

This thesis has been submitted in fulfilment of the requirements for a postgraduate degree

(e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following

terms and conditions of use:

• This work is protected by copyright and other intellectual property rights, which are

retained by the thesis author, unless otherwise stated.

• A copy can be downloaded for personal non-commercial research or study, without

prior permission or charge.

• This thesis cannot be reproduced or quoted extensively from without first obtaining

permission in writing from the author.

• The content must not be changed in any way or sold commercially in any format or

medium without the formal permission of the author.

• When referring to this work, full bibliographic details including the author, title,

awarding institution and date of the thesis must be given.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Archive

https://core.ac.uk/display/429716618?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

High performance simplex solver

Qi Huangfu

Doctor of Philosophy
University of Edinburgh

2013

Abstract

The dual simplex method is frequently the most efficient technique for solving linear program-

ming (LP) problems. This thesis describes an efficient implementation of the sequential dual

simplex method and the design and development of two parallel dual simplex solvers.

In serial, many advanced techniques for the (dual) simplex method are implemented, includ-

ing sparse LU factorization, hyper-sparse linear system solution technique, efficient approaches

to updating LU factors and sophisticated dual simplex pivoting rules. These techniques, some

of which are novel, lead to serial performance which is comparable with the best public domain

dual simplex solver, providing a solid foundation for the simplex parallelization.

During the implementation of the sequential dual simplex solver, the study of classic LU

factor update techniques leads to the development of three novel update variants. One of them

is comparable to the most efficient established approach but is much simpler in terms of im-

plementation, and the other two are specially useful for one of the parallel simplex solvers. In

addition, the study of the dual simplex pivoting rules identifies and motivates further investi-

gation of how hyper-sparsity maybe promoted.

In parallel, two high performance simplex solvers are designed and developed. One approach,

based on a less-known dual pivoting rule called suboptimization, exploits parallelism across

multiple iterations (PAMI). The other, based on the regular dual pivoting rule, exploits purely

single iteration parallelism (SIP). The performance of PAMI is comparable to a world-leading

commercial simplex solver. SIP is frequently complementary to PAMI in achieving speedup

when PAMI results in slowdown.

3

4

Declaration

I declare that this thesis was composed by myself and that the work contained therein is my
own, except where explicitly stated otherwise in the text.

(Qi Huangfu)

5

6

Acknowledgements

I would like to thank my PhD supervisor, Julian Hall for his support and encouragement over

the years. I would also like to thank other staff members in the School of Maths for their help

and conversation, in particular, my second PhD supervisor Jacek Gondzio.

I am grateful to the Format International Ltd. and NAIS for their financial support.

7

8

Contents

Abstract 3

List of Tables 11

List of Figures 13

1 Introduction 15
1.1 Structure of this thesis . 16
1.2 The developing environment . 17
1.3 The reference set of testing LP problems . 17

2 Solving linear systems 19
2.1 Background . 19
2.2 Constructing LU factors . 20

2.2.1 The eta matrix . 20
2.2.2 Gaussian elimination . 21
2.2.3 Pivoting and permutation . 22
2.2.4 Numerical accuracy . 24
2.2.5 Singletons and triangularization . 25
2.2.6 Bump factorization . 25

2.3 Solving with LU factors . 27
2.3.1 Storage of LU factors . 28
2.3.2 Basic solving techniques . 28
2.3.3 Hyper-sparse solving techniques . 30

2.4 Updating LU factors . 32
2.4.1 Product form update . 33
2.4.2 Forrest-Tomlin update . 33
2.4.3 FT update implementation concerning hyper-sparsity 34
2.4.4 Reinversion . 38

2.5 Novel update techniques . 38
2.5.1 Alternate product form update . 38
2.5.2 Middle product form update . 40
2.5.3 Collective Forrest-Tomlin update . 41
2.5.4 Results and analysis . 44

2.6 Summary . 45

3 Sequential simplex methods 47
3.1 Fundamental concepts . 47

3.1.1 LP problem and basic solution . 47
3.1.2 The primal and dual simplex algorithms 48
3.1.3 The tableau and revised simplex methods 50
3.1.4 General LP problems and bound types . 51

3.2 The dual revised simplex method . 52
3.2.1 The standard dual revised simplex algorithm 52
3.2.2 Dual optimality test . 53

9

3.2.3 Dual ratio test . 54
3.2.4 Dual phase I method . 59

3.3 Promoting hyper-sparsity . 60
3.3.1 Observation and motivation . 60
3.3.2 Algorithmic interpretation of cost perturbation 61
3.3.3 Experiments with partial optimality test 63
3.3.4 Experiments with less-infeasibility DSE 65
3.3.5 Discussion and additional results . 66

3.4 Summary . 67

4 Parallel simplex methods 69
4.1 Previous simplex parallelization attempts . 69

4.1.1 Using dense matrix algebra . 69
4.1.2 Using sparse matrix algebra . 70
4.1.3 Other approaches . 74

4.2 Limitation and scope of simplex parallelization 75
4.2.1 Analysis of previous work . 75
4.2.2 Towards a practical simplex parallelization 76

4.3 Exploiting parallelism across multiple iterations 78
4.3.1 Dual simplex variant with multiple chuzr 78
4.3.2 Data parallel price and chuzc . 79
4.3.3 Task parallel btran and ftran . 82
4.3.4 Basis inversion and its update . 84
4.3.5 Major and minor chuzr . 84
4.3.6 Computational results and analysis . 85
4.3.7 Real time behaviour . 88

4.4 Exploiting single iteration parallelism . 89
4.4.1 Data dependency and parallelization scheme 89
4.4.2 Computational results and analysis . 90
4.4.3 Real time behaviour . 91

4.5 Summary . 92

5 Conclusions and future work 93

Bibliography 95

10

List of Tables

1.1 The reference set consisting of 30 LP problems 18

2.1 Demonstration of the numerical accuracy issue, x = 1× 10−7 24
2.2 Initial Markowitz merit (mij) and Tomlin column ordering merit (tj) 26
2.3 Storage scheme for permuted upper factor Ū . 28
2.4 Performance of various simplex update approaches 44

3.1 Description of primal and dual simplex algorithms in a comparative manner . . . 49
3.2 General bound types and dual feasibility condition 52
3.3 Weighted cost perturbation . 59
3.4 Artificial bounds for dual phase 1 subproblem approach 59
3.5 Occurrence of hyper-sparse results when solve pds-20 with/without perturbation 60
3.6 Performance of HSOL when solve pds-20 with/without partial chuzr 64
3.7 LiDSE attractiveness for top attractive candidates identified using DSE 65
3.8 Performance of HSOL when solve pds-20 using LiDSE 66
3.9 Solution time of larger pds problems for hyper-sparsity promotion experiments . 66
3.10 Iteration count of larger pds problems for hyper-sparsity promotion experiments 67
3.11 Performance of generalized LiDSE approach when solve pds problems 67

4.1 Simplex parallelization using dense matrix algebra 70
4.2 Simplex parallelization using sparse matrix algebra 71
4.3 Iteration time and computational components profiling when solving LP prob-

lems with an advanced dual revised simplex method implementation 77
4.4 Experiments with different cutoff merit for controlling candidate quality in PAMI 86
4.5 Performance and speedup of PAMI . 87
4.6 Colours for different components . 88
4.7 Performance and speedup of SIP . 91

11

12

List of Figures

2.1 Singleton column . 25
2.2 Singleton row . 25
2.3 Triangularization result . 25
2.4 Standard ftran with permuted LU factors . 29
2.5 Form row-wise representation for a permuted factor. 30
2.6 DFS based hyper-sparse ftran: search stage . 31
2.7 DFS based hyper-sparse ftran: solve stage . 32
2.8 Forrest-Tomlin update: column spike and elimination 33
2.9 FT update implementation Part 1: Deleting pivotal eta vectors and appending

partial ftran and btran results to U and R respectively. 36
2.10 FT update implementation Part 2: Update the row-wise representation. 37

3.1 Objective improvement associated with BFRT . 57
3.2 Dense btran results statistics when solving pds-20 by dual revised simplex

method with (gray) and without (white) cost perturbation 60
3.3 Identification of flipping variables by BFRT and Harris ratio test 62
3.4 The density and top attractiveness . 63
3.5 Dense btran result when solving pds-20 using the dual revised simplex method

with (gray) and without (white) partial chuzr. 64
3.6 Timing profile of HSOL, Clp and Cplex . 68

4.1 Parallelization scheme of PARSMI . 73
4.2 LP coefficient matrix in block angular form with linking rows on the top 74
4.3 Illustration of Amdahl’s Law . 76
4.4 Well formed LP coefficient matrix, poor load balance if partitioned directly. . . . 80
4.5 The parallel scheme of price and chuzc in PAMI 81
4.6 Task parallel scheme of all ftran operations in PAMI 84
4.7 Elapsed-time profile of PAMI, Clp and Cplex . 87
4.8 PAMI behaviour: watson 2, 20000th major iteration, 7 minor iterations, 275 ms 88
4.9 PAMI behaviour: pds-20, 5800th major iteration, 6 minor iterations, 641 ms . . 89
4.10 SIP data dependency and parallelization scheme 90
4.11 SIP behaviour: dfl001, 10000th iteration, 754 ms, and the same iteration solved

by HSOL, 1144 ms . 92

13

14

Chapter 1

Introduction

Linear programming (LP) has been widely and successfully used in many practical areas since

the introduction of the simplex method in the 1950s. Though an alternative approach, the

interior point method (IPM) has become competitive and popular since the 1980s, the advanced

dual revised simplex method is still frequently the preferred choice for solving LP problems. In

a cover story [16] of one issue of the New Scientist magazine in 2012, the simplex method is

called “the algorithm that runs the world”.

The crucial advantage of the modern simplex method is its ability to directly exploit the

inherent (hyper-)sparsity of LP problems. This ability has been emphasised and enhanced

throughout the development of the (revised) simplex method, especially, by the sparse LU

factorization and the hyper-sparse linear system solution technique. Also importantly, the in-

troduction and application of advanced dual simplex method algorithmic variants, particularly

the dual steepest-edge (DSE) and bound flipping ratio test (BFRT), have promoted the perfor-

mance of the simplex method dramatically since the 1990s. Both of these techniques underpin

the efficiency of modern simplex solvers.

The simplex method has been parallelized many times. Most of the existing parallelizations

are based on the tableau simplex method, using dense matrix algebra. This generally achieves

remarkable (from tens to up to a thousand) speedup, but the overall performance is still inferior

to a good sparsity-exploiting sequential implementation of the revised simplex method. On the

other hand, the simplex parallelization based on the revised simplex method has been considered

relatively little and less successfully in terms of speedup. Nevertheless, it is still worthwhile

since it corresponds to the computationally efficient serial technique. Because of the generally

poor speedup gained with the revised simplex method, it has been considered not suitable for

parallelization.

However, the context for simplex parallelization has changed. Since the introduction of

DSE and BFRT in the 1990s, the preferred simplex variant to use has changed from the primal

simplex algorithm to the dual, but the only published work on the dual simplex parallelization

is due to Bixby and Martin [8]. Although it appeared in the early 2000s, their dual simplex

parallelization neither included the BFRT nor the hyper-sparse linear system solution technique.

In terms of the application scope, in the past (the 1990s), parallelization was aimed at dedicated

high performance computers to achieve the best performance; nowadays, when every desktop

computer is a multi-core machine, any speedup is desirable in terms of solution time reduction

for daily usage. Therefore, the simplex method, especially, the dual revised simplex method

15

deserves renewed parallelization effort.

To achieve a worthwhile simplex parallelization, it should be based on a good sequential

simplex solver. Though there are many public domain simplex implementations, they are

either too complicated to be extended for parallelization or too simple to be based on. Thus, a

sequential dual simplex solver, named HSOL, has been implemented from scratch. It includes

the sparse LU factorization, hyper-sparse linear system solution technique, efficient approaches

to updating LU factors and sophisticated dual revised simplex pivoting rules. These techniques,

some of which are novel, lead to serial performance which is comparable with one of the best

public domain simplex solvers, providing a solid foundation for the parallelization. Then, based

on the sequential solver, two dual simplex parallel solvers are designed and developed.

This thesis reports the implementation experience of the sequential dual simplex method

and the development of the parallel dual simplex solvers.

1.1 Structure of this thesis

This thesis discusses three major topics: the linear system solution techniques in Chapter 2,

the advanced dual simplex method in Chapter 3 and the simplex parallelization in Chapter 4.

For each of these topics, the corresponding chapter firstly gives brief introduction to existing

techniques and then reports novel developments during this research. Chapter 5 summarizes

the contributions of this thesis and provides future work suggestions.

Chapter 2 discusses linear system solution techniques. Solving linear systems is a key com-

putational component of the revised simplex method. Though the basic logic (Gaussian elimi-

nation) is well established, the challenge is how to properly exploit sparsity and hyper-sparsity

to achieve efficiency. During this research, classic techniques including the Suhl and Suhl sparse

LU factorization, the hyper-sparse linear system solution technique and the Forrest-Tomlin LU

factor update procedure are implemented. Details of these techniques are introduced in Sec-

tions 2.2, 2.3 and 2.4 respectively. In particular, a detailed description of the Forrest-Tomlin

update relating to maintaining the ability to exploit hyper-sparsity is provided.

Study and implementation of classic update procedures led to the development of three novel

update techniques. One of these, the middle product form update (MPF), is comparable with

the Forrest-Tomlin update in terms of efficiency, but much simpler for software implementation.

The other two, the alternate product form update (APF) and the collective Forrest-Tomlin

update (CFT) are key components of one of the simplex parallelization framework. Design and

development of these three novel simplex update techniques are reported in Section 2.5.

Chapter 3 introduces the advanced dual simplex method. Sections 3.1 and 3.2 introduce the

basic concepts of the simplex algorithm and the advanced computational components of the

modern dual revised simplex method. Particularly, the implementation of dual steepest-edge

(DSE) algorithm, including an adaption of the hyper-sparse technique for the primal simplex

algorithm, is discussed in Section 3.2.2. A detailed description of the bound-flipping ratio test

(BFRT) and the Harris two-pass ratio test is provided in Section 3.2.3.

As an enhancement to the dual ratio test, cost perturbation is also included in the imple-

mentation. The application of cost perturbation leads to the discovery of a phenomenon called

hyper-sparsity promotion. With cost perturbation, the solution of linear systems during the

simplex iterations became significantly sparser for certain family of LP problems. This phe-

nomenon is thus studied to reveal the underlying reason. The investigation of the phenomenon

16

also leads to two alternate approaches, which promote the hyper-sparsity further. Details are

presented in Section 3.3.

Chapter 4 firstly introduces (in Section 4.1) and analyses (in Section 4.2) existing simplex

parallelization attempts and then describes the design and development of two parallel dual

simplex solvers.

A relatively sophisticated dual parallel solver, called PAMI (parallelism across multiple it-

erations) is documented in Section 4.3. PAMI is based on a less-known dual pivoting strategy

called suboptimization. Suboptimization chooses a bunch of candidates and then works with

them until none is attractive. Though it is inevitable that the suboptimization leads to a gen-

erally worse simplex path, it provides more scope for task parallelism. Details of the PAMI

parallelization framework are reported in Section 4.3. In addition to the design, a pivot can-

didate quality control mechanism is experimented and reported. The performance of PAMI is

comparable with a world-leading commercial dual simplex solver.

A relatively simple dual parallel solver, called SIP (single iteration parallelism), based on the

regular dual pivoting rule (DSE), is described in Section 4.4. Though the achieved performance

in average is worse than PAMI, the SIP is found complementary to PAMI in achieving speedup

when PAMI results in slowdown.

1.2 The developing environment

The development of HSOL was achieved using the C++ programming language, and the par-

allelization was achieved with OpenMP directives.

C++ is chosen for several reasons, particularly, for its straightforward memory manage-

ment, which is especially useful in developing the LU factorization. Also important, using

C++ provides the opportunity of an evolutionary development process, from a proof-of-idea

prototype with simple but less efficient data structures to an efficient elaborated implementa-

tion. OpenMP is chosen partially because the resulting simplex parallelization framework is

based on a memory-sharing model, and partially because of its simple and powerful parallel

directive, especially the task directive introduced in OpenMP version 3.0 in 2008.

A good compiler is important for software performance, especially the performance of the

parallelization part. HSOL is compiled using the Intel C++ Compiler (version 13.0) with

OpenMP 3.1.

The hardware used for the assessing the performance of HSOL and its parallelization is

compute64b of the School of Maths in the University of Edinburgh. It is a workstation with 16

(Intel Xeon E5620, 2.4GHz) cores.

1.3 The reference set of testing LP problems

Throughout this report, a selection of 30 LP problems called the reference set as listed in

Table 1.1, is used for assessing the performance of HSOL and its parallelization.

Most of LP problems in the reference set are taken from a comprehensive list [48] provided

by Mittelmann. Mittelmann’s list is a developing list consisting of various representative LP

problems.

The reference set reflects the wide spread of behaviour of the revised simplex method,

including the dimension of the linear systems (number of rows), the density of LU factors

17

Model #row #col #nnz nnz/col col/row ftran btran
cre-b 9648 72447 256095 3.53 7.51 100 83
dano3mip lp 3202 13873 79655 5.74 4.33 1 6
dbic1 43200 183235 1038761 5.67 4.24 100 83
dcp2 32388 21087 559390 26.53 0.65 100 97
dfl001 6071 12230 35632 2.91 2.01 34 57
fome12 24284 48920 142528 2.91 2.01 45 58
fome13 48568 97840 285056 2.91 2.01 100 98
ken-18 105127 154699 358171 2.32 1.47 100 100
l30 2701 15380 51169 3.33 5.69 10 8
Linf 520c 93326 69004 566193 8.21 0.74 10 11
lp22 2958 13434 65560 4.88 4.54 13 22
maros-r7 3136 9408 144848 15.40 3.00 5 13
mod2 35664 31728 198250 6.25 0.89 46 68
ns1688926 32768 16587 1712128 103.22 0.51 72 100
nug12 3192 8856 38304 4.33 2.77 1 20
pds-40 66844 212859 462128 2.17 3.18 100 98
pds-80 129181 426278 919524 2.16 3.30 100 99
pds-100 156243 505360 1086785 2.15 3.23 100 99
pilot87 2030 4883 73152 14.98 2.41 10 19
qap12 3192 8856 38304 4.33 2.77 2 15
self 960 7364 1148845 156.01 7.67 0 2
sgpf5y6 246077 308634 828070 2.68 1.25 100 100
stat96v4 3174 62212 490473 7.88 19.60 73 31
stormG2-125 66185 157496 418321 2.66 2.38 100 100
stormG2-1000 528185 1259121 3341696 2.65 2.38 100 100
stp3d 159488 204880 662128 3.23 1.28 95 70
truss 1000 8806 27836 3.16 8.81 37 2
watson 1 201155 383927 1052028 2.74 1.91 100 100
watson 2 352013 671861 1841028 2.74 1.91 100 100
world 35510 32734 198793 6.07 0.92 41 61

Table 1.1: The reference set consisting of 30 LP problems

(average number of non-zeros per column), the relative cost of matrix vector multiplication,

(the ratio of number of columns to number of rows) and hyper-sparsity (indicated by the last

two columns). The column headed ftran and btran provides the information (the proportion

of the results of ftran and btran with density less than 10%) concerning the hyper-sparsity

property of each LP problem. According to Hall and McKinnon [32], a solution of a linear

system (ftran or btran) is called hyper-sparse if its sparser than 10%. An LP problem

is called a hyper-sparse model if the occurrence of hyper-sparse results is greater than 60%.

According to this measurement, half of the reference set are hyper-sparse LP problems.

Two established simplex solvers, the commercial solver, Cplex 12.4 [37] and the public

domain solver, Clp 1.14 [10] are used for comparing with HSOL to assess its performance.

18

Chapter 2

Solving linear systems

This chapter introduce classic techniques and novel developments for solving linear systems

in the context of the revised simplex method. Section 2.1 sets the background for the whole

chapter. Sections 2.2, 2.3 and 2.4 briefly review classic LU factorization, solving and updating

techniques. Section 2.5 reports three novel simplex update techniques: two product form update

variants and one Forrest-Tomlin update variant for the parallel simplex method introduced in

Chapter 4. The design and development of the novel simplex update methods have been

submitted as a journal paper [36].

2.1 Background

Solve. Solving linear systems with the basis matrix B in the form of

Bx̂ = x (2.1)

x̂TB = xT (or BTx̂ = x) (2.2)

is a fundamental task in the revised simplex method. The linear systems (2.1) and (2.2) are

called the forward system and the transposed system respectively. In particular, each revised

simplex iteration requires the solution of the forward system

Bâq = aq (2.3)

and the transposed system

êT
pB = eT

p . (2.4)

where aq is qth column of coefficient matrix A and ep is the pth column of the identity matrix.

Inversion. Solving linear systems requires the inverse of the basis matrix B, which is often

represented by LU factors

B = LU, so that B−1 = U−1L−1, (2.5)

where L and U are lower and upper triangular matrices. The procedure to obtain the basis

inverse representation is referred to as invert, basis inversion or simply inversion. It is also

called LU factorization when the basis inverse is represented by LU factors. The LU factoriza-

tion technique is introduced in Section 2.2. Linear system solution techniques with LU factors,

19

especially the hyper-sparse solution technique, are discussed in Section 2.3.

Update. At the end of each simplex iteration, the basis matrix B is updated by replacing

its pth column with the column aq from the coefficient matrix A as

B := B + (aq −Bep)eT
p . (2.6)

Often the basis inverse representation B−1 is updated accordingly until a fresh inverse represen-

tation is needed. The procedure to update the basis inverse representation is normally named

the simplex update. The classic update approaches are discussed in Section 2.4. The design

and development of novel update variants are presented in Section 2.5.

2.2 Constructing LU factors

This section introduces sparse LU factorization techniques for the revised simplex method.

2.2.1 The eta matrix

The eta matrix is the core constituent element of LU factors. It is introduced here alone to

avoid any distraction when talking about detailed LU factorization techniques.

An eta matrix E differs from the identity matrix in only its pth column as

E =



1 η1

. . .
...
ηp
...

. . .

ηm 1

 , (2.7)

where ηp is referred to as the pivotal entry or simply the pivot , and the remaining entries in

the pth pivotal column form the eta vector η, for which the pth entry is zero. The inverse of an

eta matrix is also an eta matrix

E−1 =



1 −η1/ηp
. . .

...
1/ηp

...
. . .

−ηm/ηp 1

 , (2.8)

whose pivot and eta vector are 1/ηp and (−1/ηp)× η respectively. Therefore solving the linear

systems with an eta matrix can be arranged as simple linear algebra operations. Specifically,

the operation to solve the forward system (2.1) and the transposed system (2.2) with E are

given by

eta-ftran (x := E−1x) : xp := xp/ηp and then x := x− xpη (2.9)

and eta-btran (x := E−Tx) : xp := (xp − xTη)/ηp (2.10)

respectively. Because the linear algebra operation is performed in place with the right-hand-side

vector x, the solving operation is called transformation. Obviously, transformation with the eta

20

matrix only requires the pivot ηp and the eta vector η of E, so that in actual implementation,

E−1 is also represented by ηp and η.

Within the context of revised simplex method (as a result of LU factorization and simplex

update), the basis matrix is always expressed as a product of a series of eta matrices so that

B = E1E2 . . . Ek, and its inverse is given by B−1 = E−1
k . . . E−1

2 E−1
1 . Therefore, solving the

forward system (2.1) requires applying all the eta transformations E1 through Ek forwardly

to x as B−1x = E−1
k . . . E−1

2 E−1
1 x, and thus is called forward transform or ftran. Similarly,

solving the transposed system (2.2) is achieved by applying all the eta transformations in the

reverse order and thus is traditionally called backward transform or btran. The elementary

operations given by (2.9) and (2.10) with a single eta matrix are called eta-ftran and eta-

btran respectively.

2.2.2 Gaussian elimination

It is well known that a non-singular m×m square matrix (for example the basis matrix), can

be decomposed into LU factors by m− 1 iterations of Gaussian elimination.

Starting from B(1) = B, at each stage k, the Gaussian elimination works on an active

partition of B(k), where the kth row is used to eliminate the sub-diagonal elements of the kth

column, resulting in B(k+1) with a smaller active partition. The elimination work at each stage

k can be achieved by subtracting row k of B(k) from each row i below with a multiplier eik as

eik =
bik
bkk

. (2.11)

The elimination can also be expressed as an eta matrix Ek, so that EkB
(k) = B(k+1). When

m = 6 and k = 3, the elimination matrix and the active partitions (underlined elements) before

and after elimination can be illustrated as
1

1
1
−e43 1
−e53 1
−e63 1




b11 b12 b13 b14 b15 b16

b22 b23 b24 b25 b26

b33 b34 b35 b36

b43 b44 b45 b46

b53 b54 b55 b56

b63 b64 b65 b66

 =


b11 b12 b13 b14 b15 b16

b22 b23 b24 b25 b26

b33 b34 b35 b36

b44 b45 b46

b54 b55 b56

b64 b65 b66

 .
(2.12)

Repeatedly applying Gaussian elimination to B(k) eventually results in B(m), which is an

upper triangular matrix. This is the factor

U = B(m) = Em−1 . . . E2E1B =


b11 b12 b13 b14 b15 b16

b22 b23 b24 b25 b26

b33 b34 b35 b36

b44 b45 b46

b55 b56

b66

 . (2.13)

As each elimination matrix Ek is an eta matrix, the inverse of Em−1 . . . E2E1 is easily available

21

as the product E−1
1 E−1

2 . . . E−1
m−1, yielding the lower triangular factor

L = E−1
1 E−1

2 . . . E−1
m−1 =


1
e21 1
e31 e32 1
e41 e42 e43 1
e51 e52 e53 e54 1
e61 e62 e63 e64 e65 1

 . (2.14)

Note that each column k of the factor L is the eta vector of the corresponding E−1
k . It is

a feature of the triangular matrix rather than a happy “coincidence”. While the factor L is

constructed by multiplying m− 1 eta matrices, the factor U can also be expressed as a product

of m eta matrices by taking (in reverse order) each diagonal entry ukk as the pivot and the rest

of column uk as the eta vector.

Therefore, the basis matrix is represented by LU factors, which are further expressed as

2m − 1 eta matrices or, for completeness and symmetry, appending an identity matrix as the

last L eta matrix, as 2m eta matrices

B = LU =

m∏
i=1

Li

1∏
i=m

Ui, (2.15)

where eta matrices Li and Ui correspond to the ith column of L and U respectively. During

the Gaussian elimination, Li and Ui are formed at the ith stage by storing sub-diagonal entries

of column i to the eta vector of Li, the diagonal entry as the pivot of Ui and the rest entries to

the eta vector of Ui.

Although the technique to build the LU factors by Gaussian eliminations (LU factorization)

is well established, it needs to be adapted to deal with the sparse structures when applied to

the basis matrix within the simplex method.

2.2.3 Pivoting and permutation

Before discussing more sophisticated LU factorization techniques, it is necessary to introduce

the pivoting and permutation which are fundamental elements of these advanced approaches.

When applying Gaussian elimination to obtain LU factors, if bkk = 0 at stage k, then it can

not be used to eliminate other rows because the multiplier defined as eik = bik/bkk (2.11) can

not be computed. However, if there exists an entry btk from the active partition of column k,

where btk 6= 0, then the regular elimination can be carried out by exchanging the row k and

row t in advance. The work to find a suitable choice for elimination is called pivoting , and the

operations to bring the choice to the pivotal position (position of bkk) is called permutation. On

the other hand, if all entries of the active partition of column are zeros, then the basis matrix

is declared singular and the LU factorization is terminated.

More generally, pivoting is also applied for finding a better choice in terms of numerical

accuracy and sparsity, where the searching may involve the whole active partition and permu-

tation may also applied among basis columns. If the pivoting is only performed row-wise in

the kth column, then it is called partial pivoting ; if the pivoting is applied to the whole active

partition, then it is called complete pivoting . After LU factorization with complete pivoting , by

incorporating all permutations in the original basis matrix B, the formation of LU factors can

22

be expressed as

LU = PBQ, (2.16)

where matrices P and Q represent row-wise and column-wise permutations respectively.

With complete pivoting, solving a system with the basis matrix requires permutation of

the right-hand-side. Considering the fact that P−1 = PT and Q−1 = QT as the feature of a

permutation matrix, by rearranging the LU factorization equation (2.16), it easy to have

B = PTLUQT and B−1 = QU−1L−1P. (2.17)

Therefore, solving linear systems with the basis matrix requires two permutations, before and

after applying regular LU factors.

In practice, the column-wise permutation is often combined with the basis matrix. Within

the context of the simplex method, the basis matrix, as an ordered subset of the coefficient

matrix, is always held as a vector called base, consisting of index of the corresponding coefficient

matrix columns. Thus, applying the column-wise permutation to the basis matrix can be simply

achieved by permuting the base vector with the column-wise matrix Q, so that the permuted

basis matrix B̃ and its inverse can be expressed as

B̃ = BQ = PTLU and B̃−1 = U−1L−1P. (2.18)

Clearly, solving linear systems with the permuted basis matrix B̃ only requires one permutation

on the right-hand-side by row-wise permutation matrix P .

The row-wise permutation P on the right-hand-side can also be avoided. By rearranging the

LU factorization equation (2.16), it is easy to obtain another permuted basis B̄ and its inverse

as

B̄ = BQP = PTLUP and B̄−1 = PTU−1L−1P, (2.19)

where the row-wise permutation P is transferred into another column-wise permutation and

thus combined with the basis matrix by permuting the base vector. This approach may appear

to be awkward at first glance, as solving with B̄ now again requires two permutations, before

and after applying the LU factors. However, further decomposition of the LU factors reveals

the underlying simplicity. The permuted LU factors PTLUP can be expanded by inserting

PPT = I into the middle of eta matrices, yielding

B̄ = PTLUP = PTLPPTUP =

m∏
i=1

(PTLiP)

1∏
i=m

(PTUiP) =

m∏
i=1

L̄i

1∏
i=m

Ūi = L̄Ū , (2.20)

where the permutation matrix P and its transpose are merged into the LU factors by sym-

metrically permuting each eta matrix. The permuted result L̄i = PTLiP and Ūi = PTUiP ,

are also eta matrices. Therefore, solving with the permuted basis matrices B̄ can be achieved

by solving with the permuted factors L̄ and Ū , represented by a product of 2m permuted eta

matrices, without any permutation of the right-hand-side.

Moreover, rather than applying the permutation after the LU factorization, the permuted

eta matrices L̄i and Ūi are naturally formed directly during the LU factorization. It can

be explained by examining the formation of the elimination matrix Ek, which differs from

Lk = E−1
k merely in the sign of the eta vector, following the example given in (2.12). At

stage k = 3, if row 5 was chosen and thus exchanged with row 3, assuming that is the only

23

permutation involved during whole elimination, then the permutation matrix P , the elimination

matrix E3, and the permuted elimination matrix Ē3 = PTE3P can be expressed as

P =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 0 1 0 0
0 0 1 0 0 0
0 0 0 0 0 1

 , E3 =


1

1
1
−e43 1
−e33 1
−e63 1

 , and Ē3 =


1

1
1 −e33

1 −e43

1
−e63 1

 .

Comparing Ē3 with E3, it is easy to find that, while E3 works on the permuted basis matrix,

Ē3 works on the original one by directly eliminating other rows by row 5 without explicit

permutation. Therefore, Ēi (and thus L̄i) can be directly formed if Gaussian elimination is

performed without explicit permutation. The same simplicity is true for the permuted eta

matrix Ūi.

In the future text, for clarity, the true triangular L and U are refereed to as LU factors and

the permuted result L̄ and Ū are called permuted LU factors.

2.2.4 Numerical accuracy

Another major concern when implementing the LU factorization is the numerical accuracy.

In modern computer software, the value of a non-zero entry is always represented by double

precision number, which has approximately 16 significant decimals. The implication of this (16

significant decimals) representation is, as demonstrated in Table 2.1, that when add a large

value (a) to a smaller value (for example, x = 1 × 10−7) and then subtract it, the result (x̄)

becomes a different value. When the difference of the magnitude is less than 13 (a < 1× 106)

the difference between (x̄) and (x) is small. If a has large magnitude, the difference between

(x̄) and (x) becomes significant. The disaster happens with a = 1× 1010, where x̄ = 0.

a x̄ = (x+ a)− a
1× 10−4 1.000000000000× 10−7

1× 10−3 1.000000000001× 10−7

1× 10−2 9.999999999941× 10−8

1× 10−1 1.000000000029× 10−7

1× 100 1.000000000584× 10−7

1× 101 9.999999939225× 10−8

1× 102 9.999999406318× 10−8

1× 103 9.999996564147× 10−8

1× 104 1.000007614493× 10−7

1× 105 1.000007614493× 10−7

1× 106 1.000007614493× 10−7

1× 107 1.005828380585× 10−7

1× 108 1.043081283569× 10−7

1× 109 1.192092895508× 10−7

1× 1010 0

Table 2.1: Demonstration of the numerical accuracy issue, x = 1× 10−7

To address this issue, the customary approach is to keep non-zero values in the system

small. In Gaussian elimination, this is achieved by selecting an entry with larger magnitude

(than umaxi |bik|, where 0 < u ≤ 1) as the pivot to keep multipliers relatively small. This

approach, called threshold pivoting, is also applied in other components of the revised simplex

24

method implementation, for example, the Harris ratio test [33].

2.2.5 Singletons and triangularization

The simplex basis matrix is so sparse that it often contains a column or row which has only

one non-zero entry, which is called a singleton column or singleton row. Following the previous

example in equation (2.12), when m = 6, k = 3, the singleton column and row are illustrated

as Figure 2.1 and 2.2 respectively.
b11 b12 b13 b14 b15 b16

b22 b23 b24 b25 b26

b33 b34 b35 b36

b44 b45 b46

b54 b55 b56

b64 b65 b66


Figure 2.1: Singleton column


b11 b12 b13 b14 b15 b16

b22 b23 b24 b25 b26

b33

b43 b44 b45 b46

b53 b54 b55 b56

b63 b64 b65 b66


Figure 2.2: Singleton row

It is obvious that if a singleton is chosen as pivot, then the corresponding Gaussian elim-

ination is trivial and void because the remaining active partition will not be changed. Also,

pivoting on a singleton and removing it from the active basis partition often creates other sin-

gletons. Therefore, the LU factorization is always started from a triangularization phase, where

all singleton columns and singleton rows are identified and removed.

The result of triangularization is a permuted form of the basis matrix as shown in Figure 2.3.

It consists of a partial upper triangular factor U1 (from singleton columns), a partial lower

triangular factor L1 (from singleton rows) and a remaining active partition B̃. The B̃ is called

bump in this research, and it is also known as kernel or nucleus in other literature. Efficient

factorization of the bump B̃ requires more sophisticated Gaussian elimination techniques, which

will be described in the rest of this section.

U1

L1 B̃

(a) Theoretical (b) Real example (adilttle)

Figure 2.3: Triangularization result

2.2.6 Bump factorization

After triangularization, further LU factorization on the bump B̃ becomes non-trivial. While the

fundamental method has been well defined, the major difficulty is how to arrange the Gaussian

elimination pivoting sequences to exploit sparsity of the basis matrix.

25

Markowitz merit

During LU factorization, a sparser pivotal column and row is preferred because pivoting on it

involves less elimination work. Specially, for the basis matrix with a high percentage of zeros,

a large proportion of the elimination operations insert non-zeros into the active basis partition,

where a created non-zero by elimination is called a fill-in.

To measure the amount of elimination work corresponding to each potential pivot choice,

Markowitz proposed the selection criterion [44] defined as

mij = (ri − 1)(cj − 1), (2.21)

where row count ri and column count cj are counts of non-zero entries of row i and column j of

active basis partition respectively. This merit is often referred as the Markowitz merit by later

researchers. The number mij is the upper limit of fill-ins when entry bij is used as the pivot.

For the bump in Figure 2.3(b), initial Markowitz merit values for each of the non-zero elements

are shown in Table 2.2.

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 c15

3 3 6 6 3 3 2 2 3 4 3 5 4 3 7
r1 2 2 2
r2 2 2 2
r3 2 5 6
r4 4 15 15 12 18
r5 9 40 40 16 16 24 32 24 16 48
r6 2 2 2
r7 2 5 1
r8 4 6 6 3 18
r9 3 10 6 12
r10 2 2 3
r11 3 4 4 6
r12 2 1 4
r13 4 6 6 15 3
r14 7 30 30 12 24 18 12 36
r15 9 40 40 16 16 24 32 24 16 48
tj 7 7 29 28 22 4 2 6 17 19 4 26 24 22 31

Table 2.2: Initial Markowitz merit (mij) and Tomlin column ordering merit (tj)

Practically, maintaining all the merit data and finding the best mij before each elimination

step can be very expensive. Thus, based on the Markowitz merit, many researchers proposed

approximation and more sophisticated implementation of it.

Tomlin’s approach

Tomlin’s approach [57] is an approximation to the Markowitz selection criterion. It starts by

ordering all the bump columns before elimination. Tomlin’s column ordering is based on a

merit count defined as

tj =
∑

{i|b̃ij 6=0}

(ri − 1).

The values of the merit count are also shown in Table 2.2. It can be observed form the table

that the best pivoting positions (b7,7 and b12,7) according to Markowitz merit are also preferable

26

with Tomlin’s column ordering approach (column 7). The column ordering is applied as column

permutations, so that all active basis columns are ordered by increasing Tomlin merit count.

Besides the column-wise ordering and permutation, Tomlin’s approach also provides a row-

wise selection criterion. It is a combined criterion which concerns both sparsity and numerical

accuracy. On the sparsity aspect, a row p with smallest initial row count rp will be chosen. On

the numerical accuracy aspect, a row s with relatively large entry will be chosen by threshold

pivoting. Putting both consideration together gives the row-wise selection criterion

rp = min{rs| |b̃sk| ≥ umax |b̃ik|}, (2.22)

where u ∈ (0, 1] is the relative ratio comparing to the largest entry in column k, which is

normally set to 0.01 or 0.1 as recommend by Tomlin.

Advanced searching techniques

Although Tomlin’s approach provides a practical approximation to the Markowitz merit in

terms of efficiency, it cannot handle the sparsity pattern during elimination, which may eventu-

ally damage its efficiency. To provide a better sparsity oriented approach which also contributes

to inversion speed, Duff [13] and then Suhl and Suhl [55] provided more sophisticated imple-

mentation techniques of the Markowitz’s approach.

The core of Suhl and Suhl’s implementation is an improved searching approach which starts

from a smaller row count ri and column count cj . Intuitively, the smallest merit value mij =

(ri − 1)(cj − 1) comes from a smaller ri or cj . Therefore, the searching can be arranged by

ascending count ri or cj . With this searching arrangement, the smaller mij merit values are

more likely to appear at the beginning, while the larger mij merit values are more likely to

appear at the end. Thus the best of first few choices (for example, the first 4 as suggested by

Suhl and Suhl), if is not, may be quite close to the globally best choice. To assist the advanced

searching approach, Suhl and Suhl further adopted an important data structure, which can be

called the count indexed doubly linked list to help maintaining an count-ordered list of active

partition columns and rows. Besides the searching techniques, the threshold pivoting approach

is also adopted.

Currently, Suhl and Suhl’s approach is widely accepted as the best and default choice when

implementing the revised simplex method, both in commercial software or in the public domain

projects. It is implemented during this research as a solid base of the efficient revised simplex

solver.

2.3 Solving with LU factors

This section introduces the basic and the hyper-sparse linear system solution techniques. The

major consideration and challenge when implementing the ftran and btran operations are

how to properly exploit the inherent sparsity and the hyper-sparsity. Further complexity arises

when permuted LU factors are used.

Exploiting sparsity has been a standard operation since the introduction of the revised

simplex method. When solving with LU factors, exploiting sparsity is generally achieved by

using packed storage (of non-zero entries) of eta matrices. Exploiting hyper-sparsity is a relative

novel development. Efficient implementation of the hyper-sparse ftran and btran requires

27

more sophisticated data structures.

Therefore, although linear system solution techniques can be described in mathematical

notations, it is clearer and move convenient to discuss them by pseudo code. This section

firstly introduces the storage scheme of permuted LU factors and then, base on which, details

the basic and the hyper-sparse solving techniques.

2.3.1 Storage of LU factors

The resulting eta vector of the LU factorization is generally sparse (for example, as the result

of the singletons or small Markowitz merit), thus it is natural to store it in sparse format.

Customarily, the m eta matrices of a factor, are stored in a compact packed format using

several arrays as listed in Table 2.3.

Name Usage

Ustart

Uend

The pair Ustart[i] and Uend[i] store the start and position
after the end in Uindex and Uvalue for the packed storage of Ūi.

Uindex

Uvalue

For each Ustart[i] ≤ k < Uend[i], the pair Uindex[k] and
Uvalue[k] store the index and value of a non-zero entry of the
eta vector associated with Ūi.

Upiv_i

Upiv_x

The pair Upiv_i[i] and Upiv_x[i] store the index and value of
the pivotal entry of eta matrix Ūi.

Ulookup The entry i = Ulookup[p] is the original position in x of pivot p.

Table 2.3: Storage scheme for permuted upper factor Ū

The storage scheme for the permuted lower factor L̄ is similar. The only difference is that

the array Lpiv_i is not required because the pivotal entries of the eta matrix in the lower factor

are “1”.

2.3.2 Basic solving techniques

This subsection introduces basic ftran and btran operations in pseudo code. This uses the

grammar of the C\C++ programming language with the natural numbering of fortran.

Because permuted LU factors are represented as a product of a series of eta matrices, the

ftran and btran operations can be achieved by repeating the elementary eta-ftran (2.9)

and eta-btran (2.10) operations respectively.

By using the packed storage of permuted LU factors introduced in Section 2.3.1, the ftran

operation can be achieved by the pseudo code shown in Figure 2.4.

When the vector x is sparse the eta-ftran operation (2.9) is easily skipped by zero testing

at lines 4 and 12 in Figure 2.4. However, for eta-btran (2.10), the corresponding null operation

occurs when the inner product of x and η in eta-btran operation (2.10) is zero. This is likely

to occur but cannot be identified so easily. However, it is possible to represent the LU factors

28

1 // 1. Solve with the lower factor
2 for (int i = 1; i <= m; i++) {
3 double pivot = x[Lpiv_i[i]];
4 if (pivot != 0)
5 for (int k = Lstart[i]; k < Lend[i]; k++)
6 x[Lindex[k]] += pivot * Lvalue[k];
7 }
8

9 // 2. Solve with the upper factor
10 for (int i = m; i >= 1; i--) {
11 double pivot = x[Upiv_i[i]];
12 if (pivot != 0) {
13 pivot = pivot / Upiv_x[i];
14 x[Upiv_i[i]] = pivot;
15 for (int k = Ustart[i]; k < Uend[i]; k++)
16 x[Uindex[k]] += pivot * Uvalue[k];
17 }
18 }

Figure 2.4: Standard ftran with permuted LU factors

as a product of row eta matrices, each of which is of the form

R =



1

. . .

r1 . . . rp . . . rm
. . .

1


. (2.23)

Thus the transposed system (2.2) may be solved via a sequence of eta-ftran operations (2.9)

using the row-wise representation of the LU factors.

Experience during the implementation shows that the procedure for forming the row-wise

representation for a given permuted factor, although it consists of only about 20 lines of code,

is particularly hard to write correctly. This is because of the underlying complexity associated

with the permuted LU factors.

For a true triangular factor, forming the row-wise representation is straightforward. For the

factor U , it can be achieved by taking each diagonal entry uii and the remaining entries of its

row i as the pivot and row eta vector for the row eta matrix U i, for i = 1, . . . ,m top-down. For

the factor L, the corresponding row-wise decomposition is achieved bottom-up, yielding Li, for

i = m, . . . , 1. Therefore, by using a row-wise representation, the basis matrix is expressed as

B = LU =

1∏
i=m

Li
m∏
i=1

U i, (2.24)

where Li and U i correspond to row i of the lower factor and the upper factor respectively.

For a permuted LU factor, forming the row-wise representation is achieved (theoretically) in

three steps: (1) permuting the permuted factor back to true triangular forms; (2) decomposing

the true triangular factors row-wise; and (3) permuting the decomposed row eta matrix to the

29

permuted form:

Ū = P (U)PT = P

(
m∏
i=1

U i

)
PT =

m∏
i=1

(
PU iPT

)
=

m∏
i=1

Ū i,

where Ū i is a permuted row eta matrix. It can be observed from the formation, that eta matrix

Ūi and row eta matrix Ū i share the same pivot, the diagonal entry uii.

In terms of storage, the row-wise representation is represented as two additional sets of

arrays, with prefix LR and UR for row-wise L̄ and Ū respectively. The pivotal entries, URpiv_i,

URpiv_x and URlookup are identical to that of for the permuted upper factor because the pivotal

entry of Ūi and Ū i are the same. This is also true for the permuted lower factor.

The pseudo code in Figure 2.5 demonstrates how to form the row-wise representation of

the permuted upper factor. The additional vector URcount (initially all zero) counts the non-

zero entries in each row-wise eta matrix. The two permutations, “permuting back” (to the

true triangular) and “permuting to” (the permuted triangular) are achieved by using vectors

Ulookup and Upiv_i respectively.

1 // 1. Counting non-zero entries for each UR eta matrix j
2 for (int i = 1; i <= m; i++) {
3 for (int k = Ustart[i]; k < Uend[i]; k++) {
4 int iRow = Ulookup[Uindex[k]]; // index in the triangular factor
5 URcount[iRow]++;
6 }
7 }
8

9 // 2. Constructing the URstart pointer by accumulation
10 URstart[1] = 1;
11 for (int i = 2; i <= m; i++)
12 URstart[i] = URstart[i - 1] + URcount[i - 1];
13

14 // 3. Filling UR element, URend becomes ready afterwards
15 URend = URstart;
16 for (int i = 1; i <= m; i++) {
17 for (int k = Ustart[i]; k < Uend[i]; k++) {
18 int iRow = Ulookup[Uindex[k]];
19 int iPut = URend[iRow]++;
20 URindex[iPut] = Upiv_i[i]; // index in the permuted factor
21 URvalue[iPut] = Uvalue[k];
22 }
23 }

Figure 2.5: Form row-wise representation for a permuted factor.

2.3.3 Hyper-sparse solving techniques

When solving linear systems with the basis matrix, it has been observed, for example by Hall and

McKinnon [32], that for certain families of LP problems, the solution itself is often extremely

sparse, so that the zero-testing operations in the ftran operation are dominant. To avoid

excessive zero-testing operations, ftran operations can be achieved by explicit exploiting the

sparsity pattern of the factor to skip zero entries of the RHS. The btran operations with

row-wise representation is essentially the same. The advanced ftran operation is called the

hyper-sparse ftran.

There are two major implementation approaches for achieving the hyper-sparse ftran.

30

The one briefly mentioned by Gilbert and Peierls [20] consists of two stages. It starts by

constructing a list of all required eta matrices via depth first search (DFS), and then performs

the ftran operation with the eta matrices on the list only (in reverse order). Note that by

using the two-stage hyper-sparse ftran, the overall ftran operation is also split into two

parts, firstly search-and-solve with the lower factor, and then with the upper factor.

The approach detailed by Hall and McKinnon [32] maintains a list of required eta matrices

and performs the hyper-sparse ftran operations by searching for the “next” eta matrix in the

list. When solving with the lower (upper) factor, the next eta matrix is the one associated

with smallest (largest) index. By merging the two sets of eta matrices L1, L2 . . . , Lm and

Um, . . . , U2, U1, and re-labeling them by E1, E2, . . . , E2m, it is possible to merge these two

situations, as described in the original paper.

Because the detail of the the DFS based hyper-sparse ftran is missing from the original

paper [20], in particular how to solve with permuted factors, it is included in this report for

completeness. Pseudo code for the search and solve stages of the two-stage hyper-sparse ftran

are provided in Figures 2.6 and 2.7 respectively.

1 int listCount = 0; // Number of FTRAN to-do
2 int stackSize = 0; // Usage of the stack (0 means empty)
3 for (int t = 1; t <= Xcount; t++) {
4

5 int i = Hlookup[Xindex[t]]; // ith eta matrix of H
6 int k = Hstart[i]; // the next non-zero position to visit
7

8 if (visited[i] == 0) {
9 visited[i] = 1;

10

11 for (;;) {
12 // Keep searching current ETA until finish
13 if (k < Hend[i]) {
14

15 // Move to a child if it is not yet been visited
16 int child = Hlookup[Hindex[k++]];
17 if (visited[child] == 0) {
18 visited[child] = 1;
19

20 // Store current eta (the father) to stack
21 stack[++stackSize] = i;
22 stack[++stackSize] = k;
23

24 // Start to search the child
25 i = child;
26 k = Hstart[child];
27 }
28 } else {
29 // Put current eta to the FTRAN to-do list
30 list[++listCount] = i;
31

32 // Get another eta (the father) from the stack or quit
33 if (stackSize == 0)
34 break;
35 k = stack[stackSize--];
36 i = stack[stackSize--];
37 }
38 }
39 }
40 }

Figure 2.6: DFS based hyper-sparse ftran: search stage

31

The DFS search stage identifies a topological ordering of the required eta matrices when

solving with one set of eta matrices, where the eta matrices identified in the “deepest” search

are performed last. The DFS search is given in Figure 2.6. The search procedure is identical

for all four sets of eta matrices (L, U, LR, UR), so the prefix H is used to represent on of the

four set of eta matrices. Because exploiting hyper-sparsity involves the non-zero index of the

RHS vector x, it is held in an indexed array format by two vectors Xarray, Xindex and one

scalar Xcount. Xcount is the number of non-zero entries in x (before and after the ftran

operation), Xindex contains the (unordered) index of the non-zero entries of Xarray. After the

search a to-do list is formed so that applying the eta matrices in it in reverse order achieves

the second stage of the hyper-sparse ftran. The number listCount indicates the length of

the list. In additional, the vector visited (initially all zero) is used to mark whether an eta

matrix has been visited, and the stack is used to store the search status with the current eta

matrix before visiting a child.

1 Xcount = 0;
2 for (int t = listCount; t >= 1; t--) {
3 int i = list[t]; // ith eta matrix of H
4 visited[i] = 0;
5

6 int ipivot = Hpiv_i[i];
7 double xpivot = Xarray[ipivot];
8 if (xpivot != 0) {
9 xpivot /= Hpiv_x[i];

10 Xarray[ipivot] = xpivot;
11 Xindex[Xcount++] = ipivot;
12

13 for (int k = Hstart[i]; k < Hend[i]; k++)
14 Xarray[Hindex[k]] -= pivot * Hvalue[k];
15 }
16 }

Figure 2.7: DFS based hyper-sparse ftran: solve stage

After the identification of the to-do list, performing hyper-sparse ftran is a straightfor-

ward task. It is slightly different from the standard ftran operations in that the RHS vector

is maintained in the indexed array form. The hyper-sparse ftran procedure is identical for

all four set of eta matrices (by explicitly using Lpiv_x[i]=1). Using H to represent one of the

four sets of eta matrices, the second stage of hyper-sparse ftran operation can be achieved by

the pseudo code shown in Figure 2.7. During the hyper-sparse ftran operations, the vector

visited is restored to zero (line 4). A zero-test is still performed (line 8) in case of cancellation.

2.4 Updating LU factors

This section introduces existing simplex update methods. The simplex update refers to the

update of the basis matrix and its inverse at the end of every simplex iteration. While the basis

matrix update formula (2.6) is well defined, its inverse representation update is still an active

research area.

32

2.4.1 Product form update

The product form (PF) update rearranges (2.6) so that

B̄ = B + (aq −Bep)eT
p = B

(
I + (âq − ep)eT

p

)
= BE

where E = I + (âq − ep)eT
p is an eta matrix whose vector âq is naturally available as the result

of the forward system (2.3). Applying this k times yields the following representation of the

basis matrix and its inverse.

Bk = B0E1E2 . . . Ek ⇒ B−1
k = E−1

k . . . E−1
2 E−1

1 B−1
0 (2.25)

The original decomposition B0 = L0U0 remains unaltered when the basis matrix changes.

2.4.2 Forrest-Tomlin update

By allowing the decomposition B = LU to be modified, the Forrest-Tomlin (FT) update [18]

generally achieves greater efficiency with respect to sparsity than the PF update. This is done

by working on the following rearrangement of the basis matrix update equation.

B̄ = B + (aq −Bep)eT
p

⇒ L−1B̄ = U + (L−1aq − Uep)eT
p

= U + (ãq − up)eT
p = U ′ (2.26)

Whilst the basis update equation (2.6) replaces column p of basis matrix B by aq in (2.26),

column p of the factor U is replaced by the partial ftran result ãq = L−1aq. As illustrated in

Figure 2.8(a), the replacement yields a spiked upper factor U ′.

p

p

(a) Spiked upper: U ′

p

p

(b) After elimination: Ū

p

p

R−1ãq

(c) Actual implementation

Figure 2.8: Forrest-Tomlin update: column spike and elimination

From U ′, the Forrest-Tomlin update restores triangularity by elimination. Specifically, it

uses other rows to eliminate the off-diagonal entries of row p, yielding a permuted triangular

matrix Ū as shown in Figure 2.8(b).

The elimination process can be represented by a single row transformation R−1, so that

Ū = R−1U ′. Note that this row eta matrix R is a special case of (2.23) since it has pivotal

entry rp = 1 so R and its inverse can be expressed as R = I + epr
T and R−1 = I − eprT

respectively. The computation of the eta vector r was identified by Forrest and Tomlin [18]

as an additional partial btran operation rT = ūT
p U
−1, where ūT

p is row p of U without the

33

diagonal entry upp. It can easily be verified that applying R−1 to U as R−1U = U − epūT
p

modifies only the entries in row p, eliminating all its off-diagonal entries. Since U and U ′ differ

only in their pth column, applying R−1 to U ′ also eliminates its off-diagonal entries in row p.

Meanwhile, applying R−1 to column p of U ′ modifies only the pth entry of the newly inserted

vector ãq which becomes ãpq := ãpq − rTãq. Therefore, applying the row transformation R−1

to U ′ yields the permuted triangular matrix Ū as shown in Figure 2.8(b).

As identified later by Tomlin [58], the additional partial btran operation can be avoided

by forming r from the intermediate result ẽT
p = eT

p U
−1 of the regularly solved transposed

system (2.4). This can be identified by observing that ūT
p = eT

p U − uppeT
p so

rT = ūT
p U
−1 = (eT

p U − uppeT
p)U−1 = eT

p − uppẽT
p . (2.27)

Since its pth entry is zero, it follows that r is given by scaling ẽp by −upp and setting the pth

entry to zero. Thus, if the partial btran result ẽp is stored, it can be assumed that the eta

vector r is available at negligible cost.

Clearly Ū = R−1U ′ is not a triangular matrix, but it can be put into this form via a symmet-

ric cyclic permutation of rows and columns p to m. However, in practice, no permutations are

performed since all that is required is an invertible representation of Ū rather than an explicit

triangular matrix. Within an implementation, triangular matrices in basis matrix decomposi-

tions are represented in product form as sequences of eta vectors, pivotal entries and pivotal

indices. Thus the representation of Ū is obtained by deleting the eta vector corresponding to

column p of U , setting all entries corresponding to row p of U to zero and appending a new eta

vector R−1ãq, pivotal entry ãpq and index p to the sequence, as illustrated in Figure 2.8(c).

Combining B̄ = LU ′ (2.26) and Ū = R−1U ′ yields the following updated representation of

the basis matrix and its inverse.

B̄ = LRŪ and B̄−1 = ŪR−1L−1

Repeating these operations, after k updates, the basis matrix Bk and its inverse can be expressed

as

Bk = LR1R2 . . . RkUk ⇒ B−1
k = U−1

k R−1
k . . . R−1

2 R−1
1 L−1. (2.28)

The essential difference between the FT and PF updates is that the former stores two

partially transformed results ãq and ẽp and deletes one row and one column from the eta file,

whereas the PF update simply stores the final ftran result âq. These deletions and the sparsity

of the partially transformed results relative to âq is such that the FT update frequently has a

significantly lower storage requirement than the PF update. This, in turn, leads to generally

superior performance when the invertible representation based on the FT update is used to solve

linear systems. However, the operations of the FT update require dynamic data structures to

accommodate deletion and insertion, making it significantly more difficult to implement than

the PF update.

2.4.3 FT update implementation concerning hyper-sparsity

After a Forrest-Tomlin update, the upper factor is altered. Therefore, to maintain the ability

to exploit sparsity and hyper-sparsity, it is necessary to update the row-wise representation of

the upper factor and the hyper-sparsity data structures respectively.

34

As demonstrated by the pseudo codes in Figure 2.9 and 2.10, although the FT update when

maintaining hyper-sparsity related data structures can be achieved in about one hundred lines

of code, writing such code correctly and elegantly is particularly hard. This is due to the in-

herent difficulty of implicit permutation and additional complexity associated with maintaining

the row-wise representation, and partially because the detailed implementation technique has

never been documented before. Therefore, this report fills the gap. The procedures listed in

Figure 2.9 include all major operations of the FT update except the updating of the row-wise

representation, which is provided as a standalone code in Figure 2.10. Details of the update

operations are discussed in the remainder of this subsection with reference to the pseudo code.

Steps 1 and 2: checking and looking up. The first two steps in part 1 of the FT

update are simple steps. The first step of part 1 checks the space for filling the partial ftran

(in packed form represented by aq) and btran (in packed form represented by ep) results. The

second step obtains the reference p to the pivotal eta matrix Ūp and row eta matrix Ūp for a

given pivoting index.

The subsequent steps of part 1 deal with the modification to the upper factor and R. The

modification to the upper factor is essentially achieved by three steps: (1) deleting the pivotal

eta matrix Ūp, (2) zeroing the pivotal position for eta matrices Ūi, i > p, and (3) appending a

new eta matrix given by R−1ãq to the end of the permuted upper factor as Ūm+1, yielding a

new set of m eta matrices

Ū =

p+1∏
i=m+1

Ūi

1∏
i=p−1

Ūi.

Step 3: Deleting the pivotal column. The operations to delete Ūp correspond to

the step 3 of the part 1 FT update procedure in Figure 2.9. Deleting Ūp from the column-wise

representation is simply achieved by “marking” rather than actually removing it, for example by

setting Upiv_i[p] = 0. For this reason, it is necessary to add an additional test in the ftran

and hyper-sparse ftran operations to identify and skip the disabled eta matrix. Deleting Ūp

from the row-wise representation involves searching and moving: (1) firstly searching for the

corresponding position of each non-zero entry of Ūp in the associated row-wise eta matrix, and

then (2) moving the last non-zero entry of the row-wise eta matrix to replace the deleted entry,

resulting in shorter packed row eta vector. The search is assisted by visiting via the row index

iRow = Uindex[k] of each non-zero entry in the eta vector of Ūp, where the associated row eta

matrix index is given by Ulookup[iRow].

Step 4: Zeroing out the pivotal row. In the original paper, the operation to zero out

the pivot row entries is described as a series of search-and-move operations on all of the column

eta matrix Ūi, i = p + 1, . . . ,m, because of the lack of a row-wise representation. This can

be an expensive operation when the LP problem is hyper-sparse (the cost is obviously greater

than performing m zero-testing). However, with aid of the row-wise representation, it can be

achieved by considering the column index URindex[k] of each non-zero entry in the row eta

vector of Ūp. The operation is essentially the same as that for deleting Ūp from the row-wise

eta matrices. This is achieved in step 4 of the part 1 FT update procedure. Note that marking

Ūp as disabled is already done by setting Upiv_i[p] = 0, as Ūp and Ūp share the same pivotal

information. It is worth observing that the row-wise representation leads to a reduction in the

cost of searches when updating the column-wise representation.

Step 5: Appending Rãq. Appending the new eta transformation to the upper factor

is achieved in step 5 of the part 1 FT update. It consists of recording the pivotal entry and

35

1 // 1. Initial check of additional storage spaces
2 if (UcountX + aq_npack > UlimitX || RcountX + ep_npack > RlimitX)
3 return NO_SPACE;
4

5 // 2. Obtain pointer to the pivotal column (row) of U (UR)
6 int p = Ulookup[ipivot];
7

8 // 3. Delete the pivotal column of U from U and UR
9 Upiv_i[p] = 0; // Marking as disabled for U

10 for (int k = Ustart[p]; k < Uend[p]; k++) {
11 int i = Ulookup[Uindex[k]];
12 for (int iFind = URstart[i]; iFind < URend[i]; iFind++) {
13 if (URindex[iFind] == ipivot) {
14 URindex[iFind] = URindex[URend[i] - 1];
15 URvalue[iFind] = URvalue[URend[i] - 1];
16 URspace[i]++;
17 URend [i]--;
18 break;
19 }
20 }
21 }
22

23 // 4. Delete the pivotal row of UR from U
24 for (int k = URstart[p]; k < URend[p]; k++) {
25 int i = Ulookup[URindex[k]];
26 for (int iFind = Ustart[i]; iFind < Uend[i]; iFind++) {
27 if (Uindex[iFind] == ipivot) {
28 Uindex[iFind] = Uindex[Uend[i] - 1];
29 Uvalue[iFind] = Uvalue[Uend[i] - 1];
30 Uend[i]--;
31 break;
32 }
33 }
34 }
35

36 // 5. Append partial FTRAN result to U
37 Upiv_i[m + t] = ipivot;
38 Upiv_x[m + t] = Upiv_x[p] * a_pq;
39 Ustart[m + t] = UcountX;
40 for (int k = 0; k < aq_npack; k++)
41 if (aq_ipack[k] != ipivot) {
42 Uindex[UcountX] = aq_ipack[k];
43 Uvalue[UcountX++] = aq_xpack[k];
44 }
45 Uend[m + t] = UcountX;
46

47 // 6. Append partial BTRAN result to R
48 Rpiv_i[t] = ipivot;
49 Rstart[t] = RcountX;
50 for (int k = 1; k <= ep_npack; k++) {
51 if (ep_ipack[k] != ipivot) {
52 Rindex[RcountX] = ep_ipack[k];
53 Rvalue[RcountX++] = ep_xpack[k] * (-Upiv_x[p]); // See equation (2.26)
54 }
55 }
56 Rend[t] = RcountX;
57

58 // 7. Update the lookup table and pivotal pointers for UR
59 Ulookup[ipivot] = m + t;
60 URstart[m + t] = URstart[p];
61 URend [m + t] = URstart[p];
62 URspace[m + t] = URspace[p] + URend[p] - URstart[p];

Figure 2.9: FT update implementation Part 1: Deleting pivotal eta vectors and appending
partial ftran and btran results to U and R respectively.

36

copying the other entries of the partial ftran result ãq as the new eta vector. The pivotal

entry, as indicated in the original paper [18], is available by either computing Rãq or directly

using ūppâpq, where âpq is the pth entry of the final ftran result âq. When copying the partial

ftran result ãq (actually need to copy Rãq, but Rãq and ãq are identical except for the

pivotal entry), the pivotal entry is skipped. Updating the row-wise representation accordingly

is a more complicated operation and thus is described in part 2 (Figure 2.10) of the FT update

standalone.

Step 6: Updating R. As has been identified by Tomlin [58], forming the row eta vector

for the elimination matrix R can be achieved effortlessly by appending a multiple (−ūpp) of the

partial btran result ẽp. This is achieved in step 6 of the part 1 FT update. It is similar to

appending partial ftran results as discussed with reference to step 5. The difference is that

no further operations are required. The elimination matrix R is only held in row-wise form.

Step 7: Storing the pivotal entry. Step 7 of part 1 concludes the major FT update

operations by updating the “lookup” table to refer to the pivotal index of the (m+ t)th column

eta matrix Ūm+t. To keep using the same lookup table for row-wise representation, a row-

wise eta matrix Ūm+t is appended to the row-wise representation. The pivotal entry of Ūm+t is

shared with that of Ūm+t. The row eta vector is initially empty (URstart[m+t] = URend[m+t]).

In terms of storage of the eta vector, it reuse the space of Ūp.

1 for (int k = Ustart[m + t]; k < Uend[m + t]; k++) {
2 // 1. Identify the row eta to insert
3 int i = Ulookup[Uindex[k]];
4

5 // 2. Make space if necessary
6 if (URspace[i] == 0) {
7 // 2.1 Determine new spaces and check memory
8 int count = URend[i] - URstart[i];
9 int space = count * 0.1 + 5;

10 if (URcountX + count + space > URlimitX)
11 return NO_SPACE;
12 // 2.2 Copy the packed storage to the new position
13 for (int j = 0; j < count; i++) {
14 URindex[URcountX + j] = URindex[URstart[i] + j];
15 URvalue[URcountX + j] = URvalue[URstart[i] + j];
16 }
17 // 2.3 Update pointers
18 URstart[i] = URcountX;
19 URend [i] = URcountX + count;
20 URspace[i] = space;
21 URcountX = URcountX + count + space;
22 }
23

24 // 3. Put into the next available space
25 URindex[URend[i]] = ipivot;
26 URvalue[URend[i]] = Uvalue[k];
27 URspace[i]--;
28 URend [i]++;
29 }

Figure 2.10: FT update implementation Part 2: Update the row-wise representation.

Part 2 of the FT update procedure updates the row-wise representation. Mathematically,

it is a simple task. Implementationally, it requires certain memory management to deal with

the filling operation. As shown in Figure 2.10, it is achieved by visiting each non-zero entry of

the new column eta vector, and inserting it into the corresponding row eta vector.

37

2.4.4 Reinversion

After many update operations, solving with the updated basis inverse will inevitably become

slower and thus rebuilding the basis inverse representation is advantageous. However, the LU

factorization is a relatively time-consuming operation compared to the iteration time of the

simplex method. Therefore a balance is required.

Ideally, a reinversion is performed when the accumulated time spent on the update part (t+U)

since last basis inversion, is equals to the time spent on the last basis inversion (tI) t
+
U = tI .

This threshold is deduced by two assumptions: that the average time required by applying

each update eta matrix a constant value (tU), the average time of each invert is also a constant

value, and the time spent on the other operations is not affected by the reinversion interval.

Therefore, the task of determining the best reinversion is simplified to minimizing the overall

time spent on invert and the update part of eta transformations. Assuming that solving an LP

takes n iterations, and the reinversion interval is k, then the accumulated time (since the last

basis reinversion) spent on the update part (t+U) can be expressed as t+U =
∑k

i=0 i× tU ≈
k2

2 tU .

Therefore to minimize the overall time of the invert and the updated part t = n
k × (k2

2 tU + tI)

it requires that t′ = n
2 tU −

ntI
k2 = 0, resulting in the optimal threshold

tI =
k2

2
tU ≈ t+U .

In the implementation, tI is represented by counting the operations involved the inverse

stage, and the accumulated t+U is obtained by counting the accumulated operations on the FT

(or PF) update part since the last reinversion. Of course, determining the optimal reinversion

interval is not possible. However, computational experience shows that overall solution time is

not sensitive to the reversion interval so a coarse model is sufficient.

2.5 Novel update techniques

This section introduces two novel variants of the product form update and an extension of the

Forrest-Tomlin update. Although applicable in general, all are motivated by the requirements

of the high performance implementation introduced in Chapter 4.

2.5.1 Alternate product form update

Although the variants of the product form update set out below are relatively simple, the author

is unaware of them having been described before. This is possibly because, until now, the scope

for them to be useful has not arisen.

The elementary matrix for a general rank-one update

The updates introduced below are based on elementary matrices for rank-one updates which

are more general than the eta matrices of LU factors or the PF and FT updates. This general

elementary matrix can be expressed as

T = I + uvT, (2.29)

38

where u and v are arbitrary compatible vectors. When v = ep, T is an eta matrix E (2.7) and

when u = ep, T is a row-wise eta matrix R (2.23). When T is nonsingular,

T−1 = I − 1

µ
uvT, (2.30)

where µ = 1+vTu. Clearly T and its inverse can be represented by u and v. Although strictly

unnecessary, when operating with T−1 it is also convenient to record the value of µ. Solving

linear systems with T is straightforward, the operations with T−1 for ftran being

T−1x = x− v
Tx

µ
u, (2.31)

and those for btran

xTT−1 = xT − x
Tu

µ
vT. (2.32)

The alternate product form update

Working from the basis update expression (2.6), if B is taken out as a factor on the right then

B̄ = (I + (aq −Bep)êT
p)B = (I + (aq − ap′)ê

T
p)B,

where p′ is the index within A of column p of B. The matrix T = I + (aq − ap′)ê
T
p is in the

general form (2.29) so, using (2.30), the inverse of the updated basis matrix is given by

B̄−1 = B−1(I − 1

µ
(aq − ap′)ê

T
p),

where µ = 1 + êT
p (aq − ap′) = âpq is the pth entry of âq. In contrast to the PF update, which

requires the ftran result âq, the new update formula uses the btran result êp and thus is

called the alternate product form (APF) update. It follows from (2.31) that the operation with

T−1 for ftran is

T−1x : y = êT
p x/µ and then x := x− y(aq − ap′)

and, from (2.32), that the corresponding operation for btran is

xTT−1 : y = xT(aq − ap′)/µ and then xT := xT − yêT
p .

After k APF updates, the basis matrix and its inverse can be expressed as

Bk = TkTk−1 . . . T1B0 ⇒ B−1
k = B−1

0 T−1
1 . . . T−1

k−1T
−1
k .

Note that, in contrast to the PF update, the elementary matrices which constitute the update

are applied before rather than after the LU decomposition of B0 when solving forward systems

with B−1
k .

Discussion.

The relation between the APF and PF updates may be viewed as being analogous to that

between the alternative block LU update (introduced and implemented by Hall [27]) and the

39

Block LU (BLU) update of Eldersveld and Saunders [15]. However, the APF is distinctive since

it avoids the requirement for an invertible representation of a Schur complement. This yields a

significant overhead when large numbers of updates are performed.

Relative to the PF update, trading operations with xp for operations with aq − ap′ makes

the APF update appear unattractive. However, there is minimal additional storage overhead

since aq and ap′ are columns from the coefficient matrix A so may be represented by the indices

q and p′. Hall and McKinnon [32] also identify (classes of) LP problems where it is typical for

âq to be dense but êp to be sparse, in which case the APF update will require significantly

less storage. Performance-wise, unless êp is significantly more sparse than âq, the overhead of

the operations with aq − ap′ is such that using the APF rather than the PF update can be

expected to be less efficient.

Since the cost of using the APF update corresponds to the density of the final btran result

êp, rather than partial results ãq and ẽp that underpin the FT update, it is expected that, like

the PF update, the storage requirement and performance of the APF update will be inferior

to those of the FT update. However, it is shown in Chapter 4 that the APF is particularly

valuable in the context of a high performance parallel scheme for the dual simplex method

since it permits particular multiple ftran operations to be performed as a single ftran. The

number of elementary APF operations that must be performed is similar to the number of

ftran operations. Thus the saving of all but one of these ftrans that is achieved by using

the APF update is not expected to be compromised by the overhead of maintaining or applying

APF updates rather than an alternative scheme.

2.5.2 Middle product form update

The middle product form (MPF) update inserts the updates in product form into the middle

of factors L and U . In detail, the MPF update is derived as follows from the basis update

expression (2.6), assuming that B = LU .

B̄ = LU + (aq −Bep)eT
p

= LU + LL−1(aq −Bep)eT
p U
−1U

= L(I + (ãq − Uep)ẽT
p)U

= L(I + (ãq − up)ẽT
p)U

where ãq = L−1aq and ẽT
p = eT

p U
−1 are partial ftran and btran results respectively, and

up = Uep is the pth column of U . The matrix T = I+(ãq−up)ẽT
p is in the general form (2.29)

so, using (2.30), the inverse of the updated basis matrix is given by

B̄−1 = U−1(I − 1

µ
(ãq − up)ẽT

p)L−1,

where µ = 1+ ẽT
p (ãq−up) = âpq is the pth entry of âq. It follows from (2.31) that the operation

with T−1 for ftran is

T−1x : y = ẽT
p x/µ and then x := x− y(ãq − up)

40

and, from (2.32), that the corresponding operation for btran is

xTT−1 : y = xT(ãq − up)/µ and then xT := xT − yẽT
p .

After k updates, the basis matrix and its inverse can be expressed as

Bk = L0T1T2 . . . TkU0 ⇒ B−1
k = U−1

0 T−1
k . . . T−1

2 T−1
1 L−1

0 .

Discussion. The relation between the MPF and PF updates is analogous to that between

the partitioned LU update (introduced by Gill et al. [21] but not implemented) and the BLU

update of Eldersveld and Saunders [15]. However, like the APF, the MPF is distinctive since

it avoids a Schur complement.

The MPF update is comparable with the FT update since both are based on the partial

ftran result ãq and partial btran result ẽp. However the MPF has no deletion corresponding

to that of the FT update so will have greater storage overhead. In terms of update efficiency, the

MPF update is preferable since it only involves storing operations, whereas the FT update needs

additional deletion and insertion work to update the factor U . In terms of solving efficiency, it

is expected to be preferable to operate with the FT update since it replaces up by ãq and stores

only ẽp as an eta matrix R. Thus solving with the FT update requires only additional simple

eta matrix operations with R, while solving with the MPF requires slightly more complicated

and time-consuming operations with T .

2.5.3 Collective Forrest-Tomlin update

The collective Forrest-Tomlin (CFT) update is designed to perform a set of t Forrest-Tomlin

operations simultaneously to obtain the FT invertible representation of Bk+t directly from that

of Bk. This requirement arises naturally within the dual simplex method with suboptimization.

The dual simplex method with suboptimization

The details of this simplex variant are given Chapter 4. However, it is necessary to set out

some of its data requirements to motivate the collective Forrest-Tomlin update described be-

low. Suboptimization in the dual simplex method requires the vectors êT
p = eT

pB
−1
k for p in a

small subset P of the rows. Iterations of suboptimization then identify t basis changes given

by {(pi, qi)}t−1
i=0, where {pi}t−1

i=0 ⊆ P. When, during the course of suboptimization, the vector

eT
pi
B−1

k+i is required, it is obtained from êpi by a few APF operations. Following the subop-

timization iterations, updating data for the whole LP problem requires the pivotal columns

âqi = B−1
k+iaqi for i = 0, . . . , t − 1, which are also obtained in two steps as âq = B−1

k aq and

then regular PF operations.

The Forrest-Tomlin update after suboptimization

To perform Forrest-Tomlin updates after suboptimization requires

ãqi = R−1
k+i . . . R

−1
k . . . R−1

1 L−1aqi and ẽT
pi

= eT
pi
U−1
k+i, (2.33)

for i = 0, . . . , t − 1, so that the next elimination matrix Rk+i+1 can be constructed using ẽT
pi

and the new column transformation can be formed as R−1
k+i+1ãqi . In the sequential simplex

41

method, they are naturally available as partial results of the routinely solved forward (2.3) and

transposed (2.4) systems. In suboptimization, initialisation of êTp = eTpB
−1
k and the subsequent

computation of âq = B−1
k aq yield only

āqi = R−1
k . . . R−1

1 L−1aqi and ēT
pi

= eT
pi
U−1
k . (2.34)

The challenge, therefore, is to obtain the partial results for the appropriate basis (2.33) from

the partial results (2.34) obtained naturally, for i = 1, . . . , t − 1. The results for i = 0 are

known. The rest of this section will discuss how to achieve this efficiently using simple linear

algebra operations.

Updating the partial ftran results

Updating the partial ftran results āqi to ãqi is a relatively straightforward task. By comparing

the available (2.34) and the required (2.33) results, the updating operation is readily identified

as applying new row eta transformations after Rk,

ãqi = R−1
k+i . . . R

−1
k+2R

−1
k+1āqi ,

where each new row transformation Rk+j , (0 < j ≤ i) is available once ẽpj−1 is computed. Thus

the computation of ãqi is scheduled after the computation of ẽpi−1 , which corresponds to the

latest required row transformation Rk+i.

Updating the partial btran results

Compared to updating the partial ftran results, updating the partial btran results from

ēT
pi

= eT
pi
U−1
k to ẽT

pi
= eT

pi
U−1
k+i

is more complicated because the difference between Uk and Uk+i when i ≥ 1 involves (multiple)

replacements and eliminations. However, by carefully rearranging the replacement and elimi-

nation involved, computation of ẽpi
can still be achieved by simple linear algebra operations.

Their derivation is explored in detail by updating ēp1
to ẽp1

, with reference to the first two

upper factors Uk and Uk+1.

Recall that the Forrest-Tomlin update derives Uk+1 via the following elimination operations

on the spiked matrix U ′k
Uk+1 = R−1

k+1U
′
k, (2.35)

where U ′k = Uk + (ãq0 −Ukep0)eT
p0

. Rearranging U ′k by taking out Uk as a factor on the left, it

follows that

U ′k = Uk + Uk(U−1
k ãq0 − ep0

)eT
p0

= Uk

(
I + (âq0 − ep0)eT

p0

)
= UkEk+1,

where Ek+1 = I+(âq0−ep0
)eT

p0
is the eta matrix used in the PF update (2.25). By substituting

U ′k = UkEk+1 into (2.35), Uk+1 and its inverse can be represented by

Uk+1 = R−1
k+1UkEk+1 and U−1

k+1 = E−1
k+1U

−1
k Rk+1. (2.36)

42

By using this new representation for U−1
k+1, the calculation of ẽp1 can be considered in three

steps applying E−1
k+1, U−1

k and Rk+1 respectively. Using y to represent intermediate results,

starting from y = ep1 , the following three-step process is given by (2.36).

(1) Applying E−1
k+1 updates y by

yT := yTE−1
k+1 = eT

p1
E−1

k+1 =

{
eT
p1

+ µeT
p0

p1 6= p0

αeT
p1

p1 = p0

where α = 1/âp0q0 and µ = −âp1q0/âp0q0 are the pivotal entry and the pth
1 entry of the eta vector

of E−1
k+1. The first situation p1 6= p0 is the common case, which is implied in the suboptimization

framework, as each row in P is used only once. In more general applications, it is possible to

have p1 = p0. However, since this case corresponds to µ = 0 and a scaling of y, it is reasonable

and convenient to omit it from the following analysis.

(2) Applying U−1
k to y gives

yT := yTU−1
k = (eT

p1
+ µeT

p0
)U−1

k = ēT
p1

+ µẽT
p0
.

This expresses y in terms of the available partial btran results ẽp0
and ēp1

, where both are

computed with U−1
k .

(3) Applying Rk+1 to y completes the process, giving the required partial btran result ẽp1

thus.

ẽT
p1

= yTRk+1 = ēT
p1
Rk+1 + µẽT

p0
Rk+1 (2.37)

When transposed as RT
k+1ēp1

, calculation of the first term in (2.37) is seen to be a standard

ftran operation (2.9) which adds a multiple [ēp1
]p0

of rk+1 to ēp1
so

ēT
p1
Rk+1 = ēT

p1
+ [ēp1

]p0
rT
k+1. (2.38)

As for the second term in (2.37), by substituting for Rk+1 using (2.23) and rk+1 using (2.27),

µẽT
p0
Rk+1 = µẽT

p0
(I + ep0

rT
k+1)

= µẽT
p0

+ µ(eT
p0
− up0p0 ẽ

T
p0

)/up0p0

=
µ

up0p0

eT
p0

(2.39)

so the second term in (2.37) is seen as adding the scalar value µ/up0p0 to yp0 . Substituting (2.38)

and (2.39) for the two terms in (2.37) yields the following update formula.

ẽT
p1

= ēT
p1

+ [ēp1
]p0
rT
k+1 +

µ

up0p0

eT
p0

(2.40)

In practice, to obtain µ = −âp1q0/âp0q0 requires only one inner product, âp1q0 = ēT
p1
ãq0 , since

âp0q0 is available as the simplex pivotal entry. Thus updating the partial btran result from

ēp1 to ẽp1 involves only one vector addition and the evaluation of one inner product.

The partial btran result ēT
p2

= eT
p2
U−1
k corresponding to the third pivot choice, can be

updated in two steps, firstly to eT
p2
U−1
k+1 by using (2.40), and then to eT

p2
U−1
k+2 by repeating the

same operations with partial results ẽp1
and ãq1 . Using this stepwise updating procedure for

i = 1, . . . , t− 1, the partial btran result ēpi
corresponding to the (i+ 1)st pivot choice can be

43

updated to the required form ẽpi in i steps of the form (2.40). Note that to apply (2.40) requires

the previous partial ftran results ãpj for j = 0, . . . , i−1. Thus the updating of ēpi is scheduled

after the computation of last required partial ftran result ãqi−1 . Therefore, together with the

data requirement of operations with ãi discussed previously, the calculation for updating the

two types of partial transformed results is interlaced as the sequence ãq1 , ẽp1 , ãq2 , ẽp2 , etc.

2.5.4 Results and analysis

The serial efficiency of the novel updates is assessed in this section using the reference set.

Numerical results are presented in Table 2.4.

Model Fill-in ftran btran PF APF MPF FT CFT
cre-b 1.01 100 83 0.4 1.0 0.5 0.5 0.3
dano3mip lp 1.42 1 6 25.1 26.8 11.1 7.9 7.1
dbic1 1.01 100 83 21.4 39.6 10.5 9.0 7.5
dcp2 1.02 100 97 13.6 7.4 6.4 2.9 2.9
dfl001 1.28 34 57 11.6 15.8 5.3 4.0 3.6
fome12 1.29 45 58 81.7 124.7 40.1 27.7 25.9
fome13 1.30 100 98 218.7 352.4 108.1 67.4 60.3
ken-18 1.00 100 100 9.6 10.0 4.2 2.3 2.3
l30 2.06 10 8 6.9 6.6 2.8 2.1 2.1
Linf 520c 2.04 10 11 17665.1 11516.2 3354.9 1304.3 1272.0
lp22 1.82 13 22 12.8 12.6 7.1 5.0 4.6
maros-r7 2.00 5 13 7.5 5.4 5.7 3.6 3.5
mod2 1.03 46 68 69.4 57.4 19.0 16.1 13.8
ns1688926 1.00 72 100 41.5 8.7 9.3 9.0 8.8
nug12 3.86 1 20 120.5 126.1 58.0 32.7 31.3
pds-40 1.01 100 98 17.0 34.2 8.6 5.9 5.5
pds-80 1.01 100 99 39.0 106.1 20.9 12.5 11.7
pds-100 1.00 100 99 47.8 147.2 26.4 15.5 14.5
pilot87 2.03 10 19 4.2 4.2 2.9 1.8 1.7
qap12 4.13 2 15 151.1 167.3 74.3 41.8 39.8
self 1.68 0 2 5.2 6.2 5.1 4.2 4.2
sgpf5y6 1.00 100 100 25.0 20.4 11.5 5.2 6.0
stat96v4 1.25 73 31 15.7 28.9 9.0 6.9 6.4
stormG2-125 1.00 100 100 5.2 2.1 1.8 0.9 1.1
stormG2-1000 1.00 100 100 361.0 53.9 60.5 29.3 28.6
stp3d 1.04 95 70 421.1 801.5 124.2 124.5 101.9
truss 1.37 37 2 1.5 2.4 0.9 0.7 0.8
watson 1 1.00 100 100 31.1 15.9 11.2 4.1 4.7
watson 2 1.00 100 100 45.9 17.2 14.9 4.9 6.5
world 1.04 41 61 82.4 72.5 22.7 19.3 16.4

Table 2.4: Performance of various simplex update approaches

Of particular relevance to the experiments discussed below is the average relative size of the

matrix B0 and its invertible representation, given in the column of Table 2.4 headed “Fill-in”,

and the proportion of the results of ftran and btran with density less than 10%, given in the

corresponding columns of Table 2.4. Hall and McKinnon [32] introduced this measure of an LP

problem’s hyper-sparsity and discuss reasons for the extreme variance between these values for

some problems. Unsurprisingly there is clear correlation between the fill-in during invert and

the measures of hyper-sparsity.

Experiments with the PF, APF, MPF, FT and CFT updates were performed using the

44

same sequence of basis changes from a “logical” basis B = I to an optimal solution of the

LP. This eliminates variance in the results due to the fact that a change in update technique

typically leads to the simplex method taking a different path to an optimal solution. The same

reinversion interval determined using FT update was also used for all experiments with a given

problem. This facilitates some comparisons between methods and ensures that the FT update

is not disfavoured.

The principal measure of the efficiency of a particular update procedure is the total CPU

time to perform the update and then perform ftran and btran for each basis in the sequence.

This is given in the columns headed PF, APF, MPF, FT and CFT in Table 2.4 where, for each

LP problem, the best performance of the three product form updates is highlighted in bold.

The superiority of the MPF update over the PF and APF updates is clear: it is the best for

26 of the 30 problems. Of the other four problems, the APF update is the best for 3 problems

and in all of these cases the proportion of sparse btran results is at least that of ftran.

However, on 15 of the 30 problems the APF update is the worst, with the PF update being the

worst for the others. A further measure of the superiority of the MPF update is obtained by

considering the CPU time relative to the better of the CPU time for the PF and APF updates.

The geometric mean of this ratio shows the use of the MPF update to be 42% more efficient.

The FT update is better than the best of the product form updates for 27 of the problems

and, in average, is 63% more efficient than the better of the PF and APF updates. However,

the FT update is only 35% more efficient than the MPF update. Thus the efficiency of the

MPF update is rather closer to that of the FT update than it is to the other product form

updates.

The performance when using the collective FT update (CFT) is very similar to that when

using the standard FT update for most of these instances. This demonstrates that the CFT

update incurs no significant overhead. The occasional difference between the FT and CFT for

some LP problems is actually because of the different arrangement of linear systems solution

for CFT. When testing with CFT, up to eight ftran (and btran) operations are performed

continuously with the same basis inverse representation. This possibly affects data affinity (the

same basis inverse representation is reused up to seven times) and thus leads to the difference.

Although the deletion and insertion operations of the FT update result in a CPU overhead

that is not shared with the product form updates, the overall computational efficiency when

using the FT update rather than the MPF or the best of the product form updates is greater

than the storage efficiency. This is due to the fact that hyper-sparsity may be exploited fully

when using the FT update, but only when operating with B−1
0 in the case of the APF and

MPF updates.

2.6 Summary

This chapter has introduced the implementation of linear system solution techniques and de-

scribed three novel update procedures.

Two of novel update techniques are variants of the product form and one is an extension of

the Forrest-Tomlin (FT) update. Of the two product form variants, the middle product form

(MPF) update is generally much more efficient than the alternate product form (APF) update.

The APF is very inefficient for some problems and is not recommended as a valuable general

technique. However, its limited use in a variant of the dual revised simplex method that is

45

amenable to parallelization yields a valuable computational saving. The performance of the

MPF is generally very much better than that of the APF and original product form update.

Indeed, its performance frequently approaches that of the FT update. Since the MPF update

does not require any elimination operations or dynamic data structures it is very much easier to

implement than the FT update so is an attractive update procedure when developing a simple,

relatively efficient implementation of the revised simplex method.

The collective Forrest-Tomlin (CFT) update organises the calculations required to perform

multiple FT updates with the same efficiency as the corresponding sequence of standard FT

updates. This ensures that there is no loss of serial efficiency when the CFT is used in the

context of the dual revised simplex method with suboptimization.

46

Chapter 3

Sequential simplex methods

This chapter presents implementation experiences of a sequential dual revised simplex solver.

Section 3.1 introduces several fundamental concepts. Section 3.2 describes the computational

components of a dual revised simplex method, mainly the advanced pivoting rules. Section 3.3

firstly analyses the relation between performance improvement and usage of cost perturbation,

and then based on which, discusses two experimental alternative approaches. The overall

performance of the resulting dual simplex implementation is comparable to the dual simplex

solver of Clp, providing a solid foundation for the paralleization.

3.1 Fundamental concepts

This section introduces several fundamental concepts of linear programming and the simplex

method algorithm for advanced discussion.

3.1.1 LP problem and basic solution

A linear programming (LP) problem in standard form aims to optimize (minimize) a linear

objective function of n non negative variables with a set of m ≤ n linear constraints

minimize c1x1 + c2x2 + . . .+ cnxn

subject to a11x1 + a12x2 + . . .+ a1nxn = b1

a21x1 + a22x2 + . . .+ a2nxn = b2
...

...
...

...
...

am1x1 + am2x2 + . . .+ amnxn = bm

and x1 ≥ 0, x2 ≥ 0, . . . , xn ≥ 0.

In matrix notation, the standard form is simplified as

minimize f = cTx, subject to Ax = b and x ≥ 0, (3.1)

where the matrix A ∈ Rm×n is called the coefficient matrix, vectors c ∈ Rn, b ∈ Rm and x ∈ Rn

are called the cost vector, right-hand-side (RHS) vector and variable vector respectively.

LP solution. Any vector x which satisfies the linear equation constraint set Ax = b is

called a solution to the LP problem. If it also satisfies the non negativity requirement x ≥ 0,

47

then the solution vector x becomes a feasible solution. The goal of linear programming is to

search for a feasible solution which minimizes the objective function f = cTx. When such a

feasible solution is obtained, the LP problem is said to have been solved to optimality and the

associated feasible solution is called an optimal solution.

Basic solution. Assuming that the coefficient matrix A is of full rank, then it is always

possible to identify a non singular basis partition B ∈ Rm×m which consists of m linearly

independent columns of A. The remaining columns of A are called the non basic partition,

denoted by N . By partitioning x accordingly, the linear equation constraint set Ax = b can be

expressed as BxB +NxN = b. Because B is non singular (and therefore invertible), it can be

further rewritten as

xB = B−1b−B−1NxN , (3.2)

where the values of basic variables xB are computed using the values of nonbasic variables

xN . When nonbasic variables are set to their bounds as xN = 0, then the basic variables are

computed by xB = b̂ = B−1b. The solution given by setting each nonbasic variable to its bound

and computing the basic variables by equation (3.2) is called a basic solution. It is obvious that

the nonbasic variables xN satisfy their bounds in a basic solution. If all the computed basic

variables also satisfy xB = b̂ ≥ 0, then the basic solution is called a basic feasible solution or

BFS for short. It can be proved that, the optimal solution of an LP problem is either a BFS or

linear combination of many such solutions with the same objective value.

Reduced cost. By replacing basic variables by (3.2) in the partitioned objective function

f = cT
BxB + cT

NxN , it follows that

f = cT
BB
−1b+ (cT

N − cT
BB
−1N)xN = cT

BB
−1b+ ĉT

NxN ,

where the vector

ĉT
N = cT

N − cT
BB
−1N (3.3)

is called relative cost factor or reduced cost . Each ĉj represents the per unit change of the

objective function when increasing the corresponding nonbasic variable xj .

3.1.2 The primal and dual simplex algorithms

The simplex algorithm always starts with a BFS, keeps moving from one BFS to a more prof-

itable BFS, until the LP is solved to optimality or proved unbounded. Assuming that an initial

BFS is available, each iteration of the simplex algorithm can be described as three major steps

1. Optimality test. Scan the reduced costs of nonbasic variables and choose variable q with

ĉq < 0, so that the objective function will decrease when increasing the corresponding

variable xq. Often the one associated with the most negative reduced cost is chosen by

q = arg min
j∈N

ĉj .

If no such variable exists, then the simplex algorithm terminates and declares the LP

problem solved to optimality with the current BFS.

48

2. Ratio test. By increasing xq from its zero bound, variable q is no longer a qualified nonbasic

variable. It will become a basic variable at the end of the current simplex iteration, and

thus it is called an entering variable. Meanwhile, because of the increase of xq, the basic

variables xB are changed by ∆xB = −∆xqB
−1aq. By increasing ∆xq, one of the basic

variables, xp will be zeroed first. It will become a nonbasic variable at the end of the

current simplex iteration, and thus it is often called a leaving variable. Mathematically,

the leaving variable xp is identified by a ratio test between xB and âq = B−1aq by

choosing the smallest non negative ratio

p = arg min
i

(b̂i/âiq), âiq > 0.

If no leaving variable is identified, then the increase of the entering variable xq is unlimited,

so that simplex algorithm terminates and declares the LP problem unbounded. On the

other hand, if the computed basic variable xp = 0, then increase of xq is limited to zero,

and no objective improvement can be made from the current simplex iteration. This

situation is call degeneracy.

3. Update BFS. After the entering variable xq and the leaving variable xp are both identified,

xq will replace xp from the basic partition to yield a new BFS. The new BFS and old BFS

are called neighbouring BFS to each other. Unless the smallest ratio θp = b̂p/âpq = 0, the

objective function associated with the new BFS will strictly decrease by ∆f = ĉq × θp.

After the update, the simplex algorithm continues from step 1 with the new BFS.

The logic of the simplex algorithm can be summarized as continuously identifying and in-

creasing a nonbasic variable associated with a negative reduced cost while maintaining the

feasibility of basic variables, until the LP problem is solved to optimality or found to be un-

bounded.

Alternately, the optimal solution can be achieved by starting from all non negative reduced

cost ĉN ≥ 0, and then in each iteration, identifying and increasing the value of a negative

(infeasible) basic variable xi < 0 to its bound, while maintaining non negativity of the nonbasic

reduced costs, until all basic variables satisfy xB ≥ 0. Because the relation ĉN ≥ 0 is always

maintained, when xB ≥ 0 is also satisfied, then the LP is solved to optimality. The alternate

algorithm, called the dual simplex algorithm, is firstly developed by Lemke [41] in 1950s. The

original simplex algorithm is called the primal simplex algorithm. The computational steps of

the dual simplex iteration can be introduced in a comparative manner as provided in Table 3.1.

Primal simplex algorithm Dual simplex algorithm

Starting BFS Primal BFS xB = b̂ ≥ 0 Dual BFS ĉN ≥ 0

Optimality test Choose q = arg minj ĉj < 0
as entering variable,
or declare optimal

Choose p = arg mini b̂i < 0
as leaving variable,
or declare optimal

Ratio test Choose p = arg mini b̂i/âiq,
where âiq > 0 as leaving variable

with θp = b̂p/âpq ≥ 0,
or declare unbounded

Choose q = arg minj ĉj/(−âpj),
where âpj < 0 as entering variable
with θd = ĉq/âpq ≤ 0,
or declare dual unbounded

Updating Replace xp by xq
Obtain new BFS
f := f + ĉq × θp decreases

Replace xp by xq
Obtain new dual BFS
f := f + θd × b̂p increases

Table 3.1: Description of primal and dual simplex algorithms in a comparative manner

49

In the dual simplex algorithm, a nonbasic variable associated with a non negative (non

profitable) reduced cost is called a dual feasible variable. For a basic solution, if all the nonbasic

variables are dual feasible (ĉN ≥ 0), then the basic solution is called a dual basic feasible

solution, or dual BFS for short. The condition ĉN ≥ 0 is referred to as dual feasibility.

In summary, the primal simplex algorithm seeks dual feasibility (ĉN ≥ 0) while maintaining

primal feasibility (xB ≥ 0); the dual simplex algorithm seeks primal feasibility (xB ≥ 0) while

maintaining dual feasibility (ĉN ≥ 0).

3.1.3 The tableau and revised simplex methods

So far it is assumed that, a BFS or dual BFS is available before the start of primal or dual

simplex algorithm. Practically, this assumption is not always true, so that it is necessary to

find a BFS or dual BFS before the start of the simplex algorithm. It is well known that the

simplex algorithm itself can be applied to find a BFS by solving a simpler artificial problem

or subproblem based on the original LP problem. Finding a starting BFS and obtaining an

optimal BFS by using the simplex algorithm are called the phase I and phase II of the simplex

method.

In terms of simplex method implementation, there are two major choices, namely the tableau

simplex method and the revised simplex method.

The tableau simplex method

The tableau simplex method works by maintaining the RHS vector b̂, reduced cost ĉT
N and

updated coefficient matrix Â = B−1[B|N] = [I|N̂], in a table called the tableau

ĉT
N

I N̂ b̂

In the tableau, the basic variables are permuted to the first m positions. If the value of a basic

variable is computed by the ith equation of the tableau, then it is permuted to the ith position.

In the actual implementation, this permutation is often performed implicitly by maintaining a

base vector, consisting of the ordered index of corresponding coefficient matrix columns. With

the tableau, current values of b̂, ĉT
N and each updated row are available directly, and thus the

optimality test and ratio test requires no additional computation. As choosing the entering

and leaving variables correspond to choosing a column and a row of the tableau, they are

traditionally called chuzc and chuzr respectively.

In the updating step of each simplex iteration, the whole tableau is updated by Gaussian

elimination by using the pivotal row (âT
p) to transform the pivotal column âq to a unit column

ep (column p of identity matrix) and update the other columns. Then the two columns p and

q are swapped to form a new tableau to finish the update. In particular, the reduced costs and

the basic variables are updated by

xB := xB − θpâq and xp = θp (3.4)

and

ĉ := ĉ− θdâp, (3.5)

respectively, where θp = b̂p/âpq and θd = ĉq/âpq are primal and dual steps.

50

The revised simplex method

The revised simplex method is computationally preferable. In the revised simplex method,

rather than maintaining the whole updated coefficient matrix Â = [I|N̂], an inverse (represen-

tation) of the basis matrix, B−1 is maintained, so that the whole updated coefficient matrix is

available as Â = B−1A. In particular, the updated pivotal column required by the ratio test

âq = B−1aq is computed by ftran operation and the vector of basic variables xB is often

maintained and updated by using âq (3.4) at the end of the current iteration.

As for obtaining the reduced cost ĉ, there are two approaches. The relatively old-fashioned

approach computes the reduced cost according its definition

πT = cT
BB
−1 and ĉT

N = cT
N − πTN (3.6)

where the two computations are known as btran and price respectively. In the implementa-

tion, chuzc can be combined seamlessly with price, where these two procedures are together

called pricing.

The modern approach maintains and updates the reduced cost by using the tableau row âp

as in (3.5). The computation of âp is also achieved in the two steps

êT
p = eT

pB
−1 and âT

p = êT
pA (3.7)

The matrix-vector multiplication in this approach is also referred to as price.

The modern approach is preferred partially because the linear system and matrix-vector

multiplication involved in (3.7) are generally sparser that in (3.6), and partially because in the

advanced variant of the revised simplex method, êT
p and âT

p are also used by other computational

components.

3.1.4 General LP problems and bound types

In real-world applications, LP problems are often provided in a general form

minimize f = cTx, subject to bL ≤ Āx ≤ bU and l ≤ x ≤ u, (3.8)

where the bL and bU are called ranges of constraints and l and u are called bounds of variables

respectively. Although it is possible to transform a general form LP to standard form (3.1) to

use the regular primal or dual simplex algorithm, it is more convenient and efficient to solve

the LP with a so called computational form by advanced simplex algorithm variants.

The computational form for an LP is obtained by augmenting Ā by an m × m identity

matrix and m logical variables z, yielding

minimize f = cTx, subject to [Ā|I](x, z) = 0 and (l,−bU) ≤ (x, z) ≤ (u,−bL), (3.9)

where the ranges of constraints are transformed to the bounds of logical variables. Within

the augmented matrix, the original coefficient matrix Ā and variables x are called structural

matrix and structural variables respectively, the identity matrix is called the logical matrix. The

usage of logical variables also provide a simple starting basic solution, (not necessarily a BFS),

because the associated identity matrix, when used as basis matrix, is effortlessly invertible.

Using the identity matrix as the starting basis matrix is a customary approach, called logical

51

starting basis in the revised simplex implementation.

By combining structural and logical parts, the computational form can be simplified as

minimize f = cTx, subject to Ax = 0 and l ≤ x ≤ u, (3.10)

where A contains an identity partition (at its end) and the last m entries of the cost vector are

all zeros.

For the computational form (3.10), there are five types of bounds for each variable as

summarized in Table 3.2. For basic variables, the primal feasibility condition is naturally

changed to xi satisfying li ≤ xi ≤ ui. Therefore, a FREE variable would never become a leaving

variable as it cannot be chosen in primal ratio test. For nonbasic variables, the dual feasibility

condition is more complicated and depended on the bound type as indicated in Table 3.2. The

underlying logic of dual feasibility is still the same: that a nonbasic variable is dual infeasible

if moving the variable xj away from its bound will decrease the objective function. Therefore,

a nonbasic FIXED variable is always dual feasible because it cannot be moved.

Names Variable bound Dual feasibility
FIXED −∞ < l = u <∞ Always feasible
LOWER −∞ < l < u =∞ ĉ ≥ 0
UPPER −∞ = l < u <∞ ĉ ≤ 0
BOXED −∞ < l < u <∞ ĉ ≥ 0 if x = l, ĉ ≤ 0 if x = u.
FREE −∞ = l < u =∞ ĉ = 0

Table 3.2: General bound types and dual feasibility condition

3.2 The dual revised simplex method

This section introduces the implementation of an advanced dual revised simplex method variant,

including the dual steepest-edge algorithm, bound flipping ratio test and dual phase I method.

3.2.1 The standard dual revised simplex algorithm

The dual simplex algorithm, though first introduced in the 1950s by Lemke [41], was not

seriously considered as a superior approach until the mid-1990s, when dedicated pivoting tech-

niques for the dual simplex method appeared. Since then, the dual simplex solver has gradually

become a popular choice for solving large scale LP problems.

Assuming a dual BFS is available, the computational components of the standard dual

revised simplex algorithm can be summarised as six steps

1. chuzr: Choose a infeasible basic variable p as leaving variable, or declare optimality.

2. btran: Compute êT
p = eT

pB
−1

3. price: Compute âT
p = êT

pN

4. chuzc: Perform a dual ratio test (between ĉN and âp) to choose the entering variable q,

or declare unboundedness.

5. ftran: Compute âq = B−1aq

6. update: Update xB by âq (update-primal), ĉN by âp (update-dual). Update the

basis inverse representation (update-factor), or reinversion if necessary (invert).

52

Of all these components, btran, ftran, update-factor and invert are linear system

solution techniques and efficient implementation of these operations has been introduced in

detail in Chapter 2. Update of basic variables (update-primal) and reduced cost (update-

dual) are simple vector additions given by (3.4) and (3.5) and thus are not discussed.

The pivoting steps chuzr and chuzc and their advanced variants are the key components of

the dual revised simplex algorithm. They are described in Sections 3.2.2 and 3.2.3 respectively.

3.2.2 Dual optimality test

Each dual simplex iteration starts from choosing a primal infeasible variable as leaving variable.

A simple approach is to choose the one associated with the biggest primal infeasibility ∆xi

defined as

p = arg max
i

∆xi, ∆xi =


li − xi xi < li − εp
xi − ui xi > ui + εp

0 otherwise

,

where the εp is a small value called the optimality tolerance or, more often, the primal tolerance.

The primal tolerance is applied to relax the bounds of primal variables to exclude small inaccu-

racies during the computation of the basic variables. Practically, if all primal basic variables are

feasible within the relaxed bounds, then the problem is solved to optimality. Common choices

of primal tolerance are εp = 10−6 or εp = 10−7.

Dual steepest-edge algorithm

The dual chuzr is more efficiently achieved by a normalized selection. The best known normal-

ized scheme for the dual revised simplex method is the dual steepest edge (DSE) [17] algorithm.

In DSE, the basic variable p associated with the biggest weighted infeasibility is chosen as leav-

ing variable

p = arg max
i

∆x2
i /||êi||22,

where êT
i = eT

i B
−1 is the logical partition of the full tableau row âT

i and wi = ||êi||22 is the

DSE weight. The weighted infeasibility is called attractiveness of a basic variable, denoted

αi = ∆x2
i /wi.

The DSE weight can be updated in each dual simplex iteration. The update formulae given

by Forrest and Goldfarb [17] can be expressed as

wp := wp/â
2
pq

wi := wi − 2(âiq/âpq)τi + (âiq/âpq)2wp

where the vector τ = B−1ep is computed by an additional ftran operation. The pivotal

weight wp is freshly computed according to its definition as wp = ||êp||22. The recomputation of

pivotal weights refreshes the accuracy of DSE weights.

Even though, as an updated value, the DSE weights wi for each variable inevitably become

inaccurate after a large number of simplex iterations. In the worst case, it is possible for them

to become negative. To alleviate this issue, as suggested in the original paper, the weight is

always set to a small value (10−4) if the computed weight is smaller than that value. Though

this solves the negative weight issue, having wi = 10−4 means that the corresponding basic

variable can be falsely much more attractive than it should be within the DSE framework.

53

To address this issue, in HSOL the DSE weight of the leaving variable is computed after

btran by its definition. If the updated weight wu
p is significantly smaller than the computed

weight wc
p by

wu
p < r × wc

p,

then the current leaving variable is ignored and the dual simplex iteration starts from chuzr

again with correcting wp by the freshly computed value. In the implementation, r = 0.5 is

used.

Exploiting hyper-sparsity

For many sparse LP problems, the hyper-sparse chuzc approach described by Hall and McK-

innon [32] for the primal simplex method can be adapted to dual chuzr. In the primal simplex

algorithm, the hyper-sparse chuzc works by maintaining a short list L of top attractive dual

infeasible candidates, and keeps choosing from the list to save the time for scanning the other

less attractive choices. This works because, when the pivotal tableau row âT
p is hyper-sparse

(density less than 10%), only a small number of dual reduced costs will be updated by (3.5),

thus providing a chance to trade the time of scanning the full reduced cost by maintaining a

list of top attractive candidates.

For the dual revised simplex method, hyper-sparsity can be exploited in chuzr similarly.

Specifically, the hyper-sparse chuzr is initialized only when the LP problem is found to be

hyper-sparse.

When creating the infeasible list, assuming t choices are wanted, the tth best attractiveness

is firstly identified as the cutoff value αcutoff , and then all these with better attractiveness

αi > αcutoff are put into the list L. The infeasible list is updated when the primal variables or

the DSE weight is updated. A variable is added to the list if αi > αcutoff .

When choosing the leaving variable with the infeasible list, if the best αp of L is smaller

than αcutoff , then the best choices may be outside the list. Therefore, the list will be recreated

and the current simplex iteration will start again with the new list.

3.2.3 Dual ratio test

Compared to dual chuzr, choosing entering variables by the dual ratio test is more complicated.

Besides the basic logic of the dual ratio test, this section further discusses several advanced

techniques, including the bound flipping ratio test (BFRT), the adaption of primal EXPAND

(mainly Harris two-pass ratio test) technique and cost perturbation.

Computing âT
p

The updated tableau row associated with the leaving variable âT
p is required before the dual

ratio test. This is achieved by btran (êT
p = eT

pB
−1) and price (âT

p = êT
pA). The price

computation

âT
p = êT

pA

can be achieved by computing the inner product of êp and each nonbasic column aj . Alternately,

especially when êT
p is sparse, it is more efficient to compute âp by using a row-wise version (both

column-wise and row-wise copies of A are used in HSOL) of the coefficient matrix A and adding

54

up rows for each non-zero entry of êp as

âT
p =

∑
êpi 6=0

êpi × aT
i .

This is called the row-wise price.

Basic logic

There are totally eight situations when performing the dual ratio test with the computational

form, as a result of the bounds types (four) and infeasibility types (two) of the basic leaving

variable. To conveniently deal with all these situations, the dual ratio is split into two major

stages, (1) identify all qualified nonbasic variables and merge all situations into one, and (2)

choose the entering variable by ratio test.

Qualification. First consider a simple situation. Assuming that the chosen leaving vari-

able is primal infeasible because xp < lp, it will increase to its lower bound at the end

of the current simplex iteration. For a nonbasic variable xj at its lower bound, because

xp = −
∑

(j∈N) âpjxj , only when âpj < 0 does increasing xj lead to an increase of xp. Similarly,

when xp > up, for a nonbasic variable xj at its lower bound, âpj > 0 is required. One special

situation is a nonbasic FREE variable. A FREE variable may move up or down, and thus it is

qualified if âpj 6= 0, because, assuming xp < lp, moving it up when âpj < 0 or moving it down

when âpj > 0 will both increase the primal leaving variable. Moreover, for a nonbasic FIXED

variable, it can not be moved and thus does not participate in the ratio test. In total, there are

eight situations to consider in the dual ratio test because of four nonbasic bound types (xj = lj ,

xj = uj , FIXED or FREE) and two infeasibility types (xp < lp or xp > up).

Merging situations. When implemented in the software, all of these situations can be

summarized into one by multiplying the updated entry âpj with an infeasibility indicator sp for

the leaving variable and a direction indicator δj for each nonbasic variable. The infeasibility

indicator, representing the source of infeasibility, is defined as

sp =

{
−1 if xp < lp

1 if xp > up
.

The direction indicator δj for each nonbasic variable, representing its moving direction, is

defined as

δj =


0 if xj = lj = uj

1 if xj = lj < uj or xj is FREE and âij < 0

−1 if xj = uj > lj or xj is FREE and âij > 0

.

By using sp and δj , a nonbasic variable is qualified for dual ratio test if

āpj = âpj × sp × δj > 0,

where the eight potential situations is merged into one. The value of sp is determined after

chuzr, the value of δj for each non-FREE nonbasic variable is effortlessly maintained throughout

the simplex iterations. For a FREE nonbasic variable, the value of δj is assigned after the updated

55

tableau row âp is computed. As having nonbasic FREE variables is a relatively rare situation,

the cost of assigning δj for each nonbasic FREE variables is trivial.

Ratio test. In the ratio test stage, by multiplying each nonbasic reduced cost ĉj with the

corresponding moving indicator δj , the dual feasibility conditions of all four bound types is also

merged into

c̄j = ĉj × δj ≥ 0.

With the merged situations, the simplest dual ratio test can be achieved by finding the smallest

ratio between c̄j and positive āpj as

q = arg min
j
c̄j/āpj , āij > 0. (3.11)

If no such variable can be chosen, then the LP is declared dual unbounded.

Bound flipping ratio test

When a BOXED nonbasic variable q1 is chosen as the entering variable by the regular dual ratio

test (3.11), it is possible that variable q1 may become primal infeasible after entering the basic

partition. This will happen if the primal step θp = ∆xp/āpq1 (where xq := xq + θp at the

end) computed by ∆xp/āpq1 , is greater than the range rq1 = uq1 − lq1 . The condition is more

conveniently stated as

∆xp > rq1 × āpq1 , (3.12)

which can be interpreted as the maximal (feasible) change provided by of variable q1 not being

big enough to remove the infeasibility of the leaving variable.

Though primal infeasibility is allowed in the dual simplex algorithm, there exists a more

efficient approach called the bound flipping ratio test (BFRT) [19] for dealing with this situation.

In the BFRT, the BOXED variable q1 is flipped to its opposite bound rather than entering the

basic partition. By this flip, the primal infeasibility is reduced by ∆xp := ∆xp− rq1 × āpq1 , and

the nonbasic variable q2 associated with the second smallest ratio is chosen as the new entering

variable. If the new entering variable q2 again satisfies the BFRT condition (3.12), then the

BFRT will flip q2, reduce ∆xp and continue with the next smallest ratio, until the condition

is no longer satisfied after t − 1 flips, when the BFRT stops and uses qt as entering variable.

Obviously, BFRT will terminate on the first non-BOXED variable. Especially, if all the qualified

candidates are flipped but the primal infeasibility ∆xp is still positive, then the BFRT will

declare the LP dual unbounded.

Performing BFRT is desirable not only because it results in a feasible entering variable, but

also, more importantly, it yields a better objective function improvement. With the regular

dual ratio test, the objective improvement is given by ∆f = (c̄q/āpq)×∆xp, where the primal

infeasibility defines the per unit improvement (rate) of the objective function when increasing

the dual ratio θd = c̄/āpq. Without BFRT, objective improvement is limited by the smallest θd.

With BFRT, the objective function can keep increasing at a smaller rate ∆xp after each

bound flip. The rate becomes negative and thus the objective function will start to decrease if

variable qt is also flipped. So that the BFRT stops after t− 1 flips and uses qt as the entering

variable. The total amount of objective improvement identified by increasing the dual ratio in

BFRT can be plotted as a piecewise linear function as shown in Figure 3.1. In the example,

56

the rate given by ∆xp starts to fall after q4, so that BFRT stops at q4 with three bound flips

identified and q4 chosen as the entering variable.

∆f

θd
θ1 θ2 θ3 θ4 θ5

Figure 3.1: Objective improvement associated with BFRT

To further exploit the benefit of BFRT, the bounds of structural variables are tightened

by presolve technique. Bound tightening is a special presolve technique which, if implemented

carefully, does not require any postsolve. Detailed discussion [24, 25] of bound tightening

implementation is beyond the scope of this report and thus is omitted.

A situation which must be addressed in the BFRT is a tie of ratios where many candidates

would flip at the same point, resulting a negative ∆xp directly or more quickly. Even worse,

if many candidates are tied with the ratio 0, then the ∆xp may become negative right after

θd > 0, so no flips can be actually identified and no objective improvement can be made. This

situation is discussed in more detail in Section 3.3.

Adaption of Harris ratio test

The dual ratio test can be enhanced by the Harris two-pass ratio test [33], which was originally

designed for the primal simplex method. When the primal ratios are tied or nearly tied, the

Harris ratio test will identify a leaving variable associated with the greatest value of |âpq|, by

explicitly considering and using the feasibility tolerance. This procedure can be adapted in the

regular dual ratio test with trivial effort.

For the regular dual ratio test, the Harris ratio test can be implemented by choosing the

smallest relaxed dual ratio in the first pass by

θr = min
j∈N

(c̄j + εd)/āpj , āij > 0, (3.13)

where εd is the dual feasibility tolerance, or simply the dual tolerance, by which the dual

feasibility condition is relaxed to c̄j > −εd. A practical value for εd is the same as that for εp,

often 10−6 or 10−7.

In the second pass, from those candidates whose ratio is smaller than the relaxed ratio

θr, the Harris ratio test chooses the entering variable which is associated with the greatest

magnitude by

q = arg max
j
{āpj |(c̄j/āpj) ≤ θr and āij > 0}.

A issue with the original Harris ratio test is that it does not handle the situation where a

chosen entering variable (leaving variable in primal) is already slightly infeasible, but is feasible

within the feasibility tolerance. This issue is addressed by implementing a strict zero step

of the EXPAND [22] procedure in the primal simplex method. The same idea for the dual

57

can be implemented by shifting the already infeasible dual reduced cost of the chosen entering

variable to zero when it enters the basic partition, and removing the shift when it leaves the

basic partition. In the full EXPAND framework, the feasibility tolerance is increased to allow

a tiny step with already infeasible choices. However, implementation experience shows that the

exact zero step approach is sufficient, especially, when cost perturbation (discussed in the next

subsection) is performed before applying the dual simplex method.

The Harris two-pass ratio test can be introduced into the BFRT framework as well. Starting

from a qualified candidates set J = {j|āpj > 0}, the set F of flipping variables can be identified

by repeating a four step BFRT search

1. Find the smallest relaxed ratio θr by (3.13) for current candidates set J
2. Identify all the variables F ′, whose ratio is smaller than the relaxed ratio θr

3. Compute the flip changes ∆F ′ if all the variables of F ′ is to be flipped

4. If ∆F ′ < ∆xp, then set ∆xp := ∆xp−∆F ′, F := F +F ′, J := J −F ′ and go to step 1.

Otherwise BFRT terminates by choosing the biggest âpj in F ′ as the entering variable.

To accommodate the Harris ratio test, for all variables in the group F ′ identified by the

relaxed ratio, they are either all flipped, or none flipped with one chosen as the entering variable.

A chart illustrating a real BFRT process with Harris ratio test is given in Figure 3.3.

Cost perturbation

Perturbation has been considered as an effective method in resolving ties in the ratio test.

With random cost perturbations, it is nearly impossible to have two variables with exactly

same reduced cost.

The cost perturbation procedure applied in HSOL is a simplified version that described

by Koberstein [38]. Before starting the dual simplex method, a randomly generated small

perturbation is applied as follows to the cost of each structural variable (which is also nonbasic

with the logical basis starting technique)

cj =


cj + ξj , if j is LOWER or cj > 0 when j is BOXED

cj − ξj , if j is UPPER or cj < 0 when j is BOXED

cj , otherwise (j is FREE or FIXED)

(3.14)

where ξj is a small positive amount computed by

ξj = (10−5|cj |+ 10−7 max |ck|+ 10 εd)× (r + 1), r ∈ (0, 1]. (3.15)

As the formation of ξj indicates, the perturbation scale is a combination which considers the

cost of variable j, the overall biggest cost (max |ck|) and the dual tolerance.

After the LP problem is solved to optimality, the perturbation is removed. It is possible

for this to result in small dual infeasibilities after the removal of cost perturbation which, in

practice, can be easily removed by a simple implementation of the phase II primal simplex

method. The phase II primal simplex method can also be applied to remove the cost shift

associated with the basic variables.

A further step to the random perturbation, suggested by Koberstein, is to scale the pertur-

bation amount ξj by a weight according to the number of non-zero entries of each structural

column as shown in Table 3.3. The aim of the weighted perturbation is to give more priority to

58

sparser choices to delay the spread of denser columns. Unfortunately, no further numerical ev-

idence or justification was provided in the original work, nor the expected effect was confirmed

by computational experiences during this research. It is possibly because for certain sparse

problems, nearly all the columns have the same count of non-zero entries initially, for example

the pds problems. On the other hand, for problems which demonstrated little or no sparsity,

there is simply no sparsity to be promoted.

count 1 2 3 4 5 6 7 8 9 ≥ 10
weight 0.01 0.1 1 2 5 10 20 30 40 100

Table 3.3: Weighted cost perturbation

However, with the “unweighted” perturbation, the simplex iteration speed was found to

increase remarkably for certain families of LP problems. This phenomenon is examined in

greater detail in Section 3.3.

3.2.4 Dual phase I method

An advantage of the dual simplex method is that many LP problems are initially dual feasible

or can be made so by flipping bounds of corresponding non basic variables, especially when the

bound tightening technique is applied. For the remaining LP problems, a dual phase I method

is applied to find a starting dual basic feasible solution. Historically, many dedicated dual

phase I approaches has been proposed. In this research, the most comprehensive subproblem

approach recently summarized by Koberstein and Suhl [39] is applied.

The subproblem approach finds a dual feasible solution by solving a simpler LP problem

with modified bounds. Artificial bounds are assigned for each of the variables according to their

original bound types as shown in Table 3.4. There are two special arrangements when assigning

the phase I bounds. For the BOXED variables, it is set to FIXED zero bound as it can always be

made dual feasible by flipping to the other bound. (This point was not clearly expressed in the

original paper.) For the FREE variables, larger artificial bounds are used so that a FREE variable

will tend to leave the nonbasic partition and stay within the basic partition. Note that every

variable in the dual phase I is a BOXED variable or FIXED variable and thus the dual phase I

problem is always feasible.

type original bounds dual phase 1 bounds
LOWER [l,+∞] [0, 1]
UPPER [−∞, u] [−1, 0]
FIXED [l, u], l = u [0, 0]
BOXED [l, u], l 6= u [0, 0]
FREE [−∞,+∞] [−1000, 1000]

Table 3.4: Artificial bounds for dual phase 1 subproblem approach

With the bound modified subproblem, the objective function f1 = cTx represents the total

dual infeasibility.

When solved to optimality, the objective function f1 = 0 is expected, otherwise, the LP

problem is dual infeasible. After dual phase I, if any nonbasic variable has reduced cost ĉj = 0,

but xj 6= 0, it will be changed to zero. If the variable j is a FREE nonbasic variable, then ĉj = 0

implies it is feasible and will be kept so until its reduced cost changes, if ever.

59

3.3 Promoting hyper-sparsity

When applying cost perturbation in the dual revised simplex method, it has been observed that,

for some LP problems, the iteration speed is much faster because the occurrence of hyper-sparse

ftran and btran results is increased. This phenomenon, called hyper-sparsity promotion, is

studied to reveal the underlying reason and search for alternative approaches.

3.3.1 Observation and motivation

When implementing the dual revised simplex method, it was observed that for certain problems,

cost perturbation played a key role in terms of reducing solution time. For example, without

perturbation, to solve pds-20 takes 49913 iterations and 46.2 seconds. When perturbation

is activated, solving it takes only 38517 iterations and 7.6 seconds. With perturbation, the

iteration count and solution time are reduced by 23% and 84% respectively, and the iteration

speed is 4.7 times faster.

This improvement is found to be closely related to the increased occurrence of hyper-sparse

btran and ftran results in the dual simplex method. Because of the increased occurrence

of hyper-sparse results, the btran (êT
p = eT

pB
−1) and ftran (âq = B−1aq) computations in

each iteration become cheaper, especially when using the hyper-sparse ftran algorithm [32].

Additionally, the price (âT
p = êT

pA) and ftran-dse (τ = B−1êp) operations which are highly

related to the result of btran, also become less expensive. Detailed statistics of the occurrence

of hyper-sparse results is given in Table 3.5. Because all of the ftran results are sparser than

the default hyper-sparse threshold t = 10%, a smaller threshold t = 2% is used in the statistics.

Perturbation off Perturbation on
btran 76.1% 98.4%
price 77.5% 99.3%
ftran-dse 72.1% 95.1%
ftran (t = 2%) 78.6% 98.1%

Table 3.5: Occurrence of hyper-sparse results when solve pds-20 with/without perturbation

This phenomenon can be examined in greater detail by plotting the sectional (every 5000

iterations) percentage of dense (non hyper-sparse) results. The sectional percentage of dense

btran results when solving pds-20 is shown in Figure 3.2.

rate

iter.
0

70%

50000

Figure 3.2: Dense btran results statistics when solving pds-20 by dual revised simplex method
with (gray) and without (white) cost perturbation

60

It is clear that with perturbation (indicated in gray), the total number of dense results is

largely reduced, and the occurrence of dense results is delayed. The chart for other three results

are similar to those for btran results and thus are omitted.

The phenomenon of increased occurrence of hyper-sparse ftran and btran results is

called hyper-sparsity promotion. The underlying reason for this phenomenon is analysed in

Section 3.3.2, and alternative approaches for promoting hyper-sparsity are discussed in Sec-

tions 3.3.3 and 3.3.4.

3.3.2 Algorithmic interpretation of cost perturbation

This section firstly reviews previous discussion on (bound and cost) perturbation for the (primal

and dual) simplex method, and then provides an explanation for the hyper-sparsity promotion

behaviour of the cost perturbation for the dual simplex method.

Related discussion of the perturbation

The earliest application of perturbation for the simplex method dates back to 1950s–1970s, when

the simplex method was still in very active development. In the this period, bound perturbation

for the primal simplex method was applied as a degeneracy resolving technique. Typical work

of this period includes the “ad hoc” approach of Wolfe [59], where a virtual perturbation is

applied when degeneracy is identified, and the work of Benichou [4], which provides an improved

perturbation implementation for resolving degeneracy. Chvatal [9] gave a geometric explanation

that the bound perturbation splits “every degenerate vertex into a cluster of non degenerate

vertices” when radically different amounts of perturbation are applied. Nevertheless, despite its

wide application, the discussion of why perturbation works is relatively rare. As summarized

by Maros in his book [45], “while the ideas of perturbation and shifting lack some theoretical

beauty their practical usefulness is beyond any doubt.”

In the 2000s, the dual simplex became much more popular, so that cost perturbation be-

comes mentioned more within the framework of dual revised simplex method. Bixby [7] claimed

that the major performance improvement through early versions of Cplex (from version 5.0 to

version 7.1, in the late 1990s and early 2000s) came from the application of “more aggressive

perturbation in the dual”, especially when solving pds problems. Bixby also suggested that

perturbation be treated “as an algorithmic technique rather than simply a remedy for degener-

acy”, but unfortunately did not provide any further explanation or detail. The relation between

perturbation and sparsity has been once discussed by Koberstein [38], where weighted pertur-

bation is applied to delay the spread of the denser columns in dual chuzc. However, this claim

is neither supported by any numerical results nor got confirmed during this research.

An algorithmic interpretation with reference to BFRT

Within the dual revised simplex method, an explanation of the hyper-sparsity promotion effect

of cost perturbation is that (1) it ensures the effectiveness of BFRT, (2) and a successful BFRT

reduces the infeasibility and thus the attractiveness of dense rows and (3) so that the occurrence

of denser rows in chuzr is reduced or delayed.

This explanation is initially motivated by a direct observation that when pds-20 is solved

with and without cost perturbation, the number of simplex iterations involving actual bound

flips are 10672 and 2286 respectively.

61

Detailed interpretation can be provided by examining the BFRT behaviour during chuzc

where the btran result (êp) associated with the leaving variable is not hyper-sparse. For

example, in iteration 26887 when solving pds-20 with cost perturbation, the btran result

êp is 15.7% dense. Note that the leaving variable p is chosen by the DSE framework p =

arg maxi ∆x2
i /||êi||22, where the DSE weight wi is the L2-norm of êi. For an LP problem like

pds-20, where the entries of updated rows and columns are often ±1 or of the same magnitude,

its DSE weight wp (8185 in this case) can be viewed as an approximation to the non-zero count

(5323) of the logical part of tableau row êp. In such a situation, a denser row with a larger wi

can only be chosen when it corresponds to a even larger primal infeasible value (in this situation

∆xp = 1760,∆x2
p = 3097600), which assumes more bound flips (10 in this case) in the BFRT.

The BFRT behaviour of iteration 26887 is illustrated in Figure 3.3. With cost perturbation,

Harris two-pass ratio test identified 12 potential entering candidates (marked by short vertical

lines). These corresponded to the smallest ratios and appeared in 8 groups (separated by dotted

lines, representing the relaxed ratios).

∆f

θd
1e−6 2e−6 3e−6

1e−3

2e−3

Figure 3.3: Identification of flipping variables by BFRT and Harris ratio test. Totally 8 groups
by the Harris two pass ratio test (dotted lines representing the relaxed ratios) and 12 breaking
points (marked by short vertical segments)

For a group with more than one variable, to accommodate the Harris ratio test, either (1)

all of them are flipped in BFRT or (2) one of them is chosen as the entering variable with the

other variables remaining at their current bounds. Therefore, although the turning point (for

which, if it is flipped, the objective will fall) is the 12th break point, the 11th break point in

the same Harris group is not flipped as well. Therefore, a total number of 10 break points

will be identified as flipping variables and the 11th or 12th candidate will be chosen as the

entering variable, depending on the magnitude of associated non-zero entry. Although the

entering variable will still enter the basic partition as a primal infeasible variable because of

the discarded bound flip, its infeasibility is relatively small, and thus it will become much less

attractive for the next chuzr.

The effects of attractiveness reduction for denser rows can be more directly illustrated

by plotting the density (of êi) of top choices against the relative attractiveness within the

DSE framework. The relative attractiveness αr
i = αi/αp is used because the values of real

attractiveness are not in the same order. For the iteration concerned (26887) and the next

(26888), Figure 3.4 plots the relative attractiveness defined by αr
i = αi/αp of top 20 best

chuzr candidates in these iterations, marked by triangle and square respectively. It can be

62

clearly observed from the figure that in the next iteration, all of the top choices marked by

squares are associated with hyper-sparse btran results.

density

relative attr.
0 100%

5%

10%

15%

20%

Figure 3.4: The density and top attractiveness. The statistics for the current iteration, the
next iteration and the next iteration without permutation are marked by triangles, squares and
circles respectively.

On the other hand, if the cost perturbation is removed before the chuzc of iteration 26887,

then all the 461 potential choices, would collapse at the zero ratio. Out of these 461 candidates,

the one with biggest non-zero entry will be chosen as the entering variable and no bound flips

can be identified. No matter which one is chosen, it will enter the basic partition with a

relatively large primal infeasibility and thus it will still be one of the most attractive candidates

in the next chuzr, or in the worst case, the most attractive candidate. The attractiveness

statistics for the next iteration of this situation are also provided in Figure 3.4, marked by

circles, where the it seems become even worse. Of course, it is possible to handle this situation

by specially or randomly choosing a set of variables to flip to reduce the primal infeasibility.

However, spreading break points as a result of cost perturbation is obviously an elegant way.

One interesting aspect to consider is the scale of the perturbation. It is reasonable to suggest

that, when the perturbation scale is extremely small (ξ � εd), then all these potential choices

will still be condensed near the zero, so that BFRT cannot be effectively performed. On the

other hand, if a slightly larger perturbation is used, the break points may become even better

spread, ideally each in one group. This is probably the reason why Bixby [7] suggests using

“more aggressive perturbation in the dual” as “an algorithmic technique”.

In summary, computational experiences suggests that cost perturbation encourages the

BFRT, which reduces the attractiveness of the dense tableau rows and thus reduces the ap-

pearance of them in chuzr, leading to overall hyper-sparsity promotion.

3.3.3 Experiments with partial optimality test

One straightforward alternative approach is partial dual chuzr. Partial chuzr in the dual

simplex algorithm, or partial price plus partial chuzc, together called partial pricing for the

primal simplex algorithm, is not a novel idea at all. Frequently, partial pricing is applied to

reduce the computational cost when there are many qualified choices, where choosing from

a small proportion (for example, 10%) of whole candidates is considered enough to identify

63

one of the best. This approach has been very attractive, especially when used within the

primal simplex method with the old-fashioned price (3.6), where the matrix-vector product

computation is also performed partially. In the dual revised simplex method, especially when

hyper-sparse chuzr is used for sparse LP problems, partial chuzr is much less preferable than

is partial pricing in the primal simplex method.

In relation to promoting hyper-sparsity, experiments with partial chuzr are motivated by

the observations relating to Figure 3.4. As illustrated by the triangles, although the most

attractive choice is associated with a dense row, the others in the top ten are not. Thus by

using partial chuzr, it is hoped that, the worst choice is possibly luckily avoided.

In the following experiments, a simple version of partial chuzr is implemented. Assuming

hyper-sparse chuzr is used, the partial chuzr starts randomly from the hyper-sparse infeasible

list L, and stops after

max(0.1× sizeof (L), 100)

infeasible variables have been examined. By using this approach, the solution time and iteration

count when solving the LP problem pds-20 is given in Table 3.6.

Experiment Solution time Iter. count Iter. Time (ms)
Textbook 46.2 49913 926
Partial chuzr 42.5 57903 734
Perturbation 7.6 38517 197
Partial & Perturb 6.8 39369 173

Table 3.6: Performance of HSOL when solve pds-20 with/without partial chuzr

It is not surprising that partial chuzr leads to greater numbers of simplex iterations because,

after all, the intention to use partial chuzr was to avoid the “best” choice under the DSE

framework. Despite this, the use of partial chuzr results in a faster solution because of the

increased iteration speed. Note that very little of the performance increase comes from the

time saved from performing the full chuzr, as it was originally considerably cheap because

of hyper-sparsity exploitation. Figure 3.5 further illustrates the avoidance of dense rows as a

consequence of partial chuzr (gray colour) in additional to the cost perturbation.

rate

iter.
0

15%

40000

Figure 3.5: Dense btran result when solving pds-20 using the dual revised simplex method
with (gray) and without (white) partial chuzr.

The problem with partial choose row is obvious in that it does not always choose the best

candidate, which may (more or less) compromise the effectiveness of DSE, resulting in a greater

number simplex iterations. Also, towards the end of the solution, where the list of primal

64

infeasibilities becomes short, partial chuzr is disabled so does not help.

3.3.4 Experiments with less-infeasibility DSE

The second experimental approach for promoting hyper-sparsity is called less-infeasibility DSE

or LiDSE for short. As indicated by its name, LiDSE alters the behaviour of DSE by shrinking

the basic infeasibility. This approach is proposed as a response to the observation that within

the DSE framework, the dense rows are more attractive than they should be.

Although the DSE weight wi = ||êi||22 for a basic variable associated with a denser row is

much larger than that of the sparser rows, its DSE attractiveness is often larger still. This is a

result of the formation of the DSE framework

αi = |∆xi|2/||êi||22,

where the attractiveness of the denser rows is enlarged because the infeasibility ∆xi is squared.

To address this issue, one idea is to use the absolute value of the infeasibility, so the attractive-

ness is given by

α′i = |∆xi|/||êi||22.

This is called the less-infeasibility DSE approach.

Table 3.7 shows the LiDSE attractiveness for the top 20 choices identified (and sorted)

by the original DSE for the illustrative iteration when solving pds-20. Using LiDSE, the

primal infeasible candidates for chuzr associated with hyper-sparse btran results are naturally

highlighted.

Density Infeasibility L1-norm DSE weight DSE attr. LiDSE attr.
15.71 1760.0 6197 8185 378.4 0.28
0.06 86.0 20 20 369.8 4.30
3.18 622.5 1081 1087 356.5 0.58
3.19 622.5 1082 1088 356.2 0.58
0.01 32.2 3 3 345.6 10.73
3.81 668.5 1296 1306 342.2 0.52
0.01 32.0 3 3 341.3 10.67
1.32 389.0 446 446 339.3 0.87
4.05 699.4 1396 1446 338.3 0.50
0.04 63.7 12 12 338.1 5.31
4.05 699.4 1397 1449 337.6 0.50
4.05 699.4 1398 1452 336.9 0.50
1.33 389.0 451 451 335.5 0.86
4.74 733.4 1606 1606 334.9 0.46
4.75 733.0 1608 1608 334.1 0.46
4.76 733.0 1611 1611 333.5 0.45

15.69 1649.0 6188 8176 332.6 0.27
15.69 1649.0 6189 8177 332.5 0.27
15.69 1649.0 6190 8178 332.5 0.27
15.70 1649.0 6191 8179 332.5 0.27

Table 3.7: LiDSE attractiveness for top attractive candidates identified using DSE

The efficiency of LiDSE is again examined by solving pds-20. As shown in Table 3.8, even

without perturbation, the use of LiDSE leads to a halving of the solution time. When used

in combination with perturbation, it reduces the solution time by 47%. This performance

65

improvement is partially because of the reduced iteration count due by LiDSE (note that it

does not often lead to a shorter iteration). In terms of occurrence of dense btran results, all

of them are delayed to appear in the last 5000 iterations.

Experiment Solution time Iter. count Iter. time (ms)
Textbook 46.2 49913 926
LiDSE 17.6 40211 438
Perturbation & DSE 7.6 38517 197
Perturbation & LiDSE 4.0 29475 136

Table 3.8: Performance of HSOL when solve pds-20 using LiDSE

As theoretical support for the LiDSE framework, the DSE weight wi can be viewed as an

approximation to the L1-norm of êi, the logical part of the tableau row i. As shown in Table 3.7,

the difference between the DSE weight (square of L2-norm) and the L1-norm is relatively small.

This is particularly so in the case of the sparse candidates where these two values are the same

or nearly the same. For these denser candidates, the difference is less than 25%. It happens

for pds problems because the non-zero entries in the updated tableau are often ±1,±2, with

a large proportion of ±1. Thus the approximation is unsurprising. In this sense, the LiDSE

approach using α′i = |∆xi|/||êi||22 becomes an approximation of L1-norm based approach.

An issue with the LiDSE approach is that, with more general LP problems where the

magnitude of updated tableau entries are often radically different, simply using |∆xi| may

severely damage the efficiency of the normalized framework. However, it is not uncommon

to have an LP problem exhibiting the same feature as the pds problems. As they are easily

identifiable, the over-wighted approach can always be activated accordingly.

3.3.5 Discussion and additional results

Additional computational results on solving larger pds problems are given in Table 3.9. It is

clear that the LiDSE (plus perturbation) approach outperforms all the other approaches. The

performance of LiDSE is even comparable to Cplex (HSOL is 6% slower in average), despite the

fact that it takes about 60% more iterations, as shown in Table 3.10. So it is safe to conclude

the iteration speed is improved remarkably.

Perturbation and
Model Cplex Plain Perturb LiDSE Partial LiDSE+Partial
pds-30 10.1 181.3 16.6 9.0 15.9 9.8
pds-40 15.6 443.9 27.9 16.3 35.3 21.1
pds-50 21.6 1102.8 39.8 22.1 54.7 28.7
pds-60 30.1 1500.6 48.1 30.9 64.0 34.2
pds-70 35.9 2638.4 64.4 41.9 83.1 42.7
pds-80 43.0 3396.5 69.5 45.5 87.6 55.2
pds-90 52.1 7087.2 83.8 74.0 104.1 68.6
pds-100 56.1 4272.2 83.4 59.2 108.6 72.0
geomean 28.7 1565.8 47.9 30.9 59.7 35.2

Table 3.9: Solution time of larger pds problems for hyper-sparsity promotion experiments

Partial chuzr is found to be unsuitable for larger pds problems. Although the iteration

speed is generally (slightly) improved, the overall performance compared to the pure perturba-

tion approach is poor. Using partial chuzr in addition to LiDSE also slows it down.

66

Perturbation and
Model Cplex Plain Perturb LiDSE Partial LiDSE+Partial
pds-30 38019 109748 66278 55855 74989 61136
pds-40 56126 170271 94528 86065 113500 94217
pds-50 68769 277235 117370 105291 154614 121695
pds-60 97089 337941 144285 140166 188056 158702
pds-70 113677 472672 173681 181504 226000 183177
pds-80 130016 556205 199042 210103 259465 245280
pds-90 152364 753988 224664 305091 290819 311842
pds-100 163076 602172 231179 274495 303622 312270
geomean 92222 346747 144539 147707 183425 162521

Table 3.10: Iteration count of larger pds problems for hyper-sparsity promotion experiments

The LiDSE approach can be generalized by using values |∆xi|t for 1 ≤ t ≤ 2. Table 3.11

shows experimental results with the generalized LiDSE (plus perturbation) approach. The

column headed |∆xi|/wi and |∆xi|2/wi are the LiDSE and the original DSE approaches re-

spectively. The alternative LiDSE approach with |∆xi|1.2/wi solves each problem faster than

Cplex.

Model Cplex |∆xi|/wi |∆xi|1.2/wi |∆xi|1.5/wi |∆xi|2/wi

pds-30 10.1 9.0 7.8 10.5 16.6
pds-40 15.6 16.3 14.5 19.7 27.9
pds-50 21.6 22.1 19.1 29.4 39.8
pds-60 30.1 30.9 25.6 35.4 48.1
pds-70 35.9 41.9 32.3 54.3 64.4
pds-80 43.0 45.5 35.8 56.4 69.5
pds-90 52.1 74.0 42.0 62.7 83.8
pds-100 56.1 59.2 50.3 51.6 83.4
geomean 28.7 30.9 24.6 34.8 47.9

Table 3.11: Performance of generalized LiDSE approach when solve pds problems

Although the LiDSE approach is very helpful for the pds problems, its scope for further

application is fairly limited. This is partially because the L1-norm approximation assumption

only holds for a limited selection of LP problems. Moreover, for lots of hyper-sparse problems,

ftran and btran are always hyper-sparse and thus additional promotion is not really required.

For problems which demonstrate little or no hyper-sparsity otherwise, the techniques of cost

perturbation, partial chuzr and LiDSE are not advantageous: there is simply no hyper-sparsity

to be promoted.

3.4 Summary

This chapter has described a sophisticated implementation of the advanced dual simplex method

and an investigation into the hyper-sparsity promotion phenomenon. The performance of the

achieved dual simplex solver, HSOL is comparable with Clp as demonstrated by Figure 3.6.

This provides a solid foundation for the parallelization.

The hyper-sparsity promotion phenomenon is initially identified when using cost perturba-

tion as an enhancement to the dual ratio rest. It has been demonstrated with reference to

pds problems that cost perturbation encourages the BFRT, which reduces the attractiveness of

the dense tableau rows and thus reduces the appearance of them in chuzr, leading to overall

67

1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

HSOL Clp Cplex

Figure 3.6: Timing profile of HSOL, Clp and Cplex

hyper-sparsity promotion. By following this explanation, experiments have been performed us-

ing two alternative approaches for promoting hyper-sparsity and the LiDSE approach has been

found to be very successful for one class of problems.

68

Chapter 4

Parallel simplex methods

This chapter discusses parallel simplex implementations. Section 4.1 provides a brief review

of previous simplex parallelization attempts. Section 4.2 analyses previous work and discusses

the scope for a practical simplex parallelization. Then two novel parallel simplex implementa-

tions based on the dual revised simplex method are introduced: one by exploiting parallelism

across multiple iterations (PAMI), one by exploiting single iteration parallelism (SIP), in Sec-

tions 4.3 and 4.4 respectively. Overall, PAMI achieves an average speedup of 1.5 and SIP is

frequently complementary to PAMI when PAMI results in slowdown. Preliminary design and

computational results of PAMI have been published as a conference paper [26].

4.1 Previous simplex parallelization attempts

The simplex method has been parallelized many times on various hardware and software plat-

forms. To facilitate the introduction of novel parallelization implementations, a brief review and

analysis of previous simplex parallelization attempts is provided in this and the next section

(Section 4.2) respectively. The selection of implementations reviewed in this section is based

on that of a more comprehensive report by Hall [28].

Previous parallel simplex implementations can be organized into three categories: (1) those

using dense matrix algebra, (2) those using sparse matrix algebra, (3) and those using special

simplex method variants.

4.1.1 Using dense matrix algebra

Parallelizing the simplex method by using dense matrix algebra refers to parallelizing the tableau

simplex method in dense or the revised simplex method with dense basis inverse. Table 4.1

provides a representative list of parallel simplex implementations using dense matrix algebra.

Generally speaking, parallel simplex implementations with dense matrix algebra achieved

excellent speedup, ranging from ten [54, 11] to thousand [56]. One most important reason

for this success is that the major underlying operation is easily parallelizable and known to

be scalable. For the tableau simplex method, the main operation is the elimination of the

whole tableau by using the pivotal row (or alternatively using the pivotal column). For the

revised simplex method with dense basis inverse, solving linear systems can be easily arranged

as parallel matrix vector multiplication.

69

Date Author Speedup, approaches, and comments

1988 Stunkel and Reed [54] Speedup between 8 and 12 on 16 processor Intel hy-
per cube. Textbook tableau simplex method.

1991 Cvetanovic et al. [11] Best speedup is 12 on a 16 processor shared memory
machine, when experimented with 2 large NETLIB LP
problems. Textbook tableau simplex method.

1995 Eckstein et al. [14] Iteration speed is superior to Minos 5.4 on some
NETLIB LP. Implemented on Connection Machine,
CM-2 and CM-5 with thousands of processors. Both
tableau simplex method and revised simplex method
with dense explicit inverse, including steepest-edge
algorithm and EXPAND techniques.

1996 Thomadakis and Liu [56] Up to 1000 speedup on 128× 128 cores MasPar ma-
chine. Tableau simplex method with steepest-edge
algorithm. Random LP.

2006 Badr et al. [2] Up to 5 speedup on 8 processors SMP. Developed
using C and MPI. Textbook tableau simplex method.
Random small dense LP.

2009 Yarmish and Slyke [61] Nearly 7 times faster with 7 processors, in terms of
iteration speed. Textbook tableau simplex method.
Iteration speed is comparable to Minos when solving
dense NETLIB LP problems.

2009 Spampinato and Elster [53] Speedup between 2 and 2.5 on GPU platform com-
pared to corresponding CPU implementation. Text-
book revised simplex method with dense PF repre-
sentation of the basis inverse. Random LP.

2010 Bieling et al. [5] Up to 18 times faster than the sequential GLPK
solver. Revised simplex method with dense PF basis
inverse and steepest-edge algorithm. Random LP.

2011 Lalami et al. [40] Up to 24.5 speedup with two GPUs. Random LP.

Table 4.1: Simplex parallelization using dense matrix algebra

However, besides the excellent speedup, there are also crucial limitations with dense matrix

algebra. LP problems are generally known to be large and sparse, and exploiting the sparsity

properly is a key factor to the performance of the simplex algorithm. By using dense matrix

algebra, exploiting the sparsity becomes impractical or even impossible. Thus, even though a

dense parallel implementation achieves good speedup, it can hardly be comparable to a good

sequential sparsity exploiting simplex solver.

Due to this limitation, although reports [2, 61] of parallel simplex method using dense

matrix algebra continue to appear, often corresponding to novel hardware platform and software

techniques (most recently, GPU and GPGPU [53, 5, 40]), none is of real novelty.

4.1.2 Using sparse matrix algebra

The real challenge and most valuable results of the simplex method parallelization are those us-

ing sparse matrix algebra. Compared to parallel implementations using dense algebra, previous

work concerning sparse algebra is relatively rare. A comprehensive list is given in Table 4.2.

Previous work on parallel simplex method using sparse matrix algebra can be organized

70

Date Author Speedup, approaches, and comments

1995 Lentini et al. [42] General speedup is between 0.5 and 2.7 when solv-
ing medium sized NETLIB problems. Best speedup is
5.2 when solving a large column-row ratio problem.
Tableau simplex method in sparse.

1976 Pfefferkorn and Tomlin [50] Discussed the parallelization scope of each revised
simplex method computational component, includ-
ing ftran and btran.

1988 Helgason et al. [34] Discussion of the parallelization scope of ftran and
btran.

1997 McKinnon and Plab [47] Advanced investigation of data parallelism of ftran
operation only.

1994 Ho and Sundarraj [35] Average 1.5 speedup. Partial task parallelism by
overlapping invert and other simplex iterations.

1995 Shu [52] Up to 17 (8) speedup when solving small NETLIB

(large and sparse Kennington set) LP problems. Full
data parallelism.

1996 Wunderling [60] No known speedup data. Full task parallelism
by multiple choosing column and forming several
tableau columns (ftran operations) in parallel.

1996 Hall and McKinnon [30] Speedup between 1.7 and 1.9. Sophisticated full task
parallelism. Up to 2.4 faster per iteration.

1998 Hall and McKinnon [31] Speedup between 2.4 and 4.8. Asynchronous full task
parallelism. Up to 5 faster per iteration.

2000 Bixby and Martin [8] Between 1 and 3 speedup. Dual revised simplex
method. Partial data parallelism on price and re-
lated operations, with discussion of possible task par-
allelization of ftran and ftran-dse. Based on
commerical simplex solver Cplex.

Table 4.2: Simplex parallelization using sparse matrix algebra

into four groups as shown in the table: (1) the tableau simplex method parallelization using

sparse algebra, (2) theoretical discussion of parallelism in ftran and btran operations, (3)

implementation of parallel primal revised simplex method and (4) implementation of parallel

dual revised simplex method.

Parallelizing tableau simplex method in sparse

In the first group, the unique work of Lentini [42] is so far the only attempt to parallelize

the tableau simplex method using sparse algebra. It was motivated by the observation that

for certain families of practical LP problems, for example the hyper-sparse LP problems, the

tableau is so sparse that maintaining each tableau column in a sparse data structure would

reduce elimination work and storage requirement considerably. Though speedup of 2 is achieved,

because of the limitation of the tableau simplex method, it can hardly be comparable to a revised

simplex solver.

71

Theoretical data parallelism discussion of ftran and btran

The second group consists of discussions of the data parallelization scope of mainly ftran and

btran operations. The early work by Pfefferkorn and Tomlin [50] provided a comprehensive

discussion on each computational components of the simplex method, including the ftran

and btran operations. Later, the work of Helgason et al. [34] focused on ftran and btran

only. The work by McKinnon and Plab [47] concentrated on the ftran operations only, as

the btran operation is more efficiently achieved by using row-wise basis inverse representation

with ftran procedure. None of these discussions reported computational results, probably

because the ftran operation had a large number of relative cheap sparse vector additions that

can hardly overlap with each other, so the performance gained by parallelization is less than

the overhead associated with it.

Parallelizing the primal revised simplex method

The third group provides a list of published parallel primal revised simplex method implemen-

tations. They all appeared in a short time, when the sequential simplex method had (then)

been considered developed into a mature status, and parallel machines became widely used.

Except for the relative explicit data parallelization scope of chuzc, chuzr, price and

update, the major focus of these work is exploiting parallelism further in other nontrivial

computational components, mainly ftran, btran and invert.

Out of these five implementations, the work of Shu [52] is distinctive because it explored

data parallelism fully on ftran and btran by maintaining an explicit sparse basis inverse.

Good speedup (up to 17) was reported on NETLIB problems and larger and sparser problems

from the Kennington set. However, as Hall indicated [28], the good speedup is related to a large

percentage (65− 96%) attributable to an old-fashioned and inefficient column-wise (but easily

parallelizable and scalable) price component, where the reduced cost is computed rather than

updated. When modern price is applied, it would be a lower percentage of overall time, so the

scope for good speedup may no longer exist.

Besides the work of Shu, all of the other four implementations exploited task parallelism.

The work of Ho and Sundarraj [35] overlaps the invert with simplex iterations, and switches

to the newly formed basis inverse once it is ready, resulting in 1.5 speedup on average. The

same idea had also been experimented with by Bixby and Schwabacher, with a speedup of 1.3

as described in an unpublished report [6]. In both of these overlapping schemes, the PF update

eta matrices obtained with old basis inverse Ḃ−1
0 are reused to bring the newly formed basis

inverse B−1
0 up-to-date by

Bt = B0Ėk+1 . . . Ėk+t and B−1
t = Ė−1

k+t . . . Ė
−1
k+1B

−1
0 ,

where Ėk+1, . . . , Ėk+t are last t PF update transformations associated with Ḃk+t, assuming

that the reinversion started when working with Ḃk. Though relative good speedup is achieved

by only parallelizing one component, as identified by Hall and McKinnon [29], the reuse of PF

update often leads to numerical instability.

The work of Wunderling [60] explores parallelism fully with a variant of the primal simplex

method. The variant can be described in a major-minor structure. It starts from a major

initialisation, by performing multiple chuzc to choose a set Q of entering variable candidates

and then, using task parallelism, forming tableau columns âq for each q ∈ Q accordingly. Then,

72

in each of the subsequent minor iterations, a variable q is chosen and removed from Q as the

entering variable, until Q becomes empty or non of q ∈ Q remains attractive. The core compo-

nent of minor iterations is primal chuzr, where data parallelism is exploited. After the minor

iterations, a major update is performed to update the reduced cost and basis inverse representa-

tion, where the key components price and price-se are performed as data parallel operations

Though an interesting approach, it is unfortunate that the only associated publication is his

PhD thesis written in German. A little further detail of Wunderling’s work is revealed by

Hall [28], that generally it achieves little performance improvement. The few instances showing

good speedup, correspond to large column-row ratios, where it is easy to gain performance

improvement on parallel price and price-se. The same idea is exploited with the dual revised

simplex method during this research. Details of a similar major-minor structure are introduced

in Section 4.3.

Form B−1
0

êp = B−T
0 ẽp

ãQ = B−1
0 aQ

âT
p = êT

p N
ĉ := ĉ− ĉqâp

Scan ĉ for Q

Scan ĉT
Q for q

ẽp = E−T

U
ep

âq = E−1

U
ãq

Update x
B

Choose row p

ẽpêp

Q aQ

B−1
0

B−1
0

p

ãq

Figure 4.1: Parallelization scheme of PARSMI

Besides this work, the author knows of only two other full parallel implementations of the

the revised simplex method, are all due to Hall and McKinnon. These two implementations,

the preliminary version ASYNPLEX [31] and its mature development PARSMI [30], are all

based on an asynchronous variant of the revised simplex method. The logic of their simplex

variant is illustrated by Figure 4.1. The design and implementation of PARSMI is a combination

of overlapped invert and multiple chuzc. Although compared to the speedup of order ten

obtained when using dense matrix algebra, PARSMI achieves only a speedup of between 1.7 and

1.9. This was a great achievement because PARSMI is based on a sophisticated implementation

of the revised simplex method.

Parallelizing the dual revised simplex method

The work of Bixby and Martin [8] is, so far as the author knows, the only publication on the

parallel dual revised simplex method for general LP problems. Although only data parallelism

on price and update-dual is explored, their work is extremely attractive because it was based

on and compared to the one of best commercial simplex solvers Cplex.

73

Besides data parallel price and update-dual the possibility of a task parallel arrangement

of ftran and ftran-dse was also discussed. However, this potential task parallelization was

not included in their implementation, because its performance was found to be inferior to solving

two linear systems together sequentially.

However, the argument of the inferior performance may no longer hold because of the

exploitation of hyper-sparsity. By exploiting hyper-sparsity, ftran and ftran-dse are often

achieved totally differently, where solving two linear systems together may severely slow down

one of them (often the ftran). Besides, with the novel dual revised simplex method, there is a

third forward linear system to solve as a consequence of the bound flipping ratio test (BFRT). By

considering ftran operations with the novel hyper-sparsity and BFRT techniques, exploiting

task parallelism may become valuable again. This is discussed in detail in Section 4.4.

4.1.3 Other approaches

Besides parallelizing the tableau and revised simplex method or its variant in relatively regular

ways, there are other interesting approaches to exploit parallelism when using simplex method

for solving LP problems.

Maros and Mitra [46] provided a strategy which solves an LP problem with different pro-

cessors. Each processor follows a different path, given by different pivot selection approaches,

including Devex, steepest edge algorithm and some partial pricing variants. Although Devex is

generally considered as the best choice for the primal simplex method, it is not always the best

for a single LP problem. By following different paths, an LP problem is naturally solved by

the best pivoting strategy. In more sophisticated implementation, this approach can be further

enhanced by periodically selecting the best progress, and then resetting all the others processors

to run from the best point reached. By using the mixed strategy, a modest speedup of around

1.6 is achieved.

Another distinct parallelization approach related to one of the earliest simplex method

variants uses the Dantzig-Wolfe decomposition [12] for block-angular problems with linking rows

as illustrated in Figure 4.2. An LP problem in such form can be solved in a decompose-solve-

join-solve manner: the original problem is firstly decomposed into many smaller independent

LP subproblems and solved to optimality separately (in parallel), and afterwards, optimal

solutions of subproblems are joined together to solve the original problem. For block-angular

problems with linking columns, Benders decomposition [3] may be used. For large and sparse

LP problems which are not originally in block-angular form, it may be permuted into such form

by hyper-graph partitioning [1]. Due to its good performance and (relative) simplicity, this

approach has been implemented many times.

Figure 4.2: LP coefficient matrix in block angular form with linking rows on the top

74

A recent development for solving LP problems in the block-angular form is reported by

Lubin et al. [43]. Instead of using the decompose-solve-join-solve approach, the dual revised

simplex method itself is applied directly to block-angular problems with linking columns, with

its operations parallelized according to the special structure. A speedup of more than 100

with 256 processors is achieved compared with the sequential Clp solver. Though extremely

efficient, the application and scalability of this approach is highly limited to a specific family

of LP problems, which either appear in (or can be easily permuted to) block-angular form.

4.2 Limitation and scope of simplex parallelization

This section analyses the relative poor speedup of previous simplex parallelization implemen-

tations and, based on this, discusses the scope for future practical parallel simplex implemen-

tations.

4.2.1 Analysis of previous work

Previous research into parallelizing the simplex method provides much valuable experience for

future simplex parallelization.

Using dense matrix algebra

If dense matrix algebra is used, even a simple implementation yields good speedup (between

ten and a thousand). However, in the real world, exploiting sparsity and hyper-sparsity in

the revised simplex method keeps enlarging the gap between the performance of it and the

tableau simplex method or revised simplex method using dense matrix algebra. Although it

has been demonstrated many times that simplex parallelization using dense matrix algebra

achieves good speedup, even with the best speedup, it can hardly be comparable to a revised

simplex implementation with modern computational enhancements for general LP problems.

Therefore, this path is excluded from future consideration.

Using sparse matrix algebra

The simplex parallelization based on the revised simplex method, using sparse matrix algebra,

has been considered relatively little and very much less successfully. The relatively poor speedup

of these parallelizations can be analysed with reference to Amdahl’s Law and detailed profiling

data of major computational components of the revised simplex method.

Amdahl’s Law states that the speedup of parallelizing an algorithm is limited by the per-

centage of the sequential (non-parallelized) proportion (pSEQ) of that code by

speedup =
1

pSEQ + (1− pSEQ)/N

where N is number of cores used. For example, when pSEQ = 50%, no matter how many

cores are used, the best speedup is limited to 2. An illustration of Amdahl’s Law is given in

Figure 4.3.

The profiling data of computational components of the advanced dual revised simplex

method is provided in Table 4.3, including the iteration time (in microseconds) and the percent-

75

Ncores

speedup

20 21 22 23 24 25 26 27 28 29 210

s = 50%

s = 20%

s = 10%

s = 5%

5

10

15

20

Figure 4.3: Illustration of Amdahl’s Law

ages (of overall solution time) of major computational components, organized in four groups

(vertically), roughly according to ascending difficulty of exploiting parallelization.

With reference to Amdahl’s Law and profiling data, the relatively poor speedup of the

revised simplex method parallelization can be explained from three aspects.

1. Limited parallelization. One reason for the poor speedup is the partial exploitation

of parallelism. A typical example is the dual revised simplex method parallelization of Bixby

and Martin [8]. In their work, only standard parallelizable computational components, namely

chuzc, chuzr, price and update are parallelized. According to the profiling data, the average

percentage of these components are less than 35%, so that by Amdahl’s Law, the best possible

speedup is limited to 1.5 on average.

2. Inferior pivoting rule and memory bound. Even when exploiting parallelism

fully by arranging ftran and btran as task parallel operations, as reported by Hall and

McKinnon [30], the achieved speedup is still less than or around 2. This is partially because

the simplex variant using multiple pricing, which PARSMI was based on, frequently results in

inferior pivots and leads to a greater number of simplex iterations; partially because when many

ftran (or btran) operations are performed in parallel, the competition for memory access will

highly limit the parallelization efficiency.

3. Cheap computational components. Last but not least, another reason for the poor

speedup is the wide availability of cheap computational components in the revised simplex

method. Although it may take up to a few hours to solve an LP problem, the iteration time of

the simplex method is often around hundreds of microseconds. Thus, if the overall percentage

of a component is relatively small, then it only takes about tens of microseconds or even less

per iteration, which is comparable to (or even smaller than) the overhead of starting a parallel

environment and spreading data across parallel processors. In this case, either going parallel

or leaving the components performed sequentially will not actually improve the performance.

Therefore, the cheap component essentially adds up to the sequential proportion, which further

limits the speedup.

4.2.2 Towards a practical simplex parallelization

Because of these limitations, the simplex method is frequently considered unsuitable for paral-

lelization.

However, the context for simplex parallelization has changed. Since the introduction of

76

G
ro

u
p

1
G

ro
u

p
2

G
ro

u
p

3
G

ro
u

p
4

M
o
d
e
l

It
er

.
T

im
e

c
h
u
z
r

c
h
u
z
c
1

c
h
u
z
c
2

p
r
ic
e

u
p
d
a
t
e

b
t
r
a
n

f
t
r
a
n

f
-d

se
f
-b
f
r
t

in
v
e
r
t

o
t
h
e
r

c
r
e
-b

56
5

0.
8

2
0
.1

4
.4

4
2
.9

6
.9

4
.7

1
.7

1
1
.3

1
.5

4
.3

1
.4

d
a
n
o
3
m
ip

l
p

88
5

1.
8

2
1
.2

3
.0

3
5
.5

5
.3

6
.4

6
.9

1
1
.7

0
.3

6
.2

1
.7

d
b
ic
1

22
09

0.
5

2
2
.5

3
.1

3
3
.6

5
.8

5
.7

6
.5

1
4
.8

3
.2

3
.1

1
.2

d
c
p
2

50
9

6.
5

3
.9

1
.7

8
.7

7
.3

5
.4

1
8
.1

2
8
.4

1
0
.4

7
.4

2
.2

d
f
l
0
0
1

59
5

4.
1

8
.1

1
.0

1
7
.9

1
1
.2

1
0
.8

1
3
.0

2
0
.7

6
.2

5
.2

1
.8

f
o
m
e
1
2

97
1

7.
9

5
.1

0
.6

1
2
.4

6
.8

1
2
.3

1
4
.5

2
4
.0

7
.1

7
.9

1
.4

f
o
m
e
1
3

12
25

10
.1

4
.2

0
.5

1
0
.6

5
.6

1
1
.4

1
3
.5

2
6
.4

6
.7

9
.6

1
.4

k
e
n
-1
8

12
6

5.
3

2
.9

0
.6

5
.2

2
.2

7
.9

1
1
.0

2
4
.4

3
.8

3
2
.4

4
.3

l
3
0

10
81

0.
8

1
4
.1

9
.9

2
4
.0

6
.3

8
.6

9
.0

1
2
.9

4
.1

8
.5

1
.8

L
in
f
5
2
0
c

26
16

8
1.

5
2
.3

0
.1

1
1
.8

4
.0

1
6
.6

1
9
.7

2
3
.2

0
.0

1
9
.2

1
.6

l
p
2
2

88
8

2.
0

1
0
.9

2
.0

2
3
.3

8
.4

9
.4

1
0
.4

1
4
.9

6
.8

1
0
.0

1
.9

m
a
r
o
s-
r
7

18
90

0.
8

2
.8

0
.2

1
0
.2

2
.7

1
7
.5

1
5
.3

2
0
.6

0
.0

2
7
.4

2
.5

m
o
d
2

12
14

4.
2

7
.5

1
.0

9
.9

8
.5

1
1
.5

1
7
.4

2
9
.1

5
.4

4
.0

1
.5

n
s1

6
8
8
9
2
6

18
06

2.
0

0
.1

0
.0

2
.9

4
.8

3
.3

3
1
.4

4
4
.1

0
.0

6
.5

4
.9

n
u
g
1
2

11
57

1.
6

7
.4

1
.1

1
6
.3

6
.9

1
1
.6

1
2
.4

1
6
.7

5
.8

1
8
.1

2
.1

p
d
s-
4
0

30
2

3.
4

7
.5

1
.9

1
9
.2

5
.1

1
0
.8

1
0
.3

2
3
.2

4
.4

1
2
.0

2
.2

p
d
s-
8
0

33
7

3.
7

6
.6

1
.8

1
9
.8

3
.9

1
0
.5

9
.1

2
3
.7

3
.9

1
5
.0

2
.0

p
d
s-
1
0
0

36
0

3.
5

7
.0

1
.8

1
8
.6

3
.7

1
0
.4

9
.0

2
4
.1

3
.8

1
6
.0

2
.1

p
il
o
t
8
7

91
8

1.
2

5
.1

0
.8

1
7
.9

4
.4

1
2
.0

1
2
.9

1
7
.4

7
.6

1
7
.9

2
.8

q
a
p
1
2

12
29

1.
5

7
.5

1
.0

1
6
.2

6
.6

1
2
.1

1
2
.3

1
6
.7

5
.9

1
8
.4

1
.8

se
l
f

83
50

0.
0

1
.4

0
.2

3
9
.6

0
.2

7
.0

6
.5

7
.0

0
.0

3
3
.9

4
.2

sg
p
f
5
y
6

49
1

1.
3

0
.3

0
.1

0
.2

0
.1

5
.0

2
.3

8
0
.7

0
.0

8
.4

1
.6

st
a
t
9
6
v
4

21
60

0.
4

1
2
.4

4
.9

6
7
.6

1
.7

2
.4

1
.7

4
.3

0
.6

2
.2

1
.8

st
o
r
m
G
2
-1
2
5

11
5

5.
2

0
.8

0
.2

1
.7

0
.9

4
.4

8
.3

4
8
.7

0
.1

2
6
.7

3
.0

st
o
r
m
G
2
-1
0
0
0

65
0

1.
5

0
.1

0
.0

0
.3

1
.3

3
.5

6
.1

7
0
.6

0
.0

1
4
.6

2
.0

st
p
3
d

43
25

1.
6

1
0
.7

0
.9

1
9
.2

7
.6

1
3
.5

1
2
.0

2
7
.0

3
.9

2
.4

1
.2

t
r
u
ss

41
5

1.
1

1
7
.1

2
.0

5
3
.8

5
.0

5
.0

3
.7

7
.1

0
.0

3
.5

1
.7

w
a
t
so

n
1

21
0

4.
3

0
.7

0
.2

1
.0

1
.2

5
.7

6
.0

5
4
.4

3
.5

1
9
.6

3
.4

w
a
t
so

n
2

16
1

5.
5

0
.3

0
.0

0
.4

0
.8

4
.6

7
.7

3
5
.2

5
.0

3
4
.5

6
.0

w
o
r
l
d

13
83

3.
8

8
.7

1
.3

1
0
.9

8
.6

1
1
.6

1
6
.5

2
8
.0

5
.5

3
.7

1
.4

A
v
e
r
a
g
e

86
7

2.
9

7
.3

1
.5

1
8
.4

4
.8

8
.7

1
0
.8

2
6
.4

3
.5

1
3
.3

2
.3

T
ab

le
4.

3:
It

er
at

io
n

ti
m

e
(m

s)
an

d
co

m
p

u
ta

ti
on

al
co

m
p

o
n

en
ts

p
ro

fi
li

n
g

(t
h

e
p

er
ce

n
ta

g
es

o
f

ov
er

a
ll

so
lu

ti
o
n

ti
m

e)
w

h
en

so
lv

in
g

L
P

p
ro

b
le

m
s

w
it

h
a
n

a
d

va
n

ce
d

d
u

al
re

v
is

ed
si

m
p

le
x

m
et

h
o
d

im
p

le
m

en
ta

ti
on

77

DSE and BFRT in the 1990s, the preferred simplex variant to use has changed from the primal

simplex algorithm to the dual, but the only published work on the dual simplex parallelization

is due to Bixby and Martin [8]. Although it appeared in the early 2000s, their dual simplex

parallelization neither included the BFRT nor the hyper-sparse linear system solution technique.

In terms of the application scope, in the past (the 1990s), parallelization was aimed at dedicated

high performance computers to achieve the best performance; nowadays, when every desktop

computer is a multi-core machine, any speedup is desirable in terms of solution time reduction

for daily usage. Therefore, the simplex method, especially, the dual revised simplex method

deserves renewed parallelization effort.

Besides the impact on the theoretical speedup, the limitations also suggest a practical num-

ber of parallel processors to use for revised simplex parallelization. Assuming the sequential

(non parallelizable) part of the dual simplex method is 30% when solving general LP problems,

and that other parts can be perfectly parallelized, then by using 8, 16, 32 and 64 cores, the best

possible speedup are 2.6, 2.9, 3.1 and 3.2 respectively. When the overhead of using many cores

is considered, the better expected speedup may never be achieved. Therefore, in this research,

a choice of 8 cores is assumed.

4.3 Exploiting parallelism across multiple iterations

This section introduces a dual simplex variant based on multiple chuzr and how to exploit

parallelism across multiple iterations (PAMI) with this variant.

4.3.1 Dual simplex variant with multiple chuzr

When solving LP problems with the dual revised simplex method, it is observed that for many

problems, especially sparse ones, the second-best s pivot candidates identified by the DSE

framework at iteration k, are often still among the most attractive choices in the next few itera-

tions k+t, t ≥ 1. This motivates a dual simplex variant which chooses a small set P of attractive

candidates, and keeps choosing pivotal rows from it, yielding task scope for parallelization and

allowing parallelism to be exploited across multiple iterations (PAMI). Specifically, this dual

simplex variant and the potential parallelism associated with each computational component,

can be organized as a major-minor framework.

1. Major initialization:

(a) Choose up to s best choices, yielding the set P (Data parallelism)

(b) Multiple btran: form êp = B−Tep for each p ∈ P (Task parallelism)

2. Minor iterations:

(a) Minor choose row: find most attractive p′ ∈ P or goto major update (Trivial)

(b) Minor choose column: form âT
p′ = êT

p′A and perform ratio test (Data parallelism)

(c) Minor update: update the dual variables ĉ (Data parallelism)

(d) Minor update: remove p′ from P and update êp for p ∈ P (Data parallelism)

3. Major update:

(a) Perform ftran, ftran-dse, ftran-bfrt for chosen pivots (Task parallelism)

(b) Update primal variables and DSE weights (Data parallelism)

78

Choosing multiple candidates in the dual simplex method is not a novel idea, the earliest

related work is reported by Rosander [51] in 1970s. In this pioneering but less known work,

the (then) novel multiple price technique [49] for the primal simplex method was transplanted

into the dual framework and called dual multiple price. In the (primal and dual) multiple

price framework, performing minor iterations is called suboptimization. There are fundamen-

tal differences between suboptimization and the simplex variant for PAMI. Suboptimization

was aiming at resolving degeneracy to achieve better objective increment per step, where it

was mainly regarded as a pivoting scheme. After the appearance of suboptimization, the De-

vex [33] and steepest-edge [23] algorithm became the best accepted pivoting scheme, and idea

of suboptimization faded away. In this research, the simplex variant with multiple chuzr it is

purely utilised to provide more task parallelism scope for solving linear systems. The simplex

variant and the PAMI based on it is more related to the work of Wunderling [60] and Hall and

McKinnon [30] for the primal simplex method in 1990s.

Details of PAMI are introduced in the remaining parts of this section. The design and im-

plementation of data parallel chuzc and price and task parallel btran and ftran operations

are given in Sections 4.3.2 and 4.3.3 respectively. The relatively trivial operations, for exam-

ple update-dual, update-primal and update-weight are mentioned when corresponding

nontrivial computational components are discussed. Section 4.3.4 talks about consideration

for invert and the update of the basis inverse. Section 4.3.5 discusses both major and minor

chuzr in PAMI and experiments with the candidate attractiveness. Computational results and

illustration of real time behaviour of PAMI is provided in Section 4.3.6.

In the subsequent sections, s = 4 is used when illustrating the designs, and s = 8 is used

in actual implementation and computational experiments. Additionally, it is always assumed

that the number of cores used for the parallel simplex method is s.

4.3.2 Data parallel price and chuzc

price and chuzc are often considered as the easiest and most profitable components when

parallelizing the simplex method. Essentially, price is a sparse matrix vector (SpMV) multi-

plication, and chuzc is finding minimal ratio of two vectors, both of them are readily paral-

lelizable. However, when considered within an advanced dual simplex implementation which

uses advanced variant of price and chuzc and exploits sparsity, exploiting data parallelism

becomes more complicated.

Coefficient matrix partition and permutation for price

To exploit data parallelism of price

âT
p = êT

pA,

it is standard practice to partition the coefficient matrix column-wise A = [A(1)|A(2)| . . . |A(s)]

with balanced numbers of non-zero entries in each part A(i). By partitioning the tableau row

accordingly, a data parallel price operation can be achieved by computing each segment

âT
p(i) = êT

pA(i), i = 1, 2, . . . , s.

In the simplex method, eT
p is often extremely sparse so price is more efficiently arranged

row-wise by scanning non-zero entries of êT
p and adding up the corresponding rows of A. To

79

exploit the sparsity with the partitioned matrix, a row-wise copy of each partition A(i) is formed.

For certain LP problems, the coefficient matrix appears in a special format which is, though

well formed, very inefficient when exploiting data parallelism because of load balance. One

such case (LP problem fome13, though formed by duplicating the same LP problems, is an

interesting extreme case for discussion) is illustrated by Figure 4.4.

Figure 4.4: Well formed LP coefficient matrix, poor load balance if partitioned directly.

At first glance, the coefficient matrix is well formed and well partitioned, and it seems require

negligible effort if the coefficient matrix is partitioned into 8 blocks. However, because of the

nature of the simplex method, where the coefficient matrix is updated by Gaussian elimination,

the operation involved in one block will not affect others. Therefore, for the result of price

operation, the pth row of the updated row, its length, and thus the price operation is limited

to one of the block only. Therefore, directly partitioning the coefficient matrix of this extreme

example or other similar formats will lead to poor load balances. Thus, to promote a good load

balance for the simplex method, the coefficient matrix and related bound and cost vectors are

randomly shuffled column-wise before partitioning in PAMI.

Different stages of advanced chuzc

The textbook version of dual chuzc only chooses variable q associated with the smallest ratio

of dual variables ĉ and the updated tableau row âp by

q = arg min âpj/ĉj , for âpj > 0,

which can be easily parallelized. For the most advanced variant of dual chuzc, which involves

both BFRT and Harris two-pass ratio test, and consists of multi stages, exploiting parallelism

is more complicated.

As discussed in Section 3.2.3, the advance dual chuzc can be split into two major stages of

operations

1. chuzc1: Merging various qualification situations by choosing āpj = âpj × sp × δj > 0.

2. chuzc2: Performing bound flipping ratio test (BFRT) with the qualified variables.

The first stage (chuzc1) is a simple one pass operation and thus can be easily parallelized.

Additionally, the chuzc1 on one segment can be performed right after the price operation

associated with that partition, sharing a parallelization initialization with the price operation.

The second stage (chuzc2) is a multi-pass operation where, at the end of each pass, a global

minimization (for ratio) and sum (for primal infeasibility reduction) is computed and used to

decide whether to perform the next pass. The multiple-pass behaviour with global minimization

80

and sum of chuzc2 would require the same number of synchronization (costs microsecond level

of time) operations if it is parallelized. Fortunately, as shown in Table 4.3, a detailed profiling

with the reference set indicates that chuzc2 turns out to be a relative cheap component which,

in average, takes 1.5% of overall solution time and costs only tens of microseconds per iteration.

Therefore, chuzc2 is not parallelized.

Logical part of the LP coefficient matrix

So far, the identity component of the coefficient matrix has not been discussed. When an LP

problem is solved by the revised simplex method, the coefficient matrix of the LP is always

augmented with an identity matrix as A = [Ā|I], where Ā is the coefficient matrix associated

with the LP model. Ā and I, and the associated updated tableau row âp(Ā) and âp(I) are often

called the structural part and the logical part respectively.

Obviously, it is not necessary to perform the price operation for the logical part because

the result of that part is already known as âp(I) = êp. Avoiding computing âp(I) explicitly also

avoids any potential permutation of I or load imbalance without permutation.

One issue associated with avoiding computations of âp(I) is how to parallelize chuzc1

associated with the êp segment, especially considering data affinity when êp is sparse and in

indexed form. Again, inspecting the performance profile gives a simple solution. As shown in

Table 4.3, price and chuzc together cost 27% of overall solution time, while chuzc1 costs 7%.

It is reasonable to assume the chuzc1 associated with êp only would cost less. Therefore, it

follows a mixed parallelism scheme which performs price and chuzc1 for the structural part

in data parallel (with s− 1 processors), while performs chuzc1 for the logical part on a single

processors in task parallel with the data parallel part.

Full parallel scheme of price and chuzc

By incorporating all the considerations above, the full parallel scheme of price and chuzc is

given in Figure 4.5.

CHUZC1

(Logical)

PRICE

CHUZC1

(Structural)

CHUZC2

J (êp)
J (âp(1), âp(2), . . . , âp(s−1))

Figure 4.5: The parallel scheme of price and chuzc in PAMI

In the final parallel scheme, the structural part of the coefficient matrix is partitioned to s−1

segments, leaving one processor performing chuzc1 for the logical segment. The parallelization

finishes after chuzc1, when all the sub lists J (êp) and J (âp(i)), i = 1, 2, . . . , s − 1 are joined

together before chuzc2.

In addition to the parallel scheme, the parallelization for a certain (minor) simplex iteration

is dynamically switched off when the work is known to be trivial. For example, when the updated

êp has only one or tens of non-zero entries, then parallel computation may actually result in

81

worse performance because of the overhead of starting the parallelization environment. In the

actual implementation, the density of êp (threshold 1%) is used decide whether or not to switch

off parallel price and chuzc. The same switching off consideration is applied throughout the

design and implementation of PAMI, especially for the closely related update-dual operation.

4.3.3 Task parallel btran and ftran

The more important part of PAMI is the scope for task parallelization of multiple btran and

ftran. Within PAMI, there are s regular transposed linear systems associated with the initial

s candidates of set P, and up to 3 × t, t ≤ s forward linear systems corresponding to the final

pivoting sequences {pi, qi}t−1
i=0 identified by minor iterations.

Parallel btran operations

In PAMI, the s transposed systems are all solved with Bk before the start of minor iterations.

êT
p = eT

pB
−1, for each p ∈ P,

The btran operations are easily arranged as s parallel tasks in the implementation.

At the beginning of a minor iteration, the most attractive p′ ∈ P is identified and removed

from P as the leaving variable. During the minor iteration, an entering variable q′ is identified

by price and subsequent chuzc. At the end of the minor iteration, for each p remaining in P,

the corresponding btran result êT
p is updated by one APF update (essentially the same as the

update of the pth tableau row by the pivotal row in the tableau simplex method)

êT
p := êT

p −
êT
p aq′

âp′q′
êT
p′ , for each p ∈ P.

In PAMI, the update of êp is performed sequentially if the btran results are generally sparse,

or by exploiting data parallelism if the btran results are generally dense. The operation to

update btran results is called update-rows.

Parallel ftran operations

Compared to solving transposed systems, solving forward systems in PAMI is more complicated.

There are three types of forward systems and three groups of ftran operations in PAMI: t reg-

ular ftrans for obtaining updated tableau columns âq = B−1aq associated with the entering

variable identified during minor iterations; t additional ftran-dse operations for obtaining the

DSE updating vector τ = B−1êp; and up to t ftran-bfrt calculations for updating the primal

solution required by bound flips identified in BFRT. Each system in a group is associated with a

different basis matrix, Bk, Bk+1, . . . , Bk+t−1. For example the t regular forward systems for ob-

taining updated tableau columns are âq0 = B−1
k aq0 , âq1 = B−1

k+1aq1 , . . . , âqt−1 = B−1
k+t−1aqt−1 .

For regular ftran and ftran-dse, the ith linear system (which requires B−1
k+i) in each

group, is solved by starting from B−1
k and then a few PF transformations given by âqj , j < i

bring the result up to date. The operations with B−1
k and PF transformations are called

the inverse part and the update part respectively. The inverse part is easily arranged as a task

parallel computation. The update part of the regular ftran operations requires results of other

forward systems in the same group and thus cannot be performed as task parallel calculations,

82

but it is possible and valuable to exploit data parallel in PF update when âqi is large and

dense. For the group ftran-dse, it is possible to fully exploit task parallelism if this group

is arranged as calculations standalone after the regular ftran. However, when implementing

PAMI, both ftran-dse and regular ftran are arranged together as a bunch of parallel tasks,

where the update part of ftran-dse is also performed afterwards with potential scope for data

parallelization.

The group of up to t linear systems with ftran-bfrt is slightly different from the other

two groups of ftran operations. Firstly, there may be 0 to t linear systems depending how

many minor iterations are associated with actual bound flips. More importantly, the result of

ftran-bfrt is only used to update the primal solutions xB by simple vector addition, which

can be expressed as a single operation

xB := xB +

t−1∑
i=0

B−1
k+iaFi = xB +

t−1∑
i=0

 0∏
j=i−1

E−1
j B−1

k aFi

 (4.1)

where one or more of aFi may be a zero vector. By using the regular PF update, each ftran-

bfrt operation starts from the same basis inverse B−1
k but finishes with different numbers of

PF update operations. Although these operations are highly related to each other, they cannot

be combined. On the other hand, if an APF update (introduced in Section 2.5.1) is used before

applying B−1
k , so that B−1

k+i can be expressed as

B−1
k+i = B−1

k T−1
0 . . . T−1

i−1,

then the primal update equation (4.1) can be rewritten as

xB := xB +

t−1∑
i=0

B−1
k

i−1∏
j=0

T−1
j aFi

 (4.2)

where the t linear systems start with a light-weight APF update part and finish with the same

B−1
k and thus can be combined as one. By using this approach, the forward linear systems

associated with BFRT are always simplified as one (unless there was none originally). An

additional benefit of this combination is that the update-primal operation is also reduced to

a single operation after the combined ftran-bfrt.

By combining several ftran-bfrt operations into one, the number of forward linear systems

is reduced to 2× t+ 1, or 2× t when no bound flips are performed. An additional benefit with

this combination is that, when t < s, the total forward linear systems to solve is less than

2× s, so that in average each of s processors will solve two linear systems. On the other hand,

when t = s and there is ftran-bfrt, one of the s processors is required to solve three linear

systems, while the other processors are assigned only two, resulting in an “orphan task”. To

avoid this situation, the number of minor iterations is limited to t = s − 1 if bound flips have

been performed in previous t− 1 iterations.

This combination is extended to include the regular ftran by adding θpi
× aqi to aFi, so

that there is only a single update-primal required over all. Even when there is no ftran-

bfrt originally, unless t < s, the regular ftran operations are still combined to perform

update-primal more efficiently.

However, different from the major benefit of avoiding each single ftran-bfrt with aFi,

83

combining regular ftran does not avoid solving the original forward system as the result âqi

is required together with τ i in update-weight operations for updating the DSE weight.

As for the possibility of using APF for other ftran operations to avoid a standalone update

phase with regular PF updates, using it with regular ftran is not possible, as the intermediate

result of regular ftran with B−1
k is required to perform Forrest-Tomlin update. Using APF

with ftran-dse is possible, but it would require a relatively expensive dot product of each two

different epj , epi , which may be less efficient than regular PF update.

The detail of the task parallel ftran operations discussed so far is summarized in Figure 4.6.

In the actual implementation, the 2× t+ 1 ftran operations are all started the same time as

parallel tasks, and the processors are left to decide which ones to perform.

FTRAN

BFRT

FTRAN

FTRAN

DSE

FTRAN

FTRAN

DSE

FTRAN

FTRAN

DSE

FTRAN UPDATE

Figure 4.6: Task parallel scheme of all ftran operations in PAMI

4.3.4 Basis inversion and its update

Since the invert operation is a long sequence of (up to m) highly sparse Gaussian eliminations,

it is extremely hard to exploit any parallelism.

Though it is possible to overlap invert with major iterations, as pointed out by Hall and

McKinnon [29], the overlapping may cause numerical problems. Also because the difficulty

of implementation, the overlapping scheme is not currently included in PAMI. From another

aspect, a quick improvement for PAMI can be achieved by performing invert less frequently.

As discussed in Section 2.4.4, in the sequential code, the reinversion interval is determined by

comparing the accumulated time (t+U) of the FT update part of ftran (including ftran-dse)

and btran operations since last invert to the time (tI) spent on last invert. For the sequential

simplex implementation, Once t+U > tI a reinversion is performed. In the PAMI, the actual time

spent on FT update part is reduced because linear systems are solved in parallel. Therefore,

a slightly larger threshold is used to allow a larger reinversion interval. In implementation of

PAMI, the threshold is set to t+U = 1.5× tI .
The update of basis inverse representation with PAMI is achieved by the collective Forrest-

Tomlin (CFT) as introduced in Section 2.5.3. By using CFT, the basis inverse representation

is updated directly from B−1
k to B−1

k+t. The CFT is always performed sequentially. The design

and implementation of CFT is motivated by PAMI.

4.3.5 Major and minor chuzr

The only computational component which has not yet been discussed is chuzr, including major

chuzr for forming the set P and minor chuzr for choosing pivots from it.

84

In terms of parallelization, major chuzr exhibits scope for simple data parallelization. When

the LP system is relatively dense, major chuzr can be performed in data parallel. When the

LP system is sparse, by using hyper-sparse major chuzr (introduced in Section 3.2.2), often

there are only hundreds of candidates to examine, and thus requires no parallelization.

In terms of efficiency of choosing pivots for PAMI, chuzr is extremely important and more

complicated. If lots of candidates are initially identified in a major chuzr but are no longer

qualified or attractive before used, then it results in a big waste of time on other components,

especially the task parallel btran operations. On the other hand, if less qualified candidates

are often chosen in minor chuzr after the first minor iteration, then it may lead to a much

larger number of simplex iterations.

This section discusses how the quality of candidates can be controlled.

Controlling the quality of candidates in minor chuzr

In PAMI, the quality of a candidate p ∈ P is measured by a relative cutoff ratio ψ and its

attractiveness αp. During minor iterations, if the attractiveness of a candidate p drops below

its initial value αi
p computed in major chuzr by

αp < ψαi
p,

then this candidate is dropped. Within the framework of DSE, the attractiveness is defined as

αp = ∆x2
p/||êp||22, where ∆xi =


lp − xp if xp < lp

xp − up if xp > up

0 otherwise

.

To determine the best choices of ψ, a series of experiments have been carried out for the

reference set (30 LP problems) with various cutoff ratios ranging from 1.001 to 0.01. Compu-

tational results are presented in Table 4.4.

Cutoff ratio ψ = 1.001 corresponds to a special situation, where candidates associated with

improved attractiveness are chosen. The speedup with ψ = 1.001 is as can be expected, poor.

Cutoff ratio ψ = 0.999 (the value 0.999 is used rather than 1.0 to introduce a tolerance to

exclude numerical noise) corresponds to a boundary situation, where candidates associated with

same or better attractiveness are chosen. Under this cutoff ratio, an average speedup of 1.52 is

achieved.

With different cutoff ratio 0.9 ≤ ψ ≤ 0.999, there is no really difference in the performance

of PAMI. The average speedup and counts of larger speedup (columns headed “#1.6 speedup”,

“#1.8 speedup” and “#2 speedup”) instances are relatively stable.

Starting from ψ = 0.9, decreasing the cutoff merit results in a clear decrease of the average

speedup, though the counts of larger speedup remains stable until ψ = 0.5.

In summary, experiments suggest that the any value in interval [0.9, 0.999] can be chosen as

the cutoff ratio, and in PAMI, the median ψ = 0.95 is chosen.

4.3.6 Computational results and analysis

The performance of PAMI is assessed in this section by comparing with the HSOL and the

serial version of PAMI. Numerical results are presented in Table 4.5.

85

cutoff (ψ) speedup #1.6 speedup #1.8 speedup #2.0 speedup
1.001 1.12 1 1 0
0.999 1.52 11 7 5
0.99 1.54 13 6 4
0.98 1.53 15 8 5
0.97 1.48 11 6 5
0.96 1.52 12 8 6
0.95 1.49 13 8 4
0.94 1.56 13 8 4
0.93 1.47 13 9 4
0.92 1.52 14 7 4
0.91 1.52 14 5 3
0.9 1.50 12 9 4
0.8 1.46 13 9 3
0.7 1.46 15 9 4
0.6 1.44 11 8 6
0.5 1.42 13 5 3
0.2 1.36 10 6 4
0.1 1.29 10 7 3
0.05 1.16 9 4 2
0.02 1.28 10 6 2
0.01 1.22 8 5 3

Table 4.4: Experiments with different cutoff merit for controlling candidate quality in PAMI

The solution times of HSOL, the serial version of AMI and PAMI running in parallel with

8 cores are listed in columns headed SEQ, PAMI1 and PAMI8 respectively in Table 4.5. The

last two columns headed ftran and btran, indicating the occurrence of hyper-sparse results,

are included for reference.

For more than 65% of the reference set, the speedup of PAMI compared to its sequential

version is more than 2, with an average of 2.23. However, when compared to the regular

dual simplex method, the sequential version of PAMI is generally the less efficient (about 30%

slower) implementation. The overall speedup of PAMI is thus compromised, resulting in a

speedup (over HSOL) of about 1.5 on average. When solved with PAMI, 8 out of 30 instances

achieved more than 1.8 speedup, and the best speedup obtained in 2.53.

It is worth noting that the instances with better speedup (greater than the average) are more

associated with the relatively dense LP problems (where occurrence of hyper-sparse ftran and

btran is low). This happens partially because PAMI frequently leads to a smaller number of

iterations for the dense problems. For example, the iteration counts when solving dfl001 with

HSOL and PAMI are 26322 and 23668 respectively. However, the performance of PAMI1 is

worse than HSOL because of wasted btran operations and other inefficiencies of PAMI1.

The performance of PAMI for solving dense instances is not even. The worst cases are

also associated with dense LP problems. For example, using PAMI to solve maros-r7 and

Linf 520c, results in slowdown in both case, and almost no speedup is obtained for SELF.

This can be explained with reference to the profiling of computational components provided

in Table 4.3, where the proportion for invert of these three models is the biggest among all

dense LP problems.

The performance of PAMI when solving hyper-sparse LP problems is moderate but relatively

stable. Out of the three best instances of the hyper-sparse problems, namely cre-b, sgpf5y6

and stp3d, the large percentage (see Table 4.3 for reference) of price (42.9% for cre-b and

86

Solution time Speedup Sparsity
Model seq pami1 pami8 p1/seq p8/p1 p8/seq ftran btran
cre-b 6.2 5.1 3.2 1.21 1.62 1.95 100 83
dano3mip lp 52.6 76.9 24.8 0.68 3.10 2.12 1 6
dbic1 78.9 141.3 60.0 0.56 2.36 1.31 100 83
dcp2 12.9 16.0 8.5 0.81 1.89 1.52 100 97
dfl001 15.7 23.7 8.6 0.66 2.74 1.81 34 57
fome12 99.5 159.4 61.9 0.62 2.58 1.61 45 58
fome13 256.1 371.0 168.5 0.69 2.20 1.52 100 98
ken-18 13.5 16.0 10.4 0.84 1.54 1.30 100 100
l30 10.9 23.3 8.5 0.47 2.74 1.29 10 8
Linf 520c 3460.6 9182.9 4587.5 0.38 2.00 0.75 10 11
lp22 22.0 36.4 13.2 0.61 2.75 1.67 13 22
maros-r7 11.3 37.4 24.0 0.30 1.56 0.47 5 13
mod2 52.7 103.2 40.7 0.51 2.53 1.29 46 68
ns1688926 24.8 41.2 19.6 0.60 2.10 1.26 72 100
nug12 125.2 197.8 70.5 0.63 2.81 1.78 1 20
pds-40 28.4 42.2 21.0 0.67 2.00 1.35 100 98
pds-80 66.0 109.4 57.0 0.60 1.92 1.16 100 99
pds-100 84.3 122.8 65.5 0.69 1.88 1.29 100 99
pilot87 6.6 11.0 4.4 0.60 2.48 1.50 10 19
qap12 157.5 170.9 62.1 0.92 2.75 2.53 2 15
self 39.0 66.2 36.5 0.59 1.81 1.07 0 2
sgpf5y6 169.0 213.5 88.8 0.79 2.40 1.90 100 100
stat96v4 156.7 235.3 67.3 0.67 3.50 2.33 73 31
stormG2-125 9.4 11.0 6.5 0.85 1.70 1.44 100 100
stormG2-1000 427.0 576.6 256.7 0.74 2.25 1.66 100 100
stp3d 565.2 546.3 234.9 1.03 2.33 2.41 95 70
truss 7.9 10.8 4.0 0.73 2.67 1.94 37 2
watson 1 50.2 59.4 32.4 0.85 1.83 1.55 100 100
watson 2 53.6 57.5 33.3 0.93 1.72 1.61 100 100
world 65.1 120.7 47.5 0.54 2.54 1.37 41 61
Geomean 50.8 76.0 34.1 0.67 2.23 1.49

Table 4.5: Performance and speedup of PAMI

1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

PAMI Clp Cplex

Figure 4.7: Elapsed-time profile of PAMI, Clp and Cplex

87

19.2% for stp3d) and ftran-dse (80.7% for sgpf5y6 and 27% for stp3d) explains the good

speedup. In PAMI, the price and ftran-dse components, can be performed efficiently as task

parallel and data parallel computations respectively, and therefore a larger percentage of these

components yields a natural source of speedup.

The overall performance of PAMI is assessed via the performance profile shown in Fig-

ure 4.7. As the figure indicates, the performance of PAMI is comparable with the dual simplex

implementation of Cplex, a world-leading commercial LP solver.

4.3.7 Real time behaviour

This section further analyses the performance of PAMI, especially the relative poor speedup

on sparse LP problems, by investigating real time behaviour of PAMI by using Gantt charts.

Table 4.6 lists the colours used for representing different computational components. Related

components are grouped with a family of colours.

Colour Component
chuzr
btran
price
chuzc1
chuzc2
update-rows
update-dual
ftran
ftran-dse
ftran-bfrt
update-primal
update-weight
update-factor

Table 4.6: Colours for different components

Sparse LP problem 1

Figure 4.8 illustrates the real time behaviour at the 20000th major iteration (with 7 minor

iterations) when solving the hyper-sparse LP problem watson 2 with PAMI.

Figure 4.8: PAMI behaviour: watson 2, 20000th major iteration, 7 minor iterations, 275 ms

This illustration shows one major limitation of PAMI, that when the LP problem is hyper-

sparse, then “cheap components” chuzr, price, chuzc (merely visible between btran and

ftran) and even update-primal are all performed sequentially to avoid slowdown from

the parallelization overhead. This arrangement inevitably limits the overall speedup as it is

obviously counted as the sequential proportion in Amdahl’s Law.

88

Sparse LP model 2

Figure 4.9 illustrates another typical case when applying PAMI to sparse LP problems. It shows

the 5800th major iteration when solving pds-20, which contains 6 minor iterations.

Figure 4.9: PAMI behaviour: pds-20, 5800th major iteration, 6 minor iterations, 641 ms

In additional to the “cheap components” issue there is an obvious load imbalance in this

instance. One btran and the combined ftran-bfrt clearly dominate the whole btran and

ftran operations respectively. The reason for this load imbalance, as discussed in Section 3.3,

can be explained as the occasional inefficiency of the DSE framework for certain families of LP

problems (for example, pds problems), that it tend to choose a pivot associated with dense

btran result. When the LiDSE approach is used, the expected real time behaviour when

solving pds-20 is expect to be similar to that of watson 2.

4.4 Exploiting single iteration parallelism

This section introduces a relative simple approach which explores single iteration parallelism

(SIP) of the dual simplex algorithm.

4.4.1 Data dependency and parallelization scheme

Experience with PAMI shows that, the sequential PAMI (which is essentially a dual simplex

variant) frequently results in a worse simplex solving path compared to the regular version.

Thus, although the relative speedup of PAMI8 to PAMI1 is reasonably good, it diminishes

when compared with the regular sequential version. This issue motivated another approach

which exploits purely single iteration parallelism (SIP) of the regular dual simplex method.

SIP is a further development of the work [8] of Bixby and Martin in the late 1990s. In

their work, the ftran and ftran-dse are solved together sequentially rather than in parallel

as the computational experience suggested so. However, the costs of ftran and ftran-dse

are typically very different because of the discovery and exploitation of hyper-sparsity since

the 2000s. For many LP problems, the time required by ftran is generally much less than

that of ftran-dse. Moreover, the ftran-bfrt component, for the bound-flipping ratio test,

whose density and cost is similar to ftran, is not included in their discussion. Because of

these developments of the dual simplex method, the parallelization scope of ftran operations

deserves further consideration, which jointly motivated the design and implementation of SIP.

The mixed parallelization scheme of SIP is illustrated in Figure 4.10. Data dependency

of each computational component is also labelled in the figure. price and chuzc share a

similar permutation and partitioning scheme as discussed in Section 4.3.2. The only difference

is that for SIP, the matrix is partitioned into s− 2 parts because one of the processor is used to

perform the ftran-dse, in parallel with price and chuzc. Also the subsequent update-dual

is arranged as a single task as its cost is relatively less than other components.

89

CHUZR

BTRAN

p

FTRAN

DSE

(τ = B−1êp)

CHUZC1

(Logical)
PRICE + CHUZC1

(Structural)

êp êp êp

CHUZC2

J(L) J(S)

FTRAN

q

FTRAN

BFRT

F

UPDATE

DUAL

θd

UPDATE

WEIGHT

τ âq

UPDATE

PRIMAL

âq âF

Figure 4.10: SIP data dependency and parallelization scheme

Compared to the regular sequential simplex method, the only difference besides coefficient

matrix permutation is that the ftran-dse is performed by firstly copying êp. In the regular

dual simplex method, τ and êp can share the same memory space if ftran-dse is arranged

after chuzc.

4.4.2 Computational results and analysis

The computational performance and speedup of SIP when using 8 processors is given in Ta-

ble 4.7. The data for PAMI, and occurrence of hyper-sparse results (in columns headed ftran

and btran) are included for reference.

Clearly the overall performance and average speed (1.13) of SIP is inferior to PAMI. This

is because SIP, after all, exploits only limited parallelism.

The worst cases when using SIP are associated with the hyper-sparse LP problems, where

applying SIP to most of them results in slowdown. A typical example is sgpf5y6, where the

proportion of ftran-dse is more than 80% and the total proportion of price, chuzc, ftran

and update-dual is less than 5%. Therefore, when performing ftran-dse and the rest as

task parallel operations, the overall performance is not only limited by ftran-dse, but also

the competition for memory accessing by the other components and the cost for setting up the

parallel environment will slow down the ftran-dse.

On the other hand, when applied to dense LP problems, the performance of SIP is moderate

90

Solution time Speedup Sparsity
Model SEQ SIP PAMI SIP PAMI ftran btran
cre-b 6.2 5.7 3.2 1.08 1.95 100 83
dano3mip lp 52.6 35.4 24.8 1.49 2.12 1 6
dbic1 78.9 65.1 60.0 1.21 1.31 100 83
dcp2 12.9 10.5 8.5 1.23 1.52 100 97
dfl001 15.7 12.2 8.6 1.28 1.81 34 57
fome12 99.5 81.3 61.9 1.22 1.61 45 58
fome13 256.1 207.4 168.5 1.24 1.52 100 98
ken-18 13.5 17.1 10.4 0.79 1.30 100 100
l30 10.9 8.5 8.5 1.28 1.29 10 8
Linf 520c 3460.6 2644.6 4587.5 1.31 0.75 10 11
lp22 22.0 15.1 13.2 1.45 1.67 13 22
maros-r7 11.3 10.1 24.0 1.12 0.47 5 13
mod2 52.7 42.3 40.7 1.25 1.29 46 68
ns1688926 24.8 20.1 19.6 1.23 1.26 72 100
nug12 125.2 108.3 70.5 1.16 1.78 1 20
pds-40 28.4 24.6 21.0 1.16 1.35 100 98
pds-80 66.0 63.1 57.0 1.05 1.16 100 99
pds-100 84.3 79.7 65.5 1.06 1.29 100 99
pilot87 6.6 5.1 4.4 1.31 1.50 10 19
qap12 157.5 190.8 62.1 0.83 2.53 2 15
self 39.0 28.7 36.5 1.36 1.07 0 2
sgpf5y6 169.0 252.2 88.8 0.67 1.90 100 100
stat96v4 156.7 76.4 67.3 2.05 2.33 73 31
stormG2-125 9.4 12.3 6.5 0.76 1.44 100 100
stormG2-1000 427.0 510.2 256.7 0.84 1.66 100 100
stp3d 565.2 492.1 234.9 1.15 2.41 95 70
truss 7.9 5.0 4.0 1.58 1.94 37 2
watson 1 50.2 62.6 32.4 0.80 1.55 100 100
watson 2 53.6 68.4 33.3 0.78 1.61 100 100
world 65.1 51.3 47.5 1.27 1.37 41 61
Geomean 50.8 44.8 34.1 1.13 1.49

Table 4.7: Performance and speedup of SIP

and relative stable. This is especially so for these instances where PAMI results in clear slow-

down: for Linf 520c, maros-r7, applying SIP achieves speedup of 1.31 and 1.12 respectively.

In summary, SIP, as a straightforward parallelization approach which exploits purely single

iteration parallelism, achieves relatively poor speedup for general LP problems compared to

PAMI. However, SIP is frequently complementary to PAMI in achieving speedup when PAMI

results in slowdown.

4.4.3 Real time behaviour

The real time behaviour of SIP and the same iteration solved by HSOL are shown in Figure 4.11

by a Gantt chart with the LP model dfl001 at the 10000th dual simplex iteration. The same

colour scheme in Table 4.6 is applied.

This illustration provides a chance to closely examine the overhead and efficiency of the

parallelization scheme. Firstly, each single ftran operation (ftran in , ftran-dse in

and ftran-bfrt in), especially the ftran-dse in SIP is longer than that in HSOL. This

is inevitable since simplex parallelization involves competition for memory access. Moreover,

although the price operation achieves speedup and load balance, the parallelization perfor-

91

Figure 4.11: SIP behaviour: dfl001, 10000th iteration, 754 ms, and the same iteration solved
by HSOL, 1144 ms

mance is highly limited by both the memory bound and the inherent inefficiency when using the

partitioned matrix where, for the row-wise matrix-vector product, each row of the sub-matrix

is much shorter than in the original matrix. The speedup of SIP is limited by these issues.

The same argument also holds for PAMI, especially for price and chuzc.

4.5 Summary

This chapter has introduced and analysed previous simplex parallelization attempts and de-

scribed the design and development of two novel parallel dual revised simplex method imple-

mentations.

One parallelization, PAMI, achieves a speedup of 1.49 on average. Though the speedup is

not extremely impressive, the overall performance of PAMI is comparable to the dual simplex

implementation of Cplex, which is a world-leading commercial simplex solver.

For the relatively straightforward implementation, SIP, although it achieves merely 1.13

speedup on average, it is frequently complementary to PAMI in achieving speedup when PAMI

results in slowdown.

92

Chapter 5

Conclusions and future work

This thesis has reported the implementation of a competitive sequential dual simplex solver

and the design and development of two dual simplex parallel frameworks. The resulting se-

quential solver, HSOL, and one parallelization, PAMI (parallelism across multiple iterations)

are comparable with the dual simplex implementations of an established public domain solver,

Clp and a world-leading commercial solver, Cplex respectively. The other parallelization, SIP

(single iteration parallelism) is frequently complementary to PAMI in achieving speedup when

PAMI results in slowdown.

Contribution to the sequential simplex method

The research and (re)implementation of the sequential dual simplex method have resulted in

many novel developments.

When implementing the linear system solution techniques, three novel simplex update vari-

ants have been developed. One of them, the MPF (middle product form) update, is comparable

with the established FT (Forrest-Tomlin) update in terms of efficiency, but implementationally

is much more straightforward. The other two, the CFT (collective Forrest-Tomlin) update and

the APF (alternate product form) update are both key components in the PAMI parallelization

framework.

When implementing the sequential dual simplex method, a phenomenon called hyper-

sparsity promotion has been identified when cost perturbation is used. Further investigation

has revealed that cost perturbation encourages the BFRT (bound flipping ratio test), which

reduces the attractiveness of the dense tableau rows and thus reduces the appearance of them

in dual chuzr, leading to overall hyper-sparsity promotion. By following this explanation,

two alternative approaches, partial chuzr and LiDSE (less infeasibility DSE), for promoting

hyper-sparsity have been experimented. The LiDSE approach has been found very successful

for certain families of LP problems.

Design and development of parallel simplex solvers

Based on the efficient implementation of the sequential dual simplex method, two parallel dual

simplex solvers have been designed and developed.

One relatively complicated parallelization, PAMI is based on a less-known pivoting rule

called suboptimization. Suboptimization provided the scope for parallelism across multiple

93

iterations but, as a pivoting rule, it is generally inferior to the regular dual steepest-edge

algorithm. Thus, to control the qualities of the pivots, which often decline during PAMI, a cutoff

merit is necessary. A suitable cutoff merit, 0.95, has been found via series of experiments. For

the reference set, PAMI provides an average speedup of 1.49. Though not extremely impressive,

the performance of PAMI is comparable to the dual simplex implementation of Cplex, which is

a world-leading commercial simplex solver.

The other parallelization, SIP exploits purely single iteration parallelism. Though the av-

erage speedup, 1.13, is worse than that of PAMI, it is frequently complementary to PAMI in

achieving speedup when PAMI results in slowdown. For example, when solving the LP problem

Linf 520c of the reference set, PAMI solved 25% slower than the sequential solver while SIP

achieved a moderate speedup of 1.31.

Future work

There are many possible future tasks.

Improving the serial implementation. The implementation of the dual revised simplex

method, though it included both DSE and BFRT, is still a relatively straightforward one. For

example, BFRT is not possible when none of the nonbasic variables is a BOXED variable, but

in HSOL, a BFRT is still performed to keep using the same software procedure. In a more

sophisticated implementation, handling this situation by using a regular dual ratio test (Harris

ratio test) is expected to be more efficient. There are many possible improvements in this

sense. In this research, it has been intended to keep the serial implementation simple so that

parallelization can be relatively easily designed and implemented. Now that the paralleliza-

tion framework is ready, it is desirable to polish the serial implementation to achieve better

performance in both serial and parallel simplex solvers.

Promoting hyper-sparsity. Although the investigation into hyper-sparsity promotion

though led to the successful LiDSE approach, it still at an initial stage. For the LiDSE approach,

it is possibly to develop an “ad hoc” mechanism to activate it whenever necessary. Further study

on this topic is expected to result in more alternative approaches.

Overlapping inversion. One reason for the relative poor speedup of PAMI is that the

time-consuming sequential LU factorization is not overlapped with the simplex iterations. It has

been reported [35, 6] that overlapping just the LU factorization with simplex iterations provides

a speedup of 1.3 to 1.5 for certain LP problems. It is expected to promote the performance of

PAMI further if is included in the parallelization framework. The lack of overlapping is partially

because of its complicity and partially because of the potential numerical issues as pointed out

by Hall and McKinnon [29]. However, previous work uses the PF update to bring the new basis

inverse up-to-date. In future, it will be possible to enhance the overlapping scheme by using

the FT update, in a recompute-and-catchup manner to bring the new basis inverse up-to-date.

The recomputation is expected, to some extent, to resolve the numerical issue.

94

Bibliography

[1] C. Aykanat, A. Pinar, and Ü. V. Çatalyürek. Permuting sparse rectangular matrices into
block-diagonal form. SIAM Journal on Scientific Computing, 25(6):1860–1879, 2004.

[2] E.-S. Badr, M. Moussa, K. Paparrizos, N. Samaras, and A. Sifaleras. Some computational
results on MPI parallel implementation of dense simplex method. Trans Eng Comput
Technol, (17):228–231, 2006.

[3] J. Benders. Partitioning procedures for solving mixed-variables programming problems.
Numerische Mathematik, 4:238–252, 1962.

[4] M. Benichou, J. Gauthier, G. Hentges, and G. Ribiere. The efficient solution of large-
scale linear programming problemssome algorithmic techniques and computational results.
Mathematical Programming, 13:280–322, 1977.

[5] J. Bieling, P. Peschlow, and P. Martini. An efficient GPU implementation of the re-
vised simplex method. In Parallel Distributed Processing, Workshops and Phd Forum
(IPDPSW), 2010 IEEE International Symposium on, pages 1 –8, 2010.

[6] R. Bixby and M. Schwabacher. Solving linear programs with two processors. Technical Re-
port TR89-16, Department of Computational and Applied Mathematics, Rice University,
1989.

[7] R. E. Bixby. Solving real-world linear programs: A decade and more of progress. Operations
Research, 50(1):3–15, 2002.

[8] R. E. Bixby and A. Martin. Parallelizing the dual simplex method. INFORMS Journal on
Computing, 12(1):45–56, 2000.

[9] V. Chvátal. Linear Programming. Series of Books in the Mathematical Sciences. W. H.
Freeman, 1983.

[10] COIN-OR. Clp. http://www.coin-or.org/projects/Clp.xml. Accessed: 10/01/2013.

[11] Z. Cvetanovic, E. Freedman, and C. Nofsinger. Efficient decomposition and performance
of parallel PDE, FFT, Monte Carlo simulations, simplex, and sparse solvers. The Journal
of Supercomputing, 5:219–238, 1991.

[12] G. B. Dantzig and P. Wolfe. Decomposition principle for linear programs. Operations
Research, 8(1):101–111, 1960.

[13] I. S. Duff. MA28 – A set of fortran subroutines for sparse unsymmetric linear equations.
Technical Report AERE R8730, AERE Harwell, 1977.

[14] J. Eckstein, I. I. Boduroglu, L. C. Polymenakos, and D. Goldfarb. Data-parallel imple-
mentations of dense simplex methods on the Connection Matching CM-2. ORSA Journal
on Computing, 7(4):402–416, 1995.

[15] S. K. Eldersveld and M. A. Saunders. A block-LU update for large-scale linear program-
ming. SIAM Journal on Matrix Analysis and Applications, 13:191–201, 1992.

[16] R. Elwes. The algorithm that runs the world. New Scientist, 215(2877):32 – 37, 2012.

95

http://www.coin-or.org/projects/Clp.xml

[17] J. J. Forrest and D. Goldfarb. Steepest-edge simplex algorithms for linear programming.
Mathematical Programming, 57:341–374, 1992.

[18] J. J. H. Forrest and J. A. Tomlin. Updated triangular factors of the basis to maintain
sparsity in the product form simplex method. Mathematical Programming, 2:263–278,
1972.

[19] R. Fourer. Notes on the dual simplex method. Technical report, Department of Industrial
Engineering and Management Sciences Northwestern University, 1994. Unpublished.

[20] J. R. Gilbert and T. Peierls. Sparse partial pivoting in time proportional to arithmetic
operations. SIAM Journal on Scientific and Statistical Computing, 9(5):862–874, 1988.

[21] P. E. Gill, W. Murray, M. A. Saunders, and M. H. Wright. Sparse matrix methods in
optimization. SIAM Journal on Scientific and Statistical Computing, 5:562–589, 1984.

[22] P. E. Gill, W. Murray, M. A. Saunders, and M. H. Wright. A practical anti-cycling
procedure for linearly constrained optimization. Mathematical Programming, 45:437–474,
1989.

[23] D. Goldfarb and J. K. Reid. A practical steepest-edge simplex algorithm. Mathematical
Programming, 12:361–371, 1977.

[24] J. Gondzio. Presolve analysis of linear programs prior to applying an interior point method.
INFORMS Journal on Computing, 9(1), 1997.

[25] N. Gould and P. L. Toint. Preprocessing for quadratic programming. Math. Program.,
100(1):95–132, 2004.

[26] J. Hall and Q. Huangfu. A high performance dual revised simplex solver. In Proceedings of
the 9th international conference on Parallel Processing and Applied Mathematics - Volume
Part I, PPAM’11, pages 143–151, Berlin, Heidelberg, 2012. Springer-Verlag.

[27] J. A. J. Hall. Sparse matrix algebra for active set methods in linear programming. PhD
thesis, University of Dundee Department of Mathematics and Computer Science, 1991.

[28] J. A. J. Hall. Towards a practical parallelisation of the simplex method. Computational
Management Science, 7:139–170, 2010.

[29] J. A. J. Hall and K. I. M. McKinnon. Update procedures for the parallel revised sim-
plex method. Technical Report MSR 92-13, Department of Mathematics and Statistics,
University of Edinburgh, 1992.

[30] J. A. J. Hall and K. I. M. McKinnon. PARSMI, a parallel revised simplex algorithm
incorporating minor iterations and Devex pricing. In J. Waśniewski, J. Dongarra, K. Mad-
sen, and D. Olesen, editors, Applied Parallel Computing, volume 1184 of Lecture Notes in
Computer Science, pages 67–76. Springer, 1996.

[31] J. A. J. Hall and K. I. M. McKinnon. ASYNPLEX, an asynchronous parallel revised
simplex method algorithm. Annals of Operations Research, 81:27–49, 1998.

[32] J. A. J. Hall and K. I. M. McKinnon. Hyper-sparsity in the revised simplex method and
how to exploit it. Computational Optimization and Applications, 32(3):259–283, December
2005.

[33] P. M. J. Harris. Pivot selection methods of the Devex LP code. Mathematical Programming,
5:1–28, 1973.

[34] R. Helgason, J. Kennington, and H. Zaki. A parallelization of the simplex method. Annals
of Operations Research, 14:17–40, 1988.

[35] J. Ho and R. Sundarraj. On the efficacy of distributed simplex algorithms for linear
programming. Computational Optimization and Applications, 3:349–363, 1994.

96

[36] Q. Huangfu and J. J. Hall. Novel update techniques for the revised simplex method.
Technical Report ERGO-13-001, School of Mathematics, University of Edinburgh, 2013.

[37] IBM. ILOG CPLEX Optimizer. http://www.ibm.com/software/integration/

optimization/cplex-optimizer/.

[38] A. Koberstein. Progress in the dual simplex algorithm for solving large scale LP prob-
lems: techniques for a fast and stable implementation. Computational Optimization and
Applications, 41(2):185–204, November 2008.

[39] A. Koberstein and U. H. Suhl. Progress in the dual simplex method for large scale LP prob-
lems: practical dual phase 1 algorithms. Computational Optimization and Applications,
37(1):49–65, May 2007.

[40] M. Lalami, D. El-Baz, and V. Boyer. Multi GPU implementation of the simplex algo-
rithm. In High Performance Computing and Communications (HPCC), 2011 IEEE 13th
International Conference on, pages 179 –186, 2011.

[41] C. E. Lemke. The dual method of solving the linear programming problem. Naval Research
Logistics Quarterly, 1(1):36–47, 1954.

[42] M. Lentini, A. Reinoza, A. Teruel, and A. Guillen. SIMPAR: a parallel sparse simplex.
Computational and Applied Mathematics, 14(1):49–58, 1995.

[43] M. Lubin, J. Hall, C. Petra, and M. Anitescu. Parallel distributed-memory simplex for
large-scale stochastic LP problems. Computational Optimization and Applications, pages
1–26, 2013.

[44] H. Markowitz. The elimination form of the inverse and its application to linear program-
ming. Management Science, 3:255–296, 1957.

[45] I. Maros. Computational Techniques of the Simplex Method. Kluwer Academic Publishers,
Boston, 2002.

[46] I. Maros and G. Mitra. Investigating the sparse simplex algorithm on a distributed memory
multiprocessor. Parallel Comput., 26(1):151–170, 2000.

[47] K. I. M. McKinnon and F. Plab. An upper bound on parallelism in the forward transfor-
mation within the revised simplex method. Technical report, Department of Mathematics
and Statistics, University of Edinburgh, 1997.

[48] H. D. Mittelmann. Benchmarks for optimization software. http://plato.la.asu.edu/

bench.html. Accessed: 10/01/2013.

[49] W. Orchard-Hays. Advanced Linear programming computing techniques. McGraw-Hill,
New York, 1968.

[50] C. E. Pfefferkorn and J. A. Tomlin. Design of a linear programming system for the ILLIAC
IV. Technical Report SOL 76-8, Systems Optimization Laboratory, Stanford University,
1976.

[51] R. R. Rosander. Multiple pricing and suboptimization in dual linear programming algo-
rithms. Mathematical Programming Study, 4:108–117, 1975.

[52] W. Shu. Parallel implementation of a sparse simplex algorithm on MIMD distributed
memory computers. Journal of Parallel and Distributed Computing, 31(1):25 – 40, 1995.

[53] D. Spampinato and A. Elster. Linear optimization on modern GPUs. In Parallel Distributed
Processing, 2009. IPDPS 2009. IEEE International Symposium on, pages 1 –8, 2009.

[54] C. B. Stunkel and D. A. Reed. Hypercube implementation of the simplex algorithm. In
Proceedings of the third conference on Hypercube concurrent computers and applications -
Volume 2, pages 1473–1482, New York, NY, USA, 1988. ACM.

97

http://www.ibm.com/software/integration/optimization/cplex-optimizer/
http://www.ibm.com/software/integration/optimization/cplex-optimizer/
http://plato.la.asu.edu/bench.html
http://plato.la.asu.edu/bench.html

[55] U. H. Suhl and L. M. Suhl. Computing sparse LU factorizations for large-scale linear
programming bases. ORSA Journal on Computing, 2(4):325–335, 1990.

[56] M. E. Thomadakis and J.-C. Liu. An efficient steepest-edge simplex algorithm for SIMD
computers. In Proceedings of the 10th international conference on Supercomputing, ICS
1996, pages 286–293, 1996.

[57] J. A. Tomlin. Pivoting for size and sparsity in linear programming inversion routines.
Journal of the Institute of Mathematics and its Applications, 10:289–295, 1972.

[58] J. A. Tomlin. On pricing and backward transformation in linear programming. Mathemat-
ical Programming, 6:42–47, 1974.

[59] P. Wolfe. A technique for resolving degeneracy in linear programming. Journal of the
Society for Industrial and Applied Mathematics, 11(2):pp. 205–211, 1963.

[60] R. Wunderling. Paralleler und objektorientierter simplex. Technical Report TR-96-09,
Konrad-Zuse-Zentrum for Informationstechnik Berlin, 1996.

[61] G. Yarmish and R. Slyke. A distributed, scaleable simplex method. The Journal of
Supercomputing, 49:373–381, 2009.

98

	PhD coversheet April 2012
	Huangfu2013
	Abstract
	List of Tables
	List of Figures
	Introduction
	Structure of this thesis
	The developing environment
	The reference set of testing LP problems

	Solving linear systems
	Background
	Constructing LU factors
	The eta matrix
	Gaussian elimination
	Pivoting and permutation
	Numerical accuracy
	Singletons and triangularization
	Bump factorization

	Solving with LU factors
	Storage of LU factors
	Basic solving techniques
	Hyper-sparse solving techniques

	Updating LU factors
	Product form update
	Forrest-Tomlin update
	FT update implementation concerning hyper-sparsity
	Reinversion

	Novel update techniques
	Alternate product form update
	Middle product form update
	Collective Forrest-Tomlin update
	Results and analysis

	Summary

	Sequential simplex methods
	Fundamental concepts
	LP problem and basic solution
	The primal and dual simplex algorithms
	The tableau and revised simplex methods
	General LP problems and bound types

	The dual revised simplex method
	The standard dual revised simplex algorithm
	Dual optimality test
	Dual ratio test
	Dual phase I method

	Promoting hyper-sparsity
	Observation and motivation
	Algorithmic interpretation of cost perturbation
	Experiments with partial optimality test
	Experiments with less-infeasibility DSE
	Discussion and additional results

	Summary

	Parallel simplex methods
	Previous simplex parallelization attempts
	Using dense matrix algebra
	Using sparse matrix algebra
	Other approaches

	Limitation and scope of simplex parallelization
	Analysis of previous work
	Towards a practical simplex parallelization

	Exploiting parallelism across multiple iterations
	Dual simplex variant with multiple chuzr
	Data parallel price and chuzc
	Task parallel btran and ftran
	Basis inversion and its update
	Major and minor chuzr
	Computational results and analysis
	Real time behaviour

	Exploiting single iteration parallelism
	Data dependency and parallelization scheme
	Computational results and analysis
	Real time behaviour

	Summary

	Conclusions and future work
	Bibliography

