(17) there is a reading of DET man walks such that where D corresponds to DET, whatever
situation s, DET man walks is true on the reading in s iff
D { x: hei is a man is true in sj'1 }

{ x: hex walks is true in sjei }

Therefore, the required entailment of T6 is (where hex is a man and hex walks refer to the only

possible disambiguations):

(18) there is a f3 such that 72(DET man walks,/?) and such that, where D corresponds to

DET, whatever model ((B,Qy,f), (w,g)) 6 AC6,
[/?](Kff» = liffD {x\ [ hex is a man]((u;,^e>)) }

{ x: [hex walks]((w,ff]?ei)) j
6The presence of determiners is a step on the way to being able to express the sentences referred to in

Hypothesis 5 (p49), but they remain inexpressible still.
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Now according to T6, there is only one /? such that 7?(DET man walks,/?). The denotation
assigned to /? at any model {(B, (S7)7er, />. (w,ff)) e £6 is:

(19) [DET](u;, ff)([man](u;, fl))(Iwalks](w, g))

Therefore T6 entails:

(20) there is a /? such that 72(DET man walks,/?) and such that whatever model
«B,gy,f),(w,g))€K6,

= 1 iff IDETJ(u>, ff)([rnanl(u), flf))(lwalksj(u», g)) = 1

Clearly unless the following holds, then (20), what T6 does entail, will not amount to (18), what
T6 must entail:

(21) where D corresponds to DET, whatever ((B, ((/7)7gr> f)< {w> 9))€ £6>
[DET](t/;,ff) ([man]|(u>(</)) = 1 iff D { x: [ he! is a manj((u;, fi£ei)) }

(|[walks](u;,<7)) { x: I he! walksj((tu,^e»)) }
To simplify this one should note the following identities:

(22) { x: [ hex is a man)((iB,tfj?ei)) } = [manj(ti>, </)
{ x: I hex walksj((w,^e')) } = [walks](u;, g)

Then because ||manj(u;, g) and [walks](w, g) range over (characteristic functions of) arbitrary
sets of individuals in the model, what we require can be rewritten:

(23) where D corresponds to DET, whatever ((B, ((/7)7er> f), (u>, </))€ £6j whatever sets
Si, S2, of individuals in the model,

pET|(^,tf)(c/(5i))(c/(52)) = 1 iff D (Si,S2)

Therefore, we require for all determiners denotations that the result of applying the function to

two sets should be 1 exactly when the corresponding relation D holds between the sets. This is
not going to the case with the determiners freely interpreted, and is exactly what the following
definitions dictate.

Definition 47 (EVERY,A,NO,MOST) For any £,I and J, for all (w,g) tlx J, for all
subsets Si,S2 of £

£V£Ry(£,1, J)(w, g)(cf(Si))(cf(S2)) = I iff Si is a subset of Si
y)(wi 9){cf(Si))(cf(Si)) = 1 iff Si has a non-null intersection with Si

•ArO(£,T,J){w,g){cf(Si)){cf(Si)) = 1 iff Si has a null intersection with Si

MOST(£,l,J)(w,g)(cf(Si))(cf(S2)) = 1 iff ||Sx n S2|| > ||5x||
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Definition 48 (Determiner Meaning Postulate) For all models ((&, (G-r)-yer, /), (w, g)) €

This postulate essentially embodies the determiner denotations that have been put forward in
the Generalised Quantifier literature.

Taking stock, we have now completed the second phase of the development of the core-account,
and have now an account that syntactically encompasses sentential junctions and quantifiers in

subject position. We are in fact now more or less in a position to go on to the consideration in
Sections 2.4 and 2.5 of ways of extending coverage to non-sentential junctions and non-subject

position quantifiers. However, the next section, section 2.3, contains a last phase of development
of the core-account that will allow the truth intuitions for embedding constructions to be brought
to bear.

2.3 Some further extensions

The reader may prefer to skip forward to section 2.4 and only refer back to this section when the
sentences under consideration exhibit the syntactic forms that are the concern of this section,

forms exemplified by:

a talented candidate applied

By 'higher-order quantification and truth predicates' I am referring to the syntactic devices that
occur in the conclusions of the inferences mentioned in Hypothesis 5 (p49) and Hypothesis 6

(p49). The new theory of reference is simply presented below and then a few words of
commentary are given. Following that, the issue of truth predicates is considered.

In the following definitions p and vp abbreviate («—►*) and (s—+(e—+t)).

£10: CN modifiers, higher order quantification and truth predicates

/C6,
/6(every) = /«(ill) = /6(i^K) = £V£Hy(£,l, J)
/6(a) = /6(some) = /6(one) = A(£,I,J)
fe(no) = AfO(£,l,J)
/6(™it) = MOST(£,1, J)

a dog near John died
a man that John likes died

a proposition that John believes is true
an act that John wanted to do was done by Dave

1. set of phrase set indices: as for £9 , with the addition of
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{ ADJ,PP,P,RC, RC7, RC"P, CNP, CN"P, DETP, DET"P, QNPP, QNP"P, NPp, NPup,
VPP, VP"P, TVvp }

2. basic phrase sets: as for C9 with addition of:
xadj = {(tall, (),ADJ),...}
A"pp = 0

xp = {(near, (), P),...}
xrc = xRCp = xRCfP = 0
^CNP = {(proposition, (),CNP)}, ^CN,jp = {(act^ 0> CNwp)}
*DETp = {(si>()>DETp) : (si,(),DET) G d^Ex)
*DET''P = {(si> ().DET"P) : (si,(),DET) G A'eex)
^QNP" = ^QNP"" = 0
A"vpp = {(is true, (),VPP)}, <*ypt,p = {(was done by John, (), VP"P)}
*TVr = {(do, (>,TV"P»
xnp* = {hep : i < np}
A"np*» = {he"p : i < nvp}

3. the syntactic operations: as for £9 with the addition of and the family of
operations _FAhe., J"Ahefand

concatenates.

■^Ahe, deletes occurrences of he,, and prefaces with that.
•^Ahe* deletes occurrences of hep, and prefaces with that.
•^Ahe** deletes occurrences of he"p, and prefaces with that

4. the syntactic rules: as for £9 with the addition of:

{(jrn, (ADJ, CN),CN), (JFn, (CN, PP>, CN>, [Tn, (CN, RC), CN),
(T>, (P, NP), PP), (T>, (PV, NPp), VP), (T>, (TVwp, NP"p), VP),

(^Ahe,' (®)> a°d for 6 = p and 6 = vp, the rules:
(.?■>, (DET4,CN4),QNP4)
(^>, (QNP4, VP4), S)
(rn, (CN4, RC4),CN4) (:rAhe,, (S),RC4)

Definition 49 (Tin) Whatever £,2, J, whatever type a G TJ-whatever mi,mi of type

(a—*t), whatever (w,g) G I X J,
Hr\(£,I,J)(mi(-a~~*t\rn2(-a~*t))(w,g) = xa i-> AAfT>(£,I, J)(w,g)(mi(w,g)(x))(m2(w,g)(x))

Definition 50 (Ti^he.'^Ahef'^Ahe*') Whatever £,2, J, whatever mx of type a,

WAht,(£J,J)(mia)(w>9) = xe~ *ni(w,gxhti)
-Hxht,(£,l,J)(mia)(™,9) = *p" rm(w,g^)
nxhty(£,I,J)(mia)(™,9) = *"p »-
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The set AC7 of possible model« of £10 ((B, (G^-yer, f)> iw>9)) associated with S,J, J, v
is £ K7 iff

1. Type mapping: extension of the type mapping for AC6 as follows: i/7(ADJ) =
i/7(PP) = u7(RC) = (e—d), v7(P) = (c—(c—«)), ^(RC") = (p_t), j/7(RCp) =

(vp-d), j/7(CNp) = (p—f), i/7(CN"p) = (rp-d), i/7(DETp) = ((p_>i)_+((p_>f)_4)),
i/7(DET"p) = ((vp-*t)^«vp-+t)-+t)), i/7(QNPp) = ((p-rf)-O,
f7(QNP"p) = ((up—i/7(NPp) = p, «/7(NPvp) = vp, i/7(VPp) = (p—<), i/(VP"p) =
(vp-d), j/7(TVt,p) = (up-+(e-d))

2. Constraints on the interpretation function f7: the same constraints as for AC6 , plus
additional constraints concerning the members of ^DETP ,'^DETt'p i'^VPp> ^VPwp'
ifxv*'

3. Algebraic constraints: T = {<,>,T>(WP.t)> .7, Ahej, Ahef, Ahe**, n}. In the usual way

Gy=H7(S,I,J).

Definition 51 (Additional meaning postulates for K7)

^DETp,^DET''p; /7,s subject to a restriction that parallels the restriction concerning members
of A'det-

A'vPp; /7(is true) = (w,g) »-»• xp t—► x(u>).

<TvP"p * /7(was done by John) = (w, g) i—► Pvp h-+ F(u;)(/7(John)(u;, g))
A"TV"' /7(do) = (w,g) i—► Pvp xe h-+ P(w)(x)

T7 is the combination of £10 and AC7. T7 allows for three kinds of Common Noun modification:

modification by adjective, by preposition phrase and by relative clause. In each case the common

noun is combined with the common noun modifier by and thereby the semantic operation

Gn is implicated. This operation essentially takes the intersection of the denotations of the
two parts contributing to the complex common noun. Of the Common Noun modifiers it is the
relative clause which have the most complex derivation. The analysis suggested is along the
same lines as that found in PTQ, whereby the relative clause is derived by a deletion operation
from a pronoun-containing sentence. There is an illustration below of the disambiguation of
man that John likes, which involves a relative clause:

man that John likes,

man,CN that John likes,

John likes hej,S
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T7 also provides disambiguations of proposition that John believes and act that John wants to do.

According to T7 these are not categorised CN but as CNP and CN"P respectively. This is not the

only instance of T7 adding two parallel categories to categories that are present in C9 . The
same happens for NP, DET, QNP, VP and RC. There follow illustrations of the disambiguation
of proposition that John believes and act that John wanted to do:

proposition that John believes,

proposition ,CNp that John believes,^"Ahef

John believes hef,S

act that John wanted to do^n

act,CNvp that John wanted to do,^"Ahe»

John wanted to do he"p,S

2.3.1 Truth predicates

£10 includes a truth predicate is true, and something akin to one, was done by John. This is
necessary if Hypothesis 5 (p49) and Hypothesis 6 (p50) are to be brought to bear because the
inferences referred to by these hypotheses involved these predicates. Yet, as was noted when the
inferences were introduced in section 3.5 of Chapter 3, there are certain dangers when one tries
to provide a THEORY OF REFERENCE for a language containing a truth predicate. In this section
I will try to isolate what exactly are the 'dangers' for a THEORY OF REFERENCE that includes
a truth predicate and then argue that it is still worth considering the THEORY OF REFERENCE

just presented.

The 'danger' for languages containing a truth predicate arises from the possibility of forming
certain paradoxical sentences and discourses, the most familiar of which is the 'Liar sentence':

(24) this sentence is false

One can imagine a THEORY OF REFERENCE that treated this sentence as a context-sensitive re¬

ferring expressions, receiving a reference through an assignment function, and that the references
would be an expression of a formal language, is false would be a predicate that, given a (w,g),
maps certain expressions to 1 and others to 0. The natural meaning postulate preventing is false
from being freely interpreted would be:7

7This is a different postulate to that occurring in T7. This is because for the Liar, true is understood as a
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Whatever model, (3, (u>, <7)), whatever sentence a,

[is false](u;, </)(a) = 1 iff [o](u>, g) = 0

However, these assumptions actually entail that there is no model, (9, (w,g))■ If there was such
a model, [ is false] would have to have impossible properties. The impossible behaviours occur

when [ is false] is applied to any (w,g) such that </(this sentence) = this sentence is false. One can

show that [is false](u>, ff)(this sentence is false) = 1 iff [is false](ui, s)(this sentence is false) = 0:

[is false](tu, </)(this sentence is false) = 1
iff [this sentence is false](u;, g) = 0 (by the meaning postulate for is false)
iff [is false](w,g)([this sentence](tu, <7)) = 0 (by breaking up the predicate argument structure)
iff [is false](w, <7)(this sentence is false) = 0 (because p(this sentence) = this sentence is false)

Because there are no possible models, every sentence is predicted to entail every other sentence,
and the theory of reference is devoid of any empirical force whatever.

Having observed the problems arising in a theory of reference for the Liar sentence, the

question to be considered is whether T7 is subject to a similar problems. T7 provides no

disambiguation of the Lieu: sentence, so it cannot be subject to exactly the above problem.

However, Kripke (in Kripke 75) has pointed out that more than simply avoiding the formation
of overtly self-referential sentences is required if paradox is to be avoided: it is possible to

formulate paradoxical discourses without these overtly self-referential devices. His examples are

far more pressing as they are formulated within the syntax of £10. Here is a Kripkean discourse:

(25) A believes exactly one proposition
B believes exactly one proposition
A believes that every proposition that B believes is false
B believes that every proposition that A believes is true

The third and fourth sentences of the above discourse have disambiguations according T7.
Strictly speaking, the first and second sentences do not have disambiguations according to T7.
This is because they involve non-subject position quantifications. For the purposes of this section
we will suppose that T7 is extended by the rule:

(FKripke, (PV,QNP"),VP)
and that GKripke has the definition:

GKriPke(™(i~*^~*t^)(m$p^t)~*t))(w,g) = xe m2(w,g)(yp mi(w,g)(y)(x)).
There are two crucial intuitions about (25). First, that the sentences of (25) can all be simul¬

taneously true. Second, that if the sentences of (25) are simultaneously true, there is no way to
settle the issue of whether it is A or B who has the right beliefs. The second intuition is only

predicate applying to sentence», whereas the truth involving sentences of T7 predicate truth of propositions.



116 CHAPTER 5. ARGUMENTS FOR LOCALITY AND MINIMALITY

likely to emerge after some pondering:

Perhaps A is right. But then B must be wrong, and if B is wrong, then A must be wrong. So

perhaps A is wrong. But then B must be right, and if B is right, then A is right.

If the first two sentences are true then the proposition that A believes concerns the proposition

that B believes, which in turn concerns the proposition that A believes. In this roundabout way,
the proposition that A believes concerns itself.

Now the effect of the meaning postulate invoked by T7 is that there are no models according to

which all 4 of the sentences in the discourse are true.

That there is no model that makes the Kripkean discourse true

The conditions for the truth of the four sentences in an arbitrary model (9, (tu*,g')) are

given below, where a, 6, bel are the denotations of and 'believes':

First sentence: There exists some p such that bel(p)(a) — 1 and whatever r, if r / p, then
6el(r)(a) = 0

Second sentence: There exists some q such that bel(q)(b) = 1 and whatever r, if r £ q, then
6el(r)(6) = 0

Third sentence: bel(w i-t [every thing that B believes is false](w,p*))(a) = 1

Fourth sentence: bel(w >-* [every thing that A believes is true](w,g*))(&) = 1

Suppose (9, (w*,g*)) meets the first two conditions. Let us call p* and q* those member of
that render the first two conditions true, and let P* and Q* refer to the following

objects associated with (9, (w*,g')):

P* = w [every thing that B believes is false](u/,g*)

Q* = w i-> [every thing that A believes is true](ui,g*)

Then for (9, (w*,g*)) to additionally meet the third and fourth conditions, we must have the
identities:

P* = P*

q' = Q'

However, these identities are impossible, for one can show that that either p* and P* will
differ at w* or q* and Q* will differ.

Case 1: if p'(w*) = 0 and q'(w') = 0, then P*{w*) = 1 and Q*(w*) = 0
Case 2: if p*(u/*) = 0 and q*(w*) — 1, then P'(ui*) = 0 and Q*(w*) = 0
Case 3: if p'(w') = 1 and q*(w*) = 0, then P*(w*) = 1 and Q'(w') = 1
Case 4: if p*(ui*) = 1 and q*(w*) — 1, then P*(uu*) — 0 and Q*(ui*) = 1

So there is no model that renders the Kripkean discourse true. □

So T7 fails to respect the intuition that all four of the sentence in the Kripkean discourse may be
true: there are no models with that property. However, the class of models has not been shown
to be empty, and therefore T7 does not allow that anything follows from anything. Therefore,
unlike the THEORY OF REFERENCE for the Liar sentence, T7 retains empirical content. The
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closest thing to a collapse of entailment suffered by T7 is that there is predicted to be a valid
inference from the Kripkean discourse to any . Now, even for a theory of reference that
avoided truth predicates, there will be this kind ofmistaken prediction. For example in place of
the Kripkean discourse one could have:

John believes that every woman died

John does not believes that it is not the case a woman did not die

Therefore T7 seems to suffer no more by way ofmismatch with the data than the often pointed
out defects accruing from the over-coarse identity conditions of propositions in possible worlds
semantics.

T7 is the core-account on the basis of which we will now proceed to consider various accounts

of junctions and quantifiers that may be proposed.

2.4 Non-sentential Junctions

A syntactic fact about junctions is that they have rather wide priveleges of occurrence, a re¬

minder of which appear below:

(26) John walks JUNCT talks (VP case)
John loves JUNCT hates Mary (TV case)
John wants JUNCT needs to go (VVP case)
John told JUNCT asked Mary to go (TVVP case)

This is a fact that £10 does not allow for, catering only for sentential junctions. We will look now
at two strategies for extending T7 to provide disambiguations of sentences such as these. The
semantic properties of these sentences must also be accounted for. The significant transparency
facts are that the verbs that occur in the above flanking the junction word occur transparently.

Hypothesis 4 (p46) entails the following recursive ambiguity facts concerning the above sentences:

(27) John walks JUNCT talks is recursively ambiguous wrt. walks JUNCT talks
John loves JUNCT hates Mary is recursively ambiguous wrt. loves JUNCT hates
John wants JUNCT needs to go is recursively ambiguous wrt. wants JUNCT needs
John told JUNCT asked Mary to go is recursively ambiguous wrt. told JUNCT asked

Of the two strategies to be looked at, the first (section 2.4.1) is non-local and the second (sec¬
tion 2.4.2) is local. The non-local approach is based on the strategy adopted in (early) trans¬
formational grammar, the crucial ingredient of which is 'Conjunction Reduction'. The local

approach is based on the proposal of Gazdar's in the early 80's that has come to be called 'Cross

Categorial Coordination'.
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The main empirical assessment of these two strategies that we will undertake is a semantic one.

Concerning the non-local approach, we observe that, though a prolific generator of readings, it
is prone to a particular kind of undergeneration, an undefeneration that were we using a First
Order Logic translation language, we might call 'failing to give the junction narrow enough

scope'. Concerning the local approach we will observe that it is not prone to this particular
semantic undergeneration problem, through prone to semantic undergeneration problems of its
own. Neither approach is thus descriptively adequate.

2.4.1 The non-local approach: Conjunction Reduction

To begin with, the early Transformational Grammar analysis of non-sentential junctions will be
described (Chomsky 57). After that, we will consider how to represent the same idea within
a THEORY OF REFERENCE. The main idea is that the occurrence of junctions between non-

sentential conjuncts is a 'surface' phenomena, the structures exhibiting it being derived from

'underlying' structures that exhibit only sentential junction. The name of the transformation
that effects the mapping from underlying to surface structure is Conjunction Reduction and its
action is depicted in Figure 5.1.

S

JUNCTT
NP VP and NP VP

a man came in a man sat down

S

S

I
VP

I
sat down

Figure 5.1: The Conjunction Reduction Transformation

To decide whether the CR transformation should apply one first looks at the terminal yield of
the deep-structure tree, which in the case of Figure 5.1 is a man came in and a man sat down.
Then one compares the two joined sentences in this, to see whether there is a substring a whose

replacement by another string (3 will give the right conjunct. In other words one looks for X
and Y such that the left conjunct is XaY and the right conjunct is X/JY. If such X and Y can

be found, then the transformation may apply and its output is a tree with terminal yield X a

NP VP

JUjNCT
and

a man came in
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and /? Y. Some examples:

(28) [a man]* [came in]a and [a man]* [sat down]^
[a man]* [came in]tt and [sat down]^

[John loves]a [Peterjy and [Mary hates]/? [Peter]y
[John loves]0 and [Mary hates]^ [Peterjy

[John]* [loves]a [Peter]y and [John]* [hates]/? [Peter]y
[John]* [loves]a and [hates]/? [Peterjy

The meaning of the surface structure is inherited from the meaning of the deep-structure; the CR
transformation is semantically an identity. The examples make clear that the idea is syntactically

appealing at least: one manages to explain a very large number of instances of junctions by just
2 devices: the rule for sentence junction and the conjunction reduction operation. We will

postpone consideration of its semantic appeal until we have seen how this idea can be fitted into

the Universal Grammar framework.

There are two places that the work done by the CR transformation could be done in the UG
framework. One place is in the transfer from disambiguated to ambiguous language, adjusting
the disambiguation relation such that conjunction reduced sentences are the ambiguations of
unreduced sentences. The other place is within the disambiguated language itself, adding a

CR-like operation to the syntactic algebra. It is the latter that is implemented below.

£11:non-sentential junctions by adding CR as a syntactic operation

1. Phrase-set indices: as for £10

2. .Basic phrase-sets: as for C10

3. Syntactic operations: as for £10 with the addition of the operation F^R > 'he string
part of which is such that if s = Xs1YandX«2Y, then the output is Xsiands2Y, else
the output is XsxYand-X^Y.

4. Syntactic rules: as for £10 with the addition of (F^r, S, S)

The set of possible models, AC8, for £u has virtually the same definition as AC7 (113). There
should be the same type mapping and the same constraints on the interpretation function. The

only difference will consist in the presence of as additional operation, Gcr, which is understood
to be the identity operation. By T8 we will mean the combination of £n and AC8.

£n clearly generates all the cases of non-sentential junctions and in the simple form it will also
doubtless overgenerate, but instead of attending to the these syntactic imperfections we will

press on with the semantic assessment.
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Transparency
The transparency facts concerning the sentences in (26) are accounted for. For example for the
case of junction of VP's we have:

(29) John (walks)e JUNCT (talks)e

Noting that T8 provides at most one disambiguation of any expression, the condition for T8 to

predict that walks occurs opaquely in (29) is

(30) there is an a, where a is a VP, and a model, (Q,(w,g)), such that (i)
whatever proper name and pronoun /?, [/? walks](u>, g) = [/? <*!(«>, </), and (ii)
[John walks JUNCT talks](u;,g) ^ [John a JUNCT talks]|(tD,g)

In the usual way, the co-extension clause (i) entails that walks and a have the same denotation.
This contradicts (ii):

(31) Entailments of (ii)
[John walks JUNCT talks](u;,g) ^ [John a JUNCT talks]](tD,g)
♦-♦[John walks JUNCT John talksj(u/, g) / [John a JUNCT John talksj(tn, g)
♦-♦[John walks](u>, g) ^ [John a](u;,0)
♦-♦[walks](id, g) # [^](td,p)

Recursive Ambiguity

The consequences of Hypothesis 4 (p46) for the sentences in (26) were listed in (27). These

consequences are accounted for. As an example consider the TV case from (27):

(32) John loves JUNCT hates Mary is recursively ambiguous wrt. loves JUNCT hates

The account of this by T8 is shown by the equivalences below, the first of which is the condition
on T8 to which the recursive ambiguity claim amounts:

(33) for all models (9, (w,g)), [John loves JUNCT hates Mary](tD,ff) = 1
iff /([John loves Mary](u>,$f) = 1, [John hates Mary](u>,flO = 1)

♦-♦ for all models (^3,(w,g)), [John loves Mary JUNCT John hates Mary](tD,</) = 1
iff J([John loves Mary](w>,</) = 1, [John hates Mary](u>,g) = 1)

♦-+ for all models (9, (to, g)), ./([John loves Mary](tu,ff) = 1> [John hates Mary](tD,</) =
1) iff /([John loves Mary](u>,(/) = 1, [John hates Mary](w,flO = 1)

Problems of semantic undergeneration
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We will now consider three kinds of sentence with respect to which T8 semantically undergen-
erates:

(34) a a man came in and sat down
b a talented and hardworking candidate applied for the job
c John wanted to visit the cinema or read a book at home

The first two cases are sentences containing both a quantifier and a junction and therefore both

Hypothesis 3 (p46) and Hypothesis 4 (p46) make predictions concerning readings. To say that
a man came in and sat down is recursively ambiguous wrt. a man and wrt. came in and sat down
is to say the following two things:

(35) a. there is a reading, r, of (34a) such that whatever situation s, a man came in and sat down
is true in s on riif

SOME {a:: hei is a man is true in sj®1 }

{ x: AND ( hei came in is true in sj®1 ) }
hei sat down is true in sj®1

b. there is reading, r, of (34a) such that whatever situation 8, a man came in and sat down
is true in s on r iff

AND( SOME { x: hei is a man is true in sj®1 } )
{ x: hei came in is true in s*®1 }

SOME { x: hei is a man is true in sj®1 }

{ x: hei sat down is true in sj®1 }

The reading described by (35a) seems a natural one, whilst the reading described by (35b) seems
far less natural and is perhaps not possessed by the sentence at all. Now according to T8, (34a)
is not ambiguous at all. This could be counted a minor defect if the reading corresponding to
the one disambiguation was the natural one. However, as the reader may confirm, the reading
accounted for by this disambiguation is the less natural one (described in (35b)). The more

natural reading, (the one described in (35a)) is not accounted for. Therefore at best we have
a problem of undergeneration. According to one's views on the unnaturalness of the reading
described in (35b), we may also have a problem of overgeneration.

(34b) is a similar case. To say that a talented and hardworking candidate applied for the job is re¬

cursively ambiguous wrt. a talented and hardworking candidate and wrt. talented and hardworking
is to say the following two things:
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(36) a. there is a reading r such that whatever situations s, a talented and hardworking candidate
applied for the job is true in s on r iff

he,
SOME { x: AND ( hei is a talented candidate is true in sx 1 ) }

be,
hei is a hardworking candidate is true in sr

he,
{ x: hei applied of the job is true in sx 1 }

b. there is a reading r such that whatever situation s, a talented and hardworking candidate
applied for the job is true in s iff

AND( a talented candidate applied for the job is true in s )
a hardworking candidate applied for the job is true in s

(34b) certainly has the reading described in (36a), whereas the reading described in (36b) is
marginal. There is only one disambiguation of the sentence in T8, and one may confirm that this

disambiguation is associated with the marginal reading. The natural reading goes unaccounted
for.

The final example sentence (34c) presents a slightly different case. Hypothesis 4 (p46) predicts
that John wanted to visit the cinema or read a book at home is recursively ambiguous wrt.
visit the cinema or read a book at home, which is controversial. Hypothesis 6 (p50) predicts,
uncontroversially that there is a reading of (34c) according to which the following argument is
valid:

(37) John wanted to visit the cinema or read a book at home
John visited the cinema or read a book at home

.' .an act that John wanted to do, was done by John

According to T8 there is only one disambiguation of (34c). It has the properties that correspond
to the marginal reading rather than to the preferred reading. Therefore T8 predicts that the
above argument is unambiguously invalid.

To review these three problematic sentences then, everyone can agree then that 7"8 semantically
undergenerates (Partee 70, and Lakoff 70 note similar undergeneration problems). It is also a

debatable point whether there is overgeneralion here, sis the only readings predicted are at best

marginal.

Sentences such as those in (34) pose a semantic problem for the viability of CR as a tactic
for non-sentential conjunction. There Eire a number of ways one make adjustments to try get

around the problem whilst retaining the CR analysis and until these Eire looked at, one CEinnot

say that the semantic undergenerations Eire an insuperable problem. In section (2.6) we will give
this matter fuller consideration. For the moment we will turn now to a wholly different strategy

towards handling non-sentential junctions.
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2.4.2 The local approach: Cross Categorial Coordination

In the local approach to be described, a man came in and sat down can only be generated if
the substring came in and sat down is generated. In similar vein, the generation of John loves
and hates Peter will depend on the generation of loves and hates, the generation of a talented
and hardworking candidate applied for the job will depend on the generation of talented and

hardworking. None of these statements are true of T8.

This is done by supposing a disambiguated language exactly like £10 with the addition, for every
phrase-set index 6, of the rule:

(^.(MUNCT,*),*)
Let this be £12. The class ofmodels associated with £12 is defined by changing only very slightly
the definition of AC7 (pll3), the class of models associated with £10. The only change is in fact
in the 'algebra-spanning' function Tij. Previously this was defined to be significant only at
a triple of arguments of types t, (<—►(<—►<)) and t. Jij will be redefined to be significant at a
number of other types. Therefore the class of models, AC9, associated with £12, is exactly the
same as AC7 except that Rj will be redefined. Just as it was possible to let some facts about
recursive ambiguity dictate the denotations of the junctions (see section 2.2.1), it is possible
to let further facts about recursive ambiguity dictate the definition oilij at the additional
types. Therefore, the redefinition oiRj will be postponed for a little while, until some relevant
recursive ambiguity data has been considered. T9 will be understood to be the combination
of £12 and AC9. As will become clear, it is the UG embodiment of Gazdar's Cross-Categorial
Coordination proposal (Gazdar 1980, see also Keenan and Faltz 1985). We will now semantically
assess T9.

Transparency facts
As noted several times already, the generalisation concerning the sentences in (26) to be ex¬

plained is that the constituents linked by the junction word occur transparently. To explain

this, T9 needs simply to mimic the feature of T5 (pl05) that allowed capture of the trans¬

parency facts for just sentential junctions. This feature was that the semantic operation on

meanings, Qj, implicated by the derivation of the junction-containing sentence, had to be de¬
finable from a semantic operation, Gj, on denotations. If this feature is insisted on in the
constraints on Qj as an operation featuring in the models in AC9, then the transparency data
that was explained by the non-local approach, T8, will also be explained by the local approach
T9.

Recursive Ambiguity

We pass on then to the recursive ambiguity intuitions that we gave in (27). To begin with
consider just the TV case. The required entailment of T9 is given in (38a) whilst what T9
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actually does entail is given in (38b):

(38) a. for all models (9, (to,g)), [John loves JUNCT hates Mary](w, g) = 1
iff J([John loves Mary](u>, g) = 1, [John hates Mary](u>,flf) = 1)

b. there is a disambiguation /? such that whatever model (3, (tt>, </)), [/?](u^,y) = 1 iff
H «J)([)oves]j, [JUNCTJ, [hates])(u;, ^)([Mary](u;) ff))([JohnJ(u;, g)) = 1

It can clearly only be the case that (38b) will amount to (38a) ifHj is so constrained as to
make (39a) hold:

(39) (a) whatever model, (3, (w, g)),
J)([l^^,lJUNCT],[hates])(iu,ir)([Maryl(u;></))([J^l(u;,<?)) = 1 iff

J([lovesJ(ty, s)([MaryJ(u;, y))([John]](u;, </)) = 1,
[hates](u>, p)([MaryJ(t/;, (/))([John|(u;, g)) = 1)

<-»-(b) whatever (Q, (">></)), whatever d\, d|, P|et, P4e<
HBj(€,I, J-)(ft,pDWrn(ti>>»)>P4)(di)(rfa) = pUNCTl(t^,i7)(P3did2)(i,4did2)

«- (c) whatever (3, (w,g)), whatever d\, d%,P£et, Pfet, /(* ^
Hj(€,T, J)(P3, /, P4)(di)(d2) = /(P3did2)(P4did2)

(39b) is an equivalent to (39a). (39c) is a slightly stronger condition than (39b), concerning all
members of £)(t—1+<)) and not just the denotations of junctions. (39c) is a constraint on Hj,
and what is presented below is the whole set of such constraints on Hj generated by considering
all of the sentences in (27):

(40) whatever (^,(w,g)), whatever /'(")
a. whatever P'*t P%*yd\,

nEJ{£,i,J){plj,p2)(d1) = f{pldl){p2dl)
b. whatever P"', P"^ d\, d%,

HEj{£,1,^)(P1,/,P2)(d1)(d2) = f(P1d1d2)(P2d1d2)
c. whatever p(*.e0«^ p(»,e«)e<^ de

^j^^^)(Pi,f,P2)(di)(d2) = /(Pi<M2)(P2<M2)
d. whatever d^ d>et ^ de

n^s.^SKPiJ^KdiMm = f{Pidid2d3){p2d,d2d3)

This then expresses some constraints that need to be placed on the function 7{j if this local
approach to non-sentential junctions is going to conform to certain instances of the recursive
ambiguity data. There is a finite set of types at which the Hj operation is required to be
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significant by the above equations, a subset of the set of types that has come to be called the

'Conjoinable Types':

Definition 52 (Conjoinable Types) Whatever type, a E TJ-(i) a is a conjoinable type if
a is t, (ii) (a—*b) is a conjoinable type if b is a conjoinable type.

The redefinition ofHj will render its value at £,T and J an operation which is significant not
just at the subset of the conjoinable types illustrated in (40), but at arguments of all conjoinable
types:

Definition 53 (New Rj) For any £,1,J, for any a € TJ-* where a is conjoinable, for any
Pf,P«, /'(«)
ifa=t, HEJ(e,J,J)(P1,f,P2) = /(Pi)(P2),
if a = (b—>c), HEj(£,l,J)(Puf,P2) = x»>-> nEj(£,l,J)(PlX,f,P2x),

for any

Kj(£,I,J)(m1,m2,m3) = (w, g) (£,l,J)(rni{w,g), m2(w,g),m2(w,g))

The reader may confirm that with Hj constrained as above, the conditions in (40) will be
entailed by T9, and therefore the recursive ambiguity data given in (27) will be accounted for

by T9. The explanation of the sentential junctions is also retained.

Problems of semantic undergeneration ?

Having now fully specified the local approach, T9, we will now consider the sentences that were

semantically problematic to the proposal based on using Conjunction Reduction, T8. See (34,
pl21). Recall that T8 could not explain the most natural readings of sentences in (34). This

problem is not faced by the local approach, T9. The disambiguations provided by T9 of the
sentences in (34) are illustrated in the Figures 5.2, 5.3 and Figure 5.4 .

However, to say that T9 lacks the semantic undergenerations of T8 is not to say that T9 is

descriptively adequate. T9 provides at most one disambiguation of any expression and therefore
the full set of entailments of Hypothesis 4 (p46) will never be accounted for by T9.

2.4.3 Summary

What we have done in this section is describe two possible extensions of the core-account,

T7 (pll3), each aimed at accounting for extensive priveleges of occurrence of junctions. T8
(pi 19) embodied a non-local approach to junctions, whilst T9 (pl23) embodied a local ap¬

proach. Neither of the accounts was descriptively adequate. It was seen that certain semantic

undergenerations that T8 is subject to, T9 is not.

This will not be our final word on the potential for a descriptively adequate account based on

the mechanisms of T8 and T9. These two approaches will be considered further in section 2.6.
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a man came in and sat down,^

a man,^">

a,DET man,CN

came in and sat down,Tj

came in,VP and,JUNCT sat down,VP

Figure 5.2:

a talented and hardworking candidate applied for the job^F>

a talented and hardworking candidate,^ applied for the job,VP

a,DET talented and hardworking candidate,Tc\

talented and hardworking^"^ candidate,CN

talented,ADJ and,JUNCT hardworking,ADJ

Figure 5.3:

John wanted to visit the cinema or read a book at home,J"<

John,NP wanted to visit the cinema or read a book at home,^

want,VVP to visit the cinema or read a book at home, T+
I

visit the cinema or read a book at home, Tj

visit the cinema,VP or,JUNCT read a book at home,VP

Figure 5.4:
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For the moment, however, we will leave the non-sentential junctions and turn to the matter

of non-subject quantifiers. As with junctions, it turns out for the quantifiers that theoreticians
have proposed two kinds of account, one a non-local and the other local. These will be described
in section 2.5. Section 2.6 will therefore not only consider further the potential of the non-local
and local analyses of junctions, but will consider in parallel, the potential of the non-local and
local analyses of quantifiers.

2.5 Non-subject position quantifications

Quantifiers have rather wide priveleges of occurrence:

(41) a. every man died
b. Mary loves every man

c. John gave every man Mary
d. John told every man to go

As we did in the case of junction we will look at two strategies for accounting for this syntactic
fact. The first approach that we will look at take its inspiration once again from transformational

grammar, its crucial ingredient being the 'Quantifier Lowering' transformation. This is a non¬

local strategy. The second approach really has no name although it is very often used. We
will call it Cross Categorial Quantification. It is a local strategy. Besides accounting for the

syntactic fact of wide priveleges of occurrences, there are semantic facts to be accounted for, as
ever falling into two kinds: transparency and recursive ambiguity. In the unambiguous sentences
in (41), there are transparent occurrences of the common noun following the determiner, and
also of the verbal term adjacent to the determiner. Concerning these sentences, Hypothesis 3

(p46) entails that the sentences are recursively ambiguous wrt. the QNP within them. This is
the minimal semantic data that must be accounted for. Over and above there is also semantic

data concerning genuine instances of ambiguity.

Wewill look at the approaches as different possible extensions to T9, which was the account given
in section 2.4.2 embodying the local approach to junctions. This is convenient for expository

purposes and nothing ultimately depends on it: it will be considered in section 2.6 whether the
observations made here about mechanisms for quantification would be changed if the basis were

other than the local account of junctions.

Each of the two approaches is semantically assessed. The result is that the non-local approach
is subject to a particular kind of semantic undergeneration. The local approach is not subject
to this kind of semantic undergeneration, though subject to many other instances of semantic

undergeneration. Therefore neither approach is descriptively adequate.
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2.5.1 The non-local approach: Quantifier Lowering

The approach to quantifiers that will be described is that which was current in the Transfor¬
mational Grammar architecture of Chomsky 57 and Chomsky 65. The main idea here is that
the location of quantifier phrases in NP positions is a 'surface' phenomenon only, and the struc¬

tures that do exhibit QNP's in NP positions are derived from 'underlying' structures where the

QNP's do not occupy NP positions but instead are akin to sentence modifiers, entering trees

via 'Chomsky-adjunction'. The name of transformation that effects the mapping from deep-
structure sentence-modifier quantifier to surface structure NP-located quantifiers is Quantifier

Lowering. An example of its action is depicted in Figure 5.5.

s

QNP
I

(a man),-

Figure 5.5: The Quantifier Lowering Transformation

As the input to the transformation one is looking for an S node whose left daughter is a subtree:

[(/?)i]qNP, and whose right daughter is another S. The daughter S node should itself dominate
a subtree: [he,]NP • The output of the transformation is an amended version of the daughter S
node, one which replaces the [he,]NP subtree with [/?]qnp-

This is illustrated in (42).

(42) [[(a man)j]QNp [[he,]NP walks]s]s
'n* [[a manjqNP walks]s

[[(a man),]qNP [Mary believes [he,]NP walks]s]s
'v* [Mary believes [a man]qNP walksjs

PN TV PN

I I I
John loves he,

s

John loves a man
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[[(a man),]QNp [Mary loves [he,]Np]e]s
'v* [Mary loves [a man]QNp]s

As with the CR transformation, the meaning of the surface structure is intended to be inherited
from the deep structure; QL is semantically an identity. There are indices on the QNP phrases
and the pronouns and these are essential. In the deep-structure, there is nothing configurational
about the tree to indicate which argument slot of a relation a quantifier is concerned with. Yet
it is the deep-structure that defines the meaning of the sentence. It is co-indexing that codes
which argument role a quantifier is concerned with.

It is clear that this is in spirit a non-local approach to quantification, because the generation
of the surface structure sentence depends on deep-structures whose terminal yields are not

substrings of the sentence. There is a proposal akin to the above one within the more recent

Transformational Grammar architecture, as in May 84. The difference is that besides Deep

Structure there is another level with a relationship with Surface Structure, a level known as

Logical Form. Logical Form is the level defining semantic interpretation is not involved in
the inductive definition of the grammatical sentences, and is derived from Surface Structure.

Figure 5.5 would also approximately represent the hypothesis concerning quantifiers in this
architecture if the arrow were reversed and labelled 'Quantifier-Raising'. However, because
I have not fully considered this latter-day TG architecture, I intend the comments below to

concern only the earlier TG architecture.

One of the syntactic appeals of the (early) TG proposal is akin to that of CR: one manages

to explain a very large number of instances of quantification by just three devices: the rules

defining the distribution of pronouns, the rule of Chomsky-adjoining a QNP and sentence, and
the Quantifier Lowering transformation.

As we did with Conjunction Reduction we will now address two questions. First the question
of how to incorporate this transformational analysis into a UG-style fragment. Second, the
semantic plausibility.

As for CR, there are two possible places in which QL could be represented in the Universal
Grammar architecture: as a part of the disambiguation relation or as an operation in the

syntactic algebra. Both are considered below.

To represent QL as part of the disambiguation relation the idea is to define the disambiguation
relation so that a disambiguated expression (a)^ stands in the relation to any /? such that /?
comes from ai by a series of quantifier lowerings. With such an alteration of the disambiguation

relation, the remaining necessary syntactic change is to expand the set of rules and operations
of £12 to include the rule of 'Chomsky Adjunction'.

£13: QL as part of the disambiguation relation
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1. Phrase set indices: as for C12

2. Basic phrase-sets: as for £12

3. Syntactic operations: as for £12 with the addition with the family of operation Tchoma,
whose operation on strings is:

FcHOM.i(ot,l3) = («)</?

4. Syntactic rules: as for £12 with the addition of the family of syntactic rules:

{(FcHOMi, <QNP, S), S) :i<N}

5. Disambiguation relation

The new disambiguation relation will be defined with the assistance of a function Q£, :

For all (si,d,e), Q£,((s1, d, e)) = (s2,d, e), where s2 is the deletion from si of the
first occurrence of a bracketed string subscripted by », (a),- and the replacement of
subsequent occurrences of he,- by a.

Rl3(P,(a)() iff there is some sequence of Q£, such that (3 is the first argument pro¬
jection of Q£i(... Q£n((a)^)), and /? contains no bracketed and subscripted strings.

The definition of the set of possible models, AC10, for £13 is almost exactly the same as that
for £12 . All that is additional is the definition of the semantic operation associated with

the syntactic 'Chomsky-adjunction' operation, Fmonta- This is defined from the following

'algebra-spanning' function Hmonta-

Definition 54 (Wmonta) For any S,1 and J, for any vt^~for any m2', for any

(w,g) e I x J

KMONT.i(£,F,J)(mi,m2) — I<>(£,!, ,1, J){m2))

The reason for naming the operation that corresponds to Tchoma, Gmonta is that we shall
soon be using the very same semantic operation in association with a syntactic operation invented

by Montague: the notorious 'Quantifying-in' operation.

Now to consider the option of having QL as a syntactic operation. The functions QCi that were
defined above to assist in the specification of the ambiguation relation, can be taken as syntactic

operations in their own right. They should semantically be associated with identity operations.

However, if we are to have such an operation in the algebra, it will have to be implicated by a

syntactic rule and it is difficult to say what kind of rule that should be. One that maps from
sentences to sentences will not do because that will entail that the effective input to the QL

transformation is a grammatical sentence, which it is not.

One could try to add a new phrase-set index with the specific purpose of categorising the

typical input to QL, giving the input a category thereby but not recognising it as a sentence. A
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more economical approach, however, is to compose together each of the 'Chomsky-adjunction'

operations, Tchom,i, with the corresponding Quantifier Lowering operation, Q£,.

(43) (a man,di,€i) (he,- walks,d2,e2) (a man,di,ci) (he, walks,d2,e2)
■11 FcHOM.i -11 ^MONT.i

((a man), he,- walks,d3,e3) (a man walks,d3,f3)
(1 QC.i

(a man walks,d3, e3)

Each tmont.i operation is therefore one which inserts a QNP phrase in the place of a pronoun

he,-, and is implicated by a rule which maps from a QNP and S, to an S. These Tmont\

operations are exactly Montague's 'Quantifying-in' operation, put forward in PTQ. The semantic
operation that should be associated with each 'Quantifying-in' operation will be exactly the same

as that which was associated with the 'Chomsky-adjunction' operation: Gmonta-

£14: QL and Chomsky Adjunction as a single syntactic operation

1. Phrase-set indices: as for C12

2. Basic phrase-sets: as for C12

3. Syntactic operations: as for £12 with the addition of a family operations, tmont,i,
whose behaviour on strings is:

Vn,.77jt#ojVT.n (<*,/?) = that string which results from replacing the first of any
occurrences of hen with a.

4. Syntactic rules: as for £12 with the addition of the family of rules (recall that N is the
number of members of of NPPRO):

{{TMONT.i, (QNP, S), S) :i< N}

The definition of the class of possible models, AC11, for £14 is exactly the same as that for
£13 . T11 will be understood to be the combination of £14 and AC11. In what follows we

will be assuming the T11 method of incorporating in UG the 'Chomsky-Adjunction plus QL'
transformational analysis. What follows is the semantic assessment of T11.

Transparency/Opacity

As a sample of the transparency data pertaining to the sentences listed in (41), consider whether
T11 accounts for the fact that there is a reading of (41a) such that man occurs transparently.

(44) there is a disambiguation, every man walks, that has a subpart a disambiguation,

man, such that whatever a, where a is a CN and whatever model, (Q,(w,g)), if (i)
for all proper name and pronouns, /?, [/? is a man](tu,</) = [/? is a <*](tu, g) then (ii)

[every man walks|(u;, </) = [every a walks](tu, g)
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A disambiguation of every man walks that has the property claimed in the above is:

TMONT. 1 (F> (every, man),?< (fiej, walks))
In the usual way one may conclude from the supposition of (i) that [rnan](u;, g) = [a](tii, g),
and from this one may conclude the following identity:

(every, man), ,F< (he^, walks) )](tn, g) = I^rMOJVT.i(-?:'>(every,a),/'<(he1) walks) )](tn,(/)
This is equivalent to (ii). The transparency of the occurrence of walks is not so easily seen.

What has to be considered is whether it is possible to have [walks](tu, g) = Jo](it;, g) yet have
the non-identity shown as the first line of (45). (45) also shows the entailments of this non-

identity and it leads to the contradiction of [walks](u;, g) = [a](u;, g). To do so it is necessary

to use the Pronoun Postulate, Definition 46 (pl08).

(45) [^MONT.ii^>(every, man),^<(he^,walks))](tn,</)
^ mont.i(F>(every,man),.T7<(hej,a))](tt;,y)
<-+[every man](u;, g)(x [he walks](u;, ))
^ [every man](tt;, g)(x [he a](u;,^ei))

[he walks](tfl,3^)) = (x i-» [he a](tt;, ))
for some x, [he walks](u;,^el) ^ lPea|K </hei)

<-► for some x,

<-► for some x, [walks](u;, yj?e') ^ [a](tu, flij?ei)
♦-+[walks](u;, g) [«](«;,</) (because of the Pronoun postulate)

The transparency facts for the other sentences in (41) are all accounted for in a similar fashion.
For quantifiers in embedded sentences Hypothesis 2 (p37) and Hypothesis 1 (p37) are relevant.

Hypothesis 2 predicts that embedded quantifiers have a de-re interpretation. The downward

heritability of opacity described by Hypothesis 1 also predicts that an embedded the quantifier
should have a de-dicto interpretation.

T11 conforms completely to the predictions of Hypothesis 2 but only partly to the predictions
of Hypothesis 1: de-dicto interpretations of embedded quantifiers are only possible when the

quantifier is a substring of an sentence. When the quantifier is a substring of an embedded VP,
then there is no explanation of the possibility of a de-dicto interpretation. More will be said
about this in a moment. Figures 5.6 and 5.7 depict the disambiguations that allow for de-re and
the de-dicto interpretation of a man in John believes that a man came in.

Recursive Ambiguity

Hypothesis 3 (p46) entails that the sentences in (41) are recursively ambiguous wrt. the QNP
within them, and this is accounted for by T11. Also in the case of a number of genuinely

ambiguous sentences, T11 still accounts for the entailments of Hypothesis 3. For example,
recursive ambiguity of every man loves a woman with respect to both the quantifiers, amounts
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John believes that a man came in^MONT.i

a man, T> John believes that he,- came \r\,F<

John,NP believes that he,- came in,.?7,.

believes,PV that he,- came in,^"|

he,- came in,Jr<

Figure 5.6: A transparent occurrence of man in John believes that a man walks

John believes that a man came in,^

John,NP believes that a man came in,.7%.

believes,PV that a man came in-j-

a man came in mont.i

a man, T> he,- came in,^

Figure 5.7: An opaque occurrence of man in John believes that a man walks

to requiring two readings (see p45) in Chapter 3). The disambiguations provided by T11 to
account for the two readings are depicted in Figure 5.8.

every man loves a woman,Tmont\ every man loves a woman,Fjfont.j

every man,QNP he,- loves a woman,Tmont j a WOman,QNP every man loves ^h^monti

a woman,QNP he, loves hej,S every man,QNP

Figure 5.8: Two readings of every man loves a woman

he,- loves he^S

Problems of semantic undergeneration

Below three kinds of sentence are shown with respect to which T11 semantically undergenerates:

(46) a. John consumed a pie or drank a beer
b. every dog near a door barked
c. John wanted to marry a blond

The first case involves a junction and a quantifier and therefore both Hypothesis 4 (p46) and

Hypothesis 3 make predictions concerning it. T11 conforms to the predictions of Hypothesis 3
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but not to the predictions of Hypothesis 4.

The prediction of Hypothesis 4 is that (46a) is recursively ambiguous wrt. consumed a pie or

drank a beer, and this entails the existence of a reading with the property described below:

(47) there is a residing r of (46a) such that whatever situation s, (46a) is true in s on

reading r iff OR (John consumed a pie is true in s,John drank a beer is true in s)

Bearing in mind that T11 contains a local analysis of junctions, the reader may confirm that
T11 provides just the two disambiguations of (46a) shown in Figure 5.9. These are associated
not with the reading required by Hypothesis 4, but with the readings required by Hypothesis 3.

John consumed a pie or drank some beer^AfOTVT.i

a pie,QNP John consumed he< or drank some bter,Tmont.j

some beer,QNP John consumed he,- or drank htj,7r<

John,NP consumed he,- or drank htj,Tj

consumed he,-,VP drank hej,VP

John consuned a pie or drank a bear,Fmont.j

some beer,QNP John consumed a pie or drank \\tj,F\ioNT.i

a pie,QNP John consumed he,- or drank he;-,^

John,NP consumed he< or drankhj

consumed he,,VP drank he;-,VP

Figure 5.9: The two disambiguations of John consumed a pie or drank a beer

A way to underscore how serious a semantic defect this is is to observe that T11 predicts the

following argument to be unambiguously valid.

(48) John consumed a pie or drank some beer.
.'. There were beer's

Turning to the next of the sentences from (46) concerning which T11 semantically undergener-

ates, (46b), one can see that Hypothesis 3 suggests that it is recursively ambiguous wrt. every
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dog near a door and wrt. a door. T11 allows only for recursive ambiguity wrt. a door. Recursive

ambiguity wrt. every dog near a door entails the existence of a reading as described below:

(49) There is a reading r, such that whatever situation s, every dog near a door died is true
on r in 8 iff EVERY { x: he< is a dog near a door is true in s£e }

{ x: he, died is true in s£e }
The only disambiguation of (46b) is depicted in Figure 5.10. It is not associated with the reading
described in (49).

every dog near a door d'ltd^MONT.i

a door,QNP every dog near he* died, tmontj

every dog near he*, Ty he^ died,S

every,DET dog near hej,CN

Figure 5.10: The only disambiguation of every dog near a door barked

Finally turning to the last of the problem sentences, (46c), one can see that there are predictions
concerning it generated by Hypothesis 3 and by Hypothesis 6 (p50). The prediction of Hypoth¬
esis 3 is accounted for, but that of Hypothesis 6 is not. The reading predicted by Hypothesis 6
is that on which the CN, blond, occurs opaquely, and according to which the following inference
is valid:

(50) John wanted to marry a blond
John married a blond

.' .an act that John wanted to do, was done by John

The only disambiguation of (46c) according to T11 is depicted in Figure 5.11. The semantic

properties associated with this disambiguation are not such as render the occurrence of blond

opaque, nor sure they such as to render the argument in (50) valid. In fact the combination of
T11 predicts the argument to be unambiguously invalid.

We have just seen that T11 undergenerates with respect to the sentences in (46), so that
7~n cannot be counted as descriptively adequate. Semantic objections to the sufficiency of
a 'Quantifying-in' type mechanism have been made before (Partee 70, for example), but they
have usually involved difficulties with quantifier-pronoun interactions. The example used above,
because not involving pronouns, are independent of any particular semantic assumptions con¬

cerning their treatment.

In section 2.6 we will consider how these problems of undergeneration may be overcome. Before
that we will look at a local approach to quantification.
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John wanted to marry a blond,FmonTa

a blond,QNP John wanted to marry he,-,^'<

John,NP wanted to marry he,, Ty

wanted ,VVP to marry he,,VPC

marry he,-,VP

Figure 5.11: The only disambiguation of John wanted to marry a blond

2.5.2 The local approach: Cross Categorial Quantification

In T11 there were disambiguations of loves John, gave John, told John and near John but not of
loves every man, gave every man, told every man, and near every man. In the theory of reference

to be considered in this section, there will be disambiguations also of these quantifier-containing
subsentential expressions. We will have thereby a local approach to sentences containing quan¬

tifiers.

Recall that we are presenting the non-local and local approaches to quantification as different

possible extensions of T9 (pl23), the local approach to junctions. What we will now have is,

corresponding to any rule of £12 (pl23) that mentions NP's, a sister rule that mentions QNP's.
In £12 we had a quantificational sister to the subject NP rule, and it made mention of T>.

This rules implicates the new syntactic operation Tq which we have yet to define. This operation
will also be implicated by the sister rules for the non-subject NP rules:

The typing and denotational assumptions of Generalised Quantifier theory will be carried for¬

ward, and will, in conjunction with the recursive ambiguity data, dictate the definition of the
semantic operation Qq, that will be associated with Tq.

1. Phrase set indices: as for £12

2. Basic Phrase sets: as for £12

3. Syntactic Operation: as for £12 with the addition of Tq. Tq as an operation on
strings is concatenation.

The rule for £15 will be:

(jfq,(QNP,vp),S)

{(■^Q, (6> QNP), t) : (6, a) G {(TV, VP), (TTV,TV), (TVVP.VVP), (P,PP)}}

£15: incorporating a local approach to quantifiers



2. ARGUMENTS FOR LOCALITY 137

4. Syntactic Rules: as for £12 except that (J7>, (QNP, VP), S) is replaced by

{Tq, (QNP, VP), S), and the following set of rules is added:
{<^Q,(«,QNP),<r) : (6,a) € {(TV, VP), (TTV,TV), (TVVP, VVP), (P, PP>}}

The definition of the class of possible models, AC12, for £15, is almost exactly the same as that for

the models of £12. All that is additional is the specification of semantic operation corresponding
to the new syntactic operation Tq. The 'algebra-spanning' definition ofHq will be given below,
in the course of the semantic assessment of T12, the combination of £15 and AC12.

Transparency/opacity Facts

Starting with the transparency facts concerning the sentences in (41,pl27), these will be ac¬

counted for simply if the operation Qq is constrained to be one definable in terms of an oper¬
ation on denotations. One might note that this explanation of transparency is noticeably more

straightforward than that provided by T11 , because the Pronoun postulates are not involved.

Concerning quantifiers occurring in embedded sentences and VP's, what is required by Hypothe¬
sis 1 (p37) is that there should be the possibility of a de-dicto interpretation and what is required

by Hypothesis 2 (p37) is that there should be the possibility of a de-re interpretation.

With respect to Hypothesis 1, T12 is a success where T11 was a failure: it does explain

availability of de-dicto interpretations for all kinds of embedded quantifier. It was the VP case

that T11 did not allow, because according to Tu there was no disambiguation of to marry

a blond. According to T12 there is a disambiguation of to marry a blond. This coverage by T12
of a semantic undergeneration suffered by T11 is part of a general story about which more

will be said below.

However, with respect to Hypothesis 2, T12 is a failure where T11 was a success: it does not

explain the availability of de-re interpretations of embedded quantifiers.

Recursive Ambiguity

The single quantifier sentences of (41) are recursively ambiguous wrt. the contained quantifier.
Consider first how it is that T12 is to account for this fact in the case of (41b). The required
entailment of T12 is given in (51a), whilst what T12 actually does entail is given in (51b).

(51) a. there is a/3 such that R((4lb),/3) and such that whatever model ((5,£/7, /), (w,g)),
\P\(w,g) = 1 iff D { x: [man|((tn, </))(x) = 1 }

{ x: [lovesJ(tt;, <7)(x)([john](u>, g)) = 1 }
where D corresponds to DET
b. there is a f) such that 72((41b),/3) and whatever model (9, (w, </»,
[/?](«>,0) = 1 iff J")(IDETman], |pove|)([John]](u>, $r)) = 1

It can clearly only be the case that (51b) that will amount to (51a) ifRq is so contrained as to
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make (52a) hold.

(52) a. whatever model (9, (to,g)),
«G(f>i>y)(p^l(Dnm^l)(frasi(u>lff)) = i
iff D { x: [man]((u>, g))(x) = 1 }

{ x: |loves](«;,(/)(a:)(liohnJ(U;,flf)) = 1 }
«-► (b) whatever model (3, (w,g)), whatever P^e—''*\p[e~*d\,
nfye, i, j)(Pi, [deTKid, g)(P2))(d{) = p5Fn(»»,»)(ft)(« - fi(*)(<*i))
<— (c) whatever model (9*, («M/))> whatever p£e~^^e~/((e—*'0-*0, d\,

= /(* ~ Pi(*)(di))

(52b) is an equivalent to (52a). (52c) is a slightly stronger condition, quantifying over all
members of D((e—*t)—*t) and not just the denotations of QNP's. (52c) is a constraint on Rq
and what is presented below is the whole set of such constraints generated by considering all of
the sentences in (41).

(53) a. whatever >t)—*'), p[e~^
nfys,i,J)(f,Pi) = f(x»Pix)
b. whatever fUe~*t)~*t)j p(e—Ke—*0)^ d\,

J)(Pi,f)(dx) = f(x ~ P1xd1)
c. whatever /((e—p(e—+(e—+(e—*■'))) ^

RE(£,X,J)(P1,f)(d1)(d2) = f(x^P1xd1d2)
d. whatever /((e—; p(e~*(('~'Ie~*t))~*(e~t**))) ^

RE(£, I, J)(Pi,/Xdi)(d2) = f(x ~ Pixdid2)

The equations concern the application of the operation, Rq at denotations drawn from four
sequences of types. We will actually define Rq so that it returns an operation that is significant
at infinitely many types. The postulate will concern the application of the operation to meanings
of type ((e—and of type a, where a is a Quantifiable Type, where these are defined:

Definition 55 (Quantifiable Types)
Whatever a 6 TJ~*, if a is Conjoinable, then (e—*a) is Quantifiable.

Definition 56 (Rq) For any £,I,J, for any a 6 TJ-1" where a is quantifiable, whatever
fett,Pf,

if a = (e-*t),R^(£,l,J)(Pi,f)=R^(£,I,J)(f,Pi) = /(Pi),

= (yb^REQ(£,l,J)(xe^P1xy,f))
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whateverm^',mf,
Rq(£,T,J)(mi,m2){w,g) = 7iQ(e,I,J)(m2,m1)(w,g)

= Kq(£,1, J){™i(w,g),m2(w,g))
To recap on where we are: we have just assessed T12 with respect to the requirement that some

simple quantificational structures are recursively ambiguous wrt. the quantifiers within them,
and used this data to define what the quantification operation, Gq, must do. These simple
sentences were not in fact ambiguous at all and it is now time to consider how well T12 fares

against the entailments of Hypothesis 3 (p46) for actually ambiguous structures, sentences such
as the following (the number in brackets is the number of possible readings):

(54) a. every man loves a woman (2)
b. every man gave a woman two prizes (6)
c. John believes a man came in (2)
d. John believes every man loves a woman (6)

For each of these there is only one disambiguation according to T12, and therefore T12 falls very
far short of the ambiguity requirements of Hypothesis 3 as regards these sentences. Thus there
is a considerable problem of semantic undergeneration for T12. Next we will consider how T12
fares on the sentences that were problematic to the non-local account of quantification, T11.

Problems of semantic undergeneration ?

See (46,pl33). Recall that for each of the sentences in (46) there was a natural reading which
T11 could not account for.

For T12, matters are quite the reverse: the reading that previously could not be accounted for
is the only reading that now can be accounted for. This means in the case of (46a), that T12
can explain where T11 could not, why there is a reading of (46a) according to which the
following argument is invalid:

(55) John consumed a pie or drank some beer.
.'. there were beer's

In the case of (46b), T12 can explain where T11 could not, why (46b) is recursively ambiguous
with respect to every dog near a door. Finally in the case of (46c), T12 can explain where T11
could not, why there is reading of (46c) according to which the following argument is valid:

(56) John wanted to marry a blond
John is married to a blond

.' .an act that John wanted to do, was done by John

There we will end the initial semantic comparison of T12 and T11 .
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2.5.3 Summary

In sections 2.5.1 and 2.5.2 two possible extensions of T9 (pl23) have been described, each one a

possible way of accounting for the extensive privileges of occurrence of quantifiers. T11 (pl31)
embodied a non-local approach to quantifiers, whilst T12 (pl37) embodied a local approach.
It has been noted that neither is descriptively adequate. Attention has also been drawn to a

certain set of semantic undergenerations suffered by 7~u and not by T12.

Putting together the observations of this section and section 2.4, we may say that none of the
accounts described so far has been descriptively adequate. However, this is not intended to show

that no descriptively adequate account can be built based on some of the mechanisms described
in sections 2.4 and 2.5, and in the next section, we consider two ways in which one can try to

obtain a descriptively adequate account from these mechanisms.

2.6 Local vs. Non local, a verdict

It was noted in section 2.4 that the undergenerations of the non-local approach to junctions, T8
(pll9) were different to the undergenerations of the local approach to junctions, T9 (pl23). It
was also noted in section 2.5 that the undergenerations of the non-local approach to quantifiers,
T11 (pl31) were different to the undergenerations of the local approach to quantifiers, T12
(pl37).

Therefore a way to obtain a descriptively adequate account is simply to combine the four ac¬

counts presented so far. Without giving the details of the specification of this combined
account we will henceforth refer to it as T13. Such a combined account is descriptively ade¬

quate, but it is not emergent, which is to say by an easy simplification, it is possible to subtract
from the coverage just the explanation of ambiguity: one can simply subtract from T13 what
we have called the non-local approaches to junctions and quantifiers.

In saying that T13 is not emergent, I would claim to have done a large part of what is involved
in establishing that the literature does not provide an account of junctions and quantifiers that
meets the emergence criterion. Now, it might appear that T13 is my own strawman, and it is
true that with no particular name or paper is the T13 account associated. However, I would

argue that T13 does incorporate some of the most significant strategies for handling junctions
and quantifiers that have been proposed in the literature, namely Conjunction Reduction, Cross

Categorial Coordination, Quantifier Lowering and Cross Categorial Quantification. This should
be clear from the references that I have given in this section. I have shown that the most

straightforward way to obtain a descriptively adequate account on the basis of these resources

is simply to combine them, and I have shown that such a combined account does not meet the

emergence criterion.
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There is, however, more to showing that the literature has not provided an emergent account

than showing that T13 is not emergent. One thing to be acknowledged is that T13 assumes

a simpler typing than that supposed by PTQ and in many proposals since. The next section
considers whether the pictures changes with the change of typing assumption. This leaves
Hendriks' 'type-flexibility' account (Hendriks 90) and Cooper's 'storage' account (Cooper 83)
to be considered. The former is considered in Chapter 8 and the latter is considered in the final

chapter.

I will finish this section by considering one other possible though never proposed account based
on some of the mechanisms described in sections 2.4 and 2.5. Each of the non-local accounts was

very close to being a descriptively adequate, emergent account. The accounts were emergent

because the relevant transformation (CR or QL) was the mechanism both behind the explanation
ofextensive priveleges of occurrence and ambiguity. The only way to subtract from the accounts

the explanation of ambiguity, would be by making unavailable the relevant transformations, and
this would subtract junctions and quantifiers almost completely from the language. For this

reason, a promising strategy for finding a successful, emergent account of the junctions and

quantifiers is by looking for ways to make up for the semantic undergenerations of the non-local

approaches in a different way than simply adding the local approaches.

First we will consider the non-local approach to junctions as embodied by T8. (34a,p 121) was
the first of the sentences that it was noted as suffering undergeneration problems with respect

to. The problem was to obtain the reading entailed by the fact that the sentence is recursively

ambiguous wrt. a man. One could argue that the blame for this lies not with the non-local
junction mechanism, but with the quantification mechanism: for subject quantifiers in T8 were

treated locally. If we replace this local analysis of quantification with the non-local one, as

described in T11, the missing reading could have been generated. It would be associated with
the following disambiguation:

a man walks and talks,Fmonta

a man,QNP he; walks and talks,TCR

(57) he,- walks,S he, talks,S

The second of the problematic sentences for the non-local approach to junctions was (34b,pl21).
The problem was that the reading entailed by the fact that the sentence is recursively ambiguous
wrt. a talented and hard working candidate was not accounted for. This problem may be solved
without adopting the local analysis of junctions in the following way: one adopts a non-local

approach to the combination of a DET and a CN, viewing the combination of DET with CN as

'surface' only, deriving from a deep-structure combination of a DET with a sentence. Assuming
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such a view, here is the analysis which would secure the appropriate reading:

a talented and hardworking candidate applied for the job,.7^

a talented and hardworking candidate, Tnewi applied for the job,S

a,DET he,- is a talented and hardworking candidate,Ten

he,- is a talented candidate,S he,- is a hardworking candidate,S
(58)

The third of the problematic sentences for the non-local approach to junctions was (34c,pl21).
The problem was to generate the reading predicted by Hypothesis 6 (p50). It is possible to

get around this undergeneration problem without adopting the local approach to junctions in
the following way: one adopts a non-local approach to the combination of a VVP with a VP.
This non-local approach is again inspired by a certain transformational analysis, one in which
the phenomenon of verbs taking VP complements is a 'surface' one only, structures exhibiting
it in fact being derived from 'deep' structures in which the verb is combined with a sentence

instead. The transformation effecting the map from deep to surface structure is the EQUI

transformation, and the fashion in which one transformationally derive John wants to visit the
cinema is illustrated below:

NP

John

VP

EQ

wants

(59)

NP

John

John

to visit the cinema

VP
wants

to visit the cinema

One can imagine adapting into a UG format this transformational analysis, in much the same

way that the transformational analyses of conjunction and quantification were adapted in T8
and T11. The following illustrates a potential UG-style disambiguation of John wanted to visit
the cinema or read a book at home, a disambiguation which would support the reading that is
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predicted by Hypothesis 6.

John wanted to visit the cinema or read a book at hom*,!FeQUI

John wanted John visits the cinema or reads a book at home,^*<

John,NP wanted John visits the cinema or reads a book at home,^

wanted ,V John visits the cinema or reads a book at home,^*^^

(60) John visits the cinema or John reads a book at home,S

Therefore it seems that the undergeneration problems that were noted when the non-local ap¬

proach to junctions, T8, was introduced can be overcome without adopting the local approach
to junctions - though it involves adding a whole range of further transformation-like devices.

If we consider now the undergeneration problems that attended the non-local approach to quan¬

tification, we will find exactly the same picture emerges. Undergeneration can be overcome with¬
out adopting the local account of quantification but only by adopting a non-local approach to a

number of other kinds of expression. The non-local approach to quantification was introduced
in T11. The first of the examples with respect to which it suffered semantic undergeneration
was (46a,p 133). The problem was that one could not generate the reading required by the fact
that the sentence is recursively ambiguous wrt. consumed a pie or drank a beer (the associated
truth intuition is described in (47,pl34)). Tn, though it embodied a non-local approach to

quantifiers, built on the local approach to junctions embodied in T9. It will perhaps be clear

by now that there is an obvious potential solution to the undergeneration problem and this is
to switch to the non-local approach to junctions.

The second problem case was:

(61) every dog near a door barked

The difficulty was to simply to explain the fact that the sentence is recursively ambiguous wrt.

every dog near a door (the associated truth intuition is described in (49)). Adopting the non-local
approach to DET CN combination that was described above will also solve this defect of the
non-local approach to quantification.

The third problematic example was:

(62) John wanted to marry a blond

The difficulty was that one could not obtain the reading predicted by Hypothesis 6 (p50). Again
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it will perhaps be clear from what has gone before that an obvious way to solve this problem is

by adding to T11, the UG version of the EQUI transformation that we just described.

We can summarise these findings on the issue of whether the semantic defects of the non-local

approach to junctions and the non-local approach to quantifiers can be remedied by further
additions as follows. Some of the undergenerations can be solved by simply combining the
non-local approach to junctions with the non-local approach to quantifiers. This, however, does
not solve all of the undergeneration problems. One must also adopt a non-local approach to

VVP plus VP combinations and towards to DET plus CN combinations. Without giving its
detailed specification we will refer to this account as T14. Is T14 a descriptively adequate and

emergent account ? It is emergent insofar as no additional mechanisms have been introduced
which duplicate the explanation of the distribution of the junctions and quantifiers. However, it
is not descriptively adequate: the EQUI-like devices cause T14 to overgenerates. The examples
are when the subject NP is quantified:

(63) Every girl wants to win the prize

There is an EQUI based derivation of this that has it interpreted roughly as:

(64) Every wants it to be the case that every girl wins the prize

I take it that there is no such reading. Though these observations are not conclusive, we

have given evidence at least that the only way to make the non-local approaches descriptively

semantically adequate is by adding the local mechanisms, and have therefore given evidence
that there is no way to expand the non-local account into a descriptively adequate yet emergent

account.

The very final thing that we will do in this section is try to extract a moral, a moral concerning
the direction in which one must go to obtain an emergent account. For the non-local approaches
certain sentences were noted whose most natural readings could not be accounted for. We have

given evidence that the only way to account for the natural readings of these sentences is by

adopting local analyses. In other words, we have given evidence that the local analyses will have
to be present in any account. Because the local analyses account for the extensive privileges
of occurrence of the junctions and quantifiers, the moral is that the only way one can hope to

obtain an emergent account is by somehow turning the mechanisms used in the local analyses
into mechanisms that can account for ambiguity. This, more or less, is what the Polymorphic

categorial account to be proposed in Chapter 7 will do.
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3 Arguments for Minimality

145

The typing of Verbal Terms that was adopted in IC1 (p96) and maintained throughout section 2
has been called the 'minimal typing assumption'. The typing deserves the name because it

appears to be the typing that allows for explanation of the semantic data with the minimum
number of meaning postulates. An example of this has already been seen in the case of the
combination of C5 (p97) and /C2 (plOO), which was suggested as a combination which could deal

adequately with the opacity of sentential and VP complements. This adopted a non-minimal

typing policy and in order for this combination to allow for the transparency data, it was

necessary to define the 'Extensionality Meaning Postulates', given in Definition 42 (plOO). This
same transparency data was accounted for on the minimal typing assumption by the combination
of C6 (plOl) and K3 (pl02), using only the Copula Postulate.

We in this section consider a 'non-minimal' set of typings for Verbal Terms deriving from Mon¬

tague's influential PTQ paper.

The defininitive feature of Montague's typing of Verbal Terms is that in some of the argument

positions one does not have the e type but one has a type related to that assigned to QNP's.

We will discuss first an instance of this typing philosophy where in place of e one actually has
the type of QNP's, that is, ((e—►<)—►<). We will call this the Quantifiers as objects typing, and
it is considered in section 3.1. Second we will discuss an instance of the typing philosophy where
in place of e one has (s—»((e—►<)—►<)). We will call this the Intensions of Quantifiers as objects

typing, and it is considered in section 3.2.

The first reason for looking at these accounts based on non-minimal typing is to see whether

they achieve descriptive adequacy and emergence. We will quickly see that they do not.

The second reason for considering these accounts has to do with justification of starting points.
In the next chapter we will be endeavouring to show that no account of junctions and quantifiers
can be given using Lambek categorial grammar. Now showing this is easier if it is assumed that
all accounts are based on the minimal typing assumption. Ignoring accounts based on the non-

minimal typing assumption obviously needs some justification and it is this that this section

goes some way towards supplying.

3.1 The 'Quantifiers as objects' PTQ typing

The following is the 'Quantifiers as objects' typing:

"(TV) = (e*-(e-0)
"(TTV) = (e'—►(et—►(e—►!)»
u(TVVP) = (e«-((,-(e-0)->(e->0))
*(P) = (e«-((e-<)->(«"*)))
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Around this typing a THEORY OF REFERENCE can be defined that eliminates the syntactic dis¬
tinction between NP's and QNP's that was maintained throughout Section 2. The theory is

presented below and can be thought of as deriving from £15 by getting rid of all the rules that
mentioned QNP's and then changing all the rules that mentioned NP's to mention QNP's in¬
stead. Also the syntactic operation of the rule that generates subject NP's is changed from TK
to 7r>*

A language that does not distinguish NP and QNP:£16

1. A16 = {DET, CN,QNP,S, SC, VP,VPC,TV,TTV, PV, VVP,TVVP, P, PP,JUNCT)
2. 60 = S

3. X\6: Same as for £15 except

(i) since NP 0 A16 there is no <T£,6p; instead A"qNp = {(John, (), QNP)} U
{<he;, <>,QNP) : he, € AfVVTlO}
(ii) includes (seek, (),TV), Xp6 includes (about, (),P)

4. r16 = {<,>,}, Or, T),n, J"}.

5. S16 =

(T>, (DET,CN),QNP), (rn, <CN,PP),CN), (T>t (PV,SC), VP),
(F>, (VVP, VPC), VP), (TT, (S),SC), (TT, (VP), VPC)

>> (QNP, VP),S)
{(^>, (6, QNP), <r) : (6, <r) G {(TV, VP), (TTV,TV), (TTVP, VVP), (P, PP)}}

The set AC15 of possible models of £16 ((B, (£7)7er, /), ("M/)) associated with S, J, J, v
is G AC15 iff

1. Typing mapping: for DET,CN, QNP, VP, PV, VVP, PP and JUNCT, u15 is as it was
for AC15, i/15 assigns no type to NP, because it is no longer a phrase-set index. The
values of i/15 for TV, TTV, TVVP and P are different to those for AC15:

i/15(TV) = (e'-Ke-^)), !/15(TTV) = (e'—(e'—(e-d))), j/15(TVVP) = (e«—(vp->(e->t))),
„»(P) = (e'—+(e—+<))

2. Constraints on f15: f15 is subject to restriction with respect to junctions and deter¬
miners (Definitions 45 and 48), with respect to proper names, pronouns, the copula,
and with respect to 'extensional' verbal terms (see Definition 57).

3. Algebraic Constraints: T = {<, >, },(vp, }), nAhe;, Ahe"*, Ahef, J7}. In the usual way,

8Note also that those parts pertaining to higher order quantification and truth predicates have been discarded.
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Before giving the postulates for AC15, it is convenient to define first the map ARn between type

domains:

ARn(mi(S'e,g,t))(w,g)(xla)(ye>)(x2g) = y(ze >-* mi(w,g)(zi)(z)(z2))

Definition 57 (Postulates for AC15) Whatevermodel ((B,(Gy)y€r, f), (w>d)), whatever (w, g) £
1 x J, whatever a G A16,
ifa is a proper name, then f(a) =(w,g)~P~ Pd for some d< € Ve (Proper name postulate)
ifa = (he,,, (),QNP), then f(a)(w,g) = P^ P(g(he")) (Pronoun postulate)
if a = (is, (),TV), then f(a) = AR\1S{S,1,J)) (Copula postulate)

unless a is iiiCi, if a £ X&, /15(a) = AR'm^' for somemG M,tt j Extension-
if a G <^ttv> /15(a) = AR2AR1mieee1 for some mi"" G Meeet I al VT plus
if a G *£vvp./15(«) = A&miW** for some mi<'tt)ei G Me(tei)et | Quantifier
unless a is IE3Ut, if a £ X)?, /15(o) = ARfm^W* for some G Me(et)et) postulate
Note that we have given the name 'Extensional V7" plus Quantifier postulate' to the postulate
that spell the restriction of /15 with respect to 'extensional' verbs. This is to distinguish it from
the Extensionality meaning postulates that were encountered in section 2.1.2, Definition 42.

Let T15 be the combination of £16 and AC15. About T15 I would like to make a number of

observations. Firstly, T15 is extracted from Montague's account and this opportunity will be
used to note how Montague's PTQ accounts fares by the criterion of emergence.

Secondly T15 offers a different local mechanism for accounting for quantifiers to that found in
7~12 (pl37) and I would like to offer a number of reasons why I think the T12 mechanism is
to be preferred. The non-minimal typing assumption of 7"15 could be argued to produce some

kind of explanation of the behaviour of intensional verbs. I will question that. Also T15 should
account for the properties of extensional verbs and I will question that.

Before beginning the reader should note that I am aware that the typing of T15 is a simplification
of what is often called the non-minimal typing assumption - specifically the s type is absent -
and in section 3.2 it will be considered whether the points made depend on this simplification
of the typing. It should become apparent as we proceed, why I think it is useful to consider the

simplified typing first.

The PTQ account and emergence

T15 as it stands is not descriptively adequate, for it provides at most one disambiguation of

any sentence, and therefore will not account for ambiguity. To T15 could be added a variant
of the non-local quantification mechanism seen in section 2.5.1. The result plainly would not

be an emergent account. The expansion of T15 by the addition of the non-local quantification
mechanism gives more or less an exact copy of the PTQ account. The main difference is the

simplification of the typing. Therefore the assessment that the expanded version of T15 is not
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emergent can be taken as the assessment that the PTQ account is not emergent.

Intensional verbs

The table below shows three aspects of the behaviour of loves (an extensional transitive verb)
and seeks (an intensional transitive verbs): (i) whether the occurrence of man in John TV a

man is unambiguously transparent, (ii) whether the occurrence of TV in John TV a man is

unambiguously transparent, (iii) whether the argument, John TV a man .'.there are men, is
unambiguously valid.

(65) loves seeks

man is unambiguously transparent + -

TV is unambiguously transparent + -

Argument is unambiguously valid + -

Asking whether the argument referred to in the third row of the table is validated is a shorthand

way to ask whether John TV a man is recursively ambiguous wrt. a man.

Here are the predicted properties for loves and seeks according to T15:

loves seeks

man is unambiguously transparent + +

TV is unambiguously transparent + -

Argument is unambiguously valid + -

We will trace the reasons why the entries for seeks in (66) are as they are. T15 predicts man

to occur unambiguously transparently, as is easily seen by considering that the there is one

disambiguation only and its denotation with respect to an arbitrary model, (9, (w,g)), is:

(67) [John|(u;, g) ([seekj(u>, </)(|a man]](u;, y)))

For any CN, a, (67) this could only differ from the denotation of the only disambiguation of
John seeks a a, if the denotation of a differed from the denotation of man, and since for T15
co-extension of common nouns implies identity of denotation, the occurrence of man is predicted
to be transparent.

Moving down the table, we come to the question of the transparency or otherwise of the occur¬

rence of seeks. It is predicted to occur opaquely. This may seem a little surprising, because for

any TV, a, (67) could only differ from the denotation of the only disambiguation of John a a

man if the denotation of a differed from the denotation of seeks. However, coextension of seeks

with a does not implies identity of denotation:

Co-extension of seeks with some a does not guarantee identity of denotation
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For co-extension of seeks with a:

(1) For all proper names, x, y, fx seeks y](tn,g) = [x a y](tu,p)

Replacing the quantification over proper names in (1) with quantification over the possi¬
ble denotations of proper names and ignoring for the moment the Proper Name meaning

postulate:

(2) For all di([seeks](u;,p)(d2)) = <fi(f5](to.fl)(d2))

When we take into account the proper name meaning postulate, we see that in quantifying
over all denotations of type ((e—et)—►<) we have quantified over too large a domain, for proper
names may have as denotations only those member of Pe< of which the following is true:

3x G Vc,di = (P >-► Px)

The set of all such 'individual sublimations' stands in one to one correspondence with 2?e. So

instead of (2) we should have the logically weaker:

(3) For all a',be, [seeks](u>,g)(P >-» Pa)(b) = [a](tu,fl)(P i-» Pa)(b)

A model can respect (3) but not assign to seeks and a the same denotation: for a model to

respect (3) all that is required is that the denotations of seeks and a are indistinguishable

when applied to a pair of arguments consisting of an individual sublimation and an individual.

The denotations may still be distinguishable when applied to a pair consisting of an arbitrary

member of and an individual, such as [a man](ui,g) and a'. Therefore, co-

extension of seeks with a does not imply identity of denotation. □

The final entry in the table concerning seeks is that concerning the validity of the inference John
seeks a man .'.there are men. According to T15, the inference is blocked.

That the inference is blocked

The inference will not validated if a model can be found with respect to which the premise is

true and the conclusion false. Let M stand for fman](w,p), AM stand for [a man](ui,p), S
stand for [seeks](w,g), and j stand for the individual of which [John](ui, g) is the individual
sublimation.

For the conclusion to be false, M must the characteristic function of the empty set. Therefore
AM must be that unique member of which maps all P(e~*') to 0: that is, the
characteristic function of the empty set of sets of individuals.

Therefore to make the premise true, 5 most be such that S(AM)(j) — 1, where AM is the

unique member of £)((e—)~*0 just described. Since seeks is freely interpreted, there must

be models such that S(AM)(j) = 1

As the table in (66) makes clear, the behaviour of a freely interpreted transitive verb, such as

seeks, on the 'Quantifiers as arguments' typing is neither the typical behaviour of an extensional
or an intensional verb.

It is more like an intensional verb than an extensional verb, and it is striking that the inference
from John seeks a man to there are men is blocked, as one requires of intensional transitive verbs.
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However, surprisingly, at the same time as the inference is blocked, the CN is predicted to occur

unambiguously transparently, so that the verb lacks the most definitive feature of intensional
transitive verb. In other words, according to the 'Quantifiers as objects' typing, seeks should
share with loves the feature that the contribution of the common noun in John TV a man is its

denotation. One might call verbs that have the properties arising from free interpretation under
the 'Quantifiers as objects typing', PTQ-verbs, and it is this empty class of verbs, not the class
of 'intensional' verbs that the 'Quantifiers as objects' typing provides an explanation of.

This is the main criticism that one can make of the T15 account of intensional verbs. A sub¬

sidiary point can also be made concerning certain valid inference that intensional transitive verbs

participate in, such as the following:

(68) John wants a red hat
.' .John wants a hat

(69) John wants a red hat and a blue coat

.John wants a red hat

T15 will not predict these to be valid, as things stand (or rather the obvious extension ofT15 that
allows for adjectival modification amd junction of QNP's). This might be remedied by having
a postulate for intensional verbs referring to an inclusion ordering on quantifier denotations.
The postulate would require that the denotation of an intensional verb to be upward monotone

in its first argument: if the relation holds between an individual and a quantifier Q, then it
must also hold between the individual and any larger quantifier, Q'. Because, according to T15,

[a red hatj(u>, g) C fa~hatj(ti>, g) and [a red hat and a blue coat](u>, </) C [a red hat|(u), g), such a

postulate would predict, correctly, the validity of the above two arguments. However, it would
also predict, incorrectly, the validity of the following:

(70) John seeks a woman

every woman is a vegetarian
.' John seeks a vegetarian

When the 'Intensions of Quantifiers as objects' typing is considered in section 3.2, a way to

distinguish the validity of these will be considered.

Extensional verbs

We will now consider the entries in (66) for loves, a verb that is subject the 'Extensional VT
plus quantifier' meaning postulate. According to (66), T15 does capture the desired semantic

properties of John loves a man. Below I have gone through the way in which the typing and the

meaning postulate interact to bring about the desired effect. One of the reasons for doing this
is to emphasise why the 'Extensional VT plus quantifier' postulate has the long-winded name,

and is not simply called an 'Extensionality' postulate.
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The first entry in (66) is obvious. In the explanation of the second and third entries the meaning

postulate comes to the fore. Consider the transparency of the occurrence of loves in John loves a

man. By analogy with what was observed for seeks, the crucial feature is whether co-extension
of loves with a really does implies identity of denotation. It does.

That co-extension of loves and a guarantees identity of denotation

Co-extension of loves with or implies:

(1) for all ae,6e, [loves](ui,g)(P )-► Pa)(6) = [a](ur,g)(P >-+ Pa)(6)

To suppose that loves and a are subject to the extensionality postulate then:

(2) for some djet, [loves](u/, 3) = (j(e,-0wf w Q(a t-» di (a)(6))
for some d"', [5](w,g) = hJ'h Q(a >-* d2(a)(6))

(2) and (1) may be combined as follows:

(3) there are d"' and d"' such that,
[loves](w,g) = Q(e,'«) 6e >-► Q(a di(a)(6)),
[3](u>,g) = Q(et-0 i-> be !-♦ Q(a e-f d2(a)(6)),
and fca- all ae,6e, [loves](w, g)(P Pa)(b) = [a](u;,s)(P Pa)(6).

(3) entails:

(4) there are d"f and d"® such that,

]loves](u;,g) = Qwi)i-» Q(a d\ (a)(6)),
[SKu'.fl) = <J«6« Q(a ~ d2 (a)(6)),
and d\ — d2-

But this implies that [loves](ti;,p) = [cr](ti/,£). □

Any constraint on /15 that had the effect that co-extension of extensional transitive verbs implies

identity of denotation, would be sufficient to guarantee that T15 predicts the transparency of the
occurrence of loves in John loves a man. Here are two alternatives to the 'Extensional VT plus

quantifier' meaning postulate that would serve just as well for ensuring that the transparency

data is accounted for:

(71) [loves](u>, g) = Qeit* be i-> [loves|(u),y)(P Pj){h)

[loves](io, g) = Qei'<* t—v 6" 1—> [loves|(tn, g)(P 1—♦ Pb)(b)

So the 'Extensional VT plus quantifier' postulate of Definition 57 (pl47) does not look like
the 'Extensionality' postulate seen in Definition 42 (plOO), nor does it simply guarantee the

transparency of the occurrence of the common noun. These are two good reasons to not simply
call it the 'Extensionality' postulate.

The extra that the 'Extensional VT plus quantifier' postulate does that the constraints in (71)
do not do is guarantee that John loves a man is recursively ambiguous wrt. a man:

That John loves a man is recursively ambiguous wrt. a man
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X15 must entail:

(1) there is a disambiguation 0 of John loves a man such that whatever model (3, (w,g)) € AC15,
[/3](u>,g) = 1 iff SOME { x: [hei is a man](u>,gx *) = 1 }

{ x: [John loves ) = 1 }
The Copula postulate and the Pronoun postulate guarantee the following identities:
{ x: [hei is a manjftu,^6* ) = 1 } = { x: M(x) = 1 }
{ x: [John loves hel^to,^1) = 1 } = { x: L(P i-» Px)(j) }

Using these identities, (l) is equivalent to:

(2) there is a disambiguation 0 of John loves a man such that whatever model (3, (u/,g)) € AC15,
[/31(u/,fl) = 1 iff SOME { x: M(x) = 1 }

{ x: L(P >-► Px)(j) = 1 }
Now, what T15 does entail is:

(3) there is a disambiguation 0 of John loves a man such that whatever model (5, (tu,s)) 6 AC15,
\0\(w,g) = 1 iff L(AM)(j) = 1

For (3) to amount to (2) we require that:

(4) Whatever model (3, (w,g)) € AC15,
L(AM)(j) = 1 iff SOME { x: M(x) = 1 }

{ x: L(P ~ Px)(j) = 1 }
One can show that (4) must be true given the 'Extensional VT plus quantifier' postulate, for
to suppose (4) false is to suppose that:

(5) there is a model (3, {w,g)) € AC15, and there is d"' such that
AM(x i-> d(x)(j)) = 1 SOME { x: Af(x) = 1 }

{ x: d(x)(j) = 1 }
But (5) is possible given the Determiner postulate. Hence (4) is true, hence John loves a man

is predicted to be recursively ambiguous wrt. a man.Q

Note that a side effect of this is that the inference from John loves a man to there are men is

validated.

One way to look at the 'Extensional VT plus quantifier' postulate is as relating the denotation
of a verb plus quantifier at a model of T15 to what would have been the denotation of the
combination at a model of T12. Roughly speaking, one could say that the postulate guarantees

that the result of combining a verb with a quantifier at a model of T15 is exactly the same

as what the result would have been at a model of T12. Such a way of looking at a meaning

postulate was suggested in section 2.1.2.

However, it would be a mistake to think that the postulate succeeds completely in this internal
simulation of T12. Consider (72)

(72) John loves JUNCT hates DET man

Concerning such sentences Hypothesis 4 (p46) predicts controversially that they be recursively
ambiguous wrt. loves JUNCT hates, whilst the uncontroversial prediction of Hypothesis 3 (p46) is
that they be recursively ambiguous wrt. DET man. We saw sentence like this when the non-local
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and local approaches to quantification were being considered in section 2. T12 (pl37), the local
approach to quantification based on minimal types, was able to account for the uncontroversial

reading, namely recursive ambiguity wrt. DET man. 7~12 could not account for the controversial

reading. It is exactly the other way round for T15, the local approach which is based on non-

minimal types. This may be seen because the denotation of the only disambiguation of (72) in an

arbitrary model (3,(w,g)) is (where L = |[loves](tn,flf), H = [loves](u;, g), J = [7DNCT]](u>,0),
D = [DET](u;,3), M = (man]j(u), g), j = [John](tn, g)):

Gj(L,J,H)(DM)(j)
= J(L(DM)(j),H(DM)(j))
= [JUNCTKw.flOdJohn loves DET man](tn,0), [John hates DET manj(u;, </))
This semantic undergeneration is a detracting feature of the account of extensional verbs that is
provided under the non-minimal typing of T15 (this has also been noted in Partee and Rooth 83).
Because the undergenerations could be cured by certain additions to the account, one cannot say
that they are an unanswerable objection to the non-minimal typing. However, if we are to insist
on an account meeting the criterion of emergence, the possibility of adding further mechanism
for simply semantic reasons is not there, and the undergeneration objection carries some weight

(of ways to cure the undergenerations, one is to add the non-local approach to quantification,
and the other is to add the type-shifting mechanisms that Partee and Rooth propose, of which
more will be said in Chapter 8). There is also a criticism one could make of proposed extensions
that is independent of the emergence criterion. It is that whatever the extensions, the result
would be that the most natural reading of the sentence was not associated with the most simple

analysis. Such a criticism would become a concrete objection if one insisted on a principle that

canonicality of reading should be correlated with complexity of disambiguation. I am not going
to argue for such a principle, and so not too much weight can be put on the second criticism.

Having made these observations of T15's handling of intensional and extensional verbs we now

leave the 'Quantifiers as objects', typing and consider the intensionalised version.

3.2 The 'Intensions of Quantifiers as objects' typing

The 'Intensions of Quantifiers as objects' typing is:

"(TV) = ((«—►e')—*(e—+<)).
KTTV) = ((s-+e,)—+((s—>e<)-+(e—►<))).
i/(TVVP) = ((s—e')—(Wp_>(e-d))).
"(P) = ((«—»e')-+(e—♦<)).
Around this typing one could build the theory below.

£17:another language that does not distinguish NP and QNP
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1. A17: as for £16 , with the addition of QNPC

2. X\7: Same as for £16
3. Ex7 \ as for £16 , with the addition of Tq<f, which as an operation on strings is an

identity.

4. <S17 =

(•^>1 (DET,CN),QNP), <^n,(CN)PP),CN), (J7■>, (PV,SC), VP),
>> (VVP, VPC), VP), <^T,(S),SC>, (^PjT))(VP),VPC>

(rqA, (QNP), QNPC), <JF>, (QNP, VP), S)
{(•^>> (^)QNPC), <t) : (6,a) £ {(TV, VP), (TTV.TV), (TTVP, VVP), (P, PP)}}

The class of models AC16 for £17 ((£?,(t/7)7€r, /), (w, </)) associated with £,l,J,v is
£ AC16 iff

1. Typing mapping: same as u15 , except for the VT's and for QNPC

i/16(TV) = ((«—e4)-^(e—<)). p16(TTV) = ((s-»e<)—((s-+e')—(e-**))), j/16(TVVP) =
((^e«)^((s_(e-+t))_+(e-+0))I "16(P) = ((a-e*M(«-0-(«-0)), *16(QNPC) =

2. Constraints on /16: Postulates are as before, with the exception of the redefinition of
the 'Copula' and 'Extensional VT plus quantifier' postulate (see below).

3. Algebraic Constraints: as for AC15 , with the addition the Q\ additionally bears the
index (?,{)•

Definition 58 (New postulates for AC16) Whatever model ({B, (£7)7er> /)> (w, </)) € AC16,
whatever a £ A17,
if a = (is, (),TV, then f(a) = I211AR1(1S(£,I,J)) (Copula postulate)

unless a is seeks ,if a £ /16(a) = TlARlm\tet for some mi"' € Meet

if a £ <Tttv> /16(a) = T2TlAR?ARxm\eeet for some my"et £ A4eeet

if a £ ^6VVP,/16(o) = J iARfmSW" for some £ Me{,et)et
unless a is about ,if a G <Tp6>/16(a) = I1AR1mye(-et^et for some mi8'"'8' £

A4e(et)et

Let T16 be the combination of £17 and AC16. The 'Intensions of quantifiers as arguments' typing
can be argued for simply by asking oneself the question how it may be brought about that
the common noun has an opaque occurrence. The other locations in which a CN may have an

opaque occurrence have all arisen by the downward heritability of opacity, such as when the CN

occurs in an embedded sentence or an embedded VP. The reason for the opaque contribution

Extension¬

al VT plus
>

Quantifier

postulate
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of the CN in this case is the opaque occurrence of the embedded sentence or embedded VP,

and this is reflected by giving to sentence and VP embedders, types that have intensional types
in argument position: ((s-+t)—>(e—►*)) and ((s—►(e—►<))—»(e—<•<)) for example. By analogy, it
will be the case that if one gives to intensional transitives a type such that they apply to the
intensions of quantifiers, the common noun will be predicted to occur opaquely. So the idea is
to make the denotation of the only disambiguation of seeks a man be:

[seeks](u>,0)(u>' [a manj(t//, </))

It will then possible for this to be different to the denotation of the only disambiguation of seeks
a a, even when the denotations of man and are identical, and thus man will be predicted to
occur opaquely.

As as was the case with the introduction of the embedding verbs, once one has fixed on a certain
idea for the analysis of the creator of the opaque contexts, there are a number choices about how
to situate this in the wider setting of a whole language. As we observed then, one strategy is to

carry out sin across the board intensionalisation of types, use the intensional function application

operation and recover the effect of transparency by certain 'extensionality' postulates. That was
what Montague did in PTQ. The other strategy limits the extent of the intensionalisation of

types to just those categories of expression in which one finds instances of creators of opaque
contexts. Other expressions retain their extensional types and continue to be combined with

other expressions by 'ordinary' function application. We pursued the latter strategy in T16.
This is one difference between the PTQ account and T16. The other main difference is that,
like T15 , the 'Quantifying-in' rules have been left out.

What we will do now is consider whether the criticisms made in section 3.1 of the 'Quantifiers
as objects' typing can also be made of the 'Intensions of Quantifiers as objects' typing (the
discussion of emergence will not be repeated, as it seems clear that what was said of T15
carroes over to 7~16).
Intensional verbs

We observed that under the 'Quantifiers as objects' typing, not all the properties ofan intensional
transitive verb like seek were accounted for. The predicted behaviour of loves and seeks according
to T16 is shown in (73), which should be compared with (66,pl48), the corresponding table for

(73) loves seeks

man is unambiguously transparent + -

TV is unambiguously transparent + -

Argument is unambiguously valid + -

It was objected to the 'Quantifiers as objects' typing that it modeled not intensional verbs but
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PTQ-verbs. One cannot make the same objection of the 'Intensions of quantifiers as objects'

typing: intensional verbs and extensional verbs are given the right properties. However, a weaker
form of the PTQ-verb objection will be made when the extensional verbs are considered below.

Another objection brought against the 'Quantifiers as objects' typing was that it rendered the
verb plus quantifier combination too non-logical, ignoring that there were some valid inferences
to be drawn (these were illustrated in (68,pl50) and (69,pl50)). A postulate was suggested for
intensional verbs which validated these but which also validated incorrectly (70,pl50).

Since [wants a red hat](tt>,sr) is determined by the value of w [a red hat](tu, (/), it would be
natural to alter the postulate to be sensitive to the inclusion ordering in the type (s—<-((e—►<)—•■<)),
similarly requiring upward monotonicity of [wants](tu, g) with respect to this ordering. This
seems to have the desired effect on the inferences (68), (69) and (70), validating the (68) and

(69) and, moreover not validating the inference in (70).

Therefore neither of the criticisms made of the 'Quantifiers as objects' typing in respect of the
treatment of intensional transitive verbs applies to the 'Intensions of Quantifiers as objects'

typing.

Extensional verbs

The revised version of 'Extensional VT plus quantifier' postulate (Definition 58,pl54) gives T16
the same coverage of semantic facts pertaining to combinations of extensional verbal terms and

quantifiers as T15 had. In other words the properties of John loves a man will be accounted

for, but the most natural reading of John loves and hates a man will not. Therefore in respect of
the latter kind of sentence, the T16 is subject to the same criticism as T15 .

The 'Extensional VT plus quantifier' postulate, Definition 58, is in fact a composition of Def¬
inition 42 (plOO) and Definition 57 (pl47). Definition 42 was the 'Extensionality' postulate
put forward when the sentence embedders were introduced in section 2.1.2. Definition 57 was

the previous version of the 'Extensional VT plus quantifier' postulate, that given for T15 .

The compound nature of Definition 58 leads one to make the following version of the PTQ-verb
criticism.

Although T16 does not make verbs behave like PTQ-verbs, it certainly allows for the existence

of such verbs. T16 could easily make extensional verbs behave like PTQ-verb if the postulate
for extensional verbs were simplified into being a version of the 'Extensionality' postulate, Defi¬
nition 42. That 'Extensionality' postulate makes items typed ((s—►r)—+6) behave as if they had
been typed (r—>b), and in the case of the 'Intensions of quantifiers as objects' typing, such a

postulate would make 'extensional' verbs behave like PTQ-verbs.

This to be sure a rather weak criticism and to turn it into a very substantial objection, a

certain tacit principle would have to be made explicit and argued for: the principle that that
if a meaning postulate relates meanings of type a to meanings of type b in what seems a two
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step fashion, then one would expect to find expressions whose behaviour was predicted by going

through only one of those two steps. Now this is a very informal principle and I am not going
to attempt to make it more precise, or to argue for it. So T16's allowance for the possibility of

PTQ-verbs will be left a weak criticism only.

3.3 Summary

We have considered two accounts based on non-minimal types.

The first was the theory T15 (pl47), based on the 'Quantifiers as objects' non-minimal typing.
We claimed that if the mechanisms for non-local quantification were added, the result would
be a near clone of Montague's PTQ account. We observed that the expanded version of T15
would not be an emergent account, and that observation is intended to hold for Montague's PTQ
account also. We then made some observations concerning the local mechanism for quantification

provided by T15. Firstly, T15 might be argued to account for intensional verbs. However, this

appearance only arises if undue prominence is given to an inference invalidating property of such

verbs, for this is indeed accounted for by T15. One may then overlook the canonical opacity

producing behaviour of such verbs, a behaviour that is not accounted for by T15. We called
the fictional, transparency inducing, inference invalidating class of verbs accounted for by 7"15,
the PTQ-verbs. We also argued that certain valid arguments using intensional verbs are not

validated by T15. We then considered the extensional verbs, and suggested that the role of
the 'Extensional VT plus Quantifier' postulate is to allow 7"15 to simulate the result in T12 of

combing a VT with a quantifier, gaining the effect of minimal types without actually having
them. It was observed that such simulation is, however, imperfect.

The second theory was T16 (pl54), based on the 'Intensions of Quantifiers as objects' non-
minimal typing. The objections made concerning T15's explanation of intensional verbs do
not hold for T16. However, for 7~16 there are same undergenerations for sentence containing
extensional verbs as there was for T15. It was also observed that the typing embodied T16
'allows for' the existence of PTQ-verbs.

Therefore section 3 has achieved the following two things. First, a further account of junction
and quantifiers that the literature provides has been considered and shown not to meet the

emergence criterion. Second some objections have been made to the non-minimal typing used
in PTQ, the main one being that it predicts a curious syndrome that no verb has.

4 Conclusions

The main conclusion of the chapter is that amongst the mechanisms for accounting for junctions
and quantifiers that the literature provides are Conjunction Reduction, Cross-Categorial Coor-
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dination, Quantifier Lowering and Cross-Categorial Quantification, and on the basis of these
one cannot construct a descriptively adequate, emergent account. This has been shown both for
a minimal and for a non-minimal typing regime. Some further mechanisms that the literature

provides will be considered in Chapters 8 and 9.

Also evidence has been given that one should expect a successful account to have certain features.
One of these is locality and the other of these is minimality of typing. The evidence is not

conclusive, but it is evidence nonetheless. For subsequent developments in the thesis it is not

necessary that one be convinced of the necessity for locality and minimality. However, the

Polymorphic categorial account has both of these features and it is attractive thought at least
that it is the account logically to be expected if the features of locality and minimality were

insisted on.
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Chapter 5 described various accounts that have been proposed to explain the following two

properties of junctions and determiners:

• Junctions and determiners have extensive priveleges of occurrence.

• Junctions and determiners manifest recursive ambiguity phenomena as noted in Hypothe¬
ses 3 and 4.

Can these syntactic and semantic properties of junctions and determiners be accounted for by
an LCG based account, that is by formulating a suitable lU'^-theory of reference ? It is
with this question that we will be concerned with in this chapter, and the answer given will be
a negative one.

Now to make the claim that there is no if!-^-theory of reference that accounts for junctions
and determiners is to make a large claim indeed, and one very hard to prove: somehow the
considerations must embrace all possible categorial lexicons. To not raise false expectations, it
should be said at this early stage that we have no proof that a lV'^-theory of reference

cannot be found. Instead, recorded below are the results of a number of excursions into the space

of possible if! '^-theories of reference in search of an account of junctions and determiners.

Moortgat and Hendriks have all also comes to the negative conclusion concerning accounting for
the determiners in if/'V) ( Moortgat 88 p223-225, Hendriks 90 pl9-28, Bouma 86 also). Their
conclusions, like those in this chapter, are inductively reached on the basis of 'tried and error'

excursions into the space of possible categorisations (Hendriks more extensive than Moortgat).
Something must then be said in explanation of why I think the investigation carried out in this

chapter may be seen as improving upon the above mentioned discussions.

Firstly, here the junctions are considered alongside the determiners, and in the above discussions

only the determiners were considered. Secondly, the above discussions did not emphasise the

difficulty in even accounting for the basic syntactic facts, not just facts of ambiguity. Thirdly,
there is need to give a rationale to the categorial lexicons considered, and this neither of the
above mentioned discussions try to do.

One rationale that could be used but will not be, would be the principle that one would not give

any meaning postulates for verbal terms, meaning postulates such as those seen in Chapter 5.

In the absence of meaning postulates, the need to account for basic transparency facts more

or less dictates then the minimal typing of verbal terms, and from that typing one could work
backwards to a categorisation. However, to insist on using no verbal term meaning postulates,
is to forgo the possibility of explaining opacity facts in LCG, as will be seen in section 1 below.
I did not want to do that, and so I have to countenance at least some meaning postulates, and
this immediately opens the way to many possible categorisations.
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Section 1 and section 2 record attempts to construct a l^A)_theory of reference that

preserve the semantic analysis of junctions and determiners of Chapter 5. In particular these
l(/'\)-thE0RIES of reference share with the accounts in Chapter 5 the feature that junctions
and determiners are assigned just one type. Any such accounts we shall call a monomorphic
!,(/A)_theory of reference. Section 3 describes an attempt to account for junctions and

determiners that jettisons the monomorphism assumption, and thereby differs in its analysis of

junctions and determiner somewhat from any of the theories of reference in Chapter 5.

Note that the monomorphism assumption of sections 1 and 2 does not mean that the l(/A)_
theory of reference explored must assign junctions and determiners just one category,

only that if several categories are given, then the category-to-type map of the [//A).theory
of reference must map them all to a single type. The difference between section 1 and
section 2 consists in the assumptions made concerning the typing of verbal terms. Section 1
adheres as closely as possible to the minimal typing assumption of section 2 of Chapter 5, whilst
section 2 drops the assumption that the verbal terms should have minimal types, and instead
the Montagovian typing philosophy is adopted, as described in section 3 of Chapter 5. This
is where the arguments for minimality that were made in Chapter 5 can have some relevance.
If the reader was persuaded against the non-minimal typing then the further considerations of
section 2 can be side-stepped. However, because the arguments against the typing in Chapter 5
were not conclusive, we have in any case considered what the possibilities are of finding a

successful l(/A)-theory of reference based on the non-minimal typing philosophy.

None of the i//A)-theories of reference in section 1, 2 or 3 is able to account fully for the

properties of junctions and determiners. Note that the criterion of emergence does riot arise
because there are no descriptively adequate accounts of the junctions and determiners.

1 A monomorphic lV'^-theory of reference based on

minimal types

To start with we will be concerned to formulate a disambiguated Lambek language that

covers verbal terms, proper names, VP and sentence embedders, but not junctions and deter¬

miners. We will in fact be attempting the same syntactic coverage with a disambiguated

Lambek language that was covered by section 2.1 of Chapter 5, termed there 'Basic Mon¬

tagovian semantics'. It should be noted that for the moment, the intensional transitive verbs

will not be considered. Note also that to specify a disambiguated Lambek language it is

only necessary to specify the phrase-set indices and the membership of the basic phrase-sets -

the syntactic operations and rules are fixed by these.
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A disambiguated Lambek language for verbal terms, proper names and embed¬

ding verbs, £18

1. The phrase-set indices: the set cat^-^ given as bascat, {s,np, vpc,sc}

2. The basic phrase sets: Whatever strings a, whatever categories 6 G catC'\\ (a, (), 6) £
Xs iff a appears in the 6 row of the tables below:

np john, mary, hei, he2, ... (s\np)/sc believes
s\np walks sc/s that
(s\np)/np loves, is (s\np)/vpc wants

((s\np)/np)/np gives ((s\np)/vpc)/np told
vpc/(s\np) to

For models of £18 we will consider one class based on an extensional category-to-type map and
one based on an intensional map (contexts of use, J, will be considered to be assignments, as
they were from section 2.2.2 on in the previous chapter).

The extensional class of possible models AC17 for £18: ((B, (t/7)7€r, /), (w, g)) asso¬

ciated with £,T,J,v\s£ AC17 iff

1. Type Mapping: fe(np) = e, i/e(s) = t, i/e(vpc) = i/e(s\np), i/e(sc) = fe(s), ve(x/y) =

2. Constraints on f17: all expressions are freely interpreted, except (is, (), (s\np)/np), for
which /((is, (), (s\np)/np)) = IS(£,I, J).

3. Algebraic constraints: T is the set of possible proofs, with = Ff£(7)

CT17 wiU refer to the hUA)-theory of reference that is constituted by the combination of
£18 and AC17. The category-to-type map for CT17 is chosen so as to render the typing of verbal
terms as close as possible to what we have called the minimal types. In the case of the VP,

TV, and TTV verbal terms, the types assigned are exactly the minimal types, and for the other
verbal terms, the types assigned differ from the minimal types by the absence of the s-type.

Now £T17 will be assessed by some transparency/opacity data. There are readings of the

following sentences according to which the expressions marked e(resp. i) occur transparently

(resp. opaquely):

(1) a. (Mary)e walks
b. (John)e thinks that (Mary walks);
c. (John)e told Mary to (go);



1. A MONOMORPHIC L(/A)-THEORY OF REFERENCE BASED ONMINIMAL TYPES165

CT17 can handle the transparency but not the opacity data. Because CT17 is a theory that

assigns every expression indefinitely many disambiguations, if it assigns any at all, the condition
that CT17 must fulfil if it is to account for the transparency data has to be formulated with a

little care:

(2) there is a disambiguation (3 of Mary walks, involving a disambiguation Mary of cat¬
egory 6, such that whatever disambiguation a of category 6, where a is a refer¬

ring expression, whatever model, (3, (iu, </)), whatever disambiguation Mary is a, if

[Mary is a\(w,g) = 1, then [0\{w,g) = [/?[^/Mary]](to,flr).

The quantifications over disambiguations may be replaced by quantifications over flat disam¬

biguations (because of the semantic Cut Elimination theorem), and in each case there is only
one possible flat disambiguation. The semantic operations defined by the proofs of the relevant

categorising sequents are then such that (2) holds if the following implication does:

(3) for any model and for any a of category np, if ps](u>, </)([a](tu, 0))([Mary](iu, g)) = 1
then [walks](tf, ff)([Maryl(iu, g)) = [walks](u;, 0)([5](tu, </))

Due to the meaning postulate for is, this implication does hold and therefore CT17 accounts for

(la). To account for opaque occurrence of Mary walks in (lb), the following is required:

(4) there is a disambiguation (3 of John thinks that Mary walks, involving a disambiguation

Mary walks of category 6, there is a disambiguation a of category 6, where a is a

sentence, there is a model, (9, (w, g)), such that (i) [Mary walks](u;, g) = [<*](iu, g)
and (ii) \0\{w,g) ^ [/3[a/Mary walks]](w,sr).

The first step cannot this time be to declare this equivalent to a claim about flat disambigue
tions, because there are no flat disambiguations of John thinks that Mary walks that involve a

disambiguation of Mary walks. However, it suffices to consider only those disambiguations of
John thinks that Mary walks that have, besides the disambiguation of Mary walks, only word

disambiguations as parts. There as many of these as there are proofs of np, (s\np)/sc, sc/s,
s ^ s, and there are just two of these, both associated with the term X2{x^{xY))(xi).

Given this it is clear to see that if the denotations of the disambiguations of Mary walks and a

are identical as (i) requires, the denotation of any such disambiguation of John thinks that Mary
walks cannot differ from the denotation of the corresponding disambiguation of John thinks that

a, as (ii) requires. Therefore, CT17 does not account for the opaque occurrence of Mary walks
in (lb).

In a similar way one can show that CT17 predicts go to occur transparently in (lc). Therefore,
CT17 does not account for the opacity data. It might appear to be possible to solve this

problem and yet retain an extensional category to type map by changing to f(sc) = (s,<)
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and t/(vpc) = (s,e,t), leading to the types of believes and wants being (st,e,t) and (set,e,t).
However, the types of that and to will have to be (t,st) and (et,set), and this will reintroduce
transparency.

Now, what will be considered is the combination of £18 with a class of models based on an

intensional category-to-type map that aims to adhere as closely as possible to the minimal
types of verbal terms:

The intensional class of possible models AC18 for £18: ((B, (£7)7er, /), {w, g)) asso¬

ciated with £,T,J, v is £ AC18 iff

1. Type Mapping: f'(np) = e, i/'(s) = t, i/'(vpc) = i/'(s\np), i/'(sc) = f'(s), i/'(x/y) =
"'(Ay) = ((«-+",(y))->"<(*))

2. Constraints on /: with respect to certain verbal terms, / is subject to constraints as

specified in the Exiensionality postulates, defined below. / is also subject to constraint

concerning is,that and to.

3. Algebraic constraints: T is the set of possible proofs, with Q~, = H'L{7)

Definition 59 (Meaning postulates for AC18) Whatever model, ((B, (t/7)7gr, /)> (w, g)) € AC18,
if a = (is, (), (s\np)/np>, then f(a) =I1I2IS(£,I,J) (Copula)
if a = (that, (),sc/s,), /(a) = (w, g) 1—► 1—► p(w) (Complementiser)
if a = (to, (), vpc/(s\np)), then /(a) = (w,g) t-* pO''e'U P(w) (Infinitiser)
if a = (hei,(),np), then /(a) = (w,g) i-^he!) (Pronoun)

if a £ ^g\np» Mere exists such that /(a) = Tl(m\)
if a £ there exists such that /(a) — TxT2(m\)
ifa £ ^fB\np^/npynp> Mere exists such that /(a) = J1Z2J3(mi)
if a £ X)JK .. there exists mil'''") such that f(a) =I2(mi)((8\np)/8C) '
if a £ ^B\npyvpc> Mere exists such that /(a) = J2(mi)
if a £ X^s\npyvpcynp > ihere exists such that /(a) = J1J3(mj)
The Extensionality Meaning Postulates are virtual carbon-copies of those in Definition 42 in
section 2.1.2 of Chapter 5. See there also for the definition of Tn, and illustrations there of
how this saves transparency. The effect of the postulates for that and to is to ensure that the

possible meanings of, for example that Mary walks and to walk are exactly the same as the possible

meanings of Mary walks and walks. When later in this chapter, alternative typing regimes are

considered, the associated postulates for that and to will not be explicitly stated but will be
understood to be analogous to those above.

Extension-

> ality

postlates
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CT18 will refer to the l(/A)_theory of reference that is the combination of £18 with AC18.

The types assigned to verbal terms by CT18 are the minimal types plus some additional occur¬
rences of the s-type.

CT18 can account for the transparency and opacity data given in (1). There is the same range of
disambiguations to be considered, only now the syntactic operations are associated with different
semantic operation, being defined by the application of H'L rather than H[ to i//A) proofs.
The transparency of the occurrence of Mary in (la) will be explained if the following implication
holds:

(5) for any model and for any a of category np, if |fls](itf, g)(w' lorJCtf', i-*

[Mary](u/, g)) = 1 then [walks](tt;, g)(w' [Mary](u/, ff)) = [walks](u>, g)(w' t-»

[a](u/,ff))

Now to suppose a counterexample to this to suppose a model and an a such that

(6) |Ts](u>,</)(u/ i—h- [a](u/, (/))(«/ (-► [Mary](u/,$r)) = 1
and [walks](w,g)(w' i-» [Mary^u;',g)) ^ [walks](tu, g)(w' >-* [«](«/,ff))

Taking into account the meaning postulates for is and for intransitive verbs, for some the
above entails the following contradiction:

(7) [«]K</) = JMary](w, </) = 1 and m(w, 0)([Mary](u;, </)) / m(u>,0)(|[a](M>,fl))

The condition for the opaque occurrence of Mary walks in (lb) now is:

(8) there exists a model and an a such that [Mary walks](u;, g) = [5](w,g) and
[thinks](w, <7) ^ [thinks](u;,</)

(w' t—► fthat](u/, g)(w" h-+ (u/ ► [that](u/ ,g)(to"
[Mary walks](ui", j))) [cr](w",g)))
(w"" y-* [JohnJ(u;"", </)) (w"" [J^H(u;"", 9))

Now taking into account the meaning postulates for thinks and that, this is equivalent to:

(9) there is some model, there is some a and there is there is some m('t,et such that
[thinks] = I2rn and [Mary walks](u;,ff) = [«](">,9) and,
m('f'et\w,g)(tv" *-* [Mary walks](w",^))([John]|(u;, jr)) ^ m(-"'et\w,g)(w" >-*

[a](u/', ff))([John](«', g))
There is no contradiction here, and hence the opacity is accounted for.

CT18 is the most minimally typed l^'^-theory of REFERENCE that can handle the opacity

phenomena arising from sentence and VP embedding verbs, and CT18 will be the assumed core

around which now a theory encompassing junctions and determiners will be sought.



168CHAPTER 6. THE FAILURE OF LOG TO ACCOUNTFOR THE LOGICAL CONSTANTS

Determiners cannot be introduced until common nouns have been. Nor will there be any pos¬

sibility of using recursive ambiguity data unless there are disambiguations of sentences such as

John is a man. The introduction of common nouns is most easily accomplished by the addition
of a basic category: cn, for which the typing assumption is p'(cn) = (e—*t). In Chapter 5,
section 2.2.2, the approach taken to the John is a man construction, was to assume a syntactic

operation, Tit., which combined a disambiguation of John with a disambiguation of man to give
a disambiguation of John is a man. This is not a possibility for a disambiguated Lambek lan¬

guage because there are only concatenative syntactic operations available. What we shall do is
to count the John is a man construction amongst the distributional data concerning quantifiers
to be accounted for . £7"19 will be understood to the extension of £7"18 to accommodate

common nouns.

The search for categorisations of junctions and determiners by which to expand £7"19 which will
now take place has the following character: types for junctions and determiners will be assumed

which, because of the already fixed category-to-type map vl, will fix the possible categorisations
that may be considered.

Certain meanings 1 were assigned to junctions and determiners in Chapter 5, meanings which
it is commonplace to assign them and on the basis of which it is known to be possible to build
a successful theory of reference. Therefore, in the present context of trying to construct

a successful '^-theory of reference it is a natural assumption that junctions and deter¬
miners should again have these familiar meanings. However, the assumption must be rejected,
and it must be rejected because of the types of these familiar meanings:

(10) Junctions: (<—►(<—>f))
Determiners: ((e—><)-+((e—►<)—►<))

£T19 is associated with an intensional category-to-type map and no categories of CAT^1^ are

associated with the types in (10) by the intensional category-to-type map, i/'.

Here then is an early cost to our choosing above an intensional category-to-type map in the
face of opacity facts. One could at this point backtrack, revert to the extensional category-to-

type map and abandon the attempt to explain opacity. Under the extensional category-to-type
there is a non-empty pool of categories that are paired with the types in (10), and one could
see whether any of these accounts for the vital syntactic and semantic phenomena concerning

junctions and determiners. We will not do this. Instead we will adopt the strategy of giving the

junctions and determiners unfamiliar denotations of types that are at least the image of some

category and which may be related to the familiar denotations by meaning postulates.

The following seem the simplest types for junctions and determiners that meet the joint require-
1 Or rather certain meaning postulates concerning junctions and determiners were defined which specified the

meanings assigned in every possible model.
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ments of being the images of categories and being relatable to the familiar types by meaning

postulate:

(11) Junctions: ((s->t)—>((s-+t)—>t))
Determiners: ((s—*(e—►*))-+((«—►((s-+e)—►<))—♦<))

The possible categorisations for junctions and determiners on the typing assumption in (11) are:

(12) Junctions: (s/s)/s Determiners: (s/(s/np))/cn

The following examples of a meaning postulates for junctions and determiners relate meanings
of the orthodox types to meanings of the types in (11).

(13) Whatever MODEL, ((£?, ((/7)7€r, f),(w>9))> associated with £,1,J,

What one can do now is see whether the syntactic and semantic facts about junctions and
determiners can be accounted for by expanding CT19 with choices of categorisation from among

those in (12). Before doing this, it should be said that there are probably other types than
those in (11) that both are the images of at least some categories and which are relatable to the
orthodox types. With each of these there is associated a further possible way to expand CT19.
Nonetheless the further possibilities will not be considered.

Of the four junction categorisations in (12), those whose slashes all lean one way would lead to
obvious overgenerations and can be discounted. The other two categorisations Eire instantiations
of the two schemata (x/y)\z and (x\z)/y. It is the case that for all x, y and z that (x/y)\z ■$=>

{x\z)/y, and therefore only one of the pair need be considered. We shall choose (s\s)/s.

Four out of the eight determiner categorisations in (12) have as their argument, cn, introduced

by a backwards slash. These may be disregarded on the grounds that the common noun fol¬
lows rather than precedes the determiner. Of the remaining four possibilities, s\(s\np) may be
discounted as leading to certain obvious overgenerations, such as walks every man. This leaves
three possibilities, all instances of Q/cn, where Q is one the categories appearing below:

(s/s)\s

(s\s)/s
(s\s)\s

(s/(s/np))\cn
(s/(s\np))/cn

(s/(s\np))\cn
(s\(s/np))/cn
(s\(s/np))\cn
(s\(s\np))/cn
(s\(s\np))\cn

M(u,, ff)(x'<)(y") = lll7{AAfV(£, 1, J))
[everyj(ty, </)(x*e')(j/,(,e)<) = £V£Ky(£,I,J)(w, g)(xw)(ze ^ yw(w' ~ z)),

(14) s/(s/np), s/(s\np), s\(s/np)
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By £7~20 we shall refer to that extension of £7"19 that categorises junctions as (s\s)/s, and

categorises determiners as Q/cn, for all Q in (14). To be considered then is whether £7~20 can

account for the syntactic and semantic properties of junctions and determiners.

Some of the syntactic facts that need to be accounted for are given in (15) and (16): all the
sentences in (15) and (16) must be categorisable as s.

(15) John walks and Mary talks (S case)
John walks or talks (VP case)
John loves and hates Mary (TV case)
John wants and needs to go (VVP case)
John told or asked Mary to go (TVVP case)

(16) every man walks (VP case)
John loves every man (TV case)
John gives every man Mary (TTV case)
John told every man to go (TVVP case)
John is a man (Copula case)

Now CT20 can account for the data in (15) only if the following categorising sequents are

derivable in

(17) np, s\np, (s\s)/s, np, s\np => s (S case)
np, s\np, (s\s)/s, s\np => s (VP case)
np, (s\np)/np, (s\s)/s, (s\np)/np, np => s (TV case)
np, (s\np)/vpc, (s\s)/s, (s\np)/vpc, vpc/(s\np), s\np => s (VVP case)
np, ((s\np)/vpc)/np, (s\s)/s, ((s\np)/vpc)/np, np, vpc/(s\np), s\np => s (TVVP
case)

Because of the decidability property of if!— Cut, the derivability of the above five sequents

may be determined. The reader will quickly be able to find a proof for the S-case. By rather

patient application, the reader should be able to convince him or herself that there is no proof for
the other cases. Because of the property of string-semantic soundness and completeness, one can

also demonstrate these underivability results string semantically, by displaying a countermodel.
This may prove less work and be more illuminating than the search for calculus proofs and an

illustration of the method is given below in demonstrating the VP-case is underivable.

Proof that the VP-case for junctions is underivable in

We seek a countermodel to

(i) np, s\np, (s\s)/s, s\np => s
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Suppose:

[np] = {□}, [ s ] is the smallest set such that CP € [s] and if a, b 6 [s] then a06 6 [s]

Then it follows that:

6 [AnpJ, 0€ I(s\s)/s], CPOP t [-].
.'.there exist a,b,c,d (namely dP.O^) such that a € [np], 6 € [s\np], c € [(s\s)/s], d 6

[s\np] and o • 6 • c • <f g [s]

and this refutes (i). □

So one can show that £7~20 does not fully account for syntactic properties of junctions in English,
and ipso facto, does not fully account for their semantic properties. One can only bring semantic
data to bear upon junction-containing sentences of which £T20 provides a disambiguation, and
that is only for the sentential junctions. One can confirm that the above suggested meaning

postulate for and does allow £T20 to account for the instances of Hypothesis 4 as applied to

sentential junctions.

We will now consider whether £7~20 can account for the syntactic properties of determiners,as

set out in (16). This can only be so if the following categorising sequents are derivable in
l(/A) — Cut:

(18) for some Q in (14),
Q/cn, cn, s\np => s (VP case)
np, (s\np)/np, Q/cn, cn => s (TV case and Copula case)
np, ((s\np)/np)/np, Q/cn, cn, np =6- s (TTV case)
np, ((s\np)/vpc)/np, Q/cn, cn, vpc/(s\np), s\np =6- s (TVVP case)

It should-be noted that the sequents in (18) are not being put forward as simultaneous equations
all of which some single value of Q/cn must satisfy; different values of Q/cn may be considered
for each sequent, for we axe not requiring that determiners have just one categorisation.

Choosing Q/cn to be (s/(s\np))/cn, the VP case has the proof given in (19a), and choosing
Q/cn to be (s\(s/np))/cn, the TV case (which is also the Copula case) has the proof given in

(19b).

(19) a. s => s s\np =>■ s\np b. np, (s\np)/np, np => s
/L /R

s/(s\np), s\np => s cn => cn np, (s\np)/np =» s/np s =>■ s
/L \L

((s/(s\np))/cn)/cn, cn, s\np =S> s np, (s\np)/np, s\(s/np) =4- s cn =» cn
/ L

np, (s\np)/np, (s\(s/np))/cn, cn =>• s

So values of Q from the possibilities listed in (14) can be found that account for the first two
cases in the list of distributional facts given in (16). In fact these will be the only success cases:
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the TTV and TVVP cases are not accounted for under any of the possible values of Q. As with
the failure cases for the junctions there are two ways to show this, one by search for possible
L^A) proofs and the other by reasoning string-semantically. Below, by basically string-semantic

methods, the underivability of the TTV case is proved.

Part of the reasoning invokes a certain metamathematical property of the Lambek calculus.
This is notion of count-consistency (van Benthem 86). The idea is to look at a sequent, whose
a category and take a certain kind of census of the number of times it occurs in the sequent.

Axiom sequents have an identical left and righthand side, so the census for each side will be
identical. It turns out that there is a simple way to define how to take the census so that the tally
for the lefthand side remains the same as the tally for the righthand side as new sequents are

inferred from the axiom sequents: one simply counts an occurence as an argument negatively,
and an occurence as a value positively. This way of counting is what is defined in the following:

Definition 60 (Count) Whatever x € BASCAT, whatever y, z £ cat(/A);
x-count of y is 1 if y E BASCAT and x = y

x-count of y is 0 if y € BASCAT and x ^ y

x-count ofy/z or y\z is x-count of y minus x-count of z

It is easily proved (van Benthem 86) that for all derivable sequents of if!A), for all basic category
x, the sum of the i-counts of the antecedent categories equals the x-count of the succedent (van
Benthem 86). I will refer to this as the count-consistency property. Now one can use this

property whilst actively searching for a proof of a given sequent, by rejecting any subgoal that
is a count-inconsistent sequent, and it is to this use that we put it in the following proof.

Proof that in i/'A) the TTV case is not derivable.

First we show that for whatever Q in (14), the categorising sequent,

(i) np, ((s\np)/np)/ np, Q/cn, cn, np =>• s

is derivable only if the following sequent is

(ii) np, ((s\np)/np)/np, Q, np =»• s

The form of (i) is such that it matches only the (/ L) rule. This it does in five different ways,
and below are listed the five different possibilities for the minor premise:

(1) Q/cn => np

(2) Qfcn, cn ^ np

(3) Q/cn,'cn, np => np

(4) cn => cn

(5) cn, np cn

cn-count rules out (1). np-count rules out (3) and (5). (2) is not an axiom ruid matches

against only the (/ L) rule, leading to the major premise Q => np. For none of the values
of Q is this an axiom or matchable against a rule. Therefore (2) may be ruled out. (4) is
the only remaining possibility and being an axiom it is derivable. The major premise of the

(/L) inference for this match is np, ((s\np)/np)/np, Q, np => s, that is (ii) and so the proof
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of (i) reduces to (ii). We will give now a countermodel to all three of the sequents that (ii)
represents under different instantiation of Q drawn from (14).
We suppose:

[np] = {□}, [s]= {□<?□□

It follows that,

[s\np] = {<?□□ [s/np] = { CP □ [s/(s\np)] = { □ ,

0?DD
CP DO

CP CO

OCPQ

OCPn

OcPO

OCPO

OOcP

OOCP}

PDO} CPD O}O}
OcP

OOP}

[s\(s/np)] = {□ [s/(s/np)] = {O}.
O}

[(s\np)/np] = {<?□} [((s\np)/np)/np] = {P}

Therefore whether Q = s/(s\np) or s\(s/np) or s/(s/np), <0>G [Q]> »Jid so

there exists a,b,c,d (namely □, P, O □) such that a £ [np], b £ [((s\np)/np)/np], c 6 [Q],

d £ [np], a ■ 6 • c • d £ [s]

and this refutes all the instantiations of (ii).□

Therefore, by failing to account for the TTV and TVVP cases, we can say that CT20 fails to

account fully for the syntactic properties of determiners in English, and ipso facto, CT20 fails
to account fully for their semantic properties. The fact that an LCG account, based on the
above very natural categorisation assumptions, fails even to account for the syntactic properties
of junctions and determiners is one of the most surprising aspects of i/^A). Jt is surprising

because, as we saw in Chapter 4, LCG does produce a very attractive account of the syntactic
and ambiguity facts for the structure QNPi TV QNP2.

That is more or less that as far as showing that no monomorphic, A)_theory of reference
can be found adhering to minimal types. We turn in the next section to the possibility of non-
minimal types. For the remainder of this section I will consider the semantic capabilities of
CT20 for those sentences of which it does provide a disambiguation.

Examples of sentences for which CT20 provides disambiguations, are the VP-case and the TV-
case of the sentences put forward as the syntactic data in (16). These are unambiguous and
the single consequences of Hypothesis 3 for these sentences will be accounted for by CT20 if the
meaning postulate for determiners given in (13) is adopted.

As was the case for the transparency data, the fact that CT20 provides indefinitely many dis¬

ambiguations of an expression if it provides any at all, means that one has to formulate with
care the condition to be entailed by CT20 if it is to be said to have accounted for a piece of

recursive ambiguity data. For example we will say that to account for the fact that every man
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walks is recursively ambiguous wrt. every man, £T20 must entail:

(20) there is a disambiguation /? of every man walks such that whatever hei is a man,

whatever hei walks, whatever model (3,(w,g)),
[/?](«>, g) = 1 iff EVERY {x : [[he! is a man]](tn, gxhtx) = 1}

{x : |[hei walks](ix>,s£ei) = 1}

The only possible flat disambiguation of every man walks has the property described in (20) as

shown below.

That the flat disambiguation of every man walks has the property described in

(20)

To suppose that the one possible flat disambiguation of every man walks does not have the

property described in (20) is to suppose that

(1) There is a hei is a man, there is a hei walks, there is a model, (9, (w,g)), such that
[every man walks]((w,p)) = 1

EVERY ({ x: [ hei is a man]((tr,fl£ei)) },{ x: [hei walksR^.aJ*1)) })
Now (1) is equivalent to a drum quantifying over fiat disambigued.ions, and for each of the
sentences involved, there is only only flat disambiguation, and henceforth hei is a man and
hei walks shall be understood as referring to these. To derive entailments the denotations of
every man walks, hei is a man and hei walks must be determined:

[every man walks]((us, g)) = [every](to,g)(tv' i-t- [man](u/,g))(tt/' i-+ [walks](u/,s))

{x : [hei walks](tu, ) = 1} = {x : (waiks](w, g)(w' >-► x) = 1}

{x : [hei is a man](u>,a*ei) = 1} (i)
= {* ■ Pl(w,ahei)(w' i- [man](u>',flhei))(w' _► ^ -+ (ii)
dw')(w' [v7l(w',flJei))) = 1}
= {x : A(£, I, J)(w, a)([manj(tu', fl))(ye !-► fls](u;,g)(u/ y)(w' >-► x)) = 1} (iii)
= {x : A(£,I,J)(w,g)(\m5n\(w',g))(yc lS(£,I,J)(w,g)(y)(x)) = 1} (iv)
= {x : A(£,I, /)(«,,j)(|mailK,j))(c/({x}))} (v)
= {x : [man](ui,3)(x) = 1} (vi)

From (ii) to (iii) requires the meaning postulates for a and pronouns, from (iii) to (iv) requires
the meaning postulate for is, from (iv) to (v) relies on the definition of IS and from (v) to
(vi) relies on the definition of A.

Taking into account these identities (1) entails

(2) there is a model, (3, (w,g)), such that
[everyj(ui,g)(w' >-+ [man](u/,s))(u;' >-+ [walksRtu'.a)) = 1

EVERY ({x : [man](u/,g)(x) = 1}, {x : [walks](tn,s)(t</ i-+ x)})

Taking into account the postulate for every, (2) entails:

(3) there is a model, (9, (w,g)), such that

£V£ny(£,I,J)(w,g)([mSn\(w,g))(x ~ f^iki](w,a)(w' x)) = 1
EVERY ({x : [man](tu,s)(x) = 1}, {i : [walks] (tw,p)(tu' x)})

Given the definition of £V£Ky, (3) is a contradiction. Hence (1) is false. □
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CT20 also provides disambiguations of genuinely ambiguous sentences, such as:

(21) a. every man loves a woman

b. John believes a man came in

Now although £T20 is rather a weak theory since it cannot account fully for the syntactic

properties of determiners, CT20 has some strengths, for it is able to account for the ambiguity
of (21a). The relevant two proofs have already been previewed in section 3.2.6 of Chapter 4 in
illustration of the potential of l^A) for explaining ambiguities. See (17) and (18) of Chapter 4.
On the strength of this one might entertain the hypothesis that for all ambiguous sentences for
which CT20 provides at least one disambiguation, CT20 provides enough disambiguations to

account for the ambiguity. (21b) is a counterexample to this hypothesis, as we will now show
(the work done here will also be of use in Section 3) . To show this we will not consider the set
of flat disambiguations but will simplify a little by considering the set of disambiguations that
are almost flat, having as their one non-lexical subpart a disambiguation of a man. Therefore
the disambiguations are of the form,

1 is a proof of Q/cn, cn => Q,
John believes that a man came in

—— 2 is a proof of np, (s\np)/sc, sc/s,
np (s\np)/sc sc/s Q/cn cn s\np

1 Q, s\np =► s

2 ,
s

np, (s\np)/sc, sc/s, Q, s\np => s is provable only for Q = s/(s\np), as is shown below, followed
by the 5 possible proofs for this value of Q (the proofs are not developed back as far as axioms
but until sequents which either have exactly one proof or are semantically unequivocal).

That np, (s\np//sc, sc/s, Q, s\np => s is provable only for Q = s/(s\np)

Consider in left-to-right order across the sequent the connectives to which one could apply
a Slash-Left rule . For the principal connectives of (s\np)/sc and sc/s, the count-consistent
combinations ofmajor and minor premise are (la,lb) and (2a,2b) below. Then there are the
possibilities arising through the principal connective of Q. If Q = s/(s\np), then one is lead
to the major and minor premises (3a,3b) below. If Q = s\(s/np), all possible minor premises
are count inconsistent. If <3 = s/(s/np), the only possible minor premise is s\np =>■ s/np,
and this is not provable. Finally there is the principal connective of s\np. There are two

count-consistent possibilities for the minor premise, Q => np, which one can see is provable
for no value of Q, and np, (s\np)/sc, sc/s, Q => np, which is also provable for no value of Q,
to see which one only has to note the count-inconsistency of all possible minor premises at
the next Slash Left inference.

(la) np, s\np => s (lb) sc/s, Q, s\np => sc

(2a) np, (s\np)/sc, sc s (2b) Q, s\np => s

(3a) np, (s\np)/sc, sc/s, s => s (3b) s\np => s\np
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(la) has exactly one proof. The connectives in (lb) will be considered in left-to-right order.
For the principal slash of sc/s, the only count-consistent pairing of major and minor premise
is (lb.la,lb.lb) below. Then there is the principal connective of Q. If Q = s/(s\np) then
one is led to the pair (lb.2a,lb,2b). lb is not provable for the other values of Q. The final
(lb) possibility is the principal connective of s\np, for which the only count-consistent minor
premise is the improvable Q => np. (2a) has exactly one proof. (2b) is provable only for
Q = 8/(s\np), and then only one way. There are two count-consistent possible pairings of
major and minor premise for (3a), shown below as (3a.la,3a.lb) and (3a.2a,3a.2b). (3b) is
semantically unambiguous.

(lb.la) sc =4 sc (lb.lb) Q, s\np =4 s

(lb.2a) sc/s, s ^ sc (lb.2b) s\np ^ s\np
(3a.la) np, s\np => s (3a.lb) sc/s, s =4 sc

(3a.2a) np, (s\np)/sc, sc =4 s (3a.2b) s =4 s

All of these except (lb.lb) have either exactly one proof or are semantically unambiguous,

(lb.lb) is in fact provable only for Q = s/(s\np), then in only one way. Therefore we have

shown that the only choice of Q for which np, (s\np)/sc, sc/s, Q, s\np =4 8 is provable is

Q - s/(s\np). □

sc =4 sc s/(s\np), s\np =4 s

np, s\np =4 a sc/s, s/(s\np), s\np =4 sc

np, (s\np)/sc, sc/s, s/(s\np), s\np =4 s

•/L

■/L

c/s, s =4 sc s\np =4 s\np

np, s\np =4 s sc/s, s/(s\np), s\np ^ sc

np, (s\np)/sc, sc/s, s/(s\np), s\np =4 s

-/L

/L

np, s\np =4 s sc =4 sc
/L

np, (s\np)/sc, sc => s s/(s\np), s\np ^ s

np, (s\np)/sc, sc/s, s/(s\np), s\np =4 8
/L

np, s\np =4 s sc/s, s =4 sc
—————————/L
np, (s\np)/sc, sc/s, s =4 s s\np ^ s\np
np, (s\np)/sc, sc/s, s/(s\np), s\np =4 s

■/L

np, (s\np)/sc, sc ^ s s =4 s
/L

np, (s\np)/sc, sc/s, 148 s\np =4 s\np
np, (s\np)/sc, sc/s, s/(s\np), s\np =4 s

■/L

Now despite the number of different proofs of np, (s\np)/sc, sc/s, s/(s\np), s\np => s there is
no significant semantic diversity, for all five of these proofs are associated with the same term

by H'l, assumingx\and xare the terms associated with the
antecedent categories:

Therefore all the disambiguations of John believes a man came in that we are considering will be

assigned the same meaning, and we may say that CT20 fails to account for the ambiguity.

With this observation about £T20, we conclude the assessment of its syntactic and semantic
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properties. To summarise the findings, one may say that £T20 does not account fully for the

syntax of either junctions or determiners. For some of the determiner-containing sentences of
which jCT20 provides a disambiguation, CT20 accounts for their ambiguity and for some some it
does not. This syntactic and semantic performance of CT20 is summarised in Table 6.1, along
with that of some of the other L^'^-THEORIES of reference that we shall be considering.

Because £T19 was the monomorphic l(/'^-THEORY of reference that adhered to the min¬

ima/ types assumption, the fact that CT19 could not be extended to a satisfactory account of

junctions and determiners shows that junctions and determiners cannot be accounted for by a

monomorphic L^'^-THEORY OF REFERENCE that adheres to the minimal types assumption.

2 A monomorphic ^-theory of reference not based

on minimal types

In the previous section the l^'^-theory of reference was so designed that the types as¬

sociated with verbal terms were as close as possible to the minimal types. In this section, two
alternative monomorphic '^-theories of reference will be looked which are so designed
that the types associated with verbal terms are non-minimal, and in fact are very close to the

Montagovian non-minimal typing of verbal terms that was discussed in section 3 of Chapter 5.
The type-association aimed at is (where q stands for ((e,/),/)):

(22) u(VP) = ((s,q),t)
u(TV) = ((s,q),((s,q),t))
i/(TTV) = ((s, q), ((S,q),((s, q)),t)))

There are two elements of choice involved in attempting to simulate this in a LV-^-THEORY OF

REFERENCE. One is the categorisation of the verbal terms and the other is the values assigned
to the atomic categories under the category-to-type map. There appear to be two pairings of
these choices that succeed in simulating the verbal term to type association described in (22).

One pairing persists with the verbal term categorisations used in the previous section (introduced
in £19) and changes the category-to-type mapping solely in the type associated with the atomic

category np, from e to ((e,<),<). Thus the verbal term to type association is:

(23) i/(s\np) = ((s, q),t)

"((s\nP)/nP) = ((s,q),((s,q),t))
f(((s\np)/np)/np) = ((«,?), ((s, q),((s,q),t)))

The other pairing revises the categorisations of verbal terms used in the previous section, but
retains the category-to-type map. We saw in the previous section several (in fact four) examples
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of categories assigned a g-like type under this mapping:

(24) s/(s/np), s/(s\np), s\(s/np), s\(s\np)

These are all assigned the g-like type

((«,((«> «).<))»*)

This g-like type shall be abbreviated as q*. If the categorisation of verbal terms is changed
in such a way that the np arguments are replaced by any of the categories in (24), the type

associated with verbal terms will be resemble that in (22), with q* in the place of q:

(25) where Q, is a category in (24)

i/(s\Qi) = ((«,?*), f)
K(8V2i)A?2) = ((«,?*), ((«,«*),*))
K((s\Qi )/Q2)/Qa) = ((«, «*). ({», «*), ((«, «*), <)))

Both of these approaches are explored below to see whether explanation of junctions and de¬
terminers can be achieved, the first option under the title 'Simple categories, complex typing'
in section 2.1 and the second option under the title 'Complex categories, simple typing' in
section 2.2.

2.1 Simple categories, complex typing

In the previous section, we led up to junctions and determiners via a simple disambiguated

Lambek language not including junctions and determiners - the language featuring in £t19.
In this section we start from the same disambiguated lambek language but in pairing it
with a class of models, change the category-to-type map to:

(26) f'(np) = ((e—►<)—+<), i/(s) = t, t/'(cn) = (e—t), i/'(vpc) = i/''(s\np), f'(sc) = t/'(s),
"'(x/y) = is'(x\y) = ((s-»i/'(j/))-n/'(x))

The change is that np is assigned not to e but to ((e—►<)—*t). Under this typing the meaning
postulates that are required for verbal terms will have to be different to those governing CT19.
These will be left to one side for the moment as we now consider the types of the junctions and
determiners.

As was the case for CT20, the types cannot be familiar types as shown in (10): they are not the

images of any category under the new is' given in (26). Once more then we must assume that
the junctions and determiners have types other than those in (10), choosing which other types
on the basis of the joint requirements that the types be the images of at least some categories
under is' and that they be relatable by meaning postulate to the orthodox types in (10).
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The simplest typing meeting these requirements is:

(27) Junctions ((s—►<)—»■((«—*■<)—►<))
Determiners ((«—»^(e-+t))—>((e—*t)-+t))

This typing allows the following categorisations for junctions and determiners:

(28) Junctions: (s/s)/s Determiners: np/cn, np\cn
(s/s)\s
(s\s)/s

(s\s)\s

With respect to junctions the same postulate as was given in (13) may be used. For the
determiners the postulate must be slightly different because the typing is different. Here in
illustration of the postulates for determiners is the postulate concerning every:

(29) Whatever model, ((B,(Gy)y^r,/)>("b </)), associated with £,T,J,

[every|(u>, ff)(a^''c<))(2/et) = £V£Hy(£,l, J){w,g){xw)(y)

We will consider now whether a l^'^-theory of reference exists whose language is an

extension of the language part of £T19, by some or all of the categorisation of junctions and
determiners in (28)

The categorisation possibilities for the junctions are here as they were in (12), and by the
same arguments as given in section 1, it is necessary to consider only (s\s)/s. Also of the
determiner categorisations that which introduces the cn argument with a backwards slash can

be disregarded.

Therefore the l(/'^-theory of reference whose performance we wish to assess has for its
language the extension of the language part of £7~19, by the categorisation of junctions as

(s\s)/s, and the categorisation of determiners as np/cn. Its class of models will be based on the

category-to-type map in (26). The resulting theory will be called £7~21.
Besides the junction and determiner postulates £T21 will be governed by postulates concerning

proper name NP's, pronouns, verbal terms, that, to and is. See Definition 61. The postulates

concerning proper name NP's and verbal terms are virtual carbon copies of the postulates given
in Definition 58 of section 3 of Chapter 5. As was pointed out in section 3 of Chapter 5, the

postulate concerning verbal terms should not simply be entitled an 'extensionality' postulate,
as that indicates that it shares with the other 'extensionality' postulates the purpose of securing
otherwise lost transparency effects. A simpler postulate than the one given would be sufficient
to secure transparency effects, a postulate which would give to verbal terms the behaviour of

PTQ-verbs (see section 3 of Chapter 5 for the introduction of this term). What the postulate

actually does is ensure that when verbal term are combined with a quantifier, the combination
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has 'the proper quantificational force'. It therefore has the rather clumsy title, 'Extensional VT

plus Quantifier postulate'.

Definition 61 (Meaning postulates for AC21) Whatever model f )>(w< 9)) G AC21,
ifa £ ,Vnp is a proper name, then /(a) = (w, g) t—1► Pet i—1- Pd for some de £ Ve (Proper Name)
if a = (he,-, (),np), the /(a) = (w,g) i-+ Pet P(g(hti)) (Pronoun)
if a = (is,(),(s\np)/np), /(a) = 1211AR2AR11S(£,1,J) (Copula)

Extension¬

al VT plus

Quantifier

postulate

ifa £ /21(a) = T1AR1miet for some miet £ Met

if a £ X(l\npynf>> f21(a) = T2!1AR2AR1mieet for some mi"' G Meet
ifa £ X2}\ .. w ,f21(a) = l3J2l1AR3AR2AR1m1eeei for somern^"1 £ Meeet((■\nP)/nP)/np v '
if a £ ^(g\np/vpc)/np./21(«) = I3IlAR3AR1m1e('et>t for some m1e(-'et^t £
Ml e(eet)et

if a £ x]\np/tc,f21(<x) = l2Afl2m/,l,ei' for some G M(>t,et)
if a £ "^g^np^pci/21(a) = T2AR2mi('(-"')t,et) for some ml(s(se)<,et) £ M(t()e)t,et)
Now to assess £T21's performance in accounting for the properties of junctions and determiners.

Little needs to be said concerning the accounting of junctions by CT21 because the categorisa¬
tions of junctions and verbal terms in CT21 are the same as those in CT20. Therefore CT21
captures exactly those syntactic properties that are captured by CT20, namely only the fact of
sentential junctions.

Turning to determiners it is easy to see that the np/cn categorisation will allow an explanation
of the distributional data (noted in 16). Therefore, in the shape of CT21, we have found a

monomorphic hUALtheory of reference that accounts for the syntactic phenomena con¬

cerning determiners. We will assess now whether CT21 accounts for the following selection of
semantic properties of sentences that contain determiners:

(30) a. every man walks is recursively ambiguous wrt. every man.

b. John loves every man is recursively ambiguous wrt. every man.

c. John gave every man Mary is recursively ambiguous wrt. every man.

d. John told every man to go is recursively ambiguous wrt. every man

e. every man loves a woman is recursively ambiguous wrt. every man and a woman

f. every man told a woman to go is recursively ambiguous wrt. every man and a woman.

g. John believes a (man),ye came in

(30a,b,c,d) constitute simple cases, recording the single consequences of Hypothesis 3 on the

unambiguous sentences of (16). They therefore encapsulate what it is for the combination of
verbal term and quantifier to have 'proper quantificational force'. (30e,f) are more demand¬

ing cases as they describe ambiguities. (30g) is a further instance of ambiguity, this time a

transparency/opacity ambiguity.
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Checking the unambiguous cases is largely a matter of checking that the meaning postulates

specified for determiners and verbal terms have the desired effect. This is illustrated for (30a).
The condition that the fact in (30a) equates to was given in (20), and it requires the existence
of a disambiguation with certain properties. £T21 does furnishes a disambiguation with the

required properties, the following one: 2

(31)
every man walks 1. np => np cn => cn

np/cn cn s\np np/cn, cn => np

— 2
s

2. np np s => s

np, s\np =» s
\L

Now we will show that the disambiguation in (31) has the property described (20).

That the disambiguation in (31) accounts for (30a)

To suppose that the disambiguation in (31) does not account for (30a) is to suppose that the

disambiguations does not have the property that was described in (20), and this is to suppose

(1) There is a hex •» a man, there is a hex walks, there is a model, (9, (w,g)), such that
[3l]((tu,g)) = 1 /» EVERY ({ x: [ hex is a man]((tu,g^'1)) },{ x: [ hej walks]((tu,g£ei)) })
Now (1) is equivalent to a claim quantifying over flat disambiguations, and for each of the
sentences involved, there is only only flat disambiguation, and henceforth hex is a man and

hex walks shall be understood as referring to these. To derive entailments of (1) we must

determine the denotations of 31), hex is a man and hex walks:

[31]((u/,3» = [walks](tu,fl)(u)' i-> [every](u/',a)(tu" >-► [man](w",g)))

{ x: [ hex walks](u/,g£ei) = 1 } ={x : [walks](w,3)(u;' h?h Px)}

{ x: [ hex is a man]((tu,3^ei)) } (i)
= {x : R(w,flJei)(w' >- [a](u>,3jei)(u>" »-► pnan](u/,,Sh<.1)))(w' !*!!(»"',s£ei ))} (»)
= {x ■■ [hex](tu,fljei)(<i2 [al(w,fl)(tv" >-► [man](u;",a))(dx >-> 1S(£,1, J)(w,g)(di )(cf2))) = 1} (iii)
= {x:A(£,I,J-)(u,,s)([manl(u;',9))(di ^ IS(£,I, J-)(w,3)(dx)(x)) = 1} (iv)
= {x : A(£a,J)(w,g)(\™fl\(w',g))(cf({x})) = 1} (v)
= {x : lman](u;,g)(x) = 1} (vi)

From (ii) to (iii) uses the meaning postulate for is, from (iii) to (iv) uses the meaning postulates
for a and pronouns, from (iv) to (v) relies on the definition of XS and from (v) to (vi) relies
on the definition of A.

Taking into account these identities (1) entails:
(2) there is a model, (9, (tu, </)), such that

2When one is trying to demonstrate the failure of an lO'^'-theory of reference to provide a disambiguation

having certain properties, it pays to confine attention to the flat disambiguations. However, to demonstrate the
success of an l(/A'-theory of reference, one might was well give a non-flat disambiguation.
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[walks](tu,g)(w' ►-» [every](ti/,g)(ui" h-+ [man](u/', g))) = 1

/+ EVERY ({x : |man](ui,g)(x) = 1}, {x : [walks](tu,g)(u/ hP i-* Px)})

Taking into account the meaning postulate for walks, (2) entails:

(3) there exists a model, (3, (u>, g))and there exist me,t such that,
I1 AR1m(w, g)(w' i—► [every](ui',fl)(to" >-► [man](u>", g))) = 1

/<■ EVERY ({x : pTiah](tu, g)(x) = 1}, {x : I1 AR1 (m)(w,g)(w' kPh Fx)})
By definition of I1 and AR1, (3) entails:
(4) there exists a model, (3, (w,g)), there exists me,t such that
|every](tu,fl)(ui" >-► [man](u/",g))(xe i-> m(ui,g)(x)) = 1

EVERY ({x : [man](u/,g)(x) = 1}, {x : (m)(u>,g)(x) = 1})

Given the postulate for every, (4) entails:
(5) there exists a model, (9, (tu,g)), there exists me,t such that
£A>£ny(e,l,J)(w,g)(Fr!5n\{w,g))(x' ~ m(w,g)(x)) = 1

/* EVERY ({x : [man](to,g)(x) = 1}, {x : (m)(tt/,g)(x) = 1})

Given the definition of £V£7Zy, (5) is a contradiction. Hence (1) is false □

One can demonstrate in similar fashion that the facts observed in (30b,c,d) are also accounted
for by CT21.

Now we turn to (30e), which concerns genuine ambiguity. See (3.4) in Chapter 3 for the two

separate existential claims concerning readings that (30e) amounts to. To account for these
facts, CT21 must provide two significantly different disambiguations of every man loves a woman.

It is necessary only to consider the flat disambiguations and there are as many of these are there
are possible proofs of the categorising sequent. There are seven different possible proofs of the

categorising sequent for every man loves a woman:

np,(s\np)/np,np => s cn cn
/L

np,(s\np)/np,np/cn,cn => s cn => cn

np/cn, on, (s\np)/np, np/cn, cn =!► s
/L

np,8\np => s np/cn, cn => np
/L

np,(s\np)/np,np/cn,cn => s cn => cn

np/cn, cn, (s\np)/np, np/cn, cn => s
/L

np/cn, cn => np 8 => s
\L

np/cn, cn, s\np => s np/cn,cn => np

np/cn, cn, (s\np)/np, np/cn, cn =>■ s
/L

np, s\np => s cn cn
\L

np/cn, cn, s\np => s np/cn,cn => np

np/cn, cn, (s\np)/np, np/cn, cn => s
/L

np/cn, cn => np s ^ s np, s\np =i- s cn => cn
\L \L

np/cn, cn, s\np => s np np np/cn, cn, s\np => s np ^ np
/L /L

np/cn, cn, (s\np)/np, np => s cn => cn np/cn, cn, (s\np)/np, np => s cn => cn
/L /L

np/cn, cn, (s\np)/np, np/cn, cn s np/cn, cn, (s\np)/np, np/cn, cn => s

np, (s\np)/np, np =>■ np => s cn =3- cn

np/cn, cn, (s\np)/np, np s
/L

np/cn, cn, (s\np)/np, np/cn, cn s
-/L
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However, these seven proofs are not significantly semantically different, being all associated with
the same term, according to HI, namely

Therefore £7~21 will not account for (30e). It is also the case that that (30f,g) will be unaccounted
for.

In summary, one can say of £T21 that (i) neither syntax nor semantics ofjunctions are accounted

for, and that (ii) although the syntax of determiners is accounted for, the semantics as regards
ambiguity is not. The performance of CT21 is summarised in Table 6.1.

2.2 Complex categories, simple typing

As we said above, the other fashion in which non-minimal types may be associated with verbal

terms begins by revising the categorisation of verbal terms that was used in section 1. By CT22
we will refer to the ^-theory of reference embodying the new categorisation of verbal
terms.

At this point the reader should refer to the categorisation of basic-expressions given in the lan¬
guage part of CT19. Where np appears as an argument in the categorisation of an expression

according to the language part of CT19, any one of the four categories in (24) can appear in
the categorisation of the expression according to the language part of CT22. So for example,

(32) s\Q is a categorisation of walks iff Q is a category in (24)
(s\Qi)/<?2 is a categorisation of loves iff Q\,Qi are categories in (24)

vpc/(s\<3) is a categorisation of to iff Q is a category in (24).

Note the categorisation of John and the he,- is unchanged: it is still np. So much for the
language part of CT22. For the category-to-type map of the class of models of £7~22, one
reverts to the category-to-type map of CT20, rather than category-to-type map of the previous
section. In other words np once more is mapped to e.

In this way the association between verbal terms and types becomes that which was indicated
in (25), an approximation of the association produced by £T21. The meaning postulates for
CT22 are different again from the postulates for any of the l^'^-theories of reference

considered so far. Their further specification will be left until the categorisations of the junctions
and determiners is considered.

The category-to-type map is exactly what it was in section 1, and therefore the same choices
can be made here as there of the types for the junctions and determiners, their possible cate¬

gorisations, and the meaning postulates governing them. See (11), (12) and (13).
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By the same considerations as given in section 1, we need take only one of the junction categori¬
sations from (12), namely (s\s)/s. Of the eight possible categorisations of determiners, those
which introduce the argument cn by a backwards slash may be disregarded.

We will give the name £7"23 to the extension ofCT22 that gives to junctions the category (s\s)/s,
and to determiners the categories Q/cn, where Q is a category in (24).

Concerning the meaning postulates governing CT23, we have said already that the postulates
for the junctions and determiners are the same as those given for CT20.
It is not possible to give this time the postulate for verbal terms in terms of the function ARn,
which it will be recalled mapped from to It has instead to be given in

terms of a more complex function yet, int-AFV', that maps from to

int-ARn is defined below with AFC repeated for comparison.

(33) ARn(m1(-a'e^)(w,g)(x1*)(yet)(x2,:) = y{ze k- mi(ui,ff)(x*i)(z)(^))
int- ARn(mi^3,e,f,t^)(w,g)(xi3)(y^',,e't^t^)(x23) = y(w' ^ z^e) - mi(u/,g)(£[)
(*(«/))(*:i))

The 'Verbal term plus quantifier' postulate for CT23 is then exactly the same as that given in
section 2.1, (61), save for the replacement of ARn with int-AFC.

We are now in a position to consider whether CT23 accounts for the syntactic and semantic

properties of junctions and determiners.

First the syntactic properties of junctions will be considered. Taking into account CT23's cate¬

gorisation of verbal terms, one can say that the distributional data can only be accounted for if

the following categorising sequents are derivable in L^'^:

(34) where Q, is a category in (24)
np, s\Qu (s\s)/s, np, s\Q2 => s (S case)
np, s\Qi, (s\s)/s, s\Q2 => s (VP case)
np, (s\Qi)/Q2, (s\s)/s> (s\Q3)/Q4, np =>■ s (TV case)
np, (s\<2i)/vpc, (s\s)/s, (s\Q2)/vpc, vpc/(s\<?3), s\Q5 =}> s (VVP case)
np, ((sV?i)/vPc)A?2, (s\s)/s, ((s\<33)/vpc)/<34, np,vpc/(s\Q5), s\Q6 => s (TVVP
case)

The S case may easily be proved for Qi — Q2 = s/(s\np). The VP case cannot be proved, as
shown below.

That the VP case cannot be proved in iS/N)

We wish to show that for no v£Jues of Qi,Q2 from the categories in (24) is there a proof of
the following sequent

(i) np, s\Qi, (s\s)/s, s\q2 => s
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First note that whatever categories from (24) Q i and Q2 are chosen to be, the np-count of Q i

and Q2 is 1. (i) matches only against Slash-Left rules, which it does in a number of different
possible ways leading to the following pairings of major (marked a) and minor (marked b)
premises to be proved:

(la) s, (s\s)/s, s\Q2 =>• s (lb) np =*• Qi

(2a) np, s\Qi, (s\s) =>• s (2b) s\Q2 =* s

(3a) s s (3b) np, a\Qi, (»\s)/s Q2
(4a) np, s ^ s (4b) s\Qi, (s\s)/s => Q2
(5a) np, s\Qi, s => s (5b) (s\s)/s =» Q2

(la),(2b),(3b),(4b),(5b) may all be ruled out by np-count. Because all avenues along which

to develop a proof of (i) involves an unprovable subgoal whatever categories from (24) Q\

and Q2 are chosen to be, then is no proof of (i) for any possible choice of Q\ and Q2 ■

One can show in similar fashion that the TV, VVP and TVVP cases are also unprovable.

Therefore, along with all the l(/'^-THEORIES of reference considered so far, £7"23 cannot

account for even the syntactic properties of junctions.

Now the determiners will be considered. Given the distributional data set out in (16) and £7~23's
categorisation of verbal terms, one can say that the distributional data will only be accounted
for if the following categorising sequents are derivable in

(35) Where Qi is a category in (24)
Qi/cn, cn, s\Q2 => s (VP case)
np, (s\<?i)/<?2, <?3/cn, cn =>■ s (TV case)
np, ((s\Qi)/Q2)/Q3, <?4/cn, cn, np => s (TTV case)
np, ((s\<5i)/vpc)/Q2, Q3/cn, cn, vpc/(s\Q4), s\Q5 =f s (TVVP case)

If all the Qi in the above sequents chosen to be s/(s\np), they will be derivable. There are

many other solutions. Therefore, we may say that £7"23 accounts for the syntactic properties
of determiners.

Having seen the success of £T23 in accounting for the syntactic properties of determiners, we

wish now to see whether the semantic properties sire accounted for.

Looking again at the semantic data set out in (30), then as was the case for £T21, checking
whether the unambiguous cases, (30a,b,c,d), are accounted for amounts to little more than

checking that the meaning postulates for verbal terms and determiners have been appropriately
defined. We shall simply assume that this is so. On the ambiguous cases, £T23 has more success

than £T21, but still is not wholly successful.

Consider (30e) first. Amongst the disambiguations of every man loves a woman provided by
£T23 there are those of the form (here an abbreviation will be used:npAs = s/(s\np), npVs =

s\(s/nP)):
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1 is a proof of npAs/cn,
every man loves a woman

cn => npAs, 2 is a proof of npAa,
npAs/cn en (s\npAa)/npVa npVs/cn cn

1 3 (s\npAs)/npVs, npVs => s, 3 is a
npAs npVs

2 proof of npVs/cn, cn => npVs

There are two semantically significantly differing proofs of npAs, (s\npAa)/npVa, npVa => s given
in (36) and (38), with the terms associated by H'L given in (37) and (39):

(36) np => npAa s => s

np,s\npAa np npVa
^

np, (s\npAa)/npVa, np s
^

s =>■ s (s\npAa)/npVa, np =>• s\np
npAa, (s\npAa)/npVa, np s

npAa, (s\npAa)/npVa => s/np s => s

npAa, (s\npAa)/npVa, npVa => s ^
(37) ^'(AiAuH

x[ (AiAu^e[
^(Au^',e'^[u3i(Ai[«1i])])(Au^'"!'^[u4i(Ai[u2»])])])])

(38) np => npAa s => s

np, s\npAa np =$■ npVa
/ L

np, (s\npAa)/npVa, np => s / ^J R
np,(s\npAa)/npVa => s/np s ^ s

np, (s\npAa)/npVa, npVa => s ^
\R

s => s (s\npAa)/npVa, npVa => s\np
npAa, (s\npAa)/npVa, npVa => s

(39) x\ (AiAu^t
x| (AiAu*e[

x['q •'1 ,')(A4'''e,<)[«3i(Ai[uii])])(A4','e'')[«4i(At[w2i])])])])
Without arguing it any further, we will take it that it is obvious from the terms in (37) and (39)
that £7~23 will account for (30e).

Now consider (30f). We wish to show that £T23 will not account for this piece of ambiguity
data. To do this we should consider all the possible flat disambiguations of (30f), which means



2. A MONOMORPHIC if!A)-THEORY OF REFERENCE NOT BASED ONMINIMAL TYPES187

we should consider all possible proofs of:

(40) Qi/cn, cn, ((s\Q2)/vpc)/Q3, Qi/cn, cn, vpc/(s\Q5), s\Q6 => s

We will in fact make a simplifying assumption and consider instead a certain set of non-flat

disambiguations, of the form:

(41) every man told a woman to go

Qi/cn cn ((s\Q2)/vpc)/Q3 Qa/cii cn vpc/(s\Q5) s\Q6
1 2 4

Qi Qa vpc

s

There are as many semantically significantly different such disambiguations are there as signifi¬

cantly different proofs of the sequent below, to go into the above at 3.

(42) Qi, ((s\Q2)/vpc)/£?3, Q4, vpc => s

In investigating the possible proofs of (42) we will trace back avenues of possible proof until

semantically unequivocal sequents are reached. (43) shows the only proof of (42) whose first
development is through the principal connective of Q4. That this is so is shown below

That (43) is the only proof of (42) developed first through Q\.

First Qi must be so chosen that its principal connective is /, otherwise there is no proof
development possible. For Q1 = s/(s/np), there is just one count-consistent possible pairings
ofmajor and minor premise, and likewise for Q\ = s/(s\np):
(la) s =>■ s (lb) ((s\Q2)/vpc)/Q3, Qi, vpc => s/np
(2a) s =* s (2b) ((s\Q2)/vpc)/Q3, <?4, vpc =>■ s\np

(la) and (2a) are semantically unequivocal and (lb) actually has no proof, leaving just the
developments of (2b) to be considered. Using the fact that Right rules may be ordered before
Left rules, (2b) is developed into the single premise (2b.1):
(2b.l) np, ((s\<32)/vpc)/Q3, Q4, vpc => s

There would appear to be possible developments of (2b.l) through the principal connective
of Qt, but whatever instantiation is chosen of Qi, the minor premise of the proof develop¬

ment is not count-consistent. The only other development of (2b.l) is through the principal
connective of ((s\<32)/vpc)/Q3, and there is only one count-consistent pairing of major and
minor premise:

(2b.1.1a) np, (s\Q2)/vpc, vpc =>■ s (2b.1.1b) Qi =>• Q3

(2b.l.la) and (2b.1.1b) are semantically unequivocal if provable at all, and thus need be

developed no further. The proof thus traced out is (43).
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In (44), (45) and (46) are shown the only proofs whose first development is through the principal
slash of ((s\Q2)/vpc)/Q3. That this is so can be shown by similar reasoning to that above,

applying count-consistency scrupulously. The principal connective of Q4 also suggests proof-

developments but all may be eliminated by count-consistency.

(43) np, (s\Q2)/vpc, vpc =► s Qi Q3 f r/ L
np, ((s\(?2)/vpc)/Q3, Qt, vpc => s

\R
8 =» 8 ((s\Q2)/vpc)/Q3, Qj, vpc =» s\np^
8/(s\np), ((s\Q2)/vpc)/Q3, Qi, vpc => s

(44) Qi => Q2 s =>■ s
-\L

Ql, s\Qi =>■ 8 vpc =>■ vpc
/L

Qi. (®\Q2)/vpc, vpc => s Qi => Q3^
Ql. ((s\Q2)/vpc)/Q3, Qi, vpc => s

(45) np =>■ Q2 s^s
\L

np, s\Q2 =>■ s
\R

s^-8 s\Q2 => s\np
/ L

Ql,8\Qa => 8 vpc =>• vpc
/L

Ql, (s\Q2)/ypC, vpc => 8 Q< =» Q3

Qi. ((»\Q2)/vpc)/g3, q4, vpc =>■ s

(46) np => Q2 8^-8
-\L

np, s\Q2 => s vpc vpc
/ L

np, (s\Q2)/vpc, vpc =>■ s
\R

(«\Q2 )/vpc, vpc => s\np
'/ L

Ql. (s\Q2)/vpC, vpc => 8 Q4 =► Q3^ k
Qi, ((s\Q2)/vpc)/Q3, Q4, vpc => 8

The terms associated with these four proofs are one or other of the following two terms (assuming
that Ti , V^"1'>('•'**•*)>'«*>0,7* ,$(''*■*) are the term associated with the antecedents of the
sequent):

r1(AiA«1[V(Ai[r3])(Ai[®])(AiAt.3[u3(i)(Ai[«iil)])])
V(A»T2)(Ai$)(AtTi)

What we need to do now is to compare the denotations of the disambiguations of every man told

a woman to go that results from making 3 in (41) a proof associated with the first or second
of the above terms. Let us call these d\ and d-z, and suppose that m3 and m4 are the



2. A MONOMORPHIC L</A)_THEORY OF REFERENCE NOT BASED ONMINIMAL TYPES189

meanings assigned to the disambiguation of every man, told, a woman and to go. Because of the

meaning postulate concerning told, one can show that d\ = d2} and that therefore despite the

multiplicity of proofs, £7"23 does not account for (30f):

That d\ — d2

Suppose

(1) *d2.

(1) implies:
(2) mi(tu,j)(tui t-+ xO'e) t-t m2(tvi,g)(w2 <->■ m3(w2,g))(w3 >-+ m4(w3,g))(w4 >-* y(s'"'0 >-♦

K(w4)(u;5 i-> x(ws))))
^ m2(wi,g)(w2 m3(w2,g))(w3 m- m4(u<3,fl))(to4 1-+ mi(t»4,s))

Because of the 'VT plus Quantifier' meaning postulate concerning told, (2) implies:
(3) there exists m« such that

m\(w,g)(wi hi!1'') t-* int—AR3int—AR1(m.)(w\,g)(w2 m3(w2,g))(uu3 *-* m4(w3,g))(w4 >-*

y(»,»e,t) M y(ui4)(u;5 i(tii5))))
^ int - AR3int - AR1 g)(w2 >-► m3(w2,g))(w3 >->■ rrn(w3,g))(wt mi(»D4,g))

Using the definition of int — AR? (3) implies:
(4) there exists m. such that

mi(w,g)(wi >->■ x('>e) i-+ int - AR1 ,g)(w2 1-* m3(tV2,g))(w3 >-+ nn(w3,g))x(wi))
# (mi(tu1,fl))(u;4 ►-* 2<J'e) int-AR1 ,g)(u>2 >-* m3(tV2,g))(w3 m4(w3,g))(z(wt)))

(4) is a contradiction. Therefore (1) is false. □

CT23 also fails to account for (30g). There are so many different proofs of the relevant cate¬

gorising sequent that rather a lot of time would have to be spent to demonstrate CT23's failing
on (30g) in the same way as its failing on (30f) was demonstrated. However, by looking at the

relatively small number of different ways such proofs might begin, it is possible to deduce enough
about the terms that would be associated the completed proof to show that the ambiguity is
not accounted for. Five ways in which a proof of the categorising sequent might be begun are

given in (47), (48), (49), (50) and (51). The are other apparently possible ways to commence a

proof, but all others cam be quickly eliminated by the count-constraint. What one can show is
that however these proofs are developed, the associated terms shadl not have the term associated
with Q2 as the principal function: it must appear as an argument. Taking only the terms into
consideration then a man will be predicted to occur opaquely. Of course it is possible that in
concert with appropriate meaning postulates, a term predicting an opaque occurence can predict
a transparent one. So to be sure that CT23 does not account for (30g) one should check out
that there is not this kind of conspiracy of term and meaning postulate. I have checked this out,
but the reader can avoid doing this if they believe that the grammar should in any case pass

the the sterner test of providing a reading according to which an embedded quantifier occurs

transparently, even when the verb with which the quantifier is combined itself usually generates

an opaque context.
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(47) : :

np:i/!, sV3i:2/2(A»[<E]) =» sc/s:y3, <32:y4, s\Q3:y5 =» sc:$* ^

np:j/i, (s\Qi)/sc:j/2**,a? •t\ sc/s:y£'M), Q2:yf, s\<33:2/55? => s:$<

$' = (j/3) J/4, !/5)*> by which I mean that $ is of type t and contains 1/3,2/4 and 1/5. \Jr' =
(y2(Aj[$]), t/j). Therefore y4 is not the principal function in

(48) i :

nP:2/i, (s\Qi)/sc'-y<2t''q sc:y3(Ai[<^]) => s.V* Q2:y4, s\Q3:y5 => sc:<f>'
np:2/i, (s\<3i)/sc:y£"''' sc/s:y£'M), Q2-y\ , s\Q3:y^'

= (2/4,2/5)', — (y3(Ai[$]), j/2,2/1 )■ Therefore y4 is not the principal function in

(49) :

nP:2/i, (s\Qi)/ac:y^t,'q ,t\ sc/s:^"'^, s:y4(Ai[$]) =* s:¥' s\Q3:y5 => s\np:$('e''l
np;2/i, (s\Qi)/sc:y^"''? 't), sc/siyJj"'0, <?2:y| , s\Q3:y(5'q => s:<&'

$(»«,') = ^2/5). must contain (y4(At[<£]))'. Since (y4(A»[$]))' is of a non-functional type, it
must be an argument. Therefore y4 is not the principal function in

(50) ; :

Q2-y94 => <33:$'* np:yf, (s^O/sc^"'*' ,t), sc/s:y^M), s:y5(Ai[$]) => s:$'^
np:yf, (sV3i)/sc:y^'''' ,t\ sc/s:y£'M\ <32:y4 , s\Q3:y^'q ^ =>■ s:*'

$' = y4 . Therefore must contain (y5(Ai[y4]))', which is of a non-functional type and so

must must be an argument \P'. Therefore y4 is not the principal function in

(si) ;
"P^i. (s\3i)/8c:!/2"','''0i sc/s:^"'0. Qr-yf => Qa-®1* s:y5(A»[$]) => s:^'^

np:yf, (s\Qi)/sc:y2S<1'4 '<), sc/s:y£'M), Q2:y| , s\Q3:y^' =i> s:$'

$' = (2/1,2/2,2/3,2/4)' • $ = 2/5($)- Therefore y4 is not the principal function in

That completes the assessment of the abilities of £T23 to account for the semantic properties
of determiners. We see that £7"23, like all the i//A)_theories of reference that we have

considered so far, is unable to account wholly for the semantic properties of the determiners.
The performance of £T23 is summarised in Table 6.1.
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3 A polymorphic l(/'^-theory of reference based on

minimal types

We have seen that no satisfactory account of junctions and determiners seems possible in the form
of a l(/'\)-theory of reference that is monomorphic with respect to its typing of junctions

and determiners. Now when the restriction to monomorphic l^'^-theories of reference

is lifted and instead we permit ourselves to assign junctions and determiners several different

types, one may quickly find a •'"-theory of reference that successfully accounts for at
least the syntax of junctions and determiners.

We shall show this by returning to the l(/'\)-theory of reference, CT19, which was the

starting point in section 1. The categorisation of verbal term in CT19 one can say is the 'classic'

categorisation, and the category-to-type map of CT19 was the one that gave to verbal terms the
minimal types. We looked in section 1 at the questions whether there were possible extensions of
CT19 that account for junctions and determiners, and here the same question will be looked at,

only this time the requirement that the extension be monomorphic vis-a-vis the types assigned
to junctions and determiners will be dropped.

In (52) are set out some conditions on junctions categories that if met by an extension of CT19
would mean that that extension accounts for the syntactic data concerning junctions.

(52) a. s, C\, s =>• s = Ci => (s\s)/s
b. np, s\np, C2, s\np => s = C2 => ((s\np)\(s\np))/(s\np)
c. np, (s\np)/np, C3, (s\np)/np, np => s

= C3 => (((s\np)/np)\((s\np)/np))/((s\np)/np)
d. np, (s\np)/vpc, C4, (s\np)/vpc, vpc =>■ s

= C4 => (((s\np)/vpc)\((s\np)/vpc))/((s\np)/vpc)
e. np, ((s\np)/vpc)/np, C5, ((s\np)/vpc)/np, vpc, np => s

= c5 => ((((s\np)/vpc)/np)\(((s\np)/vpc)/np))/(((s\np)/vpc)/np)

The simplest set of solutions to these equations is one that could not be considered in section 1,
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leading as it must to the junctions being associated with several different types:

(53) C\ = (s\s)/s, u(C1) = (st,st,t)
C-2 = ((s\np)\(s\np))/(s\np), v(C2) = ((s, se,t), (s, se,t), (se,t))
C3 = (((s\np)/np)\((s\np)/np))/((s\np)/np),
KC3) = ((«, se, se,t), (s, se, se, t), (se, se,t))
C4 = (((s\np)/vpc)\((s\np)/vpc))/((s\np)/vpc),
v(C4) = ((s, (s, se, t), se,t), (s, (s, se,t),se, t), ((s, se, <), se, *))
Cs = ((((s\np)/vpc)/np)\(((s\np)/vpc)/np))/(((s\np)/vpc)/np),
i/(C5) = ((s,se,(s,se,i),se,f),(s,se,(s, se,t),se,t), (se, (s, se, t), se, <))

The simplicity of these solutions may perhaps be easier to see if some the categories and types
involved are abbreviated a little. We will use the following abbreviations of categories VPC =

s\np, TVC = VPC/np, TTVC = TVC/np, VVPC = VPc/vpc, TVVPC = VVPCJnp, and
the following abbreviations of types vp = (se, t), tv = (se, se,t).

(54) Ci = (s\s)/s, i/(Ci) = (st,st,t)
C2 = (VPC\VPC)/VPC, „(<?2) = ((3,fp),(3^p),fp)
C3 = (TVC\TVC)/TVC, i/(C3) = ((s,<v),(s,<u),<t;)
C4 = (VVPC\VVPC)/VVPC,
KC4) = ((«, («, up), up), (s, (s, np), vp), ((s, np), np))
C5 = (TVVPC\TVVPC)/TVVPC,
K^) = ((«, se, (s, vp), vp), (s, se, (s, np), vp), (se, (s, np), np))

The same exercise will be repeated for the determiners. In (58) are some conditions on determiner
categorisations that ifmet by an extension ofCT19 would guarantee that the syntactic properties
of determiners were accounted for. One should note that (58e) would allow for the coverage of
the as yet unconsidered case of occurrences of QNP's as the objects of prepositions, as in,

(55) every man near a woman died
John killed every man near a woman

(56) a. C\, cn, s\np => s = C\ =}> (s/(s\np))/cn
b. np, (s\np)/np, C2, cn => s = C2 => ((s\np)\((s\np)/np))/cn
c. np, ((s\np)/np)/np, C3, cn, np => s = C3 => (((s\np)/np)\(((s\np)/np)/np))/cn
d. np, ((s\np)/vpc)/np, C4, cn, vpc => s =

c* => (((s\np)/vpc)\(((s\np)/vpc)/np))/cn
e. (cn\cn)/np, C5, cn cn\cn = C5 =>■ ((cn\cn)\((cn\cn)/np))/cn

Again its is the case that the simplest solution set to these equations is one which could not

be considered in section 1 because of the consequence that the determiners would be associated
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with several different types:

(57) Ci = s/(s\np) v(Cx) = ((s,se,t),t)
C2 = (s\np)\((s\np)/np) v(C2) = ((s, se,se,<),(se,<))
C3 = ((s\np)/np)\(((s\np)/np)/np) i/(C3) = ((s,se,se,se,t),(se,se,t))
C4 = ((s\np)/vpc)\(((s\np)/vpc)/np)
KC4) = ((s,se,(s,se,f),se,<),((s,se,<),se,<))
C5 = (cn\cn)\((cn\cn)/np) u(C5) = ((s, se, (s, ei), et), ((s, e<), e<))

These solutions are repeated in abbreviated form in (58):

(58) Ci = s/(s\np) i/(Cx) = ((s, se,t),t)
C2 = VPc\(FPc'/np) 1/(^2) = ((s,se,vp),vp)
C3 = TVc\(TVc/ap) v(C3) = ((8,se,tv),tv)
C4 = VVPc\(VVPc/np) i/(C4) = ((s,se,(s,vp),vp),((s,vp),vp))
Cs = (cn\cn)\((cn\cn)/np) i/(C5) = ((s, se, (s, et), et), ((s, et),et))

Therefore clearly CT19 may be so extended as to account for the syntax of junctions and deter-

miners.

By £T24 we shall refer to that extension of CT19 that categorises junction in all the ways

indicated in (54), and determiners in all the ways indicated in (58). The meaning postulates

by which £T24 is governed are those by which CT19 is governed together with junction and
determiner postulates built on the pattern of the following postulates for disambiguations of
and and every:

Definition 62 (Postulates for and) Whatever model, ((B, (Gy)-y^r, f), (w, 0)), associated with
£,1,J and v, all instances of the schematic condition (a) below hold, where the schematic cate¬

gory variable, x, and schematic type variable, a, may be jointly instantiated to any pair of values
in:

{ (s,t), (VPc,vp), (TVc,tv), (VVPc,{(s,vp),vp)), (TVVPc, (se, (s, vp), vp)) }

(a) /((and), (), (x\x)/x)) =
X9l\{w, g), d?, d% ~ I, J){d\,AAfV(£,T, J)(w,g), da2))

Definition 63 (Postulates for every) Whatever model, ((B, (^^er, /), (w, g)), associated with
£,T,J and v, (a) below holds and all instances of the schematic condition (b) below hold, where
the schematic category variable, x, and schematic type variable, a, may be jointly instantiated
to any pair of values in:

{ {VPc,vp), (TVC,tv), {VVPc,((s,vp),vp)), ((cn\cn), ((s, et), et)) }
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(a) /((every), (),s/(s\np))) =
I2Il((w,g),d[et\cf2'e,t) i-v

4'^^^ de3)),£VSTZy(£,I,J)(w,g)(d[e,))))
(b) /((every), (), z\(x/np))) =
J2Ix((u;, g), d[et\ o4*e,o)

Heq{S,X,J)((d<3 ~ 4,e'a\w -> d'3)),eveTiy(S,I,J)(w,g)(d[et))))
The workings of these postulates will become clearer if some examples are given of how they
lead to £T24 being able to account for the semantic data. Accordingly, we will assess whether
£T24 can account for the semantic properties of junctions and determiners.

Beginning with junctions, jC7~24 can account for instances of Hypothesis 4 as applied to unam¬

biguous sentences containing junctions, instances such as the following:

(59) a. John walks and Mary talks is recursively ambiguous wrt. John walks and Mary talks
b. John walks and talks is recursively ambiguous wrt. walks and talks
c. John loves and hates Mary is recursively ambiguous wrt. loves and hates
d. John wants and needs to go is recursively ambiguous wrt. wants and needs

The following disambiguations of the sentences in (15) account for the data in (59)

Ci = (s\s)/s(60) John walks and Mary talks

np s\np C\ np s\np

(61) John walks and talks

np s\np Ci s\np

s\np

(62) John loves and hates

np (s\np)/np C3 (s\np)/np

C2 = (VPC\VPC)/VPC

Mary

np

(s\np)/np

C3 = (TVC\TVC)/TVC,

(63) John

np

wants and needs to go

(s\np)/vpc Ci (s\np)/vpc vpc/(s\np) s\np
J

(8\np)/vpc

c4

(VVPC\VVPC)/VVPC

That CT24 accounts for the data in (59)
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(S-case) there is a John walks and Mary talks such that whatever model, (9, (w,g)), whatever
John walks, whatever Mary talks, [John walks and Mary talks](ir, g) = 1 iff AJVD([John walks](w,p) =
1, [Mary talks](w,g) = 1).

The disambiguation in (60) has this property. This is shown below where John walks and Mary talks
refers to (60). Also John walks and Mary talks refer to the only possible flat disambiguations.

(i) [John walks and Mary talks](w,g) = 1 «-+

(ii) |and^^j(u>,fl)(tu' i-> [Mary talks](u/,fl))(u;' i-» [John walks](w',g)) = 1 <-+
(iii) y)([Mary talks](w,p),ANV(£,I, ,7)(u;,g), [John walks](ui,^)) = 1 «-►

(iv)AA/"P(f,r,^)(ut,ff)([Mary talks](u;,a))([John walks](u/,g)) = 1 «-►

(v) A7V£)([John walks](tu,g) = l,[Mary talks](w,g) = 1)

(VP-case) there is a John walks and talks such that whatever model, (9, (w, g)), whatever
John walks, whatever John talks, [John walks and talks](w, p) = 1 iff A7VD([John walks](tw,g) =
1, [John talks](w,g) = 1).

The disambiguation in (61) has this property. This is shown below where John walks and talks
refers to (61). Also John walks and John talks refer to the only possible flat disambiguations.

T, W ruid j are abbreviations of the meanings of talks, walks and John.

(i) [John walks and talks](u>,g) = 1 *-*

(") |and( VpC\vpC)/vpCl(w<9)(w' ^ T(w',g))(w' W(tv',g))(w' ►-+ j(u;',g)) = 1 «-»
(iii) HS(£, I, g),ANV(£,l, J)(w, g),W(w, g))

(tt/ j(w',g)) = 1 *-*
(iv)ANV(£,l,J)(w,g)(T{w,g)(w'>-i-'}(w',g)))(W(w,g)(w'i->i(w',g))) = 1 «->•

(v) AJVT)([John walks](ui,g) = l,[John talks](w,g) = 1)

(TV-case) there is a John loves and hates Dave such that whatever model, (9, (w,g)), what¬
ever John loves Dave, whatever John hates Dave, [John loves and hates Dave](tn, g) = 1 iff

AJVD([John loves Dave](w,g) = l,[John hates Dave](u/,g) = 1).

The disambiguation in (62) has this property. This is shown below where John loves and hates Dave
refers to (62). Also John loves Dave and John hates Dave refer to the only possible flat dis¬
ambiguations. H, L, d and m are the obvious abbreviations for meanings.

(i) [John loves and hates Dave](tt/,g) = 1 «-»

(ii) [and(TV,c^TV,C)/TV,c]Kfl)(tf' H(u/,g))(u/ ►-+ L(u/',fl))(u/' e- d(u/',g))(tt/
j(f'.a)) = l **
(iii):HS(£,I,J)(H(w,g),ANT>(£,I,J)(w,g),L(v,9))

(w' i-+ d(tt/,g))(u;' >-+ i(w',g)) = 1 «-►
(iv)ANV(£,l, J)(w,g)(H(w,g)(w' >->■ d(w',g))(w' >-* , g)))(L(tn, g)(w' i-+ d(u/,g))(tu' i-*
j(to'.fl))) = 1 ++

(v) AJVD([John loves Dave](w,g) = l,[John hates Dave](w,g) = 1)

(VVP-case) there is a John needs and wants to go such that whatevermodel, (9, (w, g))} what¬
ever John needs to go, whatever John wants to go, [John wants and needs to go](u;,g) = 1 iff

AJVZ?([John wants to go](ui,g) = l,[John needs to go](ui,g) = 1).

The disambiguation in (63) has this property. This is shown below where John wants and needs to go

refers to (63). Also John wants to go and John needs to go refer to any possible flat disam¬
biguation: there are several but all are semantically equivalent. N, W and j are obvious
abbreviations for meanings.

(i) [John needs and wants to go](tn,g) = 1 «-►
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(") Iand( VVpC\VVpC)iVVpC\(™,9)(.u>' N(u/,g))(u/ \N(w',g))
(w' i-+ JIoio^K,))^ >-► j(w',g)) = 1 «

(iii) ■H^(e,I,J)mw,g),ANV(e,J,J)(w,g),\N(w,g))
(w' I-+ [to go»pcJ(ti;,,3))(u'' >-* j(w',g)) = 1

(iv)ANV(£,I,J)(w,g)(N(w,g)(w' >-► [to govpcj(«',,3))(u'' »-♦ j(w',g)))(W(u>,g)
(to' r-t [to goVpcJ(ti/',g))(io' ►-+ j(»o',g))) = 1 «-»

(v) i47VD([John wants to go](to,g) = 1, [John needs to go](id, s) = i)

For all of the above the step from (ii) to (iii) is a matter of applying the meaning postulate

for the relevant disambiguation of and, and using the definitions of I1 and T2. From (iii) to

(iv) uses the definition of H j-. From (iv) to (v) uses the correspondence between ANV and
AND.

Now we turn to the determiners, considering in turn the unambiguous cases, (30a,b,c,d) and
the ambiguous cases, (30e,f,g). The semantic observations (30a,b,c,d) are accounted for by the
following disambiguations:

(64) every man walks
C\ /cn cn s\np

Ci

(65) John loves every man

np (s\np)/np Cj/cn cn

C2

(66) John gave every man Mary

np ((s\np)/np)/np C3/CT1 cn np

C3

Ci = s/(s\np)

C2 = VPC\{VPC/np)

C3 = TVc\(TVc/np)

(67) John told every man to go

np ((s\np)/vpc)/np C4 cn vpc/(s\np) s\np
C4

C4 = VVPc\(VVPc/np)

Thai CT24 can account for the data in (30a,b,c,d)

First we note the following fact about the only flat disambiguation of hei is a man

(x ►-» [hei is a man](to, ))
= (x [av/>c\rvc](w,fl)(w' >-> [maii](u/,j))K i-» ps](u/,g))(u/ [vH(to',g)))
= (x ►-+ •-» ps](u/,g)(to' h+ d3),A(f,I, J)(tu,a)([man](iu,g)))(iu' i-r x))
= (x i-> A(£,l, J")(tu,g)(lmanJ(u;,g))(d3 [is](to, g)(ui' (-> d3)(w i-> x)))
= (ih A(£,I, J)(w,g)([manJ(w,g))(d3 >-+ IS(£,1, J)(w, g)(d3)(x)))
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= (x i-> tmanl(u;,fl)(a;))

(VP-case) there is a every man walks such that whatever model, (3, {w, g)), whatever hei is a man,

whatever hei walks, [every man walks](w,g) = \*-+EVERY({x : [hei is a man](w,=
1}, {x : [hei walks](ti/,a£ei) = 1})
(64) has this property, as shown below where every man walks stands for this disambiguation.
Also Vi is a man and vi walks stand for the only possible flat disambiguations. M and W are

the obvious abbreviations for meanings.

(i) [every man walks](w,g) = 1 <-►

(») [everya/(a\np)](tu,5)(u/ H- M(u/g))(u/ I-* W(u;',g)) = 1 «■
(Hi) ~ w(w,g)(w ~ dl)),eveny(S,l,J)(w,g)(M(w,g))) = 1 ~
(iv) £V£Tiy(£,1, J)(w,g)(M(w,g))(d% i-+ W(w,g)(w »-+ d£)) = 1 <-+

(v)EVERY({x : [hei is a manRui.g*^) = X},{x : [hei walks](u;,g*ei) = 1»

(TV-case) there is a John loves every man such that whatever model, (0, {w, g)), whatever
hei is a man, whatever hei walks, [John loves every man](w, g) = l<-+EVERY({x : [hei is a man](w,
1}, {x : [John loves hei](w,

(65) has this property, as shown below where John loves every man stands for this disambigua¬
tion. Also hei ■£ a man and John loves hei stand for the only possible flat disambiguations.

M, L and j are the obvious abbreviations for meanings.

(0 [John loves every man](ui,g) = 1 <-+

(it) [every^ M(u/g))(w' •-+ L(«r', p)) («r' w j(i//',g)) = 1 «-+

(iii)n^(£,I,J)((d% ~ L(t«r,p)(«/ - dl)),£V£Uy(£,I,J)(w,g)(M(w,g)))
(w' i-t- }(w\g)) = 1 «-►

(iv) £V£Ry(£,1, J)(w,g)(M(w,g))(dl (-► L(tu,g)(tu i-» dJRtv' i-» j(ui',g))) = 1 **
(v)EVERY({x : [hei is a man](tu,gjei) = 1},{x : [John loves heij(t«,gj[ei) — 1})

(XTV-case) there is a John gave every man Dave such that whatever model, (3, (w, g)), what¬
ever hei is a man, whatever hei walks, [John gave every man Dave](w,g) = 1*-*EVERY({x :

[hei is a man](tu,fljei) = 1},{x : [John gave hei DaveJ(w,aJei) = 1})
(66) has this property, as shown below where John gave every man Dave stands for this dis¬
ambiguation. Also hei is a man and John gave hei Dave stand for the only possible flat dis¬

ambiguations. M, G, d and j are the obvious abbreviations of meanings.

(i) [John gave every man Dave](u>, g) = 1«

fit;[everyTvCyTl,c/np)j(u;,g)(tu' *-* M(iu'g))(w' t-f G(tii',g))(w' i-» d(to',g))(to' ►-+ j(u/,g)) =
1 *4

(iii)n^(£,l,J)((dl ~ G(u>,g)(w ~ dt)),£V£Hy(£,l,J)(w,g)(M(w,g)))
(w' i-+ d(w', g))(w' i-> j(to', g)) = 1 ♦-+

(iv)£V£Ry(£,I, J)(w,g)(M(u>,g))(d% t-> G(w,g)(w m- d£)(w' >-»• d(u>',g))(w' <->■ j(tu',g))) =
1 «■

(v)EVERY({x : [hei is a man](tu,gjjei) = l},{x : [John gave hei Dave](tu,gjei) = 1})

(TVVP-case) there is a John told every man to go such that whatever model, (3, (to,g)),
whatever hei is a man, whatever John told hei to go, [John told every man to go](u;,g) = 1 *->EVERY({x
[hei i« » man](ui,gjJej) = 1},{x : [John told hei to go](u>,g£ei) = 1})
(67) has this property, as shown below where John told every man to go stands for this disam-
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biguation. hei is a man stands for the only possible flat disambiguation and John told hex to go

stand for any possible flat disambiguation: there are severed possibilities but edl are semanti-

cally alike. M, T and j are the obvious abbreviations of meanings.

0) [John told every man to go](tu,a) = 1 <-►

(ii) [every VVPc\( WpC /np)\(w'9)(w' ^ M(™'3))(™' T(u/,a))(w' i— [to govpcl(u<',g))(u/ •-+
j(w'.fl)) = 1 **

(iii)Hfye,l,J)((dl ~ T(w,g)(w ~ dt)),£Veny(£,I,J)(w,g)(M(w,g)))
(w' i-» [to gOvpcj(f'i g))(ni' I-* j(tu',g)) = 1 «

(iv) £V£Ry(£,I, J)(w,g)(M(u>,g))(d% >-► T(u/,g)(u; ►-+ dg)(w' >-> [to govpc](«',,ff))(ui' »-<•

j(v'.s))) = 1

(v)EVERY({x : [hej is a man](u>,3^ei) = 1},{z : [John told hej to go](u;,aj<.i) = 1})

From (ii) to (iii) is amatter of replying the meaning postulate for the relevant diseimbiguation

of every, and using the definitions of I1 and I2. From (iii) to (iv) uses the definition of Rq-
From (iv) to (v) uses the correspondence between £V£R.y and EVERY, as well as the

meaning postulates for is and for pronouns.

So £T24 can account for (30a,b,c,d), the unambiguous cases. However, £T24 cannot account for
the ambiguous cases, (30e,f,g). There will be no detailed demonstration of this, but for example
consider (30g). We have already considered whether £7"20 could account for (30g). £T20 and
£T24 differ only on the categorisation of the junctions and determiners and so a great deal of
what was said in the case of £T20 carries over to £T24. We showed that of the three possible

quantifier categorisations allowed by £T20, the sequent np, (s\np)/sc, sc/s, Q, s\np => s, was

provable only for Q = s/(s\np). Now £T24 has more determiner categorisations, but with
small adaptations to the proof one can show once again that it is still only the Q = s/(s\np)
possibility for which np, (s\np)/sc, sc/s, Q, s\np => s is provable. The fact that there is no

significant semantic diversity amongst the possible proofs of np, (s\np)/sc, sc/s, Q, s\np => s,

for Q = s/(s\np), has already been shown, therefore, £T24, like £T20 is unable to account for

(30g).

4 Conclusion

As was said at the beginning of the chapter, the concern has been to show that there is no

accounting for junctions and determiners within the Lambek calculus framework. In the pre¬

ceding sections we have varied along a number of theoretical coordinates, but have found no

wholly successful account. The performance characteristics of the accounts considered are given
in Table 6.1. What is perhaps most surprising is the acute shortcomings of the l/''^-theory
of reference based on minimal types: £T20. Not even the syntactic facts are accounted

for. Perhaps surprising also is the fact that the syntactic properties of junctions could only be
accounted for within LCG once it was assumed that the junctions belonged to several categories,
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as was the case in section 3.

CT20 £T21 CT 23 CT 24

Syn Sem Syn Sem Syn Sem Syn Se

John walks and Mary talks + + + + + + + +

John walks or talks - - - - - - + +

John loves and hates Mary - - - - - - + +

John wants and needs to go - - - - - - + +

John told or asked Mary to go - - - - - - + +

Every man walks + + + + + + + +

John loves every man + + + + + + + +

John gives every man Mary - - + + + + + +

John told every man to go - - + + + + + +

every man loves a woman + + + - + + + -

John seeks a man + + + + + + + +

every man told a woman to go - - + - + - + -

John believes a man came in + - + - + - + -

Table 6.1: The syntactic and semantic performance of CT20, CT21, £7"23 and £7~24

We will end by making some observations on the last of the lU'^-THEORIES OF REFERENCE

considered, CT24. Although in £7~24 there were quite a large number of separate lexical entries
for the junctions and determiners, these separate lexical entries were far from being unrelated.

Rather, one could say there was a 'template' for a lexical entry of which several instantiations

appeared. Consider the following as the 'template' for the lexical entries for and:

(68) A categorisation and a meaning for and are

£T24 renders this statement true for (x,a) 6 { (s,t), (VPc,vp), (TVC,tv), (VVPC, ((s, vp), vp)),
(TVVPC ,(se,(s,vp),vp)) }.

For the determiners there were two 'templates'

(69) A categorisation and a meaning of every is

x/(x\np) +

l2lx{{w,g),^t\d^t'a^
7f|(£,J, J)((d'3 ~ 4,e'a\w ~ d<3)),£VSV.y(£,l,J)(w,g)(d[et))))
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(70) A categorisation and a meaning of every is

z\(z/np) +

j2zHKyUe<),4,e'a)~
7~ 4'e,°V - d<a)),£V£Hy(£,I, J)(w,g)(d{et))))

CT24 renders the first statement true for (x,a) = (s, t) and the second statement true for (x, a)
e { (VPc,vp), (TVc,tv), (VVPc,((s,vp),vp)), ((cn\cn),((s,et),et)) }.
The existence of such 'templates' signals the possibility of a kind of theory which could at least
match the success of £7"24.

The theory would have the general feature that a schema over categories would be a category,
and the process of instantiating the variables would be a syntactic operation. If the theory
were of this general kind, then in particular one could be sure of accounting for the syntactic

properties of junctions and determiners within it.

The theory would also have the general feature that a family ofmeanings indexed by types would
be a meaning, and the selection of one meaning from the family would be a semantic operation.
If the theory were of this general kind then in particular one could be sure of accounting for
the basic semantic properties of junctions and determiners - that is of unambiguous sentences

containing them.

No if!'^-THEORY OF REFERENCE has these features. The framework developed in the next

chapter does.
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We have just explored in Chapter 6 the difficulties of defining a i,GA)-theory of reference
that would account for the syntactic and semantic properties of determiners and junctions.
Here is a formulation of the problem, assuming that one insists on the 'classical' categorisation
of verbal terms that was used in £T18:

(1) There is a junction categorisation, C\ 6 CAT^'and two quantifier categorisations,
C2.C3 € such that:

and with sufficient diversity of

proofs to account for ambiguity

for all x, hG-\) derives: x,Ci,x => x

for all x, derives: a:/np,C2 =£• x

for all x, lGA) derives: C3, x\np =£• x

Admittedly this somewhat overstates what was being required of the LCG framework, for ex¬

ample by insisting that there be just two quantifier categorisations. However, if (1) had been
true of the LCG framework, then it would have been the case that junctions and quantifiers
could be accounted for. Expressions C\, C2 and C3 of the classical categorial language, cat^A)j
could not be be found satisfying these requirements.

We will introduce in this chapter a generalisation of the notion of t,GA)theory of reference,
to be referred to as a hGA.v)-theory of reference.

The disambiguated language part of a l^A.v)_Theory of reference will be based on an

extension of the set of categories, C\tG\) and its associated calculus lGA). T0 cat^A) are

added category-variables and their universal quantification, giving what will be refered to as the

Polymorphic categorial language, cat^AAO. ToL^A) will be added adaptations of the (VR) and
(VL) rules from sequent calculus presentations of predicate logic, giving what will be refered
to as the Polymorphic Lambek calculus, L(/A.v). jf (1) is read with cat^AAO in the place of
cat(/A) and LGAAO in place of LGA)j (1) wfll turn out true, the categories C\, C2 and C3 being:

(2) Ci = VX.(X\X)/X
C2 = VX.X\(X/np)
C3 = VX.X/(X\np)

The interpretations that figured in a l^A)_xheory of reference were of a particular kind.
First, the semantic objects were typed by the set of types which was the language of implicational

propositional logic, tj-'\ Second, the semantic operations were effectively indexed by possible
proofs of A): the operations were encoded by Cx terms and a map defined from L^A) proofs
to Cx terms, being effectively the composition of category-to-type map with the Curry-Howard

isomorphism. These features are extended by the interpretations that will figure in a l(/A.V)_
theory of reference. The semantic objects will be typed by the set of types which is
the language of quantified implicational propositional logic, tja set Qf types inclusive of
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TJ *. The semantic operations will now effectively be indexed by possible proofs of if!AY); the
operations will be encoded by terms of 2nd order polymorphic X-calculus, C^X'A\ a langauge
inclusive of Cx, and a map defined from I//AY) proofs to £(-A,A' terms, being the composition
of a category-to-type map with an extension of the Curry-Howard isomorphism.

In section 1 the framework of Polymorphic Lambek Categorial Grammar (PLCG) will be de¬
scribed. Section 2 gives the analysis within the PLCG framework of junctions and determiners.
Section 3 is concerned to show that this polymorphic categorial proposal captures all of the syn¬

tactic and semantic phenomena concerning junctions and quantifiers which were set forth as the
aim in Chapter 3. Section 4 considers whether there are any reasons to prefer the polymorphic

categorial grammar account of the junctions and quantifiers to other accounts

1 Polymorphic Lambek Categorial Grammar

We will pursue the same overall scheme of description for PLCG as was used in Chapter 4 to

describe LCG. Thus, there are two sections. Section 1.1, deals with matters of categorisation.

Section 1.2, deeds with matters of meaning assignment.

1.1 Polymorphic Lambek Calculus

As was said above, this section deeds with matters of categorisation in the PLCG framework.
To this end, first the Polymorphic categorial language is defined. Second, the question of the

string-semantics for this language will be considered. Third, we will intrduce the new sequent

rules that are associated with the expeuided categorial language. Their soundness with respect
to the string semantics will be demonstrated.

The polymorphic categorial language: l(/'\,v)

The first step is to extend the categorial language CAT*-/A) to the categorial language cat^A.v))
a language that has category variables and their universal quantification. For the definition of

Cat(/A.v)) a 8et of basic categories, bascat, must be assumed as for CAT^/A), and additionally
a set of category variables catvar (including, we will assume X and Y). Then CAT^AY) Las the
following definition (where x and y aire metavariables over CAT^/AY) and Z is a metavariable
over catvar):

Definition 64 (The Polymorphic Categorial Langauge, CATHAY))
(i) BASCAT C CATHAY)
(ii) if x and y are E CAT^AY); ^en x/y and x\y are g Cat(ZAY)
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(Hi) CATVAR C CAT^ '\'V)
(iv) if Z G CATVAR and x G CAT^A.v^ ^en vz.x € cat(/A.v).

The string semantic interpretation of CAT^-^^

As a langauge containing variables and their universal quantification it seems natural that the

category interpretations for cat^/A.v) should not now be string-sets, as they were for CAT^'^,
but functions from assignments to string sets, with assignments assigning string-sets to category

variables. As with other such languages one can expect that the interpretation of variable-free
categories and of closed categories to be a constant function on assigments, whilst the interpre¬
tation of open categories will be a function returing different values for different assignments.

What shall be the set of possible assignments ? The simplest answer would be to choose the set
of possible assignments to be (2A)CATVAR, that is any string-set can be assigned to a category
variable. We will give a hypothetical semantics based on this notion of assignment and then try
to explain why this appears to be the wrong way to define assignment.

Definition 65 (Hypothetical String Semantics for CAT^MY>)
Assignments: (2A)CATVAR
Interpretation function: I applies to member of BASCAT, and returns constant functions from

assigments to subsets ofA

[], the extension of I to all members of CAT^'\,V^:
Ix/y](9) = {a : V6 G |[y](y),a-& G M(y)}

Ix\!/](ff) = {a : V6 G |[y](</)>a G M(</)}
\Z}(9) = g(z)
^Z.x\{g) = {a : for all B G 2A a G [x](yf)}

This simple semantics has some rather surprising consequences:

(3) for all interpretations,/, for all assignments g,

(VX.X/X](y) = 0, [VX.(X\X)/X](y) = 0, fVX.X/(X\np)](</) = [np](g)

That for all interpretations,!, for all assignments y,[VX.X/X](y) = 0

One can show the following supposition to be false: there is an I, there is a g, there is an a,

such that a £ [VX.X/X](fl).

We note the following entailments:

a e [VX.X/X](3)

=> for all B, a € [X/X](flx)

for all B, for all b 6 [XKa®)> a'b £ PHsx )

=> for all B, for all b £ B, a-b £ B
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But this last condition is impossible. For example pick B to be {a}. Then a-a g B. So the

supposition is false. □

That for all interpretations, for all assignments (/,[VX.(X\X)/X](gr) = 0

One can show that the following supposition is false:

there is an I, there is a g, there is an a, such that a 6 [VX.(X\X)/X](p).

The supposition entails: for all B, for all b € B, for all c G B, c-a-b G B.

This is impossible. For example pick B to be {a}. Then c-a-b £ B. Therefore the supposition

is false. □

That for all interpretations,!, for all assignments </,[VX.X/(X\np)](<7) = |[np](</)

First we show that [np](j) C [VX.X/(X\np)](g), by supposing otherwise:
there is an n such that n € [np](s) and n i [VX.X/(X\np)](g).
Note n £ [VX.X/(X\np)](s) => there is B and b such that

(i) b € [X\np](3x ) and
(ii) n-b t [X](gf)
Now consider the implications of n € [up](5). n G [np](g) n G [np](gB). Therefore from

(»).
(iii) b [X\np](3f)
(iii) contradicts (i). Therefore the supposition was false.
Second we show that (VX.X/(X\np)](a) C [»p](s)> by supposing otherwise:
there is a q such that q G [VX.X/(X\np)](g) and q jf [np](p).
Now q G [VX X/(X\np)](3) for aU B, ?-[X\np](3|) C [X](flf) =>
(i) for all B, g-[X\np](gjf) C B

Then consider the set B which is the product of (np](d) with some arbitrary i>, that is let B be

{nr -b, n2-b,...}, where nj, n2 etc are the members of [np](a). For this B, [X\np](5®) = {(>}.

Therefore, for this choice of B, (i) implies:

{q-b} C {ni -b

q-b = ni-b, for some ni G [npj(g)

=> ? = n, for some nj G [np](3)

=> ij 6 [np](p) which contradicts part of the origined supposition. □

Its clear that if the langauge is interpreted as above, it will not reflect the uses to
which we intend to put it. The second identity for example means that one could not assign
and to the polymorphic categorisation VX.(X\X)/X, which we are intending to do. The third

identity would mean that if every man is assigned the category, VX.X/(X\np), then it ought
to have a disambiguation of category np, and on the assumption that np is assigned to e, this
would mean that every man has a possible meaning of type e, which is bizarre. A different typing
assumption would make this less bizarre, but still the hypothetical string-semantics seems to be
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forcing one to make certain typing assumptions. A final comment to be made is that it is hard to
see what sequent calculus rules would allow the derivation of the sequent VX.X/(X\np) => np,

which should be derivable if the calculus is to be complete with respect to the above semantics.

We shall therefore reject the hypothetical string-semantics of Definition 65. The defect of the

hypothetical sematncis appears to be that the domain of quantification is too wide. Consider
for example, VX.(X\X)/X. On the above semantics a string a could only be a member of this of

category if all sets B were closed under under the operation of inserting a between members of

B, and clearly no string could have that property. If, however, the quantification were restricted
to those B that are the interpretation of some category, then it seems that the string arid meets

the requirements: if B is a set of English strings interpreting a category, then it should be the
case that its is closed under the operation of taking pairs and inserting and between them.

Roughly speaking, the difference between the notion of assignment used in the above hypthetical

string-semantics and the notion to be adopted is that whereas the above definition allowed
variables to be assigned to any subset of A, the actual definition will allow variables to be

assigned only to those subsets of A, which are themselves the interpretation of some category.

Translating this rough idea into something precise is a rather delicate matter. To begin with,
since the interpretation of categories should be a function from assignments, the restriction on

assignments needs to be: the string-set B may be assigned to a category variable if there is a

category x and an assignment g such that [«](</) = B. But this is circular.

Therefore it seems that to define the range for assignments a subsidiary interpretation of cate¬

gories is required that does not involve assignments. The subsidiary interpretation concerns only

CAT"1", and it is the same as the original notion of string-semantic interpretation of CAT^M),
that was seen in Chapter 4. It is based on an interpretation function, /*, for members of bascat,
which interprets them as members of 2A. This is extended to a function []* in the familiar way.
This is all defined in Definition 66. We will use |(cat^'^)J* to refer to that subset of 2A that
is the set of []* values of members of cat^That is

|[(cat(/'\))]* = {B : B € 2^, there is an x G cxvG\) such that B = [a;]*)}

It will be the set [(cat(/'^)]|* that defines the range for assignments. That is, the assign¬
ments invoked in the main interpretation of the interpretation that concerns all the

categories ofcat^will be understood to assign to variables the strings-sets in [(cat(/A))j*.

Definition 66 (String Semantics of cat^A.v))
The subsidiary interpretation ofCAtGhas
(i) No assignments

(ii) Interpretation function: /* applies to members of bascat, and returns any member of 2A
0«) 0* , the extension of I* to cover all ofCAT^'^:
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lx/y\* is {a : V6 € £ [*]*}, for x,y £ CAT^1^
|x\y]* is {a : V6 € [yj*,6-a £ [x]*}, for x,y£ CAT(/'\)
The main interpretation of catU'^W has

(i) Assignments: ([(cat(/'\))]]*)catvar.
(ii) Interpretation function: I applies to members of bascat and I(x)(g) = I*(x)
(*) D> the extension of I to cover all of cat(/'\'V);
[«/»](9) is {a :Wb £ [y](</), a-b £ [x](y)>, for x,y £ cat(M.v)
H*\l/l(ff) is {a : V6 £ [j/](ff),6-a G |>](flO}, for x,y £ cat(/A.v)
\Z}(g) = g(Z), for Z in catvar

\4Z.x\(g) = {a : for all B £ [(cat(/A))]* a g [x](^f)}, for Z in catvar, x in catU'^W

String-semantic entailment should be redefined to take account of the assignment relativised
notion of interpretation:

xi,...,xn string semantically entails y iff for all interpretations, for all assignments,

With this string semantics in mind, we can turn to the sequent calculus for CAT^,y). The

Polymorphic Lambek Calculus, will be understood to be the addition of the following
rules to the rules of the Lambek calculus, L^'^.

Definition 67 ((VL) and (VR))
(VL) U,*[y/Z], V :=^w [y contains no quantifiers]

V L
U,VZ.x,V => w

(VR) T => x [Z is not free in T]
V/Z

T => VZ.x

We can show that the additional rules of if!are soundwith respect to the proposed semantics

That the (iL) inference is sound

The soundness depends on the following implication, which we will first prove and then show
how soundness follows from it:

(1) for any a, if a g [yZ.x\(g) then for any y not containing quantifiers,a € [x[j//Z]](fl)

To show this suppose (i) a 6 [V/f.x](g).
.• .(ii) for all S 6 /*(CAT</'U), a € \x\(gsz)
Now for any y not containing quantifiers, [y](g) € /*(CA1^/'^). So (ii) entails:
(iii) for any y not containing quantifiers, o € [x](yj,V^9')
.(iv) For any y not containing quantifiers, a £ [^[y/^lK#)

This proves (l). Now we will show how (1) guarantees the soundness of the (VL) rule. We

need to show that invalidity of the conclusion of a (VL) inference entails the invalidity of the



210 CHAPTER 7. POLYMORPHIC CATEGORIAL GRAMMAR

premise. So suppose the conclusion L/,VZ.x, V => tu is invalid. .'.

(i) there is an I,g and an a such that a G a t t^Ks)

.'.(ii) there is an I,g, b\, 621 (>3 such that f>i G [t/J(ff)« f>2 € [VZ.x](g), 63 G [^](s)i bi ^2^3 j?

[ui](g) Using (1) from above, this entails:

(iii) there is an I,g, 6j, 62. 63 such that bi G [U](fl), i>2 € [®[l//^]](3)t &3 G [F](3)i bif>2&3 £

MM

." .(iv) there is em I,g, a such that a G p7](3)"[tf[v/2]l(fl)"P''l(3)> a t [v](s)

.U,x[y/Z\,V w is invalid. Therefore we have shown that invalidity of the conclusion
entails invalidity of the premise. □

Thai the (iR) rule is sound

Suppose xi,..., x„ => y is string semantically valid and X is not free in the x; .'.

(i) for all I, for all g, [xi](y)- ... '[xnKy) C [y](s)

(ii) for all I, for all g, for all a, if a G [ilKa)' ••••I^nKa) then, for all h, h ~ g, a G

[x,](h)....-[xn](h)

(i) and (ii) entail:

(iii) for all I, for all g, for all a, if a G [®l](fl)' • • • "[^n](3). then, for all h, h ~ g, a G [l/lCO

For suppose that (iii) were not true. Then,

there is an I, there is a g, there is an a such that a 6 [xi](g)- ... '[xnKfl) and there is an h,

h ~ g such that a ( [v](h)

Because of (ii) this would entail

there is an /, there is a g, there is an a such that a G [xi](y)-... *[xn](9) and there is an h,

h ~ g such that a € [xi](/i)*... '[xnK/i) and a g [y](h)

.' .there is an I, there is an h, there is an a such that a G •.. "[^nR/i) and a f? [j/J(/i)

This contradicts (i). Hence (iii) must be true, (iii) entails

for all I, for all g, for all a, if 0 G [xi](s)" • • • "I^nKsO then a G IWvKff)

.' .xj,..., xn =>■ VXy is string-semantically valid. Therefore we have shown the validity of the

premise entials the validity of the conclusion. □

If one were to ignore the side-condition on the (VR) rule one can easily produce proofs that lead
from valid premises to invalid conclusions. For example,

(4) X\(X/np) => X\(X/np) _
— (y^)

X\(X/np) =)► VX.X\(X/np)

That (4) is an unsound inference
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The premise of (4) is clearly valid. Suppose the conclusion is valid:
Whatever I,g,a, if a € [X\(X/np)](g) then a € [VX.X\(X/np)](g)
This is equivalent to
Whatever I,g,a, whatever A, ~ g, if a £ [X\(X/np)](g) then a £ [X\(X/np)](/i)
.'.Whatever I,a, whatever g such that g(X) = [(s\np)\((s\np)/np)](g), whatever h, h ~

g such that h(X) = [((8\np)/np)\(((s\np)/np)/np)](5), if o € [X\(X/np)](3) then a €

IX\(X/np)](h)
.'.Whatever I,a, whatever g such that g(X) = [(s\np)\((s\np)/np)](g), whatever h,h ~ g

such that h(X) = [((s\np)/np)\(((s\np)/np)/np)](g), if a € [(s\np)\((s\np)/np)](3) then
a € I((s\np)/np)\(((s\np)/np)/np)](s)
.' .Whatever I, a, whatever g, if a £ [(s\np)\((s\np)/np)](g) then a € [((s\np)/np)\(((s\np)/np)/np)](g)

This is equivalent to the claim that (s\np)\((s\np)/np) ^ ((»\np)/np)\(((s\np)/np)/np)
is valid on the hGA) notion of validity, which because of the completeness of hGA)t en¬

tails that (s\np)\((s\np)/np) =» ((s\np)/np)\(((s\np)/np)/np) is derivable in l(/A). But

(8\np)\((s\np)/np) =>■ ((s\np)/np)\(((s\np)/np)/np) is not derivable in lGA). Therefore

conclusion of (4) must be invalid □

One can also see the necessity for the side condition to (VR) simply by considering some of
the rather unexpected categorisations that would be possible without the side condition. For

example, if the side condition were ignored anything with category s/s would also have to have
the category (s/(s\np))/cn. This is because ignoring the side condition allows one to prove the

sequent s/s =>■ VX.(VX.XAs)/X (see 5), whilst (VL) inferences suffice to show VX.(VX.XA')/X
=» (s/(s\np))/cn

(5) s/s, X, s\X s

s/s, X => 8/(s\X)^
VR

s/s,X VX.XAs
— /R
s/s =► (VX.XA8)/X
— VR
s/s => VX.(VX.XA8)/X

On this string semantics also we do not have the identity [npj(</) = |VX.X/(X\np)]((/). In the
above proof of the identity it was essential that we able to assume the quantified variable was

assigned to [np](flf)-{6} for some arbitrarily chosen b. But [np](j)-{6} will not necessarily be in

It is worth noting that the calculus allows one to prove np =>• VX.X/(X\np), but not to prove

VX.X/(X\np) ^ np. Therefore np and VX.X/(X\np) are kept distinct, and therefore it will be
possible to consider the typing which assigns np to e, without having to worry about the fact

every man must then have a disambiguation of category np, and therefore having a meaning of

type e.

It seems a good question whether a semantics could be found that did not mean that the (VL)
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rule had to be restricted. In the above, the subsidiary interpretation function, []*, concerned
just the members of cat(/A) To lift the restriction on the (VL) rule it would be necessary to
have the subsidiary interpretation, []*, give interpretations to quantified categories. The closed

categories are good candidates, and we might have for a closed category VX.x,

a £ [VX.x]* iff for every B such that there is a closed y such that [y]* = B, a £ [x]* , where

[]* is the homomorphic extension of that I* that differs from I* by assigning B to X.

The only difficulty is that this seems to be a circular definition also: there is certainly no way

to calculate [[VX.x]* simply by checking for all a, whether a £ [VX.x]*. For each case, one of
the things to be checked is whether a £ [x]* , where []* is the homomorphic extension of that
I*' that differs from I* by assigning [[VX.x]* to X.

cat(/'\,v) and l(/A,v) may be used in the definition of a disambiguated language in exactly
the same way as CAT^A) and l^A) were. The syntactic operations will again be indexed by
the possible proofs, they will again operate on objects which are themselves triples, and amount

to concatenation if only the first coordinate is considered; the disambiguation relation will once
more be the first coordinate projection function.

1.2 Assigning Meaning

In this section, we are concerned with matters of meaning assignment within the PLCG frame¬
work.

First we must recall that the interpretations that are parts of the models that featured in
l(/A)-theories of reference are at two levels of specialisation from the general notion of

interpretation. The general notion of interpretation is of a triple, (B, (<?7)7er, /)• The
first specialisation is to the case where the carrier set, B, of the algebra involved must be U(Ma),
where the Aia are the meaning sets, indexed types in tj—*, constructed relative to three sets,

S, 1 and J. Such interpretations were refered to as fregean interpretations. The

second specialisation is that each <J7 is H6L{P), where P is some proof, and H[ is the

proof-to-operation map that was defined in Chapter 4, section 3.2.

The interpretations that will be parts of the kind ofmodel that will feature in a l(/A.v)-theory
of reference are also at two levels of specialisation from the general notion of interpreta¬

tion, and these specialisations are parallel to but not the same as the specialisations that are
invoked by a l(/A)_theory of reference.

Firstly the notion of interpretation is specialised to the case where the objects of the carrier

set, B, are defined by meaning sets indexed by types from the set tj(~f'v). tj^-*1^ is that
extension of the language of implicational propositional logic, tj *, that allows for propositional
variables and their universal quantification. Such interpretations will be refered to as a
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POLYMORPHIC FREGEAN INTERPRETATIONS. POLYMORPHIC FREGEAN INTERPRETATIONS are

defined in section 1.2.1 below.

The second specialisation is that each {/7 is H[^(P), where P is a proof of and #£y js a

new proof-to-operation map. This proof-to-operation map will be considered in sections 1.2.2,

1.2.3, 1.2.4, 1.2.5, 1.2.6 and 1.2.7.

1.2.1 Polymorphic Fregean Algebras

To define tj( >v), a set of propositional variables, tvar, must be assumed. It will be assumed
that in tvar are at least the two variables x,w. 0 is a metavariable over members of tvar. a

and 6 serve as meta-variables over any type of TjC-^), the definition of which follows:

Definition 68 (tj(~f'v))
a. e, t and s are £ tj("~*>v)
b. if 0 £ tvar, then 0 e tj(~+'v)
c. if a and b are £ tj(—.v)<fcen is e TJ(-»,v)
d. if 0£ tvar and a is £ tj(—-*), then V0.a is £ tj(~».v)

Examples of types of Tj(~+>v);

(6) (*-+*), Vx((e—*)-+x) and Vx(x—x)

Now the types in tj were used to index both a set of meanings and a set of denotations,
with in fact the set of denotations being the most fundamental and the meanings being
simply Something akin to this will hold also for the types in Tj( We will define,
relative to the sets € and J, polymorphic denotation sets having index a, where a is a closed

formula in TJ^-These will be notated PDa

To do so we must reemphasise a perspective on the previous denotation sets, (Da)agTJ—►, a
perspective that we first introduced in Chapter 4, section 3.2.3, namely that a denotation set

Da might be regarded as the 'constructive' interpretation of the formula a. The definition of
the polymorphic denotation set indexed by a formula, a, of tjC-*'^ will actually depend on

the definition of a 'constructive' interpretation of a. This will all be defined below, but first we
will summarise the general idea. All formulae of tj(~+,v) will be given an assignment dependent
'constructive' interpretation. Those formulae, a, of Tj(~>,v) that are closed, will come to have the
same interpretation no matter what assignment, and this assignment independent 'constructive'

interpretation of a will defined to be the polymorphic denotation set indexed by a. Those
formulae of a that are open shall not index any polymorphic denotation set.

So the heart of the matter of defining the carrier sets of a polymorphic fregean interpre¬

tation is the definition of the 'constructive' interpretation of expressions of tj(~There are

structural similarities of this definition with the string-semantic interpretation of cat"'*'v'.



214 CHAPTER 7. POLYMORPHIC CATEGORIAL GRAMMAR

Recall that in the string-semantics for CAT(/A>v) there were two interpretations I* and I. I* gave

to members of BASCAT assignment independent interpretations, and was extended to []*, which
gave assignment independent interpretations to all members of CAT" A). / gave to members
of BASCAT an interpretation which was a constant functions from assignments to the I* value,
and this was extended to [], applying to all of CAT^A»v) and giving assignment dependent

interpretations. The range for the assignments invoked by the I was the [[]* values. In a similar

way there will a two-level approach to the 'constructive' interpretation of tj(~*,v). Recall that
the definition of the denotation set, Da, was relative to a choice of £ and I. One can look at

varying the choice of £ and J as varying the choice of an interpretation function which operates

on the atomic types of TJ—*. The already defined DENOTATION sets, Da, can be seen as the
extension of such an interpretation function to cover all of TJ~~*. We will given the name 'Level
One interpretation' to this alternative view of the previous definition of the DENOTATION sets,

Da, relative to £ and J. For a given Level One interpretation of Tj(~*'y), we will use V for the
set comprising of all the interpretations of the members of TJ *. That is:

V = {D0 : a G TJ '}

The Level One interpretation concerns only the TJ f part of Tj(~>'y). The Level Two inter¬

pretation concerns all of tj(~f>v)and gives assignment dependent interpretations. The range for
these assignments will be the set of Level One interpretations, that is, V.

Definition 69 ('Constructive' interpretation of Tj(~"' *>)
Level One interpretation of has:

(i) No assignments

(ii) Interpretation function: I*(e) = £, I*(s) = X, /*(<) = {0,1}
(Hi) D*> the extension of I* to TJ~*: [a]* is the DENOTATION set, Da, relative to £,J.

Level Two interpretation o/tj(—'>y) has:

(i) Assignments: g G DTVAR
(ii) Interpretation function: 1(e) = jh 7*(e), I(t) = g t-f /*(<), I(s) = g I*(s)
(iii) |J, the extension of I to all of as follows

M(ff) = »(*)

I«-**](*) = lb](g)^i9)
Hyjr.a]|(flr) is {/ : dom(f) = Z>, whatever t £ V, f(r) € [a](fl£)}

An excimple of a member of |V7r.(7r—+x)J(</), where g is arbitary, is the function / whose value
at every r 6 V is the identity function on r. We have to check whether f(f)E [(tt—►tt):

f(r) £ I(ir—►*)]($;)
iff f(r) G

iff f(r) G rT
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Clearly if /(r) is the identity function on r, it meets this condition.
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Definition 70 (Polymorphic Denotation set PDa) Relative to £,X, for any closed for¬

mula, a, of PDa = [a](</), where [] »s the Level Two interpretation associated with
£,T, and g is any g € ©TVAR

The notion of polymorphic meaning set, PMa, is simply PD%XJ.

Definition 71 (Polymorphic Fregean Algebra) (B, (Gy)y£r) is a Polymorphic Fregean Al¬
gebra iff for some £, I, B= U{VMa), where the VMa are the polymorphic meaning sets
indexed by closed formulae of tj(~~*>v), relative to £ and J.

A polymorphic fregean interpretation is more or less the special case of a interpre¬

tation, where the algebra involved is a Polymorphic fregean algebras. Additionally, a

polymorphic fregean interpretation must make reference to a mapping relating phrase-
set indices to closed formulae of tj(~1>>v). Therefore a polymorphic fregean interpretation

for a disambiguated language, C, is defined thus:

Definition 72 (polymorphic fregean interpretation of associated with £,X,J,v)

Is a triple (B, (f77)7er, /), where
(i) (B, (</7)7er,/) " an interpretation, and (B, (£7)7er) »« a polymorphic fregean al¬
gebra

(ii) whenever 6 G A and a G X(, f(a) G VMv(s)
(Hi) whenever (Ty, (6,,),e) G S and mv G VM„(sn) Men <77((m,,)) G VMv(«)

Having thus specialised of interpretations in respect of the nature of the carrier set, we

must now specialise in respect of the nature of the operations. The specialisation is that the

operations should be the image of a proof-to-operation map, v. This specialisation is the
concern of sections 1.2.2, 1.2.3, 1.2.4, 1.2.5, 1.2.6 and 1.2.7.

1.2.2 2nd order Polymorphic A-calculus

As we did in the case of H6L, we will encode operations by terms of a typed A-calculus language,
so that the task is then transformed into one of defining a proof-to-term map. In this section
the term language will be defined and it will be explained how a term encodes an operation.

The term language to be defined is It is more or less the language referred to in Girard et
al (1989) as '2nd order Polymorphic A-calculus', the credit for the invention of which is usually
given to both Girard (1972) and Reynolds (1974).
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Unlike £A, £(A'A) has two distinct kinds of variable, tvar and vara. tvar has already been
defined and is the set of type-variables of tj^-vara is once again a set of typed variables,
this time having types drawn from Tj(-~bv).

Definition 73 (Typed Terms of £(A,A))
a. if*a g var\ g£(a'a)
b. if$a g vara and *b g £(a'a) then (a$«»»)(«-»») g £(a'a)
c. i/$(a—4) and are g £(a'a), then (fcc"-*4)^)4 g £(a'a)
d. «/0 G tvar, then 0 G £(A,A)
e. if 0 £ tvar and $a G £^A,A) and 0 is not free in the type part of any free variable of

<Aen (A0.$a)v<l" G £<A'A)
/. j/$v, a g £(A'A) and 6 G Tjl-*'^ and 6 does not contain quantifiers then (<$v#a(6))al4/4l G

£(a,a)

It should be noted that vitally 0, mentioned in clause e of the above as being abstracted over

by A, is a variable of the language tjl-f'vl, that is a member of tvar. 0 does not refer to a

member of vara. Or putting things another way, terms of £(A'A) feature occurences of types in
other than superscript positions. The kinds of terms of £<-A,A-) that are governed by clauses e

and / of the above are abstractions over types and applications to types. There are restrictions
on the formation of these terms. One can abstract a type-variable 0 out of only if 0 is not

free in the type part of any free variable of <$". One can apply to a type b only if that type
contains no quantifiers (this restriction is not incorporated in the definition of £(A>A) in Girard
et al (1989)). Some explanation of these restrictions can be offered when the semantics of £<-A,A-)
is considered.

An example of a typed term of £(-A,A':

(7) (A^Ax'.x*)^-**))^*-")

As usual, some of the type parts will be surpressed so the term above might be given as:

(8) Att.Ax'.x*

Examples that are excluded by the side-conditions on term formation:

(9) A7r.xT, xVx "(Vx.a), <J>Vt t^*(Vx.x—►7r)($v'r ,r—)'T)

The semantic values of terms of £^A,A' will be functions whose first argument is an assignment,
as was the case for terms of £A. However, the assignments will now concern both the type-

variables, tvar, and the other variables, vara.
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The range of assignments as far as members of tvar is concerned is V. The range of the

assignments as far as members of vara is concerned is U(PDa)a ^ a clo6ed formuia qf XJ(—,*)•
For those members of vara, xa, where a is a closed formula ofTJ^~we require that g(xa) £
PDa. For those members of VARa, xa, where a is tin open formula, there can be no such

requirement since PDa is not defined for open formulae. However, if g(xa) g [a]((/), we shall
call the assignment a pseudo-assignment. Pseudo-assignments are required only to 'oil the
wheels' of the definition.

Definition 74 (Interpretation of Typed Terms of C^X,A^)
Assignments:{g : g = gi U g2 $i £ t>TVAR where a £ TJ-f

92 £ (UP£)a)VAR , where a £ TJ^-'■*) and is closed
92(za) E PDa, if a is closed

Interpretation: 1(e) = e,I(t) = {0,1},/(s) = g^I
[J, which extends I to all of

M(<7) = 9(T)
|a—>6](j) = [b](g)b]G)
|JW.a]|(ir) is {/ : dom(f) = Vt whatever t£ V, f(r) £ [a](<tf)}
|^akf) = »($")> if$a € vara
|[A$0.¥ JKji) is that function dff'h^ such that for any member d% of\a\(g), d\(d— 2) = |[¥4]|(fl,*«)
[*(•-»>(*»)](,,) = [*"l(y)([*»](ff))
[Ajr.$°](jf) is that function J**" such that for any r £V, d(r) — [$°]](<7j)- Note </J is probably
a pseudo-assignment

l&*amg) = [&*a}(g)(lb](g))

This semantics is intended to reflect the intuition that an object of type Vx.a is a function from
a type b -to an object of type a[6/x], As an illustration consider the interpretation of AirAi*.rT

(r is a member of V):

IAtAxVx'IG?) = r IAx'.x'](</;)

gJ is probably a pseudo-assignment. Continuing with the interpretative procedure, however, we
have (where d is a member of r):

|[AirAx*.xxJ(<7) = Jx'Kgl'£.)
= r-+d glft,(xw)
— r i—* d >—+ d.

So the interpretation of the non-basic expression AxAx'.x' at an assignment depended on

the interpretation of the non-basic Ax*.xT at a number of pseudo-assignments. However, the
interpretation of the non-basic expression \x*.x* at whatever pseudo-assignment was required,

depended on the interpretation of the basic expression x* at an assignment not a pseudo-

assignment. It will be the case that for all terms that do not violate the side-condition on type



218 CHAPTER 7. POLYMORPHIC CATEGORIAL GRAMMAR

abstraction terms that the interpretation of an expression at an assignments will depend on the

interpretations of its consituent ftosic-expression at assignments, not pseudo-assignments. On
the other hand, a type-abstraction term which violates the above-mentioned restriction, such as

Av.xT, would have a denotation at an assignment that was determined by the denotations of
its constituent basic expressions,(that is xT) at pseudo-assignments:

[Air.x'Ky) = rit [**](<£)
= t i- g;(x*)

For all r but one, g* is a pseudo-assignment. Notice also that [Ax.xT|(^) is a constant function
on types, and not a function from a type to an object in the type. Therefore the terms which
violate the side condition on type-abstraction receive anomolous denotations.

There is also some explanation of the restriction on the formation of type application terms. An

example of such a term is (Ax.$a)(Vw.6). Its interpretation would invoke assignments which do
not exist:

|[(A7r.$a)(Vu;.6)](<,)
= [**l(jO, where g'(n) = [Vw.6]((/)

The assignments were defined as taking type-variables to members of Z>, but g'(n) is not a

member of V.

As with the string semantics for one can ask whether a semantics could be provided
that allows the restriction on type-application to be relaxed. This would seem to require that

quantified types have Level One interpretations (i.e. not involving assignments) that could
then be assigned to type variables. If we continue to use the notation Da for the Level One

interpretation of a type, then what is required is the definition of DvT.a. The intuitive definition
of Ltyir.a is as a function on type-domains. However, now we face a circularity, for we require an

answer to £Wa(LWa)- Therefore, lifting the restriction on type-application is non-trivial.

There could be different motivations for embarking on such a reworking of the theory. One
could be mathematical elegance. Another could be the empirical unserviceability of the re¬

stricted theory. As matters stand, empirical shortcomings of the theory that are traceable to

this restriction have not been found and therefore there is not motivation of the second kind

for revision of the theory. If such shortcomings were found then one would have to follow in
the footsteps of Girard (1986), who has provided a semantics for £(A,A) which is such that type
application is unrestricted.1

The definition of how it is that a term represents an operation will be very similar in the case of

£(A>A) to the definition in the case of £A. Suppose <!>' is a typed term, the free term variables of

which are x"1,... ,x°n. First we substitute for the free term variables x°', the terms,

'This semantics is rather feu- removed what is is the usual interpretation of types and functions in natural

language semantics.
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where the y^~*a'^ are term variables. Then prefix Ai to the front and call the result $*.
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Definition 75 (Operation defined by $*) Where h is an arbiiary assignment, the
operation defined by <f>* is:

mi,..., m„ i-» (w,g) mi(w',g)/yi,..., w' i-> m„(w',g)/yn])(w)

Some examples of operations defined by terms:

(10) <& = AirAx^-"^*!^!)]
** = A.-AxAx^M^'-^i))]
Operation: m\ Hfiii.jjHrKdi-t d(mi(w,g)) (where r € V, d G td°)

(11) * = x^((e^')-+')(t)(x(1e-+<))
V = Ai[y('-+V'«^')-+'»(i)(f)(y^(e-+t»(i))
Operation: ^ m2(w,g)(Dt)(mi(w,g))

Now we may turn to the definition of the proof-to-operation map, HIn Chapter 4, we

gave two definitions of the proof-to-operation map H6L. The first was a 'practical definition' and
invoked the notion of a term-associated calculus. The second was by decomposing into three

steps, the first from proofs to LJ-' proofs, the second from LJ-* proofs to NJ-' proofs and
the third from NJ-*■ proofs to Cx terms. For v there will again be two definitions. This time
the decompositional definition will be the first considered.

1.2.3 Decomposition of the Proof-to-Term maps

The maps H£v and H'LV may both be defined as the composition of three other maps, as

illustrated in Figure 7.1 and defined in Definition 76.

many to 1 lto 1

^
i 1 1 i 1 l

L(/.\.V)prc>ofs

I
LJ^'^proofs NJ^ ''^proofs £(A,A)terms

Cat-to-Type Curry-Howard

Figure 7.1: The proof to operation map

Definition 76 (The proof-to-term map)
. r i —r

Hlv = u j o * o v", where
I. v is a map from L(/A.v) proofs of sequents over CAT(/>\>V) to proofs of sequents over Tj(-s-.v)
The calculus in which the proofs of sequents are constructed will be refered to as Lj(~-+,v)
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2. * is a map from proofs io Natural Deduction proofs (from assumptions)
propositions. The Natural Deduction proof system will be refered to as nj(~^'v).
3. l j is a map from nj(~''N) proofs to terms of C

The first destination is a sequent calculus for sequents over TJ This is the calculus
that results from the addition to LJ~~* ofGentzen's sequent calculus rules for V. To turn a proof of

lfl\N) int0 a proof of lj(—*>v) turns out to require nothing essentially more than the application
of an extensional or intensional category-to-type map, mapping category-variables onto type-

variables and mapping CAT^'^'^'s V to Tj(—*,v)>s V. The second leap is due to the fact that
can be viewed as a metalanguage for a Natural Deduction system, this time

The third leap is the extended Curry-Howard isomorphism: an extension discovered by Girard

linking the terms of £(A'A) and the proofs of NJ^'V)

These stepping stones are described in more detail below, in sections 1.2.4, 1.2.5, and 1.2.6,

progessing from right to left relative to Figure 7.1. Therefore we start with the Natural Deduction

system Nj(—and the Extended Curry-Howard isomorphism.

1.2.4 The Natural Deduction system nj(~*v) and the extended Curry-Howard iso¬

morphism

Table 7.1 should be looked at in conjunction with Table 4.1, Chapter 4, which defined the natural
deduction system NJ-1\ Table 7.1 defines an introduction and an elimination rule for V. The
tables together define NJ^-
For the system NJ-+ there was a notion of normalisation that took one from a less direct proof
to a more direct proof, keyed on the occurence in the proof of (—d) followed by (—>E). There is
an additional case of normalisation for the more inclusive system nj(~keyed this time on

proofs in which (VI) is followed by (VE). This is defined in the third row of Table 7.1.
The definitions given in Chapter 4, section 3.2.3 of how a Natural Deduction proofs defines
an entailment relation again apply to the more inclusive Nj( system. There follow some

example proofs of nj(~*V):

(12) a- Mi b. [(e—>7t)]i e
- ' ^

(—*•£)

nr) ((e—►x)—^
— WVI)
Vx.((e—>x)—+7r)
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u

a

(VI)
Vx.a

if you have a proof of a from assumptions U, you
make a proof of Vx.a. x should not be free in any

undischarged assumptions

U

Vx.a
(VE)a[b/*]y

if you have a proof of Vx.a, you can make a proof
of a[6/x] with assumptions U. b should contain no

quantifiers

U > U[b/n]

a aft/xl
(VI)

Vx.a
(VE)

a[W

Intro followed by Elim is a detour

Table 7.1: Introduction and Elimination rules for V

(13) c. Vx.((e—nr)—>x)
- We)

e—< (e—*t)—*t
1

An example of proof normalisation:

Mi
K-ii)

(x—»x)
KVI) [eh

Vx.(x-»x) ,1
(VE) (e—e)

(14) e—e >

The extended Curry-Howard isomorphism is now defined. Additional to the clauses that defined
r i

L J before are the following:

Definition 77 (Extended Curry-Howard isomorphism: l. j )
(V I)-Step: »/$" is the term associated with a proof that is input to a V-Introduction step, the
term associated with the resulting proof is (Ax.$a)Vx o.

(V E)-Step: If <J>v*a is the term associated with a proof that is input to a V-Elimination step,
the term associated with the resulting proof is ($Vx■a(&))°[i,/xh

On this basis the values under u j of the proofs given in (12a), (12b) and (13) are given below:

(15)

Ml
(-10 "

(x->x)
. —(vl) ,
L - Vx.(x—»-x) --J

(Ax.(AiT ,I*)(*-»0)V*(*_>») which abbreviates to

Ax.Ax'.x*.
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ir [(e—^tt)]i e

(16) ((e-»*)-nr)

[W.((e—+tt)—>7r)

(—E)

MO
(VI)

-j

(A7r.(Aa;(e—'>T)ye)T)((e"~+'r)_^T))v'r((e—i
which abbreviates to An.\x(e~**\x(ye).

(17)

Vx.((e—►*■)—»*•)
*t (e—►<)—►*

(vE)
<-E)

abbreviates to xv,r((e—"r)—"r)(<)(y(e-+<))

In figure 7.2 the step-wise process of calculating the value of l j on the proof in 12a is gone

through.

r- - i

Mi
7T—►TT

r r t "l VjT.(7T—>-7r)! M1 ! l '-Li—i]=CA7T.l _7T—»7T_ J J

[a,(».'[w] r*l
( \xr J

V7r.(7r—►x)

V7r.(7r—v7r)

Figure 7.2: Example of the extended Curry-Howard isomorphism

'Classical' and 'Constructive' semantics

As was the case with nj-y, there are two kinds of semantic approach to nj(~+ v). There is
a 'classical' semantics according to which the all members of tj(~>,v) are interpreted as sets

(relative to an assignment). The purpose of this semantics is to define entailment and consider
soundness and completeness. The 'constructive' semantics gives to the members of TJ^~>,v-)
the functional interpretations that were encountered when the semantics of C^X'A^ was being
considered above, and gives to the proofs of nj(~'|V) the same interpretations as is possessed by
the corresponding term of C^X'A\
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One can try to justify the side-conditions that were imposed on the (VI) and (VE), from the
point of view of either semantics. The 'constructive' semantics justification has already been
considered.

On the 'classical' semantics one can explain the side-condition on (VI) though not the side-
condition on (VE). The side-condition to (VI) guarantees its soundness on the 'classical' seman¬
tics. The reasoning that this is so is almost exactly the same as that which showed the soundness
of the (VI) inference in L^,v), givens its side-condition.

Thai the (V I) rules is sound under the Classical Semantics

Suppose one has an proof, D, of a, from assumptions U, such that 7r does not occur

free in any of the WFFs in V, and suupose that the entailment that this defines is valid.

Because of the validity of the entailment we may suppose:

(i) for all I, forall g, for all p if p 6 [U] (g) then p 6 [a] (a)
Because jr does not occur free in any of the WFFs in U:

(ii) for all I, forall g, if p € P^](s) then for all h, h ~ g, p 6

from (i) and (ii) it follows that:

(iii) for all I, forall g, for all p if p £ [t/](g) then for all h, h ~ g, p € [a](/i)

For suppose (iii) was not true. Then,

there is an I, there is a g, there is a p such that p € [f](fl) and there is an h, h ~ g such that

p £ [o](h)

Because of (ii) this would entail:

there is an J, there is a g, there is a p such that p € [l^](a) and there is an h, h ~ g such that

p € [C](h) and p g [a](h)

.' .there is an I, there is an h, there is a p such that p € [f/](fi) and p £ (a](/i)

This contradicts (i). Hence (iii) must be true, (iii) entails:

for all I, forall g, for all p if p £ [t/J(g) then p € (Vx.aKa)

Therefore if D is expanded by a (VI) inference into D', the entialment that D' defines will be

valid. □

It is easy to construct what are unsound inferences on the 'classical' semantics if the side-

condition is ignored, for example:

It ib not clear to me what the relationship between the 'classical' and 'contructive' explanations
of the side-condition.
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1.2.5 The sequent calculus, and the map * to Nj(~~*>v)

The sequent calculus for the language tj(~'will be refered to as and it consists of
the rules of LJ_+ together with the following (VR) and (VL) rules.

Definition 78 (Sequent Calculus Rules for V)

(VL) H,a[b/n],V => w ^ fb is some chosen type, b
—

■ VI
U,Vn.a,V =$■ w is quantifier free]

(VR) U => a ^ ^ /ir is not free in U]Vr£
U => W.a

Examples of proofs in

(19) a. tc =$ ir b. e ^ e x ^ r
►R >L

=> (x—*x) (e—nr),e =>• x
VR -1 >R

=> Vx.(7T-+T) e =» ((e-fx)-^x)
—VR

e => V:r((e—+?r)—nr)

c. (e—*t) => (e—+t) t => t

(e—<),((e—*)-►<)=*► t
VL

(e—+t), V7r((e-+x)-+x) => t

As was the case with the sequent calculus LJ~~*, the sequents of can be interpreted 'proof-

theoretically' in terms of proofs of NJ^~+,v); an Lj(—f,v) sequent U => a is 'true' if and only there
is an Nj( proof that has U as its undischarged assumptions and a as its conclusion. The
rules (VR) and (VL) are sound on this interpretation, that facts making them so being indicated
below. These facts effectively define the map * from LJ^-proofs to proofs of

(20) If C is a proof such that x does not occur free in U then U is a proof

a a
VI

V7r.a
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(21) UU,a[b/*] is a proof then V;r.a is a proof.
VE

U a[b/x]

Note that in (21), the premise of a (V L) inference describes the bottom part of a nj(~*>v) proof
(attention was drawn to something similar is the case of the relationship of —+L in lj-1" to —<-E
in nj *). This should be made clearer by studying Figure 7.3, Figure 7.4 and Figure 7.5, which
illustrate the operation of * on proofs of

: TT '•

Lj( fjj( >>^)

Figure 7.3: Example of *: from Lj(~to proof of => W.(*-—►*-)

1.2.6 From hG.\y) to LJ^-

Possible maps from Polymorphic Lambek calculus proofs to Lj(~~'are based on possible cat¬

egory to type maps. There were two classes of maps considered in the case of the Lambek
calculus: the extensional, according to which ve(x/y) = (i/e(y)—>ve(x)) and the intensions!,
according to which vl(x/y) = ((s—*v*(y))—*i/'(x)). The same distinction will continue to be
applied. Additionally we have to consider the value of the category-to-map when applied to
those categories in CAT^,V) that are not in CAT^'^. There is no difference between ve and vl
as far as this is concerned, and so the following uses vs sis indifferent between the two:

Whatever category-variable , Z, whatever category, x,

v6{Z) = 0, for some type-variable 0

i/s(VZ.x)=Vv6(Z).u6(x)
On this basis, the maps, v* and i/', introduced in Chapter 4 leading from iS'A) proofs to LJ~>'
proofs, may be extended to maps leading from ijUAy) proofs to Lj( proofs. Table 7.2 in
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((e—►*■)—+*■)

(e—►fl-) e
-E

TT

VI
V:r.((e—*tt)—►t)

Lj(~f>V) Nj(—f,V)

Figure 7.4: Example of *: from lj(—>,v) to NJ^-+,v^proof of e => W.((e—►tt)—»tt)

conjunction with Table 4.2 defines whilst Table 7.3 in conjunction with Table 4.3 defines v'.

1.2.7 Efficient Meaning Assignment: term associated calculus

In the case of the map from A) proofs to typed terms of C , one could shortcut the interme¬
diate stages between i/'A) an(j £A by defining a term-associated calculus. This applies also in
the case of the map from LUAV) proofs to £^A,A-) terms. The term-associated versions of l^A.v)
build upon the extensionally and the intensionally term associated versions of i/'A). If one

adds to the extensionally (resp. intensionally) term associated version of l(/A)) the following
term-associated versions of the (VR) and (VL), the result be refered to as the extensionally (resp.
intensionally) term associated version of l(/AV).
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(e—♦<) => (e—+<)
(e—>i),((e—►!)—►!) => t

(e—►<) => (e—►*) < => t

(c—+t),((e—►<)—►<) =>• f

j(e—»if), Vx.(('e—►*•) => <

Figure 7.5: Example of *: from Lj(~1",v) to NJ^-*,v)proof of (e—►<), Vp».((e—►pi)—nr) => t

l(/A.v) proof image in lj(~~under ue

U =» VZ.x
-VR

P(P)
ve(U) => i/e(VZ.x)

-VR

uyz.x,v ^ w
-VL

P(P)
i^(£f),v*(VZ.«)fi^(V) => J/e(u))

-VL

Table 7.2: P: l<MV)

Definition 79 (Term Associated Polymorphic Lambek Calculus)
(VL) U,x[y/Z] : a(a), V =>• w [where y is quantifier free and v(y) = a]

VL
UyZ.x :a,V=>w

(VR) T ^ x : a
^ [Z is not free in T, v(Z) = 6]

T => VZ.x : AO.a

2 The junctions and determiners in PLCG

The previous section has defined the PLCG framework, that is to say, identified the class of
l(/,\.*)-theories of reference. What we will do now is propose a particular i//^,v)-theory
of reference. Section 2.1 gives the categorisation, the typing assumptions and most of the

meaning postulates. The meaning postulates for junctions and determiners are considered in
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l(/AY) proof image in LJ^-under ul

U =*► VZ.x
-VR

u'(P)
s,i/'(u) => vi(yz.x)

-VR

U,VZ.x,V => w
-vl

u'(P)
syw^iyz^yiv) =* i/(w)

-vi

Table 7.3: t/»: l<M.v) i- lj*-^

Section 2.2.

2.1 A l(/'\,v)-theory of reference for junctions and determiners

£19: a disambiguated polymorphic Lambek langauge for verbal terms, proper

names, embedding verbs, junctions and determiners

1. The phrase-set indices: the set CAT^A.v)j given as bascat, {s,np,cn,vpc,sc}, and
catvar= {x,y}

2. The basic phrase sets: whatever strings a, whatever categories 6 E CAT^AV)j (<*> (>><*} €
Xs iff a appears in the 6 row of the tables below:

np john, mary, hex, he2, ... (s\np)/sc believes

s\np walks sc/s that

(s\np)/np loves, is (s\np)/vpc wants

((s\np)/np)/np gives ((s\np)/vpc)/np told

vpc/(s\np) to

cn man, woman

VX.X/(X\np)/cn every, a, no, most

VX.X\(X/np)/cn every, a, no, most

VX.((X\X)/X) and, or

The class of intensional possible models AC25 for £19 ((B, (£7)7er, f), (w, 9)) associ¬
ated with £,J,J,v\sE AC25 iff

1. tA(np) = e, i/(s) = t, i/(vpc) = i/'(s\np), j/'(sc) = i/(s),f'(X) = rr, v'(Y) =

u,v'(x/y) = v'(x\ii) = ((s-V(j/))—^'(V^.ar) = Vi^(Z).vl{x)
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2. Constraints on /25: for the constraints on / with respect to is,that and to and certain

verbal terms, see Definition 59, 1, Chapter 6. / is also subject to the Junction and
Determiner meaning postulates defined below in Definition 80.

3. Algebraic constraints: all algebras contain the set of operations:

{ffiv(7) : 7 is a proof of

By £T25 we shall refer to the iS-/'\'v)-theory of reference which is the combination of the
above disambiguated language and class of models.

As indicated above, we have yet to give a meaning postulate governing the values of the inter¬

pretation function when applied to the disambiguations of junctions and determiners. This is
the concern of the next section.

2.2 Defining the polymorphic junctions and determiners

We defined in Chapter 5, certain 'algebra-spanning' functions associated with junctions and

determiners, functions which for any choice of S,T,J return particular meanings of the types

in (22), what one might call the 'basic' types:

(22) (t-(f-t))
((«->*)_>((«-*)-*))

When l(/A)-theories of reference were considered which did not assign junctions and
determiners to these types, it was the policy to give meaning postulates for junctions and
determiners that fixed a required relationship between the meaning assigned to the junction or

determiner and the corresponding algebra spanning function. The same policy is to be pursued
here.

Under the category-to-type map of £T25, the meanings assigned to junctions and determiners
will be of meanings of types:

(23) Vx.((s—nr)—»((«—»*)—►*")).
((«—(e—*))—Vx.((s-K(s—e)—*))—*))

Therefore we wish to specify a relationship between meanings of the types in (22) and (23).
Two strategies for defining this relation suggest themselves: (1) by terms of £(A,A) or (2) by
recursion, both explored below.

2.2.1 The impossibility of a £(A'A) definition of the polymorphic junctions and
determiners

We have already introduced the idea of defining a semantic operation by a terms of a formal

language. Given the fact that many of the meaning postulates that we have defined so far
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involve the application of a semantic operation to a priveleged object of certain type, it will
come as no surprise that meaning postulates could be specified with the assistance of terms of
a formal language. Consider for example the meaning postulate governing the interpretation of
is, in £7"18 from definition 59:

Whatever model, ((B,(Q^£r,f),{u>,g)) £ JC18,
/((is, (>, (s\np)/np» =

The very same constraint on the interpretation function can be specified in the following way:

Whatever model, ((B,(Sy)fer, f), (w, g)) £ K18, whatever Cx assignment, k,

/«»,(>, (B\np)/np)) = (w,g) ~ [Ai'Ay('.«)Az('.«)[ar(«.«,0(yi)(„-)]l(t»(f,f»^<«'-'>)(u,)
The crucial element is the Cx term Ai-,Ai/(*'e)Arr(''e)[j:(e>e'')(j/i)(2i)]. This term has type

(s,(s,e),(s,e),<), which apart from the initial s, is the type assigned to is according to K18.
The term also contains a single free variable, z(e'e''), and the type of this is the 'basic' copula
type (that is, the type of 1S(£,1,J).
This is an instance of a general pattern for giving meaning postulates which relate the 'basic'
meaning, in type a, of an expresssion to a 'derived' meaning in type b: one simply looks for a

term of type 6, whose single free variable is of type a.

On the same pattern, one could give a meaning postulate governing the polymorphic interpreta¬
tion of junctions if there were some term, $junct of jC^x'^\ of type (s, V7r.((s, ir), ((s, x), 7r))),
having one free variable £(*■(*>*)). \ postulate for and could then be given: Whatever model,

((£?, (f77)7er, /), (w, g)) £ JC25, whatever C^X'^ assignment, k

/((and, (), VX.(X\X)/X» = (w,g) ~ [«SVrV^,'),((i,'),")))
Similarly, one could give a meaning postulate governing the polymorphic interpretation of de¬
terminers if there were some term $det of £(A,A\ of type ((s,et),Vjr.((s,se,7r)„ tt)), whose sole
free variable was x((e—''0—*((<>--**)—'**)), The postulate for every could then be given:

Whatever model, ((B, (<77)76r, f), (w> g)) £ ^-25> where k is an arbitrary £^A,A) assignment,
/((every, (),VX.X/(X\np)/cn» = («,,*) -
To search for the terms *(;**■£•*),«',*),*))) and *-.((..«.«).-)» Qne can exploi(. the
Extended Curry-Howard isomorphism: there would be such terms if and only if :

(i) there is in a proof of (s,W.((s, x), ((s, x), x))) having as its only undischarged as¬

sumption (<,(<, t))
(ii) there is in nj(~''v), a proof of (s, ((s, e,t), Vx.((s, (s, e), x), 7r))) having as its only undis¬
charged assumption ((e—►<)—>-((e—>-<)—<■<))-
We wish to show that (i) and (ii) are false. Now to answer these two questions about Nj(~'■*)
one can reason either syntactically or semantically. That is, one can simply search for whether
there are the proofs, or one can check whether the entailments defined by such proofs are valid:
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because NJ^-"f,v) is sound with respect to the 'classical' semantics it will not be possible to derive

any entailments that are not valid on that classical semantics.

Considering (i), both (s, Vtt.((s, x), ((s, x), 7r))) and (*,(/,<)) are classical tautologies, which can

be established either semantically or by observing the following two nj(~>''V) proofs that have
no undischarged assumptions:

b. [S]2 [(*-*)]! ^
♦ b/

7r

((a-»T)_y) 1
^

V1

Vx((s-+x)-+((s->x)^x))
^

(s-*Vir((s->T)->((s->7r)-+7r)))

(24) a. [t],
f-*l

(*-*)
j

(M«-0)

From the tautological status of (<,(<,<)) and (s,Vx.((s, x), ((s, x), 7r))), and the soundness of
one can see that the entailment (t,(t,t)) => (s,V7r.((s,T),((s,ir),ir))) must be seman¬

tically valid. Therefore one cannot refute (i) semantically. (i) is still false, however. Here
it is important to recall the definition of how it is that an Natural Deduction proof defines

an entailment. See section 3.2.3, Chapter 4. For NJ^-to define the entailment (t, (t, t))
=$■ (s,W.((s,x), ((«, jr),ir))), it is sufficient that there be a proof from no assumptions of
(s,W.((«, x), ((«, x), *"))), and such a proof was given above.

The same point must be borne in mind if we try to settle (i) by settling the related question about
is there an Lj(~1proof (t, (t, t)) =>• (s, Vx.((s, x), ((s, x), x))) ? Such an Lj(—proof

will only imply that (i) is true, if (t, (t,t)) is not introduced into the antecedent by a Weakening
inference. If (t,(t,t)) is introduced into the antecedent by a Weakening inference, then the

lj( *''V) proof corresponds not to the nj(~"^ proof mentioned in (i) but instead to (24b). And
indeed the only lj^-'>,y) proofs of (t,(t,t)) => (s, Vt.((«, x), ((«, x), jt))) that I can find, consist
of a proof of => (s,Vx.((s,x),((s,x),x))) with an added step introducing (t,(t,t)) into the
antecedent by a Weakening inference, such as:

(25) s—*s x—*x

s, (»—»ir) => x
-Weak and Perm

(s—t-Tr), (s—►?r), s => x
>Rznd^R

s => ((s-+T)^((s-^7r)—t))
V/i

s => Vx((s-^x)-+((s-+x)^x))
^

=> (s-*Vx((s->x)-^((s-+x)->x)))
(*—(*-+<)) => (s-*Vx((s-+x)^((s-+x)-+x)))
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Now to consider (ii). In this case, matters are more straightforward because semantic methods

may be used: one can show that the entailment defined by the supposed nj(~*-v) proof is not
valid

Thai (et,et,t) => («, (set),Vir((s, se, it), n)) is not valid

Suppose:

1. there is an interpretation I, an assignment g, and a p such that: p € [*](#)> p € ['](£)»
P i M(fl)

One can show that it follws from this supposition that p £ [(et,et, t)](g) and p £ [(s,(set),V?r((s,se,?Tj,7r))](g),
and therefore that (et,et,t) =>• (s, (set),W((s, se, it), *•)) is not valid.

First we find a sufficient condition for p £ [(et,et, P € [(et,et, t)](s)
if P i [(e<)](5) or p £ [(et,t)](g)
if P € [(et)](a) or p £ [f](fl) (discarding first disjunct)
if P € (<](p) (discarding first disjunct)

By assumption 1, the above is true, therefore p £ [(et,et, t)](g)
Second we find a sufficient condition for p ^ [(s, (set), Vtt((s, se, ?r), 7r))](g):
P ff I(», (act),Vrr((«, ae, tt), 7r))](p)
if P € [s](g) and p £ [(set)](g) and p j? [W((s, se, tt), tt)](p)
if P e [s](g) and (p g [s](g) or p £ [(ef)](g)) and p £ [W((s, se, ir), *-)](g)
if p £ [s](g) and (p £ [(et)](g)) and p j? [Vir((s, se, ir), *)](g)
if P € [s](g) and (p jf [e](g) or p £ [t](g)) and p 0 [W((s,se,7r),ir)](g)
if p € [s](g) and (p £ [t](g)) and p t [W((s, »e, tt), *j](g)
if p £ [s](g) and (p £ [t](g)) and there is a B such that p g I((s,se, ir),ir)](p®)
if P £ [s](s) and (p £ [t](g)) and there is a B such that (p £ [(«, se, ?r)](g®) and p % [?r](g®))
if p € [s](g) and (p £ [t](g)) and there is a B such that ((p j? [s](g®) or p £ [(se, *j](g®))
and p ( B)
if p £ [s](g) and (p £ [t](g)) and there is a B such that ((p $ [(»e)](g®) or p £ frrJfgjP)) and
P(B)
if P 6 [s](j) and (p £ [t](g)) and there is a B such that ((p £ [s](gj®) and p £ [e](g* )) and
ptB)

By taking B to be [e](g) one can see that supposition 1 entails that the above condition is
true and therefore entails that p £ [(s, (set), V?r((s, se, 7tj, 7r))](g) □

Therefore one cannot specify the meaning postulates for the polymorphic interpretation of junc¬
tions and determiners using terms of In short one cannot define the polymorphic junc¬
tions and determiners in
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2.2.2 The possibility of a recursive definition of the polymorphic junctions and
determiners

The domain of the function denoted by determiner or a junction according to the above if!
theory of reference is the set V. Recall that the members of V are denotation sets,

indexed by types in tj-*. We will maintain that it is only with respect to those denotation
sets that are indexed by conjoinable types that the function need be constrained by a meaning

postulate. At denotations sets indexed by types other than these the determiner and junction
functions are unconstrained.

Within the subset of V consisting of the denotation sets that are indexed by conjoinable

types, the polymorphic junction and determiner functions will be given a recursive definition,
the value at a certain denotation set indexed by conjoinable type a being defined in terms of
the value at a denotation set indexed by a simpler conjoinable type b. Grounding the recursion
will be the value of the polymorphic function at the denotation set indexed by the simplest

conjoinable type, t, at which denotation set the polymorphic determiners and junctions return
the orthodox determiner and junction meanings.

This is embodied in the junction and determiner postulate below. J stands for one of the

'algebra^spanning' junction functions that specifies a 'basic' meaning given Jv stands
for the polymorphic meaning assigned to a corresponding lexical junction disambiguation in an

arbitary model allowed by CT25. Q stands for any one of the 'algebra^spannning' determiner
functions that specifies the 'basic' meaning given £, J, J. Qv stands for the polymorphic mean¬

ing assigned to a corresponding lexical determiner disambiguation in an arbitrary model allowed

by CT25.

Definition 80 (Junction and Determiner Postulate)
For all models ({B, (C?7)7er, /), {w, g)) € A25,
whatever conjoinable types type a,b defined relative to £, T and J,

for any p(''a\ P^''a\
if a = t, J^{w,g){Da){Pi){P2) = J(w,g)(P1(w))(P2(w))
if a = (b,c), Jv(w, g)(Da)(Pi)(P2) = xb t-* Jv(w,g)(Dc)(w,g)(w' i-+ Piw'x)(w' i-» P2w'x)

for any

ifa = t, Qv(w,g)(S)(Da)(P) = Q(w, g)(S(w))(xe (-► P(w)(w' *))
if a = (6,c), Qv(w,g)(S)(Da)(P) = xb Qv(w,g)(S)(Dc)(w' >-► y''e !-► Pw'yx)

This definition should be compared with the Definitions 53 and 56, from Chapter 5, sections 2.4.2
and 2.5.2, which were the recursive definitions of the cross-categorial junction operation, Hj,
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and the cross-categorial quantification operation, ~Hq- The similarity of these with Definition 80
is what lies behind the comment that was made in Chapter 5: that the polymorphic junction
and quantifier denotations are the lexicalisations of the cross-categorial junction and quantifier

operations. The link will perhaps be clearer with a couple of examples. To simplify, imagine
for the moment that the above postulates had been made under an extensional rather than an

intensional typing. Then the corresponding versions of the postulates would make it the case

that [and] could only be a possible meaning of and if:

f^](w,g)(Da)(P1)(P2)=HEJ(£,l,J)(P1,AAfV(£,l,J)(w,g),P2)
Similarly, [every man] could only be a possible meaning of every man if:

[every man](tn, g)(Da)(P) = q(£, J, J)(£V£Ry(£,T, J)(w, g)([man]](ti;, g)), P)
Before proceeding to the empirical assessment of £T25, I will just note that in previous versions
of the ideas reported here (Emms 89, Emms 90), I took it as an absolute necessity to express the

meaning postulates for the polymorphic junctions and determiners via some kind of A-calculus

terms, in the fashion of section 2.2.1. To enable this I defined a further extension of C^X'A\
allowing lists of arguments to be terms, and the terms defining the polymorphic junctions and
determiners featured abstractions over lists types. The resulting proposal has a greater 'pencil
and paper' calculability than the current proposal, but at the cost of a lessening in simplicity of
the relationship between the polymorphism in the syntax and that in the semantics.

3 The semantic assessment of the polymorphic proposal

In this section we will assess the semantic performance of £7~25. Section 3.1 begins this with

simple cases, unambiguous sentences with junctions and determiners. Then ambiguities Eire con¬

sidered. Section 3.2 considers a number of determiner containing sentences that are ambiguous.
Section 3.3 does the same for a number of ambiguous junction-containing sentences. Finally
section 3.4 consider some ambiguities associated with embedding constructions.

3.1 Unambiguous sentences with Junctions and Determiners

The first kind of test to which £T25 will be put is that is should account for the instances of

Hypotheses 4 and Hypothesis 3 when applied to unambiguous sentences containing a junction
or a determiner. A sample of junction cases was given in (59a,b,c,d), Chapter 6 and of the
determiner cases in (30a,b,c,d), Chapter 6.

£T25 accounts for (59a,b,c,d) and below there is some indication of how one might go about

showing this in the cases of (59a) and (59d).
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3.1.1 John walks and Mary talks

The required entailment of £T25 to account for (59a) is:

(26) There is a John walks and Mary talks such that whatever model, (3, (">,!/))> what¬
ever John walks, whatever Mary talks, [John walks and Mary talks](w, <7) = 1 iff
■/4ATD([John talks|(tn, g) = l,[Mary talks](iu,g) = 1).

The disambiguation in (27) has the above described property.

(27) John walks and Mary talks PROOFa. (g\s)/s => (s\»)/«
np s\np VX((X\X)/X) np s\np VX((X\X)/X) => (s\s)/s

a

S (s\s)/s 8

8

Recall that all of the horizontal lines in the above should be understood to be anotated with

certain proofs. Where this is not done, the simplest possible proof of the sequent Unking what
is above the line with what is below is understood to go in that place. The only line annotated
in the above is labeled with 'a', and this is understood to refer to 'PROOFa', which is given

alongside. This indeed also is the simplest possible proof of the sequent linking what is above
the Une with what is below. However, it is included to indicate the workings of the (VL) rule.

The chain of equivalences in (28) suffices to show that the disambiguation in (27) has the desired
property, where John walks and Mary talks refer to the single possible flat disambiguations: we

are assuming that there is no semantic diversity among the different possible disambiguations
of John walks and Mary talks.

(28) (i)[(27)lKff)=l ^

iff (ii) AMV(S,T, J)(w, <7)([talks]](u>, g)(w' 1-+ [Mary](ty', 9))) = 1

([walks](tu, <7)(u>' 1-+ [John](u/, <7)))
iff (iii) j4A^Z)([John walks](tu, g) = 1, [Mary talks](tp,g) = 1)

The equivalence of (28ii) and (28iii) is immediate oncee the denotations of the disambiguations of
John walks and Mary talks are calculated, and account taken of the correspondence between AAfV
and AND. For the equivalence of (28i) and (28ii) the denotation of (27) must be calculated,
and this is shown in (29). There are two significant facts determining this denotation. First the
operation associated with PROOFa by H'Ly. This ismVl®'(tu,</) 1-+ m(w, g)(Dt),
which is to say that the polymorphic junction denotation is applied to the t type. Second, there
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is the force of the junction postulate for the polymorphic junction function applied to the t type.

(29) [(27)1(11;,,)
= [and](u;,g)(Dt)(w' i-+ [talks]|(u/, g)(w" ►-+ [Mary](iu", g)))

(w' h-+ Jwalks](u;/,ff)(w" t-> [JohnJ(u/', tf)))
= AAfV(£,I, J)(w, </)(|[talksl(tu, g)(xv' i-+ [Mary](u/,sr)))

([walks](u;, g)(w' [John](u/,ff)))
Given (29) the equivalence of (28i) and (28ii) is immediate.

3.1.2 John needs and wants to go

To account for (59d), the required entailment of £T25 is:

(30) There is a John needs and wants to go such that whatever model, (3, (w, g)), whatever
John needs to go, whatever John wants to go, [John wants and needs to goJ(u;,(/) = 1
iff A.A£)([John wants to go|(u>, g) = 1, [John needs to go](if, g) = 1).

The disambiguation in (31) has the required property.

(31) John wants and needs to go

np (s\np)/vpc VX((X\X)/X) (s\np)/vpc vpc/(s\np) s\np
d

C4

c4

('VVP\VVP)/VVP

(s\np)/vpc

This time none of proofs associated with the horizontal lines have been shown, d is put in as

marker so that we may refer in a moment to the proof associated with this step. To save on

space also, the inferred categorisation of and is given just as C4, with alongside the information
that C4 = (VVP\VVP)/VVP. Here we are using the same category abbreviations as were

introduced in section 3 of Chapter 6, only without any longer the C superscript. They will be
in heavy use throughout the rest of this chapter. Also, as we did in the above, we will often
use the space immediate alongside the depiction of a disambiguation to 'decode' abbreviatory
devices.

To show that the disambiguation in (31) has the required property, the chain of equivalences (32)
suffices, where John wants to go and John needs to go refer to possible flat disambiguations and

it is assumed that there is no semantic diversity among the different possible disambiguations :

(32) (i)[3!](">, </) = 1
iff (ii) AAfT>(£, I, J)(w, g)([needsj(w, g)(w' h- [to](u/)flf)(u;" [go](u/', g)))(w'
[John](u/, ff)))([wants](u>, </)(u/ ^ floJK,ff)(u'" ^ [goK™"-
[John](u/, <7))) = 1
iff (iii) AtfZ>([John wants to ^(w,g) = needs to ^
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The equivalence of (ii) and (iii) is immediate once the denotations of the disambiguations of
John wants to go and John needs to go are calculated. For the equivalence of (i) and (ii) the
denotation of (31) must be calculated and this is shown in (33). The operation associated
with PROOFd by H'Ly is »-► (w,g) i—► m(w, g)(D^,,vp),vp))> w^ich is to say
that the polymorphic junction denotation is applied to the ((s, vp), vp) type. (33) uses the
these abbreviations: TG = (w' »-+ [to](u/,g)(w" t—► [go](u/',#))), j = («/ i—► [John](u/, g))
N = (if/ i—► [needs](u/, <7)), W = (u/ »-► |wantsj(u/, g)).

(33) [(31)](xv,g)
= JandKu;,g) (D((,lt,p),(«,<))) {w' [needs](u/, g)) (w' t-* [wantsj(u/,g)) (w' i-> [to](u/,</)
(w" [go](ic/',0))) (w' [John|(tn', g))
= MK»)(%,,,),(,,0))(N)(W)(TG)('.»f)a)
= (x('-vp) i-+ [and](u;, g)(D(,eit))(w' i—► Ntt/x)(u/ i-+ Wtn,x))(TG)(,'<;p)(j)
= (Mdl(u>,ff)(£>(„,,))(«;' ~ IW(TG))(«,' ~ Wu/(TG))(j),e
= (x('-e) [and](tn, g)(Dt)(w' i-* Nu/(TG)x)(i</ Wtt>'(TG)x))(j),e
= fand](tu,0)(.Dt)(u/ lW(TG)(j))(u/ Wto'(TG)(j))
= AV2>(£, 1, J)(w, </)(Ntn(TG)(j))(Wtn(TG)(j))
= AAfT>(E,l,J)(w,g)(^tc6s\(w,g)(w' t-> [to](u/,0)(u>" *-* [go](u/', ff)))(u/t-* [JohnJ(u/, g)))
([wantl](u>,<7)(u/ i-> po](to', g)(w" i-f (go](u>",flO))(«>' [John|(u/, g)))

Givne (33) the equivalence of (i) and (ii) is immediate.

£T25 also accounts for the unambiguous determiner cases, (30a,b,c,d), and below there is some

indication of how this might be shown in the cases of (30a) and (30d)

3.1.3 every man walks

The required entailment of £7"25 to account for (30) is

(34) There is a every man walks such that whatever model, (3, (10,0)), whatever
hex is a man, whatever hex walks, [every man walks](tn, </) = 1+-+EVERY({x
[hei is a man](u;,gftei) = 1},{x : [hex walks](u;,gxhei) = l})

The disambiguation in (35) has the property.

(35) every man cried

VX.X/(X\np)/cn cn s\np
VX.X/(X\np)

a

s/(s\nP)
s
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The chain of equivalences in (36) suffices to show this:

(36) (i) [35](u>, y) = 1

iff(ii) £V£ny(£,I,J)(w,g)(lman}(w,g))(xf -* [walks](u;, g)(w i-» xe)) = 1
iff (iii) EVERY({x : [hex is a man](u;,^ei) = 1},{x : fhei waiks]|(u;,^ei) = 1})

hei walks refers to the only possible flat disambiguation, and hex is a man is the disambiguation
in (37). We have assumed that there is no significant semantic diversity amongst the possible
disambiguations of hex is a man.

(37) hex is a man

np (s\np)/np VX.X\(X/np)/cn cn

VX.X\(X/np)
VP\{VP/np)

s

The equivalence of (ii) and (iii) requires one to consider the denotations of (37) and hex walks,
and the only non-trivial part is the demonstration that [37](w, g) = |manj(w, g)(g(hei)). As this
involves a, we have have shown this as the first illustration of polymorphic determiner meanings.
This time the polymorphic meaning is applied to the type (se,f).

(Key to abbreviations: M = (w' [marf](u/,g)), I = (w' i-+ fs)(u/,y)) V3 = (w' t-+ y(/iex)))

(38) [37](ti;,y)
= |[a](u>, g)(w' [man|(u/, y))(£>((,,e),i))K >-* fsKw', </))(«' fKAei))
= in(w,g)(M)(Da,,e)}t))(\)(V3)('^
= (z('.e) i—^ [aKtn.yXMXDxXw/ y(',e) >->■ lw'yx))(V3)(''<)
= Ia](u;,y)(M)(Dt)(ti/ lu/yV3)
= A(£ ,1, J)(w, g)(M(w))(xe >-► \w(w' x)V3)
= A(£,T, J)(w,g)(M(w))(xe >-> lS(£,l,J)(w,g)xg(hex))
= M(w)(g(hei))
= [manl(^,5)(ff(/»ei))

The equivalence of (i) and (ii) requires only the calculation of the denotation of (35), shown
below. The polymorphic determiner meaning is on this occasion applied to the type t (W =
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(«;' i—► [walks](w/, </)))

(39) [35](u;, <7)
= |every]](tu,g)(w' i-» [man](it/, g)){Dt){w' [walks](«/,(/))
= |every](u;, g)(M)(Dt)(W)
= EVSTiyiS,1, J)(w, g)(Mw)(xe 1-+ \Nw(w' x))
= £VS1iy(€,I,J)(w,g)([wam}(w,g))(xe >-* [walks](u>, g)(w' h-+ x))

3.1.4 John told every man to go

The required entailment of CT25 to account for (30d) is:

(40) there is a John told every man to go such that whatever model, (Q,(w,g)), what¬
ever hej is a man, whatever John told hei to go, [John told every man to goJ(u>, </) =
1<-*EVERY({x : [hei is a man](w, g%ei) = 1}, {x : [John told v to go](tr>, </£ei) = *})

(41) has this property:

(41) John told every man to go
CA

WP\(VVP/np)
np ((s\np)/vpc)/np VX.X\(X/np)/cn cn vpc/(s\np) s\np

VX.X\(X/np)

£4
s

The chain of equivalences in (42) suffices to show this:

(42) (i) [(41)](u;,0) = 1
iff (ii) £V£Ry(£,I,J)(w,g)({man}(w,g))(d% i-> [told](u;, g)(w >-*■ dQ(w' t-* [to goVpc]|(uA </))
(vu'\-+ [John](ti/,sf))) = 1
iff (iii) EVERY({x : [hei is a man](tu,^ei) = 1},{x : JJohn told hei to go](w,^ei) = 0)

John told hei t° go refers to one of the possible flat disambiguations and hei is a man refers
once again to (37). The equivalence of (ii) and (iii) is evident from the denotations of the
disambiguations, taking note once again of the fact that [[37](tt;, g) = |man](tu, g)(g(hei)). The
equivalence of (i) and (ii) is shown beiow (G = (w' 1—► [to](u/, g)(w" h-+ [go](ti;", </))), j = (w' t-*
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[JohnjKu/, g)) M = (w' i-+ [man]|(tt/,0)), T = (w' (-► |toTd]](w',g)))

(43) [(41)](u;,</)
=[every|(u>, g)(w' »-»• [rrian](u/, </))(%,,<)))(u/ •— ftoidKu/,g))(w' [to](u/,(/)
(w" *-* [go](u;",fli)))(u)' [JohnJ(u/, g))
= |evefy|(u;, ff)(M)(£>((,iUp)>(lM)))(T)(G)(''"P)(j)
= (a;( *'"P) ►-+ [every|(iy, </)(M)(£)(4e())(«)' t-* Tiy'yx))(G)('',;p)(j)
= p*ryKw,g)(M)(D(,ett))(w' -+ ~ Tu/yG)(j)«
= (x(',e^ i-+ [every|(u;, g)(M)(D,)(w' !-► y(>,e) i-> Tu/j/G:r))(j)(*e)
= |[every]|(u;, </)(M)(Dt)(tt;/1-+ y(''e) i-> Tu/i/Gj)
= €V£Ry(£,T, J){w, y)(Mtc)(ie i—► Tu>(u/ h-> a;)Gj)
= J')(u;,fli)([man]|(u),sf))(xe i-> (toid|(u;, </)(»' i-f a?)(u/ [to](u/,0)
(w" t-+ |]go](u>", g)))(w' t-f [JohnJ(u/, (/)))

3.2 Recursively ambiguous sentences with Determiners

Having confirmed that jCT25 accounts for the semantic properties of unambiguous sentences we

can now consider some ambiguous sentences. In (30e,f,g) ofChapter 6, section 2.1, were recorded
three instances of the application of Hypothesis 3, and to begin with we will be concerned to

show that £T25 accounts for these. Once these particular cases have been considered we will
turn to whether jCT25 accords more generally with the requirements of Hypothesis 3, concerning
recursive ambiguity with respect to quantifiers.

3.2.1 a nun liked every boy

We consider first (30e), the fact that a nun liked every boy is recursively ambiguous wrt. both a

nun and every boy. This is accounted for by the two disambiguations below.

(44) a nun liked every boy

VX,X/(X\np) (s\np)/np VY.Y\(Y/np)
s/(s\np) (s\np)\((s\np)/np)

s\np
s
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(45) a nun liked every boy

VX.X/(X\np) (s\np)/np VY.Y\(Y/np)
s/(s\np) s\(s/np)

s/np
s

The reading associated with the claim that a nun liked every boy is recursively ambiguous wrt.

a nun is accounted for by (44), as should be plain from its denotation indicated in (46). Note
that the immediate subparts of (44) are a disambiguation of a nun and a disambiguation of liked

every boy.

The reading associated with the claim that a nun liked every boy is recursively ambiguous wrt.

every boy is accounted for by (45), as should be plain from its denotation indicated in (46). Note
that the immediate subparts of (45) are a disambiguation of every boy and a disambiguation of
a nun liked.

(46) N = (w' H-c [(nun, (), CN)](u/, g))
B = (w' i-+ [(boy, (), CN)](u/, g))
L = (w' h-► [(liked, (), (s\np)/np)](u/, g))
l(44)](w,g)
- l^j(w,g)(N)(Dt)(w' [every](in',sf)(5)(D(j(,i())(L))
= A{S,T, J){w, g)(Nw){ye k-► £V£TZy(£,l,J)(w,g)(Bw)(xe i—» Lw(w't—► x)(w't—♦
V)))

[(45)](tn,ff)
= [every]](iu, g)(B)(Dt)(w' d(~s'e'> [a](tu', g){N)(Dt)(w' *-* Lw'(d)))
= £V£'Ry(£,1, J){w, g)(Bw)(xe i—► A(£,l,J)(w,g)(Nw)(ye i—<■ Lw(w't—► x)(w'

y)))

Moving onto (30f,g), we will explain first how CT25 accounts for (30g) and then return to (30f).
This is because the de-re/de-dido contrast of (30g) is a little more easily explained than the
two way recursive ambiguity of (30f).

3.2.2 John believes a man came in

Let us suppose CT25 would account for (30g) if it allowed two disambiguations of John believes
that a man came in whose denotations were as follows:

(47) de-dicto\ Biu(u/ A(S,1, J)(w', g)(Mw')(xe ■—► Cw'(w" h> x)))(j)
de-re: A(£, I, J)(iv, g)(Mw)(xe i-> Bw(w' i— Cw'(w" x))(j))
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To start off with, here is a disambiguation of John believes that a man came in that accounts for
the de-dicto reading of a man.

(48) John believes that a man came in

np s\np/sc sc/s VX.X/(X\np) s\np
(s\np)/s s/(s\np)

s

s\np
s

This contains a disambiguation of a man came in, which has as immediate subparts a disam¬

biguation of the quantified noun phrase and that disambiguation of came in which is the basic

expression (came in,(),s\np). In any model allowed by £7~25 this disambiguation of came in has
a denotation of type ((s, e),f), which is a function of arity 1.

The key to accounting for the de-re interpretation of a man is that there are other disam¬

biguations of came in that are associated with denotations of larger arities. In (49) there is a

disambiguation of came in which would be associated with a meaning of arity 3.

(49) came in PROOF 1 VP/s, np, s\np => VP

s\np np, s\np =>• VP\( VP/s)
PROOF 1

(VP\(VP/s))\np s\np => ( VP\( VP/s))\np

Ff^v(PROOF 1) is the operation defined by the term Ax(,,e)Ay(',>t,,e,t)[j/i(Ai[u^'e,^(Aj[ari])])],
assuming that u[se'^ is associated with the antecedent. This operation is:

(50) h+ (u>,g) i—► i—+ yi><^ y(m)(t// h-> m(w',g)(x))

Therefore the denotation of the non-basic disambiguation of came in in (49) is:

(51) x(5,e) i—+ y('.st>'eM i-+ y(w)(w' [came inj(u/, g){x))

This disambiguation of came in is of category (VP\(VP/s))\np, which is an instance of x\np.
Therefore that disambiguation of a man which is of category (VP\(VP/s))/((VP\(VP/s))\np),
could be combined with the disambiguation in (49) to obtain a disambiguation of a man came

in of category (VP\(VP/s)):
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(52) a man came in

VX.X/(X\np) VP
-PROOF 1

(VP\(VP/s))/((VP\(VP/s))\np) (VP\(VP/s))\np

(VP\(VP/s))

The denotation assigned to (52) is (using M as an abbreviation of (w' [man]](u/, y))):

(53) [a man came in]
= fal(™,0)(M)(%,,jMe,t),,>e,t))(u/ [(49)](u/,fif))
_ y(s,»t,se,t) ^ z,e A(S,I,J)(w,g)(Mw)(xe I-+ I(49)](if, g)(w't— x)(y)(z))
= yC''9*'"'*) (_> z»« A(£,11 J){w,g)(N\w)(xe t—+ y(w)(w' h-+ Cw'(w' >—* x))(z))

Now if the above function is compared with what was indicated in (47) as the required denotation
of the looked for disambiguation, one can see that if the function was to be applied to the 'right'

arguments, the result would be the denotation in (47); the 'right' arguments are B and j.
Therefore, if the (52) disambiguation of a man came in can be combined with disambiguations
of believes and John by syntactic operations associated with intensional function application,
the denotation of the resulting disambiguation will be what was sought. This is possible as

indicated in the following:

(54) John believes a man came in

np (s\np)/s (s\np)\((s\np)/s)
s\np

Checking the denotation assigned to (54):

(55) |(54)](u;,<7)
= (yO,»',»<M) zse ^ _4(5j J J){w, <7)(Mu>)(xe t—► y(w)(w' i—► Cui'(w't—► x))(z)))(B)(j)
= A(£,l, ff)(w, g)(Mw)(xe i—► B(u;)(it/ h-+ Cw'(w' i—»• x))(j))

3.2.3 every man. told a woman to go

Now we move onto (30f), and the task of accounting for the recursive ambiguity of every man

told a woman to go wrt a woman. First we shall see whether we can replicate the strategy used
for (30g).

The disambiguation of John believes a man came in for which (54) is a notation for a highly non-

flat member of the carrier set of the syntactic algebra, reflecting in its structure the generally

accepted constituent structure of the sentence. One can equally well arrive at the desired result

based on a flatter member of the syntactic algebra, less reflective of the conventional constituent
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structure, namely

John believes that a man came in

np (s\np)/s VX.X/(X\np) s\np
PROOF1

where PROOF1 is the following proof (using PV for (s\np)/s):

(56) np, PV, np, s\np => s
\R\R\R

np.PV, (s\np)\PV => s s\np => ((s\np)\PV)\np
np,PV, ((s\np)\PV)/(((s\np)\PV)\np), s\np => s

VL
np,PV, VX.X/(X\np) , s\np => s

Therefore PROOF1, the proof indexing the crucial operation may be seen as built up from a

proof of np,PV, np, s\np => s. This sequent differs from the concluding sequent only by the

presence of np instead of VX.X/(X\np).

Therefore we might seek a disambiguation of every man told a woman to go by starting from
a proof of VX.X/(X\np), ((s\np)/vpc)/np, np, vpc s, and building from it to a proof of

VX.X/(X\np), ((s\np)/vpc)/np, VY.Y\(Y/np), vpc =>■ s, on the model of (56). Here then is a

proof of VX.X/(X\np), ((s\np)/vpc)/np, np, vpc => s:

(57) s =S> s s\np => s\np

s/(s\np), s\np => s vpc => vpc
/L

s/(s\np), (s\np)/vpc, vpc => s np => np
/L

s/(s\nP)> ((s\nP)/vPc)/nP> nP, VPC => s
(VL)

VX.X/(X\np), ((s\np)/vpc)/np, np, vpc => s

Building on this in an analogous way to (56) would lead to the following:

(58) s => s s\np => s\np
s/(s\np), s\np =>• s vpc => vpc

s/(s\np), (s\np)/vpc, vpc => s np =t- np

s/(s\np), ((s\np)/vpc)/np, np, vpc => s
(VL)

VX.npAX, ((s\np)/vpc)/np, np, vpc => s

TVVP => ((s\VX.npAX)/vpc)/np VX.npAX, ((s\VX.npAX)/vpc), vpc => s
( / Ej )

VX.npAX, TVVP, ((s\VX.npAX)/vpc)\(((s\VX.npAX)/vpc)/np), vpc s
(VL)

VX.npAX, TVVP, VY.Y\(Y/np) , vpc => s

However, this is not a possible proof, as in the last step, the (VL) inference, as value for Y, the
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following is chosen, with abbreviations now done away with:

((s\(VX.X/(X\np)))/vpc)/np

This is a category in which a polymorphic quantifier categorisation figures and is therefore not

a possible instantiation if we are to abide by the restriction on variable instantiation that we

have decided upon in Definition 67. All is not lost, however.

(58) is built upon (57). In (57) there is there is a (VL) inference involving VX.X/(X\np), at

which point X is instantiated to s. This is in fact the last step of (57). Dropping this last step
from (57) we have a a proof of s/(s\np),TVl/P,np, vpc => s. We will now build on this proof
in somewhat the fashion that we built upon (57):

(59) s => s s\np s\np
s/(s\np), s\np => s vpc => vpc

s/(s\np), (s\np)/vpc, vpc => s np => np !

s/(s\np), ((s\np)/vpc)/np, np, vpc s npAs, ((s\npA3)/vpc), vpc =>■ s
VL

TVVP ((s\npAs)/vpc)/np VX npAX, ((s\npA3)/vpc), vpc => s

VX npAX,TVVP, ((s\npA3)/vpc)\(((s\npA3)/vpc)/np), vpc =^> s
(VL)

VX npAX, TVVP, VY.Y\(Y/np) , vpc => s

The disambiguation associated with this proof will account for the reading of every told a woman

to go required by its recursive ambiguity wrt. a woman.

For, supposing that with the antecedents of the concluding sequent of (59) are associated the
• i-i ^7r((aisei7r).7r) (seXs>se,t),se,t) V7r(($,$e,7r),7r) (se.t) . • , 1 -,i ,1variables Xqj " ', x\ , %q2 , x\ . then the term associated with the

proof is:

(60) XQ*2a,',e'*l*\TYPE)(\ip)(\ix4)(\ix*Q\a'''e-wh*\t))
where TYPE = ((s, se,t), (s, (s, se,t),t),t))
0 = AyfeAj/^',e,t)A^5,(*'*e,t),t)[y3(j)(Aia:2(Aiy1i)(Ajy2i))]

Therefore the denotation of the disambiguation is:

(61) [a woman|(iy, g)

(DType)

(tu',dj«)(4,,'e,,),4',((',",0,l))^
d3(w')(w" i-* [told|(u/', g)(w" dx(w"))(w" *->■ d2{w"))))

(w' i ► [to gojj(u)',g)) (w' i + [every man](«/',y)(Dt))

=[a woman](u;,y)(a:e i-+ [every man](u;,y)(ye [toldJ(ui, g)(w' x)(w' [to go]|(u/, g))
(w' i-+ y)))
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We have seen how that all the semantic data concerning determiners that was set out in (30),

Chapter 6, is accounted for, both unambiguous and ambiguous cases. Next we consider more

generally whether £7"25 is in accord with Hypothesis 3.

3.2.4 General recursive ambiguity of S[DET CN] wrt. DET CN

We wish to consider now whether £7~25 accords with Hypothesis 3, concerning recursive am¬

biguity with respect to quantifiers. To start with we will simplify and assume that DET CN is

every man. Then if a THEORY OF REFERENCE is to accord with Hypothesis 3 it must be the case

that:

(62) for any disambiguation of ... hei . .., there is some disambiguation of . .. every man

... such that,

[...every man ...](«;,3) =
SV£Tiy(£,1, J)(w, g)(fman}(w, g))(x 1-+ [... hei .. .](it>, ))

If the THEORY OF REFERENCE under consideration was for example T11, the non-local account

of quantification that was described in section 2.5.1 of Chapter 5, it would be quite easy to

demonstrate (62). This is because the obvious candidate for the required disambiguation of
... every man ... is that one which has the supposed disambiguation of ... he! ... as a subpart:

such disambiguations of ... every man ... are provided for by the 'Quantifying-in' operation.

When £T25 is the THEORY OF REFERENCE under consideration, it is more difficult to to demon¬

strate (62). This is because no disambiguation of ... hei ... can be used as a subpart of a

disambiguation of ... every man .... However, (62) can still be demonstrated, for it does not

require a certain relationship between disambiguations, it requires a relationship between the de¬
notations of those disambiguations. Essentially, we must look for a 'factorisation' of the . .. every

man ... denotation, revealing the presence of the ... hei • • • denotation as a factor.

What we will do now is to present a simplified, outline form of the proof that according to £T25,
(62) is true. After that, we will consider the effect of the simplifications made.

So, to begin with, we must consider an arbitrary sentence, .. . hei ■ • • 1 and an arbitary disam¬

biguation of it. Considering an arbitrary sentence, ... hei • • • > comes to considering any sequence

of lexical categories that instantiate the pattern U, 7T, np, T2, V, where one of T\ or T2 is not

empty and both U and V may be empty. Then to suppose an arbitary disambiguation of ... hei

..., is to suppose that there is some proof, P\, of U, Tl, np, T2, V => s. Hence the supposition

is:
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there is a proof Pi of U,T1, np, T2, V => s:

U, Tl, np, T2, V => s

We will consider the case of this supposition such that it is T2 that is non-empty. It should
be obvious how things would correspondingly go if Tl was taken to be non-empty. What we

have to show on the basis of this supposition is (i) that there is disambiguation of ... every man

..., and (ii) furthermore that the relationship between the denotations of the disambiguations
of ... hej ... and ... every man ... is as specified in (62).

Now the search for the disambiguation of ... every man ... may be equated to the search for a

proof of U, Tl,Q, T2, V => s, where Q is one of the two polymorphic quantifier categorisations,

VX.X/(X\np) or VX.X\(X/np). We will claim, more or less, that the proof whose existence is
deducible from the supposition of the existence of the proof Pi is the following one:

P5, a proof of f/,7'1. VX.X/(X\np),7"2,, V => s:

: U,Tl,np,T2,V => s
Slash R

U,Tl,(s/V)\U.Tl,V =» s T2 =» ((s/VQ\£/.ri)\np

U,Tl,((B/V)\U.Tl)/(((a/V)\U.Tl)\np),T2,V=> s
(VL)

U, Tl VX.X/(X\np) ,T2,V => s

A few words of explantion of P5. The supposed proof Pi is the 'top-right' part of P5. 'Slash R'

indicates that by a series of (\R) and (/ R) one deduces T2 => ((s/V)\U.TI)\np ((s/V)\U.Tl
is an abbreviation for (s/V)\\U\Ti). The sequent, T2 ((s/V)\[/.7T)\np is then used as

the minor premise in a (/L) inference, the major premise being U, Tl, ((s/V)\U.Tl), V => s.

This major premise can be given the obvious proof that proceeds by a series of Slash-Left
inferences. The sequent resulting from the (/L) inference combining the major and minor premise
is: U,Tl, ((s/V)\U.Tl)/(((s/V)\U.Tl)\np),T2, V =S> s. ((s/V)\U.Tl)/(((s/V)\U.Tl)\np is an

instance of the schema x/(z\np), and so we have the premise for a (VL) inference, allowing the
conclusion of 17,Tl, VX.X/(X\np),T2, V => s, and this is the final step of P5. We have here

ignored the side-condition to the (VL) inference and not worried whether ((s/V)\U.Tl) contains

any quantified categories. This ignored complication will be considered in a while.

P5 demonstrates the existence of disambiguation of ... every man ... on the basis of the supposed

disambiguation of ... hex .... What it remains to do is to show that the relationship between
the disambiguations associated with Pi and P5 is that required by (62). This requires us to
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show that:

(63) Sp5(mf, mf1, [every man], m^2, m%)(w, g)
= £V£liy(£,l,J)(w,g)(\manl{w,g))(x £pi(mf ,mP, [heij, mf2, m%)(w,g^^))

The notations used here should be more or less self-explanatory. For example, mf refers to the

sequence of meanings of the lexical items the sequence of whose cateogorisations U represented.
U is intended to the the sequence of types associated with the sequence of categories U. Also

every man is intended to refer to the polymorphic disambiguation of every man.

There is no elaborate reasoning involved in establishing (63). All that is required is consulta¬
tion of the definitions of the proof-to-operation map, H'Ly, and the meaning postulate for the
polymorphic determiner, and a large amount of book-keeping.

Thai (63) is true

We consider first LHS of (63). Suppose on choosing xf, x^1, , x(2, xf are chosen for the an¬

tecedent categories of the concluding sequent of Pi H'Ly(Pi) — <t. Then ifup,s'3e'rr','r',
UT* >us are chosen for the antecedents of the concluding sequent of P5, P)v(Pt) is:

(64) Ug"^'''eiK)}n)(TYPE)(XiL)(\iup)(\iu^)(Aiuf)
where TYPE = ((s, 71), (s,0), (s, V), t)
£ = Xy['^Xy^s,^Xy^''^\yY'^^1/[y3i/x1,y2i/x2,yii/x3,ui/xi,y4i/xs]

The LHS of (63) is the value of the operation defined by the term above when applied to the

meanings of the parts of ... every man ... and a (w, p), and this is calculated below. Note in
the first step, each free variable, ua, of the term above is replaced by the term and

the whole term prefaced with At. Because U4 is 'invisible' in H%Ly(P&)t the notation E» is
used for Y,[z±i/u\\. The third step relies on the recursive determiner postulate. The foruth

step is because E* is \y\ Ay2 At/3 Ay4 [tf [3/31/^1, j/2«/^2. V\ *7*3, z^i/x^, y\i/xb]]

(^[Xiz^'''"^^ (i)(TYPE)(XiY..)(Xiz(2'''fl) i)(Xiz\s-0) i)(Xiz[''V) i)\(k)(w)
where k is a £( *'^)assignment such that: fc(z)"'^') = w' i—♦ m\(w', g), k(z2s'^i^) = w' i—» 7712(70',y),

fc(2:^s'V'rds'je',rl''r)l) — w' [every man](io',g), k(z^''"^^) — w' <— 7714(10',g), k(z[)'^^) = 70' 7-7 7115(10',g)
= [every man](^,s)(DTyPB)([Ai£.](A:))([A72(s':ri)7](A:))([Ai2(!,'£')i](A:))([A43'C7)i](fc))
=£V£TZy(£,I,J)(w,g)({man\(w,g))

(xe 1—► [Ai£,](A:)(to)(7o' 1—7 ®)([AtZ2*,2,"1'»](A:))([A»Zj*''^i](fc))([At2£,'^»](/:)))
=EVSRy(£,l,J)(w,g)(\man\(vj,g))(xe >-7 [tf[y3»/xi,y2»/sr2i Vi»/*3.Z4»/*4.y4«/^s]](fc'))>
where k' differs from k at most wrt. i, yi, y2, V3, Vt, for which k'(i) = 10, k'(yi) = (10' 7-7 x),

k'(ll2) = [Ata^,,3^'f](fc) = to' 1-7 7712(10',y), k'(y3) = [Aiz^',£?'t](fc) = to' 1-7 mi(io',y),
Ar'(y4) = [Atz^'^'iKA;) = to' 1-7 7715(10',g)

(65) is a form of the LHS of (63) and we will leave it for the moment in that form and turn

to the RHS of (63), which is calculated below:

(66) £V£TZy(£,T, JP)(io,y)([man](io,y))(xe 1— [Ai<S[zii/xi, Z2t/r2, z3i/x3, Zii/xit z57/x5]](/)(io))
where I is an assignment such that:/(zi) = to' 1—7 rnj(10',),f(z2) = to' 1—7 7712(10',),

/(z3) = 10' 1-7 [hei](ui',y^ei) = w' ^ x, /(Z4) = to' 7-7 7714(u/,y*g]), /(zs) = to' 1-7 7715(10', )
Now comparing (65) and (66) it is clear that they could only differ if one of the following

inequalities holds:
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(67) [V3»](V) # [2l«'](0, [y2'](fc') ^ [-2*1(0' Itfl *!(*') ^ 1*3 i](0. # [^41](0. !»«<](*') V

[*5 «'](')
But all of these inequalities are impossible. Therefore (63) is true □

That completes the simplified proof of the fact that £T25 is in accord with Hypothesis 3. Now

to consider the simplifications that were made. There were two simplifications, the first and
least important of which was that the CN part of DET CN was man. In fact it should be allowed
that CN is a phrase, and the condition for accord with Hypothesis 3 should be revised to:

(68) for any disambiguation of ... hei ..., any disambiguation of vi is a CN, there is some

disambiguation of ... every man ... such that,

[...every man ...](«>,flf) =

€V£1iy(E,l, J)(w,g)(x i *■ [he! is a man](u>,^ ))(x i— [...he! ■ ■ ■ ](u>, ))

Therefore the supposition of the proof should not only be the existence of a proof, P\, of

(7,Tl,np,T2, V => s, but also the existence of a proof, R, of np, (s\np)/np, (VX.X/(X\np))/cn,
W =>• s, where W is the sequence of lexical categories corresponding to CN. This also changes
the aim of the proof to being one of demonstrating the existence of a proof of

C/,Tl,(VX.X/(X\np))/cn,Hr,T2,Vr => s

The second and more important simplification that was made concerns the ignoring of the side-
condition to the (VL) inference. The simplified proof will not work if in U,T 1 or V there are

quantified categories. The first step of the revised proof concerns such occurences. If there are,

it is assumed that in Pi are (VL) inferences, each instantiating some category variable Z to some

category x. We infer the existence of a proof P2, from which (VL) inferences concerning V's in

U,T1 or V are absent, proving the sequent U', Tl', np, T2, V' =s* s, where each of U\Tl', and
V differ from U, Tl, and V by replacement of any category YZ.y with y[x/Z].

Then the' required disambiguation of ... DET CN ... is associated with the following proof:

P5: a proof of U, Tl, (VX.X/(X\np))/cn, W, T2, V =» s:

U=>U' T=>TT V=>V' t/',Tl',np,T2, V' => s
Slash R

U,Tl,(s/V')\U'.Tl',V => s T2 => ((s/V')\tP.n,)\np

U,Tl,{{s/V')\U'.Tl')/(((a/V')\U'.Tl')\np),T2,V =» s(/L)
VL)

U, Tl, VX.X/(X\np) ,T2,V => s W => cn

U,T1, (VX.X/(X\np))/cn W, T2,V => s ^

A few words of explantion of P5. P2 is the proof associated with the rightmost ellipsis, the

proof of {/', Tl', np, T2, V' => s. Again 'Slash R' indicates a series of Slash Right inferences, this
time leading to T2 => ((s/V")\f/'.Tl')\np. The sequent, T2 => ((s/R')\f/'.Tl')\np is then used
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as the minor premise in a (/L) inference, the major premise being U,T1, ((s/V)\U.Tl), V => s.

This major premise can be given the obvious proof that proceeds by a series of Slash-Left

inferences, the minor premises for which are U => U', Tl => TV and V => V'. These are un¬

derstood to have proofs which include the (VL) inferences that were absented from Pi to give

P2. The sequent resulting from the (/L) inference combining the major and minor premise is:

U,Tl,((s/V')\U'.Tl')/(((s/V')\U'.Tl')\np),T2,V => s. ((s/V')\U'.Tl')/(((s/V')\U'.Tl')\np
is an instance of the schema x/(a:\np), and so we have the premise for a (VL) inference, allowing
the conclusion of {/,Tl,VX.X/(X\np),T2, V => s. This forms the major premise of a (/L) infer¬
ence, whose minor premise is W =>• cn. The proof of this minor premise is, R'. This is intended
to be identical to a subproof of R. Recall R is a proof of np, (s\np)/np, (VX npAX)/cn, W
=> cn. Given the meaning postulates for hex, is and a, the denotation of the disambiguation of

he* is a CN associated with the proof R, can be calculated from the proof R'\

£fi(lhnl>[isMa]>ml*')(iP9,L1) =
We now have to demonstrate that there the relationship between the disambiguations associated
with Pi, R and P5 that is required by (68), namely that:

(69) £p5(mf .mf1, [every], m%N,mp, mf )(w, g)
= £VSny(£,l, J)(u;,ir)(art([he1],|[is],[a],m^v)(u;,fif))

(x 0P1(mf ,mP,[hei],mf2,m^ )(«b ))

Below, the fact, that (69) is true is demonstrated.

That (69) is true

Suppose on choosing arj7',i| ,r^2',37^" for the antecedent categories of the conclud¬
ing sequent of P2, £P y(p2) = ^ ■ Suppose also that on choosing c^ for the antecedent
category of R, H'LV(R) = 6. We will give //Jv(P5) on the supposition that up, up"1,
u((Jiet).v,r((J."1*)'*■))_ , up2, up are chosen for the antecedents. But first we must ex¬

plain the notation used to register the effect of the VL inferences in the proofs of U => U\
Tl => TP and V => V. If u?. «r and up were chosen for the antecedents of the these
proofs, the terms for the proofs will be written up (11), u^1 (£2) and up(tj), were ti,t2 and
£5 are types. Below is H'LV(Ps):

(70) u^3,et),V'r((s's<!''r)''r))(At0)(TTP£J)(AtE)(Atu[*1 (£2))(At'up(ti))(\iuf (£5))
where TYPE = ((s,TP),(s,0'),(s}V')1t)
£ = \y[3^ \y^''^ , y2i/x2, yii/x3, U4/X4, y4 i/xb]

The value of the operation defined by the term above when applied to the meanings of the

parts of .. .every CN ... and a (w,#) is calculated below. In the first step, free variables, ua,
are replaced by terms z^s'a^i, the free variable is replaced by the term df>8' and the

whole term prefaced with At. u\ and c are 'invisible' so £* is used for £[241/1x4] and 0+ is
used for 6[di/c]. The third step relies on the recursive determiner postulate, and the fourth

step on the fact that £* is Ayi Ay2Ay3 At/4 [$[1/3 i/xi, t/2*/^2, Vl *7^3, 24 i/x\ , y\ i/xb\\
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(71) [Aii(QSl»s'e,)'v,r«s'"',r'''r>))(i)(Aie.)(TyP£)(A.£.)(A.'4s'7ri).(t2))(A»-2^'£')i(t1))(Ai4s'<'»i(t5))](fc)(u-)
where k is a £'*'A)assignment such that: k(z\!'^^) = uu' >-+ mi(w',g), = to' ►—

"t2(u/',5), «.»).»))) — yj' ^ [every](u/, g), k{z^''^2^) = w' >—

fc(-z£s,C'^) = tu' i-» ms(w\g), k(dO-^)) - w' >-> tticnW,a)
= [every](ty,g)([A«6.](fc))(Dt!/pc)([AtE,](fc))([At4s,T"1)«(t2)](*:))([At2(15'y)«(<i)](*))([At2^'<7)t(t5)](/;))
= CV£W3?(£fIIJ)(t0tj)([Ai«.](fc)(t0))
(xe ►-+ [At'£.](fc)(tu)(u/ t-r x)([Ai2^,rt ^(<2 )](fc))([At4s,0)t(<i)](A))([At2^,<7)t(t5 )](*:)))

=:£VSHy(S,X, •7)(w,g)([Ai0»](fc)(u;))(:E >-> [*[3/3»7®l.y2«/®2. S/l «/*3,Z4 »'/0?4 , y4«/x5]](*')).
where k' differs from fc at most wrt. t,yi,3/2,3/3,3/4, for which A:'(t) = tu, fc'(yi) = (w' *)>
^'(ot) = [A»^^(<2)](fc) = w' >-* m.2(w',g)(DtO' k'(l/3) — [A«2ji,,7)t(fi )](A) = w' >—

mi(w',g)(Dt1),k'(yi) = [A»«£a,<?)i(t5)](A:) = w' >-> m5(w',g)(Dt5)
This is a form of the LHS of (69), and leaving it in that form we now consider the RHS of
(69). Choosing , u|, v^2, to be associated with the antecedents of the conclusion
of Pi, the term associated with Pi is:

*["? (*1 )/xT > VP (t2)/xP'> V3/X3'VP /xf2 <VS fa)/xs']
Using this we can calculate the RHS of (69) to be:

(72) £V£1iy(£,l,J)(w,g)({\i6,\(k)(w))(x [>Ii[2l ipi)/xi, z2i(ti)/x2, z3i/x3, 24i/x4, zs>(tj,)/xs]](i))
where I is an £(A,A) assignment such that: l(i) = w, l(zi) = w' t-+ mi(tv', ), ((22) = w' *-*

m2(™',3j^ei),l(*3) = w' ^ [hei](ur',a^ei) = w' t-+ x, ((24) = tu' >-► m4 (w', gj|j ), l(z5) = w' <->

Comparing (71) with the (72) it is clear that they could only differ if one of the following

inequalities holds:

(73) [s/3«'](fc') / [zi«'(<l )](')> Isetl(fc') # [«2»(f2)](0. [j/l»](*:') / [*3«'](0. [«4«'](A') # [z4»](0.
[y4«](A') ^ I-25*'(<s)](/)

But all of these inequalities are impossible. Therefore (69) is true. □

3.2.5 A way of thinking about how the polymorphic proposal works

One may feel a little mystified about how the polymorphic proposal manages to account for

ambiguity, in particular puzzled how it relates to the familiar 'Quantifying-In' account. Consider

the de-re interpretation of a man in

(74) John believes that a man came in

Familiarity with the 'Quantifying-in' account gives one the impression that to obtain the reading
one must 'deal' with John and believes before one deals with a man. This makes the polymorphic

categorial analysis (repeated in (75)) puzzling, because one deals with John and believes after
one deals with a man.
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(75) John believes that a man came in

np (s\np)/s VX.X/(X\np) s\np

((sW)\((s\np)/s))\np
(s\np)\((s\np)/s)

s\np
s

The following comments may be of some help here. We will call the derived version of came

in, of category ((s\np)\((s\np)/s))\np, (came in)fl, and make the simplifying assumption that
we are using an extensional tying. The denotation of (came in)H may be compared with the
assignment-meaning of HEnp HE^np^s he! came in, by which I mean that given either of (i) or
(ii) below, one could calculate the other:

(i) [(came in)fl](«;*, g*)
(ii) (</ [HEnp HE(synp)/s hex came inj(u>*, g))
For example the result applying (i) to three arguments, xe, and ze is exactly the same

the result of applying (ii) to an assignment which assigns these values to hei, HE^np^g, HEnp.
Therefore one may look at (came in)fi as being a coded form HEnp HE^np^s hei came in.
It is less obvious to see, but also true that the denotation of the result of combining the poly¬

morphic a man with (came in)fi may be compared with the assignment-meaning of the result of
'quantifying-in' a man into HEnp HE^np^g hei came in:
(i') [a man came in](iu*, (7*)
(ii') (9 [HEnp HE(synp)/g a man came in](iu*,flf))
For example applying (i') to two arguments and ze is exactly the same as applying (ii')
to an assignment which assigns these values to HE^npys, HEnp. Therefore, what one gets
by using the polymorphic quantifier together with the derived version of (came in)fi is a coded
version of one what one gets by combining the ordinary quantifier with HEnp HE^ \ p^s hei
came in.

The final step of the categorial analysis is to apply (i') to the pair of arguments 6believes that]] (io ,g
and [John](u>*, g"). Recalling what was just said above, this must give the same result as ap¬

plying (ii') to an assignment which assigns these values to HEj.s^npys and HEnp, in other words:
[HEnp HE^s^np^s a man came in](w*,/i), where h(HE(.synp^s) = [believes that](ui*,g"), and
MHEnp) = [John](w*, g*)

Therefore we have described a way of obtaining the desired reading, using the 'Quantifying-In'
mechanism, and yet 'dealing' with a man before believes that and John. One can look upon the
polymorphic categorial analysis as being essentially the same thing.
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Having spent some time explaining the coverage of £7~25 with respect to determiner-containing

sentences, in the next section, we turn to ambiguous, junction-containing sentences.

3.3 Recursively ambiguous sentences with Junctions

3.3.1 a man came in and sat down

Hypothesis 3 and Hypothesis 4 each entail the existence of a reading of a man came in and sat

down. Hypothesis 3 entails recursive ambiguity wrt. a man, and we can be sure that £7"25
accounts for this reading; the above comments on the general explanation by £T25 of recursive

ambiguity with respect to quantifiers, coupled with the fact that £T25 accounts for the recursive

ambiguity of hei came in and sat down, guarantees this.

Hypothesis 4 entails recursive ambiguity wrt. came in and sat down, and this means that there

should be a reading, r, of a man came in and sat down such that

(76) whatever situation s, a man came in and sat down is true in s on r iff a man came in
is true in s and a man sat down is true in s

The corresponding condition for £7"25 is

(77) there is a a man came in and sat down such that whatever model, (9, (u>,<7)), whatever
a man came in, whatever a man sat down,

[a man came in and sat down](u;, </) = 1 iff

[a man came in](u;, g) = 1 and [a man sat down](u;, $r) - 1

The disambiguation in (78) has this property:

(78) a man came in and sat down

(VY.Y/(Y\np))/cn cn s\np VX.((X\X)/X) s\np

PROOFn
VY.Y/(Y\np)

(79) PROOFn:

npAs, s\(npAs) => s
~~^^VL
s\np => s\(npAs) VYnpAY, s\(npAs) => s

VYnpAY, s\np, (s\(npAs))\(s\(npAs)) ^s ^ s\np => s\(npAs)
VYnpAY, s\np, ((s\(npAs))\(s\(npAs)))/(s\(npAs)), s\np => s

VL
VYnpAY, s\np, VX.((X\X)/X), s\np => s
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The chain of equivalences in (80) suffices to show that (78) has the property described in (77).

(80) (i) [(78)l(wt0) = 1
iff

(ii) AAfV(S,1, J)(w, g){A(£,1, J)(w, g)dman1{w, g)){xe >-> [sat down](ur, g)( w' >—

x)))(A(£,X, J)(w, j)([rhah]](u;,sf))(xe h- [came in|(w, g)(w' ^ z)))
iff (iii) [a man came in|(tn, g) = 1 and [a man sat down](u>, g) = 1

The equivalence of (ii) to and (iii) is obvious. For the equivalence of (i) and (ii) we need to
calculate the denotation of (78). Firstly, assuming that the antecedents of the concluding sequent
of (79) are associated with the variables ^ u^e,t\ then the
term associated with (79) is:

(81)

(AiAy('-('."'').0[yii(Aiu(«.O)])
(AtA,4''(''"'t)'t)[»ai(Ai«(2,e',))])
(A»uJr((,,"''>-')(t))

where TYPE = ((s, (s, se,t), t),t)

Using this term, the denotation of (78) is calculated below (abbreviations C = w t-* [came in](ur, g),
S = w i—♦ [sat down](u>, g), M = w i—► [man]](u;, g)

(82) [(78)](m,<7)
= [and](iu, g)(DTYPE)(w' i-t- ^J,t*^ dx(w')(w" i~* Cw"))(w'

^ d2(w')(w" Sw"))(w' i—+ [a man](u/, g)(Dt))
=AA/T>(£,1, J)(w, ff)([a man](ir, g){Dt){w" >->■ Cw"))([a manj(u;, 5)(A)(^" Sw"))

=AAfV(£,I, J)(w, g)(A(£,l, J)(w, g)(llr7an}(w, g))(xe i-+ [sat down](u),fif)(iu' ^ z)))

(A{£, I, J)(w, ff)([mah](m,sr))(ze h- [came in]](u;, g)(w' z)))

Given (82) the equivalence of (i) and (ii) in (80) is immediate.

3.3.2 every man and woman died

Hypothesis 3 and Hypothesis 4 each entail the existence of a reading of every man and woman

died. Hypothesis 3 entails recursive ambiguity wrt. every man and woman, and we can be sure

that jCT25 accounts for this reading if it accounts for the only reading of hej is a man and woman;

£T25 clearly does.

Hypothesis 4 entails recursive ambiguity wrt. man and woman, and this means that there should
be a reading, r, of every man and woman died such that

(83) whatever situation s, every man and woman died is true in s on r iff every man died is
true in s and every woman died is true in s
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The corresponding condition for £T25 is
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(84) there is a every man and woman died such that whatever model, (5, (w,g)), whatever
every man died, whatever every woman died,

[every man and woman died](u;, g) = 1 iff

[every man diedfl(u>, g) = 1 and [every woman died](u>,y) = 1

The disambiguation in (85) has this property:

(85) every man and woman died

(VY.Y/(Y\np))/cn cn VX.((X\X)/X) cn s\np
—— \—pROOFn

s

(86) :

: (VYnpAY)/cn => (npAs)/cn npAs, s\np => s

cn cnVnpA" (VYnpAY)/cn, cnVnpA', s\np => s
"\L

\L

(VYnpAY)/cn, cn, cnVnp \cnVnp , s\np =>■ s cn => cnVnp
(VYnpAY)/cn, cn, (cnVnpA'\cnVnpA*)/cnVnpA\ cn, s\np => s

VL
(VYnp )/cn, cn, VX.((X\X)/X), cn, s\np => s

The chain of equivalences in (87) suffices to show that (85) has the property described in (84).

(87) (i) [(85)](u;,g) - 1 iff

(ii)

AAPV(£,I,J)(w,g)(£V£1iy(£,l,J)(w,g)(§manl(w,g))(xe i-+ |[died]](it;, flr)(ic' i->

x)))(£VSTZy(S,I, J)(w, 3)([woman](w, g))(xe h-+ |[died]](i£;, 5-)(tc/ >-* a;)))
iff (iii) [every man diedj(ic, </) = 1 and [every woman died](ic, gr) = 1

The equivalence of (ii) to and (iii) is obvious. For the equivalence of (i) and (ii) we need
to calculate the denotation of (85). Firstly, assuming that the antecedents of the concluding
sequent of (86) are associated with the variables ul(s'e''iV'r(('',''e,'r),'r))^ u^e,t\ ^*(.0 ^

u^'^then the term associated with (86) is:

(88) uY'r((^,',r)•(^,''r}>'^)(TyP£,)
(AiAy(i,'(S,e0'(5'"'t)'t)M^^4e'°)])
(AfAy^(''et)l(,',e't)'i)[yi(Ai4e'0)])
(AiAy^e<)[u«,'e<)'W((i'Je',r)'ff))(Azy0(0])
{Xiu5)

where TYPE = ((s, (s, et), (s, se, t), t), (s, se, t),t)
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Using the above term, the denotation of (85) is calculated below (abbreviations, M —w i—►

Irrian](tu,ff), W =w ([woman](u>, g), D ~w <-*■ [died](u>, g))

(89) [(85)](w,flf)
=[and](iu, <7)(.Dtyp.e)(u/ i—► ^ di(w')(w" *—* Ww"))(w't—►
rf('.('.rt).('.".0.0 ^ d2(w')(w" h- Mu/'))K •- 4S'e" -♦

[every](m',^)(c/3)(A))(tn/ >-> [died](iu', 3))

AAfV(£,I, J)(w, g)(^7^fy}(w,g)(w' 1-+ \Nw')(Dt)(w' Du/))(|[every](u;, g)(w' >->

Mw')(Dt)(w' 1-+ Du>'))
=ASfV(£,l, J)(w,g)(£]/£1iy(£,l, J)(w,g)(\Nw)(x Dtu(tu' ^ x)))(£V£liy(£,l,J)
(w,g)(Mw)(x t—► Du;(tn' x)))
= AAfV(£,l,J)(w, g)(£V£Tiy(£,1, J)(w,g)(lwomanj(w, g))(xe t— [died](u/, </)(u/ x)))
(fVrRT^X, J7)(w,fif)([rfiah](u;,5))(xe t-> [died](w,g)(w' 1-+ x)))

Given (89) the equivalence of (i) and (ii) in (87) is immediate.

Having seen that a couple of ambiguous junction-containing sentences are accounted for, we

consider in the next section whether £T25 is in accord with Hypothesis 4.

3.3.3 General recursive ambiguity of S[Xi JUNCT X2] wrt. Xi JUNCT X2

Suppose a is ... Xi JUNCT X2 .... Suppose ai is a[Xi/Xj JUNCT X2] and a2 is a[X2/Xi JUNCT
X2]. The condition for a theory of reference to be in accord with Hypothesis 4 is:

(90) whatever disambiguation of aq, whatever disambiguation of a2, there is a disam¬

biguation of ... Xi JUNCT X2 ... such that

[a](w,y) = 1

ittJUArCT(£JtJ)(w,g)(l^(w,g))([cn}(w,g))

If the theory of reference under consideration was for example T8, the non-local account of

junctions that was described in section 2.4.1 of Chapter 5, it would be quite easy to demonstrate

(90). This is because the obvious candidate for the required disambiguation of .. .Xi JUNCT X2
... is that one which has the supposed disambiguations of .. . Xi ... and . . . X2 . .. as subparts:
such disambiguations of .. .Xi JUNCT X2 ... are provided for by the 'Conjunction Reduction'

operation.

For £T25 matters are more difficult because no disambiguation of ... Xi ... or ... X2 ... can

be used as a subpart of a disambiguation of ... Xi JUNCT X2 .... As was the case for the

quantifiers, however, (90) can still be demonstrated, essentially by looking for a 'factorisation'
of the ... Xi JUNCT X2 ... denotation featuring the denotations of . .. Xj ... and . . . X2 . .. ,

which we will now do.
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The sequence of lexical categories for qj may be supposed to be an instance of the pattern

U,Tl,V, where is not empty and both U and V may be empty. The sequence of lexical

categories for a2 may be supposed to be an instance of the pattern U,T2, V. The supposition
is that there is a proof P\ of U,Tl, V => s, and a proof R\ of U,T2, V => s:

there is a proof Pi of U,T1. V => s and a proof R\ of U,T2,V => s:

U,Tl,V=»s U, T2, T => s

We have to show that on the basis of this supposition there exists a proof Pe ofU ,T\, VX(X\X)/X,
T2,V =>■ s, and the disambiguations associated with P\, Ri and Pe are semantically related in

the way required by (90).

The required disambiguation of ... Xj JUNCT X2 ... is that associated with the following proof:

P6, a proof of f/,Tl, VX.(X\X)/X,T2, V s: ~

U',T1,V'=>S : :
Slash R

ri=>(s/V')W U,{s/V')\U',V=> s U',T2,V'^s
(\L) Slash R

U,T1,((b/V')\U'Mb/V')\U'),V=> s T2 =» (s/V')\U'
U, Tl, (((s/V')\U')\((s/V')\U'))/((s/V')\U'), T2, V => s

VL
U, Tl, VX.(X\X)/X, T2, V => s

Some comments on Pe- The first step towards inferring the existence of this proof concerns the

presence of polymorphic categories in U, V in Pi and Ri. If there are, it is assumed that in

Pi and Ri are (VL) inferences, each instantiating some category variable Z to some category

x. We infer the existence of proofs P2,P2, in which the only (VL) inference concern V's that
are in Ti or T2. P2 and P2 prove the sequents U',T1,V' =>• s and U',T2,V' =>■ s, where in

each of U' and V' differ from U and V by replacement of any category YZ.y with y[x/Z], P2
is the proof associated with the leftmost ellipsis in P6. P2 is the proof associated with the

rightmost ellipsis in P6- By adding a series of (\R) and (/ R) steps to P2 and P2 one obtains
Tl => (s/V')\U' and T2 => (s/V')\U'. The sequent, Tl => (s/V')\U', can be used as the minor

premise in a (\L) inference, the major premise being U,((s/V')\U'), V => s. This major premise
can be given the obvious proof that proceeds by a series of Slash-Left inferences, and this is
what the middle ellipis in Pe represents. Also in the course of Pe, the VL inferences are restored
that were removed from Pi and Pi to make P2 and P2. The result of the (\L) inference is

U,Tl,((s/V')\U')\((s/V')\U'),V => s. The sequent T2 => (s/V')\U' can be used as the minor
premise in (/L) inference, the major premise being U,Tl,((s/V')\U')\((s/V')\U'), V => s, just
proved. In this way a proof of U,Tl,({(s/V')\U')\((s/V')\Ul))/((s/V')\U'),T2,V => s is ob-
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tained. (((s/Vr/)\[/')\((s/V")\t/'))/((s/V, ')\C/') is an instance of the schema (x\x)/x, anu so we

have the premise for a (VL) inference, allowing the conclusion of U, Tl, VX.(X\X)/X, T'2, V => s.

The side-condition to the (VL) inference will not be violated.

What it remains to show is the relationship between the disambiguations associated with Plt

R\ and P$ is as required by (90). This requires us to show that:

(91) £p5(m?, mp, Iand],mJ2,mf )(w,g)
= AMV(S, J, J)(w,g)(gRl{mY , mf2, mf )(u>, g))(£Pl(mf ,mpl ,m\ )(w,g))

That (91) is true

Consider first the LHS of (91) Suppose a particular P2, and that with xf. xp. xY cho¬
sen for the antecedent categories, H'LV(fJ2) = fl?1. Correspondingly for a particular P2,
with xf', xf2, xf' chosen for the antecedent categories, suppose //^v(/?2) = "t2 Then if
uf, uf1, u*'r((s,'r)>(3,'r),'r))up f are chosen for the antecedents of the concluding sequent
of Pe, H'l^(P6) is:

(92) u*"'dJ''r)'(a''rb'r)(7yPi5)(Atft)(Atft )(At'uf (<5))(Aiitp(fi))
where TYPE = ((s, V'), (s, [/'), f)

<i>[y[>y'\/xf,y^'U/xf , uf2/xf2]
ft = a^'A^')

'>/xf', 2/f,C7''«/xf', uf1 /xf1]
The LHS of (91) is the value of the operation that is defined by the term above applied to

the meanings of the lexical parts of S[Xi and X2] and a (w,g). Note that in the first step
each free variables, ua, of the term above is replaced by the term z(3,a)i. and the whole term

prefaced with At. Because 1*2 and u\ are 'invisible' (3\ is used for ^[z^'^^ij/uf2], and (3\
is used for /31 (O/^f1!-
(93) [XizOyK<-Y'O.G^).n))i{TYPE)Oi0l)(XiPl)(\izl'^)i(t5))(Xiz[''O)i(ti))\(k)(w)

where k is a £lA,A'assignment such that: k(z^s'^^) = w' >-* m\(ui', g), klzp'^^) =
w' •—> rri2(w', g), , rr),( a, 7r), ir))^ _ ^ |and](u/, g), /c(z^s'2'2') = w' i—« nn(w', g),

= w' i-» mb(w',g)
= |3SaiKir)(Dryi.s)([A.-/8«](*))([A^l](*))(IA«-4',<')«'(*»)](«'))([A»4',',)'(«1 )](*))
= AAfV(£,I, J")(w,S)(([Ai/32](fc)('x))([A«-2<3'<')t'(f5)](/:))([A.z<s'ff>i(«i)](fc)»

(([Ai^i](fc)(w))(IA«4*-<?),(ts)](*))([A««<--<T>i(ti)](*)))
Given that the abvoe is a form of the LHS of (91) is is clear that what is required for the
truth of (91) are the following identities:

(94) (a) [Ai/3j](fc)(tt;)(lA»z£*,^\'(t5)](fc))([Ai^*'t'\'(ti)](A;)) = QRl (mf, mf2, mf ){w,g)
(b) [At/3j](fc)(w)([Ajz^,^)i(f5)](A:))([Atz)s'£')i(ti )](Ar)) = QPl (mf, mf1 ,mf )(w, g)

Consider first the LHS of (94a):

(95) IA»iSgl(fc)(w)([A.><*-^)i(t»)l(fc))(IA«S*-ir)i(*i )!(<:))
= [*2[!/2S'tr),/rf''S'i3,V'1 }'/rp' ,z[s'r2h/xp]](k')
where k' differs from k at most wrt. 1,2/1,5/2, for which fc'(t) = w, k'(y^"'Vi 1) =
[Aizj3'^t(t5)](fc) = w' >-* m5(w',g)(Dt5) k'(yp'^ ') = [Atzj4,£^i(ti )](fc) = tv' mi (w1, g)(Dtl)

For the RHS of (94a) we must consider the operation associated with Pi, the proof associated
with the disambiguation of ...X2 • ••• Choosing uf,uf2,uf to be associated with the
antecedents of the conclusion of R\, the term associated with R\ is
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The RHS of (94a) is the value of the operation applied the meanings of the lexical parts of

S[.X2] and to (w,g):

(96) [^[4^).-(ti)/,r,4^2).7^,4^)'(^)/^']](o
where / is an assignment such that: l(i) = w, /(zj3'^') = w't-- mi(w',g), /(z)"2''2')
= «/'(-► rrn (w', g), = w' i-> m5(w\g)

Comparing (95) with the (96) it is clear that they could only differ if one of the following
inequalities holds:

(97)[y2«](fc') # [2l»(b)l(0> [24®](fc') + I24*1C). [vi»!(*') + [2st(<5)1(0

But all of these inequalities are impossible. Therefore (94a) is true. In an exactly similar

fashion one can show that (94b) holds and therefore that (91) is true □

3.4 Ambiguities associated with embedding construction

Certain kinds of ambiguity fall outside the considerations of the previous two sections. These
are ambiguities associated with embedding constructions:

(98) John believes every man loves a woman

Of the several readings of this, only two readings are associated with recursive ambiguity wrt. to
either of the contained QNP's. Besides these there is one reading according to which every man

and a woman are interpreted de-re and de-dicto respectively, then another reading according
to which they are interpreted de-dicto and de-re respectively. Finally there are two readings

according to which both every man and a woman are interpreted de-dicto. These then are

further ambiguity phenomena that £T25 ought to capture. The reader will probably be able
to imagine how £T25 accounts for these further ambiguities and it will not be spelt out here.
What instead we will do is spell out how a more difficult case would be handled namely a certain

reading of John believes that Mary thinks that every man loves a woman. It is a reading that might
be described as having the following features:

(i) every man is interpreted de-re with respect to thinks and de-re with respect to believes

(ii) a woman is interpreted de-re with respect to thinks and de-dicto with respect to believes
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However, this description uses vocabulary which we have not defined. In place of this we have
to use the following considerably lengthier description:

(99) there is a reading r\ of John believes Mary thinks every man loves a woman

there is a reading r2 of John believes Mary thinks he! loves a woman

there is a reading r3 of Mary thinks hei loves a woman such that rj and r2 are related

according to (i), r2 and r3 are related according to (ii) and r3 has the property in

(iii):
(i) whatever situation s, John believes Mary thinks every man loves a woman is true on

ri in s iff

EVERY {x : hei is man is true in sjj }
{x : John believes Mary thinks hei loves a woman is true on r2 in }

(ii) whatever situation s, if John believes Mary thinks hei loves a woman is true on

r2 and Mary thinks hei loves a woman is true on r3 in s then a proposition that John

believes is true is true in s

(iii) whatever situation s, Mary thinks hei loves a woman is true on r3 in s iff
A {y : he2 is a woman is true in sj^e }

{y : Mary thinks hei loves he2 is true in s|^e }

(i) gives a characteristic of the reading, ri, according to which every man occurs de-re in John
believes Mary thinks hei loves a woman, (iii) gives a characteristic of the reading, r$, according
to which a woman occurs de-re in Mary thinks hei loves a woman, and (ii) relates the reading

7*3 of Mary thinks hei loves a woman to the reading r\ of John believes Mary thinks hei loves a

woman.

The truth intuition makes reference to a truth predicate and £7~25 does not cover this construc¬

tion. The details of the extension of £7~25 will not be given - it may be inferred from the account

given in Chapter 5, section 2.3.

So to begin the demonstration that £T25 does entail (99), we firstly note that there is a dis¬

ambiguation, /?3, of Mary thinks hei loves a woman, that meets the condition corresponding to

(99iii) - we can sure of this because £T° accounts for recursive ambiguity facts:

I/yRufiff) =
A{E,1, J)(w,g)

(fwoman](tu, </))
(ye H_> [Mary thinks thatj(m,g)(w't—► [loves]](u/,g)(w' 1—> y)(w't—> g>(hei))))

Secondly, a disambiguation, /?2, of John believes Mary thinks hei loves a woman can be found
such that the pair consisting of /?2 and /?3 meets the condition corresponding to (99ii) - /?2 is

simply the natural disambiguation of John believes Mary thinks hei loves a woman that has /?3
as a part.
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H/%J(u>»ff) -
[John believes that]](u;, g)

(it/ h- «4(£,Z, J)(u/,0)
([woman] (u/,ff))
(ye [Mary thinks that](u/, ff)(u/ [loves](u/,g)(w' i-* y)(w'
0(hei)))
)

)
Given this, a disambiguation, 0y, of John believes Mary thinks every man loves a woman will
be related to 02 in the way required by (the correspondent of) (99i) if 0y has the following
denotation (using the abbreviations M for man, W for woman, JBT for John believes that, MTT
for Mary thinks that) :

(100)[/?iJ(u>, g) =
£veny(£,i,j)(w,g)

(Pl(u>,s0)
(xe [JBT](u>,g)(w' I-+ A(£,l,J)(w',g)

(flW](<</))
(y° ~[mTT](u/, g)(w' [II
(w',g)(w' H-r y)(w' H- x)))

)
)

The required disambiguation of John believes that Mary thinks that every man loves a woman, 0y,

is associated with the following proof, Py, shown below. The disambiguation has for subparts

disambiguations of JBT, MTT, every man, loves and a woman.

(101) .

a/a, np, TV, np => a

TV => (a\(a/a)\np)/np a/a, np, (s\(a/a))\np => a

: a/a, np, TV, (s\(a/a)\np)\((s\(a/a)\np)/np) => a
_______ abbrev
6/6, a => 6 (a/a), np, TV, npV!/ => a

! 6/6, a/a, np, TV, npVj/ => 6

6/6, a/a, s\(6/6)\(a/a)/npVy, VY.npvY =>• 6 TV => (6\(6/6)\(a/a)/npVs,)\np
6/6, a/a,(s\(6/6)\(a/a)/npV!')/(s\(6/6)\(a/a)/npV!/)\np, TV, W.npVY =>• 6

abbrev
6/6, a/a, npAx, TV,VY.npvY => 6

VL
6/6, a/a, VX.npAX, TV, VY.npvY =>6

Some words of guidance to the proof Py and its structure. First to distinguish the first occurrence
of s/s in the sequent to be proved from the second, we have used 6/6 and a/a.
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Looking to the topright of P\ we find as a subproof a proof of a/a, np, TV,

s\(a/a)\np\((s\(a/a)\np)/np) => a. This is proof that one could use to give the disam¬

biguation, /?3, of MTT hei loves a woman. The next step of the proof, labelled 'abbrev', is
not actually an inference at all, it just introduces the abbreviation y for s\(a/a)\np. The re¬

sulting sequent, a/a,np,7V,npVy => a is used as the minor premise of (/L) inference, giving

6/6, a/a, np, TV, npV!/ => a. The proof to this stage could be used to give the disambiguation,

/?2 of JBT MTT hei loves a woman. Call the proof as developed up to this point, /V Now

we have already seen a general strategy such that from the suppostion of a proof of ... hei
one can infer a proof of ... every man .... The further development of Pi into P\ is simply the

application of that strategy. All that needs commenting upon is the presence of another 'abbrev'

step, this time introducing the abbreviation x for (s\(6/6)\(a/a)/npVy).

Below it is proved that the denotation assigned to (3\ is as required by (100). Before that it

may be useful to check a misconception that may have arisen from the above description of P\.
We observed that Pi, the proof allowing a disambiguation, 0\ of JBT MTT every man loves a

woman, contained a subproof, P2, one which could be used to give a disambiguation, 02 of JBT
MTT hei loves a woman. This subproof relationship between P2 and Pi should not be confused
with a subpart relationship between 02 and f3\\ there is no subpart relation between /?2 and 0\.

™ . . . , n . (it,t) (st,t) V7r((4,se,7r),7r) («c,sc,t) Vrr(( j,«,*■), it)The term associated with Pi, assuming tq , u2 , Upf , ub >UD2
are associated with the antecedents, is (where TYPE2 = v(y) = (se, (s, st, t), t), and TYPEl
= i/(x) = ((3, (5, se, TYPE2), TYPE2), (5, st, t), (s, st, t), £)):

(102) uj}i (TYPEl) where E = AiAy(exyO'O.^.TYPE2),TYPB2)At/'5""'0
(E)(\iuDATYPE2)) Mt'KA.'M.)
(Atu2) (AtAz1"A2«A4s,st't)
(Aiui ) [«3(»)(A'[«5(2l )(22)])]

)

(yi) (3/3)
])

]
On the basis of this term, the denotation of the disambiguation associated with the proof in
(101) is calculated below:

[dl](w,a) = [every] (w,g)
{w' 1—r [M](w,g))
(DTYPEI )

(Vi)

(w' [a](ti/',y)(ui' 1— [WOMAN\(w',g))(DTYPE2))
(w' ~ [MTT](w',g))
(w' ^ [JBT](w',g))
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,„.M)
d* 4

^ Ii](W4,3)(/l)(/2))

, „ ,,, ,t3,(s,se,TYPE2),TYPE2)where Vj =ui1,d°e,d2
d4(wi)(uJ2 >-* d2(w2)

J3(ui3)(wi

)

(di)(d3)
)

Therefore [/3i](tv,y) = £V£72y(£,T, J)(w,g)

(to' I-+ x)

(V [A](tu',fl)(u/ •— [W\(w',9))(DTYPE2))
(w' ~ [A/TT](to',fl))
(to' i—■ [XBrjftu',#))

)

= £V£^y(£,J, J)(tu,s)
([Af](w,fl))
(xe [Jf?T](ui,g)(tp2 i—* [^](u'2>s)

(to' >-* [M/](ru',3))(£'ryp£;2)
(u>3, }\, h> Js r-»■ f3(W3)(wi ►-+ [LJfuq .a)(/l )(/2)))
(to' I-* x)
(to' i—♦ [MTT](to',3))

)
)

= £V£TC;y(£,X,.7)(to,3)
([Af](to,a))
(xe i- [JBT](to,s)(to2 ~ -A(£.T, •7)(™>P)

([W](u,,fl))
(y" >-► [AfrT](to2,3)(tt/4 [T]
(ui4,3)(to' f-» y)(ui' 1-3- x)))

)
)

Comparing the above with (100), one can see that the disambiguation associated with the
proof in (101), Pi is related to P2 and P3 in the way required by (99).

4 Conclusions

We have in the above both introduced the general framework of Polymorphic Categorial Gram¬
mar and made a particular proposal within that framework, namely £T25. We have shown that
£7~25 accounts for the extensive priveleges of occurrence of junctions and determiners and their

tendency to engender ambiguity - that is to say £T25 accounts for the syntactic and semantic
facts. However, £T25 is far from being the only account that has been of these facts - Chapter 5

drew attention to other accounts of this same range of facts. Is there anything to recommend
£T25 over other accounts with the same coverage ?

One way to approach this would be to mount an argument for the great theoretical attractiveness
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of many of the features of the categorial grammar approach in general. If such an argument

were given then that would effectively rule out the other accounts of the facts, and make the
above described polymorphic categorial grammar account particularly important. I have not yet

in this thesis campaigned for categorial grammar in this way and I will not start the campaign
here. The reason is that although there are points in favour of the categorial grammar approach,
these are not so overwhelming as to rule out any other kind of account.

Therefore we come again to the question of what there is to recommend CT25 over other accounts
with the same coverage ? The question was anticipated in Chapter 5, in which I suggested that
the polymorphic categorial account would be unique in meeting the criterion of emergence. The
intuitive idea behind this criterion is to single out those acconts that do not have a special purpose
mechanism for accounting for ambiguity. Intuitively, one can say this of £T25. We will try back

up this intuition with the definition we gave to emergence in Chapter 5: an account would be

emergent if it was resistant to a certain kind of modular simplification - namely a simplification
that would take away the ambiguity but leave intact syntactic facts. We have argued already
in Chapter 5 that a number of other accounts are not emergent. Is the polymorphic categorial
account emergent ?

Two factors are crucial to £T25's ability to account for ambiguity. The first is the ability to

raise the arity of functions by use of the (Slash R) inferences. The second is the polymorphism
of the logical constants that leaves them able to combine with an adjacent item when that
item has undergone arity raising. Neither of these seem to be special purpose mechanisms for

quantification. However, pursuing the formulation of emergence that we have given, let us see

whether anything other than ambiguity would be lost if one either made unavailable the (Slash

R) inferences or lessened the extent of polymorphism.

John told (Mary to go) and (Jack to stay) is an example of non-constituent coordination. For
CT25 to derive this sentence, the sequent np, vpc => x must be derivable in for some x.

Without using (Slash R) inferences, there are no such x. With the (Slash R) inference, a value
for x could be VP\((VP/vpc)/np). For more on non-constituent coordination see Moortgat 88
and relatedly Dowty 88. Therefore making the (Slash R) inferences unavailable would lose £T25
not only the account of ambiguity but also the account of non-constituent coordination.

jCT25 as it stands covers a fragment that does not include extraction constructions. The standard

categorial approach to extraction constructions would simply be to add relative pronouns to the

lexicon, categorised as (cn\cn)/(s\np) and (cn\cn)/(s/np). However, as with non-constituent

coordination, the success of this depends on having the (Slash R) inferences available (again see

Moortgat 88). Therefore, once again, making the (Slash R) inferences unavailable would lose
£T25 not only the account of ambiguity but also the account of extraction.2

2Note, however, that the standard categorial account of extraction is not wholly persuasive, being limited to

'peripheral' extraction. This point is returned to in the final chapter.
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The second option for removing the explanation of ambiguity from £7"25 is to somehow lessen
the extent of the polymorphism of the logical constants. The problem with this is not so much
that this is a 'simplification' that has unwanted side-effects, but that it is not a simplification

at all. For example one could leave the constants with their quantified categorisations but alter
the (V L) rule to allow only particular instantiations of the categorisations. However, adding
such side-conditions is obviously a complication of the theory, not a simplification of it. Instead

of changing anything on the categorisation side, one could revise the meaning postulates to

subtract from the number of types at which the functions are significant. Again this is more of
a complication than anything else, and to do it in such a way that just the account of ambiguity
is lost is difficult. For example, in 1 to 5 below, the skeletal indications are given of a number
of disambiguations possible in £7"25. 1 and 2 give the de-re interpretation of a man in John
believes that a man came in, and 3, 4 and 5 account for certain simple readings. In order to
subtract just ambiguity, 1 and 2 must be made semantically insignificant and yet 3,4, and 5 left

significant. This requires making the determiner function not significant at the types for certain

unary functions: and for certain binary functions: D^,tSt,,e,t),se,t), whilst leaving the
determiner function significant at the types for other unary functions:Z?(,e () and other binary
functions, £>(,«,«,<) or D(set e t).

1. [John believes that]s/s [a man] [came in](s\(s/s))\np
2. [John]np [believes that]s\np/s [a man] [came in](s\np)\(s\np/s)\np
3. [John]np P°ves](s\np)/np [a man]
4. [John]np [gave]((s\np)/np)/np [a man] [Bill]np
5. [dog]cn [near](cn\cn)/np [a man]
To summarise the previous three paragraphs then, it appears that £T25 is an emergent account:
the explanation of ambiguity emerges from features of the account whose purpose is to explain
features of the language other than its ambiguity.

There are number of other features of the £T25 that would be lost if adjustments were made
to lose the account of ambiguity, though these are features not pertaining directly to syntactic

coverage. The account of ambiguity is in a sense emergent from these rather abstract features
also. For example, is sound and complete with respect to the string-semantics described
in Chapter 4. Therefore if one made unavailable the (Slash R) inferences in order to lose the
account of ambiguity, what would also be lost would be completeness with respect to the string-
semantics. Taking the other route to losing the account of ambiguity, namely lessening the
extent of the polymorphism of the quantifiers, lessens the extent to which, in theory, quantifiers
can appear wherever referential np's can. For, suppose a is a quantifier and there is an x such

that a does not have the category x/(x\np) (or such that it is semantically insignificant for the
corresponding type). This means there can be strings /?, of category .r\np, such that a/? is not
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grammatical (or not meaningful), but with a referential np in place of a, it is grammatical (and

meaningful).

The significance of this latter kind of emergence is rather hard to say place, for where in the

previous discussion of emergence one is referring to a familiar intuition that ambiguity ought
to be emergent from syntactically motivated syntactic mechanisms, there is no corresponding
intuition that ambiguity ought to be emergent from soundness and completeness wrt. a string
semantics.

Looking back to earlier in the chapter now, to where the PLCG framework itself was introduced,
two questions arise meriting some discussion.

The first concerns the way that certain circularity avoiding restrictions seems to be forced on

one, both in providing a string-semantics for the polymorphic categorial language, CAT^'\,V',
and in providing a function-based semantics for the term language £^A,A). The expression being

interpreted in each case are very different, and the semantics invoke different kinds of object,

yet the restrictions correspond: the restrictions on the (VL) inference ensure that proofs are not

produced which would be associated with terms that violate the restriction on the formation of

type-application terms in £^A,A\ The question arising from this is why this should be. It is not

a question that I have an answer to.

The second question concerns whether there are further uses that the PLCG framework could
be put, other than accounting for the junctions and quantifiers. This appears to be the case,

and tentative illustrations of this will be given in the concluding chapter.
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1 Introduction

In Chapter 7 I have outlined a categorial approach to junctions and quantification. In this
chapter a number of comparisons of this will be made with the account found in 'Flexible

Montague Grammar' (Hendriks 90, see also Hendriks 1987).

In section 2, the idea of flexible semantics is introduced. The particular case which is Hendriks'

FMG account will be briefly described and its central feature presented, the 'Quantification

calculus', H^(we take for the purposes of comparison the extensional version of the type-change
calculus).

There are two reasons for considering the FMG account. The first comes from the fact that
1 have argued that the PLCG account is special in meeting the criterion of emergence, and
therefore I have to apply that criterion to the FMG account, and this is done in section 3.

However, the main reason for considering the FMG account is that there is a strong theoretical

affinity between the central mechanism of the FMG account and that of PLCG account. The

FMG account makes vital use of a sequent calculus for inductively defining a set of type-change

sequents, and it is the possibility of having several different proofs of one sequent that it is at

the root of the explanation of ambiguity.

We will present in section 4 in outline a method of translating from the FMG anaysis of a
sentence to a PLCG analysis. This shows that the coverage of the PLCG proposal is at least
as great as that of the FMG proposal, and it illuminates the relationship between the two by

giving an at least operational feeling for 'what part of the PLCG accout corresponds to what

part of the FMG account'. There also emerges from this, some systems of interest at least to
an LCG adherent, namely two potential ways to extend the LCG framework to gain an account

of logical ambiguity, and both somewhat different from the extension by polymorphism that I
have proposed. Problems of coverage for both of these systems are dicussed in section 5.1 and

section 5.2.

It is not possible to indicate in further detail the topics that will be discussed in this chapter
until the FMG proposal has been described.

2 Hendriks' Type Flexibility proposal

What is often called a 'semantic type shift' is essentially a unary semantic operation. Therefore

Gp each of the I", GA^e , &Ahe"' &\he"p' an<^ eac'1 ^e are 'semantic type shifts'. Also
the value of H[ on any i/'proof of a sequent with one antecedent is a 'semantic type shift'.

Suppose the condition inherent to a theory of reference that there be a function from
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phrase-set indices to types were relaxed to the requirement that there be a relation. Then for

certain disambiguations the assigned meaning will be determined by the application of a semantic

operation to objects which are not of the types such that the operation gives a significant result.

However, there may be semantic type shifts which if applied to the arguments of the operation

would yield arguments of types such that the operation gives a signficant result.

This is precisely what a flexible semantics envisages. So suppose T is a set of type shifts, that T

is an example of the above described kind of relationally typed theory of reference. Suppose

also that Ty(a,P) is a disambiguation of si, and that a meaning of a is mi and a meaning of /?
is mi- Then according to a flexible semantics based on T and T, for any t{,tj € T, a meaning
of 7ry(a,P) is Gy(ti(mi),tj(m2))- What we have here is an example of a system that allows
semantics to 'non-deterministically' exploit syntax, because the use of the syntactic operation,

Ty is compatible with a range of semantic operations. Note that although Gy is required to be
involved in the calculation of the semantic result, Gy is not required to be applied to mi and

m2, but is allowed to apply to any descendants ofmi and m2 under type-shifts. If there are two

pairs of type-shifts such that Gy may be applied significantly after the type-shifts, the effect is
that Ty is associated with at least two mappings from mi and mi-

The earliest motivation that was put forward for extending the notion of theory of reference
in this way is that it allows the implication of semantic operations in the analysis of a sentence

without the need for their reflection by possibly rather contrived syntactic operations (Benthem

86). For example, consider the case of John does not snore. One could propose a unary syntactic

operation mapping a sentence modifying version of not to the VP modifying version, associating
with the syntactic operation the following 'Geach' operation:

mO~+i) (w,g) 1-+ x(c—lt—► j/c—^ zc 1—► m(w, g)(x(z))(y(z))

However, one might complain that the syntactic operation was contrived. A flexible semantics
whose set of type shifts included as toeach the above operation could explain the same facts
without the contrived syntactic operation. A meaning of J'<(John, ^r>(does, ^(not,snore)))
would be:

G<([John],^>([does],^>(<GeacA([not]), [[snores])))

Here, it is only if taeach is used that G> can apply significantly, so the introduction of flexibility
does not lead to there being two kinds of significance to the rule covering VP-negation. However,
if there are more type-shifts than this, the effect may to give several semantic significances to a

syntactic rule and this may lead to a resolution of the problem posed by logical ambiguity.

At the outset, the prospects for solving logical ambiguity in this way do not look good. One
would not think that there was a way to explain the de-re/de-dicto ambiguity of John believes a

man came in, by associating a large number of semantic operations with the rule that combines
a man with came in. However, Hendriks 87, revealed that just this was possible.
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The historical antecedent to this was Benthem 86, some comments in which can be read as

suggesting that one make the very unrestrictive choice that T be the set of constructive inter¬

pretations of NJ * proofs with a single undischarged assumption. Because of the Curry-Howard
isomorphism, this is exactly the same as suggesting that for T one have all operations definable

by a Cx term with a single free variable. Benthem showed that ambiguity phenomena for QNPi
TV QNP2 sentences could be accounted for in this way. Even with such a large T, it was not

obvious how the de-re/de-dicto ambiguities could be dealt with. What was obvious though, is
that such a choice for T will lead to wild semantic overgeneration, for T will certainly include
shifts like tfup, below, and n — ary analogues:
m(°—>(4—»-c)) ^ ^W g^ ^ xb ^ ya ^ g)(xj)(x).

I flip will allow John loves Mary and Mary loves John to be synonymous. On the same topic
of which shifts to use, there was also in Benthem 86 the suggestion that taeach should be

included,not only for the above-mentioned VP-modifier case, but also to allow the combination

of TV, type (e,e,<) with object-quantifier, type ((e,<),<) (the QNP is made the functor because

tGeach{QNP) could give an object of type ((a, e, <), (a, <)), for any a). However, this thematically
misconstrues the TV QNP combination and this is an argument against having <Geac/i in the

type-shifts.

Here it is that we come Hendriks 87, which makes a particular proposal for the set of shifts, T,
and shows how logical ambiguity can be accounted for on the basis of this choice. He specifies
the set of type-shifts inductively, by way of a sequent calculus for the type-language TJ—\ This
is the 'Quantification calculus', which we shall refer to as H7~L Here is H^:
The Quantification Calculus

AR (u—>a—>v—>b) => (u—»((a—►&)—►&)—>v—>6)
AL ((u—r(a—►&)—>6)—>v—»-c) =>• (u—>a—>v—»c)
VR (u—>a) => (u—>((a—>6)—►&))
Cut a => b b => c

a => c

It should be noted that this is the calculus of Hendriks 87. It is therefore extensional rather

than intensional as is the calculus of Hendriks 90, and it places does not place the restrictions

that the types b in AR, AL and VR be t.

As we did for LJ-one could define a mapping from proofs of Hj"* to proofs of NJ-'', and using
the Curry-Howard isomorphism, assign a term to that proof. Hendriks gives a term-associated
version ofH^, which follows, in the background of which one see this procedure of going through
NJ-* if the axioms are associated with nj^ proofs in the way indicated in (1), (2) and (3).
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Term associated Hp
AR (a—>a—+c—>>6) : <I> => (a—►((<>—►;>)—<-6)—>6) : AafpAT^0-*blXx2€[T(Xza[&x\il zcc^**])]
AL ((a->(a-+»)->i)—nr-+e) : $ => (d^a^ir->c) : AiiaAyaAxl*[$(:r~l<I)(Az(a—^[zj/JXzp)]
VR (fl-+a) : $ =>• (a-*((a—n)-+b)) : AaT^Ay^->i,)[y($x*i<1)]
Cut a=^6:$ b : $ => c

a => c

(1) AR: [((a->&)-*&)]3 (u-+a->v-^b) [«]4 [a] i [u]2
7 (~E)

(a—*b)
(—>E)

(w—»-((a-+6)—>-6)—»?—►£>)
(—1'2,3,4L)

(2) AL: ("—>((a—>6)—+6)—>{7—^-c) [u]4 [(a—6)]t [a]3^ [u]2
{—il)

((a—►&)—►&)
-(-E)

(u—>a—>v—>c)

(3) VR: [(a—>6)]i (u->a) [u]2

(—>2,3,4!)

a

-HE)
(->1,2!)

"(~>E)

(u—>(a—>b)—>b)

Flexible Montague Grammar, as defined in Hendriks 87, consists of the combination of the set of

type shifts defined by Hp with the following relationally typed, THEORY OF REFERENCE, JFT°.

Extensional Flexible Montague Grammar

1. The phrase-set indices, A = {NP, IV, S, TV, DET, CN, PV}

2. Whatever strings a, whatever categories 6 G A, (a,(),6) 6 X& iff a appears in the 6
row of the table below:

NP john, mary

DET every, a, no, most

CN man, woman

VP walks

TV loves, is

PV believes
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3. Syntactic operations: T>, T Tand , Tor- The string part of Tand is 7and (si i ST) —

Sj and s2. Similarly for 7Qr-

4. Syntactic rules {(7<, (NP, VP), S), (7>, (TV, NP) ,VP),(7y, (DET, CN) ,NP),
(7>,(PV,S),VP),
for 5 = S,VP,NP,TV, y = AND, OR, the rule, (JF7, (6,6), 6)}

The possible models ((B,(Gy)-t£r, f)i(ww)) associated with £,Z,J ,w is £ /C26 iff

1. Type Relation: r(np,e), r(DET, ((e-*f)—<-((e—►<)—►<))), r(CN, (e-^t)), r(VP,(e^i)),

r(TV, (e—>-(e—+f))),
r(PV, (<->-(e—>•<))), and if r(8,a) and a b is derivable in H^, then r(6,b).

2. Constraints on /: all expressions are freely interpreted in the most basic type assigned
them by r, except for the determiners and is. In each model, each determiner is assigned

VST(S,l, J)(w,g), and is is assigned IS(£,I, J)(w,g).

3. Algebraic constraints: T is {<, >, AND, OR}. G> and^< are familiar. Gand{™1,112) =
H j(S,T, J)(mi,AAfV(£,I,J),m2), and GOR(m 1, m2) = 7ij(£,l, J)(ml,01l(£,1, J),
m2)-

The junctions and determiners are treated in rather different fashions to each other here. One

difference is that the junctions are treated syncategorematically and the determiners categore-

matically. One could have categorematic treatments instead, using the polymorphic junction

operation, 7ij, from Chapter 5, or using the polymorphic junction denotation from the previous
chapter. Not a great deal hangs on this, except a putative account of the Rodman observations

p49-50 of Hendriks 90. Even if the junctions were treated categorematically in either of the ways

indicated, there would remain a difference. One could quite legitimately say that the seman¬

tics of junction constructions is handled by polymorphism, whereas the semantics of quantifier
constructions is handled by type-flexibility. The proposal is 'aimed at' quantifiers in a way that

it is not 'aimed at' junctions. This is because although the type-shifts allows one to have the

simplest type for quantifiers, ((e,t),t) and yet simply to use function application to combine
with a quantifier with a verb, the type-shifts do not allow one to have the simplest type for junc¬

tions, (t, (<,<)) and yet simply to use function application to combine a junction with two verbs.
This aspect should be borne in mind for the rest of this chapter, when we contrast FMG the

'type-flexibility' approach with PLCG, the 'polymorphism' approach: really FMG is a hybrid
of type-flexibility and polymorphism.

Now that the FMG account has been described, it should be clear why a comparison of it with
the PLCG is especially relevant. In the PLCG account, the key to ambiguity is in the space of

possible proofs of In the FMG account the key to ambiguity is the space of possible

proofs of
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Section 3 is a competitive comparison of FMG and PLCG, trying to find arguments for favouring
one over the other.

Section 4 is a less competitive comparison and in the spirit of trying to illuminate the connection
between the two proposals, gives a translation 'from type-flexibility to quantifier polymorphism'.
Also in the course of this translation a number of staging posts are passed through which are

illuminating for anyone who is an adherent of LCG but is frustated at the impossibility of

accounting for logical ambiguity within it and these will be discussed.

The first of the staging posts in the translation from 'from type-flexibility to quantifier polymor¬

phism' is (roughly) what results from replacing the syntactic component of the FMG proposal,
which was non-categorial, with an LCG component. This appears to offer an LCG adherent a

solution to logical ambiguity by building on LCG, and in a different way than I have built on
it to get the PLCG account. Just such a combination is proposed in Moortgat 88, and such a

change of the syntactic component of the FMG is fully in the spirit in which the FMG account

was proposed; such portability of the type-shifting component from one syntax to another has
been stressed to be an attractive feature of the account. However, I will argue in section 5.2

that for an LCG adherent, bringing in the type-shifting axioms leads to semantic disasters.
This observations should be interesting not only to an LCG adherent but to a type-flexibility
advocate also: they force one to realise that type-shifts which are 'safe' in the context of one

kind of syntax may not be in the context of another.

The second staging post in the 'translation from type-flexibility to quantifier polymorphism'
is what one could call the categorial version of Hendriks' proposal: it adds category versions
of Hendriks type-change axioms to the axiomatisation of I.UAll but one of the proposed
additions turn out to be already derivable in This appears to offer the LCG adherent still

another account of logical ambiguity that builds on LCG, again different to the PLCG account,

and by taking the very small step of simply adding one axiom (this account has been touched

upon in Moortgat 1990). However, I argue in section 5.1 that the additional axiom lead to

syntactic and semantic overgenerations.

3 Type Flexibility or Categorial Polymorphism ?

Our main criterion in evaluating accounts of logical ambiguity has been the criterion of emer¬

gence. The FMG fares rather badly by this criterion. One can expect this from the rather
modular design separating the syntactic rules and the type-flexibility component. This will
mean that simplifications of the type-flexibility component will not effect the yield of the theory
in terms of grammatical facts. Still, without the type-shifts, many sentences though parsed,
would have no significant interpretation. Therefore, the question is whether it is possible to
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simplify the type-shifting component so that all sentences have a significant interpretation, and

yet to lessen substantially the extent of ambiguity. To do this AR should be weakened so that

only first arguments may be raised, and AL should be dropped. All of the following sentences

would then become unambiguous, though interpretable:

(4) a. every man loves a woman

b. every man told a woman to go

c. John believes a man came in

Some sentences, though, would remain ambiguous simply by the presence of VR, such as every

man and woman died. The only construction in the FMG fragment that actually depends on

VR for interpretability is John and a man. In which case, specifying VR as specific to the type

e, in tandem with other above mentioned simplifications of the type-shifting component, would

reduce the extent of ambiguity to zero, and yet leave all sentences with an interpretation.

A further attractive feature of the PLCG account that is lost by the FMG account is the

unity of the logical constants. In the PLCG account, the junctions and the determiners all

had polymorphic denotations and had this denotation fixed by a meaning postulate. In the
FMG account, the logical properties of junction containing expressions are fixed by a postulate

determining a polymorphic operation, whereas the logical properties of determiner containing

expressions are fixed by a postulate determining a monomorphic denotation.

Finally, although I have not tried to make an argument for the LCG framework, it seems rather
a negative point about the flexibility approach that it is incompatible with an LCG grammar.

That this is so will be seen in section 5.2.

4 From Type Flexibility to Quantifier Polymorphism

We want to show in this section that for every analysis of a reading provided by TT° (the

flexibility account), there is a corresponding analysis in £T25 (the PLCG account). The first step
is to reach an account which is a certain kind of extension of an L^'^-THEORY OF REFERENCE,

and extension based on the union of the Lambek calculus, with a categonal version of

H)T\ which we shall call A). Any such extension of an LCG account we will call a ,^-
THEORY OF REFERENCE. will be described further below, under the heading 'Category

Flexibility', and the relevant facts about derivability in noted. Then we will return to the

matter of translating from the flexibility account, TT° to a H^'^,L^'^-THEORY OF REFERENCE.

4.1 Category Flexibility

The following will be counted as the categorial version of
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The Calculus hOA)

/-AR ((6|Y)/a)|A : $ _+ ((6|Y)/avt)|A : AxlaAT(b^)^)Axl3[T(Az°[<3>xla2xl3])]
\-AR ((6|Y)\a)|X : $ -> ((6|Y)\aAt)|A :

/-AL ((c|Y)/av6)|A : $ - {{c\Y)/a)\X : Aar1aAj/aAx*2iT[^l<I)(Az(a^)[^])(x'2{r)]
\- AL ((c|Y)\aAft)|X : <D - ((c|Y)\a)|A :

/-VR a|X :$_aA6|A : Aaf^Ay^^t/^xi3)]
\- VR a\X :$-+avt|X :

Cut as before

The notation, \X, is shorthand for a list of syntactic arguments x\, x2,..., x„ introduced by a

sequence of slashes of either directionality.

Some of the axioms of are derivable in hCA)and some are not. The |-VR and |-AL axioms
are derivable in |-AR is not. (This fact has also been noted by Hendriks 90 and Moortgat

88)

In (5), the /-VR axiom is derived and in (6), /-AL

(5) VR (it—>a) : => (u—►a4) : Ax)At/0-'>i)[j/($(x'i))]
/-VR a : $(xi), b\a :y => b : y($(xi))

a : $(xi) => aAi> : Ay[j/((a?i))]
a\X : <f aA6\X : Xx\\yy(<t>(x\))

(6) AL (u—*ab—>v-+c) : $ =S> (u—>a—►«—+c) : Ax)Aj/[<5(a5))(Af->[i3j/])]
/-AL c\Y =$► c|K a =>■ avi>

(c|Y)/av»,a =► c\Y

((c|Y)/avb)|X =» ((c|Y)/6)|X

As mentioned above it is Argument Raising that fails to have a valid categorial equivalent. AR
will be valid only when the directionality of all other arguments is the reverse of that of the raised

argument (the notation, \nX is shorthand for some list of argument xi, x2,..., xn introduced
by n slashes all of which are leftward looking):

(7) AR (u—>a—>v—>b) : => (u^ab—+v—+b) : AxlATAx^[T(Az[<f>x) 2x2])]
/-AR Y,(b\nY)/a => b/a b =j> b

Y,(b\nY)/a,a^^b ^
(b\nY)/a,a^ => b\ Y "R

(b\nY)/a => {b\nY)/avb
((6\„Y)/a)|A- =► ((6\„y)/avb)|A

((s\np)/np)/np is an example of a category that does not meet the above stated conditions for
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the validity of the /-AR transition to ((s\np)/np)/(s\(s/np)), and below a countermodel to the
sequent is shown.

Proof that there is a countermodel to ((s\np)/x)/np =>• ((s\np)/z)/(s\(s/np))

Assume a model such that [np] = { □} ,and [s] = { DC □□, CP DO} •

Clearly 6 [((s\np)/np)/np]. Need to show that C g [((s\np)/np)/(s\(s/np))]. So we must

consider [s\(s/np)J.

[s/np] = { CP □}

Therefore <>6 [s\(s/np)]. Thus

3a, b, c(a 6 [s\(s/np)],6 6 [x], c £ [np], cCafc g [s]

Hence C g [((s\np)/np)/(s\(s/np))], and the sequent is refuted.

A useful fact that we will note now for later use is that in certain cases the AR and VR axioms

make the same statement:

(8) AR: b/a => b/aAi is the same as VR:6/u => (6/a)Ai, because 6/avi = (6/a)Ai>
AR: b\a =>■ 6\aAi> is the same as VR:6\a => (6\a)v6, because 6\aAi> =: (6\a)vi

See section 1 of Chapter 7 for the definition of if! AA0_theory of reference. A A) ,l^A.v)_
theory of reference will be understood to be defined analogously.

4.2 From Type Flexibilty to Category Flexibilty

(9) is what one would write down in tracing through a particular meaning assignment that TT°
allows to the sentence John loves every man, and (10) shows a corresponding disambiguation in
a h(/A))L(/A)_THE0RY OF REFERENCE.

(9) John loves every man

NP:e TV:(e, e, t) ^ DET:((e, t), e<) CN:(e,<)
TY:{e\eA)AR NP:e( T>

VP :(e,t)Â <

S:<

(10) John loves every man

np (s\np)/np npVs/cn cn
AR}

(s\np)/npVs npVs
s\np

Seeing the pairing of (9) and (10) it probably does not seem surprising that for every analysis of
a reading that TT° allows, there is a corresponding disambiguation in a h</A) l(/ACtheory of
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reference. Note, however, that in (9) there is an invariant dimension that persists through

type-change, and which determines what things combine and how. In (10), there is not this
invariant dimension.

Accordingly, we will take the step from the flexibility analysis to the analysis a little
more slowly. First note that (9) is not simply the description of a disambiguation that FT0
allows, it is a combination of a disambiguation with a certain pattern of type-shifting. (10),

by contrast, is simply a disambiguation. This complicates what we mean when we compare an

'analysis of a reading' in the FT0 system and in the system. Now although one of
the principal motivations for a flexible semantics is to be free of the need to have all aspects of
the analysis of a reading present in the syntax, one can nonetheless recast a flexible semantics
in the UG format, so that all aspects of the analysis are present in the syntax. This is the first

thing that will be done with FT0. 1

All we have to do is extend FT0,s syntax so that (9) can actually be seen as displaying a

disambiguation. To do this the categorisations of FT0 are replaced by pairs (x : a), where x

is a FT0 categorisation and a is a type. So for example John has the bipartite categorisation

(NP : e) and every man has the bipartite categorisation (NP : ((e,<),<)).

Every type-shift, t, is now to be understood as an operation of the semantic algebra, sharing
an index with a particular syntactic operation. If t leads from a to 6, the index is the proof of
a =>• 6 in H^*- To the syntactic rules of FT0 are added unary rules, (Fy, (x : a),x : b), where

Fy is a syntactic operation indexed by a proof of a => 6, which is intended to amount to
an identity on strings.

The original syntactic rules of FT0 now become the source of a considerably expanded set.

Where there was a rule featuring the category <5, now there will be a putative rule featuring

(6 : a) for any a such that r(6,a). If the type parts of the putative rule 'agree' with the semantic

operation associated with it, then the putative rule is a rule.

Step 1: convert FT0 into a theory of reference, by including
the types in the categorisation, and by turning the type-shifts into

syntactic rules

The theory of reference thereby arrived at will be called a h^-theory of reference.

The h^-theory of reference derived in this way from FT0 will be called RT°. We can

now restate the aim of the section as being to show that there is a h^'^l,l^'\'-theory of

reference which provides an equivalent disambiguation to every disambiguation admitted by
RT°.

First we transform the rules of HT° by replacing the 6 part of a (6 : a) pair with a CAT^ \'
1Hendriks 90 also recasts the FMG account within UG, by taking as the meaning of an expression the set of

possibilities allowed to it by syntactic analysis and type-shifts.
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category, according to the correspondence below.

Hendriks Lexicon Categorial Lexicon Examples
cn cn man, woman

IV s\np walk, be missing
NP np John, a unicorn

Det np/cn the, a

TV (s\np)/np find, seek

PV s\np/s claim, believe

Looking at just the CAT^A) parts of the rules obtained, in most cases the rule represents an

L(/ A)_valid sequent, and the operation part of the derived rule will be understood to have as its

index the L"A) proof of the sequent. However, with only this much transformation of the rules

of HT°, there arise a problem with the cross-categorial junction rules of 7IT0, all of the form

(x : a, x : a), x : a), where 7 is AND or OR and x is S,VP, NP or TV. x,x => x is just not
l(/A) valid. To deal with this, we will presume that added to the lexicon are the polymorphic

disambiguations of and, and of or, of category VX((X\X)/X) and that there are additional rules:

{Fproof,{x '■ a,VX((X\X)/X) : V7r(7r, (7t, 7r)),x : a),x : a), where PROOF is an idAN) proof
of x, VX((X\X)/X), x => x.

Step 2: replace categories with CAT^A) categories, and introduce

polymorphic disambiguations of junctions, making the category

parts of rules lUAN) sequents.

Evidently, the derived theory will generate disambiguations which are equivalent to all the

disambiguations that HT° generates. We will call the resulting theory HT1. Where 7iT°
admitted (9), the derived theory admits:

(12) John loves every man

np:e (s\np)/np:(e, e, t) np/cn :((e,<),e') cn:(e,<)
AR1 1

(s\np)/np:(e',e,<) np:e'
s :t

The language of CAT^A) and the language of TJ-1" are structurally alike, and the next stage of
the translation is to replace the types, a in a category:type pairs, x : a, with a categories y that
stands in the category-to-type map to a. Such a change of type into category will be done to all
the rules of HT1, and the result will be called HT2. Two examples of images of (12) in 7IT2
are given below.
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(13) John loves every man

np:np (s\np)/np:(s\np)/np
ARL

(s\np)/np :(s\np)/npVs

np/cn :np*'/cn cn :cn
1

np :npWa

s\np .s\np
■2

s:s

(14) John loves every man

np :np cn.cn

s:s

Thus there are still bipartite categorisations, but in both parts members of CAT"'*,V' appear.
We will call the categories that now appear in the type slot 'bidirectional logical types' (BLT's).

Step 3: Replace the types with corresponding categories

Now if only the BLT parts of (13) and (14) were retained, the remnant of (13) would be a

disambiguation of a h^'^l^^'^-theory of reference (in fact it would be (10)), but (14)
would not (a slash direction is wrong at line 3).

What we wish to know now is whether from amongst the several different disambiguations of a
sentence provided by TfT2, there will always be one which when stripped down to its BLT's is a

disambiguation of a h^'^,l^^,v^-theory of reference. To see that there will be, consider

again the disambiguations admitted by 7IT1. All steps of combination are steps of function

application, where an arrow connective is eliminated from the type part of the functor word.
This arrow that is eliminated may be traced back through all the unary type-shift steps, to

the type.part of a lexical item: the type-shifts never introduce an arrow that is eliminated at a

combination step. For disambiguations that 7f7~2 generates, there is a corresponding feature: a

slash connective is eliminated from the BLT part of the functor word, and that slash may be
traced back through all unary BLT-shift steps, to the BLT part of a lexical item: the BLT-shifts
do not intoduce or change the directionality of a slash that is eliminated at a combination step.

Since there will be at least one version of a lexical item according to 7IT2 which gives the BLT

part of the category:BLT pair the same directionality as the category part, there will be one

disambiguation that 7IT2 provides which when reduced to just the BLT parts could count as

an analysis in the h(/>\) ^(/AN) theory.

Step 4-' throw away the category part and retain the BLT part

That completes the informal demonstration that there is a '\'v)-THEORY of reference
that provides a disambiguation corresponding to any disambiguation of 7fT°, the FMG analysis.
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We will call this h(/A)iL(/A.v)_theoRY of reference, HT3. Notice that if we had ignored the
junction parts of HT°, a h(/A),l(/A)_theory of reference would have sufficed to represent
every disambiguation possible within HT°.

4.3 From Category Flexibility to Quantifier Polymorphism

We now come to the last and most important step, from HT3 to the PLCG account, CT25. We

will not demonstrate that every disambiguation allowed by HT3 has a £T25 image, only that
those disambiguations inHT3 that are the images ofHT° disambiguations have disambiguations
in CT25. The distinction will be crucial in section 5.1.

One of the things that prevents the disambiguations that HT3 provides from counting as dis¬

ambiguations of an l^A.v)_xheory of reference, such as £T25, are the occurences of steps
of /AR and \AR. What will be described is a process of transformation that may be applied to

a 7IT3 disambiguation that eliminates occurences of /AR and \AR. At the end of the transfor¬
mation one has something which counts as a disambiguation of CT25.
Instances of AR in HT3 are either paired with an instance of VR or paired with an occurence

of quantifier (here when we say AR and VR, this is intended to refer to the theorems of H^A)
and not to the theorems of H^). Basically, one by one these AR:VR or AR:Quant pairs are

used to trigger transformations of the disambiguation: an AR:VR pair is replaced by a VR:VR

pair, and an AR:Quant pair is replaced by a VR:PolyQuant pair.

First we co-index the members of AR:VR and AR:Quant pairs. One finds the pairs by first

identifying for a syntactic functor what its arguments are. If VR has been applied to an ar¬

gument, or if the argument is a quantifier, AR will have been applied to the functor. The VR

or the quantifier should then be paired with the AR. We will illustrate this on a certain HT3
disambiguation (ttlg abbreviates 'Through the looking glass' and 1,2 and 3 are used to distin¬

guish different 'levels' of s. Also only the unary steps are shown, the binary steps being left as

understood):

[Fred [claims [every schoolboy [believes [a mathematician [wrote ttlg]]]]]]

np (l\np/2) npA1 2\np/3 npA1 3\np/np np
AR VR VR

l\np/2vl 2vl\np/3 3vl\np/np
AR AR

2vl\npA1/3 3vl\npA1/np
AR

2vl\npA1/3vl

In (15) the co-indexing of AR:VR and AR:Quant pairs is done.
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(15) [Fred [claims [every schoolboy [believes [a mathematician [wrote "Ig]]]]]]
np (l\np/2) (npA1);, 2\np/3 (npA1),„ 3\np/np np

AR, VR, VR,„
l\np/2vl 2vl\np/3 3vl\np/np

AR,, AR,„
2vl\npA1/3 3V1\npA1/np

-AR,,i
2vl\npAI/3vl

In general if we have a coindexed AR:VR pair, then it will be of the following form (or a

directional switch of it):

(b |Y)/a) IX a|Z
-AR ——VR

((b |Y)/ a )|X a |Z

This is replaced by an 'ar':vr pair. We say 'ar' as it one of those instances of AR that is

indistinguishable from an application of VR (see the end of section 4.1):

(b|Y)/a)|X
, a|Z'ar 1 yr

((b |Y)/ av(6ly)) |X av(Jly)|Z

If we have a co-indexed AR:Quant pair, then it will be of the form:

(s |Y)/np) |X
-AR

((s |Y)/ npv,)|X np
VS

We replace this with a pair consisting of an 'ar' transition, and a quantifier disambiguation

permitted by £T25:

(s |Y)/np) |X a

((e |Y)/ npv('ly)) |X VX npvX
npv(Jly)

This is the essence of the transformation to be carried out.

Step 5: Co-index the members of AR:VR and AR.Quant pairs.

Repace AR.VR with 'ar':vr and AR.Quant with 'ar':PolyQuani

A little more than this has to be said to handle cases where there are several AR:VR or AR:Quant

pairs in one analysis. We need in such cases to transform the pairs in a certain order.

In such cases we envisage the transformation be effected in several passes over a derivation. In

any pass a pair ARj:VR, or AR;:Quant; is chosen according to the nature of the branch upon

which the AR; occurs. If the branch is such that there are no earlier co-indexed transitions

on the branch then the transformation is applied to the AR;:VR; or AR;:Quant; pair. This is
illustrated below working on (15). In (16), we modify the pair AR,:VR;, because for all other
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pairs, the ARn is preceded on its branch by a co-indexed type-shift (x = s\np):

(16) [Fred [claims [every schoolboy [believes [a mathematician [wrote Rig]]]]]]
np (l\np/2) (npA1)„ 2\np/3 (npA1),„ 3\np/np np

'ar' vr VR,,,
l\np/2v*) 2Vx\np/3 3vl\np/np

AR,, AR,„
2Vx\npA1/3 3 \np /np

-AR,„
2Vx\npA1/3VI

Next pair modified is ARa : (npA1)„ - again for other pairs the ARn is preceded by a co-indexed
transition:

[Fred [claims [every schoolboy [believes [a mathematician [wrote Rig]]]]]]
np (l\np/2) VXnpAX 2\np/3 (npA1),„ 3\np/np np

'ar' m— vr VR,,,
l\np/2Vl' npA2 2Vl\np/3 3vl\np/np

lar' AR,„
2Vx\npA /3 3V1\npA1/np

"ARi,,
2Vx\npA2 /3V

The next pair modified is ARm : VRm (y = (2Vic\npA2 )):

[Fred [claims [every schoolboy [believes [a mathematician [wrote Rig]]]]]]
np (l\np/2) VX npAX 2\np/3 (npA1),„ 3\np/np np

'ar' -r— vr vr

l\np/2Vl' npA2 2Vx\np/3 3Vy\np/np
w r ar AR, y

2Vx\np /3 3v«\npA1/np
-'ar'

2Vx\npA2 /3V

Finally the pair ARiv : (npAl);„ is modified:

[Fred [claims [every schoolboy [believes [a mathematician [wrote tt'g]]]]]]
np (l\np/2) VX npAX 2\np/3 VY npAY 3\np/np np

' A.r1 vr vr

l\np/2Vx> npA2Vl 2Vl\np/3 np^ 3vf\np/np
ar vt: a1"

r\npA2 /3 3V!/\npA3 /np
-'ar'

2Vx\npA2 /3Vy

This is a disambiguation that exists in £T25.

Taking stock then, we have shown in this section and the previous section that a translation exists
from disambiguations in the type-flexibility system TT° to disambiguations in the polymorphic

categorial system CT25. It ought now to be proved that the disambiguations that are made
to correspond under this translation are semantically equivalent but this is not attempted here

(there is some indication of what is required in Emms 90,pl05-108).
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5 Extending LCG to account for logical ambiguity

Having become convinced that pure LCG does not give an account of logical ambiguity, Moortgat

(1988, p238-243) suggests an account of logical ambiguity that is built on pure LCG in a certain

way. Firstly, it is a flexible-semantics, deploying the type-shifts,H7~\ in combination with the

syntax in just the fashion of FMG. Secondly, a polymorphic analysis of junctions is used. This
is more or less exactly the same as the account FIT1, which we used above as a stepping stone

between the FMG account and the PLCG account.

The PLCG account is also an extension built upon the LCG framework, so if one was an adherent
of the LCG framework and was looking for ways to extend it to secure an account of ambiguity,
one would like to have reasons to choose between the two. I will make two observations on this

score.

Firstly, in terms of ecomomy of the theoretical technology, the PLCG account, £7"25, is prefer¬

able to the Moortgat 88 account, FIT1. This is because FIT1 adds to LCG both the technologies
of polymorphism and type-flexibility, whereas £7"25 adds to LCG just polymorphism.

Secondly, and more importantly, FIT1 is prone to some rather dramatic semantic overgenerau-

tions. These will be shown in section 5.2 below. In anticipation of this we will consider FIT3.

FIT3 is another kind of extension of LCG that accounts for logical ambiguity. Firstly, it extends
LCG by the addition of the /AR and \AR axioms, and secondly a polymorphic analysis of

junctions is used. Again an LCG adherent would like to have reasons for choosing between this
and either of £7"25 and FtT1.

Unlike FIT1, FLT3 never has been seriously considered as an account of logical ambiguity. Moort¬

gat 90 (p76-78) considers 'interesting' a particular extension of LCG that allows the derivation
of the /AR and \AR axioms, citing for example that it shows that it is not necessary to move to

a category-type relation if one is to have minimal types in LCG. However, he moves quickly on to

consider another account. Nonetheless, if you are looking for extensions of the LCG framework
to enable account of ambiguity, adding /AR and \AR to the axiom set is a possibility one should
consider: if it were entirely empirically adequate account, then FLT3 would be an attractively

economical extension of LCG.

Of course, about FLT3, we can make the same observation was made about FLT1, namely that

FLT3 uses polymorphism plus something, but £7~25 shows that polymorphism alone suffices.

However, ignoring that, in section 5.1 below, the descriptive adequecy of FLT3 is considered.

Syntactic and semantic overgenerations are found. Once one has seen these, one will immediately
wonder whether there are correponding semantic overgenerations for FLT1, and this is what is
seen to be the case in section 5.2.
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5.1 Using Category Flexibility instead of Type Flexibility

In section 5.1.1 we shall see that the addition of /AR and \AR axioms can lead to syntactic
overgenerations (the use of l(E\N) joes not). Section 5.1.2 shows some wild semantic overgen-

erations that are induced by the additional axioms.

5.1.1 A Syntactic Comparison of with Quantifier Polymorphism

Here we are comparing the syntactic performance of TiT3 and £T25. The two theories agree

almost entirely in the assignments of categories to words, the only difference being in the cat¬

egorisation of determiners. TiT3 has (npVs)/cn and (npAs)/cn whilst £T25 has (VXnpvX)/cn
and (VXnpAX)/cn.
We shall try to find strings that are categorised by TIT3, but are not categorised by CT25, and
then see if the strings are actually ungrammatical. We will probably have a case of a string

categorised by TiT3 but not by £7"25 if we can find a pair of strings a, b, having the categories:

(17) s/(s\np), s|X\x\np

In such a case, PUT3 will predict that ab has the category s|A\a;, but £7"25 probably will not.
Whether £T25 does so also depends on what other categorisations a has, other than s/(s\np).
If a has the np categorisation, or has the polymorphic quantifier categorisation VX.X/(X\np),
then £T25 will also predict that ab has the category s|X\x. Therefore we are looking for a

string a which is neither an np nor a quantifier, and a string b of category s|X"\;c\np.

There is a corresponding directionally reversed kind of case also, we seek strings 6, a having the

categories:

(18) s|Xyx/np, s\(s/np)

So long as a is not an np or a quantifier then TiT3 will predict that ba has the category s|X/np,
and £T25 will not.

Because the verbs in English that take two arguments in the same direction are forward looking,

(such as gave, ((s\np)/np)/np, and told, ((s\np)/vpc)/np) our best chance is by looking for the
second kind of case. However, finding a string a of category s\(s/np) that is not also of category

np or VX.X\(X/np) is not very easy.

Suppose because in (19a) has category (s\s)/s. Then Mary because it was broken has category

s\(s/np), and is therefore an example of the a-string that we are looking for. Taking 6 to be

told, of category ((s\np)/vpc)/np), then TLT3 predicts (19b) to be a sentence whilst £T25 does
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not.

(19) a. He hit [Mary because it was 3.00]
b. He told [Mary because it was 3.00] to leave(?)

The end result, (19b) is an unorthodox word order, but is not outright ungrammatical.

Suppose though in (20a) has category ((s/np)\(s/np))/(s/np). Then though Mary hates that man
has the category s\(s/np), and so can be used as another example of an a string for a case of
the (18) type. Taking 6 this time to be gave, of category ((s\np)/np)/np, then FIT3 predicts

(20b) to be a sentence whilst £T25 does not.

(20) a. John loves [though Mary hates that man]
b. Dave gave [though Mary hates that man] some money *

The end result, (20b) is ungrammatical. If only English had some verbs taking two arguments

to the left, then we could find the required a strings for case for the (17) type quite easily:
Josef thinks that Peter is a case in point. This suggests that for German, which is verb-final in
subordinate clauses, the effects of adopting the /AR and \AR axioms might easier to show.

So suppose FIT3 and CT33 are categorial accounts of German, based on the same categorisations
of verbal terms (s\np:ging, (s\np)\np:liebte, s\np/sc:glaubt, s/sc:das), differing with respect to

the categorisation of quantifiers, and with NT3 adding /AR and \AR to whilst £T35
addes VL and VR.

The categorisation of liebte is that appropriate for subordinate clauses, where the verb is final.
Josef glaubt das Peter may be categorised s/(s\np). Therefore NT3 predicts (21b) to be a

grammatical subordinate clause, whereas CT35 does not.

(21) a. [Josef glaubt das Peter] ging (Josef thinks that Peter went)
b. das Hans [Josef glaubt das Peter] liebte * (that Hans (Josef thinks that Peter) likes)

(21b) is ungrammatical.

(20b) and (21b) demonstrate overgenerations that are brought about by adopting /AR and \AR.
In sum, one can say that the adoption of /AR and \AR will lead to strings of category s/(s\np)
or s\(s/np) being wrongly accorded some of the priveleges of occurence of NP's and quantifiers.
2 What we will see in the next section is that use of /AR and \AR accords strings simply of

category s/(s\np) or s\(s/np) the semantic properties of quantifiers.
2There may well be more convincing counterexamples to AR, but I know of no-one else who has looked at

the same question; despite the fact both Hendriks and Moortgat have considered the categorial version of AR,
neither addressed the question of its linguistic plausibility. Instead they simply considered whether or not it was

derivable in
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5.1.2 A semantic comparison of ^ with Quantifier Polymorphism

Harry believes that < came in

Consider the following four instantiations of Harry believes a came in:

a man

yesterday a man

John shouted and

John thinks that Mary

TIT3 provides disambiguations of the above which are such as to suggest that the above sentences

may by paraphrased as below:

There is a man who

Yesterday there was a man who

John shouted and is someone who

John thinks that Mary is someone who

Only in the case of a= a man, does this appear to be correct. CT25 mimics this performance of
7IT3 only in respect of a = a man, and is therefore not subject to certain semantic overgenera-

tions suffered by HT3. This is explained further below.

Below is a TIT3 disambiguation of Harry believes that a came in, where a might be any of the

expressions of category npAs in (23):

► Harry believes came in

(22) Harry believes that a came in
np (si\np)/sc sc/s2 npA

si/s2

so\np
-VR

((si\(si/s2))\np)
((si\(si/s2))\npAS1)

(si\(si/s2))

-AR

si

(23) a man

yesterday a man

John shouted and

John thinks that Mary

The denotation assigned to (22) is as follows:

(24) [(22)](u;,ff)
= (dj' t—►

<h(xe i- d2([came m](u>,s)(a:))))([a](u;,s))([[Harry believes that](ty,3))
= Ia](»,s)(xe [Harry believes that](wlff)(|[came inJ(w,5)(a:e)))
= [a]K<7)(ze ^ [believes](ui,^)([came inj^ ff)(ar))(|[H^](«,lff)))
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Only in the case that a is a man does this seem to correspond to a possible reading of the
sentence.

Now we must see to what extent this semantic overgeneration repeated by CT25. I claim that
there is in fact only a semantically equivalent CT23 representative of (22) in the case that a is
a man. Here it is important to recall that we gave in section 4.3 only a restricted translation
from disambiguations of HT3 into disambiguations of CT25, relying on the fact that instances
of AR were either paired with an instance of VR or with a quantifier disambiguation. Should
a be a man in (22), then AR is paired with a quantifier, and so to obtain an image in CT25,
one would replace the ((si\(si/s2))\np) => ((s1\(si/s2))\npASl) instance of AR with the 'ar':

((si\(si/s2))\np) => ((si\(si/s2))\npA'SlVsi/s2)))! and replace the TIT3 disambiguation of a man

with a CT25 disambiguation of category npA(5l\(si/S;2)).
However, if a is one of the other possibilities drawn from (23) then AR is paired neither with
an instance of VR nor with a quantifier. It is paired simply with a disambiguation of a of

category npAs. Now there is no guarantee that for a disambiguation of category npAs, there will
necessarily be a £T25 disambiguation of category npA(Sl \(s'/s2)), and if there is not, there is no

way to copy the transformation used in the quantifier case.

In the case that a is yesterday a man, there is no CT25 disambiguation of category npA(SlVs'/S2)h
Complicating the picture somewhat, when a is John shouted and or John thinks that Mary,
there are CT25 disambiguations of category npA(Sl\(si/S|2)). Nonetheless, if we mimic the trans-

formmation of the TIT3 disambiguation that is used in the quantifier case, using these CT23
disambiguations of a, the resulting CT25 disambiguations do not have the same denotations as

the HT3 denotations.

For a = John shouted and, the denotations of the TIT3 disambiguation and the 'corresponding'
CT25 disambiguation are given in (25) and (26) below for comparison. Similarly (27) and (28)
makes the comparison for a = John thinks that Mary.

(25) AMV(S,l,J)(w,g)
(|believes](u>, fll)(|[came in](«r, 0)([johnj(ui, g)))

(l[Harry](w,g))
)

(|shouted]](u,,S,)(llJohnJ(ti;, d)))

(26) AATV(£,I,J)(w,g)
(|believes](u'> ?)([[came inIKPXtJohnJK,,,^)))

(((Harry] (if, 9))
)

(|believes|(u'i S,)(tshoutedJ(ti;> 5)(tJohnJ(U)j ^)^
(tHarry](if, 9))

)
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(27) [thinks](ufi Sf)([believes](w, <7)(|[came injtufi d)([Mary](u;, 3)))

^ ([Harry](u>, <7))
(lJohn](if, g))

(28) [believes](u»,fif)(|[thinks](ui,3)(|[came inj(w,<7)(|p\/lary]](u;,g)))
([JohnJ(u), <7))

)

(lHarry](w,ir))

Summing up, one can say that adopting the /AR and \AR accords certain semantic properties
to strings of category s/(s\np) and s\(s/np) which should be accorded only to quantifiers. £T25
does not do this. What this shows is that 7fT3 is not a good option for an extension of LCG
that accounts for logical ambiguity. This is not in itself very important, because no-one has

every seriously proposed 7IT3. What is more important whether the semantic overgenerations

noted for 7IT3, also apply to TfT1, which it will be recalled was simply the combination of LCG

with type-flexibility (plus the polymorphism of junctions), and was the account put forward in

Moortgat 88.

5.2 Combining Type Flexibility with Lambek Categorial Grammar

Recall that the categorisations of 7IT1 were bipartite, comprising a category and a type. John
has for example bipartite categorisation np:e, and a man has bipartite categorisation np:((e, t), t).
Below is a 7IT1 disambiguation of Harry believes a came in, where a is any expression of category

s/(s\np) : e':

(29) Harry believes that a came in
s/s :(t,t) s/(s\np):(e<,f) s\np:(e,f)

-AR VR VR
s/s:((tt,t),t) s/(s\np):(((ef, t), (tt,t)), («,<)) s\np:(e, (tt, t))

AR
s\np:(((eM),(*M)))

s:(tt, t)
s :t

Possible values for a are:

(30) John shouted and
John thinks that Mary

a man and yesterday a man are not on the list. In the case of a man this is because its categori¬
sations is not s/(s\np) : but np : (et,t). In the case of yesterday a man, although it has
the categorisation s/(s\np) : (et,t), its denotation is the trivial undefined object (this is because
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of the term that is associated with the proof of the sequent s/s, np => s/(s\np); it 'expects' np
to have type e).

One can easily show that for both of the a in (30), the denotation of (29) is exactly the same as

that of (22), given in (24). Therefore, for these a, NT1 produces the same semantic overgener-

ation on Harry believes that a came in as 7IT3.
It appears that for NT3, more or less all that is required of an expression for it to engender

ambiguity is that it have type ((e,t),t). It is not so significant what the category part of its

categorisation is. every man engenders ambiguity whilst categorised np, and John believes that

Mary engenders ambiguity whilst categorised s/(s\np). Therefore, the problem for combining the

type-flexibility proposal with LCG is that there will be many expressions (admittedly strange

compounds) of type ((e,/),<), which do not engender ambiguity.

One might wonder whether this is a problem even when the type-flexibility is combined with
a less powerful grammar than LCG. For again if there are expressions of type ((e, <),<), the
flexibility approach is liable to see them as engendering ambiguity. For example, at a rudimen¬

tary level one might assign the type ((e,t),t) to an expression like is barbaric, used in sentences

like to shout is barbaric, shouting is barbaric. If to shout and shouting had types then the

type-flexibility approach would allow one to interpret John thinks that to shout is barbaric as

something like it is barbaric to be something that John thinks shouts.

6 Conclusions

We have compared the type-flexibility account with PLCG. About this we first noted that it is
a slight misdescription to say type-flexibility offers an alternative account of logical ambiguity
to that offered by PLCG - it is important to bear in mind that FMG itself adopts a ■polymor¬

phic analysis of junctions. Second we argued that FMG does not fare well by the criterion
of emergence. Third, we pointed out that FMG creates a disunity amongst the junctions and
determiners that is not present in the PLCG account. A slightly different kind of comparison
took the form of providing a translation from an FMG analysis into a PLCG analysis. Finally
we considered two ways of building an account 'on top' of LCG that this translation suggests,

one by adding categorial versions of the type-shift axioms to the categorial calculus and one by

simply using LCG in tandem with a type-shifting component. Either option was seen to lead to

semantic overgenerations.
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We have presented an extension to the LCG framework that allows an explanation of the ex¬

tensive privileges of occurrence of junctions and quantifiers, and the ambiguities these words
induce. I hope most would agree that there is some interest to the account put forward if only
for the reason that it is surprising that an account whose basic ingredients are so elementary
can achieve the coverage of ambiguity; ambiguity has often be seen as a quite sophisticated

accomplishment of a grammar.

However, I have tried to argue that the PLCG account is interesting in more ways than its sim¬

plicity, and here I will draw together the various threads of argument that have been presented
so far. The task of persuasion is different according to whether or not one can presume the
audience is persuaded that LCG should be the core of any account. The discussion in section 5,

Chapter 8 is addressed to such a person. Such a person is looking for reasons why the PLCG
extension of LCG is better than other ambiguity-explaining extensions of LCG. Two such other
extensions of LCG were considered, one the combination of LCG with the type-flexibility pro¬

posal and the other the addition to LCG of a categorial version of 'Argument-Raising' axiom.
Semantic overgenerations that would arise for such accounts were pointed out that effectively
rule them out as possible solutions.

I have also argued that the PLCG account should interest someone even if they are not persuaded
that LCG should form the core of any account. Chapter 5 considered the classic transformational
solutions to logical ambiguity that have been proposed (or Montagovian analogues of them) and
it was argued that on the criterion of emergence, the PLCG account is to be preferred.

Moving the discussion towards accounts that allow a non-deterministic exploitation of syntax

by semantics, Chapter 8 considered Hendriks' type-flexibility account and argued that on the

grounds theoretical economy of theoretical technology and the criterion of emergence, the PLCG
account is to be preferred.

There are further accounts that allow a non-deterministic exploitation of syntax by semantics
that have not been considered so far, the most well known of which is 'Cooper Storage'. I
shall offer a few comments on this proposal now, for the description of which the reader should

consult Cooper 83. First, I take it that storage is a way to implement the effects of 'quantifying-
in' without having it as a syntactic rule. Cooper presents a system that simulates the semantic
effects of the non-minimally typed PTQ account. Storage is only an option, there being always
another mechanism not using storage that will give one interpretation (but only one) to a

quantifier-containing sentence. Such a two-route system does not fare well by the criterion of

emergence: remove the option to 'store' quantifiers and one loses only the coverage of (quantifier-

induced) ambiguity. In Chapter 5, we also considered the 'quantifying-in' strategy in the context

of a minimally typed account, and for this also there is a parallel storage account. We concluded
in Chapter 5, that one could not get by with just a rule that allowed quantifiers to be 'quantified-
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in' to a sentence, and that the most neural way to make up the shortfall is by adding what
we called the 'local' account of quantification, Cross Categorial Quantification. The combined
account inevitably fails by the emergence criterion. The same considerations apply to the account

that has storage instead of 'quantifying-in'.

There is also the consideration that, as it stands, the storage account does not even address

junction-induced ambiguities. One can see the lines on which a 'junction-storage' account could
be formulated, but it would bear the same relation to the syntactic technique of Conjunction
Reduction as quantifier-storage bears to the syntactic technique of 'quantifying-in'. Therefore
the criterion of emeregence will apply again.

Having this summarised the comparisons that can be made between the PLCG account as so

far developed and other accounts we will now consider potential developments of the PLCG

account and highlight some particular areas needing further research.

Negation words were mentioned back in Chapter 1 as the third kind of 'logical constants' (the
others being junctions and determiners). Like the others they engender ambiguity without
obvious accompanying syntactic ambiguity. Like the others also, they have extensive privileges
of occurrence:

(1) a. not every attendant had a good time
b. every attendant did not have a good time
c. I could not go

d. I ought not to go

e. every non-attendant had a good time
f. I like Laurel but not Hardy

The privileges of occurrence could be accounted for by categorising not as VX.X/X. This could
be associated with a polymorphic meaning, A/y, of type V7r((s, 7r), 7r), based on a a propositional

negation Af of type (t,t), in the following way (see also Keenan and Faltz 85):

for any conjoinable type a, for any p('<a\
if a = t, Afv(w,g)(Da)(P) = Af{w,g)(Pw)
if a - (6,c), Afv(w,g)(Da)(P) = xb i-> Afv(w,g)(De)(w' i— Pw'x)

As with the polymorphic analysis of junctions and determiners, PLCG will predict that not

engenders ambiguity, and in some cases this is borne out by the facts, while in others this seems

an overgeneration For example, for (lb,c,d) there are will be readings obtainable by a pure

applicative analysis and then one can investigate the possibility of readings that make them
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more or less synonymous with:

(2) b'. it is not the case that every attendant did have a good time
c'. it is not the case that I could go

d'. it is not the case that I ought to go

(2b') and (2c') seem genuine possibilities, whilst (2d') does not. A skeletal indication of how
the readings (2b', c') could be accounted for is given in (3). There is also an indication of how
the only possible reading of (2f) is accounted for:

(3) (every attendant did)s/(,\np) (not (have a good time)sy8/(synp))),\(i/(s\np))
0 COuld)s/(s\np) (n0t (g0)s\(s/(s\np)))s\(s/(s\np))
(I like)s/np ((Laurel)A(s/np) but (not (Hardy)iVl/np))A(,/np))A(i/np)

Tense is another cause of syntactically unreflected ambiguity:

(4) everyone sitting in the room witnessed the crime

According to the context (4), can be construed as talking of a group of people presently gathered
in a room, who in the past witnessed a crime (reading 1) or as talking of a past time at which
a group of people were gathered and witnessed a crime (reading 2). Can this and other similar
cases be explained within PLCG ? The problem presented is somewhat different to that found

with the 'logical constants' because there may not be an ambiguity causing word, there may

simply be an ambiguity causing feature on a word: in (4) there is the past-tense form of the
verb witness, rather than a separate lexical item indicative of tense. If there were a separate

lexical item indicative of tense, say PAST just before the verb witness, then the ambiguity could
be explained in exactly the same manner as (lb), giving PAST the category VX.X/X, the type

V7r((s, 7t), tt), and relating this to a propositional tense operator, VAST, as follows (VASTy is
the meaning to be associated with the polymorphic lexical item PAST):

whatever conjoinable type,a, whatever p(5'a),
VAST(w,g)(P(s,t)) = 1 iff there exists w' < w, such that P(w') — 1
if a = t, VASTv(w,g)(Dt)(P) = VAST(w,g)(P)

if a = (b,c),VASTv(w,g){Da)(P) = xb ^ VAST^w,g)(Dc)(w' i- Pw'x)

reading 1: everyone sitting in the room (PAST (witness the crime)Anp)Anp
reading 2: everyone sitting in the room (PAST (witness the crime)s\npA,)AnpA,
Therefore what it takes to be able to use polymorphism to explain the ambiguity of (4) is
the supposition of a certain abstract lexical item: the input to interpretation is not just the

sequence of words that one is presented with, but a sequence that may include the result of

decomposing certain lexical items into separate parts. In the present case it seems quite natural
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for morphological analysis to recover from witnessed the combination PAST walk. However, it

must be conceded that in allowing for the possibility of such preprocessing, the falsifiability
of the claim that a given phenomenon can be explained using polymorphism is considerably
lessened.

There is some promise for the use of PLCG in a categorial adaptation of the semantic analysis
of interrogatives that has been proposed by Groenendijk and Stokhof (84,87,90, henceforth G+S

90). They have proposed an analysis of both embedded (5a) and unembedded (5b) interrogatives:

(5) a. Mary knows who came in
b. who came in

(5b) is interpreted 'categorially' (as they put it), as a one-place function, roughly the set of
people that came in: [(56)](tn,ff) = xe [came in](tu, <7)(x)

With this semantic value for (5b), they can explain the question-answer relation between (5b)
and an answer such as John. From the 'categorial' interpretation of a question, [<3?]c, a 'propo-
sitional' interpretation, [Q?]p, can be derived that is appropriate to embedded uses:

(6) lQ?}P(w,g)(w') = 1 iff [Q7\c{w',g) = [Q?]CK <?)
[(5a)!p(iu,fl0 = [know](tP, fl,)(p)([Mary](w, g)), where p(w') = 1 iff [came inj(u/,sr) =
[came inj(u>,0)

Thus the 'categorial' interpretation is more basic, and it is proposed to be derived using the fol¬

lowing syntactic and semantic mechanisms1. The syntactic origin of an interrogative containing
n WH-phrases is a sentence containing n pronouns. Akin to the 'Quantifying-in' rules, there
are 'WH-abstract' rules that act iteratively upon this, inserting a WH-phrase for a particular
pronoun. The associated semantic operations are the abstraction operations which we have
already encountered in Chapter 5, section 2.3, namely the operations Thus the meaning
of (5b), of type (e,t) is derived from a meaning of type t. If there were n WH-phrases, there
would to begin with be a meaning of type t, then a meaning of type (ei,<), and eventually a

meaning of type (e„,.. .(e^f)...).

It is not obvious that to achieve this semantic coverage one needs to use such syntactic insertion
operations and subscripted variables. The abstraction operations, C7Ahei > c'0 not really change
a meaning of type a into a meaning of type (e,a), they really just rearrange a function of type
a. To begin with one has an n-place function in the form of a meaning of type t, depending
on assignments, and discriminating between assignments on the basic of some difference in the
values assigned to a certain set of n variables. After the abstraction operations, one has the same

n-place function in the form of a meaning of type (e„,... (ei, t)...), depending on assignments,
'This is actually a simplified version that allows only who to be a WH-phrase. It also only concerns 'in situ'

WH-phrases.
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but equating all assignments together. It seems one could arrive at the same end point in a

different manner. To begin with one has an n-place function, and this is the meaning of the verb
in the interrogative, of type (ei,... (en,t) ■ • •)• Combinations with WH-phrases could then take

place, each accompanied by a step of argument permutation, from a meaning of type (e, a, t) to a

meaning of type (a, e,t). The end result will be a form of the verb function that one began with,
a form of type (e„,... (ei, t)...). This would use only concatenative syntactic operations and
would give the same interpretations to who came in and who loves who as the G+S 90 proposal,

and therefore suggest the possibility of a PLCG account, and such an account is outlined below.

For this, WH-phrases are given the same categorisation as quantifiers: VX.X/(X\np) and

VX.X\(X/np). Their meaning shall not quite be the argument permutation operation, men¬

tioned above. We will arrange things so that if a is an expression of category z/np, and contains
n WH-phrases, its semantic type will be (e,a,b,t), where i/(x) = (a,t), and b is a sequence of
types associated with the WH-phrases. Thus the argument sequence of the type is split into
two parts, the first relating to yet to be encountered arguments, and the second relating to

already encountered WH-phrases. On the permutation account described above, if a who were

now built, the type of the result would be (a,b,e,t), with e becoming added on to the end of
b. What we shall actually suppose is that e is added on to the beginning of b, so that the type

of a who is (a,e,b,t). We can do this by defining the following type-swallowing functions as the

meanings of WH-phrases:

Iwho](u),<;)(£)a,j)(d(e'a'c)) = xa ^ [whoJ(u;,g)(Db){ye i— d(y)(x))

Jwho](u),g){Dt){<Te,c^) - d

It has to be confessed that we have defined by recursion here a function which does not have

a Tj(~"type. Also the type of a consituent containing WH-phrases will not be the type

corresponding to the category, though it will be a Tj(~*N) type. There is a remnant of the

category'to type correspondence, however, in the each combination with the WH-phrase, lowers
the 'linguistic-arity' of the function: there is one fewer argument place concerning which one

can expect other expressions to contribute information.

Not all the argument places of a verb in a interrogative need be filled by WH phrases (though
in English not just anything goes if the WH-phrase is 'in situ'). One could have who told who
to go. The categorial syntax will suggest that told who, of category (s\np)/vpc, and to go could
be combined by function application and if this is done the right result would be obtained. One

ignores here the mismatch of the type of told who, ((e, t), e, e, t) with what the category-to-type

map suggests. It is possible to do this because the operations dictated by the syntax are still

compatible with the types. The same goes for interrogatives that include quantifiers together
with WH phrases, as in who gave who a Xmas card. In this fashion, the interpretations that

G+S 90 suggest for unembedded interrogatives may be derived. For embedded interrogatives
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it is necessary to suppose that the conversion operation from the 'categorial' interpretation to

the 'propositionaP interpretation could be included in the meaning of the embedding verb. The

polymorphism of the quantifiers and WH phrases would allow one then to account for some

ambiguities possible with embedded interrogatives:

(7) a. Bill knows who entered every shop
al. (Bill knows)s/s ((who entered)s/np every shop)s
a2. (Bill knows)s/s ((who entered)(sy(s/s))/np every shop)s\(s/s)
b. John knows who said who was there

bl. John knows (who said)s/s (who (was there)s\np)s
b2- John knows (who said)s/s (who (was there)(s\(s/s))\np)s\(s/s)

To distinguish the readings of (7a), suppose some people entered at least one shop, while others
entered every shop. One reading has it that Bill knows who the latter group are, and a skeletal
disambiguation corresponding to this reading is given in (7al). Another reading has it that
for every shop, Bill knows who the group of people are who entered that shop, and a skeletal

disambiguation corresponding to this reading is given in (7a2).2 To distinguish the readings of

(7b), suppose a crime was committed and a number of people were witnesses. Also two or three
non-witnesses (they might be a doormen, or taxi-drivers) independently say who these witnesses
are. Then one reading has it that John knows who these witness identifying people are, and

(7b 1) is the disambiguation for this reading. For the other reading, vary the situation to one

in which each witness-identifier claims only to have seen one of the witnesses. This is shown in

(7b2).

Negation, tense, and interrogatives then are three areas in which it may be argued some of the

ambiguity data may be captured within PLCG, using much the same techniques that allowed

explanation of the ambiguities engendered by junctions and quantifiers. We will next consider
an application of polymorphism along another dimension to that considered so far.

Several times we have considered such quantified noun-phrases as a proposition which John be¬

lieves and an act that John wanted to do, and referred to them as examples of 'higher-order'

quantification. In Chapter 5, section 2.3, there were 'basic' determiners of type ((e,t),(e,t),t),
and then additional determiners of types ((p,t), (p,t),t) and ((vp,t), (vp,t),t), where p and vp

were abbreviations of (s,t) and (s,e,t) respectively. This suggests another opportunity to use

polymorphism, by defining a determiner of type Vu((uj, t), (u), t),t). Then reintroducing the kind
of polymorphism we have already considered for the determiners, one could define a doubly poly¬

morphic determiner of type Vw((w,t),W((w, ir), ?r)). To illustrate this recall that whenever a

2Groenendijk and Stokhof distinguish also a further reading which they call the 'pair-list' reading, similar to
the second residing we have described, except that every shop makes a de-dicto contribution. How this may be
accounted for is a question for further research.
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condition on models has been specified concerning determiners, this has involved making refer¬
ence back to an 'algebra-spanning' function, such as A, first defined in Definition 47. This was

a type-specific function, but could easily be revised to be a type-unspecific function, as below:

for any £,1 and J, for all (w,g) 6 I x J, whatever Da, whatever P\,P2 E

A(£,1, J)(w, g)(Pi)(P2) = 1 iff the set characterised by Pi has a non-null intersection with the
set characterised by P2

Then the condition on models giving a doubly polymorphic meaning to a could be:

whatever type d 6 TJ~+, whatever P[d,t\ whatever conjoinable type a, whatever P^d'a\
if a = t, la] {w,g){Dd){Pi)(Da){P2) = A{w, g){Pi)(P2)
if a = (6,c), |[a](tu, g)(Dd)(Pi)(Da){P2) = xb |a](tu, g)(Dd)(P1)(Dc)(yd (-► P2yx)

How this polymorphic approach compares to other approaches remains to be considered. There

follow a few comments on the 'individual-based' analysis of the phrases a proposition which
John believes and an act that John wanted to do (Chierchia and Turner 88). This approach
renders the common-noun parts (roughly) of type (e,t), which then allows one to suppose that
the determiner has type ((e,t),(e,<),<). On this approach, to validate the inferences featuring
the 'higher-order' noun phrases (shown below) it seems necessary to use in some fashion an

'individual-correlation' function, relating objects of type e to objects of type (s,f) and (s,e,t).

John believes a man died John wanted to marry a blond
a man died John married a blond

.'.A proposition that John believes is true .'.An act that John wanted to do, was done by
John

The polymorphic approach is perhaps more economical in not requiring such a function, and
the model theory behind the polymorphic approach seems more simple than that required to

support the idea of 'individual-correlates'. However, for any real comparison to take place,
there would have to be a consideration of the other kinds of sentences at which the 'individual-

based' semantics is aimed, especially 'self-predication' sentences, so the discussion of higher-order

quantification will be left here.

There is also an application of the PLCG framework that is more syntactic than semantic.
PLCG offers the possibility of extending the coverage of 'extraction' constructions over that

possible within LCG. LCG allows only for those cases where the 'gap' for the 'extracted' NP is
in sentence initial or sentence final position. Thus (8a,b) can be captured in LCG but not (8c)

(the brackets mark a 'sentence but for missing NP' string, and e marks where the missing NP
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should go):

(8) a. the man who (e killed the dog)
b. the dog which (the man killed e)
c. the man who (John told e to kill the dog)

PLCG allows the coverage of cases of non-peripheral extraction like (8c) by categorising the
relativiser as: VX.((cn\cn)/X)/((s/X)/np). The meaning of the relativiser that is appropriate
to this categorisation would be (under an extensional typing regime):

whatever type a, whatever p[e'a''\ whatever P$, whatever P^'^:
Ewho](u,)<,)(Da)(P1)(P2)(P3) = »- AATV{£,1, J){w,g){PlXP2){P3x)

For a full coverage of extraction, one would also have to retain the usual categorial categori¬
sations of the relativiser, (cn\cn)/(s/np) and (cn\cn)/(s\np). Other categorial solutions to

non-peripheral extraction have been proposed in Moortgat 88 (developed further in Moortgat
90 (Tilburg)) and in Morril, Leslie, Hepple and Barry (1990), both involving the increase of
the categorial language by further connectives, governed by further inference mechanisms. Fur¬
ther research is required to establish criteria of comparison here, both amongst these categorial
accounts and between these and accounts not centrally based on LCG (perhaps one could ap¬

ply another criterion of emergence here, looking this time for whether coverage of extraction
constructions was modularly removable).

We have now considered several areas where the syntactic and semantic coverage of the basic
PLCG account that we have given may be enhanced by further uses of polymorphism. We turn

now to a further area which must be covered but this time where mechanisms of polymorphism
make no difference. If one considers Montague's PTQ, one can say that two jobs are performed

by the 'Quantifying-in' rule in PTQ. One is the job of accounting for ambiguities caused by

quantifiers. The other is the job of accounting for 'pronoun-binding', the semantic part of which
is the explanation of the validity of inferences like:

a French man believes that he will one day play for England
no French man will one one day for England

. a proposition that a French man believes is false

We have ignored the phenomenon of pronoun-binding entirely so far, and the PLCG account

that was given in Chapter 7 will not explain the validity of the above inference. It is also not

obvious that an account can be formulated making especial use of polymorphism. Suppose the

only way to account for pronoun binding phenomena was by means of the 'Quantifying-in' rule.
Then even if one were to accept the PLCG account of ambiguity, one would have to suppose

that on top of the PLCG account one also has the 'Quantifying-in' rule. However, such a

composite account would be very unattractive, because the 'Quantifying-in' rule would make
the entire PLCG account of (quantifier-induced) ambiguity redundant (well almost, recall the
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undergenerations of the 'Quantifying-in' account that were noted in Chapter 5). Therefore it
had better not be that the 'Quantifying-in' account of pronoun binding phenomena is the only
one.

In reaction to this I would say first that the 'Quantifying-in' account of pronoun binding phe¬

nomena, though capable of explaining quite a large part of the data, leaves substantial parts of it

unexplained, especially intersentential anaphora and donkey sentences. Hendriks 90 makes more

or less this same point in anticipation of a similar objection being levelled at his type-flexibility
account. Secondly, speaking in the abstract, it seems that an equally or more satisfactory ac¬

count of pronoun binding phenomena might well not share with the 'Quantifying-in' account the
feature that it provides also an account of the ambiguity of sentences that themselves contain

no pronouns. Therefore the combination of PLCG with a more satisfactory account of pro¬
noun binding might well not render the PLCG account of ambiguity redundant. In fact, there
is no need to speak in the abstract. Groenendijk and Stokhof's 'dynamic-semantics' account

(Groenendijk and Stokhof 91, henceforth DMG. The account was actually put forward in 1989)

captures the semantic force of pronoun-containing sentences (and discourses) in an essentially
different way to the PTQ account, and it is not the case that the account itself explains quantifier
induced ambiguities. Combination of PLCG with the DMG account of pronoun binding would
not therefore render the PLCG account of (quantifier-induced) ambiguity redundant. For illus¬
tration of the fact that a dynamic semantics account is very compatible with a PLCG account,

an indication is given below of a 'dynamic-semantics' model.

The contexts of use, J, will not by assumed to be assignments, but will simply be a set of states,
S. There is now a type for these contexts of use, *, and «S = D+. The typings of expressions are

roughly changed from (a,<) to (a,T), where T = ((*,<),<):

((£?, ((77)7er> /), (w, s)) is a dynamic model, associated with £,I,S if
Update: in are discourse markers, dn, and whatever di, whatever state s, whatever xe,
there exists a unique state s' such that di(s') = x, and whatever j, j i, dj(s) — dj(s'). This s'
will be notated as s^n

CN: there exists a c/U,e, t)( ca^ ^ man', such that, |[mann]](m)(s)(a:e)(p,'<) = 1 iffman'(w)(x) = 1
and p(s%n) = 1

VP: there exists a d(°<e>*)} ca[[ ^ Won', such fAaf,([won](u;)(s)(a:e)(p*() = 1 iff won'(w)(x) = 1
and p(s) = 1

DET: [al(w)(s)(P(s'*.e,T)^g(j,»,eiT)^p,^ _ { ^ there ^ an ^ such thai p(w)(s)(x)(s' ^
Q(w)(s')(x)(p)) = 1
PV. there exists a d(

^ guc^ [believesJ(u;)(s)(<I>(s'*'Tl)(a:e)(p*!) = 1 iff

bel'{W){w'~*{w'){s){p)){x)^l andp(s)=1
PRO: [he„lH(s)(P(»,.,a,r))(p.() = ] .ff p(w)(s){dn{s)){p) and p(s) = 1
r = {>,-} :a>,(m(1(5'%'«),0

'm2)(^,s) = mi(w,s)((w',s') !-► m2(w' ,s'))(x)
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One can assume a simple (not necessarily categorial) syntax, which operates on lexical items
that bear indices. What is and what is not a possible indexing is not settled by this syntax.

All syntactic combinations are associated with the <7>, operation. Below an example of how

pronoun binding is accounted for is given (true is the characteristic function of S)

(i) [a man„ believes he„ won](u;)(s)(true) = 1
«-+ there is an xe such that (ii) [mann](w)(s)(:c)(s' [believes her, won](iu)(s')(x)(<rue)) = 1

(ii) «->■ man'(w)(x) = 1 and (iii) [believes he„ won](tc)(Sj" )(z)(true) = 1

(iii) *-* [believesj(u>)(s£")(u/ i-+ s' h-+ [he„ won](u;)(s'))(x)(true) = 1
«-+ bel'(w)(w' i—► [he„ won](u;)(s^")(frue))(x) = 1
<-+ bel'(w)(w' i—► [henl(w')(si")(u,/ s' [wonl(u;/)(s'))(<T'ue))(a:) = 1
<-+ bel'(w)(w' i—► [won](u/)(s£")(dr»(Si,,))(t'*ue))(a;) = 1
«-► bel'(w)(w' i—* won'(w')(x))(x) -- 1

Combining (i), (ii) and (iii):
[a man„ believes he„ won](u;)(s)(<rue) = 1 iff there is an x such that man'(w)(x) = 1 and

bel'{w){w' i—► won'(w)(x))

One can say that DMG is a 'semantic' account of pronoun binding phenomena, because there
is no syntactic rule that is at the heart of the explanation. The DMG account simply uses a

standard syntax, changes the typing assumptions from what is normal, and uniformly uses a

new kind of intensional function application to carry out semantic combinations. It is simply the

meaning of the lexical items themselves that makes the account work. Because of the uniformity
of the semantic operation, there is no obstacle to having an LCG syntax, so long as the proof-

to-operation map is changed in the appropriate way. Therefore the essential ideas of DMG can

be incorporated very directly into PLCG. However, further work needs to be done to see how

well the combination performs: it might be that there will be cases where the PLCG analysis
of a quite difficult reading somehow prevents the semantic machinery for pronoun binding from

working in the intended way. Also there is an issue whether the dynamic semantics account is
limited to the existential and universal quantifiers, or can be extended to cover all quantifiers

(Chierchia 91).

From extending coverage, we turn now to the question of restraining it. A question for further
research is whether the PLCG account can refined to give a more sensitive prediction of the

data, both of reading impossibility and of reading preference. The basic yield of readings seems

too great for certain sentences, and there is a question therefore of the possibilities within PLCG
to make impossible readings underivable.

One kind of overgeneration that needs to be considered is that occurring with the Rodman

sentences, noted in Chapter 3. The island-constraint violating extraction of (9a) should not be

derivable, but it is under the PLCG account, nor relatedly should (9b) be interpretable as (9c),
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which it is under the PLCG account:

(9) a. (every room that Guinevere has a bone which is in)Vx npAX

b. Guinevere has a bone which is in every room

c. every room is such that Guinevere has a bone which is in it

Though Rodman's observations have not emerged as a theorem of the basic PLCG account, the
PLCG account can still be argued to show promise in relating the syntactic restriction to the

semantic. This is because it seems that any steps taken to modify the PLCG account so as to

account for the fact that (9a) is underivable seem likely to also rule out (9c) as a reading of

(9b). There follows an example of this. (9a) could not be derived if (10a) could not be, and this
requires that the sequent (10b) be underivable:

(10) a. (Guinevere has a bone which is in)(s/np)
b. np, (s\np)/np, (VY.npvY)/cn, (cn\cn)/(s\np), (s\np)/np => s/np

(10b) would be underivable if one had as a side condition to the (/R) inference that amongst
the antecedents one could not have the relativiser categorisation, (cn\cn)/(s\np). (10b) is also
a subgoal of the obvious way to derive reading (9c), so the side-condition to the (/R) inference
would also rule out this route to the semantic overgeneration. There are several other routes to

be considered, but all in fact are ruled out by the side-condition to the (/R) inference. Further
work is required to explore such an explanation of Rodman's observation.

There are some further overgeneration problems to be considered with junctions. For all of the
sentences below the PLCG account predicts that there is a reading according to which the sen¬

tence is equivalent to a particular junction of two sentences. Arguably this is an overgeneration
in the case of (11a), though certainly not in the case of (llb,c,d,e).

(11) a. a man came in and sat down
b. every man and woman died
c. every house in London and Paris has an escalating price
d. the judge will say either that they are guilty or that they are not guilty
e. he wants not to praise Caesar but to bury him

It is difficult to see how the PLCG account could be adjusted to rule out just the overgeneration
associated with (11a). This is because for all the sentences above, the PLCG analysis that
makes the sentence equivalent to a junction of two sentences is very similar: the polymorphic

junction is instantiated not to an immediately neighbouring category, but to something derivable

by (Slash R) inferences from an immediately neighbouring category. The only way that I can
see to proceed here would be to have the restriction that when the variable of a polymorphic

junction is instantiated to a category, that category must derivable from some category in the
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set, {cn, np, sc, vpc}. In particular this set does not contain s\np. This is not a very elegant
solution to the problem, and is made even less elegant by the fact that no such restriction is

required for the polymorphic quantifier. However it should be borne in mind that both the

Conjunction Reduction and FMG accounts of the ambiguities caused by junctions will suffer
from the same overgenerations.

A question also for further research is the usefulness of instantiation restrictions to explain

reading preferences. Consider the following sentence:

(12) every man loves a woman and every shop attracts a shopper.

This is a conjunction of two sentences, any one of which taken on its own is ambiguous. There is
a strong tendency towards reading parallelism in such conjunctions, and nothing in the PLCG
account leads one to expect this (nor in fact in any other account). Such reading parallelism

could, however, be implemented by letting the instantiations of category variables of the quan¬

tifiers in the first conjunct dictate the instantiation possibilities of the corresponding quantifiers
in the second conjunct.

I will comment finally now on two technical matters that deserve further investigation.

The problem of avoiding circularity was encountered both in giving a string-semantics for

CAT^'\'V), and in giving a function-space semantics for In the case of CAT^'^,V\ it
led to a restriction on the (VL) rule - the restriction that a quantified categorial variable cannot

be instantiated to any category involving quantifiers. In the case of £^X'A\ it led to the restric¬

tion on the formation of type application terms that when a term of type Vn.a is applied to a

type 6, the result is only defined if b is a type which contains no type quantifiers. It remains an

issue to be investigated whether the semantics for cat^'^ aiKj £(A'A) could be such that such
restrictions could be eliminated.

A less esoteric problem is that of decidability. The (VL) inferences invite one simply to choose a

category, and if one cannot find a proof on a given choice one could always return to the (VL) in¬
ference and choose another category, and so on. One might think one could remain uncommitted
in the choice of variable at the (VL) inference, and by unfolding the proof accumulate constraints
on the unknown until such time as only one possibility remained for the unknown. This will not

work because the typical next step after the (VL) inference is a (/L) inference, the minor premise
of which is T =>• x, where x is the unknown and T is known. If there are any answers for x at

this point, there are infinitely many. So decidability of the calculus remains a problem. In mit¬

igation of this one can point out that several people have advocated the polymorphic approach
to junctions, often together with mechanisms for type-shifting or category-shifting (Partee and
Rooth 83, Moortgat 88, Hendriks 90), and these proposals would seem to suffer equally from
the decidability problem. There are two kinds of response to this problem that invite further
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research. The first is suggested by section 3.2.4, chapter 7. There we generated the proof that

explained recursive ambiguity of ... DET CN ..., from a proof for ... NP .... One might be
able to design a procedure that take ones through the relevant set of possible proof solutions
for a particular sentence by first finding one proof and then generating the others by a process

of proof transformation. The second kind of solution to the decidability problem that could be

investigated would be to have revisable bounds to the complexity of instantiation considered at

a (VL) inference.
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