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Abstract

Modern cosmology has reached an important juncture, at which the ability to make measurements of un-

precedented accuracy has led to conclusions that are a fundamental challenge to natural science. The

discovery that, in our current best model, the dynamics of the Universe are completely dominated by un-

seen dark matter and dark energy can do little but completelyalter the shape of physics research in the 21st

Century. Unfortunately, much of our insight into these phenomena must come from observations of visible

matter alone; this raises serious problems, as the tracing of dark matter by visible matter is as yet poorly

understood.

Gravitational lensing offers strong prospects for probingthe interwoven history of dark and visible mat-

ter, as mass in any form may be detected where it exists untraced by baryons. In this Thesis I describe

advances made in the field of weak gravitational lensing, which constrains the properties of the matter

distribution on cosmological scales using a statistical analysis of the coherent gravitational distortions of

distant galaxy images. I summarize the development of gravitational flexion, a higher order extension to

traditional weak lensing, and describe my work done to bringthe study of flexion to a stage where it may be

employed to make accurate cosmological measurements. I show how flexion is sensitive to matter structure

on smaller physical scales than existing lensing techniques and, therefore, promises to shed new light upon

key untested predictions of cosmological models if it can bemeasured to sufficient accuracy. I discuss the

success of my efforts in this direction, and describe the issues to be encountered in the careful analysis of

this subtle gravitational signal.

This research has involved advances in many areas: the calculation of theoretical flexion predictions, the

refinement of image analysis methods for accurate galaxy shape estimation, and the practical application

of these new flexion techniques to extragalactic imaging data. The culmination of these efforts is a new

maximum likelihood analysis of the galaxy-galaxy lensing signal in theHubble Space TelescopeGalaxy

Evolution from Morphology and SEDs (GEMS) Survey, incorporating improvements and modifications

necessary for the combination of flexion with traditional weak lensing measurements. The results of this

work, and particularly the extent to which measurements of flexion provide extra cosmological insight, are

discussed in detail.

The conclusion is a summary of all that has been learned aboutthe use of flexion as an accurate probe

of cosmology, and a discussion of its prospects for answering some of the many questions that remain

about dark matter. Within the next few year wide-area surveytelescopes will begin imaging huge volumes

of deep space, with the measurement of the gravitational lensing signal being given high priority in the

analysis of these data. Within this context, the primary inquiry of this Thesis is the extent to which the

application of flexion measurement techniques will help shed new light upon the unseen, and currently

poorly understood, components of the Universe.
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R., Rowe, B., Refregier, A., Bacon, D. J., Bergé, J. 2007, Monthly Notices of the Royal Astronomical

Society, Volume 380, Issue 1, pp. 229-245.

Shapelet pipeline and results including calibration with simulations –‘Shapelet measurements of

shear and flexion in theHST STAGES and GEMS surveys’, Rowe, B., Bacon, D. J., Heymans, C.,

Taylor, A., Goldberg, D. M., Massey, R., Barden, M., Caldwell, J. A. R., Monthly Notices of the

Royal Astronomical Society, in preparation.

Galaxy-galaxy lensing results –‘Halo properties from combined galaxy-galaxy flexion and shear in

theHSTGEMS survey’, Rowe, B., Bacon, D. J., Heymans, C., Taylor, A., Goldberg, D. M., Massey,

R., Barden, M., Bell, E. F., Caldwell, J. A. R., Monthly Notices of the Royal Astronomical Society,

in preparation.



vi

This thesis is the outcome of my own work except where specifically indicated in the text.

Barnaby Rowe

Edinburgh,

May 2008.



Acknowledgements

My most sincere thanks must firstly go to my Primary Supervisor David Bacon, for his tireless enthusiasm,

warm encouragement and dedication to my studies. His willingness to give up his time to forward this work

was remarkable, and is recognised with real gratitude. I would also like to thank my Secondary Supervisor

Andy Taylor, for his encouragement and similar willingnessto enter into many fruitful and instructive

discussions with me.

Catherine Heymans must also be thanked for her kind help, thebenefits of her experience with the GEMS

data and for giving access to a variety of extremely useful GEMS object catalogues. I would also like to

thank Richard Massey; His knowledge and experience of shapelet theory and practice was invaluable in this

Thesis. I enjoyed working with Catherine and Richard very much and hope that I will get further chances

in the future. For a variety of useful discussions, encouragement, practical suggestions and provision of

data I would also like to thank: Alan Heavens, Bob Mann, AveryMeiksin, John Peacock, Peder Norberg,

Dave Goldberg, Stella Seitz, Xinzhong Er, Eric Bell and Marco Barden.

On a more personal note, I want to thank all of my friends in Edinburgh and elsewhere for their love and

support (some of whom even love and support me still), with fondest thanks in particular going to Annie,

Dan, Mairi, Sophie and Will. Equal thanks should go to the blokes in the band, Andy, Ben and Henrik, for

being such close friends and for making my time in the city so happy and memorable. Finally, I wish to

thank those closest in my family: my parents Peter and Elizabeth, and my siblings Sophie and Gregory. You

have all shown me a wonderful amount of love, kindness and encouragement. Sometimes it was needed; it

has been very gratefully received.





ix

Contents

1 INTRODUCTION 1

1.1 Background cosmology . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 2

1.1.1 Friedmann-Lemaı̂tre cosmological models . . . . . . . . .. . . . . . . . . . . . . 3

1.1.2 Expansion and the Friedmann equation . . . . . . . . . . . . . .. . . . . . . . . 5

1.1.3 Redshift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 7

1.1.4 Cosmological distance measures . . . . . . . . . . . . . . . . . .. . . . . . . . . 8

1.1.5 The growth of matter structure . . . . . . . . . . . . . . . . . . . .. . . . . . . . 10

1.1.6 The spherical collapse model of halo formation . . . . . .. . . . . . . . . . . . . 12

1.1.7 Numerical simulations of dark matter . . . . . . . . . . . . . .. . . . . . . . . . 16

1.1.8 Measured constraints on the concordance cosmological model . . . . . . . . . . . 18

1.1.9 Dark matter halo profiles . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 22

1.1.10 Dark matter halo substructure . . . . . . . . . . . . . . . . . . .. . . . . . . . . 26

1.2 Gravitational lensing . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 28

1.2.1 Deflection by a point mass . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 28

1.2.2 The lensing equation . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 29

1.2.3 Lensing potential and convergence . . . . . . . . . . . . . . . .. . . . . . . . . . 29

1.2.4 Weak gravitational lensing . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 31

1.2.5 Strong gravitational lensing . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 32

1.2.6 Applications of strong and weak gravitational lensing . . . . . . . . . . . . . . . . 33

1.2.7 Constraints on cosmological parameters from weak lensing . . . . . . . . . . . . . 35

1.2.8 Higher order weak gravitational lensing: flexion . . . .. . . . . . . . . . . . . . 36

1.2.9 Complex representation and the first and second flexion. . . . . . . . . . . . . . 37

1.2.10 Reduced shear and flexion . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 40



x CONTENTS

2 FLEXION PREDICTIONS 43

2.1 Analytic flexion results . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 44

2.1.1 Flexion for the Singular Isothermal Sphere (SIS) . . . .. . . . . . . . . . . . . . 44

2.1.2 Flexion for the Softened SIS (SSIS) . . . . . . . . . . . . . . . .. . . . . . . . . 45

2.1.3 Flexion for the Truncated SIS (TSIS) . . . . . . . . . . . . . . .. . . . . . . . . 46

2.1.4 Flexion for the NFW halo profile . . . . . . . . . . . . . . . . . . . .. . . . . . . 47

2.1.5 Comparing NFW and SIS flexion results . . . . . . . . . . . . . . .. . . . . . . . 48

2.1.6 Flexion for elliptical profiles . . . . . . . . . . . . . . . . . . .. . . . . . . . . . 51

2.2 Predicting halo constraints . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . 53

2.2.1 A simple model of galaxy-galaxy lensing data . . . . . . . .. . . . . . . . . . . . 53

2.2.2 Noise on individual shear and flexion measurements . . .. . . . . . . . . . . . . 53

2.2.3 Noise due to redshift measurements . . . . . . . . . . . . . . . .. . . . . . . . . 54

2.2.4 Choice of model parameters . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 55

2.2.5 Simulated galaxy-mass cross correlations . . . . . . . . .. . . . . . . . . . . . . 56

2.2.6 Confidence estimates on lens model parameters . . . . . . .. . . . . . . . . . . . 56

2.2.7 Caveats and conclusions . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 57

3 ESTIMATING SHEAR AND FLEXION 61

3.1 Cartesian shapelets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 62

3.1.1 Image transformations in Cartesian shapelets . . . . . .. . . . . . . . . . . . . . 62

3.1.2 Lensing transformations in Cartesian shapelets . . . .. . . . . . . . . . . . . . . 64

3.2 Polar shapelets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 69

3.2.1 Image transformations in polar shapelets . . . . . . . . . .. . . . . . . . . . . . 71

3.2.2 Lensing transformations in polar shapelets . . . . . . . .. . . . . . . . . . . . . . 72

3.3 Image deconvolution using shapelets . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 76

3.3.1 Two shapelet approaches . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 77

3.4 Shapelet lensing estimators . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . 79

3.4.1 The flexion centroid shift . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 79

3.4.2 Estimating shear and flexion from Cartesian shapelets. . . . . . . . . . . . . . . 82

3.4.3 Estimating shear and flexion from polar shapelets . . . .. . . . . . . . . . . . . . 84



CONTENTS xi

4 SHAPELET LENSING ANALYSIS OF HST SURVEY DATA 93

4.1 GEMS lensing data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 94

4.1.1 Galaxy images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 94

4.1.2 Object catalogues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 95

4.2 GEMS lensing measurements . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 98

4.2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 98

4.2.2 Postage stamp extraction . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 98

4.2.3 Modelling the GEMS PSF . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 101

4.2.4 Shapelets deconvolution . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 104

4.2.5 Shear and flexion estimation . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 105

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 106

4.3.1 Comparison with previous shear studies of the GEMS field . . . . . . . . . . . . . 106

4.3.2 Distributions of lensing measurements . . . . . . . . . . . .. . . . . . . . . . . . 107

4.3.3 Tests for residual PSF anisotropy systematics . . . . . .. . . . . . . . . . . . . . 110

5 SHAPELET LENSING ANALYSIS OF SIMULATED DATA 115

5.1 The FLexion Implementation Program

(FLIP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .116

5.1.1 Input lensing signals . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 116

5.1.2 Lensing estimators . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 117

5.2 FLIP images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 118

5.2.1 Simulated galaxies . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 119

5.2.2 Simulated observational distortions . . . . . . . . . . . . .. . . . . . . . . . . . 120

5.3 FLIP data analysis and results . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . 123

5.3.1 Shear measurement results . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 124

5.3.2 Flexion estimator results . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 126

5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 126

5.4.1 Multiplicative bias . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 128

5.4.2 Additive bias - shear and flexion residual offsets . . . .. . . . . . . . . . . . . . 133

5.4.3 Wider applicability of the FLIP results . . . . . . . . . . . .. . . . . . . . . . . . 134



xii CONTENTS

6 GALAXY-GALAXY SHEAR-FLEXION 139

6.1 Galaxy-galaxy lensing . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 140

6.2 Galaxy-mass cross-correlation functions . . . . . . . . . . .. . . . . . . . . . . . . . . . 140

6.2.1 Calculating the radial and tangential lensing signals . . . . . . . . . . . . . . . . . 141

6.2.2 Fitting lens models to the galaxy-mass cross-correlation functions . . . . . . . . . 144

6.2.3 Discussion of fitting results . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 147

6.3 Modified maximum likelihood analysis . . . . . . . . . . . . . . . .. . . . . . . . . . . 148

6.3.1 Standard formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 148

6.3.2 Flexion modifications . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 150

6.3.3 Choice of models, lens samples and input parameters . .. . . . . . . . . . . . . . 153

6.3.4 Maximum likelihood results . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 156

6.3.5 Discussion of maximum likelihood results . . . . . . . . . .. . . . . . . . . . . . 163

7 CONCLUSIONS 167



xiii

List of Figures

1.1 Comparison of the best-fitΛCDM models to the WMAP 1- and 3-year TT (temperature-

temperature) angular power spectrum data. . . . . . . . . . . . . . .. . . . . . . . . . . . 3

1.2 Plot of distance (from local space) versus redshift for the four standard distance measures

in aΛCDM Universe. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3 Image of the dark matter distribution within a cluster from the Millennium Simulation. . . 17

1.4 Geometry of a gravitational lens system. . . . . . . . . . . . . .. . . . . . . . . . . . . . 30

1.5 Weak lensing distortions with increasing spin values. .. . . . . . . . . . . . . . . . . . . 38

1.6 Illustration of how the combination of shear, first flexion and second flexion produces weak

arcs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40

2.1 Comparison of the magnitude of first flexion due to NFW and SIS haloes. . . . . . . . . . 50

2.2 Flexion vector field for an elliptical isothermal density distribution. . . . . . . . . . . . . . 51

2.3 Estimated confidence limits on NFW halo parameters. . . . .. . . . . . . . . . . . . . . . 58

3.1 Cartesian shapelet basis functions. . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 63

3.2 Polar shapelet basis functions. . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 70

3.3 Schematic diagram showing the direction of action of theright- and left-handed operators

in polar shapelet space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 72

3.4 Schematic diagram showing the direction of action of theshear and convergence operators

in polar shapelet space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 74

3.5 Schematic diagrams showing the direction of action of the flexion operators in polar shapelet

space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .76

4.1 GEMS image mosaic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 95

4.2 SEXTRACTOR measured FWHM-magnitude diagram for all GEMS catalogue objects. . . 97



xiv LIST OF FIGURES

4.3 Overview of the GEMS shapelet pipeline. . . . . . . . . . . . . . .. . . . . . . . . . . . 99

4.4 Example of a GEMS galaxy postage stamp image. . . . . . . . . . .. . . . . . . . . . . . 100

4.5 Comparison of radial profiles for two GEMS models of a fieldstar. . . . . . . . . . . . . . 102

4.6 Comparison ofγobs to shear measurements of the same field from Heymans et al. (2005). . 108

4.7 Histograms of measuredγobs from the PSF deconvolved GEMS galaxy images. . . . . . . 109

4.8 Histograms of measuredFobs from the PSF deconvolved GEMS galaxy images. . . . . . . 109

4.9 Histograms of measuredGobs from the PSF deconvolved GEMS galaxy images. . . . . . . 109

4.10 Mean and median deconvolved galaxyγobs in the GEMS survey images. . . . . . . . . . . 110

4.11 Median deconvolved galaxyFobs andGobs estimates in the GEMS survey images. . . . . 112

4.12 Composite image of the GEMS F606W PSF. . . . . . . . . . . . . . . .. . . . . . . . . . 113

5.1 Schematic showing the relative orientations of gravitationalγ, F andG in the FLIP images. 117

5.2 Perturbing galaxy morphologies in shapelet space. . . . .. . . . . . . . . . . . . . . . . . 119

5.3 The point spread function (STEP3 PSF “D”) used to convolve the FLIP simulated galaxy

images. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .121

5.4 Section of one of the FLIP image tiles. . . . . . . . . . . . . . . . .. . . . . . . . . . . . 122

5.5 FLIP results for thẽγDG, γ̃unweighted andγ̃Gaussian estimators. . . . . . . . . . . . . . . . 125

5.6 FLIP results for the flexion estimators. . . . . . . . . . . . . . .. . . . . . . . . . . . . . 127

5.7 Multiplicative bias factors for̃GDG
, G̃DGT

andγ̃unweighted for SNR subsamples of the FLIP

galaxies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 131

5.8 Multiplicative bias factors for̃GDG
and G̃DGT

for β and FWHM subsamples of the FLIP

galaxies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 132

5.9 Histogram of shapelet scale sizeβ for the FLIP and GEMS galaxy models. . . . . . . . . 135

6.1 Average E-mode and B-mode shear and flexion within annuliaround foreground lenses. . . 143

6.2 Confidence contours for fiducial NFW halo parameters fromfits to the galaxy-mass cross-

correlation functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 146

6.3 Measuredpm(|ξ|)/(2π|ξ|) and best fitting curves for shear, first flexion and second flexion. 152

6.4 Histograms of measured shear and flexion showing best fit distribution curves. . . . . . . . 154

6.5 Maximum likelihood confidence constraints upon SIS and NFW model parameters for the

total GEMS lens sample. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 158



LIST OF FIGURES xv

6.6 Maximum likelihood confidence constraints upon SIS model parameters for the GEMS

lens subsamples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 159

6.7 Maximum likelihood confidence constraints upon NFWm1 model parameters for the GEMS

lens subsamples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 160

6.8 Maximum likelihood confidence constraints upon NFWm2 model parameters for the GEMS

lens subsamples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 161

6.9 Maximum likelihood confidence constraints upon NFWm3 model parameters for the GEMS

lens subsamples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 162

7.1 Comparison of E-mode shear and flexion forθsep between 2 and 10 arcsec. . . . . . . . . 169





1

CHAPTER 1

INTRODUCTION

The last ten years have seen dramatic developments in our understanding of the Universe, leaving a picture

that few would have predicted within even the recent past. Unseen dark energy and dark matter, which are

necessary in order to match observations of both the afterglow of early expansion and latter-day structure

in the Universe, present all of physics with an unforeseen challenge. Are we really seeing the effects of

exotic new forms of matter and energy? If so, what impact willthis have on our understanding of physics?

In this Chapter, I make a brief summary of the cosmological model that describes the expansion of the

Universe from the first moments after the Big Bang to the present day, a model in which dark matter

and dark energy play key roles. The formation of large scale structure through gravitational collapse is also

discussed, before an introduction togravitational lensing, an important technique for observing dark matter

and inferring the properties of dark energy. Finally, I review the theory behindweak gravitational flexion,

a recent extension to the formalism of weak lensing. In this way I introduce the background necessary for

the central topics of this Thesis: the application of flexionto accurate cosmological measurements and the

promise such measurements show for illuminating dark matter structure and thereby the dynamics of the

Universe as a whole.



2 CHAPTER 1. INTRODUCTION

1.1 Background cosmology

The concordance cosmological model describes a Universe that is spatially flat, undergoing accelerating

expansion due to the presence of dark energy (DE orΛ), and which forms large scale matter structure

through the collapse of invisible cold dark matter (CDM). Due to the lack of an equallly successful alterna-

tive theory, this model has come to a somewhat lonely prominence, despite its reliance on dark components

that remain to be directly observed. Although we remain without an understanding of these unseen phe-

nomena on a particle level, theΛCDM model has been extremely successful in reproducing manyof the

features of the cosmic microwave background (CMB) as revealed by the Wilkinson Microwave Anisotropy

Probe (WMAP, see Figure 1.1; Spergel et al. 2007; Bennett et al. 2003; Spergel et al. 2003). It is also the

strongest explanation for a large number of other astronomical observations, including distance measure-

ments made using Type Ia supernovae (see, e.g., Riess et al. 2007; Astier et al. 2006; Conley et al. 2006;

Riess et al. 2004), the shape and amplitude of the large-scale structure seen in the distribution of galaxies

(Sánchez et al. 2006; Tegmark et al. 2006; Percival et al. 2007b) and more recently the imprint of baryon

acoustic oscillations in the early Universe (e.g. Percivalet al. 2007a). These and other measurements sup-

port the picture of a flat Universe dominated by vacuum energy(or a cosmological constant) at a proportion

of around 75 per cent, with CDM making up the majority of the remaining≃ 25 per cent of the energy

density; baryonic matter is thought to make up only 4-5 per cent of the Universe at most. A short summary

of current best constraints on this cosmological model willbe given in Section 1.1.8.

This broad picture of the matter and energy budget, in combination with two powerful simplifying assump-

tions about inherent symmetries in cosmic dynamics, allowsus to construct a simple but successful model

of cosmological expansion. In Sections 1.1.1 and 1.1.2 a brief outline of this basic Big Bang cosmology is

presented, described as an expanding solution to the field equations of Einstein’s General Relativity. Build-

ing on these topics, Sections 1.1.3 and 1.1.4 explain the notion of redshift and the definition of distances

within curved, expanding spacetimes, fundamental concepts in the concordance cosmological picture.

Observed structure, such as stars, galaxies and galaxy clusters, is believed to form within this model via

gravitational instability and collapse. The seeds of this instability are tiny density perturbations, thought

to exist due to quantum fluctuations during the initial expansion of an early Universe that is otherwise

homogeneous. These perturbations then become amplified by the action of gravitational attraction, even-

tually reaching the beautiful complexity and diversity of structure we observe today. Wherever the local

self-gravitation of matter is negligible, the dynamics of these fluctuations may be described using linear

perturbation theory, as described in depth by Peacock (1999) and briefly in Section 1.1.5. However, this

condition is clearly not met in the regions of the local Universe where we observe gravitationally collapsed

structures such as stars and galaxies.

Perhaps the critical test of theΛCDM model will be its ability to accurately predict the distribution of

this observable matter, and its evolution. Some simple results describing self-gravitational collapse in this

non-linear regime can be solved analytically, as describedin Section 1.1.5. In Section 1.1.6 the spherical

or ‘top hat’ collapse model is outlined, from which the cosmological definition of the bound, collapsed

objects known as haloes is generally drawn. These dark matter objects are thought to surround galaxies

and galaxy clusters, thus providing one explanation both for the discrepancies between galaxy rotation

curves and luminous matter distributions (see, e.g., Noordermeer et al. 2007), and for the high galaxy

velocity dispersions within galaxy clusters (Zwicky 1933,1937).
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Figure 1.1: Comparison of the best-fitΛCDM models to the WMAP 1- and 3-year TT
(temperature-temperature) angular power spectrum data. The solid data points are for
the 3-year data and the grey points the 1-year data. Figure taken from Spergel et al.
(2007).

However, more realistic modelling of dark matter structureis impossible without employing numerical

calculations, and to this end a vast amount of work has taken place in the field of cosmological N-body

simulation, described briefly in Section 1.1.7. These simulate the evolution of fluid, pressureless CDM

over cosmological timescales, with the largest and most recent example being the Millennium Simulation

carried out by the Virgo Consortium (see Springel et al. 2005). At recent epochs these simulations predict

a filamentary dark matter distribution, populated by many dark matter haloes on a wide variety of mass

scales. Importantly, theoretical results for the profiles of dark matter haloes, summarized in greater detail

in Section 1.1.9, are yet to be well constrained by actual observations of the physical Universe.

Finally, the concordance model not only makes detailed predictions for the size, shape and distribution of

dark matter haloes, but also for the abundance and spatial distribution of subhaloes within haloes, or halo

substructure. Simulation work supports the picture of hierarchical formation of CDM haloes by multiple

mergers and accretion (see White & Rees 1978), and this leaves large amounts of this remnant substruc-

ture. In Section 1.1.10 these predictions are described andsummarized, and compared against the current

constraints available from observational data. To begin with, however, we review the founding concepts of

modern cosmology, a Universe governed on the largest scalesby the dynamics of an expanding spacetime.

1.1.1 Friedmann-Lemâıtre cosmological models

The standard model of our Universe is a solution of Einstein’s field equations within the framework of

General Relativity, underpinned by the following two postulates (see, e.g., Peacock 1999; Rindler 2001):
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1. When averaged over sufficiently large scales, there exists a mean motion of radiation and matter in

the Universe with respect to which all averaged observable properties areisotropic– they look the

same in any direction.

2. All ‘fundamental observers’, imagined observers that follow this mean motion, experience the same

history of the Universe, i.e. the same averaged observable properties, provided they set their clocks

suitably. Such a Universe is called observer-homogeneous– it looks the same from any position.

The second postulate follows on from the first if we invoke what is known as the Copernican principle,

that we occupy no special position in the Universe. The assumption that on average the Universe is both

isotropic and homogeneous is known as the cosmological principle, and allows us to define a universal time

coordinate which we call the cosmological timet. This is the time as measured by fundamental observers

and is synchronised by these observers setting their clocksto a standard time when the universal uniform

density reaches a given value.

These two postulates also significantly constrain the metric tensorgµν , used in writing the general line

element in relativistic spacetime:

ds2 = c2dτ2 = gµνdxµdxν . (1.1)

This is an infinitesimal statement of Pythagoras’ Theorem and is used to describe the geometry of space-

time. We then have the freedom to write the metric in the following form, with a part corresponding to

cosmic time, and a spatial part:

c2dτ2 = c2dt2 − gijdx
idxj . (1.2)

A metric tensor of this form, in which the off-diagonal componentsg0i vanish, is a choice that is admitted

within an isotropic Universe. Here thengij is the metric tensor of 3-space, a hypersurface within four-

dimensional spacetime.

Isotropy and homogeneity then force conditions upon the spatial part of the metric we have written in

Equation (1.2). It must only be able to expand or contract isotropically by a scaling factor we calla, which

must be a function of timea(t) only, otherwise the expansion would be different at different places in the

Universe, violating homogeneity. Hence the metric furthersimplifies to

c2dτ2 = c2dt2 − [a(t)]2dℓ2 (1.3)

wheredℓ is the line element of the isotropic, homogeneous 3-space.

Due to homogeneity, we expect that the degree of spatial curvature must be the same at all places and

this is enough to determine the form of the metric. Isotropy requires spherical symmetry: spatial surfaces

(not the three-dimensional spatial hypersurface), if a constant distance from an arbitrary point, need to be

two-spheres, i.e., normal spheres. Homogeneity allows an arbitrary point to be chosen as the origin for our

set of coordinates, and the spherical symmetry allows the spatial part of the metric to be decomposed into

a radial and a transverse part, written in its most generallyadmissible form as

dℓ2 = dr2 + S2
k(r)dψ2 = dr2 + S2

k(r){dθ2 + sin2 θ dφ2} (1.4)

where the two anglesθ andφ are those of spherical polar coordinates, which uniquely identify positions

on the unit sphere around the origin.
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It is the postulate of homogeneity which determines the formof the radial functionS2
k(r), as it demands

that spatial curvature is uniform across the Universe. Thiscurvature, labelledk, must therefore be either

constant negative, constant positive or zero (flat), and this allows us to set

Sk(r) =















1√
−k

sinh(r
√
−k) k < 0

r k = 0

1√
k

sin(r
√
k) k > 0

. (1.5)

The overall metric for an isotropic, homogeneous Universe may then be written as

c2dτ2 = c2dt2 − [a(t)]2{dr2 + S2
k(r)(dθ2 + sin2 θ dφ2)}, (1.6)

which is known as the Robertson-Walker metric. We note that conventionally, at the present epocht = t0,

we set the scale factor of the Universe to bea0 = a(t = t0) = 1.

1.1.2 Expansion and the Friedmann equation

In order to the derive the equations which describe the expansion and possible contraction of the Universe,

and which relate this action to the matter-energy content ofthe Universe, we need to resort to further

aspects of General Relativity; for good introductions to this subject in the cosmological context see either

Peacock (1999) or Rindler (2001). The Einstein Tensor is defined as

Gµν = Rµν − 1

2
gµνR, (1.7)

whereRµν is the Ricci Tensor andR is the related curvature scalar,R = gµνR
µν . Again the reader is

referred to Rindler (2001) for the precise details of these objects. Einstein’s field equations, relating the

Einstein-Tensor to the energy-momentum tensorT µν of the matter in the Universe, are written as:

Gµν + gµνΛ = −8πG

c4
T µν . (1.8)

The second term of Equation (1.8), proportional to the metric tensorgµν , is a generalization which Einstein

originally introduced to allow static cosmological solutions of the field equations,Λ being hence known as

the cosmological constant.

The highly symmetric form of the Robertson-Walker metric seen in Equation (1.6), together with the

requirement that the Universe be both homogeneous and isotropic, constrains the form of the energy-

momentum tensor to being that of the perfect fluid. In the restframe then

T µν = diag( ρ(t)c2, P (t), P (t), P (t) ), (1.9)

whereρ(t) denotes the energy density of the Universe andP (t) the pressure (flux density of x-momentum

in the x-direction, etc.). We note that both these quantities are time varying only, again due to the require-

ment of homogeneity.

Using this energy-momentum tensor for the Universe, the field equations then simplify to the two indepen-
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dent equations:
(

ȧ

a

)2

=
8πG

3
ρ− kc2

a2
+

Λ

3
(1.10)

and
ä

a
= −4

3
πG

(

ρ+
3P

c2

)

+
Λ

3
. (1.11)

Equation (1.10) is known in particular as Friedmann’s Equation. We noted above that the metric of the

form given by Equation (1.6) was known as the Robertson-Walker metric; if its scale factora(t) obeys

equations (1.10) and (1.11), it is called the Friedmann-Lemaı̂tre-Robertson-Walker (FLRW) metric.

We will now define some of the parameters prevalent in the literature, and used in this Thesis, to describe

cosmologies which are solutions to equations (1.10) and (1.11). The relative expansion rate(ȧ/a) of the

Universe is called theHubble parameter:

H(t) ≡ ȧ

a
. (1.12)

Its value at the present epocht = t0 is theHubble constant, H(t0) = H0. Although now a somewhat

dated convention, given the accuracy of modern measurements, observational uncertainty in the value of

the Hubble constant is commonly expressed in terms of thedimensionless Hubble parameter,h, as follows:

H0 ≡ 100 h kms−1Mpc−1. (1.13)

The most recent measurements puth ≈ 0.72 (see, e.g., Spergel et al. 2007).

Thecritical densityof the Universe, that required fork = 0 and hence a flat overall geometry, is given at

time t by

ρcrit(t) =
3H2(t)

8πG
. (1.14)

This therefore leads us to define adensity parameteras the ratio of density (whether it be dark matter,

baryonic-matter, radiation density etc.) to the critical density:

Ωx ≡ ρx

ρcrit
=

8πGρx

3H2
. (1.15)

Sinceρ andH change with time, this defines an epoch-dependent density parameter.

A powerful approximate model for the energy content of the Universe is to divide it into pressureless matter

and radiation, for whichρm ∝ a−3 andρr ∝ a−4. These two relations describe the varying energy density

of particles as they become diluted by the expansion; photons suffer an extra power ofa−1 as their energy

is reduced by redshifting (see Section 1.1.3 below). This allows the density to be written as

8πGρ

3
= H2

0 (Ωm,0a
−3 + Ωr,0a

−4) (1.16)

where the subscript 0s denote the density parameter value atthe present time. By examining the Friedmann

equation we see that it is possible for us to consider the termΛ/3 as an additional contribution to the density

of the Universe, a ‘vacuum energy’ so to speak. If we choose tocombine these two terms under the overall

umbrella of density, then by defining

ΩΛ ≡ Λ

3H2
(1.17)
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we may then re-write equation (1.16) as

8πGρ

3
= H2

0 (Ωm,0a
−3 + Ωr,0a

−4 + ΩΛ,0). (1.18)

This allows us to write the first of the Friedmann equations inthe following highly useful form:

H2(a) = H2
0

{

ΩΛ,0 + Ωm,0a
−3 + Ωr,0a

−4 − (Ωtot,0 − 1)a−2
}

(1.19)

whereΩtot,0 is the sum of all the other density parameters combined. A spatially flat Universe hasΩtot,0 =

1 exactly.

1.1.3 Redshift

Due to the expansion of space, photons are redshifted while they propagate from the source to the observer.

Following Peacock (1999) and Bartelmann & Schneider (2001), we consider a light sourcecomovingwith

the expansion of the Universe; this means that relative to the source all other points move away isotropically

at the cosmological expansion rate. This light source emitsa signal at timete, which reaches a similarly

comoving observer at the coordinate originr = 0, at timeto.

Light travels along null geodesics in spacetime, thus we know that dτ = 0 along the path of this light

signal, and that from the FLRW metric we have

c2dτ2 = [a(t)]2dr2. (1.20)

The radial coordinate distance between emitter and observer (labelledroe) remains constant, since both are

comoving with the expansion of the Universe and this expansion is parametrised solely by the scale factor

a(t): it is thus common to refer to the spatial coordinates of Equation (1.6) as comoving coordinates. We

can write this as

reo =

∫ e

o

dr =

∫ to

te

cdt

a(t)
= constant, (1.21)

which requires the following condition to hold:

dte
dto

=
a(te)

a(to)
. (1.22)

The implication of this is that events on distant galaxies appear to suffer time-dilation, depending on how

much the Universe has expanded since the photons we now see were emitted.

The frequency of light at emission and observation can be immediately identified with the inverse time

intervals1/dte and1/dto, so we can write

νo
νe

=
dte
dto

=
λe

λo
, (1.23)

whereν is the light frequency andλ the light wavelength. Since the redshiftz of light is defined as

z =
λo − λe

λe
(1.24)
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we thus have

1 + z =
a(to)

a(te)
. (1.25)

Since we who are observing distant objects do so at the current epocha = 1, this relation is usually just

written as:

1 + z =
1

a(te)
. (1.26)

Hence, the amount by which any known lab-frame spectral feature, in the light from distant galaxies,

is redshifted tells us exactly how much the Universe has expanded in the time between emission and

observation.

1.1.4 Cosmological distance measures

As described both in Bartelmann & Schneider (2001) and Peacock (1999), the meaning of the term ‘dis-

tance’ is no longer unique in a curved spacetime: different definitions of the measurement prescriptions for

distances between points lead to different values, in contrast to Euclidean space. Cosmological distance

measures are therefore defined in analogy to relations between measurable quantities in Euclidean space.

Typically the following four distances are used:

1. The proper distance.

2. The comoving distance.

3. The angular-diameter distance.

4. The luminosity distance.

To define these distances we employ the FLRW metric seen in Equation (1.6). Cosmological distance

measures relate an emission event and an observation event on two separate geodesic lines which fall on a

common light cone. They are parametrised by the redshifts ofthe emitter and observer,ze andzo, and we

assume that the observer is taken to be at the origin of the coordinate system.

Theproper distanceDprop is defined by the travel time of a photon betweenze andzo. Because cosmic

time t increases as the photon approaches the observer, and distances increase away from the observer, this

gives us

dDprop = −cdt = −cda
ȧ

= −c da

aH(a)
. (1.27)

In the local Universe it is true thatΩr,0 ≪ Ωm,0, and so assuming the radiation contribution is negligible

we can integrate the above equation to give

Dprop =

∫ ze

zo

cdz

H0

{

(1 − Ωtot,0) + ΩΛ,0(1 + z)−2 + Ωm,0(1 + z)
}− 1

2 . (1.28)

Thecomoving distanceDcom is simply the distancer in our choice of comoving coordinates between the

worldlines of an emitter and an observer both comoving with the cosmic flow. Thus

dDcom = dr. (1.29)
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Figure 1.2: Plot of distance (from local space) versus redshift
for the four standard distance measures in aΛCDM Universe
with Ωm = 0.3 andΩΛ = 0.7

Since light rays propagate along null geodesics, the metric(1.6) gives uscdt = −adr for a photon travel-

ling radially towards the origin (observer). Therefore

dDcom = −cdt
a

= −cda
ȧa

= − cda

a2H(a)
. (1.30)

Hence, using Equations (1.26) and (1.19), and again assuming Ωr,0 ≪ Ωm,0, we have

Dcom =

∫ ze

zo

cdz

H0

{

(1 − Ωtot,0)(1 + z)2 + ΩΛ,0 + Ωm,0(1 + z)3
}− 1

2

= r(ze, zo). (1.31)

For cosmological observations made at the present epoch we may takezo as zero.

Theangular-diameter distanceis defined in analogy to the relation in Euclidean space between the trans-

verse size of an object and the angle it subtends at the observer. At cosmological distances theproper

transverse size of an objectdℓtrans seen by us is its comoving sizeSk(r)dψ (dψ being the angular separa-

tion between two points on the sky) multiplied by the scale factora(te) at the time of emission:

dℓtrans =
1

1 + ze
Sk(r(ze, 0))dψ (1.32)

Thus the angular-diameter distance can be written in terms of Equation (1.31) as:

Dang =
1

1 + ze
Sk(Dcom(ze, 0). (1.33)
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The last of the commonly-used distance measures, theluminosity distance, is defined to ensure that the flux

Stot received by an observer atzo and the luminosityLtot of a source atze are related by

Stot =
Ltot

4πD2
lum

. (1.34)

However, in order to relateStot to Ltot we need to consider the relationship between the monochro-

matic flux and luminosity densities,Sν(ν) andLν(ν) respectively. If the emission from the source can

be assumed to be isotropic, then the emitted photons pass uniformly through a sphere of surface area

4πS2
k(Dcom(ze, 0)), upon which we, as observers, sit. However, redshift also affects the observed flux den-

sity in further ways. Photon energies are redshifted, reducing the monochromatic flux density by1/(1+ze);

the reduction in photon arrival rates causes a reduction by the same factor. Conversely, the bandwidthdν at

the observer is reduced again by the same factor in comparison to the bandwidth at the source; this therefore

counteracts one of the two preceding reductions in the flux density per unit bandwidth. Finally, photons

observed at a frequencyν were, of course, actually emitted at a frequencyν(1 + ze). The relationship

between monochromatic flux and luminosity densities, for observer and source respectively, is therefore:

Sν(ν) =
1

1 + ze
× Lν(ν(1 + ze))

4πS2
k(Dcom(ze, 0))

. (1.35)

Integrating over all frequenciesν, we obtain

Stot =
1

(1 + ze)2
× Ltot

4πS2
k(Dcom(ze, 0))

, (1.36)

which when compared to Equation (1.34) gives

Dlum = (1 + ze)Sk(Dcom(ze, 0)). (1.37)

The four distance measures are plotted as a function of light-source redshift (assuming the observer exists

at the current epoch) in Figure 1.2, for anΩtot = 1 (flat) Universe withΩΛ = 0.7 andΩm = 0.3; Dprop

is the solid line,Dcom the dotted line,Dang the short-dashed line andDlum the long-dashed line. These

results conclude our description of an isotropic and homogeneous Universe.

However, it is clear that this description is anything but adequate to describe astrophysical observations on

any but the largest scales. On the scales of planets, stars, galaxies and clusters of galaxies, the distribution

of matter is anythingbut isotropic and homogeneous: the results of Friedmann-Lemaˆıtre cosmology merely

provide an expanding large scale background upon which the effects of structure formation may then be

described. This description is a vital next stage in the modelling of the Universe, and is the topic which I

now outline (in some necessary brevity).

1.1.5 The growth of matter structure

The reasons for a departure from homogeneity in the early Universe, leading to an unstable collapse to

the structure we now observe, are still not clear. Peacock (1999) describes some of the more promising

ideas, with the most favoured being the amplification of quantum fluctuations during an initial period of

rapid inflation due to an unknown field of vast energy. The mostrecent results from the WMAP CMB
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experiment (Spergel et al. 2007) have begun, remarkably, tobe able to rule out some of the proposed scalar

field models for this inflationary potential. The results from thePlanckCMB polarization experiment (The

Planck Collaboration 2006), and from other such experiments probing smaller scale fluctuations (such as:

QUaD, QUaD Collaboration: P. Ade et al. 2007; BICEP, Yoon et al. 2006; SPUD, Kovac & BICEP/SPUD

Collaboration 2006; see also Kovac & Barkats 2007) are eagerly awaited in relation to this question.

Although the mechanism by which the seeds of cosmic structure were put in place is not known, we

may assume a certain power spectrum (see Peacock 1999 for a description of this term) for the density

perturbations and propagate these perturbations using known physical laws. Such modelling has shown

some striking successes, not least the quality of fitting to the results of the WMAP experiment, as described

in the references given in the preamble to Section 1.1 (and inmore detail in Section 1.1.8 below).

At early times, and even today on the largest scales, the initial conditions of the density field still dominate

the dynamics of structure growth. Overall overdensities and underdensities remain small, and the regime

can be described perturbatively using what is known aslinear perturbation theory. It is common to describe

the patterns seen in the matter distribution in terms of a dimensionless density perturbation:

1 + δ(x) ≡ ρ(x)

〈ρ〉 . (1.38)

A full discussion of the dynamics of linear perturbation growth lies outside the remit of this introductory

Chapter, and the interested reader is referred again to Peacock (1999) for a detailed description of the topic.

Instead, I merely quote illustrative results that will inform subsequent discussion in this Chapter. The early

growth of adiabaticdensity perturbations (made by the adiabatic and hence isentropic compression or

expansion of some volume) in a flat Universe is related to cosmological scale factor as follows:

δ ∝
{

a2(t) (radiation domination)

a(t) (matter domination;Ωm ≃ Ωtot ≃ 1).
(1.39)

The terms radiation and matter domination refer to specific epochs in the early expansion of the Universe.

Looking at Equation (1.19) it can be seen that, for very earlytimes (a(t) ≪ 1), theΩr,0a
−4 term in the

Friedmann will dominate; hence, the expansion is radiationdominated. At somewhat later times, where

a−4Ωr,0 ≪ a−3Ωm,0 andΩΛ,0 ≪ a−3Ωm,0, the dynamics of the expansion are matter dominated. It is one

of the more interesting facts of cosmology that the present epoch should lie exactly on the cusp between

this period of matter dominated expansion and one of vacuum energy domination, withΩm,0 . ΩΛ,0.

Another, orthogonal mode of density perturbation is possible, and is known as theisocurvaturemode.

These, conversely, perturb the entropy density without perturbing the energy density, and can be shown to

be constant at first and then die away rather than grow with time (Peacock 1999):

δ ∝
{

constant (radiation domination)

a−1(t) (matter domination;Ωm ≃ Ωtot ≃ 1).
(1.40)

However, for open models and flat models withΩm + ΩΛ = 1 the relationships given in (1.39) and

(1.40) cease to accurately describe linear perturbation growth at late times. For these models adiabatic

collapse is suppressed by the more rapid expansion of the cosmological background. Carroll et al. (1992)

give accurate fitting formula for approximating this growthsuppression, relative to the simpler model with

Ωm = Ωtot = 1.
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The picture presented above is merely a brief outline, and overlooks many important details in the growth

of linear structure. Smaller scale linear perturbations are modified by the effects of pressure, are damped

due to particle free streaming and may eventually become self-gravitating and enter the non-linear regime.

In practice, the combined effects of the first two of these considerations may be calculated numerically and

then represented using atransfer function,Tk. These functions describe the ratio between the power in

perturbations at a scalek at late times, and the primordial power spectrum at some early epoch of redshift

z:

Tk ≡ δk(z = 0)

D(z)δk(z)
, (1.41)

whereD(z) is the linear growth factor betweenz and the present. The calculation of these functions is

a complex numerical exercise: modern examples of fitting functions for model cosmologies an be found

in Bardeen et al. (1986) and Eisenstein & Hu (1998). These transfer functions are able to accurately

predict many aspects of the linear power spectrum, including so-called ‘wiggles’ due to baryon-acoustic

oscillations (see Percival et al. 2007a for a recent exampleof the measurement of this signal using galaxy

survey data).

In order to describe non-linear collapse fully and accurately it is necessary to resort to large numerical

simulations, as described in Section 1.1.7. These simulatea Universe composed of a single, collisionless

dark matter component in an expanding background. In Section 1.1.7 I also discuss in brief some of the

reasons why it is thought that the mass of the Universe is likely to be dominated by such a non-baryonic

matter component.

Before turning to simulation results, however, there is some insight into non-linear structure to be gained

from simple analytic calculations. In the following Section, 1.1.6, the collapse of a single, spherically

symmetric overdensity is described. This work results in a useful practical definition of the collapsed

objects referred to as haloes, and allows for reasonable estimates of the timescales involved in their collapse.

Of particular interest to my work is the structural form thatthese haloes take once collapsed, described by

their density profile. The only rigorous and exact analytic solution to this problem is that of a single, scale-

free spherical density perturbation in a Friedmann Universe, the so-called secondary infall model (Gunn

& Gott 1972; Gunn 1977; Fillmore & Goldreich 1984; Bertschinger 1985). However, this question is best

addressed numerically, and so simulation results regarding the density profiles of collapsed objects are

discussed in Section 1.1.9. The unsolved question of halo substructure, which can only be addressed using

simulation predictions, is discussed in Section 1.1.10.

1.1.6 The spherical collapse model of halo formation

A first step in modelling the large scale evolution of matter into non-linear structure is a description of

the ‘microscopic’ case: the collapse of a single overdense region of the Universe into a self-gravitating

halo, via a model known as spherical ‘top hat’ collapse. Thismodel assumes spherical symmetry for the

overdensity, but is able to fully describe the early, intermediate and late stages of its evolution and collapse.

In the discussion that follows, I make the considerable simplification of only considering results for a flat,

matter dominated Universe with density parameter

Ωm = Ωtot = 1, (1.42)



1.1. BACKGROUND COSMOLOGY 13

referred to as the Einstein-de Sitter model. Although this does not accurately represent the vacuum energy

dominated Universe we believe to exist around us, most of thebasic results for such a cosmology can be

obtained without numerical integration. The simpler case of equation (1.42) is thus chosen as an attempt

to utilise the extra insight available from analytically derived results.

It is a highly useful result within General Relativity that Friedmann’s Equation, written in its dimensional

form as

Ṙ2 =
8πG

3
ρR2 − kc2, (1.43)

applies equally to a spherical overdensity (see Peacock 1999). The radiusR of an overdense sphere behaves

in the same way as the expansion factor for a closed sub-universe, and we are therefore able to model

the general growth of a spherically symmetric density perturbation using the same equations as classical

cosmology.

Equation (1.43) can be most easily solved with a re-parameterization in terms of theconformal timeη,

defined so thatdη = cdt/R(t). Assuming thatρ(t) can be written asρ(t) = ρ0R
3
0/R

3, we then have

(

dR

dη

)2

=
8πGρ0R

3
0

3c2
R− kR2. (1.44)

Defining the useful scaling constant

R∗ =
4πGρ0R

3
0

3c2
=
GM

c2
, (1.45)

where M is the mass initially (and subsequently) enclosed inour overdense sphere, we can rewrite Equation

(1.44) in the following simple form:

[

d

dη

(

R

R∗

)]2

= 2

(

R

R∗

)

− k

(

R

R∗

)2

. (1.46)

For an overdense regionk = +1, and this equation has the solution

R(η)

R∗
= 1 − cos η. (1.47)

The cosmic time can be found by recalling our definition ofη, from which

t(η) =

∫ η

0

dη′
R(η′)

c
. (1.48)

The two equations which completely describe the evolution of our spherically symmetric overdensity are

thus

R(η) = R∗(1 − cos η) (1.49)

t(η) =
R∗
c

(η − sin η), (1.50)

whereR∗ is given by Equation (1.45). This solution forms the basis ofan approximate theory of non-linear

collapse, but to understand its consequences we need to examine its behaviour at some important epochs
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in the history of the overdensity.

Evolution for η ≪ 1

In order to describe the early expansion of the sphere as a function oft, we must expand the solutions given

in (1.49) and (1.50) as power series inη. Doing so aroundη = 0, and ignoring terms of order greater than

η5, we find

R(t) ≃ R∗
2

(

6ct

R∗

)2/3
[

1 − 1

20

(

6ct

R∗

)2/3
]

. (1.51)

Here are recovered, as should be rightly hoped, two important results from both the underlying cosmolog-

ical expansion and linear theory. The leading-order term

R(t→ 0) =
R∗
2

(

6ct

R∗

)2/3

=

(

9GMt2

2

)1/3

(1.52)

can be rearranged to give the early-epoch density dependence,

ρ(t→ 0) =
3M

4πR3(t → 0)
=

1

6πGt2
= ρ0(t), (1.53)

recovering the standard result for the evolution of the cosmological (critical) density of an Einstein-de Sitter

Universe (see, e.g., Coles & Lucchin 1995).

The next order term in the expansion can also be examined. Since the density of the sphere is given by

ρ ∝ 1/R3, the fractional overdensity is thus

δρ

ρ
= −3

δR

R
=

3

20

(

6ct

R∗

)2/3

, (1.54)

to first order. Remembering that for an Einstein-de Sitter Universea(t) ∝ t2/3, we are clearly recovering

a correctly-scaled version of the linear theory result of the expression seen in Equation (1.39).

Turnaround

At later times, the evolution of the sphere will differ significantly from that of the cosmological background.

Examination of Equation (1.49) shows immediately that a maximum radiusRmax = 2R∗ is reached when

η = π, occurring at a timetmax = πR∗/c. Using our result from equations (1.52) and (1.53), we calculate

the density enhancement of our evolving sphere relative to the cosmological background as

1 + δmax =
ρmax

ρ0(tmax)
=

(R∗/2)3(6ctmax/R∗)2

R3
max

=
9π2

16
≃ 5.55. (1.55)

Using Equation (1.54) we can also calculate what linear theory would have predicted for the perturbation

at this time:

δlin =
3

20
(6π)2/3 ≃ 1.08. (1.56)
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It can be seen that the top hat model, used in this way, allows basic results in non-linear theory to be

compared to those of linear theory in a very simple manner.

Collapse and virialization

The collapse of the perturbation into a bound self-gravitating object, commonly known as a ‘halo’, is the

final stage of its non-linear evolution as described by the top hat model. If only gravity operates on a

perfectly spherically symmetric perturbation the region will collapse to a black hole whenη = 2π, at

a time we labeltcoll = 2πR∗/c. When this occurs the corresponding linear prediction for the density

perturbation in this region isδlin = (3/20)(12π)2/3 ≃ 1.69.

However, total collapse will never occur in practice; slight departures from pure spherical symmetry will

cause the kinetic energy of collapse to be converted into random motions. The perturbation will thus

eventually reach some form of thermalized, bound, equilibrium state. If we invoke the virial theorem in

this cosmological context (see Coles & Lucchin 1995), the perturbation will have total kinetic energyK

related to potential energyV by

V = −2K. (1.57)

Assuming energy conservation during the transition to thisequilibrium state, Equation (1.57) can be shown

to imply that the radiusRvir of such a virialized perturbation,which we define as being a halo, is given by

Rvir =
1

2
Rmax = R∗. (1.58)

In our simple top hat model this will occur atη = 3π/2, and the epoch this defines is often chosen to

roughly estimate the density contrast we should expect for collapsed, relaxed objects.

It should be expected, however, that this process of virialization take longer than predicted by this simple

symmetric model, and it is common for authors to assume that thisRvir is in fact only reached aftertcoll.

The full non-linear density contrast at virialization is then

∆vir ≡ 1 + δvir =
(R∗/2)3(6ctcoll/R∗)2

R3
vir

=
(6π)2

2
≃ 178. (1.59)

As before, linear theory predicts a perturbation ofδlin ≃ 1.69 at tcoll for the region corresponding to this

collapsed halo.

As stated at the beginning of this Section, this treatment isonly approximately accurate for Universes in

which Ωm 6= 1. For a flat Universe withΩΛ + Ωm = 1, Eke et al. (1996) found that the density contrast

for spherical collapse and virialization is given by

∆vir = 178 [Ωm(z)]
0.45

; (1.60)

see also Heymans et al. (2006a), and Mainini et al. (2003) whogive more detailed fitting formulae for

different dark energy models. Note that this contrast relates the matter density in the overdensity to the

critical density for closure, which now includes non-matter contributions. This has caused some authors

to instead define the contrast relative to the mean matter density, putting∆vir = ρvir/ρ̄m (see, e.g., Bacon

et al. 2006: Appendix A). In this Thesis, I define∆vir = ρvir/ρcrit.
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There is a further, more important limitation to this treatment: the assumption of spherical symmetry. There

is to good reason to expect that overdense (or underdense) regions in our Universe will display a significant

degree of asphericity. For this reason we must turn to the results of numerical simulations, outlined in

the following Section. Due to the simplifications that go into the spherical collapse model, many authors

simply ignore the weakΩm dependence of the density contrast and define simulation haloes as regions with

∆vir = 200. The mass of a halo is thenM200, defined as the mass encompassed by a sphere centred on this

halo within which∆vir = 200. This is the definition used by Navarro et al. (1997) to define their universal

halo profile (see Section 1.1.9) and, as such, is now the most commonly-used description of collapsed

haloes and the definition used in this Thesis.

1.1.7 Numerical simulations of dark matter

The limited number of analytic results for realistic non-linear structure formation has led to it being instead

explored by means of numerical studies known as cosmological N-body simulations: see White (1976)

for an early example and Springel et al. (2005) for details ofthe largest simulation to date (depicted in

Figure 1.3). These describe the Universe as a fluid of collisionless dark matter particles; therefore, before

beginning a discussion of the simulations themselves, it will be useful to summarize (in brief) the evidence

that matter of this sort dominates the mass budget of the Universe (see Peacock 1999 for a more detailed

summary). I will also make brief mention of competing, non-dark matter theories, before going on to

describe modern N-body simulations.

The first evidence for unseen dark mass in the largest structures in the Universe was found by Zwicky (1933,

1937); observations of the Coma cluster showed that the velocity dispersion of the individual member

galaxies was too high for the cluster to remain bound withoutsome additional source of gravitational

attraction. Important evidence also came from measurements of rotation curves of external disc galaxies

(e.g., van Albada et al. 1985; van Albada & Sancisi 1986, see also Noordermeer et al. 2007; Salucci 2007

for recent examples of these measurements). These showed a highly significant flattening of the rotation

curve at large distances from the galaxy centre, something very difficult to explain from the distribution of

baryonic mass.

However, galaxy rotation curves pose some problems forΛCDM; it was such measurements that prompted

Milgrom (1983) to suggest modified Newtonian dynamics (MOND) as an alternative solution to the flatness

of rotation curves. This theory, made fully relativistic bythe Tensor-Vector-Scalar field theory (TeVeS) of

Bekenstein (2004), has gone on to show remarkable success inthe description of galaxy rotation curves

(see, e.g., McGaugh & de Blok 1998; Sanders & Verheijen 1998;Milgrom & Sanders 2007; Sanders &

Noordermeer 2007), without requiring a non-baryonic dark matter component.

Recently, Clowe et al. (2006) and Bradač et al. (2006) presented an analysis of the ‘Bullet cluster’ (1E

0657-558) which it was claimed provided a ‘direct empiricalproof of the existence of dark matter’. This

cluster appears to be in the midst of a collision, causing thebulk of the mass (as detected by a lensing

analysis, see Section 1.2) to be in a spatially distinct location to the most significant contributor to the

baryonic mass, the hot X-ray emitting gas. However, the extent to which this system can still be explained

by modified gravity theories remains a topic of some controversy (see, e.g., Brownstein & Moffat 2007;

Angus et al. 2007).
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Figure 1.3: Image of the dark matter distribution within a cluster
from the Millennium Simulation: note the vast abundance of subhaloes
throughout the structure. Figure taken from Springel et al.(2005).

It is also unclear as to whether other cosmological observations can be matched by MOND/TeVeS theories

with as much success as more establishedΛCDM models. One important example is in the modelling

of large scale structure, for which TeVeS predictions remain relatively underdeveloped.ΛCDM presents

a detailed and largely consistent description of the growthof non-linear structure in the Universe by the

hierarchical merging of dark matter haloes, as realised in large N-body simulations. Predictions for large

scale structure made using these models prove to be a good match to the distribution of galaxies, once

galaxy biasing is taken into account (see, e.g., Springel etal. 2006; Sánchez et al. 2006; Percival et al.

2007b).

In an N-body simulation the density-velocity field of collisionless dark matter is represented by a set of

particles. The essential strategy is to solve the Newtonianequation of motion for each particle, based on

the gravity of all the other particles, calculating its acceleration and then evolving its position and velocity

over some small time step. The process can then begin again, and thus the evolution of the density field

is simulated iteratively. Summing over all the contributions to the gravity field in real space becomes

extremely slow for large numbers of particles (orderN2 calculations), and so it is instead useful to solve

Poisson’s equation in Fourier space. This allows the use of the powerful fast Fourier transform algorithm

(e.g. Press et al. 1992), reducing the number of calculations to orderN logN .

Advances in the techniques used to calculate the evolution of dark matter in N-body simulations have cul-

minated in the ‘TreePM’ method used in the Millennium Simulation, the largest and most advanced N-body

simulation at the current time (Springel et al. 2005; Figure1.3). This method combines a hierarchical mul-
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tipole expansion algorithm (also known as a tree algorithm:see, e.g., Barnes & Hut 1986; Hernquist et al.

1991) with particle-mesh (PM) and particle-particle-particle-mesh (P3M) methods (see Efstathiou et al.

1985; Hockney & Eastwood 1988). Starting with a homogeneousparticle distribution given a realization

of a Gaussian random field, with aΛCDM linear power spectrum at redshiftz = 127, the simulation was

then advanced to the present epoch using up to 11 000 adaptivetimesteps, as described in Springel et al.

(2005).

Springel et al. (2006) describe the successes of the Millennium Simulation in capturing many aspects of

observed large scale structure. Fundamentally, the hierarchical structure formation model of White & Rees

(1978), within which larger haloes form from competitive merger and accretion of smaller haloes, is well

supported by this and previous simulation results (see, e.g., Davis et al. 1985; Ghigna et al. 1998; Reed

et al. 2005; Springel et al. 2006). Simulation work has also established that of the possibilities for the

fluid properties of dark matter, it iscold dark matter (CDM, rather than hot dark matter, HDM) that is able

to collapse quickly enough to form a sufficient amount of structure within the age of the Universe. The

collapsed overdense regions necessary to form the structure observed in the form of galaxies, clusters and

super-clusters are much more difficult to form in an HDM Universe (see, e.g., Davis et al. 1985).

1.1.8 Measured constraints on the concordance cosmological model

Having thus far given a brief outline of theΛCDM model, we have sufficient background information to

consider a short summary of the current best observational evidence for the concordance cosmological

picture. I will attempt to discuss constraints both upon thecosmological parameters discussed in Sections

1.1.1-1.1.2, and upon the power spectrum of primordial fluctuations very briefly discussed in Section 1.1.5

(see also Peacock 1999). At the time of writing this Thesis, these constraints come from a combination

of measurements that can be broadly categorized into three groups: statistics describing temperature and

polarization anisotropies in the CMB, the measurement of luminosity distances for large samples of Type

Ia Supernovae (SNIa), and statistics describing the large scale structure (LSS) of collapsed matter objects

in the Universe. These will be tackled in turn.

Anisotropies in the cosmic microwave background

As discussed in the early preamble to this Section, and in Section 1.1.5, the most powerful constraints

upon the concordance cosmological picture come from the striking fit to the angular power spectrum of

TT (temperature-temperature) anisotropies in the CMB shown in Figure 1.1. The measurements of the

CMB TT, temparature-polarization and polarization-polarization power spectra provided by the WMAP

3-year data (see Spergel et al. 2007 and references therein)have allowed a simple, flat, six parameter

ΛCDM model to be fit with unprecedented precision, although the correct interpretation of these results in

well-understood physical terms is still largely unclear.

The six directly-fitted parameters of the flatΛCDM model shown by (Spergel et al. 2007) to provide an

excellent agreement with the CMB power spectra are as follows: Ωm,0h
2, Ωb,0h

2, e−2τ , Θs,ns andCTT
l=220.

I will now briefly describe these parameters, but at all timesrefer the reader to Spergel et al. (2007),

Spergel et al. (2003) and Kosowsky et al. (2002) for a far moredetailed discussion than is merited in this

introductory Chapter. The first twoΩm,0h
2 andΩb,0h

2 parameters describe the density of overall matter
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(cold and baryonic) and baryonic matter respectively, where Ωm,0 andΩb,0 are defined as in Equation

(1.15), and the dimensionless Hubble parameter is defined asin Equation (1.13). The parametere−2τ is the

factor by which CMB anisotropies on small scales are damped due to scattering by free electrons after the

Universe is reionized by the formation of stars and galaxies, defining the optical depth to reionizationτ .

This reionization scattering has differing effects upon the TT and temperature-polarization power spectra

at different scales (see, e.g., Kogut et al. 2003).

The quantityΘs is the angular scale of corresponding to the first and largestacoustic peak in the TT power

spectrum. This can be written as

Θs =
rs(zdec)

Dang(zdec)
. (1.61)

HereDang(zdec) is the angular diameter distance (see Equation 1.33) to the surface of last photon scattering

at the redshiftzdec ≃ 1100 of the decoupling of the photon-baryon plasma, andrs is the comoving acoustic

horizon size of this plasma, which may be simply calculated using the result of Hu & Sugiyama (1995).

The parameterns gives the power law scaling of the power spectrum of primordial matter fluctuations

P (k) ∝ kns , left as an imprint of a hypothesized inflationary period in the early Universe (see, e.g.,

Peacock 1999). Finally, theCTT
l=220 parameter simply describes the amplitude of the TT power spectrum at

the multipole scalel = 220 which approximately corresponds to the angular scaleΘs of the acoustic peak.

In the analysis performed by Spergel et al. (2007), the CMB anisotropy code CAMB of Lewis et al. (2000)

was used to perform a maximum likelihood fit to the six parameter model described above. From these

best fits constraints were derived upon cosmological parameters of direct interest, such asΩm,0, h, andσ8,

which provides a normalization of the linear matter power spectrum as the variance of matter fluctuations

on scales of8h−1Mpc (Peacock 1999). These derived constraints are shown in Table 1.1. However, as

described by Kosowsky et al. (2002) and Page et al. (2003), itis possible to get somewhat more direct

insight into the placing of cosmological constraints by considering the positions, amplitudes and ratios of

acoustic peaks and troughs in the CMB power spectra. For example, the amplitude of the first peak and

the ratio of this amplitude to that of the second peak allowsΩm,0h
2 andΩb,0h

2 to be determined, while

considering the amplitude of the third peak in addition allows constraints uponns (Page et al. 2003).

Whilst not wishing to enter into a detailed discussion of these aspects of the CMB power spectra, it is

worth briefly mentioning the information that the position of the first peak (given byΘs in Equation 1.61)

gives regarding the geometry of the Universe. As discussed by Page et al. (2003) and Spergel et al. (2007),

this peak position tells us that the Universe is spatially flat when it is combined with almost any other

cosmological measurement ofΩm,0 orh. The primary WMAP constraints uponΛCDM presented in Table

(1.1) are made assuming flatness; however, allowing the curvaturek to vary and combining the CMB

measurements with other cosmological data shows that the Universe is indeed extremely flat and appears

to have been throughout its past (Spergel et al. 2007). I willnow discuss some of these other measurements

of cosmological geometry and matter density, and describe the constraints they place upon theΛCDM

model and when combined with the WMAP results.

Luminosity distances to Type Ia supernovae

Early observations of the luminosities and surprising homogeneity of Type Ia supernovae (SNIa: see Fil-

ippenko 1997 for a review of supernova class definitions) in the local Universe led to these objects being
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Table 1.1: Derived, 1-σ constraints upon the flat(ΩΛ = 1−Ωm), power-law,ΛCDM cosmological model

Parameter WMAP 3-year SNIa1 2dFGRS2 SDSS2 BAO2

Ωm0 0.239+0.037
−0.032 0.267+0.028

−0.018 0.237 ± 0.020 0.239+0.018
−0.017 0.252 ± 0.027

Ωb0 0.0416+0.0054
−0.0046 — 0.041 ± 0.002 0.0416+0.0054

−0.0046 —

h 0.730+0.033
−0.031 — 0.74 ± 0.02 0.0730± 0.019 —

σ8 0.758+0.050
−0.051 — 0.77 ± 0.05 0.756 ± 0.035 —

ns 0.954+0.017
−0.016 — 0.954 ± 0.023 0.953 ± 0.016 —

τ 0.089 ± 0.030 — — — —

1From combined measurements of the ESSENCE and SLS supernovasurveys, but including marginalization over a
dark energy equation of state parameterw that is allowed to vary fromw = −1 (Wood-Vasey et al. 2007).
2From large scale structure measurements after combining with WMAP 3-year data (see Sánchez et al. 2006; Tegmark
et al. 2006, Table III; Percival et al. 2007a)

suggested as a standard distance measure at the very beginning of observational cosmology (e.g., Wilson

1939). Improvements in technology such as stable photometry from charge-coupled detectors (CDDs),

and increased supernova sample sizes, led Phillips (1993) to propose an empirical relationship between the

intrinsic brightness of each SNIa and the shape of the light curve as it decays from maximum brightness.

Subsequently, many variations and refinements upon the modelling of this initial work, including improve-

ments to extinction corrections, have now led to the achievement of approximately∼ 10% precision on a

given SNIa distance estimate (e.g. Phillips et al. 1999; Wang et al. 2003; Guy et al. 2007; Jha et al. 2007).

These advances, in combination with ever improving sample sizes, propelled SNIa distances measurements

to the forefront of modern cosmology with the discovery of a Universe undergoing accelerating expansion

at late times (Riess et al. 1998; Perlmutter et al. 1999).

The technique for using SNIa distances to constrain cosmological parameters is conceptually very simple:

once a SNIa is detected observations of the host galaxy spectra are made, along with follow-up photometry

so as to capture the decaying light curve. The observed brightness of the SNIa can then be compared with

the intrinsic brightness inferred from the observations ofthe light curve, giving an estimate of the lumi-

nosity distanceDlum(z) as defined in Equation (1.37). The redshiftz of the SNIa host galaxy, determined

from observations of emission lines in its spectrum, can then be used to place the supernova measurement

upon a luminosity distance-redshift curve as shown in Figure 1.2. Given a sufficient sample of SNIa mea-

surements, the luminosity distance-redshift relationship can be fit to give constraints upon the cosmological

parametersΩm,0, ΩΛ,0 and, more recently, upon the parameterw which describes the equation of state for

the pressure of a hypothesized dark energy asP = wρc2 (see, e.g., Riess et al. 2007; Astier et al. 2006).

In the flat,ΛCDM model the dark energy is a pure cosmological constant which requiresw = −1 , and

current constraints from supernova measurements (Riess etal. 2004; Astier et al. 2006; Riess et al. 2007;

Wood-Vasey et al. 2007) show no significant evidence forw 6= −1. The most recent constraints, coming

from the combination of measurements from the ESSENCE supernova survey (Wood-Vasey et al. 2007)

and The Supernova Legacy Survey (SLS: Astier et al. 2006), find w = −1.07 ± 0.09 ± 0.13 (where the

second uncertainty comes from estimates of systematic errors) andΩm,0 = 0.267+0.028
−0.018 for a spatially flat

(ΩΛ = 1 − Ωm) cosmology. This is the result I quote in Table 1.1, although it should be stressed that this

value and uncertainties forΩm,0 includes the margninalization overw implicit in the placing of these joint

constraints.
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Large-scale structure (LSS)

The recent measurements of the power spectrum of galaxy clustering on large scales, from the spectro-

scopic 2 degree Field Galaxy Redshift Survey (2dFGRS: see, e.g., Cole et al. 2005; Sánchez et al. 2006)

and Sloan Digital Sky Survey (SDSS: see, e.g., Tegmark et al.2004, 2006; Percival et al. 2007b), have

placed important further constraints upon theΛCDM model. These measurements complement those from

the CMB as they help to break certain inherent degeneracies between parameters in the WMAP measure-

ments. As an example, measurements of the statistics of LSS such as those from SDSS and 2dFGRS are

directly sensitive tohΩm,0 rather thanΩm,0h
2 as was the case for WMAP. The degeneracy betweenh and

Ωm,0 is one of the largest in the WMAP results (Page et al. 2003), and so the extra constraints provided by

LSS allow tighter constraints on bothΩm,0 andh. These constraints then help break other degeneracies,

such as that betweenσ8 andΩm,0. In Table 1.1 we show the results of Sánchez et al. (2006), who com-

bined cosmological constraints from the full sample of 2dFGRS galaxies with the WMAP 3-year data, and

Tegmark et al. (2006) who did a similar combination of the WMAP data with a measurement of the power

spectrum of luminous red galaxies (LRGs) in the SDSS. These more recent LRG measurements provide

sharper constraints than those of the larger, but generallyfainter sample presented by Tegmark et al. (2004).

However, in the most recent analysis of the SDSS Data Release5 galaxy sample, Percival et al. (2007b)

found that there was significant evidence for tension between the SDSS and 2dFGRS results, SDSS favour-

ing Universes with a larger matter density. Both 2dFGRS and SDSS analyses use a relatively simple model

of the galaxy biasb, defined byδgals = bδ, whereδ is defined as in Equation (1.38) andδgals is its equiva-

lent for the number density of galaxies (see Peacock 1999 fora far more detailed discussion of bias). Given

that the 2dFGRS galaxies are predominantly blue through selection, and the SDSS galaxies red selected, it

may be necessary to have a far better understanding of differences in the clustering properties of these two

different galaxy types, and thereforeb, before a correct interpretation of LSS results can be made.In ad-

dition Percival et al. (2007b) found that there was internaldiscrepancy within the SDSS results: the power

spectrum on large scales favoured a low matter density Universe withΩm,0 = 0.22 ± 0.04 but supported

a far higherΩm,0 = 0.32 ± 0.01 when the fit to the power spectrum wass extended to smaller scales.

These authors suggested that this could be explained by a galaxy biasb for the SDSS sample that varies

significantly with scale andr-band luminosity. Clearly the question of galaxy biasb will be important as

LSS data sample sizes increase with the planned surveys of the future.

A recent, extremely promising development in the study of large scale structure has come via measure-

ments of the signature of Baryon Acoustic Oscillations (BAO), firstly in the SDSS galaxy power spectrum

(Eisenstein et al. 2005) and now the combined power spectra of the SDSS and 2dFGRS galaxies (Percival

et al. 2007a). Although a description of these phenomena must be necessarily brief in a Thesis such as

this, the physics describing the production of a standing wave oscillatory signature in the matter power

spectrum has been known for some time (see, e.g., Silk 1968; Peebles & Yu 1970; Sunyaev & Zeldovich

1970; Bond & Efstathiou 1984; Hu & Sugiyama 1996). That thesesignatures should also be visible in the

galaxy distribution is a consequence of their occurence on relatively large, approximately non-linear scales

(see, e.g., Meiksin et al. 1999; Eisenstein et al. 2007).

The acoustic peaks occur originate from the excitation, by cosmological matter perturbations, of sound

waves in the relativistic plasma of the early Universe. The small but significant fraction of baryons in

the Universe ensures that these peaks persist, having been frozen by decoupling atzdec ≃ 1100, and

cosmological theory predicts that the acoustic oscillations in the plasma will also be imprinted onto the
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late-time power spectrum of the nonrelativistic matter (Bond & Efstathiou 1984; Hu & Sugiyama 1996;

Eisenstein & Hu 1998). The primary imprint is a first peak resonance at a comoving length scale of

∼ 100h−1Mpc. This then gives a characteristic length scale which can be measured from the structure

in the Universe, and which can used to probe the distance-redshift relationship (see, e.g., Eisenstein et al.

2005).

The most recent BAO results presented by Percival et al. (2007a) use a joint SDSS-2DFGRS galaxy sample

to constrain the distance-redshift atz = 0.2, and the SDSS LRG sample to give another constraint atz =

0.35. Combining these measurements with WMAP 3-year data, and assuming a flat,ΛCDM cosmology

they find the value forΩm,0 presented in Table 1.1. Forcing the cosmological model to beflat but allowing

w to vary these authors findΩm,0 = 0.249 ± 0.018 andw = −1.004± 0.089.

However, many aspects of theΛCDM model, particularly the more detailed results of N-bodysimulations,

have proved more difficult to test by observation. In the following Sections I now describe two unresolved

issues of structure formation: the questions of halo density profiles and halo substructure.

1.1.9 Dark matter halo profiles

An especially interesting result of simulation work is the seeming ‘universality’ of the shape of dark matter

haloes: over three to four decades in mass, halo densities appear to be able to be well described by one

appropriately scaled profile. This was famously noted by Navarro et al. (1997), whose suggested universal

halo density distribution became known as the NFW profile. The exact form of this density profile can

be described by two parameters: the virial mass of the collapsed halo and a parameter known as the con-

centration, which sets the scale for the transition betweentheρ ∝ r−1 behaviour of the halo interior and

the ρ ∝ r−3 density drop-off in the outer regions. Constraining the relationship between these parame-

ters observationally will be an important test of high-resolution ΛCDM simulations, as reasonably robust

agreement exists between theoretical predictions (see, e.g., Macciò et al. 2007; Neto et al. 2007).

Aiming to improve upon NFW, there has been less agreement regarding the exact form of the ‘best’ uni-

versal profile, i.e., the one which best fits simulation data.Predictions differ particularly in the halo interior

where resolution becomes an issue (Moore et al. 1999b; Navarro et al. 2004), but in these regions baryonic

effects are likely to become important in a way that N-body simulations are yet unable to accurately predict.

All of these issues will now be discussed, but we begin with a description of the simplest realistic density

profile.

The singular isothermal sphere (SIS)

The approximately flat rotation curves observed in galaxiescan be most simply reproduced by a model

density profile which scales asρ ∝ r−2. Such a profile can be obtained by assuming a constant velocity

dispersion for the dark matter throughout the halo, and so isknown as thesingular isothermal sphere(SIS)

(see, e.g., Binney & Tremaine 1987; Narayan & Bartelmann 1999):

ρ(r) =
σ2

v

2πGr2
(1.62)
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whereσv is the line-of-sight velocity dispersion of the test particles (i.e. stars) in the gravitational potential

of the mass distribution. The massM(r) interior tor thus increases∝ r, and the rotational velocity of test

particles in circular orbits within the potential is given by

v2
rot =

GM(r)

r
= 2σ2

v = constant, (1.63)

demonstrating the flat rotation curve desired for the description of galaxies. One significant shortfall of this

model is the divergent total mass, which led Brainerd et al. (1996) to model galaxy haloes using atruncated

singular isothermal sphere (TSIS):

ρ(r) =
σ2

vs
2

2πGr2(r2 + s2)
, (1.64)

wheres defines the truncation scale, i.e. the radius beyond which the profile steepens toρ ∝ r−4. Other

modifications of the SIS in an attempt to better fit the observed Universe include thesoftenedsingular

isothermal sphere (SSIS), which seeks to reproduce the central density core often posited to better fit the

observed rotation curves of disc galaxies (see, e.g., Salucci 2007). This profile has the following form:

ρ(r) =
σ2

v

2πG(r2 + r2c )
, (1.65)

where hererc defines the scale radius of the central core. The issue of whether galaxy haloes exhibit such

a core is perhaps one of the great unsolved problems for theΛCDM paradigm (again see Salucci 2007,

and references therein). Collisionless simulations (Navarro et al. 1997; Moore et al. 1999b; Navarro et al.

2004) suggest that the halo interior instead displays a density cusp, and the effects of adiabatic baryonic

contraction are predicted to steepen the cusp rather than smooth it to a constant core (see, e.g., Blumenthal

et al. 1986; Sellwood & McGaugh 2005; Gustafsson et al. 2006,but also Tonini et al. 2006 who propose a

possible mechanism for erasing the cusp).

As the problem manifests itself most strongly in the extremeinteriors of galaxies, weak gravitational lens-

ing and even flexion is unlikely to constrain the core regionsof smaller CDM haloes. In order to solve this

question, a better understanding will be necessary of the many possible issues affecting the fair compari-

son galaxy rotation curves and velocity dispersions, in projection, withΛCDM predictions. These might

include observational biases such as beam smearing, inclination effects or slit offsets, which may all cause

an underestimation of the rotation velocity in central galaxy regions. In addition, it will be necessary to

wait for more detailed theoretical understanding of galaxyformation and dynamics. This requires accurate,

high resolution hydrodynamical simulations of joint dark matter-baryon collapse and star formation (see,

e.g., Sales et al. 2007); such simulations will not be available for some time.

However, it is likely thatΛCDM results will be more accurate in the outer regions of galaxies, where

baryons no longer dominate. It is exactly these regions which can be usefully probed using weak lensing,

and so I now describe some of the more important halo profile predictions from collisionless simulations.

The NFW halo profile

Using N-body simulations, Navarro et al. (1995, 1996, 1997)have shown that the equilibrium density

profiles of cold dark matter (CDM) haloes can be very well fitted over two orders of magnitude in radius
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by the formula
ρ(x)

ρcrit(z)
=

∆c

x(1 + x)2
, (1.66)

known as theNFW profile, where the radial coordinatex is the radius in units of a scaling radiusrs such

thatx ≡ r/rs, ρcrit(z) is the critical density for closure at the epoch of the halo, and∆c is a dimensionless

scaling density. The radius of the sphere within which the total mass isM200, designated by the virial

radiusr200, is used to define a second dimensionless scaling parameter for the NFW profile, namely the

concentrationc = r200/rs. This profile describes simulation haloes accurately over abroad mass range.

A procedure for finding values of∆c and c which agree with the numerical simulations is detailed by

Navarro et al. (1997); the parameters are functions of the halo redshiftz, M200 and the background cos-

mology. A routine (charden.f) which carries out these calculations and outputs values for these scaling

parameters has been made available by Julio Navarro (see Navarro et al. 1997). Subsequently, a number of

authors (Jing 2000; Bullock et al. 2001; Eke et al. 2001; Zhaoet al. 2003; Dolag et al. 2004; Kuhlen et al.

2005) presented further analytic models for calculatingc as a function of redshift, mass and cosmology,

based on larger simulations with higher resolution.

The most recent analyses, using the Millennium Simulation (Neto et al. 2007) and a suite of smaller but

higher resolution simulations (Macciò et al. 2007), have arrived at the startling result that a single power

law fits the concentration-mass dependence over six decadesin mass, from∼ 109M⊙ to∼ 1015M⊙. These

authors appear to agree that

c ≃ 11.7(M200/1012h−1M⊙)−0.10, (1.67)

for flat, concordance cosmologies at the present epoch. However, Macciò et al. (2007) use∆vir ≃ 98

(calculated using the results of Mainini et al. 2003) ratherthan the∆vir = 200 of Neto et al. (2007), which

is the result quoted above.

This strong theoretical prediction presents an immediate challenge to observational cosmology. While

some results are beginning to emerge for large, cluster-sized haloes (Comerford & Natarajan 2007), there

are few constraints upon this relationship available for galaxy-sized haloes. Weak lensing, and flexion in

particular, may be an extremely important tool for testing these predictions.

Zhao-Hernquist halo profiles

The NFW profile is one in a family of spherically-symmetric radial profiles first proposed by Hernquist

(1990) and explored in far greater detail by Zhao (1996):

ρ(r) =
C

rγ(1 + r1/α)(β−γ)α
, (1.68)

where(α, β, γ) are the three free parameters which describe the changing profile shape andC is a normal-

ization constant. As pointed out by Zhao (1996), Equation (1.68) parameterizes the volume density as a

general double power law, with slope−γ for r ≪ 1 and slope−β for r ≫ 1. The third parameterα is

a measure of the width of the transition region, this region widening with increasingα. Hernquist (1990)

originally considered a profile with(α, β, γ) = (1, 4, 1), and it can be seen that the NFW profile is a (1,3,1)

member of the family.
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The M99 halo profile

Because of its success in describing a broad mass range of simulated dark matter haloes the NFW profile

was hailed as ‘universal’, and this universality has becomethe subject of much further work, both analytic

and numeric. However, there is some disagreement as to whether it represents the best possible fit to halo

profiles, especially at smallest radial scales (less than 1 per cent of the virial radius). Having resolved

simulated haloes to smaller radii than Navarro et al. (1997), Moore et al. (1999b) found evidence for an

inner slope (cusp) of -1.5 rather than that of -1 found for theNFW profile. Overall, these authors concluded

that their simulation data favoured a Zhao-Hernquist profile of the form (1.5,3,1/1.5), referred to as the M99

profile.

The N04 halo profile

More recently, Navarro et al. (2004) found that density cusps as steep as -1.5 were inconsistent with their

simulation data, and finding no evidence for a well-defined asymptotic value of the inner slope at all,

preferred instead a model where the local logarithmic slopeof the density profile, here referred to asǫ,

takes the form of a power law with radius:

ǫ = −d ln ρ

d ln r
= 2

(

r

r−2

)

. (1.69)

Here Navarro et al. (2004) have definedr−2 as a characteristic radius at which the slope of the profile is

exactly isothermal, i.e.ǫ = 2. This leads to a density profileρα, referred to as the N04 profile, given by

ln

(

ρα

ρ−2

)

= −
(

2

α

)[(

r

r−2

)α

− 1

]

, (1.70)

where the scaling densityρ−2 = ρ(r−2) is to be measured from simulation data. This profile has finite

total mass due to the exponential cutoff at large radius, anda logarithmic slope that decreases inward more

gradually than the NFW or M99 profiles.

A summary of the current picture

The most recent work by Reed et al. (2005) and Diemand et al. (2005) reverts back to the former conclusion

of Navarro et al. (1997) and Moore et al. (1999b) that an asymptotic inner slopeis reached, finding a figure

in the regionγ ≈ 1.2 − 1.3, after investigating regions as far into the interior as 0.1per cent of the virial

radius. However, as described above, the precise interior shape of the dark matter distribution is likely

to be highly influenced by baryonic physics, especially in haloes which form galaxies. Observations of

baryon dynamics in these regions will likely give the best constraints upon the distribution of matter. It

is likely that the field is reaching the stage at which simulations of purely collisionless dark matter are

no longer sufficiently accurate approximations to the physical Universe to provide observationally testable

predictions of theΛCDM paradigm.

Accurate predictions based on hydrodynamical simulations(see, e.g., Abadi et al. 2003; O’Shea et al.

2005) will come. Largely untested predictions for the distribution of shape parameters of halo profiles
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already exist; these include the theoretical results mentioned for the mass-concentration dependence of

NFW haloes and predictions for the of ellipticity, and triaxility, of haloes (see, e.g., Jing & Suto 2002;

Kasun & Evrard 2005; Hopkins et al. 2005; Allgood et al. 2006;Macciò et al. 2007). The challenges to the

observer attempting to constrain the dark matter distribution around objects such as galaxies and clusters

are great, but these challenges can be met using a combination of gravitational lensing and accurate rotation

curve data. This will allow not only for simulation models tobe tested, but also a better understanding of

the mechanisms driving galaxy formation.

1.1.10 Dark matter halo substructure

I now go on to describe a second important prediction of theΛCDM cosmological model. The hierarchi-

cal structure formation scenario of White & Rees (1978) should, according to simulation work, leave an

abundance of dark matter substructure composed of bound subhaloes within each host halo. This is an

inevitable consequence of ongoing halo mergers, combined with a relatively long predicted timescale for

the complete tidal disruption of accreted subhaloes.

Early computational work that attempted to model the merging hierarchy ubiquitously failed to find surviv-

ing substructure within clusters, producing a final dark matter structure that was very nearly smooth (see,

e.g., White 1976; White et al. 1987; Summers et al. 1995). Analytic work suggested that this ‘overmerging’

problem was a symptom of poor spatial and mass resolution (Moore et al. 1996), and later, higher reso-

lution simulations of clusters confirmed this using resampling methods (Moore et al. 1998; Ghigna et al.

1998; Klypin et al. 1999a). It is now thought that current N-body work is able to simulate remnant CDM

substructure to reasonable accuracy, although semi-analytic modelling by Taylor & Babul (2004, 2005a,b)

suggests that there may still be a need for greater mass and force resolution before numerical overmerging

problems are totally negligible.

Interestingly, the most recent simulation results (Shaw etal. 2007; D’Onghia et al. 2007; Nurmi et al.

2006; Reed et al. 2005; De Lucia et al. 2004; Gao et al. 2004) predict subhalo mass functions that vary

only weakly with the mass of the hosting halo. This near self-similarity in substructure was first pointed

out qualitatively by Moore et al. (1999a), and is now a strongprediction of structure formation in a colli-

sionlessΛCDM Universe. Observational data is not yet available in sufficient quantity to place meaningful

constraints upon the subhalo mass function; however, it is likely that surveys in the near future will be able

to measure the subhalo massfraction to increasing accuracy, over a range of host halo masses (see, e.g.,

Yoo et al. 2006; Koopmans 2005; Metcalf 2005; Bradač et al. 2004; Natarajan & Springel 2004). The mass

fractionfm is defined as the ratio of the mass contained in bound subhaloes to the total mass of the host

halo, and is predicted to lie in the range0.05 . fm . 0.2 for galaxy and cluster mass haloes. Again, there

is weak mass dependence, with some evidence forfm decreasing with decreasing host halo mass.

Once it became clear that haloes the size of the Milky-Way (MW) should contain an abundance of dark

matter substructure, enough to rival that found in clusters, an immediate problem was to reconcile this

fact with the paucity of known dwarf spheroidal (dSph) satellite galaxies around our own Galaxy (Moore

et al. 1999a; Klypin et al. 1999b). The proposal that this constituted a ‘small scale crisis’ forΛCDM was

subsequently disputed by Stoehr et al. (2002), who found a good match between the observed kinematics

of simulation subhaloes and MW satellite galaxies, although their own conclusions conceded that this only

provided an explanation if known dSph satellites could be associated with haloes of far greater mass than
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previously assumed. D’Onghia & Lake (2004) then pointed outthe apparent persistence of the small scale

crisis for objects such as RX J1340.6+4018, a fossil group atz = 0.171.

A further issue, the anisotropic spatial distribution of MWsatellites in a great circle oriented at close to90◦

from the Galactic disc, was pointed out by Kroupa et al. (2005) who claimed that this was inconsistent with

their being drawn from aΛCDM subhalo distribution. However, high resolution simulation work, followed

by merger tree construction and semi-analytic galaxy formation modelling (Libeskind et al. 2005), argued

that the spatial distribution of star-forming satellites might be necessarily significantly different from that

of the most massive subhaloes. It was found that the subhaloes having the most massive progenitors at

early times shared a similarly anisotropic spatial distribution, explainable by the slow infall of satellites

along filaments in the dark matter field. Using a different approach, the maximum likelihood comparison

of observed dSph satellite mass functions and those of simulated subhaloes, Strigari et al. (2007) found

independent evidence of this association between satellite galaxies and the earliest-forming subhaloes.

Ongoing improvements to observational data for dSphs in theGalactic halo (see, e.g., Gilmore et al. 2007;

Walker et al. 2007; Koch et al. 2007; Koposov et al. 2007; Zucker et al. 2006) appear to pose no further

significant problems forΛCDM substructure predictions, although cusp-core issues remain (see Section

1.1.9). The history of this debate perhaps serves best to illustrate the difficulty of interpreting observations

of luminous matter in terms of dark matter simulations, especially given the limited results available from

hydrodynamical simulations (see, e.g., Sales et al. 2007) and incomplete models of star formation.

Predictions of simulations at larger mass scales have proved easier to interpret, as strong gravitational lens-

ing provide a unique constraints upon substructure for manyclusters and superclusters (see, e.g., Hennawi

et al. 2007). The situation is not, however, conclusive: Diemand et al. (2004) found a significant spatial

biasing of CDM subhaloes away from cluster centres, which isnot observed in galaxy position data from

the CNOC cluster survey (Carlberg et al. 1997) or the Coma Cluster (Łokas & Mamon 2003). As in the

case of substructure on smaller scales, and as Diemand et al.(2004) conclude, it is likely that observational

accuracy has gone beyond the level at which simulations of dark matteralonecan be usefully interpreted.

High resolution hydrodynamical simulations will be neededto study the effect of baryons on the physics

of halo merging, and this will require considerable time andresources.

Nonetheless, the existence of dark matter substructure is arobust prediction ofΛCDM; if this prediction

proves to be inaccurate, for any reason, it is vital that we understand why. Observing substructure is, there-

fore, one of the challenges of the next decade, necessary to test model predictions and to simultaneously

drive improvements to the theoretical understanding of theinterplay between baryons and dark matter.

Gravitational lensing offers an extremely attractive means of placing new constraints upon substructure,

being unreliant upon an accurate understanding of galaxy formation and complicated gas dynamics. I now

go on to outline basic theoretical concepts used to describegravitational lensing, with emphasis upon the

formalisms of weak lensing and flexion. Weak lensing measurements provide one means by which we may

make observations of matter substructure, and flexion in particular may offer some hope on the smallest

scales.
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1.2 Gravitational lensing

One of the most powerful methods for constraining the distribution of matter in the Universe is the study

of gravitational lensing. As light propagates through an inhomogeneous gravitational field, photons are

deflected from straight paths in three-dimensional space, following null geodesics in four-dimensional

spacetime. The analysis of this phenomena has seen many important advances in recent years, with the

development of its theoretical description being accompanied by rapid technological improvements to the

accuracy and sample size of lensing observations.

Gravitational lensing, in its cosmological applications,can be divided into two broad classes:stronglensing

(see, e.g., Kochanek 2006), in which background galaxies are multiply imaged by massive foreground

lenses, andweaklensing, in which coherent image distortions are analysed statistically (see, e.g., Schneider

2006; Bartelmann & Schneider 2001 for detailed reviews). Inthe remainder of this Chapter, I will outline

basic gravitational lens theory, describing how lensing distortions are related to the underlying matter field.

From Section 1.2.4 onwards I describe fundamental results for the analysis of weak lensing. Set within the

background of traditional weak lensing, this Thesis is an exploration of the possibilities opened up by the

study of flexion, a new tool which utilizes the higher order distortions responsible for the arc-ed appearance

of weakly lensed galaxies. In Sections 1.2.8 and 1.2.9 I introduce the basic formalism of flexion, which is

a natural extension of traditional weak lensing methods.

There are a number of approximations which go into what is known as gravitational lens theory, all of which

allow for a simpler description of the phenomenon. Almost any conceivable astrophysical situation in

which lensing will occur can be described by the weak field limit of General Relativity, in which Einstein’s

field equations can be linearised. The gravitational light deflection due to an extended mass distribution

can then be expressed as the sum of deflections due to many individual lenses, the simplest of which is of

course the point mass.

1.2.1 Deflection by a point mass

We consider a light ray passing by a point massM . If the ray passes sufficiently far from the strong space-

time curvature close to the object’s event horizon, i.e.ξ ≫ 2GM/c2 whereξ is the impact parameter of the

motion of the ray around the mass, then General Relativity predicts (see, e.g., Rindler 2001; Bartelmann &

Schneider 2001) that the deflection angleα̂ has magnitude

α̂ =
4GM

c2ξ
. (1.71)

We note that since we have assumed thatξ is much larger than the Schwarzchild radius, which will be true

in any situation where lensing may be practically observed,the deflection angleα must be small; the small

angle approximation is thus implicit in all that follows. The result of Equation (1.71) is twice the value

obtained from a Newtonian treatment and is in fact the last time that General Relativity need be called upon

in a description of the vast majority of gravitational lensing phenomena.
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1.2.2 The lensing equation

A typical lensing scenario is shown in Figure 1.4. The reduced reflection angleα is defined as follows:

α =
Dls

Ds
α̂ (1.72)

Using Figure 1.4 thelensing equationcan be defined:

β = θ − Dls

Ds
α̂(θ), (1.73)

or

β = θ − α(θ). (1.74)

The thin screen approximationassumes that all the deflection occurs within a distance∆s ∼ ±ξ of the

point of closest approach. Using this approximation the lensing mass can be assumed to lie on a ‘lens plane’

and the mass of the lens can be projected onto the plane to gaina surface mass densityΣ(ξ) (whereξ is

a 2D vector in the lens plane). The deflection angle can hence be written as the sum of all the deflections

due to each mass element in the lens plane:

α̂(ξ) =
4G

c2

∫

(ξ − ξ
′)Σ(ξ′)

| ξ − ξ′ |2 d2ξ′ (1.75)

A further way to define the deflection angle is to define an effective refractive index for the lens, in analogy

with an imperfect optical lens. This index may be defined using the Newtonian gravitational potential of

the lens system,ΦN (which comes into the description via its place in the weak field metric of General

Relativity, see, e.g., Rindler 2001) as:

n = 1 − 2

c2
ΦN. (1.76)

The deflection angle can then be defined by integrating the gradient ofn perpendicular to the line of sight:

α̂ =
2

c2

∫

∇⊥ΦNdℓ. (1.77)

1.2.3 Lensing potential and convergence

We now define thelensing potentialψ(θ), a scaled, projected Newtonian potentialΦN, of the lens:

ψ(θ) =
Dls

DlDs

2

c2

∫

ΦN(Dlθ, s)ds (1.78)

By taking the gradient ofψ on the sky plane, and comparing with Equation (1.77), the reduced deflection

angle can be related to the lensing potential:

∇θψ = α (1.79)
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Figure 1.4: Geometry of a gravitational lens system. In the case of the thin lens
approximation the deflection through the angleα̂ is taken as instantaneous. The angles
θ andβ, which are in general two-dimensional vectors on the sky plane, respectively
specify the observed and intrinsic sky positions of the source. Dl, Ds andDls are
angular diameter distances.



1.2. GRAVITATIONAL LENSING 31

Using Poisson’s equation in three dimensions,∇2
rΦ = 4πGρ(ξ, z), we are able to relate the Laplacian of

ψ to the projected surface mass densityΣ(θ):

∇2
θψ = 2

Σ(θ)

Σcrit
(1.80)

whereΣcrit is a critical surface mass density in the lens plane (for whichα(θ) = θ), taking the value

Σcrit =
c2Ds

4πGDlsDl
(1.81)

Using this definition we re-express Equation (1.80) in termsof adimensionlesssurface mass density, known

as theconvergenceκ = Σ/Σcrit, as follows:

∇2
θψ = 2κ(θ). (1.82)

The lensing potential can then be related back to the convergence by integration

ψ(θ) =
1

π

∫

R2

d2θ′κ(θ′) ln(|θ − θ′|), (1.83)

where here we have used Equations (1.75) and (1.79).

1.2.4 Weak gravitational lensing

The solutionsθ of the lensing equation yield the angular positions of the images of a source atβ; note

that it is possible to have more than one image of a single source, this situation being known asstrong

lensing (see e.g., Kochanek 2006). Lensing conserves surface brightness, a consequence of Liouville’s

theorem (see Schneider et al. 1992) and the fact that gravitational light deflection leaves photon numbers

unchanged. Hence, ifIs(β) is the surface brightness distribution in the source plane,we know that the

observed surface brightness distribution must be

I(θ) = Is(β(θ)). (1.84)

If a source is much smaller than the angular scale on which thelens properties change, the lens mapping can

be locally linearised using the lensing equation and the relationship betweenβ coordinates andθ described

by a Jacobian matrix:

Aij(θ) ≡ ∂βi

∂θj
= (δij − ∂i∂jψ(θ)) , (1.85)

A =

(

1 − κ− γ1 −γ2

−γ2 1 − κ+ γ1

)

,

where∂i ≡ ∂/∂θi, where we have taken the origins of the measured, lensed coordinates and the unlensed

source coordinates to be the centres of light for the lensed and unlensed images respectively, and where we

have introduced the components of theshearγ = γ1 +iγ2 = |γ|e2iφ. The effect of the shear on an image is

to stretchit, transforming a circular source into an elliptical image, whereas the effect of the convergence is
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to enlarge, transforming a source into a larger version of itself whilst conserving surface brightness. From

Equation (1.86) we see that the components of shear are related to the lensing potential as follows:

γ1 =
1

2
(∂2

1 − ∂2
2)ψ (1.86)

γ2 = ∂1∂2ψ. (1.87)

If the convergence and shear are effectively constant within a source galaxy image, the galaxy’s transfor-

mation is simply described as

βi ≃ Aijθj . (1.88)

The formalism discussed above is as far as traditional weak lensing goes in describing the distortions

of images due to gravity, i.e., to first or linear order in the source-image sky coordinate transformation.

According to this transformation the images of circular sources are ellipses, the ellipticity of these objects

being proportional to the shear forκ≪ 1. The essence of the study of weak gravitational lensing is then to

use the observed ellipticityε as a noisy but unbiased estimator of the shear. Although for asingle galaxy

this will be an extremely poor estimate ofγ, we may assume that unlensed populations of galaxies will

have randomly oriented source ellipticitiesεs, and therefore that the average ellipticity over an ensemble

of lensed galaxies will give an unbiased estimate of the shear as〈ε〉 ≃ γ. By measuring the ellipticities of

many galaxy images we gain a (noisy) estimate of the shear field, and may thus begin to try and determine

the surface mass density of lensing systems (see Bartelmann& Schneider 2001 for details).

1.2.5 Strong gravitational lensing

The study of strong gravitational lensing applies to lens systems for which the Jacobian of Equation (1.86)

vanishes,detA(θ) = 0. Such lenses will produce multiple images of background sources, and the positions

of such images can place strong constraints upon the mass distribution of the foreground lens. A related,

sufficient but not necessary (see Schneider et al. 2006) condition for multiple images is thatκ(θ) > 0

somewhere upon the image plane. Such lenses are commonly referred to as “strong”, and were the first

examples of gravitational lensing discovered outside the Milky Way galaxy (the doubly imaged distant

quasar QSO 0957+0561, see Walsh et al. 1979).

For a strong lens, the locus in the image plane for whichdetA(θ) = 0 is known as the critical curve. These

curves are smooth and closed but their mappings onto the source plane, known as caustics, can and often

do show cusps. Along critical curves the ratio of image to sourve flux, referred to as the magnificationµ =

1/detA, formally diverges. Whilst this is an unphysical picture (source galaxies are of finite extent which

keeps their magnification finite) sources near caustics are often nonetheless extremely highly magnified and

are observed as large elongated arcs (or sometimes even rings) close to the corresponding critical curve.

The number of images of a source in the image plane also depends upon its position relative to the caustic

curves (see Schneider et al. 2006) and provide additional constraints upon the geometry of critical curves

and caustics.

Many modern uses of strong lensing involve the modelling of foreground lenses by fitting critical curves

to observed giant arcs and multiple images in strong lensingclusters (such as the famous lensing cluster

Abell 2218, e.g. Saraniti et al. 1996; Kneib et al. 1996) and to the arcs and rings around individual galaxies
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observed with theHubble Space Telescope(see, e.g., Bolton et al. 2006; Gavazzi et al. 2007). In the fol-

lowing Section, I will briefly describe these and other such applications of strong lensing, and discuss how

these complement some of the applications cosmological andastrophysical applications of weak lensing.

1.2.6 Applications of strong and weak gravitational lensing

Strong lensing

The study of arcs and multiple images in strong lensing clusters, which began with the independent dis-

covery by two groups (Lynds & Petrosian 1986; Soucail et al. 1987; Lynds & Petrosian 1989) of clear,

elongated, luminous features around the clusters Abell 370and Cluster 2242-04. Since that time there have

been many examples of the use of these giant luminous arcs, but also smaller arcs (known as arclets, see

Schneider et al. 2006) and multiple images, to model the critical curves, caustic curves and hence mass

distributions of strong lensing clusters (see, e.g., Kochanski et al. 1996; Tyson et al. 1998; Broadhurst et al.

2005; Limousin et al. 2007). These have provided much insight into the mass distributions of clusters and,

more recently, into the mass distributions of galaxies (Lehár et al. 2000, 2002; Rusin et al. 2003; Bolton

et al. 2006; Koopmans et al. 2006; Treu et al. 2006; Gavazzi etal. 2007).

Bartelmann et al. (1998) were the first to compare the incidence rate of giant arcs to the expected values

from raytracing calculations in N-body simulations, finding evidence for an excess in the observed number

of arcs when compared toΛCDM predictions. However, arcs are extremely rare events and the result of

extremely non-linear gravitational interactions in high density regions. Debate continues regarding the

interpretation of observed arc statistics and the means of making accurate theoretical predictions when the

effects of CDM substructure, baryons and simulation resolution are likely to have significant implications

for the production of giant arcs (see, e.g., Oguri et al. 2003; Dalal et al. 2004; Horesh et al. 2005; Li et al.

2006; Hennawi et al. 2007)

Other applications of strong lensing data include the use ofclusters for which the mass distribution is well

constrained as “gravitational telescopes”, allowing the imaging of extremely distant galaxies at redshifts

of z ≃ 5-6 and beyond (Ellis et al. 2001; Kneib et al. 2004; Santos et al.2004; Egami et al. 2005; Smail

et al. 2007), including a claimed detection of az = 10 galaxy (Pelló et al. 2004, but see also Weatherley

et al. 2004; Bremer et al. 2004). The recent survey of gravitationally lensed Lyman-α emitters made using

the Keck telescope (Stark et al. 2007) has yielded six promising candidates lying between redshifts of

z = 8.7 andz = 10.2, all with emission detections at greater than than 5-σ significance. This leads to

the conclusion, given the volume surveyed, that there must be a significant population of low luminosity,

star forming galaxies at these high redshifts (Stark et al. 2007), and that these may contribute a significant

fraction of the UV radiation necessary for cosmic reionization (Peacock 1999).

One further, and slightly different, cosmological use of strong lensing systems is the determination of

the Hubble parameterh, independently of cosmology, via studies of the gravitational time delay between

multiple images of a single, time-varying source (see, e.g., Blandford & Narayan 1986; Schneider et al.

2006). Recent studies of the time delay from strongly lensedvariable quasars have placed competitive,

independent constraints upon the Hubble parameter, findingh = 0.72+0.08
−0.11 (Saha et al. 2006), andh =

0.68 ± 0.06 ± 0.08 (Oguri 2007), where the second uncertainty in this last constraint comes from an

estimate of systematic errors due to degeneracies in the mass modelling of the foreground strong lens.
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Having completed a brief survey of the cosmological applications of strong lensing, I know turn to a brief

overview of what may be learnt from the study of weak lensing phenomena and how, on occasion, strong

and weak lensing may be combined.

Weak lensing

The cosmological applications of weak lensing are as broad as those of strong lensing, with occasional

overlap. Although the statistical determination of the shear field (see Section 1.2.4, also Bartelmann &

Schneider 2001) cannot constrain the mass distributions ofindividual objects in a way that competes with

strong lensing observations, strongly lensed systems are by their very nature rare. Instead, weak lensing

measurements may be taken from any resolved images of galaxies at sufficient cosmological depth, and

can be used to gain insight into the average, global properties of the distribution of matter in the Universe.

One example of the use of weak lensing measurments in this fashion is the study of galaxy-galaxy lensing,

which places constraints upon the distribution of unseen matter around foreground lens galaxies using

redshift information and measurements of the weak shear from lensed background galaxies. Such an

analysis was first proposed by Tyson et al. (1984), and was first detected by Brainerd et al. (1996). In recent

years, galaxy-galaxy lensing analyses have constrained global properties for large samples of galaxies, as

the mass-to-light ratio and the power law slop of this ratio with galaxy luminosity (see, e.g., Guzik & Seljak

2002; Sheldon et al. 2004; Hoekstra et al. 2004; Mandelbaum et al. 2005). Recent work (Mandelbaum et al.

2006a; Kleinheinrich et al. 2006) has begun to split lens samples by galaxy morphology and colour, and

in this way galaxy-galaxy lensing potentially has the powerto explore more complicated models of the

galaxy biasb discussed in Section 1.1.8. In Chapter 6 I describe my attempts to perform a galaxy-galaxy

lensing analysis of data from theHubble Space TelescopeGEMS survey (Rix et al. 2004).

Another application of weak gravitational lensing is the study of the weak lensing signal imprinted upon the

angular power spectra of the CMB, a result of many small angular deflections due to the inhomogeneities

in the matter distribution between the current epoch and thesurface of last scattering atzdec ≃ 1100

(see Lewis & Challinor 2006 for a recent review and Das & Bode 2007 for details of an up-to-date, all

sky simulation of this effect). The effects of the weak lensing of the CMB is to cause small but potentially

detectable broadening of the acoustic peaks in the TT and polarization power spectra. The cross-correlation

of this effect with large scale structure measurements fromradio sources in the NRAO-VLA Sky Survey

(NVSS) 1.4GHz continuum survey (Condon et al. 1998) has recently yielded a 3.4-σ detection of the signal

(Smith et al. 2007), and as CMB measurements continue to improve with the advent of the Planck satellite

(The Planck Collaboration 2006) and the Atacama Cosmology Telescope (Kosowsky 2003) this technique

presents a promising new method of constraining the distribution and evolution of large scale structure.

Weak lensing has also been used in the study of galaxy clusters where, as will be described below, it also

complements strong lensing mass reconstructions. However, not all clusters are strong lensing systems,

and weak lensing has recently proved to be an extremely useful method of calibrating the mass-temperature

relationship of clusters selected via X-ray bremsstrahlung emission from the hot (107-108K) intracluster

gas (see Smith et al. 2005, who also use strong lensing observations, and Pedersen & Dahle 2007). As

sample sizes increase, our understanding of the relationship between X-ray temperature and cluster mass,

and of the scatter in this relationship due to cluster relaxation and environment, will improve. This in turn

wil improve the constraints on large scale structure that may be placed using the temperature statistics
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of X-ray selected clusters (e.g., Eke et al. 1998; Henry 2004; Haiman et al. 2005). Using current weak

lensing surveys it is now even possible to detect clusters using maps ofκ derived from survey-wide mass

reconstruction (Gavazzi & Soucail 2007); such “mass selected” cluster catalogues will become increasingly

competitive with X-ray selected clusters with the advent ofthe wide area optical imaging surveys in the

near future.

Perhaps the most promising, if also technically challenging, application of weak lensing is the measurement

of so-called “cosmic shear”, the scale-dependent angular correlation of the shear field due to the clustering

of the cosmological matter field. I will discuss this technique, in addition to its future prospects and the

constraints uponσ8 andΩm,0 it has yielded to date, in Section 1.2.7 below. However, before moving onto

this important topic I will describe some of the recent advances in the combination of strong and weak

lensing measurements in the mass modelling of lensing clusters.

Combined strong and weak lensing

The use of combined measurements of weak and strong lensing for cluster mass determinations (see, e.g.,

Kneib et al. 2003; Bradač et al. 2005a,b), extending the ideas of Bartelmann et al. (1996) and Seitz et al.

(1998), has had some striking successes in recent years. Such modelling has led to extremely accurate

reconstructions of cluster lenses suitable for use as gravitational telescopes (e.g., Stark et al. 2007; Smail

et al. 2007) that can explore extremely high redshift galaxyformation, and combined measurements of

weak and strong lensing around strongly lensed early-type galaxies in the SLACS survey has recently

been used to place improved constraints upon the dark matterhaloes around these galaxies (Gavazzi et al.

2007). As discussed in Section 1.1.7, combined strong and weak lensing data has recently provided strong

evidence for a collisionless dark matter component in the merging cluster 1E 0657-558 that appears to be

clearly distinct from the intracluster hot gas (see Section1.1.7; Clowe et al. 2006; Bradač et al. 2006, but

also Angus et al. 2007). Combined weak and strong lensing work has therefore contributed significantly

to our understanding of the formation of galaxies and given further evidence for the existence of cold dark

matter. In the following Section, I will now go on to describethe use of weak lensing in the placing of

cosmological parameter constraints, a study which has cometo prominence as a primary science goal in

the survey design strategies for future optical survey telescopes.

1.2.7 Constraints on cosmological parameters from weak lensing

An extremely promising but challenging application of weakgravitational lensing is in the measurement

of cosmic shear, which results from the fact that all light propogating through the Universe is deflected by

the gravitational field of the inhomogoneous matter distribution. This causes distortions in the images of

distant galaxies that are coherent, although extremely weak. Schneider et al. (2006) provide a thorough

derivation of how the power spectrum of the convergenceκ can be related to the three dimensional matter

power spectrumP (k) =
〈

δ2k
〉

(Peacock 1999), and so I will not not reproduce that derivation here. As

also described by Schneider et al. (2006), the shear power spectrum can be determined from measurements

of the tiny correlations between lensed galaxy images, as a function of angular scale, and may be directly

related to the convergence power spectrum to place constraints upon large scale structure.
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The value of cosmic shear as a probe of structure is that it makes no assumptions about the relationship

between dark matter clustering and the clustering of baryonic galaxies (no poorly understood parameters

such as the biasb are necessary, for example), and therefore provides an independent verification of the

results described in Section 1.1.8. In addition, cosmic shear measurements place joint constraints uponσ8

andΩm,0 that intersect with those from CMB measurements in a way thatsignificantly reduces degeneracy

in these parameters (Schneider et al. 2006).

However, the measurement of cosmic shear is technically difficult. This is not just because the cosmological

signal is extremely weak, but is also due to the nature of the systematic distortions caused in galaxy images

by imperfect telescope optics; telescope point spread functions (PSFs) induce correlated distortions in

galaxy images that are typically an onrder of magnitude larger than the cosmological signal we wish to

detect (see, e.g., Kaiser et al. 1995; Kaiser 2000). Despitethis, cosmic shear was successfully detected in

2000 by four groups (Bacon et al. 2000; Kaiser et al. 2000; VanWaerbeke et al. 2000; Wittman et al. 2000)

using the KSB method of lensing PSF correction (Kaiser et al.1995; Luppino & Kaiser 1997; Hoekstra

et al. 1998).

Subsequent cosmic shear analyses have been used to place competitive constraints upon large scale struc-

ture, with the most recent results being those of Benjamin etal. (2007). These authors combined a total of

100 square degrees of ground based survey data, including the Canada-France-Hawaii Telescope Legacy

Survey (CFHTLS) Wide (see Hoekstra et al. 2006) together with the Red Cluster Sequence survey (Glad-

ders et al. 2007), VIRMOS-Descart (Van Waerbeke et al. 2000,2005a) and the Garching-Bonn Deep Survey

(GaBoDS: Hetterscheidt et al. 2007) weak lensing surveys. The analysis also used an accurate calibration

of the redshift distribution of lensing sources using the photometric redshifts of the joint CFHTLS-VIMOS

VLT Deep Survey (VVDS) analysis (Ilbert et al. 2006). The resulting joint constraints upon the large scale

structure wereσ8 = (Ωm,0/0.24)0.59 = 0.84±0.05 within a flat, concordance cosmology. This weakened

what had been an apparent≃2-σ discrepancy between earlier results from the CFHTLS (Hoekstra et al.

2006) and WMAP constraints (see Spergel et al. 2007), the difference being the accurate calibration of the

source galaxy number counts as a function of redshift (Benjamin et al. 2007). It is becoming clear that

accurate photometric redshift information, as well as ongoing improvements in shape measurement tech-

niques, will be necessary as lensing surveys increase in size and statistical power. Recent observations of

cosmic shear from space (Massey et al. 2007c) are in reasonable agreement with the results of (Benjamin

et al. 2007), but currently suffer from the relatively smallsurvey areas that can feasibly observed with the

Hubble Space Telescope, and from the gradual degradation of on board CCDs due to cosmic rays (known

as the Charge Transfer Efficiency problem, see Rhodes et al. 2007).

So far in this Chapter, I have described many basic elements of the concordance cosmological model, and

the current constraints we have upon the few parameters thatdescribe it. In addition we have seen some

discussion of gravitational lensing, and described some ofthe results and future prospects of this study. In

the remainder of this Chapter I will introduce an extension of weak gravitaional lensing known as flexion,

the study and attempted measurement of which is the primary topic of this Thesis.

1.2.8 Higher order weak gravitational lensing: flexion

The study of weak gravitational flexion, otherwise known as the higher order weak lensing signal, is a re-

cent development in the broader field of weak lensing (see Goldberg & Natarajan 2002; Irwin & Shmakova
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2003; Goldberg & Bacon 2005; Irwin & Shmakova 2005; Bacon et al. 2006, BGRT06 hereafter, Massey

et al. 2007d; Irwin et al. 2007). Flexion arises from the factthat the shear and convergence are actually not

constant within the image, and so we can expand Equation (1.88) to second-order:

βi ≃ Aijθj +
1

2
Dijkθjθk, (1.89)

with

Dijk = ∂kAij . (1.90)

Using results from Kaiser (1995), we find that

Dij1 =

(

−2γ1,1 − γ2,2 −γ2,1

−γ2,1 −γ2,2

)

, (1.91)

Dij2 =

(

−γ2,1 −γ2,2

−γ2,2 2γ1,2 − γ2,1

)

.

By expanding the surface brightness as a Taylor series and using the relations above, we find that we can

approximate the lensed surface brightness of a galaxy in theweak lensing regime as

I(θ) ≃
{

1 +

[

(A− I)ijθj +
1

2
Dijkθjθk

]

∂i

}

Is(θ) , (1.92)

where hereI denotes the identity matrix. The distortion described by theDijk tensor in the above equation

is that which is responsible for the curved or arc-ed appearance of lensed galaxies, measurable information

which has traditionally been ignored in the study of weak lensing phenomena.

1.2.9 Complex representation and the first and second flexion

In this Section we outline the compact and straightforward complex formalism of BGRT06 for the de-

scription of second-order lensing distortions; the formalism in fact has wider applicability to all weak

gravitational lensing.

We define a complex gradient operator:

∂ = ∂1 + i∂2, (1.93)

which we can think of as a derivative with an amplitude and a direction down the slope of a surface at any

point. It transforms under rotations as a vector,∂′ = ∂eiφ, whereφ is the angle of rotation. This operator

can be compared with the covariant derivative formalism of Castro et al. (2005) for weak lensing on the

curved sky. Applying the operator to the lensing scalar potential,ψ, we can generate the spin-1 (i.e. vector)

lensing displacement field

α = α1 + iα2 = ∂ψ. (1.94)

This correspondence allows us to interpret the complex gradient, ∂, as a spin-raising operator, raising

the function it acts on by one spin value. Similarly the spin of a quantity can be lowered by applying

the complex conjugate gradient,∂∗. Applying one after the other yields the spin-zero two-dimensional
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Figure 1.5: Weak lensing distortions with increasing spin values. Here an unlensed
Gaussian galaxy with radius 1 arcsec has been distorted with10 per cent conver-
gence/shear, and 0.28 arcsec−1 flexion. Convergence is a spin-0 quantity; first flexion
is spin-1; shear is spin-2; and second flexion is spin-3.

Laplacian,

∂∂∗ = ∂∗∂ = ∂2
1 + ∂2

2 = ∇2
θ (1.95)

where we have noted that∂ and∂∗ commute. Applying the complex conjugate derivative to the displace-

ment field we find the spin is lowered to the spin-0 convergencefield

κ =
1

2
(∂2

1 + ∂2
2)ψ =

1

2
∂∗α =

1

2
∂∗∂ψ. (1.96)

Applying the spin-raising operation to the displacement field raises us to a spin-2 field, the complex shear:

γ =
1

2
∂∂ψ =

1

2
(∂2

1 − ∂2
2)ψ + i∂1∂2ψ = γ1 + iγ2, (1.97)

just as defined in Equations (1.86) and (1.87). The complex formalism provides a neat way to generalize

the analysis of distortions to higher orders. Taking the third derivative of the lensing potential we define

the unique combinations

F = |F|eiφ =
1

2
∂∂∗∂ψ = ∂κ = ∂∗γ (1.98)

G = |G|e3iφ =
1

2
∂∂∂ψ = ∂γ, (1.99)

where the first flexion,F , is another spin-1 field and the second flexion,G, is seen to be a spin-3 field.
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Hereφ represents the position angle determining the direction ofthe vector or spin-3 component. Using

the complex derivative to expand the flexions in terms of the gradients of the shear field we find

F = (∂1γ1 + ∂2γ2) + i(∂1γ2 − ∂2γ1) (1.100)

G = (∂1γ1 − ∂2γ2) + i(∂1γ2 + ∂2γ1). (1.101)

Using these results one then obtains a direct and complete description of the second-order lensing tensor

Dijk in terms of the flexion components. DefiningF = F1 + iF2 andG = G1 + iG2 I re-expressedDijk

as the sum of two termsDijk = F ijk + Gijk, where the first (spin-1) term is

F ij1 = −1

2

(

3F1 F2

F2 F1

)

(1.102)

F ij2 = −1

2

(

F2 F1

F1 3F2

)

and the second (spin-3) term is

Gij1 = −1

2

(

G1 G2

G2 −G1

)

(1.103)

Gij2 = −1

2

(

G2 −G1

−G1 −G2

)

.

This thus defines two new lensing measures,F andG, which afford a complete and compact description of

weak lensing distortions to next highest order. The first andsecond flexion also have simple spin properties,

making them a natural description of these distortions whencompared to the more complicated rotational

behaviour of the derivatives of shear.

In order to obtain a visual understanding of the flexion quantities, the expression of theDijk matrix in

terms ofF andG is used to calculate how a Gaussian image is transformed by the various operations of

weak lensing, according to Equation (1.92). The results areshown in Figure 1.5, which displays the lensing

operations in order of their spin properties. The Gaussian galaxy is given a radius (standard deviation) of

1 arcsec; while the convergence and shear imposed on the galaxy are realistic (10 per cent in each case),

the flexion is deliberately chosen to be large for visualisation purposes (0.28 arcsec−1). We immediately

see the shapes induced by flexion: the first flexion leads to a (vectorial, spin-1) skewness, while the second

flexion leads to a three-fold (spin-3) shape. For a simple demonstration of how it is both these modes of

distortion, added to a shear, which are responsible for lensed arcs, see Figure 1.6, which uses acombination

of the same, correct transformations upon a Gaussian image as were used to generate Figure 1.5.
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+ +=

Figure 1.6: Illustration of how the combination of shear, first flexion and second flex-
ion is able to describe arc-like distortions in gravitational lensing.

1.2.10 Reduced shear and flexion

Before going onto describe theoretical predictions for theshear and flexion based on realistic mass models,

I first outline some recent work in flexion theory that has relevance to this Thesis and applications beyond

it. It was Schneider & Seitz (1995) who pointed out the weak lensing shearγ described above is not strictly

observable in practice, but rather the combination

g =
γ

1 − κ
, (1.104)

labelled thereducedshear. This accounts for the lensing sheet-mass degeneracy(Falco et al. 1985; Goren-

stein et al. 1988), under which lensing observables remain unchanged under a changeκ→ λκ+(1−λ). For

many cosmological applications, including galaxy-galaxylensing (Kleinheinrich et al. 2006) and cosmic

shear (Hoekstra et al. 2006), the convergence (related to the projected surface mass density, see Chapter 2;

also Bartelmann & Schneider 2001) will be small compared to one and so differences between the reduced

shear and the shear are typically also small. It is then acceptable to assumeg ≃ γ on the condition that the

bias involved in this approximation is smaller than the overall measurement uncertainty.

This work has very recently been extended to measurements offlexion by Schneider & Er (2007), who

similarly find thatF andG cannot be directly observed. This work finds the corresponding expression for

the reducedF andG respectively:

G1 = ∂∗g =
F + gF∗

1 − κ
G3 = ∂g =

G + gF
1 − κ

. (1.105)

As can be seen, these observable quantities are now more complex expressions involving the reduced shear

and convergence, both of which can bias flexion estimates. Schneider & Er (2007) also point out further

difficulties with the flexion measurement, finding that it maybe impossible in general to construct an

unbiased estimator for eitherG1 orG3, as was possible forg (Schneider & Seitz 1995).

These considerations are of the greatest importance in the reconstruction of cluster mass distributions using

flexion, where it should be expected that significant shears andκ & 0.1 could cause a significant overesti-

mating bias of the shear and flexion (Schneider & Er 2007). However, in the analyses that follow I consider

the weak signal around galaxy halo-sized lenses, specifically those in theHST GEMS survey (Rix et al.

2004). These regions do not involve extremely largeg or κ values; therefore, throughout this Thesis I

assume the weak limit ofg ≈ γ, G1 ≈ F andG3 ≈ G. I note that this is an approximation, however, but

one that causes biasing effects that are well within the sample variance of the GEMS galaxy data. It will be

important for future galaxy-galaxy lensing studies of greater sample size to quantify the effect of this bias,
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as it will begin to impact upon measurements for the more massive galaxy haloes (see, e.g., Mandelbaum

et al. 2005).
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CHAPTER 2

FLEXION PREDICTIONS

In this Chapter I outline analytic and numerical results andpredictions for flexion, many of which I was

able to contribute towards Bacon et al. (2006) (BGRT06 hereafter). Here the concern is primarily an

understanding of the strength and observability of flexion we might expect for dark matter halos in the

physical Universe. I have derived analytic expressions forthe flexion due to Singular Isothermal Sphere

and NFW halos, and I have discussed the differences between these results. I have added a discussion of

flexion for the Truncated Singular Isothermal Sphere, and anexplanation the tools which may be used to

calculate the flexion signal.

Finally, I present the investigation of simulated galaxy-galaxy lensing data sets using the method I de-

scribed in BGRT06, but with some update of the discussion in light of subsequent observational findings

(see also Chapters 4 and 6). This modelling suggests that flexion has much to offer studies of galaxy-galaxy

lensing, but more recent knowledge about the distribution of measured flexion complicates more quantita-

tive interpretation of these results. These issues are discussed, and are ultimately found to provide strong

motivation for the analysis of flexion using real data.
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2.1 Analytic flexion results

In order to describe the flexion signal around common lens models, it is useful to re-express the complex

gradient operator (1.93) in polar coordinates upon the sky plane. Labelling asθ the modulus of the complex

sky position vectorθ1 + iθ2, and withφ = arctan (θ2/θ1), the complex gradient may be written as

∂ = eiφ

(

∂

∂θ
+

i

θ

∂

∂φ

)

. (2.1)

Using Equations (1.98) and (1.99) it is then very simple to show that

F(θ, φ) = ∂κ(θ, φ) =

(

∂κ

∂θ
+

i

θ

∂κ

∂φ

)

eiφ. (2.2)

Writing the complex shear asγ = γ̃(θ, φ)e2iφ, noting that in general̃γ(θ, φ) will be complex for non-

circularly symmetric lenses, I was also able to calculate the equivalent result for the second flexion:

G(θ, φ) = ∂γ(θ, φ) =

(

∂γ̃

∂θ
− 2γ̃

θ
+

i

θ

∂γ̃

∂φ

)

e3iφ. (2.3)

If the lens model displays circular symmetry this expression may be simplified; for such models|γ(θ)| =

κ̄(θ)−κ(θ) (Miralda-Escudé 1991), wherēκ(θ) is the average convergence withinθ from the centre of the

lens. For a lens model with shearγ = −|γ(θ)|e2iφ, the second flexion can then be more simply expressed

as

G(θ, φ) =

(

4|γ(θ)|
θ

+
∂κ(θ)

∂θ

)

e3iφ. (2.4)

In the results that follow this expression is used a number oftimes to quickly calculate predictions for the

second flexion.

2.1.1 Flexion for the Singular Isothermal Sphere (SIS)

We start by calculating the flexion predictions for the Singular Isothermal Sphere (SIS) lens model, ex-

pressed in Equation (1.62). This density profile provides a good first approximation to CDM haloes as it

very simply reproduces the flat rotation curves observed in spiral galaxies. Projecting the density onto the

two-dimensional lens plane, the surface mass density of theSIS is

Σ(ξ) =
σ2

v

2Gξ
, (2.5)

whereξ is the distance from the centre of the lens in the projected lens plane and whereσv is the one-

dimensional velocity dispersion of ‘particles’ within thegravitational potential of the mass distribution,

such as stars. The dimensionless surface mass density, or convergence, is thus

κ(θ) =
Σ

Σcrit
=
θE
2θ
, (2.6)
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whereθ = ξ/Dl is the angular distance from lens centre in the sky plane and whereθE is the Einstein

deflection angle, defined as

θE = 4π
(σv

c

)2 Dls

Ds
. (2.7)

The shear caused by the SIS at an angular separationθ from the lens centre on the sky plane is

γ(θ, φ) = −θE
2θ

e2iφ (2.8)

(see, e.g., Bartelmann & Schneider 2001). The SIS shear signal falls only weakly with distance from the

lens centre, and thee2iφ angular dependence reflects the spin-2 rotational symmetryof the shear transfor-

mation. Using Equation (2.2), I then found the simple expression for the first flexion to be:

F(θ, φ) = − θE
2θ2

eiφ. (2.9)

As expected, the first flexion for this profile is therefore circularly symmetric, and displays vector-like

rotational symmetry with the vector directed radially inwards towards the lens centre. Importantly, the

signal strength varies withθ−2 and so the flexion will only be significant for objects close tothe line of

sight to the SIS lens.

In a similar fashion I calculated the expression for the second flexion using Equation (2.4), finding that

G(θ, φ) =
3θE
2θ2

e3iφ . (2.10)

The spin-3 rotational symmetries ofG are encapsulated in thee3iφ dependence of this expression. The sec-

ond flexion shares theθ−2 dependence displayed byF for the SIS, but interestingly has a larger amplitude;

as will be seen, this is found to be a common feature of flexion predictions for cosmologically realistic lens

models.

2.1.2 Flexion for the Softened SIS (SSIS)

The SIS mass distribution can be modified so as to remove one feature which may not be a good physical

description of dark matter haloes, the divergence ofΣ for θ −→ 0 (see Section 1.1.9 for a discussion of

observational evidence for cored dark matter haloes). One simple modification is to cut off the distribution

at small distances, defining as in Equation (1.65) the Softened SIS as

ρ(r) =
σ2

v

2πG(r2 + r2c )
, (2.11)

whererc is a core radius within which the density tends to a constant value. Projecting this density onto

the lens plane and dividing by the critical densityΣcrit, the convergence is thus found to be

κ(θ) =
θE

2
√

θ2 + θ2c
, (2.12)

whereθc is defined asrc/Dl, the angular radius within which the surface mass density flattens off to a

valueκ0 = θE/2θc asθ → 0. For θ ≫ θc this mass distribution behaves like the SIS. The shear for the
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SSIS lens is then

γ(θ, φ) =
θE

2
√

θ2 + θ2c

{

1 − 2θc

θ2

(

√

θ2 + θ2c − θc

)

}

e2iφ, (2.13)

which may be calculated using the|γ| = κ̄ − κ relationship of Miralda-Escudé (1991). Interestingly this

shear signal tends to zero at the origin but behaves like the SIS lens at distance.

Using Equation (2.2), I found the first flexion due to the SSIS lens to be

F(θ, φ) = − θEθ

2(θ2 + θ2c )
3/2

eiφ . (2.14)

Again, for θ ≫ θc the flexion is approximately equal to that of the SIS. At smallseparations the flexion

goes to zero, which should be expected as the convergence is tending to a maximum and will thus have

zero gradient. From (2.4), the second flexion for the SSIS is then

G(θ, φ) =
3θEθ

2(θ2 + θ2c)
3/2

{

1 +
4θ2c
3θ2

− 8θc

3θ4
(θ2 + θ2c)

(

√

θ2 + θ2c − θc

)

}

e3iφ, (2.15)

which can again be seen to reduce to the SIS second flexion whenθ ≫ θc, and tends to zero at the centre

of the lens.

2.1.3 Flexion for the Truncated SIS (TSIS)

Another issue with the SIS lens model is its divergent total mass, which led authors (see, e.g., Brainerd

et al. 1996; Hoekstra et al. 2004) to define a Truncated SIS as follows:

ρ(r) =
σ2

vs
2

2πGr2(r2 + s2)
, (2.16)

where definess the truncation radius, beyond which the density falls off asr−4. The convergence for this

lens model is then

κ(θ) =
θE
2θ

{

1 − θ
√

θ2 + θ2s

}

, (2.17)

with θs = s/Dl, and the shear is given by

γ(θ, φ) = −θE
2θ

{

1 − θ
√

θ2 + θ22
+

2θs

θ

(

1 − θs
√

θ2 + θ2s

)}

e2iφ. (2.18)

This lens reproduces the shear behaviour of the SIS towardsθ = 0, as required, but falls off as∼ 1/θ2

at large distances. Again, using Equations (2.2) and (2.4) for this circularly symmetric lens, I was able to

simply calculate flexion predictions. The first flexion for the TSIS is thus

F(θ, φ) = − θE
2θ2

{

1 − θ3

(θ2 + θ2s)3/2

}

eiφ, (2.19)
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and the second flexion is given by

G(θ, φ) =
3θE
2θ2

{

1 − θ
(

θ2 + 4
3θ

2
s

)

(θ2 + θ2s)
3/2

+
8θs

3θ

(

1 − θs
√

θ2 + θ2s

)}

e3iφ. (2.20)

Both of these flexion results vary like the SIS (∼ 1/θ2) at small angular radii, but fall off more quickly

(∼ 1/θ4) for θ ≫ θs.

2.1.4 Flexion for the NFW halo profile

I now turn to the NFW density profile described in Section 1.1.9, which was found by Navarro et al. (1997)

to accurately represent simulated CDM haloes and has remained the standard theoretical description of

these objects. The NFW profile has the following form for the dimensionless surface mass density (see

Bartelmann 1996):

κ(y) = 2κs
f(y)

y2 − 1
, (2.21)

where we defineκs = ρcrit(z)∆crs/Σcrit andy ≡ ξ/rs, with ξ defined as for equation (2.5), and∆c and

rs defined as described in Section 1.1.9 and Navarro et al. (1997). Bartelmann (1996) give the function

f(y) as

f(y) =











1 − 2√
1−y2

arctanh
√

1−y
1+y y < 1

1 − 2√
y2−1

arctan
√

y−1
y+1 y > 1.

(2.22)

Taking the gradient ofκ, I found the flexion for the NFW density profile to be given by

F = ∂κ =
∂y

∂θ

∂κ

∂y
. (2.23)

DefiningF s ≡ κsDl/rs we then have

F = −2Fs

[

2yf(y)

(y2 − 1)2
− 1

(y2 − 1)

df(x)

dx

]

eiφ (2.24)

with y = θDl/rs = θ/θs, and where, from Equation (2.22),

df(y)

dx
=















1
(1−y2)

(

1
y − 2y√

1−y2
arctanh

√

1−y
1+y

)

y < 1

1
(y2−1)

(

2y√
y2−1

arctan
√

y−1
y+1 − 1

y

)

y > 1.
(2.25)

The analytic form of the second flexion can be found, as for theother circularly symmetric lenses, using

Equation (2.4) and the result of Wright & Brainerd (2000) forthe magnitude of shear due to an NFW lens.

I then found that the second flexion takes the form

G = 2F s





8

y3
ln
y

2
+

(

3
y (1 − 2y2) + g(y)

)

(y2 − 1)2



 e3iφ, (2.26)
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where

g(y) =











(

8
y3 − 20

y + 15y
)

2√
1−y2

arctanh
√

1−y
1+y y < 1

(

8
y3 − 20

y + 15y
)

2√
y2−1

arctan
√

y−1
y+1 y > 1.

(2.27)

This second flexion is larger in amplitude than the first flexion, as was also the case for the SIS results. I

now compare in more detail the flexion signals from the NFW andSIS density profile, as confirming the

NFW model in the real Universe would be an important success for theΛCDM model.

2.1.5 Comparing NFW and SIS flexion results

To better illustrate these results, I calculated the first and second flexion signals we might expect to measure

for a typical galaxy-sized halo with either an SIS or NFW profile. Firstly we consider the calculation of the

NFW scaling parameters.

I choose a lens redshiftzl = 0.35 and the haloM200 = 1012h−1M⊙, this lens redshift being the median of

the lens galaxy sample used by Hoekstra et al. (2004), and themass having been found to be roughly typical

for galaxy halos in weak lensing analyses by Brainerd et al. (1996) and Hoekstra et al. (2004). I also choose

Dls/Ds = 0.5 (corresponding to a source redshift ofzs ≈ 0.8) and model the lensing within a standard, flat

ΛCDM cosmology, setting the present-day matter density parameterΩm,0 = 0.3, ΩΛ,0 = 0.7, the Hubble

parameterh = 0.72 andσ8 = 0.8, based on the 1-year results from the WMAP experiment Spergel et al.

(2003).

Julio Navarro has made a publicly available program (charden.f1) that generates predictions forc and

∆c based on input cosmological parameters and the model outlined in the Appendix of Navarro et al.

(1997). This formalism links the characterisic density∆c of NFW halos to the mean matter densityΩM at a

collapse redshiftzcoll(M200, f), defined as the redshift at which half the mass of the halo was first contained

in progenitors more massive than some fractionf of the final massM200. The simple proportionality

relationship∆c ∼ 103 × ΩM (zcoll)/ΩM (zfinal), combined with a value off = 0.01, was found to give

good results for all the simulations of Navarro et al. (1997), and the routinecharden.f implements this

calculation for a given input cosmology, halo mass and final halo redshift.

Usingcharden.f I find a concentration ofc = 7.20 and a corresponding dimensionless characteristic

density∆c = 20267 for the NFW scaling parameters. These values are again in good agreement with those

found by Hoekstra et al. (2004) who measured∆c = 2.41.4
−0.8 × 104 as the best fit to their sample of∼ 105

lenses.

For a flatΛCDM cosmology, theκs scaling parameter of Bartelmann (1996) and Wright & Brainerd (2000)

is given by

κs(M200, c, zl, zs) = 2.71 × 10−8 × ∆c

c

(

Dl

h−1Mpc

)(

Dls

Dls

)

(2.28)

×
[

ΩΛ,0 + (1 + zl)
3Ωm,0

]2/3
(

M200

1012h−1M⊙

)1/3

.

1available at http://www.astro.uvic.ca/ jfn/mywebpage/home.html
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The scaling radiusrs is given by

(

rs
h−1Mpc

)

=
1

c

(

r200
h−1Mpc

)

= 0.163× 1

c

[

ΩΛ,0 + (1 + zl)
3Ωm,0

]−1/3
(

M200

1012h−1M⊙

)1/3

, (2.29)

and the flexion scaling constantF s is then given by

(F s(c, zl, zs)

arcsec−1

)

= 8.09 × 10−13 × ∆c

(

Dl

h−1Mpc

)2(
Dls

Dls

)

(2.30)

×
[

ΩΛ,0 + (1 + zl)
3Ωm,0

]

.

Interestingly, we note that the flexion scaling parameter isnot a function of the virial massM200 of the

lensing halo, due to the cancelling of this dependence when taking the ratio of Equations (2.28) and (2.29).

The flexion signal at any given function of the scale angleθs = rs/Dl is therefore independent of halo

mass, but it should be noted that (from Equation 2.29) the scaling radius itself varies with mass.

The SIS scaling is straightforward in comparison; the Einstein radius for the SIS lens is given in terms of

M200 and the halo redshiftzl as

θE =
2πG

c2
Dls

Ds

(

800πρcrit(zl)

3

)1/3

M
2/3
200 . (2.31)

Using the same values forM200, zl and the cosmological parameters as were used for the NFW haloabove,

this gives an Einstein radius for the SIS halo ofθE = 0.215 arcsec.

The predicted magnitudes ofFNFW, GNFW, FSIS andGSIS, as a function of angular separation from the

lensing halo on the sky, are shown in Figure 2.1. As could be expected the profiles show a good deal of

similarity, but it is apparent that both the first and second flexion due to the SIS profile are stronger than

those due to the NFW at very small separations. Since one of the important features of the NFW profile is

that the density in the extreme interior of the halo varies as∝ r−1 compared to the steeper∝ r−2 for the

SIS, this is not a surprising result.

It can be seen by comparing the lower plot of Figure 2.1, for which theθ axis is doubled in scale, with the

upper plot, thatGNFW is both stronger and longer range thanFNFW. Interestingly, we also note that the

angular separation at which the SIS halo flexion exceeds thatfor the NFW halo is larger by about 5 arcsec

for second flexion in relation to the first flexion. These two effects are a consequence of the non-locality

of G as a lensing measurement when compared to the directly local∇κ measurement given byF ; for the

NFW profile,G tends to be less steep thanF at smallθ and to die away less rapidly at larger separations.

The middle plot of Figure 2.1 shows another feature of the comparison between the two profiles: an SIS

halo ofM200 = 1.8 × 1012h−1M⊙ is practically indistinguishable from an NFW halo withM200 =

1×1012h−1M⊙ for first flexion measurements over galaxy-galaxy separations greater than about 5 arcsec.

This is a very similar property to one found by Wright & Brainerd (2000) in a comparison of theshear

profiles of SIS and NFW halos. They found that the assumption of an SIS halo profile produced systematic

overestimation (by factors of up to 1.5) of the mass of NFW halos. Further work will be required to

determine the dependence of this effect upon concentrationfor flexion measurements as Wright & Brainerd

usefully did for the case of shear.
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Figure 2.1: Top: Comparison of the magnitude of first flexion due to an NFW and
an SIS halo ofM200 = 1 × 1012h−1M⊙ at redshiftzl = 0.35. Middle: A similar
F comparison but this time the SIS halo hasM200 = 1.8 × 1012h−1M⊙. Bottom:
The magnitude ofG for an NFW and an SIS halo ofM200 = 1× 1012h−1M⊙, where
the doubling in scale of the angular separation axis highlights the larger range and
amplitude of the second flexion.
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Figure 2.2: Flexion vector field for an elliptical isothermal density distribution with
minor-to-major axis ratio of 0.67. Points in the extreme interior of the diagram have
been omitted for clarity and the elliptical contours followthe logarithm of|F|.

2.1.6 Flexion for elliptical profiles

We now discuss the more general prospect of using flexion to measure the ellipticity of lenses. When

describing elliptically flattened halo mass distributions, it is often simplest to work with elliptical lensing

potentials. Unfortunately these descriptions have some severe limitations, most notably that they produce

dumbbell-shaped isodensity contours for large ellipticities and can even produce negative surface-mass

densities (see Kassiola & Kovner 1993). It is thus best to consider models where the isodensity contours

of the mass distribution are elliptical, despite the increased complexity of the lens potential. The simplest

generalization of the softened isothermal sphere to an elliptical density profile can be written

κ(θ1, θ2) =
θE

2

√

θ2c +
θ21

(1 + ǫ)2
+

θ22
(1 − ǫ)2

, (2.32)
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where the major axis of the elliptical isodensity contours lie along theθ1 axis in the sky plane, and the

ellipticity ǫ is defined by the ratio of minor-to-major axes (b anda respectively):

b

a
=

1 − ǫ

1 + ǫ
. (2.33)

The flexion vector at(θ1, θ2) in the sky plane is then

F = − θE

2

(

θ2c +
θ21

(1 + ǫ)2
+

θ22
(1 − ǫ)2

)3/2

(

θ1
(1 + ǫ)2

+
iθ2

(1 − ǫ)2

)

. (2.34)

We note that interestingly,F is no longer directed towards the centre of the lens for all(θ1, θ2); it will in

fact be centrally directed only when eitherθ1 or θ2 are equal to zero.

It is simple to show that the first flexion vector at a point(θ1, θ2) will be directed towards a point on the

major axis of the ellipse with coordinates(aint, 0) where

aint =

[

1 −
(

1 − ǫ

1 + ǫ

)2
]

θ1 =

[

1 −
(

b

a

)2
]

θ1. (2.35)

Due to the(b/a)2 term, even relatively modest ellipticities in the density distribution causeaint to represent

a significant fraction ofθ1. This tendency for the flexion vector to be aimed at a point significantly off lens-

centre can also be seen in Figure 2.2, drawn for an axis ratio of 0.67 which may be typical of galaxy

halos (see e.g. Hoekstra et al. 2004, also Mandelbaum et al. 2005 who find a lower value). This implies

that measurements of the direction of flexion in galaxy-galaxy lensing may be able to give good further

constraints on the ellipticity of dark matter halos.

This concludes the description of analytical flexion results I contributed towards BGRT06. For complete-

ness, I describe the following extra result taken from this paper, the second flexion for an unsoftened

elliptical profile. Settingθc = 0, the elliptical isothermal profile can be conveniently rewritten, beginning

by defining the following radial term:

ρ ≡
√

θ21 + f2θ22, (2.36)

wheref2 = (a/b)2, a being the semi-major axis andb the semi-minor axis as before. The density profile

can then be simply written asκ = A/ρ, whereA = aθE/(a + b). For this distribution, the shear can be

shown to be given by

γ1 = −Acos(2φ)

ρ
= −Aθ

2
1 − θ22
ρθ2

, γ2 = −Asin(2φ)

ρ
= −A2θ1θ2

ρθ2
. (2.37)

The derivatives of these terms may be calculated to find the corresponding complex first and second flexion:

F =

(

−Aθ1
ρ3

)

+ i

(

−Af
2θ2
ρ3

)

(2.38)

and

G = A

(

3θ51 − θ1θ
4
2 − 6θ31θ

2
2 − 8f2θ1θ

4
2

ρ3θ4

)

+ iA

(

8θ41θ2 + 6θ21f
2θ32 + f2θ41t− 3f2θ52
ρ3θ4

)

. (2.39)
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These results conclude the discussion of analytical results for flexion from physically-motivated CDM

halo models. We now turn to an simulated investigation into what extra information into dark matter halo

structure might be gained from the measurement of flexion, compared to measurements of shear alone.

2.2 Predicting halo constraints

Previous studies of galaxy-galaxy lensing which have aimedto constrain values of halo parameters such

asM200 or c for the NFW profile have used measurements of shear exclusively (see, e.g., Brainerd et al.

1996; Hoekstra et al. 2004, hereafter HYG04 in this Section;Kleinheinrich et al. 2006; see also Schneider

& Rix 1997). It is therefore worthwhile considering whethercombining measurements of shear and flexion

might improve constraints for the halo parameters such asc orM200 when compared to those derived from

measurements of shear alone.

2.2.1 A simple model of galaxy-galaxy lensing data

In order to do this I constructed a simplified but illustrative model of data we might expect from both shear

andflexion measurements. We can generate mock galaxy-mass correlation function data for a sample of

lens and source galaxies such as might be available using current or forthcoming galaxy imaging surveys. I

model lens haloes as NFW profiles, and then make the importantfirst simplification that every lens galaxy

in our sample is of B-band luminosityL∗
B, with a single associated fiducial massM200 and concentration

c. Such fiducial values are assigned in HYG04 to galaxies with awide range of luminosities, using an

observationally motivated power law scaling relation suchas proposed by Guzik & Seljak (2002). Rather

than modelling a range of galaxy luminosities as will be seenin real survey data, we simply model each

galaxy as being of “typical” luminosityL∗
B and make no attempt to include variation in galaxy mass,

concentration, mass-to-light ratio or concentration-to-light ratio.

This single-luminosity approximation will limit the overall accuracy of the model, as it does not take

detailed account of the balance struck between the contributions from large and small galaxies: in galaxy-

galaxy lensing the majority of the signal is due to galaxies larger thanL∗
B, whilst those smaller thanL∗

B in

fact make up the majority of the population. However, the purpose of this investigation is the comparison of

shear versus flexion measurements and so it is therelativesignal-to-noise properties that are of interest. We

assume that, as a first approximation, this simplification tothe mass model will not significantly prejudice

results towards either shear or flexion. As a final check, we can estimate the overall accuracy of the model

by comparing modelled constraints on shear alone to those published in the literature. This is the most

severe test of the viability of the single-luminosity approximation; if passed it provides further evidence

that this model will allow a fair comparison of shear and flexion signals.

2.2.2 Noise on individual shear and flexion measurements

In order to estimate the confidence limits we expect from weaklensing measurements we must estimate

the noise upon the measured signal. We assume this noise willbe dominated by the scatter in measured
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ellipticities and flexion that is present even in the absenceof gravitational lensing; this we refer to as the

intrinsic scatter. In this simple model I approximate this scatter as being normally distributed around zero,

with a standard deviation that can be found from the root meansquare (rms) measured shear or flexion from

survey data. In this work I use values ofγint = 0.3, F int = 0.1 arcsec−1 andG = 0.3 arcsec−1 for the

rms intrinsic shear and flexion. These flexion values, based on early measurements from my work which

ignored the effects of an anisotropic PSF, are significantlylarger than theF int = 0.04 found by Goldberg

& Bacon (2005).

However, the modelling of flexion measurement errors as normally distributed represents a considerable

oversimplification; measurements ofF andG are found to be distributed in a non-Gaussian manner, with

broad wings containing significant numbers of outliers. Strategies for accurately dealing with this property

of flexion are discussed in later Chapters, but we retain the assumption of Gaussian errors in this mod-

elling. This simplifies both the error model and the interpretation of parameter likelihood contours, but

may have consequences for the interpretation of our modelling results. As a first investigation we make

this simplification but proceed with caution.

2.2.3 Noise due to redshift measurements

Possible errors in the redshift determinations must also beconsidered; I assume for this simple simulation

that we have access to photometric redshifts for each galaxy, with an uncertainty of∆z on each individual

redshift measurement. Values for∆z are assigned below as appropriate for broad-band and medium-band

photometric redshift surveys. We note (see Wright & Brainerd 2000) that the strength of the shear signal

due to an NFW halo depends on the lens geometry via a factorγNFW ∝ DlDls/Ds, whereas I found in

Section 2.1.4 that the strength of the flexion varies asFNFW ∝ D2
l Dls/Ds. I thus model the error on

measurements of the shear and flexion due to redshift uncertainties by calculating fractional uncertainties

on on values ofDlDls/Ds andD2
l Dls/Ds. This can be done by considering the four following integral

terms:

〈

DlDls

Ds

〉

=

∫ ∞

0

dz′sP (z′s|zs)
∫ ∞

0

dz′lP (z′l |zl)
Dl′Dl′s′

Ds′
(2.40)

〈

(

DlDls

Ds

)2
〉

=

∫ ∞

0

dz′sP (z′s|zs)
∫ ∞

0

dz′lP (z′l |zl)
D2

l′D
2
l′s′

D2
s′

(2.41)

〈

D2
l Dls

Ds

〉

=

∫ ∞

0

dz′sP (z′s|zs)
∫ ∞

0

dz′lP (z′l |zl)
D2

l′Dl′s′

Ds′
(2.42)

〈

(

D2
l Dls

Ds

)2
〉

=

∫ ∞

0

dz′sP (z′s|zs)
∫ ∞

0

dz′lP (z′l |zl)
D4

l′D
2
l′s′

D2
s′

, (2.43)

whereP (z′l |zl) andP (z′s|zs) are the probability of measuring a redshiftz′l or z′s for a lens or source galaxy

respectively, given that its true redshift iszl or zs. I model the probability distributionsP (z′l |zl) and

P (z′s|zs) as Gaussians, centred respectively uponzl andzs with some standard deviation∆z, and assume

the sameΛCDM cosmology as described in Section 2.1.5.

Assuming an underlying ‘correct’zl andzs and evaluating these integrals numerically, the fractional errors
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on a single measurement of shear and flexion due to redshift uncertainties can be estimated as

(∆γ)z

γ
≃

√

√

√

√

〈

(

DlDls

Ds

)2
〉

−
〈

DlDls

Ds

〉2

/

〈

DlDls

Ds

〉

(2.44)

(∆F)z

F =
(∆G)z

G ≃

√

√

√

√

〈

(

D2
l Dls

Ds

)2
〉

−
〈

D2
l Dls

Ds

〉2

/

〈

D2
l Dls

Ds

〉

(2.45)

Although the size of these fractional errors is a function ofthe specific underlying lens and source redshift,

which thus varies on a galaxy pair-by-pair basis, for the purpose of this first investigation I setzl andzs
always equal to the median lens and source redshift respectively for the mock survey sample we consider.

Compared to a model in which source and lens redshifts vary, this single-redshift approximation causes a

systematic underestimate of redshift errors for higher redshift pairs, and an overestimate of redshift errors

for lower redshift pairs. As a first model we assume that thesebiases cancel on average; this is not strictly

true. However, it can be argued that the single-redshift approximation will not significantly damage the

results of a comparative analysis, as the redshift errors are a small source of uncertainty when compared to

the lensing measurement noise due to intrinsic galaxy shapes.

One further assumption, the availability of reliable photometric redshift estimates forboth sources and

lenses, is also a simplification of the modelling that requires discussion. For many real surveys only the

lens sample will have well characterized redshift information; often there is none (see, e.g., HYG04) but

this is becoming increasingly rare. In the absence of redshift information there is extra scatter in the

signal caused by ignorance of the lensing geometry, which this model fails to take into account. However,

Kleinheinrich et al. (2005) show that this scatter is significantly reduced with accurate photometric redshifts

even if only available for the lens galaxies, and lensing surveys of the future have high quality multi-band

imaging as a high priority. Therefore, and given the largelyqualitative aims of this analysis, we assume

redshift information for both source and lens samples.

2.2.4 Choice of model parameters

For the fiducial virial halo mass I chooseM200 = 1 × 1012h−1M⊙ (corresponding to a rest-frame B-band

luminosity ofL∗
B ≈ 1.2×1010h−2LB,⊙ according to the results of HYG04). I choose to model confidence

limits for two ground-based surveys; one similar in size to that used by HYG04, and one covering a

substantially larger area of 1700 square degrees. I also consider a deeper space-based imaging survey with

far smaller area of 0.5 square degrees.

The sample of galaxies used by HYG04 was taken fromRc band imaging of the the Red-Sequence Cluster

Survey (Yee & Gladders 2002) and containedNl ∼ 1.2 × 105 lens galaxies andNs ∼ 1.5 × 106 source

galaxies over a sky area of 42 sq deg. This corresponds to sky number densities ofnl ≈ 0.8 arcmin−2 for

the lenses andns ≈ 10 arcmin−2 for the source galaxies. For the larger ground-based surveyI assume the

same depth, but increase the survey area to 1700 sq deg. I assume a redshift uncertainty of∆z = 0.1(1+z)

for each galaxy in either sample, and use the median lens and source redshifts found by HYG04 ofzl =
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0.35 andzs = 0.53 for both ground-based mock datasets. I set the underlying NFW lens halo concentration

to c = 7.20 as in Section 2.1.5.

For the mock space-based dataset I set the survey area to0.5 sq deg, with number densities ofnl = 10

arcmin−2 andns = 30 arcmin−2 due to the increased depth and quality of imaging expected for space-

based results. For the redshift uncertainties I use a value of ∆z = 0.05(1 + z) (c.f. the COMBO-17

photometric redshift survey, Wolf et al. 2004, which provides redshift information for the GEMS and

STAGES surveys, Rix et al. 2004; Gray & STAGES Collaboration2006), and setzl = 0.5 andzs = 1.0.

Following the predictions of Navarro et al. (1997) I model each lens halo as having a slightly smaller

concentration ofc = 7.02 at this deeper redshift.

2.2.5 Simulated galaxy-mass cross correlations

I then generate a set of mock results for the tangential shearand radial flexion, averaged over annuli

around the lensing galaxies (at increasing angular separations between lens and source) for the whole

ensemble of galaxies in any given survey. These mock resultsare made by taking the theoretical (NFW)

prediction for the average shear or flexion over each annulusof angular separation and offsetting it by a

Gaussian random deviate scaled to the estimated overall error for that bin. This overall error is estimated

by combining, in quadrature, the error due to redshift uncertainty and the intrinsic scatter for a single

measurement. Multiplying this combined error by a factor of1/
√
Nbin, whereNbin is the number of lens-

source pairs within the annulus over which we are averaging our lensing measurements, gives the error on

the tangential or radial shear and flexion in a given bin.

All that remains is to choose at what angular separations to impose the divides between annuli for averaging

shear and flexion measurements. Since flexion is most useful on small scales, while shear signals remain

strong at scales large enough for the flexion to become noise dominated, I divide up the angular scales for

measurement according to a geometric binning scheme. I choose 10 annuli such that the centre of theith

annulus lies at an angular radius

ri = af (i−1) (2.46)

wherea = 2 arcsec and the geometric factorf = 1.5. In this way I describe annuli which usefully cover

both small (down to 2 arcsec) and larger (up to 77 arcsec) scales of angular separation.

2.2.6 Confidence estimates on lens model parameters

One final assumption is made, namely that measurements of shear, first flexion and second flexion are

mutually statistically independent, which then allows thelog-likelihood surfaces derived from each to be

summed to give final, combined constraints. We currently have no reliable data concerning the degree

of correlation to expect in real data, and so present our results given a degree of warning. In Figure 2.3

we present likelihood contours for fiducialM200 andc parameters resulting from a maximum likelihood

analysis of the three mock datasets generated using this simple model. The three levels plotted show where

∆χ2 = 2.3, 4.61 and6.17, corresponding to 1-, 2- and 3-σ confidence intervals for normally distributed

error distributions (see Press et al. 1992). Again we note that, although we are here modelling the measure-

ment errors as normally distributed, this is not necessarily a good approximation (this will be discussed in
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much greater detail in Chapter 4). In addition, the independence ofγ, F andG in practical measurement

will need to be investigated further to test these results.

The most important and interesting feature of the likelihood contours seen in Figure 2.3 is the qualitative

fact that the constraints derived from measurements of shear and the two flexion fields are oriented at

different angles in the plane. This allows the three measurables to complement one another, and may offer

improved constraints upon the concentration parameter in particular. This should perhaps not come as a

surprise; as found by Goldberg & Bacon (2005), the signal-to-noise of flexion is best close to the lensing

mass on the sky plane. In fact, flexion is most sensitive on theangular scales at which the logarithmic slope

of the NFW halo changes from -1 to -3, typically≃ 5 arcsec for anM200 = 1 × 1012M⊙. This is not so

for shear, which is a better probe of the outer regions and overall mass.

Further theoretical insight into this result can be found inthe fact that, whilst shear is a measure related to

the projected mass densityκ, the first and second flexion probe the local gradient ofκ. This gradient is

determined by the slope of the halo profile, and the concentration of an NFW profile directly parameterizes

what slope we should expect at a given distance from the halo centre. We should therefore expect that

flexion has the potential to improve existing constraints onthe concentrations of galaxy-sized dark matter

haloes, which is what Figure 2.3 concludes.

It is also noted from Figure 2.3 that the size of the 68 per centconfidence interval derived on the fiducial

M200 for the HYG04-like survey is in good agreement with the mass constraints found by those authors for

galaxies scaled to a (slightly smaller) fiducialLB = 1010h−2LB,⊙, namelyM200 = (8.4 ± 0.7 ± 0.4) ×
1011h−1M⊙. The second error estimate in this value corresponds to a systematic uncertainty due to the

fact that HYG04 had no access to multi-colour redshift information for the Red-Sequence Cluster Survey

(see HYG04 for details), but assigned distances using the magnitude of objects.

We note that even despite this lack of redshift information,the HYG04 errors due to intrinsic galaxy ellip-

ticity dominate over redshift uncertainties in their investigation of galaxy-galaxy shear. This justifies the

simple single-redshift model for the treatment of redshifterrors, described in Section 2.2.3. Furthermore,

the good agreement between the shear-derived confidence intervals achieved by HYG04 and our own sim-

ple model provides some vindication of the single-luminosity approximation described in Section 2.2.1. In

the final Section we enter into a thorough discussion of further possible limitations in the modelling, before

deciding what firm conclusions, if any, may be drawn.

2.2.7 Caveats and conclusions

We have presented an investigation into the halo parameter constraints available from a simple analysis

of synthetic galaxy-mass correlation functions, and foundresults that suggest flexion measurements may

improve such analyses when combined with measurements of shear.

However, five important simplifying assumptions went into the model:

1. The modelling of each lens galaxy as having the same luminosity, mass and concentration (see

Section 2.2.1), referred to as the single-luminosity approximation.

2. The assumption of Gaussian-distributed measured shear and flexion values.
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Figure 2.3: Estimated confidence limits on NFW halo parameters available using mea-
surements of (dotted) shear alone, (dashed) first flexion alone, (dot-dashed) second
flexion alone and (solid line) combined measurements of shear and both flexions. Top:
for a 42 sq deg ground-based survey such as that used by Hoekstra et al. (2004). Mid-
dle: for a 1700 sq deg ground-based survey. Bottom: for a 0.5 sq deg space based
survey.
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3. The placing of the entire lens population at a single, survey-median lens redshiftzl, and the entire

source population at a single, survey-median source redshift zs (see Section 2.2.3). This we have

previously referred to as the single-redshift approximation.

4. The assumption that photometric redshift information will be available for both source and lens

galaxy samples.

5. The statistical independence of measurements ofγ, F andG, allowing log-likelihood surfaces to be

summed to provide combined constraints on fiducial halo parameters.

The success of our model in matching the shear-derived constraints presented in HYG04, along with the

secondary importance of redshift errors in their analysis (despite having no photometric redshifts), provides

justification of assumptions 1, 3 and 4 above. Even if these assumptions were not able to reproduce the

results of HYG04, these errors would not preferentially strengthen either the shear or flexion signal, and

would therefore not prejudice the validity of our comparison between the merits of shear and flexion for

galaxy-galaxy lensing.

Unfortunately, data does not exist to quantify the mutual biasing and covariance between simultaneous

measurements ofγ, F andG (assumption 5 above), although Schneider & Er (2007) have shown evidence

that measurements of shear from simple galaxy light profilesbecome biased in the presence of a gravita-

tional flexion signal. This issue will be of importance in coming years, and will require large quantities of

simulation data exploring the lensing of galaxies with accurate morphological characteristics.

The assumption of Gaussian measurement errors (assumption2) may be most difficult approximation to

justify in my analysis. It is known that the distribution of measured shear may be reasonably approxi-

mated by a Gaussian distribution (e.g., Schneider & Rix 1997), but this is not known for flexion. In fact,

preliminary work suggests that flexion measurements produce highly non-Gaussian distributions, which if

sufficiently severe may invalidate the results presented, notwithstanding efforts to use more sophisticated

statistical tools to attempt to circumvent the problem.

Being content to trust and interpret these results in a qualitative fashion, the simple models presented in

this Chapter suggest that flexion may offer a valuable new wayof improving constraints upon the shape of

haloes surrounding galaxies. However, the accurate modelling of a galaxy-galaxy lensing analysis designed

to cope with the non-Gaussian distribution of measured flexion will be necessary to draw more firm con-

clusions. Whether such modelling would prove the best way todetermine the real extent to which flexion

provides useful extra information is doubtful; the final test will lie in the undertaking of a full galaxy-galaxy

shear-flexion analysis using real data.

My efforts to do just this, using imaging data from theHSTGEMS survey (Rix et al. 2004), is the subject

of Chapters 4 onwards. In the following Chapter we address animportant and related question, namely the

practical estimation of flexion from noisy galaxy images, typically heavily distorted by the effects of an

anisotropic point spread function.
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CHAPTER 3

ESTIMATING SHEAR AND

FLEXION

The accurate measurement of galaxy shapes, especially in the presence of large systematic distortions due

to imperfect telescope optics, is vital if reliable conclusions are to be drawn from weak lensing analyses. In

this Chapter I describe a recent development in this field known as theshapelettechnique, which models

galaxies as a sum of basis functions that behave well under deconvolution. This method lends itself natu-

rally to the measurement of flexion, and it was within the shapelet framework that a first practical method

for flexion analysis was proposed. I describe how shapelets may be used to deconvolve galaxy images with

a model of the anisotropic point spread function, and in the final Section describe how estimators of shear

and flexion (presented in Massey et al. 2007d) can be drawn from these deconvolved image models.
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3.1 Cartesian shapelets

The underlying concept of the shapelet approach, as introduced by Refregier (2003) and Bernstein & Jarvis

(2002), is the expression of an object surface brightness asa sum of orthonormal, two-dimensional basis

functions:

I(θ) =
∞
∑

n1=0

∞
∑

n2=0

fn1,n2
Bn1,n2

(θ;β). (3.1)

In the shapelet formalism of Refregier (2003), the basis functionsBn = Bn1,n2
have dimensions of

inverse angle, the coefficientsfn therefore having dimensions flux× inverse angle, recovering the required

dimensionality of surface brightness forI(θ). The choice of basis functions is free in general, but the

Cartesian shapelet basis set is defined by the basis function

Bn(θ;β) =
Hn1

(θ1/β)Hn2
(θ2/β)e−|θ|2/2β2

2(n1n2)β
√
πn1n2

, (3.2)

whereHni(x) is a Hermite polynomial of orderni, and the important free quantityβ is the angular scale

size of the shapelet basis set (typically in arcsec). A dimensional basis set is chosen so as to satisfy the

following orthonormality relationship

∫∫

Bn1,n2
(θ;β)Bm1,m2

(θ;β)d2θ = δn1

m1
δn2

m2
, (3.3)

whereδa
b is here the Kronecker delta function.

We refer to the sum of the two parametersn1 andn2 as the order of the shapelet basis function, and will

generally truncate shapelet models to some limiting ordernmax such thatn1 + n2 ≤ nmax. Importantly,

being weighted by a Gaussian outer envelope, these functions have robust and well described behaviour

under mutual convolution which makes them particularly suited towards correcting images for the effects

of an instrumental point spread function (PSF). These basisfunctions are illustrated in Figure 3.1, which is

taken from Massey & Refregier (2005).

3.1.1 Image transformations in Cartesian shapelets

The Cartesian shapelet basis functions are also the solutions to the two-dimensional quantum harmonic

oscillator (QHO) within a geometrically square potential,and so ladder operators can be defined in analogy

to the quantum mechanical system:

â1Bn1,n2
=

√
n1Bn1−1,n2

(3.4)

â†1Bn1,n2
=

√
n1 + 1Bn1+1,n2

(3.5)

â2Bn1,n2
=

√
n2Bn1,n2−1 (3.6)

â†2Bn1,n2
=

√
n2 + 1Bn1,n2+1. (3.7)
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Figure 3.1: Cartesian shapelet basis functions used to decompose galaxy images;
shown are only those functions for whichnmax ≤ 6. Figure taken from Massey
& Refregier (2005).

Just as ladder operators in quantum mechanics describe transitions between energy and momentum states,

and thus changes in the overall wavefunction, these ladder operators may be used to describe transforma-

tions upon images represented by a sum of shapelet basis functions.

The analogy between the shapelet basis set and solutions of the QHO is useful as it provides a clear

indication as to the relationship between the basis transformationsâ†i and âi, and the simplest possible

linear transformations upon the image plane. Considering the QHO system, the basis functionsBn are

eigenstates of the Hamiltonian

Ĥ =
1

2

[(

x̂2
1 + x̂2

2

)

+
(

p̂2
1 + p̂2

2

)]

, (3.8)

wherex̂i andp̂i are analagous to dimensionless position and angular momentum operators, and are given

on the image plane by

x̂i =
θi

β
, p̂i =

β

i

∂

∂θi
, (3.9)

where it is instructive to reassert that the quantityβ is the angular scale of the chosen basis set (3.2).

The raising and lowering operators defined in Equations (3.4)-(3.7) may also be defined in terms of these

position and momentum operators:

â†i =
1√
2

(x̂i − ip̂i) , âi =
1√
2

(x̂i + ip̂i) , (3.10)

where this important result follows directly from the analogy with the QHO (Refregier 2003). The final
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step is to use Equations (3.1) and (3.9) to rewrite these results as follows:

θiI(θ) = βx̂iI(θ) =
β√
2

∞
∑

n1=0

∞
∑

n2=0

fn1,n2

(

âi + â†i

)

Bn(θ;β) (3.11)

∂

∂θi
I(θ) =

ip̂i

β
I(θ) =

1

β
√

2

∞
∑

n1=0

∞
∑

n2=0

fn1,n2

(

âi − â†i

)

Bn(θ;β). (3.12)

As an example of the practical use of these results, considerthat we wish to find an shapelet expression for

the partial derivative with respect toθ1 of a general imageI(θ). Again using Equation (3.1) and the results

above, we have

∂

∂θ1
I(θ) =

1

β
√

2

∞
∑

n1=0

∞
∑

n2=0

fn1,n2

(

â1 − â†1

)

Bn1,n2
(θ;β)

=
1

β
√

2

∞
∑

n1=0

∞
∑

n2=0

fn1,n2

[√
n1 Bn1−1,n2

(θ;β) −
√
n1 + 1 Bn1+1,n2

(θ;β)
]

=
1

β
√

2

∞
∑

n1=0

∞
∑

n2=0

(√
n1 + 1 fn1+1,n2

−√
n1 fn1−1,n2

)

Bn1,n2
(θ;β), (3.13)

where in the final line we have made two changes of summation variable so as to absorb the transformation

of basis functions into the shapelet coefficientsfn.

The transformations of Equations (3.11), (3.12) and the example Equation (3.13) are linear and may be

repeated to describe any general distortion or coordinate transformation upon images represented by a

shapelet series, in terms of the ladder operatorsâ†i andâi. Once thus described, short steps similar to those

in the example of Equation (3.13) allow any image distortionor transformation to be written entirely in

terms of repeated linear transformations upon the shapeletcoefficientsfn.

3.1.2 Lensing transformations in Cartesian shapelets

It is now instructive to expand these results to provide a description of coordinate transformations upon

the image plane, in particular the coordinate transformations we expect due to weak lensing. For clarity I

reproduce Equation (1.92), which describes the effect of weak shear and flexion upon the surface brightness

of a source galaxy:

I(θ) ≃
{

1 +

[

(A− I)ijθj +
1

2
Dijkθjθk

]

∂

∂θi

}

Is(θ). (3.14)

Immediately we see that using the results of Equations (3.11)-(3.13) the effects of weak shear and flexion

may be written in terms of shapelet transformations. We recall that theAij andDijk matrices may be
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written in terms ofγ, κ, F andG:

Aij(θ) =

(

1 − κ− γ1 −γ2

−γ2 1 − κ+ γ1

)

, (3.15)

Dij1(θ) = −1

2

(

3F1 + G1 F2 + G2

F2 + G2 F1 − G1

)

Dij2(θ) = −1

2

(

F2 + G2 F1 − G1

F1 − G1 3F2 − G2

)

. (3.16)

Using these expressions forAij andDijk, we may rewrite Equation (3.14) as

I(θ) ≃
(

1 + κK̂ + γiŜi + F iF̂i + GiĜi

)

Is(θ), (3.17)

where we have now defined the shapelet lensing operatorsK̂, Ŝi, F̂i andĜi, each of which is a particular

combination of̂a†i andâi that can be found by repeatedly substituting the results from Equations (3.11) and

(3.12) into the expression forI(θ) given in Equation (3.14).

It should be stressed at this point that the result given in Equation (3.17) is a first order approximation to the

effects of weak lensing image transformations, as is Equation (3.14) from which it derives. These results

both stem from a Taylor series expansion of the source surface brightness, which I will now briefly discuss.

We consider the second order approximation to the lens equation, previously discussed in Section 1.2.8 and

given by

βi ≃ θi + (A− I)ijθj +
1

2
Dijkθjθk, (3.18)

and rewrite this expression in the simpler formβi ≃ θi + ∆θi, remembering that the vector quantityβi

refers to coordinates on the source plane,not to the unfortunate yet universally adopted notation for the

shapelet basis scale sizeβ.

Since surface brightness is conserved by lensing, we haveI(θ) = Is(β), which we may express as a Taylor

series expansion in terms ofθi and∆θi:

I(θ) ≃ Is(θ) + ∆θi
∂Is(θ)

∂θi
+

∆θi∆θj

2!

∂2Is(θ)

∂θi∂θj
+

∆θi∆θj∆θk

3!

∂3Is(θ)

∂θi∂θj∂θk
+ . . . (3.19)

Equations (3.14) and (3.17) amount to a simple truncation ofthis series at first order. In the shapelet

operator notation of Equation (3.17), this series expansion may be written very succinctly as

I(θ) ≃
(

1 + eκK̂ + eγiŜi + eFiF̂i + eGiĜi

)

Is(θ). (3.20)

Note that we refrain from writing these expressions as strict equalities due to the fact that they retain the

use of the approximate relationβi ≃ θi + ∆θi.

Whether the truncation represented by Equations (3.14) and(3.17) is a valid approximation depends on

whether the error introduced by this truncation is at the same order as the correction we make by express-

ing ∆θi to second order. For stronger shear and flexion signals in particular this is a question of some

importance. It is also a practical consideration, as it not only depends on the strength of the expected shear

and flexion signal but also on the light profiles (and derivatives thereof) of typical galaxy profiles. However,
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as will be seen, use of the expression (3.20) to construct shapelet estimators will quickly yield expressions

of unpalatable complexity, particularly in the case of flexion. Goldberg & Bacon (2005) discuss this issue

briefly and conclude that one may proceed using Equation (3.14), but there is clearly scope for further in-

vestigation into this question. In particular, it will be important to more clearly define the regimes in which

the strength of the shear or flexion signal renders it an invalid approximation.

In this work I too proceed using only Equation (3.14), which Ijustify both by confining myself to the

weak shear and flexion regime and in the light of the limited statistical confidence expected for flexion

measurements using current survey data. As sample sizes increase, it may be necessary to explore possible

biases engendered by the truncation of Equation (3.19), a truncation which is currently inherent in all

shapelet lensing measurement methods (Bernstein & Jarvis 2002; Refregier & Bacon 2003; Massey &

Refregier 2005; Kuijken 2006).

Assuming that Equation (3.14) is a valid approximation to the effects of weak lensing, we may repeatedly

substitute the results from Equations (3.11) and (3.12) to express the shapelet transformation operators of

Equation (3.17) in terms of̂a†i andâi. Performing these calculations, Refregier (2003) derivesthe shapelet

expressions for the convergence and shear transformationsas

κK̂ = κ+
κ

2

(

â†21 + â†22 − â2
1 − â2

2

)

(3.21)

γ1Ŝ1 =
γ1

2

(

â†21 − â†22 − â2
1 + â2

2

)

(3.22)

γ2Ŝ2 = γ2

(

â†1â
†
2 − â1â2

)

. (3.23)

Similar expressions for the first and second flexion are considerably more involved but may be derived in

exactly the same fashion using Equations (3.11)-(3.17) as described above. In this way, the expressions for

F̂i found to be

F1F̂1 =
F1β

8
√

2

{

3
(

â†31 − â3
1

)

+ 3
(

â1â
†2
1 − â†1â

2
1

)

+ 3
(

â†1 + â†1

)(

â1â
†
1 − â†1â1

)

+
(

3â†1 + â1

)(

â†22 + â2â
†
2

)

−
(

â†1 + 3â1

)(

â†2â2 + â2
2

)}

, (3.24)

F2F̂2 =
F2β

8
√

2

{

3
(

â†32 − â3
2

)

+ 3
(

â2â
†2
2 − â†2â

2
2

)

+ 3
(

â†2 + â†2

)(

â2â
†
2 − â†2â2

)

+
(

3â†2 + â2

)(

â†21 + â1â
†
1

)

−
(

â†2 + 3â2

)(

â†1â1 + â2
1

)}

. (3.25)

In the same way, the expressions for the second flexionĜi transformations in terms of the shapelet ladder
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operators are

G1Ĝ1 =
G1β

8
√

2

{

â†31 + â†21 â1 − â†1â
2
1 − â3

1

+
(

3â†22 + 2â†2â2 − â2
2

)

â†1 −
(

3â2
2 + 2â†2â2 − â†22

)

â1

}

, (3.26)

G2Ĝ2 =
G2β

8
√

2

{

â3
2 + â†2â

2
2 − â†22 â2 − â†32

−
(

3â†21 + 2â†1â1 − â2
1

)

â†2 +
(

3â2
1 + 2â†1â1 − â†21

)

â2

}

. (3.27)

Instantly the complexity of these transformations is clear, especially in the case of the first flexion transfor-

mations. This has ramifications for the use of the shapelet method in regimes where it is necessary to use a

higher order expansion of the Taylor series for the image surface brightness in Equation (3.19). Calculating

explicit second order expressions, using Equation (3.20),for the convergence and shear operators above is a

laborious task. For the flexion transfomations, given the non-commutative nature of thêa†i andâ operators,

these calculations will be become extremely tedious and difficult to verify. Should it be necessary to use

such higher order expressions, i.e. when measuring shear and flexion of sufficient signal strength, care will

be necessary in the calculation and presentation of these results.

The effect of these operators can be written equivalently interms of transformations upon the shapelets

coefficientsfn, by writing the operation upon the full image, as in the example of Equation (3.13), and

making a suitable change to the summation variable. Taking Equations (3.21), (3.22) and (3.23), we can

rexpress the action of̂K, Ŝ1 andŜ2 as follows:

(1 + κK̂) : f s
n1,n2

→ fn1,n2
= (1 + κ)f s

n1,n2

+
κ

2

{

√

(n1 − 1)n1 f
s
n1−2,n2

+
√

(n2 − 1)n2 f
s
n1,n2−2

−
√

(n1 + 1)(n1 + 2) f s
n1+2,n2

−
√

(n2 + 1)(n2 + 2) f s
n1,n2+2

}

, (3.28)

(1 + γ1Ŝ1) : f s
n1,n2

→ fn1,n2
= f s

n1,n2

+
γ1

2

{

√

(n1 − 1)n1 f
s
n1−2,n2

−
√

(n2 − 1)n2 f
s
n1,n2−2

−
√

(n1 + 1)(n1 + 2) f s
n1+2,n2

+
√

(n2 + 1)(n2 + 2) f s
n1,n2+2

}

, (3.29)

(1 + γ2Ŝ2) : f s
n1,n2

→ fn1,n2
= f s

n1,n2

+
γ2

2

{√
n1n2 f

s
n1−1,n2−1

−
√

(n1 + 1)(n2 + 2) f s
n1+1,n2+1

}

, (3.30)

wheref s
n denotes the shapelet coefficients of the unlensed source image. Expressions for thêFi and
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Ĝi transformations in terms changes to the shapelet coefficients f s
n can also be derived using Equations

(3.24)-(3.27) and the steps outlined in Equation (3.13).

Something that will be of use in the later Sections is to notice, as pointed out by Goldberg & Bacon

(2005), that the effect of shear and convergence in shapeletspace is to transfer betweenfn coefficients

for which ∆n1 + ∆n2 = ±2. In contrast, the flexion operators of Equations (3.24) and (3.25) couple

pairs of coefficients for which∆n1 + ∆n2 = ±1,±3. This useful property will have ramifications for

the construction of Cartesian shapelet estimators in Section 3.4.2, as it allows the action of weak shear and

flexion to be treated separately.

It is the knowledge described above, of how lensing image transformations in real space may be related to

those in shapelet space, that allows Cartesian shapelet models to be used to create estimators of shear and

flexion. Again, this will be described in the later Section 3.4.2, but before proceeding I will first describe

an alternative shapelet basis set that has many useful properties, known as polar shapelets.
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3.2 Polar shapelets

The formalism of polar shapelets, introduced initially by Refregier (2003) and subsequently in greater

detail by Massey & Refregier (2005), is closely related to that of Cartesian shapelets. Instead of the basis

set defined by Equations (3.1) and (3.2), polar shapelets express the object surface brightnessI(θ) as

I(θ) = I(θ, φ) =
∞
∑

n=0

n
∑

m=−n

fn,mPn,m(θ, φ;β), (3.31)

whereθ andφ are circular polar coordinates on the image plane, defined asin Section 2.1, and the free

parameterβ is once again the angular scale size of the basis set. The polar shapelet basis functions, which

we labelPn,m, are defined by Massey & Refregier (2005) as

Pn,m(θ, φ;β) =
(−1)(n−|m|)/2

β|m|+1

{

[(n− |m|)/2]!

π[(n− |m|)/2]!

}1/2

θ|m|L|m|
(n−|m|)/2

(

θ2

β2

)

e−θ2/2β2

e−imφ, (3.32)

using the following definition of the associated Laguerre polynomials (see, e.g., Arfken & Weber 2005):

Lq
p(x) ≡

x−qex

p!

dp

dxp

(

xp+qe−x
)

. (3.33)

An important difference between the Cartesian and polar basis sets is that the functionsPn,m are no longer

purely real, having complex phasee−imφ. In order to ensure thatI(θ) remains real, we require thatfn,m

is complex in general and that

fn,mPn,m + fn,−mPn,−m = fn,mPn,m + fn,−mP
∗
n,m (3.34)

is purely real for alln,m. This can be done by enforcing the conditionfn,m = f∗
n,−m.

As in the case of the Cartesian basis set, the polar basis setPn,m is defined as having dimensions of inverse

angle, and the polar shapelet coefficentsfn,m have dimensions flux× inverse angle. This ensures that

we recover the necessary dimensions of surface brightness for I(θ), and thatPn,m satisfy the following

orthonormality relationship on the image plane:

∫∫

Pn,m(θ;β)Pk,l(θ;β)d2θ = δn
k δ

m
l , (3.35)

where, as in Equation (3.3),δa
b is the Kronecker delta function. The polar shapelet basis functions are

depicted in Figure 3.2, which is taken from Massey & Refregier (2005). As can also be seen from Equation

(3.32), each separate member of the basis set is uniquely described using the two integersn andm, with

n > 0 and|m| ≤ n. These integers form thex andy axis labels of Figure 3.2, which depicts eachPn,m

basis function up to a maximum ordern ≤ 6.

Once more, it is possible to draw analogies between polar shapelets and the solution to the QHO. The

Pn,m basis functions correspond to eigenstates of the Hamiltonian for a particle confined in circularly

symmetric, two dimensional, harmonic potential centred onthe origin of the image plane. The quantities

n andm then correspond to the quantum numbers for energy and angular momentum, respectively, for the

Pn,m eigenstate.
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Figure 3.2: Polar shapelet basis functions up tonmax = 6, with the real components
shown in the top panel and the imaginary components below (note that there are no
imaginary components to them = 0 members of the basis set). Figure taken from
Massey & Refregier (2005).
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3.2.1 Image transformations in polar shapelets

Whilst the integersn andm provide the most convenient means of labelling and visualizing the polar

basis setPn,m, it is most convenient to derive image transformation results using the left-handed and right-

handed shapelet numbersnr andnl, with nr = (n +m)/2 andnl = (n−m)/2. These numbers provide

an equivalent, full characterization of the polar basis set, and in the QHO analogy can be thought of as

quantum numbers describing the positive and negative spin.

The utility of this description of the polar shapelet basis set, in which basis functionsPn,m correspond

to an equivalentPnr ,nl
, is that simple ladder operators can be defined for raising and lowering left- and

right-handed shapelet order, such that

ârPnr ,nl
=

√
nr Pnr−1,nl

=

√

n+m

2
Pn−1,m−1 (3.36)

â†rPnr ,nl
=

√
nr + 1 Pnr+1,nl

=

√

n+m+ 2

2
Pn+1,m+1 (3.37)

âlPnr ,nl
=

√
nl Pnr,nl−1 =

√

n−m

2
Pn−1,m+1 (3.38)

â†lPnr ,nl
=

√
nl + 1 Pnr,nl+1 =

√

n−m+ 2

2
Pn+1,m−1 (3.39)

Moreover, the effect of these polar ladder operators can be simply expressed in terms of the Cartesian

ladder operators, given in Equations (3.4)-(3.7), as follows:

â†rI(θ) = â†r

∞
∑

n=0

n
∑

m=−n

fn,mPn,m =
1√
2

(

â†1 − iâ†2

)

∞
∑

n1=0

∞
∑

n2=0

fn1,n2
Bn1,n2

(3.40)

â†l I(θ) = â†l

∞
∑

n=0

n
∑

m=−n

fn,mPn,m =
1√
2

(

â†1 + iâ†2

)

∞
∑

n1=0

∞
∑

n2=0

fn1,n2
Bn1,n2

(3.41)

ârI(θ) = âr

∞
∑

n=0

n
∑

m=−n

fn,mPn,m =
1√
2

(â1 + iâ2)

∞
∑

n1=0

∞
∑

n2=0

fn1,n2
Bn1,n2

(3.42)

âlI(θ) = âl

∞
∑

n=0

n
∑

m=−n

fn,mPn,m =
1√
2

(â1 − iâ2) ,

∞
∑

n1=0

∞
∑

n2=0

fn1,n2
Bn1,n2

(3.43)

see Refregier (2003); Massey & Refregier (2005). It is important to be clear here that in the relationships

abovefn,m are the complex polar shapelet coefficients corresponding to the image as expressed by Equa-

tion (3.31), and quite different from the Cartesian shapelet coefficientsfn1,n2
used to express the same

image in Equation (3.1).

Close examination of the definition of the polar shapelet basis functions given by Refregier (2003) and

Massey & Refregier (2005) reveals a discrepancy between thetwo in the definition ofnr andnl: in the

definitions given above, and below, I follow Massey & Refregier (2005). The simple schematic diagram

presented in Figure 3.3 illustrates the directions in whichthese right- and left-handed operators act within

the polar shapelet basis space depicted in Figure 3.2.
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left−handed

right−handed

Figure 3.3: Schematic diagram showing the direction of action of the right- and left-
handed operators in polar shapelet space. The solid arrows indicate the directions of
order raising, and the clear arrows those of order lowering,operations.

We now follow a similar procedure to that of Section 3.1 in order to derive results for the simple, linear

image transformation operationsθiI(θ) and∂iI(θ). Using Equations (3.11) and (3.12) with Equations

(3.40)-(3.43), we find

θ1I(θ) =
β√
2

∞
∑

n=0

n
∑

m=−n

fn,m

(

â†r + â†l + âr + âl

)

Pn,m(θ;β) (3.44)

θ2I(θ) =
β√
2

∞
∑

n=0

n
∑

m=−n

fn,m

(

â†r − â†l − âr + âl

)

Pn,m(θ;β) (3.45)

∂

∂θ1
I(θ) =

1

β
√

2

∞
∑

n=0

n
∑

m=−n

fn,m

(

−â†r − â†l + âr + âl

)

Pn,m(θ;β) (3.46)

∂

∂θ2
I(θ) =

1

β
√

2

∞
∑

n=0

n
∑

m=−n

fn,m

(

−â†r + â†l − âr + âl

)

Pn,m(θ;β). (3.47)

Repeated use of these linear expressions will allow us to express any general image transformation in terms

of simple operations upon the polar basis setPn,m, just as the expressions given in Equations (3.11) and

(3.12) allowed for the Cartesian basis set.

3.2.2 Lensing transformations in polar shapelets

We now derive polar shapelet results for the image transformations we expect in a the specific context

of weak gravitational lensing. As in the case of Cartesian shapelets, we make use of the approximate

expression for the lensed surface brightness given in Equation (3.14) but emphasise that its validity is likely

to be limited to regimes of weaker shear or flexion signals. The complex formulation of the polar shapelet

basis set means that it is now convenient to write expressions in terms of complex shear and flexion. As in

Section 1.2.9 we define the complex shearγ = γ1 + iγ2, first flexionF = F1 + iF2, and second flexion
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G = G1 + iG2. It turns out to be computationally convenient to reformulate theŜi, F̂i andĜi operators so

as to match this complex notation. We define theŜr operator as the counterpart toγ, and theŜl operator

as the counterpart toγ∗, such that

(

γŜr + γ∗Ŝl

)

I(θ) =
(

γ1Ŝ1 + γ2Ŝ2

)

I(θ). (3.48)

We also define similar polar shapelet operators forF andG, and therefore rewrite Equation (3.17) in the

following polar shapelet form:

I(θ) ≃
(

1 + κK̂ + γŜr + γ∗Ŝl + F F̂r + F∗F̂l + GĜr + G∗Ĝl

)

Is(θ) (3.49)

Using Equations (3.14) and (3.49), combined with the polar shapelet transformation expressions of Equa-

tions (3.44)-(3.47), we find the following expressions for the weak lensing convergenceand shear operators:

κK̂ = κ
(

1 + â†l â
†
r − âlâr

)

(3.50)

γŜr =
γ

4

(

â†2r − â2
l

)

(3.51)

γ∗Ŝl =
γ∗

4

(

â†2l − â2
r

)

. (3.52)

Before moving to the calculations for flexion, it will be worthwhile to examine these results a little further.

Following steps similar to those described by Equation (3.13), these these operators can be rexpressed in

terms of their effects upon the polar shapelet coefficientsfn,m. We may express the convergence transfor-

mation in equivalent form as

(1 + κK̂) : f s
n,m → fn,m = (1 + κ)f s

n,m

+
κ

2

{

√

(n−m)(n+m) f s
n−2,m

−
√

(n−m− 2)(n+m+ 2) f s
n+2,m

}

. (3.53)

Calculated in the same fashion, the complex shear transformations in polar shapelets are given by

(1 + γŜr) : f s
n,m → fn,m = f s

n,m

+
γ

4

{

√

(n+m)(n+m− 2) f s
n−2,m−2

−
√

(n−m+ 2)(n−m+ 4) f s
n+2,m−2

}

(3.54)

(1 + γ∗Ŝl) : f s
n,m → fn,m = f s

n,m

+
γ∗

4

{

√

(n−m)(n−m− 2) f s
n−2,m+2

−
√

(n+m+ 2)(n+m+ 4) f s
n+2,m+2

}

. (3.55)

These results are also given in Massey & Refregier (2005). Itis worth pausing to consider the effect of the

transformations described by Equations (3.50)-(3.55) in terms of the diagram of shapelet space presented
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γ

γ∗

κ

Figure 3.4: Schematic diagram showing the direction of action of the shear and
convergence operators in polar shapelet space upon a simplegalaxy image with
I(θ) = f0,0P0,0(θ;β).

in Figure (3.2). Firstly, for clarity, we reproduce Equation (3.31) once more:

I(θ) =

∞
∑

n=0

n
∑

m=−n

fn,mPn,m(θ;β). (3.56)

In what follows it will be convenient to refer to “shapelet power”, which we refer as being the contribution

to the image sum above for terms corresponding to a given basis functionPn,m.

Consider the simplest possible shapelet galaxy image, a Gaussion withI(θ) = f0,0P0,0(θ;β) (i.e.fn,m =

0 for all n, m 6= 0). Looking at Equations (3.50) and (3.53) it can be seen that action of the convergence

transformationκK̂ in shapelet space is to add shapelet power, proportional tof0,0 andκ, to thef2,0 term

in the series of Equation (3.31). This will result in an isotropic dilation of the imageI(θ), precisely what

should be expected for the convergence, as shown in Figure 3.4. Galaxy images for whichfn,m is non-zero

for a general ofn andmwill display a more complex response to the convergence operator, but the intuitive

picture presented above is applicable nonetheless: the effect of a positive convergence is to shift shapelet

power to∆m = +2 modes in each case.

Turning to the shear transformations, the action of the operators described by Equations (3.51), (3.52),

(3.54) and (3.55) upon our simplef0,0 image will be to cause shapelet power to exist in thef2,±2 terms. The

power inf2,2 will increase proportionally tof0,0 andγ, whilst that inf2,−2 will increase proportionally to

f0,0 andγ∗. This behaviour is also schematically represented in Figure 3.4. If we consider a non-Gaussian

general image sum the action of the shear transformations are of course more complex, but the effect is to

shift power fromfn.m modes intofn±2,m±2 modes by an amount proportional toγ andγ∗.

Now is a good time to point out that, due to the parity properties of the basis setPn,m, it is onlym = 0

terms that contribute net flux to any imageI(θ). These terms are also usually the strongest in typical galaxy

shapelet models and so the overall effect is often very similar to the simple case discussed. Moreover, if

we consider an ensemble of source galaxies with a distribution of orientations which we assume to be

isotropic, the ensemble mean values offn,m for all m 6= 0 will tend towards zero as the ensemble size

increases. However, if we introduce the effect of gravitational shear we will increase power in them = ±2
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modes that doesnot cancel out on average, power which may be measured and simplyrelated to the shear

γ itself and the original power infn,0 modes. This, of course, may be done using Equations (3.51) and

(3.52). This is the heart of the polar shapelet method, and illustrates the how the rotational symmetries of

the polar shapelet basis set may be elegantly utilized for weak lensing measurements.

We find similar symmetry properties for the flexion transformations. Using Equations (3.14) and (3.49),

combined with general linear transformation results of Equations (3.44)-(3.47), I found the following ex-

pressions for theF F̂r andF∗F̂l first flexion transformation operators:

F F̂r =
Fβ
16

{

6â†l â
†2
r +

(

ârâ
†
r + 3â†râr + 7âlâ

†
l − 3â†l âl

)

â†r − 2â†2r âr

− 6ârâ
2
l −

(

â†l âl + 3âlâ
†
l + 7â†râr − 3ârâ

†
r

)

âl + 2â2
l â

†
l

}

(3.57)

F∗F̂l =
F∗β

16

{

6â†râ
†2
l +

(

âlâ
†
l + 3â†l âl + 7ârâ

†
r − 3â†râr

)

â†l − 2â†2l âl

− 6âlâ
2
r −

(

â†râr + 3ârâ
†
r + 7â†l âl − 3âlâ

†
l

)

âr + 2â2
râ

†
r

}

. (3.58)

Using the same Equations and method as for the first flexion transformations, I found the results for the

GĜr andGĜl transformations to be

GĜr =
Gβ
8

(

â†2r − â2
l

) (

â†r + âl

)

(3.59)

G∗Ĝl =
G∗β

8

(

â†2l − â2
r

)(

â†l + âr

)

. (3.60)

The relative simplicity of theG transformations when compared to those forF is striking, and this will

have ramifications in the construction of practical estimators for these quantities (as will be discussed in

Section 3.4). As for the case of shear and convergence, thesetranformations can be equivalently written in

terms of transformations upon thefn,m shapelet coefficients using repeated steps similar to thosedescribed

by Equation (3.13). The resulting expressions are somewhatlong, however, and are reproduced instead in

the Appendix, Equations (A-1)-(A-4). This is the form in which the flexion transformations were given in

Massey et al. (2007d). Richard Massey and I independently calculated these expressions, and compared

our results for verification and the correction of small errors. However, these results in this precise form are

not strictly necessary here in the body text in order to visualize the effects of the flexion transformations in

polar shapelet space, which we now discuss.

Consider again the simplest possible shapelet galaxy image, a pure Gaussian withI(θ) = f0,0P0,0(θ;β).

Using Equations (3.57) and (3.58) we can see that the effect of first flexion upon our image is to cause an

increase in shapelet power in thef1,±1 andf3,±1 modes, as depicted in Figure 3.5. This is exactly as we

would expect given the rotational symmetries ofF . We note also thatF does not cause power to move

solely to thef1,±1 modes; this, which would be the shapelet space approximation to a gross shift in the

object centroid, would not be sufficient to cause the skewed,dipole-likeF image transformation depicted

in Figure 1.5. A more complicated combination ofm = ±1 modes is necessary to describe this higher

order distortion. The case ofG is somewhat simpler, and we see from Equations (3.59) and (3.60) that the

effects of second flexion are to move power from thef0,0 mode intof3,±3 modes, shown in Figure 3.5.

Of course, for a more complicated image the effects of flexionare not so simply described; the first flexion
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F*

F F

F*

G

G*

Figure 3.5: Schematic diagrams showing the direction of action of the flexion opera-
tors in polar shapelet space upon a simple galaxy image withI(θ) = f0,0P0,0(θ;β).

transformation moves power fromfn,m modes intofn±1,m±1 andfn±3,m±1 modes, and the second flexion

moves power intofn±3,m±3 andfn±1,m±3 modes. However, we still expect that an ensemble of unlensed

images will have an averagefn,m that tends towards zero form 6= 0 modes. The effect of lensing flexion

will be therefore to introduce power into them = ±1 andm = ±3 modes that will not average towards

zero across an ensemble of images, and so a measured, statistically significant net power in these modes

can be used to estimateF andG. The use of polar shapelets to construct such estimators will be discussed

in Section 3.4.

This discussion concludes my outline of basic results in Cartesian and polar shapelets with relevance to

lensing image transformations. However, knowing how to make shapelet models and how they might

change under weak lensing is not enough: a further issue of importance in weak lensing is the correction

for imperfect telescope optics, which I now go on to discuss in the following Section.

3.3 Image deconvolution using shapelets

Overview

The treatment of systematic errors caused by non-gravitational image distortions is vital for a successful

weak lensing analysis, as such effects may be an order of magnitude larger than the signal of interest. The

effect most difficult to correct is the smearing of galaxy images due to convolution with the PSF (see, e.g.,

Kaiser 2000) of the observing telescope, and it is the shapelet approach to this issue that I aim to describe

in this Section. Instrumental PSFs are generally anisotropic, and so two important effects can be identified.

Firstly, the finite size of the PSF will cause blurring and circularization of the galaxy image, causing a

biasing reduction in the magnitude of lensing measurements. Secondly, the anisotropy of the PSF will

induce a slight residual signal in galaxy images, making them falsely appear gravitationally sheared or

flexed.

Aside from shapelets, many of the current methods used to correct for the effects of the PSF are based

on the schema proposed by Kaiser et al. (1995), Luppino & Kaiser (1997) and Hoekstra et al. (1998),
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commonly referred to as KSB or KSB+. The use of these techniques has proved to be both successful and

widespread. They have been implemented many times, with various minor modifications, for the placing of

competitive cosmological parameter constraints using both ground-based observations of “cosmic” shear

(e.g., Bacon et al. 2000; Kaiser et al. 2000; Van Waerbeke et al. 2000; Wittman et al. 2000; Hoekstra et al.

2006; Hetterscheidt et al. 2006; Semboloni et al. 2006) and similar observations from space (e.g., Hoekstra

et al. 1998; Heymans et al. 2005, H05 hereafter; Schrabback et al. 2007; Massey et al. 2007c,a).

Despite its practical success, there are certain elements of the KSB+ treatment that are conceptually un-

satisfactory and which potentially limit the accuracy of method (see, e.g., Kaiser 2000). This would then

require the development of non-KSB+ alternatives for use onthe large, high-quality lensing datasets of

the future. Kaiser (2000) provides a thorough discussion ofthese potential limitations, and this has indeed

prompted efforts to develop alternative weak lensing methods (Kaiser 2000; Rhodes et al. 2000; Bern-

stein & Jarvis 2002; Refregier 2003; Refregier & Bacon 2003;Massey & Refregier 2005; Kuijken 2006;

Melchior et al. 2007). The shapelet approach described in this Chapter is just one of many such methods

proposed to take galaxy shape measurement to the new levels of accuracy that will be required for the

analysis of future lensing surveys. The Shear TEsting Program (STEP: see Heymans et al. 2006b; Massey

et al. 2007b, Rhodes et al., in prep.) is coordinating research into the comparison of current weak shear

estimation methods, using blind-tests on simulated lensing data.

3.3.1 Two shapelet approaches

Within the shapelet framework, there are two possible methods with which to correct galaxy images for

the effects of the PSF. Both approaches begin with the construction of a shapelet model of the point source

responseg(θ); ideally this model will be as accurate as possible (i.e., high nmax) and will include the

variation of the PSF across the image plane of the instrument. The model may also need to include some

treatment of time dependent effects (see, e.g., H05; Schrabback et al. 2007; Rhodes et al. 2007). A detailed

description of how this may be done for data from theHubble Space Telescopeis given in Chapter 4.

We define the convolution of the two image functionsI(θ) andg(θ) to form a convolved imageh(θ) as

follows:

h(θ) = I(θ) ∗ g(θ) =

∫ ∞

−∞
d2θsf(θ − θ′)g(θ′). (3.61)

As described by Refregier (2003), this can be written as a matrix transformation in terms of the shapelet

coefficientsfn, gn etc. In Cartesian shapelets, Equation (3.61) is re-expressed as

hn = Cnlkflgk, (3.62)

where repeated vector indices are implicitly summed over each componentli, ki etc. An equivalent expres-

sion for polar shapelets is trivially expressed. It should be noted that the convolution tensorC is a function

of the respective shapelet scale lengths for the models ofh(θ), I(θ) andg(θ) (see Refregier 2003).

The deconvolution scheme proposed by Refregier & Bacon (2003) consists of the solution of Equation

(3.62) forfn, given measuredhn andgn, via a matrix inversion. The object requiring inversion, which

Refregier & Bacon (2003) define as the “PSF matrix”Pnl = Cnlkgk must, however, be truncated to

entries of sufficiently low order. As argued by Refregier & Bacon (2003) this is because high order modes

are smeared during convolution, which then destroys detailed small scale image information. The PSF
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matrix may then contain vanishingly small values in the locations corresponding to high order modes,

making its inversion unstable. This effect can minimized using a suitably truncated PSF matrix, such that

it can be successfully inverted to obtain

fn = P−1
nl hl. (3.63)

The information lost in the truncation is minimal, and reflects the loss of information that is inevitable

in the convolution process. Again, a similar expression to that above may be quickly arrived at for polar

shapelet models. This estimate for the lower order coefficients of the deconvolved galaxy image can then

be used to make reliable estimates of shear and flexion, as described in Sections 3.4.2 and 3.4.3.

The alternative deconvolution method is that proposed by Massey & Refregier (2005), which is that imple-

mented within the shapelet software package made availableby these authors upon the world-wide web1.

The deconvolution proceeds without the need to invert matrices which may often be sparse in practice,

despite best efforts at efficient truncation. The deconvolved shapelet coefficientsfn1,n2
are estimated by

convolving the shapelet basis functions with the PSF model in advance, creating a new basis set which we

label

Dn1,n2
(θ;β) = g(θ) ∗Bn1,n2

(θ;β), (3.64)

with an equivalent expression for the case of the polar shapelet basis functionsPn,m(θ;β).

Fitting the datah(θ) with this new basis setDn1,n2
, one returns a deconvolved shapelet model as follows:

h(θ) = g(θ) ∗ I(θ) = g(θ) ∗
[ ∞
∑

n1=0

∞
∑

n2=0

fn1,n2
Bn1,n2

(θ;β)

]

(3.65)

=

∞
∑

n1=0

∞
∑

n2=0

fn1,n2
[g(θ) ∗Bn1,n2

(θ;β)]

=

∞
∑

n1=0

∞
∑

n2=0

fn1,n2
Dn1,n2

(θ;β).

As can be seen by comparison with Equation (3.1), the returned shapelet coefficientsfn1,n2
will reconstruct

the deconvolved image when they are used with the original basis setBn1,n2
(θ;β).

There are obvious caveats to the seeming simplicity of this approach, particularly that the basis setDn1,n2
(θ;β)

will in general not be orthonormal. However, errors due to this fact are small so long as the scale size of

the galaxy image is larger than that of the PSF (Massey & Refregier 2005). It is the robust nature of

this method, relying not upon matrix inversions that are slow and may be susceptible to instability, that is

the reason for its selection by Massey & Refregier (2005) as the deconvolution approach adopted by the

shapelet software suite. As my own analyses use this software extensively (see Chapter 4), this is also the

deconvolution scheme I use to make accurate estimates of shear and flexion.

Whilst arriving at a reliable, distortion-corrected modelof each galaxy is an important step in making shear

and flexion measurements using shapelets, there is considerable freedom in how lensing estimators may be

drawn from such models. In the next Section I will go on to describe how estimators for lensing observables

may be practically taken from shapelet models of galaxies.

1http://www.astro.caltech.edu/∼rjm/shapelets/
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3.4 Shapelet lensing estimators

3.4.1 The flexion centroid shift

Before we discuss the means by which shapelet models (in bothCartesian and polar shapelets) of galaxies

may be used to make estimates of the gravitational shear and flexion signal, it is important to consider an

important subtlety that comes into play when we are considering the effects of flexion upon galaxy images.

One crucial difference between the flexion and shear transformations regards the issue of the observed

galaxy centroid, which is defined as

θc =

∫∫

d2θθI(θ)
∫∫

d2θI(θ)
. (3.66)

Goldberg & Bacon (2005) pointed out that, while shear causesno net centroid shift, flexion causes a vector

centroid change∆θ given by

∆θi = (θc)i − (θsc)i =
1

2
Djkl

∫

θiθjθk
∂Is(θ)

∂θl
d2θ, (3.67)

where we note the correction of a slight typographical errorfrom Equation (22) of Goldberg & Bacon

(2005). Expanding and integrating by parts, these authors use this result to give an expression for this

centroid shift in terms of elements ofDijk.

Performing the same calculation, but re-expressingDijk in terms of the quantitiesF andG, I found this

centroid shift to be given by the equivalent expression

∆θ =
(R2)s

4
(6F + 5F∗εs + G(εs)∗) . (3.68)

Here we once more use the complex notation in which the real part of ∆θc corresponds to the shift in the

x direction and the imaginary part to they direction on the sky plane. In this expression the(R2)s term in

the source plane is defined as

(R2)s =

∫∫

d2θs|θs|2Is(θs)
∫∫

d2θsIs(θs)
, (3.69)

where I have labelled the source coordinatesθs rather than the commonly writtenβ so as to avoid confusion

with the shapelet basis angular scale sizeβ. The quantityεs is the complex ellipticity of the source galaxy,

defined as

εs =
1

(R2)s

∫∫

d2θs (θs1 + iθs2)
2
Is(θs)

∫∫

d2θsIs(θs)
=

1

(R2)s

∫∫

d2θs
[

(θs1)
2 − (θs2)

2 + i2θs1θ
s
2

]

Is(θs)
∫∫

d2θsIs(θs)
. (3.70)

Bothεs and(R2)s may be simply estimated from shapelet images, described in Massey & Refregier (2005),

and this estimation will be discussed in a little more detailbelow. Finally, for clarity in what comes below,

it will be convenient to write Equation (3.68) out in full component form as follows:

∆θ1 =
(R2)s

4
[6F1 + 5(F1ε1 + F2ε2) + G1ε1 + G2ε2] (3.71)

∆θ2 =
(R2)s

4
[6F2 + 5(F1ε2 −F2ε1) + G2ε1 − G1ε2] . (3.72)
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Equations (3.68), (3.71) and (3.72) tell us how much a gravitational flexion will shift the observed centroid

of a galaxy image; the shapelet flexion transformations found in Sections 3.1 and 3.2 include this centroid

shift effect. They are therefore useful for such applications as applying an artificial flexion to an unlensed

galaxy (for example, during the manufacture of simulated images), although this may also be done easily

in real space using Equation (1.92). However, for practicalflexion measurements the location of the centre

of a shapelet decomposition will be the post-lensing (i.e.,observed) centre of lightθc. This consideration

is crucial in a flexion analysis, as use of the flexion estimators based on the transformations described in

Sections 3.1 and 3.2 will give wrong results if the are used ona shapelet model not constructed upon the

original, pre-lensing centroid, which we cannot know for certain.

What may be done, however, is to estimate the shift in the centroid described by Equation (3.68) and take

it into account using shapelets. Making the valid assumption that the centroid shift due to weak flexion is

small compared to the angular scale of the galaxy image, we may write

I(θ − ∆θ) ≃ I(θ) − ∆θi
∂I(θ)

∂θi
. (3.73)

We can express the right hand term of this expression in termsof shapelet transformations. Using Equation

(3.12), we have the following Cartesian shapelet results:

∆θ1
∂I(θ)

∂θ1
=

∆θ1

β
√

2

∞
∑

n1=0

∞
∑

n2=0

fn1,n2

(

â1 − â†1

)

Bn(θ;β), (3.74)

∆θ2
∂I(θ)

∂θ2
=

∆θ2

β
√

2

∞
∑

n1=0

∞
∑

n2=0

fn1,n2

(

â2 − â†2

)

Bn(θ;β). (3.75)

These results can be more succinctly expressed by defining the Cartesian shapelet transformation operators

T̂i as

T̂i =
1

β
√

2

(

âi − â†i

)

. (3.76)

This then allows us, using Equation (3.73), to write

(

F iF̂i + GiĜi

)

I(θ − ∆θc) ≃
(

F iF̂i + GĜi − ∆θiT̂i

)

I(θ), (3.77)

where we have ignored terms greater than first order inF , G or ∆θ. Notice that the right hand side of this

expression is precisely what we wish to estimate, the effects of flexion upon the shapelet model centred

upon the pre-lensing centre of light.

Another, more useful, way of expressing these results is to define “observable” flexion operators, i.e., those

with this centroid shift removed. These then describe the effects of flexion that can be seen in terms of pure

distortions to the light profile of galaxy images and cause nonet centroid shift. We can then write these

effective, translation-corrected flexion operators as

F iF̂
T
i = F iF̂i − ∆θF

i T̂i (3.78)

GiĜ
T
i = GiĜi − ∆θG

i T̂i, (3.79)
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where we have defined∆θF = [(R2)s/4](6F +5F∗εs) and∆θG = [(R2)s/4]G(εs)∗ by splitting Equation

(3.68) into first and second flexion terms. TheF̂i andĜi operators are simply those described in Section

3.1.2. However, as is often the case in shapelets, the Cartesian representation means that we have a slightly

complicated mixing ofF1 andF2 terms in each component of∆θF , and likewise for theG components

in ∆θG (see Equations 3.71 and 3.72). Due to the symmetries of the polar shapelet basis set, these mixing

components can be separated out, as I now describe.

We can define polar shapelet versions of the translation operators given in Equation (3.76), splitting the

transformation into left and right handed operators such that

(

∆θ1T̂1 + ∆θ2T̂2

)

I(θ) =
(

∆θT̂r + (∆θ)∗T̂l

)

I(θ). (3.80)

Using Equations (3.46) and (3.47), we can write these translation operators out as

∆θT̂r =
∆θ

2β

(

âl − â†r
)

(3.81)

(∆θ)∗T̂l =
(∆θ)∗

2β

(

âr − â†l

)

. (3.82)

Finally, this allows to define a left and right handed pair of polar shapelet transformation operators do

describe the observable effect of each ofF andG.

For the first flexion, using Equations (3.81) and (3.82), and the definition of∆θF described above, we have

the following expression for the observable flexion transformations:

F F̂T
r = F

(

F̂r −
6

4
T̂r −

5

4
(εs)∗T̂l

)

(3.83)

F∗F̂T
l = F∗

(

F̂l −
6

4
T̂l −

5

4
εsT̂r

)

. (3.84)

We notice that it is now possible to more cleanly decouple theflexion transformations using the complex

conjugates ofF andG; this is due to the rotational symmetry properties of the polar shapelet basis set. For

the observable part of the second flexion transformations inpolar shapelets, we have

GĜT
r = G

(

Ĝr −
1

4
(εs)∗T̂r

)

(3.85)

G∗ĜT
l = G∗

(

Ĝl −
1

4
εsT̂l

)

. (3.86)

These flexion operators, and those of Equations (3.78) and (3.79), approximately describe the observable,

shape-changing part of the flexion transformation by isolating it from the the translatory part of the distor-

tion. In essence, this is done via a simple subtraction of thecentroid shift.

The only question remaining is regarding the estimation of(R2)s andεs, which are both quantities as

measured in the unlensed source plane of the image. It is argued by Goldberg & Bacon (2005) that, for

the purposes of constructing workable flexion estimatorsεs and(R2)s, may be estimated from the lensed
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galaxy image using the expressions given in Massey & Refregier (2005). This is despite the fact that

both quantities will have changed during lensing. However,the change in the centroid shift this represents

is small, which can be seen from Equation (3.68), and such changes will cancel on average due to the

differing rotational symmetries ofγ, F andG. If deemed necessary, an estimate of the ellipticity corrected

for locally measured shear could even be used, as there is nothing to prevent the galaxy shear analysis from

being independently performed prior to any flexion analysis. It is the translation corrected operators of

Equations (3.78), (3.79), and Equations (3.83) - (3.86), combined withεs and(R2)s estimated from the

observed galaxy image, that will be used to form flexion estimators in the following Sections.

3.4.2 Estimating shear and flexion from Cartesian shapelets

In this Section I review and describe the methods presented in Refregier (2003) and Goldberg & Bacon

(2005) for estimating shear and flexion, given an accurate Cartesian shapelet model of the lensed galaxy.

In most cases this model will have had to undergo some correction for the effects of an anisotropic PSF,

using one of the methods described in Section 3.3.

We follow Refregier & Bacon (2003) and label the covariance of the observed shapelet coefficients as

Vn,l = cov(fnfl). As shown by Refregier (2003), for homogeneous, uncorrelated background noise (such

as that produced by the sky or thermal instrument noise) thiscovariance is given simply by

Vnl = σ2
Nδn1,l1δn2,l2 , (3.87)

whereσN is the root mean squared noise in the image. This covariance matrix will be necessary in the

discussions that follow.

The problem of shear and flexion estimation in Cartesian shapelets can be reduced to the inversion of Equa-

tion (3.17), given some important assumptions about the properties of the underlying population of source

galaxy imagesIs(θ). This is simplified significantly if the effects of the convergence term are ignored,

which may be justified in the weak, first order limit. It shouldbe noted that under any circumstances the

value of the convergence itself cannot be uniquely determined from estimates of shear or flexion alone, and

can only be uniquely defined with strong lensing data or otherlensing data in which the redshift of more

than one source object are well known (see, e.g., Schneider &Er 2007; Massey et al. 2007d; BGRT06;

Kaiser & Squires 1993).

Expanding on the description given in Goldberg & Bacon (2005), we consider an ensemble ofN unlensed

source galaxies. If we label the surface brightness of each source galaxy asIs
i (θ) (wherei = 1, . . . , N )

and the corresponding Cartesian shapelet coefficients as(f s
n)i, then we may define the ensemble average

of the source coefficients as

µn =

N
∑

i=1

(f s
n)i. (3.88)

For an ensemble of galaxies of sufficient size, and sampled across sufficiently large scales, thisµn may be

estimated as the average of the measured shapelet coefficientsfn; this is assuming that the Universe shows

no preferred direction on extremely large scales (see Goldberg & Bacon 2005). Moreover, due to the parity

properties of the Cartesian basis set we know and can explicitly setµn = 0 wherevern1 + n2 = odd (see

Equation 3.2).
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To explore how this definition may be used to construct a Cartesian shapelet estimator for shear and flex-

ion, we consider another ensemble ofM galaxies, this time in the lensed image plane, and with surface

brightnesses labelledIj(θ) wherej = 1, . . . ,M . In addition, we now restrict the ensemble of galaxies to a

sizeM ≪ N and reduced scale upon the sky, within which shear and flexiondo not vary significantly and

cancel. For this ensemble, averageµn defined in Equation (3.88) will not be well estimated by a simple

average of the observedfn. Instead, such an average will yield

M
∑

j=1

(fn)j = µn +
(

γiŜi + F iF̂
T
i + GiĜ

T
i

)

M
∑

j=1

(f s
n′)j , (3.89)

where the primes on the finalf s
n′ coefficients are there to highlight that these coefficients denote those that

will be transformed tof s
n by the action of the shear and flexion transformations. Note that we are dealing

in observable quantities, and use the centroid shift-corrected flexion transformations of Section 3.4.1. If we

follow the method of Goldberg & Bacon (2005) and define another quantity,f̃ s
n, as the best estimate of the

unlensed shapelet coefficients for a single galaxy within our smaller ensemble, we may then approximate

the above expression for a single galaxy as

fn ≃ µn +
(

γiŜi + F iF̂
T
i + GiĜ

T
i

)

f̃ s
n′ . (3.90)

How this quantityf̃ s
n may be estimated in practice depends on whether we are measuring shear or flexion,

and so we will return to this point below. At any rate, Equation (3.90) will only be anextremelyapproximate

expression for a single galaxy, but it may nonetheless be used to create an estimator of shear and flexion on

a galaxy-by-galaxy basis. If̃f s is estimated appropriately the resulting estimates of shear and flexion will,

if averaged across the ensemble ofM galaxies, be unbiased to a good approximation.

In order to use Equation (3.90) to create an estimator of shear and flexion we may fit values ofγ, F andG
for each galaxy that minimize the followingχ2 goodness-of-fit statistic:

χ2 ≡
[

µn +
(

γiŜi + F iF̂
T
i + GiĜ

T
i

)

f̃ s
n′ − fn

]

(3.91)

× V −1
np

[

µp +
(

γiŜi + F iF̂
T
i + GiĜ

T
i

)

f̃ s
p′ − fp

]

It is now important to consider in more detail how we may estimatef̃ s
n, having access only to the observed

coefficientsfn. In this respect we follow the argument of Goldberg & Bacon (2005), which again treats

then1 + n2 = odd, andn1 + n2 = even, terms differently. These authors argue that, in the weak lensing

regime, the difference between the observed and source eventerms will be small in general, and so the best

estimate off̃ s
n′ is fn′ for n1 + n2 = even. Obviously, this argument will hold limited validity in stronger

lensing regimes. For thẽf s
n wheren1 + n2 = odd, we setf̃ s

n = 0; although this will provide inaccurate

estimates on a galaxy-by-galaxy basis, it will be true for anensemble of galaxies of sufficient numberM ,

and will thus lead to unbiased lensing estimates.

Assuming these arguments regardingf̃ s
n, we can split Equation (3.91) into two shear and flexion-only

parts. As discussed in Section 3.1.2, the shear transformations only transfers power between pairs of

coefficients for which∆n1 + ∆n2 = even, and so for a shear estimator onlyn1 + n2 = even coefficients

in Equation (3.91) need be considered. For the flexion transformations, which transfer power between

∆n1 + ∆n2 = ±1,±3 pairs of coefficients, we need only consider the terms in Equation (3.91) for which
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n1 + n2 = odd. We then have two independent expressions, as follows:

χ2(even) =
[

µn + γiŜif̃
s
n′ − fn

]

V −1
np

[

µp + γiŜif̃
s
p′ − fp

]

(3.92)

χ2(odd) =
[(

F iF̂
T
i + GiĜ

T
i

)

f̃ s
n′ − fn

]

V −1
np

[(

F iF̂
T
i + GiĜ

T
i

)

f̃ s
p′ − fp

]

, (3.93)

where we also note the correction of a sign error from Goldberg & Bacon (2005). An estimator of each of

the shear and flexion upon each galaxy can then be calculated by the minimization ofχ2(even) andχ2(odd)

respectively. David Goldberg has made IDL code that performs this minimization available to the public

via the world-wide web, at the flexion web page1. It should be noted again that the flexion operators

F̂i andĜi involve three-step movements in shapelet shape, and as suchanyflexion estimator will require

shapelet coefficient information of up to a minimum order ofnmax = 3. Galaxies for which the shapelet

series is truncated tonmax ≤ 2 cannot be used to make reliable estimators of flexion.

3.4.3 Estimating shear and flexion from polar shapelets

The polar shapelet basis set provides a natural framework for creating weak lensing estimators. This is due

to the encapsulation of the differing rotational symmetries of shear and flexion by the rotational symmetries

of the basis set itself. As discussed in Section 3.2, weak shear upon a wholly circular object shifts shapelet

power in to polar shapelet modes withm = ±2 exclusively; weak first and second flexion upon the same

object create power in them = ±1 andm = ±3 modes respectively. The strength of shapelet coefficient

values in these modes, relative to those in them = 0 modes, can then used to generate estimators of shear

and flexion very simply, and without the need for minimization of χ2 statistics described above for the

Cartesian estimators.

In this way polar shapelets offers a means of generating “passive” rather than “active” estimators of flexion

(for a complete definition of these terms in the weak lensing context see Massey et al. 2007b,d). Simply put,

passive estimators are those that use the measured moments of galaxy images, usually with some scheme

of image weighting to reduce noise, such as the schemes proposed by Kaiser et al. (1995) for shear and

Okura et al. (2007b) for flexion. That polar shapelet estimators based on ratios of shapelet coefficients are

analogous to such moment-based approaches can be seen by examination of the overlap integral given in

Massey & Refregier (2005):

fn,m =

∫∫

d2θI(θ)Pn,m(θ;β). (3.94)

This is a simple consequence of the orthonormality relationship (Equation 3.35) for the polar shapelet basis

functionsPn,m(θ;β) = Pn,m(θ, φ;β). To illustrate this fact, we consider the expression forf2,2. Using

Equation (3.32), the explicit expression forP2,2(θ, φ;β) is

P2,2(θ, φ;β) =
θ2

β3
e
− θ2

β2 e2iφ =
1

β3

(

θ21 − θ22 + 2iθ1θ2
)

e
− θ2

β2 . (3.95)

Substituting this expression into Equation (3.94), we see that the quantity

β3f2,2 =

∫∫

d2θ
(

θ21 − θ22 + 2iθ1θ2
)

e
− θ2

β2 I(θ) (3.96)

1http://www.physics.drexel.edu/∼goldberg/flexion/
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is simply the quadrupole moment of Kaiser et al. (1995) and Bartelmann & Schneider (2001), weighted

by a Gaussian of angular scaleβ. Forn = m = 1, 3 it can be similarly shown thatβn+1fn,m correspond

to Gaussian weighted first and third moments respectively (often equivalently described as dipole and

octopole moments).

There are benefits in using shapelets to perform moment calculations, rather than performing the calculation

in real space. Shapelets offers a sophisticated treatment of PSF corrections (see Section 3.3), a great deal

of freedom in the selection of estimators, and even offers additional tests for systematics. As described

in Massey et al. (2007d), if the PSF correction scheme is accurate then there should be no significant

difference between different estimators; any discrepancypoints to imperfect deconvolution and highlights

image scales upon which problems may exist. Massey et al. (2007d) present a variety of shear and flexion

estimators, with properties that may be of particular interest in different applications. For the case of shear,

there are two estimators which I will now describe.

Gaussian weighted shear estimator

The first, and simplest, shear estimator uses thef2,2 coefficients that I have shown in Equation (3.96) to be

simply related to the Gaussian-weighted quadropole moment. Using Equations (3.54) and (3.55) we see

that the effect of shear is to transform thef s
2,2 shapelet coefficient as follows:

(1 + γŜr + γ∗Ŝl) : f s
2,2 → f2,2 = f s

2,2 +
γ√
2

(

f s
0,0 − f s

4,0

)

− γ∗
√

3f s
4,4. (3.97)

As in Section 3.4.2, we consider an ensemble ofM galaxies across which the shear is approximately

constantγ. Assuming random orientations of these galaxies in the source plane the ensemble average of

f s
n,m will tend to zero for all coefficients withm 6= 0. A simple estimator of shear for each galaxy in this

ensemble can therefore be constructed as

γ̃Gaussian =
√

2
f2,2

〈f0,0 − f4,0〉
. (3.98)

The angle brackets in the denominator denote an ensemble average across the galaxies in a lensing survey,

but it should be stressed that this isnot the sample ofM galaxies across which the shear and other lensing

values are approximately constant. As in Section 3.4.2 we need also to consider a larger scale ensemble

of N ≫ M galaxies, within which the shear, convergence and flexion will vary and tend to cancel due to

the overall isotropy of large scale structure. It is over this larger ensemble (i.e., perhaps, the entire galaxy

image catalogue in a lensing survey) that the denominator average must be taken. This will ensure that this

estimator is approximately unbiased; were the denominatoraverage to be made over the smaller ensemble

the action of an overall weak lensing convergence would be toshift power out of thef0,0 andf4,0 (see

Equation 3.53).

This estimator is the Gaussian weighted shear estimator of Massey et al. (2007d), and will obey the neces-

sary unbiased property

1

M

M
∑

i=1

γ̃Gaussian
i ≃ γ (3.99)

for our smaller ensemble ofM galaxies across which the shear signal remains constant. Itis so named

because, as shown by Equation (3.96), the numerator is simply related to a weighted quadrupole moment.
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Unweighted ellipticity shear estimator

The second shear estimator from that I will describe is that based on the shapelets unweighted ellipticityε,

defined in terms of source image moments by Equation (3.70) inSection 3.4.1. Instead, we here use the

ellipticity of the lensed images, and so drop the superscript s. Massey et al. (2007d) show that theε can be

used to constructed the following unbiased estimator for shear

γ̃unweighted =
ε

2R =
ε

(2 − 〈ε2〉) =

∑∞
n=0

√

n(n+ 2) fn,2

(2 − 〈ε2〉)∑∞
n=0

√

(n+ 1) fn,0

. (3.100)

Here we have defined the shear responsivity factorR = 1 −
〈

ε2
〉

/2, where the average denoted by the

angle brackets should be across as large an ensemble of galaxies as possible to ensure that this estimator

satisfies the criterion of being unbiased (c.f. Equation 3.99). It is well known that such a responsivity

calibration is necessary for shear estimators based upon the unweighted ellipticity; it is caused by the fact

that the more elliptical a galaxy isbeforebeing sheared, the weaker its response to a lensing shear will be

(see, e.g., Bartelmann & Schneider 2001). This estimator performed very well during the blind simulation

tests of shear estimators conducted by the second STEP programme (Massey et al. 2007b) and on other

lensing image simulations designed to mimic ground-based observations (Massey et al. 2007d). One of

the investigations of this Thesis is to explore its efficacy using survey images taken from space-based

instruments such as theHubble Space Telescope.

Gaussian weighted flexion estimators

I will now describe my construction of some passive flexion estimators, as also presented in Massey et al.

(2007d). The construction of these estimators drew on our experience with the shear estimators developed

in that paper, and are formed in analogy with the same. The simplest flexion estimator can be constructed

using a similar approach to that taken with theγ̃Gaussian estimator of Equation (3.98). For that estimator,

the coefficientsf2,2, correpsonding to Gaussian-weighted quadrupole moments,were used; this is a simple

first choise since, as was described in Section 3.2.2, these are the lowest modes to be excited by the action

of shear upon the shapelet ground statef0,0.

For the case of flexion it was shown in Section 3.2.2 that thef1,1, f3,1 andf3,3 shapelet modes are the

first to be excited by the action ofF andG upon a simplef0,0 shapelet model. The simplest possible

first flexion estimator is therefore one based upon the measured value of thef1,1 coefficient for any given

galaxy. Using Equations (3.57), (3.58), (3.83) and (3.84),it is easy to show that this coefficient transforms

as follows under a first flexion:

(1 + F F̂T
r + F∗F̂T

l ) : f s
1,1 → f1,1 = f s

1,1 +
Fβ
8

{

6

(

1 − (R2)s

β2

)

f s
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(R2)s

β2
f s
2,0

− 6f s
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√
2(εs)∗

(R2)s

β2
f s
2,2

}

+
F∗β

8

{

− 5εs
(R2)s

β2
(f s

0,0 − f s
2,0)

+
√

2

(

1 + 6
(R2)s

β2

)

f s
2,2, − 3

√
6 f s

4,2

}

. (3.101)
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The correction for the centroid shift adds to the complexityof these transformation expressions but it must

be stressed that this correction is extremely important, particularly in the case of the dipole-like first flexion.

In an analagous fashion, the simplest possible second flexion estimator that can be constructed using polar

shapelets will be based upon the measured value of thef3,3 coefficient. Using Equations (3.59), (3.60),

(3.85) and (3.86), the action of second flexion uponf s
3,3 was calculated as follows:

(1 + GĜT
r + G∗ĜT

l ) : f s
3,3 → f3,3 = f s

3,3 +
Gβ
8

{

(εs)∗
(R2)s

β2
(f s

4,2 −
√

3 f s
2,2) +

√
6 (f s

0,0 + f s
2,0 − f s

4,0 − f s
6,0)

}

+
G∗β

8

{

2εs
(R2)s

β2
f s
4,4 − 2

√
30 f s

6,6

}

. (3.102)

In order to use these expressions to calculate estimators for flexion, we once again consider an ensemble of

M galaxies in a region of sky across which we have roughly constant flexion, and a much larger ensemble

of N galaxies (i.e. the entire survey sample) across which thereis a vanishing net flexion. We must once

more assume that the galaxies in the source plane are randomly oriented. Theεs terms in Equations (3.101)

and (3.102) refer to the unlensed ellipticities of these sources, and will thus cancel when averaging over

any sufficiently large population of galaxies, even in the presence of a shear field. Once more, we may go

further and expect the average values off s
n,m, wherem 6= 0, to tend to zero in our ensembles; net shapelet

power will ony remain in the averagedm = 0 terms.

Therefore, the simplest possible polar shapelet flexion estimators can be constructed from the combinations

F̃Gaussian
=

4

3β

f1,1

〈(1 − (R2/β2)) f0,0 + (R2/β2)f2,0 − f4,0〉
(3.103)

and

G̃Gaussian
=

4
√

6

3β

f3,3

〈f0,0 + f2,0 − f4,0 − f6,0〉
, (3.104)

where the angle brackets used in the denominator denote an ensemble average across the large ensemble

of N galaxies. However, in the first flexion estimator we are forced to use the lensedR2/β2 rather than

(R2)s/(β2)s; fortunately, as shown in Massey et al. (2007d), changes inR2/β2 due to a symmetrically

varying flexion do not bias〈R2/β2〉 to first order, and so the denominator remains unbiased overall when

this average is taken over the sufficiently large ensemble ofN galaxies. It should be noted that, despite

these estimators being the simplest possible within the polar shapelet framework,̃FGaussian
andG̃Gaussian

require shapelet galaxies to be modelled to orders ofn = 4 andn = 6 respectively before they may be used

to create unbiased estimators. Equations (3.103) and (3.104) are the Gaussian weighted flexion estimators

presented in Massey et al. (2007d).

As a final comment, the reason that these estimators are referred to as Gaussian weighted is similar to

that for γ̃Gaussian. Considering Equation (3.94) and the form of theP1,1 andP3,3 basis functions, the

f1,1 andf3,3 coefficients can be shown to simply correspond to Gaussian weighted first and third order

image moments, just asf2,2 was shown to be a Gaussian weighted second moment in Equation(3.96).

The Higher Order Lensing Image Characteristics (HOLICs) method proposed by Okura et al. (2007b)
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creates estimates of flexion using direct measurements of such weighted moments, and thus the estimators

of Equations (3.103) and (3.104) are the shapelets analogueto HOLICs moments in which the scale radius

for the Gaussian weighting is simply the angular scaleβ. The shapelet estimators above simply represent

whatβ-weighted HOLICS estimators would return if they acted upona smoothed, PSF-corrected shapelet

model of a galaxy image.

These results do not represent the end point of possible flexion estimators, as any of thefn.m coefficients

with m = 1 andm = 3 may be used as estimators ofF andG, respectively. Indeed, as pointed out in

Massey et al. (2007d), significant systematic differences between such estimators effectively point to defi-

ciencies in model used for PSF correction. Comparison of themany possible shapelet estimators therefore

represents a new test for the level of residual systematic errors, the successful removal of which is so impor-

tant for weak lensing. Additionally, the other way in which of higher order estimators may be of use is in

their combinationwith estimators built from lower modes; in this way it is possible to generate estimators

with any property that may be of interest. Methods and results towards such estimators are discussed in the

following Sections.

Order-by-order shapelet flexion estimators

For the small, faint galaxy images that will inevitably makeup the majority of weak lensing survey data,

it will be difficult to measure polar shapelet coefficients beyond then = 6 terms needed to make an

unbiased estimatẽGGaussian as described above. Yet, for those galaxies for which higherorder shapes

can be accurately measured, it is possible to generalise these flexion estimators to higher shapelet modes.

We may use the measured value of any availablefn,1 coefficients as an estimator forF , and likewise any

availablefn,3 as an estimator forG.

In order to do this it is necessary to understand how these higher order estimators respond to flexion. In

order to describe this information we define the following flexion susceptibility matrices:

(PF
n )ij =

∂(fn,1)i

∂F j
, (PG

n )ij =
∂(fn,3)i

∂Gj
. (3.105)

For convenience, in the expressions above we have vectorized the complex shapelet coefficientsfn,m and

defined(fn,m)i = ( Re{fn,m}, Im{fn,m} ). Knowledge of these susceptibility factors for each of the

higher order estimators that can be constructed fromfn,1 andfn,3, allows the construction of the flexion

estimators

F̃n

i ≡
〈

(PF
n )ij

〉−1
(fn,1)j (3.106)

and

G̃n

i ≡
〈

(PG
n )ij

〉−1
(fn,3)j . (3.107)

Once again we have vectorized the complex quantities, and the angle brackets denote the average across

a large ensemble of galaxies such as the entire survey. The susceptibilities of Equation (3.105) are real,

2 × 2 matrices, with terms that may be calculated using the results for the polar shapelet flexion transfor-

mations given in Equations (A-1)-(A-4) in the Appendix, andthe centroid shift correction terms described

by Equations (3.83)-(3.86). I give the results of my calculations for these generalized(PF
n )ij and(PG

n )ij

susceptibilities in the Appendix, Equations (A-6)-(A-9).
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Differences between the ensemble values of each of thesen estimators can be compared as possible evi-

dence for systematics in the lensing analysis or PSF correction (Massey et al. 2007d), but may also be used

to construct further new estimators using combinations offn,1 andfn,3. Given complete freedom in selec-

tion, such estimators can be designed so as to have particular properties of interest. One such combination,

leading to the “diagonal” flexion estimators, is discussed in Massey et al. (2007d) and in the following

Section I describe my work towards the description of this estimator.

Flexion estimators with purely diagonal susceptibilities

It was shown in Massey et al. (2007d) that successive off-diagonal terms in the shear susceptibility matrix

(P γ
n )ij , defined forfn,2 coefficients in an exactly analogous fashion to Equation (3.105), could be made to

cancel out via the suitable addition offn,2 estimators. This led to the shapelets expression forγ̃unweighted,

which in fact corresponds exactly to the unweighted complexellipticity ε defined by Equation (3.70).

In the same way it might be hoped that the same terms of diagonal terms in the flexion susceptibility

matrices of Equation (3.105) could be made to cancel, via a suitable weighting schemewn, where we

would then define the resulting purely diagonal estimatorp̃F

diag as

(p̃F

diag)i =
〈

(PF

p )i,j

〉−1
∞
∑

n=1

wn(fn,1)j , (3.108)

where we have once again vectorized the complex notation, and where by definition(PF

p )i,j = 0 for

i 6= j. We could also define similar expressions for the second flexion estimator̃pG

diag in terms of weighted

fn,3 coefficients. Unfortunately, due to the presence of the centroid shift correction which is necessary

for reliable flexion estimators, my calculations showed that this is more difficult than in the case of shear,

especially for the first flexion.

For the second flexion it is possible to do reasonably well. Itis impossible to construct a purely diagonal

p̃G

diag using the centroid shift corrected transformations of Equations (3.85) and (3.86). However, it is

possible to find a weightingwn in which successive diagonal terms in(P G

p )i,i cancel if we consider only

the uncorrected transformationsGĜr andG∗Ĝl of Equations (3.59) and (3.60). Using these Equations, I

found this weighting to bewn =
√

(n− 1)(n+ 1)(n+ 3), which can then be used to form the following

purely diagonal second flexion estimator

G̃diag ≡ p̃G

diag =
2
√

2

3βR

∑∞
n=3

√

(n− 1)(n+ 1)(n+ 3) fn,3
∑∞

n=0(n
2 + 2n+ 2) fn,0

. (3.109)

Here we have defined the “flexion responsivity” factor as the ensemble averageR = 1 −
〈

δρ/β3
〉

/2,

where

ρ = β6
√

32π

∞
∑

n=3

(n+ 1)
√

(n− 1)(n+ 1)(n+ 3) fn,3 (3.110)

and

δ =

√
2

2β

∑∞
n=3

√

(n− 1)(n+ 1)(n+ 3) fn,3
∑∞

n=0(n
2 + 2n+ 2) fn,0

. (3.111)

This definition of the quantityδ exactly mirrors that of the unweighted HOLICs measurable ofthe same
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name, which Okura et al. (2007b) define as

δ =

∫∫

d2θI(θ)θ3e3iφ

∫∫

d2θI(θ)|θ|4
(3.112)

and which they use to create an estimator of the second flexionG̃HOLICS
= 4δ/3. The estimator in Equation

(3.109) is the shapelet space equivalent of this quantity4δ/3 except for the additional responsivity factor

R. This correction is in fact necessary because the denominator of δ changes during flexion in a way

which biases the overall estimator by an amount(1 −
〈

ρδ/β3
〉

/2), and is analagous to the similar factor

of (2 −
〈

ε2
〉

) introduced to the unweighted ellipticity estimator for shear.

Despite the fact that the estimator of Equation (3.109) doesnot account for changes to the susceptibility

resulting from the flexion induced centroid shift, it will remain unbiased when averaged across an ensemble

of galaxies. This is because we may assume that the unlensed ellipticities εs of source galaxies will cancel

on average, and because it is known that there is no centroid shift due toG for galaxies withεs = 0 (see

Equations 3.85 and 3.86).

In contrast, the first flexion presents greater difficulties.Firstly, there is a flexion-induced centroid shift

for even purely circular objects, proportional to(R2)s/β2. However, even if it were feasible to ignore

the translatory part of the practical flexion operator (which it is not), it appears to be impossible to find a

weighting schemewn capable of cancelling the off-diagonal terms in successiveorders ofPF

ij . The com-

plication arises from the mixing of power between∆m,∆n = ±1 coefficients, which becomes extremely

complicated for the first flexion, and from the very importantfact that shapelet ladder operators are non

commutative. This can be expressed as follows

[

âr, â
†
r

]

Pn,m =
(

ârâ
†
r − â†râr

)

Pn,m = Pn,m 6= 0 (3.113)
[

âl, â
†
l

]

Pn,m =
(

âlâ
†
l − â†l âl

)

Pn,m = Pn,m 6= 0, (3.114)

which can be simply derived using Equations (3.36)-(3.39).We know thatF causes power to transfer

between adjacent,∆m,∆n = ±1 shapelet coefficients (see Figure 3.5), much like a simple translation

of the sort introduced in Section 3.4.1. However, whereas a simple centroid shift involves only the single

ladder-operator transformationsâ†r, â†l , âr and âl (as shown in Equations 3.81 and 3.82), flexion always

acts via combinations of three ladder operations, taking three steps but doubling back to move only one

step overall. Sincêa†r does not commute witĥar, nor â†l with âl, each∆m,∆n = ±1 term in Equations

(A-1)-(A-4) is in fact a combination of five separate contributions, each of which representing a different,

independent path between the coefficients. For example, to make an overall move to a mode with∆nr =

+1, any ofâ†2r âr, â†rârâ
†
r, ârâ

†2
r , â†râlâ

†
l or â†râ

†
l âl may be employed, all of which contain one of the non-

commuting pairs identified in Equations (3.113) and (3.114). Because it is composed of a different, non-

commuting combination of ladder operators, each path contributes a different,n-dependent proportion of

the overall power in the transformation. This added level ofcomplexity for the first flexion transformation

appears to preclude any estimator of first flexion with vanishing off-diagonal terms in the susceptibility

matrix.

This concludes the discussion of shapelets, and of the flexion results that I contributed to Massey et al.

(2007d), although that paper also discusses other possibleestimators using polar shapelets. These include

the “radial profile” estimator mentioned previously, and active estimators constructed in a similar fashion
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to those discussed in Section 3.4.2 and Goldberg & Bacon (2005). As can be seen, this work offers a

variety of possible methods with which to measure flexion accurately using real galaxy images. In the

next Chapter I will go on to describe my attempts to perform such an analysis using imaging data from the

GEMS survey (Rix et al. 2004), this being the work that has dominated my research and which provides

the culminating results of this Thesis.
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CHAPTER 4

SHAPELET LENSING ANALYSIS OF

HST SURVEY DATA

In this Chapter I describe my correction for PSF distortionsin real galaxy survey data, using the shapelet

method described in Chapter 3, and the use of the shapelet shear and flexion estimators. Using data from the

Galaxy Evolution from Morphologies and SEDs (GEMS) survey Ihave accurately measured real galaxy

shear using shapelets for the first time, and extended this analysis to flexion, providing reliable catalogues

of these lensing measures for the galaxy-galaxy lensing analyses of Chapter 6.

New technical challenges were faced during this work and themethods I developed to meet these challenges

are discussed in detail, including the extraction of “postage stamp” images and the construction of a full

shapelet model of the PSF based on stars in the galaxy. I use the results from simulated lensing data to

choose the current-best shapelet estimators for the extraction of lensing information from GEMS shapelet

models. The resulting galaxy shear catalogue is compared with the findings of previous authors having

performed independent analyses of the same field, and is found to be in good agreement. Finally, tests

for systematics show that the shapelet deconvolution has removed any significant residual shear anisotropy

due to the PSF, although there are traces of residual second flexion contamination.
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4.1 GEMS lensing data

4.1.1 Galaxy images

The GEMS survey imaging data used in this analysis, described extensively by Rix et al. (2004), Caldwell

et al. (2005), H05, and Schrabback et al. (2007), covers a skyarea of≃ 796 arcmin2 centred on the

ChandraDeep Field South (CDFS). The bulk of the data consists of 125 orbits of HST/ACS imaging,

combined with a further 15 ACS tiles from the GOODS project (Giavalisco et al. 2004). An image of the

mosaic of these tiles, taken from Rix et al. (2004), is shown in Figure 4.1. Images were observed for the

GEMS survey in two pass bands: F606W (78 tiles) and F850LP (77tiles), with5σ point source detection

limits of m606 = 28.3 andm850 = 27.1. In this work, we follow H05 and use only the F606W images

in our lensing analysis, as they contain more discernible galaxies (by a factor greater than two) and extend

deeper in redshift.

Although it is not necessary to reproduce in full the detailed discussions of this dataset given by Caldwell

et al. (2005) and H05, it is important to address those properties of the data that are possible sources of

systematic bias, and outline the steps taken to diagnose andlimit these effects. Systematic errors important

to lensing in particular are well discussed by H05, and much of what we discuss in this Section is presented

in greater detail there. However, the method used in this work to correct for the anisotropic ACS PSF

differs significantly from the analysis of H05, and this is discussed in greater detail in Sections 4.2.3.

As discussed in H05, each GEMS-observed science tile is a combination of three ACS exposures, dithered

by ≃ 3 arcsec. The resulting images have a pixel scale chosen as 0.03 arcsec, and the dithering procedure

allows the bridging of the gap between the twin charge-coupled device (CCD) chips of the ACS. The

images taken from GOODS are a combination of only two dithered exposures, despite the availability of

further exposures taken at later dates; this is necessitated by the time instability of the ACS PSF (see H05,

Rhodes et al. 2007). The GOODS survey was optimized for supernova searches (Riess et al. 2004), and the

ACS data from GOODS was observed in five time-separated epochs. In this work, as in H05, we only use

imaging from the first of these GOODS epochs.

Due to the location of the ACS camera away from theHSToptical axis, images suffer geometrical distortion

which is significant but also accurately modelled (Meurer etal. 2003). Caldwell et al. (2005) describe the

method used to correct for this distortion, and the fixing of the GEMS astrometry to that of the R-band

image of the publicly available COMBO-17 survey (Wolf et al.2004). Geometrical distortions in the

GEMS data due to velocity aberration were not found to be significant for measurements of shear (H05),

and similarly I find there to be no significant variation of average galaxy flexion across the ACS chips.

One other source of image distortion to space-based observations is a degraded charge transfer efficiency

(CTE) of the on-board CCD instrumentation. Ongoing bombardment by cosmic rays defectively alters

the semiconductor structure, causing an image bleed in the direction of read-out which worsens with time

(e.g. Rhodes et al. 2004, 2007). Due perhaps to the GEMS observations taking place soon after the ACS

installation, H05 and Schrabback et al. (2007) (in their recent analysis of the same data) find no evidence

for degraded CTE at a level significant to measurements of weak lensing shear, and so I do not attempt a

correction for this effect (Rhodes et al. 2007; Massey et al.2007c).
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Figure 4.1: Image of the GEMS survey mosaic, showing the position of each tile on
the extendedChandraDeep Field South. The tiles at the centre of the image, not
aligned with the overall field, are from the first epoch observations of GOODS; these
have been incorporated into the overall GEMS analysis. The area indicated in the top-
left of the image is that of theHubbleDeep Field South. Figure taken from Rix et al.
(2004).

4.1.2 Object catalogues

In this work we take as a starting point the same catalogue of121 475 GEMS objects as used by H05, made

with the SEXTRACTOR software of Bertin & Arnouts (1996). This catalogue was assembled using the two-

pass object detection strategy described in Rix et al. (2004) and Caldwell et al. (2005), which successfully

detects faint objects without multiply labelling single large objects. The SEXTRACTOR package was also

used to determine and subtract each tile’s spatially varying sky background (Caldwell et al. 2005). We

define the signal-to-noise ratio (SNR) of each object as the ratio of its SEXTRACTOR measured flux to the

error on this measurement (FLUX andFLUX ERRORrespectively, see Bertin & Arnouts 1996).

The entire GEMS field was masked by hand (H05) to prevent falseobject detections from diffraction

spikes, satellite trails, reflection ghosts and artefacts from chip boundaries. In my analysis, I ensure the

single selection of objects from overlapping regions in GEMS as follows: pairs closer than 0.3 arcsec but

lying in different tiles were isolated and the object with the lower SNR was then removed from the main

catalogue.

All objects with SNR< 15 are removed from the catalogue, reducing systematic selection biases which

become significant for fainter objects. As pointed out by Kaiser (2000), one source of bias for faint galaxies

is the preferential selection of objects which happen to be aligned with an anisotropic PSF. Another effect

(Hirata & Seljak 2003) which causes bias is the preferentialselection of circular objects over elongated ones

(of the same flux) by almost any conceivable detection algorithm. Galaxies which are anti-aligned with the

gravitational shear will become circularized upon lensing, and are thus detected in greater numbers than

their elongated, shear-aligned counterparts; this has theeffect of weakening the measured shear amplitude.
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Both these sources of error were found by H05 to be negligiblefor the GEMS sample once subjected to a

significance cut of SNR> 15. Issues of possible SEXTRACTOR centroid bias, discussed by H05, are now

completely resolved by my use here of the shapelet method of Massey & Refregier (2005): an accurate

object centroid is an output parameter of the shapelets amoeba fit. The GEMS SEXTRACTOR catalogues,

having been cleaned as described above, contain a total of121 475 objects.

GEMS galaxy catalogue

In the selection of galaxy objects for weak lensing measurements, we follow H05 and remove objects

with FLUX RADIUS < 2.4 pixels so as to exclude stars and small false detections fromthe galaxy sample

(see Section 4.1.2 below). Again only objects with SEXTRACTOR measured magnitude21.0 < m606 <

27.0 are included, so as to exclude extremely faint galaxies for which lensing measurements become less

reliable. All pairs of objects separated by less than 0.6 arcsec are removed, preventing shapelet modelling

errors due to extremely close neighbours. This leaves a finaltotal of 52 669 selected galaxies for all tiles,

and this is the sample from which measurements of galaxy-galaxy shear and flexion will be made.

Seen in Figure 4.3, the construction of these shapelet-ready catalogues was carried out using my IDL code

makegemscats.pro. These catalogues are required by the shapelet software to contain only certain

items of information for each object; the ASCII catalogue columns for these input variables are required to

fall in a certain prescribed order (see Bergé 2006). It should be noted that, whilst we only wish to measure

shear and flexion from galaxies, the catalogues that we inputto the shapelet software must includeall the

121 475 SEXTRACTOR detected objects within the GEMS fields, not just those selected as of interest as

described above. Shapelets must know aboutall objects in the field so that even objects which will not be

modelled can be masked. A subset of the total set of objects, containing the galaxies of interest, is then

also supplied to the shapelet software so that only these objects are modelled; it is not necessary to make

a shapelet model of every object detected. This is an important consideration in the shapelet technique;

without careful masking, nearby objects can be be confused and erroneously modelled as being part of the

central galaxy of interest. Henceforth we refer to the catalogues containing every object for each tile, plus

the known location of each selected galaxy, as the shapelet-ready catalogues.

For each tile the list of galaxy objects of interest, and their location indices within the shapelet-ready

catalogues, is stored bymakegemscats.pro in separate galaxy reference catalogues (Figure 4.3). These

location indices are then supplied to the shapelet routineshex.pro (presented in Massey & Refregier

2005 but modified as described in Section 4.2.2) as an array, ensuring that only objects of interest are

modelled but all nearby objects are masked. The date upon which each galaxy was observed is also stored

by these reference files, and this information is used immediately prior to the running of the shapelet

software to build an accurate time-dependent shapelet model of the PSF at the CCD chip location of each

galaxy (see Sections 4.1.2 and 4.2.3). This is vital for the successful deconvolution of the GEMS galaxies.

The reference catalogues also include useful information not required by shapelets for modelling, such

as the right ascension and declination of each galaxy, and the index location, where applicable, of the

same galaxy within Catherine Heymans’ (CFH) shear catalogue of H05 (important for later comparison

of lensing shear estimates). As shown in Figure 4.3 this information is then passed to the output shear

and flexion catalogues. However, before the GEMS deconvolution can proceed, a sample of non-saturated

stellar objects must be assembled so that the PSF can be modelled using shapelets; this is described in the

following Section.
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Figure 4.2: SEXTRACTOR measured FWHM-magnitude diagram for all GEMS ob-
jects with SNR> 15 and lying in unmasked regions. The locus of true point sources
can be clearly seen along the bottom of the plot. The stellar sample is taken from
objects which lie in the non-confused regions of both this locus and its counterpart in
the GEMSFLUX RADIUS-magnitude diagram.

GEMS point source catalogue

An accurate shapelet model of the GEMS PSF, varying as a function of position on the ACS field of view,

is vital for the successful deconvolution of galaxy images.Stars for this modelling were selected from

the object catalogue as described by H05, utilizing the constancy of the stellar full width half maximum

(FWHM) with apparent magnitude. Candidate objects were identified from the stellar locus of both the

FWHM-m606 plane and theFLUX RADIUS-m606 plane, as measured by SEXTRACTOR, giving a total of

≃ 950 stellar objects (see Figure 4.2).

This number corresponds to an average of only≃ 12 stars per ACS tile, insufficient to accurately charac-

terize the PSF as a function of chip position on a tile-by-tile basis. We cannot assume global PSF stability

for all the GEMS and GOODS observations as the ACS PSF is knownto vary significantly with time (e.g.

Rhodes et al. 2007), possibly due to thermal changes on theHST during orbit. We therefore break the

stellar sample into three sub-samples based on the date of observation for each science tile, assuming PSF

stability within each of these sub-samples. This approach is aided by the short duration over which the

GEMS and GOODS images were observed: the first epoch GOODS data was observed in five days, and

all but three of of the GEMS-observed F606W tiles were imagedwithin a twenty day period. These three

out-of-sequence GEMS tiles are therefore discarded, and the remaining GEMS sample split into two 10

day epochs.

This approach is also that taken by H05, who found that the GEMS PSF remained sufficiently stable

within a 10 day epoch to allow a cosmic shear analysis to be performed using the GEMS data (see H05,

Figure 4). The measurement of a cosmological lensing signalis a far more ambitious undertaking than the

galaxy-galaxy lensing analysis which is the aim of this Thesis. Moreover, it is only the anisotropy of the
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ACS PSF that varies significantly with time and not the characteristic angular size (Rhodes et al. 2007).

Therefore such changes will not result in a systematic bias to measurements of galaxy-galaxy lensing, for

which errors due to residual PSF anisotropy cancel due to thecircular averaging over each source-lens pair

(Schneider & Rix 1997). Given that anisotropy removal is nota critical requirement of this analysis, and so

as to aid direct comparison between my shapelet results and those of H05 (upon the same images), we do

not mount a fully independent investigation into the PSF variation and use the exact same time-dependent

PSF modelling strategy as those authors. This leaves a catalogue of 919 point source objects in F606W

from which we characterize the ACS PSF. In similar fashion tothat for galaxies described in the previous

Section 4.1.2, the list of the 919 PSF objects destined for shapelet modelling is stored in a series of PSF

reference files, one for each tile. The shapelet-ready catalogues, which contain all objects, are then passed

to the modifiedshex.pro for the modelling of both stars and galaxies.

4.2 GEMS lensing measurements

4.2.1 Overview

The lensing analysis of the GEMS (Rix et al. 2004) optical imaging data using the shapelet software

of Massey & Refregier (2005) proceeds in five stages, the firstbeing the selection of object catalogues

described above. Then, “postage stamp” images and noise maps for each star and galaxy object are cre-

ated, which I describe in Section 4.2.2 below, including modifications and enhancements to the publicly-

available shapelet software. In Section 4.2.3 I describe the next stage, the modelling of the GEMS PSF

from stellar postage stamp images.

The fourth stage uses the shapelet software to find best-fitting deconvolved models of the GEMS galaxies,

using the shapelet amoeba routines described in Massey & Refregier (2005) and the deconvolution scheme

outlined in Section 3.3. This stage uses both the galaxy postage stamp images and models of the GEMS

PSF at each galaxy location. The final stage of the lensing analysis draws estimators for shear and flexion

from the deconvolved galaxy shapelets catalogues or “shapecats”; the choice of estimator is discussed in

Section 4.2.5, and is motivated by the simulation results ofChapter 5. The schematic diagram shown in

Figure 4.3 gives a simple picture of how these five stages of reduction and analysis were combined for the

GEMS survey data.

In the last Section (4.3.3) of the Chapter, I present the successful results of initial tests for residual lensing

systematics, investigate some of the magnitude-dependentproperties of the measured shear and flexion,

and compare the results of the shapelet shear estimation to the KSB+ results of H05 and Schrabback et al.

(2007).

4.2.2 Postage stamp extraction

In order to model galaxies and stars in GEMS, postage stamp images of each object must be extracted from

the survey image data. This may be done with Richard Massey’sIDL script entitledshapelets sexcat2pstamp.pro,
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Figure 4.3: Schematic overview of the GEMS shapelet pipeline, see Sections 4.1-4.2 for details.
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Figure 4.4: Example of a GEMS galaxy postage stamp image, showing a (severely-
overlapping) masked neighbour. The small plotted ellipse is that defined by thea and
b semi-major and semi-minor axes output by SEXTRACTOR

called from withinshex.pro (see Figure 4.3), using either automatically created noiseand segmenta-

tion maps or those supplied by the user (from, e.g., SEXTRACTOR). In this analysis, I chose to build

noise and segmentation maps on a postage stamp-by-postage stamp basis using a modified version of the

shapelets sexcat2pstamp.pro routine.

For each star or galaxy a circular postage stamp centred on the SEXTRACTOR centroid is created. Using a

segmentation map (see, e.g., Bertin & Arnouts 1996) these postage stamps are masked for nearby objects,

ensuring that only the object of interest will be modelled byshapelets. In constructing a mask for each

object I modified the segmentation map-generating algorithm of the shapelet software, which appeared to

produce a large number of masking failures for the GEMS data.In my modified routine an elliptical mask

is drawn over each nearby galaxy, of semi-major axis2.75a and semi-minor axis2.75b (wherea andb are

respectively the SEXTRACTOR-output semi-major and semi-minor axes of the object). Visual inspection

of masked images showed this to be good compromise between the need to exclude unwanted light from

object postage stamps, whilst not over-masking and obscuring the object of interest.

Following on from this, by additionally masking the centralgalaxy object, a noise map and estimate of the

sky background can be made via analysis of the remaining blank sky pixels. The root mean squared pixel

value is used to assign a constant background noise level to each postage stamp image, and the sky level

itself may be subtracted using a choice of models (Bergé 2006). For the GEMS images, which are already

sky-subtracted (see H05), only a very small amount of residual sky background was found and the removal

of a simple constant sky level from each postage stamp was sufficient. The noise map is then supplied to

the shapelets amoeba focusing routines as the “noise postage stamp”, at the deconvolution stage (Section

4.2.4), alongside the masked and sky-subtracted image postage stamp.

It was necessary to make additional changes to the publicly-available shapelet software, of relevance to the

construction of postage stamp images. In particular, it wasfound that whilst the drawing of large postage
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stamps around objects was computationally prohibitive at the shapelet modelling stage, smaller postage

stamps led to an unacceptable number of model failures. An simple modification that iteratively redraws

the postage stamp in the event of model failure provided an efficient solution to this problem, and is now

part of the shapelet software, documented and available fordownload online. This process begins within

an initial postage stamp image of radiusnFWHM times the full width at half maximum (FWHM) of each

galaxy image, as output by SEXTRACTOR. If the modelling fails due to the model extending beyond the

limits of the postage stamp, the modelling is begun again with a postage stamp that is increased in size

increased by a factorfREDRAW. This process is repeated up to a maximum ofnREDRAWS times, after which

a catastrophic failure was flagged. In this analysis, I used an initial postage stamp size ofnFWHM = 6, a

redraw factorfREDRAW = 1.2 and a maximum number of redrawsnREDRAWS = 6.

A further improvement was the estimation the Poisson shot noise on each image pixel, which is then added

in quadrature to the sky noise map of each galaxy postage stamp. However, the total integration times of

the GEMS and GOODS observations, being 2160 seconds and 1040seconds respectively, ensured that this

shot noise contribution was small in comparison to the sky background.

The postage stamp data for each galaxy is then ready for shapelet modelling, but in order to accurately

deconvolve these images the point source postage stamps must first be used to model the GEMS PSF, a

process we now describe in detail.

4.2.3 Modelling the GEMS PSF

The shapelet characterization of the GEMS PSF proceeds in two stages. Firstly, a shapelet decomposition

of each selected stellar object is made, using the postage stamps drawn for each stellar object as described in

Section 4.2.2. The output shapelet model then gives a value and error estimate for each shapelet coefficient

fn1,n2
. The variation of each of these coefficients across the ACS chip is then approximated by the least-

squares fit of a simple two-dimensional function; recombining the coefficients from these best-fit models

then allows the full GEMS PSF to be estimated at any point across the field of view. However, this simple

picture disguises some significant freedoms at each stage ofthe modelling process.

Individual stellar models

Each star in the point source catalogue was modelled up to a shapelet ordernmax = 20, with a fixed

scale size ofβ = 1.8 pixels. The optimal choice of these modelling parameters depends sensitively upon

the properties of the PSF in question. In particular, the Gaussian envelopes of the shapelet basis functions

Bn1,n2
, while well suited to fitting typical galaxy profiles, are here an inconvenience: the ACS point source

response is extremely non-Gaussian in profile and so requires modelling to a high ordernmax. Using a

PSF model ofnmax = 20 slows down the deconvolution and modelling of galaxy imagesconsiderably,

but this is a necessary concession if both the peak region andwings of the ACS PSF are to be accurately

characterized. In the cases of some of the brightest stars even annmax = 20 model is insufficient to provide

a good fit to every pixel of the stellar observations, due to their extremely high significance.

The choice of a fixed value for the basis function scale radius, β, can help to minimize the effects of this

unavoidable concession. For this reason, considerable care must be taken in this choice. As discussed in
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Figure 4.5: Comparison of the radial profiles (line) of a GEMSstar model, one using a scale radius
β assigned by theχ2 amoeba of Massey & Refregier (2005) (left panel) and one using a fixedβ of
1.8 (right panel). The square points represent the radial surface brightness measured in angular bins
from the image pixels, and the horizontal line shows the level of the root mean squared background
noise.

Massey & Refregier (2005) the shapelet software employs an amoeba algorithm to jointly optimise the

selection ofβ, nmax and the centroid on an image-by-image basis. However, in order to fully characterize

the PSF across the chip this freedom is not permitted: linearinterpolation between shapelet coefficients

from models of adjacent stars is only possible if these models share the sameβ (see Refregier 2003;

Massey & Refregier 2005).

The choice of a fixedβ for all stellar models is therefore a considerable freedom in the modelling process,

and robust optimization of this choice will require furtherwork to formulate. In this analysis, the choice

of β was initially taken from the mean value ofβ ≃ 1.2 found by allowing the shapelet algorithm to fit

it as a free parameter, for fixednmax, using the shapelet amoeba to explore theχ2 surface of the model

fit (Massey & Refregier 2005; Bergé 2006). Importantly, however, it was found that many of the models

constructed with a fixedβ found in this manner were not necessarily providing a smoothly varying model of

the PSF; matching the sharply varying observed profiles frequently required rapid ‘ringing’ of the model on

sub-pixel scales. This was a particular problem in cases where even annmax = 20 model was insufficient

to represent the brighter stellar images, due to the high significance of bright pixel values and the steeply-

varying profile of the ACS PSF.

It was decided instead that the global value ofβ = 1.8 be chosen, after inspection of image residual maps,

and graphs comparing the radial light profiles of PSF models and corresponding real stars. In this way an

acceptable, but subjective, balance was struck between minimizingχ2 and capturing well the inner regions

of the PSF, whilst ensuring it varied smoothly and without becoming negative in flux. A comparison of the

radial profiles of a GEMS star modelled with a fixedβ of 1.8 and a freely varyingβ can be seen in Figure

4.5.

Needless to say, this does not represent a fully rigorous andrepeatable procedure for the optimal selection

of the PSFβ, a selection made particularly difficult in this case by the extreme non-gaussianity of the ACS
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PSF. One solution may lie in a change in choice of basis set forPSF modelling to something more suitable,

despite the relative efficiency of shapelets for modelling galaxies. It is not necessary for the PSF model and

galaxy models to share the same basis set; however, the convolution operation will become more complex

and will likely cease to be analytic.

Despite these reservations, the shapelet modelling of stars to nmax = 20 in this analysis represents a

significantly more detailed description of the PSF when compared to KSB-style methods. The 909 stellar

models (10 catastrophic failures were suffered) were then normalised to unit flux, and ready for use in

characterizing the behaviour of the GEMS PSF as a whole.

Variation of the PSF model across the ACS field of view

Having arrived at a model of the point source response at the position of each chosen star in the GEMS

images, it remains to use these models to estimate the PSF atanygiven point.

The variation of the PSF across the field of view was estimatedseparately for each of the two ACS CCD

chips in each of the three GEMS epochs (described in Section 4.1.2). A two-dimensional, second-order

polynomial was then fit to each of the 231 shapelet coefficients fn1,n2
. The fit to eachfn1,n2

was simple

linear least-squares, implemented using Singular Value Decomposition (SVD: see, e.g., Press et al. 1992),

incorporating the modelling uncertainties on each shapelet coefficient as output by the Massey & Refregier

(2005) software. The shapelet software can be made to outputa full covariance matrixCn1,n2
and so it is

possible to use this information to fit all 231 coefficients simultaneously; in this analysis, however, we make

the simplifying assumption that these covariances are small and may be neglected. The fit was therefore

made to each coefficient independently, i.e. not taking intoaccount the small covariances present between

shapelet coefficients due to pixelization (Massey & Refregier 2005); examaination of the covariance ma-

trices showed these non-diagonal matrix elements to be negligibly small for the bright stellar objects being

considered.

A second-order polynomial was chosen rather than a third- orhigher order polynomial (which have been

more successful in other studies, e.g. Van Waerbeke et al. 2005b) due to concerns over over-fitting of the

stellar shape information; even using a second-order polynomial it is necessary to fit6 × 231 parameter

values to each star. SVD was used, in combination with the shapelet coefficient error estimates, so as to as

suppress this risk of over-fitting for those shapelet coefficients where insufficent information was available

to merit such a fit. Third-order polynomials were tried (requiring only a minor modification to the method)

but examination of shear and flexion maps for the stellar model did not provide any evidence that they

significantly altered the description of the PSF. In light ofthe expressed concerns regarding over-fitting it

was decided to instead minimize this risk and to use a second-order polynomial to model the variation of

shapelet coefficient values acros the chip.

Estimates ofγ∗, F∗ andG∗ for the stellar models were then made (as described for galaxies in Section

4.2.5), and stars for which these lay further than 3-σ from the model were iteratively removed and the

remaining data refit a further two times. Having then made an estimate of the variation of eachfn1,n2

across the field of view, it is possible to construct a model ofthe estimated PSF at the exact location of

each galaxy in the GEMS field. These modelled PSFs are then input at the shapelet decomposition stage,

in the form of a shapelets catalogue with a PSF model at the position of each galaxy, and the recovered
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shapelet galaxy model is then a good approximation to the galaxy as it would appear in the absence of PSF

smearing (Massey & Refregier 2005).

4.2.4 Shapelets deconvolution

As shown in Figure 4.3, the shapelet software package uses the IDL wrapper routineshex.pro to create

output shapelet catalogues of deconvolved galaxy images, referred to as “shapecats”. The routine takes

as its inputs the shapelets-ready catalogues constructed as described in Section 4.1.2, the GEMS images

themselves, and shapelets catalogues containing the estimated PSF at each galaxy location, modelled as

described in Section 4.2.3. There is additional freedom in the selection of values for optional input param-

eters to the shapelets routines, and I now outline our choices of these parameters where they differ from

the default values, and describe the reasons for these choices.

The shapelet deconvolution was carried out using the Cartesian shapelet basis set; this is done because the

Cartesian basis functions are separable inx andy, and, crucially, may be analytically integrated within

rectangular pixels. This ensures that the integration of flux into each CCD pixel is accurately described

during the direct modelling stage, and is the method used by the publicly available shapelet software. If

necessary for the construction of lensing estimators, it iseasy to transform between Cartesian shapelet

coefficientsfn1,n2
and their polar counterpartsfn,m using the following relationship (given in Massey &

Refregier 2005):
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where the reader is referred to the definitions ofnr andnl in terms ofn andm given in Section 3.2.1. Equa-

tion (4.1) describes a one-to-one mapping for polar and Cartesian shapelet models that holds when these

models are truncated to the samenmax, i.e.n1+n2 ≤ nmax andn ≤ nmax. This calculation may be quickly

performed by a routine available as part of the shapelet software,shapelets polar convert.pro,

which performs the transformation of Equation (4.1) extremely quickly upon both single galaxy models

and entire shapelet catalogues.

The GEMS galaxies were modelled only up to a maximum shapeletordernmax = 16. This value was

chosen due to the disproportionately long time taken to model a small subset of large/bright galaxies in the

GEMS dataset; the time taken to model a galaxy increases roughly asn4
max (Massey & Refregier 2005;

Massey et al. 2007d). Given that the largest and brightest galaxies are also most likely to be the closest,

it was decided that the importance of perfect modelling of such objects was of secondary importance in a

weak lensing analysis. For the galaxy-galaxy lensing analysis described in Chapter 6 it was found that the

vast majority of the≃ 3000 galaxy models for whichnmax ≤ 16 represented a significant truncation lay

within the foreground lens sample. Similarly, the GEMS galaxies were all modelled to a minimumnmin of

2. This was found to cause overfitting, defined as having a model reducedχ2 < 1, in only a small minority

of cases (< 200).
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The other input parameter differing significantly from the default value was the choice ofθmin,Geom, defined

by (Refregier 2003) as

θmin,Geom= β
√
nmax + 1. (4.2)

In this analysis, we enforce the conditionθmin,Geom ≥ 1 pixel at the shapelet modelling stage: models

for which this condition is not met are remodelled using another choice ofβ andnmax. This value was

chosen over the smaller, default value of 0.2 pixels in an attempt to reduce the overfitting of correlated

noise in the GEMS images, which comes about as a result of the drizzling of the GEMS images using the

MULTI DRIZZLE software of Koekemoer et al. (2002) (see also Caldwell et al.2005). This effect is also

discussed in Section 5.4.3, and is of relevance as the shapelet software assumes that noise in adjacent pixels

is uncorrelated. In order to accurately treat images in which noise is correlated between adjacent pixels

(such as the dithered GEMS images), the shapelet code is required to invert an extremely large pixel noise

covariance matrix. The instability and processing time requirements of this process led to it being excluded

from the shapelet software of Massey & Refregier (2005), allowing the far simpler inversion of a purely

diagonal noise matrix. This currently represents a potential weakness in the shapelet method, as overfitting

correlated noise will result in the circularization of output galaxy models, possibly biasing lensing results,

and so we take precautions to limit this effect.

Given these input parameters, and with the modifications to the postage stamp extraction described in

Section 4.2.2, the routineshex.pro was used to create a deconvolved output shapecat of all the galaxy

objects in each GEMS image tile. As was discussed in Chapter 3, a number of possible estimators may be

used to extract reliable lensing measurements from this significant reservoir of galaxy shape information;

the choice of these estimators for the GEMS dataset will now be discussed.

4.2.5 Shear and flexion estimation

Given a shapelet derived approximation of each galaxy imageprior to PSF distortion, all that remains is

to extract accurate and unbiased lensing estimators using the values of the model coefficientsfn1,n2
. As

described in Chapter 3 (see also Goldberg & Bacon 2005; Goldberg & Leonard 2007; Massey et al. 2007d)

there a number of such estimators that might be used. We are free to use any of these methods, aided by the

extreme simplicity of transforming between Cartesian and polar shapelet spaces; as described in the pre-

vious Section this may simply and quickly done using the functionshapelets polar convert.pro

that comes as part of the shapelet software, and which implements the matrix transformation described by

Equation (4.1).

For the analysis of the GEMS galaxy images, we employ theγ̃unweighted shear estimator of Equation

(3.100), and the shapelet flexion estimators that work by minimizing the goodness-of-fit statisticχ2 in

Equation (3.91), proposed by Goldberg & Bacon (2005). Use ofthese estimators requires that galaxies are

modelled tonmax ≥ 2 for shear andnmax ≥ 3 for flexion, as described in Chapter 3. These choices are

motivated by the results of Chapter 5, which tests a variety of shapelet lensing estimators using a realistic

simulation of ACS survey imaging data. Although we use the results of this later analysis here, and are

thus somewhat guilty of breaking the natural flow of the Thesis, lensing shape measurement is a complex

procedure and it has been instructive in the first instance togive a thorough description of the full data

reduction methodology that is used in both the real and simulation data analyses.

The results of Chapter 5 also give correcting bias factors necessary for the accurate recovery of shear and
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flexion data (see Tables 5.1 and 5.2). Using these bias factors, and the estimator labelling defined in Section

5.1, I define the measured shear and flexion in GEMS as

γobs =
γ̃unweighted

0.82
, Fobs =

F̃DG

1.04
, Gobs =

G̃DG

2.15
. (4.3)

In order to calibrate thẽγunweighted estimator, we measure a shear responsivity factor of

R = 1 −
〈

ε2
〉

2
= 0.783, (4.4)

which then gives

γ̃unweighted =
ε

2R (4.5)

see Equation (3.100). It is noted that this is a different result to that found for the simulated galaxy images

of Chapter 5, for whichR = 0.886. This is due to a broader distribution of measured ellipticities in the

GEMS galaxies as compared to those of the simulated galaxy population. As described in Massey et al.

(2007d), galaxies of greater intrinsic ellipticity respond more weakly to applied shear, and the factorR
calibrates for this effect. While differing values betweenthe two analyses point to the simulated galaxy

population displaying less ellipticity variance when compared to the GEMS sample, it is right to include

the correct calibration based on the properties of the GEMS galaxies being measured. Shear results will be

robust despite this difference.

Finally, I remove catastrophic shapelet modelling failures (≃ 4%) and outlying measurements with|γobs| <
1, |Fobs| < 1 arcsec−1 and|Gobs| < 2 arcsec−1. I also remove modelled galaxies withβ < 2, so as to

ensure accurate deconvolution for all catalogue objects (see Section 5.4; Massey & Refregier 2005). This

fully describes the GEMS shear and flexion catalogues, whichcontain46 145, 26 999 and22 490 galaxies

for γobs, Fobs andGobs respectively. The fact that the flexion catalogues are significantly smaller than the

shear catalogue is largely a consequence of the requirementfor galaxies to be modelled tonmax ≥ 3 in

order for flexion estimation using the scheme presented by Goldberg & Bacon (2005). I now go on to ex-

amine some of the properties of these shear and flexion catalogues, checking for consistency with previous

results and quantifying evidence for the successful removal of systematics.

4.3 Results

4.3.1 Comparison with previous shear studies of the GEMS field

A first indication of the success of the GEMS shapelet pipeline is the comparison of shear results obtained

with those of two previous studies of the same field: H05 and Schrabback et al. (2007). Both these analyses

used a KSB-style analysis (see, e.g., Kaiser et al. 1995; Hoekstra et al. 1998) to measure the shear and

correct for PSF effects, and so it is interesting to see whether results match those of the fundamentally

different shapelet analysis presented in Section 4.2.

I compare myγobs with the H05 shear catalogue, provided by Catherine Heymans. I first match the

H05 catalogue to my “grand” catalogue of all objects in GEMS,finding a 100% match; this is because
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both analyse use exactly the same SEXTRACTOR catalogue as starting point. Shear measurements are

compared in Figure 4.6.

So as to produce a reliable fit between these coefficients, I make an approximate estimate of the measure-

ment errors on each galaxy shear as follows. Following the results presented in Figure 4.7, I split both

shear catalogues into two subsamples. One subsample is bright galaxies havingm606 < 23.5 (≃ 3000

galaxies in each case) and the other faint subsample contains the remaining galaxies withm606 > 23.5

(≃ 42000). I then assume that measurement errors are negligible for the bright subsample, and estimate

the measurement variance for the shear on a typical galaxy asthe ensemble value of

σ2
meas= σ2(m606 > 23.5) − σ2(m606 < 23.5) (4.6)

for each catalogue. This expression assumes that a typical galaxy is measured as poorly as a galaxy in the

fainter subsample, which should be a reasonable estimate given to the far greater number of faint galaxies.

Using these simple assumptions I findσobs
meas = 0.19 andσH05

meas = 0.17. This is an interesting result in

itself, suggesting that shapelet measurements are noisierthan the H05 KSB-style analyses. Taking these

measurement errors, a line ofγobs
i = aiγ

H05
i + bi was fit to the relationship between shear estimates

(calculated by David Bacon). Best-fitting slope parameterswere

a1 = 0.963± 0.006, a2 = 0.977± 0.012, (4.7)

suggesting an overall calibrative bias of(96.7± 0.08)%. Best-fittingy-offset parameters were found to be

b1 = 0.0012± 0.0046, b2 = 0.0012± 0.0045, (4.8)

suggesting no significant difference in the residual shear between this analysis and H05. Evidence for such

an offset could indicate a poor treatment of PSF effects in one (or possibly both) set of measurements (see

Section 4.3.3).

The level of agreement between H05 and the results of my shapelet pipeline is encouraging, and lies

within the sample variance achievable for cosmological measurements from a survey the size of GEMS.

Schrabback et al. (2007) also found a slight deficit of≃ 3.3% in comparison of their shear measurements to

H05, and so agreement with these authors is even stronger. Properly calibrated (as is also required by most

KSB methods), a first shapelet shear analysis of real data hasbeen made to agree with two independent

sets of measurements for the same field.

In Section 4.3.3, I describe a further test for residual systematics that can be made from my own data and

results. However, before making statistical estimates of these systematics it is necessary to investigate the

nature of the signal that is being measured, particularly for Fobs andGobs, the distributions of which pose

extra problems to weak lensing analyses.

4.3.2 Distributions of lensing measurements

Figures 4.7, 4.8 and 4.9 (left panels) show the distributions of measured shear and flexion for all the shapelet

deconvolved galaxies in the GEMS survey. The most striking feature of these results is the extreme non-

Gaussianity of the distributions of measuredFobs andGobs; the large wings of each distribution pose a
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Figure 4.6: Comparison ofγobs to shear measurements of the same field from Heymans et al. (2005).
The plots show the density ofγobs

1 versusγH05
1 points (left panel) andγobs

2 versusγH05
2 points (right

panel). The solid line represents the best fit to the data oncemeasurement errors are estimated,
showing a calibration bias of(96.7 ± 0.8)% overall. Figure provided by David Bacon.

significant problem in the extraction of statistical information. This is due to the instability of the arithmetic

mean for distributions with a poorly-defined variance. In the Chapters that follow, a number of techniques

for coping with this property of shapelet-measuredFobs andGobs will be discussed.

In the following Section, 4.3.3, I outline one approach for dealing with the large number of outliers in

flexion statistics: the use of the statistical sample medianrather than the sample mean as a measure of

central tendency. Another approach is to apply strict clipping to the measurements, imposing cuts of

|Fobs| < Fmax and |Gobs| < Gmax to remove outlying objects from the lensing catalogues, andthen

simply using the sample mean. This is an attractive proposal, but will cause biasing of the measured

sample mean towards zero. An initial investigation has shown that the error on the measured sample mean

can be improved significantly by cuts as severe asFmax = 0.1 andGmax = 0.2. However, the biasing

effect of such clipping needs to be carefully simulated, as it will depend closely upon the underlying signals

F andG. The improvement of flexion measurement using optimised outlier clipping, and the simulation of

look-up tables for an accurate estimate of the clipping biasing factor, presents an interesting alternative to

median statistics and an important avenue of further work.

Another interesting aspect of the problem of flexion measurement scatter is the degree to which it depends

upon the quantity of image information available for each galaxy. The right-hand panels of Figures 4.7, 4.8

and 4.9 show the distributions ofγobs, Fobs andGobs for a subset of the GEMS galaxies with magnitudes

m606 < 23.5, as measured using SEXTRACTOR (this represents a sample size of≃ 6000 from the total

sample of≃ 50000 GEMS galaxies). For shear, this restriction leads to a mild narrowing of the distribution

of γobs estimates. However, theFobs andGobs distributions of Figures 4.8 and 4.9 are seen to narrow

significantly with the restriction to a lower magnitude sub-sample.

In each case, the reduction in the FWHM of theFobs andGobs histograms is by a factor of approximately

3, with a significant further reduction in the number of extreme outliers. Interestingly, and perhaps frustrat-

ingly, for the purpose of statistical analyses the three-fold reduction in the width of scatter is roughly bal-

anced by the nine-fold decrease in the sample size. It will beimportant in the future to examine, in greater
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Figure 4.7: Histograms of measuredγobs from the PSF deconvolved GEMS galaxy
images; the real and imaginary components are represented by dashed and solid lines
respectively. The left panel shows the histogram for the entire survey, the right for a
subset with SEXTRACTOR-measured magnitudem606 < 23.5.

Figure 4.8: Histograms of measuredFobs from the PSF deconvolved GEMS galaxy
images, plotted as described for shear in for Figure 4.7.

Figure 4.9: Histograms of measuredGobs from the PSF deconvolved GEMS galaxy
images, plotted as described for shear in Figure 4.7.
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Figure 4.10: Mean (left) and median (right) deconvolved galaxyγobs in the GEMS survey images.
The open diamonds represent the signal for each tile, with the large error bars plotted in the top
left-hand corner representing the average error on each of these measurements. The cross with the
smaller error bars represents the global residual signal, consistent with zero in both cases.

detail, the relationship between the scatter in flexion measurements and galaxy image SNR. Through such

an analysis we should hope to discover an optimal depth or SNRcriteria for the selection of galaxies for

shapelet flexion analysis.

Despite the non-Gaussianity of the flexion distribution, itis still possible to construct estimates of the

lensing signal using the sample median, which can then be used to check for systematic errors in the

flexion catalogues. An important test of the reliability of the shapelet correction for PSF-induced lensing

systematics is to consider the residual signal inγobs, Fobs andGobs for the GEMS image tiles and survey

as a whole. Such evidence for the success of the shapelet lensing analysis is considered below, in Section

4.3.3.

4.3.3 Tests for residual PSF anisotropy systematics

We expect that, given a complete and successful treatment oflensing systematics due to the anisotropy

of the PSF, the total average (whether mean or median) of theγ, F andG signals in the GEMS images

will be consistent with zero. It should be noted that in this analysis we need to consider theunrotated

values of the observed lensing measures, leaving them in thecoordinate system defined by thex andy

axes of the ACS chip. For the final lensing analysis all measurements are rotated into right ascension and

declination coordinates, but the residual signal in these results would inaccurately reflect the success of

the PSF correction scheme. In particular, the images in the GEMS dataset which come from the GOODS

observations (see Rix et al. 2004; Figure 4.1) are aligned ata significant angle to the GEMS-observed

images.

Figure 4.10 shows the mean (left panel) and median (right panel) unrotatedγobs in the deconvolved GEMS
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survey images, both on a tile-by-tile basis and for the survey overall. The global mean shear is given by

〈γ1〉 = −0.0004± 0.0012 (4.9)

〈γ2〉 = 0.0005 ± 0.0012, (4.10)

and the global median shear by

(γ1)m = −0.0007± 0.0012 (4.11)

(γ2)m = 0.0007± 0.0012. (4.12)

Both these measures give zero-consistent results, giving asignificant indication of success in the shapelet

treatment of PSF anisotropy systematics forγobs in GEMS.

It will be instructive to consider these results somewhat further. Firstly, for weak shears and flexions we

may assume that both the mean and median will tend towards theunderlying gravitational signal, and so

each method provides us with a valid estimator in the weak regime. The errors on the sample medianγm

are estimated using the result that for largeN samples

σγm =
1

√

4Np2(γm)
, (4.13)

(see, e.g., Lupton 1993), whereN is the sample size andp(γm) is the estimated value of the probability

density distribution at the sample median. For a normally distributed population, the statistical efficiency

of the median (defined as the variance ratio of the sample meanto sample median) tends to2/π ≃ 0.7

for largeN , but as can be seen from Equations (4.9)-(4.12) the efficiency of the median for shear is in

approximately equal to unity. This highlights the weak non-Gaussianity of the distribution of measured

γobs. As a measure of central tendency, the sample mean relies implicitly on the Central Limit Theorem

and so its efficiency suffers increasingly as errors become more non-Gaussian.

For the cases ofFobs andGobs the efficiency of the median lies in the range≃ 5-6, due to the extremely

non-Gaussian wings of the flexion distribution. For the analysis of the residual flexion signal, shown in

Figure 4.11, we therefore plot only median statistics. The global median of the unrotatedFobs signal is

found to be

(F1)m = −0.0009± 0.0009 (4.14)

(F2)m = 0.0015± 0.0010, (4.15)

which is marginally inconsistent with a complete removal ofFobs residuals. The global median of the

unrotatedGobs is found to be

(G1)m = 0.0024± 0.0026 (4.16)

(G2)m = 0.0074± 0.0027. (4.17)
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Figure 4.11: Median deconvolved galaxyFobs (left) andGobs (right) in the GEMS survey images.
The open diamonds represent the signal for each tile, with the large error bars plotted in the top
left-hand corner representing the average error on each of these measurements. The cross with the
smaller error bars represents the global residual signal; this is mildly inconsistent with zero forFobs,
but more significantly so forGobs.

This is significant evidence that the PSF deconvolution method described in Sections 4.2.3 and 4.2.4 has

been unsuccessful for the case ofGobs.

These results are less conclusively successful than those for the shear estimators, particularly forGobs
2

where we are detecting a clear residual signal. Understanding the reasons for this difference is problematic,

particularly given the noise on the flexion measurements. Issues that would also affect shear estimates, such

as problems with charge transfer efficiency can be largely ruled out given the success of the shear results

and other studies of the GEMS field (H05; Schrabback et al. 2007).

An alternative explanation is simply that the higher order modes of the GEMS PSF were insufficiently

well modelled to be able to completely correct for the effects of PSF flexion anisotropy, despite shapelet

modelling tonmax = 20. It is known in particular that the ACS PSF contains a a significant degree of

flexion-like anisotropy, particularly in the outer regionsof the light distribution. In work completed for the

Active Galactic Nuclei hosts analysis of Jahnke et al. (2004), a composite, high SNR image of the GEMS

PSF in the F606 band was created (Figure 4.12), and made publicly available1. This image is scaled so as

to reveal the outer structure of the light profile, and reveals evidence of aG2-like anisotropy that may be

responsible for the detected residual.

As was discussed in Section 4.2.3, and as can be seen in Figure4.5, the shapelet basis set struggles to de-

scribe the ACS PSF profile well over a broad range of scales. Inorder to completely describe the anisotropic

outer wings of Figure 4.12 the shapelet model truncation order needs to be increased substantially beyond

nmax = 20. The shapelet deconvolution then becomes slower, and will require large memory resources to

avoid segmentation faults: both the storage requirements and processing time increase roughly asn4. In

this analysis, using ten desktop machines (2GHz, 1-2GB RAM)the shapelet deconvolution took approxi-

1http://www.aip.de/%7Ejahnke/research/gems/psf M15.html
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Figure 4.12: Composite image of the average F606W PSF in the GEMS data, scaled
so as to reveal the outer wings of the light profile. Figure generated for the AGN
analysis of Jahnke et al. (2004) and made available on the world-wide web.

mately 9 days to complete (PSF modelled tonmax = 20), so there is some room to explore whether more

detailed modelling of the PSF can alleviate the presence of residuals.

Nevertheless, in the case of shear and (marginally) the firstflexion, we appear to have reasonable control

of the systematics due to the anisotropic GEMS PSF. Moreover, the primary cosmological measurement

attempted in this Thesis is the galaxy-galaxy shear and flexion signal in GEMS, which will not be adversely

affected by any small systematic anisotropy inγobs, Fobs or Gobs due to the rotational averaging of such

residuals (Brainerd et al. 1996; Schneider & Rix 1997). Induced anisotropy is not the only effect of the

PSF, however, which also blurs and circularizes galaxy images causing a weakening bias in the magnitude

of extracted lensing measurements. The success of schemes for correcting this effect can only be accurately

quantified via the analysis of simulated lensing data, to which we now turn in the following Chapter.
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CHAPTER 5

SHAPELET LENSING ANALYSIS OF

SIMULATED DATA

Optical distortions due to the anisotropic point source response of imaging telescopes can be broadly de-

scribed as having two effects upon lensing measurements. The first is to induce a residual anisotropy in

galaxy images, which may mimic a lensing signal and must be corrected; the level of residual contami-

nation in the GEMS galaxy images is discussed in Chapter 4. The second effect is the circularization of

galaxies due to image blurring, causing a reduction in the measured shear or flexion that must be accounted

for.

This Chapter quantifies the success of this second correction for the GEMS shapelet pipeline as described

in Chapter 4, and the success of the treatment for other issues in lensing measurement such as the effects

of image noise. Using simulated, GEMS-like galaxy survey images of known input shear and flexion,

pre-convolved with a realistic ACS point spread function and given pixel noise, I test the success of signal

retrieval for a variety of shapelet estimators.
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5.1 The FLexion Implementation Program

(FLIP)

In order to more accurately test the success of lensing information recovery in the GEMS shapelet pipeline,

I undertook the analysis of a set of simulated images provided by Richard Massey, using the same pro-

cedures used for the Shear TEsting Program (STEP) analyses (STEP1: Heymans et al. 2006b; STEP2:

Massey et al. 2007b; STEP3: Rhodes et al., in prep.). These images (which will be described more fully

in Section 5.2) were designed to closely resemble the GEMS data, including sky background noise and the

distorting effect of a point spread function based on that oftheHubble Space TelescopeACS.

5.1.1 Input lensing signals

Most importantly, the galaxies in each image were subjectedto a known input shear, first flexion and second

flexion before the degradation of the images. By comparing the recovered lensing measurements with the

known inputs, we can calibrate and test a selection of shapelet lensing estimators. The basic strategy is to

take 100 GEMS-like simulated galaxy tiles and apply the samegravitationalγ, F andG to all the galaxies

in each tile, but to vary the chosen signals between tiles. Wename this analysis the FLexion Implementation

Program (FLIP).

There is significant freedom in the choice of the input gravitational distortions, leading to a large parameter

space. Issues such as the covariance and covariant biases between measurements of flexion and shear

(Schneider & Er 2007), which are likely to be a function of therelative strengths and relative orientations of

the gravitational signals, will require very large simulated datasets in order to be accurately explored. In this

work, I confine myself to measurements of gravitational shear and flexion in the configuration of relative

orientations depicted in Figure 5.1. This mimics the combined effect due to a single circularly-symmetric

mass distribution, and so approximates what we might expectfor measurements of galaxy-galaxy lensing.

This is particularly true for the GEMS field, which is known not to contain any large mass distribution such

as a cluster (H05; Schrabback et al. 2007).

Despite fixing the orientations of shear, first flexion and second flexion relative to one another, the relative

magnitudesof the input signals are allowed to vary between tiles, reflecting the realistic halo models de-

scribed in Chapter 2. The overall orientation of the shear-flexion signal is also allowed to vary, so as not to

bias results by aligning the signal along potentially preferential directions to the pixel axes.

Input shear signal strengths were chosen to lie in the range defined by|γ| < 0.08, and flexion signal

strengths to lie in the range defined by|F| < 0.012 arcsec−1 and|G| < 0.036 arcsec−1, again motivated

by the results of Chapter 2. Richard Massey then applied these signals to shapelet models of galaxy images

made using the galaxy image simulation software of Massey etal. (2004) (see Section 5.2), using the

shapelet shear and flexion transformations described in Chapter 3 and in Massey et al. (2007d). After

adding noise and the effects of an anisotropic ACS-like PSF,the images were ready to be analysed using

the GEMS shapelet pipeline.
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Figure 5.1: Schematic showing the relative orientations ofinduced gravitationalγ (solid arrows),F
(clear arrows) andG (open arrows) in the FLIP images. These relative orientations were chosen as
they mimic the combined effect due to a single circularly-symmetric mass distribution, which in this
case would lie off the page towards the right; the panel on theright shows this combined effect on
a single galaxy. It should be noted that in the FLIP images therelative strengths of each signal vary
between tiles, as does theoverallorientation of the combined configuration.

5.1.2 Lensing estimators

As was discussed in Chapter 3, the range of lensing estimators that may be constructed using shapelets

is only limited by the number of shapelet modes available (nmax). However, in practical cases this in-

formation will be limited so as to extract lensing information from as many galaxy images as possible.

Estimators which make extensive use of higher order information will prove problematic for many galaxy

images, particular those which rely upon the convergence (in the sense of converging to a limit) of sums

over shapelet coefficients (see Massey et al. (2007d)).

In order to test shapeletshearestimation we apply the following three schemes to the FLIP images:

• Shears measured using the Cartesian shapelet model of eachgalaxy and David Goldberg’s routine

flexion.pro, available to the public via the flexion web page1. This applies aχ2 minimization

of the following expression:

χ2(even) =
[

µn + γiŜif̃
s
n′ − fn

]

V −1
np

[

µp + γiŜif̃
s
p′ − fp

]

(5.1)

wheref̃ s
n′ , Vnp andµn, and the method overall, are fully described in Section 3.4.2, Equations

(3.87)-(3.91) (see also Goldberg & Bacon 2005). We label these shear measurementsγ̃DG.

• Shears measured using the polar shapelet model of each galaxy, and the shapelets unweighted el-

lipticity estimator, described in Section 3.4.3, Equation(3.100), which we reproduce here again for

clarity:

γ̃unweighted =
ε

(2 − 〈ε2〉) =

∑∞
n=0

√

n(n+ 2) fn,2

(2 − 〈ε2〉)∑∞
n=0

√

(n+ 1) fn,0

. (5.2)

This is the estimator that was introduced by Massey et al. (2007d).

• Shears measured using the Gaussian weighted estimator described in Section 3.4.3:

γ̃Gaussian =
√

2
f2,2

〈f0,0 − f4,0〉
, (5.3)
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which was introduced in Massey et al. (2007d) and where, as discussed in Section 3.4.3, the angle

brackets in the denominator denote an ensemble average across the entire sample of galaxy images.

These were identified as being the estimators most likely to give reliable and rapidly converging results for

typical galaxy images where only limited information is available.

The following threeflexionestimation schemes were chosen for testing using the FLIP simulations:

• Flexion measured using a Carteisan shapelet model of each galaxy and David Goldberg’s routine

flexion.pro, available at the flexion web page (see above). In a similar fashion to the case of

shear, this measures flexion by minimizing the followingχ2 statistic:

χ2(odd) =
[(

F iF̂
T
i + GiĜ

T
i

)

f̃ s
n′ − fn

]

V −1
np

[(

F iF̂
T
i + GiĜ

T
i

)

f̃ s
p′ − fp

]

. (5.4)

As for the shear estimator given in Equation (5.1), this estimator is fully described in Section 3.4.2,

Equations (3.87)-(3.93) (see also Goldberg & Bacon 2005). We label these measurementsF̃DG
and

G̃DG
.

• Flexion measured using Cartesian shapelets andflexion.pro again, minimizing Equation (5.4)

above, but using an input Cartesian shapelet series furthertruncated tonmax ≤ 7 for all galaxies.

This is done to test the assertion of Goldberg & Leonard (2007) that the shapelet series need be

truncated for accurate flexion measurement. These measurements are labelled̃FDGT
andG̃DGT

.

• Flexion measured using a polar shapelet model of each galaxy and the lowest order Gaussian estima-

tors described in Section 3.4.3, Equations (3.103) and (3.104), which we reproduce here once more

for continuity:

F̃Gaussian
=

4

3β

f1,1

〈(1 − (R2/β2)) f0,0 + (R2/β2)f2,0 − f4,0〉
(5.5)

for the first flexion and

G̃Gaussian
=

4
√

6

3β

f3,3

〈f0,0 + f2,0 − f4,0 − f6,0〉
, (5.6)

for the second flexion. As discussed in Section 3.4.3, theR2 is measured from the lensed galaxy

images and the angle brackets denote an average across all the images in the simulated survey sample.

These estimators were first introduced in (Massey et al. 2007d).

We describe the results achieved with these shear and flexionestimators in Section 5.3, but first I discuss

the galaxy images created for the FLIP analysis.

5.2 FLIP images

The FLIP images were created by Richard Massey via the same galaxy image simulation package as was

used for STEP2 (Massey et al. 2007b), as described in Massey et al. (2004) and below. The images were

1http://www.physics.drexel.edu/ goldberg/flexion/



5.2. FLIP IMAGES 119

Figure 5.2: Illustration of the effect of perturbing galaxymorphologies in shapelet
space, using the method of Massey et al. (2004) and taken fromthat article. The
images in the top row show a shapelet model of aHubbleDeep Field galaxy, rotated
by various angles. The successive rows below show the same galaxy but with its
shapelet coefficients increasingly perturbed; the degree of perturbationλn1,n2

(see
Equation 5.7) chosen by Massey et al. (2004) for realistic simulations of galaxy images
is shown in the box. These represent typical shapelet simulated galaxies as used in the
FLIP analysis.

created so as to realistically simulate the morphologies ofspace-based observations of galaxies, and use

a realistic model of the ACS PSF to test the accuracy of shear measurement methods for space-based

observations. A set of 1004096 × 4096 pixel images were created, with a pixel scale of 0.03 arcsec (so as

to match the GEMS dithered science tiles), resulting in a total area of 419 arcmin2.

5.2.1 Simulated galaxies

The galaxy images are based on the shapelet parameterization of galaxy images in theHubbleDeep Fields

(HDF: Williams et al. 1996, 1998); a shapelet model of each galaxy in the HDF is first made. The simulated
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galaxy fields are then populated with model galaxies based upon these modelled real galaxies, but having

been given randomized rotations and inversion. Crucially,the shapelet model of each galaxy is then also

randomized by a small amount: the coefficientsfn1,n2
of each HDF galaxy are given a small random offset

by an amountδn1,n2
, so thatf sim

n1,n2
= fn1,n2

+ δn1,n2
. This offset is chosen to be a random variable

following the Epanechnikov probability distribution

p(δn1,n2
) = K(δn1,n2

) ≡







3
4λn1,n2

[

1 −
(

δn1,n2

λn1,n2

)2
]

for − λn1,n2
< δn1,n2

< λn1,n2
,

0 elsewhere,
(5.7)

where the characteristic width of the offsetλn1,n2
is a free parameter that must be decided. Too large a

value ofλn1,n2
creates simulated galaxies that are unrealistically “messy” and can even display large holes

of negative flux; settingλn1,n2
= 0 simply reproduces the original HDF galaxy.

Massey et al. (2004) describe their preferred choice ofλn1,n2
; they considered each pair of neighrbouing

galaxies in the HDF finding thatλn1,n2
= 4×[ mean separation between nearest neighbours for thatfn1,n2

]

proved to be a suitable choice. An example of these simulatedgalaxies, along with its HDF progenitor, can

be seen in Figure 5.2 (image taken from Massey et al. 2004). The realism of these simulated galaxies was

further tested by through the comparison of a range of galaxymorphology measures with the equivalent

measurements for real data. It was found that the ellipticity distributions of simulated galaxies closely

mirrored those of real galaxies, as did measures of clumpiness, asymmetry and substructure (see Massey

et al. 2004; Conselice 2003; Bershady et al. 2000; Conseliceet al. 2000). The randomly inverted, rotated

and resampled galaxies then represent realistic but whollynew simulated galaxy images.

Using the lensing transformations described in Sections 3.1.2 and 3.2.2 these shapelet simulated galaxies

were then subjected to a range of input shears and flexions as described in Section 5.1. The first simulated

image was not lensed, each of the 99 subsequent tiles were subjected to a shear and flexion of a magnitude

randomly chosen from the ranges described in Section 5.1 using a uniform probability distribution. The

input shear and flexion signals for each tile are orientated at random angles to the pixel grid, but in fixed

orientation to one another (again as described in Section 5.1).

In order to test the accurate retrieval of lensing information in the presence of unavoidable observational

degradation, such as that due to sky noise and PSF distortions, it is necessary to mimic these effects in the

FLIP images. I describe how this was done in the next Section.

5.2.2 Simulated observational distortions

ACS-like point spread function

The point spread function used for the convolution of galaxies in this analysis was PSF “D” in the set of

PSFs used for the forthcoming STEP3 analysis (“space STEP”,Rhodes et al., in prep.) which is shown in

Figure 5.3. This is modelled on the ACS PSF and was chosen as the most likely to resemble the telescope

optics in the GEMS images, and to allow these results to be directly compared with the forthcoming STEP3

results. This PSF has been modelled using the shapelet software, up to an ordernmax = 20, and are based

on detailed “Tiny Tim” ray-tracing models of the ACS PSF (Krist 1995; Rhodes et al. 2007). As discussed

in Section 4.3.3, modelling up to ordernmax = 20 may not be sufficient to completely characterize the
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Figure 5.3: The point spread function (STEP3 PSF “D”) used toconvolve the FLIP
simulated galaxy images. The colour scale and contours plotted are logarithmic.

ACS PSF on all scales, due to its extremely non-Gaussian profile. However, it will provide a good first test

of the success of shear and flexion measurement using the GEMSpipeline. In subsequent analyses it will

be desirable to model the FLIP PSF to higher accuracy, much asit appears to be desirable to do the same

for the GEMS images.

Each lensed, shapelet modelled galaxy in the FLIP cataloguewas then convolved using this PSF model.

An important simplification of the FLIP analysis is that thisPSF model is kept constant across the image,

and no attempt is made to fit a time or spatially varying PSF model to the FLIP images. This simplification

is also observed in the STEP analyses of Heymans et al. (2006b) and Massey et al. (2007b), who argue

that the problem of shear measurement precision should be decoupled from the separate question of PSF

interpolation. Hoekstra (2004) and Jarvis & Jain (2004) have looked into this problem, but it is certainly

likely to add additional uncertainty to the calibration of lensing measurements.

The convolution itself was performed in shapelet space using the convolution matrix transformations de-

scribed in Refregier (2003) and Refregier & Bacon (2003), asimplemented by the IDL routineshapelets convolve.pro

in the shapelet software. The resulting shapelet models then represent galaxies smeared by the PSF of the

ACS, modelled to the same level as presented for blind tests of shear calibration in the STEP3 analysis of

Rhodes et al. (in prep.), allowing for later direct comparison between these results and those of the STEP

collaboration when analysing space-based images.

Finally, the convolved shapelet models are pixelized onto agrid of scale 0.03 arcsec, matching the GEMS

science tiles. This is done using the routineshapelets recomp.pro in the shapelet software, which

performs an integration of the shapelet model across each pixel. The Cartesian shapelet set is analytically

integrable across rectangular regions on the two-dimensional plane (Refregier 2003; Massey & Refregier

2005), and so this operation may done quickly and accurately.
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Figure 5.4: Section of one of the FLIP image tiles, created byRichard Massey using
the image simulation method of Massey et al. (2004).

Pixel noise

These pixelized FLIP images then undergo the final stage of processing, the addition of realistic noise.

Following STEP2 and STEP3 (Massey et al. 2007b; Rhodes et al., in prep.), a two-component noise model

is added to each FLIP image, resulting in the simulated data seen in Figure 5.4.

The first component added is a Poisson shot noise, due to the inevitable uncertainties associated with

counting discreet events (in this case the number of photonsarriving at each CCD pixel). The noise added

is drawn from a Gaussian random variable of variance equal tothe photon count. Having added this shot

noise, the images are renormalized to counts per second, matching the GEMS images.

The second component added corresponds to a Gaussian background with a root mean square level of

5.0 counts s−1, matching that of the GEMS images. The large scale variationin the field background is

assumed to be perfectly subtracted (a reasonable assumption for the final reduced versions of the GEMS

images, see Section 4.2.2). Correlated pixel noise of the sort described by Massey et al. (2007b) is not

added, following the prescription of the STEP3 analysis (Rhodes et al., in prep.); GEMS itself does contain

correlated pixel noise due to the dithering of images, and I will discuss the implications of this in Section

5.4.3. Finally, in the galaxy image simulation stage, faintobjects are created well below the level of the

GEMS sensitivity. These objects are subsequently lost in the noise, causing a slight but realistic addition

to the noise level overall. The FLIP images, a section of the second of which can be seen in Figure 5.4,

now encapture many of the most important properties of the GEMS lensing data and are ready for shapelet

analysis using the GEMS pipeline of Chapter 4. I now describethis analysis, the extraction of lensing

measurements, and the success of the different estimators for shear and flexion.
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5.3 FLIP data analysis and results

The FLIP image tiles were analysed using exactly the same pipeline as described in Chapter 4, with one

important difference. No stars are simulated in the FLIP images, and knowledge of the convolving PSF

comes instead in the direct form of thenmax = 20 shapelet model describing STEP3 PSF “D” shown in

Figure 5.3. There is therefore no need to model the FLIP PSF using the methods described in Section 4.2.3;

the GEMS images required detailed modelling firstly from thestars themselves and then modelling of that

variation of stellar shapes as a function of chip position.

In this way we are simulating shapelet shear and flexion measurement givenperfectknowledge of the

distorting PSF, a luxury which is not attainable for real data. Future analyses will be necessary to ascertain

the extra uncertainty in shear and flexion measurements due to imperfect modelling of the PSF (such as

may well be evident even for thenmax = 20 GEMS PSF model, see Section 4.3), but it is nevertheless

interesting to explore the undeniable limits of shape measurement accuracy even given a well-modelled

PSF.

Using the SEXTRACTOR software (Bertin & Arnouts 1996) I extracted a catalogue of 33 601 galaxies

having SNR> 15, as was done for the GEMS galaxies (see Section 4.1.2). This represents a slightly

higher number density of galaxies than that found using the similar criterion in the GEMS images (≃ 80

arcmin−2 as opposed to≃ 65 arcmin−2), but this can be explained by the paucity of objects in the GEMS

field (e.g., Schrabback et al. 2007), the masking of the GEMS images, and the necessary imposition of

further selection criteria upon the GEMS galaxies to avoid confusion with stars or imaging anomalies.

These SEXTRACTOR catalogues were then used as the input toshex.pro, using the same postage stamp

extraction scheme and input parameters as described in Chapter 4. The PSF model input toshex.pro,

the same for each galaxy, was the STEP3 PSF “D” as described above. I then used the 100 deconvolved

output shapelet catalogues to make an estimate of shear and flexion for each FLIP galaxy, using each of the

estimators listed in Section 5.1.

In a similar fashion to the published STEP analyses (Heymanset al. 2006b; Massey et al. 2007b), the chosen

figure of merit was based upon the mean (or median)γobs, Fobs orGobs from each tile, and its relationship

to the corresponding input signal. For the flexion analyses,the median was again found to significantly

outperform the mean as a measure of central tendency, and so is used exclusively. As was the case for the

GEMS data, the mean and median are equally efficient statistics for the FLIP shear measurements; we thus

make comparisons using the mean shear, a measure more likelyto be used in shear-only shapelet analyses

of the future. In my FLIP analysis the mean and median shear performed equivalently, with no significant

sign of any relative bias between the two for any of the shear estimators.

Specifically, the success of each lensing estimator is quantified by two measurements: the multiplicative

calibration biasm and the residual shear or flexion offset biasc. These are the same comparison criteria

used in the STEP studies (Heymans et al. 2006b; Massey et al. 2007b). Using the 200 data points provided

by the two components of mean shear measured for each tile, wefit the following relationship for each

estimator:
〈

γobs
〉

− γ input = mγγ
input + cγ . (5.8)
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Table 5.1: Tabulated shear calibration bias for each estimator tested on
the FLIP images.

Estimator mγ cγ

γ̃DG -0.235±0.013 0.0016±0.0005

γ̃unweighted -0.178±0.014 0.0016±0.0006

γ̃Gaussian -0.137±0.020 0.0012±0.0008

In the same way, we fit the median flexion measured from each tile as

(Fobs)m −F input = mFF input + cF , (5.9)

(Gobs)m − G input = mGG input + cG. (5.10)

It should be noted that we do not consider the two components of shear or flexion separately as a function

of the orientation of the input signal, as was done by Massey et al. (2007b) for STEP2. In considering the

overall response to components we maximise the signal-to-noise of our lensing measurement calibration,

and postpone an investigation of angular dependence to a later analysis. For the galaxy-galaxy lensing

measurements of Chapter 6 this will be a sufficient test of signal recovery, as any angular bias will cancel

on average and add only a small extra component to the measurement noise. I now discuss the results for

each of the estimators proposed in Section 5.1, and begin with the shear.

5.3.1 Shear measurement results

The analysis of the shear results begins with an outlier cut,all galaxies with|γobs| > 1 being removed from

consideration. This degree of trimming will not significantly bias output shear statistics, and is commonly

used for shear measurements (e.g., HO5). For the estimatorsconstructed in a “passive” fashion (Massey

et al. 2007b,d) from combinations of polar shapelet coefficientsfn,m we normalise each coefficient by the

flux of the object in question. This is a simple first approach to addressing the problem of reducing the

otherwise extremely wide scatter in shapelet coefficient values (fn,m being linearly related to the image

surface brightness). This and related problems are discussed in greater detail in Section 5.4. In order

to calculate thẽγunweighted estimator, a shear responsivity factorR (see Equation 3.100) for the galaxy

sample is needed, and is calculated to be

R = 1 −
〈

ε2
〉

2
= 0.886 (5.11)

for the FLIP images. We note that this is different to the result obtained for GEMS, pointing to a possible

difference in the properties of the GEMS galaxies when compared to those in the FLIP images (see Sections

4.2.4 and 5.1).

In Table 5.1 we present the results for the three shear estimators tested using the FLIP simulations, and in

Figure 5.5 plot the tile-by-tile results for each estimatorthat were used to fit themγ andcγ figures of merit

for each estimator. These results show a clear underestimating bias in each shear estimator considered,
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Figure 5.5: FLIP results for thẽγDG, γ̃unweighted andγ̃Gaussian estimators. Plotted are(γ̃DG−γ input)
versusγ input for each tile (top left panel), from which the calibration fitis calculated, and the output
γ̃DG versusγ input for each tile (top right panel). In the bottom left panel is plotted γ̃unweighted

versusγ input for each tile, and the bottom right panel showsγ̃Gaussian versusγ input. The dashed lines
represent the fit and the solid line depicts perfect performance.

recovering only(76.5 ± 1.3)%, (82.2 ± 1.4)% and (86.3 ± 2.0)% of the input shear signal for̃γDG,

γ̃unweighted andγ̃Gaussian respectively. The evidence for the imperfect removal of PSFanisotropy, given

by the value of the offset parametercγ , is also significant; although this sensitivity to a residual systematic

is less secure for̃γGaussian there is some sign that this estimator is also affected by imperfect PSF removal.

These results are discussed in Section 5.4.
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5.3.2 Flexion estimator results

As for the case of shear we exclude measurements for which|Fobs|, |Gobs| > 1, and for the passive

(Gaussian) estimators normalize each shapelet coefficientby the observed flux for that galaxy. In Table

5.2 we present the results for the flexion estimators described in Section 5.1.2 when tested using the FLIP

simulated images. Figure 5.6 shows the results of these estimators on a tile-by-tile basis, and the best-fitting

lines that give them andc figures of merit for each estimator.

These results are interesting in comparison to those for shear. The multiplicative biasmDG
F for the F̃DG

measurements appears to be well controlled, showing an overall bias ratio of1.04 ± 0.12. It is clear,

however, that the uncertainty on this figure is significantlygreater than that for its shear counterparts. Also

of interest is the fact that thẽGDG
appears to significantlyoverestimatethe input gravitational signal, with

a bias of(215 ± 12)%. This unexpected result will be discussed later on in the Chapter (see Section 5.4).

As in the case of the shear measurements, theF̃DG
estimator seems to show some residual offset bias.

The offset is somewhat more marginal than for shear, possibly due to the more severe noise in the flexion

measurements, and no significant residual is evident forG̃DG
.

The results for the truncated DGT estimatorsF̃DGT
andG̃DGT

are similar to those for the DG estimators,

but somewhat noisier and less accurate. Contrary to the findings of Goldberg & Leonard (2007) and

Leonard et al. (2007), who found that truncation improved shapelet estimates ofF andG, for the GEMS

pipeline it to be appears advantageous not to truncate shapelet models before measuring flexion using the

χ2 minimization of Equation (3.91). In particular, the multiplicative biasmDGT
F for theF̃DGT

measurements

appears to be less well controlled than forF̃DG
, showing an overall positive bias of(34 ± 15)%. Again,

G̃DGT
appears to overestimate the input gravitational signal, with an even greater positive bias of(290 ±

16)%. The control of residual offsets is again better than for theshear estimators, with a non-detection for

F̃DGT
and a marginal negative detection inG̃DGT

.

The F̃Gaussian
and G̃Gaussian

flexion estimators perform, perhaps, the worst of the three tested. The

F̃Gaussian
estimator now shows severe overestimating bias of the inputsignal, at(270±16)%. As opposed

to the DG estimators, the bias iñGGaussian
is a less severe (but still significant)(176 ± 17)%. Control of

residual offsets appears reasonable forG̃Gaussian
and poor forF̃Gaussian

. In the following Section I will

now attempt to discuss these results which, especially for the case of the flexion estimators tested, appear

in some cases to be disappointing and alarming in equal measure. It may be that further work, using a

larger suite of simulated images, will be necessary to really explore these biases and uncertainties. How-

ever, I will attempt to investigate and discuss some the moreobvious shortcomings and problems inherent

in the shapelet estimators, shortcomings that have only become apparent in the practical application of the

method.

5.4 Discussion

I now attempt to draw some conclusions, based on the results presented above and on other observations

which I will discuss, regarding the reliability of the tested shapelet lensing measurement schemes. Many

of the estimators above appear perform poorly, and more workwill be necessary to understand the issues
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Figure 5.6: FLIP results for the flexion estimators tested. In the top left panel is plotted the median

F̃DG
versusF input for each tile, and the top right panel shows the medianG̃DG

versusG input. Also

shown arẽFDGT
(mid left) andG̃DGT

(mid right), andF̃Gaussian
(bottom left) and̃GGaussian

(bottom
right), versus the respective input flexion signals. The differing scales of the various plots should be
noted. The dashed lines represent the fit and the solid line depicts perfect performance.
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Table 5.2: Tabulated flexion calibration bias for each estimator tested
on the FLIP images.

Estimator m c

F̃DG
0.04±0.12 0.0013±0.0008

F̃DGT
0.34±0.15 -0.0004±0.0009

F̃Gaussian
1.70±0.16 0.0034±0.0010

G̃DG
1.15±0.12 0.0017±0.0023

G̃DGT
1.90±0.16 0.0046±0.0031

G̃Gaussian
0.76±0.17 -0.0031±0.0032

affecting the accuracy of shapelet estimation. Still more work may be necessary before all of the schemes

presented above can be made as reliable as the best alternative methods.

5.4.1 Multiplicative bias

To begin, I will consider the results for the bias factorm, which is perhaps the most pernicious systematic

bias affecting lensing measurements as itrequireslensing simulations such as STEP and FLIP in order to

be accurately quantified. In contrast, the offset bias can beconstrained using tests on the lensing data in

question, such as those described in Section 4.3.3 (see alsoBacon et al. 2003 for a further test of shear

residual systematics in cosmic shear analyses).

On the strength of the results presented in Section 5.3.1 it is tempting to assume that the shear is best

measured bỹγGaussian. This estimator displays an underestimating multiplicative bias of≃ 86% in com-

parison to the≃ 82% of γ̃Gaussian or the even more severe underestimating bias for the David Goldberg

shear estimator. It also appears to have the least sensitivity to what, for an unknown reason that will be

speculated upon later, must be an imperfect treatment of thePSF anisotropy. There are, however, important

problems with this estimator and others similar to it for both shear and flexion. These are likely to be due

to the simple way it has been implemented for this analysis, and will need significant further investigation.

Firstly, γ̃Gaussian is noisier than the unweighted ellipticity and DG estimators. This in may in fact be a

consequence of another important property of this estimator, which relates to the calculation of its shear

susceptibility. As described in Section 3.4.3, theγ̃Gaussian estimator may be constructed simply as

γ̃Gaussian =

√
2f2,2

〈f0,0 − f4,0〉
, (5.12)

where the angle brackets〈 〉 denote an ensemble average. As mentioned above, for this analysis we took

the additional step of normalizing eachfn,m in the above expression by the flux of the galaxy in question

(remembering from Section 3.2 that the units offn,m are flux× inverse angle). This does something to

reduce the extremely large scatter in these quantities due to the large range of galaxy fluxes, but a large

scatter (and extremely skewed distribution) for these coefficients still remains. The correct calculation of

this ensemble average is vital to the accuracy of the entire estimator.
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In the FLIP analysis I have presented, this ensemble averagewas naı̈vely calculated as the arithmetic mean

of the entire shear catalogue, finding〈f0,0/F − f4,0/F 〉 = 2.49, whereF is the galaxy flux. As an

illustration of the instability of this measurement, the median of this quantity is found to be 1.89, pointing

towards a skewed distribution within the galaxy population. If this median is then used in the calculation

of γ̃Gaussian it is found thatmGaussian
γ is closely consistent with zero. It seems unjustifiable to draw strong

conclusions regarding the reliability of the Gaussian shear estimator without a better understanding of the

correct way to estimate this susceptibility factor. This instability is also likely to be a partial cause of the

extra noise seen in the Gaussian shear measurements.

An obvious conclusion is that the quantity〈f0,0 − f4,0〉 should be fitted as a function of galaxy flux,

apparent size, and possibly morphological type whilst ensuring that estimators constructed in this fashion

take proper account of biases due to “Kaiser flow” of galaxiesbetween flux and size bins (see, e.g., Kaiser

2000; Massey et al. 2007d). These considerations will also be vital in the calculation ofµn1,n2
for David

Goldberg’s shear estimator, and for the calculation of correct susceptibilities in the Gaussian and radial

profile flexion estimators.

The calculation of accurate susceptibilities for the more complicated polar shapelet flexion estimators, such

as the radial profile estimator, is made more difficult still by a further problem: the slow convergence of

shapelet coefficient sums such as

P G

radial =
β

16
√

2

∑
√

(n− 3)(n− 1)(n+ 1) (fn−3,0 + fn−1,0 − fn+1,0 − fn−3,0) , (5.13)

which expresses the susceptibility of the radial profileG estimator (Massey et al. 2007d). The radial profile

estimators forF andG were also constructed and tested on the FLIP images, but could not be made to

yield meaningful results for this reason. A further issue ofimportance toF estimators is the convergence

of the quantityR2/β2 (see Section 3.4.3). For a small but significant population of FLIP galaxy image

models the convergence of this measure was so poor that negative values were returned (these models were

rejected from subsequent analysis), which adds a significant source of extra noise and possibly bias to the

Gaussian and radial profile estimators forF . This could be one explanation for the overestimation of the

F signal byF̃Gaussian
, seen in Figure 5.6.

In contrast, the calculation of the unweighted ellipticityand the Goldberg flexion estimators proceeds on

a galaxy-by-galaxy basis, without needing the ensemble average of quantities that will vary wildly with

galaxy population and due to inevitable shapelet series truncation. The shear responsivity factorR, which

is used as a susceptibility factor in the unweighted ellipticity, is a fairly robust statistic that does not change

significantly between galaxy populations (although it doesappear to change somewhat, c.f. Section 4.2.5).

To conclude, therefore,̃FGaussian
, G̃Gaussian

and γ̃DG fare poorly in this first FLIP comparison. More

importantly, the calibrative bias factors for these measuresand for the more successful̃γGaussian cannot

be trusted without significant improvements to the calculation of shear and flexion susceptibilities they

require. The investigation of whether more sophisticated treatments of the required susceptibilities (e.g.,

as a function of galaxy size and flux) improve the reliabilityof these measures to a level greater than that

offered byγ̃unweighted (or byF̃DG
andG̃DG

will be useful further work, but beyond the scope of this Thesis.

Instead, we adopt the unweighted ellipticity as the favoured means of shapelet shear estimation in GEMS,

and include a multiplicative correction by a factor of(1/0.82) to all shear estimates in the galaxy-galaxy

lensing analysis of Chapter 6. I will discuss the implications of the need to introduce such a factor, and
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how it compares to the results for the shapelet pipeline tested in STEP3, in Section 5.4.3. For the flexion

estimated using Equation (3.93), I found there to be no advantage in truncating the shapelet series as

suggested by Goldberg & Leonard (2007). This is likely due toimportant differences at the shapelet

modelling stage; Goldberg & Leonard (2007) and Leonard et al. (2007) do not use the shapelet amoeba

routine to optimise their shape measurements, and are thus often left with very high order shapelet models

containing relatively little information. We thus adopt the F̃DG
andG̃DG

estimators for flexion, and correct

measurements by bias factors of(1/1.04) and(1/2.15) respectively.

Overestimation in theG estimators

Finally, and on a related note, the large, systematic overestimation of theG signal by all of the estima-

tors tested presents an unsolved question. The estimation of G is likely to be the most problematic of

all the weak lensing signals as it involves the accurate determination of image variation on the smallest

scales. However, explanations for overestimation of the signal that would affect all the estimators tested

are difficult to conceive, although image overfitting at the shapelet modelling stage is one possibility.

In order to investigate the problem further, I undertook to split the the FLIP survey images into subsamples

and examine the dependency ofmG upon various properties of the simulated images. The obvious place

to begin an investigation is the signal-to-noise ratio (SNR) of the galaxy, defined as the ratio of theFLUX

to theFLUX ERRORas measured by SEXTRACTOR for each simulated galaxy. It should be expected that

the brighter a galaxy image, and the more securely it is detected, the more secure the shape measurement

should be. The total sample of FLIP galaxies was split into three bins of SNR, having a range so as each

to contain the same number of galaxies. The figures of merit described by Equations (5.8)-(5.10) were

then calculated using the tile-by-tile relationship ofGobs to G input as before, but in each tile using using

only the relevant subsample for that bin. Due to the concernsvoiced in the previous Section regarding the

accurate determination of denominator of the Gaussian estimators, we do not considerG̃Gaussian
but restrict

ourselves to investigating̃GDG
andG̃DGT

. In Figure 5.7 we see plotted the variation ofmDG
G

andmDGT
G

with

three different SNR subsamples (upper two panels) and compared this to the variation ofmunweighted
γ across

the same SNR bins (lower panel).

The results shown in Figure 5.7 are interesting, and for theG̃DG
andG̃DGT

are somewhat unexpected. The

G̃DG
andG̃DGT

estimators appear to show an approximately consistent overestimation of the input signal

for all three SNR bins. There is no clear dependence of the success ofG measurement upon SNR for the

FLIP images, whereas for the shear estimatorγ̃unweighted we see that the shear recovery improves as the

galaxies increase in SNR. In other respects Figure 5.7 seemsreasonable; for both thẽγunweighted and for

theG estimators it can be seen that the uncertainties uponm are greater for the lower SNR galaxies. This is

a simple consequence of the increase of measurement uncertainties for fainter galaxies (see Figures 4.7-4.9

in Section 4.3.2). In addition, uncertainties uponmDGT
G

are typically greater than those uponmDG
G

, as found

before for the full sample of FLIP galaxies. However, the approximate constancy ofmDG
G

andmDGT
G

with

SNR presents no real insight into what might be causing the overestimation ofG.

We therefore investigated the variation ofmG with other galaxy properties, in the hope that they may

correlate more strongly with other variables. In the same fashion as for the SNR subsamples described

above and seen in Figure 5.7, we chose to split the FLIP galaxies by two more image properties: the

shapelet scale sizeβ (as chosen by the shapelet software of Massey & Refregier 2005) and the value of the
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Figure 5.7: Multiplicative bias factors for̃GDG
(upper panel),̃GDGT

(middle panel) and̃γunweighted

(lower panel) for SNR subsamples of the FLIP galaxies. The scale for the abscissa is logarithmic,
and the error bars in this SNR direction give the extent of theSNR bin for that subsample. Points
are plotted at the median SNR for each of the three bins.
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Figure 5.8: Multiplicative bias factors for̃GDG
(left panels) and̃GDGT

(right panels) forβ (upper
panels) and FWHM (lower panels) subsamples of the FLIP galaxies. The error bars in the abscissa
give the extent of theβ or FWHM bin for that subsample. Points are plotted at the medianβ or
FWHM for each of the three bins.

full width at half maximum (FWHM) as measured by SEXTRACTOR. As before, the FLIP galaxies are

split into three subsample bins ofβ and FWHM, each containing the same number of galaxies. ThemDG
G

andmDGT
G

figures of merit were then calculated for each bin, and the results are plotted in Figure 5.8.

The results of Figure 5.8 are interesting, as they hint at what may be one cause of the overestimation ofG
by the estimators tested. Whereas the SNR parameter describes the relative brightness of the FLIP images,

bothβ and FWHM are directly related to the size of the FLIP galaxies(the relationship is not precise for

β, however, as galaxies displaying significant substructureare modelled using a lowerβ and highernmax).

Both G̃DG
andG̃DGT

appear to show signs of more significant overestimation for low FWHM and lowβ

galaxies, although this correlation is less strong in the DGT estimators due to the size of the uncertainties.

Interestingly, the values ofmG for each estimator are extremely poorly defined for the smaller galaxies,

which can be seen in the size of the particularly large error bars in the first bins of Figure 5.8. We now

consider the ramifications of these results.

Firstly, it seems clear thatG is very poorly measured for small galaxies, and poorly measured overall, using

the shapelet technique described in Section 3.4.2 as implemented by theflexion.pro code of David

Goldberg. While the problem is particularly bad for the smaller galaxies, as can be seen from Figure 5.8
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there is still an overestimation even for the the larger galaxies. One explanation for these results might lie

in the pixellization of galaxy images; it is known that this causes degeneracies and covariances between

shapelet coefficients, particularly those containing information on the variation of the image of small scales

(Massey & Refregier 2005). As discussed in Section 3.2.2, the second flexion transformations cause dis-

tortions in galaxy images that may be detected only by considering higher order shapelet coefficients than

for the first flexion or shear.

This may go a long way to account for the extreme noise upon theG measurements for small galaxies, but

it is more difficult to account for the overestimation of the effect. The problem may be related, however;

although the shapelet software of Massey & Refregier (2005)can be made to output covariance matrices

for the shapelet coefficients of the final galaxy model, it does not take these covariances into account during

the actual modelling stage. Importantly, theflexion.pro routine of David Goldberg does not take these

covariances into account, using instead the expression of Equation (3.87) for the covariance matrixVn,p

(i.e. purely diagonal). It may be that this neglect of the full covariance between shapelet coefficients leads

to overfitting, both in the direct modelling stage and in the minimization of theχ2 statistic used to construct

flexion estimators:

χ2(odd) =
[(

F iF̂
T
i + GiĜ

T
i

)

f̃ s
n′ − fn

]

V −1
np

[(

F iF̂
T
i + GiĜ

T
i

)

f̃ s
p′ − fp

]

. (5.14)

That the overfitting leads to more severe overestimation forG than forF may be a consequence of the fact

that the second flexion moves a greater proportion of shapelet power to higher order coefficients than the

first flexion (again see Sections 3.1.2 and 3.2.2).

However, the discussion above is speculative. The overestimation may also be a consequence of simple er-

rors in theflexion.pro routine of David Goldberg, or perhaps in the strength of theG input signal given

to the simulation images by Richard Massey, or perhaps in my own measurements. It will be extremely

important to investigate this effect further, both to understand the cause of these results and hopefully to

improve on the performance of future second flexion estimators. To these ends, I intend to construct my

own independent simulations of galaxy images, covering a much wider area than these first FLIP images;

this will be necessary in order to fully explore the correlations between lensing recovery and parameters

such as SNR or FWHM, and also the covariances and biases between simulataneous measurement of shear

and flexion. This work is sadly beyond the scope of this Thesis. In the future it will also be extremely inter-

esting to see whether HOLICs based approaches (Okura et al. 2007b,a) manifest the same overestimating

behaviour.

The problem may be not be of vital importance, as the noise properties of the measured second flexion

currently make its use for accurate cosmological measurement difficult; it is, for example, completely

ignored by Leonard et al. (2007) and Okura et al. (2007a) (seealso Section 6.2.3). Having completed my

discussion of multiplicative bias in the FLIP analysis, I now go on to discuss the success of the chosen

measurement schemes at avoiding additive biases.

5.4.2 Additive bias - shear and flexion residual offsets

The other figure of merit chosen in the FLIP analysis, as in theSTEP analyses, was the offset biasc defined

in Equations (5.8), (5.9) and (5.10). There was evidence fora residual offset bias in the measurements from
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all of the shear estimators (of varying significance), and some evidence in the flexion estimators, although

these measurements were noisier. This raises interesting questions, as one of the unrealistic simplifications

of the FLIP analysis was the fact that the convolving PSF was known perfectly, in the precise form of

the shapelet model used. There was no need for PSF modelling from noisy stellar images, or for the

interpolation of PSF properties in the regions between stars.

An explanation for the offset is most likely to lie in the shapelet treatment of the galaxy deconvolution. The

shapelet software is known to treat both image deconvolution only inexactly (Massey & Refregier 2005;

Section 3.3). The inexact treatment of correlated pixel noise by the shapelet method (discussed in Section

4.2.4 and below) is not an issue here, as the pixel noise in theFLIP images is uncorrelated as described in

Section 5.2.

The shapelet software adopts a practical approach to deconvolution that is described in Section 3.3. Galaxy

images are fit to a model using a basis set that has already beenconvolved with the PSF model, recovering

the shapelet coefficients for the deconvolved image as shownin Equation (3.65). However, this convolved

basis set is no longer strictly orthonormal, which introduces errors in the modelling when the scale size

β of the modelled galaxies is not large in comparison to that ofthe PSF (Massey & Refregier 2005). It

is possible that this will be the case for galaxies in the FLIPanalysis. The authors of the STEP3 analysis

chose to model the ACS PSF using annmax = 20 model withβ = 2.86; this was done so as to accurately

model the wings of the light distribution, whereas in GEMS itwas my decision that the accurate modelling

of the PSF interior was also of significant importance. One consequence of this choice is that the PSF scale

size is much closer to that of many of the FLIP galaxies, as canbe seen in Figure 5.9. This may be one

source of this residual lensing signal as detected in the FLIP measurements ofc. Re-analysing̃γunweighted

but excluding all galaxies withβ < 3, we findmunweighted
γ = −0.168±0.018 (consistent with the previous

result) butcunweighted
γ = 0.0001 ± 0.0007, suggesting that this is indeed the reason for the shear offsets

found in Section 5.3.

Interestingly, the PSF shear residuals apparent in the FLIPresults are not detected in the GEMS shears,

as described in Section 4.3.3, possibly as a consequence of the smallerβ of the PSF model. However,

significant residuals are detected in the second flexion, in amanner aligned to the signal apparent in the

wings of the GEMS PSF; these wings are more poorly modelled asa direct consequence of the smaller

choice ofβ. The ideal solution is likely to be some compromise, modelling of the PSF with as small aβ

as possible, whilst capturing as much of the light profile as possible on all scales. Increasing the value of

nmax for the PSF model allows both these aims to be realised, but atthe cost of increases to the computing

resources required in shapelet modelling.

5.4.3 Wider applicability of the FLIP results

In the final Section of this chapter, I aim to briefly discuss the implications of the FLIP results in the wider

context of weak lensing. Perhaps most importantly, I found there to be significant instabilities inherent in

the calculation of certain amongst the shapelet shear and flexion estimators proposed by Refregier & Bacon

(2003), Goldberg & Bacon (2005) and Massey et al. (2007d). This was due in each case to the need for these

estimators to invoke ensemble averages of shapelet coefficients so as to estimate the lensing susceptibility

of the measure in question. Unfortunately, these averages will vary strongly with galaxy type (and therefore

telescope filter) and overall image quality (due to convergence issues in the larger shapelet sums). Careful
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Figure 5.9: Histogram of shapelet scale sizeβ for FLIP (left panel) and GEMS (right panel) galaxy
models as estimated by the GEMS pipeline. The small peaks atβ ≃ 0 are due to catastrophic failures
in the shapelet modelling and imperfect removal of anomalies from the GEMS catalogue. Note that
for the GEMS analysis we remove all objects withβ < 2 at the lensing measurement stage.
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calculation of these susceptibilities as a function of flux,size and galaxy type will be necessary for them to

be used in truly reliable estimators. Subsequent accurate calibration of these measures will require galaxy

image simulations which very accurately reflect the flux, size and morphology of the real data sample,

presenting a further, and perhaps more serious, technical challenge.

Regarding the methods that succeed by estimating shear and flexion without recourse to unstable ensemble

averaging, I found evidence for significant multiplicativebias factors for both shear and the second flexion.

For the measurẽγunweighted, a calibration factor of 1/0.82 is required to match the input shears, and this

is a calibration factor that I include when making the cosmological measurements presented in Chapter

6. One important question is where this bias might come from,a question that is also being posed by the

STEP3 project; this found that Joel Bergé’s shapelet pipeline (also based on Massey & Refregier 2005

software) needed a similar factor of≃ 1/0.9, although this was using thẽγGaussian estimator (c.f. my

result forγ̃Gaussian of 1/0.86). A possible conclusion might lie in the shape of the shapelet basis set itself,

which includes a Gaussian outer envelope for both the polar and Cartesian varieties (Refregier 2003).

Real galaxies are known to have more gently decaying light curves, often being well fit by curves such as

exponentials and Sérsic profiles. It is thought (Richard Massey, priv. comm.; Rhodes et al., in prep.) that

systematic truncation of the outer galaxy profile, inherentin optimised shapelet model fitting in schemes

such as presented by (Massey & Refregier 2005), may cause thepreferential circularization of galaxy

images. This would, inevitably, weaken measured lensing signals.

The results from̃FDG
were rather too affected by noise to be able to truly investigate whether this problem

was also biasing the first flexion signal, but the measurements currently appear unbiased to within 10%

accuracy. In order to tighten this constraint many more FLIPimages of the sort described will need to be

analysed; it is also hoped that further analysis may help discover the serious issues affecting the estimation

of G. The high level of measurement noise on even the best shapelet estimators of flexion, illustrated

by Figures 4.7, 4.8 and 4.9, is also a significant problem. An alternative flexion analysis method, based

directly upon the KSB schema of Kaiser et al. (1995), has recently been described (Okura et al. 2007a). It

will be very interesting to see if this approach, based on themeasurement of Higher Order Lensing Image

CharacteristicS (HOLICS: Okura et al. 2007b) yields betterresults. Recent work which compared HOLICS

to shapelet flexion estimators Goldberg & Leonard (2007); Leonard et al. (2007) found that it did indeed

perform better and was less noisy in particular. Unfortunately this comparison did not extend to a full PSF

treatment with either method, and so a fair comparison of HOLICS and shapelet flexion measurements

using FLIP-like images would be very interesting.

Finally, it is right to discuss whether the results of the FLIP analysis (and the bias factors calculated there-

from) are applicable to my analysis of the GEMS survey data. The FLIP data is not a perfect match to

GEMS. The GEMS PSF varies with tile and chip position, and is not so well modelled. The FLIP galaxies,

constructed as described in Section 5.2, will be different from those in GEMS, leading to differences such

as that seen in the shear responsivity factorR (see Sections 4.2.5 and 5.3). Importantly also, the FLIP

images do not contain correlated pixel noise such as that exhibited by GEMS due to the dithering processes

in its data reduction (Caldwell et al. 2005). This may lead toadditional circularization due to shapelet over-

fitting of correlated noise peaks, something I have tried to limit by settingθmin,geom = 1 (Section 4.2.4),

but also makes it more difficult to calculate the true SNR of any object. Due to this fact, the sample of

tested FLIP galaxies and the GEMS sample are not more than roughly equivalent, and so any results must

be treated with a certain amount of caution.

However, the results of the FLIP analysis have taught much about the practical considerations of shapelet
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lensing measurement, and highlighted some important issues with proposed estimators. They also provide

a first estimate of the typical bias expected in measurementsof shear and flexion using the GEMS pipeline

of Chapter 4. These bias factors will improve the accuracy ofcosmological measurements made using

γobs, Fobs andGobs. It is such measurements that I now describe in the followingChapter, where I present

a first combined galaxy-galaxy shear-flexion analysis of theGEMS survey data.
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CHAPTER 6

GALAXY-GALAXY

SHEAR-FLEXION

The ultimate aim of weak lensing measurement is to gain a better understanding of the structure and dy-

namics of the Universe on large scales. As was discussed in Chapter 1, there are many untested predictions

of theΛCDM model; testing these predictions offers hope for placing constraints on the properties of dark

matter and dark energy. In particular, combined analyses ofshear and flexion show promise for better

understanding the physical interplay of visible and dark matter in the denser regions surrounding galaxies

and galaxy clusters.

In this Chapter I present the results of a first, combined shear-flexion galaxy-galaxy lensing analysis using

the lensing signal measured in the GEMS survey data. It was suggested in the results of Chapter 2 that study

of both the shear and flexion signal around galaxies would lead to improvements in the constraints upon

the halo mass distribution, when compared to a study of the shear signal alone. I discuss the constraints

we place on the haloes of the GEMS galaxies using both shear and flexion, the implications for shapelet

measurement of flexion, and the wider cosmological implications of the work.
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6.1 Galaxy-galaxy lensing

Galaxy-galaxy lensing is the study of the weak gravitational distortion induced in distant background galax-

ies (often referred to as “sources”) by the matter haloes of galaxies lying in the foreground (“lenses”).

Suggested by Tyson et al. (1984), it was amongst the very firstweak gravitational lensing signals to be

detected (Brainerd et al. 1996), and is an attractive means of placing constraints on the mass distributions

around visible galaxies. Since that time, significant constraints have been placed on models of galaxy dark

matter haloes, using galaxy-galaxy lensing analyses of large datasets such as the Red Sequence Cluster

Survey (RCS, see Hoekstra et al. 2004, hereafter HYG04 in this Chapter) and the Sloan Digital Sky Survey

(SDSS, see Guzik & Seljak 2002; Sheldon et al. 2004; Mandelbaum et al. 2005, 2006a, hereafter M06 in

this Chapter).

The first, and simplest means to quantify the galaxy-galaxy lensing signal is through the construction of

galaxy-mass correlation functions, such as those presented by, for example, Brainerd et al. (1996), HYG04

and Sheldon et al. (2004). I present the analysis of the GEMS galaxy-mass correlation on small scales in

Section 6.2, and use the results to place first fits on halo parameters for both the SIS and NFW mass models

(see Chapters 1 and 2).

Section 6.3 describes my maximum likelihood treatment of the galaxy-galaxy lensing signal in the GEMS

images, using a method based on that of Schneider & Rix (1997)but including modifications necessary for

the accurate treatment of flexion measurements. Using multi-band galaxy photometry from the COMBO-

17 survey (Classifying Objects by Medium-Band Observations in 17 filters, Wolf et al. 2003), which en-

compasses the GEMS field in theChandraDeep Field South, I examine the dependence of SIS and NFW

model parameters upon host galaxy colours and GEMS-derivedmorphology characteristics.

In this way I analyse the GEMS galaxy-galaxy signal by fittingmeasurements of the galaxy-mass cross-

correlation, and through a complete maximum likelihood analysis of the total dataset; the results of each

analysis are seen to be consistent with one another. Finally, implications for the success of shapelet flexion

measurements in improving halo constraints are consideredin Section 6.3.5, along with the cosmological

implications of the maximum likelihood results.

6.2 Galaxy-mass cross-correlation functions

The galaxy-mass cross-correlation function may be obtained by measuring the shear and flexion of sources

around foreground lenses, as a function of the angular source-lens separation on the sky planeθsep, and

provides a useful illustration of the GEMS galaxy-galaxy lensing signal. For the shear, the quantity of

interest is the “E-mode” tangential shear of theith source-lens pair, defined as

γE(θi
sep) = −γi

1 cos (2αi) − γi
2 sin (2αi), (6.1)

whereγi
1 andγi

2 are the measured components of the shear for the source galaxy, andαi is the coordinate

angle at the position of the lens between thex axis (or negative RA axis) and the line joining the lens to

the source. Similarly, the source “B-mode” shear is defined as

γB(θi
sep) = γi

1 sin (2αi) − γi
2 cos (2αi), (6.2)
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which corresponds to the E-mode that would be measured if allsources were rotated by45◦. For the

flexion, the signal of interest can again be encapsulated into source E-modes that are defined as

FE(θi
sep) = −F i

1 cos (αi) −F i
2 sin (αi), GE(θi

sep) = Gi
1 cos (3αi) + Gi

2 sin (3αi). (6.3)

These E-modes will be equivalently referred to as radial flexions, due to their orientation relative to the sky

position of the lens. The choice of signs is motivated by the results of Chapter 2, in which it was seen that

the circularly symmetric density profiles of typical lens models (such as the SIS and NFW haloes) result

in flexion that is directed inwardly towards the lens centre for F and outwardly forG; see, e.g., Equations

(2.9) and (2.10). This ensures that, as in the case of the shear E-mode of Equation (6.1), the flexion E-

modes will be positive if we assume typical mass profiles around foreground lens galaxies. The B-mode

signals are given by

FB(θi
sep) = F i

1 sin (αi) −F i
2 cos (αi), GB(θi

sep) = −Gi
1 sin (3αi) + Gi

2 cos (3αi), (6.4)

which correspond to the E-mode signal of sources rotated by90◦ and30◦ for F andG respectively.

Measurements of these quantities can be used to estimate thegalaxy-mass cross-correlation functions,

defined as the averageγE(θsep), FE(θsep) andGE(θsep). Each source-lens pair is considered in turn, and

the average (whether mean or median) tangential or radial signal is calculated for the total sample, binned

in annuli ofθsep. Weak lensing around foreground masses cannot produce a B-mode signal, and so analysis

of the B-mode presents an opportunity for a check on the levelof errors in the measurements.

Despite the fact that, when wishing to constrain the mass around individual galaxy haloes, galaxy-galaxy

lensing data is generally best analysed as described in Section 6.3, simple fits to the galaxy-mass cross-

correlation provide a useful check on these more sophisticated maximum likelihood results. I will present

these fits to the cross-correlation functions in Section 6.2.2, but first describe the steps that went into the

calculation of the galaxy-mass cross-correlation functions themselves.

6.2.1 Calculating the radial and tangential lensing signals

We select a sample of foreground lenses from a catalogue of GEMS galaxies matched to those in the

COMBO-17 survey (Classifying Objects by Medium-Band Observations in 17 filters, Wolf et al. 2003) that

lie within the GEMS field. The use of the 17-band photometric data of COMBO-17, combined with the

HSTimage quality provided by GEMS, allows for the classification of the lens sample by both morphology

and colour sequence, as will be seen in Section 6.3. Importantly, the COMBO-17 multi-band colour data

allows the assignation of high quality photometric redshift estimates for a large proportion of the sample,

which have been made publicly available by Wolf et al. (2004). The most reliable redshift estimates exist for

galaxies with a COMBO-17 R-band magnitudeR < 24, these objects reaching a typical redshift accuracy

of ∆z ≃ 0.02(1 + z) (Wolf et al. 2004).

The COMBO-GEMS matched catalogue used, which was supplied by Catherine Heymans, is that con-

structed by Marco Barden for the GEMS galaxy surface brightness and surface mass evolution analysis

of Barden et al. (2005). This matches theR < 24 COMBO-17 catalogue to the catalogue of GEMS

galaxies in the ACS F850LP filter image (see Caldwell et al. 2005), identifying pairs of galaxies between

surveys with a centroid tolerance of 0.5 arcsec. The matchedcatalogue then describes 8407 galaxies in
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the GEMS field, containing reliable redshift estimates and multicolour photometry from the COMBO-17

catalogue, GEMS-measured astrometry, and Sérsic profile morphology estimates made from GEMS using

the GALFIT fitting code (Peng et al. 2002) as described in Barden et al. (2005). Finally, a redshift cut of

0.2 < z < 0.8 is imposed upon the catalogue so as to match the sample of galaxies analysed in Section

6.3 (the reasons for this cut are described in Section 6.3.3)and extremely bright objects withR < 18 are

removed. The remaining 4995 galaxies are then used to define the lens catalogue, which has a median

redshift ofzm = 0.58. The COMBO-17 catalogue also contains estimates of the SDSSr-band absolute

magnitude for each object, and from this we calculate a median r-band luminosity of(L∗
r)m = 0.33L∗

r,

whereL∗
r = 1010h−2L⊙.

The background sources are taken from the shapelet measuredγobs, Fobs andGobs catalogues created

using the GEMS F606W images as described in Chapter 4. The source sample is defined as galaxies with

SEXTRACTOR measured magnitudes lying in the range24.0 < m606 < 27.0. I take a two-stage approach

in order to minimise the confusion between foreground and background for objects in the source and lens

samples. Firstly, I performed a match of the objects in the Barden et al. (2005) COMBO-GEMS F850LP

catalogue to those in the grand catalogue of shapelet modelled galaxies in the GEMS F606W images; using

a centroid tolerance of 0.5 arcsec I found a successful, non-confused match for 6674 of the 8407 objects

(≃ 80%). The E-modes and B-modes of source-lens pairs for which thelens redshift is known to be higher

than that of the source are then excluded from the calculation of sample averages.

For sources without a match to the COMBO-GEMS catalogue (i.e., the vast majority) we instead make

an estimate of the likely source redshift. H05 present the following linear relationship between magnitude

m606 and median redshift for a population of galaxies at that magnitude:

zm = −3.132 + 0.164m606 (21.8 < m606 < 24.4). (6.5)

This relationship is calculated using photometric redshift data from the COMBO-17 survey (Wolf et al.

2004) and spectroscopic redshifts from the CDFS VIRMOS-VLTDeep Survey (Le Fèvre et al. 2004).

To estimate the the median redshift of our source galaxies beyondm606 = 24.4 we extrapolate the above

relationship, as justified in H05 using measurements of the Hubble Deep Field North (HDFN) (see Lanzetta

et al. 1996; Fernández-Soto et al. 1999). Source galaxy redshifts are then estimated using Equation (6.5),

and if the redshift is found to lie within∆z = 0.1 of the lens redshift, the source-lens pair is excluded from

the calculation of average E- and B-mode signals.

I calculated the meanγE andγB in ten angular bins in the range 2 arcsec< θsep < 60 arcsec, using the

γobs for each source described in Section 4.2.5. The lower limit on θsep was chosen to avoid significant

contamination of lensing measurements due to overlapping galaxy isophotes, and is the same level chosen

by Heymans et al. (2006a) for their subsample of large, elliptical GEMS galaxies. The upper limit was

chosen as the separation beyond which the signal becomes difficult to discern from sample noise. The

median E- and B-mode flexion signals were similarly calculated, but using 10 angular bins in the range

2 arcsec< θsep < 10 arcsec forFobs and 2 arcsec< θsep < 20 arcsec forGobs. Figure 6.1 shows the

E-mode and B-mode shear and flexion signals as measured for our GEMS source and lens galaxy samples.

The dashed lines plotted in Figure 6.1 depict approximate predictions for NFW halos made using the results

of Navarro et al. (1997), Guzik & Seljak (2002), HYG04 and Section 2.1.4. Assuming a mass scaling of

M200 ∝ L1.2 motivated by the results of Guzik & Seljak (2002), HYG04 found a best-fitting fiducial virial

mass ofM∗
200 = (8.4 ± 1.1) × 1011h−1M⊙ for galaxies with B-band luminosityL∗

B = 1010h−2L⊙;
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Figure 6.1: (a) MeanγE within angular annuli around foreground lenses (points). (b)
MedianFE, and (c) median radialGE, within angular annuli around foreground lenses
(points). The dot-dashed and dotted lines show the B-mode signals and uncertainty,
which we note are largely consistent with zero but noisy forF andG. Note also the
reductions in angular scale between (a) and (b), and (c). The dashed line shows a
prediction based on the results of HYG04 and Navarro et al. (1997), while the solid
line shows the best fitting NFW model (see Section 6.2.2).
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Guzik & Seljak (2002) themselves foundM200 = (9.3 ± 1.6) × 1011h−1M⊙ for galaxies with SDSS

g-band luminosity ofLg ≃ 1.1. × 1010h−2M⊙, in good agreement (see HYG04). Taking these results

(which also agree with Kleinheinrich et al. 2006), and including evidence for the growth of the virial mass

to stellar mass ratio with redshift (Heymans et al. 2006a), Imake an approximate prediction for the fiducial

virial mass in our lens sample ofM∗
200 ≃ 9 × 1011h−1M⊙, corresponding to anr-band luminosity of

L∗
r = 1010h−2L⊙.

As described above, the luminosity of our lens sample is0.33L∗
r, which if we adopt the same scaling as

HYG04 leads to a value of(M200)m ≃ 2.4×1011h−1M⊙ as our approximate estimate for the median virial

mass of our lens sample. In order to estimate the corresponding concentrationc we use Julio Navarro’s

programcharden.f to calculate the Navarro et al. (1997) prediction for an NFW halo of this mass at

redshiftz = 0.58. Assuming a flatΛCDM cosmology withΩm,0 = 0.25 andΩΛ,0 = 0.75 (Spergel

et al. 2007), and a mass varianceσ8 = 0.8 (Benjamin et al. 2007), a concentration prediction of 7.41

is calculated; note that we will assume this cosmological model in all subsequent calculations in this

Chapter. The dashed line in Figure 6.1 shows the NFW shear andflexion predicted for a halo of this mass,

concentration and redshift, with source redshifts ofzs = 1.08, 1.03 and 1.02 forγ, F andG respectively

(these being the median redshift of the source samples for each measure, calculated using Equation 6.5).

The quality of the match of my measurements from the GEMS datato this prediction will be discussed in

Section 6.2.3. Firstly, we describe theχ2 fitting of SIS and NFW halo models to the galaxy-mass cross-

correlation functions, and examine the constraints these simple galaxy-galaxy lensing results place on the

lens sample haloes.

6.2.2 Fitting lens models to the galaxy-mass cross-correlation func-

tions

It is useful and illustrative to fit simple lens models to E-mode measurements seen in Figure 6.1, which

constitute a first simple measurement of the global average lens properties for our sample. This also allows

a check for consistency both between shear and flexion, and with the maximum likelihood results of Section

6.3.

To begin with, I performed a fit of the shear and flexion data using a simple SIS lens model. Following

Kleinheinrich et al. (2006), I use a Faber-Jackson and Tully-Fisher type parameterization of the relationship

between the SIS velocity dispersion and galaxy luminosity:

σv

σ∗
v

=

(

Lr

L∗
r

)η

, (6.6)

whereσ∗
v is then the velocity dispersion for a galaxy of luminosityL∗

r. I first performed aχ2 fit using

a simple SIS lens model to the shear galaxy-mass correlationfunctions, corresponding to a galaxy of

Lr = 0.33L∗
r andzl = 0.58 (the median values for this lens sample, as described in Section 6.2.1). Fitting

the data directly, I measure a lensing signal equivalent to alens withσv = 88+9
−10 kms−1 at the median lens

redshift. Assuming a fixed value ofη = 0.28, motivated by Kleinheinrich et al. (2006), this leads to an

estimate ofσ∗
v = 120+12

−14 kms−1. This is marginally lower lower than theσ∗
v = 156+18

−24 kms−1 found by

Kleinheinrich et al. (2006) in their galaxy-galaxy lensinganalysis of all three COMBO-17 fields.
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If each annular bin of medianFE andGE contains a sufficient number of source-lens pairs, then the sample

median in that bin will be approximately normally distributed (see Lupton (1993)). The smallest number

of source-lens pairs is found in the most interior bin of the medianFE measurements, having only 336.

Assuming this is sufficient (see Section 6.2.3), aχ2 fit to the medianFE measurements givesσ∗
v = 219+37

−45

kms−1, which is inconsistent with the shear measurements from GEMS by around2σ. In contrast to

this result, the second flexion signal gives a far lower estimate for the fiducial velocity dispersion, finding

σ∗
v = 59+43

−59 kms−1. The lower limit in this measurement is imposed only by the prior thatσ∗
v > 0. I

discuss some of the implications of these results in Section6.2.3, but before doing that investigate the

parameter constraints for NFW halo models.

In estimating the NFW parameter constraints from a simple fitto the E-mode lensing signals from GEMS, I

assume the virial mass scales with luminosity asM200 ∝ L1.2
r (HYG04, Guzik & Seljak 2002). Combining

this result with the theoretical findings of Neto et al. (2007) and Macciò et al. (2007), I assume that the

concentration of NFW haloes varies with luminosity asc ∝ L−0.083
r . I then analyse the data in a similar

fashion to the SIS fits, by comparing the E-mode data to predictions for a single lens model corresponding

to a galaxy of the lens sample median luminosity and redshift.

Again assuming the errors on annular estimates of the E-modesignal to be normally distributed, I calculated

contours of constantχ2 for the fiducial parametersM∗
200 andc∗ required for the single NFW lens fit to the

data, using the scalings described above. This was done by calculating theχ2 for each point in a 250×
250 grid of evenly spaced mass and concentration values. Theresulting confidence contours are plotted in

Figure 6.2 and the best-fitting curves are shown as the solid lines in Figure 6.1. The parameter estimates

from theFE appear to support an almost arbitrarily largec∗, so I limit this figure by imposing a prior of

c∗ < 50 throughout the analysis (this being significantly larger than that predicted by simulation results,

e.g., Neto et al. 2007; Macciò et al. 2007, and by observational studies HYG04).

These results appear qualitatively similar to those for theSIS lens model, finding a≃ 2σ discrepancy be-

tween the results fromγE andFE, and more severe tension between results fromFE andGE. The addition

of flexion measurements could not be said to significantly improve confidence intervals on the fitted param-

eters here. Using shear alone, I find a single lens model fiducial mass ofM∗
200 = 1.60+1.06

−0.74×1012h−1M⊙,

larger than but consistent with previous estimates (Guzik &Seljak 2002; HYG04; Kleinheinrich et al.

2006). For the fiducial concentration I findc∗ = 2.9+4.3
−1.9, which is lower than thec > 7 (at 2-σ confidence)

found by Kleinheinrich et al. (2006), but in better agreement with the Navarro et al. (1997) prediction of

c∗ = 6.6 for a halo of this best-fitting mass, as calculated usingcharden.f.

Combining measurements ofγE andFE (top panel of Figure 6.2) I find instead a best fitting fiducial mass of

M∗
200 = 1.49+0.99

−0.70 × 1010h−1M⊙ and concentrationc∗ = 3.8+7.2
−2.2. The high concentration of the fit to the

FE data has in fact caused a widening of concentration parameter constraints, and slight reduction (≃ 6%)

in constraints upon the mass. Combining measurements from all three E-mode signals (whether this is

justified will be discussed in Section 6.2.3 below) gives constraints ofM∗
200 = 1.48+1.04

−0.69 × 1010h−1M⊙,

c∗ = 4.9+2.2
−3.6. These last parameter constraints offer no significant improvement over those for shear alone,

due to the apparent tension between measurements ofFE andGE.

As can be seen from Figure 6.2, the first flexion data fit the predicted NFW halo model poorly, and is

incompatible with the shear results at an approximately 2-σ level. In the following Section I go on to discuss

these results, including possible reasons for the disparities between shear and flexion, and implications for

the more detailed maximum likelihood analysis that will follow in Section 6.3.
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Figure 6.2: Confidence contours for fiducial NFW halo parameters from fits to the galaxy-mass
cross-correlation functions. The top panel shows the fiducial NFW parameter constraints from fits to
the E-modeγ (dotted lines),F (dashed lines) and combined measurements (solid lines) in GEMS.
The shear best fit is marked by a diamond, the flexion best fit lies outside the area shown, falling at
M∗

200 = 2.36 × 1012M⊙ and the prior limited concentrationc = 50. The combined best estimate is
marked by a cross. The bottom panel shows the same but also includes measurements usingG (dot-
dashed line, best fit marked by a star). The contour intervalscorrespond to regions of 68%, 95% and
99.7% confidence, estimated by assuming normally distributed errors on the binned sample mean
and median for shear and flexion.
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6.2.3 Discussion of fitting results

Measurements of flexion made using the shapelet pipeline of Chapter 4 make little improvement to the

fitted parameters for the lens models described in Section 6.2.2. Looking at Figure 6.1, this is perhaps

unsurprising given the large noise and scatter on estimatesfor the median E and B-mode flexion. It seems

clear that, in order to realise the potential improvements suggested the results of Chapter 2, flexion needs

to be measured more stably than can be achieved using the GEMSshapelet pipeline. Reassuringly, fitting a

simple lens model using the shear measurements from GEMS gives results that are entirely consistent with

previous lensing studies.

Apart from the large noise in estimates of the sample median,the most striking result from theFE analysis

is that tends to predict more massive and more concentrated halo models than found by the GEMS shears

and elsewhere in the literature (e.g., HYG04). TheFE best fit concentration was particularly large, and

limited by the prior toc∗ = 50 (at anM∗
200 = 2.36 × 1012h−1M⊙. This concentration agrees better the

findings of Kleinheinrich et al. (2006), although whether this agreement is for the same reasons in each

study is less clear. Examination of the measuredFE in Figure 6.1 reveals two points of interest. Firstly, the

signal is consistent with zero, except for the two interior points; indeed, the outermost of these is closely

consistent with the non-zero B-mode and so could be considered non-significant. Secondly, the inner point

appears to be a relatively strong (3.2σ) detection of flexion signal, but at a level that is larger than expected

given the existing predictions for NFW haloes described in Section 6.2.1.

This discrepancy could be a fluke of the noise (the discrepancies betweenγ andF results for the SIS and

NFW parameters appear, from 6.2, to be in the range 1-2σ), a previously unconsidered systematic effect, or

evidence for tension between lensing measurements that probe the SIS and NFW haloes on differing scales.

Regarding the noise, I may be underestimating the uncertainty in theF -derived constraints by assuming

the sample median for the innermost bin to be normally distributed. As mentioned above, this bin contains

as few as 336 source-lens pairs, which may be insufficient given the highly non-Gaussian shape of the

underlying flexion distribution. This is one more reason to embark on a full, maximum likelihood analysis

of the sort described in Section 6.3.

A plausible systematic explanation for the discrepancy is the contamination of source light profiles due

to the outer light profiles of the nearby, bright foreground lens galaxies. This could create a light gradi-

ent across the source that mimics a higher order gravitational signal, and could be a serious consideration

(requiring careful correction) in the measurement of the first flexion. Shapelets could model such con-

tamination, as the current code applies a top-hat mask to nearby galaxies and therefore misses their outer

regions (Section 4.2.2). In Chapter 7, I will discuss this problem further and suggest means by which the

effect could be calibrated in the future. If such calibration shows that this artificial “flexion bleed” effect is

minimal, then the measurement must either be explained by noise or by divergence from either the SIS or

NFW halo model at small scales, which will also be discussed further in Chapter 7.

I now consider the results from the second flexion, for whichGE is ubiquitously consistent with zero (see

Figure 6.1). The significant noise in these measurements is also indicated by the B-mode signal. This still

allows the placing of limiting upper bounds on velocity dispersion, mass and concentration parameters as

described in Section 6.2.1 and shown in the lower panel of Figure 6.2. However, even this may be fraught

with uncertainty, due to the large calibration factor of (1/2.15) used in the best estimate forGobs (See

Sections 4.2.5, 5.3 and 5.4). The reason why the shapelet software consistently overestimates input second
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flexions is unclear, and it seems a substantial risk to place too much faith in upper limits that are based

solely on the value of a poorly understood bias factor.

For this reason I exclude the GEMS second flexion results fromany further cosmological analysis; this

same step was also taken by Leonard et al. (2007) and Okura et al. (2007a) in their flexion analyses of

the Abell 1689 galaxy cluster, although this was simply because they found the measure too noisy. The

remaining cosmological measurements which I make in this Thesis take the form of a maximum likelihood

investigation of the galaxy-galaxy lensing information inGEMS. This technique, based on that proposed

by Schneider & Rix (1997), allows the full extraction of galaxy halo information from weak lensing data.

I have modified the technique to make it suitable for use with flexion and in doing so have improved its

treatment of shear also, as I will now describe.

6.3 Modified maximum likelihood analysis

In order to use measurements of shear and flexion to place accurate constraints upon the properties of

galaxy dark matter halos I employ a modified form of the Schneider & Rix (1997) maximum likelihood

analysis (for recent implementations see Kleinheinrich etal. 2006; Heymans et al. 2006a). In a similar

fashion to Section 6.2.2, I assume two different models in turn, a luminosity-scaling SIS lens model and a

luminosity-scaling NFW halo model. Using the modified Schneider & Rix (1997) method described below,

I place constraints on the values of fiducial model parameters and luminosity scalings using all the galaxy-

galaxy lensing information available from the GEMS shear and flexion catalogues described in Chapter 4.

It should be stressed that the results obtained should be interpreted as parameter constraints only under the

assumption that our adopted lens model is thecorrectmodel, a common feature of all maximum likelihood

analyses. This entails understanding that the choice of model will directly impact any results, and that

inconsistencies in the results may be evidence for imperfections in the model.

In carrying out such an analysis, it is also necessary to assume that all the lensing mass in our system is

associated with galaxy haloes. It is known (H05; Schrabbacket al. 2007) that the GEMS field covers a

significantly underdense region of the Universe, and so thisassumption here represents a better approxima-

tion than in many previous studies. Furthermore, Kleinheinrich et al. (2006) found that corrections made

for the presence of the Abell 901/2 supercluster in their COMB0-17 fields made little difference to lens

model parameter constraints, suggesting that the approximation is reasonable even in more dense regions

of space. Given these considerations, I now go on to outline the basics of the Schneider & Rix (1997)

galaxy-galaxy lensing analysis method, before describingthe modifications made to suit both the GEMS

data and measurements of gravitational flexion.

6.3.1 Standard formalism

In the formalism specified by Schneider & Rix (1997), we first define an angleθmax, which is the maximum

separation scale on which we will consider the galaxy-galaxy lensing of source-lens pairs. We must then

immediately remove all sources less thanθmax away from the field boundary, as these may have been

affected by unseen lenses. Each remaining source can then beassigned a predicted shear or flexion by
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summing contributions from the lens models of all foreground galaxies withinθmax. Although shears and

flexions from multiple lens deflections do not add linearly, this is a reasonable approximation for the weak

lensing we expect around galaxy haloes (Schneider & Rix 1997; Schneider & Er 2007).

In the GEMS data the redshifts of source galaxies are unknown, and we must therefore assign these galaxies

a magnitude dependent redshift probability distributionp(z|m606). We choose the same dependence used

by Heymans et al. (2006a) and H05,

p(z|m606) ∝ z2 exp

[

−
(

z

z0(m606)

)1.5
]

, (6.7)

wherez0 is calculated from the median redshiftzm(m606) with z0 = zm/1.4142 (Baugh & Efstathiou

1994). This median redshift can be estimated using Equation(6.5). Note that if the estimate for the source

galaxy places it within∆z = 0.1, or in the foreground of the lens galaxy, then a zeroξ is calculated.

Recent work by Schrabback et al. (2007) presents a differentmodel for the redshift distribution in the

GEMS, based on a careful analysis of GEMS imaging data compared with redshift results from the GOODS-

MUSIC catalogue of Grazian et al. (2006). From a maximum likelihood fit to a catalogue of redshift-

matched GEMS source galaxies they derive a redshift distribution that is less narrowly peaked, and with

fewer galaxies at high redshift, than the distribution in Equation (6.7). Using this Schrabback et al. (2007)

fit model (rather than the directly calculated median as usedby H05) these authors also derive a different

expression for Equation (6.5), with a significantly steepergradient of increasing median redshift against

magnitude. For the maximum likelihood method I present, this analysis is not repeated for my GEMS shear

and flexion catalogue galaxies and I use the H05 estimates of Equations (6.5) and (6.7).

As a check on the level of possible errors caused by neglecting the fuller treatment of Schrabback et al.

(2007), I compare my predicted median source redshift (taken from the magnitude-selected catalogue of

objects with measuredγobs, described in Section 6.2.1) with the Schrabback et al. (2007) prediction, finding

zH05
m = 1.1 ± 0.1, zS07

m = 1.3 ± 0.1 (6.8)

for the median source redshift of our sample as calculated using the H05 and Schrabback et al. (2007)

redshift prescription respectively. Using these results with Equations (2.28) and (2.30), and assuming the

Schrabback et al. (2007) model to be correct, use of the H05 redshift estimate for a median redshift source

would lead to an underprediction of the lensing signal. Assuming a lens at the sample median redshift

z = 0.58, we can estimate a typical underestimation factor of

fz =
DH05

ls

DH05
s

× DS07
s

DS05
ls

≈ 0.81 (6.9)

for the GEMS galaxies. This is certainly within the sample variance of our galaxy-galaxy flexion measure-

ments as seen in Figure 6.1, and roughly within those of shear. It will be interesting in the future to make a

more thorough comparison of the error impact upon galaxy-galaxy lensing constraints due of the use of a

poor source redshift distribution; such an analysis was conducted for cosmic shear by van Waerbeke et al.

(2006).

Given the H05 redshift distribution, but with the caveats expressed above, the expectation value of the

galaxy-galaxy lensing signal at each source, due to the summed contributions from nearby lenses, may
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then be calculated. This can be done using Monte Carlo integration. A source galaxy redshift estimatezi
s is

drawn fromp(z|m606), for i = 1, ..., NMC whereNMC = 50 (Schneider & Rix 1997 found that typically

any number above 20 was sufficient). The expectation of the weak lensing signal for each source is then

simply

〈ξ〉 =
1

NMC

NMC
∑

i=1

ξi, (6.10)

whereξ = γ,F or G, calculated using the lens model being tested (see, e.g., Chapter 2 which describes

how to make these model calculations). Using this prediction, theintrinsic valueξs for each source, i.e.

that which we would expect in the absence of lensing, can be approximated. With a measured value of the

signalξobs for this source, we may writeξs ≃ ξobs − 〈ξ〉 where we again assume that lensing-inducedξ is

small. Given an assumed or approximate form for the probability distributionpξ(ξ
s)d2ξs, the best-fitting

dark matter halo parameters are determined by maximising likelihoods

Lξ =
∏

j

[pξ(ξ
s)j ], (6.11)

where the product is carried over all source galaxies, labelled byj. The total likelihood, using all measure-

ments ofξ = γ,F andG, is thenL = Lγ ×LF ×LG. This last expression makes the assumption that each

of the likelihoods is independent; we now briefly discuss this assumption.

The correlation in measurements of shear and flexion due to the gravitational distortions will be negligible

for the weak shear and flexion we expect for the galaxy-galaxylensing signal in the GEMS images. As

shown by Schneider & Er (2007) this statistical independence may break down in the regimes between

strong and weak lensing, but for typical GEMS galaxies we do not expectγ, F or G of sufficient strength

to make this a significant effect.

However, there may be correlations in the measurements of shear and flexion due to imperfections in the

measurement method itself. This is discussed briefly in Section 5.4, but will require simulations of a size

significantly larger than the FLIP images (which were of a comparable size to the GEMS survey images) in

order to be fully explored; this is an opportunity for futurework. However, as seen in Figure 6.1, the galaxy-

galaxy flexion in the GEMS survey is not detected at very high significance, and is indeed not detected at

all for measurements of theGE signal. In the FLIP analysis, there was no sign of the 20-30% covariance

biases betweenγ andF measurement that would be necessary to make such a systematic significant at

a level greater than the statistical uncertainty uponFE (on the limited scales where it is detected). We

therefore neglect any such covariances, and make the first approximation that our measurements of shear

and flexion can be considered independent.

6.3.2 Flexion modifications

With the extension of the Schneider & Rix (1997) technique toinclude measurements of gravitational

flexion it is necessary to alter certain assumptions and input parameters. Foremost is the need to assume a

realistic functional form for the distribution of intrinsic signalpξ(ξ
s)d2ξs. For the case of shear, Schneider
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& Rix (1997) and all subsequent analyses have assumed a Gaussian distribution of the form:

pξ(ξ
s) =

1

2πσ2
ξ

exp

[

−|ξs|2
2σ2

ξ

]

. (6.12)

This is an acceptable approximation in the case of observed weak shear, but as seen in Figures 4.8 and 4.9

it would constitute a severe misrepresentation in the casesof ξ = Fobs or ξ = Gobs. Instead, we must find

more realistic representations ofpF(Fs) andpG(Gs).

The distribution of measured flexions (and indeed also shears) in the absence of gravitational lensing may

be accurately estimated from the lensing data itself. In theweak regime of GEMS galaxy-galaxy lensing the

presence of a gravitational lensing signal will contributeonly to a minor broadening of the distributions seen

in Figures 4.7, 4.8 and 4.9. In short, we may use measurementsof ξobs to approximatepξ(ξ
s) ≃ pξ(ξ

obs).

The extent to which this approximation causes artificial broadening of the probability density function can

be easily estimated for typical galaxy haloes (see, e.g., Chapter 2; BGRT06), and is found to be negligible.

Given the distributions of measuredγ,F andG from Section 4.2.5, there are two methods of approximating

the relevant probability functions. The first is to simply use suitably binned, count-normalised histograms

as discrete representations ofpξ. However, this approach will add noise and potentially biasconstraints

in cases where variations in the input halo parameters alter〈ξ〉 by an amount smaller than the bin scale.

GEMS does not provide enough data to make the histograms ofγ, F andG smooth on sufficiently small

scales to avoid this problem, but this method may perhaps be useful for future survey datasets.

The second approach is to fit smoothly-varying analytic functions to the discretely measured distributions

of ξobs across theξ1-ξ2 plane. This may be done simply if we make the reasonable assumption of circular

symmetry in the bivariate distribution, so thatpξ(ξ
s) ≡ pξ(|ξs|, φ) = pξ(|ξs|) only. In this case, the

probability of finding a galaxy withξs of magnitude between|ξs| and |ξs| + d|ξs| is described by the

one-dimensional, marginalized density

pm(|ξ|) =

∮

pξ(ξ)|ξ|dφ = 2π|ξ|pξ(ξ). (6.13)

The quantitypm(|ξ|)/(2π|ξ|) may be easily estimated from the data, and fit using suitable functions to

estimatepξ(ξ).

For the shear, it was found that functions of the form

pγ(γs) =
b(

2
c )c

2πΓ
(

2
c

) exp [−b|γs|c], (6.14)

which is essentially a generalized form of a Gaussian with a correctly normalizing prefactor. This proved

to give a good representation of the data. Using the Levenberg-Marquardt algorithm (see, e.g., Press et al.

1992) to perform a non-linear, least-squares fit, I found values ofb = 6.674±0.033 andc = 1.350±0.013,

again indicating the small but significant non-Gaussianityin the distribution of measured shears.

In the case ofFobs andGobs, the function expressed in Equation (6.14) was not able to reproduce the shape

of pξ(ξ
s). However, generalizing (6.14) to

pξ(ξ
s) =

b(
2+a

c )c

2πΓ
(

2+a
c

) (ξs)a exp [−b|ξs|c] (6.15)
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Figure 6.3: Measuredpm(|ξ|)/(2π|ξ|) and best fitting curve (solid line) for (a) shear,
(b) first flexion and (c) second flexion. Poisson errors alone, from the histograms used
to estimatepm(|ξ|), are plotted on each measured point; no estimate of measurement
uncertainty is included. For comparison, we also plot normalized Gaussian curves
(dotted line), withσγ = 0.31 (the value used in the analysis of Heymans et al. 2006a),
and illustrative values ofσF = 0.2 andσG = 0.5.
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provided a reasonable fit to the data, with values ofa = −0.260 ± 0.061, b = 5.99 ± 0.37 and c =

0.491± 0.026 for Fobs; a = −0.118± 0.069, b = 3.90± 0.34 andc = 0.547± 0.031 for Gobs. In Figure

6.3 we plot these best fitting probability density functionsfor shear and flexion, along with Gaussian curves

for comparison; it can be seen that Equations (6.14) and (6.15) provide an improvement, especially in the

case of flexion. The fit topγ(γs) performs better than a Gaussian particularly at describingthe central peak.

Reducedχ2 for these fits varied from≃ 2 (shear) to≃ 4 (second flexion).

As a final check for consistency, the probability distributions we expect for the individual componentsξ1
andξ2 may be recovered by marginalization:

pi(ξ
s
i ) =

∫ ∞

0

pξ(ξ
s)dξsj , (6.16)

wherei, j = 1, 2 and i 6= j. For (6.14) and (6.15) this must be done numerically. The resulting one-

dimensional distributions are plotted as a solid line in Figure 6.4 (having been scaled to the number of

source objects), and can be seen to provide a good fit to the measured histograms ofγobs
i , Fobs

i andGobs
i . It

is noted noted that there is slight evidence for a deficit inpF andpG in the central regions of the distributions:

the fitting function of (6.15) is clearly not a perfect match.The description of the non-Gaussian wings is

very good, however, and I reserve the selection of more apposite fitting functions to future work.

A more minor modification that can be made to the standard Schneider & Rix (1997) method is in the

choice ofθmax. Given the short range nature of flexion it will be advantageous to use smaller values for

this parameter than those used for shear. Additionally, following Heymans et al. (2006a), we make use

of the COMBO-17 redshift estimates for our lens sample to define θmax,ξ on a lens-by-lens basis, only

considering the signal from lens masses lying within a projected distance (in the plane of each lens itself)

of rξ. The parameterθmax,ξ for each lens is then given by

θmax,ξ =
rξ
Dl
. (6.17)

Finally, as in Heymans et al. (2006a), we need to define a single cutoff angle for sources lying close to

the edge of the field. This wasθmax itself in the original Schneider & Rix (1997) implementation, and we

instead choseθ(zmin) = rξ/DA(zmin), wherezmin is the lowest redshift in the lens object sample. This

concludes my discussion of the modifications to the Schneider & Rix (1997) galaxy-galaxy lensing analysis

technique necessary for the extraction of halo constraintsfrom shear and flexion in the GEMS data.

6.3.3 Choice of models, lens samples and input parameters

Having described the analysis method being used on the GEMS data, I will now describe the SIS and

NFW lens models chosen for the placing of parameter constraints. Following Kleinheinrich et al. (2006),

and as described in Section 6.2.2, I place constraints on a galaxy luminosity-dependant SIS halo model

parameterized by a fiducial velocity dispersionσ∗
v and luminosity scalingη (see Equation 6.6). Shear and

flexion predictions for each lens are then made using this lens model and the results of Chapter 2.

A single NFW halo is completely defined by the two parametersM200 and c, and so a simple galaxy
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Figure 6.4: Histograms of measured (a) shear, (b) first flexion and (c) second flexion,
showing the marginalized best-fitting distribution curve for each case, scaled to the
number of sources observed, as described in Section 6.3.2.
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luminosity-dependent NFW model can be constructed by assuming

M200

M∗
200

=

(

Lr

L∗
r

)µ

(6.18)

and
c

c∗
=

(

Lr

L∗
r

)ν

. (6.19)

Using these models we may then calculate predictions for thelensing signalξ due to each lens, using the

results of Chapter 2. There is good observational evidence for an approximate power law scaling of virial

mass with luminosity (see, e.g., Guzik & Seljak 2002; HYG04;Hoekstra et al. 2005; Mandelbaum et al.

2006a). This evidence, in combination with theoretical predictions for a single power law scaling ofc with

M200 (Neto et al. 2007; Macciò et al. 2007), suggests that the NFWmodel defined by Equations (6.18) and

(6.19) should provide a good approximation to the physical Universe. We therefore aim to place constraints

on the four parametersM∗
200, c∗, µ andν through our maximum likelihood analysis.

Ideally, a four-dimensional maximum likelihood analysis of these NFW parameters should be undertaken.

For the placing of meaningful constraints this would require significant computing resources, and so instead

I split the testing of the NFW model into three sub-models, defined as follows:

• The first sub-model, which I refer to as NFWm1, assumes a fixedc∗ = 6.85, based on thecharden.f

calculation for an NFW halo of virial massM200 = 9 × 1011h−1M⊙ (HYG04; Kleinheinrich et al.

2006). I also assume a fixedν = −0.083 (HYG04; Macciò et al. 2007; Neto et al. 2007) as described

in Section 6.2.2. I then place constraints on the fiducial parameterM∗
200 and mass-luminosity scaling

µ.

• The second sub-model, NFWm2, assumes a fixedµ = 1.2 (HYG04; Mandelbaum et al. 2006a), and

a fixedν = −0.083 as for NFWm1. I then place constraints on the two fiducial parametersM∗
200

andc∗.

• The third sub-model, NFWm3, assumes a fixedM∗
200 as for NFWm1 and a fixedµ = 1.2 as for

NFWm2. I then attempt to place constraints on the fiducial parametersc∗200 and the concentration-

luminosity scalingν.

In this way I am able to reduce the dimensionality of the parameter space by a factor of two in each case,

significantly reducing the computation time of the problem,whilst still probing relationships of interest to

theories of galaxy formation and hierarchical halo collapse models.

There will be scatter in the parameters that neither the SIS or the NFW model are able to describe, the nat-

ural scatter in halo properties that will occur between galaxies of similar luminosity. A broader difference

might be expected between galaxies of different morphological types or stages of evolution, such as spirals

and ellipticals. We will attempt to characterize differences in the best fit model parameters by splitting the

lens sample described in Section 6.2.1. Due to the multi-band photometry available from the COMBO-17

survey data, and the high quality imaging from theHST-ACS GEMS data, it is possible to split the sample

both by colour and morphological characteristics.

I therefore define four subsamples of the overall sample of 4995 lenses, based on spiral and elliptical

morphology discrimination and membership of the red and blue galaxy sequence as follows:
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• The “spiral” sample is defined as those galaxies in the lens sample having a Sérsic index ofn < 2.5,

as found in the GALFIT analysis of GEMS galaxies conducted byBarden et al. (2005). This gives

a total of 3770 spiral lenses, after also excluding galaxieswith n < 0.2 for which we assume some

serious failure in the modelling.

• The “elliptical” sample is defined as those galaxies in the lens sample having a Sérsic index of

n > 2.5 as found in the same GALFIT analysis of GEMS galaxies. This results in a total of 1061

elliptical lenses, where this also takes account of the exclusion of galaxies withn > 8 (again this

is assumed to be due to catastrophic modelling failure). There are therefore a total of 124 galaxies

in the main lens sample that are included in neither of the elliptical or spiral classes, due to possible

errors in classification (see also Häussler et al. 2007).

• The “blue” sample is defined as those galaxies in the lens sample which lie in the COMBO-17

red sequence as defined by Bell et al. (2004). This involves a cut for galaxies withU − V ≤
1.06 − 0.352z − 0.08(V + 0.775 + 20.0), leaving 3984 galaxies in the blue lens sample.

• The “red” sample is defined as those galaxies in the lens sample which lie in the COMBO-17 red

sequence, defined as being those for which theU − V colour is greater than the redshift-dependent

line described above. There are then 971 galaxies in the red lens sample.

These are the classifications I use to split the lens sample, using two different (but related) classifications

of galaxy type. I will fit constraints to each of the pairs of the parameters of the SIS model and NFWm1-3

models described above, for each of these galaxy subsamplesand for the total lens sample. I present these

results in 6.3.4.

Finally, there is the choice of the parametersrξ described in Section 6.3.2. I follow Heymans et al. (2006a)

and setrγ = 150h−1 kpc. For flexion, motivated by the results shown in Figure 6.1due to the extremely

rapid fall in the flexion signal with distance from typical lensing masses (see Chapter 2; BGRT06) , we

reduce this physical impact parameter torF = 50h−1 kpc.

Interestingly, tests using a synthetic dataset of known-redshift sources showed that the flexion results were

somewhat sensitive to the choice of this parameter. Values of rF & 100h−1 kpc, for which the vast majority

of source-lens pairs contain no detectable galaxy-galaxy flexion signal, began to show biases towards low-

mass, high-concentration fits in the maximum likelihood results. I put this down to a detection of subtle

biases inherent in the Monte-Carlo estimation of〈ξ〉 (Equation 6.10), which, due to the asymmetric scatter

in zi
s and related angular diameter distances, causes a systematic bias in the best estimate of〈ξ〉. For the

high accuracy work of the future, it will be important to investigate this effect in more thorough detail.

Using each of the models, lens samples and input parameters detailed above, I now go on to describe the

results obtained from a full maximum likelihood analysis ofthe GEMS galaxy-galaxy shear-flexion signal.

6.3.4 Maximum likelihood results

The modified maximum likelihood analysis method described in Sections 6.3.1, 6.3.2, and 6.3.3 is used

to calculate arrays of log-likelihoodln [Lγ(i, j)], ln [LF(i, j)] and combined (i.e., total) log-likelihood
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ln [L(i, j)] for a 25× 25 grid of parameters, chosen for each of the SIS and NFWm1-3 models, and for

each of the lens samples.

In order to estimate likelihood regions in these arrays, I ran a first maximum likelihood analysis using

model parameter ranges of sufficient size to encompass a region of total confidence greater than99.7%.

This was in fact not always possible, particularly for theFobs data, and so as in Section 6.2.2 we must

impose a prior on the fiducial concentration. We choose, in estimating these confidence levels, a more

conservative prior ofc∗ < 400. This was done to encompass as much of the probability space as possible,

so that the choice of prior would not significantly influence either the parameter constraints fromF alone

or, more importantly, the combined parameter constraints from measurements of shear and flexion. For a

prior of c∗ < 50 there was still a significant region of probability space being artificially excluded, whereas

for the larger prior ofc∗ < 400 this was not the case. While a later prior uponc∗ may be imposed if

desired (this will almost certainly be the case), the interpretation of likelihood contours in terms of formal

confidence intervals should not be influenced by such choices.

The total probability enclosed by each of these parameter ranges, defined by

P tot ≈
∑

i,j

exp {ln [Lξ(i, j)]} (6.20)

was calculated by David Bacon, and used by him to estimate values of∆ln [L], measured relative to the

maximum likelihood, that correspond to confidence intervals of 68%, 95% and 99.7%. This was done sepa-

rately for shear and flexion (which is vital aspγ(γs) 6= pF(F s)), and for the combined likelihood contours,

for each model in turn. Typical values for these calculated levels are illustrated by the flexion result of

−2∆ ln [LF ] = (2.5, 7.1, 13.4), corresponding to the 1-,2- and 3-σ confidence levels described above for

the SIS halo model parameters. This is in reasonable agreement with the−2∆ ln [LF ] = (2.3, 6.7, 11.8)

levels we expect for normally-distributed errors, which weuse to estimate confidence on the NFWm1 pa-

rameters. Unfortunately, due to the sparseness of the parameter grid available for analysis, calculations of

these levels forγobs andFobs are approximate estimates only, but will be more accurate than assuming the

Gaussian results.

In my calculation of the likelihood contours described above, using the theoretical methods of Sections

6.3.1 and 6.3.2, I made use of a piece of code provided by Catherine Heymans (galgal.f) that calculated

log-likelihood contours for SIS models based on the Schneider & Rix (1997) analysis technique. Parts of

this code persist in my analysis routines (as built into my codegemsggflex.f90). However, my routine

builds substantially upongalgal.f, implementing the improvements of Section 6.3.2 and makingother

significant modifications necessary for the calculation of NFW shear and flexion signals. As an indication

of Catherine’s contribution to my analysis code, the original galgal.f was just under 1000 lines in

length, much of which was omitted from my final program of over4000 lines in length.

In calculating the final constraints upon the SIS and NFW model parameters I again assume a prior of

c∗ < 50, but use the confidence contour levels calculated above for aless severe prior. The parameter

constraints placed upon the total lens sample for the assumed SIS, NFWm1, NFWm2 and NFWm3 models

can be seen in Figure 6.5. Constraints placed assuming the SIS model for each of the spiral, elliptical, blue

and red subsamples can be seen in Figure 6.6. Parameter constraints placed assuming the NFWm1 model

for and each of the same subsamples can be seen in Figure 6.7. Constraints placed assuming the NFWm2

model for and each of these subsamples can be seen in Figure 6.8. Finally, the constraints upon NFWm3
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Figure 6.5: Maximum likelihood confidence constraints uponSIS and NFW halo model parame-
ters for the total GEMS lens sample: SIS (top left), NFWm1 (top right), NFWm2 (bottom left) and
NFWm3 (bottom right). Intervals of 68%, 95% and 99.7% confidence are plotted from measure-
ments ofγobs (dotted line),Fobs (dashed line) and from combining these measurements (solidline).
Theγobs best fit parameters are marked by diamonds, theFobs best fit parameters by triangles, and
the combined best fit parameters marked by a large cross. As for the results of Figure 6.2, we have
assumedc ≤ 50 as a prior in the final fit analysis.

parameters for each of these subsamples can be seen in Figure6.9. I discuss these results in the following

Section.
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Figure 6.6: Maximum likelihood confidence constraints uponSIS model parameters for the GEMS
lens subsamples: spiral (top left), elliptical (top right), blue (bottom left) and red (bottom right).
Intervals and best fit values indicated as for Figure 6.5, with an assumed priorc∗ < 50.
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Figure 6.7: Maximum likelihood confidence constraints uponNFWm1 model parameters for the
GEMS lens subsamples: spiral (top left), elliptical (top right), blue (bottom left) and red (bottom
right). Intervals and best fit values indicated as for Figure6.5, with an assumed priorc∗ < 50.
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Figure 6.8: Maximum likelihood confidence constraints uponNFWm2 model parameters for the
GEMS lens subsamples: spiral (top left), elliptical (top right), blue (bottom left) and red (bottom
right). Intervals and best fit values indicated as for Figure6.5, with an assumed priorc∗ < 50.
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Figure 6.9: Maximum likelihood confidence constraints uponNFWm3 model parameters for the
GEMS lens subsamples: spiral (top left), elliptical (top right), blue (bottom left) and red (bottom
right). Intervals and best fit values indicated as for Figure6.5, with an assumed priorc∗ < 50.
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6.3.5 Discussion of maximum likelihood results

Overview of results and flexion implications

I begin with a discussion of the results shown in Figures 6.5-6.9, which appear largely consistent with

the findings of previous galaxy-galaxy lensing studies, butalso point towards some interesting issues and

conclusions regarding flexion. For the full lens sample, I place SIS model parameter constraints ofσ∗
v =

110+10
−20 kms−1, andη = 0.24+0.24

−0.12, in marginal disagreement with the results of Kleinheinrich et al.

(2006), who favour a larger fiducial velocity dispersion. Itshould be noted that, due to the sparseness

of the parameter grid used in this analysis, all the constraints from this analysis will be subject to small

amount of extra uncertainty of the order(1/2) × pmax/25, wherepmax is the maximum parameter value

in the range considered (this can be taken from the axis rangeof each plot). Where combined constraints

are limited to a small region of the parameter space, I therefore quote results to 1 significant figure only,

aiming to highlight this limitation. Further numerical analysis is planned to improve the resolution of these

calculated likelihood surfaces.

For the combined constraints on the NFWm1 model, I fitµ = 0.8+0.4
−0.2, M∗

200 = 6.0+3
−2 × 1011h−1M⊙,

in agreement with the results of HYG04 and Mandelbaum et al. (2006b), although preferring a lowerµ

than found in Hoekstra et al. (2005). The NFWm2 combined fit yieldsc∗ = 4+4.5
−1.5, M∗

200 = 8.0+4
−4 ×

1011h−1M⊙, in good agreement with theoretical predictions and observational constraints. Finally, the

NFWm3 parameter constraints found from shear and flexion combined areν = −1.5+1
−1.25, c∗ = 6+2

−3;

this may hint towards some tension with theoretical predictions forν, although this conclusion rests on the

correct choice of the observationally constrained fixed parametersM∗
200 andµ, which is not certain. This

issue, that of possible conflicts due to parameter degeneracies and faulty modelling, will be discussed later.

In all cases, as for the E-mode fitting constraints, the fit is largely determined by the contours placed

using the shear results and the flexion makes only minor alterations to the best fit contours. This appears

to be a combination of two effects. Firstly, examination of the likelihood surfaces produced by flexion

measurements shows them to be of rather shallow gradient in outlying regions. This is as opposed to the

shear, for which the likelihood surface steepens considerably at distance from the best fit regions. This

fact, when combined with the further evidence for tension between shear and flexion results (also found in

Section 6.2.2), means that the shear constraints tend to liein regions where the flexion likelihood is varying

only slowly.

The existence of this “3-σ plateau” for flexion likelihoods can be understood by considering the broad

wings of the modelled flexion distribution, for which significant numbers of outliers are expected. The

importance of our accurate characterization ofpF(F s) is now clear: proper accounting for non-Gaussian

flexion noise is vital if flexion measurements are going to be correctly combined with those from shears.

Interestingly, the 3-σ plateau in flexion likelihoods does not extend all the way to the inner confidence

regions, which have sharper gradients. In cases where thereis better agreement between shear and flexion

results we can expect flexion to provide more significant improvements to measured parameter constraints.

Also, any alternative flexion estimation scheme (such as that of Okura et al. 2007a) that could reduce the

scatter in flexion measurements and decrease the number of outliers would likewise steepen the gradient in

the outer regions of the flexion likelihood surface.

The results of this Section make it more certain that tensionbetween shear and flexion exists in the data

itself, rather than in errors of methodology, as I have completed two different analyses of the galaxy-galaxy
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lensing signal in GEMS and both yield entirely consistent results. If the explanation is some kind of flexion

bleed, as discussed in 6.2.3 and in Chapter 7, then accurate calibration for the effect would allow flexion

to exert more influence upon combined parameter constraints; this would happen simply by virtue of the

best-fitting regions being moved out of the 3-σ plateau and into regions where the flexion likelihood surface

is varying more rapidly. If the effect is real, however, and due to failures in the NFW mass model close

to baryon-dominated regions, then sample sizes will simplyneed to be increased in order to expose the

shear-flexion inconsistency at greater significance. Larger sample sizeandan improved flexion estimation

method could yield results at greater significance still. These and related topics will be discussed again in

Chapter 7. I now turn to look at some of the results obtained for the lens subsamples, split by galaxy and

morphology as describe in Section 6.3.3.

Results as a function of galaxy type

The SIS and NFWm1-3 parameter results for lens samples splitby galaxy colour (blue/red) and morphol-

ogy (spiral/elliptical) are shown in Figures 6.6-6.9. In the discussion that follows I will not generally quote

marginalized error estimates for NFW halo parameters, but instead refer to overall trends in the contours

for different subsamples. In many cases quoting best fit values and marginalized error bounds would be

misleading, as the reliability of these results relies implicitly on accurate values of thefixedparameters (see

Section 6.3.3) chosen for each submodel. I did not vary thesefixed parameters for different subsamples,

and there is evidence (in the form of inconsistent results between NFW submodels) that this is an oversim-

plification that needs to be addressed. Note that issues do not affect the two parameter SIS model, which I

now discuss.

The results shown in Figure 6.6 show broad agreement betweenthe results for blue galaxies and spiral

galaxies, with similar agreement for red and elliptical galaxies, suggesting that both cuts identify haloes

with similar lens properties. To avoid confusion, where contours agree, I refer to these populations as early-

type lenses (elliptical/red) and late-type lenses (spiral/blue). There are signs of a significant difference in

the velocity dispersions of these broad classes. For the redsample I findσ∗
v = 130+20

−20 kms−1, and for

the blue sampleσ∗
v = 96+20

−40 kms−1. Values for the luminosity scaling parameters are entirelyconsistent.

These results replicate the findings of Kleinheinrich et al.(2006) for the split between red and blue galaxies,

although again I find consistently lower velocity dispersions in each case.

Turning now to the NFW halo model parameters (Figures 6.7-6.8), it appears that lens populations are

equally well divided by either colour or morphology (except, perhaps, in the case of NFWm2); as for the

SIS model, there is good contour agreement between the spiral and blue galaxy samples, and between the

red and elliptical galaxy samples. Reliable conclusions regardingdifferencesin the underlying early/late-

type lens populations are harder to draw. For NFWm1, there appears to be no significant sign of differences

in the mass-luminosity scalingµ, but some evidence for early-types favouring higher mass models (in

agreement with the SIS results and Kleinheinrich et al. (2006).

The NFWm2 and NFWm3 model results are more difficult to interpret, due to simplifying assumptions

built into my submodel parameterizations of the overall NFWmodel presented in Equations (6.18) and

(6.19). The situation is worsened by the strong degeneracy between the mass and concentration parameters

for NFW halos; noisy lensing measurements can often be fit equally well by NFW models with high (low)

mass and low (high) concentrations. This degeneracy is clearly seen in the results of the NFWm2 submodel

(Figure 6.8).
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The limitations of my submodel parameterization are suggested by an inconsistency between the results

of NFWm2 and NFWm3, seen in Figures 6.8 and Figures 6.9. For the NFWm2 model, there is evidence

that the red galaxies inhabit a lower-concentration, higher-mass region of the parameter space than blue

galaxies, which favour a higher-concentration, lower-mass region. This is an extremely interesting result,

as it lends observational weight to galaxy formation modelsin which early-type galaxies form in the course

of large halo mergers (see, e.g., De Lucia et al. 2006; Springel et al. 2005; Baugh 2006): this would

naturally cause their haloes to be less concentrated. If such mergers trigger rapid starburst activity that then

largely ceases, we expect such galaxies to be red in colour and less luminous than star-forming galaxies of

the same mass.

However, in Figure 6.9, we see evidence that early-type lenses favour ahigherc∗ than the late-type sample.

The issue most likely to have caused this inconsistency is the fact that for the NFWm3 model I have

assumed the same, fixedM∗
200 = 9 × 1011h−1M⊙ for each sample. If this is an overestimate of the

fiducial viral mass for the blue lenses (as is suggested by theNFWm1 results) then the degeneracy between

c andM200 will artificially force blue lens best fits towards lowerc∗. As stressed at the beginning of

Section 6.3, maximum likelihood results are only as good as the models they test, and willalwaysgive an

answer.

The most obvious solution to this problem is to parameterizethe full NFW model in four dimensions, and

perform the same maximum likelihood analysis. However, this would be prohibitive in terms of computing

resources using my current method: analysis of GEMS data fora 25× 25 grid of parameters takes around

6 hours to complete for the spiral/blue samples using a standard desktop PC. Finding likelihoods for a

four-dimensional array of the same resolution would then take more than 5 months. Use of Monte-Carlo

Markov Chain methods would increase the speed of this process, or an iterative solution could be reached

via successive runs of lower dimensionality models, each time adopting the best-fitting values from the

previous analysis. Given the suggestions of real, physicaldifferences between early-type and late-type

haloes in the GEMS galaxy galaxy lensing signal, these considerations will be the the subject of much

useful research. If the treatment of the NFW halo models can be improved, increases in size for future

survey datasets will provide a wealth of galaxy-galaxy lensing information.

This concludes my discussion of the maximum likelihood results, and indeed the description of the primary

results in my Thesis. I now go on to a Chapter in which I summarize my findings, conclusions, and

proposals for future work.





167

CHAPTER 7
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In this Thesis I have presented a number of important developments, results and unsolved issues relevant

to the field of weak lensing. The primary achievements of thiswork began with the development of theo-

retical predictions for weak gravitational flexion and culminated, via accurate measurement, in a detailed

analysis of a cosmological flexion signal. As part of this process I have completed a first, full (i.e., PSF

treating), shapelet lensing analysis of real space-based data from the GEMS survey, something that has

not otherwise been done for shear or for flexion. I have calibrated my shear and flexion measurements

using a sophisticated simulated dataset, and used the results to perform a first combined galaxy-galaxy

shear-flexion analysis. In doing this I improved existing techniques by accurately describing the statistical

distributions of both measured shear and flexion in GEMS, providing useful tools for future galaxy-galaxy

lensing analyses.

My GEMS measurements (and those of the FLIP analysis) raise important issues that will be of much

relevance to the accurate analysis of future survey data, particularly if this measurement is to proceed via

shapelets or related methods. The shapelet analysis of GEMSdemonstrates the viability of the method

and thus provides a template for future pipelines, whilst highlighting areas in which such pipelines could

improve on my methods. Finally, the galaxy-galaxy lensing constraints I place upon lens galaxies in GEMS

provide a realistic picture of the utility of shapelet-measured flexion as a cosmological tool, and the shear

results suggest interesting differences in the halo properties of spiral and elliptical galaxies.

Flexion from theory to measurement

The intention at the outset of this work was to show that measurements of flexion could be used to improve

the knowledge of the cosmological matter distribution, particularly on small scales. Having made analytic

predictions presented in Chapter 2, I began work on a shapelet pipeline so as to accurately measure the

flexion signal for the first time, including necessary PSF corrections. The direct first result of this work can

be seen in Figure 6.1, Chapter 6 (see also Figure 7.1, this Chapter), which shows a clear detection of galaxy-

galaxy flexion signal in annuli of 2-4 arcsec away from foreground lenses. This result is not for a sample

of lens galaxies that have been specifically chosen as of highmass, with the medianr-band luminosity

of our sample being≃ 3 × 109h−2L⊙. More importantly, unlike that of Goldberg & Bacon (2005), my

analysis includes a thorough treatment of systematic errors and biases using shapelets (see Chapters 4 and

5), and takes account of the realistic distribution of flexion measurements (Goldberg & Bacon 2005 used a

Gaussian of widthσF = 0.04, possibly due to their bright sample of galaxies). These considerations may

explain the fact that, contrary to Goldberg & Bacon (2005), Ifind no evidence for a flexion signal beyond

5 arcsec from typical foreground lenses.

The maximum likelihood results of Chapter 6 also suggest that we have a strong detection of a first flexion

signal, with the flexion contours for the SIS and NFWm1 modelsin Figure 6.5 ruling out zero-mass models

at 3-σ significance or greater. These results are more difficult to interpret, however, as a poor choice of

model will give inaccurate results in any maximum likelihood analysis.

There were two further important features of the maximum likelihood analysis of particular importance

to flexion. Firstly, the measurement of flexion in my GEMS pipeline is still too noisy for it to be able to

significantly improve constraints on model parameters for lenses such as the SIS or NFW; the confidence

contours seen for the combined signal do not often differ significantly for those from shear alone (section

6.3, Chapter 6). Despite the sometimes significant tension between flexion and shear parameter results (3-σ
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Figure 7.1: Comparison of GEMS E-mode shear (left) and flexion (right) forθsep between 2 and 10
arcsec. As for Figure 6.1, the B-mode signal and uncertainties are plotted as dot-dashed and dotted
lines respectively. The dashed line is the predicted halo based on HYG04 and Navarro et al. (1997).

for NFWm2 and NFWm3), the flexion likelihood surface is generally shallow-sided when compared to that

of shear, causing the combined surface to be dominated by theshear results. This shallow-sided likelihood

behaviour is a consequence of the broad wings in the measureddistribution ofpF(F s), and highlights the

importance of taking this distribution into account when using flexion statistics. Modelling of the flexion

distribution as a Gaussian, such as in Goldberg & Bacon (2005), BGRT06, Okura et al. (2007b) and Section

2.2, will inevitably lead to flawed conclusions.

Despite the noise of flexion measurement, the tension that exists between flexion and shear is striking,

and could point to the failure of SIS and NFW models in the regions where the interplay between baryons

and dark matter would become a significant consideration. Itis not known whether lens models based on

pureΛCDM simulations will apply in the small scale, baryon-influenced regime close to halo centres; it

should be expected that they do not (see, e.g., Sections 1.1.9 and 1.1.10). An indication that flexion has the

potential to provide useful information on these scales is demonstrated in Figure 7.1, which compares the

measuredγE andγB from GEMS on the scales of flexion sensitivity. If the flexion measurements could

be made more accurate, either by increasing the sample size or by improving estimation techniques, then

flexion could offer competitive constraints in this regime,especially if the NFW model underestimates the

mass or concentration on these scales (a prediction of adiabatic quenching, see, e.g., Blumenthal et al. 1986;

Sellwood & McGaugh 2005; Gustafsson et al. 2006). The persistence of the strong flexion signal atθsep ≈
2-3 arcsec would present a real difficulty to NFW halo models,and a step forward in the understanding of

the dark matter-visible matter relationship.

The question of how flexion estimation can be made more accurate is important, as the shapelet technique

seems to add a significant measurement noise to the underlying intrinsic flexion variance possessed by

real galaxies. The HOLICS technique of Okura et al. (2007b),recently extended to include a full KSB-

style treatment of PSF anisotropy (Okura et al. 2007a), is inthis respect a promising development. Work

by Goldberg & Leonard (2007) and Leonard et al. (2007) found it to provide a significantly less noisy

flexion estimator than shapelets, and adopted it as their preferred technique. It may also be that severe

outlier clipping can provide a solution to the problem of flexion noise, but such schemes would need to be

carefully calibrated for the downward biasing effect this has upon statistical estimates.

As well as reducing the noise in flexion, it will be important to uncover and understand possible systematic

effects that could bias flexion in real lensing data. Particularly, the “flexion bleed” hypothesis described
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in Section 6.2.2, could account for the strongFE signal seen at smallθsep. I now propose a method for

the calibration of this effect using a combination of real data and simulated galaxies of the sort used in

the FLIP analysis of Chapter 5. The first step is to take a sample of FLIP-type galaxy models, chosen to

be representative of the lensingsourcesample, and pixellize to the scale of the dataset in question. These

models should be chosen to be isotropic on average with respect to all lensing measurements. Co-adding

large numbers of these isotropic, pixellized, noiseless models to the pixels in the vicinity of representative

members of the actuallenssample, one can quickly quantify the biasing effect of flexion bleed by calculat-

ing the E-mode signal in these synthesized source-lens pairs. This simple analysis is a priority if we are to

place greater faith in theFE results found in GEMS, and wish to make a first calibration of the effect for

future flexion measurements.

Shapelet lensing measurements

The presentation of a shapelet pipeline suitable for the accurate analysis of real, space-based data is another

important result of this Thesis. The results of Section 4.3.1, Chapter 4, suggest agreement between my

shapelet shears and those of Heymans et al. (2005) at the level (96.7 ± 0.8)%, with no evidence for a

shear offset bias such as might be caused by a poor PSF treatment in either analysis. This result agrees

with the GEMS analysis performed by Schrabback et al. (2007), who find a similar discrepancy of≃ 3.3%

between their shear estimates and those of Heymans et al. (2005). Tests for shear residual offsets also

proved consistent with zero, but the results for the flexion measurements were less successful, particularly

for Gobs (Section 4.3.3, Chapter 4). Imperfect modelling of the outer wings of the ACS PSF is hypothesised

as a potential cause for this systematic, as the induced residual second flexion is aligned with a clearG-like

morphology in the outer light profile of stacked stellar images.

However, in order to achieve accurate agreement with previous lensing studies it was necessary to multiply

my chosen shear estimator by a bias factor of (1/0.82), motivated by my shapelet analysis of simulated

galaxy images (FLIP, Chapter 5). A reducing bias factor was found to be necessary to correct for overesti-

mation ofG, and recovery ofF appeared to be unbiased, if similarly noisy. The reason for the overestima-

tion of theG input signal is unclear, but was a common feature among the estimators tested. It is thought

that the systematic underestimation of shears may be a consequence of the shapelet truncation of natural

galaxy light profiles, an issue which will be discussed in theforthcoming STEP3 analysis of Rhodes et al.

(in prep.).

The results of the FLIP analysis also highlight important shortcomings in certain shapelet lensing estima-

tors, such as those proposed by Refregier & Bacon (2003), Goldberg & Bacon (2005) and some amongst

those I proposed in Chapter 3 (see also Massey et al. 2007d). Estimators formed without the need to cal-

culate ensemble averages over shapelet coefficients, whichmay vary wildly between galaxies, will show

greater stability and can be implemented more simply. Many among the proposed shapelet lensing estima-

tors will need accurate calibration of their susceptibilties, as functions of galaxy properties such as size,

brightness and morphological type. A final finding of the FLIPanalysis was the poor treatment of PSF

systematics for galaxies of scale size close to that of the PSF, leading to detectable residual offsets for these

objects. This is a natural consequence of the Massey & Refregier (2005) shapelet deconvolution approach.
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Maximum likelihood analysis

I have described my maximum likelihood analysis of galaxy-galaxy lensing in the GEMS data (Chapter

6), which required modifications to the assumed forms of the probability distributions for the intrinsic

shear and flexion of unlensed galaxies. Simple analytic functions are shown to provide an improved fit to

the GEMS data when compared to the Gaussian curves used by Schneider & Rix (1997) and subsequent

analyses based on this scheme.

The maximum likelihood analyses agree well with the resultsof simpler fits to theγE andFE signal in

GEMS, and using the total lens sample I place constraints upon lens model parameters that are in agreement

with the findings of other authors (Guzik & Seljak 2002; Hoekstra et al. 2004; Kleinheinrich et al. 2006;

Mandelbaum et al. 2006b). Using galaxy morphology (Barden et al. 2005) and rest-frame colour (Bell

et al. 2004) information I show a clear variation in lens properties with both indicators of the late/early-

type galaxy dichotomy. There is an interesting suggestion in the NFWm2 model (see Section 6.3.5, Chapter

6) of significant differences in the mass and concentration parameters of red and blue galaxies. The red

galaxies appear better fit by higher mass, lower concentration halo models than blue galaxies, which would

be a natural prediction of hierarchical galaxy formation models (see, e.g., De Lucia et al. 2006). However,

limitations in the simplified parameterizations of NFW halomodels currently prevent firmer conclusions

being drawn. Placing firmer confidence constraints on this result is a natural extension of the work in this

Thesis; I now go on to describe how this might be done, along with other potential research opportunities

that arise as a direct consequence of my investigations.

Further work

The opportunities for further work are clear. If flexion can be estimated more accurately for real galaxy

images then there is potential, as suggested by the simplified analysis presented in Chapter 2, for it to

be a useful addition to shear for certain cosmological applications. The shapelet formalism of Refregier

(2003) provides an elegant framework for constructing shapelet estimators. What is unclear is whether

the least-squares shapelet model fitting of Massey & Refregier (2005) is able to characterize higher order

shape galaxy information with sufficient reliability to prevent such estimators from being both noisy and,

potentially, biased.

The HOLICS image moment scheme presented by Okura et al. (2007b), now adapted to include a full treat-

ment of anisotropic PSF corrections (Okura et al. 2007a), isan exciting alternative to shapelets and early

results show signs of superior flexion measurement for real galaxies (Leonard et al. 2007). Alternative

options such as heavy outlier clipping of shapelet measurements may also provide a working solution. An

important future study will be the comparison of flexion measurement from each of these different estima-

tion schemes using simulated galaxy datasets such as the FLIP images. Following the STEP analyses, this

work would compare estimates for both space-based and ground-based datasets.

The possibility of the extension of flexion to ground-based imaging surveys is a related issue, and one of

increased importance due to the unavailability of substantial, new, space-based imaging survey datasets in

the short-to-medium term. The question of whether flexion can be accurately recovered in the presence of

atmospheric image degradation remains open. First instincts would suggest that it would be more difficult

than from space, but the shapelet method was found to be very successful in STEP2 (Massey et al. 2007b),
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which simulated ground-based imaging data, and less successful in STEP3 (Rhodes et al., in prep.). It may

be that objects blurred by a degree of atmospheric seeing arebetter fit by the shapelet basis set than high

quality images of galaxies convolved with the highly non-Gaussian ACS PSF.

If flexion can be successfully measured from the ground, thendatasets such as the Canada France Hawaii

Telescope Legacy Survey (CFHTLS, see, e.g., Hoekstra et al.2006) would be able to provide a 10-fold

increase in signal to noise on galaxy-galaxy flexion measurements (based on an assumed source number

density of≃ 10 arcmin−2). This would bring any discrepancy between shear and flexionfor the SIS and

NFW halo models into sharp relief, assuming that the potentially biasing effects of flexion bleed can be

checked and, if necessary, accurately accounted for.

Future surveys also offer the possibility of an improved maximum likelihood analysis of galaxy-galaxy

lensing, with the specific aim of testing galaxy formation models by probing the lens properties of galaxy

host haloes. A ten-fold increase in signal to noise from CFHTLS would place firm constraints on the

differences between the halo hosts of red and blue galaxies,differences which are tantalisingly suggested by

the results of my work. This study would need to be accompanied by a more sophisticated parameterization

of luminosity-scaled NFW halo models, and if the shear signal can be augmented by accurate flexion

measurements then powerful new insight into galaxy formation could be gained.

Finally, galaxy-galaxy lensing is not the only cosmological measurement which flexion has the potential

to improve. Cluster mass reconstructions may also see significant benefits (Okura et al. 2007a), but if this

is to be the case then the properties of reduced flexion need tobe correctly accounted for in order to make

mass reconstructions as unbiased as possible (Schneider & Er 2007). Although flexion in the galaxy-galaxy

lensing regime primarily considered in this Thesis is not significantly biased as a result of the sheet-mass

degeneracy, if the utility of flexion is to be extended then this needs to be taken into account. Schneider &

Er (2007) present extremely important first results in this direction, but more work can be done. It seems

that the problem of mutual biases between reduced shear and reduced flexion cannot be solved analytically,

and so it may require a group effort in order for these effectsto be accurately characterized.
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Bergé, J. 2006, Shapelets Manual Volume 1, http://www.astro.caltech.edu/ jberge/shapelets/manual/

Bernstein, G. M., Jarvis, M. 2002, AJ, 123, 583

Bershady, M. A., Jangren, A., Conselice, C. J. 2000, AJ, 119,2645

Bertin, E., Arnouts, S. 1996, A&AS, 117, 393

Bertschinger, E. 1985, ApJS, 58, 39

Binney, J., Tremaine, S. 1987, Galactic dynamics, Princeton, NJ, Princeton University Press, 1987, 747 p.

Blandford, R., Narayan, R. 1986, ApJ, 310, 568

Blumenthal, G. R., Faber, S. M., Flores, R., Primack, J. R. 1986, ApJ, 301, 27

Bolton, A. S., Burles, S., Koopmans, L. V. E., Treu, T., Moustakas, L. A. 2006, ApJ, 638, 703

Bond, J. R., Efstathiou, G. 1984, ApJ, 285, L45
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Macciò, A. V., Dutton, A. A., van den Bosch, F. C., Moore, B.,Potter, D., Stadel, J. 2007, MNRAS, 378,

55



BIBLIOGRAPHY 181
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Taylor, J. E., Albert, J., Bergé, J., Heymans, C., Johnston, D., Kneib, J.-P., Mellier, Y., Mobasher, B.,

Semboloni, E., Shopbell, P., Tasca, L., Van Waerbeke, L. 2007c, ApJS, 172, 239

Massey, R., Rowe, B., Refregier, A., Bacon, D. J., Bergé, J.2007d, MNRAS, 380, 229
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J. A., Peng, C. Y., Rix, H.-W. 2003, ApJ, 587, 143
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Smith, K. M., Zahn, O., Doré, O. 2007, Phys. Rev. D, 76(4), 043510

Soucail, G., Fort, B., Mellier, Y., Picat, J. P. 1987, A&A, 172, L14
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Hogg, D. W., Ivezić,Ž., Knapp, G. R., Lamb, D. Q., Lee, B. C., Lupton, R. H., McKay,T. A., Kunszt,

P., Munn, J. A., O’Connell, L., Peoples, J., Pier, J. R., Richmond, M., Rockosi, C., Schneider, D. P.,

Stoughton, C., Tucker, D. L., vanden Berk, D. E., Yanny, B., York, D. G. 2004, Phys. Rev. D, 69(10),

103501

The Planck Collaboration 2006, ArXiv Astrophysics e-prints:astro-ph/0604069

Tonini, C., Lapi, A., Salucci, P. 2006, ApJ, 649, 591

Treu, T., Koopmans, L. V. E., Bolton, A. S., Burles, S., Moustakas, L. A. 2006, ApJ, 650, 1219

Tyson, J. A., Kochanski, G. P., dell’Antonio, I. P. 1998, ApJ, 498, L107+

Tyson, J. A., Valdes, F., Jarvis, J. F., Mills, Jr., A. P. 1984, ApJ, 281, L59

van Albada, T. S., Bahcall, J. N., Begeman, K., Sancisi, R. 1985, ApJ, 295, 305

van Albada, T. S., Sancisi, R. 1986, Royal Society of London Philosophical Transactions Series A, 320,

447

Van Waerbeke, L., Mellier, Y., Erben, T., Cuillandre, J. C.,Bernardeau, F., Maoli, R., Bertin, E., Mc
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Appendix: Polar Shapelet Results

This Appendix provides details of polar shapelet results which proved too long to justify inclusion in the

main body of the Thesis text.

Flexion in terms of transformations upon thefn,m polar coefficients

In Section 3.2.2 we described the transformations for convergence, shear and flexion in terms of the

polar shapelet ladder operatorsâr, â†r, âl, and â†l (Equations 3.50-3.52, and 3.57-3.60). In Equations

(3.53)-(3.55) we wrote the shear and convergence transformations in equivalent form, in terms of their

action upon the shapelet coefficientsfn,m that describe the shapelet model of the galaxy imageI(θ) =
∑

fn,mPn,m(θ;β). Similar expressions to these may be derived for flexion, expressing the transformations

given in Equations (3.57)-(3.60) in terms of mappings upon thefn,m shapelet coefficients.

Using Equations (3.57) and (3.58), and following simple steps such as shown in Equation (3.13), I found

the following expressions for the action of the first flexion transformation upon the shapelet coefficients

f s
n,m of an unlensed galaxy

(1 + F F̂r) :

f s
n,m → fn,m = f s

n,m

+
Fβ

16
√

2

{

3
√

(n−m)(n+m)(n+m− 2) f s
n−3,m−1

+ (3n−m+ 10)
√

(n+m) f s
n−1,m−1

− (3n+m− 4)
√

(n−m+ 2) f s
n+1,m−1

−3
√

(n+m+ 2)(n−m+ 2)(n−m+ 4) f s
n+3,m−1

}

, (A-1)
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(1 + F∗F̂l) :

f s
n,m → fn,m = f s

n,m

+
F∗β

16
√

2

{

3
√

(n+m)(n−m)(n−m− 2) f s
n−3,m+1

+ (3n+m+ 10)
√

(n−m) f s
n−1,m+1

− (3n−m− 4)
√

(n+m+ 2) f s
n+1,m+1

−3
√

(n−m+ 2)(n+m+ 2)(n+m+ 4) f s
n+3,m+1

}

. (A-2)

In a similar fashion, using Equations (3.59) and (3.60), we can represent the effects of the second flexion

upon unlensedf s
n,m coefficients as follows:

(1 + GĜr) :

f s
n,m → fn,m = f s

n,m

+
Gβ

16
√

2

{

√

(n+m)(n+m− 2)(n+m− 4) f s
n−3,m−3

+
√

(n+m)(n+m− 2)(n−m+ 2) f s
n−1,m−3

−
√

(n+m)(n−m+ 2)(n−m+ 4) f s
n+1,m−3

−
√

(n−m+ 2)(n−m+ 4)(n−m+ 6) f s
n+3,m−3

}

, (A-3)

(1 + G∗Ĝl) :

f s
n,m → fn,m = f s

n,m

+
G∗β

16
√

2

{

√

(n−m)(n−m− 2)(n−m− 4) f s
n−3,m+3

+
√

(n−m)(n−m− 2)(n+m+ 2) f s
n−1,m+3

−
√

(n−m)(n+m+ 2)(n+m+ 4) f s
n+1,m+3

−
√

(n+m+ 2)(n+m+ 4)(n+m+ 6) f s
n+3,m+3

}

. (A-4)

These are the polar shapelet expressions for the flexion transformation given in Massey et al. (2007d).

The susceptibility of generalizedfn,1 and fn,3 flexion estimators

In Section 3.4.3 it was described how flexion estimators could be constructed from anyfn,1 and fn,3

coefficients (for first and second flexion respectively). In order to do this, however, it is necessary to know

exactly how these coefficients respond to the action of flexion, information that can be represented by the

(PF
n )i,j and (PG

n )i,j susceptibility matrices defined by Equation (3.105), whichfor clarity I reproduce

here:

(PF
n )ij =

∂(fn,1)i

∂F j
, (PG

n )ij =
∂(fn,3)i

∂Gj
. (A-5)
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In the expressions above we have represented the complex shapelet coefficientsfn,m in a vectorized form,

defining(fn,m)i = ( Re{fn,m}, Im{fn,m} ).

Since we are constructing estimators of gravitational flexion but may only use the observable (i.e. non

centroid shifting) effects of this distortion, it is necessary that we correct for the gravitational shift. I

therefore used Equations (3.83), (3.84), and Equations (A-1) and (A-2) to find the following expressions

(in a somewhat compactified form) for the first flexion susceptiibilty matrix for a generalizedfn,1 estimator:

(PF
n )11 + i(PF

n )21 =
β

16
√

2

{

3
√
n+ 1

[

(n− 1)(f s
n−3,0 − f s

n+1,0) +

(n+ 3)(f s
n−1,0 − f s

n+3,0)
] (A-6)

+ 3
√

(n− 3)(n− 1)(n+ 1) f s
n−3,2

+ (3n+ 11)
√
n− 1 f s

n−1,2

− (3n− 5)
√
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− 3
√

(n+ 1)(n+ 3)(n+ 5) f s
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+ 2
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(6 + 5εs)
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+ 2
(R2)s

β2
(6 + 5(εs)∗)(

√
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}

(PF
n )22 + i(PF

n )12 =
β
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√
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[

(n− 1)(f s
n−3,0 − f s
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(n+ 3)(f s
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] (A-7)

− 3
√

(n− 3)(n− 1)(n+ 1) f s∗
n−3,2

− (3n+ 11)
√
n− 1 f s∗

n−1,2

+ (3n− 5)
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√
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√
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− 2
(R2)s

β2
(6 − 5εs)

(√
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n+1,2 −
√
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n−1,2

)

}

.

In each expression, the last two lines correspond to the contribution owing to the correction necessary to

account for the first flexion centroid shift.

Similarly, the second flexion susceptibility matrices for thefn,3 estimators may be calculated using Equa-

tions (3.85) and (3.86), and Equations (A-3) and (A-4). These matrices are then found to be given by the
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following expressions:

(PG
n )11 + i(PG

n )21 =
β

16
√

2

{

√

(n− 1)(n+ 1)(n+ 3) ×
(

f s
n−3,0 + f s

n−1,0 − f s
n+1,0 − f s
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) (A-8)

+
√

(n− 7)(n− 5)(n− 3) f s
n−3,6

+
√

(n− 5)(n− 3)(n+ 5) f s
n−1,6

−
√

(n− 3)(n+ 5)(n+ 7) f s
n+1,6

−
√
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}

(PG
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β
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2
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√
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) (A-9)
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+
√
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)
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β2
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(√
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n+1,4 −

√
n− 3f s

n−1,4

)

}

.

As in the case of the first flexion, the final two lines emerge dueto the need to correct for the shift in an

object’s apparent centroid during flexion. Equations (A-6)-(A-9) are the expressions given for the flexion

susceptibility matrices in Massey et al. (2007d).


