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Lay Summary of Thesis

The study and understanding of magnetism is a central feature of solid state

and materials sciences. As early as the 2nd century A.D. the appreciation of

the magnetic properties of materials, such as naturally occurring iron oxides,

led to the very first applications of magnetic materials as navigational tools or

compasses. However, it was not until the beginning of the 20th century and the

development of quantum mechanics before we had an understanding of magnetism

on a microscopic level. It is thanks to this detailed understanding that we are

now able to design materials that exploit the useful properties of magnets. As a

result, magnetic materials have become ubiquitous within modern day life with

a wide range of important applications, including magnetic imaging techniques

in medicine and memory storage devices in information technology. On a more

fundamental level, magnetic materials are of interest as they can be used as model

systems to experimentally test and explore many scientific concepts or theories.

The microscopic magnetic moments that give rise to magnetism in a material

behave in a similar manner to the atoms or molecules in a gas. At sufficiently

high temperatures they are weakly interacting and free to move or fluctuate in a

random fashion. However, as a gas is cooled the atoms or molecules begin to slow

down and ultimately arrange in a regular pattern to form a solid. In analogy,

the magnetic moments in a magnet will also tend to interact with each other

at lower temperatures and eventually align to give magnetic order. There are,

however, certain situations in which this conventional magnetic ordering is not

observed. This unusual behaviour is not entirely understood and may give rise

to exotic physical phenomena. One particularly important class of magnetic

materials that support such behaviour are known as geometrically frustrated

magnets. In a geometrically frustrated magnet, the arrangement or geometry

of the magnetic moments with respect to each other prevents them from ordering

at low temperatures. Instead, they can adopt novel magnetic phases that display

unusual and often difficult to predict glassy or liquid-like behaviours. Within this
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Thesis the unconventional magnetic properties of several geometrically frustrated

magnets are discussed through a range of experimental studies.
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Abstract

Mixed anion systems, such as oxynitrides and oxyfluorides, are an emerging class

of interesting materials. The lower stability of mixed anion systems in comparison

to oxide materials has had the consequence that this area of materials research

is relatively less well explored. However, the development of new synthesis

techniques has resulted in the preparation of many new mixed anion systems

and so a detailed understanding of their structure and how this relates to their

electronic and magnetic properties is necessary. Within this Thesis, several oxide,

oxynitride and oxyfluoride systems are investigated with a particular focus on the

magnetic behaviour of materials based on geometrically frustrated pyrochlore and

kagome lattices.

The Lu2Mo2O7 pyrochlore contains a geometrically frustrated network of vertex

sharing Mo4+ (d2 S = 1) tetrahedra. Here, the solid state synthesis of

Lu2Mo2O7−x is reported along with a discussion of the coexistence of two cubic

pyrochlore phases that has been discovered in samples synthesised at 1600 ◦C.

Powder neutron diffraction and thermogravimetric analysis have revealed that

this two-phase behaviour originates from a miscibility gap between stoichiometric

Lu2Mo2O7 and oxygen deficient Lu2Mo2O6.6. Magnetic susceptibility and muon

spin relaxation measurements support the formation of a geometrically frustrated

spin glass ground state in Lu2Mo2O7 with a spin freezing temperature Tf ∼ 16

K. Low temperature neutron diffraction has confirmed the absence of long range

magnetic order and magnetic diffuse neutron scattering data have indicated the

presence of competing nearest and next nearest neighbour antiferromagnetic

exchange interactions in the spin glass state. The magnetic heat capacity of

Lu2Mo2O7 follows a T 2-dependence at the low temperatures, indicating that

Lu2Mo2O7 is another rare example of an unconventional, topological spin glass,

which is stable in the absence of significant chemical disorder. The magnetic

properties of the oxygen deficient pyrochlore phase Lu2Mo2O6.6 are qualitatively
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similar to those of Lu2Mo2O7, but an increase in the spin freezing temperature

Tf ∼ 20 K suggests that oxygen-vacancy disorder in Lu2Mo2O6.6 favours the onset

of a glassy state at higher temperatures and enhances the degree of frustration.

Oxynitride pyrochlores with the ideal composition R2Mo2O5N2 (R = rare earth)

contain Mo5+ d1 S = 1
2
cations on the frustrated pyrochlore lattice and are thus

ideal candidates to support exotic magnetic ground states. Here, the synthesis

of oxynitride pyrochlores of the Lu2Mo2O7 system by thermal ammonolysis is

discussed alongside powder neutron diffraction and susceptibility data that show

no evidence for long range magnetic order and an absence of spin freezing down

to at least 2 K despite the persistence of strong antiferromagnetic exchange

(θ = −120 K). A comparison of the magnetic diffuse neutron scattering between

the spin glass state of Lu2Mo2O7 and the oxynitride is given, which suggests that

the majority of the magnetic scattering in the oxynitride system is inelastic.

In addition, low temperature magnetic heat capacity shows an absence of

magnetic phase transitions and a continuous density of states through a T -linear

dependence down to 500 mK.

[NH4]2[C7H14N][V7O6F18], diammonium quinuclidinium vanadium(III,IV) oxyflu-

oride or DQVOF, is a kagome bilayer system with a geometrically frustrated

two-dimensional kagome network of V4+ d1 S = 1
2
cations and V3+ d2 S = 1

cations between the kagome layers. Here, low temperature magnetisation and

heat capacity data are presented, which demonstrate that the interplane V3+ d2

cations are well decoupled from the kagome layers at low temperatures such that

DQVOF is a good experimental realisation of a S = 1
2
kagome antiferromagnet.

Despite significant antiferromagnetic exchange (θ = −60 K) within the kagome

planes, muon spin relaxation data have confirmed the absence of spin freezing and

the persistence of internal field fluctuations that are intrinsic to the kagome layers

down to temperatures of 40 mK. The low temperature heat capacity of the V4+

kagome network follows T -linear behaviour down to the 300 mK, highlighting the

absence of a spin gap in the low energy excitation spectrum of DQVOF. The low

temperature magnetic study of DQVOF presented here thus strongly supports

the formation of a gapless quantum spin liquid phase.

In the final results chapter, a discussion of the anion ordering principles in

oxynitride systems is given. A high temperature, high resolution neutron

diffraction study of the oxynitride perovskite SrTaO2N has revealed that the

partial anion order that results in segregated Ta-N zig-zag chains is stable up

to 1100 ◦C. Furthermore, these anion ordering principles are extended to the d1

iv



perovskite oxynitrides RVO2−xN1+x (R = La, Nd, Pr) in a variable temperature

neutron diffraction study, which confirms that the anion chain ordering discovered

in d0 SrTaO2N is robust to electron doping. The R = La analogue also provides an

interesting example of a rhombohedral oxynitride perovskite phase which coexists

with an orthorhombic phase over the 4−300 K temperature range of the neutron

diffraction study.
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the nuclear Bragg scattering with the reflections for the cubic
pyrochlore phase marked. . . . . . . . . . . . . . . . . . . . . . 96

(3.14) The magnetic scattering cross section of Lu2Mo2O7 at 1.5 K and
300 K with an incident neutron wavelength of 3.1 Å. The solids
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(a = 10.1428(2) Å). Isotropic thermal parameters (Uiso) were
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Chapter 1

Magnetism and Magnetic

Frustration

1.1 Introduction

The study of magnetism is one of the oldest subjects in science and continues to

be a hugely important and popular topic in the fields of solid state chemistry,

condensed matter physics and materials science [1]. In addition to being of

great technological importance, magnetic materials provide model systems with

which to test the often complicated theories of many body interacting systems

[2]. The interactions between the magnetic moments that build up within a

magnetic solid upon cooling often result in long range magnetic order, giving

rise to magnetic ground states such as ferromagnets, the oldest known class of

magnets, and antiferromagnets. When these magnetic interactions are frustrated,

their competing nature means that they cannot be satisfied simultaneously. As

such, materials that are magnetically frustrated give rise to a rich variety of

novel magnetic ground states that can display complex physical phenomena. The

aim of the Thesis is to seek and study magnetic materials that support these

frustrated magnetic ground states. In particular, this study is focussed on mixed

anion transition metal systems, such as oxynitrides and oxyfluorides, which are

an emerging class of interesting materials that are relatively less well explored in

comparison with their oxide counterparts. The following Chapter aims to describe

to origin of magnetism in solids before going on to discuss the phenomenon of

magnetic frustration in detail.
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The study and understanding of the intricate behaviour demonstrated by highly

frustrated magnets is often complicated and requires a concerted theoretical and

experimental approach. As an experimentalist, the field of frustrated magnetism

is an exciting one to work within. One important task is the design and synthesis

of new materials that can support exotic frustrated ground states in order to

compare with theory. Furthermore, the arsenal of tools required to characterise

their behaviour allows one to become practised in a wide variety of experimental

techniques. Chapter 2, therefore, outlines the synthetic methods used within

this Thesis and the important principles of experimental techniques that were

employed, including neutron scattering, muon spectroscopy, magnetisation and

thermodynamic measurements.

Chapters 3 - 6 contain the main body of work that was performed for this

Thesis. Chapter 3 gives a detailed experimental description of the frustrated

spin glass ground state in the rare earth molybdate pyrochlore Lu2Mo2O7.

Chapter 4 discusses the suppression of the spin freezing transition in Lu2Mo2O7

upon nitridation by thermal ammonlysis and the possibility of a spin liquid

ground state in the oxynitride pyrochlore Lu2Mo2O4.8N1.7. In Chapter 6, a low

temperature magnetic study of the first V4+ d1 S = 1
2
kagome antiferromagnet,

[NH4]2[C7H14N][V7O6F18], is presented. Finally, Chapter 6 gives a discussion of

the anion ordering principles in mixed anion oxynitride systems, which can play

an important role in governing the properties that such materials display. A

summary of the main scientific conclusions drawn from this work can be found

in Chapter 7.

1.2 The Origin of Magnetism in Solids

The Magnetic Moment

The orbital motion of an electron about the nucleus of an atom gives rise to

an orbital angular momentum, L, which is associated with a magnetic moment

μ [3]. The magnetic moment lies in the same direction as the orbital angular

momentum and is proportional to it,

μ = γL (1.1)
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where the constant of proportionality, γ, is known as the gyromagnetic ratio. The

orbital angular momentum of an electron is quantised in units of h̄,

L2 = l(l + 1)h̄2 (1.2)

where l is the orbital angular momentum quantum number, which can take values

of l = 0, 1, 2, · · ·, n where n is the principal quantum number. The magnitude of

the orbital angular momentum is given by,

|L| =
√

l(l + 1)h̄ (1.3)

and since L is a vector quantity, its direction as well as its magnitude is quantised

such that a component of its direction projected along a given axis (conventionally

the z-axis) is,

Lz = mlh̄ (1.4)

ml is the magnetic quantum number, which takes 2l + 1 values between +l and

−l. A convenient unit for describing the magnitude of atomic magnetic moments

is the Bohr magneton, μB, which is defined by,

μB =
eh̄

2me

= 9.274×10−24 Am2 (1.5)

The component of the magnetic moment associated with the orbital angular

momentum projected along the z-axis is thus,

μz = γLz = γmlh̄ = −mlμB (1.6)

and its magnitude is,

|μ| =
√
l(l + 1)μB (1.7)

The energy of a magnetic moment in an applied magnetic field B is given by the
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scalar product,

E = μ·B = −μBcosθ (1.8)

where θ is the angle between the magnetic moment and the applied field. The

energy of a magnetic moment is thus minimised when it lies along the direction

of the applied field. The presence of a magnetic field will also cause the direction

of a magnetic moment to precess about the the direction of the field with a

characteristic frequency known as the Larmor precession frequency, ωL = γB, as

shown in Figure 1.1.

Figure 1.1 A magnetic moment μ at an angle θ to an applied magnetic field B,
which causes the direction of the magnetic moment to precess about
the field with an angular frequency ωL.

In addition to the magnetic moment associated with the orbital angular

momentum of an electron there is also a magnetic moment associated with

the intrinsic angular momentum or spin of an electron [3]. The spin angular

momentum can be treated in a similar manner to the orbital angular momentum,

it is quantised in units of h̄ by the spin quantum number, s, which takes a value

of 1
2
. The magnitude of the spin angular momentum, S, is given by,

|S| =
√
s(s+ 1)h̄ (1.9)

and its direction projected along a given axis is quantised by the spin magnetic

quantum number ms, which can take 2s+ 1 values of ms = ±1
2
. The component

of the spin angular momentum along a particular axis is then given by msh̄

according to Equation 2.4, which gives rise to values of +h̄
2

and −h̄
2
, known as the
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spin-up |↑〉 and the spin-down |↓〉 spin states, respectively. The component of

the magnetic moment projected along the z-axis that is associated with the spin

orbital angular momentum is,

μz = −gμBms (1.10)

and the magnitude of the magnetic moment associated with this intrinsic angular

momentum is given by,

|μ| =
√
s(s+ 1)gμB (1.11)

where g is a constant known as the g-factor, which for spin orbital angular

momentum takes a value of 2. In an applied magnetic field B, the energy of

an electron is given by,

E = gμBmsB (1.12)

and the interaction of the electron with this external field results in a splitting of

the ms levels as shown in Figure 1.2, which is known as the Zeeman interaction.

Figure 1.2 The Zeeman energy splitting of the ms levels of the spin angular
momentum of an electron upon the application of a magnetic field
of strength B.

For an electron in an atom, there may be both orbital and spin angular momenta

such that the value of g and the total magnetic moment will depend on the

relative contributions of each. The effective magnetic moment of an atom or ion
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is given by,

μeff = gJ
√
J(J + 1)μB (1.13)

where J is the total angular momentum quantum number, which results from the

coupling of the total orbital, L, and total spin, S, angular momentum quantum

numbers. gJ is the Landé g-factor, which is calculated according to,

gJ =
3

2
+

S(S + 1)− L(L+ 1)

2J(J + 1)
(1.14)

The orbital and spin angular momenta can couple in a total of (2L+ 1)(2S + 1)

different ways to give a values of J between |L − S| and |L + S|. Each value

of J obtained in this way is simply a multiplet of the (2L + 1)(2S + 1) states.

The situation is complicated further by the fact that the spin and orbital angular

momenta are not independent of each other and can, in fact, interact via the

spin orbit coupling interaction, λL·S, where λ is the spin orbit coupling constant.

When the spin-orbit coupling interaction is considered, the (2L + 1)(2S + 1)

levels split into their fine structure levels, which are labelled by J . Furthermore,

each of these fine structure levels has a degeneracy of 2J + 1 that can be split

into their individual mJ states upon the application of a magnetic field [3]. The

magnetic ground state of an atom of ion can be estimated using Hund’s Rules

and is typically expressed as a term symbol of the form,

(2S+1)LJ (1.15)

where L is a letter associated with the total orbital angular momentum according

to the sequence given in Table 1.1. The definition of the effective magnetic

moment given in Equation 1.13 holds well for the 4f ions of the lanthanide series.

First row transition metal ions, on the other hand, have 3d orbitals that are far

more spatially extended than the 4f orbitals of the lanthanide ions, which are

held beneath the filled 5s and 5p shells. As a consequence, the 3d electrons of

the first row transition metal elements interact strongly with their surrounding

crystal field, which can outweigh the effect of the coupling between the spin and

orbital angular momenta. A discussion of crystal field theory [4] and its effect

on the magnetic properties of the early transition metals is given in Figures 1.3
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Table 1.1 Term symbols associated with the total orbital angular momentum L.

L 0 1 2 3 4 5 6 · · ·
Label S P D F G H I · · ·

Figure 1.3 For 3rd row transition metal cations, Hund’s rules fail to describe the
magnetic ground state of the ion because the strength of the crystal
field interaction is greater than the spin-orbit interaction. As such,
it is important to consider the shape and symmetry of the d-orbitals
of the metal cations and the s- and p-orbitals of the anions that can
surround them in a crystal structure, depicted here, which generate
the electrostatic crystal field.

- 1.5. Under these circumstances, the orbital angular momentum is said to be

quenched such that L = 0, J = S, gJ = 2 and the effective magnetic moment can

be calculated using the spin-only formula,

μso = 2
√
S(S + 1)μB (1.16)

Magnetisation and Susceptibility

A magnetic solid is made up of an extremely large number of atoms or ions with

magnetic moment. The magnetic moment per unit volume of such a material is

7



Figure 1.4 Crystal field theory states that the d-orbitals of a metal cation centre
that point directly towards the orbitals of the surrounding anions
(left) are higher in energy than the metal orbitals that point between
the surrounding anions (right) due to the unfavourable electrostatic
repulsion of the electrons in the anion orbitals.

Figure 1.5 The interaction with the crystal field thus spilts the metal cation
d-orbitals into two groups, in the octahedral case shown here, the
lower energy t2g set and the higher energy eg set. Depending on the
electronic configuration of the the metal cation, these levels can be
split further by, for example, the Jahn-Teller effect, which is acting
here to remove the orbital degeneracy of this high spin d4 cation
resulting in a distortion of the crystal field.

8



known as its magnetisation, M [5]. Magnetisation is a smooth vector field, which

is continuous everywhere within a magnetic solid except at its edges. Within a

vacuum there is no magnetisation and so a magnetic field can be described by

two linearly proportional vectors,

B = μ0H (1.17)

where B is referred to a the magnetic flux density (in units T) H is the

magnetic field strength (in units Am−1) and μ0 is the vacuum permeability. The

relationship between B and H in a magnetic solid, however, is given by,

B = μ0(H+M) (1.18)

The magnetic susceptibility of a material, χ, is a dimensionless quantity that

linearly relates magnetisation and an applied external field,

M = χH (1.19)

such that Equation 1.18 becomes,

B = μ0(1 + χ)H = μ0μrH (1.20)

where μr = 1 + χ is the relative permeability of a material. The magnetic

susceptibility, χ, therefore, represents the magnetic moment induced in a

magnetic solid by an external magnetic field per unit volume.

Diamagnetism and Paramagnetism

Magnetic susceptibility is a measure of the response of a material in an applied

magnetic field [5]. A diamagnetic material is repelled by an external field, where

as a paramagnetic substance is attracted by an external field. Diamagnetism

is important in systems of paired electrons and a diamagnet is defined as a

substance in which the density of magnetic field lines of force is reduced when it

is placed into an external magnetic field. Diamagnetic molar susceptibilities are

negative, relatively small (∼ 10−6 emu mol−1) and temperature independent [5].

9



(a) (b) (c)

Figure 1.6 The Curie law states that (a) magnetic susceptibility, χ, is inversely
proportional to temperature, T , resulting in a straight line graph (b)
when plotting χ−1 against T with gradient C and (c) constant χT
against T .

Paramagnetism is displayed in materials with unpaired electrons and is defined

by a concentration of of magnetic lines of force within a substance when it is

placed within an external field. Paramagnetic susceptibilities are temperature

dependent, and to a first approximation at high temperatures, the magnetic

susceptibility is inversely proportional to temperature as shown in Figure 1.6,

χ =
C

T
(1.21)

Equation 1.21 is known as the Curie Law, where C the Curie constant. This

behaviour can be understood from a classical treatment of paramagnetism [3],

such that one takes the total angular momentum quantum number J = ∞ and

allows the magnetic moments within a system to point in any direction. Any

magnetic moments lying between angles of θ and θ + dθ to an applied magnetic

field B, as shown in Figure 1.7, will have an energy of −μBcosθ according to

Equation 1.8 and a moment of μcosθ in the direction of the applied field. The

fraction of magnetic moments that will point between these two angles is given by
1
2
sinθdθ and the probability of a magnetic moment pointing in this direction at a

given temperature, T , is given by the product of this fraction and the Boltzmann

factor [3],

P (T ) =
1

2
sinθdθexp

(
μBcosθ

kBT

)
(1.22)
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Figure 1.7 The fraction of classical magnetic moments, μ, that lie between
angles of θ and θ + dθ to an applied magnetic field B is given by
1
2sinθdθ, which corresponds to the shaded annulus shown here on a
unit sphere of surface area 4π.

The average magnetic moment along the direction of the field is then given by,

〈μfield〉 =
∫∞
0
μcosθexp(μBcosθ/kBT )

1
2
sinθdθ∫∞

0
exp(μBcosθ/kBT )

1
2
sinθdθ

= μ

∫ 1

−1
xexp(xy)dx∫ 1

−1
exp(xy)dx

(1.23)

where y = μ/kBT and x = cosθ such that,

〈μfield〉
μ

= cothy − 1

y
(1.24)

which is known as the Langevin function, L(y), shown in Figure 1.8. For small

values of y (i.e. in small applied fields or at high temperatures) cothy can be

approximated by the series expansion,

cothy =
1

y
+

y

3
+O(y3) (1.25)
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such that the Langevin function becomes,

L(y) =
y

3
+O(y3) (1.26)

The saturation magnetisation, Msat, is the magnetisation obtained when all of

the magnetic moments within the system are aligned,

Msat = nμ (1.27)

where n is the number of magnetic moments within the system per unit volume.

The ratio between the observed magnetisation, M = nμfield, and the saturated

magnetization is given by,

M

Msat

=
〈μfield〉

μ

 y

3
=

μB

3kBT
(1.28)

In small applied fields one can approximate the susceptibility according to,

χ =
M

H

 μ0M

B
(1.29)

and by substituting this expression for the susceptibility into Equation 1.28 one

obtains the Curie Law for a paramagnetic system of classical magnetic moments,

χ =
nμ0μ

2

3kBT
=

C

T
(1.30)

where,

C =
nμ0μ

2

3kBT
(1.31)

is the Curie constant. In the more general case, however, J can take any integer

or half integer value and the component of the of the magnetic moment along

the field is quantised by mJ which takes 2J +1 values between +J and −J . The
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saturation magnetisation in this case is given by,

Msat = ngJμBJ (1.32)

and,

M

Msat

= BJ(y) (1.33)

where BJ(y) is known as the Brillouin function,

B(y) =
2J + 1

J
coth

(
y
2J + 1

2J

)
− 1

2J
coth

(
y

2J

)
(1.34)

and,

y =
gJμBJB

kBT
(1.35)

In the classical limit (J→∞), the Brillouin function becomes the Langevin

function given in Equation 1.24. In the quantum limit (J = 1
2
), it reduces to,

B 1
2
(y) = tanh(y) (1.36)

as shown in Figure 1.8. Once again, for small y in small magnetic fields, Equation

1.34 can be approximated by the series expansion,

BJ(y) = y
J + 1

3J
+O(y3) (1.37)

and the susceptibility is given by,

χ =
nμ0μeff

2

3kBT
(1.38)

The Curie Law can, therefore, be used to relate the bulk property χ to the effective

magnetic moment given in Equation 1.13 of the atoms or ions in a paramagnetic
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Figure 1.8 The Brillouin function for paramagnetic moments for several J from
tanh(y) function for J = 1

2 in green to the Langevin function of the
classical J = ∞ limit in blue.

system,

μeff =

√
3kBχT

nμ0

(1.39)

In analogy with an ideal gas, an increase in temperature will cause the magnetic

moments in a Curie paramagnet to randomise or disorder. On the other hand,

the application of a stronger external field will tend the magnetic moments to

align and order. When the temperature applied to the system is on the order of

the energy of the magnetic moments in the applied field (i.e. kBT ∼ μB) it is

possible to excite transitions from the magnetic ground state, which gives rise to

a characteristic broad feature in the magnetic heat capacity, known as a Schottky

anomaly [3].
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1.3 Long Range Magnetic Order

As the magnetic analogue of the ideal gas law, there are circumstances in

which the magnetic moments in a system do not obey Curie’s law due magnetic

interactions between the magnetic atoms or ions [3], [5]. The simplest description

for this behaviour is given by the Curie-Weiss law, a modified version of the Curie

law,

χ =
C

T − θ
(1.40)

where C is once again the Curie constant and θ is known as the Weiss constant.

Due to the interactions between the atoms or ions in a magnetically ordered state,

a sharp transition can be observed in the magnetic susceptibility upon cooling

as the material transforms from a paramagnetic state of randomly orientated

magnetic moments and adopts magnetic order. Low temperature magnetically

ordered states are typically ferromagnetic, antiferromagnetic or ferrimagnetic,

which are depicted in Figure 1.9. A ferromagnet has a spontaneous magnetisation

below a transition temperature known as the Curie temperature, TC , as shown

in Figure 1.10, at which point the magnetic moments on neighbouring ions align

parallel to one another. As a result, the magnetisation is no longer directly

proportional to the applied external field as is the case for a paramagnet. The

magnitude of the spontaneous molar magnetisation of a ferromagnet in the

absence of an external field at low temperatures is given by,

Msat = NAμsat (1.41)

where NA is Avogadro’s number and μsat is the saturated moment per ion,

μsat = 2S (1.42)

in the spin-only case. In an antiferromagnet, neighbouring magnetic moments

align antiparallel with respect to each other below a transition temperature

known as the Néel temperature, TN , as shown in Figures 1.9 and 1.10. This

gives rise to two sublattices of magnetic moments μsat = 2S, which results in a

total magnetisation on each that exactly cancel out, such that there is no net
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magnetisation. In a ferrimagnetic system, neighbouring magnetic moments align

antiparallel below TC but the magnitude of the magnetisation on one sublattice

is larger than on the other such that there is an overall net magnetisation the

material will behave as a ferromagnet. The Weiss constant, θ, takes a positive

value for a ferromagnet and is negative for an antiferromagnet. The magnitude

of θ gives an indication of the energy scale of the magnetic interactions within a

system and, therefore, the temperature at which one might expect them to take

effect.

The underlying mechanism for long range magnetic order is known as magnetic

exchange. The Hamiltonian for the spins of two interacting magnetic moments,

S1 and S2, is given by,

Ĥ = −2JS1·S2 (1.43)

where J is the exchange constant,

J =
ES − ET

2
(1.44)

Here, ES and ET are the energies of the spin singlet (S = 0, |↑↓ − ↓↑〉/√2)

and triplet (S = 1, |↑↑〉, |↑↓ + ↓↑〉/√2 and |↓↓〉) states, respectively. If J is

positive, ES>ET such that the triplet state is energetically favoured and spins

align parallel. If J is negative, ES<ET such that the singlet state is energetically

favoured and spins align antiparallel. An estimate of the exchange energy can be

determined from the Weiss constant θ using the mean field approximation [6],

θ =
2S(S + 1)

3kB

∑
n

znJn (1.45)

where n is the nth nearest neighbour of a magnetic moment and Jn is the

corresponding exchange energy. For a many body system, the spin Hamiltonian

given in Equation 1.43 is generalised to give the Heisenberg Hamiltonian,

Ĥ = −
∑
ij

JijSi·Sj (1.46)

where Jij is the exchange constant for the interaction between the ith and jth
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(a) Paramagnetism.

(b) Ferromagnetism.

(c) Antiferromagnetism.

(d) Ferrimagnetism.

Figure 1.9 A representation of the arrangement of magnetic moments of
magnetically ordered states (b), (c) and (d) that can result from
the interaction of moments in a paramagnetic state (a).
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(a) Susceptibility. (b) Susceptibility.

(c) Inverse susceptibil-
ity.

(d) Inverse susceptibil-
ity.

(e) Magnetisation. (f) Magnetisation.

Figure 1.10 A critical magnetic phase transition can be observed in the (a),(b)
magnetic and (c),(d) inverse susceptibilities at the critical Curie
or Néel temperatures for a ferromagnet and antiferromagnet,
respectively. In the ferromagnetic case these leads to the (e)
onset of a spontaneous saturated magnetisation Msat and in the
(f) antiferromagnetic case, a spontaneous magnetisation of equal
magnitude on each spin sublattice.
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spins. If magnetic exchange occurs directly between two neighbouring atoms or

ions, then the interaction is known as direct exchange. However, it is unlikely

that direct exchange is primarily responsible for the magnetic properties of a solid

due to the insufficient overlap of the orbitals of nearest neighbours [3].

Superexchange is an indirect exchange mechanism that couples the magnetic

ions in an ionic solid via a non-magnetic intermediate ion, see Figure 1.11.

The superexchange mechanism depends strongly upon the angle and degree of

orbital overlap. An antiferromagnetic interaction is favoured when orbitals of

the magnetic ions overlap well with the same intermediate orbital with a 180 ◦

bonding angle. Ferromagnetic superexchange is less common, but can result from

a weaker 90 ◦ orbital overlap. In metal oxides with mixed valence metal cations,

for example La0.7Sr0.3MnO3 which contains Mn3+ 3d4 and Mn4+ 3d3 cations [7], it

is also possible to observe a ferromagnetic ground state via the double exchange

mechanism, which is shown in Figure 1.12.

1.4 Magnetic Frustration

A consequence common to all magnetically ordered phases is that of broken

symmetry. A high temperature paramagnetic state is highly symmetrical, each

magnetic moment can point in any direction such that the system is invariant to

translational and rotational symmetry operations. Below a critical Curie or Néel

temperature, the magnetic moments align along a unique direction and the total

invariant symmetry is broken. In the case of long range magnetically ordered

states the parameter driving this symmetry breaking transition is temperature

and the fact that at high temperatures, thermodynamics favours a high entropy

state. The order parameter, which characterises a magnetically ordered state,

is its magnetization M, which is zero above the critical temperature and finite

below [8]. There are, however, certain magnetic systems, namely low dimensional

magnets and frustrated magnets, in which no such symmetry breaking magnetic

transitions are observed. This can give rise to unusual glass or liquid like magnetic

behaviour at low temperature. In the most extreme cases, magnetic fluctuations

can persist down to T = 0 in a quantum spin liquid phase. The remainder of

this chapter is devoted to giving an understanding of some of the most important

concepts in the field of frustrated magnetism, including a discussion of some of

the most widely studied experimental realisations of highly frustrated magnets

that have helped to build our knowledge of the complex magnetic behaviour that
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(a) 180 ◦ superexchange interaction leads to antiferromagnetic ordering of magnetic
moments on neighbouring magnetic metal ions.

(b) 90 ◦ superexchange interaction results in a ferromagnetic ordering of
magnetic moments on neighbouring magnetic metal ions.

Figure 1.11 Superexchange mechanism between two magnetic metal ions with
an eg

1 configuration and intermediate non-magnetic centres such
as the oxide anion.
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Figure 1.12 The double exchange mechanism results in the ferromagnetic
ordering (top) of localised t2g electrons on neighbouring sites
since antiferromagnetic ordering (bottom) would prevent the
energetically favourable hopping of localised eg electrons.

they display.

1.4.1 Competition, Degeneracy and Underconstraint

Frustration is a phenomenon common to systems of competing interactions.

It is frequently associated with magnetic materials in which it is not possible

to simultaneously satisfy each pairwise magnetic exchange interaction [6], [9],

[10]. Magnetic frustration was first used in the context of spin glasses, such

as the magnetically dilute metal alloys Cu1−xMnx and Au1−xFex [10]. Here the

competition between different exchange interactions arises from site disorder, the

magnetic ions are randomly distributed throughout the non-magnetic matrix,

and the oscillatory nature of the Ruderman-Kittel-Kasuya-Yosida (RKKY)

interaction through which the magnetic ions couple indirectly resulting in

frustrated ferro- and antiferromagnetic exchange interactions [11], [12], [13]. This

competition, or frustration, means that there is no single or unique magnetic

ground state and the energy landscape consists of a large number of degenerate

ground states between which the system can fluctuate.
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An experimental result of this macroscopic degeneracy is that one observes a

lowering in the ordering temperature of a frustrated spin system with respect to

a non-frustrated system as it is able to resonate between its manifold of potential

ground states [14]. A quantitative measure of magnetic frustration can, therefore,

be given by the frustration index, f [15],

f =
|θ|
Tc

(1.47)

which compares the energy scale of magnetic interactions, |θ|, with a critical

magnetic ordering temperature, Tc. For antiferromagnetic order in the absence of

frustration |θ| is on the order of the Néel temperature, TN , as shown in Figure 1.13

[16]. For a frustrated magnet, in which long range order is inhibited, |θ| >> TN

and so in the extreme case f→∞. A value of f>10 is taken as an indication for

strong frustration of the spin order of a magnetic material. It should be noted,

however, that a high frustration index is not unique to strongly frustrated magnets

and can also be observed in systems of low dimensionality. In one-dimension,

entropy effects can prohibit long range order such that TN is suppressed and

should not be confused as a result of magnetic frustration [17].

(a) Non-frustrated (b) Frustrated.

Figure 1.13 For (a) antiferromagnetism in the absence of frustration, |θ| is on
the order of the Néel temperature, TN . The presence of frustration
in (b) lowers TN with respect to |θ|.

Another important concept used to quantify magnetic frustration is that of

underconstraint. The ground state degeneracy, D, of a system can be estimated
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by [18],

D = F −K (1.48)

where F is the degeneracy of the entire system andK is the number of constraints

required to keep that system in its ground state. For a magnetic lattice built of

N units or plaquettes of q sites that are common to b of the plaquettes, and are

occupied by spins which individually have n dimensions or degrees of freedom

(see Table 1.2), the degrees of freedom per plaquette, D/N , is given by,

D

N
=

q(n− 1)

b
− n (1.49)

A system where D/N<0 is referred to as over-constrained since it has more

constraints, K, than total degrees of freedom, D, and therefore, will not possess

macroscopic ground state degeneracy. A system in which D/N>0, on the other

hand, is under-constrained since it has fewer constraints than total degrees of

freedom and so will possess macroscopic degeneracy in its ground state. Under-

constrained (D/N≥0) frustrated magnets are, therefore, most likely to show

interesting and unusual physics.

1.4.2 Geometric Frustration

It is also possible for magnetic frustration to arise in the absence of magnetic site

or bond disorder, in systems where the magnetic moments are located on a regular

lattice and couple through uniform magnetic exchange interactions. Here, the

frustration arises as a result of the lattice topology or geometry, which prevents

all pair-wise exchange interactions from being satisfied at once [9], [6], [10]. This

kind of geometric frustration was first discussed in the context of magnetism

Table 1.2 Spin degrees of freedom or dimensionality, n, as required in Equation
1.49.

Spin degrees of freedom, n

Ising 1

XY 2

Heisenberg 3
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with a model of antiferromagnetic Ising spins on a triangular plaquette shown in

Figure 1.14, where one can easily observe that the lattice geometry prevents the

simultaneous satisfaction of each pair-wise antiferromagnetic interaction [19], [20].

The three-dimensional analogue of the antiferromagnetic triangular plaquette is

a tetrahedron of antiferromagnetically interacting spins (Figure 1.14). Again,

one can see that it is not possible to satisfy each pair-wise exchange interaction

simultaneously as a result of the tetrahedral geometry. The geometrically

frustrated triangular and tetrahedral plaquettes can be extended to form infinite

lattices in two dimensions, the triangular and kagome lattices, and in three-

dimensions, the face centred cubic (FCC) and pyrochlore lattices shown in Figure

1.15. The degeneracy of these infinite lattices depends on the way in which they

are connected and the number of degrees of freedom per spin and in certain cases

can be macroscopic [14]. The design and synthesis of magnetic materials built of

these frustrated lattices is, therefore, of interest since their macroscopic ground

state degeneracy leads unusual glass or liquid like magnetic behaviour and has

been shown to induce many novel, exotic phenomena [18].

(a) (b)

Figure 1.14 The geometrically frustrated (a) triangular and (b) tetrahedral
plaquettes of anitferromagnetically interacting spins.

1.4.3 Geometrically Frustrated Magnetic Ground States

Non-Collinear Grounds States

Frustrated systems in which it is possible to undergo a transition to a ground

state of long-range order do so by adopting non-collinear or compromise spin

configurations [6], [21]. Non-collinear spin configurations are achieved when the

24



(a) Triangular lattice. (b) Kagome lattice.

(c) FCC lattice. (d) Pyrochlore lattice.

Figure 1.15 The geometrically frustrated lattice that can be built up from (a,b)
triangular and (c,d) tetrahedral plaquettes.

spins on the triangular antiferromagnetic plaquette align at an angle of 120 ◦,

resulting in a vector sum of the spins that is equal to zero, and hence satisfying

the antiferromagnetic constraint. A similar result can be obtained when the

spins on the tetrahedral antiferromagnetic plaquette align at an angle of 109 ◦

as shown in Figure 1.16. The ability of a system to adopt the 120 ◦ and 109 ◦

structures depends upon the dimensionality of the spins involved and can be

achieved with XY and Heisenberg spins which have more than one degree of

freedom. In these cases, degeneracy is introduced as there is more than one way

to adopt the compromise spin configurations. Ising spins, however, which only

have one degree of freedom cannot adopt a non-collinear spin configuration.
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(a) (b)

Figure 1.16 The (a) 120 ◦ and (b) 109 ◦ compromise spin configurations on the
triangular and tetrahedral plaquettes, respectively.

Spin Glasses

A spin glass is a magnetic system which exhibits a distinct freezing temperature,

Tf , upon cooling from its paramagnetic state. At this well defined transition

temperature a spin glass undergoes a cooperative freezing process to a highly

irreversible glass like state of randomly orientated spins, which lacks the usual

long range order of a conventional ferromagnetic or antiferromagnetic phase

transition [13], [22], [23]. A spin glass has many experimental signatures,

including the divergence of field cooled (FC) and zero field cooled (ZFC) DC

magnetic susceptibility below Tf , the strong frequency dependence of the AC

magnetic susceptibility, the linear temperature dependence of magnetic heat

capacity below Tf and the absence of long range magnetic order in neutron

diffraction experiments. An important difference between a conventional glass

material i.e. an amorphous, non-crystalline solid, and a spin glass is that the

latter undergoes a true thermodynamic phase transition to its spin glass ground

state. The key experiment to observe this defining feature of a static spin glass

state is that of non-linear susceptibility, which is defined by [13],

χnl = 1− M

χ0H
(1.50)

where χ0 is the linear susceptibility. Magnetisation, M , can be expanded in odd

26



powers of the field, H, according to,

M = χ0H − a3(χ0H)3 + a5(χ0H)5 − · · · (1.51)

Spin glass theory predicts that the linear susceptibility should remain non-

singular at Tf but that the other an-coefficients should diverge according to the

critical exponents,

a3 = (T − Tf )
−γ (1.52)

a5 = (T − Tf )
−(2γ+β) (1.53)

etc. An important example of such a non-linear susceptibility measurement was

performed on the spin glass pyrochlore Y2Mo2O7, where is was shown that the

system adheres to the critical exponents expected for a canonical spin glass that

has undergone a true thermodynamic phase transition [24].

As mentioned above, the first spin glasses to be studied were the magnetically

dilute metal alloys, in which small concentrations of a magnetic metal are placed

into a non-magnetic metallic matrix. It was long perceived that the necessary

ingredients for a spin glass were randomness, either through site disorder or the

sign of neighbouring exchange interactions, and frustration, which could arise

from competing exchange interactions or geometrically. In the case of the metallic

alloys, both of these requirements are satisfied given their random site occupancy

and the oscillatory nature of the aforementioned RKKY interaction in which the

exchange interaction between two spins, J , as a function of their separation, r, is

given by [13],

J(r)∝sin(2kfr)

(2kF r)4
− cos(2kF r)

(2kF r)3
(1.54)

were kF is the Fermi momentum. This oscillatory behaviour in the exchange

interaction J changes the sign of the interaction between the magnetic impurities

within the non-magnetic matrix depending on their separation and, therefore,

produces the required frustration or competition between ferromagnetic and

antiferromagnetic interactions.
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More recently, the formation of a spin glass state in the absence of site or bond

disorder has become an important concept in highly frustrated magnetism. Two

widely studied examples of these so called topological spin glasses are the jarosites

[25], for example (H2)6Fe3(SO4)2OH6, which contain a kagome network of Fe3+

S = 5
2
cations and the Heisenberg pyrochlore antiferromagnets, such as Y2Mo2O7,

which is composed of a vertex-sharing tetrahedral framework of Mo4+ S = 1

cations [26]. In both cases, the frustration arises from the geometrically frustrated

corner-sharing lattices, but the source of disorder and whether it is truly required

for the formation of a spin glass remains an open question.

Spin Ice

Another widely studied and important class of frustrated magnets is that of the

spin ice materials [27]. The first reported example of a spin ice was the rare earth

pyrochlore Ho2Ti2O7, which has magnetic Ho3+ cations occupying the corners

of the tetrahedra in the geometrically frustrated pyrochlore lattice. The nearest

neighbour exchange interaction in Ho2Ti2O7 is ferromagnetic, with a positive

Weiss constant θ = +1.9 K, however, the initial study of the system showed

no evidence for long range magnetic order down at least to 50 mK [28]. It is

perhaps not immediately obvious why a ferromagnetic pyrochlore should display

behaviour characteristic of strong magnetic frustration. For instance, a pyrochlore

lattice composed of ferromagnetically interacting Ising spins on a tetrahedral

plaquette, shown in Figure 1.17, is not frustrated and will undergo a conventional

magnetic phase transition to a long range ordered ground state at TC ∼ θ.

On the other hand, a tetrahedral plaquette of antiferromagnetically interacting

Ising spins is considered as the canonical example of geometrical frustration in

three-dimensions. In the cubic pyrochlore system, however, this uniaxial Ising

spin anisotropy is unphysical since there is no reason that the spins should be

constrained to lie along one particular crystallographic axis over the other two

when all three are symmetrically equivalent. In fact, the local crystal field at the

Ho3+ site splits its 5I8 free ion ground state such that its lowest crystal field level is

composed of the mJ = +8 and mJ = −8 free ion states, which results in a strong

easy-axis anisotropy that is compatible with the overall cubic symmetry of the

pyrochlore structure [29]. As such, the Ho3+ spins align along the crystallographic

111-axis, which points towards the centre of each tetrahedron. In the presence of

antiferromagnetic exchange, this gives rise to a unique ground state and thus

long range magnetic order. For ferromagnetic exchange, two spins point in
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(a) (b)

(c) (d)

Figure 1.17 (a) Ferromagnetically and (b) antiferromagnetically interacting
uniaxial Ising spins on a tetrahedral lattice have long range
ordered and geometrically frustrated ground states, respectively.
The introduction of 111 easy axis anisotropy effectively swaps the
nature of the ground states such that the (c) ferromagnetic state
is frustrated and the (d) antiferromagnetic state is a unique non-
collinear ground state.

towards and two spins point out from the centre of each tetrahedron. The infinite

number of ways to arrange these two-in two-out spin tetrahedra on a real lattice

results in a macroscopically degenerate, disordered ground state that evades

long range order down to the lowest temperatures. The magnetic anisotropy

in Ho2Ti2O7, therefore, effectively swaps the nature of the antiferromagnetic and

ferromagnetic ground states on the pyrochlore lattice such that the ferromagnetic

system becomes frustrated as shown in Figure 1.17 [30].

The spin directions of Ho2Ti2O7 map directly onto the proton positions of

crystalline water ice as shown in Figure 1.18, hence the name for this family of

materials, spin ice [27]. The crystalline structure of water ice can be considered

as the first frustrated system to be investigated. In water ice, proton disorder
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Figure 1.18 In crystalline water ice each oxygen atom (red) has two short bonds
and two long bonds to hydrogen atoms (blue), which corresponds to
the spin directions (arrows) on a tetrahedron within the pyrochlore
structure of spin ice.

results in macroscopic degeneracy and frozen-in disorder, which leads to a residual

or zero-point entropy at low temperatures. The proton disorder, to which the spin

directions in spin ice correspond, obey the so-called “ice rules” that require each

oxygen atom to possess two short bond and two long bonds to hydrogen atoms

in a tetrahedral arrangement with the oxygen atom located at the centre of each

tetrahedron [31]. The ground state degeneracy expected for such a structure,

which has since been validated by neutron diffraction [32], was of great interest

thermodynamically. Pauling famously predicted the residual zero-point entropy

of water ice as 1
2
Rln(3

2
) per H atom [33], which was later confirmed by experiment

[34]. This led Ramirez et al. to determine the entropy of the spin ice Dy2Ti2O7

through the measurement of heat capacity (S =
∫
C/TdT ). The benefit of spin

ice here was that it is stable over a far greater energy range than water ice such

that the progression of the system towards its degenerate ground state could

be studied [35]. The experimentally determined values of the spin entropies of

Dy2Ti2O7 and water ice differed by less than 6 %, which demonstrates beautifully

how magnetic systems such as spin ice can be used as models for other physical

phenomena.

Perhaps the best example of this can be given by the excitations that emerge

from the spin ice ground state. The separation and transport of electrically

charged particles such as electrons and ions is widely exploited in modern

technology. However, no magnetic analogue of particles with a net magnetic
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(a) (b) (c)

Figure 1.19 In (a) spin ice the magnetic rare earth ions obey the ice rules such
that two spins point towards and two spins point away from the
centre of each tetrahedron. An excitation from the spin ice ground
state in the form of (b) a spin flip on a tetrahedron creates a
monopole (blue) and antimonopole (red) pair. These fractionalized
magnetic particles can then (c) separate throughout the lattice
through a series of spin flips with a Dirac string (green) carrying
the magnetic flux between the magnetic monopoles.

charge, a magnetic monopole, had ever been observed. In spin ice, however, local

violations of the ice rules generated by flipping a single spin, create a magnetic

source and magnetic sink on two neighbouring tetrahedra [36]. These defects can

move apart from each other throughout the spin ice structure as an oppositely

charged monopole-antimonopole pair connected by a Dirac string of flipped spins,

see Figure 1.19 [37], [38]. The experimental and theoretical study of spin ice

continues to be a important field of solid-state sciences. Current research involves

the characterisation of the magnetic coulomb phase and the magnetic monopoles

that spin ice supports, how their charge and current can be measured directly

[39], [40], [41], [42] and the synthesis of novel spin ice phases through different

synthetic methods, such as the high pressure high temperature technique [43].
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1.4.4 Quantum Frustrated Spin Systems

The geometrically frustrated spin systems discussed above possess a large ground

state degeneracy which allows spins to fluctuate down to a certain temperature

at which point they will either order and adopt a non-colinear ground state, or

freeze, as in the spin glass or spin ice systems. This is due to the fact that in

these cases, the spin fluctuations are thermally driven and at increasingly lower

temperatures, there is no longer sufficient energy to allow these spin fluctuations

to persist. However, in frustrated spin systems with low spin magnetic ions

(S = 1
2
) strong quantum effects and the cooperative tunnelling of spins means

that there is no such energy barrier to prevent spins from fluctuating and evading

long range order even in the thermodynamic limit of T = 0 [44], [45], [46]. This

so called quantum spin liquid state was initially proposed by P. W. Anderson in

1973, who argued that a long range ordered Néel state was not the only possible

ground state for a quantum frustrated antiferromagnet. Anderson put forward

the concept of a resonating valence bond (RVB) state as a form of spin liquid that

is built up from a linear superposition of S = 0 spin singlet pairs or valence bonds

that cover the frustrated lattice [47]. In the 1980s, a possible link between the

RVB state and superconductivity led to a surge in interest in spin liquid theory

[48]. Since then, the study of this unusual state of matter has been a major

theme in both theoretical and experimental solid state research in an attempt to

understand its typically unpredictable behaviour and to find real materials that

support its existence.

It is important at this point to give the necessary features that positively define

a true quantum spin liquid. It is perhaps a common misconception that the

spin liquid is simply defined by what it is not; its spins do not order nor do

they freeze. However, the quantum spin liquid is, in fact, an entirely new phase

of matter with many non-trivial properties. It is a non-magnetic ground state

that is built up of well defined, localised magnetic moments, which allows for the

emergence of unusual fractionalised quasi-particles as excitations from the ground

state. The first key definition of a quantum spin liquid is that is does not develop

any long range order in any local order parameter at any temperature down to

T = 0. By pairing into spin singlet valence bonds, the spin symmetry in a spin

liquid phase is rotationally invariant and the continuous spin symmetry is not

broken [49], [50]. If these valence bond pairs cover the spin lattice in a periodic

fashion such that there is long range order in the valence bond configuration

and translational symmetry is broken, the system is known as a valence bond
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crystal or solid (VBS). The distinction between the valence bond solid and a true

RVB-liquid has an important consequence on the nature of their excitations. In a

VBS, the elemetary excitations are confined to take integer spin values. In a RVB-

type ground state these excitations can form deconfined S = 1
2
entities known

as spinons. This fractionalisation is the second key definition of a true quantum

spin liquid. Most elementary excitations are either electron-like, with spin S = 1
2

and charge e = ±1, or magnon like, with spin S = 1 and charge neutral [49]. The

spinon can, therefore, be considered as a “fraction of an electron” given its S = 1
2

and charge-0 state [44].

The fundamental building block in both the VBS and the RVB-liquid is

the valence bond, which minimises the antiferromagnetic exchange interaction

between two spins. A valence bond configuration is given by the product of all

the valence bonds covering the spin lattice such the total spin of the configuration,

S2
tot = Stot(Stot + 1) = 0, is non-magnetic. In certain systems, such as the S = 1

2

Heisenberg kagome and pyrochlore lattices this type of valence bond ground state

is energetically favourable such that it wins out over classical Néel order [44]. In

any valence bond configuration, the energy of each spin singlet pair is minimised

which acts to relieve the competing interactions that arise due to the geometrically

frustrated lattice topology. It is however, very unlikely that one single valence

bond configuration can exactly describe the ground state of a frustrated spin

system and, therefore, the fluctuations between different valence bond coverings

becomes very important in determining the true nature of a system.

Valence Bond Solids

An ordered or periodic arrangement of valence bond coverings acts to break some

discrete lattice symmetry to form a VBS, see Figure 1.20. The dominant valence

bond configuration in such a system can be unique, or there may be several

degenerate configurations that are related by symmetry. In the case where there

is a dominant configuration, local fluctuations can act to lower the energy of the

system and drive it towards its true ground state, an example of the mechanism

known as order by disorder [16]. The magnetic excitations in a VBC are gapped,

integer spin ΔS = 1 transitions that appear as a sharp feature in an inelastic

neutron scattering spectrum [45]. In a VBS it is energetically unfavourable

to liberate two free S = 1
2
quasi-particles from the integer spin excitation as

this would require a disruption in the valence bond order and create a string of
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misaligned spin singlet pairs. The energy cost of this spinon separation process

grows with the length of the string such that there is a strong force that acts to

keep the two S = 1
2
entities confined together. Deconfined spinons, a key feature

of a true spin liquid phase, are thus not observed in a VBS as shown in Figure

1.20.

Quantum Spin Liquids

In a RVB-liquid the broad distribution of valence bond configurations or

partitionings covering the lattice means that there is no preferred ordering of

the spin singlet pairs. As a result, it becomes energetically favourable to resonate

between the many different valence bond configurations, which gives rise to a

fully resonant superposition ground state, shown in Figure 1.21, where no spatial

symmetry is broken at all. The lack of an ordered valence bond configuration

means that there is no mechanism to prevent the deconfinement of spinons.

In a neutron scattering experiment, spinons are created in pairs due to the

ΔSz
tot = ±1 selection rule, but can then propagate independently throughout the

fluctuating “sea” of valence bond pairs. Spinon excitations are well understood

in one-dimensional systems, such as a S = 1
2
Heisenberg chain, where a spin flip

excitation creates two spinons. The important property of such a fractionalised

system is that these two fractional entities can separate to an infinite distance

with only a finite energy cost. Neutron scattering experiments on such low-

dimensional systems provides a proof of principal that such fractional excitations

are observable [51]. An important feature that emerges alongside fractionalised

spinons is the gauge field, which contains the path information between deconfined

spinons [44].

It is now understood that not all quantum spin liquids are alike and that there are

several different flavours of this exotic ground state. In the most general terms

these can be classified into two main groups depending on the nature of their

low energy excitation spectrum, which can either be gapped or gapless. Gapped

quantum spin liquids are the simplest and best understood class, which are well

described by the original, short range RVB ground state model of Anderson [47].

In modern terminology, gapped spin liquids are known as the Z2 spin liquids,

which possess a finite energy gap required to promote the non-magnetic singlet

ground state to the excited triplet state with deconfined spinons. In addition,

the Z2 spin liquid has non-magnetic excitations, known as visons, which are

34



(a) A valence bond crystal has an ordered configuration of valence
bond partionings, shown here covering a triangular lattice. This
configuration can be unique or dressed by local perturbations about a
dominant configuration.

(b) Due to the existence of an energetically favourable arrangement of
valence bonds, two spinons experience a confinement potential that
grows with the length of their separation path shown by the black dotted
line.

(c) Due to this unfavourable misalignement of valence bonds, deconfined
spinons are not observed as an excitation from the VBS ground state
and instead one observes integer spin ΔS = 1 transitions.

Figure 1.20 The valence bond solid ground state and its excitations.

excitations from the Z2 gauge field that arises as a result of fractionalisation and

spinon deconfinement. Gapless spin liquids, known as long range RVB or algebraic
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spin liquids, have a gapless spinon excitation spectrum. Unlike the Z2 spin liquid

ground state, in which spin-spin correlations decay exponentially with distance,

gapless spin liquids have an algebraically decaying spin correlation function.

Algebraic spin liquids are, therefore, sometime referred to as a critical phase

as this algebraic decay is characteristic of a system close to a phase transition

where correlations diverge before a long range ordered state is adopted [8].

The exact ground state of several important lattice spin models are still

not very well understood and so the synthesis and experimental study of

candidate materials and their comparison with the theoretical models remains

an important task. For instance, the most recent predictions from density matrix

renormalization group algorithms are that the ground state of a S = 1
2
kagome

antiferromagnet is a fully gapped, topologically ordered [52], [53] Z2 spin liquid,

with an estimated spin gap of 0.13(1) J [54], [55]. However, other theories expect

a gapless spin liquid ground state [56], [57], [58], [59] and the best experimental

candidate to date, the S = 1
2
KAFM herbertsmithite, (ZnCu3(OH)6Cl2), appears

to be a gapless critical QSL [60], [61]. In the case of the S = 1
2
pyrochlore

antiferromagnet there is some uncertainty too as to whether the system should

adopt a VBS ground state at low temperatures or a true RVB liquid state

[62], [63], [64]. An experimental realisation of a quantum spin liquid should

display an absence of long range order upon cooling in magnetic susceptibility

and diffraction experiments. The absence of spin freezing and the persistence

of incoherent spin fluctuations down to temperatures on the order of the energy

scale of the spin gap in a gapped spin liquid, or T = 0 in the gapless case,

can be observed by local probes such as nuclear magnetic resonance or muon

spectroscopies. The experimental signature of deconfined spinons is energy

continuum in the dynamical structure factor probed by inelastic magnetic neutron

scattering [65], as opposed to a sharp mode of a conventional magnon excitation.

Thermodynamic measurements, such as heat capacity, are also important for

revealing the spectrum of low energy states [44].
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(a) Short range RVB.

(b) Long range RVB.

Figure 1.21 In a true quantum spin liquid ground state there is no preferred
valence bond configuration and the ground state is fully resonant
between many different valence bond configurations. The valence
bond partitionings can be short range in nature or long range,
leading to highly entangled spin singlet pairs that stretch across
the spin lattice.
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Chapter 2

Experimental Methods

2.1 Solid State Synthesis and Sample

Characterisation

Polycrystalline metal oxides are most commonly prepared by solid state ceramic

synthesis [66]. Typically, stoichiometric amounts of the necessary precursors are

ground together and pressed into a pellet before heating. The ceramic method

usually requires high temperatures (up to 2000 ◦C) and small reactant particle

size to allow for ionic diffusion and sample homogeneity. The time, temperature

and heating profile of a particular reaction can each be varied in order to affect

the final product. Samples can be heat treated in air in a box furnace or under

a specific atmosphere in a tube furnace. For instance, if one wants to change the

oxidation state of a transition metal in one of the precursor materials involved in

the reaction, an oxidising (O2) or reducing (H2) environment could be used. If

one wants to control or maintain a certain oxidation state an inert atmosphere of

argon or nitrogen gases could be chosen, or the reaction could be carried inside a

sealed ampoule. Within this Thesis the oxide pyrochlore Lu2Mo2O7 was prepared

by the solid state ceramic method.

The direct synthesis of nitrides and oxynitrides is limited by their lower stability

in comparison with oxide materials [67]. The free energy of formation is lower

for nitrides due to the higher bond enthalpy of nitrogen compared with oxygen

and a more energetically costly electron affinity. The thermal ammonolysis of an

oxide precursor in ammonia gas, however, allows for the formation of oxynitrides
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at moderate temperatures (up to 1000 ◦C). During an ammonolysis reaction,

ammonia gas acts as a nitriding agent whilst inducing a change in the oxidation

state of the transition metals involved in order to charge balance the incorporation

of the higher charge of the N3− nitride anion into the oxide framework [68]. By

varying the time, temperature, ammonia gas flow rate and sample surface area of

an ammonolysis reaction it is possible to control the O : N ratio in the resulting

oxynitride product. The thermal ammonolysis technique was employed to prepare

samples of the oxynitride pyrochlore Lu2Mo2O4.8N1.7 presented in Chapter 4 along

with the oxynitride perovskites presented in Chapter 6.

Another common preparative route in solid state chemistry is that of solvothermal

synthesis [66]. This is most often used in the synthesis of microporous

framework solids, such aluminosilicates and aluminophosphates, and metal

organic framework (MOF) solids [69]. In these cases, the aluminate and silicate or

phosphate sources are mixed together into a homogeneous gel along with a solvent,

usually water, and heated in a Teflon-lined steel autoclave to temperatures around

250 ◦C. When water is used as a solvent, the process is known as hydrothermal

synthesis. There are many parameters that can be varied during a synthesis: the

relative ratio of reagents present in the gel, the solvent, the reaction pH and the

reaction time and temperature, all of which can affect the final structure of the

framework material that is formed. Organic template molecules, often amines,

can also be added to the reaction system in order to direct the synthesis towards a

particular structure. Ionothermal synthesis [70] makes use of ionic liquids, which

act as both the solvent and the structure directing agent during a reaction. An

ionic liquid is defined as a salt which consists of only ionic species with a melting

point of less than 100 ◦C [71]. In recent years, there has been significant progress

in synthetic chemistry through the development of the ionothermal technique [72],

[73], [74]. Most importantly for this work, it was responsible for the discovery of

a novel S = 1
2
kagome antiferromagnet diammonium quinuclidinium vanadium

(III,IV) oxyfluoride, [NH4]2[C7H14N][V7O6F18], or DQVOF, the study of which is

presented in Chapter 5 [75].

Once a sample has been prepared, it is initially characterised by powder X-ray

diffraction to ensure that the desired phase has been synthesised and that the

reaction is complete. X-rays are a form of electromagnetic radiation with a

wavelength on the order of the inter-atomic spacings within crystalline solids. As

such, the diffraction of X-rays by their interaction with the electrons of an atom

or ion can be used to yield structural information about a crystalline material.
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X-rays for laboratory diffraction experiments are generated by bombarding a

metal target, in this case copper, with electrons produced by a heated filament.

The incident electrons ionise electrons from the 1s K shell of the target, which

results in the emission of X-rays as the vacancies in the K shell are filled by

higher electrons from the 2p L or 3s M shells. These are known as Kα and Kβ

radiation, respectively. Within this Thesis powder X-ray diffraction data were

collected on a Bruker D8 powder X-ray diffractometer with monochromated Cu

Kα1 λ = 1.5406 Å radiation. Further information on diffraction theory and the

differences between neutron and X-ray scattering are given within � 2.2 of this

Chapter. Thermogravimetric analysis, which involves taking a known mass of

sample and oxidising it completely in air or oxygen and measuring the change

in weight is also carried out so that one can determine the oxide content within

the sample and hence, the oxidation state of the transition metal cations that

it contains [76]. The nitrogen content of oxynitride samples was measured by

elemental analysis on a Carlo Erba CHNS analyser through the EaSTChem

Elemental Analysis Service at the School of Chemistry, University of St Andrews.

The combination of elemental and thermogravimetric analyses, therefore, allows

the total anion content of an oxynitride system to be accounted for [77]. Once

suitable, well characterised samples were prepared their structural and magnetic

properties that are of prime interest within this work were investigated through

a combination of techniques, including neutron scattering studies, muon spin

relaxation, magnetisation and heat capacity measurements. The rest of this

chapter is dedicated to explaining the fundamental principals of these techniques

and aims to describe how they have been of use in the study of the materials

presented within the results chapters of this Thesis.

2.2 Neutron Scattering

There are several important properties of the neutron what make it a useful

probe in the study of materials. For instance, the de Broglie wavelength of

the neutron, λ = h/mv, is typically on the order of the inter-atomic spacings

within crystalline solids (∼ 1 - 2 Å) and, therefore, is an ideal tool with which

to investigate the structure of crystals by diffraction methods. Furthermore, the

energy of a neutron of wavevector k, E = h̄2k2/2m ∼ meV is of the same energy

scale of certain lattice and spin excitations that are of interest within condensed

matter systems. The neutron is a charge neutral particle, which means that it
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interacts very weakly with matter and penetrates deeply into a target where is it

scattered by its interaction potential with the target nuclei. In addition to this

nuclear interaction, the neutron possesses a magnetic moment such that it is also

scattered by its interaction with the unpaired electrons within a magnetic sample

[78], [79].

During a neutron scattering experiment, the neutron can undergo a change in

wavevector, from an initial wavevector state |k〉 to a final state wavevector state

|k′〉. This momentum transfer is denoted h̄Q, where Q is the scattering vector

shown in Figure 2.1,

Q = k− k′ (2.1)

The wavevector k indicates the direction of propagation of the wave associated

with a neutron and its magnitude, the wavenumber is given by,

|k| = k =
2π

λ
(2.2)

If the energy of the incident neutron, E, remains unchanged during its interaction

with the sample, such that k = k′, the scattering process is known as elastic.

Upon inspection of the elastic scattering process depicted in Figure 2.1, it can be

shown that the magnitude of the scattering vector Q is given by,

|Q| = Q =
4πsinθ

λ
(2.3)

If the incident neutron, with initial energy E, loses or gains energy by an energy

transfer with the sample to give a final energy, E ′, then the scattering is inelastic

and the energy transfer is given by,

h̄ω = E − E ′ (2.4)

In a typical neutron scattering experiment, one would like to observe the

proportion of incident neutrons that emerge from a scattering system with a given

energy and momentum transfer. This information is contained within a four-

dimensional function or scattering law commonly referred to as S(Q, ω). When

the scattering process is elastic and ω = 0, this collapses to a three-dimensional
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(a) Elastic scattering.

(b) Inelastic scattering.

Figure 2.1 The scattering vector Q for (a) an elastic scattering experiment in
which |k| = |k′| and (b) an inelastic scattering experiment in which
|k|�=|k′| due to an energy transfer between the incident neutron and
the sample.

scattering law known as S(Q) [80]. Figure 2.2 shows the general geometry of

such a neutron scattering experiment. The quantity that is measured during a
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neutron scattering experiment is the partial differential cross section [78],

d2σ
dΩdE′ = the number of neutrons of energy E scattered into a solid angle dΩ

with a final energy between E ′ and E ′ + dE ′/ΦdΩdE ′

(2.5)

where Φ is the flux of the incident neutrons. If only the elastic scattering is of

interest and the final energy of the scattered neutron is not analysed, then the

differential cross section is observed [78],

dσ

dΩ
= the number of neutrons scattered into a solid angle dΩ/ΦdΩ (2.6)

The total scattering cross section, σtot, gives the number of neutrons scattered in

all directions per second.

Figure 2.2 The geometry of a scattering experiment in which incident neutrons
with wave vector k are scattered into a solid angle dΩ with a final
wave vector k′.
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2.2.1 Nuclear Neutron Scattering

When a neutron interacts with a single fixed nucleus, the nucleus acts as a

point scatterer i.e. the length scale of the nuclear forces that the neutron

experiences (∼ 10−15 m) is several orders of magnitude smaller than incident

neutron wavelength (∼ 10−10 m). As a result, the scattered neutron takes the

form of a spherically symmetrical wave [80]. If one takes the position of the

scattering nucleus to be at the origin and the direction of the incident neutron

wave vector k aligned along the z-axis, then the wavefunction of the incoming

neutron plane wave is given by,

ψinc = exp(ikz) (2.7)

The wavefunction of the spherically symmetric scattered wave, shown in Figure

2.3, at a distance r from the nucleus is denoted,

ψsc = − b

r
exp(ikr) (2.8)

where b is known as the neutron scattering length. The scattering interaction

between the neutron and the nucleus is a resonance phenomenon that results in

the formation of a compound nucleus of the neutron and scattering nucleus. The

behaviour of this compound state and, hence, the value of b depends on particular

details of a specific nuclide and on the spin state of the compound nucleus, which

can take values of I + 1
2
or I − 1

2
for a system of non-zero nuclear spin, I �=0.

I = 0 nuclei only have one value of b and the spin state on the compound nucleus

is 1
2
. The total scattering cross section, σtot, is then dependent on the nuclear

scattering length according to [80],

σtot = 4πb2 (2.9)

A typical scattering system, however, will contain a very large number of nuclei

and for each element present within the system, the scattering length b can

vary from nucleus to nucleus due to the formation of different neutron-nucleus

spin states or the presence of difference nuclear isotopes. This gives rise to

the incoherent scattering of neutrons (spin incoherent and isotope incoherent
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Figure 2.3 An incident beam of neutron plane waves are scattered isotropically
and elastically as spherical waves by their interaction with a single
fixed nucleus.

scattering, respectively.) The coherent scattering cross section,

σcoh = 4π(b̄)2 (2.10)

reflects the scattering from the mean scattering length of the system, b̄, which

gives rise to interference effects between the scattered neutron wave functions, and

hence, diffraction if the scattering system is a crystalline solid. The incoherent

scattering cross section,

σinc = 4π(b̄2 − (b̄)2) (2.11)

then reflects the random deviation of the scattering lengths from their mean value

values. This incoherent scattering does not give rise to interference effects but

rather leads to diffuse scattering of neutrons that adds to the background of a

diffraction profile.

In order to obtain an expression for the nuclear differential scattering cross section

that one measures during an elastic neutron scattering experiment, it is necessary

to make use of a standard result in quantum mechanics, Fermi’s Golden Rule [78],

[79]. By considering the definition of the differential scattering cross section given
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in Equation 2.6, one can write,

dσ

dΩ
=

1

Φ

1

dΩ

∑
k′

Wk→k′ (2.12)

whereWk→k′ is the number of transitions per second from the incident wavevector

state |k〉 to the final wavevector state |k′〉. This determines the probability of

the incident neutron undergoing a transition from its initial plane wave state to

its final wave state, which according to Fermi’s golden rule, is formally given by

[78],

Wk→k′ =
2π

h̄
|〈k′|V (Q)|k〉|2ρk′ (2.13)

where V (Q) is the interaction potential through which the transition from the

|k〉 state to the |k′〉 state occurs and ρk′ is the density of final |k′〉 states. In

scattering theory, Fermi’s golden rule is equivalent to the Born approximation,

which implicitly assumes that the scattering interaction between the neutron and

the nucleus is weak and that the scattered neutron has a negligible effect on the

incident beam [79], [80]. By evaluating the density of final states ρk′ [78], one

arrives at the following expression for the differential cross section,

dσ

dΩ
=

(
m

2πh̄2

)2

|〈k′|V |k〉|2 (2.14)

where m is the mass of the neutron. If the scattering potential of the neutron

for the jth nucleus with position vector Rj in the scattering system has the form

Vj(r−Rj), then the scattering potential for the entire scattering system is given

by,

V =
∑
j

Vj(r−Rj) =
∑
j

Vj(xj) (2.15)

where r is the neutron coordinate and xj = r−Rj.

46



Evaluating the matrix element in Equation 2.14 gives,

〈k′|V |k〉 =
∑
j

Vj(Q)exp(iQ·Rj) (2.16)

where,

Vj(Q) =

∫
Vj(xj)exp(iQ·xj)dxj (2.17)

is the Fourier transform of the scattering potential for the jth nucleus. In order

to evaluate the expression given in Equation 2.17 further, it is necessary to find

a function that describes this scattering potential. Since the nuclear interaction

between the neutron and the nuclei within the scattering system is known to

be very short-ranged, the potential can take the form of a three-dimensional

δ-function [81],

V (xj) =
2πh̄2

m
bδ(xj) (2.18)

which as a function of the scattering vector Q is given by,

Vj(Q) =

∫
2πh̄2

m
δ(xj)exp(iQ·xj)dxj =

2πh̄2

m
bj (2.19)

Inserting this into Equation 2.14, along with the evaluated matrix element given

in Equation 2.16, one obtains a general expression for the differential cross section

for nuclear elastic neutron scattering,

dσ

dΩ
= |
∑
j

exp(iQ·Rj)|2 (2.20)

For inelastic neutron scattering, one must consider the energy transfer, h̄ω,

between the neutron and the scattering system, which undergoes a transition

from an initial state |λ〉 to its final state |λ′〉. The energy distribution of the

scattered neutrons takes the form of delta function, so the inelastic scattering
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cross section can be written as [78],

d2σ

dΩdE ′ =
k′

k

(
m

2πh̄

)2

|〈k′λ′|V |kλ〉|2δ(Eλ − Eλ′ + h̄ω) (2.21)

By summing over all final |λ′〉 states and averaging with respect to |λ〉 one obtains
the general expression for the partial differential cross section, which becomes [78],

d2σ

dΩdE ′ =
k′

k

1

2πh̄

∑
jj′

∫ ∞

−∞
〈exp(−iQ·Rj(0))exp(iQ·Rj(t))〉exp(−iωt)dt (2.22)

Nuclear Scattering by Crystalline Materials

A crystalline material is a highly ordered phase of matter with a periodic structure

that gives rise to the diffraction of radiation, such as neutrons and X-rays. A

crystal can be described in terms of a lattice, a periodic array of points, onto

which a chemical entity, such as an atom or ion can be superimposed [80], [82].

These lattice points are displaced from the origin by the lattice vector,

l = n1a+ n2b+ n2c (2.23)

where n1, n2 and n3 are any set of integers such that any point in the lattice

can be translated to an equivalent one by integer multiples of a, b and c. The

crystal lattice, therefore, reflects the underlying periodicity of a structure and

the translational symmetry that is a special property of crystalline solids. The

vectors a, b and c form a parallelepiped that defines the unit cell of the crystal

structure shown in Figure 2.4. This is smallest repeat unit in a crystalline solid,

which is extended in all directions to give a three-dimensional periodic structure.

The magnitudes of the unit cell vectors, (a, b, c), and the angles between them,

(α, β, γ) are known as the lattice constants.

The differential cross section for elastic scattering by a crystal of n nuclei is given
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Figure 2.4 A unit cell defined by three vectors a, b and c which is displaced from
the origin by the lattice vector l. The position of a particular nucleus
contained within this unit cell is given in terms of its fractional
coordinates (xd, yd, zd) by the position vector d.

by,

dσ

dΩ
= |
∑
n

bnexp(iQ·rn)|2 (2.24)

where the position vector of a particular nucleus, rn, is given by,

rn = l+ d (2.25)

The differential cross section can thus be re-written as,

dσ

dΩ
= |
∑
l

exp(iQ·l)
∑
d

bdexp(iQ·d)|2 (2.26)

where l and d are the vectors shown in Figure 2.4. The summation over l, the

lattice vector, will cancel out to zero unless all of the terms in the sum are equal

such that,

exp(iQ·l) = 1 (2.27)

for all l. This gives rise to non-zero scattering at well-defined points in Q. This
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situation is satisfied when the scattering vector, Q, is equal to the reciprocal

lattice, τ , given by [83],

τ = ha∗ + kb∗ + lc∗ (2.28)

where,

a∗ =
2πb×c

a·(b×c)
(2.29)

b∗ =
2πc×a

a·(b×c)
(2.30)

and

c∗ =
2πa×b

a·(b×c)
(2.31)

are the reciprocal lattice vectors. An example of the relationship between a real

space lattice and its reciprocal lattice is shown in Figure 2.5. The indices h, k and

l are known as the Miller indices, which describe how parallel planes of lattice

points cut the axes of a unit cell at fractional parts, given by the reciprocals of

their intercepts with the a, b and c unit cell axes, respectively (see Figure 2.5).

The spacing between these parallel planes is denoted dhkl. The reciprocal lattice

has two important properties. Firstly, its direction is normal to a particular hkl

plane and secondly, its magnitude is given by [82],

|τ hkl| = 2π

dhkl
(2.32)

The condition for strong elastic scattering of neutrons from a crystalline solid is

known as the Laue condition, from which it is possible to derive the fundamental

law of scattering theory,

|Q| = |τ hkl| (2.33)
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(a) Real space lattice. (b) Reciprocal lattice.

(c) 100 plane. (d) 110 plane. (e) 111 plane.

Figure 2.5 The (a) two-dimensional crystal lattice with lattice vectors a and
b has a (b) reciprocal lattice with reciprocal lattice vectors a∗ and
b∗ such that a⊥b∗ and b⊥a∗ and |a|/|b| = |b∗|/|a∗|. The Miller
indices describe parallel planes of atoms within a crystal structure
where h, k and l denote the reciprocals of the intercepts of the
particular plane with unit cell axes. Shown here are the (c) 100,
(d) 110 and (e) 111 Miller planes for a primitive cubic unit cell.

Q = τhkl (2.34)

4πsinθhkl
λ

=
2π

dhkl
(2.35)

Bragg’s law,

λ = 2dhklsinθhkl (2.36)

The sharp points of scattering intensity that arise when the Laue condition is

met are known as Bragg peaks and the pattern of Bragg peaks observed in a

diffraction pattern is characteristic of parallel hkl planes of atoms with different
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d-spacings and orientations within a sample, see Figure 2.6.

Figure 2.6 Bragg’s law can also be derived by considering the scattering
from parallel Miller planes of d-spacing, dhkl. If the path
difference between neutron scattered from nuclei in neighbouring
planes, 2dhklsinθhkl, is an integer multiple of the incident neutron
wavelength, λ, then constructive interference of the scattered neutron
waves results and a Bragg peak corresponding to that particular
d-spacing and scattering angle θhkl is observed in the diffraction
pattern.

The position vector d given in Equation 2.25 for a particular nucleus within the

unit cell (see Figure 2.4) can be written in terms of its fractional coordinates,

(xd,yd,zd),

d = xda+ ydb+ zdc (2.37)

Under the Laue condition, the differential cross section then becomes,

dσ

dΩ
= N2|

∑
d

bdexp(i(ha
∗ + kb∗ + lc∗)·(xda+ ydb+ zdc))|2 = N2|Fhkl|2 (2.38)

where N is the number of unit cells within the crystal and Fhkl is known as the

structure factor,

Fhkl =
∑
d

bdexp(2πi(hxd + kyd + lzd)) (2.39)
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The structure factor, Fhkl, is related to the intensity of a particular Bragg

reflection, Ihkl, by,

Ihkl∝F 2
hkl (2.40)

such that the measurement of the intensity of a Bragg peak only yields the

magnitude of its structure factor and not its sign. This is known as the

crystallographic phase problem [80].

Powder Averaging and Rietveld Refinement

A powder or polycrystalline sample contains an infinite number of randomly

orientated crystallites. Neutron scattering experiments on powder samples are

important given that it is not always possible to prepare a single crystal of

a material suitable for neutron diffraction. The lack of definite orientation of

the crystallites in a powder means that the resulting differential cross section is

spherically symmetric [80]. As a consequence, some of the directional information

contained in the diffraction pattern is lost as it no longer depends upon the

azimuthal angle φ, shown in Figure 2.2. This angular invariance gives rise to

cones of diffraction, known as Debye-Scherrer cones shown in Figure 2.7, such

that rings of equal scattering intensity are observed perpendicular to the incident

beam. From this, one can obtain a two-dimensional powder diffraction pattern,

which shows the intensity of the Bragg peaks typically as a function of 2θ or

d-spacing.

The peaks in a powder diffraction pattern occur when the spacing between parallel

planes of atoms and the diffraction angle satisfy Bragg’s law. Since this condition

may be satisfied by more than one set of Miller indices simultaneously, the area

under one particular Bragg peak may be composed of intensities from more than

one hkl reflection. This is known as the peak overlap problem. The Rietveld

method is a procedure that addresses this problem of peak overlap in powder

diffraction data [84]. It treats each data point in a diffraction pattern as an

individually observed intensity and uses knowledge of instrument parameters,

such as peak shape and width, and sample parameters, such as position and

intensity of reflections, to model a diffraction profile which is refined against

the experimental data by least squares methods in order to achieve a best fit.

The Rietveld method, therefore, allows for structural information to be extracted
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Figure 2.7 A Debye-Scherrer cone that gives a ring of scattering intensity from
a powder sample.

from a powder diffraction pattern with peak overlap. In order to carry out a

Rietveld analysis of powder diffraction data a reasonable starting structural model

is required along with certain instrumental details specific to the diffractometer

on which the data were collected. Parameters within the model are then refined

in order to minimise the sum of the differences between the model data points,

y(calc), and the observed data points, y(obs) in a least-squares process over all i

steps within the diffraction pattern given by,

D =
∑

wi(yi(obs)− yi(calc))
2 (2.41)

where wi is the inverse of the total observed intensity at the ith step. One aims

to obtain a stable refinement of the model to the data that converges to a global

minimum. A criterion often used to determine the goodness of a fit is the weighted

R-factor,

Rwp =

(
D∑

wi(yi(obs))2

) 1
2

(2.42)

The χ2-factor is also commonly quoted as an indication of how well the fitted
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model accounts for the data, which is given by,

χ2 =

(
Rwp

Re

)2

(2.43)

where Re is known as the expected R-factor, which is dependent upon the

the counting statistics for the data in comparison to the model errors. For a

statistically perfect fit, χ2 = 1.

The model parameters that are typically refined include structural parameters

such as atomic coordinates, site occupancies and cell constants, thermal param-

eters, background coefficients and profile parameters including peak shape and

sample displacement or zero point. Within this work, Rietveld refinements were

performed using the GSAS program [85].

2.2.2 Magnetic Neutron Scattering

In addition to nuclear scattering, the neutron is also deflected through the

interaction between its dipole moment and that of an unpaired electron in a

magnetic sample. The scattering potential for magnetic scattering is far more

complicated than for the nuclear case, which is a result of the long-range nature

of the magnetic forces that are responsible for the scattering process. Magnetic

scattering is ion specific and Q dependent, which is to say that it is subject

to a form factor F (Q) such that magnetic scattering intensity falls off with

increasingQ. Unlike nuclear scattering, magnetic neutron scattering is also highly

anisotropic and a fundamental rule of magnetic scattering is that the neutron only

experiences the component of the sample magnetisation that is perpendicular to

the scattering vector [78], [86], denoted M⊥ and shown in Figure 2.8.

In order to obtain the scattering cross sections for the magnetic interaction

between a neutron and a scattering system, it is necessary to consider the

potential felt by the dipole moment of the neutron and the magnetic field

generated by the unpaired electrons in a magnetic material [78], [87]. The

magnetic dipole moment of the neutron is given by,

μn = −γnμnσ (2.44)
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Figure 2.8 The neutron only sees the component of the sample magnetisation,
M, that is perpendicular to the scattering vector, M⊥.

where γn is the nuclear gyromagnetic ratio, μn is the nuclear magneton eh̄/2mp

and σ is the Pauli spin operator for the neutron [3]. The magnetic dipole moment

corresponding to the unpaired electron in the scattering system is then,

μe = −2μBs (2.45)

where μB is the Bohr magneton eh̄/2me and s is the spin of the unpaired electron.

The total magnetic field generated by an unpaired electron of momentum p at

a distance R from the electron consists of contributions from both spin (S)and

orbital (L) moments,

B = BS +BL =
μ0

4π

(
�×

(
μe×R̂

R2

)
− 2μB

h̄

p×R̂

R2

)
(2.46)

The potential felt by the neutron in this magnetic field is then given by,

Vm = −μn·B = −μ0

4π
γnμn2μBσ·

(
�×

(
μe×R̂

R2

)
+

1

h̄

p×R̂

R2

)
(2.47)

which can be inserted into the partial differential cross section, where one must

now also consider the spin state transition of the neutron during the scattering

interaction, |S〉→|S′〉 in addition to the wave vector state of the neutron and state
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of the scattering system that were necessary in the case of nuclear scattering,

d2σ

dΩdE ′ =
k′

k

(
m

2πh̄2

)2

|〈k′S′λ′|Vm|kSλ〉|2δ(Eλ − Eλ′ + h̄ω) (2.48)

Evaluating the spatial part of the matrix element, 〈k′|Vm|k〉, for the ith electron

with spin si, position vector ri and momentum pi yields,

〈k′|V i
m|k〉 = 4πexp(iQ·ri)(Q̂×(si×Q̂) +

i

h̄Q
(pi×Q̂)) (2.49)

Summing over all unpaired electrons one obtains,

∑
i

〈k′|V i
m|k〉 = 4πM⊥(Q) = Q̂×(M(Q)×Q̂) (2.50)

where M⊥(Q) is the component of the Fourier transform of the sample

magnetisation that is perpendicular to the scattering vector,

M(Q) =

∫
M(r)exp(iQ·r)dr (2.51)

Therefore, the incident neutron only experiences the component of the sample

magnetisation that is perpendicular to the scattering vector. Assuming for now

that the incident neutron beam is unpolarised, such that there are an equal

number of spin-up |↑〉 and spin-down |↓〉 neutrons and summing and averaging

over the scattering system states λ and λ′ gives

d2σ

dΩdE ′ = (γnr0)
2k

′

k

∑
λλ′

pλ〈λ|M∗
⊥|λ′〉〈λ′|M⊥|λ〉δ(Eλ − Eλ′ + h̄ω) (2.52)

where,

r0 =
μ0

4π

e2

me

(2.53)

is the classical radius of the electron (2.818×10−15 m).
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Magnetic Scattering by Crystalline Materials

The position vector Rjd denotes the position of a nucleus within a crystalline

system where the subscript j gives the unit cell in which the nucleus sits and d

its position within that unit cell. If re is the position of the eth unpaired electron

of spin se relative to its nucleus then [86],

ri = Rjd + re (2.54)

From the definition of M(Q) given in Equation 2.51, one obtains,

M(Q) =
∑
i

exp(iQ·ri)si =
∑
jd

exp(Q·Rjd)
∑
e

exp(iQ·re)se (2.55)

such that the matrix element 〈λ′|M⊥|λ〉 becomes,

〈λ′|M⊥|λ〉 = 〈λ′|
∑
jd

exp(Q·Rjd)
∑
e

exp(iQ·re)se|λ〉 = F (Q)〈λ′|exp(iQ·Rjd)Sjd|λ〉

(2.56)

Here, F (Q), is known as the magnetic form factor and exp(iQ·Rjd)Sjd the

magnetic structure factor, which contains the spin orientation vectors Sjd in the

unit cell. The magnetic form factor is given formally by,

F (Q) =

∫
ρ(r)exp(iQ·r) (2.57)

where ρ(r) is the normalised density of unpaired electrons. It is the spatially

diffuse nature of the unpaired electrons in the outer most electronic orbitals that

gives rises to the Q-dependent scattering. It is important to note that X-ray

scattering is also subject to a form factor since X-rays are scattered by their

interaction with the electron density of an atom. There are several important

differences, however, between the magnetic and X-ray form factors. For instance,

the X-ray atomic form factor has a magnitude that increases proportionally

with atomic number, where as the neutron magnetic form factor is specific to

a particular ion and oxidation state and does not increase monotonically with

atomic number. Furthermore, the drop-off in scattering intensity with increasing
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Q, shown in Figure 2.9, is more significant in the case of magnetic neutron

scattering since only the outermost valence orbitals that are most extended in

space that contain an unpaired electron are involved in the scattering interaction,

[80]. An analytical approximation for the magnetic form factor can be obtained

from the following expression,

F (Q) = C0〈j0(Q/4π)〉+ C2〈j2(Q/4π)〉+ C4〈j4(Q/4π)〉+ · · · (2.58)

where the constants C0, C2, C4 and functions j0, j2, j4 etc. are tabulated [88].

The 〈j0〉 term gives the spin only contribution to the magnetic form factor, where

as the higher order terms account for the orbital contribution.

Figure 2.9 The Q dependence of X-ray and magnetic and nuclear neutron
scattering. X-ray and magnetic neutron scattering are subject to a
form factor F (Q) such that scattering intensity drops off at higher
scattering angles.

The magnetic differential cross section of a high temperature paramagnetic state

of N magnetic ions of spin S is given by [86],

dσ

dΩ
=

2

3
(γnr0)

2N(
1

2
gF (Q))2exp(−2W )S(S + 1) (2.59)

where g is the Landé g-factor and W is the Debye-Weller factor which takes

into account thermal displacements of the nuclei in the scattering system. This

paramagnetic scattering (in the absence of an applied magnetic field) is entirely
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diffuse due to the disordered nature of the paramagnetic state discussed in

Chapter 1. Magnetic diffuse scattering is discussed in more detail in this Chapter

in � 2.2.4. As a magnetic crystalline solid is cooled it may undergo a magnetic

phase transition to a long-range magnetically ordered state giving rise to magnetic

Bragg scattering or diffraction. The differential cross section in this case is given

by [86],

dσ

dΩ
= (γnr0)

2N(
1

2
gF (Q))2exp(−2W )

∑
αβ

(δαβ − Q̂αQ̂β)×
∑
j

exp(iQ·Rj)〈Sα
0 〉〈Qβ

j 〉

(2.60)

where the sum over cartesian coordintates αβ is the orientation factor for spin

vectors perpendicular to the scattering vector and the sum over j is the structure

factor S(Q). In the case of a ferromagnetic state, in which all spins align parallel

to one another, the magnetic unit cell coincides with the crystal unit cell such

that one observes an increase in intensity of Bragg peaks upon cooling the system

below its critical Curie temperature, TC . In an antiferromagnetic state, in which

neighbouring spins align anti-parallel with respect to each other, the magnetic

unit cell is doubled with respect to the crystal unit cell and so additional peaks in

between the structural Bragg peaks will appear below the Néel temperature, TN .

The archetypal example of this is manganese oxide MnO [89], shown in Figure

2.10, for which magnetic neutron scattering played a vital role in the experimental

proof of antiferromagnetism that was first proposed by Néel in 1936 [50], [90].

Inelastic magnetic neutron scattering is somewhat beyond the scope of the work

currently within this Thesis. However, it will form an extremely important part

of the future work of the projects discussed with the results chapters and in

general, inelastic magnetic neutron scattering plays a major role in the study

and understanding of the nature of magnetic ground states in highly frustrated

spin systems. Inelastic magnetic neutron scattering depends upon temporal and

spatial correlations between spins and so can measure the energies of magnetic

fluctuations in a system [91]. For completeness, the full inelastic magnetic partial

differential cross section is given by,

d2σ

dΩdE ′ =
k′

k
(γnr0)

2(F (Q))2
1

2πh̄

∑
αβ

(δαβ −QαQβ)S
αβ(Q, ω) (2.61)
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(a) MnO crystal unit
cell.

(b) MnO magnetic unit cell.

(c) Powder neutron diffraction data of MnO, taken from
reference [89].

Figure 2.10 The low temperature antiferromagnetic structure of MnO shown in
(b) results in a doubling of the crystal unit cell in (a), which was
confirmed by the seminal neutron diffraction work of Smart and
Shull (c) that shows the appearance of additional magnetic Bragg
peaks below the Néel temperature.
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where Sαβ(Q, ω) is the dynamical structure factor.

2.2.3 The Production of Neutrons for Neutron Scattering

Experiments

There are two principal methods for the production of neutrons for scattering

experiments, nuclear fission and spallation [66]. The Institut Laue-Langevin, is a

high flux 60 MW nuclear reactor that produces a continuous source of neutrons by

fission of enriched 235U fuel. The neutrons that emerge from the nuclear reactor

have a wide distribution of energies and so have to pass through a moderator

in order to achieve the required energy and wavelength, see Table 2.1. D2B

is a high resolution diffractometer at the Institut Laue Langevin that has been

used for the study of materials in this Thesis by powder neutron diffraction. A

schematic diagram of the instrument is shown in Figure 2.11 [92]. D2B uses

a germanium crystal monochromator to select out a single neutron wavelength

from the polychromatic beam of thermal neutrons from a D2O moderator, which

is incident upon the sample. The scattered neutrons are detected by a series of

128 detector banks that cover a 2θ range of 5 ◦ - 165 ◦ as they move around

the sample such that counts of scattered neutrons are averaged over more than

one bank. D2B uses 3He tube detectors. Since the neutron is charge neutral,

a charged particle has to be produced within the detector in order to count the

scattered neutrons indirectly [80], and in the case of 3He detectors this is the

proton, 1H1,

3He2 +
1n0→3H1 +

1H1 (2.62)

Upon integration of intensities of the powder diffraction rings measured on the

detectors, shown in Figure 2.12, one obtains a powder diffraction pattern for a

sample as a function of 2θ. This is, therefore, an example of constant wavelength

or angle dispersive diffraction.

The ISIS neutron facility of the Rutherford Appleton Laboratory is an example of

a spallation or pulsed neutron source. Here, pulses of neutrons are produced when

a high energy proton beam collides with a heavy-metal tungsten target which

spallates neutrons and other high energy particles. After moderation, the white

beam of neutrons is incident upon a sample, which after scattering are analysed
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Table 2.1 Neutron moderator characteristics at the Institut Laue-Langevin and
ISIS neutron facilities.

Moderator T / K Neutron E / meV Neutron λ / Å ILL ISIS

Cold 1− 120 0.1− 10 30− 3 D2 D2, CD4

Thermal 6− 1000 5− 100 4− 1 D2O D2O

Hot 1000− 6000 100− 500 1− 0.4 Graphite -

Figure 2.11 Schematic diagram of the instrumental layout the high resolution
diffractometer D2B at the Institut Laue Langevin.

by fixed detector banks as a function of their time-of-flight, and hence wavelength.

Faster neutrons, with a shorter wavelength will arrive at the detector banks first

while the slower neutrons with a longer wavelength and time-of-flight arrive at

a later time. The high resolution powder diffractometer (HRPD) is an example

of an instrument at ISIS on which time-of-flight or energy dispersive neutron

63



Figure 2.12 Neutron powder diffraction rings measured on D2B. Integration
of the intensities over the centre of the detector array (white-
dotted lines) gives a high resolution powder diffraction pattern as
a function of 2θ.

diffraction has been performed in this Thesis. HRPD has three fixed detector

banks, a high resolution backscattering bank (2θ = 168.3◦), 90 ◦ detector banks

on either side of the sample (2θ = 89.6 ◦) and a small angle bank (2θ = 30.0 ◦)

as shown in Figure 2.13, which cover regions of d-spacings of 0.6 - 2.6 Å, 0.9 -

3.8 Å and 2.0 - 10.0 Å, respectively. The particularly special feature of HRPD

is its extremely long flight path; the instrument is situated 100 m away from the

neutron target giving it one of the best Δd/d resolutions in the world.

2.2.4 Neutron Polarisation Analysis and the Diffuse

Scattering Spectrometer, D7

The underlying diffuse scattering found beneath the nuclear or magnetic Bragg

peaks in a neutron diffraction pattern can often contain interesting and important

information about structural and magnetic disorder and short range correlations

in a system. This is especially the case in magnetically frustrated spin systems

in which one does not expect to observe long range magnetic order upon cooling

but rather diffuse, short range spin-spin interactions in a disordered magnetic

ground state [93]. In order to unambiguously extract this kind of information

and separate the different components of the total neutron scattering from a
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Figure 2.13 The detector bank array at HRPD, with the backscattering, 90 ◦

and small angle banks fixed at 2θ = 168.4 ◦, 89.6 ◦ and 30.0 ◦,
respectively. The incoming neutrons travel a flight path of 100 m
from the moderator to the sample.

sample one must apply neutron polarisation analysis techniques. The diffuse

scattering spectrometer D7 at the Institut Laue-Langevin is the ideal instrument

to perform such an experiment as it employs xyz polarisation analysis to separate

out the nuclear, magnetic and nuclear spin incoherent scattering cross sections

that contribute to total scattering over all scattering angles [94].

Neutron Polarisation

The neutron is a charge neutral particle with spin s = 1
2

and an angular

momentum of ±1
2
h̄. If the spin vector of an individual neutron is denoted sn

then the polarisation of a beam of neutrons is given by [95],

P = 〈sn〉/1
2
= 2〈sn〉 (2.63)

i.e. the ensemble average of all neutron spin vectors normalised by |sn|. In order

to study the spin state transition of a neutron during the scattering process with

a sample, one needs to produce a beam of polarised neutrons with a definite spin

state. By applying a magnetic field on a scattering experiment, one creates a

quantisation axis (usually defined along the z-axis), along which the neutron spin
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can align parallel to give a spin-up state |↑〉 = +1
2
h̄ or anti-parallel to give a spin-

down state |↓〉 = −1
2
h̄. A scattering experiment that has a single quantisation

axis is known as a longitudinal polarisation analysis experiment. It is possible to

express the neutron beam polarisation in such an experiment as a scalar,

P =
N+ −N−
N+ +N−

(2.64)

where N+ and N− and spin-up and spin-down neutron spin states, respectively.

A perfectly polarised neutron beam will, therefore, have P = ±1. A measurable

quantity in a longitudinal neutron polarisation analysis experiment is the flipping

ratio, F = N+

N−
, such that the beam polarisation can also be defined in terms of

F ,

P =
F − 1

F + 1
(2.65)

The equations for the spin-dependent scattering amplitudes are given by the

Moon-Riste-Koehler equations [96]. The scattering amplitudes are a convenient

way of describing how the incident neutron goes from an initial wavevector and

spin state |kS〉 to a final state |k′S′〉 via an interaction potential, V (Q) during

the scattering process [79],

U = 〈k′S′|V (Q)|kS〉 (2.66)

For nuclear spin independent (I = 0), magnetic and nuclear spin dependent (I �=0)

scattering processes, these scattering amplitudes can be derived from the nuclear

and magnetic scattering potentials, to give the Moon-Riste-Koehler equations

[96]:

U++ = |↑〉→|↑〉 = bcoh − γnr0
2μB

M⊥z +BIz (2.67)

U−− = |↓〉→|↓〉 = bcoh +
γnr0
2μB

M⊥z − BIz (2.68)

U+− = |↑〉→|↓〉 = −γnr0
2μB

(M⊥x − iM⊥y) + B(Ix − iIy) (2.69)
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U−+ = |↓〉→|↑〉 = −γnr0
2μB

(M⊥x + iM⊥y) + B(Ix + iIy) (2.70)

where bcoh is the coherent scattering length and B = (b+ + b−)/(2I + 1) is the

nuclear spin dependent scattering length from spin-singlet (b−) and spin-triplet

(b+) neutron-nucleus compound states. The U++ and U−− scattering amplitudes

do not result in a change in the spin state of the neutron and are, therefore,

referred to as non-spin flip (NSF) amplitudes. U+− and U−+ involve a change in

the spin state of the neutron as a result of the scattering process and so are known

as the spin flip (SF) amplitudes. It is important to note at this point that, with

the neutron polarisation aligned along the z-axis in a longitudinal polarisation

analysis experiment, the NSF scattering will be sensitive to components of the

sample magnetisation that are parallel to the neutron polarisation and the SF

scattering will be sensitive to those that are perpendicular to the polarisation

given that neutrons only ever see components of the magnetisation perpendicular

to the scattering vector.

The diffuse scattering of neutrons can arise from incoherent nuclear scattering,

discussed in � 2.2.1, or incoherent magnetic scattering from a paramagnetic

or disordered magnetic state. By including the contributions of nuclear

isotope incoherent and spin incoherent scattering the spin-dependent scattering

amplitudes in the Moon-Riste-Koehler equations become [96],

U++ = |↑〉→|↑〉 = bcoh − γnr0
2μB

M⊥z + bii +
1

3
bsi (2.71)

U−− = |↓〉→|↓〉 = bcoh +
γnr0
2μB

M⊥z + bii +
1

3
bsi (2.72)

U+− = |↑〉→|↓〉 = −γnr0
2μB

(M⊥x − iM⊥y) +
2

3
bsi (2.73)

U−+ = |↓〉→|↑〉 = −γnr0
2μB

(M⊥x + iM⊥y) +
2

3
bsi (2.74)

where bii =
√

〈(b̄)2〉 − (b̄)2 and bsi =
√

B2I(I + 1) are the isotope and spin

incoherent scattering lengths, respectively. At this point, it is possible to see how

in the absence of magnetic scattering one can separate the nuclear spin incoherent

scattering from the nuclear coherent and isotope incoherent by subtracting half of
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the SF scattering from the NSF. This could be useful, for example, in the study

of hydrogenous organic substances where one may want to separate out the large

incoherent scattering of 1H.

xyz Polarisation Analysis

In order to fully separate nuclear coherent, nuclear spin incoherent and magnetic

scattering, however, xyz polarisation analysis is required [94]. This makes use

of a multi-detector in the xy-plane of the scattering experiment, which is able

to observe |↑〉→|↑〉 NSF and |↓〉→|↑〉 SF transitions as it detects and analyses

neutrons with a final spin-up spin state. The magnetic cross sections for these

transitions, obtained by taking the square of the magnetic part of U++ and U−+,

respectively,

(
dσ

dΩ

)
NSF

=

(
γnr0
2μB

)2

〈M∗
⊥zM⊥z〉 (2.75)

and,

(
dσ

dΩ

)
SF

=

(
γnr0
2μB

)2

〈M∗
⊥xM⊥x +M∗

⊥yM⊥y〉 (2.76)

For a fully disordered paramagnetic state, these expressions can be written in the

form,

(
dσ

dΩ

)x,y,z

NSF

=
1

3

(
γnr0
2

2

g2F 2(Q̂)J(J + 1)[1− (Q̂·P̂)]2

)
(2.77)

(
dσ

dΩ

)x,y,z

SF

=
1

3

(
γnr0
2

2

g2F 2(Q̂)J(J + 1)[1 + (Q̂·P̂)]2

)
(2.78)

and by setting the neutron polarisation direction (now x, y or z) along the unit

scattering vector, such that (Q̂·P̂) = 1, all of the magnetic scattering collapses

into the SF cross section. With the multi-detector in the xy-plane, one measures

a unit scattering vector Q̂ that can be defined by the angle α that is makes with
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the x-axis, known as the Schärpf angle [97],

Q̂ =

⎛
⎜⎝
cosα

sinα

0

⎞
⎟⎠ (2.79)

Substituting this scattering vector into the the cross sections, including nuclear

coherent, isotope incoherent and spin incoherent terms, one obtains six cross

sections, one SF and one NSF for the polarisation aligned along each of the xyz

directions,

(
dσ

dΩ

)x

NSF

=
1

2
sin2α

(
dσ

dΩ

)
mag

+
1

3

(
dσ

dΩ

)
si

+

(
dσ

dΩ

)
nuc + ii

(2.80)

(
dσ

dΩ

)x

SF

=
1

2
(cos2α + 1)

(
dσ

dΩ

)
mag

+
2

3

(
dσ

dΩ

)
si

(2.81)

(
dσ

dΩ

)y

NSF

=
1

2
cos2α

(
dσ

dΩ

)
mag

+
1

3

(
dσ

dΩ

)
si

+

(
dσ

dΩ

)
nuc + ii

(2.82)

(
dσ

dΩ

)y

SF

=
1

2
(sin2α + 1)

(
dσ

dΩ

)
mag

+
2

3

(
dσ

dΩ

)
si

(2.83)

(
dσ

dΩ

)
NSF

z

=
1

2

(
dσ

dΩ

)
mag

+
1

3

(
dσ

dΩ

)
si

+

(
dσ

dΩ

)
nuc + ii

(2.84)

(
dσ

dΩ

)z

SF

=
1

2

(
dσ

dΩ

)
mag

+
2

3

(
dσ

dΩ

)
si

(2.85)

These equations are collectively known as the Schärpf equations [97] and they

form the basis of the separation of total scattering components by xyz polarisation

analysis. The required cross sections of interest can be extracted by combining the

Schärpf equations in the necessary manner. For instance, the magnetic scattering
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cross section can obtained independently for either the NSF or SF channels,

(
dσ

dΩ

)
mag

= 4

(
dσ

dΩ

)z

NSF

− 2

(
dσ

dΩ

)x

NSF

− 2

(
dσ

dΩ

)y

NSF

(2.86)

or,

(
dσ

dΩ

)
mag

= 2

(
dσ

dΩ

)x

SF

+ 2

(
dσ

dΩ

)y

SF

− 4

(
dσ

dΩ

)z

SF

(2.87)

The Diffuse Scattering Spectrometer D7

D7 is a high flux, cold neutron multi-detector spectrometer that is specifically

designed to perform xyz polarisation analysis for the study of diffuse scattering

[94]. A schematic diagram of the instrument layout taken from reference [94]

is shown in Figure 2.14. The diffuse scattering that is studied on D7 typically

contains very broad features and so high Q resolution is not required. Instead

a high neutron flux is favoured given that the polarisation analysis cuts down

the total beam flux. The cold neutron source of D7 is also advantageous in the

process of polarisation analysis as it helps to reduce the possibility of multiple

scattering events that can lead to twice flipped spins being counted in the NSF

channel. The monochromator at the neutron guide can be used to select incident

neutron wavelengths of 3.1 or 4.8 Å. The neutron beam is polarised by a Co/Ti

focusing super-mirror polariser [95]. For a single magnetic layer mirror polariser

of N nuclei of scattering length b there are two critical glancing angles, θc±, that

give rise to total external reflection of the incident neutron beam,

θc± = λ

(
N

π
(b±p)

) 1
2

(2.88)

and between these two critical angles a neutron beam of wavelength λ is fully

polarised (p = ±1). However, the critical glancing angle is typically very small

and, therefore, not suitable for a high flux neutron scattering instrument given

the divergence of the incident neutron beam. In D7 a super-mirror arrangement

of magnetic and non-magnetic Co/Ti layers is used, which increases the allowed

divergence of the beam whilst still achieving polarisation. A gradient in the
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thickness of the Co/Ti layers extends the reflectivity of the super-mirror system

over a wide range of angles and the mirrors are bent to ensure reflection of

the incident neutron beam. A magnetic guide field ensures that the beam

polarisation is maintained as the neutrons travel through the D7 instrument.

The polarisation can be flipped before the sample by activating the Mezei flipper

such that |↓〉→|↑〉 SF transitions can be monitored. The xyz field coils around

the sample adiabatically rotate the neutron spin polarisation into the x, y or z

directions i.e. the magnetic field direction is changed slowly such that there is

a reversible rotation of the polarisation and the component of the polarisation

parallel to the guide field is conserved [95]. The scattered beam is then analysed

by an array of Co/Ti super-mirrors which cover three sets of detector banks over a

horizontal scattering angle of 132 ◦. Within this Thesis, D7 has been used to study

the magnetic diffuse scattering of neutrons from the disordered magnetic ground

states of the geometrically frustrated pyrochlores Lu2Mo2O7 and Lu2Mo2O4.8N1.7,

which are presented in Chapters 3 and 4, respectively.

Figure 2.14 Schematic diagram of the instrumental layout of the diffuse
scattering spectrometer D7 at the Institut Laue Langevin.
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2.3 Muon Spin Relaxation

The positive muon is a spin-1
2
particle. Some of the important properties of

the muon are summarised in Table 2.2. Muon spin relaxation (μSR) is an

implantation technique where by spin polarised positively charged muons are

implanted into a sample where they thermalise and come to rest at well defined,

energetically favourable sites [98]. Within the sample, the large magnetic moment

of the muon makes it an extremely sensitive local probe of any internal magnetic

fields and is capable of distinguishing between static and slowly fluctuating

magnetic moments. It is, therefore, an ideal tool for studying the dynamics of

frustrated, low spin magnetic ground states. In spin relaxation studies, the time

evolution of the muon spin polarisation is measured, which can be performed in

the absence of an applied field (or zero field, ZF) or an applied longitudinal field

(LF) in the direction of the initial muon spin polarisation [99].

Table 2.2 Fundamental properties of the muon.

Charge Spin Mass Magnetic moment γμ/2π / MHz T−1 Lifetime / μs

±e 1
2

207me ∼ 1
9
mp 3.18 μp 135 2.2

100 % spin polarised positive muons, μ+, are produced for condensed matter μSR

studies by pion, π+, decay. When high energy protons collide into a graphite

target π+ particles are produced, which undergo a two-body decay process to

give μ+ and a neutrino, νμ,

π+→μ+ + νμ (τπ+ = 26 ns) (2.89)

In order to conserve momentum, the resulting neutrino and muon must possess

momentum of equal magnitude and opposite direction. The neutrino also has the

property of negative helicity, which means that its spin is aligned in the opposite

direction to its momentum. Given that the pion is a spin-0 particle, the muons

produced by pion decay are thus also intrinsically 100 % spin polarised with its

spin aligned in the opposite direction to its direction of travel [100]. The muon

is an unstable particle and does not re-emerge from the sample in which it has

been implanted. Instead it undergoes a three-body decay to give a positron, e+,
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a positron neutrino, νe and a muon anti-neutrino ν̄μ

μ+→e+ + νe + ν̄μ (τμ+ = 2.2 μs) (2.90)

This decay process has the unusual property of the non-conservation or violation

of parity [101], which means that the decay positron, which as a charged particle

can be easily detected, is most likely to be emitted along the direction of the

muon spin polarisation at the instant of decay, see Figure 2.15. The degree of

anisotropy or asymmetry in the decay, therefore, gives a measure of the muon

spin polarisation as a function of time. In a typical μSR experiment, the sample

is placed between two sets of detector banks, a forwards set and a backwards set,

as shown in Figure 2.16. The time evolution of the muon decay asymmetry is

then given by,

A(t) =
NB(t)−NF (t)

NB(t) +NF (t)
(2.91)

where NB and NF are the number of positron counts in the backwards and

forwards detector banks, respectively. In the presence of a magnetic field, the

muon spin polarisation will precess between the forwards and backwards detector

banks, such that there is an oscillation in the asymmetry signal, see Figure 2.16

[100]. In the case of long range magnetic order, the muon spin will precess about

the local internal field that it experiences at its particular stopping site, which

will give rise to oscillations in the time dependent muon decay asymmetry that

are characteristic of the internal field strength. This field dependent Larmour

precession frequency for the muon is given by,

ωμ = γμB (2.92)

where γμ is the muon gyromagnetic ratio given in Table 2.2. It is common to

report the time dependent muon spin polarisation, which is given by the time

dependent muon decay asymmetry normalised by the initial asymmetry,

P (t) =
A(t)

A(t0)
(2.93)

In the presence of long range ordered magnetic field, the oscillations in the muon
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spin polarisation are modelled by,

P (t) = cos2θ + sin2θcos(ωμt) (2.94)

where θ is is angle between the local field direction and the muon spin. When the

direction of the static magnetic field is entirely random, for example in a frozen

spin glass state, the muons precess at several different rates which results in an

averaging of the oscillations,

P (t) =
1

3
+

2

3
cos(ωμt) (2.95)

If the local field strength has a Gaussian distribution of width Δ/γμ this gives

rise to the Kubo-Toyabe function,

P (t) =
1

3
+

2

3
exp(−Δ2t2/2)(1−Δ2t2) (2.96)

which has a characteristic 1
3
-tail in the muon spin polarisation at long times,

which indicates the presence of static or frozen disordered magnetic moments

[102].

The muon is also sensitive to the the dynamics of any fluctuating fields within a

magnetic system, which causes an exponential relaxation or depolarisation of the

the muon spin,

P (t) = P (t0)exp(−λt) (2.97)

where λ is known as the relaxation or depolarisation rate. This relaxation rate

is inversely proportional to the fluctuation frequency of the fluctuating fields, ν,

such that the faster the internal field fluctuations the slower the relaxation rate,

as shown in Figure 2.16.

Muon spin relaxation data have been collected for several of the magnetic systems

presented within this Thesis. Zero field and longitudinal field data have been

collected on the MuSR spectrometer at the ISIS Muon Facility, Rutherford

Appleton Laboratory and on the General Purpose Spectrometer at the Swiss

Muon Source, Paul Scherrer Institute and were analysed using the Windows
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(a) The muon spin is reversed upon
reflection in a mirror plane, how-
ever, due to the violation of parity,
only the decay process shown on
the left hand side is ever observed
with the decay positrons emitted
preferentially in the direction of the
muon spin.

(b) The asymmetry of the muon decay,
shown here with respect to the
initial muon spin polarisation for the
highest energy muons.

Figure 2.15 Muon decay.
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(a) The typical experimental set-up of a μSR experiment with a
sample placed in between forwards and backwards detector
banks and the incoming muon with its spin polarisation
aligned in the opposite direction to its momentum. μSR
measurements can be performed in zero field or upon the
application of a traverse field (Htrans), perpendicular to the
initial muon spin polarisation or a longitudinal field (Hlong),
parallel to the initial muon spin polarisation.

(b) The muon will precess about the
local field at its stopping site,
which gives rise to oscillations
in the decay asymmetry.

(c) If the muon experiences dy-
namical fluctuating fields at its
stopping site, one will observe
an exponential relaxation of the
muon decay asymmetry. The
greater the frequency of the field
fluctuations, ν, the slower the
rate of relaxation.

Figure 2.16 A typical μSR experiment.
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Muon Data Analysis (WiMDA) system [103]. The muon beam at the Swiss

Muon Source is continuous, such that muons arrive at the sample one at a time.

As a muon enters the sample it is detected, which begins a clock that is stopped

once the corresponding decay positron is detected in one of the detector banks.

If a second muon enters the experiment frame before the first muon has had

time to decay the event is vetoed and discounted. This leads to considerable

counting times in order to obtain good data statistics. At the ISIS muon facility,

pulses of muons are produced at the target and so the detection of the decay

positrons can be timed with respect to the start of the muon pulse. Each pulse

from the target contains a large number of muons such that several million decay

positrons are counted easily and the measurement of muons with a lifetime up to

30 μs becomes possible. The main disadvantage of the pulsed technique is that,

due to the uncertainty in the beginning of each pulse of muons, phenomena that

occur on very fast time scales (< 1 μs) are not observed. Pulsed and continuous

muon experiments can, therefore, provide very complementary information [100].

2.4 Magnetic Susceptibility Measurements

Superconducting QUantum Interference Device (SQUID) magnetometry is an

extremely sensitive experimental method that is widely used to measure the

magnetisation of magnetic systems. The SQUID component consists of a

superconducting ring with one or two small insulating layers, or weak links,

which are extremely sensitive to changes in magnetic field [104]. In a direct

current (DC) measurement, a fixed magnetic field is applied to a sample as it is

moved through a set of superconducting detection coils. The magnetic moment

of the sample induces a current in the detection coils, which are connected to

the SQUID such that the induced current can couple to the SQUID sensor. The

SQUID converts this current pattern into an output voltage as a function of

the sample position within the detection coils that is proportional the magnetic

moment, and hence, the magnetisation of a sample. In the measurement of the

DC or linear magnetisation, it is assumed that the measured magnetisation, M

is directly proportional to the applied field, H, via the magnetic susceptibility χ,

M = χH (2.98)

The measurement of the alternating current (AC) or differential susceptibility,
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χAC does not require this assumption and is given by,

χAC =

(
∂M

∂H

)
T

(2.99)

In an AC measurement, an oscillating magnetic field is applied to the sample,

which is held at a fixed position within the detector coils. The change in

magnetisation that is measured as the sample responds to the change in magnetic

field can, therefore, yield information about the dynamics of a magnetic system.

AC susceptibility is described as having real and imaginary parts,

χAC = χ′ + iχ′′ (2.100)

where the imaginary susceptibility, χ′′, arises from energy exchange processes

within the systems related to resonance phenomena.

The magnetic susceptibility data that are presented within the following results

chapters were measured on a Quantum Design Magnetic Properties Measurement

System (MPMS) with a SQUID magnetometer. This experimental set-up is

capable of measuring DC magnetisation in applied field strengths up to 7 T

over a temperature range of 2 - 400 K. In AC mode, oscillating fields can

be applied over a frequency range of 0.001 - 1000 Hz. It is good practice to

correct experimentally determined magnetic susceptibilities for the diamagnetic

contribution. All materials show some degree of diamagnetism, as discussed in

the previous Chapter within � 1.2, which can be corrected for by subtracting

tabulated values [3] of the temperature independent diamagnetic contribution

from the data. Within this Thesis, estimates for the Weiss and Curie constants

have been extracted from Curie-Weiss fits to inverse susceptibility data, from

which a high temperature magnetic moment can be calculated, μeff =
√
8C.

However, it should be noted that in a true paramagnetic regime the most accurate

way to extract the effective paramagnetic moment is to determine χT from a plot

of χT against T , with μeff =
√
8χT .
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2.5 Heat Capacity Measurements

When a substance is heated, the temperature rise that results from the transfer

of energy to the system depends on its heat capacity, C [105]. The heat capacity

of a system at constant pressure is, therefore, given by [106],

Cp =

(
∂U

∂T

)
p

(2.101)

where ∂T is the change in temperature brought about by the change in internal

energy ∂U upon heating. The total heat capacity of a solid provides a wealth of

information about its lattice, electronic, nuclear and magnetic properties,

Ctotal = Cnuclear + Celectronic + Cmagnetic + Clattice (2.102)

At low temperatures, when the lattice contribution to the total heat capacity is

negligible, the heat capacity directly probes the nuclear, electronic and magnetic

energy levels of a system [106].

In order to measure heat capacity, heat must be added to and removed from

a sample whilst the resulting change in temperature is monitored. During the

measurement, a known amount of heat is applied at constant power for a fixed

period of time, followed by a cooling period with the same time constant. A

known mass of sample is attached to the sample platform with a thin layer of

grease to provide thermal contact and the platform heater and thermometer are

attached to the bottom side of the sample platform. After each measurement cycle

i.e. a heating period followed by a cooling period, the temperature response or

thermal relaxation of the sample platform is modelled in order to extract the heat

capacity of the sample. Provided that the sample and the sample platform are

in good thermal contact with each other, the temperature of the platform, T , as

a function of time, t, can be modelled by [107],

Ctotal
dT

dt
= −Kw(T − Tb) + P (t) (2.103)

where Ctotal is the total heat capacity of the sample and the sample platform,

Kw is the thermal conductance of the wires within the sample platform, Tb is
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the temperature of the sample puck frame that contains the sample platform and

P (t) is the power applied to the heater. The sample heat capacity can then be

extracted from Ctotal by subtraction of the addenda. Within this Thesis, all heat

capacity measurements were performed on a Quantum Design Physical Properties

Measurement System (PPMS), which can measure heat capacity in zero field and

applied fields strengths up to 9 T from 2 - 400 K. With the addition of a 3He

insert, temperatures as low as 300 mK can be accessed.
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Chapter 3

Unconventional Spin Glass Ground

State in the Geometrically

Frustrated S = 1 Pyrochlore

Lu2Mo2O7

3.1 Introduction

The cubic pyrochlore lattice, A2B2O7, is formed from a geometrically frustrated

network of two interlinking networks of vertex-sharing A and B tetrahedra. The

occupation of either or both of the cation sites by a magnetic ion can, therefore,

result in interesting and unusual magnetic behaviours due to magnetic frustration.

Rather than undergoing a transition to a long-range magnetically ordered state

upon cooling, magnetic pyrochlore oxides display a variety of uncoventional

grounds states including spin ice, spin glass and spin liquid states [108].

The rare earth, R, molybdate pyrochlores, R2Mo2O7, are a series of materials

whose ground state properties are known to depend strongly on lattice effects,

such as the ionic radius of the rare earth cation occupying the A-site [109].

For instance, members of the series based on the larger rare earths with an

ionic radius rR3+ > 1.04 Å are metallic ferromagnets. On the other hand,

for R2Mo2O7 with smaller rare earth cations occupying the A-site insulating,

antiferromagnetic behaviour is observed with a frustrated spin glass-like state
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adopted at low temperatures. Y2Mo2O7, which contains non-magnetic Y3+ and

S = 1 4d2 Mo4+, is a very well studied member of the series that displays

many of the characteristics typical of glassy systems [110], [111], [112]. It is

well understood that the canonical spin-glass materials, such as magnetically

dilute metal alloys, are a result of the combination of randomness, through site

or bond disorder, and magnetic frustration [22]. In the case of Y2Mo2O7, the

frustration clearly arises from the geometric frustration of the pyrochlore lattice

but the cause of disorder or lattice distortion in this material that results in spin

freezing is an open and active area of research [113] that has prompted the use

of several local structure probes [114], [115], [116], [117].

Lu2Mo2O7 is based on non-magnetic Lu3+, the smallest cation in the rare earth

series and is, therefore, expected to show frustrated spin glass-like behaviour.

The synthesis of Lu2Mo2O7 has been discussed to a limited extent in earlier work

but the magnetic properties of Lu2Mo2O7 are not well reported [118], [119]. The

synthesis and study of Lu2Mo2O7 are important, given that it is expected to be

another uncommon example of a spin glass-like material with no evident source

of structural disorder, and may help to shed further light on the origin of spin

freezing in other R2Mo2O7 analogues.

Presented in the following Chapter is a detailed magnetic study of the spin glass-

like state of Lu2Mo2O7, which exists below an apparent spin freezing transition,

Tf ∼ 16 K. This study includes AC and DC magnetic susceptibility, heat capacity,

muon spin relaxation and neutron scattering measurements. Furthermore, the

sensitivity of the ground state magnetic properties to oxygen content of this

material is discussed and the existence of a miscibility gap between stoichiometric

and Lu2Mo2O7−x cubic pyrochlore phases is presented.

3.2 Synthesis and Characterisation

Polycrystalline samples of Lu2Mo2O7 were prepared by ceramic solid state

synthesis. Stoichiometric amounts of MoO2 (Sigma Aldrich, 99.99 %) and Lu2O3

(Sigma Aldrich, 99.99 %) were ground and pelletised and heated to 1600 ◦C for

12 hours under flowing argon gas with intermediate re-grinding and re-pelletising

[118]. A molybdenum powder oxygen-getter was required in order to prevent

the oxidation of MoO2 to the more volatile MoO3 during heating. Powder X-

ray diffraction data were collected on a Bruker D8 Advance diffractometer, with
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monochromated Cu Kα1 radiation. Powder X-ray diffraction profiles of initial

samples revealed that two pyrochlore phases are present, the reflections of which

can be indexed by cubic lattice constants, a, of 10.14 Å and 10.17 Å. The relative

amount of each phase appears to depend upon the distance between the samples

and the oxygen-getter during synthesis, see Figure 3.1, and a single pyrochlore

phase with the lattice constant a = 10.14 Å was prepared by increasing the

separation between the sample and the getter to ∼ 10 cm. A single phase sample

of the a = 10.17 Å phase was obtained by reducing the a = 10.14 Å phase

in a hydrogen atmosphere at 600 ◦C for 2 hours, see Figure 3.2. This indicates

that the miscibility gap in the Lu2Mo2O7−x system at 1600 ◦C is related to the

oxygen content of the pyrochlore phases.

Figure 3.1 A small region of the powder X-ray diffraction patterns for three
samples of Lu2Mo2O7−x heated at 1600 ◦C for 12 hours under
flowing Ar with a Mo-powder oxygen-getter. The arrows evidence the
two pyrochlore phases and the changing phase proportions illustrate
the effect of increasing the separation between the sample and the
getter during synthesis from bottom sample to top sample.

Heating the a = 10.14 Å phase in air at 750 ◦C for 2 hours resulted in complete

oxidation of the sample to Lu2O3 and MoO3 and a weight increase of 4.9(4) %,

which corresponds to a chemical composition of Lu2Mo2O7.00(1). This confirms

that the a = 10.14 Å phase is stoichiometric Lu2Mo2O7. A weight loss of 1.03(1)
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Figure 3.2 Powder X-ray diffraction patterns for single phase samples at top
and bottom with a two phase pattern shown in the centre.

% was observed upon reduction of the sample to the a = 10.17 Å phase, which

gives a chemical composition of Lu2Mo2O6.58(1) for the reduced phase.

3.3 Neutron Diffraction Study

High resolution neutron powder diffraction data were collected on the D2B

powder diffractometer with a neutron wavelength λ = 1.594 Å at the high

flux reactor of the Institut Laue-Langevin, France. Rietveld refinements of the

cubic Fd3̄m (no. 227) pyrochlore model to the data were performed using the

General Structure Analysis System (GSAS) program [85]. A joint analysis of the

data collected at 300 K for samples of Lu2Mo2O7 and Lu2Mo2O7−x was carried

out, with a simultaneous refinement of both models to both data sets, in order

to minimise correlation between atomic occupancies and thermal parameters.

The oxygen site occupancies were fixed according to the gravimetric analysis

of the Lu2Mo2O7 phase but allowed to refine for Lu2Mo2O7−x, while isotropic

thermal parameters were constrained to refine together over the two phases.

Linear interpolation functions were refined to the background of both data sets.
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Figure 3.3 displays the Rietveld plots of the Lu2Mo2O7 and Lu2Mo2O7−x phases,

respectively and Table 3.1 summarises the results of the refinement. The refined

oxygen content of the reduced phase of 6.69(6) agrees with the gravimetrically

determined value of 6.58(1) and the reduced 10.17 Å phase is thus described as

Lu2Mo2O6.6.

Table 3.1 Refined atomic coordinates and occupancies for Lu2Mo2O7

(a = 10.1478(1) Å) and (lower values, where different)
Lu2Mo2O6.69(6) (a = 10.1789(1) Å). Isotropic thermal parameters

(Uiso) were 0.0091(2) Å2 for metal cations and 0.0152(3) Å2 for
oxygen sites. Total Rwp = 5.83 %, χ2 = 6.89 for 62 variables.

Atom Site x y z Occupancy

Lu 16d 1
2

1
2

1
2

1.0

Mo 16c 0 0 0 1.0

O 48f 0.3417(1) 1
8

1
8

1.0
0.3477(1) 0.97(1)

O’ 8b 3
8

3
8

3
8

1.0
0.87(2)

Figure 3.4 shows the difference between neutron diffraction data collected at 1.5

K and 50 K for Lu2Mo2O7 in the low 2θ region, which reveals an absence of

magnetic Bragg scattering upon cooling.

3.4 Magnetic Susceptibility

DC magnetic susceptibilities of Lu2Mo2O7 and Lu2Mo2O6.6 were measured in an

applied field of 1 T from 2 K to 300 K in a zero field cooled (ZFC) field cooled

(FC) cycle, shown in Figure 3.5. At high temperatures, both samples follow

Curie-Weiss behaviour with a fit,

χ−1 =

(
C

T − θ

)−1

(3.1)

to inverse susceptibilities between 150 K and 300 K yielding Weiss temperatures,

θ, of −158(1) K and −329(1) K and Curie constants, C, of 0.892(3) K emu

mol−1 and 1.323(3) K emu mol−1, for Lu2Mo2O7 and Lu2Mo2O6.6, respectively.

Both samples evidence the onset of an irreversible spin glass-like state with the
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(a) Lu2Mo2O7

(b) Lu2Mo2O6.6

Figure 3.3 Rietveld refinement of the cubic Fd3̄m pyrochlore model to room
temperature D2B data of Lu2Mo2O7−x. Ticks mark reflections for
the pyrochlore phase (top) and a MoO2 impurity phase (∼ 4 % phase
fraction, bottom).
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Figure 3.4 The difference (bottom) between powder neutron diffraction data
collected for Lu2Mo2O7 at 1.5 K (middle) and 50 K (top) in the
low 2θ region, showing no accumulation of magnetic scattering upon
cooling.

divergence of field cooled and zero field cooled susceptibilities at apparent spin

freezing transitions, Tf . Figure 3.6 shows a shift in Tf from ∼ 16 K in Lu2Mo2O7

to∼ 20 K in Lu2Mo2O6.6. A comparison of the energy scales of magnetic exchange

correlations and spin freezing via the frustration index, f = |θ|/Tf , ∼10

for Lu2Mo2O7 and ∼16 for Lu2Mo2O6.6, indicates strong geometric frustration

[15]. The effective magnetic moments per Mo cation obtained from the Curie

constants are μeff = 1.9 μB and μeff = 2.3 μB for Lu2Mo2O7 and Lu2Mo2O6.6,

respectively.

AC susceptibility data were measured for Lu2Mo2O7 in an oscillating applied field

of 3.5×10−4 T at measuring frequencies, ω, from 5 Hz to 1053 Hz. Figure 3.7

shows the frequency dependence of the AC response of Lu2Mo2O7 around the

spin freezing transition, which was successfully modelled by the Vogel-Fulcher

law [120], a modified Arrhenius-type equation commonly associated with glassy

87



(a) Lu2Mo2O7

(b) Lu2Mo2O6.6

Figure 3.5 Magnetic and inverse susceptibilities measured for Lu2Mo2O7 and
Lu2Mo2O6.6 in a 1 T field. Solid white line shows Curie-Weiss fit
to inverse susceptibility between 150 K and 300 K.
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Figure 3.6 Increase in the spin freezing temperature, Tf from ∼ 16 K in
Lu2Mo2O7 to ∼ 20 K in Lu2Mo2O6.6.

dynamics [13],

ω = ω0exp

(
− Ea

kB(Tf − T0)

)
(3.2)

where ω0 is a characteristic frequency, Ea is the activation energy and T0 is the

ideal glass temperature, which allows for spin-spin interactions. The fit to the

data shown in the inset of Figure 3.7 gives ln(ω0/s
−1) = 17.0(8), Ea/kB = 8.5(6)

K and T0 = 15.300(5) K.

3.5 Heat Capacity

Zero field heat capacity was measured on a 9.0 mg pressed powder pellet of

Lu2Mo2O7 in a Quantum Design PPMS from 1.8 K to 300 K. In order to estimate

the lattice contribution to the total heat capacity, shown in Figure 5.4, the high

temperature data were modelled by the Debye equation [121],

C = 9NAkB

( T

θD

) θD
T∫

0

x4exdx

(ex − 1)2
(3.3)

where x = h̄ck/kBT (ck = ω is the linear dispersion relation of the vibrational

lattice modes), with a Debye temperature, which measures the stiffness or rigidity

of a lattice, θD ∼ 540 K. Upon subtraction of the estimated lattice contribution
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Figure 3.7 Real AC susceptibility of Lu2Mo2O7 showing the shift in Tf with
measuring frequency. The inset shows the Vogel-Fulcher fit of the
shift in spin freezing transition Tf as a function of the measuring
frequency.

one obtains the magnetic and electronic contributions, shown in Figure 3.8, which

demonstrates a broad maximum ∼ 50 K.

The inset of Figure 3.8 shows the low temperature region of the magnetic heat

capacity, which appears to follow T 2-behaviour and has been modelled by the

expression C = βT 2, with β = 8.6 ×10−4 J mol−1 K−3 per formula unit.

3.6 Muon Spin Relaxation

Muon spin relaxation data were collected on a 3 g sample of Lu2Mo2O7 on the

MuSR spectrometer at the ISIS Muon Facility, Rutherford Appleton Laboratory,

U.K. The sample was contained in an aluminium sample plate with a sheet of

Mylar plastic in a Variox cryostat that allowed access down to temperatures of

1.5 K.

The time dependence of the muon decay asymmetry in Lu2Mo2O7 in an applied
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Figure 3.8 Total heat capacity of Lu2Mo2O7 with an estimation of the lattice
contribution by means of a Debye fit to the data (red solid line).
Upon subtraction of the lattice contribution, the magnetic component
of the heat capacity shows a broad anomaly with a maximum ∼ 50 K.
Inset shows the low temperature region of the magnetic heat capacity,
which can be modelled with C ∝ T 2 behaviour (blue solid line).

longitudinal field of 200 G is shown in Figure 3.9 measured at temperatures

ranging from 1.5 K to 30 K. The data were modelled with a stretched exponential

relaxation function given by,

A(t) = A0exp(−λt)β +B (3.4)

where A0 is the initial asymmetry, B is the background asymmetry, λ is the muon

spin relaxation rate and β is the stretching component. Initially, the data were

fitted with β = 1, which yielded the relaxation rates shown in Figure 3.10. Fits

to the data around the spin freezing transition (16 - 20 K) could be improved by

letting the stretching component vary, with β → 1
3
. Figure 3.11 shows the field

dependence of the muon decay asymmetry from zero field to applied longitudinal

field strengths of 2500 G at 30 K and 1.5 K, therefore, above and below the spin

freezing transition observed in magnetic susceptibility measurements, Tf ∼ 16 K.
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Figure 3.9 Time dependence of muon decay asymmetry in Lu2Mo2O7 measured
in an applied longitudinal field of 200 G upon cooling. Solid lines
are fits to the data.

The the time dependence of the longitudinal 200 G muon asymmetry can also be

successfully modelled by the Uemura spin glass function [122], which is given by,

A(t) = A0

(1
3
exp(−(4α2

dt/ν))
1
2 )+

2

3

(
1− as

2t2

(4α2
dt/ν + as2t2)

1
2

)
exp(−(4α2

dt/ν+as
2t2))

1
2

)
+B

(3.5)

where A0 is the initial asymmetry, B is the background asymmetry, αs and αd

give the static and dynamic portions of the magnetic moment, respectively and ν

is the fluctuation frequency. As αd→0 in the frozen spin glass state, the equation

collapses to a Kubo-Toyabe function that is typically used to describe the dilute,

randomly distributed magnetic moments in a canonical spin glass [123]. Figure

3.12 shows the fit of Equation 3.5 to the data.
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Figure 3.10 Temperature dependence of the muon spin relaxation rate, λ,
obtained from a fit of a single exponential relaxation function to
the data measured in an applied longitudinal field of 200 G.

3.7 Magnetic Diffuse Neutron Scattering Study

The magnetic diffuse neutron scattering data of Lu2Mo2O7 were collected on

an 18 g polycrystalline sample on the diffuse scattering spectrometer D7 at the

Institut Laue-Langevin, France. The sample mass was distributed equally into

two strips of aluminium foil packed on top of one another in an annular geometry

inside a 2 cm diameter aluminium can. In this way, the sample covered the full

5 cm height of the neutron beam whilst minimising the beam attenuation by the

sample. The data were initially collected with an incident neutron wavelength of

3.1 Å and without energy analysis the scattering was integrated up to energies of

8.5 meV. The transmission of the sample at this wavelength was determined by

measuring the monitor counts of the direct beam through the sample with the

monitor counts of the beam through the empty can, normalised by the counts

measured for a cylinder of cadmium, which account for any neutrons that pass

by the sample can. Each of these monitor count measurements were taken for a
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Figure 3.11 The longitudinal field dependence of the muon decay asymmetry in
Lu2Mo2O7 above the spin freezing transition at 30 K, shown on the
left, and below the transition at 1.5 K on the right.

total of 120 s, such that the sample transmission is given by,

T =
CountsSample − CountsCd

CountsEmpty can − CountsCd

=
7831− 316

10029− 316
= 0.77 (3.6)

i.e. 77 % of the incident neutron beam was transmitted through the sample with

λ = 3.1 Å. Before the sample was measured, data correction measurements of

quartz and cadmium were performed in addition to a vanadium standard, which

allows the measured cross sections to be determined in absolute units of barns

st.−1 f. u.−1 [124]. The sample was loaded into an Orange cryostat and data were

collected at the base temperature of 1.5 K, below the spin freezing transition, and

at 300 K with counting times of 24 hours per temperature. The xyz polarisation

analysis of D7 allows for the complete separation of the nuclear, spin incoherent

and magnetic cross sections from the total scattering [94]. Figure 3.13 shows

this separation of the total scattering data of Lu2Mo2O7 at 300 K. The magnetic

scattering cross sections at 1.5 K and 300 K are shown in Figure 3.14. The Q

dependence observed for both data sets appears to follow the form factor |F (Q)|2
behaviour expected for a paramagnetic regime with no significant evidence of
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Figure 3.12 Analysis of the muon decay asymmetry in Lu2Mo2O7 in terms of
the spin glass function described in the text. Solid lines show the
fits to the data.

spatial spin correlations. In this case, the elastic paramagnetic cross section is

given by [124],

dσ

dΩ
=

2

3
(γnr0)

2

(
1

2
gF (Q)

)2

S(S + 1) (3.7)

where γn is the neutron gyromagnetic ratio, r0 is the classical radius of the electron

and g is the g-factor. The magnetic scattering cross sections shown in Figure

3.14 were modelled by the expression given in Equation 3.7 with an analytical

approximation of the spin-only magnetic form factor of a molybdenum cation

[88],

F (Q) = 0.35exp(−48.035s2)+1.035exp(−15.060s2)−0.3929exp(−7.479s2)+0.0139

(3.8)

where s = Q/4π. The total scattering observed at 300 K g2S(S + 1) =
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1.20(4) μ2
B = μ2

eff gives a paramagnetic effective magnetic moment of μeff =

0.77(3) μB per molybdenum cation. At 1.5 K the system is well within its spin

glass state such that the spins can be considered to be static with only the lowest

ms states occupied and Equation 3.7 becomes [124],

dσ

dΩ
=

2

3
(γnr0)

2

(
1

2
gF (Q)

)2

S2 (3.9)

The fit of Equation 3.9 to the data taken at 1.5 K yields g2S2 = 1.59(4) μ2
B = μ2

sat,

which gives a low temperature saturated magnetic moment of μsat = 0.89(2) μB

per molybdenum cation.

Figure 3.13 The nuclear, spin incoherent and magnetic contributions to the
total scattering cross section of Lu2Mo2O7 measured at 300 K
with an incident neutron wavelength of 3.1 Å. The inset shows
the nuclear Bragg scattering with the reflections for the cubic
pyrochlore phase marked.

In a second experiment, the same sample was measured with an incident neutron

wavelength of λ = 4.8 Å. At this wavelength, without analysis of the final energy

of scattered neutrons, scattered neutron energies are integrated up to 4 meV.

However, the longer wavelength allows for higher resolution and greater coverage
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Figure 3.14 The magnetic scattering cross section of Lu2Mo2O7 at 1.5 K and
300 K with an incident neutron wavelength of 3.1 Å. The solids
lines show the paramagnetic F (Q)2 model to the data.

at low Q such that there is a greater possibility to pick out any features within

the magnetic cross section that result from spatial spin correlations. The data

were collected according to the method given for the λ = 3.1 Å experiment,

but counting times of approximately 48 hours per temperature were allowed to

improve counting statistics. Another important difference to note is that with a

longer incident neutron wavelength, the attenuation of the beam by the sample

is significant. The transmission of the sample was once again measured and is

given by,

T =
CountsSample − CountsCd

CountsEmpty can − CountsCd

=
5015− 70

10224− 70
= 0.49 (3.10)

such that only 49 % of the incident beam was transmitted through the sample.

In order to account for the strong attenuation by the sample, it was necessary

to apply an absorption correction to the data [125]. For a powder sample in an

annular cylindrical geometry the attenuation of the incident neutron depends on

two factors, μR and ρ, where μ is the linear attenuation coefficient, R is the

outer radius of the annulus and ρ is the ratio between the radii of the inner and
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outer cylinders in the annulus. For Lu2Mo2O7, μ ∼ 0.8 cm−1 due to the large

absorption cross section of lutetium, and with inner and outer annulus radii of

approximately 0.5 cm and 1.0 cm, respectively, μR ∼ 0.8 and ρ ∼ 0.5. The

transmission factors for an annular cylindrical sample with μR = 1 and ρ = 1

have been calculated at ∼ 0.5, which is entirely consistent the experimentally

determined sample transmission. These transmission factors are plotted in Figure

3.15 as a function of sin2θ and in order to account for the angular dependence

in the absorption correction of the data, they have been fitted by a third order

polynomial function [126],

T = 0.53922 + 0.06925sin2θ − 0.18205sin4θ + 0.14873sin6θ (3.11)

which was then used to correct the data as a function of Q. The magnetic

scattering data measured at 1.5 K are shown in Figure 3.16 before and after

absorption correction.

Figure 3.15 The transmission factor for an annular cylindrical powder sample
as a function of scattering angle, which was fitted by a third order
polynomial function in sin2θ shown by the red solid line.

The most striking feature of the low temperature magnetic cross section measured

at λ = 4.8 Å is the appearance of a broad, diffuse scattering feature centred about
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Figure 3.16 The magnetic scattering cross section of Lu2Mo2O7 measured at
1.5 K with an incident neutron wavelength λ = 4.8 Å before and
after the angular dependent absorption correction for an annular
cylindrical sample geometry.

Q ∼ 0.6 Å−1 which indicates the build-up of short range spin correlations. The

Q dependence of these near neighbour spatial correlations were modelled by the

expression [127], [93],

dσ

dΩ
=

2

3
(γnr0)

2

(
1

2
gF (Q)

)2

×
(
1 +

∑
i

Zi〈S0·Si〉sinQri
Qri

)
(3.12)

where 〈S0·Si〉 gives the correlation between a spin and its Zi nearest neighbours

at a distance ri. Figure 3.17 shows the first three possible magnetic exchange

distances within the Lu2Mo2O7 structure. In order to obtain a reasonable fit

of this model to the data shown in Figure 3.18, it was necessary to include

spin correlations on the length scale of the next nearest neighbour (NNN) with

rNNN = 6.203 Å, ZNNN = 12 and 〈S0·SNNN〉 = −0.056(7), which gave a

χ2 = 1.54 for the goodness of fit. However, the fit was improved by allowing

for nearest neighbour (NN) correlations with rNN = 3.581 Å, ZNN = 6 and

〈S0·SNN〉 = −0.029(6) to give χ2 = 1.32. The fit of this model to the low
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temperature magnetic diffuse scattering data is shown in Figure 3.19. Including

spin correlations on any longer length scale, such as third nearest neighbour

(see Figure 3.17), did not significantly improve the quality of the fit. Figure

3.20 shows that upon warming above the spin freezing transition one recovers

a paramagnetic-like Q-dependence of the magnetic scattering cross section, but

with evidence of persisting NN correlations.

Figure 3.17 The nearest neighbour, second and third nearest neighbour exchange
distances in Lu2Mo2O7.

3.8 Discussion

Powder X-ray diffraction of the initial samples of Lu2Mo2O7 clearly show the

coexistence of two cubic pyrochlore phases, suggesting that a miscibility gap

is present in the Lu2Mo2O7−x system at 1600 ◦C. The Rietveld fits to powder

neutron diffraction data and chemical analyses show that the miscibility gap is

between stoichiometric Lu2Mo2O7 and oxygen deficient Lu2Mo2O6.6. The refined

room temperature cubic lattice constants of the stoichiometric and reduced

phases, 10.1478(1) Å and 10.1789(1) Å, respectively, are consistent with the

larger ionic radius of Mo3+ (0.69 Å) compared to that of Mo4+ (0.65 Å) [128].

The pyrochlore structure is known to tolerate considerable anion deficiencies. In

certain systems, such as Pb2Ru2O6.5, vacancy ordering on the O’ site results in

the lowering of symmetry from Fd3̄m to subgroup F 4̄3m [129]. However, other
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Figure 3.18 Low temperature magnetic scattering cross section of Lu2Mo2O7

with diffuse scattering evidencing short range Mo-Mo spin
correlations on a next nearest neighbour correlation length scale
of 6.203 Å.

oxygen-deficient materials including Bi2Ru2O6.9 and Tl2Ru2O6.7 retain Fd3̄m

symmetry with statistically disordered anion vacancies over the O’ site [130]

and the same structure is observed here for Lu2Mo2O6.6 with no evidence for

a vacancy-ordered superstructure in the neutron diffraction data. In general,

oxygen-vacancy order is difficult to predict and depends on the specific details

of a particular system [131], [132]. Miscibility gaps between pyrochlore phases

have not been reported previously for R2Mo2O7−x systems, although a gap was

found between Eu2Mo2O7 and the derived Eu2Mo2(O,N)7−x oxynitride pyrochlore

[133]. Phase coexistence driven by cation segregation has been observed in mixed

A-cation pyrochlores such as (Bi0.6Y1.4)Sn2O7 [134].

The difference between the 1.5 K and 300 K neutron diffraction data of Lu2Mo2O7

is shown in Figure 3.4 in the low 2θ region where any build-up of magnetic

scattering would be most evident. The absence of magnetic Bragg scattering

demonstrates that there is no long range spin order down to at least 1.5 K. The

DC magnetic susceptibility of Lu2Mo2O7 (Figure 3.5) displays a clear divergence

of field cooled (FC) and zero field cooled (ZFC) susceptibilities, characteristic of
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Figure 3.19 The model of the low temperature magnetic diffuse scattering in
Lu2Mo2O7 is improved by including nearest neighbour and next
nearest neighbour spin correlations.

the onset of an irreversible glass-like state, at an apparent spin freezing transition,

Tf ∼ 16 K. A Curie-Weiss fit to the inverse of susceptibility between 150 K

and 300 K gave a Weiss constant θ = −158(1) K, indicating a dominance of

antiferromagnetic exchange interactions. A comparison of the energy scales of

magnetic interactions and spin freezing via the frustration index, f = |θ|/Tf ∼ 10

implies that there is a significant frustration of spin order due to the geometrically

frustrated pyrochlore network of antiferromagnetically interacting Mo4+ spins.

An effective magnetic moment of μeff = 1.9 μB per Mo cation was obtained

from the Curie-Weiss fit (C = 0.892(3) K emu mol−1 formula unit−1). The

reduced effective moment compared with the expected spin only value for S = 1

Mo4+ is due to significant spin-orbit coupling in this 4d transition metal system.

The AC magnetic response of Lu2Mo2O7 can also be understood in terms of

archetypal spin glass behaviour. The data show an increase in the spin freezing

temperature with increasing frequency, which was measured over a range 5 - 1053

Hz. This behavior is typical of a glass-like state; as frequency is increased the

spin directions are less able to follow the oscillating field and so appear frozen

at progressively higher temperatures. The magnitude of this shift, given by
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Figure 3.20 The absorption corrected magnetic scattering cross section of
Lu2Mo2O7 measured at 300 K with an incident neutron wavelength
λ = 4.8 Å. The red solid line shows a paramagnetic F (Q)2 model
(Equation 3.7) but the fit to the data is significantly improved
by allowing for nearest neighbour correlations as a shown by the
solid green line (Equation 3.12 with Z = 6, r = 3.581 and
〈S0·SNN 〉 = 0.092(8).)

(ΔTf/Tf )Δ(logω) = 0.008, is of the order observed in many classical spin-

glass systems [13]. A fit of the Vogel-Fulcher equation (Equation 3.2) to the data

gave ln(ω0/s
1) = 17.0(8), Ea/kB = 8.5(6) K and T0 = 15.300(5) K. The

observation that T0 ∼ Tf is considered representative of canonical spin glasses

[13].

The presence of a geometrically frustrated network of Mo4+ spins is further

confirmed by the low temperature magnetic diffuse scattering data measured on

the D7 spectrometer with an incident neutron wavelength of 4.8 Å. A broad peak

centred aroundQ∼ 0.6 Å−1 (see Figure 3.19) indicated the build-up of short range

magnetic correlations at low temperatures, which were successfully modelled

by nearest neighbour and next nearest neighbour exchange. The negative sign

and the the short range nature of these interactions, 〈S0·SNN〉 = −0.03 and

〈S0·SNNN〉 = −0.06, are indicative of the frustrated nature of the ground

state [127]. Their similar magnitude also highlights the strong competition
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between the nearest neighbour and next nearest neighbour exchange processes

within the low temperature, spin frozen state. The data taken with an incident

neutron wavelength of 3.1 Å were not able to resolve the short range correlations

within the spin glass-like regime. At 300 K the observed magnetic moment is

somewhat reduced, μeff = 1.1 μB per Mo4+. This is due to the fact that in

the fast fluctuating paramagnetic state, a significant portion of the magnetic

scattering occurs outside of the window of energy integration and the quasi-static

approximation on which D7 relies breaks down [93].

The magnetic susceptibility data for the reduced phase, Lu2Mo2O6.6, are

qualitatively similar to those for Lu2Mo2O7, but with significant changes in

the underlying parameters. The susceptibilities of both samples are shown in

Figure 3.6 around the spin freezing transition, from which a shift in Tf from

∼ 16 K to ∼ 20 K is observed. A Curie-Weiss fit to the inverse susceptibility

over the same temperature range as the fit to the Lu2Mo2O7 data (150-300 K)

gives an effective moment μeff = 2.3 μB, reflecting the partial reduction of

S = 1 Mo4+ to S = 3
2
Mo3+. The Weiss constant θ = − 329(1) K shows

that the strength of superexchange interactions is enhanced, but the frustration

factor of f ∼ 16 reveals that the disorder in Lu2Mo2O7−x markedly increases

the degree of frustration in comparison to Lu2Mo2O7. The results presented

here for Lu2Mo2O6.6 have demonstrated that the oxygen content of Lu2Mo2O7−x

has a significant effect on magnetic properties, including the energy scale of

antiferromagnetic exchange, the spin freezing temperature, and the frustration

factor. This highlights the importance of the control of oxygen content in the

R2Mo2O7 series and the need for careful analysis of samples through diffraction

and gravimetric techniques. A systematic study of the geometrically frustrated

spin glass LiCrMnO4−δ spinels [135] revealed that a deviation from oxygen

stoichiometry as small as 0.63 % can have a profound effect on the magnetic

properties of the spin glass state. Rietveld analyses of powder diffraction data

have previously been reported to show no deviation from full oxygen occupancy

in the average crystalline structure of the spin glass pyrochlores, which gives an

upper limit of ∼1 % for oxygen non-stoichiometry [26]. In the case of Lu2Mo2O6.6

the level of oxygen deficiency is more significant, at ∼6 %. The effect of oxygen

deficiency in other R2Mo2O7−x is not well reported for the spin glass phases, but

there has been some interest in Gd2Mo2O7−x given its close proximity to the

metal-insulator transition in the series [108].

The muon spin relaxation data of Lu2Mo2O7 also display many of the charac-
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teristics expected for a spin glass-like state. At high temperatures, the data are

well described by a single component lorentzian muon spin relaxation with a

relaxation rate, λ, which is shown as a function of temperature in Figure 3.10.

The sharp transition in the relaxation rate ∼ 18 K is in keeping with the spin

freezing transition observed in the magnetic susceptibility data at 16 K. The single

component nature of the high temperature muon spin relaxation data is a typical

paramagnetic response. Upon cooling towards the transition temperature, the

two component nature of the data becomes apparent and indicates the presence

of randomly distributed, quasi-static internal fields at low temperatures [123].

This behaviour was also phenomenologically described by the spin glass function

of Uemura (Equation 3.5), which was inititally developed during a muon spin

relaxation study of the canonical spin glasses AuFe and CuMn [122].

From the point of view of the muon spin relaxation measurements and magnetic

susceptility measurements, Lu2Mo2O7 is a typical spin glass with a spin freezing

transition Tf ∼ 16 K. In this respect, it is very similar to Y2Mo2O7, which shows

a strong frequency dependence in its AC susceptibility around the spin freezing

transition [112] Tf ∼ 22 K and a sharp transition in the muon spin relaxation

rate [136]. Tb2Mo2O7 also displays spin glass characteristics with Tf ∼ 25

K but the situation is somewhat complicated here with competition between

ferromagnetic Tb-Tb interactions and antiferromagnetic Tb-Mo exchange [137].

Other insulating R2Mo2O7 analogues are less well studied in comparison, but

Ho2Mo2O7 has a reported freezing temperature of 21 K and Yb2Mo2O7, based

on the second smallest rare earth cation, has Tf ∼ 18 K [138], [139]. This

reveals a trend of decreasing spin glass transition temperature with decreasing

R3+ ionic radius. The trend is understandable from the variation of the Mo-O-Mo

bond angle, α, that governs the magnitude and nature of the magnetic exchange

between Mo4+ ions. The fit to the powder neutron diffraction data of Lu2Mo2O7

gives α = 125.08(9) ◦, whereas, the angle reported for Y2Mo2O7 is somewhat

larger, α = 126.97 ◦. A systematic study of R2Mo2O7 (R = Dy, Gd, Sm and

Nd) revealed an increase in α across the spin glass to ferromagnet transition,

from α = 127.7 ◦ in the spin glass Dy2Mo2O7 to α = 131.5 ◦ in ferromagnetic

Nd2Mo2O7 [140]. The magnetic phase diagram of the R2Mo2O7 series is shown in

Figure 3.21. The magnetic properties of the R2Mo2O7 series are not, therefore,

governed by the Kanamori-Goodenough rule which states that a larger M -O-

M bonding angle favours an antiferromagnetic exchange interaction [141], [142].

It has been argued that the ferromagnetic ordering between the spins of Mo4+

cations in R2Mo2O7 based on the larger rare earth cations is due to the double-
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Figure 3.21 The magnetic phase diagram of the R2Mo2O7 series, including
Lu2Mo2O7.

exchange mechanism. The t2g orbital degernacy is lifted to give a higher lying

level in which electrons are mobile to mediate the ferromagnetic interaction with

the localised spins of the electrons in the lower lying level. As the ionic radius of

the rare earth cation is increased, the inherent antiferromagnetic superexchange

pathway is suppressed and the double-exchange mechanism dominates to give a

metallic ferromagnetic ground state [140].

There are, however, certain aspects of Lu2Mo2O7 that appear quite different

from a canonical spin glass, and even Y2Mo2O7. The magnetic heat capacity of

a spin glass state is expected to show a broad feature ∼ 50 % above the spin

freezing transition with linear T -dependence at low temperatures. The magnetic

heat capacity of Y2Mo2O7 has a broad hump between 10 K and 30 K and below

this, clearly follows T -linear behaviour to low temperatures [111]. This linear

variation of heat capacity indicates that there is a continuous density of magnetic

states down to the lowest temperatures, which is characteristic of a spin glass

state [15]. In the case of Lu2Mo2O7, a broad hump is observed in the heat

capacity upon subtraction of the estimated lattice contribution, which indicates

that short-range correlations persist up to high temperatures. It is important
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to note that this smeared-out feature extends out to ∼ 100 K, which is much

higher in energy than for Y2Mo2O7 and implies that the onset of the glassy

state in Lu2Mo2O7 occurs on a higher energy scale. This is consistent with

the magnetic diffuse neutron scattering data, which suggest that short range

Mo-Mo spin correlations persist up to 300 K. The most important difference

between the heat capacities of Lu2Mo2O7 and its yttrium based analogue is

their low temperature behaviours. The heat capacity measured for Lu2Mo2O7

clearly follows a T 2 dependence at low temperatures, with a fit of Cv = βT 2

yielding β = 8.6×10−4 J mol−1 K−3 per formula unit. A similar T 2-dependence

has been observed in certain two-dimensional kagome based systems, such as

the S = 5
2
jarosite (H3O)Fe3(SO4)2(OH)6 [25] and the kagome bilayer SCGO(x)

[143]. Typically for a long range ordered antiferromagnet, the low temperature

heat capacity follows a C ∝ T
d
ν dependence, where d is the spatial dimensionality

and ν is the exponent in the excitation dispersion, which is given by ν = 1 in

an antiferromagnetic. In the topological spin glass systems, the T 2 variation

was, therefore, attributed to the presence of a gapless excitation spectrum that

result from the propagation of a two-dimensional antiferromagnetic spin wave

[15]. Interestingly, a T 2-dependence has recently been measured on the first single

crystal sample of Y2Mo2O7 [113]. The origin of this unusual low temperature

behaviour displayed in the latest measurements of Y2Mo2O7 are argued to result

from the orbital degeneracy in the Mo4+ S = 1 cation. It has been proposed the

the orbital degree of freedom in this 4d2 system could couple to the spin degrees

of freedom to give rise to a T 2-dependence of the magnetic heat capacity at low

temperatures [144], [145]. It is likely that this spin-orbit coupling between the

spin and orbital degrees of freedom in the Mo4+ cation also plays an important

role in Lu2Mo2O7.

3.9 Conclusions

Polycrystalline Lu2Mo2O7 has been prepared by solid state synthesis at 1600 ◦C.

Powder X-ray and neutron diffraction and thermal gravimetric analysis have

revealed the existence of a miscibility gap in the Lu2Mo2O7−x system at 1600 ◦C

between stoichiometric Lu2Mo2O7 and Lu2Mo2O6.6. An extensive study of the

ground state magnetic properties of Lu2Mo2O7 has revealed an apparent spin

freezing transition at Tf ∼ 16 K, which given the significant energy scale of

antiferromagnetic exchange (θ = −158 K), implies that spin order in Lu2Mo2O7
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is highly frustrated with a frustration index, f ∼ 10. Magnetic diffuse neutron

scattering data reveal that this frustration arises from the strong competition

between the nearest neighbour and next nearest neighbour exchanges correlations

at low temperatures. The magnetic susceptibility data collected for the reduced

phase Lu2Mo2O6.6, show that the magnetic properties are qualitatively similar to

those of Lu2Mo2O7, but with significant changes in the underlying parameters.

For instance, a shift in the spin freezing transition from 16 K to 20 K is observed

and the Weiss constant θ = − 329 K shows that that the strength of

superexchange interactions is enhanced. In addition, the frustration factor of

f ∼ 16 reveals that the disorder in Lu2Mo2O7−x markedly increases the degree

of frustration in comparison to Lu2Mo2O7.

Lu2Mo2O7 displays certain properties expected for canonical spin glasses and

many similarities to its widely studied yttrium based analogue Y2Mo2O7. The

apparent glassy behaviour in Y2Mo2O7 sparked a quest to find the disorder that

drives the formation a of spin glass ground state at low temperatures in a material,

which on the average crystallographic scale, appears well ordered. It is important

to note the unusual low temperature behaviour of the magnetic heat capacity,

which unlike classical spin glasses and polycrystalline Y2Mo2O7, shows a T 2-

variation. Such behaviour had been observed in other glassy systems, where is

has been predicted that the spin glass state can exist in the absence of disorder.

Lu2Mo2O7 could, therefore, provide another example of an ordered, topological

spin glass state. In order to understand the magnetic ground state in Lu2Mo2O7

further, an inelastic neutron scattering survey is necessary in order to observe the

nature of the scattering out with the energy range that has been measured on D7

and to determine the form of magnetic excitations from the ground state.
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Chapter 4

Spin Liquid-like Ground State in the

Oxynitride Pyrochlore

Lu2Mo2O4.8N1.7

4.1 Introduction

The antiferromagnetic pyrochlore lattice, formed of corner-sharing tetrahedra

of antiferromagnetically interacting spins is one of the canonical examples of

a geometrically frustrated lattice. The S = 1
2
pyrochlore antiferromagnet is a

prime candidate to host a quantum spin liquid ground state. The exact nature of

this exotic ground state, however, is unknown and experimental candidates of a

three-dimensional quantum spin liquid remain extremely rare. One way in which

such a material could be realised is through the synthesis of oxynitride rare earth

molybdate pyrochlores, which can be achieved through the thermal ammonolysis

of R2Mo2O7 phases. With an ideal composition of R2Mo2O5N2 the Mo4+ cations

that reside on the tetrahedral oxide pyrochlore network are oxidised to the Mo5+

4d1 oxidation state in order to compensate for the greater charge of the N3−

nitride anion in comparison with the O2− oxide anion. Thermal ammonolysis is a

topochemical reaction, which means that the geometrically frustrated pyrochlore

structure is retained upon nitridation [133]. R2Mo2O5N2 oxynitride pyrochlores

are thus excellent candidates to host quantum spin liquid phenomena.

Several members of the R2Mo2O7 series have been nitrided by thermal ammonoly-
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sis including Sm2Mo2O3.83N3.17 [146], Y2Mo2O4.5N2.5[147] and Eu2Mo2(O,N)7−x

[133]. Most recently, the R = Eu analogue was investigated, which showed an

absence of spin freezing or long range magnetic order down to 2 K from a magnetic

susceptibility study of the Eu2Mo2O3.75N3.06 [133]. Oxynitrides of the Lu2Mo2O7

pyrochlore have not been reported previously, and the non-magnetic nature of the

Lu3+ cation means that the magnetism on the molybdenum sub-lattice can be

investigated individually in the Lu2Mo2O5N2 system. In the following Chapter,

the synthesis of a new oxynitride pyrochlore phase, Lu2Mo2O4.8N1.7, is reported

along with a preliminary study of the material through magnetic susceptibility,

heat capacity and neutron scattering measurements. In addition, a comparison of

the low temperature magnetic behaviours of the spin glass Lu2Mo2O7 presented

in Chapter 3 and Lu2Mo2O4.8N1.7 is given.

4.2 Synthesis and Characterisation

Oxynitride pyrochlore samples were prepared by the thermal ammonlysis of

Lu2Mo2O7. The oxide precursor was synthesised by the solid state reaction of

Lu2O3 and MoO2 according to the method given in Chapter 3. 3 g of oxide

precursor were ground into a fine powder in an agate mortar and pestle and

spread thinly and evenly over a surface area of 10 cm × 1.5 cm in a large alumina

crucible. The sample was then heated under flowing ammonia gas with a flow rate

of 250 cm3/min at 600 ◦C for 12 hours, before re-grinding and re-spreading and

a second 600 ◦C 12 hours ammonia heat treatment. The sample was heated in a

tube furnace with stainless steel fittings and ammonia-resistant teflon gas tubing.

The system was purged with nitrogen gas before and after ammonia gas was

allowed to flow through the system. The out-flowing ammonia was neutralised

through a series of gas bubblers containing a solution of acetic acid and water.

The corresponding weight loss of the sample due to the ammonolysis was 1.87 %,

which reflects the lower atomic mass of nitrogen in comparison with oxygen.

The nitrogen content of the sample was determined to be 3.88 % by elemental

analysis on a Carlo Erba CHNS analyser at the School of Chemistry, University

of St Andrews. This gives an elemental composition of Lu2Mo2O4.81N1.71 and,

thus, an average molybdenum oxidation state of Mo4.4+. In order to scale up the

sample size for neutron scattering studies, this method was repeated to prepare

several 3 g samples that were well ground together to give a homogeneous sample

of 18 g. The average weight loss of the large scale sample upon ammonolysis
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was 1.83 % and the average nitrogen content was determined to be 3.92 % by

elemental analysis, giving a chemical composition of Lu2Mo2O4.75N1.73, which is

in good agreement with the composition of the initial 3 g sample.

4.3 Magnetic Susceptibility

The DC magnetic susceptibility of Lu2Mo2O4.8N1.7 was measured in an applied

field of 1 T from 2 K to 300 K in a zero field cooled (ZFC) field cooled (FC)

cycle, as shown in Figure 4.1. At high temperatures, the data can be described

by Curie-Weiss behaviour and the solid white line in Figure 4.1 shows the fit of,

χ−1 =

(
C

T − θ

)−1

(4.1)

to the inverse susceptibility data. The Weiss constant θ = −121(1) K reflects the

dominance of strong antiferromagnetic exchange, however, the data do not show

any indication of long range magnetic order nor any significant glassy behaviour

down to 1.8 K. The Curie constant, C = 0.311(1) K emu mol−1, gives an effective

magnetic moment of 1.1 μB per molybdenum cation.

4.4 Neutron Diffraction Study

Powder neutron diffraction data were collected on a 3 g sample of Lu2Mo2O4.8N1.7

on the high resolution powder diffractometer (HRPD) at the ISIS spallation

neutron source at the Rutherford Appleton Laboratory, U.K. The sample was

contained within a 6 mm diameter vanadium can in a helium cryostat. Data were

collected at 4 K for a total counting time of 20 hours. The Rietveld refinement

of the cubic Fd3̄m pyrochlore model to the data collected on the backscattering

and 90 ◦ detector banks is shown in Figure 4.2. Table 4.1 summarises the results

of the Rietveld refinement, for which the total anion content was constrained

to the analytically determined values whilst allowing the oxygen and nitrogen

occupancies to refine over both anion sites to give a chemical composition of

Lu2Mo2O4.81(1)N1.71. Isotropic thermal parameters were constrained together for

cations and anions. The data are thus well described by a structural pyrochlore

model and do not show any evidence of additional magnetic Bragg scattering at
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Figure 4.1 The magnetic and inverse susceptibilities of Lu2Mo2O4.8N1.7

measured in an applied field of 1 T. The solid white line shows a
Curie-Weiss fit to inverse susceptibility data.

low temperatures, in agreement with the magnetic susceptibility data.

Table 4.1 Refined atomic coordinates and occupancies for Lu2Mo2O4.8N1.7

(a = 10.1428(2) Å). Isotropic thermal parameters (Uiso) were
0.0337(6) Å2 for metal cations and 0.0398(6) Å2 for anion sites. Total
Rwp = 2.21 %, χ2 = 14.58 for 64 variables.

Atom Site x y z Occupancy

Lu 16d 1
2

1
2

1
2

1.0

Mo 16c 0 0 0 1.0

O / N 48f 0.3477(1) 1
8

1
8

0.663(2)/0.257

O’ / N’ 8b 3
8

3
8

3
8

0.831/0.169

4.5 Magnetic Diffuse Neutron Scattering Study

The magnetic diffuse neutron scattering data of Lu2Mo2O4.8N1.7 were collected

on an 18 g polycrystalline sample on the diffuse scattering spectrometer D7 at
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(a) Backscattering detector bank.

(b) 90 ◦ detector bank.

Figure 4.2 Rietveld refinement of the cubic Fd3̄m model to 4 K HRPD data
of Lu2Mo2O4.8N1.7. Bottom tick marks show the reflections for
the Lu2Mo2O4.8N1.7 pyrochlore phase, middle tick marks a MoO2

impurity phase (∼ 5 % weight) and top ticks marks for scattering
observed from the vanadium sample holder.
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the Institut Laue-Langevin, France. The sample was mass distributed equally

into two strips of aluminium foil packed on top of one another in an annular

geometry inside a 2 cm diameter aluminium can. In this way, the sample

covered the full 5 cm height of the neutron beam whilst minimising the beam

attenuation by the sample. The data were initially collected with an incident

neutron wavelength of 3.1 Å without analysis of neutron energy, thus the scattered

neutron energies were integrated up to 8.5 meV. A standard Orange cryostat

allowed access to temperatures down to 1.5 K. Quartz, cadmium, and vanadium

measurements were performed in order to correct flipping ratios, background and

detector efficiencies, respectively. Data were collected for a total of 24 hours

per temperature. Figure 4.3 shows the nuclear, spin incoherent and magnetic

components of the total scattering cross section taken at 300 K, which were

separated by the xyz polarisation analysis of the D7 spectrometer. The inset

shows the magnetic scattering cross section measured at 1.5 K and 300 K, which

coincide reasonably well. The solid blue line in the inset of Figure 4.3 shows an

elastic paramagnetic cross section for molybdenum spin only cations,

dσ

dΩ
=

2

3
(γnr0)

2

(
1

2
gF (Q)

)2

S(S + 1) (4.2)

where,

F (Q) = 0.35exp(−48.035s2)+1.035exp(−15.060s2)−0.3929exp(−7.479s2)+0.0139

(4.3)

is an analytical approximation for the spin only magnetic form factor for

molybdenum cations, with s = Q/4π [88]. The magnetic scattering cross section

is completely dwarfed by the strong nuclear Bragg scattering and the total

magnetic scattering was found to be 0.11(1) μB per molybdenum cation, which

corresponds to ∼ 30 % of the expected gS(S + 1) μB value.

The sample was also measured with an incident neutron wavelength λ = 4.8 Å at a

temperature of 1.5 K. Data were acquired for a total of 48 hours and corrected for

sample attenuation for an annulus [125], [126]. Figure 4.4 shows a comparison of

the magnetic scattering cross section at 1.5 K of Lu2Mo2O7, which shows a build

up of magnetic diffuse scattering at Q ∼ 0.6 Å−1, and Lu2Mo2O4.8N1.7, which

remains relatively flat and shows little Q-dependence. There may be evidence of
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Figure 4.3 The nuclear, spin incoherent and magnetic components of the total
scattering cross section of Lu2Mo2O4.8N1.7 measured at 300 K with
an incident neutron wavelength λ = 3.1 Å. The inset shows the
magnetic scattering cross section in the low-Q region at 1.5 K and
300 K.

features in the data centred about 0.6 Å and 1.0 Å, which are marked in Figure

4.4.

4.6 Heat Capacity

Zero field heat capacity data were collected for a 8.9 mg pressed powder pellet

of Lu2Mo2O4.8N1.7. The data were taken over a temperature of 500 mK to 30 K

with the use of a 3He insert on a Quantum Design PPMS. The data are shown in

Figure 4.5. The estimate of the lattice contribution to the total heat capacity of

Lu2Mo2O7 shown in Chapter 3 was also used here given the isostructural nature

and similar formula weight of Lu2Mo2O4.8N1.7. The low temperature region of

the heat capacity, which is mostly magnetic in origin, can be modelled by a linear

C = γT dependence with γ = 7.06(3) mJ K−2 mol−1, shown by the black solid

line in the inset of Figure 4.5. The fit to the data can be improved by letting

the linear function take an intercept value of 0.8(1) J K−1 mol−1, shown by the
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Figure 4.4 The absorption corrected magnetic scattering cross sections of
Lu2Mo2O7 and Lu2Mo2O4.8N1.7 measured at 1.5 K with an incident
neutron wavelength λ = 4.8 Å. Arrows mark Q-positions of potential
features that may indicate Mo-Mo spin correlations.

blue solid line in the inset of Figure 4.5. The corresponding non-zero entropy at

T = 0 may result from the anion disorder in this oxynitride system. Figure 4.6

gives a comparison of the low temperature heat capacities of Lu2Mo2O4.8N1.7 and

its parent oxide Lu2Mo2O7.

4.7 Discussion

The thermal ammonolysis technique has been successful in synthesising oxynitride

samples of the Lu2Mo2O7 pyrochlore. The ideal composition for a S = 1
2

system is Lu2Mo2O5N2, which induces an oxidation of the molybdenum cations

to the Mo5+ 4d1 oxidation state. Thermal ammonolysis of Lu2Mo2O7 at 600 ◦C

for 24 hours produced an oxynitride pyrochlore with the chemical composition

Lu2Mo2O4.8N1.7, which was determined through the combination of elemental and

gravimetric analyses. Furthermore, the refinement of a cubic pyrochlore model

with the analytically determined anion content to high resolution neutron powder
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Figure 4.5 The magnetic heat capacity of Lu2Mo2O4.8N1.7 over the entire
measured temperature range with 3He insert. The insert shows the
low temperature region of the data, which can be modelled by T -
linear behaviour (solid lines). An estimate of the lattice contribution
is shown (dashed line), which is found to be negligible below 5 K.

diffraction data gives very good agreement with Rwp = 2.21 %. The results of

the Rietveld refinement shown in Table 4.1 suggest that the distribution of oxide

and nitride anions is disordered over both of the anion sites in the pyrochlore

structure. From this chemical composition, the molybdenum cations have a

nominal oxidation state of Mo4.4+, which results in a significant change in the

magnetic properties of the system. The Weiss constant, θ = −121 K obtained

from the Curie-Weiss fit to the high temperature inverse of magnetic susceptibility

shown in Figure 4.1 indicates that strong antiferromagnetic exchange interactions

between molybdenum spins remain dominant upon nitridation. The reduction

in the effective magnetic moment, μeff = 1.1 μB, reflects the low spin nature

of the oxynitride system in comparison with Lu2Mo2O7. The most significant

result obtained from the magnetic susceptibility study of Lu2Mo2O4.8N1.7 is the

apparent loss of the spin freezing transition Tf ∼16 K that was observed for the

spin glass pyrochlore Lu2Mo2O7 in Chapter 3. In fact, the magnetic susceptibility

of Lu2Mo2O4.8N1.7 shows no evidence for any magnetic phase transitions or spin

glass behaviour down to 2 K. This is supported by the low temperature neutron
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Figure 4.6 A comparison of the low temperature magnetic heat capacity of
Lu2Mo2O7, which shows a C ∝ T 2 behaviour and the T -linear
dependence of Lu2Mo2O4.8N1.7.

diffraction data, which do not show evidence of long range magnetic order due to

the absence of magnetic Bragg scattering.

The magnetic scattering cross section measured on the diffuse scattering spec-

trometer D7 does not show any significant build-up of strong Q-dependent diffuse

scattering upon cooling from room temperature to 1.5 K, as shown in the inset

of Figure 4.3. The measured magnetic signal is extremely weak, which in part is

a result of the reduced magnetic moment in the oxynitride system, but may also

indicate that there is a significant proportion of inelastic neutron scattering from

the system even at low temperatures, such that the quasi-static approximation

breaks down and the majority of the magnetic neutron scattering occurs outside

of the energy range of the D7 instrument [148]. There may be some evidence of

peak like features in the magnetic scattering cross section centred around 0.6 Å

and 1.0 Å shown in Figure 4.4, but these are difficult to distinguish within the

experimental uncertainty of the data. The data are reasonably well described by

a paramagnetic Q-dependence and certainly do not show such strong evidence of

short range magnetic correlations as in the case of Lu2Mo2O7 at low temperatures,

which is illustrated in Figure 4.4.
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The most striking difference in the behaviours of Lu2Mo2O4.8N1.7 and its parent

oxide is revealed in the low temperature heat capacity. The heat capacity of

Lu2Mo2O4.8N1.7 was measured over a temperature range of 500 mK to 30 K,

shown in Figure 4.5 after subtraction of an estimate of the lattice contribution,

which shows no temperature dependent anomalies or evidence of a magnetic

ordering transition. The low temperature region of the data clearly follow T -

linear behaviour, with a C = γT fit yielding γ = 7.06(3) mJ K−2 mol−1. This

linear dependence is evidence for a large number or continuous density of low

energy states in Lu2Mo2O4.8N1.7, which has been observed in a number of spin

liquid candidates [49]. As discussed in Chapter 3, Lu2Mo2O7 follows a T 2-law

at low temperatures, which is rather unusual for a spin glass system. It should

also be noted that the heat capacity of Lu2Mo2O4.8N1.7 appears to deviate from

zero at T = 0, which may be a result of frozen-in zero-point entropy due to the

disordered nature of the anions within the oxynitride system.

4.8 Conclusions

Polycrystalline samples of a novel pyrochlore oxynitride phase Lu2Mo2O4.8N1.7

have been prepared by the thermal ammonolysis of the Lu2Mo2O7 oxide. The

oxide precursor was heated under an ammonia gas flow rate of 250 cm3/min

for a total of 24 hours at a temperature of 600 ◦C. The anion content of the

oxynitride phase was determined by chemical analysis and gravimetric analysis

and confirmed by Rietveld fit to high resolution powder neutron diffraction

data. Magnetic susceptibility confirms the persistence of strong antiferromagnetic

exchange (θ = −121 K) but an absence of a spin freezing transition down to

at least 2 K. Futhermore, the low temperature magnetic heat capacity reveals

an absence of magnetic phase transitions down to 500 mK and a large density

of low energy states from its T -linear behaviour, with γ ∼ 7 mJ K−2 mol−1.

The absence of magnetic diffuse scattering from the Lu2Mo2O4.8N1.7 systems

implies that the majority of the magnetic neutron scattering at low temperatures

is inelastic and that the magnetic ground state of Lu2Mo2O4.8N1.7 is dynamic.

This is unlike a frozen spin glass state, in which all of the magnetic neutron

scattering is expected to collapse into the elastic line [26]. In order to investigate

the role of the low spin or quantum fluctuations in governing the ground state

properties of Lu2Mo2O4.8N1.7, a proposal has been submitted to perform the

first inelastic neutron scattering survey of the material on the Cold Neutron
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Chopper Spectrometer (CNCS) at the Spallation Neutron Source of the Oak

Ridge National Laboratory, U.S.A.
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Chapter 5

Gapless Spin Liquid Ground State in

the S = 1
2 Vanadium Oxyfluoride

DQVOF

5.1 Introduction

Experimental realisations of the S = 1
2
kagome antiferromagnet (KAFM) are

highly desirable as they are the prime candidate to host the exotic quantum spin

liquid (QSL) ground state in two-dimensions. This results from the combination

of the strong geometric frustration of antiferromagnetically coupled spins on the

kagome lattice of vertex sharing equilateral triangles and the quantum effects

that allow incoherent spin fluctuations to persist down to T = 0 [49]. A

review of the literature reveals that, until very recently, all of the candidate

compounds of S = 1
2
kagome physics consisted of kagome networks of Cu2+ d9

cations [149] [150] [151] [152]. The significance of this is that the d9 electronic

configuration is known to have strong Jahn-Teller effects, which in certain

situations can affect low temperature structural and magnetic properties that

can ultimately limit the potential of such systems as candidate QSLs [4]. A

good example of this is the volborthite mineral, Cu3V2O7(OH)22H2O, in which

the 3dz2 orbital is selected to release the eg orbital degeneracy, resulting in a

distortion of the kagome lattice and the loss of the crystallographic three-fold

axis that acts to maintain spatially isotropic magnetic interactions [153]. The

first example of a system containing a kagome network of d1 ions was recently
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reported by Aidoudi et al. [75] that, therefore, provides a novel opportunity in

the study of frustrated quantum magnets. The system is an inorganic-organic

hybrid vanadium oxyfluoride material, diammonium quinuclidinium vanadium

(III,IV) oxyfluoride [NH4]2[C7H14N][V7O6F18], or DQVOF that was successfully

prepared by ionothermal synthesis. The ionothermal preparative method uses an

ionic liquid, defined as an ionic salt with a melting point of less than 100 ◦C,

as the solvent for a reaction [70]. For the work presented in the following

sections, samples were prepared by Dr Farida Aidoudi at the School of Chemistry,

University of St Andrews, U.K. Exact details of the reaction conditions are given

in [75] and the structure and purity of the samples were confirmed by powder

X-ray diffraction and chemical analysis.

DQVOF crystallises in the trigonal R3̄m space group (no.166) and its structure is

shown in Figure 5.1. Strictly speaking, DQVOF is a magnetic bilayer compound,

with kagome layers of S = 1
2
d1 V4+ cations and S = 1 d2 V3+ cations in between

the kagome planes. These bilayer units propagate along the structure and are well

separated by organic quinuclidinium cations, C7H14N
+, that act to reduce the

magnetic dimensionality of the system. The initial magnetic study of DQVOF

presented in [75] was extremely encouraging; the system revealed an absence

of long range magnetic order and spin freezing in DC magnetic susceptibility

measured down to 2 K despite significant antiferromagnetic exchange interactions.

Furthermore, Aidoudi et al. [75] put forward an argument to suggest that there is

negligible magnetic exchange between the kagome layers and the inter-plane V3+

due to a poor superexchange orbital overlap. At this point, further investigation

was required in order to determine whether DQVOF displays true kagome or

kagome bilayer behaviour and the nature of its magnetic ground state at the

very lowest temperatures. Presented in this Chapter are the low temperature

magnetisation and heat capacity data that show that the inter-plane S = 1

spins of the V3+ cations are well separated magnetically from the kagome layers.

In addition, through the analysis of the low temperature heat capacity that is

intrinsic to the kagome layers and muon spin relaxation data there is strong

evidence to support the existence of a gapless spin liquid ground state in DQVOF.

5.2 Magnetisation and Magnetic Susceptibility

The magnetic susceptibility of DQVOF was measured in a superconducting

quantum interference device (SQUID) magnetometer in an applied field of 5
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(a) A magnetic bilayer unit with
V4+ (cyan), V3+ (blue), F−

(green) and O2− (red).

(b) The bilayer units, viewed down
the b-axis, with charge balanc-
ing ammonium, NH+

4 , cations.

(c) The bilayer units are magneti-
cally isolated by quinuclidinium,
C7H14N

+, cations.

(d) The V4+ kagome lattice, viewed
down the c-axis.

Figure 5.1 The crystal structure of DQVOF.
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T. Figure 5.2 shows the magnetic and inverse susceptibilities as a function

of temperature between 1.8 K and 300 K. The data show no evidence of

a magnetic ordering transition within the measured temperature range. At

high temperatures, the magnetic susceptibility is well described by Curie-Weiss

behaviour, which is shown by the linear fit to the inverse of susceptibility in

Figure 5.2. The Weiss constant obtained from the fit indicates the dominance of

antiferromagnetic exchange, θ = −58(4) K, and the Curie constant, C = 3.09(10)

K emu mol−1 gives an effective magnetic moment μeff = 4.97(8)μB per formula

unit of six V4+ cations and one V3+ cation, which is in good agreement with the

observations of [75].

Magnetisation against field data were collected by Dr Pierre Bonville at the

Service de Physique de l’État Condensé of the CEA-CNRS Saclay, France in

a vibrating sample magnetometer (VSM) in applied field strengths up to 14 T.

The data measured at 1.7 K were normalised by the saturation magnetization,

Msat = NAgμBS, per formula unit of S = (1 + 6
2
) and taking g = 2. The net

magnetisation is considered as a sum of two components; a linear component

from the strongly interacting kagome layers of S = 1
2
spins and a Brillouin-

like contribution from the paramagnetic or weakly interacting inter-plane S = 1

spins. This approach has been successfully applied to several kagome systems

in order to separate the magnetisation inherent to the kagome physics from that

of anti-site spins [154][155]. A fit to the linear response is shown in Figure 5.3

above applied fields of 10 T. By subtracting this linear contribution, one can

observe the saturated Brillouin-like magnetisation of the S = 1 spins of the inter-

layer V3+ ions with M/Msat = 0.148(5). From this saturated magnetisation, one

obtains a saturated magnetic moment of 1.18 μB for the interlayer V3+ spins.

This moment reduction from the expected spin only value is due to the spin-orbit

coupling that is prevalent in the V3+ cation [156], [157], for instance CdV2O4 [158]

and LaVO3 [159] have low temperature ordered moments of 1.19 μB and 1.15 μB,

respectively. This demonstrates that to a good approximation, the kagome layers

are magnetically decoupled from the inter-planes sites at 1.7 K.

5.3 Field Dependent Heat Capacity

The heat capacity of DQVOF was measured on a 1.3 mg pressed powder pellet

in a physical properties measurement system (PPMS) with 3He insert in zero

field and applied fields of 3T, 5 T, 7 T and 9 T. Figure 5.4 and 5.5 show the
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Figure 5.2 Magnetic (closed circles) and inverse (open circles) susceptibilities
measured in a 5 T field. The solid black line is a Curie-Weiss fit to
the inverse of susceptibilty.

heat capacity, Cv, against temperature, T , and to CvT
−1 against temperature,

respectively. The data clearly show a broad, Schottky-like feature that shifts to

higher energies in stronger applied fields. The field dependent Schottky behaviour

arises from spins that are weakly interacting within the system i.e. paramagnetic,

even at low temperatures. It is, therefore, possible to apply a similar analysis to

the heat capacity of DQVOF as discussed in the previous section in the context

of the low temperature magnetization against field data; first fit the Schottky

anomaly associated with the weakly interacting S = 1 spins and subtract it from

the data to reveal the underlying heat capacity of the strongly correlated kagome

layers [160],[161].

The 2S + 1 degenerate mS levels of an S = 1 spin state in zero field are split

upon application of an external field by the Zeeman interaction, |ΔE|=gμBB, as

shown in Figure 5.6. The partition function, Z, of such a three level system, with

energies of 0, E and 2E is given by,

Z = 1 + exp
(
− E

T

)
+ exp

(
− 2E

T

)
(5.1)
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Figure 5.3 Net normalised magnetisation against field (black squares) with a
fit to the linear contribution above 10 T. Subtraction of the linear
contribution gives the saturated magnetisation of the S = 1 spins
(red circles) shown with the Brillouin curve for S = 1 spins (dashed
black curve).

The average energy, U , which is given by,

U =

∑
ESexp(−ES

T
)

Z
(5.2)

for ES over all mS states can, therefore, be taken as,

U =
2E + Eexp(E

T
)

1 + exp(E
T
) + exp(2E

T
)

(5.3)

Given that the heat capacity of constant volume is the partial derivative of the

average energy with respect to temperature i.e. Cv = (∂U
∂T

)v, one arrives at an

expression for the heat capacity of an S = 1 spin triplet,

Cv = fNAkB

(E
T

)2 exp(E
T
) + exp(−E

T
) + 4

(1 + exp(E
T
) + exp(−E

T
))2

(5.4)
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Figure 5.4 Heat capacity, Cv, of DQVOF as a function of temperature from 300
mK to 30 K in zero field and applied fields up to 9 T. Inset shows
low temperature region of the data.

where f gives the number of moles of S = 1 spins per formula unit. Figure 5.7

shows the Schottky feature in each field. In applied fields up to 3 T, the Schottky

behaviour can be well described by the expression given in Equation 5.4. However,

as the applied field strength is increased a second feature appears within the

energy scale of the experiment at the very lowest temperatures accessed with the
3He insert. This can be attributed to the splitting of the nuclear spin, mI , levels

of the I = 1
2

1H and 19F nuclei that are abundant within the DQVOF system.

Nuclear magnetic moments are typically much smaller than electronic magnetic

moments, on the order of 10−3 − 10−4μB, and the very weak interaction between

neighbouring nuclear spins means that they tend to behave paramagnetically.

Both 1H and 19F nuclei are 100 % abundant and have nuclear gyromagnetic

ratios, γI , 26.75 and 25.16× 107 rad T−1 s−1, respectively. The magnitude of the

splitting of the mI levels of both nuclei in applied fields of 3 T, 5 T, 7 T and 9

T are approximately 6 mK, 10 mK, 14 mK and 20 mK, respectively, which were

determined according to the expression,

|ΔE| = γIh̄B (5.5)
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Figure 5.5 CvT
−1 against T more clearly shows the field dependent Schottky

behaviour of the weakly interacting spins in the DQVOF system.

Figure 5.6 The Zeeman splitting of the 2S + 1 mS states of an S = 1 spin
system upon the application of an external magnetic field B.

where B is the magnitude of the applied magnetic field. The expression for the

heat capacity of a two level I = 1
2
system can be derived in a similar way to

method described in Equations 5.1− 5.4 and can also be found in the literature

[106]. The electronic and nuclear Schottky behaviour observed in CvT
−1 vs. T

of DQVOF in applied fields can, therefore, be successfully modelled as a sum of
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these two contributions,

CvT
−1 =

fSNAkB
T

(ES

T

)2 exp(ES

T
) + exp(−ES

T
) + 4

(1 + exp(ES

T
) + exp(−ES

T
))2

+
fINAkB

T

(EI

T

)2 exp(ET

T
)

(exp(EI

T
) + 1)2

(5.6)

where fS and fI give the number of moles of S = 1 and I = 1
2
spins per formula

unit and ES and EI give the energies of the mS and mI states, respectively. The

values of EI were fixed at the values determined by Equation 5.5 and ES, fS and fI

were fit to the field dependent data. In order to isolate the field dependent heat

capacity clearly and minimise the lattice contribution, the differences between

heat capacity values measured in different fields were determined. Figure shows

the fit of Equation 5.6 to ΔCvT
−1. An average value of fI = 39(3) is in excellent

agreement the total number of 40 moles of 1H and 19F nuclei per formula unit of

DQVOF. The splitting of the electronic ms spin states as a function of applied

field is shown in Figure 5.9. As expected, this follows linear Zeeman behaviour,

|ΔE|=gμBB, with a g-factor, g = 1.8(2), typical of V3+. One should note the

residual zero field splitting of the electronic spin states of ∼0.6 K. A value of

fS = 0.5(2), for the fraction of S = 1 spins per formula unit shows a similar

reduction as observed in the magnetisation data as a result of spin orbit coupling.

In analogy to the analysis of the magnetization against field data, the subtraction

of the contribution of the weakly interacting electronic and nuclear spins from the

heat capacity data should reveal the nature of the heat capacity that is intrinsic

to the kagome layers of S = 1
2
V4+ ions. Figure 5.10 shows the heat capacity

of DQVOF upon subtraction of the Schottky contributions. The zero field data,

shown in the inset of Figure 5.10, show no sharp peak structure indicating the

absence of any magnetic phase transitions over the entire measured temperature

range. Of particular interest here is the low temperature region of the data given

that the lattice contribution will be minimal and the heat capacity will be mostly

magnetic in origin. Figure 5.10 shows the heat capacity from 300 mK to 10 K in

each measured field, which can be modelled by T -linear behaviour between 300

mK and 5 K, where the lattice contribution to the heat capacity is negligible,

Cv = γT (5.7)

with γ∼200 mJ K−2 mol−1 per V4+ spin. Allowing a Cv∝T α model improves the
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Figure 5.7 The Schottky behaviour observed in the field dependent heat capacity
of DQVOF, which was successfully modelled by the expression given
in Equation 5.6 (solid red lines).

fit to the data, with α = 1.2 giving the best fit.

5.4 Muon Spin Relaxation

The muon spin relaxation (μSR) measurements were performed on a non-

orientated 400 mg sample of DQVOF on the MuSR spectrometer at the ISIS

Muon Facility, Rutherford Appleton Laboratory, U.K. The sample was loaded

into a silver foil packet and attached to a silver foil backing plate in a Variox

cryostat with dilution fridge insert. This sample environment allowed access to

temperatures as low as 40 mK. Subsequent measurements were performed on the

GPS beam line at the Swiss Muon Source, Paul Scherrer Institute, Switzerland.

In particular, the background of the ISIS data, which arises from muons that

fall outside of the sample and in the silver sample holder or elsewhere, was

carefully measured by a veto measurement of the sample during which, the

sample was contained in a thin aluminium foil packet held in place on a fork-

shaped sample holder by a layer of aluminium tape. The veto measurement

disregards any muons that do not hit the sample and is, therefore, a very low

background measurement. Figure 5.11 shows a comparison of the zero field time
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Figure 5.8 In order to isolate the field dependent heat capacity more clearly,
the difference between interpolated heat capacity measurements in
different fields were also successfully modelled by Equation 5.6.
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Figure 5.9 The Zeeman splitting of the mS levels of the V3+ S = 1 spins in
DQVOF as a function of applied field.

dependent muon asymmetries, A(t) collected at 2.5 K on MuSR and GPS, from

which a background asymmetry of 3.5 % can be determined for the ISIS data set.

All subsequent ISIS data is presented as the background corrected muon spin

polarisation, P (t), given by,

P (t) =
A(t)− Background

A(t0)− Background
(5.8)

The zero field muon spin polarisation reflects the sum of the local responses of

the muons implanted at different stopping sites within the sample. In the case

of DQVOF, the most energetically favourable stopping sites for the positively

charged implanted muon will be close to negatively charged fluoride and oxide

anions within the structure. Figure 5.12 shows the time dependence of the zero

field muon spin polarisation measured at 40 K and 40 mK, which have been
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Figure 5.10 Low temperature heat capacity of DQVOF upon subtraction of the
Schottky anomaly with γT and γTα fits. The red dotted line is an
estimate of the lattice contribution. The inset shows the data of
the entire measured temperature range.

successfully modelled with the expression,

PZF (t) = f(F−μ−F (t)×exp(−σ2t2)×exp(−λF t))+(1−f)(KTO(t)×exp(−λOt)
α)

(5.9)

This expression describes the sum of the nuclear and electronic fields surrounding

the implanted muon at the fluoride (F) and oxide (O) stopping sites in DQVOF

and the effect that these internal fields have on the muon polarization as a function

of time. F − μ− F (t) describes the strong dipole-dipole interaction between the

muon spin and the fluorine nuclear spin at the fluorine stopping site, which gives

rise to the characteristic kink in the polarisation data ∼2μs, and is given by,

1
6
(3 + cos(

√
3ωdt)

F − μ− F (t) = +(1− 1√
3
)cos((3−

√
3

2
)ωdt)

+(1 + 1√
3
)cos((3+

√
3

2
)ωdt))

(5.10)
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Figure 5.11 Comparison of the zero field muon asymmetries measured on
MuSR, ISIS and by veto measurement on GPS, PSI at 2 K.

where,

ωd =
μ0γμγF
4πr3

(5.11)

and μ0, γμ and γF are the permeability of free space, muon and 19F nuclear

gyromagnetic ratios, respectively. r, is the F-μ separation distance in the

strongly coupled F-μ-F state [162],[163]. The gaussian expression in Equation

5.9, exp(−σ2t2), was included to account for the distribution of fluoride anions

surrounding the muon at the stopping site. The expression, KTO(t), is the widely

used Kubo-Toyabe function given by,

KTO(t) =
1

3
+

2

3
(1−Δ2t2)exp(−Δ2t2

2
) (5.12)

that here describes the distribution, Δ, of nuclear fields surrounding the muon

at the oxide stopping site. The nuclear fields are static on the time scale of the

muon experiment and so are temperature independent. These parameters were,

therefore, fitted to the high statistics data collected at 40 K and fixed at their
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Table 5.1 The parameters determined from the fit of Equation 5.9 to the high
statistics zero field muon polarisation measured at 40 K.

f ωd / MHz σ / MHz λF / MHz Δ / MHz λO / MHz αO

0.17(2) 1.17(5) 0.55(3) 0.06(5) 3.25(7) 0.08(1) 0.7(1)

high temperature values for all subsequent fits. These values are summarized

in Table 5.1. The most important point to note for the zero field polarisation

data shown in Figure 5.12 is that the 40 mK and 40 K data relax to the same

value above the background. This non-relaxing component above the measured

background can most likely be attributed to a small fraction of muons that fall

far from the kagome planes, within the organic component of DQVOF.

Figure 5.12 Time dependence of the zero muon spin polarisation measured at
40 K and 40 mK. Solid lines represent fit of Equation 5.9 to the
data.

The temperature dependent, dynamical part of Equation 5.9 arises from the

fluctuating fields of the electronic spins within the DQVOF system, which cause

an exponential depolarisation of the muon spin. The rate of the muon spin

depolarisation at the oxide and fluoride stopping sites are given by λO and λF

in Equation 5.9, respectively. The fraction of spins, f , stopping at the fluoride

site is 20 % of the total number of muons stopping in the sample. The feature
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in the data ∼ 2 μs that arises from the dipolar coupling between the muon spin

and the fluorine nuclear spin remains apparent in the zero field data over the

entire temperature range. This implies that the muon at the fluoride stopping

site is only very weakly coupled to the electronic spins in the system as this

kink is not washed out from the data as a result of the relaxation from the

electronic field fluctuations. The application of a longitudinal field decouples the

muon spin from the static nuclear fields of the sample such that the muon spin

only probes the internal electronic field fluctuations. Figure 5.13 displays the

muon spin polarisation in an applied longitudinal field of 200 G. The data have

been modelled with a stretched exponential function over the entire measured

temperature range,

PLF (t) = P(non−relaxing) + POexp(−λt)β (5.13)

Here, P(non−relaxing) was fixed at 0.5 polarisation, which reflects the sum of

the non-relaxing contribution of the decoupled organic muon fraction (0.2), the

fluoride fraction (0.1) and the measured background (0.2).

Figure 5.13 Time dependence of the muon spin polarisation in an applied
longitudinal field of 200 G measured at temperatures 40 mK, 4 K,
10 K and 60 K.
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(a) (b)

Figure 5.14 The temperature dependence of (a) the muon spin depolarisation
rate, λ, and (b) the stretching component, β, obtained from the
fit of Equation 5.13 to the muon spin polarisation measured in a
longitudinal field of 200 G.

Figure 5.14 shows the temperature dependence of the muon spin depolarisation

or relaxation rate, λ, and the stretching component, β. Upon cooling from 10

K, there is a slowing down of the internal electronic field fluctuations, which is

reflected in the increase of the muon spin relaxation rate. However, from 1 K to

40 mK there is a clear plateau in the relaxation rate that strongly indicates the

persistence of internal field fluctuations at the lowest temperatures accessed. At

high temperatures, the system is in a fast fluctuating regime with β∼1, however,

at low temperatures β approaches 0.5, which implies that the implanted muons

are under the influence of more than one field fluctuation frequency.

Figure 5.15 shows the field dependence of the muon spin polarization in the low

temperature limit up to the maximum longitudinal field of 2.5 kG for MuSR. At

lower fields, one can clearly observe the decoupling of the nuclear fields. Stronger

field strengths do not appear to have a great effect on the muon spin polarisation,

with only a weak decoupling of the fluctuating electronic fields.

5.5 Discussion

The dominance of antiferromagnetic exchange, θ ∼−60 K, and the absence of long

range magnetic order down to 1.8 K as observed in the magnetic susceptibility
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Figure 5.15 The field dependence of the muon spin polarisation at 40 mK.

presented for DQVOF is in excellent agreement with the original magnetic study

of the system and demonstrates the consistency of the samples used here and in

the report by Aidoudi et al. [75]. It also confirms the highly frustrated nature of

the magnetic ground state in this vanadium oxyfluoride system [164].

One of the major questions regarding the low temperature magnetic properties

of DQVOF was whether or not the system would be a good model for a two-

dimensional magnetic kagome antiferromagnet. It is possible to explain the low

temperature, field dependent magnetisation and heat capacity data presented

here in terms of a paramagnetic behaviour of the inter-layer S = 1, which

implies that they are very weakly interacting with the neighbouring S = 1
2

spins that reside within the kagome layers. It is, therefore, concluded that to

a good approximation the S = 1
2
spins within the kagome layers in DQVOF are

magnetically decoupled from the interlayer spins at low temperatures and that

this vanadium oxyfluoride is considered as a novel S = 1
2
kagome antiferromagnet

model system.

There is strong evidence to suggest that DQVOF displays a gapless spin liquid

ground state. The intrinsic heat capacity of the kagome layers shows an absence

of any T -dependent anomalies that might indicate a magnetic phase transition
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and instead displays a continuous density of states down to the lowest measured

temperatures. Various models have been proposed for the low temperature heat

capacity of gapless spin liquids on the kagome lattice. Theoretically, the gapless

Dirac spin liquid [56], with a Dirac point-like Fermi surface, has been suggested

as the ground state for the S = 1
2
kagome antiferromagnet and is expected to

demonstrate a CvT
2 dependence at low temperature [57]. This does not appear

to be applicable in the case of DQVOF. A better description may, therefore, be

given by a more conventional spinon Fermi surface. Fermionic gapless spin liquids

are predicted to demonstrate T -linear behaviour in the low temperature specific

heat, with a distinct finite Sommerfield coefficient, γ. γ is related to the spinon

density of states at the spinon Fermi surface, in analogy to the electron Fermi

surface of metallic systems [121]. The low temperature heat capacity of DQVOF

clearly displays T -linear behaviour and can be modelled with Cv = γT . This

finite value of γ may be taken as evidence for the existence of a dense spectrum of

gapless excitations within the ground state of DQVOF. A value of γ∼200 mJ K−2

mol−1 per V4+ spin is comparable with other experimental gapless spin liquids

[165],[166]. The residual zero field splitting of ∼0.6 K is likely to result from a

splitting of the t2g crystal field of V3+ by, for example, a Jahn-Teller interaction

or the distorted octahedral geometry of the surrounding fluoride anions. Similar

field dependent behaviour, with zero field splitting, has also been observed in

the herbertsmithite, ZnCu3(OH)6Cl2, system [167],[161]. This was attributed to

weakly coupled anti-site Cu2+ spins residing on the inter-plane Zn2+ sites. Upon

removal of the Schottky anomaly of the anti-site spins, a T 1.3-dependence gave

the best fit to the low temperature heat capacity. CvT
2 behaviour could not be

brought into agreement with the data. This is remarkably similar to the behaviour

observed for DQVOF here, where a CvT
1.2 dependence gave the best fit to the

experimental data.

In a quantum spin liquid state, one would expect to observe incoherent spin

fluctuations down to temperatures equal to the spin gap, or in the case of a

gapless spin liquid, T = 0 [45]. Further evidence for the formation of such a

ground state in DQVOF can be found in the muon spin relaxation data. Certainly,

one can rule out any case for spin freezing within the system down to at least

40 mK; the zero field polarisation data in the high and low temperature limits

relax to the same value at long times, with no signal of a 1
3
-tail component in

the low temperature data that would be characteristic of frozen moments [168].

Furthermore, the weak field dependence of the muon spin polarisation at base

temperature also implies that the electronic field fluctuations are dynamic on the
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time scale of the muon experiment. The persistence of the internal electronic

field fluctuations is also reflected in the plateau in the spin depolarisation rate,

λ, below 1 K. This most likely demonstrates the gapless nature of DQVOF, as

has been argued for a number of other systems [169],[170]. However, one must

retain a certain degree of caution in the case of DQVOF given that there are

two potential sources of electronic field fluctuations (V4+ and V3+ spins) and the

origin of the muon spin depolarisation is not entirely certain. The situation at low

temperatures is a complicated one, with the implanted muon under the influence

of more than one field fluctuation frequency. However, from the inspection of the

zero field polarisation data, the muon spins at the fluoride stopping site are weakly

coupled to the electronic spins within DQVOF and the muon spin relaxation in an

applied longitudinal field of 200 G can be attributed to the fluctuating electronic

fields at the oxide stopping site. A muon will typically stop ∼ 0.1 nm from an

O2− anion, which in the crystal structure of DQVOF gives a μ+-V3+ separation

on the order of 5 Å, see Figure 5.16. The maximum dipolar field created by 1 μB

is 1.85 T Å−3, therefore, the internal fluctuating field, Hfluc, of the S = 1 V3+

cation at the oxide stopping site may be estimated by [155],

Hfluc = (1.85 Tμ−1
B Å

−3 × 2.8μB)/(5 Å
3
) ∼ 41 mT (5.14)

The relaxation rate, λ, resulting from this fluctuating field is given by,

λ =
2γμ

2Hfluc
2ν

ν2 + γμ2HLF
2 (5.15)

where γμ is the muon gyromagnetic ratio (135.5 × 2π MHz T−1), HLF is the

applied longitudinal field (0.02 T) and ν is the fluctuation frequency given by,

ν =
√
4J2zS(S + 1)/3πh̄ (5.16)

Here, J is the effective coupling between neighbouring V3+ spins, which from

the low temperature magnetisation data presented in Figure 5.3 is ∼ 1 K, and z

is the number of nearest neighbours. Equations 5.14 - 5.16, therefore, allow for

an estimation of the relaxation rate of the muon spin at the oxide stopping site

through coupling to the fluctuating field of the inter-layer V3+ cations, which has

an upper limit of ∼ 0.01 MHz. Given that the experimentally determined value
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of λ at 1 K is ∼ 0.4 MHz, it implies that the muon spin relaxation observed at

low temperatures in DQVOF is intrinsic to the S = 1
2
kagome layers.

Figure 5.16 Separation between an implanted muon (pink) and a V3+ cation
(blue) at a potential oxide stopping site is on the order of 5 Å,
which creates an internal fluctuating field ∼ 40 mT.

5.6 Conclusions

The vanadium oxyfluoride, DQVOF, is a geometrically frustrated magnetic

kagome bilayer compound with an energy scale for antiferromagnetic exchange

∼ 60 K. The S = 1 spins of the inter-plane V3+ are magnetically decoupled from

the kagome planes, such that DQVOF can be viewed as an experimental model

for the two-dimensional S = 1
2
kagome antiferromagnet. Muon spin relaxation

measurements clearly indicate the absence of spin freezing down to 40 mK. The

T -linear dependence of low temperature heat capacity with a finite Sommerfield

coefficient, γ, provides strong evidence for a gapless spin liquid ground state.

Future study will require a combination of techniques, including local probes such

as muon spin rotation, which may help to clarify the origin of muon spin relaxation

in DQVOF, and NMR, to reveal the local susceptibility of the V4+ kagome

layers [171]. Thermal conductivity, κ, measurements may also prove important.

Thermal transport is very powerful tool for the detection of elementary excitations

in QSL systems, its main advantage being that it only probes itinerant excitations

carrying entropy and so is free from localised effects, such as the Schottky anomaly
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in heat capacity [172]. In the case of the S = 1
2
organic triangular lattice system,

κ-(BEDT-TTF)2Cu2(CN)3, thermal conductivity measurements unambiguously

demonstrated in presence of a spin gap in the ground state of the system, which

was previously thought to be gapless on the basis of heat capacity data that was

plagued by a Schottky anomaly at low temperature. Thermal conductivity could,

therefore, directly reveal the low temperature excitation spectrum of DQVOF

without the need for the subtraction of the Schottky behaviour as in the heat

capacity. Finally an inelastic neutron scattering survey DQVOF will be vital to

reveal the nature of magnetic excitations from the ground state. A continuum

of spinon excitations was recently observed in single crystal inelastic neutron

scattering spectra of herbertsmithite [61]. There are several materials chemistry

issues that must first be dealt with before such an experiment can take place,

such as sample deuteration and scale-up.
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Chapter 6

Anion Ordering in Oxynitride

Perovskites; a Neutron Diffraction

Study

6.1 Introduction

The ideal perovskite has the general formula ABX3, where A and B are cations,

typically with ionic radii rA>rB and X is an anion with rX ≈ rA. The A-site

cations are coordinated to 12 anions in a cubo-octahedral geometry and the B-

site cations are surrounded by 6 anions in an octahedral coordination [173]. The

ideal perovskite adopts a cubic structure in the Pm3̄m space group (no. 221).

The B-cell setting of the ABX3 perovskite structure is shown in Figure 6.1. If

rA≡rX such that the A-site cations are exactly accommodated within the 12-fold

site, then the distance X−A−X is given by (2rA+2rX). It can also be observed

that in this ideal case (2rA + 2rX) is equal to
√
2 times the unit cell edge, which

is given by (2rB + 2rX), such that (rA + rX) =
√
2(rB + rX). This gives the

relationship known as the tolerance factor, t,

t =
rA + rX√
2(rB + rX)

(6.1)

that in the ideal case is unity [174]. The tolerance factor gives a rough guide as

to whether a perovskite structure will form at a given temperature and pressure
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from a particular ensemble of ions, but is important to bear in mind that there

are factors other than the ionic radii that play a vital role in the determination

of structure and symmetry.

Figure 6.1 The cubic perovskite structure, ABX3 with A-site cation (red), B-
site cations (blue) and X anions (yellow). The solid lines show the
unit cell in the B-cell setting and the 12-fold coordination of the
A-site and the BX6 octahedra are depicted by the dashed lines.

There is, in fact, a wealth of perovskites that can be derived from the ideal cubic

Pm3̄m structure. These include distorted derivatives, which arise from tilting

or rotation of the BX6 octahedra, and substitutional derivatives such as double

perovskites [175] and Ruddlesden-Popper phases [176], see Figures 6.2 and 6.3,

respectively. The tilting or rotation of the BX6 octahedra in distorted derivatives

can result from a size mismatch of the A-site cation, displacement of the B-site

cation within the octahedra or a distortion of the octahedra by, for example, Jahn-

Teller effects. Octahedral tilting results in changes to A−X bond lengths, A-site

coordination and a reduction in the cubic Pm3̄m symmetry. Glazer notation

[177], [178] is commonly used to describe the rotation of BX6 octahedra about

any 3 orthogonal Cartesian axes coincident with the axes of the cubic unit cell.
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The tilting of the polyhedra may be in-phase (+), meaning that the tilts in

successive layers within the structure are in the same direction, or anti-phase

(−), such that rotation of neighbouring polyhedra occur in the opposite sense,

see for example, Figure 6.4. There are 15 different tilt systems that necessarily

lower the symmetry of the ideal Pm3̄m structure that are shown in Figure 6.5

with their group-subgroup relationships [179].

Figure 6.2 A face centred cubic (Fm3̄m) double perovskite, A(B′B′′)X3, with
A-site cations (red) in 12-fold coordination, alternating B′ (blue)
and B′′ (green) cations and X anions (yellow).

A commonly observed perovskite structure is the orthorhombic Pnma cell that

results from the a+b−b− tilt system. Figure 6.6 shows the relationship between

this orthorhombic unit cell and the Pm3̄m unit cell of edge length, acubic. There

are six possible settings in space group 62, and within the results presented in

this Chapter, the Pbnm setting is used, which is obtained simply from the Pnma

setting by applying the matrix |001|100|010|. The tilt angles of orthorhombic

perovskites are often expressed in terms of θ, φ and Φ, which describe the rotations

about the [110], [001] and [111] pseudo-cubic axes, respectively, and are given by,

cos θ =
a

b
(6.2)

cosφ =

√
2a

c
(6.3)

cosΦ =

√
2a2

bc
(6.4)
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Figure 6.3 An n = 2 Ruddlesden-Popper phase, A3B2X7 or (AX + 2ABX3),
with alternating perovskite (black bonds) and rock salt type (green
bonds) layers. A cations (red), B cations (blue) and X anions
(yellow).

where a, b and c are the orthorhombic cell parameters.

Another distorted derivative of the ideal perovskite that will be used within this

Chapter is the rhombohedral R3̄c cell that results from the a−a−a− tilt of the

Pm3̄m system. Figure 6.7 shows the relationship between the two unit cells

[180]. In the case of R3̄c, the tilt angle, ω, is most accurately derived from the x
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(a) a0a0c+ tilt, P4/mbm. (b) a0a0c− tilt, I4/mcm.

Figure 6.4 An (a) in-phase and (b) anti-phase tilt about the crystallographic
c-axis generates tetragonal unit cells in space groups P4/mbm and
I4/mcm, respectively.

Figure 6.5 Group-subgroup relationships between the 15 perovskite tilting
systems in Glazer notation. Red lines indicate first order transitions
and blue lines indicate second order transtions.

coordinate of the displaced anion,

tanω =
√
3 + (x

√
12) (6.5)

Transition metal oxynitride perovskites are an emerging class of functional

materials [67] with a wide variety of interesting optical, photocatalytic [181],

dielectric [182] and magnetoresistive properties [183] that may depend upon anion
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Figure 6.6 The relationship between the cubic unit cell (cell edge length
acubic in blue and the orthorhombic Pnma cell in red with
aortho ≈ cortho ≈ √

2acubic and cortho ≈ 2acubic.

order. An understanding of the anion ordering principles that direct the structure

of these materials is, therefore, necessary in order to understand the role it

may play in governing the functionality, electronic and magnetic properties of

these mixed anion systems. Despite its importance, the mechanism behind anion

order in oxynitride perovskites was unclear until a recent electron and neutron

diffraction study of the representative d0 systems SrMO2N (M = Nb, Ta) revealed

a robust anion ordering at high temperature that in turn directs the rotations

of MO4N2 octahedra in rotationally ordered, low temperature superstructures

[184].

In the initial study [184], refinements of high temperature neutron powder

diffraction data for SrMO2N were performed in a tetragonal P4/mmm model,

which allows for long range anion order over the two inequivalent anion sites.

The results of the refinements converged to an ordered model with full oxygen

occupancy along one axis (1b site) and a 50 : 50 O : N distribution along the

other two (2f site), see Figure 6.8. Below 200 ◦C, SrMO2N adopts a rotationally

ordered superstructure, which is conventionally described by tetragonal I4/mcm

symmetry. Rotation of the octahedra around the unique c-axis creates two anion

sites along the c-axis and in the ab-plane in a 1 : 2 ratio, respectively. The

tetragonal I4/mcm refinement gave near 50 : 50 O : N occupancies at the axial

site, indicating that this corresponds to one of the 2f sites in the high-temperature

structure. The O : N distribution across the equatorial sites of the tetragonal
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(a) Rhomohedral cell in rhombohedral
setting.

(b) Rhombohedral cell in
hexagonal setting.

Figure 6.7 The (a) relationship between the cubic unit cell (cell edge length
acubic) in blue and the rhombohedral cell in red in the rhomboheral
setting with arhombo ≈ √

2acubic and α = 60◦. The rhombohedral
ABX3 unit cell is often displayed in the (b) hexagonal setting with
ahex ≈ √

2acubic and chex ≈ 3
√
2acubic with γ = 120◦. Here, A-site

cations are in red, B-site cations are in blue and X anions are in
yellow.

model refined to 75 : 25. This suggests that the two equatorial sites in the

rotationally ordered room temperature structure are not equivalent; one should

correspond to the 1b site (100 % O) and the other, the remaining 2f site (50 : 50

O : N) of the high temperature pseudo-cubic structure. This inequivalence lowers

the symmetry from tetragonal I4/mcm to monoclinic I112/m. The 75 : 25 O :

N occupancy observed for the equatorial sites in the I4/mcm model, therefore,

reflects the average of the 100 : 0 and 50 : 50 O : N distributions of the true

monoclinic symmetry, see Figure 6.9. The lower symmetry of room temperature

SrTaO2N was also confirmed by electron diffraction, which showed the presence

of weak 0kl and h0l (k or h = odd) that would be systematically absent due to

c-glide symmetry of tetragonal I4/mcm if the overall symmetry was not lowered

by anion order.

Within the following Chapter, the robustness of the anion ordering observed in

the SrTaO2N oxynitride perovskite is investigated through a high temperature

neutron diffraction study. These anion ordering principles are then extended

to the d1 perovskites RVO2+xN1−x, including a new oxynitride phase NdVO2N

and its R = Pr and La analogues. These systems contain itinerant 3d electrons

and it is, therefore, important to investigate whether or not the anion ordering
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(a) (b)

Figure 6.8 The (a) anion order observed in the pseudo-cubic structure of
SrMO2N, with oxide anions (yellow) on one axis and a 50 : 50
O : N distribution along the other two (yellow/grey). The model
shows the relationship between the unique axes of anion order (can)
and rotation (crot) in the rotationally ordered, room temperature
perovskite superstructure of SrMO2N. The local anion ordering is
governed by strong covalent effects that favour a cis-coordination of
MO4N2 octahedra. This results in zig-zag M-N chains shown in (b)
that propagate through the perovskite layers with a 90 ◦ turn at each
metal centre. The heavy blue bonds depict layers of M-N chains.

observed in their d0 counterparts is robust and what effect it may have over

their electronic and magnetic properties. All samples were prepared by Dr

Judith Oró Solé and William Bonin through a collaboration with Prof Amparo

Fuertes at the Institut de Ciència de Materials de Barcelona, Spain. SrTaO2N

was synthesised by a reaction of stoichiometric amounts of SrCO3 and Ta2N5

under flowing ammonia gas. RVO2+xN1−x samples were prepared by thermal

ammonolysis of RVO4 precusors. Room temperature powder X-ray diffraction

data collected for the RVO2+xN1−x samples were indexed by an orthorhombic

Pbnm unit cell. The anion content of the samples was determined by combustion

analysis to give compositions of SrTaO1.99N1.01, NdVO2.01N0.99, PrVO2.24N0.76 and

LaVO2.11N0.89. Here, the neutron scattering studies of the samples that were

performed at the ISIS and Institut Laue-Langevin neutron sources are discussed.

Neutron diffraction allows for the determination of the anion order within these

oxynitride systems due to the good contrast between the neutron scattering

lengths of oxygen and nitrogen (5.8 and 9.4 fm, respectively [185]). Experimental

details of the neutron diffraction experiments are given within each section and

all Rietveld refinements were performed using the General Structure Analysis
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(a) (b)

Figure 6.9 The (a) average, rotationally ordered room temperature structure
of SrMO2N, conventionally described by tetragonal I4/mcm
symmetry. Here distinct O (yellow) and 50 : 50 O : N sites
(yellow/grey) gives 50 : 50 and 75 : 25 O : N occupancies on
the axial (along unique c-axis) and equatorial (in ab-plane) sites,
respectively. The local ordering governed by covalent effects that
favour the formation of cis-MO4N2 octahadra lowers the symmetry
to monoclinic I112/m as equatorial sites are no longer equivalent
and leads to cis-MN chains that segregate into layers, depicted in
(b) by the heavy coloured bonds between M octahedral centres (blue)
and N (grey).

System (GSAS) program [85].

6.2 SrTaO2N

High temperature neutron powder diffraction data were collected on the High

Resolution Powder Diffractometer (HRPD) at the ISIS spallation neutron source,

Rutherford Appleton Laboratory, U.K. A 1 g sample was vacuum sealed in a quatz

tube and placed in a vanadium jacket inside a vanadium element furnace which

allowed access up to a maximum temperature of 1100 ◦C. Data were collected at

room temperature, 500 ◦C, 700 ◦C, 900 ◦C and 1100 ◦C with a counting time of

3 hours per temperature.
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Table 6.1 Refined I4/mcm model to room temperature HRPD SrTaO2N data.
a = b = 5.7017(1) Å, c/

√
2 = 5.7718(2) Å. Total Rwp = 2.83 %.

Atom Site x y z Occupancy Uiso
∗100 / Å2

Sr 4c 0.0 1
2

1
4

1.0 0.30(3)

Ta 4b 1
2

1
2

0.0 1.0 0.09(3)

X1 4b 0.0 0.0 1
4

0.447(26)/0.553 0.86(2)

X2 8d 0.7687(2) 0.2687(2) 0.0 0.777/0.223 0.86

SrTaO2N undergoes a structural phase transition to a rotationally ordered

perovskite superstructure at 300 ◦C, which is conventionally described by

tetragonal I4/mcm symmetry as discussed in the previous section. The

tetragonal model was, therefore, refined to the room temperature SrTaO2N data.

The model was simultaneously refined to the data collected on the backscattering

and 90 ◦ detector banks, see Figure 6.10, with the fractional anion occupancies

constrained by the total determined by chemical analysis and anion thermal

parameters (Uiso) constrained to refine together. Linear interpolation background

functions were refined to both histograms. Table 6.1 summarises the results of

the room temperature refinements.

The pseudo-cubic P4/mmm model, which allows for anion order, was refined to

the high temperature powder neutron diffraction data of SrTaO2N. Once again,

the high temperature model was simultaneously refined to the data collected on

the backscattering and 90 ◦ detector banks. Figure 6.11 shows the refinement of

the P4/mmm model to the highest temperature data set, measured at 1100 ◦C

with the refinement results shown in Table 6.2. The data collected at each temper-

ature were analysed consistently, with the same 58 parameters refined within the

pseudo-cubic model. The fractional anion occupancies were constrained by the

total determined by chemical analysis, anion thermal parameters were constrained

to refine together and linear interpolation background functions were refined to

both histograms as for the room temperature refinement. Figure 6.12 shows the

temperature dependence of the lattice constants, anion occupancies and thermal

parameters.
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(a) Backscattering detector bank.

(b) 90 ◦ detector bank.

Figure 6.10 Rietveld refinement of I4/mcm model to room temperature HRPD
data of SrTaO2N.
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(a) Backscattering detector bank.

(b) 90 ◦ detector bank.

Figure 6.11 Rietveld refinement of the pseudo-cubic P4/mmm model to high
temperature (1100 ◦C) HRPD data of SrTaO2N.
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(a) Fractional oxygen occupancy of X1 site

(b) Lattice constants a (= b) and c.

(c) Isotropic thermal parameters.

Figure 6.12 Temperature dependence of various parameters obtained from the
refinement of pseudo-cubic P4/mmm model to high temperature
neutron diffraction data of SrTaO2N.
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Table 6.2 Refined P4/mmm model to high temperature (1100 ◦C) HRPD
SrTaO2N data. a = b = 4.0679(1) Å, c = 4.0668(2) Å. Total
Rwp = 1.75 %.

Atom Site x y z Occupancy Uiso
∗100 / Å2

Sr 1d 1
2

1
2

1
2

1.0 3.84(5)

Ta 1a 0.0 0.0 0.0 1.0 2.37(6)

X1 1b 0.0 0.0 1
2

1.147(16)/− 0.147 4.09(5)

X2 2f 1
2

0.0) 0.0 0.427/0.573 4.09

6.3 NdVO2N

The initial neutron diffraction study of NdVO2N was performed on the High

Resolution Powder Diffractometer (HRPD) at the ISIS spallation neutron source,

Rutherford Appleton Laboratory, U.K. The 650 mg powder sample was measured

in a 6 mm vanadium can at room temperature for 3 hours. The data collected on

the backscattering and 90◦ detector banks were analysed by means of a combined

Rietveld refinement.

Figure 6.13 shows the refinement of the orthorhombic Pbnm model to the data.

A vanadium oxynitride, V(O,N), impurity phase was observed within the data in

addition to scattering from the vanadium sample holder and so a total of three

phases were refined against the backscattering and 90◦ detector bank histograms.

Table 6.3 summarises the results of the refinements. Fractional anion occupancies

were constrained by the total determined by chemical analysis and thermal

parameters were refined isotropically with anion and cation thermal parameters

constrained together for all three phases in the refinement. Linear interpolation

background functions were refined to both data sets.

In analogy to the SrMO2N systems, if the same local anion ordering principles are

upheld then the true symmetry of NdVO2N should be lowered from orthorhombic

Pbnm to monoclinic P1121/m. In fact, the room temperature HRPD data were

also successfully analysed by refining the monoclinic P1121/m model to the data

to give a monoclinic angle γ = 90.07(1)◦. Figure 6.14 displays the refinements

performed in the monoclinic model and Table 6.4 summarises the results. Given

the small magnitude of the monoclinic distortion, the atomic positions could not

be refined freely within the P1121/m model and instead, were constrained by

Pbnm pseudo-symmetry.
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(a) Backscattering detector bank.

(b) 90 ◦ detector bank.

Figure 6.13 Rietveld refinement of the orthorhombic Pbnm model to room
temperature NdVO2N HRPD data. Ticks mark reflections for
the perovskite phase (bottom), a vanadium oxynitride (V(O,N))
impurity phase (middle) and scattering from the vanadium sample
holder (top).
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(a) Backscattering detector bank.

(b) 90 ◦ detector bank.

Figure 6.14 Rietveld refinement of the monoclinic P1121/m model to room
temperature NdVO2N HRPD data. Ticks mark reflections for
the monoclinic perovskite phase (bottom), a vanadium oxynitride
(V(O,N)) impurity phase (middle) and scattering from the
vanadium sample holder (top).
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Table 6.3 Atomic coordinates, occupancies and thermal parameters from
refinement of Pbnm model to NdVO2N HRPD data, a = 5.4637(3) Å,
b = 5.5022(3) Å, c = 7.7329(5) Å. Total Rwp = 3.03% and
χ2 = 1.480 for 68 variables.

Atom Site x y z Occupancy Uiso
∗100 / Å2

Nd 4c 0.9916(8) 0.0343(5) 1
4

1.0 0.21(5)

V 4b 1
2

0.0 0.0 1.0 0.21

X1 4b 0.0649(8) 0.4861(6) 1
4

0.55(2)/0.45 0.95(4)

X2 8d 0.7132(5) 0.2880(5) 0.0370(4) 0.73/0.27 0.95

Table 6.4 Atomic coordinates, occupancies and thermal parameters from
refinement of the P1121/m model to NdVO2N HRPD data, a =
5.4645(3) Å, b = 5.5030(3) Å, c = 7.7352(5) Å, γ = 90.07(1)◦. Total
Rwp = 3.02% and χ2 = 1.474 for 71 variables.

Atom Site x y z Occupancy Uiso
∗100 / Å2

Nd1 2e 0.0051(7) 0.0340(4) 1
4

1.0 0.09(3)

Nd2 2e 0.4949 0.5340 1
4

1.0 0.09

V1 2c 1
2

0.0 0.0 1.0 0.09

V2 2c 0.0 0.0 0.0 1.0 0.09

X11 2e 0.9348(6) 0.4864(4) 1
4

0.60(2)/0.40 0.67(3)

X12 2e 0.5652 0.9864 1
4

0.60/0.40 0.67

X21 4f 0.2838(4) 0.2890(4) 0.0382(3) 0.90(3)/0.10 0.67

X22 4f 0.2162 0.7890 0.4618 0.50(4)/0.50 0.67

Temperature dependent powder neutron diffraction data were collected on the

D2B powder diffractometer at the high flux neutron reactor of the the Institut

Laue-Langevin, France. A 150 mg sample of NdVO2N was measured in a 3

mm vanadium can at temperatures of 300 K, 150 K and 3.5 K in a Variox

closed cycle refrigerator at full flux for 6 hours per temperature. High intensity

data were obtained by integrating over the entire powder diffraction rings. All

three data sets were analysed in a joint refinement of six structural phases, one

perovskite phase in the Pbnm model and one V(O,N) impurity phase for each

temperature. Temperature independent parameters, including fractional atomic

coordinates and occupancies, were shared over all three histograms and once again

the total anion content of the perovkite phase was constrained by the chemically

determined value. Isotropic thermal parameters and unit cell constants were

159



allowed to refine to each temperature data set individually with anion and cation

thermal parameters contrained to refine together between the perovskite phase

and the impurity phase at each temperature. A linear interpolation background

function was employed for each histogram. A total of 150 variables were refined

to give χ2 = 1.664. Figures 6.15 - 6.17 show the refinement plots at each

temperature. Table 6.5 gives the results of the shared parameters in the Pbnm

model and Table 6.6 displays the temperature dependent model parameters.

Selected bond lengths and angles obtained for NdVO2N in the Pbnm model are

shown in Table 6.7.

Figure 6.15 Rietveld refinement of the Pbnm model to the 300 K NdVO2N D2B
data. Ticks mark the reflections for the orthorhombic perovskite
phase (bottom) and a vanadium oxynitride (V(O,N)) impurity
phase (top).

6.4 PrVO2.24N0.76

Neutron powder diffraction data were collected on a 1 g sample of PrVO2.24N0.76

on the D2B powder diffractometer of the Institut Laue-Langevin, France. The

sample was loaded into a 6 mm vanadium can in a Variox closed cycle refrigerator

and measured at full flux at temperatures of 300 K, 150 K and 3.5 K, with a

160



Table 6.5 Summary of the refinement of the Pbnm model to NdVO2N D2B data.

Atom Site x y z Occupancy

Nd 4c 0.9938(7) 0.0352(4) 1
4

1.0

V 4b 1
2

0.0 0.0 1.0

X1 4b 0.0682(5) 0.4860(4) 1
4

0.560(16)/0.440

X2 8d 0.7140(4) 0.2887(3) 0.0374(2) 0.720/0.280

Table 6.6 Temperature dependent variables refined in the Pbnm model to
D2B data collected for NdVO2N at 3.5, 150 and 300 K. Total
Rwp = 1.95 %, χ2 = 1.644 for 150 variables.

T / K 3.5 150 300

a / Å 5.4576(3) 5.4597(4) 5.4665(5)

b / Å 5.5036(3) 5.5038(3) 5.5053(4)

c/
√
2 / Å 5.4596(3) 5.4626(3) 5.4688(4)

V / Å3 231.92(2) 232.14(2) 232.76(3)

Nd/V Uiso
∗100 / Å2 0.13(5) 0.23(4) 0.41(6)

O/N Uiso
∗100 / Å2 0.77(4) 0.85(4) 0.97(5)

Rwp / % 1.98 1.93 1.95

Table 6.7 Selected bond lengths and angles for NdVO2N obtained from the
simultaneous refinement of the Pbnm model to the D2B data collected
at 3.5, 150 and 300 K.

Nd-X1 Nd-X2 V-X1 V-X2

Bond length / Å 2.410(5) 2.416(3) (×2) 1.9706(9) (×2) 1.970(1) (×2)
2.515(3) 2.644(3) (×2) 1.995(2) (×2)
3.051(3) 2.707(3) (×2)
3.084(5) 3.267(3) (×2)

Nd-X1-Nd Nd-X2-Nd V-X1-V V-X2-V

Bond Angle / ◦ 105.8(1) 98.3(1) 157.7(2) 156.2(1)
163.1(1)
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Figure 6.16 Rietveld refinement of the Pbnm model to the 150 K NdVO2N D2B
data. Ticks mark reflections for the orthorhombic perovskite phase
(bottom) and a vanadium oxynitride (V(O,N)) impurity phase
(top).

counting time of approximately 6 hours per temperature. Six structural models

were refined simultaneously to the data collected at each temperature, one Pbnm

perovskite phase and one V(O,N) impurity phase for each temperature data set.

Once again, fractional atomic coordinates and occupancies were shared over all

three data sets and cation and anion isotropic thermal parameters and lattice

constants were refined at each temperature. The total anion content in the

perovskite phase was constrained by the chemically determined composition. A

linear interpolation background function was refined against each histogram. A

total of 100 variables were refined to give χ2 = 4.011. Figures 6.18 - 6.20 display

the Rietveld refinement of the model to the data measured at each temperature.

Table 6.8 shows the refined values for the parameters in the Pbnmmodel that were

shared across all histograms. Table 6.9 displays the variation of the temperature

dependent variables within the Pbnm model and Table 6.10 shows selected bond

lengths and angles in the Pbnm structure.
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Table 6.8 Summary of refinement of the Pbnm model to PrVO2.24N0.76 D2B
data.

Atom Site x y z Occupancy

Pr 4c 0.9894(7) 0.0320(4) 1
4

1.0

V 4b 1
2

0.0 0.0 1.0

X1 4b 0.0693(4) 0.4853(3) 1
4

0.561(11)/0.439

X2 8d 0.7135(3) 0.2891(3) 0.0367(2) 0.840/0.160

Table 6.9 Temperature dependent variables refined in the Pbnm model to D2B
data collected for PrVO2.24N0.76 at 3.5, 150 and 300 K. Total
Rwp = 3.65 %, χ2 = 4.011 for 100 variables.

T / K 3.5 150 300

a / Å 5.4829(3) 5.4851(3) 5.4907(4)

b / Å 5.5138(3) 5.5127(3) 5.5092(3)

c/
√
2 / Å 5.4760(3) 5.4822(3) 5.4909(4)

V / Å3 234.13(2) 234.43(2) 234.90(2)

Pr/V Uiso
∗100 / Å2 0.10(1) 0.23(1) 0.42(1)

O/N Uiso
∗100 / Å2 0.83(5) 0.92(5) 1.11(5)

Rwp / % 3.55 3.70 3.73

Table 6.10 Selected bond lengths and angles for PrVO2.24N0.76 obtained from
the simultaneous refinement of the Pbnm model to the D2B data
collected at 3.5, 150 and 300 K.

Pr-X1 Pr-X2 V-X1 V-X2

Bond length / Å 2.436(4) 2.404(3) (×2) 1.9799(5) (×2) 1.976(2) (×2)
2.536(3) 2.654(3) (×2) 1.998(2) (×2)
3.043(3) 2.728(3) (×2)
3.079(4) 3.278(3) (×2)

Pr-X1-Pr Pr-X2-Pr V-X1-V V-X2-V

Bond Angle / ◦ 106.0(1) 97.6(1) 156.3(1) 156.2(1)
163.7(1)
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Figure 6.17 Rietveld refinement of the Pbnm model to the 3.5 K NdVO2N D2B
data. Ticks mark reflections for the orthorhombic perovskite phase
(bottom) and a vanadium oxynitride (V(O,N)) impurity phase
(top).

6.5 LaVO2.11N0.89

Neutron powder diffraction data were collected on a 1 g sample of LaVO2.11N0.89

on the D2B powder diffractometer of the Institut Laue-Langevin, France. The

sample was loaded into a 6 mm vanadium can in a Variox closed cycle refrigerator

and measured at full flux at temperatures of 300 K, 150 K and 3.5 K, with a

counting time of approximately 6 hours per temperature. Inspection of the data

showed an unusual splitting of the peaks at high angle, see Figure 6.21. The

splitting is most likely indicative of the coexistence of two perovskite phases.

The data were successfully analysed by including a rhombohedral R3̄c (no. 167)

phase along with the orthorhombic Pbnm model in a simultaneous refinement

to all three data sets. Six structural phases were included in the refinement,

one orthorhombic and one rhombohedral perovskite phase for each temperature

dependent data set. Linear interpolation background functions were used to

model the background of each histogram. Figures 6.22 - 6.24 display the

Rietveld plots for each measured temperature. A total of 81 variables were
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Figure 6.18 Rietveld refinement of the Pbnm model to the 300 K PrVO2.24N0.76

D2B data. Ticks mark reflections for the orthorhombic perovskite
phase (bottom) and a vanadium oxynitride (V(O,N)) impurity
phase (top).

refined to give χ2 = 2.962. Tables 6.11 and 6.12 summarise the temperature

independent refinement results for the Pbnm and R3̄c models, respectively. The

anion occupancies were constrained by the total anion content determined by

the chemical analysis of the sample and refined within the Pbnm model. In

the rhombohedral phase, they were fixed across the 18e anion site according

to the chemical analysis. Table 6.13 summarises the temperature dependent

parameters within the orthorhombic and rhombohedral models, including the

weight percentages of the two phases at each temperature. Table 6.14 shows

selected bond lengths and angles for the orthorhombic phase.

6.6 Discussion

The results of the room temperature refinement of the rotationally ordered

tetragonal I4/mcm model to the HRPD data collected for SrTaO2N gives O :

N distributions that are in excellent agreement with the previous study and well
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Table 6.11 Summary of refinement of the Pbnm model to LaVO2.11N0.89 D2B
data.

Atom Site x y z Occupancy

La 4c 0.9994(3) 0.0096(5) 1
4

1.0

V 4b 1
2

0.0 0.0 1.0

X1 4b 0.0570(2) 0.4978(3) 1
4

0.654(11)/0.346

X2 8d 0.7381(4) 0.2642(3) 0.0291(2) 0.728/0.272

Table 6.12 Summary of refinement of the R3̄c model to LaVO2.11N0.89 data.

Atom Site x y z Occupancy

La 6a 0.0 0.0 1
4

1.0

V 6b 0.0 0.0 0.0 1.0

X 18e 0.4558(1) 0.0 1
4

0.703/0.297

Table 6.13 Temperature dependent variables refined in the Pbnm and R3̄c
models to D2B data collected for LaVO2.11N0.89 at 3.5, 150 and 300
K. Total Rwp = 3.34 %, χ2 = 2.962 for 81 variables.

T / K 3.5 150 300

Pbnm phase

a / Å 5.5393(1) 5.5415(2) 5.5453(8)

b / Å 5.5011(1) 5.4989(2) 5.5065(6)

c/
√
2 / Å 5.5011(1) 5.5024(2) 5.5002(7)

V / Å3 236.89(1) 237.12(1) 237.51(4)

Phase fraction / Wt. % 82 67 19

R3̄c phase

a / Å 5.4829(3) 5.5256(2) 5.5341(1)

c/
√
6 / Å 5.4726(5) 5.4725(2) 5.4810(1)

V / Å3 354.21(4) 354.45(2) 356.08(1)

Phase fraction / Wt. % 18 33 81

La/V Uiso
∗100 / Å2 0.15(2) 0.16(2) 0.46(2)

O/N Uiso
∗100 / Å2 0.65(2) 0.69(2) 0.96(2)

Rwp / % 3.34 3.28 3.39
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Figure 6.19 Rietveld refinement of the Pbnm model to the 150 K PrVO2.24N0.76

D2B data. Ticks mark reflections for the orthorhombic perovskite
phase (bottom) and a vanadium oxynitride (V(O,N)) impurity
phase (top).

reflect the average O : N occupancies of 50 : 50 and 75 : 25 across the two anion

sites that result from the local anion ordering of cis-TaO4N2 octahedra. The high

temperature neutron diffraction study presented here extends the previous work

and shows that the anion order in the high temperature pseudo-cubic P4/mmm

phase is highly robust, with 100 % oxygen occupancy of the along one axis

and 50 : 50 O : N along the other two persisting up to the highest measured

temperature of 1100 ◦C. This indicates that zig-zag Ta-N chains that result from

the local ordering remain well segregated in two-dimensional perovskite layers,

with little mixing or hopping of chains between layers as shown in Figure 6.25.

Unfortunately, the refined fractional oxygen occupancy of the 1b site remains

above 100 % in all the high temperature refinements presented here. This most

probably results from the strong correlation between fractional occupancies and

thermal parameters within the model whilst refining the high temperature data

sets.

The Rietveld refinement results for the novel oxynitride phase, NdVO2N presented

in this chapter are significant because they imply that the local anion ordering
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Figure 6.20 Rietveld refinement of the Pbnm model to the 3.5 K PrVO2.24N0.76

D2B data. Ticks mark reflections for the orthorhombic perovskite
phase (bottom) and a vanadium oxynitride (V(O,N)) impurity
phase (top).

principles discovered initially for the d0 SrMO2N perovskites is robust to electron

doping. The
√
2×√

2×2 Pbnm perovskite superstructure has axial and equatorial

anion positions within the rotationally ordered octahedra in a 1 : 2 ratio. The

refinement of the HRPD diffraction data in this orthorhombic model gives O : N

occupancies close to 50 : 50 and 75 : 25 across the axial and equatorial sites and,

therefore, appears to be very similar to the anion order observed in the SrTaO2N

and SrNbO2N systems. In the SrMO2N perovskites, this local anion ordering

results in M -N chains that propagate throughout the structure with a 90◦ turn

in the chain at each M cation centre, leading to a 50 : 50 O : N population of the

anion sites within the layers and 100 : 0 at the inter-layer sites, see Figure 6.26.

These M -N chains provide a physical realisation of the the statistical mechanics

model of the self-avoiding walk [186]; although the chains are disordered on a

long-range, crystallographic scale, they are highly constrained locally, giving rise

to unusual properties, such as sub-extensive entropy [187]. In the Pbnm model of

NdVO2N model the crystallographic c-axis lies within the layers of the disordered

V-N chains, such that the refined occupancy of the axial X1 site is close to 50 : 50

O : N. The equatorial sites, therefore, represent the average of the 100 : 0 O :
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Figure 6.21 Neutron powder diffraction data of LaVO2.11N0.89 shows an
unusual splitting of peaks at high 2θ upon warming.

N inter-layer position and the remaining 50 : 50 site within the zig-zag chains,

giving a 75 : 25 O : N distribution in the Pbnm model. In analogy with the

SrMO2N systems, the in-equivalence of the equatorial anion sites due to the

local anion ordering lowers the overall symmetry of the system, in this case, from

orthorhombic Pbnm to monoclinic P1121/m (a non-standard setting of space

group P21/m no. 14). This symmetry lowering splits the equatorial X2 sites and

a refinement of the HRPD diffraction data in the P1121/m model gives O : N

distributions of 0.90(3) : 0.10 and 0.50(4) : 0.50 at X21 and X22, respectively (see

Table 6.4). This is in excellent agreement with the 100 : 0, 50 : 50 distributions

predicted for the local anion ordering, and a stable monoclinic refinement of

the neutron diffraction data of NdVO2N with γ = 90.07◦ demonstrates that the

anion ordering principles first discovered in SrMO2N can be extended to this d1

perovskite oxynitride. Further independent evidence for this subtle monoclinic

lattice distortion is provided by an electron diffraction study that is presented in

ref. [188]. The electron diffraction patterns collected for crystallites of NdVO2N

show additional k-odd 0kl reflections that result from the loss of the b-glide plane

as the symmetry is lowered from Pbnm to P1121/m.
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Figure 6.22 Rietveld refinement of the Pbnm (bottom tick marks) and R3̄c (top
tick marks) models to the 300 K LaVO2.11N0.89 D2B data. Inset
shows high 2θ region of the fit.

The refinement of the temperature dependent diffraction data collected for

NdVO2N on the D2B powder diffractometer at the Institute Laue-Langevin in the

Pbnm model gives O : N distributions of 0.56(2) : 0.44 and 0.72 : 0.28 across the

anion sites and is, therefore, entirely consistent with the analysis of time-of-flight

neutron diffraction data of HRPD. Upon cooling from room temperature to 3.5

K there is a smooth decrease in the unit cell lattice constants, with an overall

reduction in the orthorhombic cell volume of∼ 0.4 %. There is no evidence for any

structural or magnetic phase transitions within the NdVO2N system upon cooling

to 3.5 K. In fact, the magnetic susceptibility of NdVO2N, shown in reference [188],

displays paramagnetic behaviour down to 2 K with an absence of any spin ordering

transition in agreement with the low temperature neutron diffraction data. The

magnetic behaviour of NdVO2N can be understood in terms Curie-Weiss and

Pauli paramagnetic contributions of the localised, weakly antiferromagnetic Nd3+

4f 3 spins and itinerant V4+ 3d1 spins, respectively.

The local anion ordering in the d0 perovskite oxynitrides was rationalised in

terms of the strong covalent effects that favour a cis-coordination of two strongly

bonded ligands of high valence d0 transitional metal octahedral complexes. This
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Figure 6.23 Rietveld refinement of the Pbnm (bottom tick marks) and R3̄c (top
tick marks) models to the 150 K LaVO2.11N0.89 D2B data. Inset
shows high 2θ region of the fit.

90◦ arrangement allows for maximum π-bonding overlap of the d-orbital of

the metal cation centre and the p-orbitals of the coordinated ligands [189].

This covalency, therefore, favours the formation of cis-MO4N2 octahedra in the

perovskite oxynitrides given that N3− is more strongly bonded to the M cation

centre than O2− and so a 90◦ arrangement of the nitride anions is observed.

The observation of the cis-VN2 units in NdVO2N implies that a strong, covalent

second order Jahn-Teller interaction between V4+ and N3− is also prevalent here.

This is significantly different from the metallic RVO3 oxide analogues, which

undergo orbital ordering transitions as a results of first order Jahn-Teller effects

due to the orbitally degenerate t2g electrons [190]. The fact that NdVO2N displays

itinerant electron behaviour in magnetic susceptibility measurements, however,

implies that the oxynitrides do retain some of the metallic character of their

parent RVO3 oxides.

The study of the PrVO2.24O0.76 and LaVO2.11O0.89 oxynitride perovskites allows

for an understanding of the anion ordering in these systems when there is a

deviation from the RVO2N stoichiometry. The R = Pr analogue is another

new oxynitride phase and R = La has previously been reported with a molar
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Figure 6.24 Rietveld refinement of the Pbnm (bottom tick marks) andR3̄c (top
tick marks) models to the 3.5 K LaVO2.11N0.89 D2B data. Inset
shows high 2θ region of the fit.

nitrogen content of 0.99 [191]. The PrVO2.24N0.76 data, like those of NdVO2N,

were successfully refined by the orthorhombic Pbmn model at all measured

temperatures. There are no apparent structural or magnetic phase transitions

upon cooling the system to 3.5 K. There does, however, appear to be some

anisotropy in the thermal evolution of the lattice parameters, with a reduction in

a and c lattice constants upon cooling but an increase in b from 5.5093(3) Å at

300 K to 5.5138(3) Å at 3.5 K. Refinement of the O and N distributions over the

anion sites shows that the near 50 : 50 O : N ratio on the axial X1 site observed

in stoichiometric NdVO2N is retained and that the non-stoichiometry appears

across the X2 site with a 0.84 : 0.16 O : N distribution.

The Pbnm model could not be refined to the data collected for LaVO2.11N0.89

alone. The splitting of the peaks at high angle indicated that there may be two

coexisting pervoskite phases within the R = La system. The structural evolution

from orthorhombic Pbnm to a rhombohedral R3̄c phase has been reported in

other lanthanum based perovskites, such as LaFeO3 [192]. According to group

theory there is no second-order phase transition between the Pbnm and R3̄c

symmetries [193], however the first-order transition appears to be hysteretic
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Table 6.14 Selected bond lengths and angles for LaVO2.11N0.89 obtained from
the simultaneous refinement of the Pbnm model to the D2B data
collected at 3.5, 150 and 300 K.

La-X1 La-X2 V-X1 V-X2

Bond length / Å 2.461(2) 2.552(2) (×2) 1.9702(3) (×2) 1.961(2) (×2)
2.708(5) 2.649(2) (×2) 1.978(2) (×2)
2.836(5) 2.832(2) (×2)
3.086(2) 3.017(2) (×2)

La-X1-La La-X2-La V-X1-V V-X2-V

Bond Angle / ◦ 98.3(1) 97.23(4) 161.51(8) 165.52(6)
166.7(1) 170.37(6)

(a) (b)

Figure 6.25 The local anion ordering that favour a cis-coordination of MO4N2

octahedra resulting in zig-zag M-N chains that segregate into (a)
two dimensional layers is robust to very high temperatures. The
100 % oxygen occupancy along one axes in the high temperature
pseudo-cubic model of SrTaO2N and 50 : 50 O : N along the other
two indicates that the chains remain separated into layers up to at
least 1100 ◦ with very little jumping of chains between layers as
depicted in (b). The heavy bonds show M-N chains.

in nature given the clear coexistence of both phases over the entire measured

temperature range. As such, it is difficult pin-point the transition temperature

with the current data set, but one can estimate a transition temperature, Tc ∼ 200

K.

Figure 6.27 shows the variation in the refined fractional occupancies of the oxygen

sites as a function of x, where x gives the deviation from 2 : 1 O : N stoichiometry

in the RVO2+xN1−x systems. The materials studied here have x = 0, 0.11 and
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(a) (b)

Figure 6.26 The (a) rotationally ordered perovskite superstructure of NdVO2N
in P1121/m has distinct oxygen (yellow) and 50 : 50 O : N
(yellow/grey) sites. The local ordering that results from covalent
effects gives rise to (b) disordered zig-zag chains of V-N units that
propagate through the structure with a 90◦ turn at each V (blue)
centre. Here the V-N chains are shown as coloured bonds with O
(yellow), N (grey), V (blue) and Nd (red).

0.24 for the R = Nd, La and Pr analogues, respectively. The refined fractional

occupancies are compared to the ideal values expected for oxygen on the X1 and

X2 sites from the local anion ordering principles in the Pbnm model in addition

to the statistically averaged distribution, which in the x = 0 case is given by

(2×0.75) + 0.5/3 = 0.67 for oxygen. Figure 6.27 shows that in the case of

the R = Nd and Pr materials the refined occupancies are well described by the

50 : 50 75 : 25 O : N distributions predicted for the local anion ordering. In the

case of NdVO2N, this is further supported by the stable monoclinic refinement

and electron diffraction results. Any local anion ordering in the LaVO2.11N0.89

sample is less clear given that the refined anion occupancies lie close to the

statistically averaged distribution. This may, however, be an artefact of strong

correlations between parameters in the refinement and the significant presence of

the rhombohedral perovskite phase in each of the data sets currently available

for LaVO2.11N0.89.
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Figure 6.27 Refined fractional occupancies for oxygen in the Pbnm model as a
function of x in the RVO2+xN1−x phases compared with the values
expected for anion ordered and statistically averaged models.

6.7 Conclusions

The local anion ordering principles established for the d0 SrMO2N perovskites

[184] have been shown to be highly robust, resulting in M -N chains that remain

separated into two-dimensional layers up to temperatures above 1000 ◦C. These

anion ordering principles have also been extended here to the d1 RVO2N systems

by means of a powder neutron diffraction study. Covalent, second-order Jahn-

Teller interactions favour a cis-coordination of the more strongly bonded N3−

anions to the centre of the VO4N2 octahedra, which results in disordered V-N

chains that propagate throughout the structure. This local ordering results in

a 50 : 50 O : N distribution within the zig-zag layers and 100 : 0 O : N at the

inter-layer sites, which lowers the symmetry of the rotationally ordered Pbnm

perovskite superstructure to monoclinic P1121/m. The refinement of the high

resolution time-of-flight neutron diffraction data collected for the novel oxynitride

NdVO2N phase in the P1121/m model with γ = 90.07(1)◦ confirms the subtle

monoclinic lattice distortion resulting from anion order. The same mechanism is

also apparent within the PrVO2.24N0.76 system, which was refined successfully in
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the Pbnm model with O : N distributions close to the ideal 50 : 50 and 75 : 25

values expected for the anion ordered model. In the case of LaVO2.11N0.89, the

local anion ordering is not immediately obvious with the current data, which

contain a significant contribution from a coexisting rhombohedral oxynitride

perovskite phase.

In order to further validate the anion ordering principles in these oxynitride

perovskites it will be important to make use of local structural probes. For

instance pair distribution function analysis of total neutron scattering data should

unambiguously confirm the local anion order, making use of the contrast between

V-O and V-N bond lengths [194]. It will also be interesting to perform a high

temperature neutron diffraction study in order to determine the nature of the high

temperature structural phases of the R = Nd and Pr materials and in the case

of the R = La system, at what temperature the orthorhombic perovskite phase

appears from the high temperature rhombohedral phase. It will be important to

establish the anion ordering mechanism of the high temperature RVO2N phases

and how this relates to the low temperature rotationally ordered superstructures.
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Chapter 7

Conclusions

This Thesis has reported the synthesis and study of several geometrically frus-

trated magnetic materials, including novel oxyfluoride and oxynitride materials.

In addition, a discussion of the anion ordering principles in such mixed anion

systems was given. This final Chapter aims to provide a summary of the main

experimental results and conclusions that can be drawn from the work presented

here, in addition to a brief outlook of future research prospects.

In Chapter 3, the spin glass ground state of the geometrically frustrated S = 1

pyrochlore, Lu2Mo2O7, was investigated. It was discovered that Lu2Mo2O7

undergoes a spin freezing transition at Tf ∼ 16 K, which was initially observed

from a bifurcation of ZFC and FC magnetic susceptibilities. The AC response

of the system about this transition follows conventional spin glass dynamics.

The spin freezing transition is further confirmed by a sharp transition in the

muon spin relaxation rate. Powder neutron diffraction data confirm the absence

of long range magnetic order in the spin glass regime and neutron polarisation

analysis reveals the presence of competing nearest- and next-nearest neighbour

Mo-Mo spin correlations that persist up to at least 300 K. Importantly, the

low temperature magnetic heat capacity of Lu2Mo2O7 follows a T 2-dependence.

This has not been observed in polycrystalline samples of the related pyrochlore

Y2Mo2O7 but was recently measured on the first single crystal of this widely

studied material [113]. Further investigation of Lu2Mo2O7 will be important,

in particular, the origin of the spin glass behaviour such as lattice distortions,

which may be more evident in this system than in other members of the rare

earth molybdate pyrochlore series given the small ionic radius of Lu3+. The spin
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glass state is sensitive to oxygen vacancy disorder, with an oxygen deficiency of

∼6 % leading to an increase in frustration and spin freezing temperature [195].

The synthesis and initial study of a new oxynitride pyrochlore phase Lu2Mo2O4.8N1.7

is outlined in Chapter 4. By incorporating the N3− nitride anion into the

Lu2Mo2O7 structure, such that the molybdenum cations are oxidised towards

the Mo5+ 4d1 oxidation state, it is expected that quantum fluctuations will

become increasingly important in determining the ground state properties of

the material. The magnetic susceptibility data collected for Lu2Mo2O4.8N1.7

revealed an absence of spin freezing down to 2 K despite strong antiferromagnetic

exchange, θ = −121 K. Furthermore, the elastic magnetic scattering cross section

measured by neutron polarisation analysis is extremely small, which implies that

the majority of the magnetic neutron scattering at low temperatures is inelastic.

It is hoped that a temperature dependent inelastic survey of the material of

the Cold Neutron Chopper Spectrometer at the Spallation Neutron Source of

the Oak Ridge National Laboratory will help to clarify the low temperature

nature of Lu2Mo2O4.8N1.7. It can be concluded for the T -linear behaviour in

the low temperature magnetic heat capacity of Lu2Mo2O4.8N1.7 that there is a

large density of low energy levels within the excitation spectrum and an absence

of magnetic ordering down to 500 mK. This puts forward an argument for the

exciting prospect that Lu2Mo2O4.8N1.7 may be a good candidate for a three-

dimensional spin liquid material.

Chapter 5 presents the low temperature magnetic study of the S = 1
2
vanadium

oxyfluoride kagome antiferromagnet, DQVOF. Magnetization against field and

field dependent heat capacity data revealed the free-ion paramagnetic behaviour

of the S = 1 V3+ cations that reside between the S = 1
2
V4+ kagome planes. As

such, DQVOF is confirmed as an experimental realisation of a two-dimensional

S = 1
2
antiferromagnet. μSR confirms the absence of spin freezing in the DQVOF

system down to 40 mK. The T -linear behaviour of the low temperature heat

capacity and its lack of field dependence implies that DQVOF forms a gapless

quantum critical phase at low temperatures [196]. The data do not show any

evidence for a spin gap at 0.13J ∼ 8 K that was recently predicted for gapped

Z2 spin liquids on the kagome lattice. It will be extremely useful to measure the

thermal conductivity of DQVOF, which will reveal the nature of the low energy

excitation spectrum without the complication of the Schottky anomaly that

plagues the low temperature heat capacity. Furthermore, an inelastic neutron

scattering study should be carried out in attempt to observe the nature of the
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excitations from the spin liquid ground state in DQVOF. Before this can be

performed, there are several materials chemistry issues that must be overcome,

such as sample scale up and deuteration.

In the final results chapter, a discussion of the anion ordering in several oxynitride

perovskites was given. The ordering of mixed anion systems is important to

understand given that it can have consequences on a material’s electronic and

magnetic properties. Here, the anion ordering principles initially discovered

for the d0 SrMO2N (M = Nb, Ta) perovskites were shown to persist up to

temperatures of 1100 ◦ through a high temperature high resolution neutron

diffraction study. Furthermore, they were shown to be robust to electron doping

in the d1 system NdVO2N [188] and the related RVO2+xN1−x (R = La, Pr)

analogues. The R = La based material also provides the first example of a

rhombohedral oxynitride perovskite phase. The local anion ordering observed in

these materials leads to disordered, two-dimensional V-N chains that propagate

through the perovskite structure, providing a physical realisation of the statistical

self-avoiding walk model. Future study of these materials will include an

investigation of the anion ordering with local structural probes, such as neutron

pair distribution function analysis.
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Appendix A

Reprint of Publications

Anion-ordered Chains in a d1 perovskite oxynitride: NdVO2N

J. Oró-Solé, L. Clark, W. Bonin, J. P. Attfield and A. Fuertes.

Chemical Communications, vol. 49, pp. 2430 - 2432, 2013.

Oxygen miscibility gap and spin glass formation in the
pyrochlore Lu2Mo2O7

L. Clark, C. Ritter, A. Harrison and J. P. Attfield.

Journal of Solid State Chemistry, vol. 203, pp. 199 - 203, 2013.

Gapless spin liquid ground state in the S = 1
2 kagome

antiferromagnet [NH4]2[C7H14N][V7O6F18]

L. Clark, J. C. Orain, F. Bert, M. A. de Vries, F. H. Aidoudi, R. E. Morris, P.

Lightfoot, J. S. Lord, M. T. F. Telling, P. Bonville, J. P. Attfield, P. Mendels and

A. Harrison.

Physical Review Letters, vol. 110, p. 207208, 2013.
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and K. Królas, “Magnetic properties of Yb2Mo2O7 and Gd2Mo2O7 from
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