# Decomposition Theorems for Quasi-discrete Planar Domains 

Iain R. Gibson

Doctor of Philosophy<br>University of Edinburgh 2003

## Abstract

Let $\Omega$ be a domain in $\mathbb{R}^{n}$ and $D^{\alpha} u \geqslant 1$ on $\Omega$ for some smooth function $u: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and multi-index $\alpha$. Let $E_{s}$ be the sublevel set at height $s$ of $u$ and consider the mulitilinear sublevel set operator

$$
\Lambda_{s}^{\alpha, u}\left(f_{1}, \ldots, f_{n}\right)=\int_{\Omega} \chi_{E_{s}}(x) f_{1}\left(x_{1}\right) \ldots f_{n}\left(x_{n}\right) \mathrm{d} x_{1} \ldots \mathrm{~d} x_{n}
$$

where $x_{i}$ denotes the $i^{\text {th }}$ co-ordinate of $x \in \mathbb{R}^{n}$. It is natural to seek estimates of the form

$$
\left|\Lambda_{s}^{\alpha, u}\left(f_{1}, \ldots, f_{n}\right)\right| \leqslant C s^{\varepsilon}\left\|f_{1}\right\|_{p_{1}} \ldots\left\|f_{n}\right\|_{p_{n}}
$$

for some $\varepsilon>0$ and constant $C$ independent of $s, u$ and the $f_{i}$. Of course one must first decide which classes of domains $\Omega$ and functions $u$ and what values of $p_{1}, \ldots, p_{n}$ to work with.

Motivated by recent work on such estimates, we ask what progress can be made in two dimensions by finding decompositions of domains $\Omega$ that have the $B C(m, n)$ property for some $m, n \in \mathbb{N}$, which says that the domain meets horizontal lines in at most $m$ components and vertical lines in at most $n$. Estimates are easily established on $B C(1,1)$ domains and so one is led to attempt to decompose $B C(m, n)$ domains, under appropriate further hypotheses, into a number of $B C(1,1)$ domains which is bounded in terms of $m$ and $n$.

For various reasons we choose to work in a quasi-discrete setting. We formulate this framework before stating and proving the principal results, and go on to discuss some of the issues that they raise and their possible applications.

## Acknowledgements

There is a set of people with the property that, had I been without the support of any nonempty subset of them, this project would have been at least one of the following: impossible, more difficult, more time-consuming, less fruitful or less enjoyable. First among these is of course my supervisor, Tony Carbery, who has provided constant mathematical and moral support. My second supervisor, Allan Sinclair, has given academic support beyond the call of duty by proofreading drafts and offering wise suggestions for improvement, as well as looking out for me on non-academic fronts. It would severely jeopardise the accuracy of my word-count to name all those others who have made a positive impact on me in the past four years and alleviated times of difficulty and frustration, but it would be negligent not to single out for special thanks my parents Liz and Jim, my sister Helen, my girlfriend Abby, my friends and colleagues Laura and James, the goodly company of the DJP, and the brown-clad rogues of Scottish athletics, Hunters Bog Trotters. My apologies to all the others whom I haven't mentioned by name-your contributions are no less appreciated.

## Table of Contents

Chapter 1 Introduction ..... 2
1.1 Choosing the domain $\Omega$ : two ideas ..... 4
1.2 Some results ..... 8
1.3 A decompositional approach ..... 20
1.4 Where now? ..... 24
Chapter 2 The Quasi-discrete Setting ..... 27
Chapter 3 The Main Decompositions ..... 36
3.1 Two general results ..... 36
3.2 Decomposition of $B C(n, 1)$ domains ..... 40
3.3 Decomposition of $B C(2,2)$ domains ..... 47
$3.4 B C(3)$ and beyond ..... 59
3.5 Issues arising ..... 73
Chapter 4 Applications and Discussion ..... 75
4.1 An application in the continuous setting ..... 75
4.2 An application in the discrete setting ..... 80
4.3 Discussion ..... 82
Appendix A Hole Diagrams for Domains Satisfying the HP(5,4) Condition ..... 85
Appendix B More on the Rectangle Problem ..... 90
Bibliography ..... 94

## Chapter 1

## Introduction

The starting point for our study is the following lemma due to van der Corput:
Lemma 1. For each $k \in \mathbb{N} \backslash\{0\}$ there is a constant $C_{k}$ such that if $\Phi:[a, b] \longrightarrow \mathbb{R}$ and $\Phi^{(k)}(t) \geqslant 1$ on $[a, b]$ (and furthermore $\Phi^{\prime}$ is monotone if $k=1$ ), then

$$
\left|\int_{a}^{b} e^{i \lambda \Phi(t)} \mathrm{d} t\right| \leqslant \frac{C_{k}}{\lambda^{1 / k}}
$$

We can prove it using the sublevel set estimate:
Lemma 2. For each $k \in \mathbb{N} \backslash\{0\}$ there is a constant $D_{k}$ such that if $\Phi^{(k)} \geqslant 1$ on $[a, b]$, then

$$
|\{t \in[a, b]:|\Phi(t)| \leqslant s\}| \leqslant D_{k} s^{1 / k}
$$

Proof. The case $k=1$ follows easily from the Mean Value Theorem, giving $D_{1}=$ 2. Indeed, if there were some $\Phi$ with $|\{t \in[a, b]:|\Phi(t)| \leqslant s\}|>2 s$, then there would be a point $c \in(a, b)$ with $\Phi^{\prime}(c)<1$. Suppose inductively that the result holds for $k \leqslant r$. Assuming that $\Phi^{(r+1)}(t) \geqslant 1$ on $[a, b]$,

$$
\begin{aligned}
|\{t \in[a, b]:|\Phi(t)| \leqslant s\}| \leqslant & \left|\left\{t \in[a, b]:\left|\Phi^{(r)}(t)\right| \leqslant \alpha\right\}\right| \\
& +\left|\left\{t \in[a, b]:\left|\Phi^{(r)}(t)\right|>\alpha,|\Phi(t)| \leqslant s\right\}\right| \\
\leqslant & D_{1} \alpha+2 D_{r}\left(\frac{s}{\alpha}\right)^{1 / r}
\end{aligned}
$$

(The final inequality above is seen by considering the function $\alpha^{-1} \Phi$.) Putting $\alpha=s^{\frac{1}{r+1}}$ gives the result for $k=r+1$ and the lemma is proved by induction.

Proof of Lemma 1. Firstly, we note that if $k \geqslant 2$, the hypothesis $\Phi^{(k)} \geqslant 1$ implies that the set $\left\{t \in[a, b]:\left|\Phi^{\prime}(t)\right| \geqslant \alpha\right\}$ can be written as a disjoint union of $2 k-2$ or fewer intervals $\left(a_{i}, b_{i}\right)$ on each of which $\Phi^{\prime}$ is monotonic and a set of measure zero. For, applying Rolle's Theorem $k-2$ times shows that $\Phi^{\prime \prime}$ has at most $k-2$ zeroes, and so $\Phi^{\prime}$ has at most $k-2$ turning points. Thus we can decompose $[a, b]$ into $k-1$ or fewer intervals on which $\Phi^{\prime}$ is monotonic, and each of these is at worst split into two on passing to $\left\{t \in[a, b]:\left|\Phi^{\prime}(t)\right| \geqslant \alpha\right\}$. Writing $N_{k}=2 k-2$, we have

$$
\begin{aligned}
\left|\int_{a}^{b} e^{i \lambda \Phi}\right| & =\left|\int_{\left|\Phi^{\prime}\right|<\alpha} e^{i \lambda \Phi}+\int_{\left|\Phi^{\prime}\right| \geqslant \alpha} e^{i \lambda \Phi}\right| \\
& \leqslant D_{k-1} \alpha^{\frac{1}{k-1}}+\left|\frac{1}{i \lambda} \int_{\left|\Phi^{\prime}\right| \geqslant \alpha} \frac{1}{\Phi^{\prime}}\left(e^{i \lambda \Phi}\right)^{\prime}\right| \\
& \leqslant D_{k-1} \alpha^{\frac{1}{k-1}}+\frac{1}{\lambda} \sum_{i=1}^{N_{k}}\left(\left|\left[\frac{1}{\Phi^{\prime}}\right]_{a_{i}}^{b_{i}}\right|+\int_{a_{i}}^{b_{i}}\left|\left(\frac{1}{\Phi^{\prime}}\right)^{\prime}\right|\right) \\
& \leqslant D_{k-1} \alpha^{\frac{1}{k-1}}+\frac{1}{\lambda}\left(\frac{N_{k}}{\alpha}+\sum_{i=1}^{N_{k}}\left|\int_{a_{i}}^{b_{i}}\left(\frac{1}{\Phi^{\prime}}\right)^{\prime}\right|\right) \\
& \leqslant D_{k-1} \alpha^{\frac{1}{k-1}}+\frac{2 N_{k}}{\lambda \alpha} .
\end{aligned}
$$

Now put $\alpha=\lambda^{-\frac{k-1}{k}}$.
This method of proving the van der Corput lemma using the sublevel set estimate is taken from [2].

Remarks. These two results have some desirable properties:

- The constants $C_{k}$ and $D_{k}$ are independent of $a$ and $b$.
- The estimates are sharp, as seen by putting in $\Phi(x)=x^{k} / k!$.
- The estimates scale, i.e. having them for a fixed $a_{0}, b_{0}$ implies them for all $a, b$.

It is natural to ask whether there are higher-dimensional analogues of these results, i.e. given some function $u$ on $\Omega \subseteq \mathbb{R}^{n}$ and a multi-index $\alpha$ such that $D^{\alpha} u \geqslant 1$ on $\Omega$, can we obtain estimates of the form

$$
\begin{equation*}
|\{x \in \Omega:|u(x)| \leqslant s\}| \leqslant C_{\alpha} s^{\varepsilon} \tag{1.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\int_{\Omega} e^{i \lambda u(x)} \mathrm{d} x\right| \leqslant \frac{C_{\alpha}}{\lambda^{\varepsilon}} \tag{1.2}
\end{equation*}
$$

for some $\varepsilon>0$ ? And do they have nice properties like sharpness and scaling?

### 1.1 Choosing the domain $\Omega$ : two ideas

## $B C(m)$ domains, type $M$ functions and HV-convexity

The question we are immediately faced with is what kind of domain $\Omega$ should correspond to intervals on the line. The connected sets quickly suggest themselves, but must be rejected on account of the following example, which appears in [4]:

Example 3. Let $n=2, \alpha=(0,1)$ and $N \in \mathbb{N}$. Define $\Omega^{\prime}=\left(0, \frac{1}{3}\right) \times(0,1)$ and for $0 \leqslant j \leqslant N-1, \Omega_{j}=\left[\frac{1}{3}, 1\right) \times\left(\frac{j}{N}, \frac{j+1 / 2}{N}\right)$. Let $\Omega=\Omega^{\prime} \cup \bigcup_{j=0}^{N-1} \Omega_{j}$. (See Figure 1.1.) Choose a smooth $\phi:[0,1] \longrightarrow \mathbb{R}$ with $\phi \geqslant 0, \dot{\phi} \equiv 0$ on $\left[0, \frac{5}{12}\right]$ and $\phi \equiv 1$ on $\left[\frac{7}{12}, 1\right]$. Define $u$ by

$$
u(x, y)= \begin{cases}y & (x, y) \in \Omega^{\prime} \\ y-\frac{j}{N} \phi(x) & (x, y) \in \Omega_{j}\end{cases}
$$

Then clearly $\frac{\partial u}{\partial y} \equiv 1$ on $\Omega$, while for s sufficiently small,

$$
|\{(x, y) \in \Omega:|u(x, y)| \leqslant s\}| \sim N s
$$



Figure 1.1: The set $\Omega$ in Example 3

What appears to have gone wrong is that the arbitrarily many "legs" of $\Omega$ allow some of the vertical cross-sections to have arbitrarily many components. Perhaps we could make some progress by putting a bound on the number of components of any axis-parallel cross-section. This train of thought leads to the following important definitions:

## Definition 4.

- A set $\Omega \subseteq \mathbb{R}^{n}$ is said to be $B C\left(m_{1}, \ldots, m_{n}\right)$ if for each $i$, any line $L$ parallel to the $i^{\text {th }}$ axis is cut into at most $m_{i}$ pieces by $\Omega$, i.e. $\Omega \cap L$ has at most $m_{i}$ connected components. We abbreviate $B C(m, \ldots, m)$ to $B C(m)$. (The notation BC is motivated by the idea of having a bounded number of components of intersections with axis-parallel lines.)
- Let $\Omega$ be an open subset of $\mathbb{R}^{n}$. The function $p: \Omega \longrightarrow \mathbb{R}$ is said to be of type $M$ if it has the property:
there exists $N$ such that for all $\beta$ with $|\beta| \leqslant M$ and all $s>0$, the set $\left\{x \in \Omega:\left|D^{\beta} p(x)\right| \leqslant s\right\}$ is $B C(N)$.

In other words, there is some $N$ such that all sublevel sets of derivatives of order up to $M$ of $p$ are $B C(N)$.

- The least such $N$ is called the type $M$ constant of $p$, and denoted $t_{M}(p)$.

Observe that a polynomial $p: \mathbb{R}^{n} \longrightarrow \mathbb{R}$ of degree $d$ is type $M$ for all $M$. Its type $M$ constant $t_{M}(p)$ is bounded by a constant $C(M, n, d)$ depending on $M, n$ and $d$ but not on the coefficients of $p$.

We also introduce the notions of horizontal and vertical convexity, which are related to the $B C(1)$ property.

Definition 5. The subset $\Omega$ of $\mathbb{R}^{2}$ is horizontally convex if whenever $\left(x, y_{0}\right)$ and $\left(x^{\prime}, y_{0}\right) \in \Omega$ and $x<z<x^{\prime}$, then $\left(z, y_{0}\right) \in \Omega$. Similarly, $\Omega$ is vertically convex if whenever $\left(x_{0}, y\right),\left(x_{0}, y^{\prime}\right) \in \Omega$ and $y<w<y^{\prime}$, then $\left(x_{0}, w\right) \in \Omega$. We sometimes use the abbreviations ' $H$-convex' for 'horizontally convex'; ' $V$-convex'
for 'vertically convex'; and 'HV-convex' for 'horizontally convex and vertically convex'.

Note that the domain $\Omega \subseteq \mathbb{R}^{2}$ has the $B C(1)$ property if and only if it is both horizontally and vertically convex. Results involving these concepts will appear a bit further on, but first we sketch more of the background material.

## Rectangles

Another possibility is to work with axis-parallel rectangular boxes. However, our next example shows that we cannot achieve estimates independent of the size of the box as in the one-dimensional case.

Example 6. Let $u(x, y)=x y$ and $A$ a square centred at the origin with side length $2 a$. We have that

$$
\begin{aligned}
|\{(x, y) \in A:|u(x, y)| \leqslant s\}| & =4\left(s+\int_{\frac{s}{a}}^{a} \frac{s}{t} \mathrm{~d} t\right) \\
& =4 s\left(1+\log \frac{1}{s}+2 \log a\right)
\end{aligned}
$$

and by choosing $\log$ a large enough we see that there is no constant independent of a such that an estimate of the form (1.1) holds. (At this stage intuition suggests that we should be aiming for $\varepsilon<1$ since the partial derivative in question is of order two.)

Furthermore, it is not difficult to show that oscillatory integral estimates are in general stronger than their sublevel set counterparts, and we can conclude that in this case we cannot achieve an estimate of the form (1.2) with a constant independent of the size of $A$ either. As an instance of this principle, we have the following:

Example 7. Let $Q=[0,1]^{2}$ and suppose there is some $\delta<1$ such that

$$
|I(\lambda)|=\left|\int_{Q} e^{i \lambda \phi(x)} \mathrm{d} x\right| \leqslant \frac{C}{|\lambda|^{\delta}}
$$

Then we also have

$$
\left|E_{t}\right|=|\{x \in Q:|\phi(x)|<t\}| \leqslant C^{\prime} t^{\delta}
$$

To show this, choose a smooth, compactly-supported $\psi: \mathbb{R} \longrightarrow \mathbb{R}$ that is identically 1 on $[-1,1]$. Note that we have $\chi_{E_{t}}(x) \leqslant \psi\left(\frac{\phi(x)}{t}\right)$ pointwise on $\mathbb{R}^{2}$ since

$$
x \in E_{t} \Rightarrow\left|\frac{\phi(x)}{t}\right|<1 \Rightarrow \psi\left(\frac{\phi(x)}{t}\right)=1 .
$$

Now

$$
\begin{aligned}
|E(t)|=\int_{Q} \chi_{E_{t}} & \leqslant \int_{Q} \psi\left(\frac{\phi(x)}{t}\right) \mathrm{d} x \\
& =\int_{Q} \int_{-\infty}^{\infty} \hat{\psi}(y) e^{2 \pi i y \phi(x) / t} \mathrm{~d} y \mathrm{~d} x \\
& =\int_{-\infty}^{\infty} \hat{\psi}(y) \int_{Q} e^{i(2 \pi y / t) \phi(x)} \mathrm{d} x \mathrm{~d} y \quad \text { by Fubini } \\
& \leqslant C\left(\frac{t}{2 \pi}\right)^{\delta} \int_{-\infty}^{\infty} \frac{|\hat{\psi}(y)|}{|y|^{\delta}} \mathrm{d} y \\
& =C^{\prime} t^{\delta}
\end{aligned}
$$

where $C^{\prime}=(2 \pi)^{-\delta} C \int_{-\infty}^{\infty}|\hat{\psi}(y)||y|^{-\delta} \mathrm{d} y$, which exists since $\delta<1 .{ }^{1}$ Note that we could replace $Q$ in this example by any subset of $\mathbb{R}^{2}$.

One solution to the problem highlighted in Example 6 would be to fix a box once and for all in which to work, say $Q=[0,1]^{n}$. For the phase function in Example 6, we then obtain the desired estimates on the oscillatory integral estimate for any $\varepsilon<1$. However this is not the only weapon at our disposal. Notice that by inserting suitable functions $f(x)$ and $g(y)$ in said example, we obtain:

$$
\begin{aligned}
\left|\int_{R} e^{i \lambda x y} f(x) g(y) \mathrm{d} x \mathrm{~d} y\right| & \leqslant\left|\int_{J}^{\widehat{f T_{I}}}\left(\frac{\lambda y}{2 \pi}\right) g(y) \mathrm{d} y\right| \\
& \leqslant \sqrt{\frac{2 \pi}{\lambda}}\|f\|_{2}\|g\|_{2} \quad \text { by Plancherel and Cauchy-Schwartz }
\end{aligned}
$$

for any rectangle $R=I \times J$ in $\mathbb{R}^{2}$, where $I$ and $J$ are intervals in $\mathbb{R} .^{2}$
This connection with the Fourier Transform, as well as the frequent appear-

[^0]ance in recent years of multilinear operators in harmonic analytic research, ${ }^{3}$ supports the idea of inserting functions and aiming for estimates of the form
\[

$$
\begin{align*}
& \left|\quad \int_{\Omega \cap\{|u(x)| \leqslant s\}} f_{1}\left(x_{1}\right) \ldots f_{n}\left(x_{n}\right) \mathrm{d} x_{1} \ldots \mathrm{~d} x_{n}\right| \leqslant C_{\alpha} s^{\varepsilon}\left\|f_{1}\right\|_{p_{1}} \ldots\left\|f_{n}\right\|_{p_{n}}  \tag{1.3}\\
& \quad\left|\int_{\Omega} e^{i \lambda u(x)} f_{1}\left(x_{1}\right) \ldots f_{n}\left(x_{n}\right) \mathrm{d} x_{1} \ldots \mathrm{~d} x_{n}\right| \leqslant \frac{C_{\alpha}}{\lambda^{\varepsilon}}\left\|f_{1}\right\|_{p_{1}} \ldots\left\|f_{n}\right\|_{p_{n}} \tag{1.4}
\end{align*}
$$
\]

where $D^{\alpha} u \geqslant 1$ on $\Omega$. In most of the recent work done in this area, bilinear or multilinear approaches have been used. Usually this is in conjunction with a fixed box such as $[0,1]^{n}$, although some results extend to more general domains.

The calculations below with functions of an elementary nature soon reveal that the ideal $\varepsilon$ we could wish for is $\varepsilon=\frac{1}{|\alpha|}$, with $\frac{1}{p_{i}}=1-\frac{\alpha_{i}}{|\alpha|}$. With this estimate in hand, we could obtain all possible others by interpolation with trivial estimates. To see how this $\varepsilon$ comes about, suppose that we have an estimate of the form

$$
\left|\int_{Q \cap\{|u(x)| \leqslant s\}} \prod_{i=1}^{n} f_{i}\left(x_{i}\right) \mathrm{d} x_{i}\right| \leqslant C s^{\varepsilon} \prod_{i=1}^{n}\left\|f_{i}\right\|_{p_{2}}
$$

whenever $D^{\alpha} u \geqslant 1$ on $Q$. Putting $u=\left(x_{1}+\cdots+x_{n}\right)^{|\alpha|}, f_{1}=\cdots=f_{n}=\chi_{(0,1)}$ forces $\varepsilon \leqslant \frac{1}{|\alpha|}$, while putting $u=x_{1}^{\alpha_{1}} \ldots x_{n}^{\alpha_{n}}, f_{1}=\chi_{\left(0, s^{1 / \alpha_{1}}\right)}, f_{2}=\cdots=f_{n}=\chi_{(0,1)}$ entails that $\varepsilon \leqslant \frac{1}{\alpha_{1} p_{1}^{\prime}}$, where $r^{\prime}$ denotes the conjugate of an exponent $r \in[0, \infty]$, i.e. $\frac{1}{r}+\frac{1}{r^{\prime}}=1$. Symmetrically, $\varepsilon \leqslant \frac{1}{\alpha_{i} p_{i}^{\prime}}$ for $i=2, \ldots, n$. Hence we have $\varepsilon \leqslant$ $\min \left\{\frac{1}{|\alpha|}, \frac{1}{\alpha_{i} p_{i}^{\prime}}\right\}$. Considering the planes $\varepsilon=\frac{1}{|\alpha|}, \varepsilon=\frac{1}{\alpha_{i} p_{i}^{\prime}}$ in $\left(\frac{1}{p_{1}}, \ldots, \frac{1}{p_{n}}, \varepsilon\right)$-space shows that where they intersect, $\frac{1}{p_{i}}=1-\frac{\alpha_{2}}{|a|}$. See [2].

### 1.2 Some results

So what results are known to date? Well, it is at least known that the estimates do hold for some $\varepsilon>0$, although of course it may not be the optimal value of $\frac{1}{|\alpha|}$.

[^1]Theorem 8. Suppose that $u: Q \longrightarrow \mathbb{R}$ is smooth, that $D^{\alpha} u \geqslant 1$ on $Q$, and that $p_{1}, \ldots, p_{n}>1$. Then there exist $\varepsilon>0$ and $C>0$ (depending only on $\alpha, n$, $\left.p_{1}, \ldots, p_{n}\right)$ such that

$$
\left|\int_{Q \cap\{|u(x)| \leqslant s\}} f_{1}\left(x_{1}\right) \ldots f_{n}\left(x_{n}\right) \mathrm{d} x_{1} \ldots \mathrm{~d} x_{n}\right| \leqslant C s^{\varepsilon}\left\|f_{1}\right\|_{p_{1}} \ldots\left\|f_{n}\right\|_{p_{n}}
$$

Under the further provision that $\alpha$ has two or more nonzero entries, at least one of which has value at least 2 , there is an $\varepsilon^{\prime}>0$ and a $C^{\prime}>0$ (with the same dependencies) such that

$$
\left|\int_{Q} e^{i \lambda u(x)} f_{1}\left(x_{1}\right) \ldots f_{n}\left(x_{n}\right) \mathrm{d} x_{1} \ldots \mathrm{~d} x_{n}\right| \leqslant \frac{C^{\prime}}{\lambda^{\varepsilon^{\prime}}}\left\|f_{1}\right\|_{p_{1}} \ldots\left\|f_{n}\right\|_{p_{n}}
$$

We shall give a sketch proof of the first estimate, based on [3]. The proof goes by induction on the dimension, with base case $n=2$, so first we must prove the result in this case.
Lemma 9. Let $k \geqslant j \geqslant 1$ and let $p=\frac{k+1}{k}, q=\frac{j(k+1)}{j(k+1)-k}$. Then there exists a constant $C_{j, k}$ such that for any smooth $u$ with $\frac{\partial^{j+k} u}{\partial x^{j} \partial y^{k}} \geqslant 1$ on $Q$, we have for $0<s<1$ :

$$
\left|\int_{|u| \leqslant s} f(x) g(y) \mathrm{d} x \mathrm{~d} y\right| \leqslant \begin{cases}C_{j, k} s^{\frac{1}{j(k+1)}}\|f\|_{p}\|g\|_{q} \\ \left.C_{j, k} s^{\frac{1}{k+1}} \log s^{-1}\right)^{\frac{k}{k+1}}\|f\|_{p}\|g\|_{q} & \text { if } j>1 \\ \text { if } j=1\end{cases}
$$

Proof. First suppose that $j>1$. Let $E=\{(x, y) \in Q:|u(x, y)| \leqslant s\}$ and for each $y$ let $E^{y}=\{x \in \mathbb{R}:|u(x, y)| \leqslant s\}$. We suppress the dependence on $s$ since $s$ will remain fixed throughout this argument. It can be shown that for $y_{0}, y_{1}, \ldots, y_{k}$

$$
\begin{equation*}
\left|E^{y_{0}} \cap E^{y_{1}} \cap \cdots \cap E^{y_{k}}\right| \leqslant C_{j, k}^{\prime} s^{\frac{1}{j}} \sum_{m=0}^{k} \prod_{l \neq m}\left|y_{l}-y_{m}\right|^{-\frac{1}{j}} \tag{1.5}
\end{equation*}
$$

(See [3] for details.) Now by Hölder's inequality,

$$
\left|\int_{|u| \leqslant s} f(x) g(y) \mathrm{d} x \mathrm{~d} y\right| \leqslant\|f\|_{p}\left\|\int \chi_{E}(x, y) g(y) \mathrm{d} y\right\|_{k+1} .
$$

Denoting the second term on the right hand side by $I$, we have

$$
\begin{aligned}
I^{k+1} & =\int \chi_{E}\left(x, y_{0}\right) \ldots \chi_{E}\left(x, y_{k}\right) g\left(y_{0}\right) \ldots g\left(y_{k}\right) \mathrm{d} y_{0} \ldots \mathrm{~d} y_{k} \mathrm{~d} x \\
& =\int\left|E^{y_{0}} \cap \cdots \cap E^{y_{k}}\right| g\left(y_{0}\right) \ldots g\left(y_{k}\right) \mathrm{d} y_{0} \ldots \mathrm{~d} y_{k} \\
& \leqslant C_{j, k}^{\prime \prime}{ }^{\frac{1}{s(k+1)}} \int \sum_{m=0}^{k} \prod_{l \neq m}\left|y_{l}-y_{m}\right|^{-\frac{1}{3}} g\left(y_{0}\right) \ldots g\left(y_{k}\right) \mathrm{d} y_{0} \ldots \mathrm{~d} y_{k}
\end{aligned}
$$

Taking just the first term in the sum we have

$$
\begin{aligned}
\int \frac{g\left(y_{0}\right) \ldots g\left(y_{k}\right)}{\left|y_{1}-y_{0}\right|^{1 / j} \ldots\left|y_{k}-y_{0}\right|^{1 / j}} \mathrm{~d} y_{0} \ldots \mathrm{~d} y_{k} & =\int g\left(y_{0}\right)\left(I_{\frac{j-1}{j}} g\right)^{k}\left(y_{0}\right) \mathrm{d} y_{0} \\
& \leqslant\|g\|_{q}\left\|\left(I_{\frac{j-1}{j}} g\right)^{k}\right\|_{\frac{j(k+1)}{k}} \\
& =\|g\|_{q}\left\|I_{\frac{I_{-1}}{j}} g\right\|_{j(k+1)}^{k} \\
& \leqslant A_{j, k}\|g\|_{q}^{k+1}
\end{aligned}
$$

where $I_{\beta}$ denotes fractional integration of order $\beta$. (A discussion of fractional integration can be found in Chapter 5 of [13]. The property we use is that $\frac{I_{\frac{j-1}{j}}}{}$ maps $L^{q}$ boundedly into $L^{j(k+1)}$.) By symmetry, the other terms in the summation obey the same estimate and we have done the case $j>1$.

If $j=1$ then we establish the desired estimate by once again establishing an appropriate estimate on the term $I^{k+1}$ appearing in the above argument. This is achieved by multilinear interpolation with one copy of $g$ in $L^{1}$ and the others in $L^{\infty}$. (Consult [15] for the relevant theorem, which is a multilinear generalisation of the Marcinkiewicz interpolation theorem. The latter is discussed in [13], and a slightly stronger version of it is stated in the remarks on Lorentz spaces on page 18.) Thinking in ( $1 / p_{1}, \ldots, 1 / p_{k+1}$ ) space, we can achieve all the estimates corresponding to the vertices $(0, \ldots, 0,1,0, \ldots, 0)$ with the 1 in the $i^{\text {th }}$ place, for $i=1, \ldots, k+1$. By interpolation we can get all the points on the intersection of the plane $x_{1}+\cdots+x_{k+1}=1$ with the set $\left\{x \in \mathbb{R}^{k+1}: x_{1}, \ldots, x_{k+1}>0\right\}$, and of course the point $(1 /(k+1), \ldots, 1 /(k+1))$ lies in this intersection. The problem reduces to establishing that

$$
\sup _{y_{0}} \int\left|E^{y_{0}} \cap \cdots \cap E^{y_{k}}\right| \mathrm{d} y_{1} \ldots \mathrm{~d} y_{k}
$$

exists. Using the estimate

$$
\left|E^{y_{0}} \cap \cdots \cap E^{y_{k}}\right| \leqslant C_{k} \min \left\{1, s \sum_{m=0}^{k} \prod_{l \neq m}\left|y_{l}-y_{m}\right|^{-1}\right\}
$$

and $k$ applications of the fact that for all $r \geqslant 0$, the function $\min \left\{1, \beta / t \log ^{r}(t / \beta)\right\}$
has an $L^{1}[0,1]$ norm that is $O\left(\beta \log ^{r+1}\left(\beta^{-1}\right)\right)$, we have

$$
\begin{aligned}
& \int \min \left\{1, s \prod_{l \geqslant 1}\left|y_{l}-y_{0}\right|^{-1}\right\} \mathrm{d} y_{1} \ldots \mathrm{~d} y_{k} \\
\leqslant & A \int \min \left\{1, s \prod_{l \geqslant 2}\left|y_{l}-y_{0}\right|^{-1} \log \left(\frac{1}{s} \prod_{l \geqslant 2}\left|y_{l}-y_{0}\right|\right)\right\} \mathrm{d} y_{2} \ldots \mathrm{~d} y_{k} \\
\leqslant & A^{\prime} \int \min \left\{1, s \prod_{l \geqslant 3}\left|y_{l}-y_{0}\right|^{-1} \log ^{2}\left(\frac{1}{s} \prod_{l \geqslant 3}\left|y_{l}-y_{0}\right|\right)\right\} \mathrm{d} y_{3} \ldots \mathrm{~d} y_{k} \\
\leqslant & \ldots \\
\leqslant & D_{k} s \log ^{k}\left(s^{-1}\right), \quad \text { where } A, A^{\prime}, \ldots \text { and } D_{k} \text { are constants. }
\end{aligned}
$$

Again by symmetry the same estimate holds for the other terms in the sum and the $j=1$ case is completed.

Thus we have proved Theorem 8 for the case $n=2$ with $p_{1}=\frac{k+1}{k}, p_{2}=$ $\frac{j(k+1)}{j(k+1)-k}$, getting an exponent of $\frac{1}{j(k+1)}$ for $j \geqslant 1$ and $\frac{1}{k+1}-\eta$ for any $\eta \in\left(0, \frac{1}{k+1}\right)$ when $j=1$. By putting in $f \equiv g \equiv \chi_{(0,1)}$, the sublevel set estimate, i.e. the statement of the lemma without $f$ and $g$, follows with the same exponents. Notice that this is equivalent to the case of $p=q=\infty$. There are trivial estimates with no $s^{\epsilon}$ decay when either $p$ or $q$ is 1 . We can now interpolate to get an estimate with some power decay whenever $p, q>1$. (Although we expect a poor $\epsilon$ when either $p$ or $q$ is close to 1 .) We have thus completed the $n=2$ case for arbitrary $p, q>1$.

For higher $n$ we proceed by induction to establish the sublevel set estimate (equivalent to $p_{1}=\cdots=p_{n}=\infty$ ). Arguments similar to those in the $n=2$ case are used together with a higher order version of the Mean Value Theorem. Once again, details can be found in [3]. Then using interpolation with trivial estimates for some $p_{i}=1$, we obtain the first conclusion of Theorem 8 .

In their very useful survey article, the authors of [4] draw attention to the fact that in certain cases of the problem in two dimensions, the methods outlined above can be used to obtain results for general HV-convex domains, sometimes with scale-invariance or the optimal exponents. Specifically, we have:

Theorem 10. Let $\Omega$ be an $H V$-convex domain in $\mathbb{R}^{2}$ and $\alpha$ a multi-index such that $D^{\alpha} u \geqslant 1$ on $\Omega$.

- If $\alpha=(1,1)$ and $1 \leqslant p<2$, there is a constant $C$ depending only on $p$ such that

$$
\left|\int_{|u| \leqslant s} f(x) g(y) \mathrm{d} x \mathrm{~d} y\right| \leqslant C s^{1 / p^{\prime}}\|f\|_{p}\|g\|_{p}
$$

and a constant $C^{\prime}$ depending only on $\Omega$ such that

$$
\left|\int_{|u| \leqslant s} f(x) g(y) \mathrm{d} x \mathrm{~d} y\right| \leqslant C^{\prime} s^{1 / 2}\left(\log s^{-1}\right)^{1 / 2}\|f\|_{2}\|g\|_{2}
$$

- If $\alpha=(j, k), 1<j \leqslant k$ and $p, q$ are as in Lemma 9, then there is a constant $C$ depending only on $\alpha$ such that

$$
\left|\int_{|u| \leqslant s} f(x) g(y) \mathrm{d} x \mathrm{~d} y\right| \leqslant C s^{\frac{j}{k+1}}\|f\|_{p}\|g\|_{q}
$$

- If $\alpha=(1, k), \frac{1}{p_{0}}=\frac{k}{k+1}, \frac{1}{q_{0}}=\frac{1}{k+1}$ and $\left(\frac{1}{p}, \frac{1}{q}\right) \neq\left(\frac{1}{p_{0}}, \frac{1}{q_{0}}\right)$ is on the line segment between $\left(\frac{1}{p_{0}}, \frac{1}{q_{0}}\right)$ and $(1,1)$, then there is a constant $C$ depending only on $k$ and $p$ such that

$$
\left|\int_{|u| \leqslant s} f(x) g(y) \mathrm{d} x \mathrm{~d} y\right| \leqslant C s^{1 / p^{\prime}}\|f\|_{p}\|g\|_{q}
$$

and a constant $C^{\prime}$ depending only on $k$ and $\Omega$ such that

$$
\left|\int_{|u| \leqslant s} f(x) g(y) \mathrm{d} x \mathrm{~d} y\right| \leqslant C s^{\frac{1}{k+1}}\left(\log s^{-1}\right)^{\frac{k}{k+1}}\|f\|_{p_{0}}\|g\|_{q_{0}}
$$

## A combinatorial problem

Returning to the setting of $\Omega=Q$, if we insist on having estimates involving power decay with exponent $\frac{1}{|\alpha|}$, then even in the case $n=2, \alpha=(1,1), f=g=\chi_{(0,1)}$ the best established bound to date is $C s^{1 / 2}\left(\log s^{-1}\right)^{1 / 2}$, which is of course contained in Lemma 9. Here there is a connection with a combinatorial problem. A positive answer to the following question would allow us to remove the logarithm term in this particular case.

Question: Is there a constant $c_{0}>0$ such that for any set $E \subseteq Q=[0,1]^{2}$ with positive (Lebesgue) measure, there is an axis-parallel rectangle with corners in $E$ that has area at least $c_{0}|E|^{2}$ ?

Suppose that we could answer the Question in the affirmative. Let $u$ be our phase function with $\frac{\partial^{2} u}{\partial x \partial y} \geqslant 1$ on $Q$, and let $E=\{(x, y) \in Q:|u(x, y)| \leqslant s\}$. Suppose we have a rectangle $R$ with corners in $E$, labelled anticlockwise from the bottom-left as $A, B, C, D$. By Green's Theorem,

$$
|R| \leqslant \int_{R} \frac{\partial^{2} u}{\partial x \partial y} \mathrm{~d} x \mathrm{~d} y=\frac{1}{2} \int_{\partial R}\left(\frac{\partial u}{\partial y} \mathrm{~d} y-\frac{\partial u}{\partial x} \mathrm{~d} x\right)=u(A)+u(C)-u(B)-u(D)
$$

Since $A, B, C, D \in E$, we have $|R| \leqslant 4 s$. Therefore $|E| \leqslant \frac{2}{\sqrt{c_{0}}} s^{1 / 2}$. (Otherwise, by our assumption that the answer to the Question is yes, we could find a rectangle with corners in $E$ of area greater than $c_{0}\left(2\left(s / c_{0}\right)^{1 / 2}\right)^{2}=4 s$, a contradiction.)

It is clear that our Question could be posed for measures other than Lebesgue measure on $[0,1]$. For instance, adopting counting measure on $A=\{1,2, \ldots, N\}$, the problem becomes that of determining the existence or otherwise of a $c_{0}>0$ such that whenever we have an $M$-element subset $B$ of $A \times A$, there is a rectangle $R$ with corners in $B$ of area at least $c_{0} M^{2} / N^{2}$. Even this is still unsolved, but we round off this subsection by returning to the Lebesgue measure case and establishing an upper bound for the $c_{0}$ appearing there.

We construct a series of sets $E_{k} \subseteq Q$ and see what we can infer from them regarding the constant $c_{0}$, supposing that it exists at all. Define $\Delta_{1}=E_{1}$ as the open quadrilateral strip with corners at $(0,0),(\delta, 0),(1,1-\delta)$ and $(1,1)$ for some small quantity $\delta$. The biggest axis-parallel rectangle with corners in $\Delta_{1}$ has area $\delta^{2} / 4$. (Strictly speaking there is no 'biggest' such rectangle, but we can find rectangles with areas arbitrarily close to this value.) This gives us an initial bound of $c_{0} \leqslant 1 / 4$.

It seems worth asking if we can add another similarly-shaped strip $\Delta_{2}$ such that there are no larger axis-parallel rectangles with corners in $E_{2}=\Delta_{1} \cup \Delta_{2}$. If we consider making $\Delta_{2}$ the strip of 'thickness' (defined as length of axis-parallel sides) $t_{2}<\delta$, then by placing its bottom-left corner at ( $2 \delta, 0$ ) we just avoid having squares of side $\delta$ with corners in $E_{2}$. By considering rectangles with left side in $\Delta_{1}$ and right side in $\Delta_{2}$, it becomes clear that we must have $2 \delta t_{2} \leqslant \delta^{2} / 4$ and so the largest value $t_{2}$ may take is $\delta / 8$. We select this value in order to maximise $\left|E_{2}\right|$. It is clear that there are now no axis-parallel rectangles with corners in $E_{2}$
and area greater than $\delta^{2} / 4$. Figure 1.2 shows what is going on.


Figure 1.2: Constructing the $\Delta_{i}$

We can repeat this argument to add a finite number $k$ of strips $\Delta_{i}$ with bottom-left corners at $\left(d_{i}, 0\right)$ and thickness $t_{i}$. Using similar considerations, we seek values of $d_{i}$ and $t_{i}$ that preclude any axis-parallel rectangle with corners in $E_{k}$ and area greater than $\delta^{2} / 4$. We claim that this is achieved if we define the $d_{i}$ and $t_{i}$ by the recurrence relations:

$$
\begin{align*}
d_{1} & =0, & t_{1} & =\delta, \\
\text { and for } i \geqslant 1, & d_{i+1} & =2\left(d_{i}+t_{i}\right) & \text { and } \tag{1.6}
\end{align*} \quad t_{i+1}=\frac{\delta^{2}}{4 d_{i+1}} .
$$

To see this, consider an axis-parallel rectangle $R$ with corners $A, B, C$ and $D$ (labelled anticlockwise from the bottom-left) in $E_{k}$ for some minimal $k$. By minimality of $k$ we have $B \in \Delta_{k}$. We also suppose that $k \geqslant 2$ to avoid trivial cases. Firstly, we claim that at least one of $A$ or $C$ must also be in $\Delta_{k}$. For otherwise, the sides $A B$ and $B C$ would have to have length strictly greater than $d_{k-1}+t_{k-1}$, since $d_{k}=2\left(d_{k-1}+t_{k-1}\right)$. But $A, C$ and $D$ are in $E_{k-1}$ and thus the sides $A D$ and $C D$ must have length strictly less than $d_{k-1}+t_{k-1}$, which is a contradiction.

Thus we know that at least one side of $R$ has endpoints in $\Delta_{k}$. Say it is $B C$. Clearly the side $A B$ will be at its longest if it lies in $\Delta_{1}$. In this case there is some $0 \leqslant a<t_{k}$ such that $A B$ has length $d_{k}+a$. It is also clear by the geometry of $E_{k}$ that $B C$ must have length at most $t_{k}-a$. Therefore

$$
\begin{aligned}
|R| & \leqslant\left(d_{k}+a\right)\left(t_{k}-a\right) \\
& =d_{k} t_{k}-a\left(d_{k}-t_{k}\right)-a^{2} \\
& \leqslant \frac{\delta^{2}}{4}
\end{aligned}
$$

since $d_{k}>t_{k}$ for $k \geqslant 2$.
Observe that all of our $\Delta_{i}, E_{i}, d_{i}$ and $t_{i}$ depend on the quantity $\delta$, which we have thus far left unspecified. In what follows, we shall be more rigorous and in particular more explicit about $\delta$. Introducing $e_{i}=d_{i} / 2 \delta$ and $u_{i}=t_{i} / \delta$ (which are independent of $\delta$ by (1.6) and slightly easier to calculate with), we have the relations

$$
e_{i+1}=2 e_{i}+u_{i} \quad \text { and } \quad u_{i+1}=\frac{1}{8 e_{i+1}}
$$

for $i \geqslant 1$, with of course $e_{1}=0$ and $u_{1}=1$. From these it is easily seen that the $u_{i}$ can be defined more directly by

$$
u_{1}=1, \quad u_{2}=\frac{1}{8} \quad \text { and } \quad u_{i+1}=\frac{u_{i}}{2+8 u_{i}^{2}} \text { for } i \geqslant 2
$$

We claim that $c_{0} \leqslant 4 u^{-2}$, where $u=\sum_{i=1}^{\infty} u_{i} .{ }^{4}$ For let $\varepsilon>0$. Choose $K$ such that $\left|\sum_{i=1}^{K} u_{i}-u\right|<\varepsilon / 2$, and choose $\delta_{1}$ such that for $\delta<\delta_{1}$ we can fit all of the $K$ strips $\Delta_{1}, \ldots, \Delta_{K}$, as given by the construction procedure described above, into $Q$. From their defining relations (1.6), we can see that for each $i$, both $d_{i}$ and $t_{i}$

[^2]Now $u_{i} \rightarrow 0$ as $i \rightarrow \infty$ by comparison with $2^{-i}$, and therefore

$$
\frac{u_{i+1}}{u_{i}} \rightarrow \frac{1}{2}
$$

are $O(\delta)$. Thus we have for $\delta<\delta_{1}$ that

$$
\begin{aligned}
\left|E_{K}\right| & =\sum_{i=1}^{K}\left(t_{i}\left(1-d_{i}\right)-\frac{t_{i}^{2}}{2}\right) \\
& =\sum_{i=1}^{K} t_{i}-O\left(\delta^{2}\right) \\
& =\delta \sum_{i=1}^{K} u_{i}-O\left(\delta^{2}\right)
\end{aligned}
$$

where the $O\left(\delta^{2}\right)$ terms depends on $K$. Now choose $\delta<\delta_{1}$ such that the $O\left(\delta^{2}\right)$ term is less than $\delta \varepsilon / 2$. Then

$$
\begin{aligned}
c_{0} & \leqslant \frac{\delta^{2}}{4}\left|E_{K}\right|^{-2} \\
& =\frac{\delta^{2}}{4}\left(\delta \sum_{i=1}^{K} u_{i}-O\left(\delta^{2}\right)\right)^{-2} \\
& \leqslant \frac{\delta^{2}}{4}\left(\delta\left(u-\frac{\varepsilon}{2}\right)-\delta \frac{\varepsilon}{2}\right)^{-2} \\
& =\frac{1}{4}(u-\varepsilon)^{-2}
\end{aligned}
$$

and the claim is established.
Computing a few terms of the sum, we find that $c_{0} \leqslant \frac{1}{6.167 \ldots}$. (The second partial sum gives us $u \geqslant \frac{9}{8} \geqslant \sqrt{5 / 4}$ and so $c_{0}<1 / 5$, while the fourth partial sum tells us that $u \geqslant \frac{1053146031}{858106756} \geqslant \sqrt{6 / 4}$ and so $c_{0}<1 / 6$.) The methods here can in fact be tightened up to show that $c_{0} \leqslant 1 / 8$. In order to keep this whole digression to a reasonable length, we defer this result to Appendix B.

Before ending this particular discussion, we mention Katz's paper [7], which settles the Question under further hypotheses. Note that we can re-phrase the Question as: does there exist a constant $C>0$ such that if $E \subseteq[0,1]^{2}$ and all axis-parallel rectangles $R$ with corners in $E$ obey $|R| \leqslant \varepsilon^{2}$, then $|E| \leqslant C \varepsilon$ ? Katz proves that we can answer this re-phrasing of the Question affirmatively if we also stipulate that certain six-cornered figures whose corners lie in $E$ must all have area at most $\varepsilon^{2}$.

## Lorentz spaces

Estimates of the form 1.3 involving straight power decay of $s$ with the optimal exponent $\varepsilon=1 /|\alpha|$ are possible when we restrict the class of phase functions involved. From now on we shall only discuss the sublevel set estimates, since, as we have already noted, their oscillatory integral counterparts are stronger statements and so pose additional difficulties. In the case of type $M$ functions, we come encouragingly close with an estimate for when the $f_{i}$ are in the Lorentz spaces $L^{p_{i, 1}}$.

Before we state this estimate, we include a few basics on Lorentz spaces for the unfamiliar reader. The classical reference for this material is [14]. (These few paragraphs can be skipped by those in the know.) For a measurable function $f: \mathbb{R}^{n} \longrightarrow \mathbb{R}$, we define its distribution function $\lambda_{f}$ by

$$
\lambda_{f}(t)=|\{x: \mid f(x)>t\}|, \quad t \in(0, \infty)
$$

and the decreasing rearrangement $f^{*}$ of $f$ by

$$
f^{*}(t)=\inf \{s: \lambda(s) \leqslant t\}, \quad t \in(0, \infty)
$$

We also define the averaged rearrangement $f^{* *}$ of $f$ by

$$
f^{* *}(t)=\frac{1}{t} \int_{0}^{t} f^{*}(u) \mathrm{d} u, \quad t \in(0, \infty)
$$

We introduce the quantity

$$
\|f\|_{p, q}^{*}=\left(\frac{q}{p} \int_{0}^{\infty}\left(t^{1 / p} f^{*}(t)\right)^{q} \frac{\mathrm{~d} t}{t}\right)^{\frac{1}{q}}
$$

for $1 \leqslant p<\infty$ and $1 \leqslant q<\infty$, and

$$
\|f\|_{p, q}^{*}=\sup _{t>0} t^{1 / p} f^{*}(t)
$$

for $q=\infty, 1 \leqslant p \leqslant \infty$. We can now define the Lorentz spaces $L^{p, q}$ by

$$
L^{p, q}=\left\{f:\|f\|_{p, q}^{*}<\infty\right\} .
$$

In general, $\|\cdot\|_{p, q}^{*}$ is not a norm, but we can make $L^{p, q}$ into a Banach space by using the norm

$$
\|f\|_{p, q}=\left(\frac{q}{p} \int_{0}^{\infty}\left(t^{1 / p} f^{* *}(t)\right)^{q} \frac{\mathrm{~d} t}{t}\right)^{\frac{1}{q}}
$$

for $1 \leqslant p<\infty, 1 \leqslant q<\infty$, and

$$
\|f\|_{p, q}=\sup _{t>0} t^{1 / p} f^{* *}(t)
$$

for $q=\infty, 1 \leqslant p \leqslant \infty$. The quantity $\|\cdot\|_{p, q}^{*}$ is employed for its utility, and we have the relationship that for $1<p \leqslant \infty$, if $f \in L^{p, q}$ then

$$
\|f\|_{p, q}^{*} \leqslant\|f\|_{p, q} \leqslant \frac{p}{p-1}\|f\|_{p, q}^{*}
$$

The main Lorentz spaces as far as we are concerned are $L^{p, 1}, L^{p, p}=L^{p}$ and $L^{p, \infty}$. Two important results are as follows:
Theorem 11. If $T$ is a linear operator that maps functions of the form $\sum_{i=1}^{k} c_{i} \chi_{E_{i}}$, where $\left|E_{i}\right|<\infty$, into a vector space $B$ with order-preserving norm $\|\cdot\|$, and if $\left\|T \chi_{E}\right\| \leqslant C\left\|\chi_{E}\right\|_{r, 1}^{*}=C|E|^{1 / r}$ for some constant $C$ independent of $E$, then

$$
\|T f\| \leqslant C\|f\|_{r, 1}^{*}
$$

for all $f$ in the domain of $T$.
The content is that when establishing the boundedness of a linear operator on $L^{p, 1}$ spaces, it is enough to check it on characteristic functions of sets of finite measure.

For the second result, a strengthening of the well-known Marcinkiewicz interpolation theorem, we need the definition that the subadditive operator $T$ is restricted weak type $(r, p)$ if its domain $D$ contains all functions of the form $\sum_{i=1}^{k} c_{i} \chi_{E_{i}}$, where $\left|E_{i}\right|<\infty$, is closed under truncation, and whenever $f \in D \cap L^{r, 1}$ we have $\|T f\|_{p, \infty}^{*} \leqslant K\|f\|_{r, 1}^{*}$ for some $K$.

Theorem 12. Suppose that $T$ is a subadditive operator of restricted weak types $\left(r_{j}, p_{j}\right), j=1,2$, where $r_{0}<r_{1}$ and $p_{0} \neq p_{1}$. Let $1 \leqslant q \leqslant \infty, \theta \in(0,1)$ and

$$
\frac{1}{p}=\frac{1-\theta}{p_{0}}+\frac{\theta}{p_{1}}, \quad \frac{1}{r}=\frac{1-\theta}{r_{0}}+\frac{\theta}{r_{1}}
$$

Then there is a constant $A$ depending on $\theta$ such that

$$
\|T f\|_{p, q}^{*} \leqslant A\|f\|_{r, q}^{*}
$$

for all $f \in \operatorname{dom}(T) \cap L^{r, q}$.

Having described the Lorentz spaces, we can now state and prove the estimate promised earlier.

Theorem 13. Let $u: \Omega \longrightarrow \mathbb{R}$ be of type $M=|\alpha|$ with type $M$ constant $N$. Then

$$
\left|\int_{\Omega \cap\{|u| \leqslant s\} \cap\left\{\left|D^{\alpha} u\right| \geqslant 1\right\}} \prod_{i=1}^{n} f_{i}\left(x_{i}\right) \mathrm{d} x_{i}\right| \leqslant C s^{1 /|\alpha|} \prod_{i=1}^{n}\left\|f_{i}\right\|_{p_{i}, 1},
$$

where $\frac{1}{p_{i}}=1-\frac{\alpha_{i}}{|\alpha|}$ and $C$ depends only on $\alpha, N$ and $n$.
Proof. By Theorem 11, it is enough to establish the result on characteristic functions of sets, i.e. when $f_{i} \equiv \chi_{E_{i}}$ for all $i$. We proceed by induction on $|\alpha|$.

Firstly we treat the case of $\alpha=(1,0, \ldots, 0)$-so $u$ is type 1 . We want to show that

$$
\int_{\Omega \cap\{|u| \leqslant s\} \cap\left\{\left|D^{\alpha} u\right| \geqslant 1\right\}} \prod \chi_{E_{i}}\left(x_{i}\right) \mathrm{d} x_{i} \leqslant C s \prod\left|E_{i}\right| .
$$

Thus it is enough to show that

$$
\left.\sup _{x^{\prime}} \left\lvert\,\left\{x_{1}:|u(x)| \leqslant s \text { and }\left|\frac{\partial u}{\partial x_{1}}\right| \geqslant 1\right\}\right. \right\rvert\, \leqslant C s, \quad \text { where } x=\left(x_{1}, x^{\prime}\right)
$$

But the set above consists of at most $C_{N}$ intervals, for some constant $C_{N}$ depending on the type 1 constant $N$ of $u$. Applying the Mean Value Theorem to each of them, we get the desired estimate with $C=2 C_{N}$. By symmetry we get all the cases when $|\alpha|=1$.

Now suppose the result holds for all multi-indices of size less than $M$ and that $|\gamma|=M$ and $\gamma=\alpha+\beta$, where $0<\alpha, \beta<\gamma$. We have

$$
\begin{aligned}
\int_{\Omega \cap\{|u| \leqslant s\} \cap\left\{\left|D^{\gamma} u\right| \geqslant 1\right\}} \prod \chi_{E_{i}}\left(x_{i}\right) \mathrm{d} x_{i} \leqslant & \int_{\Omega \cap\{|u| \leqslant s\} \cap\left\{\left|D^{\alpha} u\right| \geqslant t\right\}} \prod \chi_{E_{i}}\left(x_{i}\right) \mathrm{d} x_{i} \\
& +\int_{\Omega \cap\left\{\left|D^{\gamma} u\right| \geqslant 1\right\} \cap\left\{\left|D^{\alpha} u\right| \leqslant t\right\}} \prod \chi_{E_{i}}\left(x_{i}\right) \mathrm{d} x_{i} \\
\leqslant & C\left(\frac{s}{t}\right)^{\frac{1}{1 \alpha \mid}} \prod\left|E_{i}\right|^{1-\frac{\alpha_{i}}{|\rho|}} \\
& +C t^{1 /|\beta|} \prod\left|E_{i}\right|^{1-\frac{\beta_{i}}{|\beta|}} \\
\leqslant & C s^{1 /|\gamma|} \prod\left|E_{i}\right|^{1-\frac{\gamma_{i}}{|\gamma|}}
\end{aligned}
$$

by putting $t=\left(s^{|\beta|} \Pi\left|E_{i}\right|^{\beta_{i}|\alpha|-\alpha_{i}|\beta|}\right)^{1 /|\gamma|}$. The Theorem now follows by induction.

Refer to [1] for a discussion of Theorem 13. The question that immediately presents itself is whether we can improve the $L^{p, 1}$ spaces appearing in the statement of Theorem 13 to $L^{p}$ spaces, and this is one of the major motivations for our work.

### 1.3 A decompositional approach

A recent paper of Phong, Stein and Sturm [11] treats the case of polynomial $u$. They employ algebraic methods to provide a decomposition of the domains of integration appearing in certain multilinear sublevel set and oscillatory integral operators. Amongst other results, they achieve:

Theorem 14. Let $\alpha \in \mathbb{N}^{n} \backslash\{0\}$ and $u \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ a polynomial of degree $d$. For any $\Omega \subseteq\left\{x \in Q:\left|D^{\alpha} u(x)\right|>1\right\}$ we have for all $s>0$ that

$$
\begin{equation*}
\left|\int_{\Omega \cap\{|u(x)| \leqslant s\}} \prod_{i=1}^{n} f_{i}\left(x_{i}\right) \mathrm{d} x_{i}\right| \leqslant C s^{1 /|\alpha|} \log ^{n-2}\left(2+\frac{1}{s}\right) \prod_{i=1}^{n}\left\|f_{i}\right\|_{p_{i}}, \tag{1.7}
\end{equation*}
$$

where $n \geqslant 2, \frac{1}{p_{i}}=1-\frac{\dot{\alpha}_{i}}{|\alpha|}$ and $C$ depends only on $d$ and $|\alpha|$.
Notice that this establishes the desired estimate (1.3) with $\varepsilon=\frac{1}{|a|}$ when $n=2$ up to the degree of $u$. (The $n=2$ case with $\Omega=[0,1]^{2}$ had already been proved earlier, by completely different methods, for a wider class of functions by Carbery, Christ and Wright in [3].)

The proof of Theorem 14 works inductively, starting with the two-dimensional case. We give a sketch of how this base case is proved, following [11]. All of the results and proofs given in this section are due to Phong, Stein and Sturm, with only some minor presentational modifications made. Firstly, the following two elementary lemmas are needed.

Lemma 15. Suppose that $\Omega \subseteq \mathbb{R}^{2}$ is open, $u(x, y)$ is smooth on $\Omega$ and for all $(x, y) \in \Omega$ that $\left|\partial_{x}^{\alpha} \partial_{y}^{\beta} u(x, y)\right| \geqslant 1$ and $|u(x, y)| \leqslant s$. Then for any axis-parallel
rectangle $R \subseteq \Omega$ with sides of length $l$ and $h$ we have

$$
l^{\alpha} h^{\beta} \leqslant C s
$$

where $C$ depends only on $\alpha$ and $\beta$.
Proof. Firstly we observe that if $f: \mathbb{R} \longrightarrow \mathbb{R}$ is $k$ times differentiable and we define $\left(\Delta_{v} f\right)(t)=f(t+v)-f(t)$, then we have

$$
\begin{align*}
& \int_{x_{0}}^{x_{0}+v} \int_{x_{1}}^{x_{1}+v} \cdots \int_{x_{k-1}}^{x_{k-1}+v} f^{(k)}(t) \mathrm{d} t \mathrm{~d} x_{k-1} \cdots \mathrm{~d} x_{1} \\
& =\left(\Delta_{v}^{k} f\right)\left(x_{0}\right)  \tag{1.8}\\
& =\sum_{i=1}^{k}(-1)^{i}\binom{k}{i} f\left(x_{0}+i v\right) .
\end{align*}
$$

Let $\left(x_{0}, y_{0}\right)$ be the bottom left corner of $R$. We apply (1.8) to the function $f(t)=\partial_{y}^{\beta} u(t, y)$ with $v=l / \alpha$ and $k=\alpha$ to get

$$
\left(\frac{l}{\alpha}\right)^{\alpha} \leqslant \sum_{i=0}^{\alpha}(-1)^{i}\binom{\alpha}{i} \partial_{y}^{\beta} u\left(x_{0}+i l / \alpha, y\right)
$$

since $\left|\partial_{x}^{\alpha} \partial_{y}^{\beta} u(x, y)\right| \geqslant 1$ on $R$. Now for each $i$ we apply (1.8) to the function $f(t)=u\left(x_{0}+i l / \alpha, t\right)$ with $v=h / \beta$ and $k=\beta$, getting

$$
\begin{aligned}
& 2^{\alpha+\beta} s \geqslant\left|\sum_{i=0}^{\alpha} \sum_{j=0}^{\beta}(-1)^{i+j}\binom{\alpha}{i}\binom{\beta}{j} u\left(x_{0}+i l / \alpha, y_{0}+j h / \beta\right)\right| \\
& =\int_{y_{0}}^{y_{0}+\frac{h}{\beta}} \int_{y_{1}}^{y_{1}+\frac{h}{\beta}} \ldots \int_{y_{k-1}}^{y_{k-1}+\frac{h}{\beta}} \sum_{i=0}^{\alpha}(-1)^{i}\binom{\alpha}{i} \partial_{y}^{\beta} u\left(x_{0}+i l / \alpha, t\right) \mathrm{d} t \mathrm{~d} y_{k-1} \cdots \mathrm{~d} y_{1} \\
& \geqslant\left(\frac{l}{\alpha}\right)^{\alpha}\left(\frac{h}{\beta}\right)^{\beta}
\end{aligned}
$$

as claimed.
The second lemma is of key importance in our work. It says heuristically that domains in $\mathbb{R}^{2}$ with disjoint horizontal and vertical projections behave independently of one another with respect to the integral operators in question.

Lemma 16. Let $T$ be a bilinear operator given by

$$
T(f, g)=\int_{X \times Y} K(x, y) f(x) g(y) \mathrm{d} x \mathrm{~d} y
$$

Assume that $\operatorname{supp} K \subseteq \bigcup_{k=1}^{\infty} I_{k} \times J_{k}$, where $I_{k}$, $J_{k}$ are measurable subsets of $X, Y$ respectively such that $\left|I_{k} \cap I_{l}\right|=\left|J_{k} \cap J_{l}\right|=0$ for $k \neq l$. Let $T_{k}$ be the bilinear operator with kernel $\chi_{I_{k}}(x) \chi_{J_{k}}(y) K(x, y)$. If $p, q$ are conjugate, let $\left\|T_{k}\right\|,\|T\|$ be the norms of $T_{k}, T$ as bilinear operators on $L^{p}(X) \times L^{q}(Y)$. Then $\|T\| \leqslant \sup _{k}\left\|T_{k}\right\|$.

Lemma 16 allows us to prove (14) when $u(x, y)=x^{\alpha} y^{\beta}$-the "model case".
Lemma 17. Let $(\alpha, \beta) \in \mathbb{N}^{2}$ and $u(x, y)=x^{\alpha} y^{\beta}$. Then there is a $C>0$ such that for all $s>0$ we have

$$
\left|\int_{Q \cap\{|u(x)| \leqslant s\}} f(x) g(y) \mathrm{d} x \mathrm{~d} y\right| \leqslant C s^{1 /(\alpha+\beta)}\|f\|_{p}\|g\|_{q},
$$

where $p=\frac{\alpha+\beta}{\beta}$ and $q=\frac{\alpha+\beta}{\alpha}$.
Proof. Define $E_{s}=\left\{(x, y) \in Q: x^{\alpha} y^{\beta}<s\right\}$ and

$$
W_{s}(f, g)=\int_{E_{s}} f(x) g(y) \mathrm{d} x \mathrm{~d} y
$$

We want to show that the operator norm of $W_{s}$ on $L^{p}[0,1] \times L^{q}[0,1]$ is bounded by $C s^{1 /(\alpha+\beta)}$ for some absolute constant $C$. Let $N$ be the integer such that $2^{-N-1}<s \leqslant 2^{-N}$. We may as well suppose that $s=2^{-N}$. Now define for each $i \geqslant 1$ and $k, l \geqslant 0$,

$$
R_{i}(k, l)=\left\{(x, y) \in Q: 2^{-k-\frac{1}{2}} \leqslant x^{\alpha} \leqslant 2^{-k+\frac{1}{2}}, 2^{-l-\frac{1}{2}} \leqslant y^{\alpha} \leqslant 2^{-l+\frac{1}{2}}\right\}
$$

Let $E_{i}=\bigcup_{k+l=N+i-1} R_{i}(k, l)$ for $i \geqslant 1$. Then we have that

$$
W_{s}=\sum_{i} W_{i}=\sum_{i} \sum_{k+l=N+i-1} W_{i}(k, l)
$$

where $W_{i}$ and $W_{i}(k, l)$ are defined similarly to $W_{s}$ but with $E_{i}$ and $R_{i}(k, l)$ replacing $E_{s}$ in the definition respectively. By the triangle inequality it is enough to show that $\left\|W_{i}\right\| \leqslant C^{\prime} 2^{\frac{-N-2}{\alpha+\beta}}$ for some absolute $C^{\prime}$. By Lemma 16 we have that

$$
\left\|W_{i}\right\| \leqslant \sup _{k+l=N+i-1}\left\|W_{i}(k, l)\right\|
$$

But for any conjugate pair $\left(r, r^{\prime}\right)$, we have

$$
\begin{align*}
\left|W_{i}(k, l)(f, g)\right| & \leqslant\left(\int_{x^{\alpha} \sim 2^{-k}} 1 \cdot|f(x)| \mathrm{d} x\right)\left(\int_{y^{\beta} \sim 2^{-i}} 1 \cdot|g(y)| \mathrm{d} y\right)  \tag{1.9}\\
& \leqslant 2^{\left(-\frac{k}{\alpha r^{\prime}}-\frac{1}{\beta_{r}}\right)}\|f\|_{r}\|g\|_{r^{\prime}} \tag{1.10}
\end{align*}
$$

by Hölder's Inequality. Putting $r=p$ and $r^{\prime}=q$ we have $\left\|W_{i}(k, l)\right\|$ bounded by $C^{\prime} 2^{\frac{-N-i}{\alpha+\beta}}$ so long as $k+l=N+i-1$, and the proof is finished.

Next comes an important definition, which furnishes us with the buildingblocks of the decomposition.

Definition 18. The set $A \subseteq Q$ is a curved trapezoid if there exist $a<b$ and continuous monotonic $\phi, \psi:[a, b] \longrightarrow \mathbb{R}$ with $\phi(x)>\psi(x)$ on $(a, b)$ such that

$$
A=\{(x, y) \in Q: a<x<b, \psi(x)<y<\phi(x)\}
$$

We now establish the case when $\left|\partial_{x}^{\alpha} \partial_{y}^{\beta} u\right|>1$ and $\Omega$ is a curved trapezoid. There are two cases:

- The primary case is when $\phi$ is increasing and $\psi$ decreasing (or vice versa). Here we may cut $\Omega$ along the line $y=c$ where $c=\frac{\phi(a)+\psi(a)}{2}$. Call the upper piece $\Omega^{\prime}$. (See the left-hand diagram in Figure 1.3.) We may also assume that $a=c=0$. By Lemma $15, x^{\alpha} y^{\beta} \leqslant C s$ for all $x \in[0, b]$. Thus,

$$
\left\{(x, y) \in \Omega^{\prime}:|u(x, y)| \leqslant s\right\} \subseteq\left\{(x, y) \in \Omega^{\prime}: x^{\alpha} y^{\beta} \leqslant C s\right\}
$$

and so

$$
\begin{aligned}
\left|\int_{\Omega^{\prime} \cap\{|u| \leqslant s\}} f(x) g(y) \mathrm{d} x \mathrm{~d} y\right| & \leqslant\left|\int_{\Omega^{\prime} \cap\left\{x^{\alpha} y^{\beta} \leqslant C s\right\}} f(x) g(y) \mathrm{d} x \mathrm{~d} y\right| \\
& \leqslant C^{\prime} s^{\frac{1}{\alpha+\beta}}\|f\|_{p}\|g\|_{q}
\end{aligned}
$$

by applying the model case. The estimate for the lower piece is similar.

- In the secondary case, both $\phi$ and $\psi$ are monotonic. Here we cut up $A$ as shown in the right-hand diagram in Figure 1.3 and the estimate follows from the previous case and Lemma 16.


Figure 1.3: The two kinds of curved trapezoid

Finally, some algebraic geometry (Bézout's Theorem—refer to [12]) is used to show that any algebraic domain can be cut up into a controlled number of curved trapezoids. More precisely:

Definition 19. A set $D \subseteq Q^{n}$ is called a simple algebraic domain of type $(r, d, n)$ if there are $r^{\prime} \leqslant r$ non-constant polynomials $f_{k}$ of degree at most $d$ such that

$$
D=\left\{x=\left(x_{1}, \ldots, x_{n}\right) \in Q^{n}: f_{k}(x) \geqslant A_{k}, k=1, \ldots, r^{\prime}\right\} .
$$

We say that $D$ is an algebraic domain of type $(r, d, n, w)$ if there are $w^{\prime} \leqslant w$ simple algebraic domains of type $(r, d, n)$ such that $D=D_{1} \cup \cdots \cup D_{w^{\prime}}$.

The authors show that for any $(r, d, w)$ there is an $M=M(r, d, w)$ such that for any algebraic domain $D$ of type ( $r, d, 2, w$ ) one can find $M^{\prime} \leqslant M$ curved trapezoids $\tau_{i}$ and a set $Z$ of zero measure such that

$$
D=\left(\bigsqcup_{i=1}^{M^{\prime}} \tau_{i}\right) \sqcup Z
$$

where the square cups denote disjoint unions. Applying this result to our phase polynomial $u$ in the sublevel set operator, and using the previous steps, the base case $n=2$ of Theorem 14 is established.

### 1.4 Where now?

We pull together some of the ideas described in the previous sections. It is natural to seek the improvement of the estimate (Theorem 13) known for multilinear
sublevel set operators involving type $M$ functions from $L^{p, 1}$ estimates to full $L^{p}$. To this end, one can ask whether appropriate decompositions can be found of $B C(m, n)$ domains (recall Definition 4) into curved trapezoids. As we saw in Section 1.3 , curved trapezoids behave well with respect to the operators we are interested in, and so would seem like good building blocks on which to base such a decomposition. We also note that the continuity condition specified for curved trapezoids as defined in Section 1.3 was not used anywhere, and so it seems reasonable to drop this assumption in our considerations.

Another principle we can draw on is the orthogonality lemma (Lemma 16), also appearing in Section 1.3, which says roughly speaking that as far as our operators are concerned, domains that are the the union of several domains with mutually disjoint horizontal and vertical projections may be treated as just one of them. Thus we shall allow ourselves to perform decompositions "up to orthogonal families". As we shall soon see in the next chapter, one can easily decompose connected $B C(1)$ domains into curved trapezoids. We then notice that the connected components of a disconnected $B C(1)$ domain form an orthogonal family of connected $B C(1)$ domains. In view of Lemma 16, this leads us to the belief that $B C(1)$ domains, possibly disconnected, are suitable "atomic blocks" for any decomposition we might come up with.

The next objects to focus on would seem naturally enough to be $B C(2,1)$ domains. Progress in the continuous case seems fraught with technicalities, and it is at this stage that the idea of working in a quasi-discrete setting emerges. After formulating this notion in Chapter 2, progress is made and the relevant results are given in Chapter 3. Following on, we describe a method that allows us to decompose $B C(n, 1)$ domains for any $n$, and that can be extended to decompose any $B C(m, n)$ domain provided the domain in question does not have any holes.

At some stage, we would expect that the derivative condition $D^{\alpha} u \geqslant 1$ should come into play. Indeed, considering the implications of this condition in the continuous setting when $\alpha=(1,1)$ leads us to formulate restrictions on how holes are allowed to be arranged within a $B C(m, n)$ domain. These restrictions turn out to be sufficient to allow a full decomposition of general $B C(m, n)$ domains to
be found.
Once all the decomposition theorems have been given, we ask to what extent they can serve their original purpose, whether they have applications in other settings, and what questions are raised that might warrant future study.

## Chapter 2

## The Quasi-discrete Setting

In this chapter, we develop further some of the ideas mentioned in the Introduction to begin formulating and working on questions that arise naturally from the background material. The key concepts are $B C(m, n)$ domains, orthogonality and curved trapezoids.

Another idea, which is fundamental to the whole thesis, is that of working in an essentially discrete setting, based on the discrete two-dimensional plane, $\mathbb{Z}^{2}$. Here many of the barriers to progress found in $\mathbb{R}^{2}$ are removed, and one hopes that suitable approximation or limiting arguments can be found in order to wield the results proved in this chapter and the next back in a continuous context. The results from the discrete setting of course have value and interest in their own right, and this is also discussed later on.

We start by recalling a few definitions and introducing a new one.

## Definition 20.

- $A$ curved trapezoid is a set of the form $\left\{(x, y) \in \mathbb{R}^{2}: a<x<b, f(x)<\right.$ $y<g(x)\}$, where $f$ and $g$ are monotonic functions. (Notice that we have dropped the continuity assumption from the definition used in [11].)
- A set $\Omega \subseteq \mathbb{R}^{n}$ is said to be $B C\left(m_{1}, \ldots, m_{n}\right)$ if for each $i$ and any line $L$ parallel to the $i^{\text {th }}$ axis, $L \cap \Omega$ has at most $m_{i}$ connected components. We abbreviate $B C(m, \ldots, m)$ to $B C(m)$.
- Let $\Omega$ be an open subset of $\mathbb{R}^{n}$. The function $p: \Omega \longrightarrow \mathbb{R}$ is said to be of type $M$ if it has the property:
there exists $N$ such that for all $\beta$ with $|\beta| \leqslant M$ and all $s>0$, the set $\left\{x \in \Omega:\left|D^{\beta} p(x)\right| \leqslant s\right\}$ is $B C(N)$.

The least such $N$ is called the type $M$ constant $t_{M}(p)$ of $p$.

- The subset $\Omega$ of $\mathbb{R}^{2}$ is horizontally convex (H-convex) if whenever ( $x, y_{0}$ ) and $\left(x^{\prime}, y_{0}\right) \in \Omega$ and $x<z<x^{\prime}$, then $\left(z, y_{0}\right) \in \Omega$. Similarly, $\Omega$ is vertically convex ( $V$-convex) if whenever $\left(x_{0}, y\right),\left(x_{0}, y^{\prime}\right) \in \Omega$ and $y<w<y^{\prime}$, then $\left(x_{0}, w\right) \in \Omega$. We use 'HV-convex' to mean 'both horizontally and vertically convex'

Definition 21. A family of sets $\left\{\Omega_{i}\right\}$ in $\mathbb{R}^{n}$ is said to be a $B C\left(m_{1}, \ldots, m_{n}\right)$ family if for all $i$, no line parallel to the $i^{\text {th }}$ coordinate axis meets more than $m_{i}$ of the $\Omega_{i}$.

Motivated by the methods of [11], as discussed in the Introduction, it seemed natural to ask whether one could decompose $B C(N)$ domains in $\mathbb{R}^{2}$ into a number of curved trapezoids bounded by a function of $N$. The simplest case, that of $B C(1)$ domains, readily yields to a straightforward decomposition without needing any further hypotheses.

A key result in [11] is Lemma 16, which was stated on page 21. What it says in effect is that in the context of their work, domains that are the the union of several domains of mutually disjoint horizontal and vertical projections may be treated as just one of them. In particular, since the connected components of a $B C(1)$ domain form a $B C(1)$ family, it is enough to consider connected $B C(1)$ domains.

Thus let $\Omega$ be a bounded connected subset of the $(x, y)$-plane with the $B C(1)$ property, i.e. that for all axis parallel lines $L$, the set $L \cap \Omega$ consists of a single component.

For $t \in \mathbb{R}$ let $L_{t}$ denote the vertical line $x=t$. Clearly, for each $t$ there exist $a(t)$ and $b(t)$ such that if $L_{t} \cap \Omega \neq \emptyset$ then $\pi_{y}\left(L_{t} \cap \Omega\right)$ is an interval with endpoints $a(t)$ and $b(t)$, where $\pi_{y}$ denotes the usual projection onto the $y$-axis. It is easy to see that $a$ and $b$ can change monotonicity at most once, otherwise the
$B C(1)$ property would be violated. Up to symmetry, we have four cases of what $\Omega$ could look like, determined by whether either, both or neither of $a, b$ change monotonicity. (See Figure 2.1.)

If both $a$ and $b$ are monotonic then we just have a curved trapezoid. If either one changes monotonicity, we make a vertical cut at the point where it does so and are left with at most three curved trapezoids. Thus we have proved:

Theorem 22. A bounded, connected $B C(1)$ domain in $\mathbb{R}^{2}$ can be decomposed into three or fewer curved trapezoids.


Figure 2.1: The possibilities in the $B C(1)$ case

## The quasi-discrete setting

The next thing to investigate would seem to be $B C(2,1)$ domains, but the goal of decomposing $B C(2,1)$ domains in $\mathbb{R}^{2}$ has proved elusive thus far. However, one might consider approximating such domains by domains that are roughly speaking made up of squares aligned to some grid. It will suffice to work with unit squares and then scale. This discrete approach provides a more amenable setting for decompositions to take place, since many of the technicalities involved with $\mathbb{R}^{2}$ are done away with. However, first of all we must establish that the important notions of the $B C$ properties and connectedness can be carried between the two settings safely.

Getting down to details, we think of $\mathbb{Z}^{2}$ as sitting inside $\mathbb{R}^{2}$ in the usual way. Furthermore, given a subset $A$ of $\mathbb{Z}^{2}$, we can associate it with the subset of $\mathbb{R}^{2}$ that is the union of the unit squares centred at each point of $A$. This informal
association ignores the question of what goes on at the boundaries of the squares, but given that these form a set of measure zero in the plane, this issue does not cause us any problems.

We define operators $\mathcal{S}$ and $\mathcal{T}$ that map between subsets of $\mathbb{Z}^{2}$ and subsets of $\mathbb{R}^{2}$, and give the exact meaning of the word 'quasi-discrete':

## Definition 23.

- For a subset $U$ of $\mathbb{R}^{2}$, define $\mathcal{S}(U)$ as the set of points of $\mathbb{Z}^{2}$ lying in $U$, i.e. $U \cap \mathbb{Z}^{2}$.
- For a subset $A$ of $\mathbb{Z}^{2}$, define $\mathcal{T}(A)$ as the interior of the union of the closed unit-side squares centred at each point of $A$. For aesthetic reasons we may write $\mathcal{T}(s)$ rather than $\mathcal{T}(\{s\})$ when $s$ is a single point of $\mathbb{Z}^{2}$.
- We say that $\Omega \subseteq \mathbb{R}^{2}$ is a quasi-discrete domain if $\Omega=\mathcal{T}(A)$ for some $A \subseteq \mathbb{Z}^{2}$.

A characterisation of the set $\mathcal{T}(A)$ for $A \subseteq \mathbb{Z}^{2}$ is as follows: for each $x \in \mathbb{R}^{2}$, let $A_{x}$ be the set of elements of $\mathbb{Z}^{2}$ of shortest distance (with the usual metric) to $x$. Then $A_{x}$ has either 1,2 or 4 elements, depending on whether $x$ lies on the inside, edge or corner of a unit square centred at a point of $\mathbb{Z}^{2}$. (See Figure 2.2.) We see that

$$
\begin{equation*}
x \in \mathcal{T}(A) \text { if and only if } A_{x} \subseteq A \tag{2.1}
\end{equation*}
$$



- $x \quad A_{x}$



Figure 2.2: The possibilities for $A_{x}$

We also introduce a notion of $B C(m, n)$-ness and related ideas in $\mathbb{Z}^{2}$.

Definition 24. For any $n \in \mathbb{N}$, let $\bar{n}=\{0,1, \ldots, n\}$.

- We define an interval in $\mathbb{Z}$ as a set of the form $\bar{n}+m$ for some $n \in \mathbb{N}, m \in \mathbb{Z}$; or $\left\{n \in \mathbb{Z}: n \geqslant n_{0}\right\}$ for some $n_{0} \in \mathbb{Z}$; or $\left\{n \in \mathbb{Z}: n \leqslant n_{0}\right\}$ for some $n_{0} \in \mathbb{Z}$. We use round and square bracket notation in the same way as for intervals on the real line, for instance $(a, b]=\{x \in \mathbb{Z}: a<x \leqslant b\}$.
- We say that $A \subseteq \mathbb{Z}^{2}$ is a $B C(m, n)$ domain if for each fixed $y_{0}$, the horizontal section $A \cap\left\{\left(x, y_{0}\right): x \in \mathbb{Z}\right\}$ consists of at most $m$ intervals and for each fixed $x_{0}$, the vertical section $A \cap\left\{\left(x_{0}, y\right): y \in \mathbb{Z}\right\}$ consists of at most $n$ intervals.
- We say that a family $\left\{A_{i}\right\}_{i \in I}$ of subsets of $\mathbb{Z}^{2}$ is $B C(m, n)$ if no line $\left\{\left(x, y_{0}\right)\right.$ : $x \in \mathbb{Z}\}$ meets more than $m$ of the $A_{i}$ and no line $\left\{\left(x_{0}, y\right): y \in \mathbb{Z}\right\}$ meets more than $n$ of them.
- We call $A \subseteq \mathbb{Z}^{2}$ horizontally convex if whenever $\left(x, y_{0}\right)$ and $\left(x^{\prime}, y_{0}\right)$ are in $A$ and $x<z<x^{\prime}$, then $\left(z, y_{0}\right) \in A$. Vertical convexity is defined similarly.

We observe the following about $\mathcal{S}$ and $\mathcal{T}$.
Lemma 25. If $\Omega \subseteq \mathbb{R}^{2}$ is $B C(m, n)$ for some $m, n \in \mathbb{N}$, then $\mathcal{S}(\Omega)$ is also $B C(m, n)$. If $A \subseteq \mathbb{Z}^{2}$ is $B C(1)$ then $\mathcal{T}(A)$ is also $B C(1)$, i.e. $\mathcal{T}$ preserves $H V$ convexity.

Proof. Let $\Omega \subseteq \mathbb{R}^{2}$ and suppose that for some $y_{0} \in \mathbb{Z}$, the section $\mathcal{S}(\Omega) \cap\left\{\left(x, y_{0}\right)\right.$ : $x \in \mathbb{Z}\}$ has at least $m+1$ intervals. Then there are $x_{1}<z_{1}<x_{2}<\cdots<$ $z_{m}<x_{m+1} \in \mathbb{Z}$ such that $\left(x_{i}, y_{0}\right) \in \mathcal{S}(\Omega)$ and $\left(z_{i}, y_{0}\right) \notin \mathcal{S}(\Omega)$ for all $i$. But $\mathcal{S}(\Omega)=\Omega \cap \mathbb{Z}^{2}$, and so $\left(x_{i}, y_{0}\right) \in \Omega$ and $\left(z_{i}, y_{0}\right) \notin \Omega$ for all $i$, which means that the cross-section of $\Omega$ at height $y_{0}$ must have at least $m+1$ components.

Now let $A \subseteq \mathbb{Z}^{2}$ and suppose that $\mathcal{T}(A)$ is not HV-convex. Let's say that it fails H-convexity. Then we must have $x<z<x^{\prime}$ and $y_{0}$ in $\mathbb{R}$ such that $\left(x, y_{0}\right),\left(x^{\prime}, y_{0}\right) \in \mathcal{T}(A)$ and $\left(z, y_{0}\right) \notin \mathcal{T}(A)$. By the characterisation of $\mathcal{T}$ given at 2.1, we have $A_{\left(x, y_{0}\right)}, A_{\left(x^{\prime}, y_{0}\right)} \subseteq A$ and $A_{\left(z, y_{0}\right)} \nsubseteq A$. This immediately tells us that $A$ is not H -convex.

We note that $\mathcal{T}$ does not preserve $B C(m, n)$-ness generally. (See Figure 2.3.) However it is easily seen that things only go wrong on the boundaries of the unit squares centred at points of $\mathbb{Z}^{2}$.


Figure 2.3: A $B C(2,1)$ domain $A$ in $\mathbb{Z}^{2}$ such that $\mathcal{T}(A)$ is not $B C(2,1)$

Also needed is a formulation of path-connectedness for $\mathbb{Z}^{2}$ :

## Definition 26.

- Let $p=\left(p_{1}, q_{1}\right)$ and $q=\left(q_{1}, q_{2}\right)$ be points of $A \subseteq \mathbb{Z}^{2}$. We say that $p$ abuts $q$ if $\left|p_{1}-q_{1}\right|+\left|p_{2}-q_{2}\right|=1$. (Geometrically, $p$ and $q$ are non-diagonally adjacent.)
- A path in $A$ from $p$ to $q$ is a function $\gamma: \bar{N} \longrightarrow A$ (for some $N \in \mathbb{N}$ ) such that $\gamma(0)=p, \gamma(N)=q$ and for each $i<N, \gamma(i)$ abuts $\gamma(i+1)$.
- We say that $A \subseteq \mathbb{Z}^{2}$ is path-connected if there exists a path between every two points of $A$.

We would like this to be compatible with the usual path-connectedness in $\mathbb{R}^{2}$. We shall need:

Lemma 27. The operator $\mathcal{T}$ has the following basic properties:

1. For all $A \subseteq B \subseteq \mathbb{Z}^{2}, \mathcal{T}(A) \subseteq \mathcal{T}(B)$.
2. For disjoint subsets $A, B$ of $\mathbb{Z}^{2}, \mathcal{T}(A) \cap \mathcal{T}(B)=\emptyset$.
3. For all $A, B \subseteq \mathbb{Z}^{2}, \mathcal{T}(A \cup B) \supseteq \mathcal{T}(A) \cup \mathcal{T}(B)$.
4. For all disjoint $A, B \subseteq \mathbb{Z}^{2}, \mathcal{T}(A \cup B)=\mathcal{T}(A) \cup \mathcal{T}(B)$ if and only if no point of $A$ abuts a point of $B$.

Proof.

1. Let $A \subseteq B \subseteq \mathbb{Z}^{2}$. Then

$$
\mathcal{T}(A)=\left(\bigcup_{x \in A} \overline{\mathcal{T}(x)}\right)^{\circ} \subseteq\left(\bigcup_{x \in B} \overline{\mathcal{T}(x)}\right)^{\circ}=\mathcal{T}(B)
$$

2. Suppose not, and let $x \in \mathcal{T}(A) \cap \mathcal{T}(B)$, where $A \cap B=\emptyset$. Then, using the characterisation of $\mathcal{T}(\cdot)$ given at $2.1, x \in \mathcal{T}(A)$ and $x \in \mathcal{T}(B)$ implies that $A_{x} \subseteq A$ and $A_{x} \subseteq B$, which is a contradiction.
3. Follows immediately from 1 .
4. We prove the contrapositive of each implication.

- First suppose that $a \in A$ abuts $b \in B$. Let $p$ be the point midway between $a$ and $b$. Clearly $p \notin \mathcal{T}(A)$ and $p \notin \mathcal{T}(B)$ but $p \in \mathcal{T}(A \cup B)$.
- Suppose now that $\mathcal{T}(A \cup B) \neq \mathcal{T}(A) \cup \mathcal{T}(B)$. By 2, there is some $x \in \mathcal{T}(A \cup B)-\mathcal{T}(A) \cup \mathcal{T}(B)$. Consider the set $A_{x}$, which by 2.1 is a subset of $A \cup B$. Clearly $A_{x}$ must have more than one element, that is to say $x$ does not lie in the interior of any square, and so $A_{x}$ must have either two or four elements.

If $A_{x}$ has two elements, $s$ and $t$ say, then by 2.1 it must be that $s \in A$, $t \in B$ or $s \in B, t \in A$. If $A_{x}$ has four elements, say $A_{x}=\{s, t, u, v\} \subseteq$ $A \cup B$, then by 2.1 it must be that at least one of $s, t, u, v$ is not in $A$ (hence is in $B$ ), and at least one of them is not in $B$ (hence is in $A$ ). So in either case we have an element of $A$ abutting an element of $B$.

Lemma 28. $A \subseteq \mathbb{Z}^{2}$ is path-connected if and only if $\mathcal{T}(A)$ is path-connected. Proof. First suppose that $A$ is path-connected and let $x, y \in \mathcal{T}(A)$. Then we can find closed unit-side squares $S_{x}, S_{y}$ that contain $x, y$ respectively and whose
centres $s_{x}, s_{y}$ lie in $A$. We can then "join the dots" to find a path between $s_{x}$ and $s_{y}$, then join $x$ to $s_{x}$ and $y$ to $s_{y}$ with straight lines. So $\mathcal{T}(A)$ is path-connected.

Suppose conversely that $\mathcal{T}(A)$ is path-connected. We show by induction on $|A|$ that $A$ is path-connected. The base case $|A|=1$ is trivial. Assume that the result holds for $|A| \leqslant k$ and let $B \subseteq \mathbb{Z}^{2}$ with $|B|=k+1$. Choose any point $s=\left(s_{1}, s_{2}\right) \in B$ and consider $\mathcal{T}(B \backslash\{s\})$. We claim that its connected components are all of the form $\mathcal{T}\left(B_{i}\right)$ for some $B_{i} \subseteq B \backslash\{s\}, i=1, \ldots, n$. In fact, we have the following little result:
Claim. If $D \subseteq \mathbb{Z}^{2}$ and $C$ is a connected component of $\mathcal{T}(D)$, then $C=\mathcal{T}(\mathcal{S}(C))$.
Proof. First suppose that $x \in C$. Then $A_{x} \subseteq D$ and so $\mathcal{T}\left(A_{x}\right) \subseteq \mathcal{T}(D)$. Since $C$ is connected, $\mathcal{T}\left(A_{x}\right) \subseteq C$. In particular, $A_{x} \subseteq \mathcal{S}(C)$, and hence $x \in \mathcal{T}(\mathcal{S}(C)$ ).

Now suppose that $x \in \mathcal{T}(\mathcal{S}(C))$. Then $A_{x} \subseteq \mathcal{S}(C)$. So $A_{x} \subseteq C \subseteq \mathcal{T}(D)$ and $A_{x} \subseteq D$. Now the connected set $\mathcal{T}\left(A_{x}\right)$ is a subset of $\mathcal{T}(D)$ and hence $\mathcal{T}\left(A_{x}\right) \subseteq C$.

Continuing with the proof of the lemma, we claim next that each $B_{i}$ must abut $s$, otherwise the connectedness of $\mathcal{T}(B)$ is contradicted. For we have just seen that there is a finite number of connected components $C_{i}$ of $\mathcal{T}(B \backslash\{s\})$, each of which is $\mathcal{T}\left(B_{i}\right)$ for some $B_{i} \subseteq B \backslash\{s\}$. By the inductive hypothesis, each $B_{i}$ is path-connected. For simplicity, say that there are just two $B_{i}$-the argument is no deeper for more than two. Suppose for a contradiction that $B_{1}$ has no square abutting $s$. Clearly $B_{1}$ has no square abutting a square of $B_{2}$ either, otherwise the disconnectedness of $C_{1} \cup C_{2}$ is contradicted. By part 3 of the above lemma,

$$
\mathcal{T}(B)=\mathcal{T}\left(B_{1} \cup B_{2} \cup\{s\}\right)=\mathcal{T}\left(B_{1}\right) \cup \mathcal{T}\left(B_{2} \cup\{s\}\right)
$$

But this implies that $\mathcal{T}(B)$ is disconnected, and we have a contradiction.
Now, given $p, q \in B$, we can find paths in $B$ from $p$ to $s$ and from $q$ to $s$ (by path-connectedness of the $B_{i}$ and the fact that they abut $s$ ). Joining them together, we have a path from $p$ to $q$. Hence $B$ is path-connected and the result holds by induction.

Remember that open subsets of $\mathbb{R}^{n}$ are connected if and only if they are pathconnected. From now on in the discrete situation, we drop the "path-" and just say that $A \subseteq \mathbb{Z}^{2}$ is connected if it is path-connected.

One final definition is needed for a concept of holes inside a subset $A$ of $\mathbb{Z}^{2}$. In analogy with the definition in $\mathbb{R}^{2}$, we define the holes of $A \subseteq \mathbb{Z}^{2}$ to be the bounded connected components of the complement $\mathbb{Z}^{2} \backslash A$. We note that it is not true that whenever $H$ is a hole of $A \subseteq \mathbb{Z}^{2}$ then $\mathcal{T}(H)$ is a hole of $\mathcal{T}(A)$, though this does not cause us any difficulties. See Figure 2.4.


Figure 2.4: Examples in $\mathbb{Z}^{2}$ : a disconnected $B C(2)$ domain and a connected $B C(2)$ domain with three holes

## Chapter 3

## The Main Decompositions

In this central chapter, our goal is to decompose bounded connected $B C(m, n)$ domains in $\mathbb{Z}^{2}$ into controlled numbers of $B C(1)$ domains. For the sake of clarity, we deal exclusively in the discrete setting ( $\mathbb{Z}^{2}$, that is) and the quasi-discrete setting (sets $\mathcal{T}(A) \subseteq \mathbb{R}^{2}$ for $A \subseteq \mathbb{Z}^{2}$ ), with the results proved here being linked to the continuous case later. The order is as follows. Firstly two useful general results, Corollary 30 and Lemma 33, are given in Section 3.1. Then in Section 3.2 we treat $B C(2,1)$ domains, followed by $B C(n, 1)$ domains for any $n \in \mathbb{N}$, which yields Theorems 37 and 40 respectively. Next come $B C(2,2)$ domains in Section 3.3, subdivided into the cases of those without any holes (Theorem 42) and those that do have holes (Theorem 47). Finally in Section 3.4 we consider $B C(3,3)$ domains (Theorem 52) and in doing so develop the final tools necessary for a decomposition of $B C(m, n)$ domains for any $m, n \in \mathbb{N}$, which we state as Theorem 55 . The consequences for quasi-discrete domains are stated as Corollary 56.

### 3.1 Two general results

Before we go any further, we give two general results that are well-used in the subsequent domain decompositions. We recall that a family $\left\{A_{i}\right\}_{i \in I}$ of subsets of $\mathbb{Z}^{2}$ is called $B C(m, n)$ if no line $\left\{\left(x, y_{0}\right): x \in \mathbb{Z}\right\}$ meets more than $m$ of the $A_{i}$ and no line $\left\{\left(x_{0}, y\right): y \in \mathbb{Z}\right\}$ meets more than n of them, and that $A \subseteq \mathbb{Z}^{2}$ is connected if there is a path, i.e. a sequence of points each abutting the next,
between every pair of points of $A$.
Theorem 29. Let $\left\{A_{j}\right\}_{j=1}^{\infty}$ be a disjoint collection of bounded connected sets in $\mathbb{Z}^{2}$ that form a $B C(m, n)$ family. Then it is possible to sort the $A_{j}$ into two (or fewer) $B C(m, n-1)$ families.

Corollary 30. A $B C(m, n)$ family as above may be split into $2^{m+n-2}$ or fewer $B C(1)$ families.

Proof. Firstly, we note the following easily proved properties of intervals in $\mathbb{Z}$ and make a definition:

Lemma 31. Let $I_{1}, I_{2}, \ldots, I_{n}$ be bounded intervals in $\mathbb{Z}$ such that $I_{j} \cap I_{1} \neq \emptyset$ for $j=2, \ldots, n$.

1. If $\cap_{j=2}^{n} I_{j} \neq \emptyset$ then $\cap_{j=1}^{n} I_{j} \neq \emptyset$.
2. If $I_{j} \cap\left[\sup I_{1}, \infty\right) \neq \emptyset$ for $j=2, \ldots, n$ then $\cap_{j=1}^{n} I_{j} \neq \emptyset$.

Definition 32. We say that subsets $\left\{S_{i}\right\}_{i \in I}$ of $\mathbb{Z}^{2}$ have $x$-overlap at $x_{0}$ if $x_{0} \in$ $\bigcap_{i \in I} \pi_{x} S_{i}$; and that the $S_{i}$ have $x$-overlap if $\bigcap_{i \in I} \pi_{x} S_{i} \neq \emptyset$.

Now for the proof proper. Begin by choosing some $A_{0}=A_{0,1}$. Let $\left\{A_{1, j}\right\}_{j}$ be the set of $A_{j} \neq A_{0}$ that have $x$-overlap with $A_{0}$ and for $i \geqslant 1$ let $\left\{A_{i+1, j}\right\}_{j}$ be the set of $A_{j}$ not picked yet that have $x$-overlap with some $A_{i, j^{\prime}}$. Also define for all $i$,

$$
a_{i}=\inf \pi_{x}\left(\bigcup_{l \leqslant i} \bigcup_{j} A_{l, j}\right), \quad b_{i}=\sup \pi_{x}\left(\bigcup_{l \leqslant i} \bigcup_{j} A_{l, j}\right) .
$$

Evidently we have

$$
\ldots \leqslant a_{i+1} \leqslant a_{i} \leqslant \ldots \leqslant a_{0}<b_{0} \leqslant \ldots \leqslant b_{i} \leqslant b_{i+1} \leqslant \cdots
$$

The result is soon derived from the following claim:
Claim.

1. For $i \geqslant 2$, none of the elements chosen at stage $i$ have $x$-overlap with $\left[a_{i-2}, b_{i-2}\right]$, i.e.

$$
\pi_{x}\left(\bigcup_{j} A_{i, j}\right) \cap\left[a_{i-2}, b_{i-2}\right]=\emptyset .
$$

2. For $i=0,1,2, \ldots$, there exist $m_{i}, n_{i}, R_{i}, L_{i}$ such that

$$
\pi_{x}\left(\bigcup_{l \leqslant i} \bigcup_{j} A_{l, j}\right)=\left[\inf \pi_{x} A_{m_{i}, L_{i}}, \sup \pi_{x} A_{n_{i}, R_{i}}\right] .
$$

3. For a fixed $i$, all $A_{i, j}$ have $x$-overlap with either $A_{m_{i-1}, L_{i-1}}$ or $A_{n_{i-1}, R_{i-1}}$.
4. For each $i,\left\{A_{i, j}\right\}_{j}$ is a $B C(m, n-1)$ family.

The proof of this claim goes by induction. The case $i=0$ is trivial, so suppose inductively that the result holds for all $i \leqslant k$ and consider the case $i=k+1$. We begin by establishing 1 . If $k=0$ then it holds trivially, so suppose $k \geqslant 1$. But since $\pi_{x}\left(\bigcup_{l<k} \bigcup_{j} A_{l, j}\right)$ is an interval, we must have that $\pi_{x}\left(\bigcup_{j} A_{k+1, j}\right) \cap\left[a_{k-1}, b_{k-1}\right]=\emptyset$, otherwise some $A_{k+1, j}$ would have been chosen earlier.

We now show 3 . To see this, consider some $A_{k+1, j}$ (with $k \geqslant 1$, to avoid trivialities). Since it has no $x$-overlap with $\left[a_{k-1}, b_{k-1}\right]$, we must have that $\pi_{x}\left(A_{k+1, j}\right)$ is included in $\left(-\infty, a_{k-1}-1\right]$ or $\left[b_{k-1}+1, \infty\right)$. Without loss, suppose it is the latter. Since $A_{k+1, j}$ must have $x$-overlap with some $A_{k, j^{\prime}}$, it must have $x$-overlap with $\left[b_{k-1}+1, b_{k}\right]$-in particular $b_{k}>b_{k-1}$. But because $A_{n_{k}, R_{k}}$ has $x$-overlap with some $A_{l, j^{\prime \prime}}$ with $l \leqslant k-1$ and $b_{k}=\sup \pi_{x} A_{n_{k}, R_{k}}$, it is clear that

$$
\begin{equation*}
\left[b_{k-1}+1, b_{k}\right] \subseteq \pi_{x}\left(A_{n_{k}, R_{k}}\right) \tag{3.1}
\end{equation*}
$$

which establishes 3.
Now observe that at most $n-1$ of the $A_{k+1, j}$ may have $x$-overlap with $\left[b_{k}, \infty\right)$, which follows by applying part 2 of Lemma 31. Let $A_{n_{k+1}, R_{k+1}}$ be one such whose $x$-projection has greatest supremum; if there are none, just put $n_{k+1}=n_{k}$, $R_{k+1}=R_{k}$. Do the obvious corresponding thing to choose $m_{k+1}$ and $L_{k+1}$. This establishes 2 for $i=k+1$.

Finally we tackle 4. Suppose for a contradiction that we had a collection of $n$ of the $A_{k+1, j}$ that had $x$-overlap at the point $x_{0}$. By 1 , (already proved for $i=k+1), x_{0}$ must lie in $\left(-\infty, a_{k-1}-1\right]$ or $\left[b_{k-1}+1, \infty\right)$. Without loss of generality, say $x_{0}>b_{k-1}$. If $x_{0} \in\left[b_{k-1}+1, b_{k}\right]$ then by (3.1) we have $n+1$ of the $A_{j}$ with $x$-overlap at $x_{0}$, which contradicts the $B C(m, n)$ hypothesis. Therefore
$x_{0}>b_{k}$. But now, since each of the $n$ sets $A_{k+1, j}$ in question has $x$-overlap with $A_{n_{k}, R_{k}}$, we can apply part 1 of Lemma 31 and arrive at a contradiction as before. The whole claim now follows by induction.

Continuing with the proof of the theorem, put

$$
\mathcal{F}_{1}^{1}=\left\{A_{i, j}: \text { i even, } j \in \mathbb{N}\right\}, \quad \mathcal{F}_{1}^{2}=\left\{A_{i, j}: \text { i odd, } j \in \mathbb{N}\right\}
$$

By properties 2 and 4 of our claim, these are both $B C(m, n-1)$ families. Working inductively, begin the process again (if necessary) at some new $A_{0}$ hitherto unchosen and repeat, obtaining families $\mathcal{F}_{2}^{1}, \mathcal{F}_{2}^{2}, \mathcal{F}_{3}^{1}, \ldots$, until all the $A_{j}$ have been used up. We see easily that the families

$$
\mathcal{F}_{1}=\bigcup_{i} \mathcal{F}_{i}^{1} \quad \text { and } \quad \mathcal{F}_{2}=\bigcup_{i} \mathcal{F}_{i}^{2}
$$

satisfy the requirements of the theorem and we are done.
The second general result is
Lemma 33. The intersection of a $B C\left(m, m^{\prime}\right)$ domain with a $B C\left(n, n^{\prime}\right)$ domain is a $B C\left(m+n-1, m^{\prime}+n^{\prime}-1\right)$ domain, where $m, m^{\prime}, n, n^{\prime} \geqslant 1$.

Proof. It is enough to prove: if $A, B$ are bounded nonempty subsets of $\mathbb{Z}$ having at most $m$ and $n$ connected components respectively, then $A \cap B$ has at most $m+n-1$. This we do by induction on $n$.

Case $n=1$. Let $B$ be a single interval. We need to show that $A \cap B$ has at most $m$ components. Well, writing $A=\bigcup_{j=1}^{m} I_{j}$ where the $I_{j}$ are the connected components of $A$, we have $A \cap B=\bigcup_{j=1}^{m} I_{j} \cap B$. Since the intersection of two intervals is also an interval, we are done.

Case $n=k+1$. Suppose that the result holds whenever $n \leqslant k$ and let $B$ have $k+1$ connected components. Write $A=\bigcup_{j=1}^{m} I_{j}$ and $B=\bigcup_{l=1}^{k+1} J_{l}$, where the $I_{j}$ and $J_{l}$ are the connected components of $A$ and $B$, ordered from left to right. Consider $J_{1}$, the leftmost component of $B$. If it meets none of the components of $A$, then we are reduced to a previous case. So suppose that $J_{1}$ meets $p \geqslant 1$ of the $I_{j}$. Now out of these $p$ of the $I_{j}$, the remaining components of $B$ can only meet
the rightmost one, which must be $I_{p+q}$ for some $q \geqslant 0$. Hence they can meet at most $m-(p-1)$ of all the $I_{j}$. Thus we have

$$
A \cap B=\bigcup_{j=1}^{m} I_{j} \cap\left(J_{1} \cup \bigcup_{l=2}^{k+1} J_{l}\right)=\left(\bigcup_{j=1}^{m} I_{j} \cap J_{1}\right) \cup\left(\bigcup_{j=1}^{m} I_{j} \cap \bigcup_{l=2}^{k+1} J_{l}\right) .
$$

Since by the inductive hypothesis $\bigcup_{j=1}^{m} I_{j} \cap J_{1}$ has at most $p$ components and $\bigcup_{j=1}^{m} I_{j} \cap \bigcup_{l=2}^{k+1} J_{l}$ has at most $(m-(p-1))+k-1$ components, $A \cap B$ has at most $m+(k+1)-1$ components. The result follows by induction.

### 3.2 Decomposition of $B C(n, 1)$ domains

## $B C(2,1)$ domains

We begin the domain decompositions with the case of $B C(2,1)$ domains. This can be done using fairly elementary methods, and we obtain what seems like a good, low bound on the number of resulting $B C(1)$ domains. We then give a result for $B C(n, 1)$ domains for any $n \in \mathbb{N}$, which requires more complicated methods and gives a bound that increases fairly quickly with $n$.

If $A \subseteq \mathbb{Z}^{2}$ is a bounded disconnected $B C(2,1)$ domain, Theorem 29 can be applied to the collection of connected components of $A$, separating them into two $B C(1)$ families. Bearing in mind Lemma 16 and the potential applications of what follows to integral operators, we now assume that $A$ consists of just a single connected component.

So, let $A \subseteq \mathbb{Z}^{2}$ be a bounded connected $B C(2,1)$ domain. Take an injective path $\gamma$ from bottom to top. (By this we mean: choose points $a=\left(a_{1}, a_{2}\right)$ and $b=\left(b_{1}, b_{2}\right)$ in $A$ such that $a_{2}=\min \pi_{y} A$ and $b_{2}=\max \pi_{y} A$, and let $\gamma$ be a path in $A$ from $a$ to $b$.) We can take $\gamma$ to be $x$-monotonic (let's say increasing) by vertical convexity. We also choose $\gamma$ to minimise the quantity $|D|$, where

$$
D=\left\{t: \pi_{y} \gamma(t+1)<\pi_{y} \gamma(t)\right\} .
$$

Claim. If $t_{0} \in D$ then $\pi_{y} \gamma$ is increasing on $\left[t_{0}+1, t_{1}\right]$, where $t_{1}$ is defined to be $\inf \left\{t>t_{0}: \pi_{y} \gamma(t)=\pi_{y} \gamma\left(t_{0}\right)+2\right\}$. That is to say that if $\gamma$ dips by one square then it cannot dip again until it climbs to at least two squares above its original height.

Proof. Suppose not. There are three possibilities, namely that $\gamma$ dips next at height $\pi_{y} t_{0}-1, \pi_{y} t_{0}$ or $\pi_{y} t_{0}+1$. These are sketched in Figure 3.1. Then for some height $z$ (in fact we can take $z=\pi_{y} t_{0}$ or $\pi_{y} t_{0}-1$ ) there are at least 3 components in $\mathbb{N}$ of $\gamma^{-1}\left(\gamma^{*} \cap \pi_{y}^{-1}(z)\right)$. But now $A \cap \pi_{y}^{-1}(z)$ must have at least 3 components or contradict the least dipping property of $\gamma$.
(The idea is that $\gamma$ visits height $z$ for three separated time periods, in between which it must have $y$-coordinates different from $z$. At these in-between stages it must be circumventing points of $A^{c}$, otherwise it could just carry on at height $z$ with less dipping.)


Figure 3.1: $\gamma$ must climb a bit before it dips again

Hence $\gamma$ is a disjoint union of $y$-increasing subpaths $\gamma_{j}$ such that min $\pi_{y} \gamma_{j+1}=$ $\max \pi_{y} \gamma_{j}-1$ and $\max \pi_{y} \gamma_{j} \geqslant \min \pi_{y} \gamma_{j}+3$. At this point we need to introduce another object:

Definition 34. Let $A \subseteq \mathbb{Z}^{2}$. We define, for $t \in \mathbb{Z}$, the horizontal beams at height $t$ to be the connected components of the horizontal cross-section of $A$ at height $t$. Vertical beams are defined similarly.

Letting $A_{j}$ be the union of horizontal beams of $A$ that meet $\gamma_{j}$ and $A^{\prime}=\bigcup A_{j}$, we have:

$$
\min \pi_{y} A_{j+2}=\max \pi_{y} A_{j+1}-1 \geqslant \min \pi_{y} A_{j+1}+2=\max \pi_{y} A_{j}+1
$$

and so the families $\left\{A_{2 j}\right\}$ and $\left\{A_{2 j+1}\right\}$ are both vertically disjoint. (That is to say no $A_{2 j}$ has vertical overlap with any $A_{2 j^{\prime}}$ and no $A_{2 j+1}$ has vertical overlap with any $A_{2 j^{\prime}+1}$.)

Claim. These families are both horizontally disjoint too.

Proof. Let $c$ be the $x$-coordinate of the rightmost point on the top horizontal beam of $A_{j}$. By the behaviour of $\gamma$, for any $d \geqslant \max \pi_{y} A_{j}$, the point $(c+1, d) \in A^{c}$. Since $\gamma$ is $x$-increasing and $\pi_{y} A_{j+2} \geqslant \max \pi_{y} A_{j}+1$, we have $\pi_{x} A_{j+2}>c$.

It remains to see that $c=\max \pi_{x} A_{j}$. If not, then there is a $p=\left(p_{1}, p_{2}\right)$ such that $p_{1}=c+1$ and $p_{2}<\max \pi_{y} A_{j}-1$. But then if $\gamma$ were diverted through $p$ parallel to the axes it would have less dipping, which is a contradiction. See Figure 3.2.


Figure 3.2: Showing that $A_{j}$ and $A_{j+2 k}$ are horizontally disjoint

Recall that we defined $A^{\prime}=\bigcup A_{j}$. The following property of $A^{\prime}$ holds:
Lemma 35. $A^{\prime}$ is a $B C(2,1)$ domain.
Proof. The horizontal part is clear. For vertical convexity, suppose that we have points $p, q, r$ with $p_{1}=q_{1}=r_{1}$ and $p_{2}<q_{2}<r_{2}$ and such that $p, r \in A^{\prime}$ but $q \in A_{1}^{c}$. By the $B C(2,1)$ property of $A, q \in A \backslash A^{\prime}$. Without loss of generality, $\gamma$ passes through a point $s$ such that $s_{1}<q_{1}$ and $s_{2}=q_{2}$. Consider now the point $u=\left(t_{1}, r_{2}\right)$. If at height $r_{2}, \gamma$ lies to the left of $u$ then by the horizontal convexity of $A^{\prime}, u \in A^{\prime}$, while if $\gamma$ lies to the right of $u$ then there must be a point $z$ on $\gamma$ with $z_{1}=t_{1}$ and $r_{2}>z_{2}>t_{2}$. Similar reasoning shows that there is a point $v$ with $v_{1}=t_{1}$ and $v_{2}<t_{2}$. Thus the vertical convexity of $A$ is violated. (See Figure 3.3.)

Similarly, we can show that each $A_{j}$ is vertically convex. Since it is horizontally convex too (straight from the definition), it is $B C(1)$.


Figure 3.3: The situation in Lemma 35

Now consider $A \backslash A^{\prime}$. Note that it is certainly H-convex. Also, since $A^{\prime}$ is V-convex, each vertical cross-section of $A \backslash A^{\prime}$ consists of at most two intervals. Let $A_{L}$ be the union of all the vertical intervals thus given that lie below a piece of $A^{\prime}$ together with any vertical intervals that contain no point of $A^{\prime}$ and put $A_{U}=A \backslash\left(A^{\prime} \cup A_{L}\right)$. (See Figure 3.4 for the various possibilities.)


Figure 3.4: What $A_{L}$ and $A_{U}$ look like

Lemma 36. $A_{L}$ and $A_{U}$ are $B C(1)$ domains.
Proof. We treat only $A_{L}$, since the case of $A_{U}$ is very similar. Vertical convexity is trivial. Suppose then that there are $p, q, r$ with $p_{1}<q_{1}<r_{1}$ and $p_{2}=q_{2}=r_{2}$ and $p, r \in A_{L}, q \notin A_{L}$. By H-convexity of $A \backslash A^{\prime}$, it must be that $q \in A_{U}$. Therefore, there must be a point $s \in A^{\prime}$ with $s_{1}=q_{1}$ and $s_{2}<q_{2}$. Also, there is a $t \in A^{\prime}$ such that (without loss of generality) $t_{1}>r_{1}$ and $t_{2}=r_{2}$. Note that the definitions of $A_{U}$ and $A_{L}$ imply that there can be no point $u \in A^{\prime}$ with either $u_{1}=q_{1}, u_{2}>q_{2}$
or $u_{1}=r_{1}, u_{2}<r_{2}$. Furthermore, the H-convexity of $A \backslash A^{\prime}$ implies that there is no $u \in A^{\prime}$ with $q_{1}<u_{1}<r_{1}$ and $u_{2}=q_{2}$. But this means there can be no path in $A^{\prime}$ between $s$ and $t$, contradicting path-connectedness of $A^{\prime}$. See Figure 3.5.


Figure 3.5: Illustration of Lemma 36

Thus we have shown that $A=\bigcup A_{2 j} \cup \bigcup A_{2 j+1} \cup A_{L} \cup A_{U}$, where the four sets on the right hand side are $B C(1)$ domains, as required. We sum things up as:

Theorem 37. Let $A$ be a bounded, connected $B C(2,1)$ domain in $\mathbb{Z}^{2}$. Then we can write $A$ as the union of four or fewer $B C(1)$ domains.

## $B C(n, 1)$ domains

Having dealt with $B C(2,1)$ domains, we now give a decomposition of $B C(n, 1)$ domains for any $n \in \mathbb{N}$. Let $A \subseteq \mathbb{Z}^{2}$ be a bounded $B C(n, 1)$ domain. We consider the following algorithm, which is illustrated in Figure 3.6:

## Algorithm.

- Begin by choosing a path $\gamma_{1}$ in $A$ that is monotonic in $x$ and $y$ and is maximal in $y$-length subject to this condition. (That is, $\left|\pi_{y} \gamma_{1}(\mathbb{N})\right|$ is maximal.) Define $A_{1}$ as the union of horizontal beams of $A$ that meet $\gamma_{1}$.
- At the $k+1^{\text {th }}$ stage, choose a path $\gamma_{k+1}$ in $A \backslash \bigcup_{j=1}^{k} A_{j}$ that is monotonic in $x$ and $y$ and maximal in $y$-length. Let $A_{k+1}$ be the union of horizontal beams through $\gamma_{k+1}$.


Figure 3.6: Illustration of the Algorithm at work

- Repeat until we have exhausted the whole of $A$, i.e. we have $A=\bigcup_{j=1}^{N} A_{j}$ for some $N$. This must happen because $A$ is finite.

We note that the same reasoning as in the proof of Lemma 35 shows that $A_{k}$ is $B C(1)$ for $k=1, \ldots, N$.

We establish the following property of the Algorithm.
Lemma 38. Let $A$ be a bounded, connected $B C(n, 1)$ domain in $\mathbb{Z}^{2}$ and a vertical beam $L$ of $A$ be given. If we decompose $A$ using the Algorithm; then no more than $2^{n}-1$ of the resulting $A_{i}$ can meet $L$.

With this result in hand, we would then have that the $A_{i}$ form a $B C\left(n, 2^{n}-1\right)$ family. By Corollary 30 , this would mean that the $A_{i}$ can be sorted into $2^{2^{n}+n-3}$ or fewer orthogonal families.

Some notational set-up is required. Suppose that our bounded $A \subseteq \mathbb{Z}^{2}$ has been decomposed into $A_{i}$ according to the Algorithm, and that we have nominated a vertical line $L$. Define $C_{1}^{1}=L_{1}=L$, and let $A_{1}^{1}$ be the first of the $A_{i}$ to meet $L_{1}$. Now define inductively

$$
L_{i}=L \cap A \backslash \bigcup_{j=1}^{i-1} \bigcup_{l} A_{l}^{j}
$$

Note that $L_{i}$ has at most $2^{i-1}$ components. (A trivial induction shows this.) Denote these by $C_{1}^{i}, \ldots, C_{2^{i-1}}^{i}$ and define $A_{j}^{i}$ for $j=1,2, \ldots, 2^{i-1}$ as the first of the $A_{i}$ to meet $C_{j}^{i}$.

Since $A$ is bounded, we must have that eventually $L_{M}=\emptyset$ for some least $M$. The idea of the next result is that the higher $M$ is, the greater the number of components some horizontal sections of $A$ will be forced to have. Thus we shall find a bound on $M$ and hence on the number of $A_{i}$ meeting $L$.

Lemma 39. For all $k$, either $L_{k}=\emptyset$ or $L_{k}$ has up to $2^{k-1}$ connected components $C_{1}^{k}, \ldots, C_{2^{k-1}}^{k}$ such that for all $t \in \pi_{y} L_{k}$ the horizontal section

$$
\bigcup_{j=1}^{k-1} \bigcup_{l} A_{l}^{j} \cap \pi_{y}^{-1}(t)
$$

has at least $k-1$ connected components.
Proof. The proof is by induction. The case of $k=1$ is trivial-the union expression is empty.

Now suppose inductively that the result holds for $k$, and consider what happens with $k+1$. If $L_{k+1}=L \cap A \backslash \bigcup_{j=1}^{k} \bigcup_{l} A_{l}^{j}$ is empty then there is no more to prove, so suppose that $L_{k+1}$ is nonempty. By our previous observation, $L_{k+1}$ has (up to) $2^{k}$ components $C_{1}^{k+1}, \ldots, C_{2^{k}}^{k+1}$. Fix one of them, $C_{p}^{k+1}$ say. Clearly $C_{p}^{k+1} \subseteq C_{q}^{k}$ for some $q$. By the inductive hypothesis,

$$
\text { for all } t \in \pi_{y} C_{q}^{k}, \bigcup_{j=1}^{k-1} \bigcup_{l} A_{l}^{j} \cap \pi_{y}^{-1}(t) \text { has at least } k-1 \text { components. }
$$

Recall that $A_{q}^{k}$ is the first of the $A_{i}$ to meet $C_{q}^{k}$. Now evidently either $C_{p}^{k+1}$ lies above $A_{q}^{k} \cap C_{q}^{k}$ or below it. Suppose without loss of generality that it lies below. (The argument is very similar in the 'above' case.)

By the $y$-maximality of $\gamma_{q}^{k}$, we have that

$$
\pi_{y} A_{q}^{k}=\pi_{y} \gamma_{q}^{k}(\mathbb{N}) \supseteq \pi_{y} C_{q}^{k} \supseteq \pi_{y} C_{p}^{k+1}
$$

So there is some point $z$ of $A_{q}^{k}$ at each height $t$ of $C_{p}^{k+1}$. By the definition of the $A_{l}^{j}$ 's, $z$ must be in a different connected component of the horizontal section of $A$
at height $t$ from the points in $\bigcup_{j=1}^{k-1} \bigcup_{l} A_{l}^{j} \cap \pi_{y}^{-1}(t)$. Hence the horizontal section $\bigcup_{j=1}^{k} \bigcup_{l} A_{l}^{j} \cap \pi_{y}^{-1}(t)$ must have at least $k$ components.

Now let $M$ be the smallest natural number such that $L_{M}=\emptyset$. Then $L_{M-1} \neq \emptyset$ and at each height $t$ of $L_{M-1}$ we have at least $M-2$ components in the horizontal section $\bigcup_{j=1}^{M-2} \bigcup_{l} A_{l}^{j} \cap \pi_{y}^{-1}(t)$. From the fact that $L_{M}$ is empty, it follows that $C_{i}^{M-1}=L \cap A_{i}^{M-1}$ for all $i$. Hence (again by definition of the $A_{l}^{j}$ 's), for all $t \in \pi_{y} L_{M-1}$ the horizontal section $\bigcup_{j=1}^{M-1} \bigcup_{l} A_{l}^{j} \cap \pi_{y}^{-1}(t)$ must have at least $M-1$ components.

If $A$ is $B C(n, 1)$ then $M \leqslant n+1$, whence at most

$$
2^{n-1}+2^{n-2}+\cdots+2+1=2^{n}-1
$$

of the $A_{i}$ can meet $L$. For none of the $A_{l}^{j}$ meeting $L$ has an upper index of more than $M-1$, and there are no more than $2^{j-1}$ of the $A_{l}^{j}$ for a fixed $j$.

Figures 3.8 and 3.7 show a sample decomposition which, incidentally, can be generalised to show that the bound in Lemma 38 is tight. Evidently, the choice of $\gamma_{k}$ 's in this example is slightly perverse - the obvious choice for $\gamma_{1}$ being the central vertical line-however there seemed to be no reasonable extra conditions that could be imposed during the choice of $\gamma_{k}$ 's.

We summarise the results of this section with a theorem.

Theorem 40. Given a bounded, connected $B C(n, 1)$ domain $A$ in $\mathbb{Z}^{2}$, it is possible to decompose $A$ into $2^{2^{n+n-3}}$ or fewer $B C(1)$ domains (each of which is an orthogonal family of connected $B C(1)$ domains).

### 3.3 Decomposition of $B C(2,2)$ domains

The next move is to attempt a decomposition of $B C(2,2)$ domains. As in the $B C(2,1)$ case, we begin by reducing to the case of a single connected one, under the guidance of Lemma 16. Again, this is achieved by applying Theorem 29.


Figure 3.7: Our algorithm at work: $A$ and the first few $\gamma_{i}$


Figure 3.8: Our algorithm at work: the $A_{j}^{i}$ and $C_{j}^{i}$

The main obstacle now is the fact that a $B C(2,2)$ domain may contain holes (by definition, bounded connected components of the complement), which frustrate attempts to use the methods of the previous section without further treatment.

Although it is possible to move forward by placing certain restrictions on the arrangement of holes, we postpone such discussion and deal meanwhile with the intermediate case of connected $B C(2,2)$ domains that do not have any holes.

## $B C(2,2)$ domains without holes

Let $A \subseteq \mathbb{Z}^{2}$ be a bounded connected $B C(2,2)$ domain. Again we take an injective path $\gamma$ from bottom to top. We can no longer take $\gamma$ to be $x$-monotonic, but can still choose $\gamma$ to minimise the quantity $|D|=\left|\left\{t: \pi_{y} \gamma(t+1)<\pi_{y} \gamma(t)\right\}\right|$.

Claim. It still holds that if $t_{0} \in D$ then $\pi_{y} \gamma$ is increasing on $\left[t_{0}+1, t_{1}\right]$, where $t_{1}=\inf \left\{t>t_{0}: \pi_{y} \gamma(t)=\pi_{y} \gamma\left(t_{0}\right)+2\right\}$. (That is, if $\gamma$ dips by one square then it cannot dip again until it climbs to at least two squares above its original height.)

This is because the $x$-monotonicity of $\gamma$ in Section 3.2 was not used in the proof of the corresponding claim on page 40 there. Thus, in the same way as before, we can write $\gamma$ as the disjoint union of $y$-increasing subpaths $\gamma_{j}$, define $A_{j}$ as the union of horizontal beams through $\gamma_{j}$, and put $A^{\prime}=\bigcup A_{j}$. Once again, these objects have some useful properties.

Claim. $\left\{A_{j}\right\}$ is a $B C(2,4)$ family.
Proof. The horizontal considerations are trivial. For the vertical, we show that there can be no more than two $A_{j}$ meeting any vertical beam of $A$. (In fact there is some $j$ such that only $A_{j}$ and $A_{j-1}$ can meet the vertical beam.)

Suppose $k \geqslant 1$ and there are points $p \in A_{j}$ and $q \in A_{j+k}$ with $\pi_{y} p<\pi_{y} q$ and both on the same vertical beam of $A$. By definition there exist $p^{\prime}, q^{\prime}$ on $\gamma$ in the same horizontal beam as $p, q$ respectively. But since $k \geqslant 1$ there must be a dip on $\gamma$ between $p^{\prime}$ and $q^{\prime}$, whereas the path of straight lines $p^{\prime} \rightarrow p \rightarrow q \rightarrow q^{\prime}$ lies in $A$ and has no dips, contradicting the least dipping property of $\gamma$.

The only other possibility is $k=-1$, since for $k<-1, \pi_{y} A_{j}>\pi_{y} A_{j+k}$.

Notice that in the previous section we could decompose the $A_{j}$ into two $B C(1)$ families by virtue of the $x$-monotonicity of $\gamma$. Now that we no longer have this property, the best we can do here is $16 B C(1)$ families (invoking Corollary 30 ).

Lemma 41. With $A^{\prime}=\bigcup A_{j}$, we have that $A^{\prime}$ is a $B C(2,2)$ domain.
Proof. Suppose not. Then we have points $p, q, r, s, t$ lying on a vertical line (in increasing order of height), where $p, r, t \in A^{\prime}$ and $q, s \notin A^{\prime}$. Looking just at height $\pi_{y} r$ downwards, we see that if $q \notin A^{c}$ (i.e. $q \in A!$ ) then there exists by definition of $A^{\prime}$ a point $u \in A^{c}$ between $q$ and $\gamma$ at height $\pi_{y} q$. The fact that $A$ has no holes then forces the existence of some point of $A^{c}$ between $p$ and $r$. So either way we have a point of $A^{c}$ between $p$ and $r$. The same argument applied to the upper part (height $\pi_{y} r$ upwards) yields a contradiction of the $B C(2,2)$-ness of $A$.


Figure 3.9: Showing that $A^{\prime}$ is $B C(2,2)$

Similarly we can show that each $A_{j}$ is $B C(1,2)$.
It, also follows easily that $A \backslash A_{1}$ is a $B C(1,4)$ domain. Applying Theorem 29 and Theorem 40, we can decompose $A \backslash A_{1}$ into a controlled number of $B C(1)$ domains. Drawing things together we have:

Theorem 42. Let $A$ be a bounded, connected $B C(2,2)$ domain in $\mathbb{Z}^{2}$ such that $A$ has no holes in it. Then we can write $A$ as the union of $2^{20}+64$ or fewer $B C(1)$ domains.

Proof. Recall that we split $A$ into $A^{\prime}$, which could be split into $16 B C(1)$ families of $B C(2,1)$ domains, and $A \backslash A^{\prime}$, which was $B C(1,4)$ and possibly disconnected. By Theorem 37 we can split $A^{\prime}$ into 64 or fewer $B C(1)$ domains. By Corollary 30, we can split $A \backslash A^{\prime}$ into eight or fewer orthogonal families of connected $B C(1,4)$ domains, each of which by Theorem 40 can be split into $2^{17}$ or fewer $B C(1)$ domains.

## $B C(2,2)$ domains with holes

As mentioned earlier, the appearance of holes in a $B C(2,2)$ (or higher) domain will generally scupper attempts to decompose them using the methods we have considered so far. Progress is however possible by imposing conditions on how the holes may be arranged. Specifically, we define the property $H P(m)$ of a subset $A$ of $\mathbb{Z}^{2}$ as the negation of the statement: there exist holes $H_{1}, \ldots, H_{m}$ in $A$ and $z_{0} \in \mathbb{Z}$ such that one of the following holds:

- $\pi_{x} H_{i+1}>\pi_{x} H_{i}$ for all $i$ and either $\pi_{y} H_{o d d}<z_{0}<\pi_{y} H_{\text {even }}$ or $\pi_{y} H_{\text {odd }}>z_{0}>\pi_{y} H_{\text {even. }} .{ }^{1}$
- $\pi_{y} H_{i+1}>\pi_{y} H_{i}$ for all $i$ and either $\pi_{x} H_{o d d}<z_{0}<\pi_{x} H_{\text {even }}$ or $\pi_{x} H_{\text {odd }}>z_{0}>\pi_{x} H_{\text {even }}$.

So roughly speaking, $H P(m)$ says that we cannot have $m$ or more holes alternating about a horizontal or vertical line. (The HP notation comes from hole property.)

Why should this be a reasonable condition to impose? Well, let us imagine ourselves in the continuous setting for a moment. Suppose we have a type 1 function $u$ with type constant 2 such that $\frac{\partial^{2} u}{\partial x \partial y}>0$ on $Q$. Thus all the sublevel sets of $u$ and its first-order partial derivatives are $B C(2)$ domains. Let $\Omega$ be a sublevel set at level s. Suppose we had four holes in $\Omega$ arranged as in Figure 3.10. We claim that on the boundary $\partial H_{j}$ of any given one of these holes, $u$ is either identically $s$ or identically $-s$. Evidently $|u|=s$ on $\partial H_{j}$. Suppose for a

[^3]


Figure 3.10: Here $H P(4)$ does not hold
contradiction that we had points $p$ and $q$ on $\partial H_{j}$ with $u(p)=s$ and $u(q)=-s$. We can find a path $\gamma$ from $p$ to $q$ in $H_{j}$. But then by the Intermediate Value Theorem, there would be a zero of $u$ in $H_{j}$, which is a contradiction.

By Rolle's Theorem applied on appropriate horizontal lines, we could find in each hole a zero of $\frac{\partial u}{\partial x}$. Then $\frac{\partial^{2} u}{\partial x \partial y}>0$ tells us that we have $x_{1}, x_{2}, x_{3}, x_{4}$ and $y_{0}$ with $\frac{\partial u}{\partial x}\left(x_{o d d}, y_{0}\right)>0$ and $\frac{\partial u}{\partial x}\left(x_{\text {even }}, y_{0}\right)<0$. Hence there exists $s^{\prime}$ such that the sublevel set of $\frac{\partial u}{\partial x}$ at level $s^{\prime}$ has at least 3 components on the horizontal section at $y_{0}$. Of course this contradicts our assumptions about $u$.

Returning to $\mathbb{Z}^{2}$, the next step is to see what imposing $H P(m)$ on a domain $A$ can tell us about how all the holes in $A$ are arranged. Some notational setup is required.

Definition 43. Let $A \subseteq \mathbb{Z}^{2}$ and suppose that $A$ has some finite number of holes. We call the set $\mathcal{H}=\left\{H_{1}, H_{2}, \ldots, H_{n}\right\}$ of holes a string if there is a permutation $\sigma$ on $\{1,2, \ldots, n\}$ such that $\pi_{x} H_{\sigma(1)}<\pi_{x} H_{\sigma(2)}<\cdots<\pi_{x} H_{\sigma(n)}$ and either

- $\pi_{y} H_{\sigma(1)}<\pi_{y} H_{\sigma(n)}$ and whenever there are holes $K_{1}, K_{2}$ such that $\pi_{x} H_{\sigma(1)}<$ $\pi_{x} K_{1}<\pi_{x} K_{2}<\pi_{x} H_{\sigma(n)}$ we have $\pi_{y} H_{\sigma(1)}<\pi_{y} K_{1}<\pi_{y} K_{2}<\pi_{y} H_{\sigma(n)}$ and whenever there are holes $K_{1}, K_{2}$ such that $\pi_{y} H_{\sigma(1)}<\pi_{y} K_{1}<\pi_{y} K_{2}<$ $\pi_{y} H_{\sigma(n)}$ we have $\pi_{x} H_{\sigma(1)}<\pi_{x} K_{1}<\pi_{x} K_{2}<\pi_{x} H_{\sigma(n)}$; or
- $\pi_{y} H_{\sigma(1)}>\pi_{y} H_{\sigma(n)}$ and whenever there are holes $K_{1}, K_{2}$ such that $\pi_{x} H_{\sigma(1)}<$ $\pi_{x} K_{1}<\pi_{x} K_{2}<\pi_{x} H_{\sigma(n)}$ we have $\pi_{y} H_{\sigma(1)}>\pi_{y} K_{1}>\pi_{y} K_{2}>\pi_{y} H_{\sigma(n)}$
and whenever there are holes $K_{1}, K_{2}$ such that $\pi_{y} H_{\sigma(1)}>\pi_{y} K_{1}>\pi_{y} K_{2}>$ $\pi_{y} H_{\sigma(n)}$ we have $\pi_{x} H_{\sigma(1)}<\pi_{x} K_{1}<\pi_{x} K_{2}<\pi_{x} H_{\sigma(n)}$.
(Note that this implies either $\pi_{y} H_{\sigma(1)}<\pi_{y} H_{\sigma(2)}<\cdots<\pi_{y} H_{\sigma(n)}$ or $\pi_{y} H_{\sigma(1)}>$ $\left.\pi_{y} H_{\sigma(2)}>\cdots>p i_{y} H_{\sigma(n)}.\right)$ A string is called maximal if it is not included in any strictly larger string.

With each such set we associate a hole diagram, which represents the order in which any holes appear relative to the $x$ - and $y$-coordinates. The diagrams consist simply of dots and diagonal lines, the dots representing one-element maximal strings and the lines representing longer maximal strings. It is easy to show that any arrangement of holes has a unique hole diagram. To do so, we can simply define the equivalence relation $\sim$ on the holes by saying that $H_{1} \sim H_{2}$ if and only if $\left\{H_{1}, H_{2}\right\}$ is a string. Then the maximal strings are the equivalence classes. Figure 3.11 gives a couple of examples.


Figure 3.11: Two examples of hole diagrams

Lemma 44. Let $A \subseteq \mathbb{Z}^{2}$ have property $H P(4)$. Then there are only eight possible hole diagrams for $A$, up to symmetry. They are shown in Figure 3.12.

Proof. The proof is by induction on the number of holes. Let $A$ be such a set. If it has no holes, then its hole diagram is just the first one shown in Figure 3.12. Suppose inductively that every such sublevel set with $k$ holes has a hole diagram contained in Figure 3.12, modulo symmetry, and let $A$ be a set with $k+1$ holes


Figure 3.12: All the possible hole diagrams with $H P(4)$
and property $H P(4)$. Order the holes (arbitrarily) and imagine that the $k+1^{\text {th }}$ hole has been filled in. The resulting set, by the inductive hypothesis, has a hole diagram shown in Figure 3.12. We wish to see that adding in the $k+1^{\text {th }}$ hole leads either to one of the diagrams shown or an illegal arrangement.

Thus there are eight cases to consider, one for each of the eight diagrams. Let us just consider the last diagram, since the arguments here cover the other cases too. Remember exactly what the diagram means: we have $m+n+p$ holes

$$
H_{1}, \ldots, H_{m}, H_{m+1}, \ldots, H_{m+n}, H_{m+n+1}, \ldots, H_{m+n+p}
$$

(where $m, n, p \geqslant 2$ ) such that $\pi_{x}\left(H_{1}\right)<\pi_{x}\left(H_{2}\right)<\cdots<\pi_{x}\left(H_{m+n+p}\right)$ and

$$
\begin{aligned}
\pi_{y}\left(H_{m+n+1}\right)<\cdots<\pi_{y}\left(H_{m+n+p}\right)<\pi_{y}\left(H_{m+n}\right)< & \cdots<\pi_{y}\left(H_{m+1}\right)< \\
& <\pi_{y}\left(\dot{H_{1}}\right)<\cdots<\pi_{y}\left(H_{m}\right)
\end{aligned}
$$

A bit of renaming is useful here: let $H_{1}, \ldots, H_{6}$ be the new names of the holes $H_{1}, H_{m}, H_{m+1}, H_{m+n}, H_{m+n+1}, H_{m+n+p}$, i.e. those at the ends of maximal strings as they appear from left to right. Now we divide our sublevel set into a number of areas, shown by dotted lines in Figure 3.13. We investigate what will happen if the $k+1^{\text {th }}$ hole (call it $H^{*}$ ) appears in each of these areas. (For instance, saying that $H^{*}$ appears in area $D$ means that $\pi_{x}\left(H_{3}\right)<\pi_{x}\left(H^{*}\right)<\pi_{x}\left(H_{4}\right)$ and $\pi_{y}\left(H^{*}\right)>\pi_{y}\left(H_{2}\right)$.) It will be seen that the results for all other areas follow by symmetry.


Figure 3.13: Places where $H^{*}$ could appear

For the moment we consider only the areas A to P . ( R requires special attention later.) We soon see that areas C and M are the only places where $H^{*}$ can occur without creating an illegal arrangement, as the following table shows.

| Region | Illegal Arrangement | Region | Illegal Arrangement |
| :---: | :---: | :---: | :---: |
| A | $H^{*}, H_{2}, H_{1}, H_{3}$ | H | $H_{2}, H^{*}, H_{1}, H_{3}$ |
| B | $H^{*}, H_{2}, H_{1}, H_{3}$ | J | $H_{2}, H^{*}, H_{1}, H_{3}$ |
| D | $H_{1}, H_{2}, H_{3}, H^{*}$ | K | $H_{2}, H^{*}, H_{1}, H_{3}$ |
| E | $H_{1}, H_{2}, H_{3}, H^{*}$ | L | $H_{2}, H^{*}, H_{1}, H_{3}$ |
| F | $H_{1}, H_{2}, H_{3}, H^{*}$ | N | $H_{1}, H^{*}, H_{3}, H_{4}$ |
| G | $H_{1}, H_{2}, H_{3}, H^{*}$ | P | $H_{1}, H^{*}, H_{3}, H_{4}$ |

Finally we deal with the area R. Focus in on just the top-left maximal string, which we shall call $\mathcal{H}$. If $\mathcal{H} \cup\left\{H^{*}\right\}$ is also a maximal string, then there is nothing more to do. Otherwise, there must be some $H^{* *}$ such that $\pi_{x}\left(H^{* *}\right)>\pi_{x}\left(H^{*}\right)$ and $\pi_{y}\left(H^{* *}\right)<\pi_{y}\left(H^{*}\right)$ (or vice versa). Hence the holes $H_{1}, H^{*}, H^{* *}, H_{2}$ form an illegal arrangement. The two cases are shown in Figure 3.14.

It is clear from Figure 3.13 that all other placements of the hole $H^{*}$ are covered by symmetry. Furthermore, none of the arguments used to establish the result for the other seven diagrams (cf Figure 3.12) are any more difficult than those used above; therefore it is left to the diligent reader to verify the details.


Figure 3.14: If $H^{*}$ falls in the area R

Now that we have good control over how holes may appear in sets with $H P(4)$, we are not far from a decomposition of such sets into simpler objects. Shortly, we shall need to use Lemma 33 for the first time.

For the next step, we begin by looking at the case of $A \subseteq \mathbb{Z}^{2}$ whose holes appear as in the final diagram of Figure 3.12. (Cases corresponding to the other diagrams are all easier than this one.) We split up the sublevel set as shown in the left hand side of Figure 3.15, that is we choose $x_{1} \in\left[\sup \pi_{x} H_{2}, \inf \pi_{x} H_{3}\right], x_{2} \in$ $\left[\sup \pi_{x} H_{4}, \inf \pi_{x} H_{5}\right], y_{1} \in\left[\sup \pi_{y} H_{6}, \inf \pi_{y} H_{4}\right], y_{2} \in\left[\sup \pi_{y} H_{3}, \inf \pi_{y} H_{1}\right]$ and draw straight lines between the pairs of points $\left(x_{1}, y_{1}\right)$ and $\left(x_{1}, 1\right) ;\left(x_{1}, y_{1}\right)$ and $\left(1, y_{1}\right) ;\left(0, y_{2}\right)$ and $\left(x_{2}, y_{2}\right) ;\left(x_{2}, 0\right)$ and $\left(x_{2}, \dot{y_{2}}\right)$.

Denoting the two L-shaped areas by $L_{1}$ and $L_{2}$, we claim that and $A \cap L_{2}$ are $B C(2)$ domains without holes. The $B C(2)$ property comes simply by applying Lemma 33 with $m=m^{\prime}=2$ and $n=n^{\prime}=1$. The fact that $A \cap L_{1}$ and $A \cap L_{2}$ have no holes follows from the following lemma.

Lemma 45. Let $X$ be a $B C(m, n)$ domain with holes $\left\{H_{i}\right\}_{i \in I}$, and let $Y$ be a $B C(1)$ domain that does not meet any of the holes of $X$. (So $Y \subseteq\left(\bigcup H_{i}\right)^{c}$.) Then $Z:=X \cap Y$ is $B C(m, n)$ and has no holes.

Proof. The fact that $Z$ is $B C(m, n)$ follows immediately from Lemma 33. To prove that $Z$ has no holes, suppose for a contradiction that it does have a hole, $H$ say. By definition of holes, all points of $H^{c}$ abutting $H$ are in $Z=X \cap Y$. By considering the points either side of horizontal and vertical beams of $H$, we see
that since $Y$ is $B C(1)$, all points of $H$ are also in $Y$. Also $H \subseteq Z^{c}=(X \cap Y)^{c}=$ $X^{c} \cup Y^{c}$, which implies that $H \subseteq X^{c}$. Thus $H$ is a hole in $X$. But we also have $H \subseteq Y \subseteq\left(\bigcup H_{i}\right)^{c}$, which is a clear contradiction.

Lemma 16 now suggests that regarding the three pieces on the diagonal, we need only consider one of them, which we now do. Concentrating on one of these diagonal pieces, $D$ say, we decompose it in a similar manner. We divide it up as shown in the right hand side of Figure 3.15, that is surrounding each hole $H$ by the rectangle $R=\pi_{x} H \times \pi_{y} H$, then linking these rectangles with a "staircase" that extends to the edges of $D$. A precise definition for the case of holes arranged as in Figure 3.15 appears in the following table.

| $\pi_{x} s \in$ | $\pi_{y} s \in$ | $s \in$ |
| :---: | :---: | :---: |
| $\left[\min \pi_{x} D, \min \pi_{x} H_{1}\right)$ | $\left[\min \pi_{y} D, \max \pi_{y} H_{1}\right]$ | $K_{1}$ |
|  | $\left(\max \pi_{y} H_{1}, \max \pi_{y} D\right]$ | $K_{2}$ |
| $\left[\min \pi_{x} H_{i}, \max \pi_{x} H_{i}\right]$ | $\left[\min \pi_{y} D, \min \pi_{y} H_{i}\right)$ | $K_{1}$ |
|  | $\left(\max \pi_{y} H_{i}, \max \pi_{y} D\right]$ | $K_{2}$ |
| $\left(\max \pi_{x} H_{i}, \min \pi_{x} H_{i+1}\right)$ | $\left[\min \pi_{y} D, \max \pi_{y} H_{i+1}\right]$ | $K_{1}$ |
| $\left(\max \pi_{x} H_{n}, \max \pi_{x} D\right]$ | $\left(\max \pi_{y} H_{i+1}, \max \pi_{y} D\right]$ | $K_{2}$ |
|  | $\pi_{y} D$ | $K_{2}$ |

Thus we have $D=K_{1} \sqcup K_{2} \sqcup \bigsqcup_{i=1}^{n} R_{i}$. Intersecting with $A$ and applying the following lemma together with Lemma 45 , we find that $A \cap D$ can be decomposed into four (disconnected) $B C(1)$ domains along with the two $B C(2)$ domains without holes, $A \cap K_{1}$ and $A \cap K_{2}$.

Lemma 46. Let $A$ be a bounded connected $B C(m, n)$ domain and $H$ a hole in it. Define $R=\pi_{x} H \times \pi_{y} H$. Then

1. $R \backslash H$ has at most $2(m+n-2)$ connected components, and
2. If $C_{i}$ is one such, then $A \cap C_{i}$ is $B C(m-1, n-1)$.

Proof.

1. Let $\partial R$ denote the "boundary" of $R$, i.e. the set of points in $R$ adjacent to a point in $R^{c}$. By definition of $R$ and $B C(m-1, n-1)$-ness of $H$, it is
clear that $(\partial R) \backslash H$ has at most $2(m+n-2)$ connected components. Fix an arbitrary $z \in \mathbb{Z}^{2} \backslash R$. Given any $p \in R \backslash H$, we wish to see that $p$ is in the same connected component of $R \backslash H$ as some $q \in \partial R$. Since $\mathbb{Z}^{2} \backslash H$ is connected, there is a path $\gamma$ from $p$ to $z$ in $\mathbb{Z}^{2} \backslash H$. Let $q$ be the first point on $\partial R$ that $\gamma$ reaches. Then the restriction of $\gamma$ to $\left[0, \min \gamma^{-1} q\right]$ is a path in $R \backslash H$ from $p$ to $q$. Therefore every element of $R \backslash H$ is indeed in the same connected component of $R \backslash H$ as some element of $\partial R$, whence the first part of the lemma is proved.
2. Suppose for contradiction that there is a horizontal section of $A \cap C_{i}$ having $m$ connected components. Then there are $p_{1}, \ldots, p_{m} \in A \cap C_{i}$ and $q_{1}, \ldots, q_{m-1} \notin A \cap C_{i}$ all lying on the section and such that $\pi_{x} p_{i}<\pi_{x} q_{i}<$ $\pi_{x} p_{i+1}$ for $i=1, \ldots, m-1$. In fact we can in fact take the $q_{i}$ to be in $A^{c}$. (For if $q_{i} \in A$ then it can't be in $C_{i}$. Since $p_{i} \in C_{i}$ and $C_{i}$ is a connected component of $R \backslash H$, there must be a point of $H \subseteq A^{c}$ between $p_{i}$ and $q_{i}$.) Since $A$ is $B C(m, n)$, there can be no points of any hole to the left of $p_{1}$ or to the right of $p_{m}$. Also, there is a path in $C_{i}$ from $p_{1}$ to $p_{m}$, and thus (by concatenating) a path from the left edge of $R$ to its right edge that sits entirely in $H^{c}$. But there must also be a path in $H$ from the bottom edge of $R$ to its top edge. By the Jordan Curve Theorem the two paths must meet, which is a contradiction.

Thus we have proved:

Theorem 47. Let $A \subseteq \mathbb{Z}^{2}$ be a bounded, connected, $B C(2,2)$ domain that has the $H P(4)$ property. Then $A$ can be decomposed into orthogonal families of $B C(1)$ domains and $B C(2)$ domains without holes, whence we can use previous results to show that such a set may be decomposed into $2^{24}+2^{10}+4$ or fewer $B C(1)$ domains.


Figure 3.15: Final step in $B C(2)$ decomposition

## 3.4 $B C(3)$ and beyond

A few more techniques must be developed before we can achieve our goal of the decomposition of any $B C(m, n)$ domain. ${ }^{2}$ The next case to consider is that of $B C(3,2)$ domains. As in the treatment of $B C(2,2)$ domains, we can classify the different possible layouts of holes and make use of this knowledge in our methods. However, when we move up to $B C(3,3)$ domains, this method no longer seems feasible, due to a sudden growth in complexity. (Even in stepping from $B C(2,2)$ to $B C(3,2)$ we see a tripling in the number of possible hole diagrams.) So in the $B C(3,3)$ case we give a new method of dealing with the holes, and it turns out that we can extend this to the general $B C(N)$ case. Once that is done, we shall have all the necessary machinery to perform a decomposition of any $B C(N)$ domain.

## $B C(3,2)$ domains

As in the $B C(2)$ case it seems best to consider first the case when there are no holes. At this point however, the methods used in decomposing $B C(2,1)$ and $B C(2,2)$ become less effective and new methods become desirable. In fact, we have already developed one, because the Algorithm described in Section 3.2

[^4]can be applied in this situation. It is possible to extend the methods there to decompose any $B C(m, n)$ domain without holes.

For suppose that $A \subseteq \mathbb{Z}^{2}$ is such a domain and suppose without loss of generality that $m<n$. Consider a vertical cross-section of $A$. It consists of at most $n$ vertical beams. The proof of Lemma 38 shows that at most $2^{m}-1$ of the $A_{i}$ meet any given one of these $n$ beams. Thus the $A_{i}$ form a $B C\left(m, n\left(2^{m}-1\right)\right.$ ) family. We can also show, using the same ideas as those in the proof of Lemma 41, that each $A_{i}$ is $B C(1, n)$. By Theorem 29 and Theorem 40, we can thus decompose $A$ into $2^{2^{n}+n 2^{m}+m-5}$ or fewer $B C(1)$ domains.

A question that arises here is whether this bound is always smaller when $m<n$ than when $m>n$.

So in the present situation of $B C(3,2)$ domains, the Algorithm is used to give a $B C(2,9)$ family of $B C(1,3)$ domains, which can be split into $2^{9}$ or fewer orthogonal families of $B C(1,3)$ domains. Applying our results on $B C(1,3)$ domains, we end up with $2^{17}$ or fewer $B C(1)$ domains.

We now attempt to tackle $B C(3,2)$ domains with holes. First we note that the holes must form a $B C(2,1)$ family, and use Theorem 29 to split it into two $B C(1)$ families. For the time being we choose just one of these families on which to concentrate.

We also impose the condition $\operatorname{HP}(5,4)$, which says that we cannot have five holes alternating about a horizontal line, or four about a vertical line. A rigorous definition of $H P(m, n)$ for any $m, n \in \mathbb{N}$ comes in the same mould as that of the $H P(m)$ condition on page 51 . Let $P_{1}$ be the statement that there exist holes $H_{1}, \ldots, H_{m}$ in $A$ such that

- $\pi_{x} H_{i+1}>\pi_{x} H_{i}$ for all $i$ and either $\pi_{y} H_{o d d}<z_{0}<\pi_{y} H_{\text {even }}$ or $\pi_{y} H_{\text {odd }}>z_{0}>\pi_{y} H_{\text {even }}$
and let $P_{2}$ be the statement that there exist holes $H_{1}, \ldots, H_{n}$ in $A$ such that
- $\pi_{y} H_{i+1}>\pi_{y} H_{i}$ for all $i$ and either $\pi_{x} H_{o d d}<z_{0}<\pi_{x} H_{\text {even }}$ or $\pi_{x} H_{\text {odd }}>z_{0}>\pi_{x} H_{\text {even }}$.

Then $A$ is said to satisfy $H P(m, n)$ if it satisfies "neither $P_{1}$ nor $P_{2}$ ", that is $\neg\left(P_{1} \vee P_{2}\right)$ in the notation of logic. See Figure 3.16.


Figure 3.16: Illegal hole arrangements with $\operatorname{HP}(5,4)$

Armed with these restrictions and using the same kind of reasoning as in Lemma 44 we find that the holes in this family must have a maximal string diagram that is, up to symmetry, a "subdiagram" of that shown in Figure 3.17. (Details are given in Appendix A. There are 27 cases to check, but the argument is no harder than in the case of $B C(2)$ domains with the $H P(2)$ condition.) If we now enumerate the holes as $H_{j}^{1}$ and place rectangles $R_{j}^{1}$ around them as before (i.e. so that $R_{j}^{1}=\pi_{x} H_{j}^{1} \times \pi_{y} H_{j}^{1}$ ) then it is easy to see that $Q \backslash \bigcup_{j} R_{j}^{1}$ can be divided up into four $B C(1)$ domains. Again, see Figure 3.17. Call these domains $A_{1}^{1}, \ldots, A_{4}^{1}$.

Repeat this procedure with the second of the two families of holes $H_{j}^{2}$ and call the resulting $B C(1)$ domains $A_{1}^{2}, A_{2}^{2}, A_{3}^{2}$ and $A_{4}^{2}$. We have

$$
\begin{aligned}
Q=Q \cap Q & =\left(\bigsqcup_{j=1}^{4} A_{j}^{1} \sqcup \bigsqcup_{j} R_{j}^{1}\right) \cap\left(\bigsqcup_{j=1}^{4} A_{j}^{2} \sqcup \bigsqcup_{j} R_{j}^{2}\right) \\
& =\left(\bigsqcup_{j, k=1}^{4} A_{j}^{1} \cap A_{k}^{2}\right) \sqcup \bigcup_{i, j} R_{j}^{i} .
\end{aligned}
$$

Intersecting with $A$ on both sides, we have that $A \backslash \bigcup_{i, j} R_{j}^{i}=\bigsqcup_{j, k=1}^{4} A_{j}^{1} \cap A_{k}^{2} \cap A$. By Lemmas 33 and 45 , this is the union of at most sixteen $B C(3,2)$ domains without holes.


Figure 3.17: Decomposing $B C(3,2)$ domains

We are left with just the $A \cap R_{j}^{i}$ to deal with. To do so we just apply Lemma 46 , which tells us that each of these can be decomposed into six $B C(2,1)$ domains. Bearing in mind that the $R_{j}^{i}$ form two $B C(1)$ families, we have that $A \cap \bigcup_{i, j} R_{j}^{i}$ can be decomposed into twelve or fewer $B C(2,1)$ domains. Chasing the numbers back through previous results we have:

Theorem 48. Let $A$ be a bounded connected $B C(3,2)$ domain in $\mathbb{Z}^{2}$ that has property $H P(5,4)$. Then $A$ can be decomposed into $2^{24}+96$ or fewer $B C(1)$ domains.

But wait a minute: this bound is smaller than the one obtained earlier for $B C(2)$ domains! This suggests that using the Algorithm of Section 3.2 should lower the bound there. Indeed this is the case. For $B C(2)$ domains without holes, the Algorithm gives a $B C(2,6)$ family of $B C(1,2)$ domains, whence $4.2^{6}=2^{8}$ $B C(1)$ domains. For $B C(2)$ domains with holes (under the conditions of Theorem 47) this translates into $4.2^{10}+4=2^{12}+4 B C(1)$ domains.

## $B C(3,3)$ domains

In this subsection, we put the final piece in the jigsaw of techniques that will enable us to decompose a general square-type $B C(N)$ domain on which an appropriate HP condition holds. It is easier to follow what is going on in the $B C(3,3)$ case, which is why we do not immediately move to the general case.

Again the arrangements of holes in our domains entailed by the $H P$ condition is crucially important.

Let $A$ be a $B C(3)$ domain. If $A$ has no holes, then we can use the Algorithm of Section 3.2 to divide $A$ into a $B C(3,22)$ family of connected $B C(1,3)$ domain, each of which in turn we know how to decompose into $2^{8} B C(1)$ domains. Thus we can decompose $A$ into $2^{30}$ or fewer $B C(1)$ domains.

So assume that $A$ does have holes, and suppose further that $H P(5)$ holds on $A$. The holes form a $B C(2,2)$ family, which we may split into four $B C(1)$ families. We treat these one by one before taking intersections and suchlike for an overall decomposition.

Let $\mathcal{H}=\left\{H_{1}, \ldots, H_{k}\right\}$ be one of these $B C(1)$ hole families, where they are enumerated left-right. For $i=1, \ldots, k$ let $R_{i}=\pi_{x} H_{i} \times \pi_{y} H_{i}$. We define $L, U \subseteq Q$ as follows:

| $\pi_{x} s \in$ | and $\pi_{y} s \in$ | $s \in$ |
| :---: | :---: | :---: |
| $\left[\min \pi_{x} Q, \min \pi_{x} H_{1}\right)$ | $\left[\min \pi_{y} Q, \min \pi_{y} H_{1}\right)$ | $L$ |
|  | $\left[\min \pi_{y} H_{1}, \max \pi_{y} Q\right]$ | $U$ |
| $\pi_{x} H_{i}$ | $\left[\min \pi_{y} Q, \min \pi_{y} H_{i}\right)$ | $L$ |
|  | $\left(\max \pi_{y} H_{i}, \max \pi_{y} Q\right]$ | $U$ |
| $\left(\max \pi_{x} H_{i}, \min \pi_{x} H_{i+1}\right)$ | $\left[\min \pi_{y} Q, \min \left\{\max \pi_{y} H_{i}, \max \pi_{y} H_{i+1}\right\}\right]$ | $L$ |
| $\left(\max \pi_{y} H_{k}, \max \pi_{x} Q\right]$ | $\left(\min \left\{\max \pi_{y} H_{i}, \max \pi_{y} H_{i+1}\right\}, \max \pi_{y} Q\right]$ | $U$ |
|  | $\left[\min \pi_{y} Q, \min \pi_{y} H_{k}\right)$ | $L$ |
|  | $\left[\min \pi_{y} H_{k}, \max \pi_{y} Q\right]$ | $U$ |

Note that $Q=L \sqcup U \sqcup \bigsqcup_{i=1}^{k} R_{i}$. (This is all a lot easier to understand in a picture-see Figure 3.18.)

The aim now is to show that $L$ is $B C(2,1)$ and $U$ is $B C(3,1)$. The case of $U$ turns out to be slightly more involved, so we shall deal with it first. Supposing for a contradiction that $U$ were not $B C(3,1)$, we would have $p_{1}, \ldots, p_{4} \in U$ and $q_{1}, q_{2}, q_{3} \in Q \backslash U$ such that $\pi_{y} p_{i}=y_{0}=\pi_{y} q_{i}$ for all $i$ and

$$
\pi_{x} p_{1}<\pi_{x} q_{1}<\pi_{x} p_{2}<\cdots<\pi_{x} q_{3}<\pi_{x} p_{4}
$$

We also define $q_{0}=\left(\min \pi_{x} Q-1, y_{0}\right)$ and $q_{4}=\left(\max \pi_{x} Q+1, y_{0}\right)$.


Figure 3.18: A picture of $L$ and $U$

We define some subsets of $Q$ as follows:

$$
\begin{aligned}
Q_{0} & =\left[\min \pi_{x} Q, \pi_{x} p_{1}-1\right] \times\left[y_{0}, \max \pi_{y} Q\right] \\
P_{i} & =\left(\left[\pi_{x} q_{i-1}+1, \pi_{x} q_{i}-1\right] \times\left[\min \pi_{y} Q, y_{0}\right]\right) \backslash\left\{p_{i}\right\} \quad i=1,2,3,4 \\
Q_{i} & =\left(\left[\pi_{x} p_{i}+1, \pi_{x} p_{i+1}-1\right] \times\left[y_{0}, \max \pi_{x} Q\right]\right) \backslash\left\{q_{i}\right\} \\
Q_{4} & =\left[\pi_{x} p_{4}+1, \min \pi_{x} Q\right] \times\left[y_{0}, \max \pi_{x} Q\right] .
\end{aligned}
$$

We also define $P_{i}^{\prime}=P_{i} \backslash \pi_{y}^{-1}\left(y_{0}\right)$ for $i=1,2,3,4$; and $Q_{i}^{\prime}=Q_{i} \backslash \pi_{y}^{-1}\left(y_{0}\right)$ for $i=$ $0, \ldots, 4$, with the stipulation that $P_{0}=P_{5}=\emptyset$. See Figure 3.19. (The black vertical lines indicate squares that the rectangles $R_{j}$ may not contain-unless they contain some $q_{i}$.)

The following lemma is the machinery that produces illegal hole arrangements to get the intended contradiction.

Lemma 49. With the notation just introduced,

1. Suppose $i \leqslant 3(i \geqslant 2)$ and there is a rectangle $R$ meeting $P_{i} \cap Q_{i}$ but not $q_{i}$. Then there is some $R^{\prime} \subseteq Q_{i}^{\prime}\left(P_{i}^{\prime}\right)$.

Suppose that $i \leqslant 2(i \geqslant 1)$ and there is a rectangle $R$ meeting $Q_{i} \cap P_{i+1}$ but not $q_{i}$. Then there is some $R^{\prime} \subseteq P_{i+1}^{\prime}\left(Q_{i}^{\prime}\right)$.
2. Suppose there is a rectangle $R$ containing $q_{i}$ where $i \leqslant 2(i \geqslant 2)$. Then there is some $R^{\prime} \subseteq P_{i+1}^{\prime}\left(P_{i}^{\prime}\right)$.


Figure 3.19: Defining the $P_{i}, Q_{i}, p_{i}$ and $q_{i}$
3. Suppose $i \leqslant 3(i \geqslant 1)$ and there is a rectangle $R \subseteq Q_{i}^{\prime}$ and that no $R_{j}$ meets $Q_{i} \cap P_{i+1}\left(Q_{i} \cap P_{i}\right)$ or $q_{i}$. Then there is a rectangle $R^{\prime} \subseteq P_{i+1}^{\prime}\left(P_{i}^{\prime}\right)$. Suppose that $i \leqslant 3(i \geqslant 2)$ and there is a rectangle $R \subseteq P_{i}^{\prime}$ and that no $R_{j}$ meets $P_{i} \cap Q_{i}\left(P_{i} \cap Q_{i-1}\right)$ or $q_{i}\left(q_{i-1}\right)$. Then there is a rectangle $R^{\prime} \subseteq Q_{i}^{\prime}$ $\left(Q_{i-1}^{\prime}\right)$.

Proof. We just prove the first statement under each number, as the others are very similar.

- Consider the rightmost rectangle meeting $P_{i}$, which is either $R$ or some $R^{\prime} \subseteq P_{i}^{\prime}$. The next rectangle to the right of it is evidently (by definition of $U, L$ etc.) in $Q_{i}^{\prime}$.
- Same argument as above.
- Let $R^{\prime}$ be the rightmost hole in $Q_{i}^{\prime}$. This case now divides into 2 subcases. Firstly we suppose that $\max \pi_{x} R^{\prime} \geqslant \pi_{x} q_{i}$. Consider the next rectangle to the right. As before, it is evident that it lies in $P_{i+1}^{\prime}$.

Secondly, suppose that $\max \pi_{x} R^{\prime}<\pi_{x} q_{i}$. Consider the next rectangle to the right. If it lay in $P_{i}^{\prime}$ then applying the first case to $P_{i}^{\prime}$ yields a contradiction. Hence it must lie in $P_{i+1}^{\prime}$. (This is actually also a contradiction, meaning that $\max \pi_{x} R^{\prime}<\pi_{x} q_{i}$ is impossible, but this redundancy does not appear in the similar case of $R^{\prime} \subseteq P_{i}^{\prime}$.)

Corollary 50. If $U$ is not $B C(3,1)$, then there are at least six holes alternating about a horizontal line.

Proof. We have three cases to consider.

- First suppose that no rectangle meets the horizontal section at $y_{0}$. Pick a rectangle at random, which must therefore lie completely inside some $P_{i}^{\prime}$ or $Q_{i}^{\prime}$. Using part 3 of the Lemma repeatedly, we find holes in $P_{1}^{\prime}, \ldots, P_{4}^{\prime}$ and $Q_{1}^{\prime}, \ldots, Q_{3}^{\prime}$ and are done.
- Suppose that there is some rectangle $R$ that meets $P_{i} \cap Q_{i}$ but not $q_{i}$, where $i \leqslant 3$. Note that by $B C(1)$-ness of the hole family this can only happen once.

If $i=2$ or 3 then part 1 of the Lemma tells us that there are rectangles in $P_{i}^{\prime}$ and $Q_{i}^{\prime}$. Thence part 3 gives that there are rectangles in $P_{1}^{\prime}, \ldots P_{4}^{\prime}$ and $Q_{1}^{\prime}, \ldots, Q_{3}^{\prime}$ in addition to $R$, so at least seven in total, alternating about $y_{0}$. ( $R$ does not take part here.)

If $i=1$, part 1 of the lemma gives us a rectangle in $Q_{1}^{\prime}$. Then part 3 gives us holes in $P_{2}^{\prime}, P_{3}^{\prime}, P_{4}^{\prime}$ and $Q_{2}^{\prime}, Q_{3}^{\prime}$, and so at least seven in total, including $R$, that alternate about $\max \pi_{y} R$.

Very similar arguments give the result when $R \subseteq P_{4} \cup Q_{4}$ or $Q_{i} \cup P_{i+1}$.

- Suppose that there is some rectangle $R$ containing a $q_{i}$. If $i=2$ then by part 2 of the lemma we have rectangles in $P_{2}^{\prime}$ and $P_{3}^{\prime}$. Thence by part 3 we have further rectangles in $P_{1}^{\prime}, Q_{1}^{\prime}, Q_{3}^{\prime}$ and $P_{4}^{\prime}$, and so at least seven altogether, including $R$, which alternate about $\min \pi_{y} R$.

If $i=1$ then we have a rectangle in $P_{2}^{\prime}$ by part 2 and ones in $Q_{2}^{\prime}, P_{3}^{\prime}, Q_{3}^{\prime}, P_{4}^{\prime}$ by part 3 , so at least six in all, including $R$, that alternate about $\min \pi_{y} R$. The case $i=3$ follows by symmetry.

However we know it is impossible to have more than five holes alternating about a line, whence $U$ must be $B C(3,1)$ as claimed. The same kind of reasoning is used to show that $L$ is $B C(2,1)$.

Now we already have a method to decompose $B C(n, 1)$ domains into controlled numbers of $B C(1)$ domains, however it is possible here to improve the bound obtained by having a closer look at the domains $L$ and $U$. We can exploit the fact that they are of a special form-not only $B C(n, 1)$ for some $n$ but they are unions of vertical beams all of whose top or bottom ends are at the same height. We give a more general result than necessary in the immediate context, since it can be used later on.

Lemma 51. Let $F$ be a bounded connected $B C(n, 1)$ domain that is a union of vertical intervals all of whose lower endpoints are at the same height (which may as well be 0 ). Then $F$ can be decomposed into $T(n)$ or fewer $B C(1)$ domains, where

$$
\begin{align*}
& T(1)=1 \\
& T(n)=1+2^{n-2} T(n-1) \quad \text { for } n>1 \tag{3.2}
\end{align*}
$$

(So $T(n)=O\left(2^{\frac{1}{2} n(n-1)}\right)$, a substantial improvement on $2^{2^{n}}$.)
Proof. Choose a highest point $p$ in $F$ and let $\gamma$ be the vertical line from $p$ to $\left(\pi_{x} p, 0\right)=: q$. Take the union of horizontal beams through $\gamma$ and call it $A_{1}$. By the usual arguments, $A_{1}$ is $B C(1)$, and it clearly contains the bottom line of $F$, i.e. the lowest point of every vertical beam of $F$. Hence every vertical beam of $F \backslash A_{1}$ is a subset of a vertical beam of $F$ and contains the top point of that beam.

Evidently $F \backslash A_{1}$ may be disconnected and does not share the special form of $F$. However we claim that the connected components of $F \backslash A_{1}$ do have this form. So we wish to see that if $C$ is a connected component of $F \backslash A_{1}$ then $C$ is $B C(n-1,1)$ and is the union of vertical intervals all of whose lower endpoints are at the same height.

The $B C(n-1,1)$-ness of $C$ is clear. To demonstrate its special form, suppose otherwise. Then there exist $a, b \in C$ with $a^{\prime}:=\left(a_{1}, a_{2}-1\right)$ and $b^{\prime}:=\left(b_{1}, b_{2}-1\right)$ in
$A_{1}$ and $a_{2} \neq b_{2}$. We can assume that $a_{1}<b_{1}$ and $a_{2}<b_{2}$. Since $C$ is connected and $F \backslash A_{1}$ is vertically convex, there is an $x$-monotonic path $\gamma_{1}$ from $a$ to $b$.

Let $z$ be the last square on $\gamma_{1}$ at height $b_{2}-1$. Between $z$ and $b^{\prime}$ there must be a point $h \in F^{c}$. There must also be a point $w$ on $\gamma_{1}$ with $w_{1}=c_{1}, w_{2}>c_{2}$. But every point from $w$ down to ( $w_{1}, 0$ ) should be in $F$, and thus we have a contradiction. (See figure 3.20.)


Figure 3.20: A more efficient decomposition of $F$

Now the connected components of $F \backslash A_{1}$ are a $B C(n-1,1)$ family, which can be split into $2^{n-2}$ or fewer $B C(1)$ families. This together with the claim just proven gives rise to the function $T(n)$ in the statement of the lemma, and we are done. (Of course, a symmetrical argument would work if we replaced 'lower' by 'upper' in the statement of the lemma.)

In particular, the domains $L$ and $U$ can be decomposed respectively into two and five (or fewer) $B C(1)$ domains. If we name these seven domains $A_{j}^{1}$ for $j=1, \ldots, 7$ then we have $Q=\bigsqcup_{j=1}^{7} A_{j}^{1} \sqcup \bigsqcup_{j} R_{j}^{1}$ where the $R_{j}^{1}$ are the rectangles round the members of the $B C(1)$ family of holes under consideration. Repeating the whole procedure for the other three $B C(1)$ families of holes to obtain domains $A_{j}^{i}$ and $R_{j}^{i}$ for $i=2,3,4$, we have that $Q=\bigsqcup_{j=1}^{7} A_{j}^{i} \sqcup \bigsqcup_{j} R_{j}^{i}$ for each $i=1,2,3,4$. Hence

$$
Q=\left(\bigsqcup_{j, k, l, m} A_{j}^{1} \cap A_{k}^{2} \cap A_{l}^{3} \cap A_{m}^{4}\right) \cup \bigcup_{i, j} R_{j}^{i} .
$$

Thus $Q$ is the union of $7^{4} B C(1)$ domains and the $R_{j}^{i}$ 's. (Note that there may be some overlapping of the $R_{j}^{i}$ 's, but this does not present a problem. The only
danger is worsening the bounds, but as we are not seeking best possible bounds, this does not concern us.) Taking the intersection with $A$, we find by Lemmas 33,46 and 45 that $A$ is the union of $7^{4} B C(3)$ domains without holes and 32 (possibly disconnected) $B C(2)$ domains.

At this stage, we might wish to apply the $B C(2)$ decomposition to complete the work in hand. The only barrier to this is that we are no longer assuming $H P(4)$-which was used in the $B C(2)$ decomposition-but the weaker condition $H P(5)$. However we are still able to proceed. Instead of ending up with four $B C(2)$ domains without holes and four $B C(1)$ domains, we can use the results of the preceding paragraphs to decompose each of the $B C(2)$ domains under consideration into $T(2)+T(3)=7 B C(2)$ domains without holes and four $B C(1)$ domains. (Note that the holes in each $B C(2)$ domain form a $B C(1)$ family, since each has horizontal and vertical overlap with one of the $R_{j}^{i}$ mentioned above.) Doing the arithmetic, we find that each holeless $B C(2)$ domain here can be decomposed into $2^{8} \cdot 4.7+4 B C(1)$ domains.

Referring back to Lemma 30 and the remarks at the start of this section, we have:

Theorem 52. Let $A \subseteq \mathbb{Z}^{2}$ be a $B C(3)$ domain on which. $H P(5)$ holds. Then $A$ can be decomposed into $2^{34} .7^{4}+2^{17} .7+2^{9}$ or fewer $B C(1)$ domains.

## $B C(N)$ domains

Now let $A$ be a general $B C(N)$ domain in $\mathbb{Z}^{2}$ on which $H P(N+2)$ holds, with $N>3$. If $A$ has no holes, we invoke the Algorithm of Section 3.2 to decompose it into a $B C\left(N, N .\left(2^{N}-1\right)\right)$ family of $B C(1, N)$ domains and take things from there. So suppose that $A$ does have holes. Enumerate them as $H_{j}$ and let $R_{j}=$ $\pi_{x} H_{j} \times \pi_{y} H_{j}$ as ever. The decomposition continues much along the lines of the previous section.

Firstly we divide the holes, which form a $B C(N-1)$ family, into $2^{2 N-4} B C(1)$ families, using Lemma 30. Then isolate one of these $B C(1)$ families (call it $\mathcal{H}$ ) and define the subsets $L$ and $U$ of $Q$ exactly as in the last section: see Figure 3.18 and the preceeding table of definitions. Our aim is to show that $L$ is $B C(r-1,1)$
and $U$ is $B C(r, 1)$, where $r=\left\lceil\frac{N}{2}\right\rceil+1 .^{3}$ Again we consider only the slightly more complicated case of $U$. If it were not $B C(r, 1)$, we would have $p_{1}, \ldots, p_{r+1} \in U$ and $q_{1}, \ldots, q_{r} \in Q \backslash U$ all at some height $y_{0}$ and such that

$$
\pi_{x} p_{1}<\pi_{x} q_{1}<\pi_{x} p_{2}<\cdots<\pi_{x} q_{r}<\pi_{x} p_{r+1}
$$

Define $q_{0}=\left(\min \pi_{x} Q-1, y_{0}\right), q_{r+1}=\left(\max \pi_{x} Q+1, y_{0}\right)$, and

$$
\begin{aligned}
Q_{0} & =\left[\min \pi_{x} Q, \pi_{x} p_{1}-1\right] \times\left[y_{0}, \max \pi_{y} Q\right] \\
P_{i} & =\left(\left[\pi_{x} q_{i-1}+1, \pi_{x} q_{i}-1\right] \times\left[\min \pi_{y} Q, y_{0}\right]\right) \backslash\left\{p_{i}\right\} \quad i=1, \ldots, r+1 \\
Q_{i} & =\left(\left[\pi_{x} p_{i}+1, \pi_{x} p_{i+1}-1\right] \times\left[y_{0}, \max \pi_{x} Q\right]\right) \backslash\left\{q_{i}\right\} \quad i=1, \ldots, r \\
Q_{r+1} & =\left[\pi_{x} p_{4}+1, \min \pi_{x} Q\right] \times\left[y_{0}, \max \pi_{x} Q\right] .
\end{aligned}
$$

We also define $P_{i}^{\prime}=P_{i} \backslash \pi_{y}^{-1}\left(y_{0}\right)$ for $i=1, \ldots, r+1$; and $Q_{i}^{\prime}=Q_{i} \backslash \pi_{y}^{-1}\left(y_{0}\right)$ for $i=0, \ldots, r$, with the stipulation that $P_{0}=P_{r+2}=\emptyset$.

We now introduce a generalised version of Lemma 49:

## Lemma 53.

1. Suppose $i \leqslant r(i \geqslant 2)$ and there is a rectangle $R$ meeting $P_{i} \cap Q_{i}$ but not $q_{i}$. Then there is some $R^{\prime} \subseteq Q_{i}^{\prime}\left(P_{i}^{\prime}\right)$.
Suppose that $i \leqslant r-1(i \geqslant 1)$ and there is a rectangle $R$.meeting $Q_{i} \cap P_{i+1}$ but not $q_{i}$. Then there is some $R^{\prime} \subseteq P_{i+1}^{\prime}\left(Q_{i}^{\prime}\right)$.
2. Suppose there is a rectangle $R$ containing $q_{i}$ where $i \leqslant r-1(i \geqslant 2)$. Then there is some $R^{\prime} \subseteq P_{i+1}^{\prime}\left(P_{i}^{\prime}\right)$.
3. Suppose $i \leqslant r(i \geqslant 1)$ and there is a rectangle $R \subseteq Q_{i}^{\prime}$ and that no $R_{j}$ meets $Q_{i} \cap P_{i+1}\left(Q_{i} \cap P_{i}\right)$ or $q_{i}$. Then there is a rectangle $R^{\prime} \subseteq P_{i+1}^{\prime}\left(P_{i}^{\prime}\right)$.
Suppose that $i \leqslant r(i \geqslant 2)$ and there is a rectangle $R \subseteq P_{i}^{\prime}$ and that no $R_{j}$ meets $P_{i} \cap Q_{i}\left(P_{i} \cap Q_{i-1}\right)$ or $q_{i}\left(q_{i-1}\right)$. Then there is a rectangle $R^{\prime} \subseteq Q_{i}^{\prime}$ $\left(Q_{i-1}^{\prime}\right)$.
[^5]It is proved in exactly the same way as Lemma 49. As before, it has as a consequence:

Corollary 54. If $U$ is not $B C(r, 1)$ then there are at least $2 r$ holes alternating about a horizontal line.

But $2 r=N+2$ when $N$ is even and $N+3$ when $N$ is odd, and we know that we may only have at most $N+1$ holes alternating about a line. Thus we have a contradiction and $U$ must be $B C(r, 1)$. Similarly $L$ is $B C(r, 1)$.

From the previous section, we know that $U$ and $L$ can be decomposed respectively into $T(r)$ and $T(r-1)$ or fewer $B C(1)$ domains. Thus we have a decomposition of $Q$ into $T(r)+T(r-1)$ or fewer $B C(1)$ domains along with the $R_{j}$ associated to the holes in $\mathcal{H}$. Repeating the process for each of the remaining $B C(1)$ hole-families, we obtain similar decompositions. Taking intersections, we find that $Q$ is the union of $(T(r)+T(r-1))^{2^{2 N-4}}$ or fewer $B C(1)$ domains together with the $R_{j}$. Then intersecting with $A$ and applying Lemma 45 gives that $A$ is the union of this same number of $B C(N)$ domains without holes and $\bigcup_{j} A \cap R_{j}$. The former we dealt with at the beginning of this section on page 69 . The latter we can deal with using Lemma 46 and the same kind of considerations as in the $B C(3)$ case. Lemma 46 will leave us with $4 N-4$ or fewer $B C(N-1)$ domains for each of the $A \cap R_{j}$. Although we cannot use a straightforward induction, we can decompose these into a bounded number of $B C(1)$ domains and $B C(N-2)$ domains using the $H P(N+2)$ condition, the results of the $B C(3)$ section and Lemma 46 once again. We repeat this procedure until we are left with nothing but $B C(1)$ domains, at each stage bearing in mind that we can only assume $H P(N+2)$ and none of the stronger $H P$ conditions.

Summarising, we have:
Theorem 55. Let $A \subseteq \mathbb{Z}^{2}$ be a $B C(N)$ domain $(N \geqslant 3)$ on which the property $H P(N+2)$ holds. Then $A$ can be decomposed into $B(N)$ or fewer $B C(1)$ domains, where $B$ is a function from $\mathbb{N}$ to itself.

Translating this into the quasi-discrete setting, we have

Corollary 56. Let $\Omega=\mathcal{T}(A)$ be a quasi-discrete domain in $\mathbb{R}^{2}$. Suppose that $A$ has the $B C(N)$ and $H P(N+2)$ properties. Then we can decompose $\Omega$ into $B(N)$ or fewer $B C(1)$ domains and a set of measure zero.

Proof. By Theorem 55, we can decompose $A$ into $B(N)$ or fewer $B C(1)$ domains, which we label $A_{1}, \ldots, A_{K}$. We have

$$
\mathcal{T}(A)=\mathcal{T}\left(\bigsqcup_{i=1}^{K} A_{i}\right)=Z \sqcup \bigsqcup_{i=1}^{K} \mathcal{T}\left(A_{i}\right)
$$

where $Z$ is a set of measure zero consisting purely of points that are on the boundaries of squares. Since $\mathcal{T}$ preserves the $B C(1)$ property (by Lemma 25), the $\mathcal{T}\left(A_{i}\right)$ are all $B C(1)$ domains.

The final task for this section is to show how one can compute the bound function $B: \mathbb{N} \longrightarrow \mathbb{N}$. Firstly we need to define some more elementary functions from which $B$ is built. We recall the function $T$ that occurred in Lemma 51 defined by $T(1)=1$ and $T(n+1)=1+2^{n-2} T(n-1)$ for $n \geqslant 1$. Now given $N \in \mathbb{N}$, we define for $N \geqslant 3$,

$$
\begin{aligned}
& r_{N}=\lceil N / 2\rceil+1 \\
& S_{N}=T\left(r_{N}\right)+T\left(r_{N}-1\right), \quad \text { and } \\
& U_{N}=2^{(N+1)\left(2^{N}+1\right)-6},
\end{aligned}
$$

and for $N \geqslant 2$,

$$
\begin{aligned}
C_{N} & =2^{2 N-2} \quad \text { and } \\
D_{N} & =4 N-4
\end{aligned}
$$

Put $S_{2}=4$ and $U_{2}=2^{8}$. Note that $S_{N}$ is the bound on the number of $B C(1)$ domains from the decomposition of the regions $L$ and $U$ defined on page 64; $U_{N}$ is the bound on the number of $B C(1)$ domains from the decomposition of $B C(N)$ domains with no holes; $C_{N}$ is the bound on the number of $B C(1)$ families produced from a $B C(N)$ family by Corollary 30 ; and $D_{N}$ is the bound on the number of $B C(N-1)$ domains coming from Lemma 46. By inspecting how the
numbers behave in the arguments of this chapter, we find that

$$
\begin{aligned}
B(N)= & S_{N}^{C_{N-1}} U_{N} C_{N}+C_{N-1}^{2} D_{N}\left(S_{N}^{C_{N-2}} U_{N-1} C_{N-1}+\right. \\
& \left.+C_{N-2}^{2} D_{N-1}\left(S_{N}^{C_{N-3}} U_{N-2} C_{N-2}+\cdots+C_{2}^{2} D_{3}\left(S_{N} U_{2} C_{2}+D_{2}\right) \ldots\right)\right)
\end{aligned}
$$

### 3.5 Issues arising

The results of this chapter raise questions in computational complexity. As we have seen, their proofs rely on various techniques of estimation and there are key algorithmic procedures underlying them all. None of the processes involved is claimed or conjectured to be efficient, and it would be an interesting undertaking to investigate if and how the bounds they give might be improved.

Firstly, let us consider Theorem 29 and Corollary 30, the first results given in this chapter. Recall that the Corollary tells us that we can arrange a $B C(m, n)$ family of sets into $2^{m+n-2}$ or fewer $B C(1)$ families. Certainly this bound is attained when $m=n=2$, but we know of no $B C(3,2)$ family that requires a full eight $B C(1)$ families. Perhaps the bound here could be improved to something like $O(m n)$ or even $O(m+n)$, but we suspect that much subtler techniques would be required to establish such a bound. The main idea of the proof of Theorem 29 is at least very simple in concept.

Next, take the Algorithm in Section 3.2 given initially for the decomposition of $B C(n, 1)$ domains and then extended at the outset of Section 3.4 to cover any $B C(n)$ domains without holes. The bound it gives on the number of $B C(1)$ domains produced is $2^{O\left(n 2^{n}\right)}$. If this could be improved upon, then given the centrality of this process, it would give improved bounds for all but the most basic of our decompositions. Of course, the Algorithm makes use of Corollary 30, so an improvement of the latter would help matters here for free.

Finally, consider Lemma 51, which was used to decompose the area away from the holes in a general $B C(N)$ domain. It gave us an improved bound for a special kind of $B C(n, 1)$ domain, but even the process used to establish this bound seemed rather inefficient, and one feels that further improvements are possible.

However, because of the rapid growth of the bound given by the Algorithm of

Section 3.2, it would seem to be the most obvious starting point for any efforts to streamline our methods and find better bounds.

## Chapter 4

## Applications and Discussion

Two possible uses for our results present themselves. One is in the original, continuous setting which motivated our work, and the other is in an entirely discrete setting. We devote a section of this chapter to each of them. The main results are Theorem 58 below and Theorem 63 on page 82 . The reader may wish to refer back to Theorem 55 on page 71 for a reminder of the result we wish to apply. A review of Section 1.3 might also be useful for Section 4.1.

### 4.1 An application in the continuous setting

As mentioned above, the first application is in the context from which our results arose, namely of sublevel set operators on real-valued functions on $\mathbb{R}^{2}$. It extends what we know in a special case of the following theorem, taken from [4].

Theorem 57. Let $\alpha \in \mathbb{N}^{2}$ be a multi-index and suppose that $D^{\alpha} u \geqslant 1$ on $[0,1]^{2}$. Suppose further that the intersection of any vertical line with any sublevel set of $u$ has at most $N$ connected components. Then there is a $C$ depending on $\alpha$ and $N$ such that

$$
\left|\int_{\{|u| \leqslant s\}} f_{1}\left(x_{1}\right) f_{2}\left(x_{2}\right) \mathrm{d} x_{1} \mathrm{~d} x_{2}\right| \leqslant C s^{1 /|\alpha|}\left\|f_{1}\right\|_{p_{1}}\left\|f_{2}\right\|_{p_{2}},
$$

where $\frac{1}{p_{i}}=1-\frac{\alpha_{i}}{\alpha}$.
The proof of this result can be found in [3], and since it uses completely different methods from those discussed in this document, we omit it here. Suffice
it to say that the above theorem contains the $n=2$ case of Theorem 14 and was proved before the latter.

The content of the result we are about to give is that in the scenario of Theorem 57, we can allow $\Omega$ to be any HV-convex set provided that $u$ is a type 1 function with type 1 constant $N$ and $\frac{\partial^{2} u}{\partial x \partial y}>0$ on $\pi_{x} \Omega \times \pi_{y} \Omega$. Without further ado, we have

Theorem 58. Let $\Omega \subseteq Q_{0}$ be an HV-convex domain, where $Q_{0}$ is some closed, axis-parallel rectangle containing $\Omega$. Let $u: \mathbb{R}^{2} \longrightarrow \mathbb{R}$ be a smooth type 1 function with type 1 constant $N$ and $\alpha$ a multi-index such that $D^{\alpha} u \geqslant 1$ on $\Omega$ and $\frac{\partial^{2} u}{\partial x \partial y}>0$ on $Q_{0}$. Then there is a constant $C$ depending only on $N$ and $\alpha$ such that

$$
\left|\int_{\Omega \cap\{|u| \leqslant s\}} f_{1}\left(x_{1}\right) f_{2}\left(x_{2}\right) \mathrm{d} x_{1} \mathrm{~d} x_{2}\right| \leqslant C s^{1 / /|\alpha|}\left\|f_{1}\right\|_{p_{1}}\left\|f_{2}\right\|_{p_{2}}
$$

where the $p_{i}$ are as in Theorem 57 above.
Proof. Let $E_{s}$ be the sublevel set of $u$ at level $s$, i.e. $E_{s}=\left\{x \in Q_{0}:|u(x)| \leqslant s\right\}$. The idea is that we approximate $E_{s}$ by some $r \mathcal{T}(A)=\{r x: x \in \mathcal{T}(A)\}$, where $r>0$ is a 'zoom factor' and $A \subseteq \mathbb{Z}^{2}$ obeys appropriate $B C$ and $H P$ conditions, apply Theorem 55 from Chapter 3 , translate the resulting $B C(1)$ domains in $\mathbb{Z}^{2}$ into suitable domains in $\mathbb{R}^{2}$, and finally apply the methods of [11] as discussed in Section 1.3.

Firstly we note that the proof of Theorem 29 and Corollary 30 can be carried over to $\mathbb{R}^{2}$. (In fact, these results were first proved in $\mathbb{R}^{2}$ before noticing that they worked equally well in $\mathbb{Z}^{2}!$ ). By the Corollary and Lemma 16 we may assume that Es connected.

By the uniform continuity of $u$ on $Q_{0}$, there is a $\delta>0$ such that whenever $\left|x-x^{\prime}\right|<\delta$, we have $\left|u(x)-u\left(x^{\prime}\right)\right|<s / 2$. Let $E$ be the set obtained from $E_{s}$ by filling in any holes that do not contain a circle of radius $\delta$. More precisely, denote the holes of $E_{s}$ not containing a circle of radius $\delta$ by $H_{i}, i \in \mathbb{N}$, and put $E:=E_{s} \cup \bigcup_{i \in \mathbb{N}} H_{i}$. So any point inside one of the $H_{i}$ is within $\delta$ of a point of $E_{s}$, and hence $|u|<3 s / 2$ on $E$. (We ignore the dependence of $E$ on $s$, since it is
irrelevant in the rest of the argument.) Note that $E$ is connected because $E_{s}$ is connected.

We know that there is some $\varepsilon>0$ such that $\frac{\partial^{2} u}{\partial x \partial y} \geqslant \varepsilon$ on $Q_{0}$. By uniform continuity once more, we choose $r<\delta / 2 \sqrt{2}$ such that whenever $\left|x-x^{\prime}\right|<2 r$, we have $\left|u(x)-u\left(x^{\prime}\right)\right|<\delta^{2} \varepsilon / 8$. Now we pick our approximating set $A \subseteq \mathbb{Z}^{2}$ by putting $A=\left\{z \in \mathbb{Z}^{2}: r \overline{\mathcal{T}(z)} \cap E \neq \emptyset\right\}$. We note that $|u|<2 s$ on $r \overline{\mathcal{T}(A)}$, and that $E_{s} \subseteq E \subseteq r \mathcal{T}(A)$.

We claim that $A$ satisfies $B C(2 N-1)$ and $H P(N+2)$. We tackle the latter property first. Suppose for a contradiction that we had $N+2$ holes $H_{1}, \ldots, H_{N+2}$ violating the condition. Without loss of generality, suppose that they alternate around a horizontal line $L_{0}$ and that $H_{1}$ is below the line.

By definition of $E$, all the holes of $\mathcal{T}(A)$ contain a circle of radius $\delta / 2 r$. Choose a height that is at least $\delta / 2 r$ down $H_{1}$ and consider the points $s_{1}$ and $s_{2}$ of $\mathbb{Z}^{2}$ immediately to the left and right of the horizontal cross-section of $H_{1}$ at that height.

Both of the sets $S_{i}:=r \overline{\mathcal{T}\left(s_{i}\right)}$ must meet the boundary of $E$, on which $|u|=s$; let $q_{i}$ be points where this happens. Since the $q_{i}$ can be joined by a path lying entirely inside $E_{s}^{c}$ except for the endpoints, we see that $u\left(q_{1}\right)=u\left(q_{2}\right)$. Let $p_{1}$ be the point midway down the right-hand edge of $r \overline{\mathcal{T}\left(s_{1}\right)}$ and $p_{2}$ the point midway down the left-hand edge of $r \overline{\mathcal{T}\left(s_{2}\right)}$, and let $L_{1}$ be the horizontal line joining $p_{1}$ and $p_{2}$. (See Figure 4.1.)

Now for $i=1,2,\left|p_{i}-q_{i}\right|<2 r$ and so $\left|u\left(p_{i}\right)-u\left(q_{i}\right)\right|<\delta^{2} \varepsilon / 8$. Hence by the Mean Value Theorem, there must be a point $c$ on $L_{1}$ such that

$$
\begin{aligned}
\left|\frac{\partial u}{\partial x}(c)\right| & =\frac{\left|u\left(p_{2}\right)-u\left(p_{1}\right)\right|}{\left|p_{2}-p_{1}\right|} \\
& \leqslant \frac{\left|u\left(p_{2}\right)-u\left(q_{2}\right)\right|+\left|u\left(q_{1}\right)-u\left(p_{1}\right)\right|}{\left|p_{2}-p_{1}\right|} \\
& \leqslant \frac{\delta \varepsilon}{4} .
\end{aligned}
$$

Therefore, since $\frac{\partial^{2} u}{\partial x \partial y} \geqslant \varepsilon$ on $Q_{0}$ and the distance from $c$ to $L_{0}$ is at least $\delta / 2$, there is a point $c_{1}$ on $r L_{0}$ for which $\pi_{x} c_{1}=\pi_{x} c$ and $\frac{\partial u}{\partial x}\left(c_{1}\right) \geqslant \delta \varepsilon / 4$. We treat each of the holes $H_{2}, \ldots, H_{N+2}$ in the same manner to obtain a sequence of points $c_{1}, \ldots, c_{N+2}$


Figure 4.1: Analysing the holes of $r \mathcal{T}(A)$
on the horizontal line $r L_{0}$ such that $\pi_{x}\left(c_{i}\right)<\pi_{x}\left(c_{i+1}\right)$ for all $i, \frac{\partial u}{\partial x}\left(c_{o d d}\right)>0$ and $\frac{\partial u}{\partial x}\left(c_{\text {even }}\right)<0$. But this means that $\frac{\partial u}{\partial x}$ meets $r L_{0}$ in at least $N+1$ components, which contradicts the assumption that $u$ is type 1 with type 1 constant $N$.

We now show that $A$ is a $B C(2 N-1)$ domain. Note that $E$ is $B C(N)$, by its definition and the fact that $E_{s}$ is $B C(N)$. Again, we suppose for a contradiction that $A$ isn't $B C(2 N-1)$, and that there are, without loss of generality, precisely $2 N$ horizontal beams at the height $y_{0}$, named $C_{1}, \ldots, C_{2 N}$ say. (More than $2 N$ would make things easier, as we shall shortly see.) For each $i$, let $D_{i}=r \overline{\mathcal{T}\left(C_{i}\right)}$ and choose a point $x_{i} \in E \cap D_{i}$. By connectedness of $E$, each $x_{i}$ must be joined by a path in $E$ to the top or the bottom edge of $r \overline{\mathcal{T}\left(C_{i}\right)}$.

We claim that exactly $N$ of the $x_{i}$ can only be joined by such a path to the top edge of $D_{i}$ and exactly $N$ of the $x_{i}$ can only be joined by such a path to the bottom edge of $D_{i}$. For if this were not the case, there would be (at least) $N+1$ of the $x_{i}$ joined to the top of $D_{i}$ or $N+1$ of the $x_{i}$ joined to the bottom of $D_{i}$. Suppose without loss of generality that the former holds. Choose a height that lies between the height of the top edges of the $D_{i}$ and the height of the highest $x_{i}$, and consider the horizontal cross section of $E$ at that height. Since by definition $E$ does not meet any of the gaps between the $D_{i}$, we can find a sequence of points $y_{1}, y_{2}, \ldots, y_{2 N+1}$ such that for all $i, \pi_{x} y_{i}<\pi_{x} y_{i+1}, y_{2 i+1} \in E$ and $y_{2 i} \in E^{c}$. But, this contradicts the fact that $E$ is $B C(N)$.

This entails that there can be no path between any of the former category of $x_{i}$ (those joined only to the top edge of $D_{i}$ ) and any of the latter category of $x_{i}$ (those joined only to the bottom edge of $D_{i}$ ), which contradicts the connectedness of $E$. For any such path would necessarily meet both the bottom and the top of some fixed $D_{i}$. See Figure 4.2.


Figure 4.2: Showing that $A$ is a $B C(2 N-1)$ domain

Having established that $A$ satisfies $H P(N+2)$ and $B C(2 N-1)$, we can apply Theorem 55 of Chapter 3 to decompose it into $B(2 N-1)$ or fewer $B C(1)$ domains. Say $A=\bigsqcup_{i=1}^{K} A_{i}$ where $K \leqslant B(2 N-1)$. (Evidently with a bit of further analysis one could come up with a better bound, since $A$ satisfies $H P(N+2)$, which is stronger than the $H P(2 N+1)$ in the hypotheses of the Theorem.) Then we have

$$
r \mathcal{T}(A) \cap \Omega=Z \sqcup \bigsqcup_{i=1}^{K} r \mathcal{T}\left(A_{i}\right) \cap \Omega
$$

for some set $Z$ of zero measure. By Lemmas 25 and 33 , each $r \mathcal{T}\left(A_{i}\right) \cap \Omega$ is a $B C(1)$ domain, and hence can be decomposed into three or fewer orthogonal families of curved trapezoids. Now the methods of [11] can be invoked to obtain the desired result. By Lemma 16, we may as well be dealing with $3 K$ curved trapezoids $\Omega_{i}$. On each of the $\Omega_{i}$, we have $|u| \leqslant 2 s$ and $D^{\alpha} u \geqslant 1$. Therefore

$$
\begin{aligned}
\left|\int_{\Omega \cap\{|u| \leqslant s\}} f_{1}\left(x_{1}\right) f_{2}\left(x_{2}\right) \mathrm{d} x_{1} \mathrm{~d} x_{2}\right| & \leqslant\left|\int_{\Omega \cap r \mathcal{T}(A)} f_{1}\left(x_{1}\right) f_{2}\left(x_{2}\right) \mathrm{d} x_{1} \mathrm{~d} x_{2}\right| \\
& \leqslant \sum_{i=1}^{3 K}\left|\int_{\Omega_{i}} f_{1}\left(x_{1}\right) f_{2}\left(x_{2}\right) \mathrm{d} x_{1} \mathrm{~d} x_{2}\right| \\
& \leqslant C s^{1 /|\alpha|}| | f_{1}\left\|_{p_{1}} \mid f_{2}\right\|_{p_{2}}
\end{aligned}
$$

because the result holds on curved trapezoids, as shown in Section 1.3.
There is a need to be cautious here, since the arguments of [11] described in Section 1.3 are only stated for domains inside the unit square $Q$. The way to
get around this is to analyse those arguments and observe that this restriction is unnecessary.

The principal limitation of this whole method is that it is very much anchored to the case of $\frac{\partial^{2} u}{\partial x \partial y}>0$. At present we do not know of any way to extend it to cover the case of having single-signed $D^{\beta} u$ for other multi-indices $\beta$. That said, the broad strategy of decomposing domains in $\mathbb{Z}^{2}$ rather than $\mathbb{R}^{2}$ certainly avoids a number of difficulties and the arguments involved are fairly elementary, as seen in Chapter 3. There are still technicalities to be faced when seeking suitable quasi-discrete approximations to general domains in $\mathbb{R}^{2}$ and in ensuring that relevant properties carry over. However it may be that the techniques of Chapter 3 will find uses separate from their original purpose of analysing sublevel set integral operators.

### 4.2 An application in the discrete setting

The second use for our results is to apply them in a purely discrete context. This would seem more elegant, but perhaps the potential knock-on applications are less obvious at the moment.

Recall that in motivating the $H P(N)$ conditions (see the subsection on page 51) we looked at the number of components of certain cross-sections of sublevel sets of the first partials of our phase function $u$. Firstly we need analogues of partial derivatives.

Definition 59. Let $f$ be a function from $\mathbb{Z}^{2}$ to $\mathbb{R}$. Define for all $(a, b) \in \mathbb{Z}^{2}$

$$
\begin{aligned}
D^{x} f(a, b) & =f(a+1, b)-f(a, b) \\
D^{y} f(a, b) & =f(a, b+1)-f(a, b) \\
D^{x y} f(a, b) & =f(a+1, b+1)+f(a, b)-f(a+1, b)-f(a, b+1)
\end{aligned}
$$

Also, for $f: \mathbb{Z} \longrightarrow \mathbb{R}$ and all $a \in \mathbb{Z}$ define

$$
D f(a)=f(a+1)-f(a)
$$

Obviously in the discrete setting we have no intermediate value theorem. Note however that in the continuous case, the number of components of the crosssection $\left\{x \in \mathbb{R}:\left|f\left(x, y_{0}\right)\right|<s\right\}$ is equal to

$$
\# \text { components }\left\{x \in \mathbb{R}: f\left(x, y_{0}\right) \geqslant s\right\}
$$

$$
+\# \text { components }\left\{x \in \mathbb{R}: f\left(x, y_{0}\right) \leqslant-s\right\}+\varepsilon
$$

where $\varepsilon \in\{-1,0,1\}$ and depends on $f, s$ and $y_{0}$. Therefore we introduce
Definition 60. For a function $f: \mathbb{Z}^{2} \longrightarrow \mathbb{R}$, define

$$
\begin{aligned}
C_{x}\left(f, s, y_{0}\right):= & \# \text { components }\left\{x \in \mathbb{Z}: f\left(x, y_{0}\right) \geqslant s\right\} \\
& +\# \text { components }\left\{x \in \mathbb{Z}: f\left(x, y_{0}\right) \leqslant-s\right\} \\
C_{y}\left(f, s, x_{0}\right):= & \# \text { components }\left\{y \in \mathbb{Z}: f\left(x_{0}, y\right) \geqslant s\right\} \\
& +\# \text { components }\left\{y \in \mathbb{Z}: f\left(x_{0}, y\right) \leqslant-s\right\} .
\end{aligned}
$$

There now follows a Lemma that performs the rôle that Rolle's Theorem did in the continuous setting.

Lemma 61. Let $f: \mathbb{Z} \longrightarrow \mathbb{R}$ and $a<b-1$ be such that $|f(a)|,|f(b)|<s$ and $|f(c)| \geqslant s$ for all $c \in(a, b)$. Then there exist $c^{+}$and $c^{-}$in $[a, b)$ such that $D f\left(c^{+}\right)>0>D f\left(c^{-}\right)$.

The proof is trivial. As a consequence we have
Proposition 62. Let $f: \mathbb{Z}^{2} \longrightarrow \mathbb{R}$ be such that $D^{x y} f>0$ on $\mathbb{Z}^{2}$ and let $A=\{z \in$ $\left.\mathbb{Z}^{2}:|f(z)|<s\right\}$ be a sublevel set of $f$. Suppose that there are holes $H_{1}, \ldots, H_{m}$ in $A$ and $y_{0} \in \mathbb{Z}$ such that for all $i, \pi_{x}\left(H_{i}\right)<\pi_{x}\left(H_{i+1}\right), \pi_{y}\left(H_{2 i+1}\right) \leqslant y_{0}$ and $\pi_{y}\left(H_{2 i}\right)>y_{0}$. Then there exist $x_{1}<\cdots<x_{m}$ such that $D^{x} f\left(x_{2 i+1}, y_{0}\right)>0$ and $D^{x} f\left(x_{2 i}, y_{0}\right)<0$ for all $i$. Hence there is an $s^{\prime}$ such that $C_{x}\left(D^{x} f, s^{\prime}, y_{0}\right) \geqslant m$.

Proof. For each $i$, choose $y_{i} \in \pi_{y}\left(H_{i}\right)$ and apply Lemma 61 to $f \upharpoonright \pi_{y}^{-1}\left(y_{i}\right)$. In this way we find $z_{i} \in H_{i}$ such that for all $i, D^{x} f\left(z_{2 i+1}\right)>0$ and $D^{x} f\left(z_{2 i}\right)<0$. Now the assumption that, $D^{x y} f>0$ gives the existence of the $x_{i}$ as required.

It is now easy to prove

Theorem 63. Let $A \subseteq \mathbb{Z}^{2}$ be bounded and $f: A \longrightarrow \mathbb{R}$. Suppose that $D^{x y} f>0$ on $A$ and that for all $x_{0}, y_{0} \in \mathbb{Z}$, all $s \in \mathbb{R}$ and all $g \in\left\{f, D^{x} f, D^{y} f\right\}$,

$$
\left.\begin{array}{l}
C_{x}\left(g, s, y_{0}\right) \\
C_{y}\left(g, s, x_{0}\right)
\end{array}\right\} \leqslant N
$$

Then any sublevel set of $f$ can be decomposed into $C_{N}$ or fewer $B C(1)$ domains, where $C_{N}$ is a constant depending only on $N$.

Proof. Let $S$ be a sublevel set of $f$. The conditions imply that $S$ is $B C(N+1)$. By the Proposition, $S$ must have property $H P(N+3$ ) (in fact $H P(N+1)$ ), and hence we can use Theorem 55 in Chapter 3 to decompose it as required.

### 4.3 Discussion

We round off this chapter with a retrospective look at the thesis as a whole, and give some ideas for future lines of enquiry. The central question is whether our hole conditions $H P(m, n)$ are necessary to achieve decompositions of (approximations of) sublevel sets of type 1 functions.

Thinking back to the decompositions of Phong, Stein and Sturm ([11]), one notices that their decompositions, which apply to all algebraic domains, rely on nothing other than the polynomial nature of $u$. In particular, the mechanics of the decomposition do not require any derivative conditions. In contrast, our $H P(m, n)$ conditions are motivated by the condition $\frac{\partial^{2} u}{\partial x \partial y}>0$.

On the other hand, we have strong suspicions that examples can be produced showing that restrictions on the layout of holes are necessary for the type of decomposition we require, although we have not been able to complete all the details of such an example.

So are there any other conditions that could be imposed or deduced that would give us suitable control of hole arrangements? A condition fitting the bill would be that the number of holes in type 1 (or $M$ ) functions $u$ is bounded by a constant $C_{N}$ depending on $N=t_{1}(u)$. We show this would allow a decomposition considerably easier than that of the $B C(N)$ Domains subsection of Chapter 3 on page 69. The arguments closely mimic those found in the final four paragraphs of the subsection on $B C(3,3)$ domains, which begins on page 62 .

Leaving aside the process of transferring between continuous and discrete settings, suppose that $A \subseteq \mathbb{Z}^{2}$ be a $B C(N)$ domain that has at most $C_{N}$ holes. Let $H_{1}$ be one of the holes and put $R_{1}=\pi_{x} H_{1} \times \pi_{y} H_{1}$ in the familiar way. Then $Q \backslash R_{1}$ (where $Q=\pi_{x} A \times \pi_{y} A$ ) can be divided into two $B C(1)$ domains as shown in Figure 4.3.


Figure 4.3: An easier decomposition when there are bounds on hole numbers

Call these two $B C(1)$ domains $A_{1}^{1}$ and $A_{2}^{1}$ and repeat this procedure for all of the other holes to get $A_{1}^{2}, A_{2}^{2}, \ldots, A_{2}^{C_{N}}$. Then we have

$$
Q=\bigsqcup_{i_{1}, \ldots, i_{N}}\left(A_{i_{1}}^{1} \cap A_{i_{2}}^{2} \cap \cdots \cap A_{i_{C_{N}}}^{C_{N}}\right) \sqcup \bigcup_{i=1}^{C_{N}} R_{i}
$$

where for $j=1,2, \ldots, C_{N}$ each $i_{j}$ is in $\{1,2\}$. Thus $Q$ is the union of $2^{C_{N}}$ or fewer $B C(1)$ domains together with the $R_{i}$ by Lemma 33. Now taking intersections with $A$ and applying Lemmas 33 and 45 , we end up with $2^{C_{N}}$ or fewer $B C(N)$ domains without holes. The decomposition can now continue using the methods of the subsection on $B C(N)$ domains on page 69. The difference is that here we do not need to analyse and decompose the domains $L$ and $U$ that were introduced there, since in their place we have the much simpler $B C(1)$ domains.

Thus a bound of the type above on the number of holes would be very desirable, but unfortunately as yet we can see no grounds either for or against imposing such a condition.

We sum up with a list of a few questions that we believe would merit further investigation:

- Can the HV-convex domain $\Omega$ in Theorem 58 (page 76) be relaxed to a $B C(N)$ domain for any $N \in \mathbb{N}$ ? (Perhaps the restriction that $\Omega$ have no holes would be needed.)
- In the setting of Theorem 58, if one assumes that $D^{\beta} u>0$ on $\pi_{x} \Omega \times \pi_{y} \Omega$ for some $\beta \neq(1,1)$ rather than $\frac{\partial^{2} u}{\partial x \partial y}>0$, can any useful extensions of or alternatives to the $H P(m, n)$ conditions be motivated or deduced?

Alternatively, is there some kind of inductive approach to treating the case of single-signed $D^{\beta} u$ for $\beta \neq(1,1)$ using the case $\frac{\partial^{2} u}{\partial x \partial y}>0$ as the base case for the induction?

- Is there any reason to believe or to deny that the number of holes in a sublevel set of a type 1 (or type $M$ ) function can be bounded by a constant depending only on $t_{1}(u)$ ?
Could such conditions controlling the holes be dropped altogether, or can one (as we suspect) produce examples showing a need for them?
- Can decompositional methods be used in dimensions higher than 2 , or would inductive methods be more appropriate?


## Appendix A

## Hole Diagrams for Domains Satisfying the HP $(5,4)$ Condition

Here we list all the possible hole diagrams (up to symmetry) for bounded domains in $\mathbb{Z}^{2}$ which obey the $H P(5,4)$ condition, an issue which was deferred from Section 3.4. We also give an indication of how to establish that these are indeed all the possible diagrams. A look at Section 3.4 and, more importantly, Section 3.3 , might be helpful to the reader before proceeding with the present material. Familiarity with the concepts and notation there is assumed.

The diagrams, of which there are 27 in all, appear on pages 88 and 89. To establish that they constitute all the possible diagrams, one uses the same argument as in the $H P(4)$ case. Taking the diagrams in turn, one shows that adding another hole to any domain having that hole diagram has one of two consequences. Either it produces an illegal arrangement (i.e. one violating the $H P(5,4)$ condition), or it yields a domain whose diagram is on the list up to symmetry, possibly the same diagram as we started with. Since the hole diagram for any domain can be built up by introducing the holes one at a time, it follows that we have indeed listed all the possible hole diagrams for the situation in hand.

A representative example of the process is depicted in Figure A.1. We take the twelfth diagram on the list and record what happens if a new hole $H^{*}$ is introduced in the different possible areas. As in the $H P(4)$ case, we give names to the holes at the ends of maximal strings. From left to right, we label them $H_{1} \ldots H_{5}$, as shown in Figure A.1. In the table of Figure A.2, the second and
fourth columns show either an illegal arrangement given rise to or the numbers of the new diagrams that can be produced.

The sharp-eyed reader will notice that two zones are missing from the left column of the table, namely $(3,2)$ and $(5,5)$. We can analyse these as in the $H P(4)$ case (see Figure 3.14 on page 56) and conclude that $H^{*}$ is either absorbed into a maximal string, leaving us with the same diagram, or gives an illegal arrangement. Finally, note that the zone co-ordinates of the table work as for a matrix, i.e. row first then column.


Figure A.1: A closer look at diagram 12

Of course, there are 26 other cases to check. In view of the fact that the material here does not constitute an important part of the thesis, they are omitted and left to the diligent (or masochistic) reader to verify. The most that the methods here can give is a mild improvement of the bounds in the decomposition of domains obeying the $H P(5,4)$ condition compared to the more general method described in Section 3.4.

Before giving the list of hole diagrams, we remark on an interesting phenomenon, which also appeared when enumerating the hole diagrams for sets with the $H P(4)$ condition. To wit, in both cases there is a 'maximum' diagram, mean-

| Zone | Consequence | Zone | Consequence |
| :---: | :---: | :---: | :---: |
| 1,1 | $H^{*}, H_{3}, H_{1}, H_{4}$ | 3,1 | $H^{*}, H_{1}, H_{2}, H_{3}, H_{4}$ |
| 1,2 | $"$ | 4,1 | $"$ |
| 1,3 | $"$ | 5,1 | $"$ |
| 1,4 | 19 | 6,1 | $"$ |
| 2,3 | $"$ | 3,3 | $H_{3}, H_{1}, H^{*}, H_{2}$ |
| 1,5 | $H^{*}, H_{2}, H_{5}, H_{4}$ | 4,2 | $H_{3}, H_{1}, H_{2}, H^{*}$ |
| 2,5 | $"$ | 5,2 | $"$ |
| 3,5 | $"$ | 6,2 | $"$ |
| 1,6 | $"$ | 4,4 | 13 |
| 2,6 | $"$ | 4,5 | 22,23 |
| 3,6 | $"$ | 5,3 | $H_{2}, H_{5}, H^{*}, H_{4}$ |
| 2,1 | 12 | 5,4 | $"$ |
| 4,3 | $"$ | 5,6 | 15,24 |
| 4,6 | $"$ | 6,3 | $H_{2}, H^{*}, H_{3}, H_{4}, H_{5}$ |
| 6,4 | $"$ | 6,5 | $H^{*}, H_{4}, H_{5}, H_{2}$ |
| 2,2 | $H_{1}, H^{*}, H_{2}, H_{3}, H_{4}$ | 6,6 | $"$ |
| 2,4 | $H_{3}, H^{*}, H_{2}, H_{4}$ |  |  |
| 3,4 | $"$ |  |  |

Figure A.2: What happens if a hole is added to Diagram 12
ing a diagram from which all the others can be achieved by removing holes. We know of no reason a priori for this to be the case. Certainly the hole diagrams can be partially ordered by saying that $D_{1} \preccurlyeq D_{2}$ if $D_{2}$ can be obtained from $D_{1}$ by adding holes. However, a quick inspection confirms that this ordering is not total. Thus while it would be reasonable to expect maximal diagrams, there would be no reason to expect a maximum one without further insights.

The diagrams appear on the next two pages.


Figure A.3: The first 15 diagrams


Figure A.4: The remaining 12 diagrams

## Appendix B

## More on the Rectangle Problem

As stated in Section 1.2, it is possible to tighten up the methods used in our estimate there of the constant $c_{0}$ in the Rectangle Problem. This realisation came out of a reduction of the scenario from a problem in $\mathbb{R}^{2}$ to one in $\mathbb{R}$. We describe this reformulation before giving the improved bound. As in Appendix A, familiarity with the notation and ideas of the relevant section is assumed.

Let $E_{K}$ denote the union of $K$ open strips $\Delta_{1}, \ldots, \Delta_{K}$ as in the previous discussion of the problem, but with the distances between them yet to be determined. Define $F_{K}$ as the interior of the intersection of $\overline{E_{K}}$ with the $x$-axis, and view $F_{K}$ as a subset of $\mathbb{R}$. Then $F_{K}$ is the union of $K$ disjoint open intervals, $I_{j}=\left(a_{j}, b_{j}\right)$ say.

Observe that there is an axis-parallel rectangle $R$ with corners in $E_{K}$ if and only if there exist $a \geqslant 0$ and $0<y \leqslant x$ such that

$$
\begin{equation*}
\{a, a+x, a+y, a+x+y\} \subseteq F_{K} \tag{B.1}
\end{equation*}
$$

The values $x$ and $y$ correspond to the side lengths of $R$. (In particular, $x=y$ is allowed and represents a square.) One could describe the set B. 1 as a smallest non-trivial two-dimensional arithmetic multiprogression.

We wish to find a good way of adding strips to $[0,1]^{2}$ while avoiding rectangles with corners in $E_{K}$ and area greater than $\left(b_{1}-a_{1}\right)^{2} / 4$. In fact we can work at any scale we choose and then use the scaling and limiting arguments of the earlier discussion. The problem translates into finding a sequence of intervals in $\mathbb{R}$ while avoiding sets of the form B.1. The first technique which comes to mind is that of
adopting a simple 'greedy' strategy of placing each interval $I_{j}$ as close as possible to the previous one, thereby maximising its width.

For concreteness, let us define $I_{1}=(0,10000)$. We shall round off all our numbers to the nearest integer, since this loses little and simplifies things. Then we must avoid configurations like B .1 with $x y \geqslant 5000^{2}$. It is easily seen that we must have $I_{2}=(20000,21250)$ and $I_{3}=(42500,43088)$. (Thus far these are the same proportions as earlier.)

To analyse the situation further, we introduce for $m<n$ in $\mathbb{N}$

$$
J_{m, n}=\left(a_{n}-b_{m}, b_{n}-a_{m}\right),
$$

and $J_{m, m}=\left(0, b_{m}-a_{m}\right)$. These can be thought of as the sets of possible side lengths of rectangles where one end is in $\Delta_{m}$ and the other in $\Delta_{n}$. So thus far we have:

$$
\begin{array}{lll}
J_{1,1}=(0,10000) & J_{1,2}=(10000,21250) & J_{1,3}=(32500,43088) \\
J_{2,2}=(0,1250) & J_{2,3}=(21250,23088) \\
& J_{3,3}=(0,588) .
\end{array}
$$

We now claim that, supposing we have introduced $K$ intervals $I_{j}$, sets of the form B. 1 with $x y \geqslant 5000^{2}$ are avoided if and only if $J_{1,1}$ together with the $J_{m, n}$ for $m<n$ are pairwise disjoint and $\left|I_{j}\right| \leqslant 5000^{2} / a_{j}$. (The role of the second condition is clear: it corresponds to the long, thin rectangles with left vertices in $\Delta_{1}$ and right vertices in $\Delta_{j}$.) For suppose that there were some $z \in J_{m, n} \cap J_{m^{\prime}, n^{\prime}}$, where $m<m^{\prime}$. There are two cases to investigate: $m^{\prime} \geqslant n$ and $m^{\prime}<n$. (See Figure B.1.) In both cases it is easy to see that a set of the form B. 1 is given rise to. In the first case we take $x=z$ and in the second $y=z$. It is also easily seen that $J_{m, n}>10000$ for $m<n$, and so we have $x y>10000^{2}$. The converse is similar.

The 'greedy' strategy entails that we introduce the $I_{j}$ for $j \geqslant 4$ so that at each stage the left endpoint of $J_{j-1, j}$ is equal to the right endpoint of $J_{j-2, j-1}$. In other words, $a_{j}=2 b_{j-1}-a_{j-2}$. This works up to $j=11$, but if we introduce $I_{12}$ according to this rule then we run out of luck because $J_{1,7}$ and $J_{7,12}$ meet.


Figure B.1: Interpreting the $J_{m, n}$

The situation is rather intricate: each new $I_{j}$ adds a further $j$ of the $J_{m, n}$ and it becomes increasingly difficult to ensure that none of them overlap.

The most obvious way to seek a valid $I_{12}$ is to replace $a_{12}$ with $a_{12}+\left(b_{7}-a_{1}\right)-$ $\left(a_{12}-b_{7}\right)=2 b_{7}-a_{1}$, then redefine $b_{12}=5000^{2} / a_{12}$ and try again. In general, suppose we had found $I_{1}, \ldots, I_{N-1}$ with disjoint $J_{m, n}$ for $1 \leqslant m<n \leqslant N-1$. Our initial guess for $a_{N}$ is $2 b_{N-1}-a_{N-2}$ and for $b_{N}$ is $5000^{2} / a_{N}$. if we find that $J_{m, n}$ and $J_{p, N}$ overlap (where $1 \leqslant m, p \leqslant N-1$ and $m<n$ ), we replace $a_{N}$ by $b_{n}-a_{m}+b_{p}$, redefine $b_{N}$ as $5000^{2} / a_{N}$ and see if this works. If not, we redefine $I_{N}$ in a similar way and keep trying until we find one that works. At the very worst, we could end up with $a_{N}=2 b_{N-1}$, and so the process must end. Continuing with the example at hand, we arrive at $I_{12}=(290145,290231)$.

This process is perfectly suited to being carried out by a computer. In particular, calculating the first 50 of the $I_{j}$ when $I_{1}=(0,10000)$ and with integer rounding shows that the constant $c_{0}$ is at most about $5 / 42$. As stated, the number of computations is growing quite quickly from one stage to the next, while the gains (i.e. reduction in the upper bound for $c_{0}$ ) are diminishing, and it is unclear how much use such numerical methods could be in making progress on the problem. Further insight into the situation might well allow more significant gains than sheer number-crunching.

Out of interest, we list $I_{4}, \ldots, I_{11}$ in the present model, leaving the reader to
verify that the corresponding $J_{m, n}$ are indeed disjoint for $m<n$.

| $(66176,66553)$ | $(90606,90881)$ | $(115586,115802)$ | $(140998,141175)$ |
| :---: | :---: | :---: | :---: |
| $(166764,166913)$ | $(192828,192957)$ | $(219150,219264)$ | $(245700,245801)$. |

## Bibliography

[1] Anthony P. Carbery, Multilinear estimates for sublevel set operators, Notes on sublevel set and oscillatory integral estimates.
[2] , Oscillatory integrals, Lecture notes on oscillatory integral and sublevel set estimates, April 2000.
[3] Anthony P. Carbery, Michael Christ, and James Wright, Multidimensional van der Corput and sublevel set estimates, Journal of the American Mathematical Society 12 (1999), no. 4, 981-1015.
[4] Anthony P. Carbery and James Wright, What is van der Corput's lemma in higher dimensions?, Publ. Mat. special issue (2002), 13-26.
[5] Michael Christ, On certain elementary trilinear operators, Math. Res. Lett. 8 (2001), no. 1-2, 43-56.
[6] Loukas Grafakos and Rodolfo H. Torres, Multilinear Calderón-Zygmund theory, Adv. Math. 165 (2002), no. 1, 124-164.
[7] Nets Hawk Katz, On the self crossing six sided figure problem, New York J. Math. 5 (1999), 121-130 (electronic).
[8] Michael Lacey and Christoph Thiele, $L^{p}$ estimates on the bilinear Hilbert transform for $2<p<\infty$, Ann. of Math. (2) 146 (1997), no. 3, 693-724.
[9] ___ , On Calderón's conjecture, Ann. of Math. (2) 149 (1999), no. 2, 475-496.
[10] , A proof of boundedness of the Carleson operator, Math. Res. Lett. 7 (2000), no. 4, 361-370.
[11] D. H. Phong, E. M. Stein, and Jacob Sturm, Multilinear level set operators, oscillatory integral operators, and Newton polyhedra, Math. Ann. 319 (2001), no. 3, 573-596.
[12] Igor Shafarevich, Basic algebraic geometry 1, second ed., Springer-Verlag, Berlin, 1994.
[13] Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton University Press, 1970.
[14] Elias M. Stein and Guido Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton University Press, Princeton, N.J., 1971, Princeton Mathematical Series, No. 32.
[15] Robert S. Strichartz, A multilinear version of the Marcinkiewicz interpolation theorem, Proc. Amer. Math. Soc. 21 (1969), 441-444.


[^0]:    ${ }^{1}$ Our definition of the Fourier Transform $\hat{f}$ of a suitable function $f: \mathbb{R} \longrightarrow \mathbb{R}$ is $\hat{f}(y)=$ $\int_{-\infty}^{\infty} f(x) e^{2 \pi i x y} \mathrm{~d} x$.
    ${ }^{2}$ We use the notation $f \upharpoonright_{A}$ for the restriction of the function $f$ to the subset $A$ of its domain. A vertical line is perhaps a more common notation, but already has enough usage within this document!

[^1]:    ${ }^{3}$ We mention just a few examples out of the many possibilities. One of the most significant developments is the work of Lacey and Thiele on the bilinear Hilbert Transform ([8] and [9]), an offshoot of which, described in [10], is the shortest currently known proof of the boundedness of the Carleson operator. (The latter is the principal ingredient of proofs of the almost everywhere convergence of Fourier series of $L^{2}$ functions, originally established by Carleson.) Christ, in [5], has investigated trilinear operators, finding connections with important geometric and combinatorial results. Broad-ranging work by Grafakos and Torres on multilinear Calderón-Zygmund theory can be found in [6]. Other authors who have recently worked on multilinear operators include Kalton, Kenig, Stein, Tao and several more.

[^2]:    ${ }^{4}$ The sum converges by the Ratio Test: clearly $u_{i}>0$ for all $i$ and so we have for all $i$ that

    $$
    \frac{u_{i+1}}{u_{i}}=\frac{1}{2+8 u_{i}^{2}}<\frac{1}{2}
    $$

[^3]:    ${ }^{1}$ For subsets $A$ and $B$ of $\mathbb{R}$ or $\mathbb{Z}$, we say that, $A>B$ if $a>b$ for all $a \in A$ and $b \in B$. If $B=\{z\}$ we just write it as $z$ for ease.

[^4]:    ${ }^{2}$ Obviously it is enough to provide a decomposition of any $B C(N)$ domain and then putting $N=\max \{m, n\}$ covers $B C(m, n)$ domains. If $m \neq n$ we forfeit a tighter bound, but given the definition of type $M$ functions, which involves $B C(N)$ and not $B C(m, n)$ domains, one feels that this is reasonable enough.

[^5]:    ${ }^{3}$ The reason for $r$ taking this form is that each new component appearing in a horizontal section of $U$ or $L$ forces two more holes to alternate about that section.

