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Abstract

Modern cosmology has reached an important juncture, athwthie ability to make measurements of un-
precedented accuracy has led to conclusions that are arfamal challenge to natural science. The
discovery that, in our current best model, the dynamics efuhiverse are completely dominated by un-
seen dark matter and dark energy can do little but complatay the shape of physics research in the 21st
Century. Unfortunately, much of our insight into these plraena must come from observations of visible
matter alone; this raises serious problems, as the tradidgr& matter by visible matter is as yet poorly
understood.

Gravitational lensing offers strong prospects for prokimg interwoven history of dark and visible mat-
ter, as mass in any form may be detected where it exists @wutriag baryons. In this Thesis | describe
advances made in the field of weak gravitational lensing clvlgionstrains the properties of the matter
distribution on cosmological scales using a statisticallysis of the coherent gravitational distortions of
distant galaxy images. | summarize the development of taigonal flexion, a higher order extension to
traditional weak lensing, and describe my work done to hitiregstudy of flexion to a stage where it may be
employed to make accurate cosmological measurementswitshw flexion is sensitive to matter structure
on smaller physical scales than existing lensing techisiqnel, therefore, promises to shed new light upon
key untested predictions of cosmological models if it cameasured to sufficient accuracy. | discuss the
success of my efforts in this direction, and describe theeisto be encountered in the careful analysis of
this subtle gravitational signal.

This research has involved advances in many areas: thdatiadcuof theoretical flexion predictions, the
refinement of image analysis methods for accurate galaxyesbstimation, and the practical application
of these new flexion techniques to extragalactic imaging.d@he culmination of these efforts is a new
maximum likelihood analysis of the galaxy-galaxy lensiignal in theHubble Space Telesco@alaxy
Evolution from Morphology and SEDs (GEMS) Survey, incogitorg improvements and modifications
necessary for the combination of flexion with traditionalakéensing measurements. The results of this
work, and particularly the extent to which measurementseaidh provide extra cosmological insight, are
discussed in detail.

The conclusion is a summary of all that has been learned dbeuise of flexion as an accurate probe
of cosmology, and a discussion of its prospects for ansgyesome of the many questions that remain
about dark matter. Within the next few year wide-area sutgiscopes will begin imaging huge volumes
of deep space, with the measurement of the gravitationalrigrsignal being given high priority in the
analysis of these data. Within this context, the primaryingof this Thesis is the extent to which the
application of flexion measurement techniques will helpdshew light upon the unseen, and currently
poorly understood, components of the Universe.
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CHAPTER 1

INTRODUCTION

The last ten years have seen dramatic developments in oarstadding of the Universe, leaving a picture
that few would have predicted within even the recent passeldn dark energy and dark matter, which are
necessary in order to match observations of both the aftergf early expansion and latter-day structure
in the Universe, present all of physics with an unforeseeailehge. Are we really seeing the effects of
exotic new forms of matter and energy? If so, what impactthifi have on our understanding of physics?

In this Chapter, | make a brief summary of the cosmologicatlehdhat describes the expansion of the
Universe from the first moments after the Big Bang to the preday, a model in which dark matter
and dark energy play key roles. The formation of large sdaleture through gravitational collapse is also
discussed, before an introductiorgi@vitational lensingan important technique for observing dark matter
and inferring the properties of dark energy. Finally, | evithe theory behindieak gravitational flexion

a recent extension to the formalism of weak lensing. In trag Wintroduce the background necessary for
the central topics of this Thesis: the application of flexiomccurate cosmological measurements and the
promise such measurements show for illuminating dark mattacture and thereby the dynamics of the
Universe as a whole.



2 CHAPTER 1. INTRODUCTION

1.1 Background cosmology

The concordance cosmological model describes a Univeaastispatially flat, undergoing accelerating
expansion due to the presence of dark energy (DR)orand which forms large scale matter structure
through the collapse of invisible cold dark matter (CDM).€ba the lack of an equallly successful alterna-
tive theory, this model has come to a somewhat lonely prontegdespite its reliance on dark components
that remain to be directly observed. Although we remain athan understanding of these unseen phe-
nomena on a particle level, theCDM model has been extremely successful in reproducing roéiye
features of the cosmic microwave background (CMB) as rextlay the Wilkinson Microwave Anisotropy
Probe (WMAP, see Figure 1.1; Spergel et al. 2007; Bennett 2083; Spergel et al. 2003). It is also the
strongest explanation for a large number of other astrocaobservations, including distance measure-
ments made using Type la supernovae (see, e.g., Riess 80dl. Astier et al. 2006; Conley et al. 2006;
Riess et al. 2004), the shape and amplitude of the large-straicture seen in the distribution of galaxies
(Sanchez et al. 2006; Tegmark et al. 2006; Percival et &78Dand more recently the imprint of baryon
acoustic oscillations in the early Universe (e.g. Peradall. 2007a). These and other measurements sup-
port the picture of a flat Universe dominated by vacuum en@rgg cosmological constant) at a proportion
of around 75 per cent, with CDM making up the majority of thenaéning~ 25 per cent of the energy
density; baryonic matter is thought to make up only 4-5 pat oéthe Universe at most. A short summary
of current best constraints on this cosmological modellpélgiven in Section 1.1.8.

This broad picture of the matter and energy budget, in coatiin with two powerful simplifying assump-
tions about inherent symmetries in cosmic dynamics, allasw® construct a simple but successful model
of cosmological expansion. In Sections 1.1.1 and 1.1.26 bitline of this basic Big Bang cosmology is
presented, described as an expanding solution to the figktiegs of Einstein’s General Relativity. Build-
ing on these topics, Sections 1.1.3 and 1.1.4 explain themof redshift and the definition of distances
within curved, expanding spacetimes, fundamental cosdafthe concordance cosmological picture.

Observed structure, such as stars, galaxies and galaxgmdus believed to form within this model via
gravitational instability and collapse. The seeds of thitability are tiny density perturbations, thought
to exist due to quantum fluctuations during the initial exg)@an of an early Universe that is otherwise
homogeneous. These perturbations then become amplifidtelgction of gravitational attraction, even-
tually reaching the beautiful complexity and diversity trusture we observe today. Wherever the local
self-gravitation of matter is negligible, the dynamics loése fluctuations may be described using linear
perturbation theory, as described in depth by Peacock (1289 briefly in Section 1.1.5. However, this
condition is clearly not met in the regions of the local Uma@where we observe gravitationally collapsed
structures such as stars and galaxies.

Perhaps the critical test of theCDM model will be its ability to accurately predict the disttion of
this observable matter, and its evolution. Some simpleltsedascribing self-gravitational collapse in this
non-linear regime can be solved analytically, as describ&kction 1.1.5. In Section 1.1.6 the spherical
or ‘top hat’ collapse model is outlined, from which the cosagical definition of the bound, collapsed
objects known as haloes is generally drawn. These dark n@ijects are thought to surround galaxies
and galaxy clusters, thus providing one explanation botfttfe discrepancies between galaxy rotation
curves and luminous matter distributions (see, e.g., Neronder et al. 2007), and for the high galaxy
velocity dispersions within galaxy clusters (Zwicky 193937).
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(2007).

However, more realistic modelling of dark matter structisémpossible without employing numerical
calculations, and to this end a vast amount of work has takasepn the field of cosmological N-body
simulation, described briefly in Section 1.1.7. These sateuthe evolution of fluid, pressureless CDM
over cosmological timescales, with the largest and mosinteexample being the Millennium Simulation
carried out by the Virgo Consortium (see Springel et al. 2086 recent epochs these simulations predict
a filamentary dark matter distribution, populated by mangkdaaatter haloes on a wide variety of mass
scales. Importantly, theoretical results for the profiledark matter haloes, summarized in greater detalil
in Section 1.1.9, are yet to be well constrained by actuadoiasions of the physical Universe.

Finally, the concordance model not only makes detailediptieds for the size, shape and distribution of
dark matter haloes, but also for the abundance and spadtabdition of subhaloes within haloes, or halo
substructure. Simulation work supports the picture ofdranical formation of CDM haloes by multiple
mergers and accretion (see White & Rees 1978), and thisddaxge amounts of this remnant substruc-
ture. In Section 1.1.10 these predictions are describedaminarized, and compared against the current
constraints available from observational data. To begth wiowever, we review the founding concepts of
modern cosmology, a Universe governed on the largest doplié®e dynamics of an expanding spacetime.

1.1.1 Friedmann-Lemadtre cosmological models

The standard model of our Universe is a solution of Einssefigld equations within the framework of
General Relativity, underpinned by the following two pdates (see, e.g., Peacock 1999; Rindler 2001):
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1. When averaged over sufficiently large scales, theresaigtiean motion of radiation and matter in
the Universe with respect to which all averaged observatupayties arésotropic— they look the
same in any direction.

2. All fundamental observers’, imagined observers thlibfo this mean motion, experience the same
history of the Universe, i.e. the same averaged observabfeepties, provided they set their clocks
suitably. Such a Universe is called obserfiemogeneous it looks the same from any position.

The second postulate follows on from the first if we invoke tisaknown as the Copernican principle,
that we occupy no special position in the Universe. The apsiomthat on average the Universe is both
isotropic and homogeneous is known as the cosmologicalipté and allows us to define a universal time
coordinate which we call the cosmological timeThis is the time as measured by fundamental observers
and is synchronised by these observers setting their ctockstandard time when the universal uniform
density reaches a given value.

These two postulates also significantly constrain the mégnsorg,,, used in writing the general line
element in relativistic spacetime:
ds? = 2dr? = g, dz"da”. (1.1)

This is an infinitesimal statement of Pythagoras’ Theorenhiamsed to describe the geometry of space-
time. We then have the freedom to write the metric in the foilhg form, with a part corresponding to
cosmic time, and a spatial part:

c2dr? = Adt? — g;;da’da’. (1.2)

A metric tensor of this form, in which the off-diagonal cormamtsg,; vanish, is a choice that is admitted
within an isotropic Universe. Here thep; is the metric tensor of 3-space, a hypersurface within four-
dimensional spacetime.

Isotropy and homogeneity then force conditions upon théiapgart of the metric we have written in
Equation (1.2). It must only be able to expand or contradtagncally by a scaling factor we cadl, which
must be a function of time(t) only, otherwise the expansion would be different at difféqgaces in the
Universe, violating homogeneity. Hence the metric furieplifies to

Adr? = 2dt? — [a(t)]?de? (1.3)
whered/ is the line element of the isotropic, homogeneous 3-space.

Due to homogeneity, we expect that the degree of spatiaktumy must be the same at all places and
this is enough to determine the form of the metric. Isotraggyuires spherical symmetry: spatial surfaces
(not the three-dimensional spatial hypersurface), if astamt distance from an arbitrary point, need to be
two-spheres, i.e., normal spheres. Homogeneity allowslatrary point to be chosen as the origin for our

set of coordinates, and the spherical symmetry allows thgadpart of the metric to be decomposed into

a radial and a transverse part, written in its most geneaaliyissible form as

de? = dr® 4 SE(r)dy? = dr® 4 S (r){d6? + sin® 0 dp*} (1.4)

where the two angleg and ¢ are those of spherical polar coordinates, which uniquedntifly positions
on the unit sphere around the origin.
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It is the postulate of homogeneity which determines the fofrthe radial functionS?(r), as it demands
that spatial curvature is uniform across the Universe. Thisature, labelled, must therefore be either
constant negative, constant positive or zero (flat), ardatows us to set

\/ch sinh(rv/—k) k<0
Sp(r)=4qr k=0. (1.5)
ﬁ sin(rvk) k>0

The overall metric for an isotropic, homogeneous Univerag then be written as
2dr? = Adt? — [a(t))?{dr? + SE(r)(d6?* + sin® 0 d¢?)}, (1.6)

which is known as the Robertson-Walker metric. We note tbatventionally, at the present epoch: o,
we set the scale factor of the Universe todge= a(t = ty) = 1.

1.1.2 Expansion and the Friedmann equation

In order to the derive the equations which describe the esiparand possible contraction of the Universe,
and which relate this action to the matter-energy conterthefUniverse, we need to resort to further
aspects of General Relativity; for good introductions tis gubject in the cosmological context see either
Peacock (1999) or Rindler (2001). The Einstein Tensor isxddfas

1
G" =R" — 29" R, (1.7)

where R* is the Ricci Tensor and is the related curvature scaldk, = g, R*”. Again the reader is
referred to Rindler (2001) for the precise details of thelseas. Einstein’s field equations, relating the
Einstein-Tensor to the energy-momentum terisgt of the matter in the Universe, are written as:
G

G 4 g"" A = _C—4Tl“’. (1.8)
The second term of Equation (1.8), proportional to the ra¢gmsorg*”, is a generalization which Einstein
originally introduced to allow static cosmological sotris of the field equationd, being hence known as
the cosmological constant.

The highly symmetric form of the Robertson-Walker metriersén Equation (1.6), together with the
requirement that the Universe be both homogeneous anajsotrconstrains the form of the energy-
momentum tensor to being that of the perfect fluid. In thefrashe then

T = diag( p(t)c?, P(t), P(t), P(t)), (1.9)

wherep(t) denotes the energy density of the Universe &ft) the pressure (flux density of x-momentum
in the x-direction, etc.). We note that both these quasstgie time varying only, again due to the require-
ment of homogeneity.

Using this energy-momentum tensor for the Universe, thd &glations then simplify to the two indepen-
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dent equations:

.\ 2
a G k2 A
)y 22T, 1.10
( ) G, e (1.10)
and a 4 3P A
a

Equation (1.10) is known in particular as Friedmann’s Emunat We noted above that the metric of the
form given by Equation (1.6) was known as the Robertson-@/atietric; if its scale factou(t) obeys
equations (1.10) and (1.11), it is called the Friedmann-di&m@-Robertson-Walker (FLRW) metric.

We will now define some of the parameters prevalent in thedlitee, and used in this Thesis, to describe
cosmologies which are solutions to equations (1.10) aridL{1.The relative expansion rafé/a) of the
Universe is called thelubble parameter

H(t) = g (1.12)

Its value at the present epoth= ¢ty is theHubble constantH (ty) = H,. Although now a somewhat
dated convention, given the accuracy of modern measursmasgervational uncertainty in the value of
the Hubble constantis commonly expressed in terms dditnensionless Hubble parametér as follows:

Hy =100 hkms 'Mpc ™. (1.13)
The most recent measurements put 0.72 (see, e.g., Spergel et al. 2007).

Thecritical densityof the Universe, that required fér= 0 and hence a flat overall geometry, is given at

timet by

3H2(t)
87G

This therefore leads us to definedansity parameteas the ratio of density (whether it be dark matter,

baryonic-matter, radiation density etc.) to the criticahdity:

perit(t) = (1.14)

Pz 87Gpy
Perit N 3H2 '

Qs

(1.15)
Sincep and H change with time, this defines an epoch-dependent densiyrneder.

A powerful approximate model for the energy content of thé/Erse is to divide it into pressureless matter
and radiation, for which,,, < a=2 andp, o« a~*. These two relations describe the varying energy density
of particles as they become diluted by the expansion; pisatoffer an extra power of ! as their energy

is reduced by redshifting (see Section 1.1.3 below). Thiselthe density to be written as

87Gp
3

= HZ(Qmoa %+ Q. 0a™?) (1.16)

where the subscript Os denote the density parameter vatlne ptesent time. By examining the Friedmann
equation we see thatit is possible for us to consider the fef8ras an additional contribution to the density
of the Universe, a ‘vacuum energy’ so to speak. If we chooseiobine these two terms under the overall
umbrella of density, then by defining

Q) = (1.17)
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we may then re-write equation (1.16) as

8rGp

3 = Hi(Qmo0a™" + Qroa™ + Qa0). (1.18)

This allows us to write the first of the Friedmann equatiorthafollowing highly useful form:
H2(a) = Hg {QA70 + Qm70a73 + Q7‘70a74 — (Qtot,() — 1)0,72} (119)

where() o is the sum of all the other density parameters combined. Aadlyeflat Universe ha$)o o =
1 exactly.

1.1.3 Redshift

Due to the expansion of space, photons are redshifted wiglegropagate from the source to the observer.
Following Peacock (1999) and Bartelmann & Schneider (200&)consider a light souramovingwith

the expansion of the Universe; this means that relativegsdirce all other points move away isotropically
at the cosmological expansion rate. This light source eaggnal at time., which reaches a similarly
comoving observer at the coordinate origia- 0, at timet,,.

Light travels along null geodesics in spacetime, thus wenktimat d= = 0 along the path of this light
signal, and that from the FLRW metric we have

Zdr? = [a(t))?dr?. (1.20)

The radial coordinate distance between emitter and obsg@abelledr,.) remains constant, since both are
comoving with the expansion of the Universe and this exmamisi parametrised solely by the scale factor
a(t): it is thus common to refer to the spatial coordinates of Egug1.6) as comoving coordinates. We

can write this as

¢ fo cdt
Teo = / dr = / ot constant, (1.22)
o te a(t)

which requires the following condition to hold:

= . (1.22)

The implication of this is that events on distant galaxiegesy to suffer time-dilation, depending on how
much the Universe has expanded since the photons we now seemiéted.

The frequency of light at emission and observation can beddiately identified with the inverse time
intervalsl /dt, and1/dt,, So we can write
Vo  die Ao

= == 1.23
Ve dte Ao’ ( )

wherev is the light frequency and the light wavelength. Since the redshifof light is defined as

(1.24)
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we thus have

a(to)
a(te) .
Since we who are observing distant objects do so at the dugpatha = 1, this relation is usually just
written as:

1+2z=

(1.25)

1
1 = —. 1.26
+z (i) (1.26)
Hence, the amount by which any known lab-frame spectralifeain the light from distant galaxies,
is redshifted tells us exactly how much the Universe has magéd in the time between emission and

observation.

1.1.4 Cosmological distance measures

As described both in Bartelmann & Schneider (2001) and Reéa@®99), the meaning of the term ‘dis-
tance’ is no longer unique in a curved spacetime: differefinidions of the measurement prescriptions for
distances between points lead to different values, in eshto Euclidean space. Cosmological distance
measures are therefore defined in analogy to relations batmeasurable quantities in Euclidean space.
Typically the following four distances are used:

1. The proper distance.
2. The comoving distance.
3. The angular-diameter distance.

4. The luminosity distance.

To define these distances we employ the FLRW metric seen imatou(1.6). Cosmological distance
measures relate an emission event and an observation evembd geparate geodesic lines which fall on a
common light cone. They are parametrised by the redshitiseoémitter and observer, andz,, and we
assume that the observer is taken to be at the origin of thelcwte system.

The proper distanceD,,,., is defined by the travel time of a photon betwegrandz,. Because cosmic
timet increases as the photon approaches the observer, anccdstaarease away from the observer, this

gives us
da da
dDprop = —cdt = —c— = —c———. 1.27
prop ¢ “a caH(a) ( )
In the local Universe it is true th&, o < €, o, and so assuming the radiation contribution is negligible

we can integrate the above equation to give

% cdz -1
Dyrop = / e (1= Quor) + (1 +2) 7+ Qno(L+9)} (1.28)

o

Thecomoving distanc® ..., is simply the distance in our choice of comoving coordinates between the
worldlines of an emitter and an observer both comoving withd¢osmic flow. Thus

dDeom = dr. (1.29)
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Figure 1.2: Plot of distance (from local space) versus riédsh
for the four standard distance measures N\GDM Universe
with Q,,, = 0.3 andQy = 0.7

Since light rays propagate along null geodesics, the mgtr&) gives us:dt = —adr for a photon travel-
ling radially towards the origin (observer). Therefore
cdt  cda cda

chom i T T T o N 1.30
a aa a?H (a) (1.30)

Hence, using Equations (1.26) and (1.19), and again asgumin < 2,0, Wwe have

Ze d _1

Do = / EE (1= Qo) (14 2)* + Qo + D1 +2)°)
Zo 0

= r(ze 20). (1.31)

For cosmological observations made at the present epochayeakez, as zero.

Theangular-diameter distancis defined in analogy to the relation in Euclidean space batviiee trans-
verse size of an object and the angle it subtends at the ayseit cosmological distances tipgoper
transverse size of an objett;,.,.s seen by us is its comoving siZ& (r)dv (dvy> being the angular separa-
tion between two points on the sky) multiplied by the scaidea(t.) at the time of emission:

1

1+ ze

détrans =

Sk (r(ze,0))dep (1.32)

Thus the angular-diameter distance can be written in tefrisjoation (1.31) as:

1
1+ 2z

Ding = Sk(Deom(ze; 0). (1.33)
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The last of the commonly-used distance measuredyuthmosity distancds defined to ensure that the flux
Stot received by an observer af and the luminosity,; of a source at, are related by

Ltot
4rD?

lum

Stot = (1.34)
However, in order to relat&,.; to Li,, we need to consider the relationship between the monochro-
matic flux and luminosity densities, (v) and L, (v) respectively. If the emission from the source can
be assumed to be isotropic, then the emitted photons pafsmty through a sphere of surface area
4752 (Deom (2, 0)), upon which we, as observers, sit. However, redshift afeztfthe observed flux den-
sity in further ways. Photon energies are redshifted, reditbe monochromatic flux density Ry (1+z.);

the reduction in photon arrival rates causes a reductiohdgame factor. Conversely, the bandwiditrat

the observeris reduced again by the same factor in compaagbe bandwidth at the source; this therefore
counteracts one of the two preceding reductions in the flussithe per unit bandwidth. Finally, photons
observed at a frequeneywere, of course, actually emitted at a frequen¢y + z.). The relationship
between monochromatic flux and luminosity densities, faeober and source respectively, is therefore:

1 y L,(v(1+ z0))

(V) = } 1.35
S ) = T X 1252 (Do (s ) (1.35)
Integrating over all frequencies we obtain
_ 1 Ltot
Stot = T2~ 152 (Deom(70,0)) (1.36)
which when compared to Equation (1.34) gives
Diym = (1 =+ Ze)Sk (Dcom(ze, 0)) (1.37)

The four distance measures are plotted as a function ofsightce redshift (assuming the observer exists
at the current epoch) in Figure 1.2, for 8, = 1 (flat) Universe withQ2, = 0.7 and(2,,, = 0.3; Dprop

is the solid line,D.om the dotted line,D.,, the short-dashed line and,,,, the long-dashed line. These
results conclude our description of an isotropic and homegas Universe.

However, it is clear that this description is anything bugquaate to describe astrophysical observations on
any but the largest scales. On the scales of planets, stdasjes and clusters of galaxies, the distribution
of matter is anythindputisotropic and homogeneous: the results of Friedmann-Litee@smology merely
provide an expanding large scale background upon whichffaetg of structure formation may then be
described. This description is a vital next stage in the iogeof the Universe, and is the topic which |
now outline (in some necessary brevity).

1.1.5 The growth of matter structure

The reasons for a departure from homogeneity in the earlydsse, leading to an unstable collapse to
the structure we now observe, are still not clear. Peacog89)ldescribes some of the more promising
ideas, with the most favoured being the amplification of quanfluctuations during an initial period of
rapid inflation due to an unknown field of vast energy. The mmesént results from the WMAP CMB
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experiment (Spergel et al. 2007) have begun, remarkahihg &ble to rule out some of the proposed scalar
field models for this inflationary potential. The resultsifrthePlanckCMB polarization experiment (The
Planck Collaboration 2006), and from other such experisiprithing smaller scale fluctuations (such as:
QUaD, QUaD Collaboration: P. Ade et al. 2007; BICEP, Yoonle2@06; SPUD, Kovac & BICEP/SPUD
Collaboration 2006; see also Kovac & Barkats 2007) are éagesmited in relation to this question.

Although the mechanism by which the seeds of cosmic stractere put in place is not known, we
may assume a certain power spectrum (see Peacock 1999 fecaptien of this term) for the density
perturbations and propagate these perturbations usingrkpbysical laws. Such modelling has shown
some striking successes, not least the quality of fittingéaésults of the WMAP experiment, as described
in the references given in the preamble to Section 1.1 (antbire detail in Section 1.1.8 below).

At early times, and even today on the largest scales, thalin@nditions of the density field still dominate
the dynamics of structure growth. Overall overdensitied @mderdensities remain small, and the regime
can be described perturbatively using what is knowlimasr perturbation theoryltis common to describe
the patterns seen in the matter distribution in terms of sedsionless density perturbation:

_ plx)
1+0(x) = TR (1.38)
A full discussion of the dynamics of linear perturbationwtio lies outside the remit of this introductory
Chapter, and the interested reader is referred again t@Ble999) for a detailed description of the topic.
Instead, | merely quote illustrative results that will iniosubsequent discussion in this Chapter. The early
growth of adiabatic density perturbations (made by the adiabatic and hencérdggn compression or
expansion of some volume) in a flat Universe is related to cbegical scale factor as follows:

5 - o
5 O({ a*(t) (radiation domination (1.39)

a(t) (matter domination,, ~ Qo ~ 1).

The terms radiation and matter domination refer to speqifacks in the early expansion of the Universe.
Looking at Equation (1.19) it can be seen that, for very etimies @(t) < 1), theQ, oa~* term in the
Friedmann will dominate; hence, the expansion is radiadiominated. At somewhat later times, where
a0 0 < a 30 0 andQy o < a=3Q,, 0, the dynamics of the expansion are matter dominated. Itds on
of the more interesting facts of cosmology that the prespatle should lie exactly on the cusp between
this period of matter dominated expansion and one of vacuergy domination, witl2,,, o < 4 0.

Another, orthogonal mode of density perturbation is pdssiand is known as thisocurvaturemode.
These, conversely, perturb the entropy density withoutpleing the energy density, and can be shown to
be constant at first and then die away rather than grow wita (lPeacock 1999):

5 { constant (radiation dominatioh (1.40)

a~(t)  (matter dominatior),,, ~ Qi =~ 1).

However, for open models and flat models with), + 2, = 1 the relationships given in (1.39) and
(1.40) cease to accurately describe linear perturbatiowtyrat late times. For these models adiabatic
collapse is suppressed by the more rapid expansion of tieatogical background. Carroll et al. (1992)
give accurate fitting formula for approximating this growtippression, relative to the simpler model with
Q= Dot = 1.
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The picture presented above is merely a brief outline, amdlosks many important details in the growth
of linear structure. Smaller scale linear perturbatiomsraodified by the effects of pressure, are damped
due to particle free streaming and may eventually beconfigysslitating and enter the non-linear regime.
In practice, the combined effects of the first two of thesesabgrations may be calculated numerically and
then represented usingti@nsferfunction, Ty,. These functions describe the ratio between the power in
perturbations at a scaleat late times, and the primordial power spectrum at somg epdch of redshift

Z.

_ Ok(z=0)
~ D(2)6k(2)’
whereD(z) is the linear growth factor betweenand the present. The calculation of these functions is
a complex numerical exercise: modern examples of fittingtions for model cosmologies an be found
in Bardeen et al. (1986) and Eisenstein & Hu (1998). Thesestea functions are able to accurately
predict many aspects of the linear power spectrum, inctudorcalled ‘wiggles’ due to baryon-acoustic
oscillations (see Percival et al. 2007a for a recent exawiplee measurement of this signal using galaxy
survey data).

Ty (1.41)

In order to describe non-linear collapse fully and accuyates necessary to resort to large numerical
simulations, as described in Section 1.1.7. These simalatriverse composed of a single, collisionless
dark matter component in an expanding background. In Seétib.7 | also discuss in brief some of the
reasons why it is thought that the mass of the Universe i$ylilcebe dominated by such a non-baryonic
matter component.

Before turning to simulation results, however, there is sansight into non-linear structure to be gained
from simple analytic calculations. In the following Sectjdl.1.6, the collapse of a single, spherically
symmetric overdensity is described. This work results insaeful practical definition of the collapsed
objects referred to as haloes, and allows for reasonalieatst of the timescales involved in their collapse.
Of particular interest to my work is the structural form tkiz#se haloes take once collapsed, described by
their density profile. The only rigorous and exact analyicison to this problem is that of a single, scale-
free spherical density perturbation in a Friedmann Unegetise so-called secondary infall model (Gunn
& Gott 1972; Gunn 1977, Fillmore & Goldreich 1984; Bertsaipgn 1985). However, this question is best
addressed numerically, and so simulation results regautti@ density profiles of collapsed objects are
discussed in Section 1.1.9. The unsolved question of hdistsicture, which can only be addressed using
simulation predictions, is discussed in Section 1.1.10.

1.1.6 The spherical collapse model of halo formation

A first step in modelling the large scale evolution of matt@oninon-linear structure is a description of
the ‘microscopic’ case: the collapse of a single overdeegen of the Universe into a self-gravitating
halo, via a model known as spherical ‘top hat’ collapse. Thixlel assumes spherical symmetry for the
overdensity, but is able to fully describe the early, intediate and late stages of its evolution and collapse.
In the discussion that follows, | make the considerable bfiogation of only considering results for a flat,
matter dominated Universe with density parameter

Qm = Qtot = 17 (142)
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referred to as the Einstein-de Sitter model. Although tlisgdnot accurately represent the vacuum energy
dominated Universe we believe to exist around us, most ob#séc results for such a cosmology can be
obtained without numerical integration. The simpler calSequation (1.42) is thus chosen as an attempt
to utilise the extra insight available from analyticallyrsled results.

Itis a highly useful result within General Relativity thaiédmann’s Equation, written in its dimensional
form as

R? = %,)RQ — kc?, (1.43)
applies equally to a spherical overdensity (see Peaco®)198e radiugz of an overdense sphere behaves
in the same way as the expansion factor for a closed sub+geivand we are therefore able to model
the general growth of a spherically symmetric density pédtion using the same equations as classical

cosmology.

Equation (1.43) can be most easily solved with a re-paraimat®n in terms of theeonformal timen,
defined so thafn = cdt/R(t). Assuming thap(t) can be written ag(t) = poR3/R?, we then have

2 3
diNT_ 8nGpols g2, (1.44)
dn 3c?

Defining the useful scaling constant

_ 4nGpoRy  GM

R,
3c? c?

: (1.45)

where M is the mass initially (and subsequently) enclosediiroverdense sphere, we can rewrite Equation
(1.44) in the following simple form:

B+

For an overdense regidgn= +1, and this equation has the solution

R(n)
R*

=1—cosn. (2.47)

The cosmic time can be found by recalling our definitiompfrom which

t(n) = /O ! dn’M. (1.48)

C

The two equations which completely describe the evolutiooun spherically symmetric overdensity are
thus

R(n) = R.(1—cosn) (1.49)

tn) = %(n—smn), (1.50)

whereR, is given by Equation (1.45). This solution forms the basiaroapproximate theory of non-linear
collapse, but to understand its consequences we need tarexa@sbehaviour at some important epochs
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in the history of the overdensity.

Evolution for n < 1

In order to describe the early expansion of the sphere asctidmrof¢, we must expand the solutions given
in (1.49) and (1.50) as power seriesjinDoing so around) = 0, and ignoring terms of order greater than

n°, we find
R, [6ct\*? 1 (6et\*?

Here are recovered, as should be rightly hoped, two impbrésalts from both the underlying cosmolog-
ical expansion and linear theory. The leading-order term

2/3 1/3
R(t —0) = 2 <@) - <9GMt2> (1.52)

2 \ R, 2
can be rearranged to give the early-epoch density depeadenc

3SM 1

t = =
plt = 0) A7R3(t — 0)  67Gt?

= polt), (1.53)

recovering the standard result for the evolution of the aaegical (critical) density of an Einstein-de Sitter
Universe (see, e.g., Coles & Lucchin 1995).

The next order term in the expansion can also be examinedae S density of the sphere is given by
p o 1/R3, the fractional overdensity is thus

5 SR 3 [6ct\*?
?p =32 = <R_) : (1.54)

to first order. Remembering that for an Einstein-de Sitteivehsea(t) o 2/, we are clearly recovering
a correctly-scaled version of the linear theory result efélpression seen in Equation (1.39).

Turnaround

At later times, the evolution of the sphere will differ sifioantly from that of the cosmological background.
Examination of Equation (1.49) shows immediately that aimaxn radiusR,,,., = 2R, is reached when
7 = 7, occurring at a time,,., = mR./c. Using our result from equations (1.52) and (1.53), we dateu
the density enhancement of our evolving sphere relativied@bdsmological background as

Prmax (R./2)(6¢tmax/Ri)* 972

1+ 0pax = = = —— ~ 5.55. 1.55
- 0o (tmax) R?nax 16 ( )

Using Equation (1.54) we can also calculate what linearrthemuld have predicted for the perturbation
at this time: 5
Slin = 2—0(67r)2/3 ~ 1.08. (1.56)
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It can be seen that the top hat model, used in this way, all@aggclresults in non-linear theory to be
compared to those of linear theory in a very simple manner.

Collapse and virialization

The collapse of the perturbation into a bound self-graivigabbject, commonly known as a ‘halo’, is the
final stage of its non-linear evolution as described by thpehat model. If only gravity operates on a
perfectly spherically symmetric perturbation the regioifl wollapse to a black hole when = 2x, at

a time we labek.,; = 27 R./c. When this occurs the corresponding linear prediction fier density
perturbation in this region i&;, = (3/20)(127)%/% ~ 1.69.

However, total collapse will never occur in practice; stiglepartures from pure spherical symmetry will
cause the kinetic energy of collapse to be converted intdaanmotions. The perturbation will thus
eventually reach some form of thermalized, bound, equilibrstate. If we invoke the virial theorem in
this cosmological context (see Coles & Lucchin 1995), theypbation will have total kinetic energi(
related to potential energy by

V =-2K. (1.57)

Assuming energy conservation during the transition toehislibrium state, Equation (1.57) can be shown
to imply that the radiug,;, of such a virialized perturbatiomhich we define as being a hals given by

1
Ry = §Rmax = R.. (158)

In our simple top hat model this will occur gt= 37/2, and the epoch this defines is often chosen to
roughly estimate the density contrast we should expectditapsed, relaxed objects.

It should be expected, however, that this process of vzatitn take longer than predicted by this simple
symmetric model, and it is common for authors to assume ki@, ;, is in fact only reached aftég,);.
The full non-linear density contrast at virialization i®th
(R./2)3(6cteon/Ri)?  (6m)2
Avir =1+ 64y = i =5 = 178. (1.59)

vir

As before, linear theory predicts a perturbatiogf ~ 1.69 att..; for the region corresponding to this
collapsed halo.

As stated at the beginning of this Section, this treatmenhlg approximately accurate for Universes in
which €2,,, # 1. For a flat Universe witlf2, + Q,,, = 1, Eke et al. (1996) found that the density contrast
for spherical collapse and virialization is given by

Agir = 178 [ (2)]°*%; (1.60)

see also Heymans et al. (2006a), and Mainini et al. (2003) gi® more detailed fitting formulae for
different dark energy models. Note that this contrast esldhe matter density in the overdensity to the
critical density for closure, which now includes non-mattentributions. This has caused some authors
to instead define the contrast relative to the mean mattesitgeputtingAyi, = pvir/pm (S€€, €.9., Bacon
et al. 2006: Appendix A). In this Thesis, | defide,;; = pyir/ Perit-
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There is a further, more important limitation to this treatrn the assumption of spherical symmetry. There

is to good reason to expect that overdense (or underdemgge)sdn our Universe will display a significant
degree of asphericity. For this reason we must turn to thelteeef numerical simulations, outlined in

the following Section. Due to the simplifications that goithe spherical collapse model, many authors
simply ignore the weakl,,, dependence of the density contrast and define simulatioefak regions with

Ayir = 200. The mass of a halo is thé¥,, defined as the mass encompassed by a sphere centred on this
halo within whichA,;, = 200. This is the definition used by Navarro et al. (1997) to defivegrtuniversal

halo profile (see Section 1.1.9) and, as such, is now the nomsimonly-used description of collapsed
haloes and the definition used in this Thesis.

1.1.7 Numerical simulations of dark matter

The limited number of analytic results for realistic nondar structure formation has led to it being instead
explored by means of numerical studies known as cosmolblideody simulations: see White (1976)
for an early example and Springel et al. (2005) for detailsheflargest simulation to date (depicted in
Figure 1.3). These describe the Universe as a fluid of cotlless dark matter particles; therefore, before
beginning a discussion of the simulations themselves|ib&iuseful to summarize (in brief) the evidence
that matter of this sort dominates the mass budget of theddsev(see Peacock 1999 for a more detailed
summary). | will also make brief mention of competing, nardmatter theories, before going on to
describe modern N-body simulations.

The first evidence for unseen dark mass in the largest stegituthe Universe was found by Zwicky (1933,
1937); observations of the Coma cluster showed that thecigldispersion of the individual member
galaxies was too high for the cluster to remain bound wittemre additional source of gravitational
attraction. Important evidence also came from measuresydnbtation curves of external disc galaxies
(e.g., van Albada et al. 1985; van Albada & Sancisi 1986, smeMoordermeer et al. 2007; Salucci 2007
for recent examples of these measurements). These showegllya $ignificant flattening of the rotation
curve at large distances from the galaxy centre, someth@ngdifficult to explain from the distribution of
baryonic mass.

However, galaxy rotation curves pose some problema @DM; it was such measurements that prompted
Milgrom (1983) to suggest modified Newtonian dynamics (MQMB an alternative solution to the flatness
of rotation curves. This theory, made fully relativistic the Tensor-Vector-Scalar field theory (TeVeS) of
Bekenstein (2004), has gone on to show remarkable succéiss @rescription of galaxy rotation curves
(see, e.g., McGaugh & de Blok 1998; Sanders & Verheijen 188Rrom & Sanders 2007; Sanders &
Noordermeer 2007), without requiring a non-baryonic dastter component.

Recently, Clowe et al. (2006) and Bradac et al. (2006) prteskan analysis of the ‘Bullet cluster’ (1E
0657-558) which it was claimed provided a ‘direct empiripedof of the existence of dark matter’. This
cluster appears to be in the midst of a collision, causingotile of the mass (as detected by a lensing
analysis, see Section 1.2) to be in a spatially distincttlonato the most significant contributor to the
baryonic mass, the hot X-ray emitting gas. However, thergxtewhich this system can still be explained
by modified gravity theories remains a topic of some contreyésee, e.g., Brownstein & Moffat 2007;
Angus et al. 2007).
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Figure 1.3: Image of the dark matter distribution within aister
from the Millennium Simulation: note the vast abundanceutiteloes
throughout the structure. Figure taken from Springel &t24105).

Itis also unclear as to whether other cosmological obsemnvatan be matched by MOND/TeVeS theories
with as much success as more establish€DM models. One important example is in the modelling
of large scale structure, for which TeVeS predictions renmmalatively underdevelopediCDM presents

a detailed and largely consistent description of the gravfithon-linear structure in the Universe by the

hierarchical merging of dark matter haloes, as realisedrgel N-body simulations. Predictions for large
scale structure made using these models prove to be a goath teathe distribution of galaxies, once

galaxy biasing is taken into account (see, e.g., Springal.2006; Sanchez et al. 2006; Percival et al.
2007b).

In an N-body simulation the density-velocity field of coitinless dark matter is represented by a set of
particles. The essential strategy is to solve the Newtoaipration of motion for each particle, based on
the gravity of all the other particles, calculating its decation and then evolving its position and velocity
over some small time step. The process can then begin agmirihas the evolution of the density field
is simulated iteratively. Summing over all the contribusoto the gravity field in real space becomes
extremely slow for large numbers of particles (or@ét calculations), and so it is instead useful to solve
Poisson’s equation in Fourier space. This allows the usheopowerful fast Fourier transform algorithm
(e.g. Press et al. 1992), reducing the number of calculstmorderN log N.

Advances in the techniques used to calculate the evolufidar& matter in N-body simulations have cul-
minated in the ‘TreePM’ method used in the Millennium Sintigia, the largest and most advanced N-body
simulation at the current time (Springel et al. 2005; Figli®. This method combines a hierarchical mul-
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tipole expansion algorithm (also known as a tree algoritheg, e.g., Barnes & Hut 1986; Hernquist et al.
1991) with particle-mesh (PM) and particle-particle-paetmesh (PM) methods (see Efstathiou et al.
1985; Hockney & Eastwood 1988). Starting with a homogengautcle distribution given a realization
of a Gaussian random field, with/eCDM linear power spectrum at redshift= 127, the simulation was
then advanced to the present epoch using up to 11 000 ad#ptesteps, as described in Springel et al.
(2005).

Springel et al. (2006) describe the successes of the MillemiSimulation in capturing many aspects of
observed large scale structure. Fundamentally, the leleicad structure formation model of White & Rees
(1978), within which larger haloes form from competitivenger and accretion of smaller haloes, is well
supported by this and previous simulation results (see, Bayis et al. 1985; Ghigna et al. 1998; Reed
et al. 2005; Springel et al. 2006). Simulation work has als@adished that of the possibilities for the
fluid properties of dark matter, it sold dark matter (CDM, rather than hot dark matter, HDM) that ileab
to collapse quickly enough to form a sufficient amount of gnee within the age of the Universe. The
collapsed overdense regions necessary to form the steushserved in the form of galaxies, clusters and
super-clusters are much more difficult to form in an HDM Unaee(see, e.g., Davis et al. 1985).

1.1.8 Measured constraints on the concordance cosmologicaodel

Having thus far given a brief outline of thtCDM model, we have sufficient background information to
consider a short summary of the current best observationdérece for the concordance cosmological
picture. | will attempt to discuss constraints both upondbsmological parameters discussed in Sections
1.1.1-1.1.2, and upon the power spectrum of primordialfiations very briefly discussed in Section 1.1.5
(see also Peacock 1999). At the time of writing this Thesissé constraints come from a combination
of measurements that can be broadly categorized into thioegpg: statistics describing temperature and
polarization anisotropies in the CMB, the measurementmimasity distances for large samples of Type
la Supernovae (SNIa), and statistics describing the larglke structure (LSS) of collapsed matter objects
in the Universe. These will be tackled in turn.

Anisotropies in the cosmic microwave background

As discussed in the early preamble to this Section, and itidet.1.5, the most powerful constraints
upon the concordance cosmological picture come from tlidrsirfit to the angular power spectrum of

TT (temperature-temperature) anisotropies in the CMB shimwFigure 1.1. The measurements of the
CMB TT, temparature-polarization and polarization-pation power spectra provided by the WMAP

3-year data (see Spergel et al. 2007 and references théain)allowed a simple, flat, six parameter
ACDM model to be fit with unprecedented precision, althoughdbrrect interpretation of these results in
well-understood physical terms is still largely unclear.

The six directly-fitted parameters of the fl’RCDM model shown by (Spergel et al. 2007) to provide an
excellent agreement with the CMB power spectra are as felloW, 012, €, oh?, e 27, O, ng andCLL,.

I will now briefly describe these parameters, but at all timefer the reader to Spergel et al. (2007),

Spergel et al. (2003) and Kosowsky et al. (2002) for a far nd@tailed discussion than is merited in this

introductory Chapter. The first tw@,,, oh? and(2, oh* parameters describe the density of overall matter
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(cold and baryonic) and baryonic matter respectively, wifey, o and €, o are defined as in Equation
(1.15), and the dimensionless Hubble parameter is definiedEgiation (1.13). The parameter?” is the
factor by which CMB anisotropies on small scales are dampedal scattering by free electrons after the
Universe is reionized by the formation of stars and galaxde§ining the optical depth to reionization
This reionization scattering has differing effects upoa 1T and temperature-polarization power spectra
at different scales (see, e.g., Kogut et al. 2003).

The quantity©y is the angular scale of corresponding to the first and laayEsistic peak in the TT power
spectrum. This can be written as

7s(Zdec)
Dang(Zdec)
HereD,,.(zd4ec) IS the angular diameter distance (see Equation 1.33) taitffeece of last photon scattering
at the redshiftq.. ~ 1100 of the decoupling of the photon-baryon plasma, anid the comoving acoustic
horizon size of this plasma, which may be simply calculatsidgithe result of Hu & Sugiyama (1995).
The parameten; gives the power law scaling of the power spectrum of primadrdiatter fluctuations
P(k) « k"=, left as an imprint of a hypothesized inflationary period fie early Universe (see, e.g.,
Peacock 1999). Finally, the!%,, parameter simply describes the amplitude of the TT powestsp® at
the multipole scalé = 220 which approximately corresponds to the angular s€alef the acoustic peak.

O, = (1.61)

In the analysis performed by Spergel et al. (2007), the CMBadropy code CAMB of Lewis et al. (2000)
was used to perform a maximum likelihood fit to the six paranatodel described above. From these
best fits constraints were derived upon cosmological paemsef direct interest, such &5, o, h, andos,
which provides a normalization of the linear matter powezctpum as the variance of matter fluctuations
on scales oBh~'Mpc (Peacock 1999). These derived constraints are shown ire Tabl However, as
described by Kosowsky et al. (2002) and Page et al. (2008),pbssible to get somewhat more direct
insight into the placing of cosmological constraints by sidering the positions, amplitudes and ratios of
acoustic peaks and troughs in the CMB power spectra. For gheatie amplitude of the first peak and
the ratio of this amplitude to that of the second peak allowsoh? andQ oh? to be determined, while
considering the amplitude of the third peak in additionwa#aonstraints upong (Page et al. 2003).

Whilst not wishing to enter into a detailed discussion ofsthaspects of the CMB power spectra, it is
worth briefly mentioning the information that the positioitloe first peak (given by, in Equation 1.61)
gives regarding the geometry of the Universe. As discusgdthige et al. (2003) and Spergel et al. (2007),
this peak position tells us that the Universe is spatiallyithen it is combined with almost any other
cosmological measurement@yf,, ( or k. The primary WMAP constraints upatCDM presented in Table
(1.1) are made assuming flatness; however, allowing theatunek to vary and combining the CMB
measurements with other cosmological data shows that thetde is indeed extremely flat and appears
to have been throughoutits past (Spergel et al. 2007). heilf discuss some of these other measurements
of cosmological geometry and matter density, and deschibeconstraints they place upon th€DM
model and when combined with the WMAP results.

Luminosity distances to Type la supernovae

Early observations of the luminosities and surprising hgemeity of Type la supernovae (SNla: see Fil-
ippenko 1997 for a review of supernova class definitionshalbcal Universe led to these objects being
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Table 1.1: Derived, I constraints upon the flaf2, = 1 —Q,,), power-law,ACDM cosmological model

Parameter WMAP 3-year SNia 2dFGRS SDSS BAQO?
Qo 0.23970557 0.267700%  0.237+0.020  0.23970518  0.252 +0.027
Qo 0.041670-59%2 — 0.04140.002  0.04167950%¢ —

h 0.73010:053 — 0.74+0.02  0.0730+0.019 —

o8 0.75870 020 — 0.774£0.05  0.756 & 0.035 —

ng 0.95470016 — 0.954 £0.023  0.953 £ 0.016 —

T 0.089 4 0.030 — — — —

'From combined measurements of the ESSENCE and SLS supesnoxeys, but including marginalization over a
dark energy equation of state parametethat is allowed to vary fromw = —1 (Wood-Vasey et al. 2007).

2From large scale structure measurements after combinithgWMAP 3-year data (see Sanchez et al. 2006; Tegmark
et al. 2006, Table III; Percival et al. 2007a)

suggested as a standard distance measure at the very beggifimbservational cosmology (e.g., Wilson
1939). Improvements in technology such as stable photgnfietm charge-coupled detectors (CDDs),
and increased supernova sample sizes, led Phillips (18%8ppose an empirical relationship between the
intrinsic brightness of each SNIa and the shape of the lightecas it decays from maximum brightness.
Subsequently, many variations and refinements upon theltimggef this initial work, including improve-
ments to extinction corrections, have now led to the achierg of approximately 10% precision on a
given SNla distance estimate (e.g. Phillips et al. 1999; §\etral. 2003; Guy et al. 2007; Jha et al. 2007).
These advances, in combination with ever improving sampésspropelled SNla distances measurements
to the forefront of modern cosmology with the discovery ofravérse undergoing accelerating expansion
at late times (Riess et al. 1998; Perimutter et al. 1999).

The technique for using SNla distances to constrain cosgicdbparameters is conceptually very simple:
once a SNla is detected observations of the host galaxyrsgeet made, along with follow-up photometry
S0 as to capture the decaying light curve. The observedtnegh of the SNla can then be compared with
the intrinsic brightness inferred from the observationghef light curve, giving an estimate of the lumi-
nosity distancéy,,,,(z) as defined in Equation (1.37). The redshiftf the SNla host galaxy, determined
from observations of emission lines in its spectrum, can theeused to place the supernova measurement
upon a luminosity distance-redshift curve as shown in EduR. Given a sufficient sample of SNIa mea-
surements, the luminosity distance-redshift relatiomshi be fit to give constraints upon the cosmological
parameters),, o, {24 o and, more recently, upon the parameterhich describes the equation of state for
the pressure of a hypothesized dark energf as wpc? (see, e.g., Riess et al. 2007; Astier et al. 2006).

In the flat, ACDM model the dark energy is a pure cosmological constanthvtequiresv = —1 , and
current constraints from supernova measurements (Rieds2004; Astier et al. 2006; Riess et al. 2007;
Wood-Vasey et al. 2007) show no significant evidenceufo¥ —1. The most recent constraints, coming
from the combination of measurements from the ESSENCE soparsurvey (Wood-Vasey et al. 2007)
and The Supernova Legacy Survey (SLS: Astier et al. 2006) ufin= —1.07 £ 0.09 + 0.13 (where the
second uncertainty comes from estimates of systematicsgind(,,, o = 0.26775-03% for a spatially flat
(Qr =1-9Q,,) cosmology. This is the result | quote in Table 1.1, althougthould be stressed that this
value and uncertainties fér,,, o includes the margninalization overimplicit in the placing of these joint
constraints.
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Large-scale structure (LSS)

The recent measurements of the power spectrum of galaxtedhs on large scales, from the spectro-
scopic 2 degree Field Galaxy Redshift Survey (2dFGRS: sge,@ole et al. 2005; Sanchez et al. 2006)
and Sloan Digital Sky Survey (SDSS: see, e.g., Tegmark &08l4, 2006; Percival et al. 2007b), have
placed important further constraints upon tf@DM model. These measurements complement those from
the CMB as they help to break certain inherent degeneraeiggelen parameters in the WMAP measure-
ments. As an example, measurements of the statistics of u88as those from SDSS and 2dFGRS are
directly sensitive td{2,,, o rather thar2,,, oh? as was the case for WMAP. The degeneracy betviesnd
Q0 is one of the largest in the WMAP results (Page et al. 2003) sarthe extra constraints provided by
LSS allow tighter constraints on bofh,, o andh. These constraints then help break other degeneracies,
such as that betweery and(2,, o. In Table 1.1 we show the results of Sanchez et al. (20069, @am-
bined cosmological constraints from the full sample of 2&8S3yalaxies with the WMAP 3-year data, and
Tegmark et al. (2006) who did a similar combination of the WRIdata with a measurement of the power
spectrum of luminous red galaxies (LRGS) in the SDSS. These mecent LRG measurements provide
sharper constraints than those of the larger, but gendaaflier sample presented by Tegmark et al. (2004).

However, in the most recent analysis of the SDSS Data Relegsdaxy sample, Percival et al. (2007b)
found that there was significant evidence for tension betvtlee SDSS and 2dFGRS results, SDSS favour-
ing Universes with a larger matter density. Both 2dFGRS dd8Sanalyses use a relatively simple model
of the galaxy bia$, defined byd,.is = bd, wheres is defined as in Equation (1.38) atd, is its equiva-
lent for the number density of galaxies (see Peacock 199ffarmore detailed discussion of bias). Given
that the 2dFGRS galaxies are predominantly blue througdtgeh, and the SDSS galaxies red selected, it
may be necessary to have a far better understanding ofetitfes in the clustering properties of these two
different galaxy types, and therefasgbefore a correct interpretation of LSS results can be mbhdad-
dition Percival et al. (2007b) found that there was intedistrepancy within the SDSS results: the power
spectrum on large scales favoured a low matter density Wsewsith(2,, o = 0.22 + 0.04 but supported

a far higherQ),, o = 0.32 + 0.01 when the fit to the power spectrum wass extended to smallégssca
These authors suggested that this could be explained byaayghaiasb for the SDSS sample that varies
significantly with scale and-band luminosity. Clearly the question of galaxy biawill be important as
LSS data sample sizes increase with the planned surveys éitilre.

A recent, extremely promising development in the study afdascale structure has come via measure-
ments of the signature of Baryon Acoustic Oscillations (BADstly in the SDSS galaxy power spectrum
(Eisenstein et al. 2005) and now the combined power spettre &DSS and 2dFGRS galaxies (Percival
et al. 2007a). Although a description of these phenomend brisecessarily brief in a Thesis such as
this, the physics describing the production of a standingenagscillatory signature in the matter power
spectrum has been known for some time (see, e.g., Silk 13&I€s & Yu 1970; Sunyaev & Zeldovich
1970; Bond & Efstathiou 1984; Hu & Sugiyama 1996). That th&gaatures should also be visible in the
galaxy distribution is a consequence of their occurencetatively large, approximately non-linear scales
(see, e.g., Meiksin et al. 1999; Eisenstein et al. 2007).

The acoustic peaks occur originate from the excitation, dsnwlogical matter perturbations, of sound
waves in the relativistic plasma of the early Universe. Timal§ but significant fraction of baryons in
the Universe ensures that these peaks persist, having besanfby decoupling atg.. ~ 1100, and
cosmological theory predicts that the acoustic osciltegin the plasma will also be imprinted onto the
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late-time power spectrum of the nonrelativistic matteri{B@& Efstathiou 1984; Hu & Sugiyama 1996;
Eisenstein & Hu 1998). The primary imprint is a first peak remwce at a comoving length scale of
~ 100h~!Mpec. This then gives a characteristic length scale which can éasored from the structure
in the Universe, and which can used to probe the distancghifédelationship (see, e.g., Eisenstein et al.
2005).

The most recent BAO results presented by Percival et al.4i@0se a joint SDSS-2DFGRS galaxy sample
to constrain the distance-redshiftat= 0.2, and the SDSS LRG sample to give another constraint-at
0.35. Combining these measurements with WMAP 3-year data, asuhang a flatACDM cosmology
they find the value fof2,,, o presented in Table 1.1. Forcing the cosmological model titabeut allowing

w to vary these authors find,, o = 0.249 4+ 0.018 andw = —1.004 +£ 0.089.

However, many aspects of tieCDM model, particularly the more detailed results of N-bséyulations,
have proved more difficult to test by observation. In thedwihg Sections | now describe two unresolved
issues of structure formation: the questions of halo degpsdfiles and halo substructure.

1.1.9 Dark matter halo profiles

An especially interesting result of simulation work is tleeming ‘universality’ of the shape of dark matter
haloes: over three to four decades in mass, halo densitsaapo be able to be well described by one
appropriately scaled profile. This was famously noted byaxavet al. (1997), whose suggested universal
halo density distribution became known as the NFW profilee €kact form of this density profile can
be described by two parameters: the virial mass of the cgdldymalo and a parameter known as the con-
centration, which sets the scale for the transition betvikep o »—! behaviour of the halo interior and
the p oc »—3 density drop-off in the outer regions. Constraining thatiehship between these parame-
ters observationally will be an important test of high-leon ACDM simulations, as reasonably robust
agreement exists between theoretical predictions (sgeMaccio et al. 2007; Neto et al. 2007).

Aiming to improve upon NFW, there has been less agreemeatdaty the exact form of the ‘best’ uni-
versal profile, i.e., the one which best fits simulation dRr&dictions differ particularly in the halo interior
where resolution becomes an issue (Moore et al. 1999b; Kagtal. 2004), but in these regions baryonic
effects are likely to become important in a way that N-bodygations are yet unable to accurately predict.
All of these issues will now be discussed, but we begin witlescdption of the simplest realistic density
profile.

The singular isothermal sphere (SIS)

The approximately flat rotation curves observed in galagas be most simply reproduced by a model
density profile which scales asx r—2. Such a profile can be obtained by assuming a constant welocit
dispersion for the dark matter throughout the halo, and knasvn as theingular isothermal spherSIS)
(see, e.g., Binney & Tremaine 1987; Narayan & Bartelmanr9)]:99

2

p(r) =525 (1.62)
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whereo, is the line-of-sight velocity dispersion of the test pdesc(i.e. stars) in the gravitational potential
of the mass distribution. The mas$(r) interior tor thus increases r, and the rotational velocity of test
particles in circular orbits within the potential is given b

2 GM(r)

Urot =

= 202 = constant, (1.63)
,

demonstrating the flat rotation curve desired for the dpson of galaxies. One significant shortfall of this
model is the divergent total mass, which led Brainerd etl&196) to model galaxy haloes usingrancated

singular isothermal sphere (TSIS):

2.2
0,8

p(r) = m, (1.64)

wheres defines the truncation scale, i.e. the radius beyond whielpthfile steepens to o« »—%. Other
modifications of the SIS in an attempt to better fit the obstvaiverse include theoftenedsingular
isothermal sphere (SSIS), which seeks to reproduce theateieinsity core often posited to better fit the
observed rotation curves of disc galaxies (see, e.g., 8&2007). This profile has the following form:

0.2

p(r) = ma (1.65)
where here-. defines the scale radius of the central core. The issue ohwhgtlaxy haloes exhibit such
a core is perhaps one of the great unsolved problems foA@i@M paradigm (again see Salucci 2007,
and references therein). Collisionless simulations (Kavet al. 1997; Moore et al. 1999b; Navarro et al.
2004) suggest that the halo interior instead displays aityetissp, and the effects of adiabatic baryonic
contraction are predicted to steepen the cusp rather thaathrit to a constant core (see, e.g., Blumenthal
et al. 1986; Sellwood & McGaugh 2005; Gustafsson et al. 2B06also Tonini et al. 2006 who propose a
possible mechanism for erasing the cusp).

As the problem manifests itself most strongly in the extrémberiors of galaxies, weak gravitational lens-
ing and even flexion is unlikely to constrain the core regioihsmaller CDM haloes. In order to solve this
guestion, a better understanding will be necessary of thgymassible issues affecting the fair compari-
son galaxy rotation curves and velocity dispersions, ingateon, with ACDM predictions. These might
include observational biases such as beam smearing,atiolmeffects or slit offsets, which may all cause
an underestimation of the rotation velocity in central ggleegions. In addition, it will be necessary to
wait for more detailed theoretical understanding of gafaxgnation and dynamics. This requires accurate,
high resolution hydrodynamical simulations of joint darktter-baryon collapse and star formation (see,
e.g., Sales et al. 2007); such simulations will not be alegléor some time.

However, it is likely thatACDM results will be more accurate in the outer regions of xjaks where
baryons no longer dominate. It is exactly these regions fwban be usefully probed using weak lensing,
and so | now describe some of the more important halo profédiptions from collisionless simulations.

The NFW halo profile

Using N-body simulations, Navarro et al. (1995, 1996, 1988)e shown that the equilibrium density
profiles of cold dark matter (CDM) haloes can be very well ittwer two orders of magnitude in radius



24 CHAPTER 1. INTRODUCTION

by the formula
plr)  Ac | (1.66)
Pcrit(z) x(l =+ I)Q
known as theNFW profile where the radial coordinateis the radius in units of a scaling raditissuch
thatx = r/rs, parit(2) IS the critical density for closure at the epoch of the hahal A.. is a dimensionless
scaling density. The radius of the sphere within which thaltmass isiMqo, designated by the virial
radiusraqg, is used to define a second dimensionless scaling paranoetiref NFW profile, namely the

concentratior: = 7900 /rs. This profile describes simulation haloes accurately ou@pad mass range.

A procedure for finding values of. and ¢ which agree with the numerical simulations is detailed by
Navarro et al. (1997); the parameters are functions of the feashiftz, Mo, and the background cos-
mology. A routine ¢har den. f ) which carries out these calculations and outputs valughé&se scaling
parameters has been made available by Julio Navarro (seemdat al. 1997). Subsequently, a number of
authors (Jing 2000; Bullock et al. 2001; Eke et al. 2001; Zéizal. 2003; Dolag et al. 2004; Kuhlen et al.
2005) presented further analytic models for calculatires a function of redshift, mass and cosmology,
based on larger simulations with higher resolution.

The most recent analyses, using the Millennium Simulatidetd et al. 2007) and a suite of smaller but
higher resolution simulations (Maccio et al. 2007), haxésad at the startling result that a single power
law fits the concentration-mass dependence over six detaness, from~ 10° M, to~ 105M. These
authors appear to agree that

¢ ~ 11.7(Mapo/10"2R = M) =019, (1.67)

for flat, concordance cosmologies at the present epoch. HowBlaccio et al. (2007) usd,;, ~ 98
(calculated using the results of Mainini et al. 2003) rathan theA,;, = 200 of Neto et al. (2007), which
is the result quoted above.

This strong theoretical prediction presents an immedihtdlenge to observational cosmology. While
some results are beginning to emerge for large, clusteddialoes (Comerford & Natarajan 2007), there
are few constraints upon this relationship available fdaxyasized haloes. Weak lensing, and flexion in
particular, may be an extremely important tool for testingse predictions.

Zhao-Hernquist halo profiles

The NFW profile is one in a family of spherically-symmetricli@ profiles first proposed by Hernquist
(1990) and explored in far greater detail by Zhao (1996):

C

pr) = Y (1 + rl/e)(B=7)a’ (1.68)

where(a, 3, ) are the three free parameters which describe the changifiteghape and” is a normal-
ization constant. As pointed out by Zhao (1996), Equatia6&)Lparameterizes the volume density as a
general double power law, with slopey for » < 1 and slope—( for » > 1. The third parametet is

a measure of the width of the transition region, this regidtening with increasingr. Hernquist (1990)
originally considered a profile witfw, 3,v) = (1,4, 1), and it can be seen that the NFW profile is a (1,3,1)
member of the family.
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The M99 halo profile

Because of its success in describing a broad mass range whs#t dark matter haloes the NFW profile
was hailed as ‘universal’, and this universality has bectireesubject of much further work, both analytic

and numeric. However, there is some disagreement as to artietepresents the best possible fit to halo
profiles, especially at smallest radial scales (less thaarlcent of the virial radius). Having resolved

simulated haloes to smaller radii than Navarro et al. (19®0ore et al. (1999b) found evidence for an

inner slope (cusp) of -1.5 rather than that of -1 found foti#&V profile. Overall, these authors concluded
that their simulation data favoured a Zhao-Hernquist peafilthe form (1.5,3,1/1.5), referred to as the M99
profile.

The NO4 halo profile

More recently, Navarro et al. (2004) found that density susp steep as -1.5 were inconsistent with their
simulation data, and finding no evidence for a well-defineghrgsotic value of the inner slope at all,
preferred instead a model where the local logarithmic slofpe density profile, here referred to as
takes the form of a power law with radius:

e dne (L) . (1.69)

“dlnr r_o

Here Navarro et al. (2004) have defined, as a characteristic radius at which the slope of the profile is
exactly isothermal, i.e= = 2. This leads to a density profile,, referred to as the NO4 profile, given by

()@ E)

where the scaling densiy_o» = p(r_2) is to be measured from simulation data. This profile has finite
total mass due to the exponential cutoff at large radiusadodarithmic slope that decreases inward more
gradually than the NFW or M99 profiles.

A summary of the current picture

The most recent work by Reed et al. (2005) and Diemand et@)52everts back to the former conclusion
of Navarro et al. (1997) and Moore et al. (1999b) that an asgtiginner slopés reached, finding a figure
in the regiony ~ 1.2 — 1.3, after investigating regions as far into the interior asgiel cent of the virial
radius. However, as described above, the precise intenagesof the dark matter distribution is likely
to be highly influenced by baryonic physics, especially itoba which form galaxies. Observations of
baryon dynamics in these regions will likely give the beststoaints upon the distribution of matter. It
is likely that the field is reaching the stage at which siniala of purely collisionless dark matter are
no longer sufficiently accurate approximations to the pdgidiniverse to provide observationally testable
predictions of the\CDM paradigm.

Accurate predictions based on hydrodynamical simulatiseg, e.g., Abadi et al. 2003; O’'Shea et al.
2005) will come. Largely untested predictions for the dlsttion of shape parameters of halo profiles
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already exist; these include the theoretical results roeat for the mass-concentration dependence of
NFW haloes and predictions for the of ellipticity, and tilay, of haloes (see, e.g., Jing & Suto 2002;
Kasun & Evrard 2005; Hopkins et al. 2005; Allgood et al. 200iBiccio et al. 2007). The challenges to the
observer attempting to constrain the dark matter distiGbuaround objects such as galaxies and clusters
are great, but these challenges can be met using a compieéticavitational lensing and accurate rotation
curve data. This will allow not only for simulation modelstie tested, but also a better understanding of
the mechanisms driving galaxy formation.

1.1.10 Dark matter halo substructure

I now go on to describe a second important prediction ofA®M cosmological model. The hierarchi-
cal structure formation scenario of White & Rees (1978) $thoaccording to simulation work, leave an
abundance of dark matter substructure composed of bourthlds within each host halo. This is an
inevitable consequence of ongoing halo mergers, combiridanrelatively long predicted timescale for
the complete tidal disruption of accreted subhaloes.

Early computational work that attempted to model the meyfierarchy ubiquitously failed to find surviv-
ing substructure within clusters, producing a final darkteragtructure that was very nearly smooth (see,
e.g., White 1976; White et al. 1987; Summers et al. 1995) Iyiicavork suggested that this ‘overmerging’
problem was a symptom of poor spatial and mass resolutiorof®let al. 1996), and later, higher reso-
lution simulations of clusters confirmed this using resangpiethods (Moore et al. 1998; Ghigna et al.
1998; Klypin et al. 1999a). It is now thought that current didly work is able to simulate remnant CDM
substructure to reasonable accuracy, although semitamiadgdelling by Taylor & Babul (2004, 2005a,b)
suggests that there may still be a need for greater mass eredr&solution before numerical overmerging
problems are totally negligible.

Interestingly, the most recent simulation results (Shawlef007; D’'Onghia et al. 2007; Nurmi et al.
2006; Reed et al. 2005; De Lucia et al. 2004; Gao et al. 20G=igr subhalo mass functions that vary
only weakly with the mass of the hosting halo. This near siifilarity in substructure was first pointed
out qualitatively by Moore et al. (1999a), and is now a strpnediction of structure formation in a colli-
sionlessA\CDM Universe. Observational data is not yet available ifisieht quantity to place meaningful
constraints upon the subhalo mass function; however,iké/that surveys in the near future will be able
to measure the subhalo mdssction to increasing accuracy, over a range of host halo massese(sege
Yoo et al. 2006; Koopmans 2005; Metcalf 2005; Bradat et@42 Natarajan & Springel 2004). The mass
fraction f,, is defined as the ratio of the mass contained in bound sutthtdbe total mass of the host
halo, and is predicted to lie in the ran@®5 < f,, < 0.2 for galaxy and cluster mass haloes. Again, there
is weak mass dependence, with some evidencg fadecreasing with decreasing host halo mass.

Once it became clear that haloes the size of the Milky-Way (MWbuld contain an abundance of dark
matter substructure, enough to rival that found in clustanrsimmediate problem was to reconcile this
fact with the paucity of known dwarf spheroidal (dSph) dagebalaxies around our own Galaxy (Moore
et al. 1999a; Klypin et al. 1999b). The proposal that thisstituted a ‘small scale crisis’ fakCDM was
subsequently disputed by Stoehr et al. (2002), who foundoa guatch between the observed kinematics
of simulation subhaloes and MW satellite galaxies, althutigir own conclusions conceded that this only
provided an explanation if known dSph satellites could ®eiated with haloes of far greater mass than
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previously assumed. D’Onghia & Lake (2004) then pointedtbetapparent persistence of the small scale
crisis for objects such as RX J1340.6+4018, a fossil group-a0.171.

A further issue, the anisotropic spatial distribution of Mdatellites in a great circle oriented at clos®@8
from the Galactic disc, was pointed out by Kroupa et al. (30@% claimed that this was inconsistent with
their being drawn from & CDM subhalo distribution. However, high resolution sintida work, followed

by merger tree construction and semi-analytic galaxy foienanodelling (Libeskind et al. 2005), argued
that the spatial distribution of star-forming satellitegyht be necessarily significantly different from that
of the most massive subhaloes. It was found that the sulbdhaléng the most massive progenitors at
early times shared a similarly anisotropic spatial distributierplainable by the slow infall of satellites
along filaments in the dark matter field. Using a differentrapgh, the maximum likelihood comparison
of observed dSph satellite mass functions and those of atedisubhaloes, Strigari et al. (2007) found
independent evidence of this association between satgHiixies and the earliest-forming subhaloes.

Ongoing improvements to observational data for dSphs iGtiactic halo (see, e.g., Gilmore et al. 2007;
Walker et al. 2007; Koch et al. 2007; Koposov et al. 2007; Zuak al. 2006) appear to pose no further
significant problems foACDM substructure predictions, although cusp-core issap®gin (see Section
1.1.9). The history of this debate perhaps serves bestidridite the difficulty of interpreting observations
of luminous matter in terms of dark matter simulations, egily given the limited results available from
hydrodynamical simulations (see, e.g., Sales et al. 20@F)recomplete models of star formation.

Predictions of simulations at larger mass scales have greasier to interpret, as strong gravitational lens-
ing provide a unique constraints upon substructure for nclusters and superclusters (see, e.g., Hennawi
et al. 2007). The situation is not, however, conclusive:ntaad et al. (2004) found a significant spatial
biasing of CDM subhaloes away from cluster centres, whiciotsobserved in galaxy position data from
the CNOC cluster survey (Carlberg et al. 1997) or the Comat€iytokas & Mamon 2003). As in the
case of substructure on smaller scales, and as Diemand20@4l) conclude, it is likely that observational
accuracy has gone beyond the level at which simulationsrifdatteralonecan be usefully interpreted.
High resolution hydrodynamical simulations will be neededtudy the effect of baryons on the physics
of halo merging, and this will require considerable time eegburces.

Nonetheless, the existence of dark matter substructureabuest prediction oACDM,; if this prediction
proves to be inaccurate, for any reason, it is vital that weenstand why. Observing substructure is, there-
fore, one of the challenges of the next decade, necessaggttombdel predictions and to simultaneously
drive improvements to the theoretical understanding ofititerplay between baryons and dark matter.
Gravitational lensing offers an extremely attractive nseahplacing new constraints upon substructure,
being unreliant upon an accurate understanding of galaxydtion and complicated gas dynamics. | now
go on to outline basic theoretical concepts used to desgringtational lensing, with emphasis upon the
formalisms of weak lensing and flexion. Weak lensing measergs provide one means by which we may
make observations of matter substructure, and flexion itiqodarr may offer some hope on the smallest
scales.
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1.2 Gravitational lensing

One of the most powerful methods for constraining the diation of matter in the Universe is the study
of gravitational lensing. As light propagates through amoimogeneous gravitational field, photons are
deflected from straight paths in three-dimensional spaméwing null geodesics in four-dimensional
spacetime. The analysis of this phenomena has seen manytémpadvances in recent years, with the
development of its theoretical description being accorgzhby rapid technological improvements to the
accuracy and sample size of lensing observations.

Gravitational lensing, in its cosmological applicatiocen be divided into two broad classssronglensing
(see, e.g., Kochanek 2006), in which background galaxiegrarltiply imaged by massive foreground
lenses, anweaklensing, in which coherentimage distortions are analysgisscally (see, e.g., Schneider
2006; Bartelmann & Schneider 2001 for detailed reviews}htremainder of this Chapter, | will outline
basic gravitational lens theory, describing how lensirggadtions are related to the underlying matter field.
From Section 1.2.4 onwards | describe fundamental resuithé analysis of weak lensing. Set within the
background of traditional weak lensing, this Thesis is gol@ation of the possibilities opened up by the
study of flexion, a new tool which utilizes the higher ordestditions responsible for the arc-ed appearance
of weakly lensed galaxies. In Sections 1.2.8 and 1.2.9 dihtce the basic formalism of flexion, which is
a natural extension of traditional weak lensing methods.

There are a number of approximations which go into what issunas gravitational lens theory, all of which
allow for a simpler description of the phenomenon. Almosf aanceivable astrophysical situation in
which lensing will occur can be described by the weak fieldtlmhGeneral Relativity, in which Einstein’s
field equations can be linearised. The gravitational ligiftesttion due to an extended mass distribution
can then be expressed as the sum of deflections due to mawigliralilenses, the simplest of which is of
course the point mass.

1.2.1 Deflection by a point mass

We consider a light ray passing by a point massif the ray passes sufficiently far from the strong space-
time curvature close to the object’s event horizon 4.8 2G M /c? where is the impact parameter of the
motion of the ray around the mass, then General Relativigdipts (see, e.g., Rindler 2001; Bartelmann &
Schneider 2001) that the deflection angl&éas magnitude

. AGM

&= T (1.71)
We note that since we have assumed thiatmuch larger than the Schwarzchild radius, which will hestr
in any situation where lensing may be practically obsertregldeflection angle: must be small; the small
angle approximation is thus implicit in all that follows. &mesult of Equation (1.71) is twice the value
obtained from a Newtonian treatment and is in fact the last that General Relativity need be called upon
in a description of the vast majority of gravitational lemgiphenomena.
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1.2.2 The lensing equation

A typical lensing scenario is shown in Figure 1.4. The reduedlection anglex is defined as follows:

Dls
Dy

& (1.72)

o =

Using Figure 1.4 théensing equatioran be defined:

Dls

:0—
B D.

a(0), (1.73)

or
B=6-a). (1.74)

Thethin screen approximatioassumes that all the deflection occurs within a distahge~ +¢ of the
point of closest approach. Using this approximation theilggmass can be assumed to lie on a ‘lens plane’
and the mass of the lens can be projected onto the plane t@gairface mass densiB(¢) (whereg is

a 2D vector in the lens plane). The deflection angle can heaeeitten as the sum of all the deflections
due to each mass element in the lens plane:

4G [ (£ -&)2(E) 20
> /7|£_€, ; da2¢ (1.75)

A further way to define the deflection angle is to define an &ffecefractive index for the lens, in analogy
with an imperfect optical lens. This index may be defined gishe Newtonian gravitational potential of
the lens systempy (which comes into the description via its place in the weakl firretric of General
Relativity, see, e.g., Rindler 2001) as:

a(§) =

2
n=1- 5o (1.76)

The deflection angle can then be defined by integrating thdigmaofrn perpendicular to the line of sight:

2
&= c—z/qu)Nde. (1.77)

1.2.3 Lensing potential and convergence

We now define théensing potential/(6), a scaled, projected Newtonian potenfial, of the lens:

Dy 2

() = DIDSc—Q/ch(Dle,s)ds (1.78)

By taking the gradient of» on the sky plane, and comparing with Equation (1.77), theced deflection
angle can be related to the lensing potential:

Vo = a (1.79)
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n Source plane

S

& Lens plane

Observer

Figure 1.4. Geometry of a gravitational lens system. In thsecof the thin lens
approximation the deflection through the anglis taken as instantaneous. The angles
6 and3, which are in general two-dimensional vectors on the skp@laespectively
specify the observed and intrinsic sky positions of the seuD;, Ds and D\ are
angular diameter distances.
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Using Poisson’s equation in three dimensioid® = 47Gp(&, 2), we are able to relate the Laplacian of
1 to the projected surface mass densify):

£(6)
Ecrit

Vi =2 (1.80)

whereX..;; is a critical surface mass density in the lens plane (for tvhi@) = 0), taking the value

2D,
Yerit = ——— 1.81
T 4nG DDy (1.81)
Using this definition we re-express Equation (1.80) in teofresdimensionlessurface mass density, known

as theconvergence = X /%, as follows:
Vi = 2k(0). (1.82)

The lensing potential can then be related back to the coamergby integration

»(0) = 1 /R d*0'k(6')In(|6 — 6'|), (1.83)

™

where here we have used Equations (1.75) and (1.79).

1.2.4 Weak gravitational lensing

The solutions®d of the lensing equation yield the angular positions of thages of a source &; note
that it is possible to have more than one image of a singlecsotinis situation being known atrong
lensing (see e.g., Kochanek 2006). Lensing conservescgubiaghtness, a consequence of Liouville’'s
theorem (see Schneider et al. 1992) and the fact that gtiavigd light deflection leaves photon numbers
unchanged. Hence, i(3) is the surface brightness distribution in the source plareeknow that the
observed surface brightness distribution must be

1(0) =1°(8(0)). (1.84)

If a source is much smaller than the angular scale on whiclettssproperties change, the lens mapping can
be locally linearised using the lensing equation and thegiceiship betweep coordinates ané described
by a Jacobian matrix:

Aij(0) = gg; = (0ij — 2i0;9(0)) , (1.85)

A — l—k—m —Y2 ’
—72 1—r+m

whered; = 9/90;, where we have taken the origins of the measured, lensedicates and the unlensed
source coordinates to be the centres of light for the lensddialensed images respectively, and where we
have introduced the components of #eary = v, +ivy, = |y[e?'?. The effect of the shear on animage is
to stretchit, transforming a circular source into an elliptical imagdereas the effect of the convergence is
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to enlarge transforming a source into a larger version of itself wihglsnserving surface brightness. From
Equation (1.86) we see that the components of shear aredetathe lensing potential as follows:

no= 508 - (1.86)
Y2 = 01029. (1.87)

If the convergence and shear are effectively constant mvatsource galaxy image, the galaxy’s transfor-
mation is simply described as

The formalism discussed above is as far as traditional weakiig goes in describing the distortions
of images due to gravity, i.e., to first or linear order in tleise-image sky coordinate transformation.
According to this transformation the images of circularrees are ellipses, the ellipticity of these objects
being proportional to the shear fer< 1. The essence of the study of weak gravitational lensinggis th

use the observed ellipticity as a noisy but unbiased estimator of the shear. Although $imgle galaxy
this will be an extremely poor estimate of we may assume that unlensed populations of galaxies will
have randomly oriented source ellipticiti€s and therefore that the average ellipticity over an ensembl
of lensed galaxies will give an unbiased estimate of thersie@) ~ ~. By measuring the ellipticities of
many galaxy images we gain a (noisy) estimate of the shedy st may thus begin to try and determine
the surface mass density of lensing systems (see Bartel&&ahneider 2001 for details).

1.2.5 Strong gravitational lensing

The study of strong gravitational lensing applies to lersteys for which the Jacobian of Equation (1.86)
vanishesdetA(0) = 0. Such lenses will produce multiple images of backgroundees) and the positions
of such images can place strong constraints upon the masbution of the foreground lens. A related,
sufficient but not necessary (see Schneider et al. 2006)ittamdor multiple images is thak(0) > 0
somewhere upon the image plane. Such lenses are commoeaitiecefo as “strong”, and were the first
examples of gravitational lensing discovered outside thigkyMVay galaxy (the doubly imaged distant
guasar QSO 0957+0561, see Walsh et al. 1979).

For a strong lens, the locus in the image plane for whigtf\ () = 0 is known as the critical curve. These
curves are smooth and closed but their mappings onto theesplane, known as caustics, can and often
do show cusps. Along critical curves the ratio of image tagetiux, referred to as the magnificatipn=
1/detA, formally diverges. Whilst this is an unphysical picturesce galaxies are of finite extent which
keeps their magnification finite) sources near causticsfear nonetheless extremely highly magnified and
are observed as large elongated arcs (or sometimes eves) cinge to the corresponding critical curve.
The number of images of a source in the image plane also depgwh its position relative to the caustic
curves (see Schneider et al. 2006) and provide additiomedtcaints upon the geometry of critical curves
and caustics.

Many modern uses of strong lensing involve the modellingooédround lenses by fitting critical curves
to observed giant arcs and multiple images in strong lendmgters (such as the famous lensing cluster
Abell 2218, e.g. Saraniti et al. 1996; Kneib et al. 1996) antthé arcs and rings around individual galaxies



1.2. GRAVITATIONAL LENSING 33

observed with thélubble Space Telescofgee, e.g., Bolton et al. 2006; Gavazzi et al. 2007). In the fo
lowing Section, | will briefly describe these and other supplications of strong lensing, and discuss how
these complement some of the applications cosmologicahsindphysical applications of weak lensing.

1.2.6 Applications of strong and weak gravitational lensig

Strong lensing

The study of arcs and multiple images in strong lensing ehsstwhich began with the independent dis-
covery by two groups (Lynds & Petrosian 1986; Soucail et 887t Lynds & Petrosian 1989) of clear,
elongated, luminous features around the clusters AbelbBBiéiCluster 2242-04. Since that time there have
been many examples of the use of these giant luminous arcaldosusmaller arcs (known as arclets, see
Schneider et al. 2006) and multiple images, to model theatiturves, caustic curves and hence mass
distributions of strong lensing clusters (see, e.g., Koskeet al. 1996; Tyson et al. 1998; Broadhurst et al.
2005; Limousin et al. 2007). These have provided much inigigh the mass distributions of clusters and,
more recently, into the mass distributions of galaxies frett al. 2000, 2002; Rusin et al. 2003; Bolton
et al. 2006; Koopmans et al. 2006; Treu et al. 2006; Gavazdi 2007).

Bartelmann et al. (1998) were the first to compare the incdente of giant arcs to the expected values
from raytracing calculations in N-body simulations, finglievidence for an excess in the observed number
of arcs when compared thCDM predictions. However, arcs are extremely rare evendsthe result of
extremely non-linear gravitational interactions in higéndity regions. Debate continues regarding the
interpretation of observed arc statistics and the means&firg accurate theoretical predictions when the
effects of CDM substructure, baryons and simulation ragmiware likely to have significant implications
for the production of giant arcs (see, e.g., Oguri et al. 2@@8al et al. 2004; Horesh et al. 2005; Li et al.
2006; Hennawi et al. 2007)

Other applications of strong lensing data include the ussusters for which the mass distribution is well
constrained as “gravitational telescopes”, allowing tiheaging of extremely distant galaxies at redshifts
of z ~ 5-6 and beyond (Ellis et al. 2001; Kneib et al. 2004; Santos €2@04; Egami et al. 2005; Smail
et al. 2007), including a claimed detection of a 10 galaxy (Pell6 et al. 2004, but see also Weatherley
et al. 2004; Bremer et al. 2004). The recent survey of griwitally lensed Lymanx emitters made using
the Keck telescope (Stark et al. 2007) has yielded six priogiisandidates lying between redshifts of
z = 8.7 andz = 10.2, all with emission detections at greater than thasn &ignificance. This leads to
the conclusion, given the volume surveyed, that there maist significant population of low luminosity,
star forming galaxies at these high redshifts (Stark et@72, and that these may contribute a significant
fraction of the UV radiation necessary for cosmic reiorima{Peacock 1999).

One further, and slightly different, cosmological use absg lensing systems is the determination of
the Hubble parametér, independently of cosmology, via studies of the gravitadidime delay between
multiple images of a single, time-varying source (see, &@ndford & Narayan 1986; Schneider et al.
2006). Recent studies of the time delay from strongly lensethble quasars have placed competitive,
independent constraints upon the Hubble parameter, finding0.72") {7 (Saha et al. 2006), and =
0.68 + 0.06 4+ 0.08 (Oguri 2007), where the second uncertainty in this last taitd comes from an
estimate of systematic errors due to degeneracies in the madelling of the foreground strong lens.
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Having completed a brief survey of the cosmological apfpilices of strong lensing, | know turn to a brief
overview of what may be learnt from the study of weak lensihgmpmena and how, on occasion, strong
and weak lensing may be combined.

Weak lensing

The cosmological applications of weak lensing are as braatth@se of strong lensing, with occasional
overlap. Although the statistical determination of theashield (see Section 1.2.4, also Bartelmann &
Schneider 2001) cannot constrain the mass distributiomglafidual objects in a way that competes with
strong lensing observations, strongly lensed systemsyatiedir very nature rare. Instead, weak lensing
measurements may be taken from any resolved images of galaksufficient cosmological depth, and
can be used to gain insight into the average, global praseofithe distribution of matter in the Universe.

One example of the use of weak lensing measurments in thiofass the study of galaxy-galaxy lensing,
which places constraints upon the distribution of unseettenaround foreground lens galaxies using
redshift information and measurements of the weak shean femsed background galaxies. Such an
analysis was first proposed by Tyson et al. (1984), and waslétected by Brainerd et al. (1996). In recent
years, galaxy-galaxy lensing analyses have constrairdzhbproperties for large samples of galaxies, as
the mass-to-light ratio and the power law slop of this ratithgalaxy luminosity (see, e.g., Guzik & Seljak
2002; Sheldon et al. 2004; Hoekstra et al. 2004; Mandelbaan 2005). Recent work (Mandelbaum et al.
20064a; Kleinheinrich et al. 2006) has begun to split lensgasmby galaxy morphology and colour, and
in this way galaxy-galaxy lensing potentially has the poveeexplore more complicated models of the
galaxy biag discussed in Section 1.1.8. In Chapter 6 | describe my atetoperform a galaxy-galaxy
lensing analysis of data from thdubble Space Telesco@EMS survey (Rix et al. 2004).

Another application of weak gravitational lensing is thedst of the weak lensing signal imprinted upon the
angular power spectra of the CMB, a result of many small argigflections due to the inhomogeneities
in the matter distribution between the current epoch andsthiéace of last scattering at. ~ 1100
(see Lewis & Challinor 2006 for a recent review and Das & Bo@@72for details of an up-to-date, all
sky simulation of this effect). The effects of the weak legsof the CMB is to cause small but potentially
detectable broadening of the acoustic peaks in the TT aradtipation power spectra. The cross-correlation
of this effect with large scale structure measurements fraaio sources in the NRAO-VLA Sky Survey
(NVSS) 1.4GHz continuum survey (Condon et al. 1998) hastegielded a 3.4 detection of the signal
(Smith et al. 2007), and as CMB measurements continue tooweprith the advent of the Planck satellite
(The Planck Collaboration 2006) and the Atacama Cosmoledgstope (Kosowsky 2003) this technique
presents a promising new method of constraining the digtab and evolution of large scale structure.

Weak lensing has also been used in the study of galaxy cbustegre, as will be described below, it also
complements strong lensing mass reconstructions. Howeweall clusters are strong lensing systems,
and weak lensing has recently proved to be an extremelylusethod of calibrating the mass-temperature
relationship of clusters selected via X-ray bremsstrafplemission from the hotl(7-108K) intracluster
gas (see Smith et al. 2005, who also use strong lensing @igers, and Pedersen & Dahle 2007). As
sample sizes increase, our understanding of the relaijpbsiween X-ray temperature and cluster mass,
and of the scatter in this relationship due to cluster ra¢larand environment, will improve. This in turn
wil improve the constraints on large scale structure thay tma placed using the temperature statistics
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of X-ray selected clusters (e.g., Eke et al. 1998; Henry 26&man et al. 2005). Using current weak
lensing surveys it is now even possible to detect clustdrgyumaps ofx derived from survey-wide mass
reconstruction (Gavazzi & Soucail 2007); such “mass set¥atluster catalogues will become increasingly
competitive with X-ray selected clusters with the adventha wide area optical imaging surveys in the
near future.

Perhaps the most promising, if also technically challeggapplication of weak lensing is the measurement
of so-called “cosmic shear”, the scale-dependent angataelation of the shear field due to the clustering
of the cosmological matter field. | will discuss this techmégin addition to its future prospects and the
constraints upong and(2,, ¢ it has yielded to date, in Section 1.2.7 below. However, kgefooving onto
this important topic | will describe some of the recent adwemin the combination of strong and weak
lensing measurements in the mass modelling of lensingerkust

Combined strong and weak lensing

The use of combined measurements of weak and strong lermituster mass determinations (see, e.g.,
Kneib et al. 2003; Bradac et al. 2005a,b), extending thasd# Bartelmann et al. (1996) and Seitz et al.
(1998), has had some striking successes in recent year$ rdaaelling has led to extremely accurate
reconstructions of cluster lenses suitable for use astgtanal telescopes (e.g., Stark et al. 2007; Smail
et al. 2007) that can explore extremely high redshift galxynation, and combined measurements of
weak and strong lensing around strongly lensed early-tygexgs in the SLACS survey has recently
been used to place improved constraints upon the dark niettees around these galaxies (Gavazzi et al.
2007). As discussed in Section 1.1.7, combined strong aadt le@sing data has recently provided strong
evidence for a collisionless dark matter component in theging cluster 1E 0657-558 that appears to be
clearly distinct from the intracluster hot gas (see Sectidn7; Clowe et al. 2006; Bradac et al. 2006, but
also Angus et al. 2007). Combined weak and strong lensing Wwas therefore contributed significantly
to our understanding of the formation of galaxies and giwether evidence for the existence of cold dark
matter. In the following Section, | will now go on to descritiee use of weak lensing in the placing of
cosmological parameter constraints, a study which has ¢orpeominence as a primary science goal in
the survey design strategies for future optical surveystelpes.

1.2.7 Constraints on cosmological parameters from weak lesing

An extremely promising but challenging application of weakvitational lensing is in the measurement
of cosmic shear, which results from the fact that all lighagwgating through the Universe is deflected by
the gravitational field of the inhomogoneous matter distidn. This causes distortions in the images of
distant galaxies that are coherent, although extremehkw&ahneider et al. (2006) provide a thorough
derivation of how the power spectrum of the convergencan be related to the three dimensional matter
power spectrunP (k) = <5,§> (Peacock 1999), and so | will not not reproduce that decdvakiere. As
also described by Schneider et al. (2006), the shear powetrsin can be determined from measurements
of the tiny correlations between lensed galaxy images, asetibn of angular scale, and may be directly
related to the convergence power spectrum to place comistigion large scale structure.
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The value of cosmic shear as a probe of structure is that iesak assumptions about the relationship
between dark matter clustering and the clustering of bacygalaxies (no poorly understood parameters
such as the biak are necessary, for example), and therefore provides apémdient verification of the
results described in Section 1.1.8. In addition, cosmiasheeasurements place joint constraints upgn
and(,, o that intersect with those from CMB measurements in a waysigaificantly reduces degeneracy
in these parameters (Schneider et al. 2006).

However, the measurement of cosmic shear is technicaflgdif This is not just because the cosmological
signal is extremely weak, but is also due to the nature ofybtematic distortions caused in galaxy images
by imperfect telescope optics; telescope point spreadtifums (PSFs) induce correlated distortions in
galaxy images that are typically an onrder of magnitudedatan the cosmological signal we wish to
detect (see, e.g., Kaiser et al. 1995; Kaiser 2000). Deipgecosmic shear was successfully detected in
2000 by four groups (Bacon et al. 2000; Kaiser et al. 2000;Warrbeke et al. 2000; Wittman et al. 2000)
using the KSB method of lensing PSF correction (Kaiser e12®95; Luppino & Kaiser 1997; Hoekstra
etal. 1998).

Subsequent cosmic shear analyses have been used to plgoetitioeconstraints upon large scale struc-
ture, with the most recent results being those of Benjamal.¢2007). These authors combined a total of
100 square degrees of ground based survey data, includingahada-France-Hawaii Telescope Legacy
Survey (CFHTLS) Wide (see Hoekstra et al. 2006) togethdr thié Red Cluster Sequence survey (Glad-
ders etal. 2007), VIRMOS-Descart (Van Waerbeke et al. 20005a) and the Garching-Bonn Deep Survey
(GaBoDS: Hetterscheidt et al. 2007) weak lensing survefis. analysis also used an accurate calibration
of the redshift distribution of lensing sources using thetpmetric redshifts of the joint CFHTLS-VIMOS
VLT Deep Survey (VVDS) analysis (llbert et al. 2006). Theuléiag joint constraints upon the large scale
structure weres = (Q,,,.0/0.24)%-59 = 0.84 +0.05 within a flat, concordance cosmology. This weakened
what had been an apparenf-o discrepancy between earlier results from the CFHTLS (Hivalet al.
2006) and WMAP constraints (see Spergel et al. 2007), tlierdiice being the accurate calibration of the
source galaxy number counts as a function of redshift (Beimat al. 2007). It is becoming clear that
accurate photometric redshift information, as well as amg@@nprovements in shape measurement tech-
nigques, will be necessary as lensing surveys increaseerasid statistical power. Recent observations of
cosmic shear from space (Massey et al. 2007¢) are in redscagteement with the results of (Benjamin
et al. 2007), but currently suffer from the relatively snaltvey areas that can feasibly observed with the
Hubble Space Telescopand from the gradual degradation of on board CCDs due toicasiys (known

as the Charge Transfer Efficiency problem, see Rhodes €Q@r)2

So far in this Chapter, | have described many basic eleménite @oncordance cosmological model, and
the current constraints we have upon the few parametersié@isatibe it. In addition we have seen some
discussion of gravitational lensing, and described sontbeofesults and future prospects of this study. In
the remainder of this Chapter | will introduce an extensibweak gravitaional lensing known as flexion,
the study and attempted measurement of which is the pringig bf this Thesis.

1.2.8 Higher order weak gravitational lensing: flexion

The study of weak gravitational flexion, otherwise knowntestigher order weak lensing signal, is a re-
cent developmentin the broader field of weak lensing (sedltgoy & Natarajan 2002; Irwin & Shmakova
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2003; Goldberg & Bacon 2005; Irwin & Shmakova 2005; Baconle2@06, BGRTO06 hereafter, Massey
et al. 2007d; Irwin et al. 2007). Flexion arises from the thett the shear and convergence are actually not
constant within the image, and so we can expand EquatioB)fo&econd-order:

1
B =~ Aijb’j + §Dijk9j9ka (189)

with
Diji = OpAij. (1.90)

Using results from Kaiser (1995), we find that

L9 _
Dip = < e ”“>, (1.91)
—72,1 —72,2
Dz‘j2 _ (-72,1 —72,2 )
—Y22 2712 — 721

By expanding the surface brightness as a Taylor series ang te relations above, we find that we can
approximate the lensed surface brightness of a galaxy iwéad lensing regime as

1(0) ~ {1 + [(A —1)0; + %Dijk@jek;] 81} I°(9) , (1.92)

where her& denotes the identity matrix. The distortion described ley/th;;. tensor in the above equation
is that which is responsible for the curved or arc-ed appearaf lensed galaxies, measurable information
which has traditionally been ignored in the study of wealsieg phenomena.

1.2.9 Complex representation and the first and second flexion

In this Section we outline the compact and straightforwamhglex formalism of BGRTO06 for the de-
scription of second-order lensing distortions; the folismalin fact has wider applicability to all weak
gravitational lensing.

We define a complex gradient operator:
0 =01+ 109, (2.93)

which we can think of as a derivative with an amplitude andradlion down the slope of a surface at any
point. It transforms under rotations as a vectdr= de'?, whereg is the angle of rotation. This operator
can be compared with the covariant derivative formalism a$t@® et al. (2005) for weak lensing on the
curved sky. Applying the operator to the lensing scalar piidi& ¢/, we can generate the spin-1 (i.e. vector)
lensing displacement field

o=y + iag = 0. (1.94)

This correspondence allows us to interpret the complexigndd, as a spin-raising operator, raising
the function it acts on by one spin value. Similarly the spiraayuantity can be lowered by applying
the complex conjugate gradierdt:. Applying one after the other yields the spin-zero two-disienal
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Unlensed Fyq Y1 Gy
K Fo V2 Gz

Figure 1.5: Weak lensing distortions with increasing sptues. Here an unlensed
Gaussian galaxy with radius 1 arcsec has been distorted Mitper cent conver-
gence/shear, and 0.28 arcsédlexion. Convergence is a spin-0 quantity; first flexion
is spin-1; shear is spin-2; and second flexion is spin-3.

Laplacian,
00" =00 =07 + 05 = V3 (1.95)

where we have noted thatand9* commute. Applying the complex conjugate derivative to thspldice-
ment field we find the spin is lowered to the spin-0 convergdetd

h= 5@+ By = L% = 10" 0. (1.96)
Applying the spin-raising operation to the displacemend fiaises us to a spin-2 field, the complex shear:
1 1 2 2 . .
v = 535¢ = 5(31 — 05)Y + 10102 = 71 + 12, (1.97)

just as defined in Equations (1.86) and (1.87). The complerdtism provides a neat way to generalize
the analysis of distortions to higher orders. Taking thedtlierivative of the lensing potential we define
the unique combinations

F = |Fle? = %aa*&/; =0k = 0"y (1.98)
G = [Gle¥? = %3331/, = 0, (1.99)

where the first flexionF, is another spin-1 field and the second flexign,s seen to be a spin-3 field.
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Here ¢ represents the position angle determining the directiaih@fvector or spin-3 component. Using
the complex derivative to expand the flexions in terms of ttaeliggnts of the shear field we find

F = (O + 02v2) + (0172 — dom1) (1.100)
G = (O — O2y2) +i(01y2 + 0am1)- (1.101)

Using these results one then obtains a direct and complsteipion of the second-order lensing tensor
D, in terms of the flexion components. Definitfy= F; + iF, andG = G, + iG, | re-expressed;
as the sum of two term®;;;, = Fi;r + Giji, Where the first (spin-1) term is

1( 3F1 Fo
Fiqg = —- 1.102
71 2 < ]__2 ]__1 ) ( )
1( Fo Fi
Fii - __
72 2 ( Fi 37, )
and the second (spin-3) term is
1 G G
Gin = —= 1.103
e 1109
1 G -G
Gijz = —3 :
7 2 ( ~G1 —0» )

This thus defines two new lensing measufEsndg, which afford a complete and compact description of
weak lensing distortions to next highest order. The firstsgabnd flexion also have simple spin properties,
making them a natural description of these distortions wdmnpared to the more complicated rotational
behaviour of the derivatives of shear.

In order to obtain a visual understanding of the flexion gti@st the expression of th®;;;, matrix in
terms of 7 andg is used to calculate how a Gaussian image is transformedebyattious operations of
weak lensing, according to Equation (1.92). The resultslaogvn in Figure 1.5, which displays the lensing
operations in order of their spin properties. The Gauss#axy is given a radius (standard deviation) of
1 arcsec; while the convergence and shear imposed on theygakarealistic (10 per cent in each case),
the flexion is deliberately chosen to be large for visualisapurposes (0.28 arcset). We immediately
see the shapes induced by flexion: the first flexion leads te@dyial, spin-1) skewness, while the second
flexion leads to a three-fold (spin-3) shape. For a simpleatestmation of how it is both these modes of
distortion, added to a shear, which are responsible foekbascs, see Figure 1.6, which usemebination

of the same, correct transformations upon a Gaussian insager& used to generate Figure 1.5.
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Figure 1.6: lllustration of how the combination of sheastfftexion and second flex-
ion is able to describe arc-like distortions in gravitatiblensing.

1.2.10 Reduced shear and flexion

Before going onto describe theoretical predictions fordhear and flexion based on realistic mass models,
| first outline some recent work in flexion theory that hasvatee to this Thesis and applications beyond
it. Itwas Schneider & Seitz (1995) who pointed out the wealsiieg sheaty described above is not strictly
observable in practice, but rather the combination

g=—— (1.104)

labelled thereducedshear. This accounts for the lensing sheet-mass deger(€alcy et al. 1985; Goren-
stein et al. 1988), under which lensing observables remrathanged under a change— Ax+(1—\). For
many cosmological applications, including galaxy-galéeysing (Kleinheinrich et al. 2006) and cosmic
shear (Hoekstra et al. 2006), the convergence (relate@tprthjected surface mass density, see Chapter 2;
also Bartelmann & Schneider 2001) will be small comparedand so differences between the reduced
shear and the shear are typically also small. It is then aabépto assume ~ ~ on the condition that the
bias involved in this approximation is smaller than the allaneasurement uncertainty.

This work has very recently been extended to measuremeiflisxain by Schneider & Er (2007), who
similarly find that7 andG cannot be directly observed. This work finds the correspandkpression for
the reducedr andg respectively:

F+gF*

11—k

Gy — g = IH97 (1.105)

1—k

Gl :B*g:

As can be seen, these observable quantities are now moréssoaxpressions involving the reduced shear
and convergence, both of which can bias flexion estimatelsnedder & Er (2007) also point out further
difficulties with the flexion measurement, finding that it miagy impossible in general to construct an
unbiased estimator for eithéf; or G5, as was possible far (Schneider & Seitz 1995).

These considerations are of the greatest importance irto@struction of cluster mass distributions using
flexion, where it should be expected that significant shemas:g> 0.1 could cause a significant overesti-
mating bias of the shear and flexion (Schneider & Er 2007). él@w, in the analyses that follow | consider
the weak signal around galaxy halo-sized lenses, spetffitaise in theHST GEMS survey (Rix et al.
2004). These regions do not involve extremely lagger » values; therefore, throughout this Thesis |
assume the weak limit of ~ ~, G; ~ F andG3 ~ G. | note that this is an approximation, however, but
one that causes biasing effects that are well within the sawgpiance of the GEMS galaxy data. It will be
important for future galaxy-galaxy lensing studies of geeaample size to quantify the effect of this bias,
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as it will begin to impact upon measurements for the more ivagglaxy haloes (see, e.g., Mandelbaum
et al. 2005).
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CHAPTER 2

FLEXION PREDICTIONS

In this Chapter | outline analytic and numerical results pretlictions for flexion, many of which | was
able to contribute towards Bacon et al. (2006) (BGRTO06 H&da Here the concern is primarily an
understanding of the strength and observability of flexi@might expect for dark matter halos in the
physical Universe. | have derived analytic expressiongHerflexion due to Singular Isothermal Sphere
and NFW halos, and | have discussed the differences betwesa tesults. | have added a discussion of
flexion for the Truncated Singular Isothermal Sphere, andxaanation the tools which may be used to
calculate the flexion signal.

Finally, | present the investigation of simulated galavalaxy lensing data sets using the method | de-
scribed in BGRTO06, but with some update of the discussioigint bf subsequent observational findings
(see also Chapters 4 and 6). This modelling suggests thairflaas much to offer studies of galaxy-galaxy
lensing, but more recent knowledge about the distribution@asured flexion complicates more quantita-
tive interpretation of these results. These issues areisied, and are ultimately found to provide strong
motivation for the analysis of flexion using real data.
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2.1 Analytic flexion results

In order to describe the flexion signal around common lensatsod is useful to re-express the complex
gradient operator (1.93) in polar coordinates upon the &kysp Labelling ag the modulus of the complex
sky position vectof; + i6,, and with¢ = arctan (62 /61), the complex gradient may be written as

w0 10
it :
0=c¢e (89+98¢)' (2.1)
Using Equations (1.98) and (1.99) it is then very simple twsthat
Ok 10K\
_ _ — ig
f(9,¢)_8n(9,¢)_(89+98¢>e . (2.2)

Writing the complex shear ag = 7(6, ¢)e?'?, noting that in generaj (6, ¢) will be complex for non-
circularly symmetric lenses, | was also able to calculagesttuivalent result for the second flexion:

(2.3)

G(0,6) = 01(6,) = <“” 2y ﬁ) 0,

200 900
If the lens model displays circular symmetry this expressiy be simplified; for such models(0)| =

R(0) — k(#) (Miralda-Escudé 1991), wherd ) is the average convergence witlfifrom the centre of the
lens. For a lens model with shear= —|v(6)|e%?, the second flexion can then be more simply expressed

as
_ 4ly(0)| | Ok(9) 3i¢
G, o) = ( 0 + 0 )< (2.4)
In the results that follow this expression is used a numbénués to quickly calculate predictions for the
second flexion.

2.1.1 Flexion for the Singular Isothermal Sphere (SIS)

We start by calculating the flexion predictions for the Siagusothermal Sphere (SIS) lens model, ex-
pressed in Equation (1.62). This density profile providesaddfirst approximation to CDM haloes as it
very simply reproduces the flat rotation curves observegiirakgalaxies. Projecting the density onto the
two-dimensional lens plane, the surface mass density d3t8és

2

%) = 35 (2.5)

where¢ is the distance from the centre of the lens in the projected fane and where, is the one-
dimensional velocity dispersion of ‘particles’ within tlygavitational potential of the mass distribution,
such as stars. The dimensionless surface mass density)@rgence, is thus

S e

5(9) - 2crit B %7

(2.6)
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wheref = £/D; is the angular distance from lens centre in the sky plane drete¥y, is the Einstein
deflection angle, defined as

— (%)2 g‘:. 2.7)

The shear caused by the SIS at an angular separafiom the lens centre on the sky plane is

_ 25 2i¢
1(6,9) = —55¢ (28)
(see, e.g., Bartelmann & Schneider 2001). The SIS sheaaldigiis only weakly with distance from the
lens centre, and the'? angular dependence reflects the spin-2 rotational symméthe shear transfor-
mation. Using Equation (2.2), | then found the simple exgim@sfor the first flexion to be:

06 o
As expected, the first flexion for this profile is thereforecalarly symmetric, and displays vector-like
rotational symmetry with the vector directed radially imds towards the lens centre. Importantly, the
signal strength varies with—2 and so the flexion will only be significant for objects closdtie line of
sight to the SIS lens.

In a similar fashion | calculated the expression for the sddtexion using Equation (2.4), finding that

30r s
G(0,¢) = 53" (2.10)
The spin-3 rotational symmetries @fare encapsulated in thé'¢ dependence of this expression. The sec-
ond flexion shares th#e~2 dependence displayed Byfor the SIS, but interestingly has a larger amplitude;
as will be seen, this is found to be a common feature of flexiediptions for cosmologically realistic lens
models.

2.1.2 Flexion for the Softened SIS (SSIS)

The SIS mass distribution can be modified so as to remove @teréewhich may not be a good physical
description of dark matter haloes, the divergenc& dbr 6 — 0 (see Section 1.1.9 for a discussion of
observational evidence for cored dark matter haloes). @mgle modification is to cut off the distribution
at small distances, defining as in Equation (1.65) the Seft&iS as

0.2

=7 2.11
p(T) 27TG(T2 +'f‘2)’ ( )
wherer, is a core radius within which the density tends to a constahier Projecting this density onto
the lens plane and dividing by the critical densityi¢, the convergence is thus found to be

W) = — 2B (2.12)

- 2,/02 1062

whered, is defined as./Dj, the angular radius within which the surface mass densitiefia off to a
valuery = 0 /26, as® — 0. Forf >> 6. this mass distribution behaves like the SIS. The shear for th
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SSIS lens is then

_ Ok 20, 2 2 2i¢
7(9,¢)_m{1— - (\/9 +90—6’c)}e , (2.13)

which may be calculated using tig = % — « relationship of Miralda-Escudé (1991). Interestinglisth
shear signal tends to zero at the origin but behaves like tBée8s at distance.

Using Equation (2.2), | found the first flexion due to the S@Isslto be

F(6,0) = g o (214)

(02 + 02)372°
Again, forf > 6. the flexion is approximately equal to that of the SIS. At srsalbarations the flexion
goes to zero, which should be expected as the convergensedimg to a maximum and will thus have
zero gradient. From (2.4), the second flexion for the SSIBdn t

300 407 80, ., o
g(9,¢)_W{1+W—394(9 +9C)(«/92+og—oc) &3, (2.15)

which can again be seen to reduce to the SIS second flexion fivierd., and tends to zero at the centre
of the lens.

2.1.3 Flexion for the Truncated SIS (TSIS)

Another issue with the SIS lens model is its divergent totaksy which led authors (see, e.g., Brainerd
et al. 1996; Hoekstra et al. 2004) to define a Truncated SI6lasvk:

2.2
ot

p(r) = m, (2.16)

where defines the truncation radius, beyond which the density falls off a$. The convergence for this

lens model is then
e 0
5(9)_%{1—7}, (2.17)

with 6, = s/ D), and the shear is given by

O 0 20, 0, ”
0,0)=——2dlo — 2 (1 = i, 2.18
7(0,6) 29{ =g ( W@g)}e (2.18)

This lens reproduces the shear behaviour of the SIS toward<), as required, but falls off as 1/62
at large distances. Again, using Equations (2.2) and (2rthis circularly symmetric lens, | was able to
simply calculate flexion predictions. The first flexion foethSIS is thus

O, 63 i
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and the second flexion is given by

30 0 (6% +307) 80, 05 316

Both of these flexion results vary like the SIS (1/62) at small angular radii, but fall off more quickly
(~ 1/6*) for 6 > 6,.

2.1.4 Flexion for the NFW halo profile

I now turn to the NFW density profile described in Sectiond,.tvhich was found by Navarro et al. (1997)
to accurately represent simulated CDM haloes and has rechdlire standard theoretical description of
these objects. The NFW profile has the following form for thmehsionless surface mass density (see
Bartelmann 1996):

k(y) = 2,%5ny(—€)1, (2.21)

where we defings = perit(2) Acrs /Zerit andy = £/rs, with € defined as for equation (2.5), ard and
rs defined as described in Section 1.1.9 and Navarro et al. j1¥attelmann (1996) give the function

f(y) as

1— —2 _arctanh, /=% y <1
_ 12 Ty
fw) = 1-— \/22_1 arctan Z—;l y > 1. (2.22)
2= :

Taking the gradient of, | found the flexion for the NFW density profile to be given by

y Ok
Defining Fs = k<D, /rs we then have
_ 2y f(y) L df(@)] 4
F=-2F, [(yQ T TS0 o e (2.24)
with y = 0D, /rs = 6/65, and where, from Equation (2.22),
df(y) D é - 123 —arctanh h—g) y<l1
= M (2.25)

d -

x (y21—1)' —53—1 arctan,/ZTl — %) y > 1.
The analytic form of the second flexion can be found, as fowther circularly symmetric lenses, using
Equation (2.4) and the result of Wright & Brainerd (2000)fioe magnitude of shear due to an NFW lens.
| then found that the second flexion takes the form

(%(1 —29%) + g(y))] 316 (2.26)

8 .y
—oF, [ SmY
g I o
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where
8 _ 20 2 1y
oly) = (y'g v T 15y) — arctanh T, Y< 1 2.27)
8 _ 20 2 y—1 '
(y_a -5 T 15.1/) T arctan /4y > 1.

This second flexion is larger in amplitude than the first flaxias was also the case for the SIS results. |
now compare in more detail the flexion signals from the NFW &8l density profile, as confirming the
NFW model in the real Universe would be an important sucoasthE ACDM model.

2.1.5 Comparing NFW and SIS flexion results

To better illustrate these results, | calculated the firdgtsatond flexion signals we might expect to measure
for a typical galaxy-sized halo with either an SIS or NFW gdeofirstly we consider the calculation of the
NFW scaling parameters.

| choose a lens redshift = 0.35 and the hald\/509 = 102k~ M., this lens redshift being the median of
the lens galaxy sample used by Hoekstra et al. (2004), anddle having been found to be roughly typical
for galaxy halos in weak lensing analyses by Brainerd efl@6) and Hoekstra et al. (2004). | also choose
Dys/Ds = 0.5 (corresponding to a source redshiftof~ 0.8) and model the lensing within a standard, flat
ACDM cosmology, setting the present-day matter densityrpater(2,, o = 0.3, 24 o = 0.7, the Hubble
parameteh = 0.72 andog = 0.8, based on the 1-year results from the WMAP experiment Spetgs.
(2003).

Julio Navarro has made a publicly available programgr den. f 1) that generates predictions foand
A. based on input cosmological parameters and the model edtlimthe Appendix of Navarro et al.
(1997). This formalism links the characterisic dengityof NFW halos to the mean matter dendity,; at a
collapse redshiftcoi(Maoo, f), defined as the redshift at which half the mass of the halo wsifintained
in progenitors more massive than some fractfoof the final mass\sqy. The simple proportionality
relationshipA. ~ 10% x Qs (zcon) /s (2final), combined with a value of = 0.01, was found to give
good results for all the simulations of Navarro et al. (19%nd the routinehar den. f implements this
calculation for a given input cosmology, halo mass and fia#b hedshift.

Usingchar den. f | find a concentration of = 7.20 and a corresponding dimensionless characteristic
densityA. = 20267 for the NFW scaling parameters. These values are again ih@g@ement with those
found by Hoekstra et al. (2004) who measured= 2.41-% o x 10* as the best fit to their sample f10°
lenses.

For a flatACDM cosmology, the:, scaling parameter of Bartelmann (1996) and Wright & Brair(@000)
is given by

— A D, Dy

_ 8 C S

ks(Mago, ¢, 21,25) = 2.71x107° x — (7}11 pc) ( ls) (2.28)
M200 >1/3

3 2/3
X [QA,O + (14 2) Qm,O} (m

Lavailable at http://www.astro.uvic.ca/ jfn/mywebpagstte.html
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The scaling radius, is given by

ik L 0163 x ~ [+ (1 + 2)° Qo] M/ (20 . (2.29)
— | == —— ) =0. - z m —_— , (2.
h—1Mpc) ¢ \ h-'Mpc c U0 1/ 2Em.,0 102510,

and the flexion scaling constaft, is then given by

2
<7fs(c’ ZI’ZS)) = 8.09x 107 x A, (L) <Dls> (2.30)

arcsec! h—1Mpc D
X [Qao+ (14 2)* Qo] -

Interestingly, we note that the flexion scaling parameteroisa function of the virial masa/,qo of the
lensing halo, due to the cancelling of this dependence wdidend the ratio of Equations (2.28) and (2.29).
The flexion signal at any given function of the scale artjle= /D, is therefore independent of halo
mass, but it should be noted that (from Equation 2.29) thingceadius itself varies with mass.

The SIS scaling is straightforward in comparison; the Eimstadius for the SIS lens is given in terms of
Mosqo and the halo redshift; as

o)

297G Dye [ 8007 peric(21)\ V/°
— ! <7p 2t ‘)) M3, (2.31)

2 Dy 3

Using the same values far5, 21 and the cosmological parameters as were used for the NF\Wahalee,
this gives an Einstein radius for the SIS hal@gf= 0.215 arcsec.

The predicted magnitudes Gfnrw, Gnrw, Fsis andGgig, as a function of angular separation from the
lensing halo on the sky, are shown in Figure 2.1. As could Ipeeted the profiles show a good deal of
similarity, but it is apparent that both the first and secosgifin due to the SIS profile are stronger than
those due to the NFW at very small separations. Since onedfithortant features of the NFW profile is
that the density in the extreme interior of the halo variescas ! compared to the steepsr—2 for the
SIS, this is not a surprising result.

It can be seen by comparing the lower plot of Figure 2.1, foictvithed axis is doubled in scale, with the
upper plot, that/nrw is both stronger and longer range thArrw. Interestingly, we also note that the
angular separation at which the SIS halo flexion exceed$dah#tie NFW halo is larger by about 5 arcsec
for second flexion in relation to the first flexion. These twieefs are a consequence of the non-locality
of G as a lensing measurement when compared to the directlyYoeaheasurement given bf; for the
NFW profile,G tends to be less steep th&nat smallf and to die away less rapidly at larger separations.

The middle plot of Figure 2.1 shows another feature of themamison between the two profiles: an SIS
halo of My, = 1.8 x 10'2h~1 M, is practically indistinguishable from an NFW halo wifflyy =

1 x 10*2h=1 M, for first flexion measurements over galaxy-galaxy separatipeater than about 5 arcsec.
This is a very similar property to one found by Wright & Braidg2000) in a comparison of th&hear
profiles of SIS and NFW halos. They found that the assumpti@am &IS halo profile produced systematic
overestimation (by factors of up to 1.5) of the mass of NFWbkal Further work will be required to
determine the dependence of this effect upon concentratidiexion measurements as Wright & Brainerd
usefully did for the case of shear.
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Figure 2.1: Top: Comparison of the magnitude of first flexiare do an NFW and
an SIS halo ofMy, = 1 x 102~ 1M, at redshiftz; = 0.35. Middle: A similar
F comparison but this time the SIS halo hWakgy = 1.8 x 10'22~1 M. Bottom:
The magnitude off for an NFW and an SIS halo dff5q0 = 1 x 10'2h~* M, where
the doubling in scale of the angular separation axis higdighe larger range and
amplitude of the second flexion.
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Figure 2.2: Flexion vector field for an elliptical isotherndansity distribution with
minor-to-major axis ratio of 0.67. Points in the extremesiigr of the diagram have
been omitted for clarity and the elliptical contours folltwe logarithm of F|.

2.1.6 Flexion for elliptical profiles

We now discuss the more general prospect of using flexion @sore the ellipticity of lenses. When
describing elliptically flattened halo mass distributipitss often simplest to work with elliptical lensing
potentials. Unfortunately these descriptions have someredimitations, most notably that they produce
dumbbell-shaped isodensity contours for large elligésitand can even produce negative surface-mass
densities (see Kassiola & Kovner 1993). It is thus best tosiciar models where the isodensity contours
of the mass distribution are elliptical, despite the inssghcomplexity of the lens potential. The simplest
generalization of the softened isothermal sphere to gotiekil density profile can be written

Or

k(01,02) = - —
0 0

24 /62 L 2

\/C+(1+6)2+(1—6)2

(2.32)
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where the major axis of the elliptical isodensity contouesalong thef); axis in the sky plane, and the
ellipticity ¢ is defined by the ratio of minor-to-major axésanda respectively):

b 1—e¢
a

= . 2.33
1+4+¢ ( )

The flexion vector atf;, 02) in the sky plane is then

P Oe (( 60, ) (2.34)

3/2 2 _ 2
NeP 9% N 9% / 1+e€) (1—¢)
e T

We note that interestinglyF is no longer directed towards the centre of the lens foféall0-); it will in
fact be centrally directed only when eithiaror 65 are equal to zero.

It is simple to show that the first flexion vector at a pdiéit, 62) will be directed towards a point on the
major axis of the ellipse with coordinatés.,;, 0) where

1—¢€\? b\?2
o [ (5 o [ ()] 25
Due to the(b/a)? term, even relatively modest ellipticities in the densitstdbution cause;,, to represent
a significant fraction of);. This tendency for the flexion vector to be aimed at a poimificantly off lens-
centre can also be seen in Figure 2.2, drawn for an axis r&tib6@ which may be typical of galaxy
halos (see e.g. Hoekstra et al. 2004, also Mandelbaum ed@5. ®ho find a lower value). This implies

that measurements of the direction of flexion in galaxy-galansing may be able to give good further
constraints on the ellipticity of dark matter halos.

This concludes the description of analytical flexion resuftontributed towards BGRT06. For complete-
ness, | describe the following extra result taken from thaper, the second flexion for an unsoftened
elliptical profile. Settingd. = 0, the elliptical isothermal profile can be conveniently rigien, beginning

by defining the following radial term:
p=1/0%?+ f203, (2.36)

wheref? = (a/b)?, a being the semi-major axis arbthe semi-minor axis as before. The density profile
can then be simply written as= A/p, whereA = afg/(a + b). For this distribution, the shear can be
shown to be given by

cos(2¢) _ —AG% — 63 by = _Asin(2¢) B _A29192

" P po% "’ P pb?

(2.37)

The derivatives of these terms may be calculated to find tiresponding complex first and second flexion:

() (422

and

G A (39% — 0,03 — 60302 —8f29193> A <89§*92 + 6621203 + f204 — 3f2eg) . (a9

0304 0364
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These results conclude the discussion of analytical e$attflexion from physically-motivated CDM
halo models. We now turn to an simulated investigation int@iextra information into dark matter halo
structure might be gained from the measurement of flexiompared to measurements of shear alone.

2.2 Predicting halo constraints

Previous studies of galaxy-galaxy lensing which have aiterbnstrain values of halo parameters such
as Moo or ¢ for the NFW profile have used measurements of shear exclygaee, e.g., Brainerd et al.
1996; Hoekstra et al. 2004, hereafter HYGO04 in this Sectdeinheinrich et al. 2006; see also Schneider
& Rix 1997). Itis therefore worthwhile considering whetltembining measurements of shear and flexion
might improve constraints for the halo parameters suehoad/»oo when compared to those derived from
measurements of shear alone.

2.2.1 A simple model of galaxy-galaxy lensing data

In order to do this | constructed a simplified but illustratimodel of data we might expect from both shear
andflexion measurements. We can generate mock galaxy-masdatamn function data for a sample of
lens and source galaxies such as might be available usingntar forthcoming galaxy imaging surveys. |
model lens haloes as NFW profiles, and then make the impditstrgimplification that every lens galaxy
in our sample is of B-band luminositl};, with a single associated fiducial mass,, and concentration

c. Such fiducial values are assigned in HYGO04 to galaxies witvide range of luminosities, using an
observationally motivated power law scaling relation sastproposed by Guzik & Seljak (2002). Rather
than modelling a range of galaxy luminosities as will be seereal survey data, we simply model each
galaxy as being of “typical” luminosity.}, and make no attempt to include variation in galaxy mass,
concentration, mass-to-light ratio or concentratiorigb+ ratio.

This single-luminosity approximation will limit the ovdraccuracy of the model, as it does not take
detailed account of the balance struck between the cotitimifrom large and small galaxies: in galaxy-
galaxy lensing the majority of the signal is due to galaxégér than_7;, whilst those smaller thah?; in
fact make up the majority of the population. However, theppsge of this investigation is the comparison of
shear versus flexion measurements and so it iref@ve signal-to-noise properties that are of interest. We
assume that, as a first approximation, this simplificatiothéomass model will not significantly prejudice
results towards either shear or flexion. As a final check, weeséimate the overall accuracy of the model
by comparing modelled constraints on shear alone to thoBksped in the literature. This is the most
severe test of the viability of the single-luminosity apymoation; if passed it provides further evidence
that this model will allow a fair comparison of shear and ftexsignals.

2.2.2 Noise on individual shear and flexion measurements

In order to estimate the confidence limits we expect from wieaking measurements we must estimate
the noise upon the measured signal. We assume this noisbendbminated by the scatter in measured
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ellipticities and flexion that is present even in the absearfagravitational lensing; this we refer to as the
intrinsic scatter. In this simple model | approximate thgatser as being normally distributed around zero,
with a standard deviation that can be found from the root nsgaiare (rms) measured shear or flexion from
survey data. In this work | use valuesgf, = 0.3, Fi,, = 0.1 arcsec' andG = 0.3 arcsec! for the
rms intrinsic shear and flexion. These flexion values, basesgholy measurements from my work which
ignored the effects of an anisotropic PSF, are significdatlyer than theF;,, = 0.04 found by Goldberg

& Bacon (2005).

However, the modelling of flexion measurement errors as atlyndistributed represents a considerable
oversimplification; measurements 8fandg are found to be distributed in a non-Gaussian manner, with
broad wings containing significant numbers of outliersategies for accurately dealing with this property
of flexion are discussed in later Chapters, but we retain #seraption of Gaussian errors in this mod-
elling. This simplifies both the error model and the intetatien of parameter likelihood contours, but
may have consequences for the interpretation of our modelésults. As a first investigation we make
this simplification but proceed with caution.

2.2.3 Noise due to redshift measurements

Possible errors in the redshift determinations must alsmbsidered; | assume for this simple simulation
that we have access to photometric redshifts for each galattyan uncertainty ofAz on each individual
redshift measurement. Values fAr: are assigned below as appropriate for broad-band and metutimoeh
photometric redshift surveys. We note (see Wright & Brain2000) that the strength of the shear signal
due to an NFW halo depends on the lens geometry via a fagter o« D;Ds/Ds, whereas | found in
Section 2.1.4 that the strength of the flexion variesFagw o DfDlS/DS. | thus model the error on
measurements of the shear and flexion due to redshift unttéztaby calculating fractional uncertainties
on on values ofD,Dys/ Ds and D Dys/ Ds. This can be done by considering the four following integral

terms:
DDy > o Dy Dyy
< l 1> = / dzlP(z |z§/ dz] P(2]|z) 2 (2.40)
0 0 Dy
DDb e e D2D?,
it = / d2.P(z |z§/ 2] P(2])21) =L (2.41)
0 0 Ds/
D2Dyg o0 o0 D2 Dy
< ! 1> = / dzlP( S|zs/ dz{ P(2]]2)— 1 (2.42)
0 0 Dy

D? Dy > DAD2,
<(1—‘)> = [Taplz) [ adpa 2, (2.43)
DS 0 0 DS/

whereP(z{|z) andP(z}|zs) are the probability of measuring a redshiftor =/ for a lens or source galaxy
respectively, given that its true redshift is or z;. | model the probability distribution$(z{|z) and
P(zl|zs) as Gaussians, centred respectively uposindz; with some standard deviatiohz, and assume
the same\CDM cosmology as described in Section 2.1.5.

Assuming an underlying ‘correct] andzs and evaluating these integrals numerically, the fractienars
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on a single measurement of shear and flexion due to redslaértainties can be estimated as

= () ()

(A?z _ (Agg» < (Dijzzls>2> - <D§)zzls>2 ) <D§)D1> (2.45)

1

R

Although the size of these fractional errors is a functiothefspecific underlying lens and source redshift,
which thus varies on a galaxy pair-by-pair basis, for theppee of this first investigation | sef and z,
always equal to the median lens and source redshift respictor the mock survey sample we consider.
Compared to a model in which source and lens redshifts vais/stngle-redshift approximation causes a
systematic underestimate of redshift errors for higheshétpairs, and an overestimate of redshift errors
for lower redshift pairs. As a first model we assume that thésses cancel on average; this is not strictly
true. However, it can be argued that the single-redshift@pmation will not significantly damage the
results of a comparative analysis, as the redshift errera amall source of uncertainty when compared to
the lensing measurement noise due to intrinsic galaxy shape

One further assumption, the availability of reliable phogdric redshift estimates fdyoth sources and
lenses, is also a simplification of the modelling that reggidiscussion. For many real surveys only the
lens sample will have well characterized redshift inforimat often there is none (see, e.g., HYG04) but
this is becoming increasingly rare. In the absence of rédstiormation there is extra scatter in the
signal caused by ignorance of the lensing geometry, whismtlodel fails to take into account. However,
Kleinheinrich et al. (2005) show that this scatter is siguaifitly reduced with accurate photometric redshifts
even if only available for the lens galaxies, and lensingsys of the future have high quality multi-band
imaging as a high priority. Therefore, and given the largglalitative aims of this analysis, we assume
redshift information for both source and lens samples.

2.2.4 Choice of model parameters

For the fiducial virial halo mass | choodé,g, = 1 x 10'2h~1 M, (corresponding to a rest-frame B-band
luminosity of L} ~ 1.2 x 10'°2=2 Ly ¢, according to the results of HYGO04). | choose to model configen
limits for two ground-based surveys; one similar in size hattused by HYGO04, and one covering a
substantially larger area of 1700 square degrees. | alssidimra deeper space-based imaging survey with
far smaller area of 0.5 square degrees.

The sample of galaxies used by HYG04 was taken figniband imaging of the the Red-Sequence Cluster
Survey (Yee & Gladders 2002) and contaimgd~ 1.2 x 10° lens galaxies an@/, ~ 1.5 x 105 source
galaxies over a sky area of 42 sq deg. This corresponds toskper densities of; ~ 0.8 arcmin 2 for

the lenses angd, ~ 10 arcmin2 for the source galaxies. For the larger ground-based suiagsume the
same depth, but increase the survey area to 1700 sq degmasasedshift uncertainty dfz = 0.1(1+=z)

for each galaxy in either sample, and use the median lens@amndesredshifts found by HYG04 of =
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0.35 andz, = 0.53 for both ground-based mock datasets. | set the underlyingy fas halo concentration
toc = 7.20 as in Section 2.1.5.

For the mock space-based dataset | set the survey afea $o deg, with number densities af = 10
arcmim 2 andn, = 30 arcmirm 2 due to the increased depth and quality of imaging expectespface-
based results. For the redshift uncertainties | use a vdlu®zo0= 0.05(1 + z) (c.f. the COMBO-17
photometric redshift survey, Wolf et al. 2004, which prasdredshift information for the GEMS and
STAGES surveys, Rix et al. 2004; Gray & STAGES Collabora2606), and set; = 0.5 andzs = 1.0.
Following the predictions of Navarro et al. (1997) | modetledens halo as having a slightly smaller
concentration of = 7.02 at this deeper redshift.

2.2.5 Simulated galaxy-mass cross correlations

| then generate a set of mock results for the tangential siedrradial flexion, averaged over annuli
around the lensing galaxies (at increasing angular sépasabetween lens and source) for the whole
ensemble of galaxies in any given survey. These mock reastdtsnade by taking the theoretical (NFW)
prediction for the average shear or flexion over each anraflasgular separation and offsetting it by a
Gaussian random deviate scaled to the estimated overallferrthat bin. This overall error is estimated
by combining, in quadrature, the error due to redshift utadety and the intrinsic scatter for a single
measurement. Multiplying this combined error by a factot 6§/ Ny, whereNy,;, is the number of lens-
source pairs within the annulus over which we are averagimgemsing measurements, gives the error on
the tangential or radial shear and flexion in a given bin.

All that remains is to choose at what angular separatiomapose the divides between annuli for averaging
shear and flexion measurements. Since flexion is most usefiall scales, while shear signals remain
strong at scales large enough for the flexion to become noisendted, | divide up the angular scales for
measurement according to a geometric binning scheme. Iseht® annuli such that the centre of tlte
annulus lies at an angular radius

ry = afti=v (2.46)

wherea = 2 arcsec and the geometric factbre= 1.5. In this way | describe annuli which usefully cover
both small (down to 2 arcsec) and larger (up to 77 arcsec@scdlangular separation.

2.2.6 Confidence estimates on lens model parameters

One final assumption is made, namely that measurements af, ghiet flexion and second flexion are
mutually statistically independent, which then allows kbg-likelihood surfaces derived from each to be
summed to give final, combined constraints. We currentlyehaw reliable data concerning the degree
of correlation to expect in real data, and so present oultsegiven a degree of warning. In Figure 2.3
we present likelihood contours for fiducidfsgy andc parameters resulting from a maximum likelihood
analysis of the three mock datasets generated using thigesimodel. The three levels plotted show where
Ax? = 2.3,4.61 and6.17, corresponding to 1-, 2- and @<onfidence intervals for normally distributed
error distributions (see Press et al. 1992). Again we natk #ithough we are here modelling the measure-
ment errors as normally distributed, this is not necessargood approximation (this will be discussed in
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much greater detail in Chapter 4). In addition, the indepeceé ofy, 7 andg in practical measurement
will need to be investigated further to test these results.

The most important and interesting feature of the likelithaontours seen in Figure 2.3 is the qualitative
fact that the constraints derived from measurements ofrshred the two flexion fields are oriented at
different angles in the plane. This allows the three medesao complement one another, and may offer
improved constraints upon the concentration parameteaiticolar. This should perhaps not come as a
surprise; as found by Goldberg & Bacon (2005), the signaldise of flexion is best close to the lensing
mass on the sky plane. In fact, flexion is most sensitive oatigeilar scales at which the logarithmic slope
of the NFW halo changes from -1 to -3, typically5 arcsec for al/sog = 1 x 10'2M. This is not so
for shear, which is a better probe of the outer regions andativeass.

Further theoretical insight into this result can be founthia fact that, whilst shear is a measure related to
the projected mass density the first and second flexion probe the local gradient.ofrhis gradient is
determined by the slope of the halo profile, and the concémraf an NFW profile directly parameterizes
what slope we should expect at a given distance from the teltrez We should therefore expect that
flexion has the potential to improve existing constraintsh@concentrations of galaxy-sized dark matter
haloes, which is what Figure 2.3 concludes.

It is also noted from Figure 2.3 that the size of the 68 per cenfidence interval derived on the fiducial
Mg for the HYGO4-like survey is in good agreement with the massstraints found by those authors for
galaxies scaled to a (slightly smaller) fiduciat = 10'1°272Lg o, namelyMsgo = (8.4 £ 0.7 £ 0.4) x
101*h~t M. The second error estimate in this value corresponds totarsgsic uncertainty due to the
fact that HYGO04 had no access to multi-colour redshift infation for the Red-Sequence Cluster Survey
(see HYGO04 for details), but assigned distances using tlymituale of objects.

We note that even despite this lack of redshift informatibe,HYGO04 errors due to intrinsic galaxy ellip-
ticity dominate over redshift uncertainties in their intigation of galaxy-galaxy shear. This justifies the
simple single-redshift model for the treatment of redskifors, described in Section 2.2.3. Furthermore,
the good agreement between the shear-derived confideecedistachieved by HYG04 and our own sim-
ple model provides some vindication of the single-lumitpoapproximation described in Section 2.2.1. In
the final Section we enter into a thorough discussion of &miossible limitations in the modelling, before
deciding what firm conclusions, if any, may be drawn.

2.2.7 Caveats and conclusions

We have presented an investigation into the halo parametestraints available from a simple analysis
of synthetic galaxy-mass correlation functions, and foragiilts that suggest flexion measurements may
improve such analyses when combined with measurementgaf.sh

However, five important simplifying assumptions went irtie thodel:
1. The modelling of each lens galaxy as having the same lwsitinanass and concentration (see
Section 2.2.1), referred to as the single-luminosity agipnation.

2. The assumption of Gaussian-distributed measured shddlexion values.
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Figure 2.3: Estimated confidence limits on NFW halo pararseteailable using mea-
surements of (dotted) shear alone, (dashed) first flexiomeal@ot-dashed) second
flexion alone and (solid line) combined measurements ofrar@hboth flexions. Top:
for a 42 sq deg ground-based survey such as that used by Ifoekat. (2004). Mid-
dle: for a 1700 sq deg ground-based survey. Bottom: for a@.&eg space based

survey.



2.2. PREDICTING HALO CONSTRAINTS 59

3. The placing of the entire lens population at a single, eyswedian lens redshift, and the entire
source population at a single, survey-median source riédshisee Section 2.2.3). This we have
previously referred to as the single-redshift approxiorati

4. The assumption that photometric redshift informatiofl & available for both source and lens
galaxy samples.

5. The statistical independence of measuremenis #fandg, allowing log-likelihood surfaces to be
summed to provide combined constraints on fiducial halorpatars.

The success of our model in matching the shear-derived reamist presented in HYGO04, along with the

secondary importance of redshift errors in their analydgspite having no photometric redshifts), provides
justification of assumptions 1, 3 and 4 above. Even if thesamaptions were not able to reproduce the
results of HYGO04, these errors would not preferentiallgisgithen either the shear or flexion signal, and
would therefore not prejudice the validity of our comparidgzetween the merits of shear and flexion for
galaxy-galaxy lensing.

Unfortunately, data does not exist to quantify the mutuakinig and covariance between simultaneous
measurements of, 7 andg (assumption 5 above), although Schneider & Er (2007) haowstkevidence
that measurements of shear from simple galaxy light profie@ome biased in the presence of a gravita-
tional flexion signal. This issue will be of importance in dogyears, and will require large quantities of
simulation data exploring the lensing of galaxies with aat&morphological characteristics.

The assumption of Gaussian measurement errors (assun2ptinay be most difficult approximation to
justify in my analysis. It is known that the distribution ofemsured shear may be reasonably approxi-
mated by a Gaussian distribution (e.g., Schneider & Rix 1981 this is not known for flexion. In fact,
preliminary work suggests that flexion measurements p@tighly non-Gaussian distributions, which if
sufficiently severe may invalidate the results presentetlyithstanding efforts to use more sophisticated
statistical tools to attempt to circumvent the problem.

Being content to trust and interpret these results in a i@k fashion, the simple models presented in
this Chapter suggest that flexion may offer a valuable newafayproving constraints upon the shape of
haloes surrounding galaxies. However, the accurate ninodell a galaxy-galaxy lensing analysis designed
to cope with the non-Gaussian distribution of measureddtewill be necessary to draw more firm con-
clusions. Whether such modelling would prove the best waletermine the real extent to which flexion
provides useful extra information is doubtful; the finakt&dl lie in the undertaking of a full galaxy-galaxy
shear-flexion analysis using real data.

My efforts to do just this, using imaging data from tHST GEMS survey (Rix et al. 2004), is the subject
of Chapters 4 onwards. In the following Chapter we addressyportant and related question, namely the
practical estimation of flexion from noisy galaxy imageqitglly heavily distorted by the effects of an
anisotropic point spread function.
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CHAPTER 3

ESTIMATING SHEAR AND
FLEXION

The accurate measurement of galaxy shapes, especiallg prélsence of large systematic distortions due
to imperfect telescope optics, is vital if reliable condtuns are to be drawn from weak lensing analyses. In
this Chapter | describe a recent development in this fieldvknas theshapeletechnique, which models
galaxies as a sum of basis functions that behave well undengelution. This method lends itself natu-
rally to the measurement of flexion, and it was within the getpframework that a first practical method
for flexion analysis was proposed. | describe how shapelaystra used to deconvolve galaxy images with
a model of the anisotropic point spread function, and in thal fection describe how estimators of shear
and flexion (presented in Massey et al. 2007d) can be drawmtiese deconvolved image models.
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3.1 Cartesian shapelets

The underlying concept of the shapelet approach, as intextiny Refregier (2003) and Bernstein & Jarvis
(2002), is the expression of an object surface brightnesssasn of orthonormal, two-dimensional basis
functions: o -

10)=>" > farnaBnina(0; ). (3.1)

ni =0 n2:0

In the shapelet formalism of Refregier (2003), the basistions B,, = B,, », have dimensions of
inverse angle, the coefficienfs therefore having dimensions fluxinverse angle, recovering the required
dimensionality of surface brightness f6f6). The choice of basis functions is free in general, but the
Cartesian shapelet basis set is defined by the basis function

Hy, (el/ﬁ)an (92/ﬁ)e—\9\2/2ﬁ2
2("1712)5\/W1n2 5

whereH,,, () is @ Hermite polynomial of ordet;, and the important free quantityis the angular scale

size of the shapelet basis set (typically in arcsec). A dsimral basis set is chosen so as to satisfy the
following orthonormality relationship

Bn(0;0) =

(3.2)

// Bn17n2(0;ﬁ)Bmhmz(o;ﬁ)dQe = 6777111167771122’ (33)
whered;! is here the Kronecker delta function.

We refer to the sum of the two parametessandns as the order of the shapelet basis function, and will
generally truncate shapelet models to some limiting order, such thati; + no < nyax. Importantly,
being weighted by a Gaussian outer envelope, these fuisdiave robust and well described behaviour
under mutual convolution which makes them particularlyesditowards correcting images for the effects
of an instrumental point spread function (PSF). These lasiions are illustrated in Figure 3.1, which is
taken from Massey & Refregier (2005).

3.1.1 Image transformations in Cartesian shapelets

The Cartesian shapelet basis functions are also the swdutiothe two-dimensional quantum harmonic
oscillator (QHO) within a geometrically square potentzald so ladder operators can be defined in analogy
to the quantum mechanical system:

danlﬂm = vV nanlfl,ng (34)
&J{Bnlﬂm = Vvni+ anlJrl,ng (35)
dQBnth = vV TLQBnl,ngfl (36)

Vg + 1Bn],n2+1. (37)

AT
U“QB7H ;M2
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-04 -0.2 0.0 0.2 0.4
Cartesian shapelet basis functions

Figure 3.1: Cartesian shapelet basis functions used tonggzge galaxy images;
shown are only those functions for whieh, ., < 6. Figure taken from Massey
& Refregier (2005).

Just as ladder operators in quantum mechanics descrilsitimas between energy and momentum states,
and thus changes in the overall wavefunction, these ladakators may be used to describe transforma-
tions upon images represented by a sum of shapelet basisfusnc

The analogy between the shapelet basis set and solutiome dHO is useful as it provides a clear
indication as to the relationship between the basis tramifb'ons&I anda;, and the simplest possible
linear transformations upon the image plane. ConsidefiegQHO system, the basis functioBs, are
eigenstates of the Hamiltonian .

H = [(a% +43) + (5 +53)] . (3.8)

wherez; andp; are analagous to dimensionless position and angular momesperators, and are given

on the image plane by
6 B9

where it is instructive to reassert that the quanfit the angular scale of the chosen basis set (3.2).

(3.9)

The raising and lowering operators defined in Equationg{(®4) may also be defined in terms of these
position and momentum operators:

al = % (& —ipi), ;= \/% (& +1pi) , (3.10)

where this important result follows directly from the argtowith the QHO (Refregier 2003). The final
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step is to use Equations (3.1) and (3.9) to rewrite thesdtsessifollows:

0:1(6) = Bail( f Z Z Fasons (@5 +al ) Bu(8: ) (3.11)
n1=0ns=0

5 .

96,10 = % Z Z fnn( a; —a ) Bn(0;3). (3.12)

n1 =0ns=0

As an example of the practical use of these results, congidewe wish to find an shapelet expression for
the partial derivative with respect &g of a general imagé(@). Again using Equation (3.1) and the results
above, we have

5o - Iiimw=>%wﬂ

o0

= \/— Z anl,nz \/_Bnl 1712( —vni+1 Bn1+1n2( ﬁ)]

n1=0n2=0

= ﬁ\/_ Z Z vni+1 fn1+1 no \/n_lfn1fl,n2)Bn1,n2(0§6)v (313)

ny= 0 77,2_0

where in the final line we have made two changes of summatigabla so as to absorb the transformation
of basis functions into the shapelet coefficiefi{s

The transformations of Equations (3.11), (3.12) and themgta Equation (3.13) are linear and may be
repeated to describe any general distortion or coordimatesformation upon images represented by a
shapelet series, in terms of the ladder operaibimd&i. Once thus described, short steps similar to those
in the example of Equation (3.13) allow any image distortiwriransformation to be written entirely in
terms of repeated linear transformations upon the shapeddficientsf,, .

3.1.2 Lensing transformations in Cartesian shapelets

It is now instructive to expand these results to provide audgon of coordinate transformations upon
the image plane, in particular the coordinate transforomative expect due to weak lensing. For clarity |
reproduce Equation (1.92), which describes the effect akvabear and flexion upon the surface brightness
of a source galaxy:

1(6) ~ {1 + {(A —1);0; + %Dijkojok] a%} I°(0). (3.14)

Immediately we see that using the results of Equations J&3.13) the effects of weak shear and flexion
may be written in terms of shapelet transformations. Welrélcat the 4;; and D,;;, matrices may be



3.1. CARTESIAN SHAPELETS 65

written in terms ofy, x, F andgG:

I—Kk-—m —72
A (0) = , 3.15
Dir(8) = L[ 3F1+G1 Fat G
2\ Fo+G2 Fi1-Gi
1 Fa+Gy F1—-6G1
D;2(0) = —= . 3.16
2(0) <-7:1_g1 37:2—92) (3.16)
Using these expressions fds; andD;;;,, we may rewrite Equation (3.14) as
1(0) ~ (1 kK 478+ FiF, +giéi) °(0), (3.17)

where we have now defined the shapelet lensing operatpfs, F; and(;, each of which is a particular
combination oﬁj anda; that can be found by repeatedly substituting the resulta quations (3.11) and
(3.12) into the expression fd(#) given in Equation (3.14).

It should be stressed at this point that the result given uneliqn (3.17) is a first order approximation to the
effects of weak lensing image transformations, as is Equg8.14) from which it derives. These results
both stem from a Taylor series expansion of the source sibfiaghtness, which | will now briefly discuss.
We consider the second order approximation to the lens eaquateviously discussed in Section 1.2.8 and
given by

Bi~0; +(A—-1);;0; + %Dijkojok, (3.18)

and rewrite this expression in the simpler fofin~ 6; + A6f,, remembering that the vector quantity
refers to coordinates on the source plametto the unfortunate yet universally adopted notation for the
shapelet basis scale sige

Since surface brightness is conserved by lensing, we H#@je= I*(3), which we may express as a Taylor
series expansion in terms &fand A6;:

s . . H27s . . 378
OI(8) | AGAY; 0°1°(8) | AGAYNG OT(B) 319

1(0) ~ I*(0) + Ab; 20, 51 06,00, 3! 00,00;00,

Equations (3.14) and (3.17) amount to a simple truncatiothisf series at first order. In the shapelet
operator notation of Equation (3.17), this series expamsiay be written very succinctly as

10) = (14 4 75 4 5P 1 964) 1(g). (3.20)

Note that we refrain from writing these expressions aststqeialities due to the fact that they retain the
use of the approximate relatigh ~ 0; + A#d;.

Whether the truncation represented by Equations (3.14)add) is a valid approximation depends on
whether the error introduced by this truncation is at theesander as the correction we make by express-
ing Ad; to second order. For stronger shear and flexion signals ticpkar this is a question of some
importance. It is also a practical consideration, as it mby depends on the strength of the expected shear
and flexion signal but also on the light profiles (and denxestithereof) of typical galaxy profiles. However,
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as will be seen, use of the expression (3.20) to construpestigestimators will quickly yield expressions
of unpalatable complexity, particularly in the case of ftexi Goldberg & Bacon (2005) discuss this issue
briefly and conclude that one may proceed using Equatiod)3blt there is clearly scope for further in-
vestigation into this question. In particular, it will be prortant to more clearly define the regimes in which
the strength of the shear or flexion signal renders it an ithegdproximation.

In this work | too proceed using only Equation (3.14), whicjustify both by confining myself to the
weak shear and flexion regime and in the light of the limitedistical confidence expected for flexion
measurements using current survey data. As sample sizesss; it may be necessary to explore possible
biases engendered by the truncation of Equation (3.19)recétion which is currently inherent in all
shapelet lensing measurement methods (Bernstein & Jab0i8; Refregier & Bacon 2003; Massey &
Refregier 2005; Kuijken 2006).

Assuming that Equation (3.14) is a valid approximation ® effects of weak lensing, we may repeatedly
substitute the results from Equations (3.11) and (3.12xpess the shapelet transformation operators of
Equation (3.17) in terms c&ﬂ anda;. Performing these calculations, Refregier (2003) derlreshapelet
expressions for the convergence and shear transformatsons

kK = w+ g (> +al> - a3 - a3) (3.21)
néh = & (af* - af* — a3 + a3) (3.22)
128 = (&Idl; - @1d2) : (3.23)

Similar expressions for the first and second flexion are deamably more involved but may be derived in
exactly the same fashion using Equations (3.11)-(3.17¢asrtbed above. In this way, the expressions for
F, found to be

Fiby = ?—lg {3 (aP - a;”) +3 (alaP - a{a‘f) +3 (a}' + aI) (ala{ - a}al)
+ (3a] +an) (af +azad) - (af +3a1) (adaz +a3) } (3.24)
Foly = ?—25 {3 (af? - a3) +3 (a0l — ala3) +3 (af + af ) (azal - alas)
+(3ab+a2) (a? +aral) — (ab +3a2) (alar +a3) }. (3.25)

In the same way, the expressions for the second fleiptransformations in terms of the shapelet ladder
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operators are

. G16 f.13 | 42, 4.2 3

Gg1Gp, = —= {a +ai“a; —asay —a

1Y1 8\/5 1 1 %1 1*1 1
+ (3a” + 2afa, — a3) af - (343 + 2faz — af*) an } (3.26)

. GaB (.3 | 4.2  ~i2. i3

GGy = — { + aya5 — Gy a2 — @

22 8\/5 2 202 2 (2 2

— (3} + 2alay - a3) b + (343 + 2afar — af*) a | (3.27)

Instantly the complexity of these transformations is gleapecially in the case of the first flexion transfor-
mations. This has ramifications for the use of the shapel#ioden regimes where it is necessary to use a
higher order expansion of the Taylor series for the imagksarbrightness in Equation (3.19). Calculating
explicit second order expressions, using Equation (3f@0)he convergence and shear operators above is a
laborious task. For the flexion transfomations, given the-acommutative nature of thi;T anda operators,
these calculations will be become extremely tedious arfatdif to verify. Should it be necessary to use
such higher order expressions, i.e. when measuring shddieaiion of sufficient signal strength, care will

be necessary in the calculation and presentation of thesése

The effect of these operators can be written equivalenthgtims of transformations upon the shapelets
coefficientsf,,, by writing the operation upon the full image, as in the exEngd Equation (3.13), and
making a suitable change to the summation variable. Takogaions (3.21), (3.22) and (3.23), we can
rexpress the action df, S; andS as follows:

(L4 KE) : fiy = e = (LK)
S V=D 13, o,
(n2 — 1)nz f’rSL],n2—2
= VD +2) £ 0,
— VDY) £, ) (3.28)
(L 180) c fomy = Frvna = Frms
+ % {\/m erLlfQ-,nz
- V (n2 — 1)ny le,nrQ
- Vi + D) +2) 5 iom,
+ VD) [ ) (3.29)
(L 4+7252)  fo s = frme = foymg

+ %{vm?hleq,nrl
— VD012 £y | (3.:30)

+ +

where f7 denotes the shapelet coefficients of the unlensed sourggeimBxpressions for thé; and
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G, transformations in terms changes to the shapelet coefficjéncan also be derived using Equations
(3.24)-(3.27) and the steps outlined in Equation (3.13).

Something that will be of use in the later Sections is to mgtias pointed out by Goldberg & Bacon
(2005), that the effect of shear and convergence in shapgbete is to transfer betwegh coefficients
for which An; + Ane = £2. In contrast, the flexion operators of Equations (3.24) &h@X) couple
pairs of coefficients for whicl\n; + Any = +1,43. This useful property will have ramifications for
the construction of Cartesian shapelet estimators in @e8té.2, as it allows the action of weak shear and
flexion to be treated separately.

It is the knowledge described above, of how lensing imagefamations in real space may be related to
those in shapelet space, that allows Cartesian shapelalstocde used to create estimators of shear and
flexion. Again, this will be described in the later Sectiod.2, but before proceeding | will first describe
an alternative shapelet basis set that has many usefulntiesgpé&nown as polar shapelets.
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3.2 Polar shapelets

The formalism of polar shapelets, introduced initially bgffegier (2003) and subsequently in greater
detail by Massey & Refregier (2005), is closely related tat thf Cartesian shapelets. Instead of the basis
set defined by Equations (3.1) and (3.2), polar shapeletgesgjthe object surface brightnds$6) as

10)=1(6,6) = > > famPum(0 :8), (3.31)
n=0m=—n
wheref and¢ are circular polar coordinates on the image plane, definéd Section 2.1, and the free
parametep is once again the angular scale size of the basis set. Theghapelet basis functions, which
we labelP, ,,, are defined by Massey & Refregier (2005) as

(=1) =D/ ([ = ) /20 \ M2 5 1 2\ g2 rogt i
P (0, ¢;8) = Blml+1 {w[(n - |m|)/2]'} ¢ |L‘(n|*|m\)/2 <@) o "2 2, (3.32)

using the following definition of the associated Laguerrypomials (see, e.g., Arfken & Weber 2005):

x~%e® df e
p' @ (a:p+qe ) . (333)

LZ(I) =

An important difference between the Cartesian and poldsisass is that the functiorf3, ,,, are no longer
purely real, having complex phase™?. In order to ensure that§) remains real, we require th#t ,,,
is complex in general and that

fn,mpn,m + fn,men,fm - fn,mPn,m + fn,me:;_’m (334)

is purely real for all», m. This can be done by enforcing the conditifin,, = f;; _,,.-
As in the case of the Cartesian basis set, the polar basi3, sgis defined as having dimensions of inverse
angle, and the polar shapelet coefficefiis,, have dimensions flux inverse angle. This ensures that
we recover the necessary dimensions of surface brightoed$é), and thatP, ,, satisfy the following
orthonormality relationship on the image plane:

[ Pant®:5)Prate: s)%0 = sy (3.35)

where, as in Equation (3.3); is the Kronecker delta function. The polar shapelet bagistfans are
depicted in Figure 3.2, which is taken from Massey & Refre(#€05). As can also be seen from Equation
(3.32), each separate member of the basis set is uniquedyilteds using the two integers andm, with

n > 0 and|m| < n. These integers form theandy axis labels of Figure 3.2, which depicts ea@h,,,
basis function up to a maximum order< 6.

Once more, it is possible to draw analogies between polgredbis and the solution to the QHO. The
P, ., basis functions correspond to eigenstates of the Handltofor a particle confined in circularly
symmetric, two dimensional, harmonic potential centredr@norigin of the image plane. The quantities
n andm then correspond to the quantum numbers for energy and angataentum, respectively, for the
P, ., eigenstate.
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-04 -0.2 0.0 0.2 0.4
Polar shapelet basis functions

0 1 2 3 4 5 6
n

Figure 3.2: Polar shapelet basis functions upigx = 6, with the real components
shown in the top panel and the imaginary components belote @hat there are no
imaginary components to the = 0 members of the basis set). Figure taken from
Massey & Refregier (2005).
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3.2.1 Image transformations in polar shapelets

Whilst the integers: and m provide the most convenient means of labelling and visimgithe polar
basis sef’, ,,, it is most convenient to derive image transformation risusing the left-handed and right-
handed shapelet numbets andn;, with n,, = (n + m)/2 andn; = (n — m)/2. These numbers provide
an equivalent, full characterization of the polar basis aatl in the QHO analogy can be thought of as
guantum numbers describing the positive and negative spin.

The utility of this description of the polar shapelet bas$ $n which basis function®, ,,, correspond
to an equivalen’,, ,,, is that simple ladder operators can be defined for raisimgl@amering left- and
right-handed shapelet order, such that

N n—+m

P, = VN Po—1ny = 5 Py_1m-1 (3.36)
. In+m+2

GIPnT,nL = \V Ny + 1 Pn7‘+1,77zl = f Pn+17m+1 (3.37)

. n—m
aanr,nl = V1 PnT,nlfl = 2

. In—m-+2
a}Pnr,nl = Vg =+ 1 Pnr_’nl+1 = f P’n.+1,m71 (339)

Moreover, the effect of these polar ladder operators canirplyg expressed in terms of the Cartesian
ladder operators, given in Equations (3.4)-(3.7), as fadto

Potmi1 (3.38)

al1(e) = af imin FomPom = LQ (al - iad) n]iomio A : (3.40)
al1(0) = aj imin FamnPom = LQ (af +iad) n]ionzio Fora By (3.41)
a,1(6) = a, imin FamPom = %(aﬁi@)nini For s By s (3.42)
al(0) =i i zn: FamPom = %(al—i@), i i Frs i Bros (3.43)

n=0m=—n n1=0mns=0

see Refregier (2003); Massey & Refregier (2005). It is intpatrto be clear here that in the relationships
abovef, ,, are the complex polar shapelet coefficients correspondititetimage as expressed by Equa-
tion (3.31), and quite different from the Cartesian shapetefficientsf,, ,, used to express the same
image in Equation (3.1).

Close examination of the definition of the polar shapeletsbasictions given by Refregier (2003) and
Massey & Refregier (2005) reveals a discrepancy betweetwihén the definition ofn,. andn;: in the
definitions given above, and below, | follow Massey & Refex(i2005). The simple schematic diagram
presented in Figure 3.3 illustrates the directions in whidse right- and left-handed operators act within
the polar shapelet basis space depicted in Figure 3.2.
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right—-handed

A//

\\
left—-handed \

Figure 3.3: Schematic diagram showing the direction ofoactif the right- and left-
handed operators in polar shapelet space. The solid armulicate the directions of
order raising, and the clear arrows those of order loweopgrations.

We now follow a similar procedure to that of Section 3.1 inartb derive results for the simple, linear
image transformation operatiofis/ () and9;1(6). Using Equations (3.11) and (3.12) with Equations
(3.40)-(3.43), we find

O10) = 230 3 fum (ah+al +, 4 ) P (6:0) (3.49)
n=0m=—n

6,16) — %Z S o (a = af — e+ ) Pan(:5) (3.45)
n=0m=-—n

9 o) = Li Xn: f (—aT—aua +&l)P (0:9) (3.46)

891 6\/5 L n,m r 1 T n,m\Y, .

8 1 oo n -

.10 = m; > foam (=0} +af =+ ) Pam(6:5). (3.47)

Repeated use of these linear expressions will allow us teesg@ny general image transformation in terms
of simple operations upon the polar basis Bgt,,, just as the expressions given in Equations (3.11) and
(3.12) allowed for the Cartesian basis set.

3.2.2 Lensing transformations in polar shapelets

We now derive polar shapelet results for the image transdtioms we expect in a the specific context
of weak gravitational lensing. As in the case of Cartesiaapslets, we make use of the approximate
expression for the lensed surface brightness given in Equgg.14) but emphasise that its validity is likely
to be limited to regimes of weaker shear or flexion signale @dmplex formulation of the polar shapelet
basis set means that it is now convenient to write expressioterms of complex shear and flexion. As in
Section 1.2.9 we define the complex sheat ~; + iv», first flexion 7 = F; + iF5, and second flexion
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G = G1 +1G». It turns out to be computationally convenient to reforneithes;, F; andG; operators so
as to match this complex notation. We define theoperator as the counterpart{opand theS; operator
as the counterpart tg*, such that

(¥8: +7781) 1(6) = (1 +7252) 1(6). (3.48)

We also define similar polar shapelet operatorsAoandG, and therefore rewrite Equation (3.17) in the
following polar shapelet form:

1(0) ~ (1 + kK + 7S, + 7S+ FE + F*F + GG, + Q*Gl) I°(9) (3.49)

Using Equations (3.14) and (3.49), combined with the pdiapslet transformation expressions of Equa-
tions (3.44)-(3.47), we find the following expressions for tveak lensing convergence and shear operators:

kK = & (1 +afal — alaT) (3.50)
NS, = % (ai2 — a?) (3.51)
* A 7* ~ ~
& o= L (al” - a‘:’) . (3.52)

Before moving to the calculations for flexion, it will be whvthile to examine these results a little further.
Following steps similar to those described by Equation3B.these these operators can be rexpressed in
terms of their effects upon the polar shapelet coefficignts. We may express the convergence transfor-
mation in equivalent form as

(1"'“[%): 7Sz,m_>fn,m = (1+~k) 7SL,m

Vn—m)(n+m) fi_o.,

— \/(n—m—2)(n+m+2) f,sl+2,m}. (3.53)

I

Calculated in the same fashion, the complex shear transtans in polar shapelets are given by

L+98) : fom = fam = fam

i %{\/(n-f—m)(n—i-m—?) fr—2m—2

- Vi=-m+2)(n—m+4) ff;+2,m—2} (3.54)
(L+7"8)  frm = fam = fom

+ WZ {\/(n —m)(n—m—2) fr_o o

— Vorm e m+ D) fiamia ) (3.55)

These results are also given in Massey & Refregier (2005 worth pausing to consider the effect of the
transformations described by Equations (3.50)-(3.55¢ims of the diagram of shapelet space presented
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yU

Figure 3.4: Schematic diagram showing the direction ofoactf the shear and
convergence operators in polar shapelet space upon a sgafdgy image with

1(0) = fo,0P0,0(0;0).

in Figure (3.2). Firstly, for clarity, we reproduce Equati.31) once more:

10)=3" > fomPom(8:5). (3.56)
n=0m=—n
In what follows it will be convenient to refer to “shapeletyper”, which we refer as being the contribution
to the image sum above for terms corresponding to a gives basttion?,, ,, .

Consider the simplest possible shapelet galaxy image, asgauwithI(0) = fo.0Fo,0(0; 5) (i-e. fr.m =

0 for all n, m # 0). Looking at Equations (3.50) and (3.53) it can be seen ttt&@of the convergence
transformation: K in shapelet space is to add shapelet power, proportionfalg@ndx, to the f o term

in the series of Equation (3.31). This will result in an isgic dilation of the imagé (0), precisely what
should be expected for the convergence, as shown in Figlir€&alaxy images for whiclfi, ,,, is non-zero
for a general of. andm will display a more complex response to the convergenceabpebut the intuitive
picture presented above is applicable nonetheless: theteff a positive convergence is to shift shapelet
power toAm = +2 modes in each case.

Turning to the shear transformations, the action of the atpes described by Equations (3.51), (3.52),
(3.54) and (3.55) upon our simpfg o image will be to cause shapelet power to exist inthe, terms. The
power in f, o will increase proportionally tgfy o and~, whilst that inf, _» will increase proportionally to
fo,0 andv*. This behaviour is also schematically represented in [Eigu4. If we consider a non-Gaussian
general image sum the action of the shear transformatiensfarourse more complex, but the effect is to
shift power fromf,, ,,, modes intof,, 12 »+2 modes by an amount proportionalH@and-~*.

Now is a good time to point out that, due to the parity propsrtf the basis s&t, ,,, it is only m = 0
terms that contribute net flux to any imafy@). These terms are also usually the strongest in typical galax
shapelet models and so the overall effect is often very amhil the simple case discussed. Moreover, if
we consider an ensemble of source galaxies with a distoibuif orientations which we assume to be
isotropic, the ensemble mean valuesfgf,, for all m # 0 will tend towards zero as the ensemble size
increases. However, if we introduce the effect of gravitadil shear we will increase power in the= +2
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modes that doesot cancel out on average, power which may be measured and siefatgd to the shear

~ itself and the original power irf,, o modes. This, of course, may be done using Equations (3.5iL) an
(3.52). This is the heart of the polar shapelet method, dnstiates the how the rotational symmetries of
the polar shapelet basis set may be elegantly utilized fakiensing measurements.

We find similar symmetry properties for the flexion transfations. Using Equations (3.14) and (3.49),
combined with general linear transformation results of &apns (3.44)-(3.47), | found the following ex-
pressions for thec £, and.F* F, first flexion transformation operators:

. F
FE, = 1—5 {6@}@12 + (arai +3ata, + 7aa) — 3@}5”) al — 2ai%a,
— 6ara? — (a}al + 3aya] + 7ala, — 3@&1) i+ 2@%@2} (3.57)
. 7 FB feotat2 (st o ants o oms ot _asts st onf2s
FF, = 6 {GaTal + (alal +3a;a; + Tara,) — 3arar) a; —2a,;" a

— 6aa — (am + 3a,4] + 7a] 4y — 35”@}) ar + 2@3@1} . (3.58)

Using the same Equations and method as for the first flexiosfivemations, | found the results for the
GG, andG @, transformations to be

66, = 9 -ap) (af +a) (359)
GG = g—gﬁ(ajz‘—ai) (a}+ar). (3.60)

The relative simplicity of thej transformations when compared to those fois striking, and this will
have ramifications in the construction of practical estomafor these quantities (as will be discussed in
Section 3.4). As for the case of shear and convergence, tfzegermations can be equivalently written in
terms of transformations upon tfg ,,, shapelet coefficients using repeated steps similar to theseibed

by Equation (3.13). The resulting expressions are somelwhgt however, and are reproduced instead in
the Appendix, Equations (A-1)-(A-4). This is the form in whithe flexion transformations were given in
Massey et al. (2007d). Richard Massey and | independenityleaed these expressions, and compared
our results for verification and the correction of small esraHowever, these results in this precise form are
not strictly necessary here in the body text in order to \ligadhe effects of the flexion transformations in
polar shapelet space, which we now discuss.

Consider again the simplest possible shapelet galaxy ingagere Gaussian with(0) = fo 0Fo.0(0; 3).
Using Equations (3.57) and (3.58) we can see that the effdirsbflexion upon our image is to cause an
increase in shapelet power in tlie; and f3; +; modes, as depicted in Figure 3.5. This is exactly as we
would expect given the rotational symmetries/f We note also thaf does not cause power to move
solely to thef; +; modes; this, which would be the shapelet space approximadia gross shift in the
object centroid, would not be sufficient to cause the skewguble-like 7 image transformation depicted
in Figure 1.5. A more complicated combinationiaef = +1 modes is necessary to describe this higher
order distortion. The case @fis somewhat simpler, and we see from Equations (3.59) aB0) gat the
effects of second flexion are to move power from theg mode intofs 3 modes, shown in Figure 3.5.

Of course, for a more complicated image the effects of flegi@not so simply described; the first flexion
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Figure 3.5: Schematic diagrams showing the direction abadif the flexion opera-
tors in polar shapelet space upon a simple galaxy image M@th = f.0FPo.0(0; 3).

transformation moves power frofy ,,, modes intof,,+1 m+1 andf,+3.,»+1 Mmodes, and the second flexion
moves power intgf,, +3 m+3 andf,+1.m,+3 modes. However, we still expect that an ensemble of unlensed
images will have an averagg ,, that tends towards zero fot # 0 modes. The effect of lensing flexion
will be therefore to introduce power into the = +1 andm = +3 modes that will not average towards
zero across an ensemble of images, and so a measuredicsiiitisignificant net power in these modes
can be used to estimaféandd. The use of polar shapelets to construct such estimatarbeviliscussed

in Section 3.4.

This discussion concludes my outline of basic results irngs@én and polar shapelets with relevance to
lensing image transformations. However, knowing how to enslkapelet models and how they might
change under weak lensing is not enough: a further issue mfritance in weak lensing is the correction
for imperfect telescope optics, which | now go on to discaghé following Section.

3.3 Image deconvolution using shapelets

Overview

The treatment of systematic errors caused by non-gramitatimage distortions is vital for a successful
weak lensing analysis, as such effects may be an order ofitndgrarger than the signal of interest. The
effect most difficult to correct is the smearing of galaxy gaa due to convolution with the PSF (see, e.g.,
Kaiser 2000) of the observing telescope, and it is the skappbroach to this issue that | aim to describe
in this Section. Instrumental PSFs are generally anis@yapd so two important effects can be identified.
Firstly, the finite size of the PSF will cause blurring anccalarization of the galaxy image, causing a
biasing reduction in the magnitude of lensing measureme®ésondly, the anisotropy of the PSF will
induce a slight residual signal in galaxy images, makingntliglsely appear gravitationally sheared or
flexed.

Aside from shapelets, many of the current methods used teddior the effects of the PSF are based
on the schema proposed by Kaiser et al. (1995), Luppino &&ai$997) and Hoekstra et al. (1998),
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commonly referred to as KSB or KSB+. The use of these teclasitpas proved to be both successful and
widespread. They have been implemented many times, witbusminor modifications, for the placing of
competitive cosmological parameter constraints using lgobund-based observations of “cosmic” shear
(e.g., Bacon et al. 2000; Kaiser et al. 2000; Van Waerbekke 2080; Wittman et al. 2000; Hoekstra et al.
2006; Hetterscheidt et al. 2006; Semboloni et al. 2006) anilies observations from space (e.g., Hoekstra
et al. 1998; Heymans et al. 2005, HO5 hereafter; Schrabliaak2007; Massey et al. 2007c,a).

Despite its practical success, there are certain eleméniie iKSB+ treatment that are conceptually un-
satisfactory and which potentially limit the accuracy ofthwal (see, e.g., Kaiser 2000). This would then
require the development of non-KSB+ alternatives for usehenlarge, high-quality lensing datasets of
the future. Kaiser (2000) provides a thorough discussidhesge potential limitations, and this has indeed
prompted efforts to develop alternative weak lensing mash@daiser 2000; Rhodes et al. 2000; Bern-
stein & Jarvis 2002; Refregier 2003; Refregier & Bacon 20@3ssey & Refregier 2005; Kuijken 2006;
Melchior et al. 2007). The shapelet approach describedisnGhapter is just one of many such methods
proposed to take galaxy shape measurement to the new ldvatzaracy that will be required for the
analysis of future lensing surveys. The Shear TEsting RradSTEP: see Heymans et al. 2006b; Massey
et al. 2007b, Rhodes et al., in prep.) is coordinating resemto the comparison of current weak shear
estimation methods, using blind-tests on simulated lendata.

3.3.1 Two shapelet approaches

Within the shapelet framework, there are two possible nmaghwaith which to correct galaxy images for
the effects of the PSF. Both approaches begin with the ageigin of a shapelet model of the point source
responsg(@); ideally this model will be as accurate as possible (i.eghhi.) and will include the
variation of the PSF across the image plane of the instruniédreg model may also need to include some
treatment of time dependent effects (see, e.g., HO5; Sbhckiet al. 2007; Rhodes et al. 2007). A detailed
description of how this may be done for data from thebble Space Telescosegiven in Chapter 4.

We define the convolution of the two image functidi{®) and¢(0) to form a convolved imagé(0) as
follows:

h(0) = 1(0) + g(0) = /OO a20°F(0 — 0')g(0'). (3.61)

As described by Refregier (2003), this can be written as aixnaansformation in terms of the shapelet
coefficientsf,,, g, etc. In Cartesian shapelets, Equation (3.61) is re-exptess

hn - nlk:flgk:a (362)

where repeated vector indices are implicitly summed oveln eamponent;, k; etc. An equivalent expres-
sion for polar shapelets is trivially expressed. It showddbted that the convolution teng@ris a function
of the respective shapelet scale lengths for the modéels@f, 1(0) andg(0) (see Refregier 2003).

The deconvolution scheme proposed by Refregier & Bacon3R00nsists of the solution of Equation
(3.62) for f,,, given measured,, andg,,, via a matrix inversion. The object requiring inversion,igh
Refregier & Bacon (2003) define as the “PSF matriX,; = Chixgr Must, however, be truncated to
entries of sufficiently low order. As argued by Refregier &Ba (2003) this is because high order modes
are smeared during convolution, which then destroys @etaimall scale image information. The PSF
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matrix may then contain vanishingly small values in the tmoes corresponding to high order modes,
making its inversion unstable. This effect can minimizethgs suitably truncated PSF matrix, such that
it can be successfully inverted to obtain

fn =P . (3.63)

The information lost in the truncation is minimal, and reftethe loss of information that is inevitable

in the convolution process. Again, a similar expressiorhtd above may be quickly arrived at for polar
shapelet models. This estimate for the lower order coeffisief the deconvolved galaxy image can then
be used to make reliable estimates of shear and flexion, asludin Sections 3.4.2 and 3.4.3.

The alternative deconvolution method is that proposed bgdda & Refregier (2005), which is that imple-
mented within the shapelet software package made avalgitleese authors upon the world-wide Veb
The deconvolution proceeds without the need to invert medrivhich may often be sparse in practice,
despite best efforts at efficient truncation. The decorewishapelet coefficients,, ,,, are estimated by
convolving the shapelet basis functions with the PSF madativance, creating a new basis set which we
label

Dy, 0, (6;8) = g(0) * Bn, 0, (6; 5), (3.64)

with an equivalent expression for the case of the polar dbapasis function®, ., (6; ).

Fitting the datah(0) with this new basis seb,,, .., , one returns a deconvolved shapelet model as follows:

h(0) =g(0)«1(0) = g(0)x|> > fainsBnins(0:0) (3.65)

ni =0 na =0

Z Z frymz [9(6) * By, n, (65 3)]

ni =0 no =0

= Z Z fnl,ngDnl,n2(0;ﬁ),

ni =0 no =0

As can be seen by comparison with Equation (3.1), the retishapelet coefficient§,, ., will reconstruct
the deconvolved image when they are used with the origirgstsetB,,, ., (0; 3).

There are obvious caveats to the seeming simplicity of fips@ach, particularly that the basis $&t, ., (0; 3)
will in general not be orthonormal. However, errors due is fhct are small so long as the scale size of
the galaxy image is larger than that of the PSF (Massey & Befre2005). It is the robust nature of
this method, relying not upon matrix inversions that arevsdmd may be susceptible to instability, that is
the reason for its selection by Massey & Refregier (2005hasdeconvolution approach adopted by the
shapelet software suite. As my own analyses use this satadensively (see Chapter 4), this is also the
deconvolution scheme | use to make accurate estimates af ahé flexion.

Whilst arriving at a reliable, distortion-corrected modéeach galaxy is an important step in making shear
and flexion measurements using shapelets, there is coaBldéreedom in how lensing estimators may be
drawn from such models. In the next Section | will go on to diéschow estimators for lensing observables
may be practically taken from shapelet models of galaxies.

Lhttp://www.astro.caltech.edwtjm/shapelets/
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3.4 Shapelet lensing estimators

3.4.1 The flexion centroid shift

Before we discuss the means by which shapelet models (inGatiesian and polar shapelets) of galaxies
may be used to make estimates of the gravitational shearexidrflsignal, it is important to consider an
important subtlety that comes into play when we are considehe effects of flexion upon galaxy images.

One crucial difference between the flexion and shear tramsfions regards the issue of the observed
galaxy centroid, which is defined as
[ d%001(6)
EERZON
Goldberg & Bacon (2005) pointed out that, while shear canseget centroid shift, flexion causes a vector
centroid changé\@ given by

(3.66)

20, = (6.); — (02); = D / 00,0, 210 2 (3:67)
2 00,

where we note the correction of a slight typographical efrom Equation (22) of Goldberg & Bacon

(2005). Expanding and integrating by parts, these authsesthis result to give an expression for this

centroid shift in terms of elements &f; ;..

Performing the same calculation, but re-expresgiiyg; in terms of the quantitie§ andg, | found this
centroid shift to be given by the equivalent expression

(R?)®

Al =
4

(6F + 5F* + G(e%)") . (3.68)

Here we once more use the complex notation in which the reabpa\d. corresponds to the shift in the
x direction and the imaginary part to thedirection on the sky plane. In this expression ¢f)s term in

the source plane is defined as

R )
(R?)® = [ eerE) (3.69)

where | have labelled the source coordin#esather than the commonly writtg®iso as to avoid confusion
with the shapelet basis angular scale siz&he quantitye® is the complex ellipticity of the source galaxy,
defined as

L[ d%0° (0 +i65)° I°(6%) 1 [ a0 [(67)° — (63)° +i26365] I°(6°)

&S = (R?) I 4265 15(6°) = (R2)s 1T 20T (6°) . (3.70)

Bothe® and(R?)® may be simply estimated from shapeletimages, describe@dssby & Refregier (2005),
and this estimation will be discussed in a little more ddialbw. Finally, for clarity in what comes below,
it will be convenient to write Equation (3.68) out in full conent form as follows:

R2 s

Afy = ( 4) [6F1 + 5(F1e1 + Faez) + Gie1 + Gaea] (3.71)
(R?)®

Ay = [6F2 + 5(F1e2 — Faer) + Gae1 — Giea] . (3.72)

4
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Equations (3.68), (3.71) and (3.72) tell us how much a gagieihal flexion will shift the observed centroid
of a galaxy image; the shapelet flexion transformationsddarSections 3.1 and 3.2 include this centroid
shift effect. They are therefore useful for such appligagias applying an artificial flexion to an unlensed
galaxy (for example, during the manufacture of simulatedges), although this may also be done easily
in real space using Equation (1.92). However, for pracflealon measurements the location of the centre
of a shapelet decomposition will be the post-lensing (@bserved) centre of lighf.. This consideration

is crucial in a flexion analysis, as use of the flexion estimsbased on the transformations described in
Sections 3.1 and 3.2 will give wrong results if the are used shapelet model not constructed upon the
original, pre-lensing centroid, which we cannot know for certain.

What may be done, however, is to estimate the shift in theroehdescribed by Equation (3.68) and take
it into account using shapelets. Making the valid assumgtiat the centroid shift due to weak flexion is
small compared to the angular scale of the galaxy image, wewrige

oI1(0)

16— 26) = 1(8) — A==

(3.73)

We can express the right hand term of this expression in tefisisapelet transformations. Using Equation
(3.12), we have the following Cartesian shapelet results:

ore) A91 > o

805 = nlzon;of"“”z (a —a )B (6:5); (3.74)
oI(6 Afy

A (%2) _ Ab Z Z Fryima (a —a )Bn(O;ﬁ)- (3.75)

n1 =0no=0

These results can be more succinctly expressed by defirer@dtesian shapelet transformation operators
T; as

. 1
To=—(a;—a'). 3.76
&@(a al) (3.76)
This then allows us, using Equation (3.73), to write
(FiE + giéi) I(6 — A6.) ~ (-7:1'13'1' + GG, — AoiTi) 1(6), (3.77)

where we have ignored terms greater than first ordéf,ig or Af. Notice that the right hand side of this
expression is precisely what we wish to estimate, the effetflexion upon the shapelet model centred
upon the pre-lensing centre of light.

Another, more useful, way of expressing these results isfio€el “observable” flexion operators, i.e., those
with this centroid shift removed. These then describe tfexesf of flexion that can be seen in terms of pure
distortions to the light profile of galaxy images and causeebcentroid shift. We can then write these
effective, translation-corrected flexion operators as

FiFT = F.Fy— NOTT, (3.78)
G:GI = GG — NOIT;, (3.79)
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where we have definefl)” = [(R?)*/4](6F +5F &%) andA#¢ = [(R?)°/4]G(%)* by splitting Equation
(3.68) into first and second flexion terms. TReandG; operators are simply those described in Section
3.1.2. However, as is often the case in shapelets, the Gartepresentation means that we have a slightly
complicated mixing ofF; andF- terms in each component &6”, and likewise for th&; components

in A69 (see Equations 3.71 and 3.72). Due to the symmetries of tlae gltapelet basis set, these mixing
components can be separated out, as | now describe.

We can define polar shapelet versions of the translationatqergiven in Equation (3.76), splitting the
transformation into left and right handed operators suah th

(A91T1 + MQTQ) 1(0) = (Aoﬁ + (AH)*TI) 1(0). (3.80)

Using Equations (3.46) and (3.47), we can write these taéinsl operators out as

AOT, = %(Al—ai) (3.81)
) AB)*
(A0 T} = (26) (ar_aj). (3.82)

Finally, this allows to define a left and right handed pair ofgs shapelet transformation operators do
describe the observable effect of eacl#oandg.

For the first flexion, using Equations (3.81) and (3.82), &eddefinition ofA#” described above, we have
the following expression for the observable flexion transfations:

. . 6. D, -
FET = f(ﬂ—Z P @) z) (3.83)
FFEN = F <FZ—ZT}—Z€ST} . (3.84)

We notice that it is now possible to more cleanly decoupldld@on transformations using the complex
conjugates ofF andg; this is due to the rotational symmetry properties of thepshapelet basis set. For
the observable part of the second flexion transformatiopsiar shapelets, we have

GGT = Q(GT—%(ES)*TT) (3.85)
GGt = ¢ (Gl—%asﬁ) (3.86)

These flexion operators, and those of Equations (3.78) ai@)3&pproximately describe the observable,
shape-changing part of the flexion transformation by isadgit from the the translatory part of the distor-
tion. In essence, this is done via a simple subtraction oféémeroid shift.

The only question remaining is regarding the estimatiorj/of)® and<®, which are both quantities as
measured in the unlensed source plane of the image. It i®digy Goldberg & Bacon (2005) that, for
the purposes of constructing workable flexion estimatd@nd (R?)%, may be estimated from the lensed
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galaxy image using the expressions given in Massey & Reafrg@005). This is despite the fact that
both quantities will have changed during lensing. Howetlez,change in the centroid shift this represents
is small, which can be seen from Equation (3.68), and suchggsawill cancel on average due to the
differing rotational symmetries of, 7 andg. If deemed necessary, an estimate of the ellipticity coekc
for locally measured shear could even be used, as therehimgadb prevent the galaxy shear analysis from
being independently performed prior to any flexion analysids the translation corrected operators of
Equations (3.78), (3.79), and Equations (3.83) - (3.86hlmiaed withe® and (R?)® estimated from the
observed galaxy image, that will be used to form flexion estars in the following Sections.

3.4.2 Estimating shear and flexion from Cartesian shapelets

In this Section | review and describe the methods present&efregier (2003) and Goldberg & Bacon
(2005) for estimating shear and flexion, given an accuratée€ian shapelet model of the lensed galaxy.
In most cases this model will have had to undergo some caorefdr the effects of an anisotropic PSF,
using one of the methods described in Section 3.3.

We follow Refregier & Bacon (2003) and label the covariané¢he observed shapelet coefficients as
Vi1t = cov(fn f1). As shown by Refregier (2003), for homogeneous, uncageélbackground noise (such
as that produced by the sky or thermal instrument noisexthiariance is given simply by

Vit = 050n,.0,0n2 125 (3.87)

whereoy is the root mean squared noise in the image. This covariaataexmvill be necessary in the
discussions that follow.

The problem of shear and flexion estimation in Cartesianedeégcan be reduced to the inversion of Equa-
tion (3.17), given some important assumptions about thpeaties of the underlying population of source
galaxy imaged®(0). This is simplified significantly if the effects of the congence term are ignored,
which may be justified in the weak, first order limit. It shoddd noted that under any circumstances the
value of the convergence itself cannot be uniquely detezthfrom estimates of shear or flexion alone, and
can only be uniquely defined with strong lensing data or olénesing data in which the redshift of more
than one source object are well known (see, e.g., Schneider 2007; Massey et al. 2007d; BGRTO06;
Kaiser & Squires 1993).

Expanding on the description given in Goldberg & Bacon (20@% consider an ensemble &funlensed
source galaxies. If we label the surface brightness of eagtte galaxy ag;(0) (wherei = 1,...,N)
and the corresponding Cartesian shapelet coefficientgias, then we may define the ensemble average

of the source coefficients as
N

pn = ()i (3.88)
1=1
For an ensemble of galaxies of sufficient size, and samplegsasufficiently large scales, this, may be
estimated as the average of the measured shapelet coéffifjethis is assuming that the Universe shows
no preferred direction on extremely large scales (see @ofpk Bacon 2005). Moreover, due to the parity
properties of the Cartesian basis set we know and can ekpBeit 1.,, = 0 wherevem; + n, = odd (see
Equation 3.2).
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To explore how this definition may be used to construct a Gamteshapelet estimator for shear and flex-
ion, we consider another ensembledf galaxies, this time in the lensed image plane, and with sarfa
brightnesses labellefj (8) wherej = 1, ..., M. In addition, we now restrict the ensemble of galaxies to a
size M < N and reduced scale upon the sky, within which shear and flelaamot vary significantly and
cancel. For this ensemble, average defined in Equation (3.88) will not be well estimated by a denp
average of the observefl . Instead, such an average will yield

M M
S (s = tin + (0Si + FET +GGT) Y (s (3.89)

j=1 j=1

where the primes on the fingf,, coefficients are there to highlight that these coefficieetsode those that
will be transformed tgf;, by the action of the shear and flexion transformations. Nwéewe are dealing

in observable quantities, and use the centroid shift-cteteflexion transformations of Section 3.4.1. If we
follow the method of Goldberg & Bacon (2005) and define anmjumntity,f;, as the best estimate of the
unlensed shapelet coefficients for a single galaxy withinsooaller ensemble, we may then approximate
the above expression for a single galaxy as

fou == pin + (78 + FiEL +GiGT ) o (3.90)

How this quantityf; may be estimated in practice depends on whether we are nragashear or flexion,
and so we will return to this point below. At any rate, Equai{®.90) will only be arextremelyapproximate
expression for a single galaxy, but it may nonetheless be tosereate an estimator of shear and flexion on
a galaxy-by-galaxy basis. If is estimated appropriately the resulting estimates ofrshie flexion will,

if averaged across the ensemblé\dfgalaxies, be unbiased to a good approximation.

In order to use Equation (3.90) to create an estimator ofrsireghflexion we may fit values of, 7 andGg
for each galaxy that minimize the following? goodness-of-fit statistic:

& = [m o+ (08 + FE +GiGT) fou - fl (3.91)

Vn_p1 {Mp + ('Yigi + FiFT + gz‘é?) f;’ - fp}

X

Itis now important to consider in more detail how we may eatharffl, having access only to the observed
coefficientsf,,. In this respect we follow the argument of Goldberg & Bacod(®), which again treats
then; + ns = 0dd, andn; + no = even, terms differently. These authors argue that, in thekviensing
regime, the difference between the observed and sourcaawvas will be small in general, and so the best
estimate offfl, is fns for n; + ne = even. Obviously, this argument will hold limited validity stronger
lensing regimes. For thﬁ:,i wheren; + ny = odd, we setf; = 0; although this will provide inaccurate
estimates on a galaxy-by-galaxy basis, it will be true foeasemble of galaxies of sufficient numbér,
and will thus lead to unbiased lensing estimates.

Assuming these arguments regardiffg we can split Equation (3.91) into two shear and flexion-only
parts. As discussed in Section 3.1.2, the shear transfmmsabnly transfers power between pairs of
coefficients for whiclAn; + Ans = even, and so for a shear estimator only+ n, = even coefficients
in Equation (3.91) need be considered. For the flexion toansdtions, which transfer power between
Anj + Any = +1, +3 pairs of coefficients, we need only consider the terms in Egug3.91) for which
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n1 + ne = odd. We then have two independent expressions, as follows:

e = {un +%Sifos = fr| Vep {Mp + 78y — fp} (3.92)

)
O = [(FET+GCT) For — fa| Vi [(FifT + GGT) F = £ (3.93)

where we also note the correction of a sign error from Golgli8eBacon (2005). An estimator of each of
the shear and flexion upon each galaxy can then be calculgtie ninimization ofy2(¢v¢™) andy?2(°dd)
respectively. David Goldberg has made IDL code that peréathis minimization available to the public
via the world-wide web, at the flexion web page It should be noted again that the flexion operators
F; and@; involve three-step movements in shapelet shape, and assydiexion estimator will require
shapelet coefficient information of up to a minimum ordengf,. = 3. Galaxies for which the shapelet
series is truncated to,,,, < 2 cannot be used to make reliable estimators of flexion.

3.4.3 Estimating shear and flexion from polar shapelets

The polar shapelet basis set provides a natural framewodtdating weak lensing estimators. This is due
to the encapsulation of the differing rotational symmetaéshear and flexion by the rotational symmetries
of the basis set itself. As discussed in Section 3.2, weakralfgon a wholly circular object shifts shapelet
power in to polar shapelet modes with = +2 exclusively; weak first and second flexion upon the same
object create power in the = +1 andm = +3 modes respectively. The strength of shapelet coefficient
values in these modes, relative to those inithe- 0 modes, can then used to generate estimators of shear
and flexion very simply, and without the need for minimizatiof 2 statistics described above for the
Cartesian estimators.

In this way polar shapelets offers a means of generatingfypaisrather than “active” estimators of flexion
(for a complete definition of these terms in the weak lensomgext see Massey et al. 2007b,d). Simply put,
passive estimators are those that use the measured morhgataxy images, usually with some scheme
of image weighting to reduce noise, such as the schemes ggdfry Kaiser et al. (1995) for shear and
Okura et al. (2007b) for flexion. That polar shapelet estirsabased on ratios of shapelet coefficients are
analogous to such moment-based approaches can be seemiigiaian of the overlap integral given in
Massey & Refregier (2005):

fom = [ 61600 (65, (3.94)
This is a simple consequence of the orthonormality relatigm(Equation 3.35) for the polar shapelet basis

functionsP, ., (0; 5) = P, (0, ¢;3). To illustrate this fact, we consider the expressionffps. Using
Equation (3.32), the explicit expression 85 2 (0, ¢; 3) is

0% _o2 . 1
Py 2(0,9;8) = 7° 77 e — 7

Substituting this expression into Equation (3.94), we baéthe quantity

(62 — 02 + 2i0,60,) e~ . (3.95)

B fa2 = / / d*0 (67 — 03 + 2i01605) e~ - 1(0) (3.96)

http://www.physics.drexel.eduigoldberg/flexion/
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is simply the quadrupole moment of Kaiser et al. (1995) andddaann & Schneider (2001), weighted
by a Gaussian of angular scale Forn = m = 1, 3 it can be similarly shown that"*! f,, ,,, correspond
to Gaussian weighted first and third moments respectivdtgrfcequivalently described as dipole and
octopole moments).

There are benefits in using shapelets to perform momentlatitms, rather than performing the calculation
in real space. Shapelets offers a sophisticated treatrh&8® corrections (see Section 3.3), a great deal
of freedom in the selection of estimators, and even offedstiathal tests for systematics. As described
in Massey et al. (2007d), if the PSF correction scheme israteuhen there should be no significant
difference between different estimators; any discrepaigts to imperfect deconvolution and highlights
image scales upon which problems may exist. Massey et dl7()Ppresent a variety of shear and flexion
estimators, with properties that may be of particular $em different applications. For the case of shear,
there are two estimators which | will now describe.

Gaussian weighted shear estimator

The first, and simplest, shear estimator usesfthecoefficients that | have shown in Equation (3.96) to be
simply related to the Gaussian-weighted quadropole momésing Equations (3.54) and (3.55) we see
that the effect of shear is to transform tfig, shapelet coefficient as follows:

5 3 gl
U+ 47750 fi2 = faz = fia + 75 (fo0 = fio) =77 V31 (3.97)
As in Section 3.4.2, we consider an ensemble\bfgalaxies across which the shear is approximately
constanty. Assuming random orientations of these galaxies in thecsoplane the ensemble average of
.m Will tend to zero for all coefficients with: # 0. A simple estimator of shear for each galaxy in this
ensemble can therefore be constructed as

~ Gaussian J2,2

5 = \/Em (3.98)
The angle brackets in the denominator denote an ensembikgavacross the galaxies in a lensing survey,
but it should be stressed that thimistthe sample of\/ galaxies across which the shear and other lensing
values are approximately constant. As in Section 3.4.2 veel iéso to consider a larger scale ensemble
of N > M galaxies, within which the shear, convergence and flexidihvaiy and tend to cancel due to
the overall isotropy of large scale structure. It is oves farger ensemble (i.e., perhaps, the entire galaxy
image catalogue in a lensing survey) that the denominatyage must be taken. This will ensure that this
estimator is approximately unbiased; were the denomirzaterage to be made over the smaller ensemble
the action of an overall weak lensing convergence would behifh power out of thef; o and f4,o (see
Equation 3.53).

This estimator is the Gaussian weighted shear estimatoast®ly et al. (2007d), and will obey the neces-
sary unbiased property

1 M

~ Gaussian
— ) 5 ~ 7y (3.99)
M pt

for our smaller ensemble df/ galaxies across which the shear signal remains constaigt.sét named
because, as shown by Equation (3.96), the numerator isimlplted to a weighted quadrupole moment.
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Unweighted ellipticity shear estimator

The second shear estimator from that | will describe is thaeld on the shapelets unweighted elliptieity
defined in terms of source image moments by Equation (3.78gation 3.4.1. Instead, we here use the
ellipticity of the lensed images, and so drop the supersgsriMassey et al. (2007d) show that thean be
used to constructed the following unbiased estimator feash

sunweighted __ i € — ZZO:O v n(n + 2) fn,2 (3100)

5 _

2R 2-(2) 2 () X0/t D) fao

Here we have defined the shear responsivity faitor 1 — <52> /2, where the average denoted by the
angle brackets should be across as large an ensemble ofegadaxpossible to ensure that this estimator
satisfies the criterion of being unbiased (c.f. Equatior®8.9t is well known that such a responsivity
calibration is necessary for shear estimators based upamtiveighted ellipticity; it is caused by the fact
that the more elliptical a galaxy lseforebeing sheared, the weaker its response to a lensing shéaewil
(see, e.g., Bartelmann & Schneider 2001). This estimatdopred very well during the blind simulation
tests of shear estimators conducted by the second STEPapnogr (Massey et al. 2007b) and on other
lensing image simulations designed to mimic ground-bagsemwations (Massey et al. 2007d). One of
the investigations of this Thesis is to explore its efficaging survey images taken from space-based
instruments such as tlirtubble Space Telescope

Gaussian weighted flexion estimators

I will now describe my construction of some passive flexiotineators, as also presented in Massey et al.
(2007d). The construction of these estimators drew on opemance with the shear estimators developed
in that paper, and are formed in analogy with the same. Thplesnflexion estimator can be constructed
using a similar approach to that taken with ffe*"ssia» estimator of Equation (3.98). For that estimator,
the coefficientsfs o, correpsonding to Gaussian-weighted quadrupole momeats,used; this is a simple
first choise since, as was described in Section 3.2.2, thesb@lowest modes to be excited by the action
of shear upon the shapelet ground sttg.

For the case of flexion it was shown in Section 3.2.2 thatfthg fs; 1 and f5 3 shapelet modes are the
first to be excited by the action of andG upon a simplef, o shapelet model. The simplest possible
first flexion estimator is therefore one based upon the medswiue of thef; ; coefficient for any given
galaxy. Using Equations (3.57), (3.58), (3.83) and (3.B43,easy to show that this coefficient transforms
as follows under a first flexion:

R R F RQS RQS
W+ FET 4 fa = fa = Rar T {o(1- B0 g+ g,

2\s
- 6fi0 - 5\/5(58)* (];2) f252}
Fp < (R?)
3 { — be 7
(R?)

+v2 (1 + 67) f55 —3V6 fz,z} : (3.101)

(6,0 = f2,0)
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The correction for the centroid shift adds to the compleaftthese transformation expressions but it must
be stressed that this correction is extremely importamtiquéarly in the case of the dipole-like first flexion.

In an analagous fashion, the simplest possible second fi@sitmator that can be constructed using polar
shapelets will be based upon the measured value of{hecoefficient. Using Equations (3.59), (3.60),
(3.85) and (3.86), the action of second flexion ugén was calculated as follows:

N A 2 S
A+GOT +G°CT): fiy— fon = fls+ @{@S)* B s, VB +

8 52
VB (o + o= o £}
* 2\s
+ gsﬁ {255 (};2) fia—2v30 fgﬁ}. (3.102)

In order to use these expressions to calculate estimatoilexwmn, we once again consider an ensemble of
M galaxies in a region of sky across which we have roughly emmdlexion, and a much larger ensemble
of N galaxies (i.e. the entire survey sample) across which tisexesanishing net flexion. We must once
more assume that the galaxies in the source plane are rapdaerited. The® terms in Equations (3.101)
and (3.102) refer to the unlensed ellipticities of theserses;, and will thus cancel when averaging over
any sufficiently large population of galaxies, even in thesence of a shear field. Once more, we may go
further and expect the average valuegpf,,, wherem # 0, to tend to zero in our ensembles; net shapelet
power will ony remain in the averaged = 0 terms.

Therefore, the simplest possible polar shapelet flexiamasbrs can be constructed from the combinations

~ Gaussian . i fl,l
g 301 = (R?/B%) foo + (R?/B) f2,0 — fa0) (3.103)

and
~ Gaussian _ 4\/6 f3,3 (3104)

36 (foo + f2.0 = fao — fe0)’
where the angle brackets used in the denominator denoteseméie average across the large ensemble
of N galaxies. However, in the first flexion estimator we are fdrieuse the lense&? /3% rather than
(R?)s/(/3%)%; fortunately, as shown in Massey et al. (2007d), changds?ih3? due to a symmetrically
varying flexion do not biagR?/3?) to first order, and so the denominator remains unbiased bwdran
this average is taken over the sufficiently large ensembl¥ gfalaxies. It should be noted that, despite
these estimators being the simplest possible within tharshlapelet frameworl%"GauSSlan and@GauSSlan
require shapelet galaxies to be modelled to orders-6f4 andn = 6 respectively before they may be used
to create unbiased estimators. Equations (3.103) and4Bate the Gaussian weighted flexion estimators

presented in Massey et al. (2007d).

As a final comment, the reason that these estimators argaéfer as Gaussian weighted is similar to
that for y“aussian_ Considering Equation (3.94) and the form of tRe; and P 3 basis functions, the
fi1,1 and f3 3 coefficients can be shown to simply correspond to Gaussiaghiesl first and third order
image moments, just a& » was shown to be a Gaussian weighted second moment in Eqyatig).
The Higher Order Lensing Image Characteristics (HOLICsjhme proposed by Okura et al. (2007b)
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creates estimates of flexion using direct measurementcbfwaighted moments, and thus the estimators
of Equations (3.103) and (3.104) are the shapelets anatodgd#®LICs moments in which the scale radius
for the Gaussian weighting is simply the angular sgal& he shapelet estimators above simply represent
what3-weighted HOLICS estimators would return if they acted up@moothed, PSF-corrected shapelet
model of a galaxy image.

These results do not represent the end point of possibl®fleedtimators, as any of th ,,, coefficients
with m = 1 andm = 3 may be used as estimators Bfandg, respectively. Indeed, as pointed out in
Massey et al. (2007d), significant systematic differeneween such estimators effectively point to defi-
ciencies in model used for PSF correction. Comparison oifrthey possible shapelet estimators therefore
represents a new test for the level of residual systematicgithe successful removal of which is so impor-
tant for weak lensing. Additionally, the other way in whichhigher order estimators may be of use is in
their combinatiorwith estimators built from lower modes; in this way it is piids to generate estimators
with any property that may be of interest. Methods and resaWards such estimators are discussed in the
following Sections.

Order-by-order shapelet flexion estimators

For the small, faint galaxy images that will inevitably makethe majority of weak lensing survey data,
it will be difficult to measure polar shapelet coefficientyted then = 6 terms needed to make an
unbiased estimatécaussian @S described above. Yet, for those galaxies for which higheéer shapes
can be accurately measured, it is possible to generalise flexion estimators to higher shapelet modes.
We may use the measured value of any availghle coefficients as an estimator f@f, and likewise any
availablef,, 3 as an estimator fog.

In order to do this it is necessary to understand how thedeehigrder estimators respond to flexion. In
order to describe this information we define the followingifb& susceptibility matrices:

O(fn,1)i B a(fn,l%)i.

Fy. . — gy . —
(P )ZJ 8.7:7 ’ (Pn )U 8g7

n

(3.105)

For convenience, in the expressions above we have vealdhizecomplex shapelet coefficients,,, and
defined(fnm)i = ( Re{fn.m}, Im{fn.m} ). Knowledge of these susceptibility factors for each of the
higher order estimators that can be constructed ffgmand f,, 3, allows the construction of the flexion
estimators

~n

Fr = (D))" (fan)s (3.106)

and

Gl = ((P9)i) " (fus)s- (3.107)
Once again we have vectorized the complex quantities, andrigle brackets denote the average across
a large ensemble of galaxies such as the entire survey. Hoetibilities of Equation (3.105) are real,

2 x 2 matrices, with terms that may be calculated using the re$nittthe polar shapelet flexion transfor-
mations given in Equations (A-1)-(A-4) in the Appendix, &hd centroid shift correction terms described
by Equations (3.83)-(3.86). | give the results of my caltioles for these generalizéd®/ ),; and(PY).;
susceptibilities in the Appendix, Equations (A-6)-(A-9).
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Differences between the ensemble values of each of thestimators can be compared as possible evi-
dence for systematics in the lensing analysis or PSF caore@lassey et al. 2007d), but may also be used
to construct further new estimators using combinationg,afand f,, 3. Given complete freedom in selec-
tion, such estimators can be designed so as to have parfiolzerties of interest. One such combination,
leading to the “diagonal” flexion estimators, is discussed/iassey et al. (2007d) and in the following
Section | describe my work towards the description of thisresor.

Flexion estimators with purely diagonal susceptibilities

It was shown in Massey et al. (2007d) that successive offadial terms in the shear susceptibility matrix
(Py)i;, defined forf,, » coefficients in an exactly analogous fashion to Equatiob0®), could be made to
cancel out via the suitable addition ff » estimators. This led to the shapelets expressiof foreishted,
which in fact corresponds exactly to the unweighted compliipticity ¢ defined by Equation (3.70).

In the same way it might be hoped that the same terms of diagemas in the flexion susceptibility
matrices of Equation (3.105) could be made to cancel, viaitatda weighting scheme,,, where we
would then define the resulting purely diagonal estimafoy, as

(Piag)i = (B)is) " D walfa);s (3.108)
n=1

where we have once again vectorized the complex notatiathwdrere by definition(;"); ; = 0 for

i # 7. We could also define similar expressions for the seconobiheexj;timato;ﬁgiag in terms of weighted
fn,s coefficients. Unfortunately, due to the presence of thero@hshift correction which is necessary
for reliable flexion estimators, my calculations showed tha is more difficult than in the case of shear,
especially for the first flexion.

For the second flexion it is possible to do reasonably weik itnpossible to construct a purely diagonal
[)giag using the centroid shift corrected transformations of Eigua (3.85) and (3.86). However, it is
possible to find a weighting,, in which successive diagonal terms(iR?); ; cancel if we consider only
the uncorrected transformatiogé;,. andG* G, of Equations (3.59) and (3.60). Using these Equations, |
found this weighting to bev,, = /(n — 1)(n + 1)(n + 3), which can then be used to form the following
purely diagonal second flexion estimator

g~ e 223 V= D D +3) fus
= Pdiag = 38R ZOO (n2 +2n+2) fn,o :

n=0

(3.109)

Here we have defined the “flexion responsivity” factor as theeenble averag® = 1 — <6p/63> /2,
where

p=0V32m Y (n+1)y/(n—)(n+1)(n+3) fus (3.110)
n=3

and

V2R V=D + 1) (n+3) fas
203 Yoo +2n+2) fno ’

This definition of the quantity exactly mirrors that of the unweighted HOLICs measurabléhefsame

]

(3.111)
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name, which Okura et al. (2007b) define as

_[[d*01(8)63e%
S RETTOITE o412

and which they use to create an estimator of the second ﬂéi{lgr%lcs = 44/3. The estimator in Equation
(3.109) is the shapelet space equivalent of this quasdifyy except for the additional responsivity factor
R. This correction is in fact necessary because the denoaminéty changes during flexion in a way
which biases the overall estimator by an amont (pd/3%) /2), and is analagous to the similar factor
of (2 — <a2>) introduced to the unweighted ellipticity estimator for ahe

Despite the fact that the estimator of Equation (3.109) dm¢sccount for changes to the susceptibility
resulting from the flexion induced centroid shift, it willmain unbiased when averaged across an ensemble
of galaxies. This is because we may assume that the unlelipéidiges <° of source galaxies will cancel

on average, and because it is known that there is no centidtdise toG for galaxies with® = 0 (see
Equations 3.85 and 3.86).

In contrast, the first flexion presents greater difficulti€gstly, there is a flexion-induced centroid shift
for even purely circular objects, proportional t&2)s/3?. However, even if it were feasible to ignore
the translatory part of the practical flexion operator (hids not), it appears to be impossible to find a
weighting schemev,, capable of cancelling the off-diagonal terms in successiders ofP/;. The com-
plication arises from the mixing of power betweam:, An = +1 coefficients, which becomes extremely
complicated for the first flexion, and from the very importatt that shapelet ladder operators are non
commutative. This can be expressed as follows

lay,al] P = (ara m = Pom #0 (3.113)
[al,aﬂ P = (ala _a al) P = P #0, (3.114)

which can be simply derived using Equations (3.36)-(3.38% know thatF causes power to transfer
between adjacentym, An = +1 shapelet coefficients (see Figure 3.5), much like a simplestation

of the sort introduced in Section 3.4.1. However, whereamals centroid shift involves only the single
ladder-operator transformations, d;f, a, anda; (as shown in Equations 3.81 and 3.82), flexion always
acts via combinations of three ladder operations, takingetisteps but doubling back to move only one
step overall. Sincé/ does not commute with,., nord}’ with a;, eachAm, An = +1 term in Equations
(A-1)-(A-4) is in fact a combination of five separate contrtibns, each of which representing a different,
independent path between the coefficients. For exampleak®an overall move to a mode witkn, =
+1, any ofaf%a,, ala.al, a-af?, afa,a) oralala; may be employed, all of which contain one of the non-
commuting pairs identified in Equations (3.113) and (3.1BBcause it is composed of a different, non-
commuting combination of ladder operators, each path tés a differentp-dependent proportion of
the overall power in the transformation. This added levalahplexity for the first flexion transformation
appears to preclude any estimator of first flexion with vanghoff-diagonal terms in the susceptibility
matrix.

This concludes the discussion of shapelets, and of the fiexdsults that | contributed to Massey et al.
(2007d), although that paper also discusses other pogsibteators using polar shapelets. These include
the “radial profile” estimator mentioned previously, andivacestimators constructed in a similar fashion
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to those discussed in Section 3.4.2 and Goldberg & Bacon5(208s can be seen, this work offers a
variety of possible methods with which to measure flexionuaaiely using real galaxy images. In the
next Chapter | will go on to describe my attempts to perforehsan analysis using imaging data from the
GEMS survey (Rix et al. 2004), this being the work that has idated my research and which provides
the culminating results of this Thesis.
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CHAPTERA4

SHAPELET LENSING ANALYSIS OF
HST SURVEY DATA

In this Chapter | describe my correction for PSF distortionseal galaxy survey data, using the shapelet
method described in Chapter 3, and the use of the shapetetameflexion estimators. Using data from the
Galaxy Evolution from Morphologies and SEDs (GEMS) survédyave accurately measured real galaxy
shear using shapelets for the first time, and extended thigsis to flexion, providing reliable catalogues

of these lensing measures for the galaxy-galaxy lensinlysesof Chapter 6.

New technical challenges were faced during this work andtbods | developed to meet these challenges
are discussed in detail, including the extraction of “pgstatamp” images and the construction of a full
shapelet model of the PSF based on stars in the galaxy. | aseshlts from simulated lensing data to
choose the current-best shapelet estimators for the éwtnaaf lensing information from GEMS shapelet
models. The resulting galaxy shear catalogue is compargdtiag findings of previous authors having
performed independent analyses of the same field, and igifmube in good agreement. Finally, tests
for systematics show that the shapelet deconvolution lmasved any significant residual shear anisotropy
due to the PSF, although there are traces of residual se@iaiflcontamination.
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4.1 GEMS lensing data

4.1.1 Galaxy images

The GEMS survey imaging data used in this analysis, destgktensively by Rix et al. (2004), Caldwell
et al. (2005), HO5, and Schrabback et al. (2007), covers aaskg of~ 796 arcmir? centred on the
ChandraDeep Field South (CDFS). The bulk of the data consists of IP&of HST/ACS imaging,
combined with a further 15 ACS tiles from the GOODS projedaf@lisco et al. 2004). An image of the
mosaic of these tiles, taken from Rix et al. (2004), is shawRigure 4.1. Images were observed for the
GEMS survey in two pass bands: F606W (78 tiles) and F850LRilEs), with 50 point source detection
limits of mgog = 28.3 andmsgso = 27.1. In this work, we follow HO5 and use only the F606W images
in our lensing analysis, as they contain more discernibl@aggs (by a factor greater than two) and extend
deeper in redshift.

Although it is not necessary to reproduce in full the dethdéscussions of this dataset given by Caldwell
et al. (2005) and HO5, it is important to address those ptmseof the data that are possible sources of
systematic bias, and outline the steps taken to diagnosknainthese effects. Systematic errors important
to lensing in particular are well discussed by HO5, and mdethat we discuss in this Section is presented
in greater detail there. However, the method used in thikworcorrect for the anisotropic ACS PSF
differs significantly from the analysis of HO5, and this isalissed in greater detail in Sections 4.2.3.

As discussed in HO5, each GEMS-observed science tile is dioation of three ACS exposures, dithered
by ~ 3 arcsec. The resulting images have a pixel scale chosenasai@$ec, and the dithering procedure
allows the bridging of the gap between the twin charge-cediglevice (CCD) chips of the ACS. The
images taken from GOODS are a combination of only two ditth@xgosures, despite the availability of
further exposures taken at later dates; this is necessibgtéhe time instability of the ACS PSF (see HO5,
Rhodes et al. 2007). The GOODS survey was optimized for saparsearches (Riess et al. 2004), and the
ACS data from GOODS was observed in five time-separated spdelthis work, as in HO5, we only use
imaging from the first of these GOODS epochs.

Due to the location of the ACS camera away fromi&T optical axis, images suffer geometrical distortion
which is significant but also accurately modelled (Meureale003). Caldwell et al. (2005) describe the
method used to correct for this distortion, and the fixinghef GEMS astrometry to that of the R-band
image of the publicly available COMBO-17 survey (Wolf et 2004). Geometrical distortions in the
GEMS data due to velocity aberration were not found to beifsoggimt for measurements of shear (HO5),
and similarly | find there to be no significant variation of eage galaxy flexion across the ACS chips.

One other source of image distortion to space-based oligrrséds a degraded charge transfer efficiency
(CTE) of the on-board CCD instrumentation. Ongoing bombwedt by cosmic rays defectively alters
the semiconductor structure, causing an image bleed initbetidn of read-out which worsens with time
(e.g. Rhodes et al. 2004, 2007). Due perhaps to the GEMS\atigesTs taking place soon after the ACS
installation, HO5 and Schrabback et al. (2007) (in theierg@nalysis of the same data) find no evidence
for degraded CTE at a level significant to measurements ok\ezesing shear, and so | do not attempt a
correction for this effect (Rhodes et al. 2007; Massey e2@0.7c).
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Figure 4.1: Image of the GEMS survey mosaic, showing thetiposof each tile on
the extendedChandraDeep Field South. The tiles at the centre of the image, not
aligned with the overall field, are from the first epoch oba@ons of GOODS; these
have been incorporated into the overall GEMS analysis. Téiadicated in the top-
left of the image is that of thelubbleDeep Field South. Figure taken from Rix et al.
(2004).

4.1.2 Object catalogues

In this work we take as a starting point the same catalogueioi75 GEMS objects as used by HO5, made
with the SEXTRACTOR software of Bertin & Arnouts (1996). This catalogue was agsled using the two-
pass object detection strategy described in Rix et al. (P@0d Caldwell et al. (2005), which successfully
detects faint objects without multiply labelling singleéda objects. The SETRACTOR package was also
used to determine and subtract each tile’s spatially vargky background (Caldwell et al. 2005). We
define the signal-to-noise ratio (SNR) of each object asdlie of its SEXTRACTOR measured flux to the
error on this measuremermLUX andFLUX_ERRORrespectively, see Bertin & Arnouts 1996).

The entire GEMS field was masked by hand (HO5) to prevent faltgect detections from diffraction
spikes, satellite trails, reflection ghosts and artefacnfchip boundaries. In my analysis, | ensure the
single selection of objects from overlapping regions in G846 follows: pairs closer than 0.3 arcsec but
lying in different tiles were isolated and the object witle tiower SNR was then removed from the main
catalogue.

All objects with SNR< 15 are removed from the catalogue, reducing systematic gatelstases which
become significant for fainter objects. As pointed out byd€a(2000), one source of bias for faint galaxies
is the preferential selection of objects which happen toligmad with an anisotropic PSF. Another effect
(Hirata & Seljak 2003) which causes bias is the preferesékction of circular objects over elongated ones
(of the same flux) by almost any conceivable detection algari Galaxies which are anti-aligned with the
gravitational shear will become circularized upon lensimgd are thus detected in greater numbers than
their elongated, shear-aligned counterparts; this hasftbet of weakening the measured shear amplitude.
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Both these sources of error were found by HO5 to be negliddslethe GEMS sample once subjected to a
significance cut of SNR> 15. Issues of possible SERACTOR centroid bias, discussed by HO5, are now
completely resolved by my use here of the shapelet methodasisky & Refregier (2005): an accurate
object centroid is an output parameter of the shapelets banfite The GEMS SKETRACTOR catalogues,
having been cleaned as described above, contain a total df75 objects.

GEMS galaxy catalogue

In the selection of galaxy objects for weak lensing measergs) we follow HO5 and remove objects
with FLUX_RADIUS < 2.4 pixels so as to exclude stars and small false detectionstiiergalaxy sample
(see Section 4.1.2 below). Again only objects withx3EACTOR measured magnitudd .0 < mgog <
27.0 are included, so as to exclude extremely faint galaxies fuckvlensing measurements become less
reliable. All pairs of objects separated by less than 0.6ear@are removed, preventing shapelet modelling
errors due to extremely close neighbours. This leaves atbitellof 52 669 selected galaxies for all tiles,
and this is the sample from which measurements of galaxgxgahear and flexion will be made.

Seen in Figure 4.3, the construction of these shapelettdlogues was carried out using my IDL code
makegenscat s. pr o. These catalogues are required by the shapelet softwamntaie only certain
items of information for each object; the ASCII catalogukioms for these input variables are required to
fall in a certain prescribed order (see Bergé 2006). It &khba noted that, whilst we only wish to measure
shear and flexion from galaxies, the catalogues that we bopthie shapelet software must inclualéthe
121475 SEXTRACTOR detected objects within the GEMS fields, not just those seteas of interest as
described above. Shapelets must know aladudbjects in the field so that even objects which will not be
modelled can be masked. A subset of the total set of objestgaining the galaxies of interest, is then
also supplied to the shapelet software so that only thesxtshfre modelled; it is not necessary to make
a shapelet model of every object detected. This is an impbc@nsideration in the shapelet technique;
without careful masking, nearby objects can be be confusde@aoneously modelled as being part of the
central galaxy of interest. Henceforth we refer to the cafaés containing every object for each tile, plus
the known location of each selected galaxy, as the shapedely catalogues.

For each tile the list of galaxy objects of interest, andth@&tation indices within the shapelet-ready
catalogues, is stored Ioppkegenscat s. pr o in separate galaxy reference catalogues (Figure 4.3) eThes
location indices are then supplied to the shapelet rogmex. pr o (presented in Massey & Refregier
2005 but modified as described in Section 4.2.2) as an armsyrieg that only objects of interest are
modelled but all nearby objects are masked. The date uparhvelaich galaxy was observed is also stored
by these reference files, and this information is used imatelyi prior to the running of the shapelet
software to build an accurate time-dependent shapelet inobtlee PSF at the CCD chip location of each
galaxy (see Sections 4.1.2 and 4.2.3). This is vital for treeessful deconvolution of the GEMS galaxies.

The reference catalogues also include useful informatmrrequired by shapelets for modelling, such
as the right ascension and declination of each galaxy, amdnthex location, where applicable, of the
same galaxy within Catherine Heymans’ (CFH) shear cataajuH05 (important for later comparison
of lensing shear estimates). As shown in Figure 4.3 thisrin&ion is then passed to the output shear
and flexion catalogues. However, before the GEMS decorieolean proceed, a sample of non-saturated
stellar objects must be assembled so that the PSF can beletbdsihg shapelets; this is described in the
following Section.
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Figure 4.2: SKTRACTOR measured FWHM-magnitude diagram for all GEMS ob-
jects with SNR> 15 and lying in unmasked regions. The locus of true point sairce
can be clearly seen along the bottom of the plot. The stedlempde is taken from
objects which lie in the non-confused regions of both théaiband its counterpartin
the GEMSFLUX_RADIUS-magnitude diagram.

GEMS point source catalogue

An accurate shapelet model of the GEMS PSF, varying as aiumat position on the ACS field of view,
is vital for the successful deconvolution of galaxy imag&sars for this modelling were selected from
the object catalogue as described by HO5, utilizing the taoy of the stellar full width half maximum
(FWHM) with apparent magnitude. Candidate objects weratitied from the stellar locus of both the
FWHM-mgo6 plane and th&LUX _RADIUS-mgog plane, as measured by SERACTOR, giving a total of
~ 950 stellar objects (see Figure 4.2).

This number corresponds to an average of anly2 stars per ACS tile, insufficient to accurately charac-
terize the PSF as a function of chip position on a tile-bgbidsis. We cannot assume global PSF stability
for all the GEMS and GOODS observations as the ACS PSF is knowary significantly with time (e.g.
Rhodes et al. 2007), possibly due to thermal changes okl8ieduring orbit. We therefore break the
stellar sample into three sub-samples based on the datesefvattion for each science tile, assuming PSF
stability within each of these sub-samples. This approadided by the short duration over which the
GEMS and GOODS images were observed: the first epoch GOORS\dat observed in five days, and
all but three of of the GEMS-observed F606W tiles were imagikin a twenty day period. These three
out-of-sequence GEMS tiles are therefore discarded, amdetimaining GEMS sample split into two 10
day epochs.

This approach is also that taken by HO5, who found that the GEMGF remained sufficiently stable
within a 10 day epoch to allow a cosmic shear analysis to bapeed using the GEMS data (see HO5,
Figure 4). The measurement of a cosmological lensing sigraafar more ambitious undertaking than the
galaxy-galaxy lensing analysis which is the aim of this ThieMoreover, it is only the anisotropy of the
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ACS PSF that varies significantly with time and not the chiaréstic angular size (Rhodes et al. 2007).
Therefore such changes will not result in a systematic loiasd¢asurements of galaxy-galaxy lensing, for
which errors due to residual PSF anisotropy cancel due toitbelar averaging over each source-lens pair
(Schneider & Rix 1997). Given that anisotropy removal isanotitical requirement of this analysis, and so
as to aid direct comparison between my shapelet resultsharseé bf HO5 (upon the same images), we do
not mount a fully independent investigation into the PSHateon and use the exact same time-dependent
PSF modelling strategy as those authors. This leaves agatbf 919 point source objects in F606W
from which we characterize the ACS PSF. In similar fashiothtd for galaxies described in the previous
Section 4.1.2, the list of the 919 PSF objects destined fapslet modelling is stored in a series of PSF
reference files, one for each tile. The shapelet-readyamaiak, which contain all objects, are then passed
to the modifiedshex. pr o for the modelling of both stars and galaxies.

4.2 GEMS lensing measurements

4.2.1 Overview

The lensing analysis of the GEMS (Rix et al. 2004) optical gmg data using the shapelet software
of Massey & Refregier (2005) proceeds in five stages, theliiggig the selection of object catalogues
described above. Then, “postage stamp” images and noise foapach star and galaxy object are cre-
ated, which | describe in Section 4.2.2 below, including ifications and enhancements to the publicly-
available shapelet software. In Section 4.2.3 | describenxt stage, the modelling of the GEMS PSF
from stellar postage stamp images.

The fourth stage uses the shapelet software to find besgfitconvolved models of the GEMS galaxies,
using the shapelet amoeba routines described in Massey&dref (2005) and the deconvolution scheme
outlined in Section 3.3. This stage uses both the galaxyagesttamp images and models of the GEMS
PSF at each galaxy location. The final stage of the lensinlysisalraws estimators for shear and flexion
from the deconvolved galaxy shapelets catalogues or “slaagie the choice of estimator is discussed in
Section 4.2.5, and is motivated by the simulation result€ludipter 5. The schematic diagram shown in
Figure 4.3 gives a simple picture of how these five stagescafation and analysis were combined for the
GEMS survey data.

In the last Section (4.3.3) of the Chapter, | present theessfal results of initial tests for residual lensing

systematics, investigate some of the magnitude-depermpdepérties of the measured shear and flexion,
and compare the results of the shapelet shear estimatibe t63B+ results of HO5 and Schrabback et al.
(2007).

4.2.2 Postage stamp extraction

In order to model galaxies and stars in GEMS, postage stamgasiof each object must be extracted from
the survey image data. This may be done with Richard MasH®ly'script entitledshapel et s_sexcat 2pst anp. pr o,
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Figure 4.3: Schematic overview of the GEMS shapelet pipebee Sections 4.1-4.2 for details.
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Figure 4.4: Example of a GEMS galaxy postage stamp imageyisga (severely-
overlapping) masked neighbour. The small plotted ellisgbat defined by the and
b semi-major and semi-minor axes output byXSRACTOR

called from withinshex. pr o (see Figure 4.3), using either automatically created naigksegmenta-
tion maps or those supplied by the user (from, e.g.xBHCTOR). In this analysis, | chose to build
noise and segmentation maps on a postage stamp-by-posagelsasis using a modified version of the
shapel et s_sexcat 2pst anp. pr o routine.

For each star or galaxy a circular postage stamp centredec0BERTRACTOR centroid is created. Using a
segmentation map (see, e.g., Bertin & Arnouts 1996) thestage stamps are masked for nearby objects,
ensuring that only the object of interest will be modelledshypelets. In constructing a mask for each
object | modified the segmentation map-generating algoritfithe shapelet software, which appeared to
produce a large number of masking failures for the GEMS datey modified routine an elliptical mask

is drawn over each nearby galaxy, of semi-major @xi$a and semi-minor axi8.75b (wherea andb are
respectively the SETRACTOR-output semi-major and semi-minor axes of the object). alisnspection

of masked images showed this to be good compromise betweeredd to exclude unwanted light from
object postage stamps, whilst not over-masking and obggtine object of interest.

Following on from this, by additionally masking the centgalaxy object, a noise map and estimate of the
sky background can be made via analysis of the remainingIslanpixels. The root mean squared pixel

value is used to assign a constant background noise levattogostage stamp image, and the sky level
itself may be subtracted using a choice of models (Berg@R®r the GEMS images, which are already
sky-subtracted (see HO5), only a very small amount of resisky background was found and the removal
of a simple constant sky level from each postage stamp wéisisaf. The noise map is then supplied to

the shapelets amoeba focusing routines as the “noise gostaigp”, at the deconvolution stage (Section
4.2.4), alongside the masked and sky-subtracted imagagmstamp.

It was necessary to make additional changes to the puldicjlable shapelet software, of relevance to the
construction of postage stamp images. In particular, itfeaad that whilst the drawing of large postage
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stamps around objects was computationally prohibitivdhnatshapelet modelling stage, smaller postage
stamps led to an unacceptable number of model failures. mplsimodification that iteratively redraws
the postage stamp in the event of model failure provided ficiegit solution to this problem, and is now
part of the shapelet software, documented and availabledwnload online. This process begins within
an initial postage stamp image of radiusyqv times the full width at half maximum (FWHM) of each
galaxy image, as output by SERACTOR. If the modelling fails due to the model extending beyond the
limits of the postage stamp, the modelling is begun agaih wipostage stamp that is increased in size
increased by a factofrepraw- This process is repeated up to a maximumgfpraws times, after which

a catastrophic failure was flagged. In this analysis, | usethiéial postage stamp size agwum = 6, @
redraw factorfrepraw = 1.2 and a maximum number of redrawgepraws = 6.

A further improvement was the estimation the Poisson shiseran each image pixel, which is then added
in quadrature to the sky noise map of each galaxy postagestdiowever, the total integration times of
the GEMS and GOODS observations, being 2160 seconds ands26d0ds respectively, ensured that this
shot noise contribution was small in comparison to the slckbeound.

The postage stamp data for each galaxy is then ready for lghhapedelling, but in order to accurately
deconvolve these images the point source postage stampdiratbe used to model the GEMS PSF, a
process we now describe in detail.

4.2.3 Modelling the GEMS PSF

The shapelet characterization of the GEMS PSF proceedsistages. Firstly, a shapelet decomposition
of each selected stellar objectis made, using the postaggstdrawn for each stellar object as described in
Section 4.2.2. The output shapelet model then gives a valdieror estimate for each shapelet coefficient
fni.ne- The variation of each of these coefficients across the AQSistthen approximated by the least-
squares fit of a simple two-dimensional function; recontggrthe coefficients from these best-fit models
then allows the full GEMS PSF to be estimated at any pointsactioe field of view. However, this simple
picture disguises some significant freedoms at each statpe afiodelling process.

Individual stellar models

Each star in the point source catalogue was modelled up t@pe$dt ordem,,,., = 20, with a fixed
scale size of = 1.8 pixels. The optimal choice of these modelling parametepedds sensitively upon
the properties of the PSF in question. In particular, thesSiam envelopes of the shapelet basis functions
B, .n,,» While well suited to fitting typical galaxy profiles, are ke inconvenience: the ACS point source
response is extremely non-Gaussian in profile and so regoicalelling to a high ordet,, ... Using a
PSF model ofu,,,. = 20 slows down the deconvolution and modelling of galaxy imag@ssiderably,
but this is a necessary concession if both the peak regiomargs of the ACS PSF are to be accurately
characterized. In the cases of some of the brightest starsaw.,,,,. = 20 model is insufficient to provide

a good fit to every pixel of the stellar observations, due &irtbxtremely high significance.

The choice of a fixed value for the basis function scale radiusan help to minimize the effects of this
unavoidable concession. For this reason, considerabdensast be taken in this choice. As discussed in
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Figure 4.5: Comparison of the radial profiles (line) of a GEM& model, one using a scale radius
3 assigned by the? amoeba of Massey & Refregier (2005) (left panel) and onegusifixed3 of

1.8 (right panel). The square points represent the raditd®eibrightness measured in angular bins
from the image pixels, and the horizontal line shows thellef/the root mean squared background
noise.

Massey & Refregier (2005) the shapelet software employsnameba algorithm to jointly optimise the
selection of3, n,,4, and the centroid on an image-by-image basis. However, ierdodfully characterize
the PSF across the chip this freedom is not permitted: limgarpolation between shapelet coefficients
from models of adjacent stars is only possible if these nwdbbare the samgé (see Refregier 2003;
Massey & Refregier 2005).

The choice of a fixed for all stellar models is therefore a considerable freedothé modelling process,
and robust optimization of this choice will require furthveork to formulate. In this analysis, the choice
of 8 was initially taken from the mean value gf~ 1.2 found by allowing the shapelet algorithm to fit
it as a free parameter, for fixed,.x, USing the shapelet amoeba to explore tResurface of the model
fit (Massey & Refregier 2005; Bergé 2006). Importantly, lever, it was found that many of the models
constructed with a fixed found in this manner were not necessarily providing a snigetirying model of
the PSF; matching the sharply varying observed profilesigatly required rapid ‘ringing’ of the model on
sub-pixel scales. This was a particular problem in casesemh&n am,,., = 20 model was insufficient
to represent the brighter stellar images, due to the higftifignce of bright pixel values and the steeply-
varying profile of the ACS PSF.

It was decided instead that the global valugict 1.8 be chosen, after inspection of image residual maps,
and graphs comparing the radial light profiles of PSF modadscarresponding real stars. In this way an
acceptable, but subjective, balance was struck betwedmiring x2 and capturing well the inner regions
of the PSF, whilst ensuring it varied smoothly and withoutdraing negative in flux. A comparison of the
radial profiles of a GEMS star modelled with a fix@af 1.8 and a freely varying can be seen in Figure
4.5,

Needless to say, this does not represent a fully rigorousepehtable procedure for the optimal selection
of the PSH3, a selection made particularly difficult in this case by thz&@me non-gaussianity of the ACS
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PSF. One solution may lie in a change in choice of basis s&$6r modelling to something more suitable,
despite the relative efficiency of shapelets for modelliaagies. It is not necessary for the PSF model and
galaxy models to share the same basis set; however, thelatanmperation will become more complex
and will likely cease to be analytic.

Despite these reservations, the shapelet modelling of $tat,,,., = 20 in this analysis represents a
significantly more detailed description of the PSF when carag to KSB-style methods. The 909 stellar
models (10 catastrophic failures were suffered) were trmalised to unit flux, and ready for use in
characterizing the behaviour of the GEMS PSF as a whole.

Variation of the PSF model across the ACS field of view

Having arrived at a model of the point source response ataléipn of each chosen star in the GEMS
images, it remains to use these models to estimate the R8¥#ygiven point.

The variation of the PSF across the field of view was estimsg¢garately for each of the two ACS CCD
chips in each of the three GEMS epochs (described in Sectib@)4 A two-dimensional, second-order
polynomial was then fit to each of the 231 shapelet coeffisignt ... The fit to eachf,, ,, was simple
linear least-squares, implemented using Singular ValumBgosition (SVD: see, e.g., Press et al. 1992),
incorporating the modelling uncertainties on each shapekfficient as output by the Massey & Refregier
(2005) software. The shapelet software can be made to ocatflitcovariance matrixC,,, ,, and so it is
possible to use this information to fit all 231 coefficientagitaneously; in this analysis, however, we make
the simplifying assumption that these covariances arelamdlmay be neglected. The fit was therefore
made to each coefficient independently, i.e. not taking amimount the small covariances present between
shapelet coefficients due to pixelization (Massey & Re&e@D05); examaination of the covariance ma-
trices showed these non-diagonal matrix elements to bégitdglsmall for the bright stellar objects being
considered.

A second-order polynomial was chosen rather than a thirthigirer order polynomial (which have been
more successful in other studies, e.g. Van Waerbeke et @bB@ue to concerns over over-fitting of the
stellar shape information; even using a second-order pofyal it is necessary to fit x 231 parameter
values to each star. SVD was used, in combination with thpedbticoefficient error estimates, so as to as
suppress this risk of over-fitting for those shapelet coeffits where insufficent information was available
to merit such a fit. Third-order polynomials were tried (reong only a minor modification to the method)
but examination of shear and flexion maps for the stellar mdidenot provide any evidence that they
significantly altered the description of the PSF. In lighttod expressed concerns regarding over-fitting it
was decided to instead minimize this risk and to use a seootel-polynomial to model the variation of
shapelet coefficient values acros the chip.

Estimates ofy,, F. andg. for the stellar models were then made (as described for galdx Section
4.2.5), and stars for which these lay further thas 8om the model were iteratively removed and the
remaining data refit a further two times. Having then madesimeate of the variation of each,, ..,
across the field of view, it is possible to construct a modehefestimated PSF at the exact location of
each galaxy in the GEMS field. These modelled PSFs are them atphe shapelet decomposition stage,
in the form of a shapelets catalogue with a PSF model at thitiggosf each galaxy, and the recovered
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shapelet galaxy model is then a good approximation to thexgals it would appear in the absence of PSF
smearing (Massey & Refregier 2005).

4.2.4 Shapelets deconvolution

As shown in Figure 4.3, the shapelet software package usdBthwrapper routineshex. pr o to create
output shapelet catalogues of deconvolved galaxy imagésired to as “shapecats”. The routine takes
as its inputs the shapelets-ready catalogues construstédsaribed in Section 4.1.2, the GEMS images
themselves, and shapelets catalogues containing theagstir® SF at each galaxy location, modelled as
described in Section 4.2.3. There is additional freedorhénselection of values for optional input param-
eters to the shapelets routines, and | now outline our chat¢hese parameters where they differ from
the default values, and describe the reasons for thesesshoic

The shapelet deconvolution was carried out using the Gantehapelet basis set; this is done because the
Cartesian basis functions are separable @ndy, and, crucially, may be analytically integrated within
rectangular pixels. This ensures that the integration of ifito each CCD pixel is accurately described
during the direct modelling stage, and is the method usedé&yublicly available shapelet software. If
necessary for the construction of lensing estimators, @aisy to transform between Cartesian shapelet
coefficientsf,, », and their polar counterparfs, ,,, using the following relationship (given in Massey &
Refregier 2005):

2
nllngl } 5n1+n2
n

Frm = im2_é{[(n+m)/2]![(n—m)/2]!

x i i im’( (=52) ) ( (n_%m) >5Zi+”§fnl,n27 (4.1)

2
n’ n
n,.=0n}=0 T !

where the reader is referred to the definitions p&ndn,; in terms ofn andm given in Section 3.2.1. Equa-
tion (4.1) describes a one-to-one mapping for polar andeS&m shapelet models that holds when these
models are truncated to the samg.y, i.€.n1+n2 < npax andn < nya,. This calculation may be quickly
performed by a routine available as part of the shapeletvaof,shapel et s_pol ar _convert. pro,
which performs the transformation of Equation (4.1) extegnquickly upon both single galaxy models
and entire shapelet catalogues.

The GEMS galaxies were modelled only up to a maximum shapetirn,,,,, = 16. This value was
chosen due to the disproportionately long time taken to hedmall subset of large/bright galaxies in the
GEMS dataset; the time taken to model a galaxy increaseipagn? . (Massey & Refregier 2005;
Massey et al. 2007d). Given that the largest and brightdakigs are also most likely to be the closest,
it was decided that the importance of perfect modelling ehsobjects was of secondary importance in a
weak lensing analysis. For the galaxy-galaxy lensing aslyescribed in Chapter 6 it was found that the
vast majority of the~ 3000 galaxy models for which,.x < 16 represented a significant truncation lay
within the foreground lens sample. Similarly, the GEMS gada were all modelled to a minimumy,;, of

2. This was found to cause overfitting, defined as having a tmedacedy? < 1, in only a small minority

of cases € 200).
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The other input parameter differing significantly from thedalilt value was the choice 6f,in ceom defined
by (Refregier 2003) as

emin,Geom = 5 VNmax + 1. (4-2)

In this analysis, we enforce the conditiép;, ceom > 1 pixel at the shapelet modelling stage: models
for which this condition is not met are remodelled using aeotthoice of5 andn,,... This value was
chosen over the smaller, default value of 0.2 pixels in a@ngt to reduce the overfitting of correlated
noise in the GEMS images, which comes about as a result ofritdidg of the GEMS images using the
MuLTIDRIZZLE software of Koekemoer et al. (2002) (see also Caldwell e2@05). This effect is also
discussed in Section 5.4.3, and is of relevance as the gtiapéiware assumes that noise in adjacent pixels
is uncorrelated. In order to accurately treat images in Wwinigise is correlated between adjacent pixels
(such as the dithered GEMS images), the shapelet code isedda invert an extremely large pixel noise
covariance matrix. The instability and processing timairements of this process led to it being excluded
from the shapelet software of Massey & Refregier (2005pvélg the far simpler inversion of a purely
diagonal noise matrix. This currently represents a padéweakness in the shapelet method, as overfitting
correlated noise will result in the circularization of outgalaxy models, possibly biasing lensing results,
and so we take precautions to limit this effect.

Given these input parameters, and with the modificationféopibstage stamp extraction described in
Section 4.2.2, the routinghex. pr o was used to create a deconvolved output shapecat of all thryga
objects in each GEMS image tile. As was discussed in ChapgenB8mber of possible estimators may be
used to extract reliable lensing measurements from thisfgignt reservoir of galaxy shape information;
the choice of these estimators for the GEMS dataset will newibcussed.

4.2.5 Shear and flexion estimation

Given a shapelet derived approximation of each galaxy inpaige to PSF distortion, all that remains is
to extract accurate and unbiased lensing estimators usingalues of the model coefficienfs, ,,. As
described in Chapter 3 (see also Goldberg & Bacon 2005; @ajdt Leonard 2007; Massey et al. 2007d)
there a number of such estimators that might be used. Weesrédiluse any of these methods, aided by the
extreme simplicity of transforming between Cartesian aoldipshapelet spaces; as described in the pre-
vious Section this may simply and quickly done using the fioms hapel et s_pol ar _convert. pro

that comes as part of the shapelet software, and which ingriesithe matrix transformation described by
Equation (4.1).

For the analysis of the GEMS galaxy images, we employAttigreishted shear estimator of Equation
(3.100), and the shapelet flexion estimators that work byimizing the goodness-of-fit statistig? in
Equation (3.91), proposed by Goldberg & Bacon (2005). Usbede estimators requires that galaxies are
modelled ton,,.x > 2 for shear anch,,,, > 3 for flexion, as described in Chapter 3. These choices are
motivated by the results of Chapter 5, which tests a varieghapelet lensing estimators using a realistic
simulation of ACS survey imaging data. Although we use thseilts of this later analysis here, and are
thus somewhat guilty of breaking the natural flow of the Tedginsing shape measurement is a complex
procedure and it has been instructive in the first instanagvi® a thorough description of the full data

reduction methodology that is used in both the real and sitiorl data analyses.

The results of Chapter 5 also give correcting bias factocessary for the accurate recovery of shear and
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flexion data (see Tables 5.1 and 5.2). Using these bias faetod the estimator labelling defined in Section
5.1, | define the measured shear and flexion in GEMS as

- s ~ DG ~DG
Wobs _ ,yunwelghted ]_-obs _ F gobs _ g (4 3)
0.82 1.04° 2.15° '

In order to calibrate thg »veighted estimator, we measure a shear responsivity factor of

2
R=1- <ET> =0.783, (4.4)

which then gives
g

2R
see Equation (3.100). It is noted that this is a differentltes that found for the simulated galaxy images
of Chapter 5, for whichiR = 0.886. This is due to a broader distribution of measured ellifésiin the
GEMS galaxies as compared to those of the simulated galapylaiion. As described in Massey et al.
(2007d), galaxies of greater intrinsic ellipticity resplomore weakly to applied shear, and the fadkr
calibrates for this effect. While differing values betwebe two analyses point to the simulated galaxy
population displaying less ellipticity variance when cargd to the GEMS sample, it is right to include
the correct calibration based on the properties of the GEM&Xies being measured. Shear results will be
robust despite this difference.

~unweighted __
o1 =

(4.5)

Finally, | remove catastrophic shapelet modelling faituie 4%) and outlying measurements witf?"s| <

1, |F°P| < 1 arcsec’ and|G°™| < 2 arcsec’!. | also remove modelled galaxies with< 2, so as to
ensure accurate deconvolution for all catalogue objeets &ection 5.4; Massey & Refregier 2005). This
fully describes the GEMS shear and flexion catalogues, wtocitain46 145, 26 999 and22 490 galaxies
for v°bs, F°Ps andG°P® respectively. The fact that the flexion catalogues are figmitly smaller than the
shear catalogue is largely a consequence of the requirdioregdlaxies to be modelled to,,.. > 3 in
order for flexion estimation using the scheme presented bgh&og & Bacon (2005). | now go on to ex-
amine some of the properties of these shear and flexion gatedochecking for consistency with previous
results and quantifying evidence for the successful reas&ystematics.

4.3 Results

4.3.1 Comparison with previous shear studies of the GEMS fidl

A first indication of the success of the GEMS shapelet pigalirthe comparison of shear results obtained
with those of two previous studies of the same field: HO5 arid&iback et al. (2007). Both these analyses
used a KSB-style analysis (see, e.g., Kaiser et al. 1995ksiizeet al. 1998) to measure the shear and
correct for PSF effects, and so it is interesting to see vdratbsults match those of the fundamentally
different shapelet analysis presented in Section 4.2.

| compare my~°Ps with the HO5 shear catalogue, provided by Catherine Heymarfgst match the
HO5 catalogue to my “grand” catalogue of all objects in GENM&ding a 100% match; this is because
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both analyse use exactly the samexSRACTOR catalogue as starting point. Shear measurements are
compared in Figure 4.6.

So as to produce a reliable fit between these coefficientskéraa approximate estimate of the measure-
ment errors on each galaxy shear as follows. Following tkalt® presented in Figure 4.7, | split both
shear catalogues into two subsamples. One subsample & Qetaxies havingngos < 23.5 (=~ 3000
galaxies in each case) and the other faint subsample certte@rremaining galaxies withuggs > 23.5

(~ 42000). | then assume that measurement errors are negligiblééobitight subsample, and estimate
the measurement variance for the shear on a typical galatheansemble value of

Ur2neas: 02(m505 > 235) — 02(m505 < 235) (46)

for each catalogue. This expression assumes that a tyitzadygis measured as poorly as a galaxy in the
fainter subsample, which should be a reasonable estimata tp the far greater number of faint galaxies.

Using these simple assumptions | finfls, = 0.19 andoH% = 0.17. This is an interesting result in
itself, suggesting that shapelet measurements are ntisierthe HO5 KSB-style analyses. Taking these
measurement errors, a line of> = a;4H% + b; was fit to the relationship between shear estimates
(calculated by David Bacon). Best-fitting slope parametense

a1 = 0.963 £ 0.006, az = 0.977 £ 0.012, (4.7)
suggesting an overall calibrative bias(6f.7 + 0.08)%. Best-fittingy-offset parameters were found to be
by = 0.0012 £ 0.0046, bs = 0.0012 £ 0.0045, (4.8)

suggesting no significant difference in the residual shetwéen this analysis and HO5. Evidence for such
an offset could indicate a poor treatment of PSF effects a(on possibly both) set of measurements (see
Section 4.3.3).

The level of agreement between HO5 and the results of my #tapieeline is encouraging, and lies
within the sample variance achievable for cosmologicalsuesments from a survey the size of GEMS.
Schrabback et al. (2007) also found a slight deficitdf.3% in comparison of their shear measurements to
HO5, and so agreement with these authors is even stronggre iy calibrated (as is also required by most
KSB methods), a first shapelet shear analysis of real dathdes made to agree with two independent
sets of measurements for the same field.

In Section 4.3.3, | describe a further test for residualaysitics that can be made from my own data and
results. However, before making statistical estimatebedé¢ systematics it is necessary to investigate the
nature of the signal that is being measured, particulary®® andG°"®, the distributions of which pose
extra problems to weak lensing analyses.

4.3.2 Distributions of lensing measurements

Figures 4.7, 4.8 and 4.9 (left panels) show the distribgtmmeasured shear and flexion for all the shapelet
deconvolved galaxies in the GEMS survey. The most strikeadure of these results is the extreme non-
Gaussianity of the distributions of measur&t” andG°*; the large wings of each distribution pose a



108 CHAPTER 4. SHAPELET LENSING ANALYSIS OFHST SURVEY DATA

Rowe shear
Rowe shear

ol ] oVl ]
-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0
Heymans shear Heymans shear

Figure 4.6: Comparison of"* to shear measurements of the same field from Heymans et 86)20
The plots show the density ef" versusy!' points (left panel) ands®® versusyH®® points (right
panel). The solid line represents the best fit to the data ame&surement errors are estimated,
showing a calibration bias ¢b6.7 4 0.8)% overall. Figure provided by David Bacon.

significant problem in the extraction of statistical infation. This is due to the instability of the arithmetic
mean for distributions with a poorly-defined variance. le @hapters that follow, a number of techniques
for coping with this property of shapelet-measufetf® andG°>* will be discussed.

In the following Section, 4.3.3, | outline one approach feating with the large number of outliers in
flexion statistics: the use of the statistical sample medadiner than the sample mean as a measure of
central tendency. Another approach is to apply strict atiggo the measurements, imposing cuts of
|FOP5| < Frax and|G°P®| < Gumax to remove outlying objects from the lensing catalogues, thed
simply using the sample mean. This is an attractive propdsalwill cause biasing of the measured
sample mean towards zero. An initial investigation has shihat the error on the measured sample mean
can be improved significantly by cuts as severefas,, = 0.1 andG,... = 0.2. However, the biasing
effect of such clipping needs to be carefully simulatedt a4l depend closely upon the underlying signals
F andg. The improvement of flexion measurement using optimiseliesudipping, and the simulation of
look-up tables for an accurate estimate of the clippingibgfactor, presents an interesting alternative to
median statistics and an important avenue of further work.

Another interesting aspect of the problem of flexion measer# scatter is the degree to which it depends
upon the quantity of image information available for eaclagy@ The right-hand panels of Figures 4.7, 4.8
and 4.9 show the distributions gf>s, °>* andG°"® for a subset of the GEMS galaxies with magnitudes
meos < 23.5, as measured using SERACTOR (this represents a sample size~#f6000 from the total
sample of~ 50000 GEMS galaxies). For shear, this restriction leads to a naldowing of the distribution

of 4°Ps estimates. However, the°" andG°** distributions of Figures 4.8 and 4.9 are seen to narrow
significantly with the restriction to a lower magnitude ssdomple.

In each case, the reduction in the FWHM of the™ andG°"® histograms is by a factor of approximately
3, with a significant further reduction in the number of erieeoutliers. Interestingly, and perhaps frustrat-
ingly, for the purpose of statistical analyses the thrdd+feduction in the width of scatter is roughly bal-
anced by the nine-fold decrease in the sample size. It willdportant in the future to examine, in greater
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Figure 4.7: Histograms of measuretP® from the PSF deconvolved GEMS galaxy
images; the real and imaginary components are represeytdashed and solid lines
respectively. The left panel shows the histogram for th@estrvey, the right for a
subset with SETRACTOR-measured magnitudeggs < 23.5.
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Figure 4.8: Histograms of measurgd™ from the PSF deconvolved GEMS galaxy
images, plotted as described for shear in for Figure 4.7.
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Figure 4.9: Histograms of measuréd™ from the PSF deconvolved GEMS galaxy
images, plotted as described for shear in Figure 4.7.



110 CHAPTER 4. SHAPELET LENSING ANALYSIS OFHST SURVEY DATA
0.04 0.04
o o
° °
0.02 - o 0.02 - <&
O o 4 ° o
o ©
AR © o bs <<>><> o ‘o o
© EES o © . ¢ % Og @ o %o
« ° o & o ©
= o 3
£ 000 ° 8 o8 s ° § 0.00 ° o
5] . SRS = S S S
5 o 0 0 % g o oloo ©
= © ® © < = o ¥ o 2
° S o <
© o IR % o o
Lo <
~0.02 RPN o 8 ~0.02 & :
o o
o
o
—-0.04 L P L L T —-0.04 L P L L 1 L
-0.04 —-0.02 0.00 0.02 0.04 -0.04 —-0.02 0.00 0.02 0.04
Mean vy, Median vy,

Figure 4.10: Mean (left) and median (right) deconvolvediggah°®® in the GEMS survey images.
The open diamonds represent the signal for each tile, wahdtge error bars plotted in the top
left-hand corner representing the average error on eadiesétmeasurements. The cross with the
smaller error bars represents the global residual sigonakistent with zero in both cases.

detail, the relationship between the scatter in flexion messents and galaxy image SNR. Through such
an analysis we should hope to discover an optimal depth or &N&ia for the selection of galaxies for
shapelet flexion analysis.

Despite the non-Gaussianity of the flexion distributionisistill possible to construct estimates of the
lensing signal using the sample median, which can then be teseheck for systematic errors in the
flexion catalogues. An important test of the reliability bétshapelet correction for PSF-induced lensing
systematics is to consider the residual signajdb, 7°" andG°"* for the GEMS image tiles and survey
as a whole. Such evidence for the success of the shapelgtdearslysis is considered below, in Section
4.3.3.

4.3.3 Tests for residual PSF anisotropy systematics

We expect that, given a complete and successful treatmdensing systematics due to the anisotropy
of the PSF, the total average (whether mean or median) of tifé and G signals in the GEMS images
will be consistent with zero. It should be noted that in thislgtsis we need to consider th@arotated
values of the observed lensing measures, leaving them inabedinate system defined by theandy
axes of the ACS chip. For the final lensing analysis all mesments are rotated into right ascension and
declination coordinates, but the residual signal in theseilts would inaccurately reflect the success of
the PSF correction scheme. In particular, the images in tBRI&dataset which come from the GOODS
observations (see Rix et al. 2004; Figure 4.1) are alignead sagnificant angle to the GEMS-observed
images.

Figure 4.10 shows the mean (left panel) and median (righ¢lpanrotatedy°"s in the deconvolved GEMS
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survey images, both on a tile-by-tile basis and for the suoxerall. The global mean shear is given by

—0.0004 4 0.0012 (4.9)
0.0005 + 0.0012, (4.10)

AA
o0
[\v) =
~ ~—
[

(y1)m = —0.0007 = 0.0012 (4.11)
0.0007 + 0.0012. (4.12)

)
S
8

I

Both these measures give zero-consistent results, givangnaicant indication of success in the shapelet
treatment of PSF anisotropy systematicsfot* in GEMS.

It will be instructive to consider these results somewhdtier. Firstly, for weak shears and flexions we
may assume that both the mean and median will tend towardsnttherlying gravitational signal, and so
each method provides us with a valid estimator in the weakmegThe errors on the sample median
are estimated using the result that for largesamples

1
O — (4.13)

VAND ()
(see, e.g., Lupton 1993), whelé is the sample size angv.,) is the estimated value of the probability
density distribution at the sample median. For a normaliyriiuted population, the statistical efficiency
of the median (defined as the variance ratio of the sample neesample median) tends f&y7 ~ 0.7
for large N, but as can be seen from Equations (4.9)-(4.12) the effigiehthe median for shear is in
approximately equal to unity. This highlights the weak r®@aussianity of the distribution of measured
~°bs. As a measure of central tendency, the sample mean relidiifypon the Central Limit Theorem
and so its efficiency suffers increasingly as errors becowre mon-Gaussian.

For the cases of°™ andG°"* the efficiency of the median lies in the range5-6, due to the extremely
non-Gaussian wings of the flexion distribution. For the gsial of the residual flexion signal, shown in
Figure 4.11, we therefore plot only median statistics. Tluba median of the unrotated°> signal is
found to be

N
Eal
I

—0.0009 + 0.0009 (4.14)
(F2)m = 0.0015 4 0.0010, (4.15)

which is marginally inconsistent with a complete removalt™ residuals. The global median of the
unrotated;°™ is found to be

(G1)m = 0.0024+ 0.0026 (4.16)
(Go)m = 0.0074+0.0027. (4.17)
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Figure 4.11: Median deconvolved gala®y®® (left) andG°® (right) in the GEMS survey images.
The open diamonds represent the signal for each tile, wahdtge error bars plotted in the top
left-hand corner representing the average error on eadiesétmeasurements. The cross with the
smaller error bars represents the global residual sigmialis mildly inconsistent with zero fgfF°",

but more significantly so fog°"*.

This is significant evidence that the PSF deconvolution oettescribed in Sections 4.2.3 and 4.2.4 has
been unsuccessful for the casegF®.

These results are less conclusively successful than tlowsthd shear estimators, particularly f@ijbs
where we are detecting a clear residual signal. Understgrikde reasons for this difference is problematic,
particularly given the noise on the flexion measuremenssids that would also affect shear estimates, such
as problems with charge transfer efficiency can be largegdraut given the success of the shear results
and other studies of the GEMS field (HO5; Schrabback et al7200

An alternative explanation is simply that the higher ordexdes of the GEMS PSF were insufficiently
well modelled to be able to completely correct for the efeaft PSF flexion anisotropy, despite shapelet
modelling tonmax = 20. It is known in particular that the ACS PSF contains a a sigaift degree of
flexion-like anisotropy, particularly in the outer regiasfghe light distribution. In work completed for the
Active Galactic Nuclei hosts analysis of Jahnke et al. (30@4omposite, high SNR image of the GEMS
PSF in the F606 band was created (Figure 4.12), and madelyublailablé. This image is scaled so as
to reveal the outer structure of the light profile, and reveaidence of & ,-like anisotropy that may be
responsible for the detected residual.

As was discussed in Section 4.2.3, and as can be seen in Bigthe shapelet basis set struggles to de-
scribe the ACS PSF profile well over a broad range of scales.der to completely describe the anisotropic
outer wings of Figure 4.12 the shapelet model truncatioeonéeds to be increased substantially beyond
nmax = 20. The shapelet deconvolution then becomes slower, andemllire large memory resources to
avoid segmentation faults: both the storage requirementpeocessing time increase roughlyr&s In

this analysis, using ten desktop machines (2GHz, 1-2GB Rie shapelet deconvolution took approxi-

Ihttp: // ww. ai p. de/ %Ej ahnke/ r esear ch/ genms/ psf ML5. ht m
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Figure 4.12: Composite image of the average F606W PSF in B %5data, scaled
so as to reveal the outer wings of the light profile. Figureegated for the AGN
analysis of Jahnke et al. (2004) and made available on thielwode web.

mately 9 days to complete (PSF modelledit@,. = 20), so there is some room to explore whether more
detailed modelling of the PSF can alleviate the presencesiduals.

Nevertheless, in the case of shear and (marginally) theflissbn, we appear to have reasonable control
of the systematics due to the anisotropic GEMS PSF. Moretiverprimary cosmological measurement
attempted in this Thesis is the galaxy-galaxy shear andiftesignal in GEMS, which will not be adversely
affected by any small systematic anisotropyyitts, 7°** or G°** due to the rotational averaging of such
residuals (Brainerd et al. 1996; Schneider & Rix 1997). batlanisotropy is not the only effect of the
PSF, however, which also blurs and circularizes galaxy esagusing a weakening bias in the magnitude
of extracted lensing measurements. The success of schenvesriecting this effect can only be accurately
guantified via the analysis of simulated lensing data, tactviare now turn in the following Chapter.
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CHAPTERD

SHAPELET LENSING ANALYSIS OF
SIMULATED DATA

Optical distortions due to the anisotropic point sourc@oese of imaging telescopes can be broadly de-
scribed as having two effects upon lensing measurements fifs is to induce a residual anisotropy in
galaxy images, which may mimic a lensing signal and must lieected; the level of residual contami-
nation in the GEMS galaxy images is discussed in Chapter 4. sEcond effect is the circularization of
galaxies due to image blurring, causing a reduction in thesuesd shear or flexion that must be accounted
for.

This Chapter quantifies the success of this second cornefttiche GEMS shapelet pipeline as described
in Chapter 4, and the success of the treatment for otherssadensing measurement such as the effects
of image noise. Using simulated, GEMS-like galaxy survenges of known input shear and flexion,
pre-convolved with a realistic ACS point spread functiod given pixel noise, | test the success of signal
retrieval for a variety of shapelet estimators.



116 CHAPTER 5. SHAPELET LENSING ANALYSIS OF SIMULATED DATA

5.1 The FLexion Implementation Program
(FLIP)

In order to more accurately test the success of lensingrimdtion recovery in the GEMS shapelet pipeline,
| undertook the analysis of a set of simulated images pravimeRichard Massey, using the same pro-
cedures used for the Shear TEsting Program (STEP) analg3é&sP(: Heymans et al. 2006b; STEP2:
Massey et al. 2007b; STEP3: Rhodes et al., in prep.). Theasgam(which will be described more fully
in Section 5.2) were designed to closely resemble the GENES oecluding sky background noise and the
distorting effect of a point spread function based on thaheHubble Space Telescop€s.

5.1.1 Input lensing signals

Most importantly, the galaxies in each image were subjectaknown input shear, first flexion and second
flexion before the degradation of the images. By compariegéicovered lensing measurements with the
known inputs, we can calibrate and test a selection of skaeising estimators. The basic strategy is to
take 100 GEMS-like simulated galaxy tiles and apply the sgraeitationaly, 7 andg to all the galaxies

in each tile, but to vary the chosen signals between tilesn&yee this analysis the FLexion Implementation
Program (FLIP).

There is significant freedom in the choice of the input gegidhal distortions, leading to a large parameter
space. lIssues such as the covariance and covariant bigseshaneasurements of flexion and shear
(Schneider & Er 2007), which are likely to be a function of tekative strengths and relative orientations of
the gravitational signals, will require very large simeldtiatasets in order to be accurately explored. In this
work, | confine myself to measurements of gravitational ska@a flexion in the configuration of relative
orientations depicted in Figure 5.1. This mimics the coratiaffect due to a single circularly-symmetric
mass distribution, and so approximates what we might eXpeateasurements of galaxy-galaxy lensing.
This is particularly true for the GEMS field, which is knowntio contain any large mass distribution such
as a cluster (HO5; Schrabback et al. 2007).

Despite fixing the orientations of shear, first flexion ancbsekcflexion relative to one another, the relative
magnitudeof the input signals are allowed to vary between tiles, réfigcthe realistic halo models de-
scribed in Chapter 2. The overall orientation of the sheadidh signal is also allowed to vary, so as not to
bias results by aligning the signal along potentially prefigial directions to the pixel axes.

Input shear signal strengths were chosen to lie in the raefiaedl by|y| < 0.08, and flexion signal
strengths to lie in the range defined |3y < 0.012 arcsec! and|G| < 0.036 arcsec ', again motivated
by the results of Chapter 2. Richard Massey then applie@thigaals to shapelet models of galaxy images
made using the galaxy image simulation software of Massel.€P004) (see Section 5.2), using the
shapelet shear and flexion transformations described ipt€h& and in Massey et al. (2007d). After
adding noise and the effects of an anisotropic ACS-like Ri8Fmages were ready to be analysed using
the GEMS shapelet pipeline.
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Figure 5.1: Schematic showing the relative orientationadficed gravitationa} (solid arrows),F
(clear arrows) and (open arrows) in the FLIP images. These relative orientativere chosen as
they mimic the combined effect due to a single circularlyagyetric mass distribution, which in this
case would lie off the page towards the right; the panel orritite shows this combined effect on
a single galaxy. It should be noted that in the FLIP imagesélative strengths of each signal vary
between tiles, as does theerall orientation of the combined configuration.

5.1.2 Lensing estimators

As was discussed in Chapter 3, the range of lensing estim#itat may be constructed using shapelets
is only limited by the number of shapelet modes availablg.(). However, in practical cases this in-
formation will be limited so as to extract lensing infornmatifrom as many galaxy images as possible.
Estimators which make extensive use of higher order inftionavill prove problematic for many galaxy
images, particular those which rely upon the convergemcthé sense of converging to a limit) of sums
over shapelet coefficients (see Massey et al. (2007d)).

In order to test shapelshearestimation we apply the following three schemes to the FhiRges:

e Shears measured using the Cartesian shapelet model ofjakoty and David Goldberg’s routine
f1 exi on. pr o, available to the public via the flexion web pag&his applies a:> minimization
of the following expression:

X2(ev6n) = |Un + 'ngzf;/ — fn} Vn_pl {/Lp + 'ngzf;f — fp (51)
where ~,Sl,, Vnp and iy, and the method overall, are fully described in SectionZ3.Equations
(3.87)-(3.91) (see also Goldberg & Bacon 2005). We labedaishear measuremeqtd®.

» Shears measured using the polar shapelet model of eackygafal the shapelets unweighted el-
lipticity estimator, described in Section 3.4.3, Equat{8r100), which we reproduce here again for

clarity:
ﬁunweighted _ € _ ZZO:O V n(n + 2) fn,2 (5 2)

2-(2)) 2 ()X 0Vt fao

This is the estimator that was introduced by Massey et a07{@n

» Shears measured using the Gaussian weighted estimatoibéeisin Section 3.4.3:

~Gaussian __ .f2,2
! B \/§<f0,0 — fa0)’ (5-3)



118 CHAPTER 5. SHAPELET LENSING ANALYSIS OF SIMULATED DATA

which was introduced in Massey et al. (2007d) and where, smudsed in Section 3.4.3, the angle
brackets in the denominator denote an ensemble averagesadbeoentire sample of galaxy images.

These were identified as being the estimators most likelyv®gliable and rapidly converging results for
typical galaxy images where only limited information is éahble.

The following thredlexionestimation schemes were chosen for testing using the FhiBlations:

» Flexion measured using a Carteisan shapelet model of esaikygand David Goldberg’s routine
f I exi on. pr o, available at the flexion web page (see above). In a simikhida to the case of
shear, this measures flexion by minimizing the followjfgstatistic:

WO = [(FEL +GiGT) fo = fu| Vi [(FET +GGT) Fo— £ - 59

As for the shear estimator given in Equation (5.1), thisnestor is fully described in Section 3.4.2,
Equations (3.87)-(3.93) (see also Goldberg & Bacon 200%) lalel these measuremen?ﬁgG and
~DG

» Flexion measured using Cartesian shapeletsfareki on. pr o again, minimizing Equation (5.4)
above, but using an input Cartesian shapelet series furilnecated ton,,,, < 7 for all galaxies.
This is done to test the assertion of Goldberg & Leonard (200at the shapelet series need be

. = DGT ~DGT
truncated for accurate flexion measurement. These measoteare labelled ™ andG .

« Flexion measured using a polar shapelet model of eachyatakthe lowest order Gaussian estima-
tors described in Section 3.4.3, Equations (3.103) and43, Which we reproduce here once more
for continuity:

~ Gaussian 4
F© Jia

= 3510 ) Joo+ P s — Jao) (5:5)

for the first flexion and

~ Gaussian 44/6
G _ \/_ f3,3 , (56)
38 (fo,0 + f2,0 — fa0 — fo.0)
for the second flexion. As discussed in Section 3.4.3,RRés measured from the lensed galaxy
images and the angle brackets denote an average acrossialbifes in the simulated survey sample.

These estimators were first introduced in (Massey et al. 007

We describe the results achieved with these shear and flestomators in Section 5.3, but first | discuss
the galaxy images created for the FLIP analysis.

5.2 FLIP images

The FLIP images were created by Richard Massey via the salagygenage simulation package as was
used for STEP2 (Massey et al. 2007b), as described in Massdy(2004) and below. The images were

Lhttp://www.physics.drexel.edu/ goldberg/flexion/
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Figure 5.2: lllustration of the effect of perturbing galamporphologies in shapelet
space, using the method of Massey et al. (2004) and taken thatrarticle. The
images in the top row show a shapelet model bfudboble Deep Field galaxy, rotated
by various angles. The successive rows below show the satarydaut with its
shapelet coefficients increasingly perturbed; the degfeeedurbation,,, ,, (see
Equation 5.7) chosen by Massey et al. (2004) for realistiutations of galaxy images
is shown in the box. These represent typical shapelet stedigalaxies as used in the
FLIP analysis.

created so as to realistically simulate the morphologiespate-based observations of galaxies, and use
a realistic model of the ACS PSF to test the accuracy of shemsorement methods for space-based
observations. A set of 10096 x 4096 pixel images were created, with a pixel scale of 0.03 arcsea$

to match the GEMS dithered science tiles), resulting in al ttea of 419 arcmin

5.2.1 Simulated galaxies

The galaxy images are based on the shapelet parametariajalaxy images in thelubbleDeep Fields
(HDF: Williams et al. 1996, 1998); a shapelet model of eadlygain the HDF is first made. The simulated
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galaxy fields are then populated with model galaxies based tipese modelled real galaxies, but having
been given randomized rotations and inversion. Cruciily,shapelet model of each galaxy is then also
randomized by a small amount: the coefficiefits,,, of each HDF galaxy are given a small random offset
by an amount,,, ,,, so thatfs™ = fu, n, + 0n,.n,- This offset is chosen to be a random variable

following the Epanechnikov probability distribution

A"lv"2

2
671 ,n
[1 — (#) } for — Ayne < Onyne < Angings

3
p(6n1,n2) = K((Snl,nz) = iy (57)

0 elsewhere

where the characteristic width of the offsgt, ,,, is a free parameter that must be decided. Too large a
value of)\,, ,,, creates simulated galaxies that are unrealistically “yiemsd can even display large holes
of negative flux; setting\,,, », = 0 simply reproduces the original HDF galaxy.

Massey et al. (2004) describe their preferred choicg,9f,,,; they considered each pair of neighrbouing
galaxies in the HDF finding that,, .., = 4 x [ mean separation between nearest neighbours fofthat |
proved to be a suitable choice. An example of these simutgkkies, along with its HDF progenitor, can
be seen in Figure 5.2 (image taken from Massey et al. 2004) rddlism of these simulated galaxies was
further tested by through the comparison of a range of gataagphology measures with the equivalent
measurements for real data. It was found that the elligtidistributions of simulated galaxies closely
mirrored those of real galaxies, as did measures of clumspjressymmetry and substructure (see Massey
et al. 2004; Conselice 2003; Bershady et al. 2000; Consetie¢ 2000). The randomly inverted, rotated
and resampled galaxies then represent realistic but whellysimulated galaxy images.

Using the lensing transformations described in Sectioh®Znd 3.2.2 these shapelet simulated galaxies
were then subjected to a range of input shears and flexionssasilded in Section 5.1. The first simulated
image was not lensed, each of the 99 subsequent tiles wgeetto a shear and flexion of a magnitude
randomly chosen from the ranges described in Section 5ty w@suniform probability distribution. The
input shear and flexion signals for each tile are orientatedredom angles to the pixel grid, but in fixed
orientation to one another (again as described in Sectijn 5.

In order to test the accurate retrieval of lensing infororain the presence of unavoidable observational
degradation, such as that due to sky noise and PSF distrtias necessary to mimic these effects in the
FLIP images. | describe how this was done in the next Section.

5.2.2 Simulated observational distortions

ACS-like point spread function

The point spread function used for the convolution of gaaxn this analysis was PSF “D” in the set of
PSFs used for the forthcoming STEP3 analysis (“space STRRIdes et al., in prep.) which is shown in
Figure 5.3. This is modelled on the ACS PSF and was chosereandkt likely to resemble the telescope
optics in the GEMS images, and to allow these results to leetjrcompared with the forthcoming STEP3
results. This PSF has been modelled using the shapeletseftup to an ordet,, .. = 20, and are based
on detailed “Tiny Tim” ray-tracing models of the ACS PSF (&ri995; Rhodes et al. 2007). As discussed
in Section 4.3.3, modelling up to order,., = 20 may not be sufficient to completely characterize the
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Figure 5.3: The point spread function (STEP3 PSF “D”) usedawvolve the FLIP
simulated galaxy images. The colour scale and contourgeplare logarithmic.

ACS PSF on all scales, due to its extremely non-Gaussiarigrblowever, it will provide a good first test
of the success of shear and flexion measurement using the Qipdihe. In subsequent analyses it will
be desirable to model the FLIP PSF to higher accuracy, mudtaapears to be desirable to do the same
for the GEMS images.

Each lensed, shapelet modelled galaxy in the FLIP catalegsethen convolved using this PSF model.
An important simplification of the FLIP analysis is that tRISF model is kept constant across the image,
and no attempt is made to fit a time or spatially varying PSFehtwithe FLIP images. This simplification

is also observed in the STEP analyses of Heymans et al. (2@d8bMassey et al. (2007b), who argue
that the problem of shear measurement precision shoulddmigked from the separate question of PSF
interpolation. Hoekstra (2004) and Jarvis & Jain (2004 )haoked into this problem, but it is certainly
likely to add additional uncertainty to the calibration ehking measurements.

The convolution itself was performed in shapelet spacegugie convolution matrix transformations de-

scribed in Refregier (2003) and Refregier & Bacon (2003gdemented by the IDL routinghapel et s_convol ve. pro
in the shapelet software. The resulting shapelet modetsréresent galaxies smeared by the PSF of the

ACS, modelled to the same level as presented for blind téstisear calibration in the STEP3 analysis of

Rhodes et al. (in prep.), allowing for later direct compami®etween these results and those of the STEP
collaboration when analysing space-based images.

Finally, the convolved shapelet models are pixelized orgdadof scale 0.03 arcsec, matching the GEMS
science tiles. This is done using the routgteapel et s_r econp. pr o in the shapelet software, which
performs an integration of the shapelet model across eaeh fdihe Cartesian shapelet set is analytically
integrable across rectangular regions on the two-dimeasjgane (Refregier 2003; Massey & Refregier
2005), and so this operation may done quickly and accurately
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Figure 5.4: Section of one of the FLIP image tiles, create®Rizhard Massey using
the image simulation method of Massey et al. (2004).

Pixel noise

These pixelized FLIP images then undergo the final stage afgssing, the addition of realistic noise.
Following STEP2 and STEP3 (Massey et al. 2007b; Rhodes @t gkep.), a two-component noise model
is added to each FLIP image, resulting in the simulated d=ga s Figure 5.4.

The first component added is a Poisson shot noise, due to ¢héable uncertainties associated with
counting discreet events (in this case the number of ph@oingng at each CCD pixel). The noise added
is drawn from a Gaussian random variable of variance equélet@hoton count. Having added this shot
noise, the images are renormalized to counts per secondhimgthe GEMS images.

The second component added corresponds to a Gaussian daocttgrith a root mean square level of
5.0 counts s', matching that of the GEMS images. The large scale variatidhe field background is
assumed to be perfectly subtracted (a reasonable assunfigtithe final reduced versions of the GEMS
images, see Section 4.2.2). Correlated pixel noise of thedescribed by Massey et al. (2007b) is not
added, following the prescription of the STEP3 analysiso@Rs et al., in prep.); GEMS itself does contain
correlated pixel noise due to the dithering of images, andlldiscuss the implications of this in Section
5.4.3. Finally, in the galaxy image simulation stage, faibfects are created well below the level of the
GEMS sensitivity. These objects are subsequently lostemthise, causing a slight but realistic addition
to the noise level overall. The FLIP images, a section of #wsd of which can be seen in Figure 5.4,
now encapture many of the most important properties of th®IGensing data and are ready for shapelet
analysis using the GEMS pipeline of Chapter 4. | now desdtiige analysis, the extraction of lensing
measurements, and the success of the different estimataskédar and flexion.
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5.3 FLIP data analysis and results

The FLIP image tiles were analysed using exactly the samalipgas described in Chapter 4, with one
important difference. No stars are simulated in the FLIPgesa and knowledge of the convolving PSF
comes instead in the direct form of the,,, = 20 shapelet model describing STEP3 PSF “D” shown in
Figure 5.3. There is therefore no need to model the FLIP P8I tise methods described in Section 4.2.3;
the GEMS images required detailed modelling firstly fromdtaes themselves and then modelling of that
variation of stellar shapes as a function of chip position.

In this way we are simulating shapelet shear and flexion nreasent giverperfectknowledge of the
distorting PSF, a luxury which is not attainable for realddtuture analyses will be necessary to ascertain
the extra uncertainty in shear and flexion measurementsadumeperfect modelling of the PSF (such as
may well be evident even for the,., = 20 GEMS PSF model, see Section 4.3), but it is nevertheless
interesting to explore the undeniable limits of shape me=sasant accuracy even given a well-modelled
PSF.

Using the SKTRACTOR software (Bertin & Arnouts 1996) | extracted a catalogue ®f6®1 galaxies
having SNR> 15, as was done for the GEMS galaxies (see Section 4.1.2). €piesents a slightly
higher number density of galaxies than that found using ithhées criterion in the GEMS images( 80
arcmin 2 as opposed to 65 arcmin2), but this can be explained by the paucity of objects in théSE
field (e.g., Schrabback et al. 2007), the masking of the GEM&yes, and the necessary imposition of
further selection criteria upon the GEMS galaxies to avaidfasion with stars or imaging anomalies.

These SKTRACTOR catalogues were then used as the inpstitex. pr o, using the same postage stamp
extraction scheme and input parameters as described in€hkapThe PSF model input ®hex. pr o,
the same for each galaxy, was the STEP3 PSF “D” as descrilme abthen used the 100 deconvolved
output shapelet catalogues to make an estimate of sheaeaimhffor each FLIP galaxy, using each of the
estimators listed in Section 5.1.

In a similar fashion to the published STEP analyses (Heyragas2006b; Massey et al. 2007b), the chosen
figure of merit was based upon the mean (or mediah), F°" or G°™ from each tile, and its relationship
to the corresponding input signal. For the flexion analyes median was again found to significantly
outperform the mean as a measure of central tendency, asdised exclusively. As was the case for the
GEMS data, the mean and median are equally efficient stati®ti the FLIP shear measurements; we thus
make comparisons using the mean shear, a measure moretdikedyused in shear-only shapelet analyses
of the future. In my FLIP analysis the mean and median shedonmeed equivalently, with no significant
sign of any relative bias between the two for any of the she@mators.

Specifically, the success of each lensing estimator is dfieghby two measurements: the multiplicative
calibration biasn and the residual shear or flexion offset hiasThese are the same comparison criteria
used in the STEP studies (Heymans et al. 2006b; Massey €@0b2. Using the 200 data points provided
by the two components of mean shear measured for each tilét the following relationship for each
estimator:

<,70bs> _ 7input _ mv,yinput +c,. (5.8)
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Table 5.1: Tabulated shear calibration bias for each estinti@sted on
the FLIP images.

Estimator My Cy

APC -0.235£0.013  0.0016-:0.0005
yunweighted —.0.178+0.014 0.0016:0.0006
yGaussian—.0.137:0.020  0.0012:0.0008

In the same way, we fit the median flexion measured from eaehdil

(]_-obS)m _ Finput — mF]:inpUt + Cr, (59)
(G5 ) — GMPU =GPy ¢ (5.10)

It should be noted that we do not consider the two componésisaar or flexion separately as a function
of the orientation of the input signal, as was done by Massay. €2007b) for STEP2. In considering the
overall response to components we maximise the signadigerof our lensing measurement calibration,
and postpone an investigation of angular dependence temdaglysis. For the galaxy-galaxy lensing
measurements of Chapter 6 this will be a sufficient test afadigecovery, as any angular bias will cancel
on average and add only a small extra component to the measat@oise. | now discuss the results for
each of the estimators proposed in Section 5.1, and bedirtheétshear.

5.3.1 Shear measurement results

The analysis of the shear results begins with an outlieratigalaxies withv°b%| > 1 being removed from
consideration. This degree of trimming will not significigritias output shear statistics, and is commonly
used for shear measurements (e.g., HO5). For the estin@tossructed in a “passive” fashion (Massey
et al. 2007b,d) from combinations of polar shapelet coedfitsf,, ,,, we normalise each coefficient by the
flux of the object in question. This is a simple first approazladdressing the problem of reducing the
otherwise extremely wide scatter in shapelet coefficiehies(f,, ,, being linearly related to the image
surface brightness). This and related problems are disdussgreater detail in Section 5.4. In order
to calculate they »weishted estimator, a shear responsivity fac®r(see Equation 3.100) for the galaxy
sample is needed, and is calculated to be

2
R=1- @ = 0.886 (5.11)

for the FLIP images. We note that this is different to the ltesbtained for GEMS, pointing to a possible
difference in the properties of the GEMS galaxies when caegb those in the FLIP images (see Sections
4.2.4and5.1).

In Table 5.1 we present the results for the three shear dstisii@sted using the FLIP simulations, and in
Figure 5.5 plot the tile-by-tile results for each estimatwt were used to fit the:, andc, figures of merit
for each estimator. These results show a clear underestgraigis in each shear estimator considered,
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Figure 5.5: FLIP results for thgP®, qunweighted gngyGaussian agtimators. Plotted afgPC — ~"PUt)
versusy™Ut for each tile (top left panel), from which the calibrationi§itcalculated, and the output
4PC versusy™PUt for each tile (top right panel). In the bottom left panel imtd 51mweighted
versusy™PUt for each tile, and the bottom right panel shoy#gussian versusy ™Y, The dashed lines
represent the fit and the solid line depicts perfect perfocaa

recovering only(76.5 + 1.3)%, (82.2 & 1.4)% and (86.3 + 2.0)% of the input shear signal fo7°®,
Funweighted gndsGaussian regpectively. The evidence for the imperfect removal of BBBotropy, given
by the value of the offset parametey; is also significant; although this sensitivity to a residsyestematic
is less secure foy“aussian there is some sign that this estimator is also affected bifept PSF removal.
These results are discussed in Section 5.4.
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5.3.2 Flexion estimator results

As for the case of shear we exclude measurements for wWHER|, |G| > 1, and for the passive
(Gaussian) estimators normalize each shapelet coeffibietite observed flux for that galaxy. In Table
5.2 we present the results for the flexion estimators desiiiib Section 5.1.2 when tested using the FLIP
simulated images. Figure 5.6 shows the results of thesaasitis on a tile-by-tile basis, and the best-fitting
lines that give then andc figures of merit for each estimator.

These results are interesting in comparison to those farshiéhe multiplicative biasn?_E5 for the F Pe
measurements appears to be well controlled, showing aralbwéas ratio of1.04 4+ 0.12. It is clear,
however, that the uncertainty on this figure is significagtiyater than that for its shear counterparts. Also
of interest is the fact that tk@DG appears to significantlgverestimatehe input gravitational signal, with

a bias of(215 + 12)%. This unexpected result will be discussed later on in thep&hrgsee Section 5.4).
As in the case of the shear measurementsthGe estimator seems to show some residual offset bias.
The offset is somewhat more marginal than for shear, pgsdil to the more severe noise in the flexion
measurements, and no significant residual is evider@?gr

The results for the truncated DGT estimatéTgGT and@DGT are similar to those for the DG estimators,
but somewhat noisier and less accurate. Contrary to thenfisdof Goldberg & Leonard (2007) and
Leonard et al. (2007), who found that truncation improveapset estimates of andg, for the GEMS
pipeline it to be appears advantageous not to truncate hapedels before measuring flexion using the
x? minimization of Equation (3.91). In particular, the muligative biaSm?,_?T for thej—'DGT measurements

~DG . . . .
appears to be less well controlled than or ~, showing an overall positive bias ¢34 4+ 15)%. Again,
~DGT . . . . . . .

g appears to overestimate the input gravitational signah am even greater positive bias @00 +
16)%. The control of residual offsets is again better than forshear estimators, with a non-detection for
~ DGT . . . ~DGT

F and a marginal negative detectiongn .

The ﬁ‘éwsgm and G flexion estimators perform, perhaps, the worst of the theséetl. The
ffGauSSlan estimator now shows severe overestimating bias of the sigoal, a{270+16)%. As opposed

to the DG estimators, the bias @Gansmn is a less severe (but still significarft)76 + 17)%. Control of
residual offsets appears reasonabledor """ and poor forF """ In the following Section I will
now attempt to discuss these results which, especiallyhtocase of the flexion estimators tested, appear
in some cases to be disappointing and alarming in equal measumay be that further work, using a
larger suite of simulated images, will be necessary toyeadplore these biases and uncertainties. How-
ever, | will attempt to investigate and discuss some the mbwéous shortcomings and problems inherent
in the shapelet estimators, shortcomings that have onlgrhe@pparent in the practical application of the

method.

5.4 Discussion

I now attempt to draw some conclusions, based on the res@ltepted above and on other observations
which | will discuss, regarding the reliability of the tedtshapelet lensing measurement schemes. Many
of the estimators above appear perform poorly, and more wikke necessary to understand the issues
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Figure 5.6: FLIP results for the flexion estimators testecthk top left panel is plotted the median
F° versus;f'“p“t for each tile, and the top right panel shows the median versusg™\t. Also
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shown are}‘ (m|d left) andg (m|d right), andF (bottom left) and; (bottom
right), versus the respective input flexion signals. Theedifg scales of the various plots should be
noted. The dashed lines represent the fit and the solid lipetdeerfect performance.
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Table 5.2: Tabulated flexion calibration bias for each estomtested
on the FLIP images.

Estimator m c

Fo° 0.04:0.12  0.00130.0008
il 0.34:0.15 -0.0004-0.0009
FEUSN 1 70£0.16  0.0034:0.0010
G>° 1.15£0.12 0.00170.0023
vl 1.90:0.16  0.0046:0.0031
GO 0764017 -0.00340.0032

affecting the accuracy of shapelet estimation. Still moogkwnay be necessary before all of the schemes
presented above can be made as reliable as the best altemathods.

5.4.1 Multiplicative bias

To begin, | will consider the results for the bias factoy which is perhaps the most pernicious systematic
bias affecting lensing measurements agdjuireslensing simulations such as STEP and FLIP in order to
be accurately quantified. In contrast, the offset bias cacobstrained using tests on the lensing data in
guestion, such as those described in Section 4.3.3 (se@atsm et al. 2003 for a further test of shear

residual systematics in cosmic shear analyses).

On the strength of the results presented in Section 5.3sltémpting to assume that the shear is best
measured by“aussian - This estimator displays an underestimating multiplieabias of~ 86% in com-
parison to the~ 82% of 752ussian or the even more severe underestimating bias for the Davidu®ay
shear estimator. It also appears to have the least setysttivivhat, for an unknown reason that will be
speculated upon later, must be an imperfect treatment ¢f8freanisotropy. There are, however, important
problems with this estimator and others similar to it fortbshear and flexion. These are likely to be due
to the simple way it has been implemented for this analysid veill need significant further investigation.

Firstly, ySaussian js noisier than the unweighted ellipticity and DG estimatof his in may in fact be a
consequence of another important property of this estimatoich relates to the calculation of its shear
susceptibility. As described in Section 3.4.3, fifgussian estimator may be constructed simply as

;?Gaussian _ \/§f2,2

(fo,0 — fa0)’ (512)

where the angle brackets denote an ensemble average. As mentioned above, for tHisssnae took
the additional step of normalizing eag} ,,, in the above expression by the flux of the galaxy in question
(remembering from Section 3.2 that the unitsfgf,, are flux x inverse angle). This does something to
reduce the extremely large scatter in these quantitiesatieetlarge range of galaxy fluxes, but a large
scatter (and extremely skewed distribution) for thesefamefits still remains. The correct calculation of
this ensemble average is vital to the accuracy of the ergirmator.
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In the FLIP analysis | have presented, this ensemble avevag@aively calculated as the arithmetic mean
of the entire shear catalogue, findiffh o/F — f1.0/F) = 2.49, whereF' is the galaxy flux. As an
illustration of the instability of this measurement, thediaa of this quantity is found to be 1.89, pointing
towards a skewed distribution within the galaxy populatitirihis median is then used in the calculation
of yGaussian jt js found thatmg;auSSian is closely consistent with zero. It seems unjustifiable tmdstrong
conclusions regarding the reliability of the Gaussian slestimator without a better understanding of the
correct way to estimate this susceptibility factor. Thistability is also likely to be a partial cause of the
extra noise seen in the Gaussian shear measurements.

An obvious conclusion is that the quantityy o — f1,0) should be fitted as a function of galaxy flux,
apparent size, and possibly morphological type whilst Bnguithat estimators constructed in this fashion
take proper account of biases due to “Kaiser flow” of galakigtsveen flux and size bins (see, e.g., Kaiser
2000; Massey et al. 2007d). These considerations will aéseital in the calculation ofi,,, ,, for David
Goldberg’s shear estimator, and for the calculation ofexrsusceptibilities in the Gaussian and radial
profile flexion estimators.

The calculation of accurate susceptibilities for the mamaplicated polar shapelet flexion estimators, such
as the radial profile estimator, is made more difficult styllddfurther problem: the slow convergence of
shapelet coefficient sums such as

Pigia = %;5 Z V(I =3)(n—1)(n+1) (fa-3,0 + fa1,0 — frot1,0 — fa-3,0) (5.13)

which expresses the susceptibility of the radial prdfilestimator (Massey et al. 2007d). The radial profile
estimators forF andG were also constructed and tested on the FLIP images, bud catilbe made to
yield meaningful results for this reason. A further issuéngbortance taF estimators is the convergence
of the quantity?? /3% (see Section 3.4.3). For a small but significant populatioRLdP galaxy image
models the convergence of this measure was so poor thaiveegalies were returned (these models were
rejected from subsequent analysis), which adds a signifszamrce of extra noise and possibly bias to the
Gaussian and radial profile estimators for This could be one explanation for the overestimation of the

F signal byﬁGaUSSian, seen in Figure 5.6.

In contrast, the calculation of the unweighted ellipticityd the Goldberg flexion estimators proceeds on
a galaxy-by-galaxy basis, without needing the ensembleageeof quantities that will vary wildly with
galaxy population and due to inevitable shapelet seriex#tion. The shear responsivity fac@®y which

is used as a susceptibility factor in the unweighted edipi is a fairly robust statistic that does not change
significantly between galaxy populations (although it daggear to change somewhat, c.f. Section 4.2.5).

~ Gaussian ~Gaussian

To conclude, thereforeF . g and#PC fare poorly in this first FLIP comparison. More
importantly, the calibrative bias factors for these measand for the more successfgi?ussian cannot

be trusted without significant improvements to the caléoabf shear and flexion susceptibilities they
require. The investigation of whether more sophisticatedtments of the required susceptibilities (e.g.,
as a function of galaxy size and flux) improve the reliabibfythese measures to a level greater than that
offered byyunweishted (or hy 7 pe andGDG will be useful further work, but beyond the scope of this Tikes

Instead, we adopt the unweighted ellipticity as the favduneans of shapelet shear estimation in GEMS,
and include a multiplicative correction by a factor(af/0.82) to all shear estimates in the galaxy-galaxy
lensing analysis of Chapter 6. | will discuss the implicati@f the need to introduce such a factor, and
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how it compares to the results for the shapelet pipelinedeist STEP3, in Section 5.4.3. For the flexion
estimated using Equation (3.93), | found there to be no adganin truncating the shapelet series as
suggested by Goldberg & Leonard (2007). This is likely duemportant differences at the shapelet
modelling stage; Goldberg & Leonard (2007) and Leonard.e2807) do not use the shapelet amoeba
routine to optimise their shape measurements, and are ftaursleft with very high order shapelet models
containing relatively little information. We thus adopétﬁDG andGDG estimators for flexion, and correct
measurements by bias factors(®f1.04) and(1/2.15) respectively.

Overestimation in the G estimators

Finally, and on a related note, the large, systematic otierason of theG signal by all of the estima-
tors tested presents an unsolved question. The estimatigniolikely to be the most problematic of
all the weak lensing signals as it involves the accurateragbation of image variation on the smallest
scales. However, explanations for overestimation of thaadithat would affect all the estimators tested
are difficult to conceive, although image overfitting at thaygelet modelling stage is one possibility.

In order to investigate the problem further, | undertooklit she the FLIP survey images into subsamples
and examine the dependencyraf, upon various properties of the simulated images. The olsvitace

to begin an investigation is the signal-to-noise ratio ($iRhe galaxy, defined as the ratio of theux

to theFLUX_ERRORas measured by SERACTOR for each simulated galaxy. It should be expected that
the brighter a galaxy image, and the more securely it is tedethe more secure the shape measurement
should be. The total sample of FLIP galaxies was split intedtbins of SNR, having a range so as each
to contain the same number of galaxies. The figures of mesitriteed by Equations (5.8)-(5.10) were
then calculated using the tile-by-tile relationshipgs®® to G"™" as before, but in each tile using using
only the relevant subsample for that bin. Due to the concesited in the previous Section regarding the
accurate determination of denominator of the Gaussiamastis, we do not considérGauSSian but restrict
ourselves to investigatir@DG andG"°". In Figure 5.7 we see plotted the variationef® andmP¢T with
three different SNR subsamples (upper two panels) and cadpiais to the variation ohgnmghted across

the same SNR bins (lower panel).

The results shown in Figure 5.7 are interesting, and fo@’t%eeandQDGT are somewhat unexpected. The
QDG and GDGT estimators appear to show an approximately consistenestisration of the input signal
for all three SNR bins. There is no clear dependence of theessmfG measurement upon SNR for the
FLIP images, whereas for the shear estimatoyishted we see that the shear recovery improves as the
galaxies increase in SNR. In other respects Figure 5.7 sesasenable; for both thgnweighted gnd for
theg estimators it can be seen that the uncertainties upare greater for the lower SNR galaxies. This is
a simple consequence of the increase of measurement untiegtéor fainter galaxies (see Figures 4.7-4.9
in Section 4.3.2). In addition, uncertainties upaf®T are typically greater than those upa?®, as found
before for the full sample of FLIP galaxies. However, therapgpnate constancy af.2¢ andmP¢T with
SNR presents no real insight into what might be causing tleeestimation of;.

We therefore investigated the variation f; with other galaxy properties, in the hope that they may
correlate more strongly with other variables. In the sanshitan as for the SNR subsamples described
above and seen in Figure 5.7, we chose to split the FLIP geaxy two more image properties: the
shapelet scale size(as chosen by the shapelet software of Massey & Refregi€s)20al the value of the
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132 CHAPTER 5. SHAPELET LENSING ANALYSIS OF SIMULATED DATA

407 ] 5f
35F 1 5
[ 1 4F
3.0F b :
— [ ] = 3;
O 25— B 5 £
e r ] e §>—<
j&) [ ] E
g =0 ] T 2f
r 1 g E —$
1.5F B F
F3 ] 1E
1.0 i B
05: Il Il L L L : OE L L L L L a
0 5 10 15 20 25 30 0 5 10 15 20 25 30
B (pixels) B (pixels)
4F 6F
; 5F
3r ] £
g [T s
~ 2r b a8 r 4
o o _F
E E 3F %
3 by £
1r Y — L
£ 2F X
r £ hd
O: 1 1 1 1 1 1 F 1 1 1 1 |
0 20 40 60 80 100 0 20 40 60 80 100
FWHM (pixels) FWHM (pixels)

Figure 5.8: Multiplicative bias factors fc@DG (left panels) an@DGT (right panels) forg (upper
panels) and FWHM (lower panels) subsamples of the FLIP ggdaXhe error bars in the abscissa
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full width at half maximum (FWHM) as measured by SERACTOR. As before, the FLIP galaxies are
split into three subsample bins Gfand FWHM, each containing the same number of galaxies.nTtfe
andm?2CT figures of merit were then calculated for each bin, and thelteare plotted in Figure 5.8.

The results of Figure 5.8 are interesting, as they hint atwiey be one cause of the overestimatiorjof
by the estimators tested. Whereas the SNR parameter desthibrelative brightness of the FLIP images,
both 3 and FWHM are directly related to the size of the FLIP galaiks relationship is not precise for
(3, however, as galaxies displaying significant substruaveemodelled using a lower and highemnmay).
Both QDG and GDGT appear to show signs of more significant overestimationdar FWHM and low 3
galaxies, although this correlation is less strong in theT@Gtimators due to the size of the uncertainties.
Interestingly, the values ofi; for each estimator are extremely poorly defined for the snalalaxies,
which can be seen in the size of the particularly large erews In the first bins of Figure 5.8. We now
consider the ramifications of these results.

Firstly, it seems clear th&t is very poorly measured for small galaxies, and poorly messaverall, using
the shapelet technique described in Section 3.4.2 as ingpierd by the | exi on. pr o code of David
Goldberg. While the problem is particularly bad for the derajjalaxies, as can be seen from Figure 5.8
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there is still an overestimation even for the the largerxjal One explanation for these results might lie
in the pixellization of galaxy images; it is known that thisuses degeneracies and covariances between
shapelet coefficients, particularly those containingrimfation on the variation of the image of small scales
(Massey & Refregier 2005). As discussed in Section 3.2 s#dtond flexion transformations cause dis-
tortions in galaxy images that may be detected only by censig higher order shapelet coefficients than
for the first flexion or shear.

This may go a long way to account for the extreme noise upog tineasurements for small galaxies, but
it is more difficult to account for the overestimation of tHéeet. The problem may be related, however;
although the shapelet software of Massey & Refregier (2@685)be made to output covariance matrices
for the shapelet coefficients of the final galaxy model, itsloet take these covariances into account during
the actual modelling stage. Importantly, theexi on. pr o routine of David Goldberg does not take these
covariances into account, using instead the expressiomwétton (3.87) for the covariance matik, ,

(i.e. purely diagonal). It may be that this neglect of the éolvariance between shapelet coefficients leads
to overfitting, both in the direct modelling stage and in thiaimization of they? statistic used to construct
flexion estimators:

O = [(FFT + GiCT) Fov = fa Vg [(FET +9:6T ) Foy = ). (519)

That the overfitting leads to more severe overestimatiog fitvan for 7 may be a consequence of the fact
that the second flexion moves a greater proportion of shiapeleer to higher order coefficients than the
first flexion (again see Sections 3.1.2 and 3.2.2).

However, the discussion above is speculative. The overatn may also be a consequence of simple er-
rors in thef | exi on. pr o routine of David Goldberg, or perhaps in the strength ofdi&" signal given

to the simulation images by Richard Massey, or perhaps inwmy measurements. It will be extremely
important to investigate this effect further, both to ursi@nd the cause of these results and hopefully to
improve on the performance of future second flexion estirsatdo these ends, | intend to construct my
own independent simulations of galaxy images, covering elmwider area than these first FLIP images;
this will be necessary in order to fully explore the corrielas between lensing recovery and parameters
such as SNR or FWHM, and also the covariances and biasesdresiveulataneous measurement of shear
and flexion. This work is sadly beyond the scope of this Thésithe future it will also be extremely inter-
esting to see whether HOLICs based approaches (Okura €idb2a) manifest the same overestimating
behaviour.

The problem may be not be of vital importance, as the noispasties of the measured second flexion
currently make its use for accurate cosmological measurenifficult; it is, for example, completely
ignored by Leonard et al. (2007) and Okura et al. (2007a) &tseSection 6.2.3). Having completed my
discussion of multiplicative bias in the FLIP analysis, Mnhgo on to discuss the success of the chosen
measurement schemes at avoiding additive biases.

5.4.2 Additive bias - shear and flexion residual offsets

The other figure of merit chosen in the FLIP analysis, as irSfhEP analyses, was the offset hiatefined
in Equations (5.8), (5.9) and (5.10). There was evidenca fesidual offset bias in the measurements from
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all of the shear estimators (of varying significance), andeevidence in the flexion estimators, although
these measurements were noisier. This raises interestasgiigns, as one of the unrealistic simplifications
of the FLIP analysis was the fact that the convolving PSF wasnk perfectly, in the precise form of
the shapelet model used. There was no need for PSF modaitingrfoisy stellar images, or for the
interpolation of PSF properties in the regions betweersstar

An explanation for the offset is most likely to lie in the sleégt treatment of the galaxy deconvolution. The
shapelet software is known to treat both image deconvaiwidy inexactly (Massey & Refregier 2005;
Section 3.3). The inexact treatment of correlated pixes@diy the shapelet method (discussed in Section
4.2.4 and below) is not an issue here, as the pixel noise iRltle images is uncorrelated as described in
Section 5.2.

The shapelet software adopts a practical approach to dekedion that is described in Section 3.3. Galaxy
images are fit to a model using a basis set that has alreadycbaeolved with the PSF model, recovering
the shapelet coefficients for the deconvolved image as sim&quation (3.65). However, this convolved
basis set is no longer strictly orthonormal, which introgsierrors in the modelling when the scale size
( of the modelled galaxies is not large in comparison to thahefPSF (Massey & Refregier 2005). It
is possible that this will be the case for galaxies in the FamRlysis. The authors of the STEP3 analysis
chose to model the ACS PSF usingran.. = 20 model with3 = 2.86; this was done so as to accurately
model the wings of the light distribution, whereas in GEM@&ad@s my decision that the accurate modelling
of the PSF interior was also of significant importance. Onesequence of this choice is that the PSF scale
size is much closer to that of many of the FLIP galaxies, asbeaseen in Figure 5.9. This may be one
source of this residual lensing signal as detected in th® Fhdéasurements of Re-analysingyweighted

but excluding all galaxies withi < 3, we findm2™ighted — —0.168+0.018 (consistent with the previous
result) butctveighted — 0.0001 + 0.0007, suggesting that this is indeed the reason for the sheaatsffs
found in Section 5.3.

Interestingly, the PSF shear residuals apparent in the FedBIts are not detected in the GEMS shears,
as described in Section 4.3.3, possibly as a consequenbe shiallers of the PSF model. However,
significant residuals are detected in the second flexion,nraaner aligned to the signal apparent in the
wings of the GEMS PSF; these wings are more poorly modelleal disect consequence of the smaller
choice of3. The ideal solution is likely to be some compromise, modglbf the PSF with as small &

as possible, whilst capturing as much of the light profile @ssgble on all scales. Increasing the value of
nmax for the PSF model allows both these aims to be realised, boéatost of increases to the computing
resources required in shapelet modelling.

5.4.3 Wider applicability of the FLIP results

In the final Section of this chapter, | aim to briefly discussitnplications of the FLIP results in the wider
context of weak lensing. Perhaps most importantly, | fodrede to be significant instabilities inherent in
the calculation of certain amongst the shapelet shear axidrilestimators proposed by Refregier & Bacon
(2003), Goldberg & Bacon (2005) and Massey et al. (2007dis Whs due in each case to the need for these
estimators to invoke ensemble averages of shapelet ceetficso as to estimate the lensing susceptibility
of the measure in question. Unfortunately, these averaijesany strongly with galaxy type (and therefore
telescope filter) and overall image quality (due to convecgdssues in the larger shapelet sums). Careful
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Figure 5.9: Histogram of shapelet scale sizior FLIP (left panel) and GEMS (right panel) galaxy
models as estimated by the GEMS pipeline. The small peaks-af) are due to catastrophic failures
in the shapelet modelling and imperfect removal of anoredfiem the GEMS catalogue. Note that
for the GEMS analysis we remove all objects with< 2 at the lensing measurement stage.
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calculation of these susceptibilities as a function of feixe and galaxy type will be necessary for them to
be used in truly reliable estimators. Subsequent accuaditgation of these measures will require galaxy
image simulations which very accurately reflect the fluxesand morphology of the real data sample,
presenting a further, and perhaps more serious, techriadéage.

Regarding the methods that succeed by estimating shearmaiwhflvithout recourse to unstable ensemble
averaging, | found evidence for significant multiplicatbias factors for both shear and the second flexion.
For the measurguweighted g calibration factor of 1/0.82 is required to match the inghears, and this

is a calibration factor that | include when making the cosgalal measurements presented in Chapter
6. One important question is where this bias might come fr@ipjestion that is also being posed by the
STEPS3 project; this found that Joel Bergé’s shapelet ripdlalso based on Massey & Refregier 2005
software) needed a similar factor of 1/0.9, although this was using thg“aussian estimator (c.f. my
result fory©aussian of 1/0.86). A possible conclusion might lie in the shape @f shapelet basis set itself,
which includes a Gaussian outer envelope for both the paldrGartesian varieties (Refregier 2003).
Real galaxies are known to have more gently decaying lightss) often being well fit by curves such as
exponentials and Sérsic profiles. It is thought (Richarcgsés, priv. comm.; Rhodes et al., in prep.) that
systematic truncation of the outer galaxy profile, inhemerdptimised shapelet model fitting in schemes
such as presented by (Massey & Refregier 2005), may causerdifierential circularization of galaxy
images. This would, inevitably, weaken measured lensigigeds.

The results frorrffDG were rather too affected by noise to be able to truly investigvhether this problem
was also biasing the first flexion signal, but the measuresnamntrently appear unbiased to within 10%
accuracy. In order to tighten this constraint many more FhiRges of the sort described will need to be
analysed; it is also hoped that further analysis may helpodtier the serious issues affecting the estimation
of G. The high level of measurement noise on even the best shagstimators of flexion, illustrated
by Figures 4.7, 4.8 and 4.9, is also a significant problem. lerraative flexion analysis method, based
directly upon the KSB schema of Kaiser et al. (1995), hasnticeeen described (Okura et al. 2007a). It
will be very interesting to see if this approach, based omtkasurement of Higher Order Lensing Image
CharacteristicS (HOLICS: Okura et al. 2007b) yields be#sults. Recent work which compared HOLICS
to shapelet flexion estimators Goldberg & Leonard (2007yriazd et al. (2007) found that it did indeed
perform better and was less noisy in particular. Unfortelyathis comparison did not extend to a full PSF
treatment with either method, and so a fair comparison of KE3Land shapelet flexion measurements
using FLIP-like images would be very interesting.

Finally, it is right to discuss whether the results of the Flanalysis (and the bias factors calculated there-
from) are applicable to my analysis of the GEMS survey datae FLIP data is not a perfect match to
GEMS. The GEMS PSF varies with tile and chip position, andissoe well modelled. The FLIP galaxies,
constructed as described in Section 5.2, will be differemfthose in GEMS, leading to differences such
as that seen in the shear responsivity fa®ofsee Sections 4.2.5 and 5.3). Importantly also, the FLIP
images do not contain correlated pixel noise such as théigethby GEMS due to the dithering processes
in its data reduction (Caldwell et al. 2005). This may leaddditional circularization due to shapelet over-
fitting of correlated noise peaks, something | have triedriit by settingmin,geom = 1 (Section 4.2.4),
but also makes it more difficult to calculate the true SNR of ahject. Due to this fact, the sample of
tested FLIP galaxies and the GEMS sample are not more thaghisoaquivalent, and so any results must
be treated with a certain amount of caution.

However, the results of the FLIP analysis have taught muchitahe practical considerations of shapelet
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lensing measurement, and highlighted some importantsssith proposed estimators. They also provide
a first estimate of the typical bias expected in measurenoéstsear and flexion using the GEMS pipeline
of Chapter 4. These bias factors will improve the accuracgasinological measurements made using
~yobs| Fobs andgePs. Itis such measurements that | now describe in the follo@hgpter, where | present
a first combined galaxy-galaxy shear-flexion analysis ofGE#MS survey data.
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CHAPTER®G

GALAXY-GALAXY
SHEAR-FLEXION

The ultimate aim of weak lensing measurement is to gain @beittderstanding of the structure and dy-
namics of the Universe on large scales. As was discussedapt&hl, there are many untested predictions
of the ACDM model; testing these predictions offers hope for plg@anstraints on the properties of dark
matter and dark energy. In particular, combined analyseshe&r and flexion show promise for better
understanding the physical interplay of visible and darkteman the denser regions surrounding galaxies
and galaxy clusters.

In this Chapter | present the results of a first, combinedrsfie@don galaxy-galaxy lensing analysis using
the lensing signal measured in the GEMS survey data. It wggesitied in the results of Chapter 2 that study
of both the shear and flexion signal around galaxies would {feamprovements in the constraints upon
the halo mass distribution, when compared to a study of tearssignal alone. | discuss the constraints
we place on the haloes of the GEMS galaxies using both sheldftexion, the implications for shapelet
measurement of flexion, and the wider cosmological impbeest of the work.
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6.1 Galaxy-galaxy lensing

Galaxy-galaxy lensing is the study of the weak gravitatidigtortion induced in distant background galax-
ies (often referred to as “sources”) by the matter haloesatd>ges lying in the foreground (“lenses”).
Suggested by Tyson et al. (1984), it was amongst the verywigak gravitational lensing signals to be
detected (Brainerd et al. 1996), and is an attractive mefpkoing constraints on the mass distributions
around visible galaxies. Since that time, significant c@asts have been placed on models of galaxy dark
matter haloes, using galaxy-galaxy lensing analyses géldatasets such as the Red Sequence Cluster
Survey (RCS, see Hoekstra et al. 2004, hereafter HYG04s$rGhapter) and the Sloan Digital Sky Survey
(SDSS, see Guzik & Seljak 2002; Sheldon et al. 2004; Mandiefbet al. 2005, 2006a, hereafter M06 in
this Chapter).

The first, and simplest means to quantify the galaxy-galargihg signal is through the construction of

galaxy-mass correlation functions, such as those preseégtdor example, Brainerd et al. (1996), HYG04

and Sheldon et al. (2004). | present the analysis of the GEd&yg-mass correlation on small scales in

Section 6.2, and use the results to place first fits on halowpeteas for both the SIS and NFW mass models
(see Chapters 1 and 2).

Section 6.3 describes my maximum likelihood treatment efghlaxy-galaxy lensing signal in the GEMS
images, using a method based on that of Schneider & Rix (1@&7hcluding modifications necessary for
the accurate treatment of flexion measurements. Using4aititl galaxy photometry from the COMBO-
17 survey (Classifying Objects by Medium-Band Observationl7 filters, Wolf et al. 2003), which en-
compasses the GEMS field in tRdandraDeep Field South, | examine the dependence of SIS and NFW
model parameters upon host galaxy colours and GEMS-demigghology characteristics.

In this way | analyse the GEMS galaxy-galaxy signal by fittmgasurements of the galaxy-mass cross-
correlation, and through a complete maximum likelihoodlgsia of the total dataset; the results of each
analysis are seen to be consistent with one another. Fiimajhications for the success of shapelet flexion
measurements in improving halo constraints are consider8dction 6.3.5, along with the cosmological
implications of the maximum likelihood results.

6.2 Galaxy-mass cross-correlation functions

The galaxy-mass cross-correlation function may be obtHilyeneasuring the shear and flexion of sources
around foreground lenses, as a function of the angular sderts separation on the sky plafe,, and
provides a useful illustration of the GEMS galaxy-galaxydimg signal. For the shear, the quantity of
interest is the “E-mode” tangential shear of ttfesource-lens pair, defined as

VE(Oiep) = —71 cos (20") — 75 sin (20), (6.1)

wherevi and~4 are the measured components of the shear for the source/gatai is the coordinate
angle at the position of the lens between thaxis (or negative RA axis) and the line joining the lens to
the source. Similarly, the source “B-mode” shear is defireed a

B(6,,) = visin (2a) — 74 cos (2a'), (6.2)

sep
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which corresponds to the E-mode that would be measured #oaitces were rotated bys°. For the
flexion, the signal of interest can again be encapsulatedsmirce E-modes that are defined as

fE(Gécp) = —Ficos(a') — Flsin(al), QE(GéCp) = G' cos (3a') + G sin (3a?). (6.3)

These E-modes will be equivalently referred to as radialdles, due to their orientation relative to the sky
position of the lens. The choice of signs is motivated by #wilts of Chapter 2, in which it was seen that
the circularly symmetric density profiles of typical lens a@ets (such as the SIS and NFW haloes) result
in flexion that is directed inwardly towards the lens centre#A and outwardly foiG; see, e.g., Equations
(2.9) and (2.10). This ensures that, as in the case of the §hpede of Equation (6.1), the flexion E-
modes will be positive if we assume typical mass profiles addiereground lens galaxies. The B-mode
signals are given by

Fp(0:,) = Fisin(a') — Fhcos(a'), QB(Hécp) = —Gisin (3a’) + G4 cos (3a'), (6.4)

sep
which correspond to the E-mode signal of sources rotatei)bynd30° for 7 andg respectively.

Measurements of these quantities can be used to estimatgalivey-mass cross-correlation functions,
defined as the average (fsep), Fi(fsep) andGg(bsep). Each source-lens pair is considered in turn, and
the average (whether mean or median) tangential or radiaékis calculated for the total sample, binned
in annuli of6,.,. Weak lensing around foreground masses cannot produce@dg-signal, and so analysis
of the B-mode presents an opportunity for a check on the E#velrors in the measurements.

Despite the fact that, when wishing to constrain the massratindividual galaxy haloes, galaxy-galaxy
lensing data is generally best analysed as described ii8ex8, simple fits to the galaxy-mass cross-
correlation provide a useful check on these more sophisticaaximum likelihood results. | will present
these fits to the cross-correlation functions in Section26 Rut first describe the steps that went into the
calculation of the galaxy-mass cross-correlation fumithemselves.

6.2.1 Calculating the radial and tangential lensing signa

We select a sample of foreground lenses from a catalogue MS5galaxies matched to those in the
COMBO-17 survey (Classifying Objects by Medium-Band Oliagons in 17 filters, Wolf et al. 2003) that
lie within the GEMS field. The use of the 17-band photometatadof COMBO-17, combined with the
HSTimage quality provided by GEMS, allows for the classificata the lens sample by both morphology
and colour sequence, as will be seen in Section 6.3. Imptdme COMBO-17 multi-band colour data
allows the assignation of high quality photometric redséstimates for a large proportion of the sample,
which have been made publicly available by Wolf et al. (2004)e most reliable redshift estimates exist for
galaxies with a COMBO-17 R-band magnituRle< 24, these objects reaching a typical redshift accuracy
of Az ~ 0.02(1 + z) (Wolf et al. 2004).

The COMBO-GEMS matched catalogue used, which was supplie@atherine Heymans, is that con-
structed by Marco Barden for the GEMS galaxy surface brigégrand surface mass evolution analysis
of Barden et al. (2005). This matches the < 24 COMBO-17 catalogue to the catalogue of GEMS
galaxies in the ACS F850LP filter image (see Caldwell et ab5)Qidentifying pairs of galaxies between
surveys with a centroid tolerance of 0.5 arcsec. The match&dogue then describes 8407 galaxies in
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the GEMS field, containing reliable redshift estimates andticolour photometry from the COMBO-17
catalogue, GEMS-measured astrometry, and Sérsic pradilpimlogy estimates made from GEMS using
the GALFIT fitting code (Peng et al. 2002) as described in Baret al. (2005). Finally, a redshift cut of
0.2 < z < 0.8 is imposed upon the catalogue so as to match the sample odgmkmnalysed in Section
6.3 (the reasons for this cut are described in Section 6aB@)extremely bright objects witR < 18 are
removed. The remaining 4995 galaxies are then used to définkens catalogue, which has a median
redshift ofz,, = 0.58. The COMBO-17 catalogue also contains estimates of the SBI&Hd absolute
magnitude for each object, and from this we calculate a nmedizgand luminosity of( L)), = 0.33L",
whereL? = 1019472 L.

The background sources are taken from the shapelet meastied > and G°"* catalogues created
using the GEMS F606W images as described in Chapter 4. Thieessample is defined as galaxies with
SEXTRACTOR measured magnitudes lying in the rarged < mgos < 27.0. | take a two-stage approach
in order to minimise the confusion between foreground argkdmaund for objects in the source and lens
samples. Firstly, | performed a match of the objects in thedBa et al. (2005) COMBO-GEMS F850LP
catalogue to those in the grand catalogue of shapelet neadgdilaxies in the GEMS F606W images; using
a centroid tolerance of 0.5 arcsec | found a successful,coofised match for 6674 of the 8407 objects
(=~ 80%). The E-modes and B-modes of source-lens pairs for whicletieredshift is known to be higher
than that of the source are then excluded from the calculaficample averages.

For sources without a match to the COMBO-GEMS catalogug the vast majority) we instead make
an estimate of the likely source redshift. HO5 present thieviing linear relationship between magnitude
mgoe and median redshift for a population of galaxies at that ntada:

Zm = —3.132 4 0.164meos (21.8 < mgos < 24.4). (6.5)

This relationship is calculated using photometric redddtta from the COMBO-17 survey (Wolf et al.
2004) and spectroscopic redshifts from the CDFS VIRMOS-\idep Survey (Le Févre et al. 2004).
To estimate the the median redshift of our source galaxigsribng s = 24.4 we extrapolate the above
relationship, as justified in HO5 using measurements of thigtte Deep Field North (HDFN) (see Lanzetta
et al. 1996; Fernandez-Soto et al. 1999). Source galaxshiftsl are then estimated using Equation (6.5),
and if the redshift is found to lie withithz = 0.1 of the lens redshift, the source-lens pair is excluded from
the calculation of average E- and B-mode signals.

| calculated the meang and~g in ten angular bins in the range 2 arcsed,.,, < 60 arcsec, using the
~+°Ps for each source described in Section 4.2.5. The lower limif.g, was chosen to avoid significant
contamination of lensing measurements due to overlapfaxyg isophotes, and is the same level chosen
by Heymans et al. (2006a) for their subsample of large, telap GEMS galaxies. The upper limit was
chosen as the separation beyond which the signal beconfiesiltiifo discern from sample noise. The
median E- and B-mode flexion signals were similarly cala@dabut using 10 angular bins in the range
2 arcsec< Oy, < 10 arcsec forF °bs and 2 arcsee Osep < 20 arcsec fogebs. Figure 6.1 shows the
E-mode and B-mode shear and flexion signals as measuredrfGEMS source and lens galaxy samples.

The dashed lines plotted in Figure 6.1 depict approximagdiptions for NFW halos made using the results
of Navarro et al. (1997), Guzik & Seljak (2002), HYG04 and 8at2.1.4. Assuming a mass scaling of
Moo < L2 motivated by the results of Guzik & Seljak (2002), HYG04 fdumbest-fitting fiducial virial
mass ofM3,, = (8.4 + 1.1) x 10 A=t M, for galaxies with B-band luminosity.;; = 10192 2Lg;
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Figure 6.1: §) Mean~g within angular annuli around foreground lenses (points). (
MedianFg, and €) median radiafiw, within angular annuli around foreground lenses
(points). The dot-dashed and dotted lines show the B-maieals and uncertainty,
which we note are largely consistent with zero but noisyfoandG. Note also the
reductions in angular scale betwee) &nd @), and €). The dashed line shows a
prediction based on the results of HYG04 and Navarro et 807}, while the solid
line shows the best fitting NFW model (see Section 6.2.2).
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Guzik & Seljak (2002) themselves foundaoq = (9.3 + 1.6) x 10 A~ M, for galaxies with SDSS
g-band luminosity ofL, ~ 1.1. x 10'°A=2Mg, in good agreement (see HYGO04). Taking these results
(which also agree with Kleinheinrich et al. 2006), and idihg evidence for the growth of the virial mass
to stellar mass ratio with redshift (Heymans et al. 2006ajake an approximate prediction for the fiducial
virial mass in our lens sample df/;,, ~ 9 x 10*'h~' M, corresponding to an-band luminosity of

L =10"h 2L,

As described above, the luminosity of our lens sampl@38L, which if we adopt the same scaling as
HYGO04 leads to a value @f\/200 ) ~ 2.4 x 10**h =1 M, as our approximate estimate for the median virial
mass of our lens sample. In order to estimate the correspgrgincentratiom we use Julio Navarro’s
programchar den. f to calculate the Navarro et al. (1997) prediction for an NF&libtof this mass at
redshiftz = 0.58. Assuming a flatnCDM cosmology with(2,, o = 0.25 and2, o = 0.75 (Spergel

et al. 2007), and a mass varianeg = 0.8 (Benjamin et al. 2007), a concentration prediction of 7.41
is calculated; note that we will assume this cosmologicatiehén all subsequent calculations in this
Chapter. The dashed line in Figure 6.1 shows the NFW sheditexioin predicted for a halo of this mass,
concentration and redshift, with source redshiftg 0= 1.08,1.03 and 1.02 fory, F andG respectively
(these being the median redshift of the source samples ébrreaasure, calculated using Equation 6.5).

The quality of the match of my measurements from the GEMS tfiais prediction will be discussed in
Section 6.2.3. Firstly, we describe thé fitting of SIS and NFW halo models to the galaxy-mass cross-
correlation functions, and examine the constraints thiesple galaxy-galaxy lensing results place on the
lens sample haloes.

6.2.2 Fitting lens models to the galaxy-mass cross-correian func-
tions

It is useful and illustrative to fit simple lens models to E-deaneasurements seen in Figure 6.1, which
constitute a first simple measurement of the global aveaggeproperties for our sample. This also allows
a check for consistency both between shear and flexion, ahdivei maximum likelihood results of Section
6.3.

To begin with, | performed a fit of the shear and flexion datagis simple SIS lens model. Following
Kleinheinrich et al. (2006), | use a Faber-Jackson and Tkiher type parameterization of the relationship
between the SIS velocity dispersion and galaxy luminosity:

o L\"

w-(5) (69
wherec? is then the velocity dispersion for a galaxy of luminosity. | first performed ay? fit using
a simple SIS lens model to the shear galaxy-mass correléiioctions, corresponding to a galaxy of
L, = 0.33L} andz = 0.58 (the median values for this lens sample, as described inoBe&R.1). Fitting
the data directly, | measure a lensing signal equivalentéoswitho,, = 88’:3’0 kms~! at the median lens
redshift. Assuming a fixed value gf = 0.28, motivated by Kleinheinrich et al. (2006), this leads to an

estimate o} = 120172 kms~!. This is marginally lower lower than the® = 15673 kms™! found by
Kleinheinrich et al. (2006) in their galaxy-galaxy lensiagalysis of all three COMBO-17 fields.
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If each annular bin of mediafiy andGg contains a sufficient number of source-lens pairs, thenghmple
median in that bin will be approximately normally distribdt(see Lupton (1993)). The smallest number
of source-lens pairs is found in the most interior bin of thedian 7y measurements, having only 336.
Assuming this is sufficient (see Section 6.2.3)dit to the medianFr measurements gives = 2193;
kms~!, which is inconsistent with the shear measurements from GEBM around2s. In contrast to
this result, the second flexion signal gives a far lower esttnfior the fiducial velocity dispersion, finding
of = 591";3 kms~!. The lower limit in this measurement is imposed only by thiepthats > 0. |
discuss some of the implications of these results in Sed@&iarB8, but before doing that investigate the
parameter constraints for NFW halo models.

In estimating the NFW parameter constraints from a simpte ftie E-mode lensing signals from GEMS, |
assume the virial mass scales with luminosityag, < L.2 (HYGO04, Guzik & Seljak 2002). Combining
this result with the theoretical findings of Neto et al. (2p@nd Maccio et al. (2007), | assume that the
concentration of NFW haloes varies with luminosityaas L, °-%3, | then analyse the data in a similar
fashion to the SIS fits, by comparing the E-mode data to ptiedie for a single lens model corresponding
to a galaxy of the lens sample median luminosity and redshift

Again assuming the errors on annular estimates of the E-igdal to be normally distributed, | calculated
contours of constang? for the fiducial parameter®/;,, andc* required for the single NFW lens fit to the
data, using the scalings described above. This was doneldylating they? for each point in a 250

250 grid of evenly spaced mass and concentration valuesteBadting confidence contours are plotted in
Figure 6.2 and the best-fitting curves are shown as the snéd In Figure 6.1. The parameter estimates
from the 7, appear to support an almost arbitrarily lakge so | limit this figure by imposing a prior of
¢* < 50 throughout the analysis (this being significantly largenthhat predicted by simulation results,
e.g., Neto et al. 2007; Maccio et al. 2007, and by obsematistudies HYG04).

These results appear qualitatively similar to those forSt&lens model, finding & 20 discrepancy be-
tween the results fromg andF g, and more severe tension between results fflapandGg. The addition

of flexion measurements could not be said to significantlyrowe confidence intervals on the fitted param-
eters here. Using shear alone, | find a single lens model &itingiss of\/5,, = 1.60" {25 x 102h = M,
larger than but consistent with previous estimates (Guzi8&jak 2002; HYGO04; Kleinheinrich et al.
2006). For the fiducial concentration | find = 2.91“{;3, which is lower than the > 7 (at 2o confidence)
found by Kleinheinrich et al. (2006), but in better agreemeith the Navarro et al. (1997) prediction of
c* = 6.6 for a halo of this best-fitting mass, as calculated usihgr den. f .

Combining measurementsaf andF g (top panel of Figure 6.2) | find instead a best fitting fiducialss of
M3y, = 1.4970-2% x 10'°h~' M, and concentration® = 3.8"5-2. The high concentration of the fit to the
Fg data has in fact caused a widening of concentration paramm@tstraints, and slight reductior 6%)

in constraints upon the mass. Combining measurements fllotmr@e E-mode signals (whether this is
justified will be discussed in Section 6.2.3 below) givesstaaints of M, = 1.4875:33 x 101°h~ 1M,

¢t = 4.9Jj§1§. These last parameter constraints offer no significantavgment over those for shear alone,
due to the apparent tension between measuremerfis ahdGg.

As can be seen from Figure 6.2, the first flexion data fit the iptedl NFW halo model poorly, and is
incompatible with the shear results at an approximateht@vel. In the following Section |1 go on to discuss
these results, including possible reasons for the dispalietween shear and flexion, and implications for
the more detailed maximum likelihood analysis that willéal in Section 6.3.
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Figure 6.2: Confidence contours for fiducial NFW halo paramsefrom fits to the galaxy-mass
cross-correlation functions. The top panel shows the faliNiFW parameter constraints from fits to
the E-modey (dotted lines),F (dashed lines) and combined measurements (solid linesEM$
The shear best fit is marked by a diamond, the flexion best ditligside the area shown, falling at
M3y, = 2.36 x 1012 M, and the prior limited concentration= 50. The combined best estimate is
marked by a cross. The bottom panel shows the same but alesdésaneasurements usiggdot-
dashed line, best fit marked by a star). The contour inten@l®spond to regions of 68%, 95% and
99.7% confidence, estimated by assuming normally distibetrors on the binned sample mean
and median for shear and flexion.
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6.2.3 Discussion of fitting results

Measurements of flexion made using the shapelet pipelinehapter 4 make little improvement to the
fitted parameters for the lens models described in Sectidr2.6Looking at Figure 6.1, this is perhaps
unsurprising given the large noise and scatter on estiniatéise median E and B-mode flexion. It seems
clear that, in order to realise the potential improvementgssted the results of Chapter 2, flexion needs
to be measured more stably than can be achieved using the GEAfi®let pipeline. Reassuringly, fitting a
simple lens model using the shear measurements from GEMS ggegults that are entirely consistent with
previous lensing studies.

Apart from the large noise in estimates of the sample methi@most striking result from th& analysis

is that tends to predict more massive and more concentrateditodels than found by the GEMS shears
and elsewhere in the literature (e.g., HYGO04). Thig best fit concentration was particularly large, and
limited by the prior toc* = 50 (at anM3,, = 2.36 x 10'2h~1 M. This concentration agrees better the
findings of Kleinheinrich et al. (2006), although whetheistagreement is for the same reasons in each
study is less clear. Examination of the measufgdn Figure 6.1 reveals two points of interest. Firstly, the
signal is consistent with zero, except for the two interioings; indeed, the outermost of these is closely
consistent with the non-zero B-mode and so could be coresidern-significant. Secondly, the inner point
appears to be a relatively strong (8)2letection of flexion signal, but at a level that is largemteapected
given the existing predictions for NFW haloes describedant®n 6.2.1.

This discrepancy could be a fluke of the noise (the discrépametweeny andF results for the SIS and
NFW parameters appear, from 6.2, to be in the range)l &previously unconsidered systematic effect, or
evidence for tension between lensing measurements thae e SIS and NFW haloes on differing scales.
Regarding the noise, | may be underestimating the uncéyteirihe F-derived constraints by assuming
the sample median for the innermost bin to be normally disted. As mentioned above, this bin contains
as few as 336 source-lens pairs, which may be insufficiemngilie highly non-Gaussian shape of the
underlying flexion distribution. This is one more reasonntbark on a full, maximum likelihood analysis
of the sort described in Section 6.3.

A plausible systematic explanation for the discrepancyésdontamination of source light profiles due
to the outer light profiles of the nearby, bright foregrouedd galaxies. This could create a light gradi-
ent across the source that mimics a higher order gravittsgnal, and could be a serious consideration
(requiring careful correction) in the measurement of thet filexion. Shapelets could model such con-
tamination, as the current code applies a top-hat mask tyealaxies and therefore misses their outer
regions (Section 4.2.2). In Chapter 7, | will discuss thishppem further and suggest means by which the
effect could be calibrated in the future. If such calibratsiows that this artificial “flexion bleed” effect is
minimal, then the measurement must either be explained tsg o by divergence from either the SIS or
NFW halo model at small scales, which will also be discussetthér in Chapter 7.

I now consider the results from the second flexion, for wijghis ubiquitously consistent with zero (see
Figure 6.1). The significant noise in these measurementsasradicated by the B-mode signal. This still
allows the placing of limiting upper bounds on velocity disgion, mass and concentration parameters as
described in Section 6.2.1 and shown in the lower panel afréi§.2. However, even this may be fraught
with uncertainty, due to the large calibration factor of2(15) used in the best estimate 6t (See
Sections 4.2.5, 5.3 and 5.4). The reason why the shapetetsefconsistently overestimates input second
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flexions is unclear, and it seems a substantial risk to plagertuch faith in upper limits that are based
solely on the value of a poorly understood bias factor.

For this reason | exclude the GEMS second flexion results fmoynfurther cosmological analysis; this
same step was also taken by Leonard et al. (2007) and Okuta(20@7a) in their flexion analyses of
the Abell 1689 galaxy cluster, although this was simply beesthey found the measure too noisy. The
remaining cosmological measurements which | make in thesEtake the form of a maximum likelihood
investigation of the galaxy-galaxy lensing informationGEMS. This technique, based on that proposed
by Schneider & Rix (1997), allows the full extraction of gafehalo information from weak lensing data.

I have modified the technique to make it suitable for use wikidin and in doing so have improved its
treatment of shear also, as | will now describe.

6.3 Modified maximum likelihood analysis

In order to use measurements of shear and flexion to placeaeapnstraints upon the properties of
galaxy dark matter halos | employ a modified form of the Scti@e®& Rix (1997) maximum likelihood
analysis (for recent implementations see Kleinheinricale2006; Heymans et al. 2006a). In a similar
fashion to Section 6.2.2, | assume two different modelsiin,ta luminosity-scaling SIS lens model and a
luminosity-scaling NFW halo model. Using the modified Sddee& Rix (1997) method described below,

| place constraints on the values of fiducial model pararseted luminosity scalings using all the galaxy-
galaxy lensing information available from the GEMS sheat #iexion catalogues described in Chapter 4.
It should be stressed that the results obtained should égpneted as parameter constraints only under the
assumption that our adopted lens model isatveectmodel, a common feature of all maximum likelihood
analyses. This entails understanding that the choice ofemaill directly impact any results, and that
inconsistencies in the results may be evidence for impgofexin the model.

In carrying out such an analysis, it is also necessary tonasghat all the lensing mass in our system is
associated with galaxy haloes. It is known (HO5; Schrablea@d. 2007) that the GEMS field covers a
significantly underdense region of the Universe, and scasgssmption here represents a better approxima-
tion than in many previous studies. Furthermore, Kleintieinet al. (2006) found that corrections made
for the presence of the Abell 901/2 supercluster in their DM 7 fields made little difference to lens
model parameter constraints, suggesting that the appadiximis reasonable even in more dense regions
of space. Given these considerations, | now go on to outlirebasics of the Schneider & Rix (1997)
galaxy-galaxy lensing analysis method, before descritiegmodifications made to suit both the GEMS
data and measurements of gravitational flexion.

6.3.1 Standard formalism

In the formalism specified by Schneider & Rix (1997), we firstide an anglé,,,.x, which is the maximum
separation scale on which we will consider the galaxy-galexsing of source-lens pairs. We must then
immediately remove all sources less than,, away from the field boundary, as these may have been
affected by unseen lenses. Each remaining source can thasslygmed a predicted shear or flexion by
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summing contributions from the lens models of all foregmbgalaxies withird,,,.... Although shears and
flexions from multiple lens deflections do not add lineattys is a reasonable approximation for the weak
lensing we expect around galaxy haloes (Schneider & Rix ;1S6fineider & Er 2007).

Inthe GEMS data the redshifts of source galaxies are unknamdhwe must therefore assign these galaxies
a magnitude dependent redshift probability distributidnmeos). We choose the same dependence used
by Heymans et al. (2006a) and HO5,

p(2lmeos) o 2 exp l_ (#))IT 6.7)

z0(meos

wherez is calculated from the median redshift, (meos) with 2o = z,,/1.4142 (Baugh & Efstathiou
1994). This median redshift can be estimated using Equéia). Note that if the estimate for the source
galaxy places it withim\z = 0.1, or in the foreground of the lens galaxy, then a zei® calculated.

Recent work by Schrabback et al. (2007) presents a differetel for the redshift distribution in the
GEMS, based on a careful analysis of GEMS imaging data coedpeith redshift results from the GOODS-
MUSIC catalogue of Grazian et al. (2006). From a maximumliliced fit to a catalogue of redshift-
matched GEMS source galaxies they derive a redshift digtob that is less narrowly peaked, and with
fewer galaxies at high redshift, than the distribution inugtipon (6.7). Using this Schrabback et al. (2007)
fit model (rather than the directly calculated median as ligeld05) these authors also derive a different
expression for Equation (6.5), with a significantly steegpedient of increasing median redshift against
magnitude. For the maximum likelihood method | presens, éimalysis is not repeated for my GEMS shear
and flexion catalogue galaxies and | use the HO5 estimateguations (6.5) and (6.7).

As a check on the level of possible errors caused by negtettim fuller treatment of Schrabback et al.
(2007), | compare my predicted median source redshift (tdk@n the magnitude-selected catalogue of
objects with measureg®®, described in Section 6.2.1) with the Schrabback et al. {ppfediction, finding

25 —11401, =13+01 (6.8)

for the median source redshift of our sample as calculatadyube HO5 and Schrabback et al. (2007)
redshift prescription respectively. Using these resulth Equations (2.28) and (2.30), and assuming the
Schrabback et al. (2007) model to be correct, use of the Hihit estimate for a median redshift source
would lead to an underprediction of the lensing signal. Agssg a lens at the sample median redshift
z = 0.58, we can estimate a typical underestimation factor of

DHos  pso7

fz= X ~ 0.81 (6.9)
DHOS ™ 'S0

for the GEMS galaxies. This is certainly within the sampléasace of our galaxy-galaxy flexion measure-
ments as seen in Figure 6.1, and roughly within those of skteaitl be interesting in the future to make a
more thorough comparison of the error impact upon galaxsxydensing constraints due of the use of a
poor source redshift distribution; such an analysis wasluoted for cosmic shear by van Waerbeke et al.
(20086).

Given the HO5 redshift distribution, but with the caveatpressed above, the expectation value of the
galaxy-galaxy lensing signal at each source, due to the ®thwantributions from nearby lenses, may
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then be calculated. This can be done using Monte Carlo iatiegr. A source galaxy redshift estimateis
drawn fromp(z|mgos), fori = 1, ..., Nyc whereNye = 50 (Schneider & Rix 1997 found that typically
any number above 20 was sufficient). The expectation of trekwensing signal for each source is then
simply

1 Nuc )
() = 5= ; &, (6.10)

where¢ = ~, F or G, calculated using the lens model being tested (see, e.gpt€h2 which describes
how to make these model calculations). Using this predictibeintrinsic value¢® for each source, i.e.
that which we would expect in the absence of lensing, can peoapnated. With a measured value of the
signalge®s for this source, we may write® ~ ¢°> — (¢) where we again assume that lensing-induged
small. Given an assumed or approximate form for the prolpgbiistribution p, (§S)d2§s, the best-fitting
dark matter halo parameters are determined by maximidietihbods

Le = H[Ps(&s)jL (6.11)

where the productis carried over all source galaxies, lethély ;. The total likelihood, using all measure-
ments of = v, F andg, isthenL = L., x L, x L. This last expression makes the assumption that each
of the likelihoods is independent; we now briefly discuss #ssumption.

The correlation in measurements of shear and flexion duestgréwitational distortions will be negligible
for the weak shear and flexion we expect for the galaxy-gakmsing signal in the GEMS images. As
shown by Schneider & Er (2007) this statistical independemay break down in the regimes between
strong and weak lensing, but for typical GEMS galaxies we aloempecty, F or G of sufficient strength
to make this a significant effect.

However, there may be correlations in the measurementseair stnd flexion due to imperfections in the
measurement method itself. This is discussed briefly ini@eé&t4, but will require simulations of a size
significantly larger than the FLIP images (which were of a pamable size to the GEMS survey images) in
order to be fully explored,; this is an opportunity for futuverk. However, as seenin Figure 6.1, the galaxy-
galaxy flexion in the GEMS survey is not detected at very highificance, and is indeed not detected at
all for measurements of thgg signal. In the FLIP analysis, there was no sign of the 20-306%&Gance
biases between and F measurement that would be necessary to make such a systesigaificant at

a level greater than the statistical uncertainty ugan (on the limited scales where it is detected). We
therefore neglect any such covariances, and make the fipsbximation that our measurements of shear
and flexion can be considered independent.

6.3.2 Flexion modifications

With the extension of the Schneider & Rix (1997) techniquéntdude measurements of gravitational
flexion it is necessary to alter certain assumptions andtipprameters. Foremost is the need to assume a
realistic functional form for the distribution of intrirssignalp, (¢%)d*¢s. For the case of shear, Schneider
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& Rix (1997) and all subsequent analyses have assumed ai@adsstribution of the form:

exp l—|§s|2]. (6.12)

pf(& ) = 27TO'§ 2U§

This is an acceptable approximation in the case of obsereadt whear, but as seen in Figures 4.8 and 4.9
it would constitute a severe misrepresentation in the cafsgs= 7°> or ¢ = G°". Instead, we must find
more realistic representationsf(F*) andpg (G®).

The distribution of measured flexions (and indeed also shé@athe absence of gravitational lensing may
be accurately estimated from the lensing data itself. Intb&k regime of GEMS galaxy-galaxy lensing the
presence of a gravitational lensing signal will contribotdy to a minor broadening of the distributions seen
in Figures 4.7, 4.8 and 4.9. In short, we may use measurerob{t® to approximate (£%) ~ pe(£°%).
The extent to which this approximation causes artificiabliening of the probability density function can
be easily estimated for typical galaxy haloes (see, e.capt&h 2; BGRT06), and is found to be negligible.

Given the distributions of measuredF andg from Section 4.2.5, there are two methods of approximating
the relevant probability functions. The first is to simplyewiitably binned, count-normalised histograms
as discrete representationsygf However, this approach will add noise and potentially liasstraints

in cases where variations in the input halo parameters @ljdsy an amount smaller than the bin scale.
GEMS does not provide enough data to make the histogramsBfandG smooth on sufficiently small
scales to avoid this problem, but this method may perhapsétiifor future survey datasets.

The second approach is to fit smoothly-varying analytic fioms to the discretely measured distributions
of £°Ps across thé;-¢&, plane. This may be done simply if we make the reasonable gegmof circular
symmetry in the bivariate distribution, so that(¢®) = pe(|€%],¢) = pe(]€°]) only. In this case, the
probability of finding a galaxy witi¢® of magnitude betweeft®| and |£5| + d|€®] is described by the
one-dimensional, marginalized density

pm(€]) = f Pe(©)Eldo = 2ml€ e (€). (6.13)

The quantityp,,,(|€])/(27]£|) may be easily estimated from the data, and fit using suitabietions to
estimatepe ().

For the shear, it was found that functions of the form

exp [—b7°[°], (6.14)

which is essentially a generalized form of a Gaussian witbreectly normalizing prefactor. This proved
to give a good representation of the data. Using the Levenllarquardt algorithm (see, e.g., Press et al.
1992) to perform a non-linear, least-squares fit, | foundeslofs = 6.674+0.033 andc = 1.350+£0.013,
again indicating the small but significant non-Gaussiainitye distribution of measured shears.

In the case of°"* andG°", the function expressed in Equation (6.14) was not ablegmdice the shape
of p¢(£®). However, generalizing (6.14) to

27

S b(2ta)c sya S|c
Pe(6”) = 5y ()" e b (6.15)
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Figure 6.3: Measureg,, (|¢])/(2~|¢|) and best fitting curve (solid line) for) shear,

(b) first flexion and €) second flexion. Poisson errors alone, from the histogra®d u

to estimatep,, (|¢|), are plotted on each measured point; no estimate of measatem
uncertainty is included. For comparison, we also plot ndized Gaussian curves
(dotted line), witho, = 0.31 (the value used in the analysis of Heymans et al. 2006a),
and illustrative values of - = 0.2 ando; = 0.5.
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provided a reasonable fit to the data, with valuesiof —0.260 + 0.061, b = 5.99 + 0.37 andc¢ =
0.491 4 0.026 for F°*%; ¢ = —0.118 £ 0.069, b = 3.90 £ 0.34 andc = 0.547 & 0.031 for G°**. In Figure
6.3 we plot these best fitting probability density functiforsshear and flexion, along with Gaussian curves
for comparison; it can be seen that Equations (6.14) an&)@rbvide an improvement, especially in the
case of flexion. The fit tp, (v*) performs better than a Gaussian particularly at descriti@gentral peak.
Reducedy? for these fits varied from- 2 (shear) ta~ 4 (second flexion).

As a final check for consistency, the probability distribas we expect for the individual componegts
and&; may be recovered by marginalization:

(€)= /0 T pe()des, (6.16)

wherei,j = 1,2 andi # j. For (6.14) and (6.15) this must be done numerically. Theltieg one-
dimensional distributions are plotted as a solid line inuFgy6.4 (having been scaled to the number of
source objects), and can be seen to provide a good fit to theumegbhistograms of¢s, 79 andgs™. It

is noted noted that there is slight evidence for a defigitimndp, in the central regions of the distributions:
the fitting function of (6.15) is clearly not a perfect matdrhe description of the non-Gaussian wings is
very good, however, and | reserve the selection of more afepfitting functions to future work.

A more minor modification that can be made to the standard &dbn& Rix (1997) method is in the
choice off,,.«. Given the short range nature of flexion it will be advantagem use smaller values for
this parameter than those used for shear. Additionallypiohg Heymans et al. (2006a), we make use
of the COMBO-17 redshift estimates for our lens sample tong€fj,.. ¢ on a lens-by-lens basis, only
considering the signal from lens masses lying within a fotejé distance (in the plane of each lens itself)
of r¢. The parametet,,.« ¢ for each lens is then given by

[ (6.17)

Finally, as in Heymans et al. (2006a), we need to define aesiogioff angle for sources lying close to
the edge of the field. This wak, ., itself in the original Schneider & Rix (1997) implementatj@nd we
instead choSé@(zmin) = 7¢/Da(2zmin), Wherezy,, is the lowest redshift in the lens object sample. This
concludes my discussion of the modifications to the Schné&idrix (1997) galaxy-galaxy lensing analysis
technique necessary for the extraction of halo constréioms shear and flexion in the GEMS data.

6.3.3 Choice of models, lens samples and input parameters

Having described the analysis method being used on the GEMES twill now describe the SIS and
NFW lens models chosen for the placing of parameter congtraiFollowing Kleinheinrich et al. (2006),

and as described in Section 6.2.2, | place constraints ordaxygluminosity-dependant SIS halo model
parameterized by a fiducial velocity dispersighand luminosity scaling (see Equation 6.6). Shear and
flexion predictions for each lens are then made using thisitiemdel and the results of Chapter 2.

A single NFW halo is completely defined by the two paramefeks, andc, and so a simple galaxy
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luminosity-dependent NFW model can be constructed by asgum

M0 ( L, ) "
0 _ (= (6.18)
M3y Ly
and .
c L,
oo (kY 619

Using these models we may then calculate predictions foletiging signak due to each lens, using the
results of Chapter 2. There is good observational evidenicarf approximate power law scaling of virial
mass with luminosity (see, e.g., Guzik & Seljak 2002; HYGbibekstra et al. 2005; Mandelbaum et al.
2006a). This evidence, in combination with theoreticabpstons for a single power law scaling ofvith
Mg (Neto et al. 2007; Maccio et al. 2007), suggests that the Mkdlel defined by Equations (6.18) and
(6.19) should provide a good approximation to the physicalerse. We therefore aim to place constraints
on the four parameted®/J,,, ¢*, 1 andv through our maximum likelihood analysis.

Ideally, a four-dimensional maximum likelihood analysfdttese NFW parameters should be undertaken.
For the placing of meaningful constraints this would regsignificant computing resources, and so instead
| split the testing of the NFW model into three sub-modelsirgel as follows:

 The first sub-model, which | refer to as NFWm1, assumes a fixed 6.85, based on thehar den. f
calculation for an NFW halo of virial mas®/zgo = 9 x 10'*h~1 M (HYGO04; Kleinheinrich et al.
2006). | also assume a fixed= —0.083 (HYGO04; Maccio et al. 2007; Neto et al. 2007) as described
in Section 6.2.2. | then place constraints on the fiducisdpeater)/;;,, and mass-luminosity scaling

LL.

e The second sub-model, NFWm2, assumes a fixed1.2 (HYGO04; Mandelbaum et al. 2006a), and
a fixedv = —0.083 as for NFWm1. | then place constraints on the two fiducial petersi/j,,
andc*.

 The third sub-model, NFWm3, assumes a fixdd,, as for NFWm1 and a fixeg = 1.2 as for
NFWm2. | then attempt to place constraints on the fiducishpeters:,, and the concentration-
luminosity scaling.

In this way | am able to reduce the dimensionality of the pat@mspace by a factor of two in each case,
significantly reducing the computation time of the problevhilst still probing relationships of interest to
theories of galaxy formation and hierarchical halo coleapmdels.

There will be scatter in the parameters that neither the 5t8eoNFW model are able to describe, the nat-
ural scatter in halo properties that will occur between gjakof similar luminosity. A broader difference
might be expected between galaxies of different morphokddypes or stages of evolution, such as spirals
and ellipticals. We will attempt to characterize differeadn the best fit model parameters by splitting the
lens sample described in Section 6.2.1. Due to the multdpdnotometry available from the COMBO-17
survey data, and the high quality imaging from tH8T-ACS GEMS data, it is possible to split the sample
both by colour and morphological characteristics.

| therefore define four subsamples of the overall sample 8548nses, based on spiral and elliptical
morphology discrimination and membership of the red ané glilaxy sequence as follows:
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» The “spiral” sample is defined as those galaxies in the langée having a Sérsic index of< 2.5,
as found in the GALFIT analysis of GEMS galaxies conducte@byden et al. (2005). This gives
a total of 3770 spiral lenses, after also excluding galawidis n» < 0.2 for which we assume some
serious failure in the modelling.

» The “elliptical” sample is defined as those galaxies in thesl sample having a Sérsic index of
n > 2.5 as found in the same GALFIT analysis of GEMS galaxies. Tlssllte in a total of 1061
elliptical lenses, where this also takes account of theuskeh of galaxies witm > 8 (again this
is assumed to be due to catastrophic modelling failure) ré bee therefore a total of 124 galaxies
in the main lens sample that are included in neither of thptilal or spiral classes, due to possible
errors in classification (see also Haussler et al. 2007).

e The “blue” sample is defined as those galaxies in the lengpkamhich lie in the COMBO-17
red sequence as defined by Bell et al. (2004). This involvestdor galaxies withU — V' <
1.06 — 0.352z — 0.08(V 4 0.775 + 20.0), leaving 3984 galaxies in the blue lens sample.

* The “red” sample is defined as those galaxies in the lens leawigich lie in the COMBO-17 red
sequence, defined as being those for whichlthe V' colour is greater than the redshift-dependent
line described above. There are then 971 galaxies in thersdsample.

These are the classifications | use to split the lens samgileg two different (but related) classifications
of galaxy type. | will fit constraints to each of the pairs o tharameters of the SIS model and NFWm1-3
models described above, for each of these galaxy subsampddsr the total lens sample. | present these
results in 6.3.4.

Finally, there is the choice of the parameterslescribed in Section 6.3.2. | follow Heymans et al. (2006a)
and setr,, = 150h~! kpc. For flexion, motivated by the results shown in Figuredug to the extremely
rapid fall in the flexion signal with distance from typicahleing masses (see Chapter 2; BGRTO06) , we
reduce this physical impact parameterto= 50h~! kpc.

Interestingly, tests using a synthetic dataset of knovdsinét sources showed that the flexion results were
somewhat sensitive to the choice of this parameter. Valties & 1004~ kpc, for which the vast majority

of source-lens pairs contain no detectable galaxy-galaxjdfh signal, began to show biases towards low-
mass, high-concentration fits in the maximum likelihooduhess | put this down to a detection of subtle
biases inherent in the Monte-Carlo estimatio@f (Equation 6.10), which, due to the asymmetric scatter
in 2! and related angular diameter distances, causes a systdvizetiin the best estimate ¢f). For the
high accuracy work of the future, it will be important to irstigjate this effect in more thorough detail.

Using each of the models, lens samples and input paramettided above, | now go on to describe the
results obtained from a full maximum likelihood analysisltd GEMS galaxy-galaxy shear-flexion signal.

6.3.4 Maximum likelihood results

The modified maximum likelihood analysis method describe8éctions 6.3.1, 6.3.2, and 6.3.3 is used
to calculate arrays of log-likelihooth [L (7, j)], In[L~(4, j)] and combined (i.e., total) log-likelihood
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In[L(4, )] for a 25 x 25 grid of parameters, chosen for each of the SIS and NFWmbs<tets, and for
each of the lens samples.

In order to estimate likelihood regions in these arrays,nl adirst maximum likelihood analysis using
model parameter ranges of sufficient size to encompass enrefjitotal confidence greater thaf.7%.
This was in fact not always possible, particularly for tAé" data, and so as in Section 6.2.2 we must
impose a prior on the fiducial concentration. We choose, imasing these confidence levels, a more
conservative prior of* < 400. This was done to encompass as much of the probability spagessible,

so that the choice of prior would not significantly influenéher the parameter constraints frafalone

or, more importantly, the combined parameter constraiot® fmeasurements of shear and flexion. For a
prior of ¢* < 50 there was still a significant region of probability spacengartificially excluded, whereas
for the larger prior ofc* < 400 this was not the case. While a later prior upgnmay be imposed if
desired (this will almost certainly be the case), the intetgqttion of likelihood contours in terms of formal
confidence intervals should not be influenced by such choices

The total probability enclosed by each of these parametges defined by

P &Y " exp {In[Le(i, j)]} (6.20)

.3

was calculated by David Bacon, and used by him to estimateesadfA In [L], measured relative to the
maximum likelihood, that correspond to confidence intes@él68%, 95% and 99.7%. This was done sepa-
rately for shear and flexion (which is vital as(y®) # p-(F*)), and for the combined likelihood contours,
for each model in turn. Typical values for these calculatals are illustrated by the flexion result of
—2AIn[L,;] = (2.5,7.1,13.4), corresponding to the 1-,2- ands3eonfidence levels described above for
the SIS halo model parameters. This is in reasonable agreemte the —2A In [L,] = (2.3,6.7,11.8)
levels we expect for normally-distributed errors, whichuge to estimate confidence on the NFWm1 pa-
rameters. Unfortunately, due to the sparseness of the paeagrid available for analysis, calculations of
these levels fot,°>s and F°"® are approximate estimates only, but will be more accurate #ssuming the
Gaussian results.

In my calculation of the likelihood contours described adowsing the theoretical methods of Sections
6.3.1and 6.3.2, | made use of a piece of code provided by Gathdeymansdal gal . f) that calculated
log-likelihood contours for SIS models based on the Schare8dRix (1997) analysis technique. Parts of
this code persist in my analysis routines (as built into myezpens ggf | ex. f 90). However, my routine
builds substantially upogal gal . f , implementing the improvements of Section 6.3.2 and ma&thgr
significant modifications necessary for the calculation B¥Ashear and flexion signals. As an indication
of Catherine’s contribution to my analysis code, the orgigal gal . f was just under 1000 lines in
length, much of which was omitted from my final program of 04600 lines in length.

In calculating the final constraints upon the SIS and NFW rhpdeameters | again assume a prior of
c¢* < 50, but use the confidence contour levels calculated above lessasevere prior. The parameter
constraints placed upon the total lens sample for the ass@i® NFWm1, NFWm2 and NFWm3 models
can be seen in Figure 6.5. Constraints placed assuming $he&del for each of the spiral, elliptical, blue

and red subsamples can be seen in Figure 6.6. Parametaagusgtlaced assuming the NFWm1 model
for and each of the same subsamples can be seen in Figuredh3tr&nts placed assuming the NFWm2
model for and each of these subsamples can be seen in Figurgially, the constraints upon NFWm3
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Figure 6.5: Maximum likelihood confidence constraints u®8 and NFW halo model parame-
ters for the total GEMS lens sample: SIS (top left), NFWmD (tight), NFWm2 (bottom left) and
NFWm3 (bottom right). Intervals of 68%, 95% and 99.7% confieare plotted from measure-
ments ofy°"s (dotted line) F°"* (dashed line) and from combining these measurements (suid
The~°bs best fit parameters are marked by diamonds &A% best fit parameters by triangles, and
the combined best fit parameters marked by a large cross.rAkdaesults of Figure 6.2, we have
assumed < 50 as a prior in the final fit analysis.

parameters for each of these subsamples can be seen in Eigutaliscuss these results in the following
Section.
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Figure 6.6: Maximum likelihood confidence constraints uf®8 model parameters for the GEMS
lens subsamples: spiral (top left), elliptical (top rightjue (bottom left) and red (bottom right).
Intervals and best fit values indicated as for Figure 6.5 ait assumed prief < 50.
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Figure 6.7: Maximum likelihood confidence constraints updiFWm1 model parameters for the
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Figure 6.8: Maximum likelihood confidence constraints upNFWmM2 model parameters for the
GEMS lens subsamples: spiral (top left), elliptical (toght), blue (bottom left) and red (bottom
right). Intervals and best fit values indicated as for Fighife with an assumed prief < 50.
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Figure 6.9: Maximum likelihood confidence constraints updiFWm3 model parameters for the
GEMS lens subsamples: spiral (top left), elliptical (toght), blue (bottom left) and red (bottom
right). Intervals and best fit values indicated as for Figuge with an assumed prief < 50.
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6.3.5 Discussion of maximum likelihood results

Overview of results and flexion implications

| begin with a discussion of the results shown in Figures@%-which appear largely consistent with
the findings of previous galaxy-galaxy lensing studies,disb point towards some interesting issues and
conclusions regarding flexion. For the full lens sample gcpl SIS model parameter constraintgrpf=
11073 kms™!, andn = 0.2470-23, in marginal disagreement with the results of Kleinheinrét al.
(2006), who favour a larger fiducial velocity dispersion.sktould be noted that, due to the sparseness
of the parameter grid used in this analysis, all the cormgsdrom this analysis will be subject to small
amount of extra uncertainty of the ord@r/2) X pmax/25, wherep.,.x is the maximum parameter value
in the range considered (this can be taken from the axis rahgach plot). Where combined constraints
are limited to a small region of the parameter space, | theeafuote results to 1 significant figure only,
aiming to highlight this limitation. Further numerical dysis is planned to improve the resolution of these
calculated likelihood surfaces.

For the combined constraints on the NFWm1 model, Lifie 0.8105, M3, = 6.075 x 10" A~ My,

in agreement with the results of HYG04 and Mandelbaum et2806b), although preferring a lower
than found in Hoekstra et al. (2005). The NFWm2 combined 8tdsc* = 4713, M3, = 8.07] x
101*h=t M, in good agreement with theoretical predictions and olati@mal constraints. Finally, the
NFWm3 parameter constraints found from shear and flexionbowed arev = —1.57] .., ¢* = 673,
this may hint towards some tension with theoretical préaiict for, although this conclusion rests on the
correct choice of the observationally constrained fixecdipeaters\/;,, andyu, which is not certain. This
issue, that of possible conflicts due to parameter degersraied faulty modelling, will be discussed later.

In all cases, as for the E-mode fitting constraints, the fiargely determined by the contours placed
using the shear results and the flexion makes only minoradilbes to the best fit contours. This appears
to be a combination of two effects. Firstly, examination lné fikelihood surfaces produced by flexion
measurements shows them to be of rather shallow gradienttiyireg regions. This is as opposed to the
shear, for which the likelihood surface steepens condidieiat distance from the best fit regions. This
fact, when combined with the further evidence for tensiamvieen shear and flexion results (also found in
Section 6.2.2), means that the shear constraints tenditorkgions where the flexion likelihood is varying
only slowly.

The existence of this “3 plateau” for flexion likelihoods can be understood by coesity the broad
wings of the modelled flexion distribution, for which sigo#int numbers of outliers are expected. The
importance of our accurate characterizatioppfF°) is now clear: proper accounting for non-Gaussian
flexion noise is vital if flexion measurements are going to beectly combined with those from shears.
Interestingly, the 35 plateau in flexion likelihoods does not extend all the wayhte inner confidence
regions, which have sharper gradients. In cases whereithketter agreement between shear and flexion
results we can expect flexion to provide more significant ompments to measured parameter constraints.
Also, any alternative flexion estimation scheme (such asah@kura et al. 2007a) that could reduce the
scatter in flexion measurements and decrease the numbettief®would likewise steepen the gradient in
the outer regions of the flexion likelihood surface.

The results of this Section make it more certain that tenbitween shear and flexion exists in the data
itself, rather than in errors of methodology, as | have catgul two different analyses of the galaxy-galaxy
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lensing signal in GEMS and both yield entirely consistentits. If the explanation is some kind of flexion
bleed, as discussed in 6.2.3 and in Chapter 7, then accwi@ieation for the effect would allow flexion
to exert more influence upon combined parameter constraimsswould happen simply by virtue of the
best-fitting regions being moved out of therPlateau and into regions where the flexion likelihood swefac
is varying more rapidly. If the effect is real, however, antdo failures in the NFW mass model close
to baryon-dominated regions, then sample sizes will sinmglgd to be increased in order to expose the
shear-flexion inconsistency at greater significance. lraggeple sizeandan improved flexion estimation
method could yield results at greater significance stille§éhand related topics will be discussed again in
Chapter 7. | now turn to look at some of the results obtainedhfe lens subsamples, split by galaxy and
morphology as describe in Section 6.3.3.

Results as a function of galaxy type

The SIS and NFWm1-3 parameter results for lens sampledspiialaxy colour (blue/red) and morphol-
ogy (spiral/elliptical) are shown in Figures 6.6-6.9. le tiscussion that follows | will not generally quote
marginalized error estimates for NFW halo parameters,riziead refer to overall trends in the contours
for different subsamples. In many cases quoting best fitegand marginalized error bounds would be
misleading, as the reliability of these results relies iaifty on accurate values of tifexedparameters (see
Section 6.3.3) chosen for each submodel. | did not vary tfired parameters for different subsamples,
and there is evidence (in the form of inconsistent resultwéen NFW submodels) that this is an oversim-
plification that needs to be addressed. Note that issuestdaifeot the two parameter SIS model, which |
now discuss.

The results shown in Figure 6.6 show broad agreement bettheeresults for blue galaxies and spiral
galaxies, with similar agreement for red and ellipticaleg@s, suggesting that both cuts identify haloes
with similar lens properties. To avoid confusion, wheretooins agree, | refer to these populations as early-
type lenses (elliptical/red) and late-type lenses (sfuhad). There are signs of a significant difference in
the velocity dispersions of these broad classes. For theaetple | findo) = 130f§8 kms~!, and for
the blue sample = 96130 kms~!. Values for the luminosity scaling parameters are enticelysistent.
These results replicate the findings of Kleinheinrich et2006) for the split between red and blue galaxies,
although again | find consistently lower velocity dispensiin each case.

Turning now to the NFW halo model parameters (Figures 63J-6t appears that lens populations are
equally well divided by either colour or morphology (excgptrhaps, in the case of NFWm2); as for the
SIS model, there is good contour agreement between thd apaldlue galaxy samples, and between the
red and elliptical galaxy samples. Reliable conclusiogsréingdifferencedn the underlying early/late-
type lens populations are harder to draw. For NFWm1, thegeas to be no significant sign of differences
in the mass-luminosity scaling, but some evidence for early-types favouring higher masdetso(in
agreement with the SIS results and Kleinheinrich et al. @00

The NFWm2 and NFWm3 model results are more difficult to intetjpdue to simplifying assumptions
built into my submodel parameterizations of the overall NRwdel presented in Equations (6.18) and
(6.19). The situation is worsened by the strong degeneratoyden the mass and concentration parameters
for NFW halos; noisy lensing measurements can often be felgguell by NFW models with high (low)
mass and low (high) concentrations. This degeneracy isigis2en in the results of the NFWm2 submodel
(Figure 6.8).
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The limitations of my submodel parameterization are suggelsy an inconsistency between the results
of NFWm2 and NFWm3, seen in Figures 6.8 and Figures 6.9. FoNfWmM2 model, there is evidence
that the red galaxies inhabit a lower-concentration, highass region of the parameter space than blue
galaxies, which favour a higher-concentration, lowersnagjion. This is an extremely interesting result,
as it lends observational weight to galaxy formation moaelghich early-type galaxies form in the course
of large halo mergers (see, e.g., De Lucia et al. 2006; Sekriegal. 2005; Baugh 2006): this would
naturally cause their haloes to be less concentrated. if scgers trigger rapid starburst activity that then
largely ceases, we expect such galaxies to be red in colaueas luminous than star-forming galaxies of
the same mass.

However, in Figure 6.9, we see evidence that early-typeeefa/our dnigherc* than the late-type sample.
The issue most likely to have caused this inconsistencyasfdht that for the NFWm3 model | have
assumed the same, fixéd;,, = 9 x 10'*h~1 M, for each sample. If this is an overestimate of the
fiducial viral mass for the blue lenses (as is suggested bfMEWmM1 results) then the degeneracy between
¢ and My will artificially force blue lens best fits towards lowet. As stressed at the beginning of
Section 6.3, maximum likelihood results are only as goodhasrodels they test, and wadlwaysgive an
answer.

The most obvious solution to this problem is to parametehieeull NFW model in four dimensions, and
perform the same maximum likelihood analysis. Howeves, tould be prohibitive in terms of computing
resources using my current method: analysis of GEMS data 2&rx 25 grid of parameters takes around
6 hours to complete for the spiral/blue samples using a atandesktop PC. Finding likelihoods for a
four-dimensional array of the same resolution would thdwe taore than 5 months. Use of Monte-Carlo
Markov Chain methods would increase the speed of this pspoesn iterative solution could be reached
via successive runs of lower dimensionality models, eadle tadopting the best-fitting values from the
previous analysis. Given the suggestions of real, physiiffrences between early-type and late-type
haloes in the GEMS galaxy galaxy lensing signal, these denaiions will be the the subject of much
useful research. If the treatment of the NFW halo models @mmiproved, increases in size for future
survey datasets will provide a wealth of galaxy-galaxyilegéformation.

This concludes my discussion of the maximum likelihood itssand indeed the description of the primary
results in my Thesis. | now go on to a Chapter in which | sumegarmy findings, conclusions, and
proposals for future work.
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In this Thesis | have presented a number of important dewadops, results and unsolved issues relevant
to the field of weak lensing. The primary achievements of sk began with the development of theo-
retical predictions for weak gravitational flexion and cuiated, via accurate measurement, in a detailed
analysis of a cosmological flexion signal. As part of thisqass | have completed a first, full (i.e., PSF
treating), shapelet lensing analysis of real space-baastdftbm the GEMS survey, something that has
not otherwise been done for shear or for flexion. | have catdat my shear and flexion measurements
using a sophisticated simulated dataset, and used thesrésyerform a first combined galaxy-galaxy
shear-flexion analysis. In doing this | improved existinghteiques by accurately describing the statistical
distributions of both measured shear and flexion in GEMSyighog useful tools for future galaxy-galaxy
lensing analyses.

My GEMS measurements (and those of the FLIP analysis) reipertant issues that will be of much
relevance to the accurate analysis of future survey datticplarly if this measurement is to proceed via
shapelets or related methods. The shapelet analysis of Gdgvitdnstrates the viability of the method
and thus provides a template for future pipelines, whilghhghting areas in which such pipelines could
improve on my methods. Finally, the galaxy-galaxy lensiogstraints | place upon lens galaxies in GEMS
provide a realistic picture of the utility of shapelet-me@si flexion as a cosmological tool, and the shear
results suggest interesting differences in the halo pt@seof spiral and elliptical galaxies.

Flexion from theory to measurement

The intention at the outset of this work was to show that mesasants of flexion could be used to improve
the knowledge of the cosmological matter distributionfipafarly on small scales. Having made analytic
predictions presented in Chapter 2, | began work on a shiapigleline so as to accurately measure the
flexion signal for the first time, including necessary PSFections. The direct first result of this work can
be seenin Figure 6.1, Chapter 6 (see also Figure 7.1, thist@favhich shows a clear detection of galaxy-
galaxy flexion signal in annuli of 2-4 arcsec away from fomgrd lenses. This result is not for a sample
of lens galaxies that have been specifically chosen as ofhiags, with the median-band luminosity

of our sample being 3 x 10°h~2L.. More importantly, unlike that of Goldberg & Bacon (2005)y m
analysis includes a thorough treatment of systematic £mod biases using shapelets (see Chapters 4 and
5), and takes account of the realistic distribution of flexieasurements (Goldberg & Bacon 2005 used a
Gaussian of widtlr - = 0.04, possibly due to their bright sample of galaxies). Thesesicmrations may
explain the fact that, contrary to Goldberg & Bacon (2005nd no evidence for a flexion signal beyond
5 arcsec from typical foreground lenses.

The maximum likelihood results of Chapter 6 also suggestilechave a strong detection of a first flexion
signal, with the flexion contours for the SIS and NFWm1 modelgure 6.5 ruling out zero-mass models
at 3¢ significance or greater. These results are more difficulbterpret, however, as a poor choice of
model will give inaccurate results in any maximum likelildobanalysis.

There were two further important features of the maximuraliifood analysis of particular importance
to flexion. Firstly, the measurement of flexion in my GEMS fliipeis still too noisy for it to be able to
significantly improve constraints on model parametersdosés such as the SIS or NFW; the confidence
contours seen for the combined signal do not often diffemiBantly for those from shear alone (section
6.3, Chapter 6). Despite the sometimes significant ten®bmden flexion and shear parameter resulis (3-
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Figure 7.1: Comparison of GEMS E-mode shear (left) and flegight) for .., between 2 and 10
arcsec. As for Figure 6.1, the B-mode signal and uncer&sirdie plotted as dot-dashed and dotted
lines respectively. The dashed line is the predicted hadedban HYGO04 and Navarro et al. (1997).

for NFWm2 and NFWm3), the flexion likelihood surface is geatlgrshallow-sided when compared to that
of shear, causing the combined surface to be dominated shta results. This shallow-sided likelihood
behaviour is a consequence of the broad wings in the meadistetbution ofp-(F*), and highlights the
importance of taking this distribution into account wheimgdlexion statistics. Modelling of the flexion
distribution as a Gaussian, such as in Goldberg & Bacon (RBIBRT06, Okura et al. (2007b) and Section
2.2, will inevitably lead to flawed conclusions.

Despite the noise of flexion measurement, the tension thatsebretween flexion and shear is striking,
and could point to the failure of SIS and NFW models in thegrgiwhere the interplay between baryons
and dark matter would become a significant consideratiois.riot known whether lens models based on
pure ACDM simulations will apply in the small scale, baryon-inflwed regime close to halo centres; it
should be expected that they do not (see, e.g., Sectiorgsahd.1.1.10). An indication that flexion has the
potential to provide useful information on these scalesimnanstrated in Figure 7.1, which compares the
measuredy and~g from GEMS on the scales of flexion sensitivity. If the flexiomrasurements could
be made more accurate, either by increasing the samplersieimproving estimation techniques, then
flexion could offer competitive constraints in this regiraspecially if the NFW model underestimates the
mass or concentration on these scales (a prediction ofatiajuenching, see, e.g., Blumenthal et al. 1986;
Sellwood & McGaugh 2005; Gustafsson et al. 2006). The persie of the strong flexion signalét, ~

2-3 arcsec would present a real difficulty to NFW halo modats] a step forward in the understanding of
the dark matter-visible matter relationship.

The question of how flexion estimation can be made more atcig@amportant, as the shapelet technique
seems to add a significant measurement noise to the undgihtiinsic flexion variance possessed by
real galaxies. The HOLICS technique of Okura et al. (200@xnently extended to include a full KSB-
style treatment of PSF anisotropy (Okura et al. 2007a), thisirespect a promising development. Work
by Goldberg & Leonard (2007) and Leonard et al. (2007) fourtd iprovide a significantly less noisy
flexion estimator than shapelets, and adopted it as thefenpeel technique. It may also be that severe
outlier clipping can provide a solution to the problem of ftexnoise, but such schemes would need to be
carefully calibrated for the downward biasing effect théslupon statistical estimates.

As well as reducing the noise in flexion, it will be importaatuncover and understand possible systematic
effects that could bias flexion in real lensing data. Paldidy; the “flexion bleed” hypothesis described
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in Section 6.2.2, could account for the strafig signal seen at smafk.,. | now propose a method for
the calibration of this effect using a combination of reatadand simulated galaxies of the sort used in
the FLIP analysis of Chapter 5. The first step is to take a sawipFLIP-type galaxy models, chosen to
be representative of the lensisgurcesample, and pixellize to the scale of the dataset in questibase
models should be chosen to be isotropic on average with cetpall lensing measurements. Co-adding
large numbers of these isotropic, pixellized, noiselesdetsto the pixels in the vicinity of representative
members of the actu@nssample, one can quickly quantify the biasing effect of flaxiteed by calculat-
ing the E-mode signal in these synthesized source-lens. gdiis simple analysis is a priority if we are to
place greater faith in th&r results found in GEMS, and wish to make a first calibratiorhef éffect for
future flexion measurements.

Shapelet lensing measurements

The presentation of a shapelet pipeline suitable for tharate analysis of real, space-based data is another
important result of this Thesis. The results of Section}4.8hapter 4, suggest agreement between my
shapelet shears and those of Heymans et al. (2005) at tHe(%Vv& + 0.8)%, with no evidence for a
shear offset bias such as might be caused by a poor PSF trgatmmther analysis. This result agrees
with the GEMS analysis performed by Schrabback et al. (2009 find a similar discrepancy af 3.3%
between their shear estimates and those of Heymans et 8b)(20ests for shear residual offsets also
proved consistent with zero, but the results for the flexi@asurements were less successful, particularly
for G° (Section 4.3.3, Chapter 4). Imperfect modelling of the putegs of the ACS PSF is hypothesised
as a potential cause for this systematic, as the inducedlbs@second flexion is aligned with a cleaike
morphology in the outer light profile of stacked stellar ireag

However, in order to achieve accurate agreement with pusvdnsing studies it was necessary to multiply
my chosen shear estimator by a bias factor of (1/0.82), mt&il’by my shapelet analysis of simulated
galaxy images (FLIP, Chapter 5). A reducing bias factor weamé to be necessary to correct for overesti-
mation ofG, and recovery ofF appeared to be unbiased, if similarly noisy. The reasorti®overestima-

tion of the@ input signal is unclear, but was a common feature among tireasrs tested. It is thought

that the systematic underestimation of shears may be a qoesee of the shapelet truncation of natural
galaxy light profiles, an issue which will be discussed infimthcoming STEP3 analysis of Rhodes et al.

(in prep.).

The results of the FLIP analysis also highlight importardrstomings in certain shapelet lensing estima-
tors, such as those proposed by Refregier & Bacon (200380 & Bacon (2005) and some amongst
those | proposed in Chapter 3 (see also Massey et al. 2008tndors formed without the need to cal-
culate ensemble averages over shapelet coefficients, wiaghvary wildly between galaxies, will show
greater stability and can be implemented more simply. Mangrgg the proposed shapelet lensing estima-
tors will need accurate calibration of their susceptiedtias functions of galaxy properties such as size,
brightness and morphological type. A final finding of the FlaRalysis was the poor treatment of PSF
systematics for galaxies of scale size close to that of the le8ding to detectable residual offsets for these
objects. This is a natural consequence of the Massey & Refré2005) shapelet deconvolution approach.
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Maximum likelihood analysis

I have described my maximum likelihood analysis of galagjagy lensing in the GEMS data (Chapter
6), which required modifications to the assumed forms of ttebability distributions for the intrinsic
shear and flexion of unlensed galaxies. Simple analytictfong are shown to provide an improved fit to
the GEMS data when compared to the Gaussian curves used hgi8eh& Rix (1997) and subsequent
analyses based on this scheme.

The maximum likelihood analyses agree well with the resofitsimpler fits to theyg and Fg signal in
GEMS, and using the total lens sample | place constraints lgns model parameters that are in agreement
with the findings of other authors (Guzik & Seljak 2002; Haekst al. 2004; Kleinheinrich et al. 2006;
Mandelbaum et al. 2006b). Using galaxy morphology (Bardeal.e2005) and rest-frame colour (Bell
et al. 2004) information | show a clear variation in lens pdjges with both indicators of the late/early-
type galaxy dichotomy. There is an interesting suggestishe NFWm2 model (see Section 6.3.5, Chapter
6) of significant differences in the mass and concentratemameters of red and blue galaxies. The red
galaxies appear better fit by higher mass, lower conceotratlo models than blue galaxies, which would
be a natural prediction of hierarchical galaxy formatiord®is (see, e.g., De Lucia et al. 2006). However,
limitations in the simplified parameterizations of NFW hatedels currently prevent firmer conclusions
being drawn. Placing firmer confidence constraints on ttesltés a natural extension of the work in this
Thesis; | now go on to describe how this might be done, alorily ather potential research opportunities
that arise as a direct consequence of my investigations.

Further work

The opportunities for further work are clear. If flexion cam dstimated more accurately for real galaxy
images then there is potential, as suggested by the sintpéfialysis presented in Chapter 2, for it to
be a useful addition to shear for certain cosmological appittns. The shapelet formalism of Refregier
(2003) provides an elegant framework for constructing shetestimators. What is unclear is whether
the least-squares shapelet model fitting of Massey & Redfrgg0D05) is able to characterize higher order
shape galaxy information with sufficient reliability to pest such estimators from being both noisy and,
potentially, biased.

The HOLICS image moment scheme presented by Okura et alZk20@ow adapted to include a full treat-
ment of anisotropic PSF corrections (Okura et al. 2007a@nisxciting alternative to shapelets and early
results show signs of superior flexion measurement for rataxies (Leonard et al. 2007). Alternative
options such as heavy outlier clipping of shapelet measenésimay also provide a working solution. An
important future study will be the comparison of flexion mgasnent from each of these different estima-
tion schemes using simulated galaxy datasets such as tReifAages. Following the STEP analyses, this
work would compare estimates for both space-based and d+ibased datasets.

The possibility of the extension of flexion to ground-basedging surveys is a related issue, and one of
increased importance due to the unavailability of sub&thmtew, space-based imaging survey datasets in
the short-to-medium term. The question of whether flexianlmaaccurately recovered in the presence of
atmospheric image degradation remains open. First iristimguld suggest that it would be more difficult
than from space, but the shapelet method was found to be wecgssful in STEP2 (Massey et al. 2007b),
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which simulated ground-based imaging data, and less ssfa¢@sSTEP3 (Rhodes et al., in prep.). It may
be that objects blurred by a degree of atmospheric seeingedier fit by the shapelet basis set than high
quality images of galaxies convolved with the highly nonu&sian ACS PSF.

If flexion can be successfully measured from the ground, tia¢asets such as the Canada France Hawaii
Telescope Legacy Survey (CFHTLS, see, e.g., Hoekstra 2086) would be able to provide a 10-fold
increase in signal to noise on galaxy-galaxy flexion measaras (based on an assumed source nhumber
density of~ 10 arcmir2). This would bring any discrepancy between shear and flefikiothe SIS and
NFW halo models into sharp relief, assuming that the paéintbiasing effects of flexion bleed can be
checked and, if necessary, accurately accounted for.

Future surveys also offer the possibility of an improved immarm likelihood analysis of galaxy-galaxy
lensing, with the specific aim of testing galaxy formationdals by probing the lens properties of galaxy
host haloes. A ten-fold increase in signal to noise from CE8lTvould place firm constraints on the
differences between the halo hosts of red and blue galakféesences which are tantalisingly suggested by
the results of my work. This study would need to be accompHnyea more sophisticated parameterization
of luminosity-scaled NFW halo models, and if the shear digma be augmented by accurate flexion
measurements then powerful new insight into galaxy foromedbuld be gained.

Finally, galaxy-galaxy lensing is not the only cosmologizeeasurement which flexion has the potential
to improve. Cluster mass reconstructions may also seefisigmit benefits (Okura et al. 2007a), but if this
is to be the case then the properties of reduced flexion neleel torrectly accounted for in order to make
mass reconstructions as unbiased as possible (Schneide&2@E). Although flexion in the galaxy-galaxy
lensing regime primarily considered in this Thesis is ngh#icantly biased as a result of the sheet-mass
degeneracy, if the utility of flexion is to be extended thes tteeds to be taken into account. Schneider &
Er (2007) present extremely important first results in thisction, but more work can be done. It seems
that the problem of mutual biases between reduced sheaedunded flexion cannot be solved analytically,
and so it may require a group effort in order for these effertse accurately characterized.
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Appendix: Polar Shapelet Results

This Appendix provides details of polar shapelet resultgtviproved too long to justify inclusion in the
main body of the Thesis text.

Flexion in terms of transformations upon the f,, ,,, polar coefficients

In Section 3.2.2 we described the transformations for caamce, shear and flexion in terms of the
polar shapelet ladder operatats, a/, a, andd;r (Equations 3.50-3.52, and 3.57-3.60). In Equations
(3.53)-(3.55) we wrote the shear and convergence transfiowns in equivalent form, in terms of their
action upon the shapelet coefficierfis,, that describe the shapelet model of the galaxy im&@e =

> fr.mPa,m (05 8). Similar expressions to these may be derived for flexionresging the transformations

given in Equations (3.57)-(3.60) in terms of mappings ugm@, ,,, shapelet coefficients.

Using Equations (3.57) and (3.58), and following simplg@stsuch as shown in Equation (3.13), | found
the following expressions for the action of the first flexioansformation upon the shapelet coefficients
».m Of an unlensed galaxy

(1+FE,)
Z,m - fn,m = 7SL,m
F ,
% { 3V (n —m)(n+m)(n+m—2) Tn—s.m—1

+ @Bn—m+10)\/(n+m) fr_1m_1
—@Bnt+m—4)/(n-—m+2) fri1m 1

—3y/(ntm+ 2 —m+ 2 —m+4) fism ) (A-1)
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(1+F*F)
rsz,m - fn,m = ;,m
F* ,
e {sVE TR =2 fi
+ @Bn+m+10)\/(n —m) fr_1mi1

—@Bn—m—4)/(n+m+2) i1 m

3V —m Dt m D mAD) frygmn o (AD)

In a similar fashion, using Equations (3.59) and (3.60), ae i@present the effects of the second flexion
upon unlensedf; ,, coefficients as follows:

(1+G6G,)
7SL,m - fn,m = Z,m
+ S V=D =) £
+V @ +m)n+m—2)(n—m+2) fi s
—Vn+m)(n—m+2)(n—m+4) fiii s
—V=m A= m+ = m+6) frasma) (A3)
(14+G*G))
7SL,m - fn,m = Z,m
+ V=A== £ s

+/(n=m)(n—m—=2)(n+m+2) f}_1 s
=V (n—m)(n+m+2)(n+m+4) fri1mes
Vo Em A mE M 0) fpamia) - (A)

These are the polar shapelet expressions for the flexiosftnamation given in Massey et al. (2007d).

The susceptibility of generalizedf,, ; and f, ; flexion estimators

In Section 3.4.3 it was described how flexion estimators ¢dnd constructed from any, ; and f,, 3
coefficients (for first and second flexion respectively). ides to do this, however, it is necessary to know
exactly how these coefficients respond to the action of flexitformation that can be represented by the
(P7);,; and (PY); ; susceptibility matrices defined by Equation (3.105), whighclarity | reproduce

here: o) O fus)
n,1l): gy, n,3)¢ _
OF , (P )w = . (A-5)

FN. .
(P’n. )ZJ - n 6g7
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In the expressions above we have represented the compleslsheoefficients,, ., in a vectorized form,
defining(f,m)i = (Re{fnm}, Im{fum} ).

Since we are constructing estimators of gravitational dlexput may only use the observable (i.e. non
centroid shifting) effects of this distortion, it is necassthat we correct for the gravitational shift. |
therefore used Equations (3.83), (3.84), and Equationk)(@ad (A-2) to find the following expressions
(in a somewhat compactified form) for the first flexion susiiigitty matrix for a generalized;, ; estimator:

3\/71—4‘1[(” —D(frs0~ fat10) +
(n+3)(faz10 = fasso)
+3V(n=3)(n—1)(n+1) fi_5,
+ Bn+1)Vn—-1f_,
= (3n=5)Vn+3 friiz

-3y (n+1)(n+3)(n+5) frts2
2\s
(};2) (64 5e)Wn T 1(f3 10— f310)
(RQ)S
32

(PP +i(P) ) = B {

Tova (A-6)

+ 2

+ 2

(6+5(%) ) (Vn+3fni1a—Vn— 1f1sz—1,2)}

3\/71—4‘1[(” —D(fr-s.0— fat10) +
(n+3)(faz10 = fatso)
= 3V(n=3)(n—1)(n+1) 3.2
- GBn+ 1)V =1 fit,
T+ Bn-SWATE [
+ 3V (n+1)(n+3)(n+5) fis2

(P )22 +1(P) )12 = —{ (A-7)

(R2)b Sk s s
+ 2 7 (6 =5 )vVn+1(fri10—fa10)
(R2)s s S S
—2 P (6 —5e%) (Vn+3fiio—vVn—1 n_m)} .

In each expression, the last two lines correspond to theibatibn owing to the correction necessary to
account for the first flexion centroid shift.

Similarly, the second flexion susceptibility matrices foe if,, 3 estimators may be calculated using Equa-
tions (3.85) and (3.86), and Equations (A-3) and (A-4). Ehestrices are then found to be given by the
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following expressions:

. o _ V=1 (n+1)(n+3) x -
(P))11 + (P )21 16\/5{ (fn_30+fi_10_f7sl+10_f7s7,+3,0) o)
+ V(n=T)(n=5)(n—3) fi_3s
+ V(n=5)(n—3)(n+5) fi_16
— VO =3)n+5)(n+7) fii16
— \/(n+5(n+7)(n+9) frise
S (VI U — VAT BA)
+ 2};—255* (\/n+5f7slj_174 - \/n_3fvsz*—1,4) }
922 i 912 = i \/(n—l)(n+1)(n+3) X A-9
(P )22 +i(P7) 16\/5{ ( ;7370+f;7170—f§+170—frsz+3,o) "o
_ \/(n—7)(n—5)(n—3) ;*36
+ \/(n 3)(n+5)(n+7) 1,6
+ \/(n+5)(n+7)(n+9) [
+ 2" (V= 1fnt12 = Vi + 3fn- 12)

(
e’ ( n+5f514 \/mfrsz—l,él)}'

As in the case of the first flexion, the final two lines emerge wuhe need to correct for the shift in an
object’s apparent centroid during flexion. Equations (A#)9) are the expressions given for the flexion
susceptibility matrices in Massey et al. (2007d).



