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Abstract 

Growing evidence indicates the involvement of Ca2+signalling  in the control of 

numerous processes in filamentous fungi. Despite the obvious importance of 

Ca2 -signalling, and in contrast to the situation in budding yeast, plants and 

animals, very little is currently known about the mechanisms of C a2+ signalling  

in filamentous fungi. Only a handful of filamentous fungal Ca 2 -signal1ing genes 

have been cloned and characterised to date, and it is only recently that methods 

have been developed to enable the routine, easy and reliable measurement of 

Ca 2+  within living fungal hyphae. Thus much of the evidence supporting the 

importance of Ca2+signalling  in filamentous fungi has been indirect. 

The aims of this research were to develop and an aequorin-based approach 

for measuring cytosolic Ca 2+  ([Ca2+j c ) in living hyphae of Neurospora crassa 

and to use this method to investigate the contribution of individual proteins to 

the generation of the specific Ca2+signatures  associated with [Ca 2+] c  transients. 

Molecular and genomic methods were also used to identify C a2 + signalling  

proteins in Neurospora crassa, Aspergillus fumigatus and Magnaporthe grisea. 

Results confirmed that a reliable method for the quantitative measurement 

of [Ca2 ] in living N. crassa hyphae had been developed with the aequorin 

reporter system. This method was used to characterise Ca2+signatures  in N. 

crassa in response to (a) mechanical perturbation, (b) hypo-osmotic shock and 

(c) high external Ca 2+  under different environmental conditions. Ca 2+signatures 

in response to these stimuli were shown to have a unique set of characteristics 

xix 



in response to each stimulus. These characteristics were apparent under all the 

conditions tested. 

Ca2+ signatures  in response to the three stimuli were measured in wild-type 

N. crassa treated with Ca 2+  antagonists and agonists and in untreated mutant 

strains of N. crassa compromised in Ca2+signalling.  In each case, differences in 

Ca2+-signatures could be quantitatively measured. 

Cloning of the cot-4 gene in the cot-4 morphological mutant of N. crassa 

showed it to encode the catalytic subunit of calcineurin, a C a2+/calmodulin  

dependent protein phosphatase. 

An analysis of the genomes of N. crassa, A. fumigatus and M. grisea identi-

fied many of the key Ca 2 -signalling proteins present in filamentous fungi. An 

inventory of Ca2+signalling  proteins in filamentous fungi is an important starting 

point for reverse genetic and physiological approaches aiming at elucidating the 

biological significance of these proteins. The construction of mutant strains, im-

paired in the function of specific Ca 2 -signalling proteins, and the quantification 

of Ca2+signatures  in these strains are therefore important directions for future 

experimental work. 
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Chapter 1 

Introduction 

To survive, organisms must sense their environment and react accordingly. This 

is achieved through a network of signalling pathways, which ultimately influence 

the behaviour of individual cells (Equation 1.1). 

External 	Surface Receptors 	Internal Signal 	Effector 

Signal 	(cell membrane) 	Pathway 	 Activation 

Calcium (Ca 2+)  is a ubiquitous signalling molecule, employed in all organisms, 

from prokaryotes to higher animals (Michiels et al., 2002; Gadd, 1994; Berridge 

et al., 2000; Carafoli, 2002; Sanders et al., 2002). The reasons that Ca 2+  is used 

so globally as a signalling molecule are not known. However, it is clear that cells 

had to develop a Ca 2+  transport mechanism to remove Ca 2+  from the cytoplasm 

very early on in evolution. This is because at elevated concentrations, Ca 2+ 

forms an insoluble precipitate with inorganic phosphate that inhibits phosphate 

based energy metabolism (Hepler and Wayne, 1985). As the concentration of 

Ca 2+  in seawater is in the millimolar (mM) range, cells must have been able 

to regulate their internal Ca 2+  concentration to survive. A low and precisely 

controlled concentration is an important characteristic of any second messenger, 

thus part of the cell signalling apparatus had already been developed with respect 

to Ca2+signalling. Furthermore, calcium ions are well suited for use as signalling 

1 
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molecules because they can coordinate 6 to 8 uncharged oxygen atoms enabling 

protein conformations in which remote domains can participate in C a2+binding . 

Such changes can invoke a wide variety of downstream responses (Sanders et al., 

1999). 

1.1 Ca2 -Signa11ing - an Overview 

Intracellular Ca2+signalling  is characterised by a transient increase in cytosolic 

free Ca 2+  ([Ca2+J c ), which precedes the cellular response to the primary stimulus. 

The progress of a [Ca 2+], transient through the cytoplasm can be described 

as a wave (Malhó et al., 1998). The duration, propagation and amplitude of 

Ca 2+  waves is dependent on the type and intensity of the stimuli (Berridge and 

Dupont, 1994). Both active (Ca2+pumps  and transporters) and passive (Ca 2+_  

binding proteins) systems exist (Berridge and Dupont, 1994), which typically 

maintain resting [Ca 2+],  concentrations between 50 and 200 nM (Malhó et al., 

1998; Miller et al., 1990; Bush, 1995; Ohya et al., 1991b). In contrast, the 

Ca 2+  concentration in the endoplasmic reticulum (ER), cell wall, vacuole, and 

extracellular environment varies from 0.1 to 100 mM (Trewavas and Malhó, 

1997; Levina et al., 1995; Sanders et al., 1999). During signalling the [Ca 2+] 

concentration typically increases 3 to 100 fold over the basal level. In eukaryotes, 

intracellular Ca2+signa11ing  relies upon Ca 2+  entry across the plasma membrane 

and into the cell, or on the release of Ca 2+  from intracellular stores, or both. Ca 2+_  

permeable channel (CPC) closure, buffering of Ca 2+ by Ca2 -binding proteins and 

active removal of [Ca 2+} c  by Ca2+-pumps and transporters reduces the diffusion 

rate of [Ca 2+]c  to the extent that Ca 2+  waves cannot rely solely on diffusion 

for propagation through the cytosol. After initiation, waves must therefore 

be propagated by Ca 2+-induced Ca 2+ release (CICR) from intracellular stores 

(Berridge, 1995). [Ca 2+1'  transients diffuse outwards to excite neighbouring 

stores, which respond by releasing their own Ca 2+  that in turn diffuses outwards 
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repeating the process. Upon release, [Ca 2 ] is rapidly pumped back into the 

intracellular stores returning the cytosol to its resting state. Intracellular C a2+_ 

signalling thus relies upon the initiation and the propagation of Ca 2  transients. 

Current thinking suggests several factors provide the necessary specificity for 

a particular stimulus to illicit a defined response. These factors include: (a) 

input from other signalling systems; (b) spatial location of the Ca 2  signal within 

the cell; (c) presence of specific response elements; and (d) information encoded 

in the Ca2 -signature (Sanders et al., 2002). In both plants and animals the 

unique Ca2+signatures  associated with [Ca 2+],  transients have been shown to 

encode information and there is growing evidence that these signatures can be 

decoded by the signal transduction machinery of the cell in order to induce specific 

cellular responses (Malhó et al., 1998; Berridge et al., 1998, 2000; Bootman et al., 

2001; Sanders et al., 2002). [Ca 2+]c  transients can be induced by many factors. 

These factors may be endogenous or exogenous (with respect to the cell or to the 

organism) and some examples are: gravity, light, mechanical signals (e.g. wind 

and touch), cold shock, heat shock, oxidative anaerobic, hypo-osmotic and hyper-

osmotic stresses, salination, drought, and hormones (Allen et al., 1995; Trewavas 

and Malhó, 1997; Malhó et al., 1998; Shaw et al., 2001; Greene et al., 2002; 

Kozlova-Zwinderman, 2002; Nelson et al., 2003). 

Stimuli may activate stretch activated (SA), ligand-gated or voltage-gated 

CPCs (Sanders et al., 2002; Berridge et al., 2000), including non-selective cation 

channels, which serve to elevate [Ca 2+], concentrations by allowing the passive 

flux of Ca 2+ down an electrochemical gradient (Gadd, 1994; Pietrobon et al., 1990) 

across a membrane and into the cytoplasm. A transmembrane electrochemical 

gradient for Ca 2+  is therefore a crucial prerequisite for signal transduction, and 

[Ca 2+],  concentrations must be maintained at a low level in the resting state 

(Miller et al., 1990). Such gradients are sustained principally by transport systems 

that catalyse efflux of Ca2+  from the cytosol. CPCs are membranous proteins 

and have been found in the plasma membrane, the endoplasmic and sarcoplasmic 
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reticulum, and the vacuole (Berridge et al., 2000; Gustin et al., 1988; Zhou et al., 

1991; Garrill et al., 1992; Zhou et al., 1992; Levina et al., 1995; Gadd, 1994; 

Palmer et al., 2001; Maruoka et al., 2002; Locke et al., 2000; Paidhungat and 

Garrett, 1997). Mechanisms for Ca 2+  release from other internal organelles such 

as Golgi and mitochondria (which have both been shown to sequester Ca 2+  under 

some circumstances (Bootman et al., 2001; Pitt and Barnes, 1993; Antebi and 

Fink, 1992; Park et al., 2001)) may also exist. CPC activation may be achieved 

directly, for example via membrane hyperpolarisation or depolarisation or as a 

result of mechanical stimulation or the binding of a ligand, such as a hormone, to a 

plasma membrane receptor. Alternatively, upon reaching the surface of the target 

cell, external signals may activate G-protein linked receptors or tyrosine kinases 

(Berridge, 1993; Sailsbury and Ross, 1992) resulting in the formation of second 

messengers such as inositol 1,4,5-trisphosphate (InsP 3 ), diacylglycerol (DAG) and 

cyclic nucleotides (e.g. cyclic ADP-Ribose [cADPR]) (Equation 1.2). 

C—protein linked receptors 	 Activation of 

and / or 	 Phospholipase C 

Tyrosine kinases 	 (PLC) 
(1.2) 

Phosphatidylinositol 	PLC 
InsP 3  & DAG 

4, 5—bisphosphate 	(hydrolysis) 

DAG stays in the cell membrane where it activates protein kinase C (PKC). 

PKC uses ATP to phosphorylate enzymes that regulate metabolism thereby 

affecting the growth and behaviour of the cell (Sailsbury and Ross, 1992). InsP 3  

and cADPR diffuse through the cytosol to activate InsP 3  and cADPR receptors 

situated on the surface of intracellular Ca 2+  stores. These receptors are known 

as InsP 3 11 and ryanodine receptors (RYR) respectively, and their activation by 

second messengers is also thought to be dependent on the concentration of [Ca 2+], 
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(Berridge and Dupont, 1994). If all the conditions are met, they open and a 

[Ca 2+],  transient is produced by release of Ca 2+  from their respective intracellular 

stores. Ca 2+  itself can also activate CPCs, for example during CICR or in the case 

of store-operated CPCs that operate in response to depletion of the intracellular 

store that they gate (Bootman et al., 2001; Sanders et al., 2002). 

[Ca 2+],  waves are often accompanied by nuclear Ca 2+  waves. However, 

gene expression can be differentially controlled by cytosolic and nuclear Ca 2+ 

(Hardingham et al., 1997). The specific mechanisms through which Ca 2+ affects 

cell behaviour are still largely unknown. Ca 2+  may act directly to trigger a variety 

of biochemical events involved in cell differentiation and proliferation (Gadd, 

1994). However, the cellular action of Ca2+  more commonly involves the site-

specific binding of Ca2  to specialised Ca2 -binding proteins. 

Most Ca2 -binding proteins bind Ca 2+  through 6 or 7 oxygen atoms provided 

by glutamate or aspartate residues. Another common component of Ca 2+-binding 

proteins is the 'EF hand'. The EF hand consists of a series of a-helices and its 

name was derived from the fact that a-helices E and F are positioned such that 

they point like the forefinger and thumb of a right hand. A loop containing active 

Ca2+-binding glutamate and aspartate residues lies between these a-helices, and 

it is this that allows Ca2 -binding. Many Ca2 -binding proteins undergo a major 

conformational change when they bind to Ca2+.  This change exposes active sites 

on the protein allowing the signal to be effected (Hancock, 1997). Ca 2 -bound 

proteins can act on the cell directly, or through the modulation of other proteins 

(Gilchrist et al., 1994). 

Calmodulin (CaM) is the most common Ca 2 -binding protein. It is involved 

in an immense number of regulatory pathways. Examples include the regulation 

of metabolic activity and gene expression along with the regulation of other 

signalling pathways such as nitric oxide (NO) generation, the control of cyclic 

3',5'-adenosine monophosphate (cAMP) production via adenylyl cyclase and 

cAMP destruction by Ca 2 /CaM-dependent phosphodiesterase. CaM can also 
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regulate plasma membrane and ER Ca2+pumps,  which remove Ca 2+  from the 

cytosol (Hancock, 1997). The CaM gene has been shown to be essential in S. 

cerevisiae, S. pombe and A. nidulans (Davis, 1992). 

Calcineurin, a Ca2 /CaM dependent protein phosphatase (PP213), is another 

important transducer of Ca 2+  signals. It has recently been found to regulate gene 

expression, in S. cerevisiae, through the regulation of the Crzlp/Tcnlp transcrip-

tion factor (Matheos et al., 1997). The dephosphorylation of Crzlp by calcineurin 

results in its translocation of Crzlp to the nucleus (Stathopoulos-Gerontides et al., 

1999). DNA microarray analysis of calcineurin/Crzlp-dependent gene expression 

following Ca 2+  addition revealed 125 genes that showed Ca2+induced  calcineurin-

dependent expression (Yoshimoto et al., 2002). 

1.2 Ca2 -Signa11ing in Fungi 

When compared to mammalian and plant systems, information on C a2+ signa1ling  

in fungi is relatively sparse. This is particularly true for filamentous species 

(Gadd, 1994). However, the use of both budding and fission yeast as eukaryotic 

cell models is rapidly alleviating the situation, and recent filamentous fungal 

genome sequencing efforts also promise to shed new light on this important area. 

1.2.1 Yeasts 

Yeasts express many of the same signalling molecules used by animal cells. Some 

of the discoveries made regarding Ca 2+-signalling in yeasts are described below. 

1.2.1.1 Ca2+  influx, efflux and homeostasis 

Ca 2+ homeostasis in yeast cells is achieved by complex feedback mechanisms in- 

volving Ca2+permeable  channels,  Ca2+pumps  (Ca  2+ATPases)  and -transporters 

(Ca2+ exchangers). In Saccharornyces cecrevisiae three Ca2+permeable  channel 

proteins have been identified. These are Cchlp (Fischer et al., 1997), Midip 
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(Maruoka et al., 2002) and Yvclp (Denis and Cyert, 2002). The Ca 2 -ATPases 

Pmclp (Degand et al., 1999), Pmrlp (Park et al., 2001), Spflp (Cronin et al., 

2000; Suzuki, 2001) and Neolp (Prezant et al., 1996), the Ca 2 -transporter Vcxlp 

(del Pozo et al., 1999), calmodulin (CaM), calcineurin and probably several other 

Ca2 /CaM regulated proteins are all part of the Ca 2  homeostatic network. Plclp 

(Andoh et al., 1995), the yeast phospholipase C (PLC) protein, may also be an 

important part of the yeast Ca 2 -signalling network as this gene is essential for 

glucose-induced Ca 2+  influx in S. cerevisiae (Tisi et al., 2002) and PLC is known 

to be important in plant and animal W+-signalling networks. 

The vacuole is a major Ca 2+  sink in yeast (Cunningham and Fink, 1994a) and 

Ca 2+  uptake into purified vacuoles and vacuolar membranes is totally dependant 

on the transmembrane pH gradient that is normally produced by the vacuolar H+ 

ATPase (Dunn et al., 1994). vmal mutants of S. cerevisiae (and other mutants 

deficient in the vacuolar H+ATPase  necessary for H+/Ca 2+-exchange activity) 

are therefore extremely sensitive to added Ca 2  (Antebi and Fink, 1992) and 

exhibit a 6-fold elevation in [Ca']. It is thought that inhibition of the vacuolar 

H+/Ca2 Lantiporter is responsible for the above effects (Ohya et al., 1991b). 

The Ca2 -permeable channels Cchlp and Midip have both been found to be 

located at the plasma membrane by immunofluorescence microscopy (Paidhungat 

and Garrett, 1997; Fischer et al., 1997; Locke et al., 2000) and are involved in 

a capacitative Ca2+  entry-like mechanism, which refills Ca 2+  stores within the 

secretory pathway of S. cerevisiae. Depletion of Ca 2+  from the ER stimulates 

Ca 2+  influx through the Cchlp-Midlp Ca 2 -channel (Bonilla et al., 2002). It 

has been shown, by systematic deletions, that the carboxyl-terminal domain is 

important for Midi function (Maruoka et al., 2002). [Ca'] transients induced 

by hyperosmotic stress caused by NaCl, LiCI, or sorbitol are a result of external 

Ca 2+ influx via Midip and Cchlp. The amplitude of these osmotically induced 

Ca 2+  transients, as measured using aequorin, is attenuated by the addition of 

chelating agents EGTA or BAPTA, cation channel pore blockers, competitive 
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inhibitors of Ca 2+  transport, or mutations (cchlA or mid1L) that reduce Ca 2+  

influx, indicating that external Ca 2+  is a source for the transient (Matsumoto 

et al., 2002). 

Both high- and low-affinity Ca 2+  influx systems (HACS and LACS, respec-

tively) exist in S. cerevisiae. The Cchlp-Midlp Ca2 -channel comprise the HACS. 

The HACS is regulated by calcineurin as it shows a large increase in activity after 

calcineurin inactivation or inhibition. LACS is calcineurin insensitive and Cchlp-

Midip independent suggesting that not all the S. cerevisiae Ca2 -permeable chan-

nels have yet been identified (Muller et al., 2001). 

Two potential homologues of the S. cerevisiae Midl/Cchl Ca2 -permeab1e 

channel have been identified in Schizosaceharomyces pombe. These are Ehslp 

and Yam8p. Ehslp is 30% identical to S. cerevisiae Midip and is involved in 

intracellular Ca 2+  accumulation. High external Ca2+  concentrations suppress all 

phenotypes associated with the ehsl null mutation and the lethality associated 

with Pck2p overproduction (deleterious to wild-type cells as a result of promoting 

accumulation of extremely high levels of [Ca 2+] c ) is dependent upon a functional 

copy of ehsl (Carnero et al., 2000). Yam8 has been shown to partially complement 

the mating pheromone-induced death (mid) phenotype of the S. cerevisiae midi 

mutant (Tasaka et al., 2000) and is therefore also likely to be a homologue of S. 

cerevisiae Midip. 

S. cerevisiae Yvclp is a vacuolar Ca2+permeab1e  channel and exhibits homol-

ogy to animal transient receptor potential (TRP) Ca 2 -permeable channels. It 

is necessary for an exclusively vacuolar cation conductance measured by patch-

clamp techniques on vacuoles released from S. cerevisiae spheroplasts (Palmer 

et al., 2001). Yvclp is also responsible for a hypertonic shock provoked transient 

increase in cytosolic Ca2+.  The observed transient is absent in yvclA strains. 

This increase was shown to originate from internal Ca 2+  stores as mutations in 

MID1 and CCH1 and the application of extracellular cation chelators did not 

affect the transient (Denis and Cyert, 2002). 
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A putative InsP 3  gated Ca2+permeable  channel has been detected in purified 

membrane vesicles derived from S. cerevisiae vacuoles. These vesicles accumulate 

Ca 2+  in vitro and release a small portion in response to InsP 3 , suggesting a 

similarity to the InsP 3  receptors of animal cells (Belde et al., 1993). Plclp, 

the yeast phospholipase C (Andoh et al., 1995), is also essential for glucose-

induced Ca 2+  influx in S. cerevisiae. Glucose-induced Ca 2+  influx, as measured by 

aequorin, was completely abolished in a p1c1L strain and was also absent in an 

isogenic wild-type strain treated with 3-nitrocoumarin, a phosphatidylinositol-

specific phospholipase C inhibitor (Tisi et al., 2002). It has also been found 

that both InsP 3-dependent and -independent Ca 2+  mobilisation pathways exist 

at the vacuolar membrane of Candida albicans (Calvert and Sanders, 1995). In 

these experiments C. albi cans vacuoles were isolated from protoplasts, loaded with 

45 Ca2  and subjected to InsP 3  or the lipophilic cation TPMP (which generates 

an inside-positive membrane potential). Both treatments resulted in release of 

45 Ca2+ from the vacuoles. These two pathways were shown to be distinct with 

respect to the amount of Ca2+  released, the nature of response to successive 

stimuli, and their respective pharmacological profiles (Calvert and Sanders, 1995). 

The S. cerevisiae Ca2 -ATPase Pmrlp occurs primarily at the Golgi and 

associated secretory compartments. This is indicated by its co-migration with 

Golgi markers in subcellular fractionation experiments and its immunofluorescent 

punctate pattern resembling Golgi staining (Antebi and Fink, 1992). Pmrlp 

functions in both Ca 2+  and Mn2+  transport and has been found to play a role 

in ER-associated processes such as the degradation of a misfolded ER protein 

(CpY*), which does not occur in pmrl mutants (Durr et al., 1998). The steady-

state Ca2+  concentration in the ER of S. cerevisiae was shown to be 10 jM. 

Mutants lacking the PMR1 gene showed severely reduced levels of ER Ca 2+ 

demonstrating that this pump controls at least in part, the Ca 2+  concentration 

in the yeast ER (Strayle et al., 1999). An N-terminal EF hand-like motif in 

Pmrlp binds Ca 2+  and is essential for Pmrlp function as in-frame deletions 
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of the Ca2 -binding motif resulted in a complete loss of Pmrlp function (Wei 

et al., 1999). Experiments manipulating Pmrlp activity within S. cerevisiae 

strains carrying the vps33 mutation, which results in the absence of vacuoles 

and increased small vesicular and Golgi-like structures, indicate that the Golgi 

apparatus plays a significant role in maintaining Ca 2+ homeostasis when vacuolar 

biogenesis is compromised (Miseta et al., 1999a). Codlp/Spflp is an another ion 

pump and likely to be involved in Ca 2  homeostasis (Cronin et al., 2002, 2000). It 

has been localised to the ER membrane by both immunofluorescence microscopy 

and density gradient fractionation (Cronin et al., 2002). The cod1A mutant is 

disrupted in cellular Ca 2+ homeostasis, causing increased transcription of Ca 2+ 

regulated genes and a synergistic increase in [Ca 2+], when paired with disruption 

of Pmrlp (Cronin et al., 2002). 

A Yarrowia lipolytica (Candida lipolytica) PMR1 gene (Y1PMR1) has been 

cloned (Park et al., 1998) and is a S. cerevisiae PMR1 homolog that en-

codes a putative secretory pathway Ca 2 -ATPase (Sohn et al., 1998). The 

yeast Kluyveromyces lactis has also been found to contain a PMR1 homologue 

(K1PMR1). K1PMR1 mutant phenotypes can be rescued by the introduction of 

S. cerevisiae PMR1 demonstrating that K1PMR1 encodes for a functional Pmrlp 

homologue (Uccelletti et al., 1999). The S. pombe cta3 gene has been shown to 

encode a homologue of the S. cerevisiae PMR2 gene (Ghislain et al., 1990), but 

unlike in S. cerevisiae where PMR2 encodes a Na2+ATPase,  the null mutation of 

S. pombe cta3 reduces the level of ATP-dependent Ca 2+  uptake into non-vacuolar 

intracellular storing organelles suggesting that it encodes a Ca2+ATPase  located 

in intracellular membranes (Halachmi et al., 1992). 

The vacuole is the major site of intracellular Ca 2+  storage in yeast and 

functions to maintain cytosolic Ca 2+  levels within a narrow physiological range 

via Pmclp and a H/Ca2 -antiporter (Vcxlp) driven by the vacuolar H-ATPase 

(V-ATPase) (Cunningham and Fink, 1994b; Ohsumi and Anraku, 1983; Dunn 
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etal., 1994; Ohya etal., 1991b; Antebi and Fink, 1992). The long term loss of V-

ATPase triggers compensatory mechanisms, which are dependent on calcineurin, 

and mediated primarily by Pmclp (Forster and Kane, 2000). VCX1 encodes the 

major vacuolar H+/Ca2+exchanger  in S. cerevisiae, and is a direct or indirect 

target of calcineurin inhibition (Cunningham and Fink, 1996). Both the S. 

cerevisiae Ca2+ATPase  Pmclp and the Ca2+/H+exchanger  Vcxlp/Humlp, a 

Ca2+/H+ antiporter, facilitate Ca2+  sequestration into the vacuole (Pozos et al., 

1996), however, Vcxlp is much faster at sequestering a sudden pulse of [Ca 2+]c 

into the vacuole, while Pmclp carries out this function much less efficiently. 

This supports the hypothesis that Vcxlp is a high capacity, low affinity Ca 2 -

transporter that may act to attenuate the propagation of Ca 2+  signals in this 

yeast (Miseta et al., 1999b) 

1.2.1.2 Ca 2+  signal effectors and Ca 2+  regulated processes 

Numerous processes are regulated by Ca2+  in yeasts. For many of these processes 

the exact signal-transduction pathways are not yet known, however many of the 

proteins involved in effecting these responses have been identified. 

Calmodulin (CaM) and calcineurin are two of the most important proteins 

operating downstream of the Ca2+signa1.  CaM is required for numerous functions 

in yeasts. In S. cerevisiac it is involved in the correct functioning of the spindle 

pole body, the spindle, and the integrity of nucleus (Sun et al., 1992) and is 

required for the progression of nuclear division. CaM repressed yeast cells cease 

growing after 12-15 h. This growth arrest has been associated with a decrease 

in intracellular CaM levels and analysis of the terminal phenotype showed the 

defect was mainly in nuclear division (Ohya and Anraku, 1989). Ca 2+  and 

CaM are essential for correct chromosome segregation in S. cerevisiae and S. 

pombe (Stirling and Stark, 2000; Sundberg et al., 1996; Flory et al., 2002). The 

S. poinbe ER cation ATPase (Cta4p) is required for control of cell shape and 

microtubule dynamics. The cta4A  mutant displays several morphological defects 
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in cell polarity and cytokinesis. Fluorescence resonance energy transfer (FRET) 

experiments in living cells using the yellow cameleon Ca 2+  indicator showed that 

Cta4p regulates the cellular Ca 2+  concentration. These results indicate that Ca 2+ 

is a key ion controlling the control of cell shape, microtubule dynamics, and 

cytokinesis in S. pombe (Facanha et al., 2002). Work based on mutant screens has 

shown that Ca 2+  and phosphoinositide signalling pathways (amongst others), are 

also crucial for the normal functioning of the S. pombe ultradian clock (Kippert, 

2001). The maintenance of cell polarity in S. cerevisiae requires CaM and it has 

been demonstrated through genetic studies that vertebrate CaM can functionally 

replace yeast CaM (Ohya and Anraku, 1992). The cami + gene, encoding CaM 

in S. pombe, is essential. However the Ca 2 -binding properties of individual sites 

could not be easily correlated with their functional importance for viability (Moser 

et al., 1995). Ca 2+  and CaM are also required for dimorphism in C. albicans 

where a yeast-mycelium transition was induced by addition of CaCl 2  but was 

not induced by the same treatment in the presence of the calmodulin inhibitor 

R24571 (Sabie and Gadd, 1989). It has also been postulated that the inhibition 

of germ tube formation in C. albicans by local anaesthetics is likely to be a result 

of ion channel blockade as both general (lanthanum) and selective (nifedipine and 

verapamil) Ca2+permeable  channel blockers as well as the anaesthetics lidocaine 

and ropivacaine inhibit germ tube formation while addition of Ca 2+  revert such 

effects (Rodrigues et al., 2000). Directional hyphal growth responses in C. albi cans 

to surface microtopography is also attenuated by exposure to blockers of stretch-

activated ion channels and L-type calcium channels (Watts et al., 1998) 

The catalytic and/or regulatory subunits of calcineurin have been cloned in 

S. cerevisiae (Cyert et al., 1991; Cyert and Thorner, 1992; Kuno et al., 1991; Liu 

et al., 1991; Ye and Bretscher, 1992; Ohya et al., 1987; Lee and Kievit, 2000), 

S. pombe (Yoshida et al., 1994; Cyert and Thorner, 1992; Kuno et al., 1991; 

Sugiura et al., 2002), C. albi cans (Cruz et al., 2002) and Cryptococcus neoformans 

(Odom et al., 1997; Fox et al., 2001). Calcineurin function is necessary for the 
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growth of S. cerevisiae in media containing high levels of Na and Li (Nakamura 

et al., 1993). Calcineurin also effects Ca2+dependent  changes in gene expression 

through regulation of the Crzlp transcription factor (Stathopoulos-Cerontides 

et al., 1999; Yoshimoto et al., 2002), which is required for the calcineurin-

dependent induction of Pmclp, Pmrlp, Pmr2ap and Fks2p. These proteins 

confer tolerance to high C a2+, Mn2+, Na+, and cell wall damage, respectively 

(Matheos et al., 1997). Ca 2+ and calcineurin are involved in cell-cycle control in 

S. cerevisiae where a delay in the onset of mitosis is induced through the Sweip, 

a negative regulatory kinase that inhibits the Cdc28-Clb complex. Calcineurin 

and Mpklp activate Sweip at the transcriptional and post-translational level, 

respectively, and both pathways are essential for the cell cycle delay (Mizunuma 

et al., 1998, 2001). The 3 subunit of calcineurin is also required for the function 

of calcineurin in promoting adaptation of haploid S. cerevisiae cells to mating 

pheromone in vivo (Cyert and Thorner, 1992). The S. cer'evisiae Ca2+permeable  

channel, Cchlp in is involved in Ca 2+  influx and the late stage of the mating 

process (Fischer et al., 1997). In S. pornbe, a calcineurin-like protein phosphatase 

(Ppbl) is thought to play a role in cytokinesis, mating, transport, nuclear and 

spindle pole body positioning, and cell shape. Deletion of this gene caused defects 

in the above processes and wild-type strains treated with calcineurin inhibitors 

showed similar defects (Yoshida et al., 1994). In C. albicans and Cryptococcus 

neoformans calcineurin has been found to play an essential role in pathogenesis 

and calcineurin-deficient mutants are attenuated for virulence in a murine model 

of candidiasis (Fox and Heitman, 2002; Cruz et al., 2002). 

Several other proteins involved in Ca2+signalling  transduction in yeasts also 

have been found. For example, the Ca2 /CaM kinase II (CaMKII) regulates 

G2/M progression in S. pornbe (Rasmussen and Rasmussen, 1994). Two genes 

(CMK1 and CMK2) isolated from S. cerevisiae encode CaM-dependent protein 

kinases (Ohya et al., 1991a). The essential FRQ1 S. cerevisiae gene is a Ca2 -

binding protein belonging to the recoverin/frequenin branch of the EF-hand 
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superfamily and regulates a yeast phosphatidylinositol 4-kinase isoform (Ames 

et al., 2000). S. cerevisiae also expresses enzymes that can synthesise and 

degrade sphingosine 1-phosphate (SIP) and related molecules. Treatment of 

yeast cells with exogenous sphingosine stimulates Ca 2+  accumulation through 

two distinct pathways and it has been suggested that phosphorylated sphingoid 

bases might serve as messengers of Ca2+signalling  in yeast during an unknown 

cellular response. (Birchwood et al., 2001; Brownlee, 2001) 

1.2.2 Filamentous fungi 

In filamentous fungi, Ca 2+ is thought to be involved in the control of sporulation, 

cyst germination, dimorphism, zoospore motility, pheromone-mediated sexual 

reproduction, the cell cycle, circadian rhythms, cytokinesis, tip growth, hyphal 

branching and hyphal reorientation towards localised stimuli (Hyde, 1998; Miller 

et al., 1990). 

Some of the discoveries made regarding Ca2+signalling  in filamentous fungi 

are described below. Oomycetes exhibit hyphal growth and are considered by 

some to be 'part of the union of fungi' (Heath and Steinberg, 1999) despite the 

fact that they are not true eufungi (Bhattacharya et al., 1992). Although they are 

commonly studied by many mycologists and show hyphal tip growth, they will 

not be included in this report due to their different phylogenetic origin to that of 

true fungi (see Table 1.1 in Deacon, 1997 for a comparison (Deacon, 1997)). 

1.2.2.1 Ca 2+ influx, efflux and homeostasis 

Ca 2+  entry into the cytoplasm is thought to occur primarily at the plasma 

membrane, where SA-channels permeable to Ca 2+ have been identified in fungal 

hyphae using electrophysiological techniques on isolated membranes and whole 

cells (Zhou et al., 1991; Levina et al., 1995). The presence of two InsP 3 -

activated Ca 2+-channels has been demonstrated in N. crassa membranes using 

electrophysiological techniques, and it has been suggested that these channels 
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could be responsible for the generation of the tip-high apical Ca 2  gradients 

thought to be necessary for hyphal tip growth (Silverman-Gavrila and Lew, 2002). 

However, it is clear that the majority of Ca2+permeable  channels remain to 

be discovered in filamentous fungi (Jackson and Heath, 1993) as currently only 

one filamentous fungal Ca2+permeable  channel has been cloned (NCBI accession 

number: AF393474). 

The vacuole of filamentous fungal cells is thought to be a major Ca 2+  storage 

organelle for the cell because it contains a high concentration of Ca 2+  (Cornelius 

and Nakashima, 1987). In the growing fungal hypha, the vacuole has the potential 

to act as an infinitely expandable Ca2+  store. The vacuole continually enlarges 

with the extending hyphae thereby increasing its capacity to store Ca 2  (Jackson 

and Heath, 1993). Kinetic analysis of the vacuolar H/Ca 2 -exchanger from S. 

cerevisiae suggested that this enzyme would be sufficient to account for the levels 

of Ca 2+  sequestration observed over a wide range of environmental conditions 

(Dunn et al., 1994). Similar conclusions were reached concerning the vacuolar 

H/Ca2 -exchangers of filamentous fungi and higher plants (Blackford et al., 

1990; Miller et al., 1990). N. crassa vacuoles have also been shown to release 

Ca 2+  in response to InsP 3  (Cornelius et al., 1989; Schultz et al., 1990) suggesting 

that InsP 3  mediated Ca 2+  release from internal stores may be an important part 

of Ca 2+-signallingin filamentous fungi (Kallies et al., 1998; Silverman- Gavrilaand 

Lew, 2002), as it is in plants and animals. The fact that PLC has been cloned from 

several filamentous fungi (N. crassa, A. nidulans, B. fuckeliana (Jung et al., 1997) 

and M. grisea [NCBI accession number: AAC72385]) and the recent detection two 

InsP 3-activated Ca2+channels  in N. crassa membranes (Silverman-Gavrila and 

Lew, 2002) supports this idea. 

Active transport of Ca2+  across N. crassa membranes takes place via W+/H+ 

antiporters (Stroobant and Scarborough, 1979; Stroobant et al., 1980) and 

Ca2 LATPases, which function to pump Ca2+  out of the cell or into internal 

storage organelles. Ca2+/H+  antiporters rely upon proton-translocating ATPases 
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(Bowman and Bowman, 2000; Bowman et al., 2000) to generate a transmembrane 

electrical potential and pH gradient, which can then be utilised to energise the 

active transport of Ca 2+  (Stroobant et al., 1980). One such filamentous fungal 

Ca 2+/H+ antiporter, CAX, has been cloned (Margolles-Clark et al., 1999). The 

function of this protein is to transport Ca 2+  into the vacuole. Five C a2+ATPases  

(NCA-1, NCA-2, NCA-3, PMR-1, PH-7) have been cloned in N. crassa and 

experiments examining the suppression of S. cerevisiae null Ca 2+  mutants by 

some of these proteins, phylogenetic analysis and induction of gene expression by 

Ca 2+'  were used to indicate their function as Ca 2 -ATPases (Benito et al., 2000). 

A Ca2 -ATPases has also been identified in Ustilago maydis and has been shown 

to be responsible for pumping Ca 2+  into plasma membrane vesicles (Hernandez 

et al., 1994; Benito et al., 2000). In Aspergillus niger pmrA has been identified as 

a homologue of the yeast PMR1 gene. It encodes a functional homologue of the 

yeast Ca2 -ATPase (Pmrlp) involved in the secretory pathway as it restored the 

growth defect of a Yarrowia lipolytica pmrl null mutant (Yang et al., 2001a). 

1.2.2.2 Ca 2+  signal effectors and Ca 2+  regulated processes 

CaM and calcineurin have been cloned in N. crassa (Capelli et al., 1993; Melnick 

et al., 1993; Higuchi et al.; Kothe and Free, 1998; Prokisch et al., 1997) and 

A. nidulans (Rasmussen et al., 1990, 1994). CaM has also been cloned in 

Fusarium proliferaturn (NCBI accession number: AAK69619) (Kwon et al., 2001) 

and calcineurin has been cloned in A. oryzae (Juvvadi et al., 2001). These 

proteins clearly play a significant role in many important processes. For example 

circadian rhythms are inhibited by Ca' ionophores and CaM inhibitors in 

N. crassa (Techel et al., 1990; Sadakane and Nakashima, 1996; Yang et al., 

2001b) and CaM mediated phosphorylation is required for conidial germination 

in N. crassa (Muthukumar and Nickerson, 1984; Rao et al., 1997). Ca' and 

calcineurin are thought to play a regulatory role in afiotoxin production in 

Aspergillus parasiticus as the Ca2+permeable  channel blockers verapamil and 
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diltiazem prevented incorporation of [14 C}-acetate into afiotoxin B 1  in a dose-

dependent manner (Rao and Subramanyam, 1999). Afiatoxin production was 

also accompanied by enhanced (26-fold) activity of calcineurin concomitant with 

a lowered (6-fold) activity of CaM-dependent protein kinase (Jayashree et al., 

2000). Contact with hard surfaces induces Ca 2 /CaM signalling in Collet otri chum 

gloeosporioides and primes the conidia to respond to host signals by germinating 

and differentiating into appressoria (Kim et al., 1998). Ca 2+ and CaM are 

thought to be involved in xylanase formation and secretion in Trichoderma reesei 

based on work done with Ca2+antagonists  -agonists and CaM inhibitors (Mach 

et al., 1998). Ca 2+  and CaM are required for dimorphism in Ceratocystis ulmi 

(Muthukumar et al., 1987) and Sporothrix schenckii (Gadd and Brunton, 1992; 

Alsina and Valle, 1984). CaM is an essential gene in all eukaryotes so far examined. 

Unlike in S. cerevisiae (Davis, 1992), however, the essential function of CaM in 

A. nidulans is dependent on its binding Ca 2+  (Joseph and Means, 2002). Ca 2+  

and CaM are required for cell cycle progression in A. nidulans (Lu et al., 1992, 

1993) and mitotic spindle formation of the fungal centrosome in A. fumigatus is 

likely to involve a recently discovered homologue to the calmodulin-binding yeast 

SpcllOp/Nuflp protein (Flory et al., 2002). 

There are many other important proteins involved in transducing C a2+ 

signals for the control of various processes. Examples include Ca2+  and/or 

CaM-dependent protein kinases (CaMK), which are present in N. crassa (Favre 

et al., 1991; Yang et al., 2001b) and Arthrobotrys dactyloides (Tsai et al., 

2002), A. nidulans (Kornstein et al., 1992; Joseph and Means, 2000) and 

Colletotrichum gloeosporioides (Kim et al., 1998). CaMK has been partially 

purified from Fusarium oxysporum and shown to exhibit C a2+/CaMdependent 

phosphorylation and to bind anti-rat brain Ca 2 /CaM-dependent protein kinase 

II antibodies (Hoshino et al., 1992). Ca2  is thought to play a role in phospholipid 

synthesis in Microsporum gypseum (Giri et al., 1994). This regulation might be 

achieved through Ca 2 /CaM-dependent phosphorylation by Ca2/CaM-kinase 
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(CaMPK) as addition of KN-62 (a specific inhibitor of Ca 2 /CaM-dependent 

protein kinases) and polyclonal antibodies raised against purified CaMPK of M. 

gypseum leads to the inhibition in the incorporation of labelled acetate into total 

phospholipids in this fungus (Giri and Khuller, 1999). The Ca 2 /CaM-regu1ated 

protein kinases CMKB and CMKC from A. nidulans play a role in control of the 

cell cyle. When CMKB expression is postponed spores germinate with delayed 

kinetics. A lag is observed in the Gi-phase activation of the cyclin-dependent 

kinase NIMXC2.  Spores lacking CMKC also germinate with delayed kinetics 

and a lag in the activation of NIMX 2  suggesting that both CMKB and CMKC 

are required for the proper temporal activation of NIMXC2  as spores enter the 

cell cycle from quiescence (Joseph and Means, 2000). 

Low external Ca 2+  and Ca 2+  inhibitors reduce the induction of conidiation 

in Penicillium spp. (Pitt and Barners, 1999) and Trichoderma viride (Krystova 

et al., 1995) and conidial germination in N. crassa (Muthukumar and Nickerson, 

1984; Rao et al., 1997) and Sporothr'ix schenckii (Rivera-Rodriguez and Valle, 

1992) are all strongly influenced by Ca 2 . Both germination and appressorium 

formation in Phyllosticta ampelicida pycnidiospores are regulated by Ca 2 -

signalling (Shaw and Hoch, 2000) and several inhibitors of K and Ca' ion 

channels have been found to inhibit ascospore discharge in Gibberella zeae (Trail 

et al., 2002). 

Hyphal elongation and branching is thought to be regulated by Ca 2+  in several 

species of filamentous fungi, including N. crassa (Gow et al., 1992; Dicker and 

Turian, 1990; Reissig and Kinney, 1983; Silverman- Gavrila and Lew, 2000, 2001), 

Fusarium graminearum (Robson et al., 1991c,b) and Botrytis cinerea (Hudecoca 

et al., 1994) (discussed in detail in Section 1.5). Other morphological process 

thought to be affected by Ca 2 -signalling in filamentous fungi include gravitropic 

responses in Corprinus cinereus, which are affected by Ca 2+  modulators (Frazer 

and Moore, 1993) and the development of Erysiphe pisi on pea leaves, which is 

affected by Ca 2+  and CaM modulators (Singh and ad B. K. Sarma, 2001). 
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Phytoparasitism in Botrytis cinerea is radically affected by Ca2 (Elad and 

Kirshner, 1992). It has also been proposed that zoospores of phytopathogenic 

fungi perceive host signals by specific C-protein-coupled receptors and translate 

the signals into responses by way of the phosphoinositide-Ca 2 -signalling cascade. 

However, this remains to be proved experimentally (Islam and Tahara, 2001). The 

nematode trapping fungus Arthrobotrys dactyloides is thought to trap nematodes 

via a mechanism whereby pressure exerted by a nematode activates C-proteins 

leading to an increase in [Ca 2 ], activation of CaM, and finally the opening of 

water channels causing ring cells to constrict and immobilise the nematode (Chen 

et al., 2001). 

1.3 Neurospora as an Experimental System 

The filamentous fungus N. crassa has seven chromosomes between 4.0 and 10.9 

Mbp in size and a total genome size of about 43 Mbp. It has been the subject 

of scientific research since 1843 (Perkins, 1992) and today boasts the greatest 

number of scientists devoted to one species of filamentous fungus (Nelson, 2000). 

N. crass a has several attributes that make it popular for use as a model organism. 

Some examples are its ease of growth (its hyphal extension rate can exceed 4 

mm h') and the fact that it is haploid throughout most of its life cycle and 

thus recessive mutated alleles are not masked by dominant alleles on homologous 

chromosomes. It produces propagules suitable for plating and can easily be 

maintained in suspended animation with no need for periodic transfers (Perkins, 

1992). Furthermore, N. crassa can reproduce either sexually or asexually. DNA-

mediated transformation is efficient and repeat-induced point mutation (RIP), a 

phenomenom whereby G:C to A:T mutations occur in duplicated DNA sequences, 

can be harnessed to achieve in vivo mutagenesis of specific chromosomal regions 

in N. crassa (Selker, 1991). Together these characteristics make N. crassa highly 

amenable to genetic manipulation and biochemical characterisation. Further 
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important resources have been made available by the Fungal Genetics Stock 

Centre (FGSC) who carried over 7000 N. crassa strains in 1990, and who 

distribute a wide selection of mutants and genetic libraries (Perkins, 1992). The 

entire N. crassa genome has been sequenced and throughly annotated (Galagan 

et al., 2003). N. crassa is the first filamentous fungus for which this has been 

achieved. The genetic map of N. crassa is also very well documented and includes 

over 1000 genes mapped relative to each other and over 500 cloned genes. 

Overall there is a wealth of tools, resources and information for those 

studying N. crassa. Information on N. crassa is also readily applicable to 

other agriculturally or industrially important fungi. Although N. crassa is 

nonpathogenic, it is phylogenetically very closely allied with and genetically 

similar to several important plant pathogens including Cochtiobolus carbonum 

(Southern corn leaf blight), Fusariurn spp., and Magnaporthe grisea (the rice 

blast fungus). 

1.4 The Filamentous Fungal Lifestyle 

1.4.1 Hyphal growth and branching 

N. crassa is a filamentous fungus. Filamentous fungi are made up of many 

cellular filaments, called hyphae, that growth and branch to form a network called 

a mycelium. The vegetative hyphae of filamentous fungi present outstanding 

examples of polarised growth and branching. The polarised growth of fungal 

hyphae (along with cells as diverse as pollen tubes, algal rhizoids and root hairs 

(Bibikova et al., 1999) is characterised by extension which is confined to the cell 

tip. The tip of the hypha extrudes out into the environment from the subapical 

tube in a continuous growth process that involves the synthesis of new cell wall 

and cell membrane. This involves massive exocytosis of vesicles which contribute 

to cell wall synthesis, along with the production, localisation, and activation of the 

enzymes which synthesise the fibrillar cell wall polymers (Heath and Steinberg, 
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1999). A common rate of hyphal extension in N. crassa in open-culture is 36 pm 

min- '. In order for a 10 pm wide hyphae to supply sufficient plasma membrane to 

the hyphal tip to maintain this growth rate it has been estimated that about 600 

secretory vesicles per second would have to fuse with the apical plasma membrane 

(Collinge and Trinci, 1974). 

Tip growth, with the accompanying ability to grow in a straight line or change 

direction, enables the hypha to explore and penetrate its environment (Heath and 

Steinberg, 1999). During tip growth, the diameter of the hyphal tube is precisely 

regulated. It is coordinated with growth rate and direction and is generally 

maintained at a constant value through varying extension rates and direction 

changes (López-Franco et al., 1994; Riquelme et al., 1998). 

Hyphal morphogenesis is thought to be controlled by the position of the 

Spitzenkörper (Spk), a phase-dark body found at the tip of elongating hyphae 

in higher fungi (Riquelme et al., 1998; Brunswick, 1924; Girbardt, 1969; Lopez-

Franco and Bracker, 1996). The Spk is a complex assemblage of organelles 

containing amongst other things a central core of variable composition, a cluster 

of vesicles surrounding the core, and an outer cloud of vesicles with imprecise 

boundaries (Reynaga-Penflia et al., 1997). 

Branching in filamentous fungi is generally either lateral, most common 

in wild-type strains that have not been subjected to stress, or dichotomous. 

Dichotomous branching (see Fig.1.1) is usually observed under stress conditions 

or in some mutant strains. 

1.4.2 Branching mutants of Neurospora crassa 

Amongst the thousands of strains of N. crassa carried by the FGSC there are 

many mutants showing altered hyphal branching and morphology. Table 1.1 

shows a selection of these mutants. In several cases Ca 2+  is, or is thought to be, 

in some way involved with generating the mutant phenotype. 
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Figure 1.1: The two most common branching types in N. crassa: (a) lateral branching, and (b) 

dichotomous branching. 

Table 1.1: Some hyperbranching mutants of N. crassa 

cot-1 Colonial growth at or above 32°C, but normal growth below this temperature. 
At the restrictive temperature, colonies grow slowly with excessive hyphal 
branching and do not conidiate. The cot-1 gene encodes a protein kinase 
(Yarden et al., 1992). A possible functional linkage between COT1 kinase, 
calcineurin and a cytoskeletal motor protein has been proposed (Gorovits et al., 
1999). 

cot-2 Another colonial temperature-sensitive mutant. Colonial growth at or above 
32°C and a more wild-type phenotype at 25°C. Mapped to linkage group V 
between ser-2 ad-7 by classical genetics (Perkins et al., 1982). 

cot-3 Colonial growth at or above 32°C and a more wild-type phenotype at 25°C. 
The (cot-3) gene encodes a protein elongation factor 2 (Propheta et at., 2001). 

cot-4 Small colonies at 34°C, spreading at 25°C. Morphology at 25°C resembles that 
of the mutant spray. Mapped to linkage group V between rol-3 mi by classical 
genetics (Perkins et at., 1982). 

cot-5 Little or no growth at 34°C; colonial at 30°C. Morphology still not normal at 
25°C. The cot-5 gene encodes a mannosyltransferase and the mutant phenotype 
can be suppressed by increased medium osmoticum (Resheat-Eini et al., 2003). 

spray The spray mutant of N. crassa branches profusely under conditions of normal 
growth in the wild-type. This phenotype can be partially corrected by addition 
of 50-500 mM Ca 2+  (Dicker and Turian, 1990). The spray gene has been cloned 
but shows no homology to other genes in the database (Bok et at., 2001). 

frost Similar to spray although hyperbranching is more profuse. The frost gene is 
homologous to the yeast cdci gene and affects hyphal branching via manganese 
homeostasis (Sone and Griffiths, 1999). 

pvni-121A A vma-i (V-ATPase encoding subunit) null strain. pvni-1 21A colonies 
grow very slowly in comparison to wild-type colonies and show intense hyper-
branching (Bowman and Bowman, 2000; Bowman et al., 2000). 

pvn2-59-19A Another pvn mutant. V-ATPase activity could not be detected in 
pvn2-53-19A membrane extracts (E. J. Bowmann, personal communication). 
This mutant also exhibits slow growth and hyperbranching. 
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1.4.3 Factors affecting hyphal branching 

1.4.3.1 Increasing hyphal branching frequency 

Many factors affect hyphal branching in filamentous fungi. For example, the 

addition of 1 mM verapamil to a N. crassa growth medium caused hyphal swelling 

and branching (Dicker and Turian, 1990). The Ca 2 -se1ective ionophores A23187 

and ionomycin cause the emergence of multiple branches shortly after addition 

(Schmid and Harold, 1988; Reissig and Kinney, 1983; Harold and Harold, 1986). 

Low concentrations of cytochalasins have been reported to induce branching 

in a number of fungi (Betina et al., 1971; Allen et al., 1980). Cytochalasins are 

thought to act by blocking the elongation of actin filaments or by disrupting 

microfilament networks (Bray, 1979; Lin et al., 1980; Brown and Spudich, 1981; 

Schliwa, 1982). 

Phosphoinositide turnover inhibitors lysocellin, piericidin B 1 N-oxide and the 

inositol analogue (2S, 3R, 5R)-3-azido-2-benzoyloxy-5-hydroxycyclohexanone, all 

reduce hyphal extension and cause increased branching (Hosking et al., 1995). 

Cantharidin and calyculin A, inhibitors of protein phosphatase type 1 (PP1) 

and PP2A respectively, induce an increase in hyphal branching (Yatzkan et al., 

1998). Genetic reduction of PP2A activity by ectopic expression of pph-1 has 

similar effects (Yatzkan et al., 1998). 

Genetic impairment of cna-1, cnb-1 or treatment of wild-type N. crassa with 

anti-calcineurin drugs cyclosporin A and FK506 causes loss of apical dominance 

and hyperbranching followed by growth arrest (Prokisch et al., 1997). Genetic and 

chemical impairment of the vacuolar ATPase of N. crassa also increases branching 

frequency dramatically (Bowman and Bowman, 2000; Bowman et al., 2000). 

The chitin synthase inhibitors polyoxin D and nikkomycin Z cause hyphal 

ballooning and hyperbranching in both N. crass a and Coprinus cinereus (Gooday, 

1990). Another proposed inhibitor of chitin synthesis, Edifenphos (or Hinosan) 

increases branching in Fusarium graminearam. This effect can be counteracted by 
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the simultaneous addition of 20 tiM choline chloride to the growth medium (Wiebe 

et al., 1992). Tight colonial morphology and a dramatic increase in branching 

were observed when 10 to 25 mM cAMP was added to Fusarium graminearum 

growth media (Robson et al., 1991a). Again, it was possible to counteract this 

effect with choline chloride. It seems therefore, that the morphological effects of 

choline are independent from the morphological effects of cAMP, and that the 

morphological effects of choline are independent from the morphological effects of 

Edifenphos. On the bases of these and other observations, it was suggested that 

branch initiation and hyphal extension can be regulated independently (Markham 

et al., 1993). 

Sorbose has also been found to cause a massive increase in branching frequency 

and a reduction in hyphal extension rate in N. crassa (Crocken and Tatum, 1968; 

Mishra and Tatum, 1972; Trinci and Collinge, 1973). 

1.4.3.2 Reducing hyphal branching frequency 

There are very few treatments known which inhibit hyphal branching. This is 

perhaps because the usual fungal response to stress and many other stimuli is an 

increase in the frequency of branching rather than a decrease. 

Addition of as little as 1-5 MM choline chloride to the growth medium 

of Fusarium graminearurn inhibits branch formation without affecting specific 

growth rate or the mean hyphal extension rate. Similar effects were observed 

using the related compounds betaine, ethanolamine, monomethylethanolamine 

(MME) and dimethylethanolamine (DME) (Wiebe et al., 1990, 1992). Choline 

chloride inhibits branch formation in Aspergillius nidulans in a similar way (Binks 

et al., 1992; Markham and Bainbridge, 1992; Markham, 1992). 

cGMP was found to reduce hyphal branching when added to Fusarium 

graminearurn A 3/5 at a concentration of between 10 and 50 mM (Robson et al., 

1991a). Furthermore, the fungal response when both cGMP and choline were 
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added together was even grater than the additive product that would be expected 

if the two compounds were added separately (Markham et al., 1993). 

1.5 Ca 2+ and Hyphal Branching in Neurospora 

and other Filamentous Fungi 

A tip high Ca 2+ gradient, peaking at about 3 pm behind the tip, has been observed 

in growing but not in non-growing hyphae of N. crassa (Levina et al., 1995) 

using flourescent dyes which report free Ca 2+ (Silverman-Gavrila and Lew, 2000, 

2001). Wild-type hyphae show a strong fluorescence with a clear apical gradient in 

mediums containing chlortetracycline (CTC) (Schmid and Harold, 1988; Dicker 

and Turian, 1990), which reports membrane bound Ca 2+  (Jackson and Heath, 

1993). In one case, the addition of 1 mM verapamil (a Ca 2 -channel blocker) to 

a CTC containing medium caused hyphal swelling, branching and the dissipation 

of the CTC fluorescence. Addition of Ca 2  alleviated these effects (Dicker and 

Turian, 1990). The hyperbranching mutants 'frost' (fr) and 'spray' (sp) show 

a similar phenotype and CTC fluorescence to verapamil treated wt, and like 

the treated wt, this phenotype can be corrected by treatment with 50-500 mM 

Ca 2+ (Dicker and Turian, 1990). Reducing the extracellular [Ca'] of N. crassa 

growth media resulted in shorter, wider hyphae eventually leading to a total loss 

of polarised growth in 20% of the population at 0.1 jiM-Ca 2  (Schmid and Harold, 

1988). The Ca' ionophore A23187 caused dissipation of CTC fluorescence and 

the emergence of multiple branches shortly after addition (Schmid and Harold, 

1988; Reissig and Kinney, 1983). 

Voltage clamping has shown that the direction of ion transport across the 

N. crassa plasma membrane is not important for the regulation of tip growth 

(Silverman-Gavrila and Lew, 2000), but that intracellular Ca 2  was essential. 
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It has also been shown, using electrophysiological techniques, that two InsP 3 -

activated C a2+permeable  channels exist in N. crassa membranes (Silverman-

Gavrila and Lew, 2002). A range of inhibitor experiments indicated that one 

of these C a2+permeable  channels was necessary to generate the hyphal tip-high 

Ca 2+  gradient required for hyphal growth (Silverman-Gavrila and Lew, 2001; 

Silverman-Gavrila and Lew, 2002). It has been proposed that the Ca 2+  gradient 

may be maintained by "Ca 2+  shuttling" from wall-building vesicles which are 

concentrated in hyphal tips (Torralba et al., 2001). 

Phosphoinositide turnover inhibitors lysocellin, piericidin B 1 N-oxide and the 

inoisotol analogue (2S, 3R, 5R)-3-azido-2-benzoyloxy-5-hydroxycyclohexanone, 

all reduce hyphal extension and cause increased branching (Hosking et al., 1995). 

It has been shown that InsP 3  causes the release of Ca 2+  from isolated N. crassa 

vacuoles (Cornelius et al., 1989). Heat shock leads to a transient increase of InsP 3  

and a drastic decrease in the amount of vacuolar Ca 2+  (Kallies et al., 1998). 

In N. crassa, genes homologous to 2 subunits of calcineurin, cna-1 (calcineurin 

A) and cnb-1 (calcineurin B) have been cloned and shown to play roles in hyphal 

development (Sone and Griffiths, 1999; Kothe and Free, 1998). Impairment of ei-

ther gene or treatment of wild-type with anti-calcineurin drugs cyclosporin A and 

FK506 causes loss of apical dominance and hyperbranching followed by growth 

arrest (Prokisch et al., 1997). Genetic or chemical impairment of the vacuolar 

ATPase, thought to be necessary for generation of the electrochemical gradient 

required for the operation of the vacuolar C a2+/H+ antiporter, CAX, caused a 

massive reduction in hyphal extension rate and a profoundly hyperbranched phe-

notype (Bowman and Bowman, 2000; Bowman et al., 2000). 

There is also evidence that Ca 2+  plays a role in the regulation of tip growth 

and hyphal branching in other filamentous fungi including Fusarium graminearum 

(Robson et al., 1991c,b) and Botrytis cinerea (Hudecoca et al., 1994). 
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1.6 Measuring Intracellular Ca 2+ 

Due to its toxicity at pM concentrations [Ca 2 ] is strongly buffered in the 

cytoplasm. Resting [Ca 2+], concentrations of 70-92 nM (Levina et al., 1995; 

Miller et al., 1990) in N. crassa, and transient increases in [Ca 2 +] c  that are over in 

minutes, make the measurement of Ca 2+  in living cells problematic. Furthermore, 

the use of fluorescent dyes within living cells is difficult as the dyes may result in 

cell damage, be cytotoxic, leak out of cells, or be sequestered into organelles (Read 

et al., 1992). Many experiments using such dyes have induced altered growth and 

morphology in their subjects (Jackson and Heath, 1993; Silverman-Gavrila and 

Lew, 2000, 2001). The evidence for a role for Ca 2 -signalling in regulating hyphal 

branching, was either derived indirectly (e.g. using pharmocological agents), or 

through the direct measurement of [Ca 2+],  using Ca2+  selective fluorescent dyes. 

Much of the evidence indicating the presence of an apical Ca 2  gradient in N. 

crassa hyphae, and its requirement for normal hyphal morphology, is based on 

CTC staining. As CTC fluoresces only when bound to Ca 2+  in the vicinity of a 

membrane (Jackson and Heath, 1993), such evidence may not provide the whole 

picture relating to [Ca 2+],  concentrations in fungal hyphae. Due to the difficulties 

mentioned above, there are currently "few compelling reports and numerous 

uncertainties" regarding the measurement of Ca 2+ distribution and concentration 

in growing hyphal tips (Jackson and Heath, 1993). One technique, which has the 

potential to overcome these problems uses the Ca2+sensitive  luminescent protein 

aequorin, and it is this technology that I have used in my study. 

1.6.1 Measuring intracellular Ca2+  with recombinant ae-

quorin 

Aequorin is a 22 kDa photoprotein from the jelly fish Aequorea victoria, which 

also produces the green fluorescent protein (Kendall and Badminton, 1998). 

Active aequorin is composed of apoaequorin (the apoprotein), coelenterazine 
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(the luciferin) and bound oxygen. On binding Ca2+,  aequorin is converted into 

apoaequorin, carbon dioxide and coelenteramide, and energy from this reaction 

is released as blue light (see Fig. 1.2). Because the amount of luminescence 

coel 

luminescence 
A = 470nm 

Figure 1.2: Apoaequorin, coelenterazine and molecular oxygen form the complex 'aequorin. The 
combination of aequorin and Ca 2+  initiates an intramolecular oxidation reaction that results in CO2. 
coelenteramide, apoaequorin and the emission of blue light (A = 470 nm). Adapted from a slide by 
Ann Haley. 

is dependent upon the concentration of free Ca2+  (see Fig. 1.3), aequorin can 

be used to report [Ca 2+] c  inside cells. Properties of aequorin which make it a 

useful intracellular Ca 2+  reporter include its: high selectivity for free Ca 2+;  very 

large dynamic range over which Ca2+  can be measured; retention within the 

cell compartment it has been targeted to; lack of [Ca 2+] c  buffering; and non-

cytotoxicity (Miller, 1994). Further advantages become available when aequorin 

is expressed in an organism by DNA-mediated transformation (Kendall and 

Badminton, 1998). 

The cloning and characterisation of two apoaequorin genes (aeqA [also called 

aeqi] (Prasher et al., 1985) and aeqD [also called aqO], (Inouye et al., 1985) 

led to recombinant aequorin expression in plants (Knight et al., 1991b), yeast 

(Nakajima-Shimada et al., 1991a,b), bacteria (Knight et al., 1991a), mammalian 

cell lines (Kendall et al., 1992; Rizzuto et al., 1992) and slime moulds (Saran 
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Figure 1.3: The relationship between light emission and Ca 2-1-  for aequorin. Ca2+  was determined 

by dilutions of 1 M CaCl 2 . The red line indicates the relationship between light emission and Ca 2+  

(Allen et al., 1977). 

et al., 1994). Using appropriate promoters and signal sequences, aequorin can 

be expressed in all or selected cell types (Rosay et al., 1997), or targeted to 

specific subcellular locations including organelles (Rizzuto et al., 1994; Kendall 

and Badminton, 1998). Cytosolic or organellar free Ca2+  may then be analysed 

in single cells, tissues, organs or whole organisms using luminometry (Knight 

and Knight, 1995) or low light imaging (Knight et al., 1993). Luminescence is 

converted into [Ca'] using Equation 1.3 below (Allen et al., 1977; van der Luit, 

1998). 

L = /(1+KR.[Ca2]) \3 

LMAX 	1 + KTR + KR - [Ca 2+]) (1.3) 

L = counts s, LMAX = total counts measured during the course of the 

experiment, [Ca 2+] = the calculated [Ca 2+], KR is the equilibrium association 

constant and KTR = [T]/[R], where T and R are the 2 possible states of the 

Ca 2+-bindingsites in aequorin (Allen et al., 1977). Values used were KR = 2 10 

M' and KTR =55 (van der Luit, 1998). 
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1.7 Genomics - The Recent Revolution 

Over the last decade, the number of organisms whose genomes have been 

sequenced has been growing at an ever increasing rate. The genome of the first 

filamentous fungus to be completely sequenced in the public sector, N. crassa, was 

recently published (Galagan et al., 2003) and more filamentous fungal genome 

sequencing projects are reaching completion. Magnaporthe grisea is the first 

fungal plant pathogen to have had its genome sequenced and A. fnmigat'us is 

the first human filamentous fungal pathogen to have its genome sequenced. The 

genome sequences of the non-filamentous fungal model organisms S. cerevisiae 

and S. pombe were published in 1996 and 2002, respectively (Goffeau et al., 1996; 

Wood et al., 2002). 

The list of sequenced fungal organisms is growing rapidly and partial genome 

sequences of several other fungi are currently available. Table 1.2 lists both 

completed and ongoing fungal genome sequencing projects. References are given 

where genome sequencing projects have been completed and published in peer 

reviewed journals. 

Table 1.2: Past and present fungal genome sequencing projects 

Organism Web Site Reference 
N. crassa http://www-genome.wi.mit.edu/annotation/fungi/neurospora  (Galagan et al., 

2003) 
F. grarniriearum http://www-genome.wi.n-iit.edu/a.nnotation/fungi/fusarium  - 

M. grisea http://www-genome.wi.mit.edu/annotation/fLingi/magnaporthe  - 

P. chrysosporum http://www.jgi.doe.gov/programs/whiterot.htm  - 

A. furniyatu8 http://www.tigr.org/tdb/e2k1/afu1  - 

A. nidulans http://www.genome.wi.mit.edu/annotation/fungi/aspergillus  - 

C. aibicans http://genome-www.stanford.edu/fungi/Candida  - 

C. neoforimans http://www.tigr.org/tdb/e2k1/cna1  - 

P. carinii http://www.uky.edu/Projects/Pneumocystis  - 

S. cerevisiae http://genome-www.stanford.edu/Saccharomyces  (Goffeau et al., 
1997) 

S. porribe http://www.sanger.ac.uk/Projects/S_pombe  (Wood et al., 
2002) 

The availability of such large filamentous fungal genome databases has made it 



CHAPTER 1. Introduction 
	

31 

possible, for the first time, to gain detailed insights into the molecular machinery 

of filamentous fungi through genomic analysis. 

1.8 Introduction to the Research Carried out in 

this Thesis 

Despite the obvious importance of Ca2+signa1ling  in filamentous fungi, and in 

contrast to the situation in budding yeast, there is very little direct knowledge 

about Ca2+signal1ing  or the molecular components involved in Ca2+signalling  in 

filamentous fungi. The aims of this research were: 

• To develop and an aequorin-based approach for measuring [Ca 2+],  in living 

N. crassa hyphae 

• To quantitaivly characterise the Ca2+signatures  in response to various 

stimuli over a range of environmental conditions and to develop a sensitive 

method for detecting perturbations in Ca 2 -signa1ling machinery 

• To use the tools and methods developed to: 

- investigate the contribution of internal Ca 2+  stores in the observed 

Ca2+-signatures 

- analyse the role of Ca 2 -signalling in hyphal branching using hyper-

branching mutants 

• To genetically and phenotypically analyse selected hyperbranching mutants 

of N. crassa 

To perform a genomic analysis of the Ca2+signalling  machinery in N. crassa, 

A. fumigatus, M. grisea and S. cerevisiae based on the available genome 

sequences 



Chapter 2 

Materials and Methods 

2.1 Chemicals 

The chemicals used in this study, and their sources, are described in Appendix 

A.1. 

2.2 Organisms and Media 

Genetically modified Neurospora crassa (N. crassa) and Escherichia coli (E. coli) 

were containment level 1 organisms and the relevant procedures for their handling 

and disposal' were followed at all times. Established sterile technique was used 

when appropriate. 

All media and salt solutions were made using distilled water (dH 20) and 

sterilised before use by autoclaving at 121°C, 15 pounds per square inch (psi) for 

20 mm. Heat-sensitive components were filter sterilised (using Sartorius Minisart 

0.2 pm filters, Goettingen, Germany) and added to the main solution after the 

latter was autoclaved. 

'Published by the Genetic Manipulation and Biological Safety Committee, University of 
Edinburgh. 
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2.3 Fungal Strains 

Ten strains of N. crass a were used in this study. These were: wild-type (wt) 

strain 74-0R231A, cot-1, cot-2, cot-3, cot-4, cot-5, frost (fr), spray (sp), pvnl-

121 (pvni) and pvn2-53-19 (pvn2) and their genotypes are described in Table 

2.1. The pvn strains were kindly supplied by Dr. Emma Bowman (Bowman and 

Bowman, 2000; Bowman et al., 2000). 

Table 2.1: Neurospora crssa strains used in this study 

Strain FGSC Number Mating Type Genotype Mutagen 
74-0R231A 987 A and a no mutations - 

cot-i 4065 A cot-1 allele C102(t) UV 
cot-2 1512 a cot-2 allele R1006(t) UV 
cot-S 1517 A cot-3 allele R2006(t) UV 
cot-4 3600 A cot-4 allele R2101(t) UV 
cot-5 1362 A cot-5 allele R2479(t) UV 
frost 102 a fr allele B110 UV 
spray 68 A sp allele B132 UV 
pvni -121 - A am132 vma iRhll - 

pvn2-53-19 - A vma-i' °2  - 

2.4 Cosmid Libraries and Genetic Complemen-

tation 

The Orbach/Sachs pMOcosX genomic DNA cosmid library of N. crass a linkage 

group V was used for complementation experiments with cot-2 and cot-4, both of 

which have been mapped to chromosome V by classical genetics (Perkins et al., 

1982). This cosmid library was obtained from the Fungal Genetics Stock Center 2 . 

The vector pMOcosX has dominant selectable markers for fungi (hygromycin 

resistance) and E. coli (ampicillin resistance) (Orbach, 1994). 

2http://www.fgsc.net  
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2.5 Culture Media and Growth Conditions 

2.5.1 Culturing E. coli 

2.5.1.1 Culture media 

E. coli was grown on solid or in liquid Luria-Bertani (LB) medium (Appendix 

D). Solid nutrient agar (Table D) and glycerol stocks (0.5m1 liquid LB culture + 

0.5m1 80%-glycerol) were used for long term storage of E. coli. 

2.5.1.2 Inoculation procedure 

Liquid medium was inoculated with a sterile wooden stick, which was used to 

capture individual colonies growing on solid medium. Solid LB plates were 

inoculated with 50-100 ttl of LB-bacterial cell suspension. A sterile bent glass 

rod was used to disperse the inoculum. Nutrient agar tubes were inoculated with 

a sterile wooden stick which had been dipped in a liquid culture. The stick was 

inserted in the centre of the tube to half the depth of the agar and then removed. 

2.5.1.3 Antibiotics and other selective media 

For selection of plasmids containing hygromycin, ampicillin or chioramphenicol 

resistance genes, 150 jg m1 1  hygromycin B (Roche Diagnostics, GmbH, Ger-

many), 100 tLg ml' ampicillin (Sigma Chemical Co., USA) or 170 jtg m1' chlo-

ramphenicol (Sigma Chemical Co., USA), respectively, was added to the media 

after autoclaving. When the acetamidase-encoding gene (amdS) was used as a se-

lectable marker (Yamashiro et al., 1992), acetamide was used as the sole nitrogen 

source in all selective media. 

2.5.1.4 Types of culture and growth conditions 

Solid LB plates contained 15 to 20 ml LB per 8.5 cm Petri dish. Media were 

made, autoclaved and allowed to cool to 40°C before addition of the appropriate 
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antibiotics. Plates were poured before medium solidification, inoculated, and 

incubated upside down at 37°C. 

Liquid LB cultures were 5 ml liquid LB in a 20 ml test tube with a plastic 

lid. Antibiotics were added, when appropriate, before inoculation. Cultures were 

incubated upright in a shaking incubator at 37°C and 200 revolutions per minute 

(rpm). 

Solid nutrient agar cultures were 5 ml of autoclaved nutrient agar, which was 

poured into a 20 ml screw cap glass test tube. Once set, the culture was inoculated 

and stored at room temperature. Glycerol stocks were prepared, mixed throughly 

and stored at -80°C. 

2.5.2 Culturing N. crassa 

2.5.2.1 Culture media 

N. crassa was grown on solid or in liquid Vogel's medium (Vougel, 1956) 

(Appendix D). Transformed N. crassa protoplasts were mixed with molten (40°C) 

regeneration medium and grown on solid plating medium (Appendix D). 

2.5.2.2 Inoculation procedure 

When inoculating with conidia, conidiating cultures were left in the light at room 

temperature for 1 week after the formation of conidia prior to harvesting. Conidial 

suspensions were rehydrated in dH 2 0 or liquid VgS overnight at 4°C prior to use 

as innocula. 

A sterile wooden stick was used to remove conidia from a mature colony to 

inoculate solid VgS slants. Conical flasks of solid and liquid VgS were inoculated 

with a suspension of conidia in dH 2 0. Solid VgS plates were inoculated with 

100 to 200 jtl conidia in dH2 0, which were spread evenly around the plate using 

a sterile bent glass rod. For characterisation of N. crassa growth, solid VgS 

plates were inoculated by placing an 8 mm disc of mycelium in the centre of each 
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plate. Mycelial discs were cut from a fungal colony growing on solid VgS prior 

to conidiation using a cork borer of 8 mm diameter. Where cellophane was used 

to prevent the growth of aerial hyphae, 4 mm disks were cut and a scalpel used 

to remove the layer of medium containing the mycelia, which was then placed 

between two sheets of cellophane on solid VgS plates 3 . 

Liquid VgS microwell plates (flat bottomed 96 well opaque white 12.8 cm x 8.8 

cm plates [DYNEX Technologies, Inc., Chantily, UK]) were inoculated, using a 12-

channel pipette (Anachem, Luton, UK), with 100 jtl of liquid VgS containing 2.5 

M native coelenterazine 4  (Cambridge Bioscience, Cambridge, UK or Biosynth 

AG, Staad, Switzerland) and 1x10 6  conidia m1'. 

Solid VgS microwell plates contained 100 pd solid VgS per well. Coelenterazine 

was added to a concentration of 2.5 MM before solidification and this medium was 

loaded into the microwell plates, using a 12-channel pipette (Anachem, Luton, 

UK), and allowed to solidify. Plates were then inoculated with 25 pl of the liquid 

VgS/conidia/coelentrazine solution used to inoculate liquid VgS microwell plates. 

2.5.2.3 Antibiotics and other selective media 

For selection of strains containing the bacterial hygromycin phosphotransferase 

(hph) gene, which confers resistance to hygromycin B (hyg). 150 fig m1 1  

hygromycin was added to the plating medium (regeneration medium was not 

drugged). The same concentration of hygromycin was used in liquid and solid 

VgS when required. 

'Purchased from a stationary shop, boiled in dH20 for 20 min and autoclaved before use. 
30 nmol aliquots of native coelenterazine were each dissolved in 25 il pre-cooled methanol 

in the dark before addition to VgS. The final methanol concentration was not more than 0.1%, 
which is known not to affect spore germination or hyphal growth. 
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2.5.2.4 Types of culture and growth conditions 

Solid VgS plates contained 20 ml solid VgS per 8.5 cm Petri dish. Plates were 

poured before medium solidification, inoculated, and incubated at the required 

temperature. 

Solid VgS flasks comprised of 50 ml solid VgS in a 250 ml conical flask with 

a cotton wool bung. Flasks were inoculated and grown for 7 to 14 days at 34 or 

24°C by which time maximal conidiation had occurred. 

Liquid VgS N. crassa cultures were grown in 125 ml conical flasks, which were 

inoculated, plugged with cotton wool and grown in a shaking incubator at 200 

rpm. 

Slants consisted of 1 ml solid VgS in a 75 x 12 mm glass tube. Tubes were 

tilted before medium solidification. After inoculation, slants were incubated at 34 

or 24°C for 5 to 10 days, until the maximal amount of conidia had been produced 

and were then stored at -20°C until required. 

Microwell plates were covered with a microplate lid (Labsystems, Helsinki, 

Finland), after inoculation, individually wrapped in tin foil and incubated in the 

dark at the appropriate temperature. 

2.6 Characterisation of Neurospora Growth 

2.6.1 Qualitative growth characterisation 

2.6.1.1 Light microscopy 

An epifluoresence Zeiss Axioscope microscope (fitted with a DVC 1301 CCD 

camera) was used in conjunction with a Macintosh computer and NIH Image 

software' to obtain digital brightfield images of fungal strains. 

5http://rsb.info.nih.gov/nih-image  
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2.6.1.2 Confocal microscopy 

Solid VgS plates containing 2 or 3% agar were inoculated centrally with conidia 

or mycelia. 10 x 20 mm blocks of agar were cut from the outer 1 cm of the 

colony and placed upside-down on a 24 x 50 mm glass cover slip (Chance propper 

Ltd., England). FM4-64 (Molecular Probes Inc., Eugene, OR, USA) stock dye 

solution (16 mM) was diluted 1:10 (dye:medium) to produce a sub-stock of 1.6 

mM6 . The sub-stock was diluted 2:100 (sub-stock:medium) to produce a working 

dye solution of 32 iiM, 10 j.tl of which was dropped onto the centre of each cover 

slip before addition of the fungal sample. Samples were left for a minimum of 15 

min in a humidity chamber  to acclimatise to their new environment and to allow 

dye loading. 

For staining with propidium iodide blocks of agar were immersed in 100% 

ethanol for 10 min before a further 10 min emersion in 50% ethanol (in dH 2 0). 

Agar blocks were emmersed in 100% dH 2 0 for 10 min longer, before being inverted 

onto a coverslip on a drop of 50 g ml 1  propidium iodide (Sigma Chemical Co., 

USA). 

Images were gathered using a Bio-Rad MRC 600 confocal laser scanning 

microscope fitted with a 25 mW argon laser and connected to a Nikon Diaphot 

TMD inverted microscope with epifiorescence equipment (all supplied by Bio-Rad 

Microscience, Hemel Hempstead, U.K.). The laser power used was 1 or 3% of full 

intensity. Excitation was at 514 nm, and fluorescence was detected at >550 nm. A 

x40 dry plan apo (NA 0.95) and a x60 oil immersion plan apo (NA 1.4) objective 

were used. A Dell PC running Bio-Rad MRC 600 CoMos software was used to 

capture images. 

2.6.2 Quantitative growth characterisation 

The following parameters were calculated for each colony: 

'This sub-stock lasts 1 month at 4°C. 
7An inverted Petri dish containing a water saturated disk of filter paper in its top. 
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Hyphal Extension Rate Colony diameter was measured at frequent time inter-

vals and the hyphal extension rate calculated based on these measurements. 

8 to 10 replicates were performed for each fungal strain. 

Hyphal Width The hyphal width of 100 hyphae within the outermost 2 cm 

of 8 to 10 fungal colonies were measured using digital images gathered as 

described in Section 2.6.1 and a PC running ImageJ 8  software. 

Distance Between Septa 100 measurements of the distance between two septa 

were made using an an eye piece graticule. 

Hyphal Growth Unit The length of hyphae and how many branches occurred 

along their lengths was calculated. Out-growths were not regarded as a 

branch unless the exceeded the width of the hypha from which they were 

protruding. Equation 2.1 was used to calculate the Hyphal Growth Unit 

from from these data. One hundred replicas were performed for each fungal 

strain. 

Hyphal Growth Unit = Total length of a hypha or mycelium (pm) 
Number of tips 	

(2.1) 

2.7 Protoplast Production 

Two hundred and fifty ml flasks containing 50 ml solid VgS medium were prepared 

and grown as described in Section 2.5.2. Conidia were harvested with 50 ml 

liquid VgS and the resulting solution was passed through a funnel containing a 

cheesecloth filter into a 11 flask and incubated at 4°C overnight for rehydration. 

Germination of the conidia was initiated by incubating at the 34 or 24°C on 

a shaker (120 rpm). Once a large proportion of the conidial population had 

produced germ tubes about 4 conidial diameters in length, the solution was 

decanted into sterile 50 ml tubes and centrifuged at room temperature at 1400 rpm 

8http://rsb.info.nih.gov/ij  
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for 8 mm. For each tube, the supernatant was removed, the pellet resuspended 

in 30 ml sterile dH 20 (distilled water), and the centrifugation repeated. This 

wash was performed twice more. After the final wash conidia from all the tubes 

were combined, resuspended in one of the following solutions and incubated 

horizontally on a shaker at 55 rpm. 

o 1 mg NovozymeTM9  in 2 ml 1 M sorbitol per 2*109  (filter sterilised). 

Incubation temperature: 31°C. 

40 mg Glucanex10  in 2 ml 1 M sorbitol per 2*109  conidia (filter sterilised). 

Incubation temperature: 37°C. 

Once protoplasts had formed (i.e. spherical cells that burst upon addition of dH 20 

were visible when the solution was examined under the microscope) the solution 

was centrifuged for 10 min at 800 rpm, 4°C. The supernatant was removed and 

the protoplasts washed twice by re-suspending in 10 ml chilled 1 M sorbitol and 

repeating the centrifugation. The pellet was then resuspended in 10 ml chilled 

STC and the number of protoplasts per ml estimated using a haemocytometer. 

The solution was centrifuged once more and the pellet resuspended in a volume of 

storage solution that gave a final concentration of approximately 107  protoplasts 

m1 1 . Protoplasts were stored at -80°C. 

2.8 Neurospora Protoplast Transformation 

For each transformation, 20 il of 5 mg m1' heparin (Amersham Life Sciences, 

UK) plus 3 jLg of DNA were added to 100 jtl of protoplasts and incubated on ice 

for 30 mm. One ml of PTC was added to the reaction mixture, which was then 

incubated at room temperature for 20 mm. The reaction mixture was mixed with 

8 to 10 ml regeneration medium, poured into a Petri dish containing 15 to 20 ml 

9Novozyme1 M  234 Cell Wall Lysing Enzyme, Trichoderrna harziawam. Calbiochem-
Novabiochem Corporation La Jolla, CA 92039-2087. 

10 Glucanex, Novo Nordisk Ferment Ltd., CH4 243, Dittingen, Switzerland. 
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plating medium (amended with the appropriate antibiotic) and incubated at 34 

or 24°C for 5 to 10 days. 

2.9 Purification of Homokaryon Transformants 

After transformation, resistant colonies were transfered to drug amended solid 

VgS plates and allowed to grow. Conidia were harvested and spread on to drug 

amended plating medium. The resulting colonies were picked and transfered 

to drugged VgS slants. Conidia from such slants were used to inoculate drug 

amended solid VgS plates and the process was repeated until each transformed 

colony had grown on plating medium for at least 3 generations. 

2.10 Replication, Extraction and Analysis of 

Plasmid and Cosmid DNA 

2.10.1 Transforming E.coli 

Replication of plasmid and cosmid DNA was done by transforming competent E. 

coli cells with the DNA of interest as described by Sambrook et al. (1989). 

2.10.2 Growth of E. coli and extraction of plasmid and 

cosmid DNA 

A single transformed E. coli colony was used to inoculate 5 ml of liquid LB-amp 

medium. The inoculated medium was incubated overnight at 37°C, 200 rpm and 

the resulting colony centrifuged for 1 min at 8,000 rpm. The supernatant was 

discarded and plasmid DNA was extracted from the pellet using the NucleoSpin 

system for the purification of plasmid DNA (Macherey-Nagel & Co. KG, 

Germany) according to the manufacturers instructions. Plasmid DNA was eluted 

with dH2 0. Cosmids were extracted using the High Pure Plasmid Isolation Kit 
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(Roche Diagnostics, GmbH, Mannheim, Germany) according to manufactures 

instructions. Cosmid DNA was eluted in the elution buffer provided. 

2.10.3 Determination of DNA concentration 

Five hundred jLl of a 1:100 dilution of DNA:dH 2 0 was placed in a quartz cuvette 

in a spectrophotometer (Pharmacia LKB, Ultrospec II). The A 260  and A280  was 

measured and the concentration (in jig ji1 1 ) of plasmid DNA in the original 

sample was calculated by multiplying the A 260  reading by 5. Calibration was 

performed at both wavelengths using 500 jil dH 20. The sample purity was 

estimated by calculating the ratio of A 260 :A280 . A ratio less than 1.8 indicates 

some protein contamination. 

2.10.4 Restriction and analysis DNA 

Restriction reactions were performed according to the manufacturers instructions 

for the enzymes used. All restriction enzymes were purchased from Boehringer 

Mannheim GmbH Germany, or from New England Biolabs GmbH Germany. 

DNA was separated according to size by agarose gel electrophoresis. The gel 

contained 0.25 to 0.4 g of agarose in 40 ml of TAE*1  buffer. Ethidium bromide 

was used to stain DNA (Sambrook et al., 1989). The gels were loaded with a 

5:1 mixture of DNA:loading buffer (MBI Fermentas, Lithuania). Marker was 

Lambada DNA/Eco91I (Bst Eli) Marker 15, MBI Fermentas, Lithuania. Gels 

were run at a fixed voltage of 2 to 12 volts per cm and viewed on a UV light box. 

2.10.5 Purification of DNA from agarose gel 

DNA bands were excised from agarose gel, weighed and placed in a 1 ml Eppendorf 

tube. DNA was purified from the band using a JETsorb DNA Extraction kit 

(Genomed, GmbH, Germany) according to the manufacturers instructions. 
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2.10.6 DNA extraction 

An equal volume of phenol was added to the DNA sample in an Eppendorf tube 

and mixed well. Once an emulsion had formed the mixture was centrifuged in a 

microfuge (Hettich Mikroliter, Zentrifugen, Germany) at maximum speed for 1 

min or until the organic and aqueous phases were well separated. The aqueous 

phase was transfered to a fresh Eppendorf tube and the whole process repeated 

using phenol:chloroform in place of the phenol. 

2.10.7 Ethanol precipitation of DNA 

10% 3 M sodium acetate (pH 5.2 unless otherwise stated) was added to DNA in 

an Eppendorf tube. Two and a half volumes of chilled ethanol were then added 

and the solution was incubated at -20°C for 2 h and centrifuged at 13,000 rpm 

4°C for 20 mm. The supernatant was discarded and the pellet resuspended in 1 

ml 75% chilled ethanol and incubated as before for 15 min followed by a further 

15 min centrifugation. The supernatant was removed and the Eppendorf tube 

left to dry upside down on filter paper. The DNA pellet was eluted with the 

appropriate volume of dH 2 0. 

2.11 Cloning in Plasmid Vectors 

2.11.1 Genes and plasmids 

The DNA and amino acid sequences of the aeqS synthetic aequorin gene are 

shown in Appendix B.1. Plasmids pCSN43, pAEQS1-15, pAN7-1, pGNAEQD3 

and LBS6 were used in this study. pCSN43 contains the E. coli hph gene 

under the control of Aspergillus nidulans TrpC transcription signals. It is 

known to work in N. crassa (Staben et al., 1989) and was used as a positive 

control in transformations. pAEQS1-15 (Appendix C Fig. C.1) was produced 

by Glyn Nelson (Nelson, 1999) and contains the aeqS synthetic aequorin and 
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amdS genes under the control of the gpdA promotor and TrpC terminator from 

A. nidulans. pAN7-1 (Genebank accession number, Z32698) contains the gene 

encoding glyceraldehyde-3-phosphate dehydrogenase under the control of the 

gpdA promotor and TrpC terminator from A. nidulans. pGNAEQD3 (Appendix 

C Fig. C.1) contains the aeqS synthetic aequorin gene inserted into the T-cloning 

vector, pTAg (R&D Systems, UK). The LBS6 plasmid, kindly provided by Dr. 

Ebbole, (Appendix C Fig. C.2), was constructed by Lori Bailey Shrode 

and contains the hph gene under the control of the N. crassa cpc-1 promotor, 

modified for constitutive expression, and the TrpC terminator from A. nidulans 

(D. Ebbole, Texas, A&M University, personal communication). 

2.11.2 Preparation and ligation of DNA 

DNA fragments to be ligated were prepared by digestion with the appropriate 

restriction enzymes, separated by agarose gel electrophoresis and purified from 

the gel as described in Sections 2.10.4 and 2.10.5. DNA was dephosphorylated by 

incubation with calf intestinal alkaline phosphatase (CIP) (Boehringer Mannheim 

GmbH, Germany) where appropriate (see (Sambrook et al., 1989)). CIP was 

removed by incubation with 100 pg ttl 1  proteinase K (Boehringer Mannheim 

GmbH, Germany) for 30 min at 56°C. Dephosphorylated DNA was then cleaned 

as described in Section 2.10.4. DNA was ligated using T4 DNA ligase and 

buffer (Boehringer Mannheim GmbH, Germany) according to the manufacturers 

instructions. After ligation the reaction mixture was added to 100 Al of competent 

coli cells and transformed as described in Section 2.10.1. 

2.11.3 Primer design and DNA sequencing 

All primers were designed using Primer3, a web based primer design program 

based at". Dissociation temperatures, stable trimers and hairpins were calculated 

"http://www-genome.wi.mit.edu/cgi-bin/primer/primer3-www.cgi  
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using Oligo v. 4.0 for the Macintosh. Primers were produced by Sigma Genosys' 2  

DNA sequencing was performed by The Laboratory of DNA Analysis, The 

Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem. 

2.12 Extraction and Analysis of Genomic DNA 

2.12.1 Genomic DNA extraction 

N. crassa was grown in 25 ml liquid VgS at 24 or 34°C and 200 rpm, collected 

by vacuum filtration through a Buchner funnel, frozen at -80°C, freeze-dried and 

ground to a fine powder with a pestle and mortar. Three hundred l of this powder 

was added to an Eppendorf tube, mixed with 500 i1 of DNA Extraction Buffer 

and incubated for 15 min at 60°C. The Eppendorf tube was then filled with a 24:1 

chloroform:octanol mixture, vortexed and centrifuged at 12,000 rpm for 5 mm. Of 

the resulting 3 phases, the uppermost was transfered to a new Eppendorf tube and 

a volume of 3 M sodium acetate (pH 5.2) equal to 1/10 of the collected volume of 

the uppermost phase plus 1 volume of isoproponal (-20°C) were gently mixed in. 

The Eppendorf tube was incubated at -20°C for 5 min followed by centrifugation 

at 12,000 rpm, 4°C for 5 mm. The supernatant was discarded and the Eppendorf 

tube filled with 75% ethanol (-20°C) inverted several times and centrifuged as 

before. The supernatant was discarded and the pellet dried at 37°C for several 

min before being resuspended in 100 l dH 2 0 at 4°C overnight. The resulting 

solution was analysed for protein contamination using a spectrophotometer as 

described in Section 2.10 above. DNA concentration was estimated by running 

samples on a 0.7% agarose gel along side digested and undigested Lambda DNA 

(MBI Fermentas). Approximate DNA concentration was calculated by comparing 

the relative luminescence of sample and control DNA. 

'2http://www.sigma-genosys.com  
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2.12.2 Southern analysis 

Eight jLl of genomic DNA extract plus 0.5 j1 RNAase (2 tLg ji 1 ) (Boehringer 

Mannheim GmbH, Germany) were incubated overnight with 1.5 l concentrated 

ApaI (40 Units il' Boehringer Mannheim GmbH, Germany), or 3 jil KpnI (10 

Units tl 1  Boehringer Mannheim GmbH, Germany), in a total volume of 20 Al 

according to the manufacturers instructions. A 0.9% agarose gel containing 5 

i1 ethidium bromide was loaded with digested genomic DNA extracts, A-DNA 

marker and 5 jil of a 1:300 dilution of Apal digested plasmid pAZ6, run for 5 h 

at 100 volts and photographed on a UV light box. The gel was exposed to UV 

light for a further 3 min before being transfered to a Magnacharge nylon transfer 

membrane (Micron Seoeration Inc., USA) using a VacuGene XL (Pharmica LKB) 

vacuum blotter in accordance with the manufacturers instructions. After transfer, 

the membrane was cross-linked using a Spectrolinker XL-1000 UV crosslinker 

(Spectronics Corporation, USA). The membrane was then incubated with 20 

ml Hybridisation Solution at 42°C. After 4 h the solution was removed and 

aeqS specific (a- 32 P)dNTP labelled DNA probe was added to 10 ml of the 

hybridisation solution and returned to the membrane. The probe was made 

according to the manufacturers instructions using the Prime-a-Gene Labelling 

System (Promega Corperation, USA). Gel purified aeqS extracted from pAZ6 

using EcoRI was used as the DNA template. The membrane was hybridised 

overnight, washed twice for 15 min at room temperature in 2*SSC  0.1% SDS, 

and twice for 30 min at 42°C in 0.1*SSC  0.25% SDS (see Sambrook et al., 1989, 

for content). 

2.12.3 PCR amplification 

For PCR amplification of genomic cot-4 DNA, the following reaction mixture 

was prepared in 500 pl Eppendorf tubes on ice: 33.5 Ml dH 2 0, 5 tl Taq DNA 

Polymerase lOX reaction buffer without MgC1 2  (Promega Corporation, WI, USA), 



48 	 2.13 Extraction and Analysis of Fungal Protein 

5 ILI of 2 mM DNTPs mix, 3 jLI of 25 MM  MgC12  (Promega Corporation, WI, 

USA), 0.5 l Promega Taq DNA Polymerase, 2 1d primer mix and 1 jil template 

mix. DNTPs mix was produced by mixing a set of 100 mM dATP, dCTC, 

dGTP and dTTP (Promega Corporation, WI, USA) and diluting the mixture 

to a concentration of 2 mM in dH 2 0. Primer mix consisted of 25 pmoles of each 

of the two primers in 2 pl dH 2 0. Template mix was 20 jLI genomic DNA extract 

plus 1 l of 2 ILg gil' RNAase. A negative control was set up with no template 

DNA, and a positive control was set up using cosmid pMOcosX X15:E10 DNA. 

Several reactions were run simultaneously in an Eppendorf mastercycler gradient 

(Eppendorf AG, Hamburg, Germany) PCR machine. Samples were denatured for 

30 s at 94°C. Annealing was performed for 1 min at 58°C ± 2°C (according to 

the position in the PCR machine temperature gradient). Elongation was done 

for 2 min at 72°C (the optimal temperature for the Taq used). Thirty rounds of 

annealing and elongation were done in total. 

2.13 Extraction and Analysis of Fungal Protein 

2.13.1 Protein extraction 

N. crassa strains were grown in 50 ml liquid VgS at 24 or 34°C and 150 rpm 

for 2 days, collected by vacuum filtration through a Buchner funnel, and ground 

to a fine powder in a pestle and morter containing liquid nitrogen. Powder was 

transfered to pre-weighed pre-cooled Eppendorf tubes and 1 ml protein extraction 

buffer (Appendix D) was added per 0.2 g mycelial powder. Each Eppendorf tube 

was vortexed for 1 min followed by 5 min centrifugation at 13,000 rpm. Resulting 

supernatant was transfered to fresh Eppendorf tubes flash-frozen in liquid nitrogen 

and stored at -80°C for future use. 
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2.13.2 Analysis of protein concentration 

Total protein determination was performed using the Bio-Rad Standard Assay 

Procedure (Bio-Rad Laboratories Ltd., Hemel Hempstead, UK). BSA protein 

standards were prepared by dissolving BSA in protein extraction buffer at 50 ig 

ml' intervals from 0 to 1300 Mg m1 1 . Ten MI of each sample was mixed with 

500 jil diluted Bio-Rad dye reagent (1 part Bio-Rad dye concentrate plus 4 parts 

dH2 0) in an Eppendorf tube and 200 il of the resulting solution was transfered to 

1 well in a 12.8 x 8.6 cm, 96 well transparent microtiter plate (Dynex Technologies, 

Inc., Chantily, UK). Unknown samples were protein extract prepared according 

to Section 2.13.1. Blanks were protein extraction buffer (Appendix D). 

The A590  of each well was measured using a Dynatech MR5000 densitome-

ter/plate reader (Dynatech Laboratories Ltd., Sussex, UK). A standard curve was 

constructed and used to determine the concentration of protein in the unknown 

samples. For this purpose, a software program was written (getproteinunkns.sh , 

Appendix E) in csh' 3 . This program took a plain text file containing sample 

names and A 590  readings. It calculated protein concentration of the unknown 

samples using the equation y = ax + c, where a=slope and c=intercept as calcu-

lated from the standard curve this program calculated the protein concentration 

of the unknown samples. It also calculated amount of protein extraction buffer 

(Appendix D) to add to each sample to obtain the final concentration of 40 ILg 

total protein per 100 tzl of solution (desired for aequorin discharge experiments). 

2.14 Luminometry 

Luminometry was done using a EG&G Berthold (Bad Wildbad, Germany) 

LB96P Microlumat luminometer controlled by a dedicated PC running the 

Microsoft Windows based Berthold WinGlow software. The luminometer allowed 

a maximum of two 100 td injections into each well through built-in injectors. 

' 5 A shell (command interpreter) with C-like syntax (DuBois, 1995). 
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Such injections were used to stimulate (or discharge aequorin from) samples when 

required. The luminometer was calibrated to the optimal working voltage of 1496 

volts. 

Flat-bottomed 96 well opaque white 12.8 cm x 8.8 cm microtiter plates (Dynex 

Technologies, Inc., Chantily, UK) were used in all experiments involving microwell 

plate luminometry. Each well has a capacity of 350 pl. 

Two types of luminometer protocol were used in this study: (a) kinetic and 

(b) repeated. The kinetic protocol measures light emitted by a sample in one well 

continuously until the end of the experiment. The repeated protocol measures 

light emitted from a number of samples over the course of one experiment. To 

achieve this, the detector of the luminometer must move from one sample to the 

next. The time it takes to measure every sample in the experiment and return 

to the starting sample is called the cycle time. The time that each sample is 

measured for per cycle is called the measurement time. 

2.14.1 In vitro Measurement of aequorin luminescence 

2.14.1.1 Calculating the amount of aequorin as a fraction of total 

protein 

Growth of strains, protein extraction and determination of protein concentration 

of samples was carried out as described in Sections 2.13.1 and 2.13.2. Stock 

coelenterazine was first dissolved in 25 t1 methanol before being added to the 

appropriate volume of protein extraction buffer (Appendix D) and protein extract 

to attain 100 1A aliquots of protein extract containing 40 ILg total protein and 

2.5 pM coelenterazine (ratio of protein extract to protein extraction buffer was 

calculated by getproteinunkns.sh , Appendix E). Aliquots were loaded into a 96 

well plate, constituted in the dark for 4 h at 4°C and placed in the luminometer. 

Luminescence was measured at 30°C for 60 s using a kinetic protocol. A 100 

tt1 injection of 100 mM CaC12  was given after 10 s to discharge all the aequorin 
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present in the protein sample. Blank wells (100 t1 protein extraction buffer) 

were used to estimate background light levels. The average of 12 such wells was 

subtracted from the results of each sample tested. Six replicas of each sample 

were measured, luminescence emitted over the first 20 s after CaCl 2  injection was 

integrated and the mean ± S.E. recorded for each sample (units were RLU/20 

s/40 tg total protein). 

Conversion of RLU to ILg aequorin per g total protein was done using a 

calibration curve (Fig. 2.1). This curve was made by discharging aliquots 

of commercial aequorin D (Cambridge Bioscience, UK) dissolved in dH 2 0 to 

concentrations ranging from 1017  M to 10_1  M. One hundred i1 aliquots of 

each aequorin concentration were loaded, constituted and discharged as described 

above for total protein extracts. The best method of performing this conversion 
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C.., 
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10000 

1000 	 I 	 I 
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Figure 2.1: Aequorin calibration curve. Commercial aequorin was dissolved in dH 2 0. One hundred 

iLl aliquots were placed in a microwell plate, constituted (using 2.5 jiM native coelenterazine for 4 
h at 4°C) and discharged using 100 p1 100 mM CaCl2. Luminescence was integrated for 20 s after 
injection (calibration curve generated with assistance from Dr. 0. Kozlova-Zwinderman). 

accurately was found to be through the use of a computer program. A program 



52 	 2.14 Luminometry 

was therefore written in pen" to perform this task. The program (getaeqamnt.pl , 

see Appendix E) took the aequorin calibration curve and aequorin sample 

discharge data as input and calculated the amount of aequorin in each aequorin 

discharge sample. This eliminated the need to read such values from the 

calibration curve by hand, a potential source of serious errors. 

2.14.1.2 Influence of temperature on aequorin luminescence 

Constitution, discharge and integration of RLU was carried out as described in 

2.14.1.1. After constitution, protein samples were placed in the luminometer and 

given 15 min to reach the set temperature of 24°C after which the aequorin in 

the first set of samples was discharged at this temperature. The plate was then 

heated to 37°C, given 15 min to equilibrate after which aequorin in the next set 

of samples was discharged at this new temperature. This process was repeated 

at 42°C. The plate was then cooled to 37°C and the equilibration and discharge 

steps repeated. Finally the plate was cooled to 24°C, given 15 min to reach the 

set temperature, and the aequorin in the remaining samples was discharged at 

24°C. 

2.14.2 In vivo Ca2+  measurement by luminometry 

2.14.2.1 In vivo optimisation of aequorin luminescence 

Liquid VgS cultures were inoculated and grown in microwell plates as described 

in Section 2.5.2 except that spore concentrations of 1x10 4 , 1x105 , 5x105 , 1x106  or 

5x106  conidia ml were used. Cultures were incubated at 24°C for 14, 18, 22, 26 

or 30 h before being discharged as described below. 

14http://www.perl.com  
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2.14.2.2 Standard in vivo luminometry 

Microwell plates containing N. crassa colonies (inoculated and grown as described 

in Section 2.5.2) were placed in the temperature-controlled luminometer and 

luminescence was measured for 10 min with one of three stimuli being provide after 

57 s. Stimuli consisted of one 100 pl injection of liquid VgS medium (mechanical 

perturbation), VgS medium diluted in dH 2 0 [1:20; v/v] (hypo-osmotic shock) or 

100 mM CaC12  (high external Ca 2+)  (Nelson et al., 2003). A kinetic measurement 

protocol was used to follow the exact changes in culture luminescence over the 

entire 10 min measurement period. Six extra wells in each plate were inoculated 

to allow the total amount of luminescence per colony to be determined. For this 

purpose luminescence was integrated over 10 min with one 100 il injection of 3 

M CaC12  plus 20% ethanol after 57 sec and one 100 jtl injection of 100 mM CaC12  

after 5 mill 57 s. This treatment discharges all the aequorin present in mature 

N. crassa colonies. Background light levels were measured in six wells containing 

medium only and subtracted from fungal aequorin luminescence measurements. 

2.14.2.3 In vivo luminometry with chemical treatments 

All chemical treatment concentrations given refer to the final concentration of 

the treatment after addition to the N. crass a colony in the microwell plate. The 

following treatments were used in this study: 

. sorbose (0 to 0.25%)(Sigma Chemical Co., UK), dissolved in VgS 

. FK506 (0 to 248 nM)(Calbiochem, UK), dissolved in DMSO (dimethyl 

sulfoxide, Fluka Chemie, Switzerland) 

• CsA (0 to 250 nM)(cyclosporin A, Sigma Chemical Co., UK), dissolved in 

DMSO 

• caffeine (0 to 25 mM)(Sigma Chemical Co., UK), dissolved in VgS 
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CPA (0 to 50 M)(cyc1opiazonic acid, Sigma-Aldrich, UK), dissolved in 

methanol 

. 2-APB (0 to 50 M)(2-aminoethoxy-biphenylborate, Calbiochem, UK), 

dissolved in methanol 

Final solvent concentrations were not more than 0.1%, which is known not to 

affect spore germination or hyphal growth. For each treatment, controls were 

also performed in which cultures were treated with solvent only. 

Three types of experiment were performed involving chemical treatments: (a) 

growth on amended media; these experiments were performed normally except 

that all cultures were grown on amended media. (b) Drug pretreatment; 100 Al 

liquid VgS cultures were grown in microwell plates. Cultures were pretreated by 

the gentle addition 25 ,ul of drug or control solution 10 min before the microwell 

plate was placed in the luminometer. Stimuli and measurements were then given 

as previously described. (c) Drug injection; cultures were grown normally, placed 

in the luminometer and then exposed to one 100 Ml injection of drug in liquid 

VgS after 57 s in place of the usual stimulus. 

2.14.2.4 In vivo luminometry after a temperature shift 

These experiments were performed exactly as described for standard luminometry 

except that cultures were grown at 24°C and then shifted to 37°C for a fixed time 

before being placed in the temperature-controlled luminometer at 37° for further 

stimulation and measurement. 

2.14.2.5 In vivo luminometry before, during and after temperature 

shifts 

Microwell plates containing four sets of six wild-type and six cot-1 N. crassa 

colonies were grown for 17 h at 24°C before being placed in the temperature- 

controlled luminometer at 24°C. Sample set 1 luminescence was measured at 
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24°C for 1 h after which sample set 2 was discharged at 24°C. Luminescence 

measurement was then continued on sample set 1 for a further 4 h as the 

temperature of the luminometer was raised to 37°C. At the end of this period 

sample set 3 was discharged at 37'C. Microwell plates were briefly transferred 

to a 37°C incubator, while the luminometer was cooled back to 24°C. Plates 

were then put back in the luminometer and luminescence measurement continued 

on sample set 1 for one h at 24°C. Finally, sample set 4 was discharged at 

24°C. When converting these data into [Ca 2+j c  concentrations using the equation 

described by Fricker et al. (1999) (Fricker et al., 1999), total RLU available for 

emission was calculated from the appropriate discharge sample for each point 

during the experiment. In short, the experiment can be divided into three 

stages: measurement of sample set one at (a) 24°C for 1 h; (b) 37°C for 4 h; 

(c) 24°C for 1 h. There are three discharge samples that correspond to these 

three sections: discharge of (a) sample set two at 24°C; (b) sample set 3 at 

37°C; (c) sample set 4 at 24°C. This method is used to overcome the differences 

in aequorin luminescence resulting from different measurement temperatures as 

described later in this thesis. A separate experiment was performed in which 100 

l samples of medium in microwell plates were placed inside the luminometer 

during temperature shifts while the actual temperature of the medium in the 

microwell was measured using an electronic temperature probe. 

2.14.3 Conversion and analysis of luminometer data 

2.14.3.1 Conversion of RLU to Ca2+  concentrations and subsequent 

quantification of C a2+ signatures  

A software program was developed to (a) convert the data produced by our 

luminometer from RLU to Ca 2+  concentrations, (b) quantify various parameters 

of the Ca2+signature,  and (c) perform statistical analysis on these data. The 



56 	 2.14 Luminometry 

program was written in pen" and used the perl data language [PDL]' 6  for complex 

multidimensional data manipulation and gnuplot' 7  for graph production. The 

source code for this program is in Appendix E. It was written and run on a 

standard PC running SuSE Linux version 7318  Fig. 4.1 summarises the main 

functions of this program, which accepted plain text input, generated by the 

WinGlow software running the luminometer. These files contained measurement 

times and luminescence in RLU. Three files were read into the program for each 

experiment: (1) background data, from measurement of wells containing medium 

only; (2) sample data, from the actual experimental samples; and (3) discharge 

data, from samples assigned for discharge. Error type could be set to variance, 

standard deviation or standard error. Output graphs could be generated in FIG 

or PostScript" format 19  and a number of other options could be set, including 

the use of error bars and graph size. 

Input data were converted, by my program, into Ca 2+  concentrations using the 

following empirically derived calibration formula, Equation 2.2 based on Equation 

1.3 was used (Fricker et al., 1999). 

pCa=O.332588(—log k)+5.5593 
	

(2.2) 

where 

k= 
RLU s- '  

total RLU available 

Calibration coefficients for Equation 2.2 were determined at 25°C using the AEQ1 

' 5http://www.perl.com  
16 http://pdl.perl.org  
17 http://www.gnuplot.info  
18 http://www.suse.com  and http://www.linux.org  
' 9 The FIG graphics format is a vector drawing format that can be used with programs 

such as xfig (http://www.xfig.org ) to produce simple figures for documents. PostScript is a 
programming language optimised for printing graphics and text and is made by Adobe20. 
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aequorin isoform encoded by pMAQ2 (Badminton et al., 1995). The discharge 

data was used to determine k for each time point. All discharge data were 

multiplied by 1.24 to correct for the fact that the ethanol in the discharge solution 

quenches aequorin luminescence by 24% (Kozlova-Zwinderman, 2002). 

All in vivo luminometry was performed using a repeated measurement protocol 

where each sample was measured once every measurement cycle. In order to 

calculate the total amount of light emitted by a sample over the course of the 

experiment, it was assumed that each measurement point was connected by a 

straight line and the total area under the resulting graph (A 0 ) (see Fig. 2.2) was 

calculated as follows: 

Y 

x n 	x n+1 	 x 

Figure 2.2: A diagram of the method used to estimate the amount of light emitted from a sample 

between measurements. Each sample was measured once every cycle. To estimate the amount of 
light emitted between measurements, each measurement point was assumed to be connected by a 

straight line. The total area under the graph (A 0 ) was then calculated. 

	

A tot  = 	 A+13 	 (2.3) 

	

= 	 (x 1  - x) . yn + 
1

(x 1  —x) (Yn+i - Yn) 	(2.4) 

1 

	

= 	 (X n+iXn)(yn+i+yn ) 	 (2.5) 
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The sampling period is constant, i.e. (x+ - x) = L, so Equation 2.5 can be 

further simplified to: 

= 	 (Yn+i+yn) 	 (2.6) 

If we have N + 1 data, i.e. Yo, Yi,. . . , iAr+, then the total area underneath the 

graph (linearly interpolating between the points) is: 

0  = ' A 	(Yi+i  + y) (2.7) 

As well as converting RLUs to Ca 2+  concentrations and saving this data in 

plain text format, the program automatically calculates means and standard 

errors for all data points and displays these values as a graph. Furthermore, 

it calculates the following quantitative parameters (see Fig. 2.3) of the Ca 2+_

signature along with their means and standard errors: (1) average resting [Ca 2+] c  

concentration before the stimulus is provided; (2) maximum [Ca 2+1C  concentration 

reached during the entire experiment; (3) lag time (the time from the stimulus 

to the point when [Ca 2+],  concentration starts rising); (4) rise time (the time for 

the [Ca 2+],  concentration to reach a maximum from the time it begins to rise 

following the stimulus); (5) maximum [Ca 2+]  c  amplitude; and (6) the full width 

half maximum (FWHM) (the width of the [Ca 2 +] c  transient at half maximum 

amplitude). Amplitude (amp) was calculated using the following equation: 

amp = Ymax - Yrnin 	 (2.8) 

Half maximum amplitude (HM) was calculated as follows: 

HM= 	 (2.9) 
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Figure 2.3: Some quantitative parameters of the C a 2+ si gnature . 

FWHM was then calculated: 

FWHM 	 ) 
( (h—c)'\ 

+xn 	 (2.10) 
a 

where h is HM, c is y and a is the slope, calculated as follows: 

a= (Yn+iYn) 	 (2.11) 
(x, 1  - x) 

All statistical data is also written to the output file, along with data from 

the individual repetitions. Finally, this program will warn the user if their 

experimental data is unsuitable for conversion into Ca 2+  concentrations. Data 

is unsuitable for use if the majority of the aequorin in the sample was discharged 

during an experiment. 
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2.15 Genome Analysis 

A range of Ca2+signalling  proteins and genes from plants, animals and fungi 

were blasted against the (a) N. crassa genome database; (b) M. grsea genome 

database; (c) A. f'umigat'us genome database; and (d) S. cerevisiae genome 

database using the BLASTN, TBLASTN and BLASTP algorithms (see Table 

1.2 for database web addresses). Potential hypothetical protein homologues from 

N. crassa, M. grisea and A. f'umigatus and S. cerevisiae were identified based 

on: (a) E-values, (b) percent identities, positives and gaps, and (c) conserved 

domains present. Hypothetical proteins and DNA coding sequences obtained in 

this way were entered into my database 21  of potential Ca2+signa11ing  proteins. 

These data were stored under their locus numbers, as defined by each organism's 

genome project's web page. In the case of A. fumigat'us, a database of hypothetical 

proteins was unavailable. Homologous DNA sequences, plus 1000 bp on each side 

of the homologous region, were therefore entered into our database for further 

analysis. These data were stored under our own names. The format of this 

name is: contig_start-stop, where "contig" is the contig number of the homologous 

region, as provided by the A. furnigat'us TIGR blast result, and "start" and "stop" 

define the range of DNA in this contig entered into our database. 

Potential Ca2+signa1ling  proteins and regions of DNA from our database 

were blasted back against the GenBank, EMBL, DDBJ and PDB databases 

through NCBI using the TBLASTN and (in the case of A. f'umigatns) BLASTX 

algorithms to check for similar proteins or DNA sequences in other organisms. 

This information was also entered into my database. 

Conserved protein domains were analysed using the NIH tools: CDD and 

CDART22 . Hydrophilicity plots were performed using the Kyte-Doolittle method 

using a web-based program provided by the Weizmann Institute of Science 23 

21 http://w.funga1ce11.org/FDF/  
22http://www.ncbi.nlm.nih.gov  
23http://bioinformatics.weizrnann.ac.il/hyd-bin/plothydroph.pl  
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Prediction of putative transmembrane segments was done using PredictProtein, 

from the server at EMBL 24 . Multiple sequence alignment and generation of 

phylogenetic trees was done using the clustaix program (Thompson, 1997). 

A MySQL database was used for data storage 25 . The web interface and 

underlying software to my database was written in perl 26  and htm127 . It was 

written and run on a standard PC running SuSE Linux version 7•328 

24http://www.embl-heidelberg.de/predictprotein/submiLdef.html  
25http://www.mysql.com  
26http://www.perl.com  
27http://www.w3.org  
28http://www.suse.com  and http://www.linux.org  



Chapter 3 

Development of the Aequorin 

Method for Ca2+  Measurement in 

Nenrospora 

3.1 Introduction 

The cloning and characterisation of aequorin genes (Inouye et al., 1985; Prasher 

et al., 1985), and the subsequent codon-optimisation of aequorin D for expression 

in filamentous fungi has paved the way for easy and routine measurement of Ca 2+ 

in living fungal cells expressing the aequorin gene (Nelson et al., 2003). The use 

of Ca2+sensitive  photoproteins (e.g. aequorin) to measure Ca2+,  has now begun 

to be applied to filamentous fungi (Shaw et al., 2001; Greene et al., 2002; Nelson 

et al., 2003). The essential requirement for such measurements is that the level 

of aequorin expression is: (a) sufficient to produce detectable levels of light at 

resting Ca 2+  concentrations; and (b) sufficient to be able to report large changes 

in Ca 2+  concentration without the majority of the aequorin being using up. 

The first transformations of a filamentous fungus (N. crassa) with the native 

aequorin A and D genes resulted in very low aequorin expression levels (0.15 

and 0.05 Ag aequorin per g total protein, respectively (Nelson et al., 2003)) 
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making it difficult to observe changes in [Ca'] (Collis, 1996). Subsequent codon-

optimisation of aequorin D for expression in filamentous fungi increased the level 

of aequorin expression more than ten times. However a comprehensive set of 

aequorin expressing N. crassa strains, and the methods to work with them, had 

not yet been developed. 

The aims of the work described in this chapter were: (1) to obtain high levels 

of aequorin expression in hyphae of three N. crassa strains (wild-type, cot-1 

and spray) using the synthetic filamentous fungal codon-optimised aequorin D 

gene (aeqS); (2) to analyse the level of aequorin expression in transformants 

from each strain and to confirm that no phenotypic abnormalities resulted 

from transformation; (3) to estimate the number of aeqS inserts in selected 

transformants; (4) to determine a suitable set of growth conditions for optimal in 

vivo luminescence in N. crassa. 

3.2 Results 

3.2.1 Protoplasts 

Wild-type, cot-1, and spray protoplasts were made from germinating conidia 

and transformed with the pCSN43 plasmid (see Section 2.11.1). The resulting 

colonies were able to grow on hygromycin amended medium and thus judged to 

be successfully transformed. Transformations using the pAEQS1-15 and pAN7-1 

plasmids were unsuccessful, based on inability to grow on selective medium. A 

new plasmid was therefore constructed to transform N. crassa with aeqS. This 

plasmid contained the aeqS synthetic aequorin gene under the control of the N. 

crassa cpc-i promotor modified for constitutive expression. 
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3.2.2 Plasmids 

EcoRI was used to excise aeqS from pGNAEQD3 (see Appendix C Fig. C.1 [b]) 

and to linearise LBS6 at polylinker2 (see Appendix C Fig. C.2). Linearised LBS6 

was dephosphorylated and aeqS was ligated into the resulting DNA to produce the 

pAZ plasmid. Plasmids were extracted from 10 E. coli colonies and designated 

pAZ1 to pAZ10. Restriction analysis with Sail (see Fig. 3.1) showed that six 

plasmids contained aeqS in the correct orientation (pAZ1, 2, 3, 5, 6 and 8), three 

in reverse orientation (pAZ4, 7 and 9) and one plasmid, pAZ10, contained no 

insert (see Fig. 3.1). The correct orientation and reading frame were verified 
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Figure 3.1: Restriction analysis of pAZ1-10 using Sail. Insertion of aeqS in the correct orientation 
gives fragments of sizes 1137 and 6192 bp. Insertion of the gene in reverse orientation gives bands 

at 1252 and 6077 bp. pAZ2, 3, 5, 6 & 8 contain the gene in the correct orientation. 

in pAZ2 and pAZ6 by sequencing the junction region using the primer: 5'-ATC 

TTG CCG TTG TGG TTG AC-3'. Both sequences were identical and and showed 

100% similarity to their respective aeqS and cpc-1 components. The aeqS/cpc-1 

junction contained all the restriction sites in LBS6 polylinker2 including an intact 

EcoRI site. The pAZ6 plasmid (Fig. 3.2) was chosen for further use. 
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Figure 3.2 pAZ6. A plasmid containing the aeqS synthetic aequorin gene under the control the 
cpc-1 promotor from N. crassa and TrpC terminator from A. nidulans. 

3.2.3 Neurospora pAZ6 transformants 

pAZ6 was successfully used to transform wild-type, cot-1 and spray protoplasts 

(based on hygromycin resistance). Twenty to thirty transgenic homokaryons were 

then purified from each strain. 

3.2.3.1 Determination of aequorin production 

To determine the exact amount of aequorin produced by transformants from each 

strain as a proportion of total protein, in vitro luminometry was performed on 

total protein extracts. A 4 h aequorin constitution (production of the aequorin 

holoenzyme from the apoprotein by addition of coelenterazine) period was found 

to be sufficient to constitute all the aequorin in a 40 Mg total protein sample 

(Fig. 3.3). The majority of aequorin was constituted after a 60 min incubation 

with coelenterazine at 4°C and optimal constitution was reached after 90 mm. 

Further constitution, within the time frame examined, made no difference to 

the amount of active aequorin present in the protein extracts. This experiment 

was repeated using different protein extracts and results were almost identical. 
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Figure 3.3: Constitution of active aequorin in protein extracts for pAZ6 transformed N. crassa 
strains. Samples were prepared as described in Section 2.14.1.1, except that discharge was performed 

at various time points after coelenterazine addition (0 m). Values are mean ± S.E. (n=3). 

Luminometry was then performed on protein extracts from all transformants, 

using a 4 h constitution period as described in Section 2.14.1.1. Table 3.1 shows 

a selection of results from the transformants analysed. Following this screening 

process, one transformant representing each of the strains analysed, was chosen 

(on the basis of high aequorin luminescence) for further studies. The best wild-

type transformant was 22A3AWTAZ6, and produced 2.9 ± 0.03 tg (S.E. n=3) 

of aequorin per g total protein. The best cot-1 transformant, AZ63211cotl, 

produced 4.1 ± 0.04 and the best spray transformant, 18B1ASPAZ6, produced 

6.9 ± 0.02 ig (S.E. n=3) of aequorin per g total protein. This experiment was 

repeated with protein extracts from fungal colonies grown on another occasion 

and yielded almost identical results. During the purification of homokaryons 

and the luminescence screening process, a strain exhibiting partial phenotypic 

suppression of cot-1 was also isolated. This strain was named AZ63131cotl and 

produced 5.7 ± 0.11 (S.E. n=3). Overall, the transformants analysed showed a 
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Table 3.1: In vitro aequorin discharge of total protein extracts from aeqS transformed wild-type, 
cot-1 and spray strains of N. crassa. Values are mean ± S.E. 

Strain 	I Transformant Name 

wild-type Untransformed 
wild-type AZ61211wt 
wild-type 35D3BWTAZ6 
wild-type 22A3AWTAZ6 
cot-i AZ63211cotl 
cot-i AZ63131 cotl* 

spray AZ62311spray 
spray 22C2ASPAZ6 
spray 18B1ASPAZ6 

Amount of Aequorin 
aequorin per g total protein 

0.0 ± 0.00 
0.5 ± 0.02 
2.6 ± 0.03 
2.9 ± 0.03 
4.1 ± 0.04 
5.7 ± 0.11 
1.0 ± 0.01 
6.2 ± 0.09 
6.9 ± 0.02 

* This strain exhibited partial phenotypic suppression of cot-1. 

range of aequorin expression as can be expected from the ectopic transformation 

technique used to produce them. 

3.2.3.2 Morphological analysis 

Hyphal extension rate and hyphal/colonial morphology were examined on solid 

VgS to determine if there were any observable effects of transformation and 

aequorin expression on the fungal phenotype. There was no observed differences 

between the extension rates of aequorin-expressing transformants compared with 

untransformed controls (wild-type and cot-1 grew between 4.5 ± 0.69 and 4.7 ± 

0.51 mm/h at 24°C; wild-type grew between 6.3 ± 1.05 and 6.9 ± 0.86 mm/h at 

24°C; spray grew between 1.07 + 0.09 and 1.06 ± 0.12 mm/h at 24°C; and cot-1 

grew between 0.086 ± 0.008 and 0.091 ± 0.01 mm/h at 37°C; values are means 

± S.D., n=6). Fungal hyphae, stained with the membrane selective dye FM4-

64, were imaged using confocal laser scanning microscopy. The morphologies of 

transformed and untransformed strains were indistinguishable (see Fig. 3.4). 
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Figure 3.4: Confocal images showing morphologies of (a) wild-type at 24°C; (b) spray at 24°C; 

(c) cot-1 at 24°C and (d) cot-1 at 37°C for 4 h after shifting from 24°C. Samples were stained with 
FM4-64. Bar = 50 m. 
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3.2.3.3 Southern analysis 

Southern analysis was performed on a number of pAZ6 transformants in order 

to confirm the presence of the aeqS gene in the transformants, and to determine 

whether there was a correlation between the number of aeqS insertions and the 

level of aequorin expression. 

Genomic DNA was extracted from transformants (see Section 2.12.1) and 

Southern analysis performed as described in Section 2.12.2. Figs. 3.5 a and b 

spray cot-] wild-type pAZ6 size 
-\Z6211 ..\Z63211 	AZ63131 AZ61311 	control control (bp) 

 
- 8453 
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—6369 
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Figure 3.5: A Southern analysis of (a) Apal and (b) Kpnl digests of genomic DNA extracted from 
wild-type, cot-1 and spray pAZ6 transformants plus non-transformed wild-type and spray controls. 
Apal cuts once in pAZ6. KpnI cuts twice, liberating a 1000 bp fragment (not visible). The probe 
was random-primed, 32 P-labelled 629 bp aeqS extracted from pAZ6 by EcoRl digestion and agarose 
gel purification. (c) A schematic diagram of pAZ6 indicating the features relevent to this Southern 
analysis. 

show the results of two southern blots performed using genomic DNA digested 
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with ApaI and KpnI, respectively. In each case the positive controls produced a 

single band in agreement with the pAZ6 plasmid size of 7329 bp. KpnI liberates 

a 1000 bp fragment from pAZ6 (not visible) and therefore the control band was 

proportionately smaller. Wild-type untransformed controls remained blank. The 

wild-type transformant (AZ61311wt) showed one band at about 4700 bp (Fig. 

3.5 a) or one band at about 8500 bp (Fig. 3.5 b). The spray transformant 

(AZ62311spray) showed one band of greater than 8500 bp (Fig. 3.5 a) or two 

bands, one within a fragment about 7500 bp in size, the second within a fragment 

of greater than 8500 bp (Fig. 3.5 b). The cot-1 transformants (AZ63211cotl and 

AZ63131cot-1) showed one band each, at about 8500 bp or 7800 bp (Figs. 3.5 a 

and b, respectively). 

3.2.3.4 In vivo optimisation of aequorin luminescence 

No previous work has been done using an aequorin-based system to measure 

[Ca 2+], concentrations in N. crassa. The optimal spore concentration for medium 

inoculation and subsequent growth time of the colony therefore had to be 

determined to obtain the best luminescence from the N. crassa transformants 

produced (see Section 2.14.2). Figure 3.6 shows that for optimal luminescence, 

our cot-1 transformant should be inoculated at a concentration of 1x10 6  conidia 

m1' and grown for 18 h at 24°C. A similar experiment was done for wild-type 

and spray aequorin transformants. Fig. 3.7 shows that the optimal incubation 

time for wild-type at 24°C was 18 h, the same as for cot-1. Incubation time did 

not affect spray luminescence to the same extent as with wild-type and cot-1. The 

effect of spore concentration on wild-type and spray strains was similar to cot-1. 

It was therefore decided that the standard spore concentration and incubation 

time for wild-type, cot-1 and spray cultures should be 1x106  conidia ml' and 18 

h, respectively. 
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Figure 3.6: The effect of spore concentration and growth time on aequorin luminescence in cot-1 
colonies. Microwell plates were innoculated with liquid VgS containing cot-1 spores as described in 
Section 2.5.2 except that spore concentrations of 1x10 4 , 1x105 , 5x105 , 1x106  or 5x10 6  conidia m1 1  
were used. Cultures were incubated at 24°C for 14, 18, 22, 26 or 30 h before being discharged as 
described in Section 2.14.2. Values are means ± S.E. (n=6). 
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Figure 3.7: The effect of growth time on aequorin luminescence in wild-type and spray colonies. 

Microwell plates were innoculated and grown in microwell plates as described in Section 2.5.2. 
Cultures were incubated at 24°C for 10, 14, 18 or 22 h before being discharged as described in 
Section 2.14.2. Values are means ± S.E. (ri=6). 

3.3 Discussion 

Transformable protoplasts were made from wild-type, cot-1 and spray strains 

of N. crassa. Attempts to transform these protoplasts with pAEQS1-15 (which 

contains the synthetic filamentous fungal codon-optimised aequorin D gene [aeqS] 

(Nelson, 1999; Nelson et al., 2003)) were unsuccessful. Rather than spend 

time investigating the reasons for this, a plasmid (pAZ6) was produced, which 

contained aeqS under the control of the N. crassa cpc-i promotor (see Fig. 3.2). 

The promotor region of the cpc-i gene in pAZ6 included the first open reading 

frame but not the second, thereby negating the need for amino acid starvation to 

induce transcription and resulting in a constitutive promotor (D. Ebbole, Texas, 

A&M University, personal communication) (Paluh et al., 1988). Restriction 

analysis (Fig. 3.1) and sequencing confirmed the presence and orientation of 

aeqS in pAZ6, which was then used to transform N. crassa. 
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Previous transformations of filamentous fungi with aeqS have resulted in levels 

of aequorin expression ranging from 2.26 (N. crassa) to 21.8 ILg aequorin per g 

total protein (A. awamori) (Nelson et al., 2003). Here, a set of transformants 

of the N. crassa strains: wild-type, cot-1, and spray, along with a partial 

phenotypic suppressor of cot-1, have been produced. It was shown that aequorin 

constitution in protein extracts from these transformants reaches its maximum 

after 90 min and that further constitution does not affect aequorin luminescence 

(in the time frame examined). A method for the rapid determination of the 

amount of aequorin in transformants was developed. These transformants, in 

which aeqS was driven by a modified N. crassa cpc-i promotor, contained between 

2.9 and 6.9 jtg aequorin per g total protein. No morphological abnormalities of 

differences in hyphal extension rate could be observed between transformed and 

non-transformed strains. The amount of aequorin in these strains was higher than 

previous transformants of N. crassa expressing the aeqS gene driven by the N. 

crassa clock controlled gene (ccg-i formally grg-1 (Wang et al., 1994; McNally 

and Free, 1988)) promoter (Nelson et al., 2003). This is the first time that mutant 

strains of N. crass a have been transformed with an aequorin encoding gene. 

Southern analysis of wild-type, cot-1 and spray transformants showing a range 

of aequorin production (0.5 to 5.7 1ug aequorin per g total protein), confirmed the 

presence of chimeric aeqS insertions but could not show a correlation between 

the number of aeqS insertions and the level of aequorin production (see Table 3.1 

and Fig. 3.5). Both ApaI and KpmI genomic DNA digestions showed wild-type 

(AZ61311wt) and cot-1 (AZ63211cotl and AZ63131cotl) transformants to have 

one aeqS insertion despite the fact that the wild-type transformant produced only 

0.5 tg aequorin per g total protein and the cot-1 transformant (AZ63131cotl) pro-

duced more than 10 times this amount. The spray transformant (AZ62311spray), 

on the other hand, appeared to have two aeqS insertions but only produced 1.0 

g aequorin per g total protein. Although Fig. 3.5 (a) showed only one aeqS 

containing band for spray, this band was heavy (> 8500 bp and therefore out of 
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the linear range of separation of a 0.9% agarose gel, which is from 500 to 7000 

bp (Sambrook et al., 1989)) and could therefore have contained both aeqS in-

sertions. A second blot in which a different preparation of genomic DNA was 

digested with ApaI showed the same results. The size of the aeqS containing 

bands in the cot-1 transformants was identical in both Southern blots. Both these 

transformants were isolated from the same primary transformant during the pu-

rification of homokaryons. Together these results suggest that the AZ63211cotl 

and AZ63131cotl are the same transformant, and that the partial phenotypic 

suppression of cot-1 was unrelated to the aeqS insertion but occurred during the 

purification process. 

In vivo luminometry was carried out to determine the spore concentration 

for medium inoculation and the subsequent growth period that would provide 

maximum aequorin activity in the N. crassa transformants produced, while stan-

dardising the growth conditions between strains. It was found that transformants 

should be inoculated at a concentration of 1x10 6  conidia m1 1  and grown for 18 

h at 24°C (Figs. 3.6 and 3.7). These conditions are different from those used 

previously in aeqS transformed filamentous fungi. Examples include N. crassa: 

spore concentration not controlled (Nelson, 1999); Aspergillus spp.: 1x10 5  spores 

m1 1  incubated at 30°C for 24 h (Nelson et al., 2003); and Phyllosticta ampelicida: 

inoculation with mycelia followed by 5 days growth at 25°C prior to transfer of 

colonies to a microwell plate and incubation with coelenterazine for 4 h before 

experiment (Shaw et al., 2001). These differences show the importance of deter-

mining the optimum conditions for fungal growth and aequorin luminescence for 

each new strain or species of fungus transformed. 
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3.4 Summary 

A new plasmid, pAZ6, designed for the constitutive expression of aeqS (the 

synthetic filamentous fungal codon-optimised aequorin D gene) in N. crassa 

was produced. 

. This plasmid produced high levels of aequorin expression when transformed 

into several strains of N. crassa. 

• No correlation between the number of ectopic aeqS insertions and the 

amount of aequorin produced by transformed strains could be shown 

• To achieve both high levels of in vivo luminescence and standardised 

growth conditions in the transformants produced, it was determined that 

transformants should be inoculated at a concentration of 1x10 6  conidia m1' 

and grown for 18 h at 24°C. 



Chapter 4 

Characterisation of 

Ca2 -Signalling in Wild-type and 

Hyperbranching Strains of 

Neurospora 

4.1 Introduction 

A [Ca 2+]c  transient induced by an external stimulus is comprised of two main 

phases: a period of [Ca 2+],  increase when CPC activity predominates followed 

by a period of [Ca 2+] c  decrease when Ca2+pump  and -transporter activity 

predominate. The timing and regulation of CPC, Ca2+pump  and -transporter 

activities will define the Ca2+signature  generated by a specific external stimulus. 

It has recently been shown that three external stimuli (mechanical pertur- 

bation, hypo-osmotic shock and high external calcium) produce three distinct 

Ca2+-signatures in A. awamon (Nelson et al., 2003), and that these Ca 2+ re- 

sponses are sensitive to different Ca 2+  agonists and antagonists suggesting that 

they originate from the activity of different combinations of CPC, Ca 2 -pump 

and -transporter proteins. Current thinking suggests that information encoded in 

77 



78 	 4.2 Results 

the Ca2+ signature  is an important factor in providing the necessary specificity 

for a particular stimulus to illicit a defined response (Sanders et al., 2002). How-

ever, a thorough quantitative analysis of Ca2+signatures  and their relationship 

with environmental conditions, Ca 2+  modulators and genetic background has not 

yet been performed in any organism. Furthermore, although Ca2+signalling  has 

been implicated in playing a role in regulating branch formation in N. crass a and 

other filamentous fungi (see Section 1.5), an analysis of Ca 2 -signalling during 

hyperbranching has not yet been done. 

The aims of the work carried out in this chapter were: (1) to determine the 

robustness and reproducibility of the wild-type N. crassa Ca2+signature  in re-

sponse to different stimuli when the fungus is grown under different environmental 

conditions; (2) to use the Ca 2+-signature as an indicator of what components of 

the Ca2 -signalling machinery may have been disrupted in hyperbranching mu-

tants for which there is some evidence for Ca2+signalling  having been compro-

mised (Dicker and Turian, 1990; Bok et al., 2001; Gorovits et al., 1999; Prokisch 

et al., 1997); (3) to use pharmacological agents to investigate the properties of the 

components involved in the generation of [Ca 2+]c  transients in response to differ-

ent stimuli; and (4) to determine whether [Ca 2+]c  transients are associated with 

branch initiation in wild-type and hyperbranching mutant strains of N. crass a. 

4.2 Results 

4.2.1 Temperature and aequorin luminescence 

Because my intention was to measure Ca 2+  in aequorin-transformed strains at 

24°C and 37°C, it was necessary to establish whether temperature influenced 

aequorin luminescence. It has previously been found that incubating purified 

aequorin for 0 to 60 min at 45 or 50°C had no significant effect on the amount 

of luminescence detected when these aequorin samples were all measured at 25°C 

(Gong et al., 1998). However, whether the light detected from measuring aequorin 



CHAPTER 4. Characterisation of Ca2  -SignaJling in Wild-type and 
Hyperbranching Strains of Neurospora 	 79 

luminescence at different temperatures (e.g. 24°C vs 37°C) will also be unaffected, 

has not been determined. Luminescence measurements of protein extracts from 

aequorin-expressing wild-type N. crassa incubated at 24 or 37°C were very similar 

when all samples were measured at 24°C. However, luminescence measured at 

24°C was reduced to 80% when measurement was performed at 37°C (Table 

4.1). Despite these findings, data gathered at 24 and 37°C can still be compared 

Table 4.1: The effect of temperature on luminescence emitted by wild-type protein extracts. 100 

fLl samples each containing 40 ILg total protein were constituted in 2.5 jiM native coelenterazine for 

4 h at 4°C before measurement. Luminescence was integrated for 20 s after injection of 100 mM 

CaCl 2  

Incubation 
Temperature (°C) 

Measurement 
Temperature (°C) 

Mean Luminescence 
(% of maximum) 

S.D. 
(n=6) 

24 24 96 0.05 
37 37 82 0.02 
37 24 100 0.05 
42 42 70 0.02 
42 24 99 0.02 

as conversion from RLUs to [Ca 2+],  concentrations results in the normalisation 

of the data converted. 

Kinetic analyses was also performed to determine if temperature caused 

changes in the rate of light detected. No changes in the rate of light emission 

were observed at the temperatures tested. 

4.2.2 Quantitative analysis of Ca 2 -signatures 

4.2.2.1 Development of a rapid and accurate quantification system 

In order to (a) convert the data produced by our luminometer from RLUs to 

Ca 2+  concentrations, (b) quantify various parameters of the Ca2+signature,  and 

(c) perform statistical analyses on these data on the large scale required by 

this study, it was necessary to develop a software package in order to automate 

these requirements. Figure 4.1 summarises the main functions of this program, 
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which accepted plain text input, generated by the WinGlow software running 

the luminometer (see Section 2.14.3 for details and Appendix E for the program 

source code). 

4.2.2.2 The Ca 2+-signature -  unique and robust 

The initial question I addressed in this study concerned how robust and repro-

ducible Ca2+signatures  are under different growth conditions. C a2+ signatures  

were therefore compared in response to mechanical perturbation, hypo-osmotic 

shock, and high external Ca 2+  in 12 or 18 h cultures at different temperatures 

(24 or 37°C) in liquid or on solid medium. 

Each of the three stimuli produced a unique Ca 2 -signature (Fig. 4.2) and 

quantification of each signature resulted in a characteristic combination of rise 

time, amplitude and FWHM (Fig. 4.2, histograms). The small error bars 

highlight the highly reproducible nature of [Ca 2 ] transients in response to the 

stimuli tested. As the errors were of a similar magnitude in all other experiments 

error bars have been omitted in subsequent Figures for the sake of clearer graphical 

presentation. 

In general, the Ca 2+-signatures detected in response to any one stimulus 

retained their basic characteristics with cultures of different ages, at different 

temperatures and in liquid or on solid medium (Figs. 4.2 and 4.3) although 

differences were noted. The basic characteristics of the Ca2+signatures  were as 

follows (data from cultures grown in liquid medium for 18 h at 24°C; mean + 

S.D. n=6). Mechanical perturbation resulted in a small (0.31 + 0.02 M) [Ca 2+] 

transient that returned to its non-stimulated (or resting) level quite slowly (as 

shown by its quite large FWHM 55.8 ± 8.1 s); hypo-osmotic shock produced a 

larger (0.38 ± 0.02 tiM) [Ca 2+]c  transient that took a long time (FWHM was 76.8 

+ 5.9 s) to return to its original level; high external Ca 2  produced a very large 

(0.59 ± 0.02) [Ca 2 J transient that reached its maximum very fast (1.7 ± 0.00 s), 

and dropped back to its non-stimulated level very quickly (FWHM 25.8 + 1.32 s). 
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Figure 4.1: Summary of a program written to (a) convert the data produced by our luminometer 
from RLU to Ca2 i  concentrations, (b) quantify various parameters of the Ca 2 t -signature, and (c) 
perform statistical analysis on these data. 
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Figure 4.2: The effect of stimulation by mechanical perturbation, hypo-osmotic shock, and high external Ca 2+  on [Ca'] transients in 18 h old N 
crassa wild-type colonies grown at 24°C in (a) liquid medium and (b) on solid medium. Error bars represent means ± S.D. of 6 replicates. 
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34 	 4.2 Results 

The main difference noted between C a2 +_signat.ures  in colonies grown at different 

temperatures was that amplitudes were sometimes greater (from 0 ± 16.7% to 

40 ± 9.8% [mean ± S.D. n=6]) in cultures grown at 37°C compared to those 

grown at 24 ° C (Fig. 4.3 histograms). These differences were more pronounced in 

cultures grown for 12 h compared to those grown for 18 Ii. Cultures grown under 

different, conditions also showed different resting [Ca 2+1, concentrations (Fig. 4.4). 

Most notable was the difference between cultures grown at 24 and 37°C, although 
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Figure 4.4: Non-stimulated (or resting) [Ca 2  ] concentrations in 12 and 18 h old N. crassa 
cultures grown on solid or in liquid medium at 24 or 37°C. Error represents mean + S.D. of 12 

replicates. 

cultures grown on solid rneiiuni also had higher resting [Ca 2+1,  concentrations 

than those grown in liquid medium. 

Based on results obtained from repeated experiments., we found that the 

variations in signatures obtained from cultures grown on solid medium were 

typically slightly higher than those obtained from liquid medium. We therefore 

performed subsequent experiments using cultures grown in liquid mcdliii. 
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4.2.2.3 The Ca2+signature  reports disruptions in Ca2+ -signalling ma-

chinery 

Genetic and pharinaoIognal approaches were used to investigate the effect of 

(llsrUl)tiolls in C a2+_signalling niachuiiery on Ca2+_signat.ures.  The niorphologica.l 

mutants spray and cot-i were traiisforiiied with aequorin and their C a2+_ 

signatures exarnmed. spray has a hyperhranching phenotype (Fig. 3.4 1)) and 

a hyphal extension rate about 20% that of the wild-type on solid medium at 

24°C. The spray gene is thought to encode a 'Ca2+_controlliiig  protein' (Dicker 

and Tuiian, 1990) and although its sequence shows 110 match to genes of known 

function, pharmacological evidence suggests that the SPRAY protein regulates the 

distribution of Ca 2+ via calcineurin (Bok et al., 2001). The cot-i mutant (Collinge 

et al.. 1978; Yarden et al., 1992) has a hyplial extension rate and morphology 

almost indistinguishable froumi that of the wild-type (see Section 3.2.3 and Fig. 

3.4 c) at the permissive temperature (< 24°C). However, 1-2 h after shifting a 

cot-1 culture to the restrictive-temperature (> 37°C) hyphal extension ceases and 

massive induction of hyphal branching occurs (Fig. 3.4 (1). The newly formed 

hyphal tips are unable to continue elongating at the restrictive-temperature, but 

returning the culture to the perniissive-tenipeiature results in rapid restoration 

of normal hyphal growth (Coilinge et al., 1978; Yardemi et al., 1992). The cot-1 

gene has been isolated and, based on the deduced COT1 amino acid sequence, 

it encodes a Ser/Thr-specific protein kinase (Yarden et al., 1992; Gorovits et al., 

1999). 

Ca2+ -signatures in spray had significant differences from those of the Wild!-

type after 18 ii of growth at 24°C in liquid medium (Fig. 4.5). The alulplitu(les of 

Ca2+_signat ures  in response to mechanical perturbation, hypo-oSrnotic shock and 

high external Ca 2+ in spray were reduced by 28 ± 25, 41 ± 39 and 46 ± 5.4% 

(mean + S.D. n=6) respectively, compared to those of the wild-type. Rise time 

was also reduced, especially in response to hypo-osmotic shock. FWHM, however. 
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was less affected. Despite these major differences, the basic characteristics of the 

Ca2+-signatures in spray were very similar to those of the wild-type. 

To determine whether the decreased amplitudes observed in spray Ca 2+_ 

signatures were potentially mediated via calduleurin, Ca2+_signatures  were mea-

sured in Wil(l-tYI)C colonies grown in the presence of 124 nM of the calcmeurm 

inhibitor FK506 (Prokiscli et al.. 1997). This concentration reduced the wild-type 

hyphal extension rate by 40 ± 12% (iiieau ± S.D. n=6) and caused spiny-like hy-

perbrail('hullg (Fig. 4.6 a). The FK506 mediiiiii amendment, conferred a reduction 

(a) 	 (b) 

- 

Figure 4.6: The effect of (a) 124 nM FK506 or (b) 0.25% sorbose on wild-type N. crassa 

morphology grown at 24°C on solid Vogel's medium. Bars are 50 /zm. 

in wild-type amplitudes in response to mechanical perturbation, hypo-osinotic 

shock and high external Ca 2+ by 16 ± 13.2, 30 + 31.8 and 16  + 10% (mean ± 

S.D. n=6) respectively, compared to the untreated wild-type control (Fig. 4.7). 

These reductions, however, were not as large as observed in the untreated spray 

control (27 ± 6.6, 46 ± 31.8, and 53 ± 7.6% (mean ± S.D. n=6), in response 

to riiechanical perturbation, hypo-osmotic shock and high external Ca2+,  respec-

tively). A further control in the form of wild-type grown on 0.25% sorbose was 

also used. This concentration of sorbose, like the FK506, causes a 38 ± 12% 
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(mean ± S.D. n=6) reduction in hyphal extension rate and spiny-like hyper-

branching (Fig. 4.6 b) but has no known link to Ca2+_signalling.  The amplitudes 

of Ca 2+_signatures in response to mechanical perturbation, hypo-osmotic shock 

and high external Ca2+  in wild-type colonies grown in sorbose amended mimediuni 

showed a 5.1 ± 32% increase, an 8.9 ± 27% decrease and a 29 ± 7.6% (mean 

± S.D. n=6) decrease compared to the untreated wild-type control (Fig. 4.7). 

In the case of the response to mechanical perturbation and hypo-osmotic shock 

these amplitudes were not significantly different to those of the untreated wild-

type control. Finally, Ca2+_signatures  in response to mechanical perturbation, 

hypo-osmotic shock and high external Ca 2+  were measured in wild-type cultures 

grown for 18 h at 24°C in liquid VgS after a 10 min l)1et1e.t111e11t with either 248 

uM FK506 or another calcineurin inhibitor, 250 uM cyclosporin A. No difference 

in Ca.2+_signatures  could be observed in coniparision with control cultures (data 

not shown). 

To confirm that the decreased amplitude of the [Ca. 2+],  transients observed 

in spray is related to a disruption of the Ca2+_sigllalling  machinery, and not 

a result of a difference in maturity or biomass between the two strains (given 

that spray has a hyphal extension rate 80% slower than the wild-type), Ca. 2+_ 

signatures were measured in spray colonies grown for 10, 14, 18 and 22 h at 

24° C. The Ca2+_signatum.es  measured at these times were very similar (Fig. 4.8), 

although quantification of these Ca2+_signatures  (Fig. 4.8, histograms) showed 

that amplitudes decreased with increasing growth time. After 22 h, amplitudes 

had decreased by 36 ± 12. 37 + 0.0 and 23 ± 3.7% (mean ± S.D. n=6) in 

response to mechanical perturbation, hypo-osniotic shock and high external Ca 2+ 

respectively, as compared to 10 Ii cultures. However, as amplitudes in spray 

do not increase with time, the differences observed between wild-type and spray 

amplitudes can not be said to be related to maturity or biomass and are likely to 

represent a genuine difference in the composition or behaviour of Ca. 2 +_signalling 

machinery present in the spray mutant. 
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The effects of three known Ca 2+  modulators on wild-type Ca2+_signatures  were 

also examined: (a) cyclopiazomc acid (CPA) reversibly inhibits C a2+_ATPases  

that fill internal Ca 2+  stores (Okorokov et al., 1997); (b) 2-APB is known to 

inhibit 1P3-iuduced Ca 2+  release from Ca 2+  stores in animal cells (Maruyaina 

et at, 1997) and (c) caffeine causes the release of Ca 2+  from internal Ca 2+  stores 

in diverse organisms (Komori et al., 1993; Bauer et al., 1999; Arora and Olilan, 

1997). 

Injection of 10 to 50 y M CPA into 18 li old wild-type N. crassa cultures inside 

the luiiiinometer was found to cause dose-dependent prevention of recovery of the 

resting [Ca 2+1,  concentration after the injecti()n-induced [Ca 2+],  transient (see 

Fig. 4.9). A 10 miii pretreatment with 25 tM CPA was found to raise resting 
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Figure 4.9: Differences in [Ca 2 ] transients induced by one 0 to 50 p.M injection of CPA into 18 

h old wild-type N. crassa cultures inside the luminometer. Lines are means of 6 replicates. 

[Ca 2+] c  concentrations by 74 ± 8.6% (mean ± S.D. n=6) over the control (data 

from Fig. 4.10). Ca2+_signatui.es  in the CPA pretreated colonies in response 

to mechanical perturbation, hypo-osinotic shock and high external Ca, 2+  differed 

hc)m untreated controls in showing slightly reduced amplitudes and dramatically 
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increased FWHMs, especially in response to mechanical perturbation and high 

external Ca 2+ (Fig. 4.1(J). 

Injection of 50 pM (but not 10 or 25 iM ) 2-APB into 18 h old wild-type N. 

evassa cultures inside the himinonieter prevented recovery of the resting [Ca 2+1, 

concentration after the injection-induced [Ca 2+],  transient (see Fig. 4.11). A 
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Figure 4.11: Differences in [Ca 2  1 transients induced by one 0 to 50 pM injection of 2-APB into 

18 h old wild-type N. crassa cultures inside the luminometer. Lines are means of 6 replicates. 

10 inin pretreatment with 25 pM 2-APB was found to raise resting [Ca 2 +J c  

concentrations by 60 ± 16% (mean ± S.D. n=6) over the control (data from 

Fig. 4.12). W+-signatures in the 2-APB pretreated colonies in response to 

mechanical perturbation, hypo-osmotic shock and high external Ca, 2+  differed 

from untreated controls in showing slightly increased amplitudes and dramatically 

increased FWHMs (Fig. 4.10). These effects were more l)rofouhl(l in [Ca 2+] c  

transients resulting from stimulation by hypo-osmnotic shock and high external 

Ca 2+ 

Injection of 0 to 10 mM caffeine into 18 ii old wild-type N. erassa cultures 

inside the lunnuometer had no observable effect on [Ca 2+],  transients (see Fig. 
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4.13). Injection of 25 IIIM caffeine, the maximum amount I was able to dissolve in 
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Figure 4.13: Differences in [Ca 21 ] transients induced by one 0 to 25 mM injection of caffeine 

into 18 h old wild-type N. crassa cultures inside the luminometer. Lines are means of 6 replicates. 

liquid VgS medium, caused a 49 ± 22% (mean ± S.D. n=G) increase in FWHM 

in comparison to the control (data from Fig. 4.13) but no observable changes 

in amplitude. A 10 nun pretreatment with 10 mM caffeine had no observable 

effect on either resting [Ca 2+] c  concentrations or on Ca 2+ transients in response 

to mechanical perturbation, hypo-osmotic shock or high external Ca, 2+  (data, not 

shown). 

At the permissive temperature, cot-1 is morphologically almost indistinguish-

able frorn wild-type. This was reflected in terms of Ca 2+_signatures , which were 

also very similar in the two strains at the permissive temperature (Figs. 4.14 a to 

c and corresponding histograms). After 4 ii at the restrictive temperature. how-

ever, Ca2+_signatures in cot-1 showed significantly smaller amplitudes than the 

wild-type in response to mechanical perturbation and hypo-osmotic shock, and 

high external Ca2+  (Figs. 4.14 (1 to f and corresponding histograms), indicating 

that impaired COT1 function alters the Ca2+_signat.ure. 
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and then shifted to 37°C for 4 h and stimulated by: (d) mechanical perturbation, (e) hypo-osmotic shock and (f) high external Ca 21  . Lines are means 

of 6 replicates Bars represent S.D. of 6 replicates. 
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4.2.2.4 [Ca 2+]  transients are not associated with hyphal branch in-

duction 

The Ca 2+  measurements made during this work are an average of [Ca 2 +] c  changes 

across the thousands of fungal iiiicrocolonies thriving in each nncrowell. Despite 

the fact that studies in plants and animals have established that changes in 

[Ca 2+ ] following stimulation are typically very localised within cells (Berridge 

et al., 2000; Sanders et al., 2002) the general measurements made during this 

work provide a great deal of information. The non-stimulated (or resting) [Ca 2+], 

concentration of many liyphal colonies will change according to the frequency 

and magnitude of the 'house-keeping' Ca2+_signalling  going on. Ca2 +_s ignalling  

has been implicated in the regulation of tip growth and hyphal branching for 

many years (see Section 1.5). The observation of resting [Ca 2+], concentrations 

in hyperbrancliing strains may therefore provide an indication of changes in the 

frequency of branchinductionsignals if Ca_, signalsdo regulate liyphal branch 

induction. 

To determine whether higher resting levels of [Ca 2+],  accompany the regula-

tion of polarised cell extension (tip growth) or its induction (hyphal branching) 

in N. crassa, the non-stimulated [Ca 2+1'  concentration was measured in hyper-

branching and non-liyperhranclnng strains. Resting [Ca 2+],  concentrations were 

not significantly different the hyperbranching mutant spray (34.3 ± 3.9 miM [mimean 

± S.D. n=6]) or in wild-type colonies treated with 0.25% sorbose (33.8 ± 8.6 nM 

[mean ± S.D. n=6]) or to wild-type colonies treated with 124 miM FK506 (41.4 

± 4.6 nM [mean ± S.D. n=61). Both sorbose and FK506 treatments induced 

hvperbranching phenotype (Fig. 4.6) and reduced hyphal extension rate by 

40%. The untreated wild-type control had an average, non-stimulated [Ca 2+] c  

concentration of 33.8 ± 8.3 nM (mean ± S.D. n=6). After 4 h at 37°C wild-

type and cot-i colonies had an average [Ca 2 +] c  concentration of 63.8 ± 2.7 miM 

and 54.3 ± 3.4 nM (mean ± S.D. n=6), respectively. Furthermore, no change 

in resting [Ca 2+],  concentrations accompanies either the cessation (upon shifting 
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to the restrictive temperature) or the resumption (upon shifting back to the per-

missive temperature) of hypha.l elongation in cot-1 (Fig. 4.15). It should also 

be noted that prolifi.hyperbranching is induced in cot-1 colonies shortly after 

shifting thein to the restrictive temperature (Fig. 3.4), and that no change in 

average [Ca 2+1, concentrations was observed during this process (Fig. 4.15). 
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Figure 4.15: The induction of hyperbranching in cot-1 (achieved by shifting cot-1 from 24 to 

37° C for 4 h) does not correspond to changes in [Ca' ] resting concentrations. Lines (except 

temperature) are means of 6 replicates. 

4.3 Discussion 

Increasing measurement temperature froin 24 to 37°C was found to reduce ae-

quorin luminescence by about. 20%. however, data gathered at the two tempera-

tures are still comparable after conversion from RLUs to [Ca, 2+] c  concentrations 

as data is normalised (luring the conversion process. The equation used to con-

vert luminescence in BLUs to Ca 2+  concentrations is based on the amount of 

limniinescence at a point in tune, divided by the amount of luminescence avail-

able for emission at that point in time (see Section 2.14.3). This is necessary 
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for accurate conversion into Ca 2+  concentrations because active aequorin is used 

up during the course of an experiment, the probability of an interaction between 

a Ca 2+  ion and and active aequorin molecule decreases. Thus, towards the end 

of an experiment, lower levels of luminescence represent higher concentrations of 

Ca  2+. In the case of the reduction of aequorin luminescence by measurement 

temperature, the amount of luminescence available for discharge is reduced from 

the beginning of the experiment, and is taken into account from the beginning 

of the experiment. Data gathered at different temperatures is therefore compa-

rable. Data in RLUs gathered at different temperatures should not be compared. 

Kinetic analyses showed no changes in the rate of light emission at the tempera-

tures tested. I therefore conclude that aequorin is a suitable indicator for use in 

detecting differences in Ca2+signatures  at these temperatures. 

Using aequorin it was recently shown that three external stimuli (mechanical 

perturbation, hypo-osmotic shock and high external calcium) produce three 

distinct Ca2 -signatures in A. awarnori (Nelson et al., 2003). Nelson et al. (2003) 

used a spreadsheet to convert RLUs to Ca 2+  concentrations and subsequent 

quantification of Ca2+ signatures  was done by hand. Here I have developed a 

computer program that converts RLUs to Ca 2+  concentrations, quantifies various 

parameters of the Ca2Lsignature,  statistically analyses and plots data directly 

from the luminometer (see Section 2.14.3). This program has a number of 

important improvements on the spreadsheet: 

• Data interpolation is done in a more realistic manner. As in vivo luminom-

etry was performed using a repeated measurement protocol (see Section 

2.14.3) each sample was measured once every measurement cycle. In order 

to estimate the amount of light emitted from a sample between measure-

ments, the spreadsheet used by Nelson et al. (2003) assumes that the rate of 

luminescence emitted by a sample is constant throughout the measurement 

cycle. Luminescence is thus assumed to change in a step-wise manner at 

each measurement point. The program developed here assumes that the 
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rate of light emission changes in a linear fashion between each measurement 

point (see Fig. 2.2) and interpolates the data based on that assumption. 

This method will give much more accurate results when the change in light 

emission between measurement points is large. 

• Background luminescence is subtracted from all data. This was not done 

by the spreadsheet. 

• The user is warned of unsuitable data. Data is unsuitable for conversion 

into Ca 2+  concentrations if the majority of the aequorin in the sample is 

discharged during an experiment. For example, if all the aequorin was used 

up during an experiment luminescence would drop to zero but this would not 

necessarily correspond to a decrease in Ca 2+  concentration. This program 

allows the user to set a percentage of the total aequorin available (calculated 

from the discharge data) that is allowed to be used up during the course of 

an experiment. If this value is exceeded the user is warned that the data 

conversion is likely to be inaccurate. 

• Quantitative parameters of the Ca2+signature  are calculated automatically. 

Previous quantification of Ca2+signatures  had to be done by hand. The 

accurate derivation of parameters such as FWHM from printed graphs 

of [Ca 2+1'  transients is both difficult and time consuming. This is re-

flected by the absence of means and standard errors for the parameters of 

Ca2 -signatures (except amplitude) quantified by Nelson et al. (2003) and 

Kozlova-Zwinderman (2002). My software calculates six quantitative pa-

rameters from each replicate of every experiment and then calculates means 

and performs statistics on these results. Furthermore, data from the lu-

minometer does not need to be copy-pasted into the program as data files 

produced by the luminometer are read directly. Much larger datasets can 

therefore be processed more accurately in less time. 

• Experiments with different numbers of repetitions can be processed. This 
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program automatically calculates the number of replicates (ii) in each data 

file. Means and statistics are calculated using this value. Previously, a new 

spreadsheet had to be created for every experiment that did not have 6 or 

less replicates. My software is therefore more flexible than the old approach. 

• This program was written in a modular fashion to allow new quantitative 

parameters of the Ca2+signature  to be easily introduced for automated 

analysis as they are thought of or required. 

Using this program it is now possible to accurately and quantitatively process 

data from hundreds of experiments, providing for the first time, the amount of 

data needed to study Ca 2 -signatures in depth. 

The Ca2+signatures  of [Ca 2+],  transients induced by mechanical perturbation, 

hypo-osmotic shock and high external Ca 2+  were shown to be (a) highly repro-

ducible; (b) readily quantifiable, and (c) have distinct characteristics regardless 

of growth time, growth temperature or growth in liquid vs on solid medium. Al-

though the actual values of these signatures changed slightly in colonies grown 

under different conditions, the overall characteristic response to each stimulus 

was maintained. The reproducibility of W+-signatures on solid medium was less 

good than in cultures grown on liquid medium and day-to-day variability was also 

greater. This is likely to be a result of (1) much less mycelium in solid cultures due 

to the fact they grow only on the surface of solid medium therefore reducing the 

overall fungal biomass, and (2) the application of liquid stimuli to cultures grow-

ing on solid medium involves two phases that do not reach equilibrium quickly, 

resulting in a protracted and potentially more variable stimulus. 

Cultures grown in liquid or on solid medium at 24 or 37°C consistently had 

different resting [Ca 2+]c  concentrations. This may reflect the different 'house-

keeping' Ca2 -signalling needed for growth in these different conditions. 

The fact that Ca 2 -signatures have quantitatively definable reproducible 

characteristics offers a unique opportunity to use these signatures to gain insights 

into the state of the Ca 2 -signalling machinery. Here I have looked at three 
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aspects of the Ca 2+-signature: (1) the rise time, (2) amplitude, and (3) FWHM. 

Each parameter tells a different story. Rise time and amplitude are likely to be 

most affected by Ca 2 -channel activity, while FWHM is more indicative of the 

action of Ca2+pumps  and transporters. A genetic and pharmacological dissection 

of the exact elements of the Ca 2 -signalling machinery involved in the different 

aspects of the Ca2+signature  will allow even more information to be gained from 

changes in Ca2+ signatures . 

In this study Ca2+signatures  have been analysed with a high degree of quan-

titation. However, there are some important limitations in the current method. 

Firstly, the repeated protocol needed to measure a number of experimental repli-

cates simultaneously, results in a resolution equal to the time between each mea-

surement of a given replicate (the cycle time). In the case of the data presented 

here, the cycle time was 11.6 s. This must be taken into account when drawing 

conclusions from the quantitative data. Rise time, especially, often had a S.D. of 

zero, as the maximum amplitude was always reached by the second measurement 

after the stimulus. However, given a cycle time of 11.6 s, a rise time of 2 ± 0.0 

s (mean ± S.D. n=6) is not necessarily different from a rise time of 10 ± 0.0 s 

(mean ± S.D. n=6). For this reason, I have limited the conclusions drawn from 

rise time data. FWHM and amplitude are less susceptible to this type of prob-

lem, although if the maximum amplitude occurs between measurement points 

it will not be observed. These problems can be avoided by using a continuous 

measurement protocol. However, it is then much more time consuming to per-

form a number of replicates and the data set will be proportionately smaller. 

The current method is therefore useful for the identification of interesting results, 

high throughput screening, and for drawing general conclusions, while a contin-

uous protocol might be used to repeat certain experiments at a higher temporal 

resolution. My software will analyse results from both types of experiment. Sec-

ondly, the description of a [Ca 2+]c transient using three quantitative parameters is 

clearly a simplified picture of reality. FWHM, is best suited to data that exhibits 
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a Gaussian distribution. Future development of the software written here should 

involve the mathematical description of regions of Ca2+signature.  The program 

could then do curve fitting based on how well each signature fits the equations 

that describes it, providing a less digital analysis of the W+-signature. 

Based on, amongst other things: (1) hypersensitivity to calcineurin inhibitors 

FK506 and cyclosporin A (CsA); (2) the fact that 50-500 mM exogenously added 

Ca 2+  corrected the mutant phenotype to an essentially wild-type appearance 

(Dicker and Turian, 1990); and (3) the presence of presumptive transmembrane 

domains, Bok et al. (2001) suggested that the SPRAY protein is an internal 

membrane protein that regulates Ca 2+-transport across organellar membranes 

and this is mediated by calcineurin. Here it has been shown that C a2+ signatures  

in spray had significantly reduced amplitudes and rise times compared to those of 

the wild-type after 18 h growth at 24°C in liquid medium. These results were not 

due to reduced biomass or immaturity of spray colonies compared to the wild-type 

controls as amplitudes in spray colonies were found to change very little in 10 to 

22 h old colonies. The differences in amplitudes observed are therefore likely to 

represent a real difference in the composition or behaviour of the C a2+ signalling  

machinery present in the spray mutant. These data support the idea that Ca 2 -

signalling is perturbed in the spray mutant, but point toward spray having 

decreased Ca2+channel  activity rather than decreased Ca 2+-transporter activity 

as rise time and amplitude are the most affected elements of the spray Ca2 + 

signature. If active transport of Ca 2+  into internal organelles were perturbed, 

one would expect to see the time for Ca 2+  concentration to return to resting 

levels increase significantly, as observed in CPA-treated wild-type colonies (CPA 

inhibits Ca2 -ATPase activity). This increase in recovery time would be reflected 

in a much longer FWHM, which was not observed in spray Ca2+ signatures . 

Ca2+ signatures  in wild-type colonies grown in medium amended with 124 

nM FK506 showed a reduction in amplitudes in response to all stimuli tested. 

Medium amendment with 0.25% sorbose caused reduced amplitudes in response 
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to high external Ca 2t These results suggest that Ca 2 -signalling is abnormal in 

both FK506-treated and, to a lesser extent, sorbose-treated wild-type N. crassa 

colonies. Ca2+signatures  in wild-type colonies given a 10 min pretreatment with 

248 nM FK506 or 250 nM CsA, however, showed no observable differences in 

Ca2+ signatures  compared to untreated controls. The effect of calcineurin on 

Ca2+ signatures  is therefore a result of long-term exposure and could be indirect. 

These results suggest that calcineurin does not play an important role in the 

generation or kinetics of [Ca 2+], transients in N. crassa in response to the stimuli 

tested. Furthermore, it is unlikely that the SPRAY protein influences Ca 2 -

signalling through the regulation of calcineurin activity as short-term exposure 

of wild-type colonies to high concentrations of FK506 and CsA did not result in 

Ca2+ signatures  similar to spray, while long-term exposure to FK506 had a much 

less potent effect on Ca 2 -signa1ling than the spray mutation. 

Treatment of wild-type colonies with CPA caused a massive increase in resting 

[Ca 2+],  concentrations and also significantly increased the FWHM of Ca 2+_  

signatures in response to all stimuli tested. These results indicate that CPA 

inhibits Ca2+ATPases  that fill internal Ca 2+  stores in N. crass a, as it does in 

animal and plant cells (Seidler et al., 1989; Okorokov et al., 1997; Liang and 

Sze, 1998). CPA had previously been shown to radically reduce N. crassa hyphal 

extension within two minutes upon addition to liquid cultures at concentrations of 

10 to 100 tM and to cause multiple subapical branching (Silverman- G avrila and 

Lew, 2001). However, until now its effect on Ca 2+-signatures in N. crassa had not 

been analysed, although it has been found to increase [Ca 2+],  concentrations in 

A. awamori (Kozlova-Zwinderman, 2002; Nelson et al., 2003). These experiments 

with CPA clearly illustrate the probable role of Ca 2 -ATPases in: (a) maintaining 

low resting [Ca 2+]c  concentrations and (b) removing Ca 2+  from the cytoplasm 

after [Ca 2+], concentration has increased. The results also quantitatively show the 

specific changes in the Ca 2 -signature that results from Ca 2 -ATPase inhibition 

on [Ca 2+],  transients caused by the stimuli tested. Interestingly, although CPA 
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treated N. crassa cultures did show increased resting [Ca 2+] c  concentrations and 

slower recovery from [Ca2+] c  transients, CPA pretreated colonies were able to 

recover their (elevated) resting [Ca 2+] c  concentrations, after a stimulus-induced 

[Ca. 2+],  transient, during the 600 s measurement time. This indicates that 

additional mechanisms other than the Ca 2 LATPase(s) inhibited by CPA are able 

to remove Ca 2+  from the cytoplasm. 

The results shown in this chapter raise some questions regarding the effects of 

2-APB in N. crassa. 2-APB is known to inhibit 1P3-induced Ca 2+  release from 

internal Ca 2+  stores in animal cells (Maruyama et al., 1997), and concentrations 

of 10 to 50 tM 2-APB have been shown to almost completely inhibit N. crassa 

hyphal extension in liquid medium within two minutes after addition, and to 

cause hyphal widening and apical hyperbranching (Silverman-Gavrila and Lew, 

2001). More recently, the presence of two 1P 3-activated CPCs was demonstrated 

in N. crassa membranes under voltage clamp conditions using the bilayer lipid 

membrane (BLM) technique (Silverman-Gavrila and Lew, 2002). The activity of 

these channels was inhibited by 25 jtM 2-APB and this effect was correlated 

with the effect of 2-APB on hyphal growth and Ca 2+  gradients (2-APB was 

found to dissipate the tip high Ca 2+  gradient observed with chlortetracycline 

[CTC] and to increase Ca 2+  fluorescence behind the tip). The effect of 25 

M 2-APB on N. crassa resting [Ca 2+]c concentrations and Ca 2+-signatures in 

response to external stimuli observed in this chapter does not indicate that 2-APB 

inhibits 1P 3-activated CPCs. Conversely, 2-APB has an agonistic effect on [Ca 2+1'  

concentration, resulting in Ca 2+  measurements similar to those from experiments 

using CPA (e.g. increased resting [Ca2+] c  concentrations and slower recovery 

from [Ca. 2+],  transients). These results are more in line with the idea that 2-APB 

prevents Ca 2+  from being removed from the cytosol, rather than preventing it 

from being released into the cytosol. 

The Ca2+signalling  machinery of N. crassa has a major difference to that 

of A. awamori. Caffeine causes the release of Ca 2+  from internal Ca 2+  stores in 
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diverse organisms (Komori et al., 1995; Bauer et al., 1999; Arora and Ohian, 1997) 

and 5 mM caffeine was found to have a profound effect on both hyphal growth 

and [Ca2+] c  transients in A. awamori (Nelson et al., 2003; Kozlova-Zwinderman, 

2002). Experiments in N. crassa, however, have shown that 1 mM caffeine had no 

effect on hyphal extension rate or morphology (Silverman-Gavrila and Lew, 2001). 

My data adds to these observations by showing that caffeine has almost no effect 

on [Ca2+] c  in N. crassa. Observable effects were only attained at concentrations 

of 25 mM caffeine (a near saturated caffeine solution) and these were still very 

minor compared to results using 6 mM caffeine with A. awamori (Nelson et al., 

2003), which results in a 70% increase in [Ca 2+] c  concentration over the control 

as opposed to a 10% increase observed for N. crassa with 25 mM caffeine. These 

results demonstrate the danger of extrapolating observations across species. 

Examination of W+-signatures in cot-1 colonies at permissive and restrictive 

temperatures shows a correlation between induction of the mutant phenotype, 

and altered Ca 2 -signa1ling. Co-imunoprecipitation experiments by Gorovits 

et al. (1999) suggested a physical interaction between COT1 kinase and the 

catalytic subunit of calcineurin (Gorovits et al., 1999). However based on the 

results shown in this chapter using calcineurin inhibitors, the changes in Ca 2+_  

signatures observed in cot-1 are unlikely to be mediated via calcineurin. The 

mechanism by which impaired COT1 function alters the Ca 2 Lsignature remains 

to be determined. 

Resting [Ca 2+],  concentrations were measured in two different hyperbranching 

mutants of N. crassa and in wild-type colonies exposed to two different branch-

inducing treatments (a total of four different means of inducing hyperbranching). 

Resting [Ca 2+],  concentrations were only higher than the untreated wild-type 

controls in one of the four cases (e.g. long-term treatment with FK506) despite 

the large differences in hyphal extension rate and branching frequency observed in 

every case. FK506 inhibits calcineurin activity and therefore affects an important 

part of the fungal Ca 2 -signalling machinery. It could be that the small increase 
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resting [Ca2+] c  observed was an attempt, by the fungus, to overcome the reduction 

in calcineurin activity resulting from the FK506 treatment. If tip growth or 

hyphal branching in N. crassa was positively regulated by [Ca2 ] signalling, it is 

unlikely that all the other methods of reducing hyphal extension rate and causing 

hyperbranching would have failed to increase resting [Ca 2+],  concentrations. In 

addition to this it was shown that no change in resting [C2+] c  concentrations 

accompanied either the cessation of hyphal elongation and the induction of 

hyperbranching or the return to normal hyphal elongation and branching in cot-

1. Together these results suggest that one branch induction event in N. crassa 

is not the result of one [Ca 2+] c  transient, because if this were true increasing 

branching frequency would necessitate an increase in the frequency of these 

[Ca 2+]c  transients, which would result in a higher resting [Ca 2+] c  concentration. 

In fact, slightly lower [Ca 2+]c concentrations were observed in both spray colonies 

and in cot-1 colonies at the restrictive (but not the permissive) temperature. The 

negative regulation of hyphal branch induction by [Ca 2 ] transients is unlikely 

(but cannot be ruled out by these data), as this would require the presence of 

[Ca 2+],  transients to prevent branch induction. The result would be a lower resting 

[Ca 2+],  concentration - observed in spray and cot-1 at the restrictive temperature, 

but not in sorbose or FK506 treated colonies. Finally, these data cannot rule out 

the possibility that information encoded in hypothetical branch-inducing [Ca 2+],  

transients, rather than the frequency or magnitude of the transients controls the 

frequency of branch induction. 

4.4 Summary 

• Aequorin luminescence in transformed N. crassa, and in protein extracted 

from transformed N. crassa, is reduced with increased ambient temperature. 

However once converted into Ca2+  concentrations, data gathered at different 

temperatures can be compared. 
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4.4 Summary 

• A computer program was written that enabled large amounts of data 

from the luminometer to be rapidly and accurately converted into C a2+ 

concentrations and performed a range of quantitative analyses on the 

converted data. 

• Unique, reproducible and characteristic Ca2+signatures  resulted from stim- 

ulation of N. crassa colonies under a range of environmental conditions. 

The Ca2+signature  provided an indicator of what components of the 

Ca2+ signalling  machinery were affected by different environmental stimuli, 

mutations or pharmacological treatments. 

• The SPRAY is unlikely to influence Ca 2 -signalling through calcineurin. 

• CPA inhibits Ca2 -ATPases in N. crassa as in other fungi, plants and 

animals. 

• N. crassa does not possess caffeine-sensitive Ca 2+  stores with similar 

properties to plants, animals and A. awamori. 

• 2-APB has an unexpected agonistic effect on [Ca 2+], signalling in N. crass a. 

• Increased [Ca 2+],  concentration does not accompany hyperbranching in N. 

crass a. 



Chapter 5 

Characterisation of Neurospora 

Hyperbranching Mutants 

5.1 Introduction 

Many papers have been published over the past few years that cover the topics 

of hyperbranching or increased branching frequency in N. crassa (Sone and 

Griffiths, 1999; Bok et al., 2001; Watters et al., 2000; Propheta et al., 2001; 

Lauter et al., 1998; Bowman et al., 2000; Prokisch et al., 1997). Indeed, N. 

crassa mutants are often named on the basis of their morphological phenotypes. 

Some examples are: cot-1 through to cot-5 (cot referring to their 'colonial 

temperature sensitive' phenotype), frost, spray and snowflake (Perkins et al., 

1982). Despite the diversity of branching mutants and their equally diverse 

genetic causes, it is rare that their phenotypic diversity is appreciated. Changes 

in branching frequency and morphology are mostly referred to in general terms 

such as 'hyperbranching' or 'colonial morphology'. In some cases the names of 

mutants imply major similarities. For example, classical genetics has mapped all 

the cot genes to different chromosomal locations and in the case of cot-1, cot-3 

and cot-5 sequencing of the mutant genes have shown them to be completely 

unrelated (Yarden et al., 1992; Propheta et al., 2001; Resheat-Eini et al., 2003). 

109 
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Until now, papers discussing hyperbranching mutants in N. crassa have focused 

primarily on aspects other than the phenotypes of the strains examined. Advances 

in microscopy and the availability of specific vital dyes and reporter genes now 

enable examination of these phenotypes at a resolution that was not previously 

possible. 

The evidence for the regulation of hyphal branching by Ca 2  was outlined in 

Section 1.5 and the relationship between [Ca 2+]C, tip growth and hyphal branching 

in N. crassa was investigated experimentally in Chapter 4. Although a large 

number of N. crassa hyperbranching mutants have been isolated many have not 

yet been genetically characterised. 

The aims of the work carried out in this chapter were: (1) to highlight some 

of the subtle phenotypic differences between several hyperbranching strains of N. 

crassa (described in Table 1.1) and (2) to determine whether the cot-2 and cot-4 

mutants have mutations in Ca 2+-signalling related genes. 

5.2 Results 

5.2.1 Phenotypic characterisation of hyperbranching mu-

tants 

5.2.1.1 Qualitative characterisation of hyperbranching mutants 

Confocal and light microscopy were used to characterise wild-type and mutant 

strains of N. crassa. In general, wild-type hyphae had a consistent width, a 

uniform distance between branches (which were mostly of a lateral nature), and 

branch angles of 70° relative to the main hyphae (Fig. 5.1 a and b). The wild-

type colony periphery was quite uniform. The mature regions of the colony, 

although still uniform, showed different characteristics including adventitious 

hyphae and hyphal fusion, which were not observed in the colony periphery (Fig. 
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Figure 5.1; Morphology of wild-type [(a) and (b)] and hyperbranching [(c) and (d) spray, (e), (f) 
and (g) frost] strains of N. crassa grown on solid VgS at 34°C. Fungi were stained with FM4-64 and 
imaged using a confocal microscope. Bars are 50 pm. 
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5.2) or in any part of the colonies of the hyperbranching strains (except cot-1 at 

the permissive temperature). 

Figure 5.2: A mature region of wild-type mycelia grown at 34°C showing main and adventitious 
hyphae. Bar = 50 pM. 

The hyphae of spray (Fig. 5.1 c and d), frost (Fig. 5.1 e, f and g), pvnl, pvn2, 

cot-i at the restrictive temperature (Fig. 5.3 b), cot-4 (Fig. 5.3 h and i) and 

cot-5 (Fig. 5.3 j and k) (at both permissive and restrictive temperatures) were 

small, thin and uneven in width relative to the wild-type. Both spray and frost 

showed purely dichotomous branching, a form of branching almost non-existent 

in the wild-type, cot-5 showed a mixture of dichotomous and lateral branching, 

whereas pvni showed mostly lateral branching but at a very high frequency with 

many small (-i  25 pm) aborted branches. The phenotype of pvn2 was comparable 

to pvni but less extreme (as indicated by the quantitative data in Figs. 5,5 to 

5.8). Aborted branches were also seen in spray and frost, however unlike the pvn 

mutants, these were normally no longer than the width of the hyphae. Branch 

angles in all hyperbranching strains except the cot strains were similar to the 

wild-type. Of the cot strains cot-1 (at the restrictive temperature only), cot-3 

and cot-is (at both temperatures) had branch angles of near 900  (cot-2 and cot-

5 had wild-type like branch angles of 70°). At the restrictive temperature 

cot-i and cot-2 showed swollen hyphae but cot-5 had swollen hyphac at both 
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Figure 5.3: Morphology of wild-type and colonial temperature-sensitive strains of N. crassa at 

permissive (24°C) and restrictive (37°C) temperatures. Fungi were stained with FM4-64 and imaged 
using a confocal microscope: (a) cot-1 grown at 24°C; (b) cot-1, 37°C; (c) wild-type, 37°C; (d) 

cot-2, 24°C; (e) cot-2, 37°C; (f) cot-3, 24°C; (g) cot-3, 37°C; (h) cot-4, 24°C; (I) cot-4, 37°C; (j) 
cot-5, 24°C; (k) cot-5, 37°C. Bars are 50 urn. 
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temperatures. The hyphae of cot-3 had a tendency to curl and this tendency was 

exaggerated to the extreme at the restrictive temperature. Finally, while most of 

the strains examined had an overall growth pattern similar (but proportionately 

more branched) to the wild-type (e.g. an even density of hyphae increasing 

towards the more mature regions of the colony), frost and to a lesser extent cot-5 

(at both temperatures) grew as a very dense mat of hyphae, from which individual 

hyphae would escape unbranched to start a 'new' profusely hyperbranched phase. 

Over time the main colony caught up with and enveloped these subcolonies. 

The distribution of nuclei in wild-type, cot-1 and spray was investigated in 

ethanol fixed cells using propidium iodide. Wild-type, cot-1 (Fig. 5.4 a) and 

spray were found to have an even distribution of nuclei within their hyphae at 

24°C (although nuclei were not present at the very tips of the hyphae). At 37°C 

(the restrictive temperature for cot-1) the distribution of nuclei in wild-type and 

spray were unaffected. However, in cot-1 the nuclei were found to be entirely 

absent from the middle of the hyphae. Figure 5.4 b and d show the top and 

bottom optical sections of a cot-1 hypha at restrictive temperature. Fig. 5.4 c 

shows the middle section. This distribution of nuclei can not be easily observed 

using conventional widefleld fluorescence microscopy because of its lack of optical 

sectioning capability. 

5.2.1.2 Quantitative characterisation of hyperbranching mutants 

Detailed quantitative characterisation was done on wild-type, cot-1, frost, spray, 

pvni and pvn2 strains of N. crassa. The methods used are described in Section 

2.6.2 and are based on techniques developed by Trinci and others in the 1970's 

(Ttinci, 1973a,b; Trinci and Collinge, 1973; Trinci, 1974), however here the fungi 

were grown between two sheets of cellophane to force 2-dimensional growth. 

Under these conditions wild-type and cot-1 had almost identical hyphal extension 

rates when grown at 24°C (2.02 ± 0.25 and 2.05 ± 0.19 m h', respectively [mean 

± S.D. n=10]). At the restrictive temperature, however, cot-1 had an hyphal 



CHAPTER 5. Characterisation of Neurospora Hyperbranching Mutants 115 

Figure 5.4: Nuclear morphology of cot-1 at permissive (24C) (a) and restrictive (37 C C) (b), (c) 
and (d) temperatures. Images (b), (c) and (d) are the top, middle and bottom sections, respectively, 
of a series of optical sections through the same hyphae. Fungi were fixed in ethanol, stained with 
propidium iodide and imaged using a confocal microscope. Bars are 50 pm. 
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extension rate of just 0.13 ± 0.03 mm h compared to the wild-type hyphal 

extension rate of 3.18 ± 0.28 mm h (see Fig. 5.5). The other hyperbranching 
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Figure 5.5: Hyphal extension rate of wild-type plus several hyperbranching strains of N. crassa on 
solid medium between two sheets of cellophane. Lines are means of 10 replicates ± S.D. (except 
frost where n=8). 

strains examined all had significantly reduced hyphal extension rates compared to 

those of the wild-type (see Fig. 5.5). The hyphal width of wild-type grown at 24 

and 34°C was not significantly different to cot-1 grown at 24°C (16.6 ± 3.2 and 

16.0 ± 3.2 versus 13.8 ± 2.4, respectively [mean ± S.D. n=dOO]) (see Fig. 5.6). 

When grown at the restrictive temperature, however, cot-1 showed very narrow 

hyphae compared to the wild-type (7.8 ± 2.0 vs 16.0 ± 3.2, respectively [mean ± 

S.D. n=100]). The other hyperbranching strains also had narrow hyphae, similar 

in width to cot-1 at the restrictive temperature. The distance between septa in 

cot-i grown at the permissive temperature was similar (81.3 ± 25 [mean ± S.D. 

n=100]) to the wild-type grown at both 24°C (105 ± 41 pm [mean ± S.D. n=100]) 

and 34 °C (89.2 ± 33 pm [mean ± S.D. n=100}) (see Fig. 5.7). At the restrictive 

temperature, however, the distance between septa in cot-1 was much smaller (24.1 

0.5 

0 

± 5.6 vs the wild-type value of 89.2 ± 33 pm [mean ± S.D. ri=100]). The distance 
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Figure 5.6: Hyphal width of wild-type plus several hyperbranching strains of N. crassa on solid 

medium between two sheets of cellophane. Lines are means of 100 replicates ± S.D. 
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between septa of the other hyperbranching strains varied quite widely, but were 

all less than the wild-type. There was no correlation between hyphal extension 

rate and distance between septa in the the strains analysed (Figs. 5.7 and 5.5). 

The hyphal growth unit (HGU) was largest for the non-hyperbranching strains 

(wild-type and cot-1 at the permissive temperature). All the hyperbranching 

strains had similar sized hyphal growth units and all were 80% smaller than 

the wild-type (see Fig. 5.8). 
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Figure 5.8: Hyphal growth unit of wild-type plus several hyperbranching strains of N. crassa on 
solid medium between two sheets of cellophane. Lines are means of 25 replicates ± S.D. 

The hyphal extension rates of the N. crassa colonial temperature sensitive 

mutants (cot-1, cot-2, cot-3, cot-4 and cot-5) were measured on standard solid 

VgS medium at permissive and restrictive temperatures (see Fig. 5.9). All the 

cot mutants showed reduced hyphal extension rates at restrictive vs permissive 

temperatures. However only cot-1 and cot-3 showed hyphal extension rates close 

to that of the wild-type at permissive temperatures. 
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Figure 5.9: Hyphal extension rate of wild-type plus the colonial temperature sensitive N. crassa 
mutants of N. crassa on solid medium. Lines are means of 5 replicates ± S.D. 

5.3 Genotypic Characterisation of cot-2 and 

cot-4 

Apart from cot-2 and cot-j, all the mutants described in Section 5.2.1 have 

mutations in single cloned genes. Classical genetics has shown that both cot-

2 and cot-4  have mutations in single, but different, genes in linkage group V 

(Perkins et al., 1982). Until now, however, these genes have remained unknown. 

In order to determine whether the cot-2 or cot-4 strains had mutations in genes 

involved in Ca2+signalling  I attempted to clone these genes by complementation. 

Complementation was carried out as previously described by Propheta et al. 

(2001) (also see Section 2.4). 

The Orbach/Sachs pMOcosX library cosmids G23:G5 and X15:E10 were found 

to complement cot-2 and cot-4, respectively. Mutants transformed with their 

respective cosmids gave rise to hygromycin-resistant colonies that displayed wild-

type phenotypes at permissive and restrictive temperatures and were therefore 

regarded as cot-2+ and cot4+. 
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T3 and T7 primers were used to sequence each end of the genomic DNA in both 

cosmids. The resulting sequences were compared to the entire N. crassa genome 

sequence (http://www-genome.wi.mit.edu/annotation/fungi/neurospora)  using 

the BLASTN algorithm. Four 100% matches, one for each sequence submitted, 

were obtained thus pinpointing the beginning an end of each cosmid's genomic 

DNA insertion to a location in the N. crassa genome sequence. This information 

was used to predict' the remaining sequence in each cosmid. The T3 and T7 ends 

of Cosmid G23:G5 matched N. crassa contig 3.219 bp 57473-57981 and bp 93193-

93648, respectively. The DNA complementary to cot-2 is therefore likely to reside 

within the 36175 bp fragment in contig 3.219 bp 57473-93648; the T3 and T7 ends 

of cosmid X15:E10 matched contig 3.203 bp 27026-27637 and bp 71493-72195, re-

spectively. The DNA complementary to cot-4 is therefore likely to reside within 

the 45169 bp fragment in contig 3.203 bp 27026-72195. DNA sequences corre-

sponding to these regions were retrieved from the N. crassa genome database 

and blasted against the the GenBank, EMBL, DDBJ and PDB databases us-

ing NCBI's BLAST facility (http://www.ncbi.nlm.nih.gov/BLAST)  in order to 

determine which regions of these cosmids were homologues to known genes. Fur-

thermore, the hypothetical proteins corresponding to these regions were obtained 

from the N. crassa genome database and examined. 

The DNA for G23:G5 matched hypothetical proteins NCU04189.1 to 

NCU04200.1. Amongst these were no proteins related to Ca2Lsignalling  on the 

bases of sequence homology to other known proteins. 

The DNA thought to be contained in cosmid X15:E10 matched hypothet-

ical proteins NCU03794.1 to NCU03810.1. Of the proteins that could be as-

signed a preliminary function based on homology to other known proteins one, 

NCU03804.1, was a E=0 hit against the N.crassa calmodulin-dependent protein 

phosphatase mRNA, catalytic subunit of calcineurin (Higuchi et al.). Due to 

'The method used to make the pMOcosX library (Orbach, 1994) does not preclude a number 
of unrelated fragments being ligated into the same cosmid. However, the possibility is not high. 
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the presence of a Ca2+signa11ing  related gene in this cosmid, and the absence 

of such a gene in the other, it was decided to focus further efforts on the cot-4 

complementary cosmid X15:E10. 

Separate digests of X15:E10 were made using several restriction enzymes. Part 

of each digest was run on an agarose gel (Fig. 5.10) and part was mixed with a 

plasmid bearing a hygromycin resistance cassette (pAZ6) and used to co-transform 

cot-4 protoplasts. Based on complementation resulting from transformation with 

>. 
14 kb 
6.7 kb 
5.0 kb 

3.5 kb 

1.6 kb 

Figure 5.10: Agarose gel showing various digests of the X15:E1O cosmid. 

cosmid digests it was determined that BamHI, ApaI, XbaI, NdeI and Sall did 

not cut within the complementary gene contained cosmid X15:E10. Further 

experiments revealed that a X15:E10/ApaI band of 8 kb was sufficient to 

complement cot-4. This band was ligated into the Bluescript cloning vector 

(GenBank X52331) and sequenced using M13-20 and SK primers. The resulting 

sequence data was blasted against the N. crass a genome database and matched 

contig 3.203 bp 60907-61809 and 53099-53751, respectively, giving an overall 

probable sequence of 53099-61809, a total of 8710 bp, and in good agreement with 

the 8 kb fragment ligated into Bluescript. This 8.7 kb complementary fragment 

was found to contain three hypothetical N. crassa open reading frames (ORFs): 

NC1J03803.1, NCU03804.1 and NCU03805.1. Based on restriction maps of these 

ORFs and data from transformation with various cosmid digests it appeared 

likely that the DNA encoding NCU03804.1 was in fact the cot-4 gene. This 
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was confirmed by successful complementation using a BamHI/ApaI generated 4.2 

kb band cut from the Bluescript cloning vector containing my 8.7 kb fragment. 

This band contained only N. crassa contig 3.203 bp 55355-59536. The only 

hypothetical ORF in this region of DNA was NCU03804.1. 

Genomic DNA was extracted from cot-4 and primers were designed (1L: 5'-

CAG CTT TCG AGC AGA ACT CG-3'; 1R: 5'-CCA AGA AAT GAC AAG CAG CA-3'; 2L: 

5'-ACC CCC TCA CTT TTA TGC AG-3'; and 2R: 5'-TTG CCC ACC TAT TCC ATC TT-

3') in order to amplify the mutant gene plus flanking regions (see Fig. 5.11). PCR 

I 	 ;: 	 _ 
IL' 	 ss 	 0II1T bp 

cot-4/cna- 1 

Figure 5.11: N. crassa contig 3.203 bp 55100-59300 with the hypothetical ORF NCU03804.1 and 

the cot-41cna-1 proteins marked. Primers used in PCR reactions and potential mutations in the 
cot-4 gene are also indicated. Figure is to scale except for length of primer arrows, which start in 
correct location but are longer than in reality. 

products of 2315 and 1905 bp were obtained using primers 1L plus 1R and 2L 

plus 2R, respectively. Both fragments obtained were sent for direct sequencing 

with their respective primers. The resulting sequences covered the entire 4081 bp 

region. The N. crassa genomic DNA sequence for that region (contig 3.203 bp 

55176-59257) and the published sequence for cna-1 mRNA (GenBank accession 

number M73032 (Higuchi et al)) were in good agreement. Three introns were 

found in the genomic DNA sequence. Intron I was from 1203-1365; intron II was 

from 1950-2025 and intron III was from 2940-3115. The coding sequence was from 
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1157-3121. A comparison of the published sequence data with my own sequence 

data revealed a number of potential mutations. Two more primers were therefore 

designed (iRcont: 5'-AGC TFG GTA CCC TCC CTG AT-3'; and 2L-2R: 5'-CCT TGC 

TAT CGG TCG TCT GT-3') in order to resequence some ambiguous regions (see Fig. 

5.11). The final differences observed between my sequence data, the N. crassa 

genome sequence and the published sequence for the wild-type cna-1 mRNA are 

recorded in (Table 5.1). 

Table 5.1: Potential mutations in cot-4 (cna-1) and their effects on the translated amino acid 

sequence. 

Location* Mutation Effect on amino 
acid sequence  

Comments 

620 G to C n/a 537 bp upstream of ATG 
663 G to C n/a 494 bp upstream of ATG 
1302 T to C n/a in intron I 
1452 T to G L to W (TGG) in coding region 
2364 T to C no change of codon in coding region 
2373 C to T no change of codon in coding region 
2787 T to C no change of codori in coding region 
3172 G to A n/a 54 bp downstream of TAA 
3286 G to A n/a 168 bp downstream of TAA 

* Location 0 corresponds to N. crassa contig 3.203 bp 55100. 

To test the effect of the cot-4 mutation on the sensitivity of cot-4 colonies to 

calcineurill inhibitors, cot-4 colonies were grown at the permissive temperature on 

FK506 and cyclosporin A amended solid VgS medium. cot-4 was hypersensitive 

to both FK506 and cyclosporin A, relative to the wild-type, but not to hygromycin 

B, a general protein synthesis inhibitor (see Fig. 5.1). 

5.4 Discussion 

In this chapter the phenotypes of ten strains of N. crassa (the wild-type and 

9 hyperbranching mutants) were compared. General similarities between the 

hyperbranching strains included significantly reduced hyphal extension rates, 
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data revealed a number of potential mutations. TWO more primers were therefore 

designed (1R.cont: 5-AGC flG GTA CCC TCC CTG AT-3': and 2L-2R: 5'-CCT TGC 

TAT CGG ICC TCT GT-3') in order to resequence some ambiguous regions (see Fig. 

5.11). The final differences Ol)serV('(l between iny Se(IU('ilC(' data., the N. crassa 

genome sequence and the published sequence for the wild-type ma-1 mRNA are 
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To test the effect of the cot-4 niutation on the sensitivity of cot -4 colonies to 

calcineuriui inhibitors, cot-4 colonies were grown at the permissive temperature on 

FK506 and cyclosporin A amended solid VgS medium. cot-4 was hypersensitive 

to both FK506 and cyclosporin A, relative to the wild-type, but not to hygromny('ill 

B, a general protein synthesis inhibitor (see Fig. 5.1). 

5.4 Discussion 

In this chapter the phenotypes of ten strains of N. ciassa (the wild-type and 

9 hyperbranching mutants) were compared. General similarities between the 

hyperliranching strains included significantly reduced hyphal extension rates, 
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Figure 5.12: The effect of two calcineurin inhibitors, FK506 and cyclosporin A, on the hyphal 

extension rate of wild-type and cot-4 colonies grown on solid medium at 24°C. Hygromycin B (hyg), 

a general protein synthesis inhibitor, was used as a control. Boxes are means + S.D. of 6 replicates. 

narrower hyphac with less distance between septa and reduced hypital growth 

unit (e.g. niore branches per unit length of hyphae). Of the quantitative 

i)aratileters iiieasured, distance between septa and hyplial extension rate varied 

the most. Despite these general quantitative similarities the actual phenotypes of 

Hie different iiiutants varied considerably. This was ture on a gross IflOrJ)liOlOgiCal 

level (e.g. the curled hv1)hae of cot-3, the escaping liyphae and satellite colonies 

of frost, the aborted branches of pvni and the swollen hyphae of cot-1 at the 

restrictive temperature) and at a sul )cellular level (e.g. t lic different distribution 

of nuclei in cot-i at t lie restrictive teniperat tire compared to spray and wild-type). 

(..)ne interesting similarity of all the hyperbranchiug strains examined, however, 

was an absence of adventitious hyphac in the mature regions of the colonies. The 

reason for this is unknown. 

The colonial temperature sensitive (cot) mutants of N. crassa were found to 

have very different hyplial extension rates and morphologies at both permissive 

and restrictive temperatures. The only cot mutant to show wild-type like 
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morphology and hyphal extension rate at the permissive temperature was cot-

1. All the other cot mutants had significantly reduced hyphal extension rates 

at both temperatures, although as their names suggest, their mutant phenotypes 

were less profound at the permissive temperature. 

The phenotypic diversity observed in the strains examined is not surprising 

given the fact that each strain was subject to mutations in a different gene (with 

the exception of pvnl and pvn2, which were both vma-1-linked mutants [see Table 

1 . 1 1). 

Of all the mutants examined, only cot-2 and cot-4  had not been cloned. Com-

plementation of cot-2 and cot-4  was achieved with the Orbach/Sachs pMOcosX 

genomic DNA cosmids G23:G5 and X15:E10, respectively (Orbach, 1994). The 

cot-2 complementary cosmid contained a number of potential genes. However, 

none were thought to be related to Ca2+signalling  and therefore the exact com-

plementary gene was not identified. The gene for which cot-4  is mutant was found 

to be cna-1, the catalytic subunit of calcineurin, a C a2+/calmodu1in dependent 

protein phosphatase (Higuchi et al.). The mutant gene was amplified from cot-4 

genomic DNA by PCR and a number of mutations identified, four of which were in 

the coding region but only one of which resulted in a change of codon (leucine to 

tryptophan). The number of differences between the wild-type DNA sequence (as 

derived from two independent published sources (Higuchi et al.; Galagan et al., 

2003)) and the cot-4  DNA sequence, however, was higher than expected (9 mu-

tations were found in just 4081 bp). It is thought that several of these potential 

mutations were due to errors during the PCR amplification of the native cot-4 

gene, rather than bona fide mutations, and thus require further analysis. 

cot-4 colonies were hypersensitive to the calcineurin inhibitors FK506 and 

cyclosporin A. These results further support the cloning results which indicate 

that the cot-4 mutation is in the catalytic subunit of calcineurin. 
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5.5 Summary 

5.5 Summary 

. Nine genetically-unlinked hyperhranching strains of N. crassa were exam-

med. These strains demonstrated differences in hyphal form, branching 

frequency, hyphal extension rate, hyphal width and distance between septa. 

• The cot-2 strain can be complemented with the Orbach/Sachs pMOcosX 

cosmid G23:G5. Based on the Neurospora genome project, sequence from 

this cosmid matches that found to be on linkage group V, which is in 

agreement with the location of cot-2 based on the genetic map. 

• The cot-4 strain can be complemented with the Orbach/Sachs pMOcosX 

cosmid X15:E1O. Based on the Neurospora genome project, sequence from 

this cosmid matches that found to be on linkage group V, in agreement with 

the location of Cot-4  based on the genetic map. 

• The cot-4 gene was cloned and a mutation in the catalytic subunit of 

calcineurin, a C a2+/calmodulin dependent protein phosphatase, was found 

to be responsible for the cot-4  phenotype. 



Chapter 6 

Genomic Analysis of the 

Ca2 -Signalling Machinery in 

Filamentous Fungi 

6.1 Introduction 

Despite the obvious importance of Ca2+signa11ing  in filamentous fungi, and in 

contrast to the situation in budding yeast, only a handful of Ca 2 -signal1ing genes 

have been cloned or characterised in filamentous fungi to date (see Table 6.1). 

These include genes encoding a Ca 2+-permeablechannel (NCBI #AF393474), 

Ca2 -ATPases (Benito et al., 2000), a Ca 2 /H exchanger (Margolles-Clark et al., 

1999), calcineurin (Higuchi et al.; Kothe and Free, 1998; Juvvadi et al., 2001; 

Rasmussen et al., 1994; Fox et al., 2001) and calmodulin (CaM) (Capelli et al., 

1993; Melnick et al., 1993; Rasmussen et al., 1990). 

Due to recent genome sequencing efforts across the world, the complete 

(or, in some cases, incomplete) genome sequences of several filamentous and 

non-filamentous fungi are now available on the internet (see Table 1.2). The 

availability of such large filamentous fungal genome databases has made it 

127 
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possible, for the first time, to gain detailed insights into the molecular machinery 

of filamentous fungi through genomic analysis. 

The aims of the work carried out in this chapter were: (1) to determine the 

Ca2+-signalling proteins encoded in the genomes of N. crassa, A. fumigatus and 

M. grisea based on an analysis of their entire genomes; (2) to analyse in detail 

the Ca2+permeable  channels, Ca2+-transporters and Ca2+pumps  in N. crassa; 

(3) to compare these Ca 2 -signalling proteins with those in M. grisea and A. 

fumigatus, and with those in S. cerevisiae as a "model" system as a fungus 

with a large amount of associated Ca 2+-signallingliterature; and (4) to provide a 

comprehensive web-based database resource on all Ca2+signalling  proteins in N. 

crassa, A. fumigatus, M. grisea and S. cerevisiae. 

6.2 Results 

6.2.1 Data storage and access 

A database with a web interface was made' and used as a repository for 

detailed information regarding all the proteins identified in this chapter. This 

website should be used to supplement all the information presented below. The 

advantages of this approach for data storage and access are the provision of: 

(1) a dynamic and convenient interface for the public to access (and potentially 

contribute to) these data; (2) numerous ways for the user to filter the data to view 

or search for what one wants; (3) access to sequence data for all the proteins and 

genes described in the database; (4) hyperlinks to other sources of information 

specific to the data within the database (e.g. automatic searches for conserved 

domains within a protein and other functions); (5) the flexibility to add unlimited 

additional functions in the future. A local blast facility was also set up (software 

1http://fungalcell.org/FDF/  
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provided courtesy of NCBI 2  to enable the sequence data deposited in my database 

to be searched by the public using the NCBI blast software package 3. 

6.2.2 Ca 2+-signallingproteins previously identified in fila-

mentous fungi and budding yeast 

A search of the literature and the NCBI Entrez-Protein database revealed a 

number of previously identified filamentous fungal Ca 2 -signalling proteins (Table 

6.1). 

Table 6.1: Ca2 -signalIing proteins previously identified in filamentous fungi 

Protein Class Protein Name Organism Reference(s) 
CCH1 A. nidulans NCBI #AF393474 

permeable 
channel 
Ca2 -ATPase pmrA A. niger Yang et al. (2001a) 
Ca2 -ATPase NCA-1, 	NCA-2, N. crassa Benito et al. (2000) 

NCA-3, 	PMR-1, 
PH-7  

Ca2 /H- CAX N. crassa Margolles-Clark 
exchanger  et al. (1999) 
calmodulin CMD N. crassa Capelli et al. 

(1993); Melnick 
et al. (1993) 

calmodulin CMDA A. nidulans Rasmussen et al. 
(1990) 

calmodulin AAK69619 Fusarium pro- Kwon et al. (2001) 
life ratum  

calcineurin A CNA N. crassa Higuchi et al. 
calcineurin A CNAA A. nidulans Rasmussen et al. 

(1994) 
calcineurin A CNA1 Filobasidiella Odom et al. (1997) 

________________ neoformans  
calcineurin A CNAA A. oryzae Juvvadi et al. 

(2001) 

2http://www.ncbi.nlm.nih.gov/Ftp/  
3http://fungalcell.org/blast/  
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calcineurin A CNA Exophiala der- NCBI #AAL47191 
matitidis  

calcineurin B CNB N. crassa Kothe and Free 
(1998) 

calcineurin B CNB1 Filobasidiella Fox et al. (2001) 
neoformans  

Ca2 /CaM- FCaMK Arthrobotrys Tsai et al. (2002) 
dependent dactyloides 
protein kinase 
Ca2 /CaM CaMK I/TV homolog A. nidulans Joseph and Means 
dependent cmkB (2000) 
protein 	kinase 
B 
Ca2 /CaM CaMKK 	a/b 	ho- A. nidulans Joseph and Means 
dependent molog cmpk (2000) 
protein 	kinase 
C 
Ca2 /CaM CMKA A. nidulans Kornstein et al. 
dependent (1992) 
protein kinase 
Ca/CaM- CAMK-1 N. crassa Yang et al. (2001b) 
dependent 
kinase- 1 
CaM- CgCMK Colletotrichum Kim et al. (1998) 
dependent gloeosporioides 
protein kinase 
Calnexin CLXA A. niger Wang et al. (2003) 
phospholipase NCPLC-1, NCPLC- N. crassa Jung et al. (1997) 
C 2, NCPLC-3 
phospholipase ANPLC1 nidulans Jung et al. (1997) 
C 
phospholipase BCPLC1 fuckeliana Jung et al. (1997) 
C 
phospholipase MPLC1 	 M. grisea 	NCBI #AAC72385 
C 

In all filamentous fungi only one Ca2+permeable  channel, CCH1, has been 

previously identified (NCBI accession #AF393474). Six Ca 2 -ATPases and 

one Ca2+/H+exchanger  comprise the total number of these types of proteins 
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previously described in filamentous fungi. Calcineurin has been identified in five 

species of filamentous fungi, and calmodulin (CaM) in three. Several putative 

isozymes of phospholipase C (PLC) have been identified in N. crassa, A. nidulans, 

M. grisea and Botryotinia fuckeliana, although their actual cellular functions have 

not yet been tested experimentally. 

In budding yeast three Ca2+permeable  channels, four Ca2+ATPases,  one 

Ca2+/H+ exchanger , one  Ca2+/Na+exchanger1  one PLC and several other pro- - - 

teins involved in Ca2+-transport and homeostasis have all been previously iden-

tified (Table 6.2). In contrast to the case with filamentous fungi, all of these 

Table 6.2: Ca 2 -signalling proteins previously identified in budding yeast 

Protein Class Protein Name/Locus Reference(s) 
Ca 2+-permeable Cchlp, Midip, Yvclp Fischer et al. (1997); 
channel Maruoka et al. (2002); 

Palmer et al. (2001) 
Non-specific Pmp3p Navarre and Goffeau (2000) 
cation channel 
Ca2 -ATPase Pmclp, 	Pmrlp, Degand et al. (1999); Park 

Spflp, Neolp et al. (2001); Cronin et al. 
(2002); Catty and Goffeau 
(1996) 

Ca 2+ _ Ccclp Lapinskas et al. (1996) 
transporter  
Ca2 /H- Vcxlp Miseta et al. (1999b) 
exchanger  
Calmodulin Cmdlp Davis et al. (1986) 
calcineurin A Cnalp, Cna2p Cyert et al. (1991) 
calcineurin B Cnblp Cyert and Thorner (1992) 
CaM-dependent Cmklp Cyert (2001) 
protein kinase 
CaM-dependent Cmk2p Cyert (2001) 
protein kinase 
Calnexin Cnelp de Virgilio et al. (1993) 
phospholipase C Plclp Flick and Thorner (1993) 

proteins have been investigated experimentally, and had their cellular functions 

confirmed. 
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The genome size of budding yeast (' 13 Mbp) is 60 to 70% smaller than that of 

N. crassa, M. grisea and A. fumigatns (' 43, 40 and 35 Mbp, respectively). The 

fact that far more Ca2+signalling  proteins have been described in the literature 

and are present in the Entrez-Protein database for budding yeast, than all the 

filamentous fungi put together, is thus highly unlikely to reflect the true ratio of 

Ca2 -signalling proteins present in these groups. To begin to rectify this apparent 

imbalance in knowledge of Ca 2+-signalling related proteins between yeast and 

filamentous fungi, I performed an exhaustive BLAST analysis of three filamentous 

fungal genomes (N. crassa, A. furnigatus and M. grisea) and budding yeast. 

6.2.3 Ca2 -signa11ing proteins present in filamentous fungi 

and budding yeast 

My blast analysis discovered 46, 38, 40 and 40 W+-signalling proteins in N. 

crassa, A. fumigatus, M. grisea and S. cerevisiae, respectively (Tables 6.3 and 

6.4). 

In N. crassa, A. fumigatus and M. grisea 78, 100 and 95% of these proteins, 

respectively, were previously unknown and uninvestigated. In S. cerevisiae 

only 15% were previously unknown and of these 10% had not been previously 

investigated. The number of Ca2+signalling  proteins discovered in N. crassa 

represents almost 0.5% of the total 10,000 proteins thought to be encoded by the 

N. crassa genome (Galagan et al., 2003). Clearly then, genes encoding C a2+ 

signalling proteins are an important component of fungal genomes. 

The proteins discovered were divided into several categories for further 

analysis. These were: (1) Ca2+permeable  channels; (2) Ca2+pumps;  (3)  Ca2+ 

transporters; and (4) other proteins important for Ca 2+  Many of the 

Ca2+-signalling proteins discovered will not be discussed here, however, they are 

all available on the website provided'. Hypothetical proteins were not available 

4http://www.fungalcell.org/FDF/  
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from the A. furnigatus database and have therefore been excluded from the 

detailed protein analysis in the following sections. 

6.2.3.1 Ca2+permeable  channels 

Ca2+permeable  channels are made from several subunits and commonly contain 

pore-forming Shaker-like domains (Kreusch et al., 1998) consisting of 6 transmem-

brane (TM) spans, within which is a putative "pore" region. Ca2+,  CaM- and/or 

cyclic nucleotide-binding domains may also be present, depending on the type of 

channel. Our BLAST analysis revealed 3 Ca2+permeab1e  channels in each of 

the four fungi investigated (Table 6.3). All of these proteins were previously un-

known in filamentous fungi. A phylogenetic tree constructed with the N. crassa, 

M. grisea and S. cerevisiae proteins had 2 branches (Fig. 6.1), and showed that 

the proteins fell into 3 separate groups. In each case the N. crass a and M. grisea 

Figure 6.1: Phylogenetic tree of Ca 2 +permeable channels identified in N. crassa, M. grisea and 
S. cerevisiae. (Neither rigorous calculation of evolutionary distances nor phylogenetic relationship 
can be inferred with confidence from this tree.) 

proteins were more closely related to each other than to the S. cerevisiae protein. 

Group I Ca2Lpermeable  channels included the yeast Cchlp protein. Cchlp 



Table 6.3: Ca 2+permeable channels, -pumps and -transporters in N. crassa, A. fumigatus, M. grisea and S. cerevisiae 

Proteins in -- 	 Homologues in: 
Protein Class N. crassa - A. fumigatus 	 M. grisea 	 S. cerevzszae 

Name Na Name No. Name No. Name No. 

Ca2 -permeabIe NCU02762. 1 4837_44838-51270 M005643.1 Cchip 

channel NCU06703.1 3 4903_95811-98584 3 MG04001.1 3 Midip 3 

NCU07605. 1 4925_476666-479554 MG09828. 1 Yvclp 

Cation-pumps NCA-1 - 4963_51054-55386 MG04550.1, 2.852J8780-19520 Pmrip 

(Ca 2+  unless NCA-2 4897_59083-63769 MG02487.1, MG07971.1 Pmclp 

otherwise NCA-3 4944_55012-59497 MG04890.1 Pmclp 

indicated) PMR1 4801..29807-34346 MG09892.1 Pmrlp 

PH-7 9 4927J25721-129900 9 MG10730.1, 2.1107.34917-37626 12 Ena2p* 5 

NCU04898. 1 4925_401457-406276 2.1792-25841-29738t Spfip 

NCU03818. 1 4899_407390-410352 MG04066. 1 Neoip 

NCU07966. 1 4899_471968-476447 MG05078. 1* Ena2p* 

NCU01437. if 48826919-10658 MG06925. if YOR291W 

ENA- P 4826_4952353702* MG02074. P Ena5p* 

Ca2 -transporters CAX 4932_1025450-1028316 2.175.3011-3697 - Vcxip 

(Ca2 /H 	unless NCU00916. 1 4882.219707-223976 MG01 193.1 Vcxip 

otherwise NCU00795. 1 4882.219707-223976 MG08710. 1 Vcxlp 

indicated) NCU06366.1 4856A4229-47908 MG04159.1 Vcxlp 

NCU07711.1 8 4932J025450-1028316 5 MG04159.1 6 Vcxip 4 

NCU05360. 1 4882587414-592053 MG01381.1 YNL321W 

NCU02826. P 4901-620762-623217 MGO 1638.1 YDL206Wt ,Ecm27p 

NCU08490. P MG08710.1, MG01193.1 YNL321W 

*Na+ATP e;  tundefined cation-ATPase; Ca 2  /Na-exchanger. 
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Table 6.4: Phosphotipase C's and important Ca' and/or CaM binding proteins in N. crassa, A. fumigatus, M. grisea and S. cerevisiae 

Proteins in: Homologues in: 	-- - 

Protein Class N. crassa - . A. fumzgatus 	 M. gmsea 	S. cerevzszae 
Name No. Name No. Name No. Name No. 

Phospholipase C NCU01266.1 4836.319018-323704 MG02444.1 Picip 
NCU06245.1 4 4871_107810-112364 2 MG05332.1 4 PIcip 1 
NCU09655. 1 4806_73778-76479 MG05905. 1 PIcip 
NCU02175.1 4871_107810-112364 MG02682.1 Plclp 

Calmodulin CMD 1 4840243470-246367 1 MG06884.2 1 Cmdlp 1 
Calcineurin (catalytic) CNA-1 1 4938_684630-687160 1 MG07456.2 1 Cnalp, Cmp2p 2 

(regulatory) CNB-1 1 4899..233789-236133 1 MG06933.1 1 Cnblp 1 
Ca2 /CaM NCU02283.1 4861_105606-107947 - MG00925.1 Cniklp, Cmk2p 
dependent NCU09123.1 4829.35272-88063 M009912.1 Cmklp, Cmk2p 
protein kinase NCU06177.1 4903_144856-147683 MG06421.1 Pakip 

NCU09212.1 7 4800_5925-8603 7 MG08547.1 7 Rck2p, Rcklp 10 
NCU00914.1 4942.397345-402284 MG01196.1 Kin4p, Arp8p 
NCU02814. 1 4901-679884-682486 MG01596. 1.1 Dunip, Rad53p 
NCU06347.1 4836.394664-398651 MG06180.1 End3p 

Calnexin NCU09265.1 1 4865.210410-230126 1 MG01607.1 1 Cnelp 1 	1 

:• 
c,1 
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bears sequence similarity to the cr1, catalytic subunit of voltage-gated Ca 2 -

permeable channels and was localised to plasma membrane by Locke et al. 

(2000). The filamentous fungal homologues of Cchlp (N. crassa NCU02762.1, 

A. fumigatus 4837A4838-51270 and M. grisea MG5643.1) were very similar to 

the yeast protein (E=0, E=1e 112  and E=0, respectively). Like the al subunits, 

the fungal proteins contain four repeat units (I to IV) of six TM domains (Fig. 6.2 

a) that tetramerize to form the core of the Ca 2+-channel (a Shaker-like domain). 

Most of the sequence identity between the fungal and mammalian calcium channel 

subunits is present within regions thought to play key roles in defining channel 

specificity (domain P) and voltage dependence (TM domain S4) (Paidhungat and 

Garrett, 1997). All four hydrophobic domains (I, II, III, and IV) contain amino 

acid residues indicative of the Ca2+selective  P segment, and three (II, III, and 

IV) of the four (Fig. 6.2 b) contain a highly conserved glutamate residue that 

is thought to play a critical role in Ca 2  coordination (Paidhungat and Garrett, 

1997). Each of the S4 segments of domains I, II, and III contain repeated motifs 

of a positively charged residue followed by two hydrophobic residues (Fig. 6.2 c). 

Similar segments have been shown to act as voltage sensors in ion channels of 

higher eukaryotes (Paidhungat and Garrett, 1997). The hydrophobic domains (I, 

II, III, and IV) matched the pfam00520 domain, found in Nat-, K-, and Ca 2 -

permeable channels and consists of 6 TM helices in which the last two helices 

flank a loop which determines ion selectivity. 

Group II Ca2 -permeable channels included the yeast Midip protein. Midip 

is a stretch-activated, plasma membrane based, Ca2+permeable  channel. The 

filamentous fungal homologues of Midip (N. crassa NCU06703.1, A. fumigatus 

4903_95811-98584 and M. grisea M004001.1) were quite similar to the yeast 

protein (E=4e 28 , E=3e 36  and E=1e 32 , respectively) although the filamentous 

fungal proteins were larger (NCU06703.1 by 22% and MG04001.1 by 38%). None 

of the Ca2+permeable  channels in this class had overall sequence similarity with 

known plant or animal ion channels. Several features are thought to be important 
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Figure 6.2: Characteristics of S. cerevisiae Cchlp (YGR217W) and its homologues in N. crassa (NCU02762.1) and M. grisea (MG5643.1). (a) A 
schematic diagram of Cchlp in S. cerevis,ae. The four hydrophobic repeats are marked Ito IV. The S4 and P domains of each hydrophobic repeat were 
assigned by analogy with mammalian Ca l  I -permeable channels. The S4 domains of repeats I, Il, and Ill are marked with plus signs to indicate the 
positively charged amino acids. (b) Lower left and right panel: sequence alignment of the predicted P domains of Cchlp [YGR217W (I) to YGR217W 
(IV)] and homologues in N. crassa and M. grisea, with the corresponding P domains (Ml to MIV) of a skeletal muscle Cal I -permeable channel (Tanabe 
et al., 1987). (c) Sequence alignment of the positively charged 54 transmembrane segments of Cchl (Yl, Yll, and YllI), and homologues in N. crassa 
and M. grisea, with the S4 segment of the third hydrophobic repeat (MIII) of a rat brain Cal t.channel (Snutch et al., 1991). Diagram adapted from 
Paidhungat and Garrett (1997). 

I. 
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in Midip function (Maruoka et al., 2002: Tada el al., 2003) (see Fig. 6.3 a). These 

are (a) four hydrophobic segments named Hi to H4; (h) a ca.rboxy-terminal region 

containing three possible functional motifs: and (c) a cysteine-rich region at the 

carboxy end of the protein. The hydrophobic regions of Midip, partially similar 

\ 	 (as) 
/ 	0 50 100 150 200 250 300 350 400 450 500 550 

Cysteine-rich region 
1 Hi 	H2 	 H3 144 	

00  0 00000 0 548 

II 
Putative N-glycosylatlOn site 
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Figure 6.3: Characteristics of S. cerevisiae Midi protein (YNL291C) and its homologues in N. 

crassa (NCU06703.1) and M. grisea (MG04001.1). (a) A schematic diagram and hydropathy profile 

of Midlp (from Tada et al. (2003)). The four hydrophobic regions are marked HI to H4, 16 putative 

N-glycosylation sites (A), and 15 cysteine residues (o). Position numbers of amino acid residues are 

indicated at the top of the figure. (b) Alignment of Midip EF-hand-like motif (residues 408-445) 

with filamentous fungal homologues. (c) Alignment of Midip sheet-turn-sheet structure (residues 

512-526) with filamentous fungal homologues. 

to the TM segments of known ion channels (Mariwka et al.. 2002), were found to 

be partially conserved in the N. crassa and Al. qrtsea honiologues. Hi was quite 

well conserved. However, MG04001. :1 had a 15 residue insertion in the middle of 

this region not found in either the yet or the N. crassa protein. H2 was not well 

conserved between the three fungi. H3 and H4 were both quite well conserved. 

The carboxy-terimilnal region of the protein proceeding H4 has previously been 
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postulated to be a regulatory region for the Mid11) channel (Tida et al., 1994). 

Every cysteme residue within the cysteine-rich region previously defined in Midip 

(Maruoka et al.. 2002) was conserved in all three fungal homologues. This 

region is essential (Tada et al., 2003) and contains a putative casein kinase 2 

pliosphorylation motif which is absent from the filamentous fungal homologues 

examined and was found to be 11011-essential to Mid 1p function (Tada et al.. 2003). 

An EF-hand like structure, also in this region, has been shown to be essential for 

Midip function (Tada et al.. 2003) and was was well conserved between the three 

fungi (see Fig. 6.3 b). There is conflicting data on the importance of the sheet-

turn-sheet motif in Midlp. However, iiiy analysis suggests that it is not important 

in N. Cfl'LSSU and M. gr'isea as it was not conserved between budding yeast and 

filamentous fungi (see Fig. 6.3 c). 

Group III Ca2+_permeable  channels included the yeast Yvclp protein. Yvclp 

is a voltage-dependent Ca activated Ca permeable channel located in the 

budding yeast vacuolar membrane. The filamentous fungal lioinologues of 

Yvclp (N. crassa NCU07605.1 , A. fuinigatus 4925A76666-479554 and M. grisea 

MG09828.1) were very similar to the yeast. protein (E=9e 90 , E=2e94 and 

E=1e 114 , respectively). NCU07605.1 was " 50% larger than MG09828.1 and 

Yvclp. However the first 50% (650 residues) of NCU07605. 1 has no homology to 

known proteins. Yveip, and its filamentous fungal homologues, have significant 

homology to the transient receptor potential (TAP) family of ion channels. 

Hydrophuhicity and domain prediction indicate that Yvclp (Palmer et al., 2001), 

MG09828.1 and the last 50% of NCU07605.1 contain six TM domains (see Fig. 

6.4 a and h). The most significant homology to other TAP channels is found 

in the predicted sixth TM domain (see Fig. 6.4 (i), which forms part of the 

ion conduction pathway and is intimately associated with deactivation gating in 

cation channels (Palmer et al., 2001). All six TM domains were highly conserved 

in the proteins examined, although NCU07605. 1 was missing large parts of TM 

domain 4 and 5 (see Fig. 6.4 c). The C-terminal portion of Yvclp contains a 
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Figure 6.4: Characteristics of S. cerevisiae Yvclp protein (YOR087W) and its homologues in N. crassa (NCU07605.1) and M. grisea (MG09828.1). 

(a) Hydrophilicity plot of the predicted protein encoded by YVC1 from Palmer et at. (2001). Six potential TM domains are marked (1-6). (b) Model 

structure for the protein encoded by the YVC1 gene (Palmer et at., 2001); six TM domains (1-6) and a putative pore region (P) are labelled. (c) 

Alignment between the six predicted fungal TM domains. (d) Alignment between the predicted sixth TM region of NCU07605.1, MG09828.1 and Yvclp 

and the predicted sixth TM regions of other TRPs: Candida TRP, a homologue in C. albicans; mTRP2 and mTRP4, mouse homologues (Vannier et at. 

1999; McKay et al., 2000); OSM9, a homologue in Caenorhabditis elegans (Colbert et at., 1997); dTRP, the Drosophila TRP (Hardie and Minke, 1992). 
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DDDD motif that may be involved in Ca 2  regulation similar to the Ca 2 -binding 

bowl in Ca2 -activated K+-channels (Palmer et al., 2001; Schreiber and Salkoff, 

1997). This motif is absent from MG09828.1. Interestingly, NCU07605.1 has a 

DDDD motif in its N-terminal region. Whether this plays a role in Ca 2 -binding 

is unknown. 

6.2.3.2 Ca 2+-PUMPS 

Ca2+ATPases  hydrolyse ATP to drive the active transport of Ca 2+  across 

biological membranes. They reduce [Ca 2+],  concentrations by pumping Ca2+  into 

internal stores, or across the cell membrane and out of the cell. C a2+ATPases  

fall into the superfamily of P-type (or E1-E2 type) ATPases. Although there are 

large differences in primary structure and low overall similarity within the P-type 

ATPase family, eight conserved regions (A - H) have been identified (Axelsen 

and Palmgren, 1998, 2001). Most Ca 2 -ATPases are either type P2A  or type P2B 

ATPases. Type P 5  ATPases are a recently discovered, but currently biochemically 

uncharacterised, class of ATPases that may be Ca 2+-transporting (Axelsen and 

Palmgren, 2001). Type P2A C a2+..ATPases  are mainly present in the sarcoplasmic 

and endoplasmic reticulum and are similar to animal sarcoplasmic reticulum 

Ca2 -ATPases (SERCA) but in addition include a plant pump apparently present 

in both the vacuolar and plasma membranes (Ferrol and Bennett, 1996). Type P2B 

Ca2+ATPases  are most similar to mammalian plasma membrane C a2+.ATPases  

(PMCA) but this family also includes pumps present in the vacuolar membrane 

(Cunningham and Fink, 1994a; Moniakis et al., 1995; Malmström et al., 1997). It 

is important to note, however, that fungal Ca 2+_  and Na+ATPases  can only be 

distinguished by functional analysis (Benito et al., 2000). The results presented 

below should be interpreted with this in mind. 

My BLAST analysis revealed nine Ca 2+_  or cation-ATPases in N. crass a (four 

of which were novel), nine Ca2+/cationATPases  in A. fumigattis (all novel) 
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and twelve' (all novel) in M. grisea (see Table 6.3). In budding yeast, my 

analysis identified only five Ca2 -/cation-ATPases of which one, YOR291W, was 

of unknown function but had been previously described (Catty et al., 1997). 

Eleven other ATPases have been identified in S. cerevisiae, although none of these 

have been classified as Ca 2 -ATPases (Catty et al., 1997). Five of the N. crassa 

Ca2 -ATPases had been previously discovered (Benito et al., 2000) and found to 

be distributed in all branches of type P 2  ATPases except the branch of animal 

Na/K-ATPases (P 2c) (Benito et al., 2000). NCA1 conserved all the amino 

acids involved in Ca2 -binding in SERCA (sarcoplasmic reticulum Ca 2+)  (see 

Fig. 6.5) and showed a motif of ER retention in the carboxy terminus (KKKDL) 

(Benito et al., 2000). This motif was not present in any of the M. grisea or S. 

cerevisiae P-type ATPases analysed. NCA2 contained a sequence indicative of an 

N-terminal calmodulin-binding autoinhibitory domain (residues 165-182) (Benito 

et al., 2000). The five N. crassa type P2A  and  P2B  ATPases identified by my 

analysis showed very good homology with animal, plant and yeast SERCA and 

PMCA type Ca2 -ATPases (Fig. 6.5). The two M. grzsea type P2A  and three 

P2B ATPases were also well conserved. However two proteins, MG04550.1 and 

MG02074.1, had only 4 TM regions (all other P-type ATPases analysed here had 

between 7 and 10 TM regions) and showed a complete absence of TM 4 and TM 

4-6, respectively. These proteins were also very short, having only 588 and 221 

residues, respectively, while the other P-type ATPases analysed ranged between 

1094 and 2005 amino acids in length. I think that these hypothetical proteins 

may have been predicted incorrectly. 

Also revealed in N. crassa were an additional one type P2, one P 4  and 

two P5  ATPases (see Fig. 6.5). M. grisea showed one type P2D,  one P 4  and 

one P 5  ATPase. The type P2D  ATPases showed close homology to S. porn be 

CTA3, a known Ca2 -ATPase (Chislain et al., 1990). The five novel P 4  and P 5  

'Three of the M. grisea Ca-/cation-ATPases did not correspond to hypothetical proteins 
in the M. grisea database and were therefore not analysed in detail during this study. 
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Figure 6.5: Sequence alignments of potential Ca  f  -ATPases of N. crassa, M. grisea and S. 
cerevisiae in conserved TM segments containing amino acids putatively involved in Ca 21  -binding. 
Examples of Ca  -ATPases from other organisms are: (a) SERCA (type P2.A) sequences were 
D. melanogaster SERCA (NCBI #A36691), H. sapiens SERCACA2 (NCBI #P16615) and A. 
thaliana ECA1 (NCBI #AAF36087) and ECA2 (NCBI #CAA10659); (b) PMCA (type P21) were 
H. sapiens PMCA1 (NCBI #P20020) and PMCA4 (NCBI #P23634), and A. thaliana ACA1 (NJCBI 
#CAA49559) and ACA2 (NCBI #T04721); (c) type P 21)  sequences were S. pombe CTA3 (NCBI 
#P22189); (d) type 5 sequences were (NCBI #At5g23630). Residues involved in coordination of 
Ca  1  in the two Ca 2  -binding sites (Site I and Site II) found in the 2.6 A crystal structure of 
SERCA1a (Toyoshima et al., 2000) are marked with 1 and 2, respectively. The position marked X is 
a residue involved in coordination of both Ca 2-1  ions (Axelsen and Palmgren, 2001). P', indicates 
type unknown. 
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Ca2+ATPases in N. crassa and M. grisea all had homologues in S. cerevisiae. 

Neolp (YIL048W), a S. cerevisiae P4-type ATPase related to the YAL026C 

gene encoding Drs2p, has been provisionally proposed to be a Ca, 2+-transporting 

ATPase (Catty and Goffeau, 1996). However as the TM spans do not conserve 

the residues thought to be involved in C a2+_biiid ing (see Fig. 6.5) and show 

low homology to the same regions of mammalian C a2+_ATPa.ses this proposition 

has been questioned (Catty et al., 1997). It was also suggested that Y0R291W 

was unlikely to be a Ca 2+-transporting ATPase for similar reasons (Catty et al., 

1997). However. YEL031W, also belonging to this unclassified group of type P 5  

ATPases, has recently proved to be an ER.-localised C a2+_ATPase  (Cronin et al., 

2000. 2002). In the light of the discovery of other new P-type Ca 2 -ATPases that 

do not show homology to animal P2A  and P2B C a2+_ATPa.ses (e.g. type P 5 ) the 

true role of Neolp, Y011291W and their N. crassa and M. grisea homologues 

must be determined experimentally. 

6.2.3.3 Ca2+exchangers 

Like P-type ATPases, C a2+ exchangers serve to reduce [Ca 2+] c  concentrations 

and to load Ca 2+  into internal Ca 2+  storage organdies. This is achieved by 

the-exchange of positive ions across membranes. In l)laIltS Ca. 2+ /H+ antiporters 

are the most common form of Ca2+_exchanger  and usually require a. Ca 2+/H+ 

stowiiiometry of at least. three (Blackford et. al., 1990). Several of the eleven 

putative Ca2 -exchangers (CAXs) in A. thaliana (Maser et al.. 2001) have 

been localised to the vacuola.r membrane (Miiser et al.. 2001; Sanders et al., 

2002). In animals Ca2+/Na antiporters are the primary Ca2+_exclnmgers  found. 

Sac.charo7nyces cerevisiae has only one previously identified Ca2+  /fl +_exclIigei. 

(Vexip/Humip) and it is localised in the vacuolar membrane (Pozos et al., 1996; 

Cunningham and Fink, 1996; Miseta et al., 1999b). The A. thaliana Ca2 /H 

antij)ortcr CAM is (and CAM and VCAX1 are probably) regulated at the 

post.transla.t ional level by a mechanism of N-terminal auto-inhibition (Pittman 
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and Hirschi, 2001; Pittman et al., 2002b,a). However, apart from CAX1, very 

little is known about the posttranslational regulation mechanisms of C a2+/H+ 

antiporters from any species. 

My analysis identified six Ca2+/H+exchangers  and two Ca2+/Na+ exchangers  

in N. crassa (see Table 6.3). In A. fumigatas five Ca2+/H+*exchangers  but 

no Ca2+/Na+exchangers  were found and in M. grisea five Ca2+/H+ exchangers  

and one Ca2+/Na+exchanger  was found'. Of all these proteins, only one, N. 

crassa CAX, was previously known (Margolles-Clark et al., 1999). In yeast 

two Ca2+/H+exchangers  (one novel) and two Ca2+/Na+exchangers  (both novel) 

were identified. None of the fungal Ca2+exchangers  identified contained regions 

homologues to the N-terminal regulatory domain found in A. thaliana CAX1 

(Pittman et al., 2002b). All the proteins analysed had between 9 and 14 predicted 

TM domains, in good agreement with known C a2+transpor ters . 

A phylogenetic tree constructed from the proteins identified, along with 

examples of Ca2+/H+  and  Ca2+/Na+exchangers  from other organisms had two 

main branches (see Fig. 6.6). With the exception of NCU08490.1, Ca 2 /H-

exchangers (predicted on the basis of conserved domains and homology to known 

proteins) were found in one branch and Ca2+/Na+exchangers  in the other. 

Although NCU08490.1 was found in the Ca 2+/HLexchanger branch of the tree, 

it was thought to be a Ca 2 /Na-exchanger as it has homology to the ECM27 

Ca2 /Na-exchanger domain (CDD #10401) (see Fig. 6.7). Homology between 

predicted Ca2+/H+exchanger  proteins (see Fig. 6.7) was greater than between 

predicted Ca2+/Na+exchangers  (see Fig. 6.8), and regions of homology between 

all the Ca2+-transporter proteins were lower still. 

'One of the M. grisea Ca/l-P-exchangers did not correspond to a hypothetical protein in 
the M. grisea database and was therefore not analysed in detail during this study. 
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Figure 6.6: Phylogenetic tree of Ca 2 -transporters identified in N. crassa, M. grisea and S. 

cerevisiae. Examples of Ca 2+t ransporte rs  from other organisms are: (a) C a 2+/N a + exchanger  

sequences S. pombe CaCA (NCB #NP593332), H. sapiens NACA1 (NCBI #P32418) and D. 

melanogaster Caix (NCBI #NP..732577); (b) Ca 2 /H-exchanger sequences A. thaliana CAX2 
(NCBI #AAM19859), CAM (NCBI #At3g51860) and CAM (NCBI #AAL66749). (Neither 
rigorous calculation of evolutionary distances nor phylogenetic relationship can be inferred with 

confidence from this tree.) 
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Figure 6.8: Regions of homology within potential Ca  
1 
 /H L'exchangers of N. crassa, M. grisea 

and S. cerevisiae. Examples of Ca  Ltransporters from other organisms are as described in Fig. 66. 

Consensus Ca 2 " /H'I antiporter domain ChaA (CDD #C0G0387) is also shown. 
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6.2.3.4 Other important Ca 2 -signa1ling proteins found 

Many other important Ca2+signalling  proteins were discovered during this 

analysis. Table 6.4 summarises the phospholipase C, calmodulin, calcineurin, 

Ca 2+  and/or calmodulin dependent protein kinase and calnexin proteins found. 

The remaining Ca2+signal1ing  proteins not described here are a diverse range of 

Ca 2+  and/or calmodulin binding proteins that play important roles in transducing 

the Ca2 -signals resulting from the activity of the proteins described in detail in 

this chapter. 

6.2.3.5 Important Ca2 -signa11ing proteins not found 

A surprising difference between Ca2+signa1ling  in the fungi examined as com-

pared with plants and animals was also revealed by this analysis. An important 

aspect of Ca2+signalling  in plant and animal cells involves Ca 2+  release from 

internal stores. This is commonly mediated by the second messengers inositol 

1,4,5 trisphosphate (InsP 3 ) and cADP ribose, sphingolipids, NAADP or by Ca 2 -

induced Ca 2+  release (Bootman et al., 2001). InsP 3  is present within N. crassa 

hyphae (Lakin-Thomas, 1993) and physiological evidence, including intracellular 

membrane associated InsP 3 -activated Ca2+channel  activity, supports a role in 

Ca2 -signalling (Schultz et al., 1990; Cornelius et al., 1989). In spite of this, none 

of the fungi analysed here possessed recognisable InsP 3  receptors. In addition 

none of the following components of Ca 2+  release from plant and animal internal 

stores were found in the fungi analysed: (a) ADP ribosyl cyclase, which synthe-

sises cADP ribose or NAADP; (b) ryanodine receptor proteins, key components of 

Ca2+-release mechanisms in plant and animal cells; (c) sphingosine kinases, which 

catalyse the formation of sphingosine 1-phosphate (Spiegel and Milstien, 2002); 

and (d) SCaMPER homologues, SCaMPER is a sphingolipid-activated protein 

that causes the release of Ca 2+  from the ER of animal cells (Mao et al., 1996). 

These observations raise the question of whether other, perhaps novel, second 
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messenger systems responsible for C a2+_release  from internal stores remain to be 

discovered in fungi. 

6.3 Discussion 

This analysis has identified many of the proteins likely to be necessary for Ca'-

signalling in three important filamentous fungi: N. crassa, A. fumigatus and M. 

grisea (see Fig. 6.9). These proteins include previously unknown C a2+permeable 

channels, Ca 2+  -ATPases, Ca2+ ,/ H+ exchangers , Ca 2+ /Na±..exchangers , phospho-

lipase C proteins and Ca 2+  and/or CaM binding proteins. A web-based resource  

has been made available containing detailed information regarding all of the pro-

teins discovered during this analysis. 

Although the total number of proteins found in the filamentous fungi is similar 

to the number found in budding yeast, this is unlikely to represent reality. Many 

more Ca 2+  and/or CaM binding proteins were found in budding yeast than in the 

filamentous fungi. These proteins are difficult to identify by protein homology 

alone and the greater number found in yeast reflects the greater number reported 

in the literature compared with those reported for the three filamentous fungi, 

rather than the greater number present in their respective genomes. Looking 

at Ca2+permeable  channels, Ca2+pumps  and transporters, PLC's, CaM and 

calcineurin alone, N. crassa, A. fumigatus and M. grisea have 35, 19 and 37% more 

Ca2 -signalling proteins than budding yeast, respectively. These results highlight 

both the potential importance and likely greater complexity of Ca 2 -signalling 

in filamentous fungi. Overall, therefore, the C a2+ signalling  machinery in the 

filamentous fungi was more complex than in budding yeast. Given the greater 

diversity and heterogeneity of environments that filamentous fungi inhabit when 

compared to budding yeast, and also the greater complexity of the organisms 

themselves, this finding is not surprising. 

7http://www.fungalcell.org/FDF/  
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The Ca signalling machinery of the filarnentous fungi had some notable 

similarities and differences. C a 2*permea hle  channel proteins were very similar 

between all three filamentous fungi (and budding yeast). Each fungus had 3 Ca 2+_ 

permeable channels with a direct homologue in each of the other fungi. None 

of the fungi had recognisable InsP 3  receptors, ADP ribosyl cyclase, ryanodine 

receptor proteins, sphingosme kinases or SCaMPER homologues. M. grisea had 

more P-type Ca 21 -ATPa.ses than the other two filamentous fungi but fewer C a.2+_ 

transporters than N. crassa. A. fumigatus also had few Ca2+-transporters than 

N. crassa and fewer PLC's. Overall, N. crassa and M. grlsea had a more complex 

Ca2+_signailing machinery than A. fwnigatns. The biological significance of this 

is unknown. 

The Ca2+_signalling machinery of the filamentous fungi examined had siini-

larities with the Ca 2+_signa.11ing machinery of both plants and animals. Inter-

estingly, in the case of C a2+_tra.nsporters, the filamentous fungi were similar to 

both plants and animals having both Ca2+/H+  and  Ca2+/Na+_exchangers.  An-

imals have primarily Ca2+/Na+_exchangers and plants appear to possess only 

Ca 2+ /H+-exchangers. 

6.4 Summary 

• Many important. Ca 2+_signalhing proteins in N. crassa, A. furnigatns and 

M. qrisea were discovered. The Inaj ority of these were previously unknown 

to filamentous fungi. 

. An interactive web-based a.sed database of fungal C a2+_sigua.Iling proteins was 

made. 

• The Ca signalling machinery was more complex in filainent.ous fungi than 

in budding yeast. 

• None of the fungi examined had recognisable In8P 3  receptors. ADP ribosyl 
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cyclase, ryanodine receptor proteins, sphingosine kinases or SCaMPER 

homologues suggesting that the mechanisms of Ca2+re1ease  from internal 

Ca 2+  stores may be different from that in animal and plant cells. 
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Chapter 7 

Summary and Future Work 

During this study I have developed a method for the quantitative measurement 

of [Ca'] in living N. crassa hyphae. This involved the production of a new 

plasmid, pAZ6, which was shown to produced high levels of aequorin expression 

when transformed into several strains of N. crassa. 

The effect of temperature on aequorin luminescence was found to be signif-

icant. However conversion of aequorin luminescence values into the Ca2+  con-

centrations using the appropriate calibration, normalised this effect. A computer 

program was written that enabled large amounts of data from the luminometer 

to be rapidly and accurately converted into Ca 2+  concentrations. This program 

also performed a number of quantitative analyses on the converted data. The 

measurement of [Ca 2+],  transients and the quantification of Ca 2+  us-

ing the methods developed was shown to be robust, reproducible and applicable 

to both wild-type and mutant strains of N. crassa. Furthermore, it was shown 

that it is possible to dissect the roles of different Ca 2 -signal1ing proteins through 

careful measurement of the Ca2+signature.  These methods were used to provide 

evidence, in contrast to what has been previously reported (Bok et al., 2001), that 

the SPRAY protein is unlikely to influence Ca2 -signalling through calcineurin, 

that CPA inhibits Ca 2 -ATPases in N. crassa as in other fungi (Nelson et al., 

2003), plants (Sievers and Busch, 1992) and animals (Maruyama et al., 1997), 
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that N. crassa does not possess caffeine-sensitive Ca 2+  stores with similar prop-

erties to plants (Arora and Ohlan, 1997), animals (Komori et al., 1995) and A. 

awamori (Nelson et al., 2003), that 2-APB has an unexpected agonistic effect on 

[Ca 2+],  signalling in N. crassa, and that increased [Ca 2+1C  concentration does not 

accompany hyperbranching in N. crassa. 

Studies on animal and plant cells (Berridge et al., 2000; Sanders et al., 2002), 

have established that changes in [Ca 2+]c  following stimulation are typically very 

localised within cells. The Ca2+signatures  which I have measured are a reflection 

of [Ca 2+],  changes averaged across thousands of fungal microcolonies within each 

plate microwell. Although aequorin-based systems are not well suited for the 

measurement of Ca 2+  within individual hyphae (due to low light levels compared 

with what can be detected from fluorescent probes), this thesis has shown that 

aequorin is very well suited for Ca 2+  measurement over an entire mycelium. My 

experimental approach is extremely well suited to quantitatively analysing Ca 2+_  

signatures. This is because I used multiwell plate luminometry that enabled 

the analysis of multiple samples in the same experiment. In most other studies 

involving the analysis of aequorin luminescence, light is detected from a single 

sample in a tube luminometer as, for example, in most studies on plants (Knight 

and Knight, 1995). Not only does the recombinant aequorin method now provide 

an easy and routine technique for Ca 2+  measurement to experimentally study 

Ca2+signalling in wild type and mutant strains of N. crass a, it also provides a 

powerful analytical tool in a variety of other applications. The further analysis 

of mutants compromised in Ca2+signalling,  and which are expressing aequorin, 

will allow different components of Ca 2 -signalling pathways to be dissected apart 

and identified. The genomic analysis of Ca 2 -signalling proteins encoded in the 

N. crassa done during this PhD (Galagan et al., 2003) will help determine which 

genes to mutate. Furthermore, aequorin can be used as a luminescent reporter 

in high throughput screens for mutants compromised in Ca 2 -signalling. Finally, 

fungi expressing recombinant aequorin can be used in high throughput screens for 
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the discovery of antifungal compounds which target Ca2+signalling  because, as 

shown here, this system is ideally suited for high throughput assay development 

(Nelson et al., 2003). 

Whether the three stimuli used in the present study caused localised [Ca 2+]c  

changes in hyphae will need further analysis at the subcellular level using low-light 

imaging techniques. This would best be achieved using a recombinant fluorescent 

probe such as a cameleon probe (Miyawaki et al., 1997) that is brighter than 

aequorin but still has the all the advantages of recombinant probes. One therefore 

needs to be very careful about extrapolating from measurements of the C a2+ 

signature at the global multi-colonial level to what this represents in terms of the 

likely heterogeneity of Ca 2+  transients at the subcellular level. 

Detailed qualitative and quantitative analyses were performed on nine 

genetically-unlinked hyperbranching strains of N. crassa. It was shown that these 

strains demonstrated differences in hyphal form, branching frequency, hyphal ex-

tension rate, hyphal width and distance between septa. Observations of nuclear 

distribution in cot-1 showed an unusual distribution of nuclei in cot-1 hyphae at 

the restrictive, but not the permissive temperature. It was shown that the cot-2 

was strain of N. crassa can be complemented with the Orbach/Sachs pMOcosX 

cosmid G23:G5 and that cot-4 strain can be complemented with the Orbach/Sachs 

pMOcosX cosmid X15:E10. The cot-4 gene was cloned and found to have a muta-

tion in the catalytic subunit of calcineurin, a Ca2+/calmodulindependent  protein 

phosphatase. However several single base differences between the wild-type and 

cot-4 mutant alleles of the cria-i gene which were found need to be confirmed. 

Future work on this project should therefore include the re-amplification and 

resequencing of the native cot-4  gene. 

An analysis of the genomes of N. crassa, A. fumigatus and M. grisea has 

identified many of the fundamental Ca2+signalling  proteins present in filamentous 

fungi. In particular, these proteins include a number of previously unknown C a2+ 

permeable channels, Ca2+pumps  and  Ca2+transporters..  The Ca2+-signalling 
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machinery of filamentous fungi was found to be more complex than that of bud-

ding yeast. The large number of Ca'-signalling proteins found in the filamentous 

fungi examined highlights the importance and complexity of Ca 2 -signalling in 

these organisms. Interestingly, none of the fungi examined had recognisable InsP 3  

receptors, ADP ribosyl cyclase, ryanodine receptor proteins, sphingosine kinases 

or SCaMPER homologues despite the fact that pharmacological evidence points 

towards the presence of internal InsP 3-gated Ca 2+  stores in N. crassa (Cornelius 

et al., 1989; Schultz et al., 1990; Silverman- Gavrilaand Lew, 2002). These ob-

servations raise the question of whether other, perhaps novel, second messenger 

systems responsible for Ca 2+-release from internal stores remain to be discov-

ered in fungi. All the Ca 2 -signalling proteins found in N. crassa, A. fumigatus, 

M. grisea and S. cerevisiae were deposited in an interactive web-based database 

which will be available as a resource for the scientific community at large'. This 

resource also contains protein and DNA sequences and a large amount of other 

information on the proteins found. An inventory of Ca2+signa11ing  proteins in 

filamentous fungi is an important starting point for reverse genetic and physiolog-

ical approaches aiming at elucidating the biological significance of these proteins. 

Further development of the web-based resource made during my PhD should in-

clude software code which automatically performs a BLAST analysis of all the 

proteins in the database every week. This code would also add the information 

from these BLAST searches into the database, thus keeping it up to date with 

the ever-changing genomic and proteomic information available. 

The future for Ca 2 -signa1ling research in filamentous fungi is bright! The 

aequorin system of Ca 2+  measurement developed here will provide a convenient 

and sensitive method for the investigation the roles of different proteins in Ca 2+_ 

signalling in living fungi. The next step in this research should therefore be the 

generation of mutant strains, impaired in the function of specific C a2+ signalling  

proteins. A careful study of all aspects of the resulting strains, especially their 

1http://fungalcell.org/FDF/  
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Ca2 Lsignatures, will reveal new and important information about the nature and 

biological significance of Ca2 -signa1ling in filamentous fungi. 
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Appendix A 

Chemicals Used in this Study 

Table A.1: Chemicals used in this study 

acetamide Sigma Chemical Co., USA 

acetic acid (glacial) Frutarom Ltd., Israel 

aequorin D Cambridge Bioscience, UK 

agar Becton Dickinson Company, USA 

agarose Techcomp Ltd., Hong Kong 

ampicillin Sigma Chemical Co., USA 

2-APB Calbiochem, UK 

bacto peptone Difco Laboratories, USA 

bacto tryptone Difco Laboratories, USA 

bacto yeast extract Difco Laboratories, USA 

bicinchoninic acid solution Sigma Chemical Co., USA 

BSA Sigma Chemical Co., USA 

bromophenol blue Merck, Germany 

caffeine Sigma Chemical Co., UK 

calcium chloride Sigma Chemical Co., USA 

chitinase Sigma Chemical Co., USA 

chloramphenicol Sigma Chemical Co., USA 
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chloroform 

citric acid 

coelenterazine (native) 

copper (II) sulphate pentahy 

drate 4% (w/v) solution 

CTAB 

CuSO4  •5H 20 

cyclopiazonic acid 

cyclosporin A 

dimethyl sulfoxide 

ethanol 

ethidium bromide 

EDTA 

EGTA 

Fe(NH4 ) 2  (SO4 ) 2 .6H2 0 

ficoll (type 400; Pharmica) 

FK506 

FM4-64 

fructose(D) 

Glucanex 

glucose(D)  

Frutarom Ltd., Israel 

Merck, Germany 

Cambridge Bioscience, Cam-

bridge, UK or Biosynth AG, 

Staad, Switzerland 

Sigma Chemical Co., USA 

BDH Chemicals, England 

J.T.Baker, USA 

Sigma-Aldrich, UK 

Sigma Chemical Co, UK 

Fluka Chemie, Switzerland 

Carlo Erba, France 

Sigma Chemical Co., USA 

United States Biochem. Corp., 

USA 

United States Biochem. Corp., 

USA 

Merck 

Sigma Chemical Co., USA 

Calbiochem, UK 

Molecular Probes Inc., Eugene, 

OR, USA 

Sigma Chemical Co., USA 

Novo Nordisk Ferment Ltd., CH4 

243, Dittingen, Switzerland 

BDH Chemicals, England 
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glycerol 

1-13 1303  (anhydrous) 

heparin (sodium) 

hydrochloric acid 

hygromycin B (in PBS 50 mg 

m1' 

KH2PO4  (anhydrous) 

f3-mercaptoethanol 

MgSO4  •7H20 

MnSO4 •1H20 

Na2 Mo4 2H2 O 

NH4NO3  (anhydrous) 

Novozyme 

United States Biochem. Corp., 

USA 

J.T.Baker, USA 

Amersham Life Sciences, UK 

Frutarom Ltd., Israel 

Roche Diagnostics, GrnbH, Ger-

many 

Merck, Germany 

Sigma Chemical Co., USA 

Merck, Germany 

BDH Chemicals, England 

Merck, Germany 

Merck, Germany 

Calbiochem-Novabiochem Corpo- 

ration La Jolla, CA 92039-2087 

nutrient broth Difco Laboratories, USA 

1-octanol Sigma Chemical Co., USA 

polyethylene glycol 4000 BDH Chemicals, England 

propidium iodide Sigma Chemical Co., USA 

quinic acid Sigma Chemical Co., USA 

RNAase Boehringer 	Mannheim 	GmbH, 

Germany 

sodium acetate Sigma Chemical Co., USA 

sodium bisulphate Sigma Chemical Co., USA 

sodium chloride J.T.Baker, USA 

sodium citrate21-1 2 0 Sigma Chemical Co., USA 

sodium dodecyl sulphate Chem-Impex International, USA 

sodium hydroxide Merck, Germany 



sorbitol(D) Sigma Chemical Co., USA 

sorbose(L) Sigma Chemical Co., UK 

sucrose Sugat Ltd., Israel 

Trizma-base Sigma Chemical Co., USA 

Trizma-HC1 Sigma Chemical Co., USA 

Tween 20 Sigma Chemical Co., USA 

xylene cyanol FF Sigma Chemical Co., USA 

ZnS04 7H20 BDH Chemicals, England 
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GAA 

TTC 
PHE 
TTC 
PHE 
GTC 
VAL 
CCC 
PRO 
GGC 
GLY 
TAC 
TYR 
TAC 
TYR 
CTC 
LEU 
GAC 
ASP 
AGC 
SER 
TCC 
SER 
TTC 
PHE 
GCC 

TTC 

GAC 
ASP 
CTC 
LEU 
TAC 
TYR 
GAG 
GLU 
GGT 
GLY 
ATC 
ILE 
GCC 
ALA 
TTC 
PHE 
GAG 
GLU 
GAG 
GLU 
GGC 
GLY 
TGG 
TEP 
GTC 

AAG 
LYS 
TGG 
TEP 
CAC 
HIS 
GAC 
ASP 
CGC 
ARG 
AAG 
LYS 
AAG 
LYS 
CCC 
PRO 
GAC 
ASP 
TAC 
TYR 
GAG 
GLU 
GTC 
VAL 
GAC 
ASP 
CTA 

CAG 
GLN 
ATC 
ILE 
AAC 
ASN 
ATC 
ILE 
CAC 
HIS 
TAC 
TYR 
AAG 
LYS 
ACC 
THR 
AAG 
LYS 
ACC 
THR 
ACC 
THR 
GAT 
ASP 
CCC 
PRO 
AGC 

Table B.1: The DNA and corresponding protein sequence of aeqS 

C CGC AGA CCT 

CTT ACC TCC GAC 
LEU THR SEE ASP 
CAC ATG TTC AAC 
HIS MET PHE ASN 
CTC GAC GAG ATG 
LEU ASP GLU MET 
CTC GGC GCT ACC 
LEU GLY ALA THE 
GAG GCC TTC TTC 
GLU ALA PHE PHE 
GAC TGG CCC GCC 
ASP TRP PRO ALA 
GAG CTC GAG AAG 
GLU LEU GLU LYS 
TGG GGC GAC GCC 
TRP GLY ASP ALA 
GCC ATC ACC CTC 
ALA ILE THR LEU 
ATC ATT CAG TCC 
ILE ILE GLN SEE 
GAC ATC GAC GAG 
ASP ILE ASP GLU 
CAG CAC CTC GGC 
GLN HIS LEU GLY 
CTC TAC GGC GGT 

ATG ACC TCC 
MET THE SEE 
AAC CCC CGC 
ASN PRO ARG 
GAC GTC AAC 
ASP VAL ASN 
AAG GCC TCC 
LYS ALA SEE 
CAG GCC AAG 
GLN ALA LYS 
GCC GGC ATG 
ALA GLY MET 
GAG GGC TGG 
GLU GLY TRP 
AAG AAC GAG 
LYS ASN GLU 
GAC ATC GTC 
ASP ILE VAL 
TGG AAG GCC 
TRP LYS ALA 
GAC TGC GAA 
ASP CYS GLU 
CAG CTC GAT 
GLN LEU ASP 
TAC ACC ATG 
TYR THR MET 
CCC ThA GAT 

TAC TCC GTC AAG 
TYR SEE VAL LYS 
GGC CGC CAC AAG 
GLY AEG HIS LYS 
GGC AAG ATT TCC 
GLY LYS ILE SER 
GTC ATC AAC AAC 
VAL ILE ASN ASN 
AltO GAC GCC GTC 
LYS ASP ALA VAL 
GGC GTC GAG ACC 
GLY VAL GLU THE 
CTC GCC ACC GAC 
LEU ALA THE ASP 
CTC ATC CGC ATC 
LEU ILE ARG ILE 
GAC CAG AAC GGT 
ASP GLN ASN GLY 
AAG GCC GCC GGC 
LYS ALA ALA GLY 
TTC CGC GTC TGC 
PHE ARG VAL CYS 
GAG ATG ACC CGC 
GLU MET THE ARG 
GCC TGC GAG AAG 
ALA CYS GLU LYS 
TTG GAT CCA GCC 

LEU TYR GLY GLY ALA VAL PRO STOP 

EcoRI cuts between nucleotides 11 and 12. The ATG start and TAA stop codons 
are underlined. 
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(A) 	 EcoPJ 

pAeql-15 	
aeqS 

 BamHI 

amdS 	
11200 bp 	 TrpC 	

:::: 

aMPR 

 

EcoPJ 

(B) 	 EcoPJ 5 
\ 	BamHI 26 

BspHI 2959 

BspHI 2854\ 

(R 

630 

EcoPJ 634 

EcoRl 684 

EcoRl 700 3424 bp 
Lac op. 3' 	BamHI 707 

Figure C.1: (a) pAEQS1-15. A plasmid containing the aeqS gene (encoding apoaequorin) under 
the control of the gpdA promotor and TrpC terminator from A. nidulans; ( b) pGNAEQD3. The 

EcoRl and BamHl sites shown both excise the whole aeqS gene. 
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Polylinkerl 650 

Hpa16630 	 Sail 690 

XbaI 690 

Pci! 680 
fi or, 

HpaI 5130 

BaniHI 1390
TrPC 

	

LBS6 	

terminato 	

Polylinker2 1570 

6700 bp 

/ i 
	

Pail 1690 

BainHI 1820
om  

pnicoi 	
pror 	

Sac! 1930 

	

co/El 	 HindU! 2270 

Polylinker3 2700 

Figure C.2: Plasmid map of LBS6. Polylinkerl: T7.KpnI A pal.XhoI .SaII.CIaL Hind Ht; Polylinker2: 
EcoRI.PstI.SmaI.BamHI; Polylinker3: XbaI.NotI.SacI.T3. 



Appendix D 

Contents of Solutions and Gels 

Table D.1: Contents of solutions and gels 

Hybridisation Solution 

DTC-Ca2  Medium 

FGS*10 

Ingredients 

1 vol. DNA Ext. Buffer Component 1 1 

vol. nuclei lysis buffer, 0.4 vol. (5% w/v) N-

Lauroylsarcosine, 38 mg sodium bisulphate per 

10 ml buffer 

0.35 M sorbitol, 0.1 M Tris-base 5 mM EDTA 

adjust to pH 7.5 with HCL 

0.25% bromophenol blue, 0.25% xylene cyanol 

FF, 15% Ficoll in dH 2 0 

6 ml 20*SSC,  2 ml 50*  Denhard's, 200 tl salmon 

sperm (100 pg m1'), 10 ml formamide 0.5 ml 

20% SDS, 1.3 ml dH 2 0 

7.35 g CaC12 , 0.5 g Bacto yeast extract 0.5 g 

Bacto Tryptone, 2 ml Vogel's *50  stock solution, 

1.5 g sucrose 2 g agar 

100 g sorbose, 2.5 g fructose, 2.5 g glucose dH 20 

to a vol. of 500 ml 

Solution 

DNA Extraction Buffer 

DNA Extraction Buffer 

Component 1 

DNA Loading Buffer 
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STC 

10 g Bacto Tryptone, 5 g Bacto yeast extract 

10 g NaCl dH20 to final vol. of 1 litre 

as liquid LB plus 15 mg m1 1  agar 

0.2 M Tris-base, 0.05 M EDTA, 2 M NaCl 2% 

(w/v) CTAB 

0.8 g nutrient broth, 0.8 g agar dH 2 0 to total 

vol. of 100 ml 

4 ml Voge1s*50,  3 g agar, 176 ml dH2 0 auto-

clave then add 20 ml FGS*10  and antibiotics if 

appropriate 

5 ml 200 mM ECTA pH 8, 5 ml 1 M Tris 

pH 7.4, 10 ml 5 M NaCl, 79.8 l stock 3-

mercaptoethanol, dH 2 0 to final vol. of 100 ml 

8 ml STC, 2 ml FTC, 100l DMSO mix com-

ponents and filter sterilise 

40 g PEG 4000t,  5 ml 1 M Tris-HC1 pH 8 5 ml 

1 M CaC12  dH2 0 to final vol. of 100 ml 

4 ml Vogels*50,  36.8 g sorbitol, 3 g agar, 170 

ml dH2 0, autoclave then add 20 ml FGS*10 

18.2 g sorbitol, 5 ml 1 M Tris-HC1 pH 8 5 ml 1 

M CaC12  dH2 0 to final vol. of 100 ml 

LB Medium (liquid) 

LB Medium (solid) 

Nuclei Lysis Buffer 

Nutrient Agar 

Plating Medium 

Protein Extraction Buffer 

Protoplast Storage Solution 

PTC 

Regeneration Medium 
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Trace Element Solution 5 g citric acid1H 20, 5 g ZnSO4 •7H2 0 (zinc 

sulphate), 	1 	g 	Fe(NH4 ) 2 (SO4 ) 2 .6H20 	(fer- 

rous 	amonium 	sulphate 	hexahydrate) 	0.25 

g 	CuSO4 •5H20 	(cupric 	sulphate), 	0.05 	g 

MnS04 1H20 	(manganese 	sulfate), 	0.05 	g 

H3B03 	(anhydrous) 	(boric 	acid), 	0.05 	g 

Na2 MoO4 •2H2 0 (molybdic acid sodium salt di- 

hydrate) dH 2 0 to final vol. of 100 ml plus 2 ml 

chloroform 

TAE*50 Buffer for DNA 242 g Tris Base, 57.1 g glacial acetic acid 100 

Gels ml 0.5 M EDTA§ pH 8, dH2 0 to final vol. of 1 

litre 

Vogel*50 Solution dissolve successively 	in 650 	ml dH2 0: 	125 

g C6 H5 Na3 O7 •2H20 (tn-sodium citrate dihy- 

drate), 150 g KH 2 PO4  (monopotassium phos- 

phate anhydrous), 250 g NH 4 NO3  (ammonium 

nitrate anhydrous)*  10 g MgSO4 •7H2 0 (magne- 

sium sulphate), 5 g CaC12 •2H2 0 (dissolve first 

in 25 ml H2 0) then add: 5 ml trace element 

solution, 2.5 ml biotin solution (0.1 mg m1' 

in dH2 0), dH2 0 to a vol. of 1 litre plus 2 ml 

chloroform as a preservative 

Vogel's 	Sucrose 	Medium 4 ml Vogels*50  stock solution, 3 g sucrose dH 2 0 

(liquid) to 200 ml total 

Vogel's 	Sucrose 	Medium 4 ml Vogels*50  stock solution, 3 g sucrose 4 g 

(solid) agar, dH 2 0 to 200 ml total 
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Working Reagent 	150 vol. bicinchoninic acid solution, 1 vol. cop- 

per(II) sulphate pentahydrate 4% (w/v) solu-

tion 

Replace the 250 g of anhydrous NH4NO3 with 29.5 g acetamide to produce a medium which will select 

for the amdS gene (Yamashiro et al., 1992); TPEG 4000 = polyethylene glycol 4000; tDMSO = dimethyl 

sulfoxide; §EDTA = ethylenediam-inetetraacetic acid; OCTAB = cetyltrimethylammonium bromide 



Appendix E 

Software CD 

This CD contains four software packages: 

getproteinunkns.sh:  written to (a) convert A 590  readings of protein 

extracts into actual protein concentrations using a standard curve and (b) 

calculate the dilutions of each sample with extraction buffer to give a final 

concentration of 40 g total protein per 100 tl of solution. 

getaeqamnt.pl:  written to convert aequorin discharge data to amount 

aequorin per g total protein. 

term-bert and luminometer_subs: written to (a) convert the data pro-

duced by our luminometer from RLU to Ca 2+  concentrations, (b) quantify 

various parameters of the Ca2+signature,  and (c) perform statistical anal-

ysis on these data. 

The Fungal Cell Biology Group Database Facility: this is a series of 

programs, which when used in conjunction with a web server and a MySQL 

database package, provide a complete web-based database as described in 

Chapter 6. These files can be found in the "FDF" directory. 

'Vt' 
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