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Abstract 

Let Q be a domain in W 1  and Dan  > 1 on Q for some smooth function u 	-* JR 

and multi-index a. Let E8  be the sublevel set at height a of u and consider the 

niulitilinear sublevel set operator 

A(fi,...,fn) 

where xi  denotes the i1h co-ordinate of r E JRTh• It is natural to seek estimates of 

the form 

for some s > 0 and constant C independent of a, 'a and the f. Of course one 

must first decide which classes of domains 9 and functions 'a and what values of 

pi,.. . , p, to work with. 

Motivated by recent work on such estimates, we ask what progress can be 

made in two dimensions by finding decompositions of domains 9 that have the 

BC(rn, ii) property for some ni, ii e N, which says that the domain meets hori-

zontal lines in at most rn components and vertical lines in at most n. Estimates 

are easily established on BC(1, 1) domains and so one is led to attempt to decom-

pose BC(ni, 'a) domains, under appropriate further hypotheses, into a number of 

BC(1, 1) domains which is bounded in terms of rn and 'a. 

For various reasons we choose to work in a quasi-discrete setting. We formulate 

this framework before stating and proving the principal results, and go on to 

discuss some of the issues that they raise and their possible applications. 
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Chapter 1 

Introduction 

The starting point for our study is the following lemma due to van der Corput: 

Lemma 1. For each k E N\{O} there is a constant Ck such that if 	[a, b] -* JR 

and (k)  (t) ) 1 on [a, b] (and furthermore F' is monotone if  = 1), then 

J e0 t) dt < 
Ck rb 

a 

We can prove it using the sublevel set estimate: 

Lemma 2. For each k E N\{ O} there is a constant Dk such that if (k) 1 on 

[a, b], then 

{t e [a, b] : 	(t) 	s} 

Proof. The case k = 1 follows easily from the Mean Value Theorem, giving D 1  = 

2. Indeed, if there were some with {t E [a, b] : (t) s} I > 2s, then there 

would be a point c E (a, b) with '(c) c 1. Suppose inductively that the result 

holds for k r. Assuming that (D ("+ ' ) (t) 1 on [a, b], 

{t E [a, b] : 	(t) 	}l 	{t E [a, b]: 	(t) 	a} 

	

+ {t e [a, b] 	(r)(t) > a, 	(t) 	s} 

( Dia+2Dr (- 
ce 

(The final inequality above is seen by considering the function a'.) Putting 

a = s 	gives the result for Ic = r + 1 and the lemma is proved by induction. E 
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Proof of Lemma 1. Firstly, we note that if k ) 2, the hypothesis 4)(") > 1 implies 

that the set It E [a, b] : I 4)'(t) I ) a} can be written as a disjoint union of 2k —2 

or fewer intervals (a, b) on each of which 4)' is monotonic and a set of measure 

zero. For, applying Rolle's Theorem k - 2 times shows that 4)" has at most k - 2 

zeroes, and so 4)' has at most k - 2 turning points. Thus we can decompose [a, 6] 

into k - 1 or fewer intervals on which 4)' is monotonic, and each of these is at 

worst split into two on passing to It e [a, 6]: 4)'(t) a}. Writing NA, = 2k - 2, 

we have 

f
b 	I 

eaH 
= Li1 	+ I 	eZAH 

Ja 	I I<c 	1 ICVIa 

( D_ia 
1 	 1 	1 

+ I— I 
IAJI4illa 4) ' 

1 

N,./ 
1 H b  

i= 1 Ja 

(Dk1a+±L 
1 	1"IJk 

N,. 	b 

() ) 
1 	2Nk 

( Dkla'+— . 
Aa 

Now put a = 

This method of proving the van der Corput lemma using the sublevel set 

estimate is taken from [2]. 

Remarks. These two results have some desirable properties: 

. The constants Ck and Dk are independent of a and 6. 

. The estimates are sharp, as seen by putting in 4)(x) = 

. The estimates scale, i.e. having them for a fixed a0, bo implies them for all 

a, 6. 

It is natural to ask whether there are higher-dimensional analogues of these 

results, i.e. given some function u on Q c R and a multi-index a such that 

Du ) 1 on Q, can we obtain estimates of the form 

{x E Q: u(x)l 	}I (Case 	 (1.1) 
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and 

f 6"\u(x)  dz (- 	 (1.2) 

for some e > 0? And do they have nice properties like sharpness and scaling? 

1.1 Choosing the domain Q: two ideas 

BC(m) domains, type M functions and HV-convexity 

The question we are immediately faced with is what kind of domain 12 should 

correspond to intervals on the line. The connected sets quickly suggest themselves, 

but must be rejected on account of the following example, which appears in [4]: 

Example 3. Let n= 2, cx= (0,1) and Ne N. Define 12' = (o ,fl x(0,1) and 

1.1.) Choose a smooth 0 : [0,11 	R with 0 > 0, 0 0 on [o, ] and 	1 on 
12 

[4 i]. Define u by 

{ 	 E 12' 
u(x,y) 	

y 	 (X, y) 

= y —( x) 	(x,y)eQ 

Then clearly =  1 on 12, while for a sufficiently small, ay — 

{(z, y) e 12: u(x, y)J (s} 	Ns. 

Q 
N-I 

Figure 1.1: The set 12 in Example 3 
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What appears to have gone wrong is that the arbitrarily many "legs" of ci 

allow some of the vertical cross-sections to have arbitrarily many components. 

Perhaps we could make some progress by putting a bound on the number of 

components of any axis-parallel cross-section. This train of thought leads to the 

following important definitions: 

Definition 4. 

• A set ci c RTh is said to be BC(m i , . ,m,) if for each i, any line L par-

allel to the i1h  axis is cut into at most m i  pieces by ci, i.e. ci fl L has at 

most m i  connected components. We abbreviate BC(m,. . . , m) to BC(m). 

(The notation BC is motivated by the idea of having a bounded number of 

components of intersections with axis-parallel lines.) 

• Let ci be an open subset of W 1 . The function p : ci -* IR is said to be of 

type M if it has the property: 

there exists N such that for all 0 with 101 ( M and all s > 0, the set 

{x c ci: I D"p(x)l (s} is BC(N). 

In other words, there is some N such that all sublevel sets of derivatives of 

order up to M of p are BC(N). 

• The least such N is called the type M constant of p, and denoted t jq (p). 

Observe that a polynomial p: r 	i JR of degree d is type M for all M. Its type 

M constant tM(p) is bounded by a constant C(M, n, d) depending on M, n and 

d but not on the coefficients of p. 

We also introduce the notions of horizontal and vertical convexity, which are 

related to the BC(1) property. 

Definition 5. The subset ci of K 2  is horizontally convex if whenever (x, yo) 

and (a?, yo) E ci and x < z < x', then (z, ye)  C Q. Similarly, ci is vertically 

convex if whenever (x o , y), (x o , y') E ci and y < w < y', then (x o , w) E Q. We 

sometimes use the abbreviations 'H-convex' for 'horizontally convex'; 'V-convex' 
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for 'vertically convex'; and 'H V-convex' for 'horizontally convex and vertically 

convex'. 

Note that the domain Q c R2  has the BC(1) property if and only if it is both 

horizontally and vertically convex. Results involving these concepts will appear 

a bit further on, but first we sketch more of the background material. 

Rectangles 

Another possibility is to work with axis-parallel rectangular boxes. However, our 

next example shows that we cannot achieve estimates independent of the size of 

the box as in the one-dimensional case. 

Example 6. Let u(x, y) = zy and A a square centred at the origin with side 

length 2a. We have that 

{ (XI y) E A: u(x,y) 
	

= 4(S+fdt) 

= 4s(1+ log i+2loga) 

and by choosing log a large enough we see that there is no constant independent of 

a such that an estimate of the form (1.1) holds. (At this stage intuition suggests 

that we should be aiming for E < 1 since the partial derivative in question is of 

order two.) 

Furthermore, it is not difficult to show that oscillatory integral estimates are 

in general stronger than their sublevel set counterparts, and we can conclude 

that in this case we cannot achieve an estimate of the form (1.2) with a constant 

independent of the size of A either. As an instance of this principle, we have the 

following: 

Example 7. Let Q = [0, 1] 2  and suppose there is some 6 < 1 such that 

IIWI =  I edx 
IJQ 

Then we also have 

Ed = {x E Q: (x) <t} (Ct 6 . 
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To show this, choose a smooth, compactly-supported : JR -* JR that is 

identically 1 on [-1,1]. Note that we have xE(x) ( 	(1) pointwise on JR2  

since 

xEE 	Il <1 
itt 

Now 

EMI = f X& ( I 	(X)\ 

Q 	
)dx 

r rOO 

= I i Q -0O 

= 
 — J 	(y)  f e 2 t)dx dy  by jbini 

cc 	Q 

I 	rock3(y) 

(24 J 	
dy 

= c ' ts , 

where C' = (27r) 6Cf °  [(y)y 5dy, which exists since 5 < 1 . 1  Note that we 

could replace Q in this example by any subset of JR 2 . 

One solution to the problem highlighted in Example 6 would be to fix a box 

once and for all in which to work, say Q = [0, 11n . For the phase function 

in Example 6, we then obtain the desired estimates on the oscillatory integral 

estimate for any e < 1. However this is not the only weapon at our disposal. 

Notice that by inserting suitable functions f(x) and g(y) in said example, we 

obtain: 

I ef(x)g(y)dxdyi 
H 	 2ir 

( 	MfM2MgM2 by Plancherel and Cauchy-Schwartz 

for any rectangle R = I x J in JR 2 , where I and I are intervals in JR. 2  

This connection with the Fourier Transform, as well as the frequent appear- 

'Our definition of the Fourier hansform f of a suitable function f : R - IR is .f(y) = 
C. fC)e 2 d. 

2 We use the notation f rA for the restriction of the function f to the subset A of its domain. 
A vertical line is perhaps a more common notation, but already has enough usage within this 

document! 
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ance in recent years of multilinear operators in harmonic analytic research, 3  sup-

ports the idea of inserting functions and aiming for estimates of the form 

f 	fi(xi) 

 

	

. .. fTh (x) dz1 .. dx 	
. . . 	

(1.3) 

~ 2fl{Iu(x)ICs} 

ef(xi) . . fTh (x Th ) dx1 ... dz 	 (1.4) 

where Dan  1 on ft In most of the recent work done in this area, bilinear or 

multilinear approaches have been used. Usually this is in conjunction with a fixed 

box such as [0, 1]", although some results extend to more general domains. 

The calculations below with functions of an elementary nature soon reveal 

that the ideal E we could wish for is s = 1_ ,  with I = 1 - -. With this estimate 
al Pi 

in hand, we could obtain all possible others by interpolation with trivial estimates. 

To see how this E comes about, suppose that we have an estimate of the form 

I 	11fi(xi)dH c86]JMJ9, 
i=1 	 I 	i=1 

Qfl{u(x)ls} 

whenever D°u ) 1 on Q. Putting n = (x1 + ... + 	fi = 	= 	= X(O,i) 

forces e 	, while putting u = . . 	 , 	 = X,/1 f2 = 	= 	= 

entails that s C A , where r' denotes the conjugate of an exponent r E [0, ], 

i.e. 1+ 	= 1. Symmetrically, e ( 	for i = 2, . . . , n. Hence we have E 

min 	Considering the planes e = _, E = 	in (1 	. , L,$)space 
Pal ap 	 al 	 F ,  

shows that where they intersect, - = 1 - -. See [2]. 
Pi 

1.2 Some results 

So what results are known to date? Well, it is at least known that the estimates 

do hold for some E > 0, although of course it may not be the optimal value of 

3 \Ve mention just a few examples out of the many possibilities. One of the most significant 
developments is the work of Lacey and Thiele on the bilinear Hilbert Transform ([8] and [91), an 
offshoot of which, described in [10], is the shortest currently known proof of the boundedness of 
the Carleson operator. (The latter is the principal ingredient of proofs of the almost everywhere 
convergence of Fourier series of L 2  functions, originally established by Carleson.) Christ, in [1, 
has investigated trilinear operators, finding connections with important geometric and combi-
natorial results. Broad-ranging work by Crafakos and Torres on multilinear Calderdn-Zygmund 
theory can be found in [61. Other authors who have recently worked on inultilinear operators 
include Kalton, Kenig, Stein, Tao and several more. 
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Theorem 8. Suppose that u Q —* JR is smooth, that D'u ) 1 on Q, and 

that p',..  , pn  > 1. Then there exist e > 0 and C > 0 (depending only on a, n, 

p1 , ...,p9 such that 

f f1 (x i ) ...  f(x)dxi  ... dx 

Qfl{u(x)Is} 

Under the further provision that a has two or more nonzero entries, at least one 

of which has value at least 2, there is an s' > 0 and a C' > 0 (with the same 

dependencies) such that 

	

fTh(x,) dx 1  ... dx 	11fiM1 ... 

We shall give a sketch proof of the first estimate, based on [3]. The proof goes 

by induction on the dimension, with base case n = 2, so first we must prove the 

result in this case. 

	

k+t 	j(k+1) 	Then there exists Lemma 9. Let k j 	1 and let p = —fl, q — 
a constant C,k such that for any smooth u with 	> 1 on Q, we have forSxi&yk 

0<s<1: 

	

f(x)g(y) dxdy < I 
c k s2+n 	 1 
Gj,s+i (log s 1)Ifpgq 	if i = 1 

Proof First suppose that j > 1. Let E = {(x, y) E Q u(x,y) I < s} and for each 

y let EY = {x E JR : lu(x, y) I < s}. We suppress the dependence on s since s will 

remain fixed throughout this argument. It can be shown that for yo, yi, . . . , Yk 
k 

K'° n E' n.. . n E 	C,kst 	II Yt — yj.  
,ii=O l~n 

(See {3] for details.) Now by Holder's inequality, 

	

f)g(y) dxdy ( HIPP 	 XEX, y)g(y)  dy 
k+1 

Denoting the second term on the right hand side by I, we have 

jk+1 = fX E (X,  YO) 	 X E (XY k )(Y O)(Yk)dY O .dYk  dx 

= f IE° fl . .. 
fl 

 Elk I g(yo). . . g(yk) dyo. .. dyk 

k 

Ctksi1) f 	[I IYi — y}g(yo ) . . . 9(y.) dyo . . . dyk. 
rn=O l,n 
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Taking just the first term in the sum we have 

dyo. . .dy = fg(yo)(Ig)(Yo )dYo 
g(yo) ... g(yk) - y0 l/i ... Yk 

ku 

	

IgUq (Ijg) 	
j(k+1) 

k 

k 
= gMq 1ig IIj(k+1) 

ii 
( 

where I denotes fractional integration of order 0. (A discussion of fractional 

integration can be found in Chapter 5 of [13]. The property we use is that Ij 

maps L" boundedly into L3(k+fl.) By symmetry, the other terms in the summation 

obey the same estimate and we have done the case j > 1. 

If j = 1 then we establish the desired estimate by once again establishing an 

appropriate estimate on the term I 1  appearing in the above argument. This is 

achieved by multilinear interpolation with one copy of g in L' and the others in 

L°°. (Consult [15] for the relevant theorem, which is a multilinear generalisation 

of the Marcinkiewicz interpolation theorem. The latter is discussed in [13], and 

a slightly stronger version of it is stated in the remarks on Lorentz spaces on 

page 18.) Thinking in (l/pi, , 11p, + ) space, we can achieve all the estimates 

corresponding to the vertices (0, . . . , 0, 1, 0, . , 0) with the 1 in thei t"  place, for 

k + 1. By interpolation we can get all the points on the intersection of 

the plane x 1  + + 1k+1 = 1 with the set {x e xi,. . . , > 01, and of 

course the point (11(k + I),—,      11(k + 1)) lies in this intersection. The problem 

reduces to establishing that 

sup [EY 0 fl  ... flEdy l  ... dyk 
YO J 

exists. Using the estimate 

E'm0 fl  ... flE(Ck min {lsflYl_Y m '} 

,n=O l$m 

and Ic applications of the fact that for all r ) 0, the function min 11, fl/t logr  (t//3) } 
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has an L'[O, 1] norm that is 0(fl1og''(i3')), we have 

f min {isHtz _YOP}dYl ... dYk 
1)1 

1)2 	 /)2 

Af f min {1,sflyi_yo hlog2flyz_yo)}dY3...dYk 

/)3 	 /)3 

< 	5gk(5_l), where A, A',... and Dk are constants. 

Again by symmetry the same estimate holds for the other terms in the sum and 

the j = 1 case is completed. 	 11 

Thus we have proved Theorem 8 for the case n = 2 with P1 = 	P2 = 

j(k±i)-k' getting an exponent of j(k+1)  for j 	1 and 	- i for any E (0, 4.) 
when j = 1. By putting in f g  X(o') the sublevel set estimate, i.e. the 

statement of the lemma without j'  and g, follows with the same exponents. Notice 

that this is equivalent to the case of p = q = cc. There are trivial estimates with 

no s decay when either p or q is 1. We can now interpolate to get an estimate 

with some power decay whenever p, q > 1. (Although we expect a poor e when 

either p or q is close to 1.) We have thus completed the n = 2 case for arbitrary 

jj, q> 1. 

For higher n we proceed by induction to establish the sublevel set estimate 

(equivalent to P1 = = p, = cc). Arguments similar to those in the n = 2 case 

are used together with a higher order version of the Mean Value Theorem. Once 

again, details can be found in [3]. Then using interpolation with trivial estimates 

for some pi  = 1, we obtain the first conclusion of Theorem 8. 

In their very useful survey article, the authors of [4] draw attention to the 

fact that in certain cases of the problem in two dimensions, the methods outlined 

above can be used to obtain results for general HV-convex domains, sometimes 

with scale-invariance or the optimal exponents. Specifically, we have: 

Theorem 10. Let Q be an H V-convex domain in R 2  and a a multi-index such 

that Dan  1 on ft 
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• If  = (1, 1) and 1 zC p <2, there is a constant C depending only on  such 

that 

I f(z)g(y) dxdy 	C8 1 /p ,  11PIP11911P 
IuIs 

and a constant C' depending only on Q such that 

f f(x)g(y) dxdy ( C's "2 (1ogs 1 )" 2 f2g2. 
I'd s 

• If a = (j, k), 1 <j ( k and p, q are as in Lemma 9, then there is a constant 

C depending only on a such that 

I f(x)g(y)dxdy 

• Ifa =(1,k) 	- -- 	- -- and Q , 1) (1 1) is on the line segment 
'po 	k+l'qok+l 	p'q 	po'qo 

between (1 .1) and (1, 1), then there is a constant C depending only on k 
P0 qo 

and p such that 

II
f(z)g(y) dxdy (Cs''f p g q  

uIs 

and a constant C' depending only on k and Q such that 

fIuIs 
	 Cs+ (log —1)4i MfMpoMgMqo 

A combinatorial problem 

Returning to the setting of Q = Q, if we insist on having estimates involving power 

decay with exponent j,  then even in the case n = 2, a = (1, 1), f = g = X(o,1) the 

best established bound to date is Cs112(log —1)1/2 which is of course contained 

in Lemma 9. Here there is a connection with a combinatorial problem. A positive 

answer to the following question would allow us to remove the logarithm term in 

this particular case. 

Question: Is there a constant c0  > 0 such that for any set E c Q = [0, 11 2  with 

positive (Lebesgue) measure, there is an axis-parallel rectangle with corners 

in E that has area at least c0 E 2 ? 
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Suppose that we could answer the Question in the affirmative. Let u be our 

phase function with 02 u > 1 on Q, and let E = [(x,y) 6 Q : u(x,y) ( s}. axay  

Suppose we have a rectangle R with corners in E, labelled anticlockwise from the 

bottom-left as A, B, C, D. By Green's Theorem, 

IR 	2 	ay 	ax 
dx dy = 	 - dx) = u(A) + u(C) - u(B) - u(D). 

Since A, B, C, D 6 E, we have R1 < 4s. Therefore E 	112 (Otherwise, by 

our assumption that the answer to the Question is yes, we could find a rectangle 

with corners in E of area greater than co(2(s/co)1/2)2 = 4s, a contradiction.) 

It is clear that our Question could be posed for measures other than Lebesgue 

measure on [0, 1]. For instance, adopting counting measure on A = 11, 2,.. . , N}, 

the problem becomes that of determining the existence or otherwise of a Co > 0 

such that whenever we have an M-element subset B of A x A, there is a rectangle 

R with corners in .B of area at least co M 2 1N2 . Even this is still unsolved, but 

we round off this subsection by returning to the Lebesgue measure case and 

establishing an upper bound for the c0 appearing there. 

We construct a series of sets Ek c Q and see what we can infer from them 

regarding the constant c0, supposing that it exists at all. Define A 1  = as 

the open quadrilateral strip with corners at (0, 0), (& 0), (1, 1 - 5) and (1,1) for 

some small quantity J. The biggest axis-parallel rectangle with corners in A 1  

has area 5214. (Strictly speaking there is no 'biggest' such rectangle, but we can 

find rectangles with areas arbitrarily close to this value.) This gives us an initial 

bound of co  1/4. 

It seems worth asking if we can add another similarly-shaped strip A2 such 

that there are no larger axis-parallel rectangles with corners in 62 = A 1  U A 2 . If 

we consider making A2 the strip of 'thickness' (defined as length of axis-parallel 

sides) t2 C 5, then by placing its bottom-left corner at (25, 0) we just avoid having 

squares of side 5 with corners in E2 . By considering rectangles with left side in 

A 1  and right side in A2, it becomes clear that we must have 25t2  ( 52/4 and so 

the largest value t2 may take is 518. We select this value in order to maximise 

JE21. It is clear that there are now no axis-parallel rectangles with corners in E2  

13 



and area greater than 82/4.  Figure 1.2 shows what is going on. 

Figure 1.2: Constructing the A 

We can repeat this argument to add a finite number k of strips Aj with 

bottom-left corners at (di , 0) and thickness t. Using similar considerations, we 

seek values of d1  and tj  that preclude any axis-parallel rectangle with corners in 

Ek and area greater than 52/4.  We claim that this is achieved if we define the d 

and tj  by the recurrence relations: 

52 
and for i > 1, 	= 2(d + t1 ) 	and 	= 	 (1.6) 

4d 1  

To see this, consider an axis-parallel rectangle R with corners A, B, C and 

D (labelled anticlockwise from the bottom-left) in Ek for some minimal /c. By 

minimality of k we have B e Ak. We also suppose that k 2 to avoid trivial 

cases. Firstly, we claim that at least one of A or C must also he in Ak. For 

otherwise, the sides AB and BC would have to have length strictly greater than 

4_i + since 4 = 2(4_i + tk_1). But A, C and D are in Bk_i and thus 

the sides AD and CD must have length strictly less than 4_1 + tk_i, which is a 

contradiction. 

14 



Thus we know that at least one side of R has endpoints in Ak. Say it is BC. 

Clearly the side AB will be at its longest if it lies in A 1 . In this case there is 

some 0 (a <tk such that AB has length 4 + a. It is also clear by the geometry 

of Ek that BC must have length at most tk - a. Therefore 

I R1 ( (dk+a)(tk — a) 

= dktk - a(dk - tk) - a 2  
52 

since 4 > t/ for Ic ) 2. 

Observe that all of our A, E, d i  and tj  depend on the quantity 5, which we 

have thus far left unspecified. In what follows, we shall be more rigorous and in 

particular more explicit about J. Introducing e j  = d126 and ui = t/8 (which 

are independent of S by (1.6) and slightly easier to calculate with), we have the 

relations 
1 

6i+1 = 2e + ui  and 'Ui+l =  

for i 	1, with of course e1 = 0 and ui = 1. From these it is easily seen that the 

u can be defined more directly by 

1 	 Ui 
711=1, 	 and u +1= 82  for  i?2. 

We claim that c0  ( 4zr 2 , where n El='a. For let > 0. Choose K such 

that < s/2, and choose 6 1  such that for 8 < 51  we can fit all of the K 

strips Al, - . . , AK, as given by the construction procedure described above, into 

Q. From their defining relations (1.6), we can see that for each i, both di  and t 

4 The SUm converges by the Ratio Test: clearly u 1  > 0 for all i and so we have for all i that 

- 	1 	1 

U1 	2 + 8u < 2 

Now n - 0 as i - oc by comparison with 2, and therefore 

1 
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are 0(8). Thus we have for 8 < 6 1  that 

IEK = 

= 	t-O(82 ) 

= 8tu_0(82) 

where the 0(62)  terms depends on K. Now choose 8 < Si such that the 0(5 2 ) 

term is less than 8e/2. Then 

82 	K 	 —2 

= 1 (8_o(82 )) 

82  

1 = 

and the claim is established. 

Computing a few terms of the sum, we find that c0 <6•167••  (The second 

partial sum gives us ii 	/574 and so co < 1/5, while the fourth partial sum 

tells us that it 	 and so c0 c 1/6.) The methods here can in 858106756 

fact be tightened up to show that c3 ( 1/8. In order to keep this whole digression 

to a reasonable length, we defer this result to Appendix B. 

Before ending this particular discussion, we mention Katz's paper [71, which 

settles the Question under further hypotheses. Note that we can re-phrase the 

Question as: does there exist a constant C > 0 such that if E C [0, 1] 2  and all 

axis-parallel rectangles R with corners in E obey R E 2 , then IE ( CE? Katz 

proves that we can answer this re-phrasing of the Question affirmatively if we also 

stipulate that certain six-cornered figures whose corners lie in E must all have 

area at most e2. 
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Lorentz spaces 

Estimates of the form 1.3 involving straight power decay of s with the optimal 

exponent e = I/jal are possible when we restrict the class of phase functions 

involved. From now on we shall only discuss the sublevel set estimates, since, 

as we have already noted, their oscillatory integral counterparts are stronger 

statements and so pose additional difficulties. In the case of type M functions, 

we come encouragingly close with an estimate for when the fi  are in the Lorentz 

spaces L'. 

Before we state this estimate, we include a few basics on Lorentz spaces for 

the unfamiliar reader. The classical reference for this material is [14]. (These 

few paragraphs can be skipped by those in the know.) For a measurable function 

f R' -* IR, we define its distribution function A1 by 

A1 (t) = I {x: If(x) > t}, t E (0, 	) 

and the decreasing rearrangement f* of f by 

7(t) = inf{s: A(s) (t}, t C (0, ). 

We also define the averaged rearrangement f** of f by 

1 f  
f**(t) = 	f*() du, t C (0, oo). 

We introduce the quantity 
A 

II rH* 

Hf Il 	= 
t /1 

for 1 (p < oc and 1 ( q < oo, and 

	

If 	=sup tf*(t) 
t>o 

for q = oc, 1 (p ( oc. We can now define the Lorentz spaces Lp,q  by 

= {f: If I P,q  < oc}. 

In general, 	is not a norm, but we can make 1'  into a Banach space by 

using the norm 
1 

	

If 11p,q = 	(t 11 f (t)) q 
 - 
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for 1 (p < oc, 1 (q < oc, and 

fMp,q = SUP th/Pf**(t) 
t>0 

	

for q = oc, 1 ( p ( oc. The quantity 	is employed for its utility, and we 

have the relationship that for 1 <p ( oc, if f E LP ,q then 

(MfMp,q ( 	 If Ht p,q 

The main Lorentz spaces as far as we are concerned are LP , ', LP: = I? and LP' 

Two important results are as follows 
Ic 

Theorem 11. If T is a linear operator that maps functions of the form E cjxE, 
i= 1 

where EI < oc, into a vector space B with order-preserving norm 	11
, 

and if 

TXEH s  CMXEL = CE'k for some constant C independent of E, then 

'I 

	

JITf 11 	 t (CHf]I r, i  

for all  in the domain of T. 

The content is that when establishing the boundedness of a linear operator on 

U' spaces, it is enough to check it on characteristic functions of sets of finite 

measure. 

For the second result, a strengthening of the well-known Marcinkiewicz in-

terpolation theorem, we need the definition that the subadditive operator T 

is restricted weak type (r, p) if its domain D contains all functions of the form 

where lEi l < oc, is closed under truncation, and whenever f E DflLTl 

we have TfIt (Kf for some K. 

Theorem 12. Suppose that T is a subadditive operator of restricted weak types 

(rj ,pj ), j = 1, 2, where r0 <r1  and po  p,. Let 1 (q ( oc, Be (0,1) and 

1 	1-0 	0 	1 	1—B 	B 
+- 

p 	Po 	p, 	r 	r0 	r1 

Then there is a constant A depending on B such that 

TfH t  <AMf t  p,q -• 	IIr,q  

for all f C dorn(T) fl L 

In 



Having described the Lorentz spaces, we can now state and prove the estimate 

promised earlier. 

Theorem 13. Let n 	-* R be of type M = a with type Mconstant N. 

Then 

f il j(x) dxi  (Cs'1 fi 
<,sInfiDaul 	

1=1 

where L = 1 - - and C depends only on a, N and n. 
al 

Proof. By Theorem 11, it is enough to establish the result on characteristic func-

tions of sets, i.e. when f 	XE j  for all i. We proceed by induction on I ce l . 

Firstly we treat the case of a = (1, 0, . . . 0)—so u is type 1. We want to show 

that 

I 
	

H XEJ)d 	csflEl. 
Qnf Jul (s}fl{ Dl ?'} 

Thus it is enough to show that 

sup x, : u(x) (a and On 
	

(Cs, where x = (xi, x'). 

But the set above consists of at most CN intervals, for some constant CN depend-

ing on the type 1 constant N of u. Applying the Mean Value Theorem to each 

of them, we get the desired estimate with C = 2CN. By symmetry we get all the 

cases when I a = 1. 

Now suppose the result holds for all multi-indices of size less than M and that 

= M and = a + jJ, where O < a, fi < . We have 

I . 
	

H XEi)i 'C 
	

I 
	

H XEJt) dx 

uln{lut (s}fl{ I D,  ul ?1} 
	

Qfl{luI(s}fl{lDckuIt} 

+ 	I 
	

[I 
12fl{]DvI1}fl{IDu t} 

'C 

+CtI1101 HjEj j'rt 

'C Cs'/H II lEd " 
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by putting t = (s101 fJ E1 fluIa[_0iIfll) 1 Thl .  The Theorem now follows by induction. 

Refer to [11 for a discussion of Theorem 13. The question that immediately 

presents itself is whether we can improve the L"' spaces appearing in the state-

ment of Theorem 13 to L" spaces, and this is one of the major motivations for 

our work. 

1.3 A decompositional approach 

A recent paper of Phong, Stein and Sturm [11] treats the case of polynomial u. 

They employ algebraic methods to provide a decomposition of the domains of 

integration appearing in certain multilinear sublevel set and oscillatory integral 

operators. Amongst other results, they achieve: 

Theorem 14. Let a E N\{O} and u E R[x i ,. . . , x,] a polynomial of degree d. 

For any Q C {x e Q: Dau(x)l > 11 we have for all a > 0 that 

	

-) 	 f 	(1.7) f fi f(x ) dx 	Cs'1 log t 2  (2+ 	H M M
1 

	

n{ IU(t)l s} i=1 	
i=1 

where n > 2, --  = 1 - 	and C depends only on d and H Pi 	al 

Notice that this establishes the desired estimate (1.3) with e =1  1  1 when n = 2 

up to the degree of u. (The it = 2 case with Q = [0, 1]2  had already been proved 

earlier, by completely different methods, for a wider class of functions by Carbery, 

Christ and Wright in [3]) 

The proof of Theorem 14 works inductively, starting with the two-dimensional 

case. We give a sketch of how this base case is proved, following [11]. All of the 

results and proofs given in this section are due to Phong, Stein and Sturm, with 

only some minor presentational modifications made. Firstly, the following two 

elementary lemmas are needed. 

Lemma 15. Suppose that Q C R 2  is open, n(x, y) is smooth on Q and for all 

(x, y) e Q that 80v(x,y) 	1 and u(x,y) ( a. Then for any axis-parallel 
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rectangle R c Q with sides of length I and h we have 

Cs, 

where C depends only on a and 3. 

Proof. Firstly we observe that if f R -+ R is k times differentiable and we 

define ( ,A, f)(t) = f(t + v) - f(t), then we have 

xo±v xl+v 	xk_1+v 

II 	I f(k)(t)dtdxdx 

xo 	xl 	Zki 

= (Af)(xo) 	 (1.8) 

= k(L) 	
+ iv). 

Let (xo, yo)  be the bottom left corner of R. We apply (1.8) to the function 

f(t) = OCu(t, y) with v = 1/a and k = a to get 

( 	E-1()3eu@o+i1/aY 
i=O 

	

since 33° u(x,y) 	1 on R. Now for each i we apply (1.8) to the function 

f(t) = u(x o  + il/a, t) with v = h/fl and k = fi, getting 

a 	(3 

	

() 	+ il/a', Yo  + jh/fl) 
i=O j=O 

(/l), 

	

= L

D+ 	Yj+ 	Yk_ 

I1 	L1
1+7 	

( 1 ) t
(C

) 8 (x0 + il/at) dtdyk_i '' 

( h ) l  
- \a 

	

as claimed. 	 U 

The second lemma is of key importance in our work. It says heuristically that 

domains in R2  with disjoint horizontal and vertical projections behave indepen-

dently of one another with respect to the integral operators in question. 

Lemma 16. Let T be a bilinear operator given by 

T(, g) = f 	K(x, y)f(x)g(y) dx dy. Ix 
21 



Assume that supp K c u:1 'k x 'k,  where 'k, Jk are measurable subsets of 

X, Y respectively such that Ilk fl Id = Jk fl J11 = 0 for k =h 1. Let Tk be 

the bilinear operator with kernel XIk@jXJk(Y)K@t,YY If p,  q are conjugate, let 

TkM, be the norms of Tk, T as bilinear operators on 11(X) x L"(Y). Then 

ITJJ 1<  5Upj  ITO- 

Lemma 16 allows us to prove (14) when u(x, y) = r& yP_the  "model case". 

Lemma 17. Let (a,8) E N 2  and u(x,y) = xay . Then there is a C > 0 such 

that for all s > 0 we have 

f f(x)g(y)dxdy 

Qfl{Eu(x)ts} 

where p = 	and q = 

Proof. Define E8  = {( x, y) E Q x & y ø < s} and 

W5 (f,g) = ff(x)g()dxdY. 

We want to show that the operator norm of W on LP[O, 1] >< L[0, 1] is bounded 

by Cs 1 ° 	for some absolute constant C. Let N be the integer such that 

< s ç 2• We may as well suppose that a = 2—N• Now define for each 

i 	1 and k, I > 0, 

R(k,l) = {(x,y) E  : 2—k+ 2H (ya 2}. 

Let Ei = 	U 	R(k,l) for i 1. Then we have that 
k+1=N+i— 1 

W(k,i), 
i 	i k+)=N+i-1 

where W and W. (k, I) are defined similarly to 147S  but with E and R(k, 1) re- 

placing E in the definition respectively. By the triangle inequality it is enough 

to show that 11 14' 11 C'2 	for some absolute C. By Lemma 16 we have that 

T'VjM ( 	sup 	VVj(k, l)H. 
k+l=N+i-1 
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But for any conjugate pair (r, r'), we have 

(L 	lJf(x)ldx) (L-1 l.t9(Y)JdY) 	(1.9) 

2' 	MfHrHgHr' 	 (1.10) 

by Holder's Inequality. Putting r = p and r' q we have W(k, OH bounded by 

C'2 	so long as k + I = N + i - 1, and the proof is finished. 	 LI 

Next comes an important definition, which furnishes us with the building-

blocks of the decomposition. 

Definition 18. The set A c Q is a curved trapezoid if there exist a c b and 

continuous monotonic 4), 4) : [a, b] -> JR with 4)(x) > 4)(x) on (a, b) such that 

A = {(x,y) E  : a < x < b, 4)(x) <y < 

We now establish the case when 3Oilu > 1 and Q is a curved trapezoid. 

There are two cases: 

• The primary case is when 4) is increasing and 4) decreasing (or vice versa). 

Here we may cut Q along the line y = c where c = (a)±(a) Call the upper 

piece Q'. (See the left-hand diagram in Figure 1.3.) We may also assume 

that a = c = 0. By Lemma 15, x a y  Cs for all x e [0, b]. Thus, 

{(x,y)e9'Ju(x,y)(s} c {(x,y)EQ':x °yCS) 

and so 

f f(x)g(y)dxdy 	f 	f(x)g(y)dxdy 

Q'fl{uI(s} 	 f2'fl{xyPCs} 

C's 47f pgq  

by applying the model case. The estimate for the lower piece is similar. 

In the secondary case, both 4) and  4) are monotonic. Here we cut up A 

as shown in the right-hand diagram in Figure 1.3 and the estimate follows 

from the previous case and Lemma 16. 
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r 
Figure 13: The two kinds of curved trapezoid 

Finally, some algebraic geometry (Bézout's Theorem—refer to [121) is used to 

show that any algebraic domain can be cut up into a controlled number of curved 

trapezoids. More precisely: 

Definition 19. A set D ç Q" is called a simple algebraic domain of type (r, d, n) 

if there are r' < r non-constant polynomials fk  of degree at most d such that 

D = {x = (xj,. ,x) E QTh : fk(x) 	A, k = 1,... 

We say that D is an algebraic domain of type (r, d, n, w) if there are w' ( w 

simple algebraic domains of type (r, d, n) such that D = D1  U . . . U Dm 1. 

The authors show that for any (r, d, w) there is an iVI = Ivf(r, d, w) such that 

for any algebraic domain D of type (r, d, 2, vi) one can find Al' ( M curved 

trapezoids 7-i  and a set Z of zero measure such that 

D= HT, Uz, 

where the square cups denote disjoint unions. Applying this result to our phase 

polynomial u in the sublevel set operator, and using the previous steps, the base 

case n = 2 of Theorem 14 is established. 

1.4 Where now? 

We pull together some of the ideas described in the previous sections. It is natural 

to seek the improvement of the estimate (Theorem 13) known for multilinear 
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sublevel set operators involving type M functions from L' 1  estimates to full U. 

To this end, one can ask whether appropriate decompositions can be found of 

BC(m, m) domains (recall Definition 4) into curved trapezoids. As we saw in 

Section 13, curved trapezoids behave well with respect to the operators we are 

interested in, and so would seem like good building blocks on which to base such 

a decomposition. We also note that the continuity condition specified for curved 

trapezoids as defined in Section 1.3 was not used anywhere, and so it seems 

reasonable to drop this assumption in our considerations. 

Another principle we can draw on is the orthogonality lemma (Lemma 16), 

also appearing in Section 1.3, which says roughly speaking that as far as our 

operators are concerned, domains that are the the union of several domains with 

mutually disjoint horizontal and vertical projections may be treated as just one of 

them. Thus we shall allow ourselves to perform decompositions "up to orthogo-

nal families". As we shall soon see in the next chapter, one can easily decompose 

connected BC(1) domains into curved trapezoids. We then notice that the con-

nected components of a disconnected BC(1) domain form an orthogonal family 

of connected BC(1) domains. In view of Lemma 16, this leads us to the belief 

that BC(l) domains, possibly disconnected, are suitable "atomic blocks" for any 

decomposition we might come up with. 

The next objects to focus on would seem naturally enough to be BC(2, 1) 

domains. Progress in the continuous case seems fraught with technicalities, and 

it is at this stage that the idea of working in a quasi-discrete setting emerges. After 

formulating this notion in Chapter 2, progress is made and the relevant results 

are given in Chapter 3. Following on, we describe a method that allows us to 

decompose BC(n, 1) domains for any n, and that can be extended to decompose 

any BC(rn, it) domain provided the domain in question does not have any holes. 

At some stage, we would expect that the derivative condition Du > 1 should 

come into play. Indeed, considering the implications of this condition in the 

continuous setting when a = (1, 1) leads us to formulate restrictions on how holes 

are allowed to be arranged within a BC(in, it) domain. These restrictions turn 

out to he sufficient to allow a full decomposition of general BC(m, it) domains to 
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be found. 

Once all the decomposition theorems have been given, we ask to what extent 

they can serve their original purpose, whether they have applications in other 

settings, and what questions are raised that might warrant future study. 
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Chapter 2 

The Quasi-discrete Setting 

In this chapter, we develop further some of the ideas mentioned in the Introduc-

tion to begin formulating and working on questions that arise naturally from the 

background material. The key concepts are BC(m, it) domains, orthogonality 

and curved trapezoids. 

Another idea, which is fundamental to the whole thesis, is that of working in 

an essentially discrete setting, based on the discrete two-dimensional plane, V. 

Here many of the barriers to progress found in JR 2  are removed, and one hopes 

that suitable approximation or limiting arguments can be found in order to wield 

the results proved in this chapter and the next back in a continuous context. The 

results from the discrete setting of course have value and interest in their own 

right, and this is also discussed later on. 

We start by recalling a few definitions and introducing a new one. 

Definition 20. 

• A curved trapezoid is a set of the form {(x,y) c R  : a < x < b,f(x) < 

y < g(x)j, where f and g are monotonic functions. (Notice that we have 

dropped the continuity assumption from the definition used in /11].) 

• A set Q c R' is said to be BC(m 1 ,. . , m) if for each i and any line L 

parallel to the axis, L fl Q has at most m i  connected components. We 

abbreviate BC(m.....m) to BC(m). 

• Let Q be an open subset of li4. The function p Q - R is said to be of 

type M if it has the property: 
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there exists N such that for all 3 with 1 i1 ( M and all s > 0, the set 

{x e 9: Dp(x) (s} is BC(N). 

The least such N is called the type M constant tM(p) of p. 

• The subset 9 of JR 2  is horizontally convex (H-convex) if whenever (x, ye) 

and (x', ye)  e 9 and x < z < x', then (z, yo)  E 9. Similarly, 9 is vertically 

convex (V-convex) if whenever (xo, y), (x o , y') e 9 and y cc w < y', then 

(xo, w) E Q. We use 'H V-convex' to mean 'both horizontally and vertically 

convex'. 

Definition 21. A family of sets {Q} in JRTh is said to be a BC(m i ,. . . 

family if for all i, no line parallel to the i' coordinate axis meets more than m 

of the Q. 

Motivated by the methods of [11], as discussed in the Introduction, it seemed 

natural to ask whether one could decompose BC(N) domains in JR 2  into a num-

ber of curved trapezoids bounded by a function of N. The simplest case, that 

of BC(1) domains, readily yields to a straightforward decomposition without 

needing any further hypotheses. 

A key result in [11] is Lemma 16, which was stated on page 21. What it says 

in effect is that in the context of their work, domains that are the the union of 

several domains of mutually disjoint horizontal and vertical projections may be 

treated as just one of them. In particular, since the connected components of a 

BC(1) domain form a BC(1) family, it is enough to consider connected BC(1) 

domains. 

Thus let 9 be a bounded connected subset of the (x, y)-plane with the BC(l) 

property, i.e. that for all axis parallel lines L, the set L fl 9 consists of a single 

component. 

For t C R let L t  denote the vertical line x = t. Clearly, for each t there 

exist a(t) and b(t) such that if L t  fl 9 0 then 7r(L n 9) is an interval with 

endpoints a(t) and h(t), where 7r denotes the usual projection onto the y-axis. It 

is easy to see that a and b can change monotonicity at most once, otherwise the 



BC(1) property would be violated. Up to symmetry, we have four cases of what 

Q could look like, determined by whether either, both or neither of a, b change 

monotonicity. (See Figure 2.1.) 

If both a and b are monotonic then we just have a curved trapezoid. If either 

one changes monotonicity, we make a vertical cut at the point where it does so 

and are left with at most three curved trapezoids. Thus we have proved: 

Theorem 22. A bounded, connected BC(1) domain in JR2  can be decomposed 

into three or fewer curved trapezoids. 

Figure 2.1: The possibilities in the BC(1) case 

The quasi-discrete setting 

The next thing to investigate would seem to be BC(2, 1) domains, but the goal of 

decomposing BC(2, 1) domains in R   has proved elusive thus far. However, one 

might consider approximating such domains by domains that are roughly speaking 

made up of squares aligned to some grid. It will suffice to work with unit squares 

and then scale. This discrete approach provides a more amenable setting for 

decompositions to take place, since many of the technicalities involved with JR 2  

are done away with. However, first of all we must establish that the important 

notions of the BC properties and connectedness can be carried between the two 

settings safely. 

Getting down to details, we think of Z 2  as sitting inside JR 2  in the usual way. 

Furthermore, given a subset A of Z2 , we can associate it with the subset of JR2  

that is the union of the unit squares centred at each point of A. This informal 
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association ignores the question of what goes on at the boundaries of the squares, 

but given that these form a set of measure zero in the plane, this issue does not 

cause us any problems. 

We define operators 8 and T that map between subsets of V and subsets of 

1R2 , and give the exact meaning of the word 'quasi-discrete': 

Definition 23. 

For a subset U of 2 define 8(U) as the set of points of V lying in U, 

i.e. UflV. 

For a subset A of 7Z 2 , define T(A) as the interior of the union of the closed 

unit-side squares centred at each point of A. For aesthetic reasons we may 

write 7(s) rather than T({s}) when s is a single point of V. 

. We say that Q c j2 is a quasi-discrete domain if Q = 1(A) for some 

AcV. 

A characterisation of the set 7(A) for A c V is as follows: for each x E 

let A, be the set of elements of V of shortest distance (with the usual metric) 

to x. Then A has either 1, 2 or 4 elements, depending on whether z lies on the 

inside, edge or corner of a unit square centred at a point of V. (See Figure 2.2.) 

We see that 

x E 7(A) if and only if A c A. 	 (2.1) 

Figure 2.2: The possibilities for A 

We also introduce a notion of BC(m, n)-ness and related ideas in V. 
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Definition 24. For any  eN, let ñ= {O,1,. 

We define an interval in Z as a set of the form 'ã+m for some n e N, m e ZZ; 

or {n e Z n > no } for some n o  C or In e Z n ( no } for some no  C Z. 

We use round and square bracket notation in the same way as for intervals 

on the real line, for instance (a, b] = {x C Z : a < x ( b}. 

• We say that A ç V is a BC(rn, n) domain if for each fixed yo,  the horizontal 

section A fl {(x, y) : x C Z} consists of at most m intervals and for each 

fixed x 0 , the vertical section A fl {(x o , y) y C Z} consists of at most n 

intervals. 

• We say that afamily {A}EI of subsets of Z 2  is BC(m, n) if no line {(x, yo) 

X C Z} meets more than m of the A i  and no line {(x o ,y) y C Z} meets 

more than n of them. 

. We call A c V horizontally convex if whenever (x, yo)  and (x', yo)  are in 

A and x < z < x', then (z, Yo) C A. Vertical convexity is defined similarly. 

We observe the following about S and T. 

Lemma 25. If Q c a 2  is BC(m, n) for some m, ,n C N, then 8(Q) is also 

13C(n, n). If A ç V is BC(1) then T(A) is also BC(1), i.e. T preserves HV- 

convexity. 

Proof. Let Q c JR2  and suppose that for some yo  C Z, the section 8(Q)fl{(x,yo) 

x e Z} has at least rn + 1 intervals. Then there are x1  < z1  < x 2  < 	< 

Zrn < Xrnj C Z such that (x i , yo) C 8(Q) and (z, yo) 	8(Q) for all i. But 

8(Q) = Q fl V, and so (x i , Yo) C Q and (z, yo) $ Q for all i, which means that 

the cross-section of Q at height Yo  must have at least m + 1 components. 

Now let A c V and suppose that Y(A) is not HV-convex. Let's say that 

it fails H-convexity. Then we must have x < z < x' and yo in K such that 

(x, go),  (x',  yo)  e T(A) and (z, go) 0 'T(A). By the characterisation of I given at 

2. 1, we have A( 0 ), A(' 0 ) c Aand A(, 0 ) Z A. This immediately tells us that 

A is not H-convex. U 
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We note that T does not preserve BC(m, n)-ness generally. (See Figure 2.3.) 

However it is easily seen that things only go wrong on the boundaries of the unit 

squares centred at points of Z 2 . 

Figure 2.3: A BC(2, 1) domain A in V such that T(A) is not BC(2, 1) 

Also needed is a formulation of path-connectedness for Z 2 : 

Definition 26. 

. Let p = (pi, qi) and q = (qi, q2) be points of A c V. We say that p abuts 

q if 1p, - q1  I + IP2 - q21 = 1. (Geometrically, p and q are non-diagonally 

adjacent.) 

A path in A from p to q is a function -y : N - A (for some N E N) such 

that 7(0) = p, 1(N) = q and for each i < N, 7(i) abuts y(i + 1). 

. We say that A c V is path-connected if there exists a path between every 

two points of A. 

We would like this to be compatible with the usual path-connectedness in JR 2 . 

We shall need: 

Lemma 27. The operator I has the following basic properties: 

For all A C B C Z2 , 7(A) c 7(B). 

For disjoint subsets A, B of Z 2 , 7(A) fl 7(B) = 0. 

For all A,BcZ 2 ,Y(AUB)27(A)UT(B). 
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4. For all disjoint A, B c Z2 , 7(A U B) = 7(A) u7(B) if and only if no point 

of A abuts a point of B. 

Proof. 

1. Let A c B c Z2 . Then 

7(A) = u 7(x)) 
xEA 

(u 7(x))  
\ xEB 

Suppose not, and let x E 7(A) n 7(B), where An B = 0. Then, using the 

characterisation of 7(.) given at 2.1, z e 7(A) and x E 7(B) implies that 

A 1  c A and A. c B, which is a contradiction. 

Follows immediately from 1. 

We prove the contrapositive of each implication. 

. First suppose that a E A abuts 5 E B. Let p be the point midway 

between a and 5. Clearly p 7(A) and p 7(B) but p E 7(A U B). 

• Suppose now that 7(A U B) $ 7(A) U 7(B). By 2, there is some 

x E 7(A U B) - 7(A) U 7(B). Consider the set A 1 , which by 2.1 is a 

subset of A U B. Clearly A. must have more than one element, that 

is to say x does not lie in the interior of any square, and so A. must 

have either two or four elements. 

If A 1  has two elements, a and t say, then by 2.1 it must be that s E A, 

t E B or a E B, tEA. If A 1  has four elements, say A. = Is, t,u,v} c 

AU B, then by 2.1 it must be that at least one of a, t, it, v is not in A 

(hence is in B), and at least one of them is not in B (hence is in A). 

So in either case we have an element of A abutting an element of B. 

Lemma 28. A c Z2  is path-connected if and only if 7(A) is path-connected. 

Proof First suppose that A is path-connected and let x, y E 7(A). Then we 

can find closed unit-side squares S., S that contain x, y respectively and whose 
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centres s, s, lie in A. We can then "join the dots" to find a path between a and 

st,, then join x to s and y to a with straight lines. So 1(A) is path-connected. 

Suppose conversely that 1(A) is path-connected. We show by induction on 

that A is path-connected. The base case J AI = 1 is trivial. Assume that the 

result holds for J AI <, k and let B c V with JBI = k + 1. Choose any point 

s = ( Si, 32) c B and consider 1(B\{s}). We claim that its connected components 

are all of the form 1(B 1 ) for some B 1  c B\{s}, i = 1,. . . , n. In fact, we have the 

following little result: 

Claim. If D c V and C is a connected component of 1(D), then C = 1(8(C)). 

Proof. First suppose that x E C. Then A c D and so Y(A X ) c 7(D). Since C 

is connected, 1(A) C C. In particular, A C 8(C), and hence x E 1(8(C)). 

Now suppose that x E 1(8(C)). Then A C 8(C). So A C C c 1(D) 

and A C D. Now the connected set 1(A) is a subset of 1(D) and hence 

1(A)CC. S 

Continuing with the proof of the lemma, we claim next that each B 1  must 

abut a, otherwise the connectedness of 1(B) is contradicted. For we have just 

seen that there is a finite number of connected components C1  of 1(B\{a}), each 

of which is 1(B 1 ) for some 131 C B\[s}. By the inductive hypothesis, each B 1  is 

path-connected. For simplicity, say that there are just two B 1 —the argument is 

no deeper for more than two. Suppose for a contradiction that B 1  has no square 

abutting a. Clearly B 1  has no square abutting a square of B2  either, otherwise 

the disconnectedness of C1  U C2  is contradicted. By part 3 of the above lemma, 

1(B) = 1(B 1  U B 2  U {s}) = 1(B 1 ) U 1(B 2  U {s}). 

But this implies that 1(B) is disconnected, and we have a contradiction. 

Now, given p, q E B, we can find paths in B from p to a and from q to a 

(by path-connectedness of the B 1  and the fact that they abut a). Joining them 

together, we have a path from p to q. Hence B is path-connected and the result 

holds by induction. 

U 
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Remember that open subsets of IR" are connected if and only if they are path-

connected. F1'oni now on in the discrete situation, we drop the "path-" and just 

say that A ç 7L 2  is connected if it is path-connected. 

One final definition is needed for a concept of holes inside a subset A of V. 

In analogy with the definition in 1R 2 , we define the holes of A ç Z2  to be the 

bounded connected components of the complement 7Z 2 \A. We note that it is not 

true that whenever H is a hole of A ç V then 1(H) is a hole of 7(A), though 

this does not cause us any difficulties. See Figure 2.4. 

• 	 • 	 S.. 	 S 	 - S 

LJ H 

• 	• 

• 	 S 	 S 	 S 	 S 	 S 

- -----. -.- 

Figure 2.4: Examples in Z2 : a disconnected BC(2) domain and a connected 
BC(2) domain with three holes 

35 



Chapter 3 

The Main Decompositions 

In this central chapter, our goal is to decompose bounded connected BC(m, ii) 

domains in V into controlled numbers of BC(1) domains. For the sake of clarity, 

we deal exclusively in the discrete setting (Z 2 , that is) and the quasi-discrete 

setting (sets Y(A) c R2  for A c Z2 ), with the results proved here being linked 

to the continuous case later. The order is as follows. Firstly two useful general 

results, Corollary 30 and Lemma 33, are given in Section 3.1. Then in Section 

3.2 we treat BC(2, 1) domains, followed by BC(ri, 1) domains for any n E N, 

which yields Theorems 37 and 40 respectively. Next come BC(2, 2) domains in 

Section 3.3, subdivided into the cases of those without any holes (Theorem 42) 

and those that do have holes (Theorem 47). Finally in Section 3.4 we consider 

BC(3, 3) domains (Theorem 52) and in doing so develop the final tools necessary 

for a decomposition of BC(m, it) domains for any in, it E N, which we state as 

Theorem 55. The consequences for quasi-discrete domains are stated as Corollary 

56. 

3.1 Two general results 

Before we go any further, we give two general results that are well-used in the 

subsequent domain decompositions. We recall that a family {A} €j  of subsets 

of V is called BC (m, it) if no line {(x, yo)  x E Z} meets more than m of the 

A i  and no line {(xo, y) y E Z} meets more than n of them, and that A c V 

is connected if there is a path, i.e. a sequence of points each abutting the next, 
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between every pair of points of A. 

Theorem 20. Let {A}]i. 1  be a disjoint collection of bounded connected sets in 

Z2  that form a BC(m, it) family. Then it is possible to sort the A j  into two (or 

fewer) BC(m, n - 1) families. 

Corollary 30. A BC(rn, n) family as above may be split into 2m+Th2  or fewer 

BC(1) families. 

Proof. Firstly, we note the following easily proved properties of intervals in Z and 

make a definition: 

Lemma 31. Let 11, 12,- . . ,I be bounded intervals in Z such that I fl  11  $ 0 for 

n. 

If fl7I 	0 then flJ... 1 Ij zA 0. 

 

Definition 32. We say that subsets {Sj}jeI  of V have x-overlap at lo if 10 E 

Tsj and that the Si have x-overlap if 11€! 7S 	0. 

Now for the proof proper. Begin by choosing some A 0  = A 0 , 1 . Let fA ijj  be 

the set of A 	A O  that have x-overlap with A 0  and for i ) 1 let fA i +1Jj  be the 

set of Aj  not picked yet that have x-overlap with some 	Also define for all i, 

ai = infRx(UUAlJ) bi = sup rx(UUAii). 
l(ij 	 l(ij 

Evidently we have 

The result is soon derived from the following claim: 

Claim. 

1. For i > 2, none of the elements chosen at stage i have z-overlap with 

[a1 2, 6_21, i.e. 

(y A) n [a_2, b_21 = 0. 
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For i = 0,1,2, . . ., there exist m, n, R, L i  such that 

(
A 1 ) = [inf x A m L i , sup 

1i j 

For a fixed i, all Aij have i-overlap with either A m _ i ,L_ i  or 

For each i, JA iJj  is a BC(m, n - 1) family. 

The proof of this claim goes by induction. The case i = 0 is trivial, so 

suppose inductively that the result holds for all i k and consider the case 

i = k + 1. We begin by establishing 1. If k = 0 then it holds trivially, so 

suppose k 1. But since 71. (Ul<k U A 1 ,) is an interval, we must have that 

7r(UAk+1,) n [a,_i,b,_] = 0, otherwise some Ak+l,j  would have been chosen 

earlier. 

We now show 3. To see this, consider some Ak+1, (with k ? 1, to avoid trivi-

alities). Since it has no i-overlap with [ak_i, bk_il, we must have that ir 

is included in (—oc, ak_i - 11 or [bk_i + 1, cc). Without loss, suppose it is the 

latter. Since Ak+l,j  must have i-overlap with some Ak', it must have i-overlap 

with [bk_i + 1, bk]—in particular bk > bk_I. But because Afl k ,Rk  has i-overlap 

with some 	with I ( k - 1 and bk = sup lrXAfl k ,R k , it is clear that 

[bk_i + 1, bk] c lrX(AflkRk), 	 (3.1) 

which establishes 3. 

Now observe that at most n — i of the Ak+1,j  may have i-overlap with [bk cc), 

which follows by applying part 2 of Lemma 31. Let Afl k+,,R k+ , be one such 

whose i-projection has greatest supremum; if there are none, just put rlk+i = nk, 

Rk+i = Rk. Do the obvious corresponding thing to choose 7k+1  and Lk+i. This 

establishes 2 for i = k + 1. 

Finally we tackle 4. Suppose for a contradiction that we had a collection of 

12 of the Ak+l,j that had i-overlap at the point i0. By 1, (already proved for 

i = k + 1), i0 must lie in ( — cc, ak_I - 11 or [bk_i + 1, cc). Without loss of 

generality, say i0 > bk_i - If i0 E [bk_i + 1, bk] then by (3.1) we have ii ± 1 of the 

A j  with i-overlap at x0, which contradicts the BC(rn, n) hypothesis. Therefore 



x0 > bk. But now, since each of the ii sets Ak+l,j  in question has x-overlap with 

Afl k ,R k , we can apply part 1 of Lemma 31 and arrive at a contradiction as before. 

The whole claim now follows by induction. 

Continuing with the proof of the theorem, put 

JA W  - i even, jENJ, F={Ajj : i odd, jEN}. 

By properties 2 and 4 of our claim, these are both BC(m, n - 1) families. Work-

ing inductively, begin the process again (if necessary) at some new A 0  hitherto 

unchosen and repeat, obtaining families .F, .F2 , .F',. . . , until all the A j  have been 

used up. We see easily that the families 

and F2=UF,. 

satisfy the requirements of the theorem and we are done. 	 S 

The second general result is 

Lemma 33. The intersection of a BC(rn, m') domain with a BC(n, n') domain 

is a BC(m +n— 1,m'+n' —1) domain, where in, m',n,n' 1. 

Proof. It is enough to prove: if A, B are bounded nonempty subsets of Z having 

at most in and ii connected components respectively, then A fl B has at most 

in + n - 1. This we do by induction on n. 

Case n = 1. Let B he a single interval. We need to show that A fl B has at 

most in components. Well, writing A = U'=1 I where the I are the connected 

components of A, we have A fl B = Ut1 I fl B. Since the intersection of two 

intervals is also an interval, we are done. 

Case n=k+1. Suppose that the result holds whenever n ( k and let B have 

k + 1 connected components. Write A = U- t1 I and B = U2J J1 	w here the 

I and .J are the connected components of A and B, ordered from left to right. 

Consider J1 , the leftmost component of B. If it meets none of the components of 

A, then we are reduced to a previous case. So suppose that J1  meets p ) 1 of the 

I. Now out of these p of the I, the remaining components of B can only meet 
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the rightmost one, which must be I for some q > 0. Hence they can meet at 

most m - (p - 1) of all the Ij. Thus we have 

M 	 k-4-1 in 

(JiuUJi) = (u nJ') u(unuJi). AnB= U Ij fl   

Since by the inductive hypothesis Ut1 Ij fl J1 has at most p components and 

U1 Ii fl Ui J1 has at most (in - (p - 1)) + /c - 1 components, A n B has at 

most in + (/c + 1) - 1 components. The result follows by induction. 	E 

3.2 Decomposition of BC(n, 1) domains 

BC(2, 1) domains 

We begin the domain decompositions with the case of BC(2, 1) domains. This 

can be done using fairly elementary methods, and we obtain what seems like a 

good, low hound on the number of resulting BC(1) domains. We then give a 

result for BC(n, 1) domains for any ii E N, which requires more complicated 

methods and gives a bound that increases fairly quickly with ii. 

If A c V is a bounded disconnected BC(2, 1) domain, Theorem 29 can be 

applied to the collection of connected components of A, separating them into two 

BC(1) families. Bearing in mind Lemma 16 and the potential applications of 

what follows to integral operators, we now assume that A consists of just a single 

connected component. 

So, let A c V be a bounded connected BC(2, 1) domain. Take an injective 

path -y from bottom to top. (By this we mean: choose points a = (a i ,a2 ) and 

5 = (br , b2 ) in A such that a 2  = minirA and b2  = max7rA, and let be a path 

in A from a to b.) We can take y to be x-monotonic (let's say increasing) by 

vertical convexity. We also choose 'y to minimise the quantity D, where 

D = { t: 	(t + 1) <(t)}. 

Claim. If t0 E D then ir-y is increasing on [t0 + 1, t1], where t 1  is defined to be 

inf{t > t0 : 7r-y(t) = 7r7(to) + 21. That is to say that if y dips by one square 

then it cannot dip again until it climbs to at least two squares above its original 

height. 
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Proof Suppose not. There are three possibilities, namely that 'y dips next at 

height irto —1, 7r,t0 or ir,to + 1. These are sketched in Figure 3.1. Then for some 

height z (in fact we can take z = 71 yto or 7r,,t o  - 1) there are at least 3 components 

in N of -y4 
(7* fl 7ç'(z)). But now An (z) must have at least 3 components 

or contradict the least dipping property of 'y. 

(The idea is that visits height z for three separated time periods, in between 

which it must have y-coordinates different from z. At these in-between stages it 

must be circumventing points of Ac,  otherwise it could just carry on at height z 

with less dipping.) 11 

- 
- - 

I 

Figure 3.1: 'y  must climb a bit before it dips again 

Hence y is a disjoint union of y-increasing subpaths -yj such that mm itylj+1 = 

max7ry 7j - 1 and max 7ry 'yj  > Inin7rjy + 3. At this point we need to introduce 

another object: 

Definition 34. Let A c V. We define, fort E Z, the horizontal beams at height 

t to be the connected components of the horizontal cross-section of A at height t. 

Vertical beams are defined similarly. 

Letting Aj  be the union of horizontal beams of A that meet and A' = U A, 

we have: 

minit11 A + 2 = rnaxirA+i - 1 minirA1+i + 2 = maxiiA + 1 

and so the families {A 21 } and {A 211 } are both vertically disjoint. (That is to 

say no A 21  has vertical overlap with any A 21 t and no A21+1 has vertical overlap 

with any A 21 ' +1 .) 

Claim. These families are both horizontally disjoint too. 
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Proof Let c be the z-coordinate of the rightmost point on the top horizontal beam 

of A. By the behaviour of 'y, for any d > max irA, the point (c+ 1,d) E Ac. 

Since y is x-increasing and 7rA+2 ) maxirA + 1, we have 7rA+2 > c. 

It remains to see that c = maxirA. If not, then there is a p = (p i , p2) such 

that Pi = c + 1 and P2 < max7rA - 1. But then if were diverted through 

p parallel to the axes it would have less dipping, which is a contradiction. See 

Figure 3.2. 

Figure 3.2: Showing that A j  and A+2k are horizontally disjoint 

Recall that we defined A' = U A. The following property of A' holds: 

Lemma 35. A' is a BC(2, 1) domain. 

Proof. The horizontal part is clear. For vertical convexity, suppose that we have 

points p, q, r with P1 = q1 = r1  and P2 < q2 < r2 and such that p, r E A' but 

q E k By the BC(2, 1) property of A, q E A\A'. Without loss of generality, 7 

passes through a point a such that s, < qi and 52 = q2. Consider now the point 

U = (t 1 , r2 ). If at height r2 , 7  lies to the left of u then by the horizontal convexity 

of A', n E A', while if lies to the right of it then there must he a point z on 

7 with z1 = t1 and r2 > z2 > t2. Similar reasoning shows that there is a point 

v with v1 = t1 and v2 < t2 . Thus the vertical convexity of A is violated. (See 

Figure 3.3.) El 

Similarly, we can show that each A j  is vertically convex. Since it is horizontally 

convex too (straight from the definition), it is BC(1). 
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LIJAC 

/1 

Figure 3.3: The situation in Lemma 35 

Now consider A\A'. Note that it is certainly H-convex. Also, since A' is 

V-convex, each vertical cross-section of A\A' consists of at most two intervals. 

Let AL be the union of all the vertical intervals thus given that lie below a piece 

of A' together with any vertical intervals that contain no point of A' and put 

Au = A\(A' U AL). (See Figure 3.4 for the various possibilities.) 

A A u  

jAL 

Figure 3.4: What AL and Au look like 

Lemma 36. AL and Au are BC(l) domains. 

Proof. We treat only AL, since the case of Au is very similar. Vertical convexity is 

trivial. Suppose then that there are p, q, r with P1 < qi < vi and P2 = q2 =  r2  and 

p, r E AL, q 0 AL. By H-convexity of A\A', it must be that q c Au. Therefore, 

there must be a point s G A' with s 1  = qi and 82 < q2. Also, there is at E A' such 

that (without loss of generality) t 1  > r1  and t2 = r2 . Note that the definitions of 

Au and AL imply that there can be no point ii E A' with either it1 = qi, U2 > q2 
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or u1  = r 1 , u2 < r2. Furthermore, the H-convexity of A\A' implies that there is 

no u e A' with qi < ul  < ri and u2 = q2. But this means there can be no path in 

A' between s and t, contradicting path-connectedness of A'. See Figure 3.5. D 

j 	

Key 

A' 

q 	/" 	 Efifi A 

7 	 LII A 0  

a 	 flAG 

Figure 3.5: Illustration of Lemma 36 

Thus we have shown that A = U A2j U U A2+i U AL U Au, where the four sets 

on the right hand side are BC(1) domains, as required. We sum things up as: 

Theorem 37. Let A be a bounded, connected BC(2, 1) domain in V. Then we 

can write A as the union of four or fewer BC(1) domains. 

BC(n, 1) domains 

Having dealt with BC(2, 1) domains, we now give a decomposition of BC(n, 1) 

domains for any n E N. Let A C Z2  be a bounded BC(n, 1) domain. We consider 

the following algorithm, which is illustrated in Figure 3.6: 

Algorithm. 

• Begin by choosing a path 71  in A that is monotonic in x and y and is max-

imal in y-length subject to this condition. (That is, I7rv71(N) is maximal.) 

Define A1 as the union of horizontal beams of A that meet 'yi• 

• At the k + 1th stage, choose a path 7k+1  in A\ U=1 A j  that is monotonic 

in x and y and maximal in y-length. Let Ak+l be the union of horizontal 

beams through 7k+1 
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Figure 3.6: Illustration of the Algorithm at work 

• Repeat until we have exhausted the whole of A, i.e. we have A = U1 Aj 

for some N. This must happen because A is finite. 

We note that the same reasoning as in the proof of Lemma 35 shows that Ak is 

BC(1) for k = 1,... N. 

We establish the following property of the Algorithm. 

Lemma 38. Let A be a bounded, connected BC(n, 1) domain in Z 2  and a vertical 

beam L of A be given. If we decompose A using the Algorithm, then no more than 

211 - 1 of the resulting A j  can meet L. 

With this result in hand, we would then have that the A i  form a BC(n, 2' - 1) 

family. By Corollary 30, this would mean that the A i  can be sorted into 2 2Th +n_3  

or fewer orthogonal families. 

Some notational set-up is required. Suppose that our bounded A c Z2  has 

been decomposed into A j  according to the Algorithm, and that we have nominated 

a vertical line L. Define C = L1  = L, and let Al be the first of the A i  to meet 

L 1 . Now define inductively 

Li =LnA\UUAJ. 
j=1  I 
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Note that L 1  has at most 2' components. (A trivial induction shows this.) 

Denote these by Ci ,.. . , C_ 1  and define A for j = 1,2,. . . , 21-1  as the first of 

the A 1  to meet C. 

Since A is bounded, we must have that eventually LM = 0 for some least M. 

The idea of the next result is that the higher M is, the greater the number of 

components some horizontal sections of A will be forced to have. Thus we shall 

find a bound on M and hence on the number of A 1  meeting L. 

Lemma 39. For all k, either Lk = 0 or Lk has up to 2k-1 connected components 

such that for all t E rLk the horizontal section 

UUAI nç'(t) 
j= 1  I 

has at least Ic - 1 connected components. 

Proof. The proof is by induction. The case of k = 1 is trivial--the union expres-

sion is empty. 

Now suppose inductively that the result holds for Ic, and consider what hap-

pens with Ic + 1. If Lk+1 = L fl A\ U=1 U1 All  is empty then there is no more 

to prove, so suppose that Lk+1 is nonempty. By our previous observation, Lk+1 

has (up to) 2' components Cr1,. . . , C 1 . Fix one of them, c1  say. Clearly 

G 1  c Ck for some q. By the inductive hypothesis, 

for all t E 7ry C, U U Aj n '(t) has at least Ic - 1 components. 

j= 1  I. 

Recall that A is the first of the A 1  to meet cqk.  Now evidently either 

lies above A k  fl C or below it. Suppose without loss of generality that it lies 

below. (The argument is very similar in the 'above' case.) 

By the y-maximality of 4, we have that 

= r4(N) 

So there is some point z of A k at each height t of 	By the definition of the 

Al's, z must be in a different connected component of the horizontal section of A 
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at height t from the points in U 	U1 Al 	'(t). Hence the horizontal section fl 7ç  

U=1 U1 AJ fl iç '(t) must have at least k components. 

El 

Now let M be the smallest natural number such that LM = 0. Then LM-1 $ 0 

and at each height t of LM_l we have at least M —2 components in the horizontal 

section U12  U1 Al n yr;' (t). From the fact that LM is empty, it follows that 

= L fl A' 1  for all i. Hence (again by definition of the Al's), for all 

t E 7rLM_1 the horizontal section U1' U1 Al fl 7r- '(t) must have at least M - 1 

components. 

If A is BC(n, 1) then M < n + 1, whence at most 

2_ 1 +2h1 _ 2 +...+2+1=2I_1 

of the A i  can meet L. For none of the Al  meeting L has an upper index of more 

than M - 1, and there are no more than 2j1  of the Al  for a fixed j. 

Figures 3.8 and 3.7 show a sample decomposition which, incidentally, can be 

generalised to show that the bound in Lemma 38 is tight. Evidently, the choice 

of 'yk's  in this example is slightly perverse—the obvious choice for 'yi  being the 

central vertical line—however there seemed to be no reasonable extra conditions 

that could be imposed during the choice of 'yk' 5 . 

We summarise the results of this section with a theorem. 

Theorem 40. Given a bounded, connected BC(n, 1) domain A in Z 2 , it is pos-

sible to decompose A into 22"t3  or fewer BC(1) domains (each of which is an 

orthogonal family of connected BC(I) domains). 

3.3 Decomposition of BC(2, 2) domains 

The next move is to attempt a decomposition of BC(2, 2) domains. As in the 

BC(2, 1) case, we begin by reducing to the case of a single connected one, under 

the guidance of Lemma 16. Again, this is achieved by applying Theorem 29. 
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Figure 3.7: Our algorithm at work: A and the first few 'yi 

Figure 3.8: Our algorithm at work: the A and Cj 



The main obstacle now is the fact that a BC(2, 2) domain may contain holes 

(by definition, bounded connected components of the complement), which frus-

trate attempts to use the methods of the previous section without further treat-

ment. 

Although it is possible to move forward by placing certain restrictions on the 

arrangement of holes, we postpone such discussion and deal meanwhile with the 

intermediate case of connected BC(2, 2) domains that do not have any holes. 

BC(2, 2) domains without holes 

Let A c V be a bounded connected BC(2, 2) domain. Again we take an injective 

path y from bottom to top, We can no longer take y to be x-monotonic, but can 

still choose 'y to minimise the quantity JDJ = It : ir-y(t + 1) <m-y(fl}. 

Claim. It still holds that if to E D then 711 'y is increasing on [t0 + 1, t i ], where 

= inf{t > to 7r-y(t) = 77(to) + 21. (That is, if "y dips by one square then it 

cannot dip again until it climbs to at least two squares above its original height.) 

This is because the x-nionotonicity of 'y in Section 3.2 was not used in the 

proof of the corresponding claim on page 40 there. Thus, in the same way as 

before, we can write 7  as the disjoint union of y-increasing subpaths define 

A.1  as the union of horizontal beams through 7j,  and put A' = U A. Once again, 

these objects have some useful properties. 

Claim. {A} is a BC(2, 4) family. 

Proof. The horizontal considerations are trivial. For the vertical, we show that 

there can be no more than two A j  meeting any vertical beam of A. (In fact there 

is some j such that only A j  and A_ 1  can meet the vertical beam.) 

Suppose k > 1 and there are points p E A j  and q E A +k with lryp < 7r q and 

both on the same vertical beam of A. By definition there exist p', q' on 7  in the 

same horizontal beam as p, q respectively. But since k ) 1 there must be a dip 

on 7 between p' and q', whereas the path of straight lines p' -* p -* q -* q' lies 

in A and has no dips, contradicting the least dipping property of 7. 

The only other possibility is k = —1, since for Ic < —1, 7T,A j  > 7rA+k. 	E 
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Notice that in the previous section we could decompose the A j  into two BC(1) 

families by virtue of the x-monotonicity of 'y. Now that we no longer have this 

property, the best we can do here is 16 BC(1) families (invoking Corollary 30). 

Lemma 41. With A' = U A, we have that A' is a BC(2, 2) domain. 

Proof. Suppose not. Then we have points p, q, r, a, t lying on a vertical line (in 

increasing order of height), where p, i - , t E A' and q, a 0 A'. Looking just at height 

irr downwards, we see that if q 0 AC (i.e. q E A!) then there exists by definition 

of A' a point u E AC between q and 'y at height 7r9 q. The fact that A has no holes 

then forces the existence of some point of K between p and r. So either way we 

have a point of K between p and r. The same argument applied to the upper 

part (height 7rr upwards) yields a contradiction of the BC(2, 2)-ness of A. E 

El 
H 

Key 

11 A—A' 

Figure 3.9: Showing that A' is BC(2, 2) 

Similarly we can show that each A j  is BC(1, 2). 

It also follows easily that A\A 1  is a BC(1, 4) domain. Applying Theorem 29 

and Theorem 40, we can decompose A\A 1  into a controlled number of BC(1) 

domains. Drawing things together we have: 

Theorem 42. Let A be a bounded, connected BC(2, 2) domain in Z 2  such that A 

has no holes in it. Then we can write A as the union of 220  + 64 or fewer BC(1) 

domains. 
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Proof Recall that we split A into A', which could be split into 16 BC(1) families 

of BC(2, 1) domains, and A\A', which was BC(l, 4) and possibly disconnected. 

By Theorem 37 we can split A' into 64 or fewer BC(l) domains. By Corollary 30, 

we can split A\A' into eight or fewer orthogonal families of connected BC(l, 4) 

domains, each of which by Theorem 40 can be split into 217  or fewer BC(1) 

domains.  El 

BC(2, 2) domains with holes 

As mentioned earlier, the appearance of holes in a BC(2, 2) (or higher) domain 

will generally scupper attempts to decompose them using the methods we have 

considered so far. Progress is however possible by imposing conditions on how the 

holes may be arranged. Specifically, we define the property HP(m) of a subset 

A of Z2  as the negation of the statement: there exist holes H1 ,. . . H,-,. in A and 

z0  E Z such that one of the following holds: 

• 7rH1+i  > 7r,Hi for all i and either 7rH0dd < z0  < 7ry Heven 

or 7H0dd > Z0 > 7y Heven. 1  

• 7rH+l > 7ryH, for all i and either 7rH0dd < Z0 < 7tx Heven  

or ltrn Hodd > zo > irx Heven. 

So roughly speaking, HP(m) says that we cannot have in or more holes alter-

nating about a horizontal or vertical line. (The HP notation comes from hole 

property.) 

Why should this be a reasonable condition to impose? Well, let us imagine 

ourselves in the continuous setting for a moment. Suppose we have a type 1 

function u with type constant 2 such that > 0 on Q. Thus all the sublevel 

sets of u and its first-order partial derivatives are BC(2) domains. Let 12 be a 

sublevel set at level a. Suppose we had four holes in 12 arranged as in Figure 

3.10. We claim that on the boundary 3H of any given one of these holes, u is 

either identically a or identically —a. Evidently Ju l = a on DfI. Suppose for a 

'For subsets A and B of R or Z, we say that A > B if a > b for all a C A and b e B. If 
B = {z} we just write it as z for ease. 

)1 ~7-;  

 
.., 

-- 



0 H 
2 

A 

0  H3 

Figure 3.10: Here HP(4) does not hold 

contradiction that we had points p and q on 3li with u(p) = s and u(q) = ---s. 

We can find a path 'y  from p to q in H. But then by the Intermediate Value 

Theorem, there would be a zero of u in H, which is a contradiction. 

By Rolle's Theorem applied on appropriate horizontal lines, we could find in 

each hole a zero of. Then 	> 0 tells us that we have x 1 ,x2,z3,x4 and yoaxay 

with C,.0 (xodd,yo) > 0 and au (X eVCR ,YO) < 0. Hence there exists s' such that the ax 

sublevel set of Ou at level s' has at least 3 components on the horizontal section ax 

at VU.  Of course this contradicts our assumptions about u. 

Returning to Z 2 , the next step is to see what imposing HP(m) on a domain 

A can tell us about how all the holes in A are arranged. Some notational setup 

is required. 

Definition 43. Let A c Z2  and suppose that A has some finite number of holes. 

We call the set 71 = { H1 , H2 , . . . , H,} of holes a string if there is a permutation 

a on 11, 2, . . . , n} such that 7H(l) < < . .. < 7X H(,) and either 

• 	< ii- H, and whenever there are holes K 1 , K2  such that 7H(l) < 

7r,K1 < 7rK2 < ¶H() we have 7TH( i) < 7r,K1  < 7rIJ K2  < 7ry lia (n ) 

and whenever there are holes K 1 , K2  such that 7H(l) < ir,Ki < 7rK2  < 

we have 7TH(i) < r,Ki  < 7r1K < 7H(); or 

• 7TH(l) > ii- H 	and whenever there are holes K 1 , K2  such that 7r1H(l) < 

7K1 < 7rK2 cc 7rH() we have 7rH(l) > 7r,'(i  > 7y '<2 > 
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and whenever there are holes K 1 , K 2  such that 7y Ha ) > 7r,Ki  > 7r,K2  > 

we have 7H(l) < 7Kl < 7r,K2  <1rH(). 

(Note that this implies either 7rH(l) < 7r,H52  < 	< 7r,H) or 7'H(l) > 

7y Ha(2) > . - > 	A string is called maximal if it is not included in any 

strictly larger string. 

With each such set we associate a hole diagram, which represents the order in 

which any holes appear relative to the x- and y-coordinates. The diagrams consist 

simply of dots and diagonal lines, the dots representing one-element maximal 

strings and the lines representing longer maximal strings. It is easy to show that 

any arrangement of holes has a unique hole diagram. To do so, we can simply 

define the equivalence relation "-' on the holes by saying that H1  - H2  if and only 

if {H 1 , H2 1 is a string. Then the maximal strings are the equivalence classes. 

Figure 3.11 gives a couple of examples. 

0 
	

0 0 
0 

0 	
0 

0 
0 	0 

_ H 
Figure 3.11: Two examples of hole diagrams 

Lemma 44. Let A c Z 2  have property HP(4). Then there are only eight possible 

hole diagrams for A, up to symmetry. They are shown in Figure 8.12. 

Proof. The proof is by induction on the number of holes. Let A be such a set. If 

it has no holes, then its hole diagram is just the first one shown in Figure 3.12. 

Suppose inductively that every such sublevel set with k holes has a hole diagram 

contained in Figure 3.12, modulo symmetry, and let A be a set with k + 1 holes 
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Figure 312: All the possible hole diagrams with HP(4) 

and property HP(4). Order the holes (arbitrarily) and imagine that the k + 1tIi 

hole has been filled in. The resulting set, by the inductive hypothesis, has a hole 

diagram shown in Figure 3.12. We wish to see that adding in the /c + 1th hole 

leads either to one of the diagrams shown or an illegal arrangement. 

Thus there are eight cases to consider, one for each of the eight diagrams. Let 

us just consider the last diagram, since the arguments here cover the other cases 

too. Remember exactly what the diagram means: we have rn + 'ii + p holes 

H1,. . . 	"lfl+ 1, 	, 	' '1 'u+n+ 1, 	, 11flL+TL+P 

(where m,n,p > 2) such that ir(H1) < 7(H2 ) < 	< ir(H,+,+) and 

y (Hrn+n+i) < ... < y (Hm+n+p) < y (H, n) < ... <(H,1) < 

<...<71y (Hm ). 

A bit of renaming is useful here: let H1 , . . . , H6  be the new names of the holes 

H1, 11ni, Hm+i, Hm+n+i, Hm.+n+p, i.e. those at the ends of maximal strings 

as they appear from left to right. Now we divide our sublevel set into a number 

of areas, shown by dotted lines in Figure 3.13. We investigate what will happen 

if the /c + 11h hole (call it H*)  appears in each of these areas. (For instance, 

saying that H*  appears in area D means that 7r(H3) < lrx (H*) < 7(H4) and 

7r9(H*) > 7r11 (H2 ).) It will be seen that the results for all other areas follow by 

symmetry. 
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Figure 3.13: Places where H* could appear 

For the moment we consider only the areas A to P. (R requires special attention 

later.) We soon see that areas C and M are the only places where H*  can occur 

without creating an illegal arrangement, as the following table shows. 

Region Illegal Arrangement Region Illegal Arrangement 

A [1*, 112, H1, H3 H 112, H, '1, 113 
B 11* [12, H1, '13 J 112, H*, 111, 113  

D 11, H2, H3, H* K '12, 11* H, 113  

F 111, H2, H3, '1* L 112,/1, H1 , H3  

F H1, H2, H3 ,H* N H1,H*,H3,H4 

C H1, H2, H3 ,H* P H1, H*,H3 ,H4  

Finally we deal with the area R. Focus in on just the top-left maximal string, 

which we shall call H. If NU{Ht} is also a maximal string, then there is nothing 

more to do. Otherwise, there must be some H" such that 7rX (H**) > ir(H) 

and qr(H**) < (*) (or vice versa). Hence the holes H1, H* ,  H** ,  H2  form an 

illegal arrangement. The two cases are shown in Figure 3.14. 

It is clear from Figure 3.13 that all other placements of the hole H* are covered 

by symmetry. Furthermore, none of the arguments used to establish the result 

for the other seven diagrams (cf Figure 3.12) are any more difficult than those 

used above; therefore it is left to the diligent reader to verify the details. 

U 
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Figure 3.14: If H* falls in the area R 

Now that we have good control over how holes may appear in sets with HP(4), 

we are not far from a decomposition of such sets into simpler objects. Shortly, 

we shall need to use Lemma 33 for the first time. 

For the next step, we begin by looking at the case of A C Z2  whose holes 

appear as in the final diagram of Figure 3.12. (Cases corresponding to the other 

diagrams are all easier than this one.) We split up the sublevel set as shown in 

the left hand side of Figure 3.15, that is we choose x1 E [sup ii- H2, inf irH3I, x 2  E 

[sup 7H4, inf 7rH5], Yi c [supirHc , inf irH4], y2  E [sup 7rH3, inf irHi ] and 

draw straight lines between the pairs of points (x1,yi) and (xi, 1); (x1,yi) and 

(1,yi); (0, Y2) and (X2, Y2); (X2, 0) and (x2, y2). 

Denoting the two L-shaped areas by L 1  and L 2 , we claim that and AflL 2  are 

BC(2) domains without holes. The BC(2) property comes simply by applying 

Lemma 33 with in = in' = 2 and n = n' = 1. The fact that A fl L 1  and A fl L 2  

have no holes follows from the following lemma. 

Lemma 45. Let X be a BC(m,n) domain with holes {H}j, and let Y be a 

BC(1) domain that does not meet any of the holes of X. (So Y c (U H)t.) 

Then Z := X n  is BC(rn, n) and has no holes. 

Proof. The fact that Z is BC(rn, n) follows immediately from Lemma 33. To 

prove that Z has no holes, suppose for a contradiction that it does have a hole, 

H say. By definition of holes, all points of HG  abutting H are in Z = X fi Y. By 

considering the points either side of horizontal and vertical beams of H, we see 
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that since Y is BC(1), all points of H are also in Y. Also H c r = (X n Y)c = 

Xc U  Yc, which implies that H c Xc. Thus H is a hole in X. But we also have 

H c Y c (U HO
C , which is a clear contradiction. 

Lemma 16 now suggests that regarding the three pieces on the diagonal, we 

need only consider one of them, which we now do. Concentrating on one of these 

diagonal pieces, D say, we decompose it in a similar manner. We divide it up as 

shown in the right hand side of Figure 3.15, that is surrounding each hole H by 

the rectangle R = KH x KH, then linking these rectangles with a "staircase" 

that extends to the edges of D. A precise definition for the case of holes arranged 

as in Figure 3.15 appears in the following table. 

7sE 7TSE s  
[mm 	irD, min 7rf1i) [mm 7rD, max 7rHi] K1  

(max irH1 , max irD] K2  
[mm 7rH, max7rHd [mm 7rD, mm irH) K 1  

(max7rH, max Tr9 D] K2  
(max 7r H, min 7r H+i) [min 7rD, max KH +l] K 1  

(max 7r H+i, maX7r D] K2 
(max irH, max 7rD] 7rD 

Thus we have D = 1 U K2 LJ U=i  R. Intersecting with A and applying 

the following lemma together with Lemma 45, we find that A fl D can be de-

composed into four (disconnected) BC(1) domains along with the two BC(2) 

domains without holes, A fl K1  and A n 1<2. 

Lemma 46. Let A be a bounded connected BC(m, n) domain and H a hole in 

it. Define .11 = irH x 7rH. Then 

R\H has at most 2(n-i + n - 2) connected components, and 

If Ci  is one such, then An C i  is BC(rn - 1, n - 1). 

Proof. 

1. Let DR denote the "boundary" of R, i.e. the set of points in R adjacent to 

a point in Rc.  By definition of R and BC(rn - 1, n - 1)-ness of H, it is 
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clear that (OR)\H has at most 2(m + it - 2) connected components Fix 

an arbitrary z E Z2 \R. Given any p E R\H, we wish to see that p is in 

the same connected component of R\H as some q E OR. Since Z 2 \H is 

connected, there is a path 'y  from p to z in Z2 \H. Let q be the first point 

on OR that 'y reaches. Then the restriction of to [O, min 'y'q] is a path 

in R\H from p to q. Therefore every element of R\H is indeed in the same 

connected component of R\H as some element of OR, whence the first part 

of the lemma is proved. 

2. Suppose for contradiction that there is a horizontal section of A fl C. hav-

ing in connected components. Then there are P1,. . . ,,, € A fl Ci  and 

q1,. . . , q,,1 A fl Ci  all lying on the section and such that 7p < 7.qi < 

7txPj+1 for i = 1,. . . , in - 1. In fact we can in fact take the qi to be in Ac. 

(For if qj E A then it can't be in C. Since pi E Ci  and Ci  is a connected 

component of R\H, there must be a point of H c Ac between p i  and qi.) 

Since A is BC(m, ri), there can be no points of any hole to the left of p' 

or to the right of p. Also, there is a path in Ci  from P1  to p, and thus 

(by concatenating) a path from the left edge of R to its right edge that sits 

entirely in Hc .  But there must also be a path in H from the bottom edge 

of R to its top edge. By the Jordan Curve Theorem the two paths must 

meet, which is a contradiction. 

MEN 

Thus we have proved: 

Theorem 47. Let A c V be a bounded, connected, BC(2, 2) domain that has the 

HP(4) property. Then A can be decomposed into orthogonal families of BC(1) 

domains and BC(2) domains without holes, whence we can use previous results 

to show that such a set may be decomposed into 224  + 210  + 4 or fewer BC(1) 

domains. 
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Figure 3.15: Final step in BC(2) decomposition 

3.4 BC(3) and beyond 

A few more techniques must be developed before we can achieve our goal of the 

decomposition of any BC(m, ii) domain. 2  The next case to consider is that of 

BC(3, 2) domains. As in the treatment of BC(2, 2) domains, we can classify the 

different possible layouts of holes and make use of this knowledge in our methods. 

However, when we move up to BC(3, 3) domains, this method no longer seems 

feasible, due to a sudden growth in complexity. (Even in stepping from BC(2, 2) 

to BC(3, 2) we see a tripling in the number of possible hole diagrams.) So in 

the .BC(3, 3) case we give a new method of dealing with the holes, and it turns 

out that we can extend this to the general BC(N) case. Once that is done, we 

shall have all the necessary machinery to perform a decomposition of any BC(N) 

domain. 

BC(3, 2) domains 

As in the BC(2) case it seems best to consider first the case when there are 

no holes. At this point however, the methods used in decomposing BC(2, 1) 

and BC(2, 2) become less effective and new methods become desirable. In fact, 

we have already developed one, because the Algorithm described in Section 3.2 

'Obviously it is enough to provide a decomposition of any BC(N) domain and then putting 

N = niax{in, n} covers BC(rn, n) domains. If in it we forfeit a tighter bound, but given the 

definition of type M functions, which involves BC(N) and not BC(rn, ii) domains, one feels 

that this is reasonable enough. 
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can be applied in this situation. It is possible to extend the methods there to 

decompose any BC(m, n) domain without holes. 

For suppose that A c V is such a domain and suppose without loss of gener-

ality that in < ii. Consider a vertical cross-section of A. It consists of at most n 

vertical beams. The proof of Lemma 38 shows that at most 2m - 1 of the A i  meet 

any given one of these ii beams. Thus the A i  form a BC(m, n(2m - 1)) family. 

We can also show, using the same ideas as those in the proof  of Lemma 41, that 

each A i  is BC(1, it). By Theorem 29 and Theorem 40, we can thus decompose A 

into 22"+n2m+m-5 or fewer BC(1) domains. 

A question that arises here is whether this bound is always smaller when 

in < it than when in > it. 

So in the present situation of BC(3, 2) domains, the Algorithm is used to give 

a BC(2, 9) family of BC(1, 3) domains, which can be split into 2 or fewer orthog-

onal families of BC(1, 3) domains. Applying our results on BC(1, 3) domains, we 

end up with 217  or fewer BC(1) domains. 

We now attempt to tackle BC(3, 2) domains with holes. First we note that 

the holes must form a BC(2, 1) family, and use Theorem 29 to split it into two 

BC(1) families. For the time being we choose just one of these families on which 

to concentrate. 

We also impose the condition HP(5, 4), which says that we cannot have five 

holes alternating about a horizontal line, or four about a vertical line. A rigorous 

definition of HP(m, it) for any in, it E N comes in the same mould as that of 

the HP(m) condition on page 51. Let P1  be the statement that there exist holes 

Hl ,.. . , Hm  in A such that 

• irH+i > 7.Hi for all i and either 7rH0dd < zo  < lry Heven  

or 7r,H0dd > z0  > iry Heve ,, 

and let P2  be the statement that there exist holes Hl ,. .. H,, in A such that 

• 7rH+l > 7y Hi  for all i and either 7rH0dd < z0 < lrx Heven  

or 717 H0dd > zo  > lrx Heve n. 
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Then A is said to satisfy HP(rn, it) if it satisfies "neither P1  nor P2 ", that is 

-i(P1  V F2 ) in the notation of logic. See Figure 3.16. 

/13 

Figure 3.16: Illegal hole arrangements with HP(5, 4) 

Armed with these restrictions and using the same kind of reasoning as in 

Lemma 44 we find that the holes in this family must have a maximal string 

diagram that is, up to symmetry, a "subdiagram" of that shown in Figure 3.17. 

(Details are given in Appendix A. There are 27 cases to check, but the argument 

is no harder than in the case of BC(2) domains with the HP(2) condition.) If we 

now enumerate the holes as HJ and place rectangles RI around them as before 

(i.e. so that RI = x 7rHJ) then it is easy to see that Q\URI can be 

divided up into four BC(1) domains. Again, see Figure 3.17. Call these domains 

Repeat this procedure with the second of the two families of holes H3? and call 

the resulting BC(1) domains A, A, A and A. We have 

Q=QnQ = (àAJuyRI)n(àAuyR) 

= (AInA)uu. 
j,k=1 	 i,j 

Intersecting with A on both sides, we have that A\ U i,j  R = LIk=1 AJflAflA. 

By Lemmas 33 and 45, this is the union of at most sixteen BC(3, 2) domains 

without holes. 
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Figure 3.17: Decomposing BC(3, 2) domains 

We are left with just the An to deal with. To do so we just apply Lemma 

46, which tells us that each of these can be decomposed into six BC(2, 1) domains. 

Bearing in mind that the R2i form two BC(1) families, we have that A n Ui , 2 R 

can be decomposed into twelve or fewer BC(2, 1) domains. Chasing the numbers 

back through previous results we have: 

Theorem 48. Let A be a bounded connected BC(3, 2) domain in V that has 

property HP(5, 4). Then A can be decomposed into 224  + 96 or fewer BC(1) 

domains. 

But wait a minute: this bound is smaller than the one obtained earlier for 

BC(2) domains! This suggests that using the Algorithm of Section 3.2 should 

lower the bound there. Indeed this is the case. For BC(2) domains without holes, 

the Algorithm gives a BC(2, 6) family of BC(1, 2) domains, whence 4 . 2 6  = 28  

BC(1) domains. For EC(2) domains with holes (under the conditions of Theorem 

47) this translates into 4.2 10  + 4 = 2 + 4 BC(1) domains. 

BC(3, 3) domains 

In this subsection, we put the final piece in the jigsaw of techniques that will 

enable us to decompose a general square-type BC(N) domain on which an ap-

propriate HP condition holds. It is easier to follow what is going on in the 

BC(3, 3) case, which is why we do not immediately move to the general case. 
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Again the arrangements of holes in our domains entailed by the HP condition is 

crucially important. 

Let A be a BC(3) domain. If A has no holes, then we can use the Algorithm 

of Section 3.2 to divide A into a BC(3, 22) family of connected BC(1, 3) domain, 

each of which in turn we know how to decompose into 2 BC(1) domains. Thus 

we can decompose A into 230  or fewer BC(1) domains. 

So assume that A does have holes, and suppose further that HP(5) holds 

on A. The holes form a BC(2, 2) family, which we may split into four BC(1) 

families. We treat these one by one before taking intersections and suchlike for 

an overall decomposition. 

Let N = {H 1 , . . . , H,} be one of these BC(1) hole families, where they are 

enumerated left–right. For i = 1, . . . Iv let R = 7~ Hi  x 7H. We define L, U c Q 

as follows: 

7rSE and 7rsE s  

[mm 7Q, minirHi) [minrQ, min irHI) L 
[min 7i- H1 , max 7rQ] U 
[min 7r,Q, min ir9 H) L 
(maxirH, max7rQI U 

(max7rH, min7rH + l) [min7rQ, min{maxirH, maxirH +i}] L 
(min{ max 7rH, max 7rH + l}, max 7r1,Q] U 

(max 7Hk, max 	QJ [min irQ, min 7Hk) L 
[mm 7rHk, max irQ] U 

Note that Q = L U U U Lj i=l R. (This is all a lot easier to understand in a 

picture—see Figure 3.18.) 

The aim now is to show that L is BC(2, 1) and U is BC(3, 1). The case of U 

turns out to be slightly more involved, so we shall deal with it first. Supposing 

for a contradiction that U were not BC(3, 1), we would have pi,... , P4 E U and 

qi, q2, qa E Q\U such that 7r vpi = Yo = lry qj for all i and 

7TxPl < 7r.ql  C 7rxp2 C 	C 7q3 < 7 x794 

We also define qo = (min7rQ -  1, yo) and q4 = (max7rQ + 1, yo). 
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Figure 3.18: A picture of L and U 

We define some subsets of Q as follows: 

= [Mill irQ,irpi —1] x [yo , max 7rQ] 

P = ([7rx qi_i + 1, 7rxqi - 1] x [mm irQ, yo])\{p} 	i = 1, 2,3,4 

Qi  = ([irp + 1, ?TxPi+l — 1] x [yo,  max 7rQ])\{q} 	i = 1,2,3 

= ['rp + 1, minirQ] x [yo, max7rQ]. 

We also define Pi' = P\iç1 (yo) for i = 1,2,3,4; and Q = Q\iç'(y) for i = 

0,. . . , 4, with the stipulation that P0  = P5 = 0. See Figure 3.19. (The black 

vertical lines indicate squares that the rectangles Rj  may not contain—unless 

they contain some qi.) 

The following lemma is the machinery that produces illegal hole arrangements 

to get the intended contradiction. 

Lemma 49. With the notation just introduced, 

Suppose i ( 3 ('i > 2) and there is a rectangle R meeting ]. fl Q. but not qi. 

Then there is some R' c Q (F'). 

Suppose that i < 2 (i 1) and there is a rectangle R meeting Q. fl P 1  but 

not qi. Then there is some R' c P[ 1 (Q). 

Suppose there is a rectangle R containing qi  where i < 2 (i ) 2). Then 

there is some R' c PI+  (P). 
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Figure 319: Defining the P, Q, pi and q 

S. Suppose i ( 3 (i ) 1) and there is a rectangle R c Q and that no Rj  meets 

Q i  n P i  (Qi  fl .P) or q. Then there is a rectangle R' c F 4  (F). 

Suppose that i ( 3 (i ? 2) and there is a rectangle R c F and that no Rj  

meets P fl Q (P fl Q-1) or qi (q_ 1 ). Then there is a rectangle I-?' c 

7I-y 
-01 

Proof. We just prove the first statement under each number, as the others are 

very similar. 

. Consider the rightmost rectangle meeting P, which is either R or some 

R' c .P'. The next rectangle to the right of it is evidently (by definition of 

U, L etc.) in Q. 

o Same argument as above. 

• Let R' be the rightmost hole in Q. This case now divides into 2 subcases. 

Firstly we suppose that max Consider the next rectangle tc 

the right. As before, it is evident that it lies in 

Secondly, suppose that max 7cR' < 	Consider the next rectangle to the 

right. If it lay in 	then applying the first case to P' yields a contradiction. 

Hence it must lie in 	(This is actually also a contradiction, meaning 

that max irR' < 7,q1  is impossible, but this redundancy does not appear 

in the similar case of R' c .) 
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U 

Corollary 50. If U is not BC(3, 1), then there are at least six holes alternating 

about a horizontal line. 

Proof. We have three cases to consider 

• First suppose that no rectangle meets the horizontal section at go. Pick a 

rectangle at random, which must therefore lie completely inside some P or 

Q. Using part 3 of the Lemma repeatedly, we find holes in P1 ,. . . , P and 

Q and are done. 

• Suppose that there is some rectangle R that meets P, n Q j  but not qj, where 

i < 3. Note that by BC(1)-ness of the hole family this can only happen 

once. 

If i = 2 or 3 then part 1 of the Lemma tells us that there are rectangles in 

P,' and Q. Thence part 3 gives that there are rectangles in P11 ,. . . P and 

Q in addition to R, so at least seven in total, alternating about yo 

(R does not take part here.) 

If i = 1, part 1 of the lemma gives us a rectangle in Q. Then part 3 gives 

us holes in P, P, P and Q, Q, and so at least seven in total, including 

R, that alternate about max irR. 

Very similar arguments give the result when R c P4 U Q4 or  Qi U P 1 . 

• Suppose that there is some rectangle R containing a q. If i = 2 then by part 

2 of the lemma we have rectangles in P and P. Thence by part 3 we have 

further rectangles in P, Q, Q'3 and P, and so at least seven altogether, 

including R, which alternate about min irR. 

If i = 1 then we have a rectangle in P by part 2 and ones in Q, P,  Q, P4' 

by part 3, so at least six in all, including R, that alternate about min 7rR. 

The case i = 3 follows by symmetry. 

U 
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However we know it is impossible to have more than five holes alternating 

about a line, whence U must be BC(3, 1) as claimed. The same kind of reasoning 

is used to show that L is BC(2, 1). 

Now we already have a method to decompose BC(n, 1) domains into controlled 

numbers of BC(1) domains, however it is possible here to improve the bound 

obtained by having a closer look at the domains L and U. We can exploit the 

fact that they are of a special form—not only BC(n, 1) for some n but they are 

unions of vertical beams all of whose top or bottom ends are at the same height. 

We give a more general result than necessary in the immediate context, since it 

can be used later on. 

Lemma 51. Let F be a bounded connected BC(n, 1) domain that is a union of 

vertical intervals all of whose lower endpoints are at the same height (which may 

as well be 0). Then F can be decomposed into T(n) or fewer BC(1) domains, 

where 

T(1)=1 

T(n) = 1 + 2 2T(n - 1) 	for m> 1. 	 (3.2) 

(So T(n) = O(2+J('')), a substantial improvement on 22 . ) 

Proof Choose a highest point p in F and let be the vertical line from p to 

(lrtp, 0) =: q. Take the union of horizontal beams through 'y  and call it A 1 . By 

the usual arguments, A 1  is BC(l), and it clearly contains the bottom line of F, 

i.e. the lowest point of every vertical beam of F. Hence every vertical beam of 

F\A 1  is a subset of a vertical beam of F and contains the top point of that beam. 

Evidently F\A 1  may be disconnected and does not share the special form 

of F. However we claim that the connected components of F\A 1  do have this 

form. So we wish to see that if C is a connected component of F\A 1  then C is 

BC(n - 1, 1) and is the union of vertical intervals all of whose lower endpoints 

are at the same height. 

The BC(n —1, 1)-ness of C is clear. To demonstrate its special form, suppose 

otherwise. Then there exist a, b € C with a' 	(ai , a2  —1) and 5' := (ba, 62  —1) in 
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A 1  and a2 b2. We can assume that a1 < bi  and a2 < b2 . Since C is connected 

and F\A 1  is vertically convex, there is an x-monotonic path 7i  from a to b. 

Let z be the last square on 'yi  at height b2  - 1. Between z and b' there must 

be a point h E Fe. There must also be a point w on 'Yi  with w1 = C1, w2 > c2. 

But every point from w down to (wi, 0) should be in F, and thus we have a 

contradiction. (See figure 3.20.) 

Figure 3.20: A more efficient decomposition of F 

Now the connected components of F\A 1  are a BC(n - 1, 1) family, which 

can be split into 2Th_2  or fewer BC(1) families. This together with the claim just 

proven gives rise to the function T(n) in the statement of the lemma, and we are 

done. (Of course, a symmetrical argument would work if we replaced 'lower' by 

'upper' in the statement of the lemma.) S 

In particular, the domains L and U can be decomposed respectively into two 

and five (or fewer) BC(1) domains. If we name these seven domains Al for 

j = 1, . . . , 7 then we have Q = LG=i AI  U J RI where the RI are t he rectangles 

round the members of the BC(1) family of holes under consideration. Repeating 

the whole procedure for the other three BC(1) families of holes to obtain domains 

Al and for i = 2,3, 4, we have that Q = U=1AUURl for each i = 1,2,3,4. 

Hence 

J AInAnAflA)UUR. 
j,k,i,m 	 ij 

Thus Q is the union of 74  BC(1) domains and the RI's. (Note that there may 

be some overlapping of the R 's, but this does not present a problem. The only 

ra.J 
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danger is worsening the bounds, but as we are not seeking best possible bounds, 

this does not concern us.) Taking the intersection with A, we find by Lemmas 

33, 46 and 45 that A is the union of 74  BC(3) domains without holes and 32 

(possibly disconnected) BC(2) domains. 

At this stage, we might wish to apply the BC(2) decomposition to complete 

the work in hand. The only barrier to this is that we are no longer assuming 

HP(4)—which was used in the BC(2) decomposition—but the weaker condition 

HP(S). However we are still able to proceed. Instead of ending up with four 

BC(2) domains without holes and four BC(1) domains, we can use the results of 

the preceding paragraphs to decompose each of the BC(2) domains under con-

sideration into T(2) + T(3) = 7 BC(2) domains without holes and four BC(1) 

domains. (Note that the holes in each BC(2) domain form a BC(1) family, since 

each has horizontal and vertical overlap with one of the Rj  mentioned above.) 

Doing the arithmetic, we find that each holeless BC(2) domain here can be de-

composed into 2.4.7 + 4 BC(1) domains. 

Referring back to Lemma 30 and the remarks at the start of this section, we 

have: 

Theorem 52. Let A c V be a BC(3) domain on which HP(S) holds. Then A 

can be decomposed into +2 17  .7  + 29  or fewer BC(1) domains. 

BC(N) domains 

Now let A be a general BC(N) domain in V on which HP(N + 2) holds, with 

N > 3. If A has no holes, we invoke the Algorithm of Section 3.2 to decompose 

it into a BC (N, N.(2" - 1)) family of BC(1, N) domains and take things from 

there. So suppose that A does have holes. Enumerate them as H and let Rj  = 

>< ir,H as ever. The decomposition continues much along the lines of the 

previous section. 

Firstly we divide the holes, which form a BC(N —1) family, into 224  BC(1) 

families, using Lemma 30. Then isolate one of these BC(1) families (call it 1-1) 

and define the subsets L and U of Q exactly as in the last section: see Figure 3.18 

and the preceeding table of definitions. Our aim is to show that L is BC(r - 1, 1) 
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and U is BC(r, 1), where r =+ 1.3 Again we consider only the slightly more 

complicated case of U. If it were not BC(r, 1), we would have Pi,• ,Pr+1 € U 

and qi, ... , q E Q\U all at some height yo  and such that 

7xPi < 7tJl < 7 xP2 < ... < 7tqr  <xPr+1. 

Define qo = (minirQ - 1, yo), qr+i = (n1ax7rQ + 1, yo), and 

Qo = [min7rQ,7rpi -1] x [yo , max 7rQ] 

Pi = 	+ 1, 7x qj —1 x [minQ,yofl\{p} 	i = 1,... ,r+ 1 

Qi = ([,pi + 1, xPi+1 11 x [yo,  max  Q])\{q}  

Qr+i = [7rp4 + 1, Min KQI x [y o ,maxirQ]. 

We also define P2' = P\r;'(yc) for i = 1,... ,r + 1; and Q = Q\rç(yo) for 

i = 0, . . . r, with the stipulation that P0 = 	= 0. 

We now introduce a generalised version of Lemma 49: 

Lemma 53. 

Suppose i r (i > 2) and there is a rectangle I? meeting Pi  n Qj  but not qi. 

Then there is some R' c Q (P'). 

Suppose that i ( r - 1 (i 1) and there is a rectangle R.meeting Qj  fl Pi 

but not qi. Then there is some R' c P1+1 (Q). 

Suppose there is a rectangle R containing qi where i r - 1 (i > 2). Then 

there is some R' c P 1  (F). 

Suppose i ( r (i 1) and there is a rectangle R ç Q and that no l? meets 

Qj  n Pi (Q j  fl P3 or q. Then there is a rectangle R' c P1±1 (.F). 

Suppose that i r (i 2) and there is a rectangle R ç.r and that no 14 

meets P1  fl Q (N fl  Q_i) or q1 ('qj_i). Then there is a rectangle R' c Q 

In' 
('i-1 

'The reason for r taking this form is that each new component appearing in a horizontal 

section of U or L forces two more holes to alternate about that section. 
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It is proved in exactly the same way as Lemma 49. As before, it has as a 

consequence: 

Corollary 54. If U is not BC(r, 1) then there are at least 2r holes alternating 

about a horizontal line. 

But 2r = N + 2 when N is even and N + 3 when N is odd, and we know that 

we may only have at most N + 1 holes alternating about a line. Thus we have a 

contradiction and U must be BC(r, 1). Similarly L is BC(r, 1). 

From the previous section, we know that U and L can be decomposed re-

spectively into T(r) and T(r - 1) or fewer BC(1) domains. Thus we have a 

decomposition of Q into T(r) + T(r - 1) or fewer BC(1) domains along with the 

R3  associated to the holes in N. Repeating the process for each of the remain-

ing BC(l) hole-families, we obtain similar decompositions. Taking intersections, 

we find that Q is the union of (T(r) + T(r - 1)) 
22N-4 

 or fewer BC(1) domains 

together with the R. Then intersecting with A and applying Lemma 45 gives 

that A is the union of this same number of BC(N) domains without holes and 

U3  An R3 . The former we dealt with at the beginning of this section on page 69. 

The latter we can deal with using Lemma 46 and the same kind of considerations 

as in the BC(3) case. Lemma 46 will leave us with 4N - 4 or fewer BC(N - 1) 

domains for each of the A n R. Although we cannot use a straightforward in-

duction, we can decompose these into a bounded number of BC(1) domains and 

BC(N - 2) domains using the HP(N + 2) condition, the results of the BC(3) 

section and Lemma 46 once again. We repeat this procedure until we are left 

with nothing but BC(1) domains, at each stage bearing in mind that we can only 

assume HP(N + 2) and none of the stronger HP conditions. 

Summarising, we have: 

Theorem 55. Let A c Z 2  be a BC(N) domain (N ? 3) on which the property 

HP(N+2) holds. Then A can be decomposed into B(N) or fewer BC(1) domains, 

where B is a function from N to itself. 

Translating this into the quasi-discrete setting, we have 
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Corollary 56. Let Q = T(A) be a quasi-discrete domain in RI. Suppose that A 

has the BC(N) and HP(N + 2) properties. Then we can decompose Q into B(N) 

or fewer BC(1) domains and a set of measure zero. 

Proof. By Theorem 55, we can decompose A into B(N) or fewer BC(1) domains, 

which we label A 1 ,.. . , Ajç. We have 

T(A)=T(HA) =zu H r(A)  

where Z is a set of measure zero consisting purely of points that are on the 

boundaries of squares. Since I preserves the BC(1) property (by Lemma 25), 

the T(A) are all BC(1) domains. 	 [1 

The final task for this section is to show how one can compute the bound 

function B N -f N. Firstly we need to define some more elementary functions 

from which B is built. We recall the function T that occurred in Lemma 51 

defined by T(1) = 1 and T(n + 1) = 1 + 2 2 T(n - 1) for n ) 1. Now given 

N e N, we define for N > 3, 

TN = [N12] + 1, 

SN = T(rN)+T(rN—l), and 

UN 
= 2 (N+1)(2N+1)_6 ,  

and for N 2, 

Cpr = 22N-2 and 

DN = 4N-4. 

Put 82 = 4 and ('2 = 2 8 .  Note that 5N  is the bound on the number of BC(1) 

domains from the decomposition of the regions L and U defined on page 64; 

UN is the bound on the number of BC(1) domains from the decomposition of 

BC(N) domains with no holes; CN is the bound on the number of BC(1) families 

produced from a BC(N) family by Corollary 30; and DN is the bound on the 

number of BC(N - 1) domains coming from Lemma 46. By inspecting how the 
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numbers behave in the arguments of this chapter, we find that 

B(N) = SN1UNCN + ClDN(S2UN_1CN_1+ 

+ C_2DN_l (S 3 UN_2CN_2 + + CD3(SNU2C2 + 

3.5 Issues arising 

The results of this chapter raise questions in computational complexity. As we 

have seen, their proofs rely on various techniques of estimation and there are key 

algorithmic procedures underlying them all. None of the processes involved is 

claimed or conjectured to be efficient, and it would be an interesting undertaking 

to investigate if and how the bounds they give might be improved. 

Firstly, let us consider Theorem 29 and Corollary 30, the first results given in 

this chapter. Recall that the Corollary tells us that we can arrange a BC(m, n) 

family of sets into 2m+2  or fewer BC(1) families. Certainly this bound is at-

tained when in = it = 2, but we know of no BC(3, 2) family that requires a full 

eight BC(1) families. Perhaps the bound here could be improved to something 

like 0 (mm) or even 0 (in + it), but we suspect that much subtler techniques would 

be required to establish such a bound. The main idea of the proof of Theorem 29 

is at least very simple in concept. 

Next, take the Algorithm in Section 3.2 given initially for the decomposition 

of BC(m, 1) domains and then extended at the outset of Section 3.4 to cover 

any BC(n) domains without holes. The bound it gives on the number of BC(1) 

domains produced is 20(m2' If this could be improved upon, then given the 

centrality of this process, it would give improved bounds for all but the most 

basic of our decompositions. Of course, the Algorithm makes use of Corollary 30, 

so an improvement of the latter would help matters here for free. 

Finally, consider Lemma 51, which was used to decompose the area away 

from the holes in a general BC(N) domain. It gave us an improved bound for a 

special kind of BC(m, 1) domain, but even the process used to establish this bound 

seemed rather inefficient, and one feels that further improvements are possible. 

However, because of the rapid growth of the bound given by the Algorithm of 
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Section 3.2, it would seem to be the most obvious starting point for any efforts 

to streamline our methods and find better bounds. 
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Chapter 4 

Applications and Discussion 

Two possible uses for our results present themselves. One is in the original, 

continuous setting which motivated our work, and the other is in an entirely 

discrete setting. We devote a section of this chapter to each of them. The main 

results are Theorem 58 below and Theorem 63 on page 82. The reader may wish 

to refer back to Theorem 55 on page 71 for a reminder of the result we wish to 

apply. A review of Section 1.3 might also be useful for Section 4.1. 

4.1 An application in the continuous setting 

As mentioned above, the first application is in the context from which our results 

arose, namely of sublevel set operators on real-valued functions on 12.  It extends 

what we know in a special case of the following theorem, taken from [1 

Theorem 57. Let a E N2  be a multi-index and suppose that Dan  > 1 on [0, 1]2 . 

Suppose further that the intersection of any vertical line with any sublevel set of 

v. has at most N connected components. Then there is a C depending on a and 

N such that 

f 1 (x i ) f2 (x2) dx1 dx2 	Cs'/1Q1 HPIP114211 P2 1 

where I = 1-  a 

The proof of this result can be found in [3], and since it uses completely 

different methods from those discussed in this document, we omit it here. Suffice 
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it to say that the above theorem contains the n = 2 case of Theorem 14 and was 

proved before the latter. 

The content of the result we are about to give is that in the scenario of 

Theorem 57, we can allow Q to be any HV-convex set provided that u is a type 

1 function with type 1 constant N and 021  > 0 on irQ x ir,Q. Without further axav  

ado, we have 

Theorem 58. Let Q c Qo be an H V-convex domain, where Qo  is some closed, 

axis-parallel rectangle containing ft Let u : JR2  -* JR be a smooth type 1 function 

with type 1 constant N and a a multi-index such that Da u  > 1 on Q and 8 
2 
 u > U axay  

on Qo.  Then there is a constant C depending only on N and a such that 

f f1 (x i ) f2 (x 2 ) dx 1  dx2 (Cs" 

flfl{u[s} 

where the pi  are as in Theorem 57 above. 

Proof. Let E. be the sublevel set of u at level s, i.e. E. = {x E Qo: u(x) 	s}. 

The idea is that we approximate E. by some rT(A) = {rx x E T(A)}, where 

r > U is a 'zoom factor' and A c Z2  obeys appropriate BC and HP conditions, 

apply Theorem 55 from Chapter 3, translate the resulting BC(l) domains in V 

into suitable domains in JR2 , and finally apply the methods of [11] as discussed in 

Section 1.3. 

Firstly we note that the proof of Theorem 29 and Corollary 30 can be carried 

over to JR2 . (In fact, these results were first proved in R   before noticing that they 

worked equally well in Z 2 !). By the Corollary and Lemma 16 we may assume that 

E Is connected. 

By the uniform continuity of u on Q,  there is a 6 > U such that whenever 

ix - x < 6, we have u(x) - u(x')l < s12. Let F be the set obtained from E. 

by filling in any holes that do not contain a circle of radius 4. More precisely, 

denote the holes of E5  not containing a circle of radius 6 by Hi I  i € N, and put 

B := E U U€N  H. So any point inside one of the Hi  is within 6 of a point of 

E, and hence J ul < 3s12 on B. (We ignore the dependence of B on s, since it is 
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irrelevant in the rest of the argument.) Note that E is connected because E. is 

connected. 

We know that there is some s > 0 such that 	? s on Qo.  By uniformax0y 

continuity once more, we choose r < 6/2v2 that whenever Ix - z'I < 2r, 

we have I u(x) - u(z') I < 82 5/8 .  Now we pick our approximating set A c Z 2  by 

putting A = {z E rT(z) fl F $ ø}. We note that J ul < 2s on rT(A), and 

that E. c E c rT(A). 

We claim that A satisfies BC(2N - 1) and HP(N + 2). We tackle the latter 

property first. Suppose for a contradiction that we had N + 2 holes H1 ,. . . , HJJ2 

violating the condition. Without loss of generality, suppose that they alternate 

around a horizontal line L 0  and that H1  is below the line. 

By definition of F, all the holes of 7(A) contain a circle of radius 812r. Choose 

a height that is at least 8/2r down H1  and consider the points s 1  and S2 of Z2  

immediately to the left and right of the horizontal cross-section of H1  at that 

height. 

Both of the sets Si:= rT(s) must meet the boundary of F, on which J ul = 

let qj  be points where this happens. Since the qj can be joined by a path lying 

entirely inside E except for the endpoints, we see that u(qi) = u(q2 ). Let P'  be 

the point midway down the right-hand edge of rY(s i ) and P2  the point midway 

down the left-hand edge of vT(5 2 ), and let L 1  be the horizontal line joining p 

and P2  (See Figure 4. 1.) 

Now for i = 1, 2, ft j  - qj I < 2r and so 	- u(q) I < 62 5/8 .  Hence by the 

Mean Value Theorem, there must be a point c on L 1  such that 

OiL 	U(P2) - 

Ox 	 P2 Pi 
< u(p) - u(q2) + n(q 1 ) - u(p)j 

P2 Pi 

Therefore, since 	s on Q0  and the distance from c to L 0  is at least 812, there axay  

is a point c 1  on rL0  for which 7rcj = 7rc and (c 1 ) 6e14. We treat each of the ax 

holes H2 ,. . . , HN2 in the same manner to obtain a sequence of points c 1 ,. . . , 
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S 2  

Figure 4.1: Analysing the holes of rT(A) 

on the horizontal line rL0  such that 7(c) < 7(c1+i) for all i, 	(codd) > 0 and 

(ceven) < 0. But this means that 	meets rL0  in at least N + 1 components,OX  

which contradicts the assumption that u is type 1 with type 1 constant N. 

We now show that A is a BC(2N - 1) domain. Note that E is BC(N), by its 

definition and the fact that E is BC(N). Again, we suppose for a contradiction 

that A isn't BC(2N - 1), and that there are, without loss of generality, precisely 

2N horizontal beams at the height Vu,  named  CI, -, C2N say. (More than 2N 

would make things easier, as we shall shortly see.) For each i, let D = rT(C1 ) 

and choose a point x i  E En D. By connectedness of E, each x i  must be joined 

by a path in E to the top or the bottom edge of rT(C). 

We claim that exactly N of the xi  can only be joined by such a path to the 

top edge of Di  and exactly N of the x i  can only be joined by such a path to the 

bottom edge of D. For if this were not the case, there would be (at least) N + 1 

of the x•1 joined to the top of D, or N + 1 of the x i  joined to the bottom of D. 

Suppose without loss of generality that the former holds. Choose a height that 

lies between the height of the top edges of the Di  and the height of the highest x, 

and consider the horizontal cross section of E at that height. Since by definition 

E does not meet any of the gaps between the D, we can find a sequence of points 

Yi, Y2, . . . , Y2N+1 such that for all i, lrx yj < xYi+1, Y2i+1 e E and Y2i  E Ec. But 

this contradicts the fact that E is BC(N). 
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This entails that there can be no path between any of the former category of 

x (those joined only to the top edge of D) and any of the latter category of x 

(those joined only to the bottom edge of Di), which contradicts the connectedness 

of E. For any such path would necessarily meet both the bottom and the top of 

some fixed D. See Figure 4.2. 

xl 

DI 
	

D2N 

Figure 4.2: Showing that A is a BC(2N - 1) domain 

Having established that A satisfies HP(N+2) and BC(2N-1), we can apply 

Theorem 55 of Chapter 3 to decompose it into B(2N-1) or fewer BC(1) domains. 
K 

Say A = LI A i  where K ( B(2N - 1). (Evidently with a bit of further analysis 
i=1 

one could come up with a better bound, since A satisfies HP(N + 2), which is 

stronger than the HP(2N + 1) in the hypotheses of the Theorem.) Then we have 

rT(A)fl Q = ZU HrT (A i) flQ  

for some set Z of zero measure. By Lemmas 25 and 33, each rT(A) fl Q is 

a BC(1) domain, and hence can be decomposed into three or fewer orthogonal 

families of curved trapezoids. Now the methods of [11]  can be invoked to obtain 

the desired result. By Lemma 16, we may as well be dealing with 3K curved 

trapezoids 12. On each of the Q, we have Jul < 2s and Du ? 1. Therefore 

./ 
f1(x1)f2(x2)dxidx2 	f f1(x1)f2(z2)dxidx2 

Jul 	 flflrT(A) 

f1 (x i )f2 (x2 )dx 1 dz2 
i=1 

( 

	

because the result holds on curved trapezoids, as shown in Section 1.3. 	E 

There is a need to be cautious here, since the arguments of [lfl described in 

Section 1.3 are only stated for domains inside the unit square Q. The way to 

X2N 
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get around this is to analyse those arguments and observe that this restriction is 

unnecessary. 

The principal limitation of this whole method is that it is very much anchored 

to the case of 	> 0. At present we do not know of any way to extend it axay  
to cover the case of having single-signed Du for other multi-indices /3. That 

said, the broad strategy of decomposing domains in V rather than R 2  certainly 

avoids a number of difficulties and the arguments involved are fairly elementary, 

as seen in Chapter 3. There are still technicalities to be faced when seeking 

suitable quasi-discrete approximations to general domains in R 2  and in ensuring 

that relevant properties carry over. However it may be that the techniques of 

Chapter 3 will find uses separate from their original purpose of analysing sublevel 

set integral operators. 

4.2 An application in the discrete setting 

The second use for our results is to apply them in a purely discrete context. This 

would seem more elegant, but perhaps the potential knock-on applications are 

less obvious at the moment. 

Recall that in motivating the HP(N) conditions (see the subsection on page 

51) we looked at the number of components of certain cross-sections of sublevel 

sets of the first partials of our phase function u. Firstly we need analogues of 

partial derivatives. 

Definition 59. Let f be a function from V to R. Define for all (a, b) e V 

Dxf( a,  b) = f(a + 1, b) - f(a, b) 

Df(a, b) = f(a, b + 1) - f(a, b) 

DTYf( a, b)=f(a +1,b+1)+f(a,b)_f( a +l,b)_f(ob+1). 

Also, for f Z -* R and all a E Z define 

Df(a) = f(a + 1) - f(a). 
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Obviously in the discrete setting we have no intermediate value theorem. Note 

however that in the continuous case, the number of components of the cross-

section {x € R : f(x, ye)} < s} is equal to 

# components {x E R: f(x, ye) ) s} 

+ # components {x e a: f(x, ye) ( —s} + E, 

where e E J-1,0, 11 and depends on f, s and y. Therefore we introduce 

Definition 60. For a function f : Z2 -# 111, define 

Cjf, s,  ye) := # components {x E Z : f(x, ye)  s} 

+ # components {x E Z: f(x,yo) ( 

C(f,s,xe) := # components {y E 	f(xe,y) ) s} 

+ # components {y E Z: f(xe, y) 

There now follows a Lemma that performs the role that Rolle's Theorem did 

in the continuous setting. 

Lemma 61. Let f Z -* a and a < b - 1 be such that f(a)I, f(b)I < s 

and I f(c) s for all c E (a, b). Then there exist cl and C in [a, b) such that 

Df(cj > 0> Df(c). 

The proof is trivial. As a consequence we have 

Proposition 62. Let f Z2  -* JR be such that DXYf > 0 on Z2  and let A = {z E 

< s} be a sublevel set off. Suppose that there are holes H1,. . . , 

in A and Ye  C Z such that for all i, 7r(H) < ir(H+l), 7r(H2+i) 	yo  and 

> Ye Then there exist x 1  < 	< x, such that Dxf(x 2+i ,Y O ) > 0 and 

Dxf(x2, Ye) < 0 for all i. Hence there is an s' such that C(Dt f, s', Ye) > m. 

Proof. For each i, choose yj  c r(H) and apply Lemma 61 to f 7 y  1 (y i ). In this 

way we find zi  c Hi  such that for all i, Dxf(z 2+i) > 0 and Dxf( z21 ) < 0. Now 

the assumption that DXYf > 0 gives the existence of the x as required. 	El 

It is now easy to prove 
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Theorem 63. Let A c V be bounded and f A -* It Suppose that Thf > 0 

on A and that for all x 0 , yo e Z, all s E R and ally E {f, Dtf, Df}, 

C(g,s,yo) 1 < N 
C(g,s,xo) J 

Then any sublevel set off can be decomposed into CN or fewer BC (1) domains, 

where CN is a constant depending only on N. 

Proof. Let 5 be a sublevel set of f. The conditions imply that S is BC(N + 1). 

By the Proposition, S must have property HP(N + 3) (in fact HP(N + 1)), and 

hence we can use Theorem 55 in Chapter 3 to decompose it as required. 	El 

4.3 Discussion 

We round off this chapter with a retrospective look at the thesis as a whole, and 

give some ideas for future lines of enquiry. The central question is whether our hole 

conditions HP(m, n) are necessary to achieve decompositions of (approximations 

of) sublevel sets of type 1 functions. 

Thinking back to the decompositions of Phong, Stein and Sturm ([11j), one 

notices that their decompositions, which apply to all algebraic domains, rely on 

nothing other than the polynomial nature of ii. In particular, the mechanics 

of the decomposition do not require any derivative conditions. In contrast, our 

HP(m, n) conditions are motivated by the condition a > 0. 

On the other hand, we have strong suspicions that examples can be produced 

showing that restrictions on the layout of holes are necessary for the type of 

decomposition we require, although we have not been able to complete all the 

details of such an example. 

So are there any other conditions that could be imposed or deduced that 

would give us suitable control of hole arrangements? A condition fitting the bill 

would be that the number of holes in type 1 (or M) functions u is bounded by a 

constant CN depending on N = t1  (it). We show this would allow a decomposition 

considerably easier than that of the BC(N) Domains subsection of Chapter 3 on 

page 69. The arguments closely mimic those found in the final four paragraphs 

of the subsection on BC(3, 3) domains, which begins on page 62. - 
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Leaving aside the process of transferring between continuous and discrete set-

tings, suppose that A c V be a BC(N) domain that has at most Cpy holes. Let 

H1  be one of the holes and put R 1  = 7rHi x 7FHj  in the familiar way. Then 

Q\R 1  (where Q = ir,A x rA) can be divided into two .BC(1) domains as shown 

in Figure 4.3. 

HD 
Figure 4.3: An easier decomposition when there are bounds on hole numbers 

Call these two BC(1) domains Al and A and repeat this procedure for all of 

the other holes to get A, A,.. . , A C  . Then we have 

Q= H (An4n...nAN)u,  Z CN il 

where for .j = 1,2, . . . CN each ij  is in 11, 21. Thus Q is the union of 2 	or fewer 

BC(1) domains together with the R, by Lemma 33. Now taking intersections 

with A and applying Lemmas 33 and 45, we end up with 2CN  or fewer BC(N) 

domains without holes. The decomposition can now continue using the methods 

of the subsection on BC(N) domains on page 69. The difference is that here we 

do not need to analyse and decompose the domains L and U that were introduced 

there, since in their place we have the much simpler BC(1) domains. 

Thus a bound of the type above on the number of holes would be very desir-

able, but unfortunately as yet we can see no grounds either for or against imposing 

such a condition. 

We sum up with a list of a few questions that we believe would merit further 

investigation: 
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. Can the HV-convex domain fl in Theorem 58 (page 76) be relaxed to a 

BC(N) domain for any N E N? (Perhaps the restriction that 9 have no 

holes would be needed.) 

• In the setting of Theorem 58, if one assumes that Du > 0 on 7Q x irQ 

for some /3 	(1, 1) rather than 	> 0, can any useful extensions of or azay  

alternatives to the HP(m, n) conditions be motivated or deduced? 

Alternatively, is there some kind of inductive approach to treating the case 

of single-signed Dn for 0 (1, 1) using the case 	> 0 as the base case OXOY  

for the induction? 

• Is there any reason to believe or to deny that the number of holes in a 

sublevel set of a type 1 (or type M) function can be bounded by a constant 

depending only on 

Could such conditions controlling the holes be dropped altogether, or can 

one (as we suspect) produce examples showing a need for them? 

• Can decompositional methods be used in dimensions higher than 2, or would 

inductive methods be more appropriate? 
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Appendix A 

Hole Diagrams for Domains 
Satisfying the HP(5,4) Condition 

Here we list all the possible hole diagrams (up to symmetry) for bounded domains 

in Z2  which obey the HP(5, 4) condition, an issue which was deferred from Section 

3.4. We also give an indication of how to establish that these are indeed all 

the possible diagrams. A look at Section 3.4 and, more importantly, Section 

3.3, might be helpful to the reader before proceeding with the present material. 

Familiarity with the concepts and notation there is assumed. 

The diagrams, of which there are 27 in all, appear on pages 88 and 89. To es-

tablish that they constitute all the possible diagrams, one uses the same argument 

as in the HP(4) case. Taking the diagrams in turn, one shows that adding an-

other hole to any domain having that hole diagram has one of two consequences. 

Either it produces an illegal arrangement (i.e. one violating the HP(5, 4) condi-

tion), or it yields a domain whose diagram is on the list up to symmetry, possibly 

the same diagram as we started with. Since the hole diagram for any domain can 

be built up by introducing the holes one at a time, it follows that we have indeed 

listed all the possible hole diagrams for the situation in hand. 

A representative example of the process is depicted in Figure Al. We take 

the twelfth diagram on the list and record what happens if a new hole Ht is 

introduced in the different possible areas. As in the HP(4) case, we give names 

to the holes at the ends of maximal strings. From left to right, we label them 

H1  . . . H5 , as shown in Figure Al. In the table of Figure A.2, the second and 
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fourth columns show either an illegal arrangement given rise to or the numbers 

of the new diagrams that can be produced. 

The sharp-eyed reader will notice that two zones are missing from the left 

column of the table, namely (3,2) and (5, 5). We can analyse these as in the 

HP(4) case (see Figure 3.14 on page 56) and conclude that H* is either absorbed 

into a maximal string, leaving us with the same diagram, or gives an illegal 

arrangement. Finally, note that the zone co-ordinates of the table work as for a 

matrix, i.e. row first then column. 

1 	2 	3 	4 	5 	6 

-S 
H 3  

2 

3 

4 

5 	
H 4/ 

6 

Figure A. 1: A closer look at diagram 12 

Of course, there are 26 other cases to check. In view of the fact that the 

material here does not constitute an important part of the thesis, they are omitted 

and left to the diligent (or masochistic) reader to verify. The most that the 

methods here can give is a mild improvement of the bounds in the decomposition 

of domains obeying the HP(5, 4) condition compared to the more general method 

described in Section 3.4. 

Before giving the list of hole diagrams, we remark on an interesting phe-

nomenon, which also appeared when enumerating the hole diagrams for sets with 

the HP(4) condition. To wit, in both cases there is a 'maximum' diagram, mean- 
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Zone Consequence Zone Consequence 
1,1 H* , H3, HI,  H4  3,1 H*,  HI,  H2, H3 ,H4  

1,2 4,1 
1,3 5,1 
1,4 19 6,1 
2,3 11 3,3 H3, HI,  H* , H2  

1,5 H* , H2, H5 ,H4  4,2 H3,H1,H2,H* 

2,5 5,2 
3,5 6,2 
1,6 4,4 13 
2,6 4,5 22, 23 
3,6 5,3 H2, H5, H* , H4  

2,1 12 5,4 11 

4,3 5,6 15,24 
4,6 6,3 H2, H*,  H3 , H4 , H5  
6,4 6,5 
2,2 H1 , H*,  H2 , H3 , H4  6,6 
2,4 H3 , H*,  H2 , H4  
3,4 

Figure A.2: What happens if a hole is added to Diagram 12 

ing a diagram from which all the others can be achieved by removing holes. We 

know of no reason a priori for this to be the case. Certainly the hole diagrams 

can be partially ordered by saying that D 1  D2 if D2 can be obtained from 

D 1  by adding holes. However, a quick inspection confirms that this ordering is 

not total. Thus while it would be reasonable to expect maximal diagrams, there 

would be no reason to expect a maximum one without further insights. 

The diagrams appear on the next two pages. 
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1 2 3 

4 

/ 

5 6 

7 8 	 • 

/ 

9 

10 11 12 

13 14 	• 15 

Figure A.3: The first 15 diagrams 
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16 17 •  18 

19 20 21 

22 23 24 

• 
•\ •\ / 

25 26 27 

Figure A4: The remaining 12 diagrams 

89 



Appendix B 

More on the Rectangle Problem 

As stated in Section 1.2, it is possible to tighten up the methods used in our 

estimate there of the constant c0 in the Rectangle Problem. This realisation 

came out of a reduction of the scenario from a problem in JR2  to one in R. We 

describe this reformulation before giving the improved bound. As in Appendix 

A, familiarity with the notation and ideas of the relevant section is assumed. 

Let E1 denote the union of K open strips A 1 ,. . . , AK as in the previous 

discussion of the problem, but with the distances between them yet to be deter-

mined. Define FK as the interior of the intersection of P21< with the x-axis, and 

view Fj< as a subset of R. Then FK is the union of K disjoint open intervals, 

I = (a, b) say. 

Observe that there is an axis-parallel rectangle R with corners in E1< if and 

only if there exist a 0 and 0 < y ( x such that 

{a,a+x,a+y,a+x+y} C FK. 	 (B.1) 

The values x and y correspond to the side lengths of R. (In particular, x = y is 

allowed and represents a square.) One could describe the set B.l as a smallest 

non-trivial two-dimensional arithmetic multiprogression. 

We wish to find a good way of adding strips to [0,1]2  while avoiding rectangles 

with corners in E1< and area greater than (b 1  - aj)2 /4. In fact we can work at 

any scale we choose and then use the scaling and limiting arguments of the earlier 

discussion. The problem translates into finding a sequence of intervals in JR while 

avoiding sets of the form B.1. The first technique which comes to mind is that of 
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adopting a simple 'greedy' strategy of placing each interval I as close as possible 

to the previous one, thereby maximising its width. 

For concreteness, let us define 11  = (0, 10000). We shall round off all our 

numbers to the nearest integer, since this loses little and simplifies things. Then 

we must avoid configurations like B.1 with xy > 50002. It is easily seen that we 

must have 12 = (20000, 21250) and 13  = (42500,43088). (Thus far these are the 

same proportions as earlier.) 

To analyse the situation further, we introduce for in < it in N 

= (a - bm , b - am ), 

and 1m,in = (0, bra  - am ). These can be thought of as the sets of possible side 

lengths of rectangles where one end is in A m  and the other in A. So thus far we 

have: 

11,1 = (0, 10000) 	J1 ,2 = (10000, 21250) 	11,3 = (32500, 43088) 

12,2 = (0, 1250) 	12,3 = (21250,23088) 

,J3,3 = (0, 588). 

We now claim that, supposing we have introduced K intervals I, sets of the 

form B.1 with xy > 50002  are avoided if and only if 11,1 together with the Iran 

for in c it are pairwise disjoint and .1j J < 50002  /as . (The role of the second 

condition is clear: it corresponds to the long, thin rectangles with left vertices in 

A 1  and right vertices in A s .) For suppose that there were some z E fl 

where in < in' . There are two cases to investigate: m '  it and in' c it. (See 

Figure 13.1.) In both cases it is easy to see that a set of the form B.1 is given 

rise to. In the first case we take x = z and in the second y = z. It is also easily 

seen that J, > 10000 for in < it, and so we have xy > 10000 2 . The converse is 

similar. 

The 'greedy' strategy entails that we introduce the I for j > 4 so that at 

each stage the left endpoint of 1j1,j  is equal to the right endpoint of 1j2j1 

In other words, aj  = 2b_ 1  - a_2. This works up to j = 11, but if we introduce 

112 according to this rule then we run out of luck because 11,7 and '7,12  meet. 
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I fl 	 In 	 IM , 	 In ,  

a 	a+y 	 a+x 	a+x+y 

Im 	 'rn 	 In 	 In ' 

a 	 a+y 	a+x 	 a+x+y 

Figure B.i: Interpreting the Inn 

The situation is rather intricate: each new Ij  adds a further j of the Jm,m and it 

becomes increasingly difficult to ensure that none of them overlap. 

The most obvious way to seek a valid 112  is to replace a12 with a12 + 07  ai ) - 

(4 12 - 57) = 257  - a1 , then redefine b12 = 50002 /a12 and try again. In general, 

suppose we had found Ii,. . ,'Nl with disjoint Jm,,.  for 1 in < n ( N - 1. 

Our initial guess for aN is 25N1 - aN_2 and for 5N  is 50002 /aN. if we find that 

Jm,n and Jp,N  overlap (where 1 ( m,p  ( N - 1 and in < it), we replace aN by 

- am  + b, redefine 5N  as 5000 2 /aN and see if this works. If not, we redefine IN 

in a similar way and keep trying until we find one that works. At the very worst, 

we could end up with aJ,r = 25N-1, and so the process must end. Continuing with 

the example at hand, we arrive at 112 = (290145, 290231). 

This process is perfectly suited to being carried out by a computer. In par-

ticular, calculating the first 50 of the Ij  when Ii = (0, 10000) and with integer 

rounding shows that the constant c0 is at most about 5/42. As stated, the num-

ber of computations is growing quite quickly from one stage to the next, while 

the gains (i.e. reduction in the upper bound for co) are diminishing, and it is 

unclear how much use such numerical methods could be in making progress on 

the problem. Further insight into the situation might well allow more significant 

gains than sheer number-crunching. 

Out of interest, we list 14 , . . . , Ii in the present model, leaving the reader to 
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verify that the corresponding fm,  are indeed disjoint for in < n. 

(66176, 66553) 	(90606,90881) 	(115586, 115802) (140998, 141175) 

(166764, 166913) (192828, 192957) (219150, 219264) (245700, 245801). 
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