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Lay Abstract 

Many synthetic polymers have been developed for clinical applications, and include synthetic 

bone scaffolds or artificial corneas with these materials made en masse and used clinically. 

In the first part of my thesis I report how artificial polymers can be made inside cells. Cells 

were found to be fully viable following polymer formation but behaved slightly differently to 

untreated cells. The formation of polymers inside cells provided cells with a variety of new 

functions such as fluorescence and nanoparticle generation.  

Many techniques have been developed to help surgeons efficiently delineate cancerous 

tissue from non-cancerous, with fluorescence-guided surgery a powerful new approach to 

“mark” or label cancer cells to allow surgeons to visualise tumour tissues and remove them. 

However, the brightness of the label is often insufficient while a wash step is typically needed 

to remove unbound fluorescent molecules from healthy tissues. In the second part of my 

thesis a polymer based fluorescent probe was generated that targets tumour cells and carry 

multiple fluorescent molecules while generating over 80-fold higher brightness. To promote 

the signal to noise ratio, a non-fluorescent molecule that specifically reacted with the probe 

and became fluorescent was developed removing the need of the wash and amplifying the 

signal.  
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Abstract 

Biopolymers such as proteins, nucleic acids and polysaccharides are essential components in 

living systems and enabling the modification and modulation of various cellular functions and 

cellular behaviour. Many synthetic polymers have been used in a cellular context mimicking 

these natural polymers. However, few studies have focused on polymerisation chemistry 

within the complicated biological environment inside cells. In the first part of this thesis, a 

new method of synthesising synthetic polymers in cells was developed, enabling the 

introduction of artificial components to tune cellular behaviour. Several biocompatible 

acrylic and styrene monomers were polymerised intracellularly and shown to control the cell 

cycle, alter the cytoskeleton and influence cell motility. Moreover, the introduction of 

specific functional monomers enabled the in situ formation of fluorescent polymers and 

nanoparticles which may contribute to further applications such as fluorescent imaging and 

cargo delivery. 

Chemical modifications of native biomacromolecules provides access to novel functions such 

as macromolecule based cargo delivery and imaging probes. In the second part of this thesis, 

linear acrylamide polymer scaffolds, bearing norbornene reactive centres for tetrazine 

ligation and a hexahistidine tag for ease of purification, were synthesised and conjugated to 

a clinical antibody. This enabled the selective labelling of cancer cells with amplified 

fluorescent signal. Simultaneously “switching on” and amplification of a fluorescent signal 

“in situ” were achieved by utilising a tetrazine quenched fluorophore, reacting with 

norbornenes on the polymer–antibody conjugate. This fluorescence signal amplification 

method has the potential to improve real-time tumour detection and fluorescence-guided 

surgeries while the amplification strategy can be expanded to enhance radio-therapy 

performances.  
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Chapter 1. Introduction 

Synthetic polymers have rapidly developed over the past few decades with many polymeric 

materials now used in clinical applications. For instance, polymers have been used as tissue 

engineering scaffolds to support cell growth (see Figure 1). An “artificial skin” was 

commercialised (Dermagraft®), enabling human neonatal dermal fibroblasts on a 

bioabsorbable polyglactin mesh to help wound closure1 for burn patients (Figure 1a).2 An 

injectable implant using poly(L-lactic acid) (Sculptra® Aesthetic), was approved by the Food 

and Drug Administration in 2004 and is used today as a filling material in plastic surgery 

(Figure 1b).3, 4 RESOMER®, biodegradable polyesters (e.g. poly(L-lactic acid), 

polycaprolactone and poly(lactic acid-co-glycolic acid)), are shaped to give e.g. microparticles, 

rods, fibres and meshes, for bone fracture patients (Figure 1c).5  

 

 

Figure 1. Examples of polymers used as biomaterials for medical applications. (a) Human fibroblasts 
seeded onto a polyglactin scaffold and allowed to proliferate give the medical product Dermagraft®.2  
(b) Poly(L-lactic acid) macroparticles are used as a filling material for injection into dermis of the 
patient.4 (c) Several polyester based RESOMER® products are shaped into different shapes and used 
as biodegradable scaffolds.5  

 

Polymers have been used for drug delivery and controlled release. Poly(lactic-co-glycolic) 

based materials (RESOMER® Sterile), have been approved by the Food and Drug 
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Administration for drug encapsulation allowing precisely controlled release (e.g. therapeutic 

peptides and proteins) release.5 Myocet®, marketed by Teva, encapsulates Doxorubicins in 

polymeric vesicles to improve the water solubility of the hydrophobic drug and reduce the 

dosage.6  

The attractiveness of polymers has driven much research towards understanding how 

artificial polymers interact with live cells, how polymerisation chemistry influences cells, and 

whether such polymerisations can be conducted in the presence of cells. In Chapter 3, several 

successful polymerisation systems in cellular contexts are review. The possibility of 

synthesising synthetic polymers in cells is demonstrated and the influence of the 

polymerisation chemistry on cells is evaluated with several examples showing the possibility 

of introduction of new functions into cells.  

Besides medical applications, polymers also play an important role in biological research. For 

example, expansion microscopy was established recently that utilises the swelling effect of 

polymeric hydrogels in water to “expand” biological samples for fluorescence microscopy 

(see Figure 2).7 Specifically, fluorescent markers are decorated with “molecular handles” 

which enable them to bind to a polymer hydrogel, and incubated with the fixed tissue to 

mark the features of interest. The tissue is then immersed in a solution containing monomers, 

e.g. sodium acrylate and acrylamide, crosslinkers, e.g. N,N’-methylenebisacrylamide and 

initiators to form a densely crosslinked hydrogel with the fluorescent markers covalently 

attached. The polymerised tissue sample is homogenised by denaturation (by heating or 

enzymatic digestion) minimising the interactions between biomolecules, and then swells in 

water to achieve the expansion.7, 8 The biological samples can be expanded by approximately 

100-fold in volume permitting the imaging of tissues and organs in 3D with a nanoscale 

resolution. This technique, for example,  enabled visualisation of an entire mouse brain in 3D 

with high resolution, with quantitative measurement of organelle volume and morphological 

parameters such as dendritic spin and protein expression within the whole brain region.9  

Super resolution microscopy is also a powerful fluorescent imaging technique widely used in 

biology, because it can bypass the resolution limitation of traditional optical microscopy 

(around 250 nm, known as Abbe limit10) caused by the diffraction limit of light. The use of 

unique fluorophores which are switchable or have a non-continuous emitting property (i.e. 

not all of the fluorophores emit at the same time), enables neighbouring fluorescent 
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molecules to be in different states (“on” and “off”) to be resolved from each other. The “on” 

fluorophores then can be imaged individually using high resolution fluorescent microscopy. 

By stacking images from different time points, super resolution images can be achieved 

(Figure 3).11, 12  

 

 

Figure 2. Principle of expansion microscopy.8 The tissue sample was fixed and labelled with fluorescent 
markers. A polymeric hydrogel was formed in situ and swelled in water to achieve an expanded feature 
to allow conventional fluorescent microscopy analysis.  

 

 

Figure 3. Principle of the super-resolution imaging approach. Separate images of single molecules are 
taken and overlapped spatially to construct a super-resolution image.11  
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This technique has allowed it to be used for investigation of plasma membrane proteins and 

membrane microdomains which are too small to be resolved by conventional light 

microscopy.13, 14 Visualisation of internal structures in bacteria (typically 1 μm3 in volume), 

much smaller than mammalian cells, were challenging for conventional light microscopy, but 

now can be achieved using super resolution microscopy.15  

However, limited fluorescence intensity of many markers may lead to low sensitivity, and 

narrow detection range particularly with low abundance targets.16, 17 Therefore, signal 

amplification methods are required for improving fluorescence detection. In Chapter 4, a 

number of commonly used signal amplification methods are reviewed and the approach of 

polymer─protein conjugate based amplifications is explored and shown to give up to 80-fold 

increase in fluorescent signal.  
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Chapter 2. Aims and Objectives 

Applications of polymers are found across chemistry and material science and used 

extensively in medicine and impact on all aspects of daily life. Although the mechanisms of 

many polymerisation reactions have been studied in depth, there are only a few examples of 

looking at “organic chemistry-based” polymerisations in living systems. The first work in this 

thesis shows the possibility of conducting free radical polymerisation chemistry in cells with 

an evaluation of its influence on cells with examples given of introducing new functions into 

cells.  

The second aspect of this thesis shows how polymers can serve as a platform for multiple 

functional motifs for amplification. By conjugating a targeting moiety, such as an antibody, a 

polymeric scaffold will be shown to act as a site for specific fluorescent probe amplification, 

targeting and visualisation of cancer with simultaneous “turn on” and amplification of 

fluorescent signals.  
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Chapter 3. Radical Polymerisation inside Living Cells 

 

3.1. Introduction  

3.1.1. Natural Polymers in Cells 

The chemical composition of cells is huge, encompassing macromolecules, such as proteins, 

nucleic acids, polysaccharides, and small molecules including water, metal ions and lipids and 

everything in between. These molecules interact with each other in multiple ways to drive 

function (e.g. proliferation, movement, apoptosis). Macromolecules (ranging from 103 to 1012 

Da), as defined by Staudinger in 1920s,18 contribute to distinct functionalities in biological 

systems, e.g. polynucleotides have the function of information storage; polypeptides have 

the function of catalysis and polysaccharides contribute to energy storage, although these 

functions are widely mixed.18, 19 

Polynucleotides, including deoxyribonucleic acids (DNA) and ribonucleic acids (RNA) are 

fundamental biomacromolecules of all known living organisms.20 Chemically, they are linear 

polymers constructed of nucleotides containing nitrogen based heterocyclic bases and sugar 

phosphate esters (see Figure 1). In mammalian cells, these polynucleotides comprise some 

10% of the dry mass of a cell, are essential components for information storage and 

information translation by which the genetic code guides the synthesis of proteins.21, 22  

Polypeptides are also fundamental macromolecular building units in cells,23 based on 

polymers constructed by α-amino acids (see Figure 1), that can be assembled into unique 3D 

structures by covalent crosslinking (e.g. disulfide bond) and/or physical interactions, e.g. 

hydrogen bonds, salt bridges and hydrophobic-hydrophobic interactions. They are the major 

component of cells (60% dry mass), with diverse functions, such as binding (e.g. membrane 

protein binding to signalling molecules), catalysis (e.g. enzymes) and structure (e.g. collagen 

and actin, the building blocks of the cytoskeleton).19  

Polysaccharides are another type of biopolymer commonly found in/on cells based on sugars 

covalently linked by glycosidic linkages (Figure 4).24 The functions of these biopolymers 

included energy storage (e.g. starch and glycogen used for energy storage in plant and animal, 
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respectively), structure (e.g. cellulose, a fundamental structural component of cell walls in 

plants) and surface recognition (e.g. glycocalyx).25  

 

Figure 4. (a) Composition (by mass) of a typical mammalian cell.26 (b) Chemical structures of 
biomacromolecules: polynucleotide, polypeptide and polysaccharide.  

 

Other polymers such as polyesters and polyphosphates are also found in some organisms. 

For example, poly(hydroxyalkanoates), polyesters, are produced by many bacteria as 

intracellular granules and used as energy storage material, while polyphosphates, 

constructed with phosphoanhydride bond linked phosphates, have been found in the stress 

response in some bacteria.27, 28  
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3.1.2. Synthetic Polymers Used in a Cellular Context 

With the development of biology and medical science, the demand for advanced functional 

macromolecular materials has been continuously expanding.29 The development of polymer 

science allows various synthetic polymers with well controlled chemical compositions and 

molecular weights to be fabricated into materials with desired sizes, mechanical properties 

and surface morphologies. These are widely used in biological research and medical 

applications, such as tissue engineering, cargo delivery and cancer therapy to name but three.  

For example, human coronary artery smooth muscle cells were seeded on nanofibers 

(produced by electrospinning of biodegradable polycaprolactone with collagen) with the cell 

shape guided by the fibre orientation. The stem cells were found to be directed to migrate 

towards the inside of the fibres and differentiated to smooth muscle cells with sufficient 

growth and proliferation rate (comparing to cells cultured in tissue culture plate), showing 

the potential to form muscle tissues and blood vessels in vitro for transplantations.30 

Transition metal, such as palladium can be trapped within polystyrene microparticles to 

allowed the catalysis of various artificial chemical reactions intracellularly, which is of 

importance in chemical biology (e.g. imaging) and pharmacology (e.g. prodrug activation).31 

Additionally, nanoparticles containing anticancer drugs have been synthesised with 

positively charged surfaces (for cell membrane penetration and degradation in acidic 

organelles, i.e. lysosomes) and used for delivery of drug molecules. The rapid release of drugs 

intracellularly allows efficient inhibition of drug-resistant cancer cells.32 

3.1.3. Synthetic Polymers Synthesised in a Cellular Context 

3.1.3.1. Polymers Synthesised around Cells  

The in situ synthesis of unnatural polymers either around, on or in cells (Figure 5) is 

challenging due to the complicated environment in biological systems and the limited choices 

of bioorthogonal reactions for polymer synthesis.33 Successful applications of in situ 

synthesised polymers have been reported, e.g. bioinks for bioprinting, but challenges still 

exist.34, 35  

As a new possible tool in biology and medical science, bioprinting techniques potentially 

allowing the rapid and precise constructions of 3D scaffolds with live cell seeding.34 Multiple 
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challenges exist such as the viabilities and functionality of the cells post printing, but 

bioprinting techniques have been rapidly developed driven by the attractive potential 

applications of such biofabrication approaches for both biological research and medical 

applications (e.g. tissue engineering).  

 

Figure 5. Examples of applying polymerisation around and on live cells. (a) Biocompatible monomers 
can be introduced into the culture media with cells. Subsequent polymerisation generates polymers 
around the cells. (b) For synthesising controlled and targeted polymers on cell surfaces via living 
polymerisation, initiating moieties, e.g. ATPR initiators and RAFT agents, are grafted onto the cell 
surfaces to allow in situ polymerisation giving grafted polymer chains on the cell surfaces.  

 

The most commonly used method for bioprinting has been to print alternative layers of 

supporting materials (e.g. hydrogel) and cell suspensions with simultaneous photo/thermal 

polymerisation/crosslinking process to fabricate desired structures and functions of the 

materials.36 For example, various types of cells have been 3D-printed with gelatin 

methacrylate and photopolymerised to give synthetic scaffolds with desired structures and 

mechanical strength.37, 38 By precisely control the chemical component at different positions, 

an “artificial corneal” was successfully fabricated via the 3D printing of collagen based 

hydrogel and cell binding peptide together with live human limbal epithelial stem cells. The 
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“artificial corneal” was demonstrated to be similar to the natural corneal in terms of cell and 

collagen organization, stiffness, cell phenotype.39 

Despite the successful applications of synthetic macromonomers (e.g. poly(ethylene glycol) 

diacrylate36, 40, 41) and natural product derived monomers (e.g. glycidyl acrylate-modified 

hyaluronic acid42 and gelatin methacrylate43-45) used as substrates for bioprinting, the 

number of alternative monomers with different functional groups is limited because of the 

uncertain toxicity of the monomers, the polymerisation process, and the resulting polymers 

and side products to the cells.34, 46  

3.1.3.2. Polymers Synthesised on Cells  

In nature, some cells (e.g. bacteria and fungi) form hard shells to preserve their species under 

unfavourable harsh environments. Recent strategies have emerged to encapsulate cells with 

synthetic polymers as scaffolds to greatly prolong the viable period of the cells as well as 

providing additional functions to the cells.47, 48 One of the key clinical applications is to 

encapsulate pancreatic islets which allows transplantation without immunosuppression.49 

The artificial membranes (e.g. alginate, chitosan, agarose and poly(ethylene glycol)) can 

protect the transplanted tissue/cells from the host immune system so that permit the use of 

foreign donor cells and even animal and stem cell derived islets for diabetic patients.50-52 For 

example, the first reported encapsulation of islet (using alginate) permitted the cells to 

maintain their biofunctions in rats for up to 15 week.52  

To achieve the encapsulated “artificial cells”, many efforts have focused on developing the 

coating materials for live cell encapsulations.53 For instance, dopamine has been polymerised 

onto cell surfaces (adhering to the cells following oxidation and reactions with free thiols and 

amines of surface proteins) of Saccharomyces cerevisiae which formed a robust and stable 

artificial shell protecting the yeast cells. Further functionalisation with streptavidin by similar 

polydopamine–protein interactions allowed isolation of encapsulated cells with a biotin 

decorated substrate (e.g. a glass slide). The possibility of introducing additional 

functionalities demonstrated the possibilities of conducting chemical reactions on the cell 

surface which may be challenging with unmodified native cells.48  

Due to the uncontrolled dopamine polymerisation reaction, the “artificial polydopamine 

shell” was not homogenous. Another approach using a well-defined synthetic polymer i.e. 
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poly(ethylene glycol), overcame such issue and achieved a stable polymer shell on Hela 

cells.47 The cells were firstly coated with positively charged gelatin by electrostatic 

interactions to provide an extracellular matrix like environment for the cells. Multibranched 

PEG molecules then crosslinked the gelatin by reacting with the free thiols on the gelatin 

chains through thiol–maleimide 1,4-addition chemistry and the rigid encapsulations 

promoted the long term viability of Hela cells under harsh environments (such as trypsin). 

Subsequent introduction of glutathione drove the cleavage of the thiosuccinimides 

(thiol─maleimide adduct) through the retro-Michael reaction and achieved “on-demand” 

degradation of the “polymeric shell” (Figure 6).  

 

 

Figure 6. Living cell encapsulation by crosslinking of gelatin using maleimide functionalised 
multibranched poly(ethylene glycol). A layer of positively charged gelatin was firstly deposited on the 
negatively charged Hela cell surface and the maleimide functionalised multibranched poly(ethylene 
glycol) was added and reacted with free thiols on the gelatin to achieve the crosslinking. By introducing 
glutathione, the thiol group can attack the thiosuccinimides and undergo a retro-Michael reaction to 
degrade the crosslinked structure and release the encapsulated cells. 
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Figure 7. Polymerisation of sodium methacrylate on Hela cell surfaces. Hela cells were incubated in a 
solution of dopamine and dopamine tagged ATRP initiator (in Tris buffer, pH = 8.4) for 4 h to allow 
dopamine oxidation (by oxygen in the air) and polymerisation on cell surfaces. The isobutyl bromide 
moiety anchored on the cells allows ATRP of sodium acrylate (catalysed by CuBr-bipryidine complex) 
to generate poly(sodium methacrylate) on the cell surface.  

 

However, direct encapsulation of cells with rigid polymer shells may affect molecular uptake, 

e.g. nutrient and oxygen, which may be overcome by controlled in situ polymerisation on cell 

surfaces to give polymeric shells with tuneable densities and mophologies.54 Thus studies of 

controlled living radical polymerisations on cells have been studied. For example, yeast cell 

surfaces were functionalised with a dopamine tagged ATRP initiator (dopamine can 

polymerise in the presence of oxygen and strongly bind to surface proteins through covalent 

bond and hydrogen bond) followed by copper catalysed ATRP giving uniformly distributed 

linear polymer chains on cell surfaces (Figure 7).55  
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Figure 8. Polymerisation of PEG acrylate on the surface of yeast. The yeast were incubated with an 
active ester functionalised strained alkyne (in PBS, pH = 7.4) and then with an azide tagged RAFT agent 
to introduce the RAFT agent on the cell surface. The polymerisation of PEG acrylate could then be 
conducted by photoinduced electron transfer RAFT polymerisation to generate polymer grafted yeast. 
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However, the utilisation of copper ions may cause direct cytotoxicity, although the authors 

stated cell viability >60% after polymerisation due to the protection offering by the 

polydopamine shells.55 An improvement was achieved by applying photoinduced electron 

transfer RAFT polymerisations. The chain transfer agents were anchored onto the yeast by 

conjugation of an active ester functionalised strained alkyne attached (to the lysine moieties 

on cell surfaces through active ester–amine coupling reaction) and then an azide tagged RAFT 

agent (through alkyne–azide cycloaddition) (Figure 8). The polymerisation of PEG 

acrylamides gave controlled polymers (Đ < 1.3, analysed by GPC) with different molecular 

weight (10-20 kDa) with almost full viabilities of yeast (determined by MTT assay).54  

 

 

 

Figure 9. Templated polymer synthesised on bacterial surfaces. 2-(Methacryloyloxy)-N,N,N-
trimethylethan amonium chloride and 2-(N-3-sulphopropyl-N, N-dimethyl ammonium) ethyl 
methacrylate were incubated with E. coli for 30 min and polymerised by adding the catalyst precursor 
CuBr2 (which was reduced on the bacterial surfaces) and the ligand tris(2-pyridylmethyl) amine. The 
template polymers were isolated by washing the mixture with NaCl solution (0.15M) and dialysis. In 
comparison to non-templated polymer showing no specific binding, the template polymer could 
specifically bind to the same kind of bacteria upon which they were synthesised. 



Chapter 3 

15 

 

On bacteria, polymerisation of methacrylates was carried out through a copper catalysed 

ATRP reaction with the in situ reduced copper ions catalysing the chain propagation of the 

controlled polymerisation (see Figure 9).56 The active copper species was only generated and 

localised on cell surfaces, avoiding chain propagation reactions in solution. The isolated 

polymers were shown to selectively recognise and bind specifically to the same kind of 

bacteria they were synthesised on (a molecular imprinting type approach). Such a strategy 

could act as a novel approach for bacterial/cell targeting and may aid the development of 

cell specific diagnostics and therapies. 

In this chapter the first strategy for free radical polymerisation in an intracellular 

environment is reported. Biocompatible monomers and initiators were screened and used 

for synthesis of the synthetic polymers intracellularly with the successful polymerisation 

demonstrated by isolation of polymers from the “polymerised” cells and analysis by NMR 

and GPC. The mechanisms of the polymerisations were investigated and the influence of the 

polymerisation on the cells were evaluated in terms of cell viability, proliferation ability, cell 

cycle, cell mobility and cytoskeleton. The in situ generation of fluorescent polymers from 

non-fluorescent monomers and polymeric nanoparticles from soluble small molecules 

demonstrated possible applications utilising such an intracellular polymerisation strategy.   
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3.2. Results and Discussions 

3.2.1. Biocompability of Photopolymerisation in Cells 

3.2.1.1. Biocompability of Monomers and Initiators (with Dr W. Li and Dr J. Geng) 

Acrylate, acrylamide, methacrylate, methacrylamide and styrene-based monomers readily 

undergo free radical polymerisation to give polymers with various structures and functions.57, 

58 These monomers have typically been believed to be highly toxic,59, 60 and therefore before 

application in cell-based assays their biocompatibilities had to be evaluated. Thus a range of 

monomers with various functional groups (e.g. hydroxyl, carboxylic acid, sulfonic acid, amine, 

ferrocene and poly(ethylene glycol) chain), were screened on Hela cells using an MTT assay 

and their IC50 values (Table 1). Interestingly, the monomers displayed a broad range of 

toxicities but with no obvious relationship observed between monomer structure and 

cytotoxicity. From the screening, N-(2-hydroxypropyl) methacrylamide (HPMA), sodium 4-

styrenesulfonate (NaSS), 4-vinylaniline (VAN) and ferrocenylmethyl methacrylate (FMMA) 

were selected for further studies.  

Photoinitiators Irgacure2959 and BAPO-ONa61 (Figure 10) have been reported to be well 

tolerated by many cell types (including human fetal osteoblasts, corneal epithelial cells, 

human mesenchymal stem cells, and human embryonic germ cells) and have been used in 

multiple biomedical and tissue engineering applications.62-64 For example, Irgacure2959 was 

utilised for photopolymerisation of monomers into hydrogels (aided with of 365 nm 

illumination) with minimum effect on cell viability.62, 63 BAPO-ONa showed even higher 

polymerisation reactivity and water solubility and has been used for 3D printing of hydrogels 

in aqueous solutions.64 Here good biocompatibility of both photoinitiators were observed 

(with nearly full viability of Hela cells after 48 h incubation at 5 μM, Figure 10b and 10c), 

which was in good agreement with literatures.  
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Table 1. Chemical structures and the IC50 values of the monomers evaluated as part of this work. Hela 
cells were treated with the monomers at a set of concentrations (typically from 1 mM to 1000 mM). 
The concentration range was reset to 1 μM to 1 mM if the viability was lower than 80% at 1 mM) for 
48 h and the viability was measured by an MTT assay.  

Monomer 
abbreviation 

Monomer name Monomer structure IC50 

HPMA 
N-(2-Hydroxypropyl) 

methacrylamide 
 

>250 mM 

NaSS Sodium 4-styrenesulfonate 
 

>100 mM 

VAN 4-Vinylaniline 
 

56 mM 

FMMA 
Ferrocenylmethyl 

methacrylate 
 

68 mM 

    

AEMA 2-Aminoethyl methacrylate 
 

20 mM 

    

VBA 4-Vinylbenzoic acid 
 

15 mM 

MBA 
N,N′-Methylene 
bis(acrylamide) 

 
20 mM 

PEGDA 
(Mn = 575 

Da) 

Poly(ethyleneglycol) 
diacrylate (Mn = 575 Da) 

 
4 mM 

PEGDA 
(Mn = 10 

kDa) 

Poly(ethyleneglycol) 
diacrylate (Mn = 10 kDa) 

 
25 mM 

AOTCRhB 
Acryloxyethyl 

thiocarbamoyl rhodamine B 

 

20 µM 

    

Acrylamide Acrylamide 
 

1 µM 

PEGMA 
(Mn = 480 

Da) 
 

Poly(ethylene glycol) methyl 
ether methacrylate (Mn = 

480 Da)  

1 mM 
 

HEMA 
 

2-Hydroxyethyl 
methacrylate 

 

7 mM 
 

O-HPMA 
O-2-Hyroxypropyl 

methacrylate 
 

8 mM 
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The tolerance of Hela cells to 365 nm illumination (5 mW/cm2) was also investigated with over 

80% cells viable after 10 min illumination at 365 nm (see Figure 11).  

 

 

Figure 10. (a) Chemical structures of the two initiators used and HeLa cell viability after incubation for 
48 h with (b) Irgacure2959 (1 mM to 50 mM) and (c) BAPO-ONa (0.1 mM to 10 mM). Viability measured 
using an MTT assay, n = 6. As a negative control the cells were treated with 50% DMSO in DMEM.  

 

 

Figure 11. (a) HeLa cell viability after 5, 10, 15 min illumination (365 nm, 5 mW/cm2). The cells were 
incubated for a further 48 h before the viability was measured by an MTT assay, n = 3. As a negative 
control the cells were treated with 50% DMSO in DMEM. (b) The emission spectrum of the Blak-ray 
UV lamp used for the intracellular polymerisation (maximum emission at 365 nm). 
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3.2.1.2. Biocompability of the Polymerisation Process 

The effect of the polymerisation process on cell viability was investigated. Treatment  of cells 

with HPMA (1 mM to 100 M) and Igracure2959 (2 mM) followed by 365 nm illumination (5 

min) showed low cytotoxicity with over 85% viability (up to 100 mM HPMA). This indicates 

the tolerance of Hela cells to the radical polymerisation conditions (Figure 12a), which is in 

agreement with previous studies that suggested that radicals generated intracellularly are 

not directly relevant to cell viability (e.g. a series of photoinitiators producing benzoyl radicals 

were shown to be tolerated by fibroblasts (NIH/3T3) and chondrocytes following UV/visible 

light irradiation (>80% viability), with up to 0.3 mM of radical forming in the cells 

(theoretically calculated)).63-65  

 

 

Figure 12. (a) HeLa cell and (b) human adipogenesis mesenchymal stem cell viability after 
“polymerisation”. The cells were incubated with HPMA (1 mM to 1 M) and initiator Irgacure2959 (2 
mM) for 4 h followed by illumination for 5 min at 365 nm and were incubated for further 48 h before 
the viability measured by an MTT assay, n = 6. As a negative control the cells were treated with 50% 
DMSO in DMEM.  

 

The negligible effect on cell viability of the polymerisation was also confirmed by the same 

viability assay on human adipogenesis mesenchymal stem cells (Figure 12b), which also 

showed tolerance to the photo-polymerisation. 
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To investigate the long term effect of the in situ polymerisation, Hela cells were “polymerised” 

(treated with 50 mM of monomers HPMA, NaSS, VAN or FMMA, initiator Igracure2959 (2 

mM) and 365 nm illumination) and were evaluated after 7 days using a cell viability assay 

(CellTiter-Glo® assay, which quantified the amount of ATP generated) and a proliferation 

assay (Click-iT™ EdU assay, which quantified the ratio of cells proliferating by quantification 

of cells synthesising DNAs) (Figure 13 and 14).  

 

 

Figure 13. Cell proliferation of Hela cells incubated with monomers (50 mM) and initiator (2 mM) for 
4 h, washed and illuminated for 5 min at 365 nm. The cells were then incubated at 37 °C for 7 days 
and analysed by the Click-iT EdU flow cytometry assay (the cells were incubated with an alkyne labelled 
5-ethynyl-2’-deoxyuridine (EdU) for 2 h, and subsequently labelled with an azide-fluorescein according 
to the manufacturer’s instructions). 4-vinylaniline treated cells showed a significant reduction in the 
number of intact cells and therefore the flow cytometry based proliferation assay could not be carried 
out.  
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Figure 14. Cell viability of HeLa cells following intracellular polymerisation (CellTiter-Glo 2.0 assay). 
The cells were treated with monomers (ferrocenylmethyl methacrylate (FMMA), N-(2-hydroxypropyl) 
methacrylamide (HPMA), sodium 4-styrenesulfonate (NaSS) and 4-vinylaniline (VAN), 50 mM) and 
Irgacure2959 (2 mM) for 4 h, washed, and illuminated for 5 min. Cell viability was measured after a 7 
day incubation at 37 °C. As a negative control the cells were treated with 50% DMSO in DMEM, n = 6. 

 

Cells treated with HPMA, NaSS and FMMA and “polymerisation chemistry” showed negligible 

direct cytotoxicity to Hela cells (Table 1) and no significant viability decreases were observed 

upon expanding the incubation time to 7 d, indicating no effect of polymerisation on cell 

growth or proliferation. 4-vinylaniline (50 mM) was found toxic to the cells when incubated 

for 7 d after monomer treatment (without polymerisation). However, when the 

polymerisation was conducted, cell viability improved showing much reduced toxicity of the 

generated polymers compared to the monomer. Results from proliferation assays (Figure 13) 

showed no significant changes in the amount of cells synthesising DNAs (shown in red) 

following polymerisation with HPMA, NaSS and FMMA (28%, 28% and 31% cells in the FITC 

positive gated regions compared to 32% for cells that just underwent illumination and 37% 

for totally untreated cells).  

3.2.2. Monomer and Initiator Uptake 

The cellular uptake of the monomers and initiators were evaluated by quantifying compound 

uptaken from lysed cells by high-performance liquid chromatography (HPLC). Hela cells were 

treated with the various monomers and initiator Irgacure2959 for 4 h, washed and then lysed. 

The monomers and initiators were extracted by DCM and the compounds were analysed by 

HPLC (compared to a calibration curve (see Experimental, Figure 75 to 82)) (Figure 15). All 

monomers and initiator Irgacure2959 showed high cellular uptake (the intracellular amounts 
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of HPMA, NaSS, VAN, FMMA and Irgacure2959 were 0.26, 0.82, 0.10, 0.20 and 0.01 pmol/cell, 

respectively). For Hela cells with typical cell volume of 3 × 103 μm3,66 the molar 

concentrations of the monomers and initiators were all in the millimolar range (87, 273, 33, 

67 and 3 mM for HPMA, NaSS, VAN, FMMA and Irgacure2959, respectively). To evaluate 

whether these concentrations were sufficient for the photopolymerisation system, the 

evaluation of the polymerisation conditions was carried out (see Section 3.5).  

 

 

Figure 15. (a) HPLC trace of the initiator Irgacure2959 (40 µM) and the monomer HPMA (10 mM) 
recovered from the cells after 4 h incubation with compounds (lysed samples were extracted with 
DCM 3 times). HPLC was performed using a reverse phase column with 10 μL injections, using 
water/MeCN (95:5 to 5:95 over 10 min, v/v, with 0.1% formic acid) as the mobile phase and UV 
detection at 254 nm. The peak at 2.11 min corresponds to HPMA and the peak at 4.06 min to 
Irgacure2959. (b) Intracellular monomer concentrations determined after 4 h incubation with 50 mM 
HPMA, NaSS or VAN, 20 mM FMMA or 2 mM Irgacure2959 and extracted. 

 

3.2.3. Evaluation of the Polymerisation Mechanism 

In order to confirm the mechanism of the polymerisation, a dichloro-dihydro-fluorescein 

diacetate (DCFH-DA) assay was carried out to detect the generation of free radicals. The 

DCFH-DA assay is a well-developed method to directly detect free radicals and reactive 

oxygen species in living systems, e.g. detection of hydroxy radicals.67, 68 The fluorescin 

(reduced fluorescein) has negligible fluorescence, but the fluorescence is regenerated when 

oxidised by free radical species (or reactive oxygen species) and then hydrolysed 

intracellularly by esterases (Figure 16). The cells treated with the initiator Irgacure2959 (with 
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and without the monomer HPMA) gave a remarkable increase in fluorescence intensity (389 

and 406-fold increase, respectively as analysed by flow cytometry) in comparison to 

untreated cells. This data thus confirmed the light-mediated generation of free radicals in the 

cellular system (Figure 16b).  

 

 

Figure 16. Identification of free radicals using a DCFH-DA assay. (a) Fluorescence “turn on” of a DCFH-
DA by oxidation with free radials and hydrolysis. (b) Flow cytometry histograms of HeLa cells incubated 
with HPMA (50 mM) and/or initiator (2 mM) for 3.5 h, and then DCFH-DA (10 µM) for another 30 min 
(cells kept in the dark after DCFH-DA addition) before illumination at 365 nm for 5 min. Untreated cells 
were used as a control. The cells were harvested and analysed by flow cytometry with ex/em = 488/525 
nm. 

 

3.2.4. Polymerisation Evaluation 

To optimise the polymerisation conditions in living cells, polymerisation of HPMA (1─500 mM) 

with various initiator concentrations (0.5─5 mM, with photo-activation at 365 nm for 5 min) 

were conducted in different systems (PBS (pH = 7.4), cell lysate, and cell lysate with 50 mM 

glutathione), with and without the presence of air.  

The degree of polymerisation was measured by 1H NMR (Table 2 and 3). In PBS, 

polymerisation was only observed at monomer concentrations ≥ 50 mM and initiator 

concentrations ≥ 600 µM. Polymerisation of HPMA (50 mM) in the presence of Irgacure2959 
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(2 mM) with illumination at 365 nm for 5 min resulted in 48% conversion in PBS with the 

same degree of polymerisation remarkably achieved in cell lysate. Another biocompatible 

photoinitiator BAPO-ONa61 gave similar conversions (48 % conversion in PBS) (see Table 3). 

There were no detectable conversions of HPMA observed with low concentrations of either 

photoinitiator, consistent with the results of the mechanism evaluation that the free radical 

initiators were essential for initiating the polymerisation (see Section 1.4).  

 

 

Figure 17. (a) Poly(HPMA) was synthesised by polymerisation of HPMA using Irgacure2959 as a 
photoinitiator and illuminated at 365 nm for 5 min in cell lysate with additional glutathione 
(HPMA/initiator/glutathione = 100:1:1; 100:1:0.5; 100:1:0.25; 100:1:0.1, molar ratio). (b) 1H NMR 
spectra (in DMSO-d6) of the isolated poly(HMPA) (by dialysis (molecular weight cut off 1000 Da) and 
centrifugation in MeOH (to remove proteins)), with polymerisation in the presence of different 
concentrations of glutathione in cell lysate. Bottom spectrum is glutathione in DMSO-d6. (c) GPC traces 
following the polymerisation of HPMA with Irgacure2959 in cell lysate with 5 min illumination at 365 
nm. GPC traces was performed by using two PLgel MIXED-C columns and a reflective index detector, 
using DMF with 0.1% w/v LiBr at 60 °C at 1 mL min-1 as an eluent. The ratios of monomer to initiator 
were 25:1 (50 mM, 2 mM), 50:1 (100 mM, 2 mM), and 125:1 (250 mM, 2 mM) and gave the following 
molecular weights (and Đ): 15 kDa (1.7), 18 kDa (1.7), 19 kDa (1.8), respectively.  
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Table 2. Reaction screening for the free radical polymerisation of HPMA with initiators Irgacure2959 
in PBS and cell lysate with conversion monitored by 1H NMR. (Conversions were calculated based on 
the integration ratio between the polymer and the monomer resonances) 

HPMA Irgacure2595 Degassed Solvent Conversion (%) 

1 M 40 mM No PBS 62 

500 mM 20 mM No PBS 57 

200 mM 8 mM No PBS 54 

100 mM 4 mM No PBS 52 

50 mM 2 mM No PBS 48 

50 mM 600 µM No PBS 18 

50 mM 200 µM No PBS < 1 

50 mM 60 µM No PBS < 1 

15 mM 2 mM No PBS < 1 

5 mM 2 mM No PBS < 1 

1.5 mM 2 mM No PBS < 1 

500 µM 2 mM No PBS < 1 

15 mM 600 µM No PBS < 1 

15 mM 200 µM No PBS < 1 

5 mM 600 µM No PBS < 1 

5 mM 200 µM No PBS < 1 

1 M 40 mM Yes PBS 65 

50 mM 2 mM Yes PBS 46 

5 mM 200 µM Yes PBS < 1 

1 M 40 mM No Cell Lysate 85 

50 mM 2 mM No Cell Lysate 48 

5 mM 200 µM No Cell Lysate < 1 

1 M 40 mM No 
Cell Lysate + 

glutathione (50 mM) 
75 

50 mM 2 mM No 
Cell Lysate + 

glutathione (50 mM) 
45 

5 mM 200 µM No 
Cell Lysate + 

glutathione (50 mM) 
< 1 
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Importantly, the polymerisation was also shown to be tolerant to both oxygen in the air (see 

highlighted rows in Table 2 that degassing did not affect the conversion) and the antioxidants 

found in biological systems, such as glutathione (see Table 2). Even when additional 

glutathione (50 mM) was added, the polymerisation gave similar level of conversion (45%), 

thus confirming the glutathione did not act as chain transfer agent for the polymerisation. 

This was also evident from 1H NMR with no glutathione resonances observed in the NMR 

spectra of the isolated polymers (Figure 17a). This further indicated the chemical and 

biological robustness of the monomer/initiator system. The polymers from the cell lysate 

were isolated with a Mn of 14 kDa and a dispersity of 1.78 as determined by GPC (Table 4). 

Polymers with higher Mn were obtained with increasing monomer concentration (from 50 

mM to 1 M with 25/1 monomer/initiator ratio) (Table 4, Figure 17b), although higher 

monomer and initiator concentrations gave better conversion (up to 62%). The 

polymerisation conditions (50 mM monomer and 2 mM initiator with illumination at 365 nm 

for 5 min) were used for further polymerisation studies to minimise potential cytotoxicity.  

 

Table 3. Reaction screening for the free radical polymerisation of HPMA with the initiator BAPO-ONa 
in PBS with conversion monitored by 1H NMR.  

HPMA BAPO-ONa Degassed Solvent Conversion (%) 

50 mM 2 mM No PBS 48% 

20 mM 800 µM No PBS < 1 

10 mM 400 µM No PBS < 1 

5 mM 200 µM No PBS < 1 

2 mM 80 µM No PBS < 1 

1 mM 40 µM No PBS < 1 
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Table 4. Characterisation of polymers prepared in cell lysate. HPMA was polymerised with 
Irgacure2959 as a photoinitiator at different concentrations and was isolated by dialysis (molecular 
weight cut off 1000 Da). The resulting polymers were analysed by GPC with DMF with 0.1% w/v LiBr 
as an eluent. The molecular weights and dispersity were calibrated with narrow dispersed PMMA 
standards. 

HPMA Irgacure2959 Degassed Mn Đ 

20 mM 800 µM No 15 KDa 1.6 

50 mM 2 mM No 15 kDa 1.7 

100 mM 4 mM No 18 kDa 1.8 

1 M 40 mM No 19 kDa 1.8 

 

 

In order to demonstrate the compatibility of other monomers to the polymerisation 

conditions, polymerisations of monomers NaSS, VAN and FMMA (50 mM) with Irgacure2959 

(2 mM) in cell lysate were conducted and the resulting polymers were directly characterised 

by 1H NMR and GPC (see Figure 18). Representative broad polymer peaks of each polymers 

were observed in the 1H NMR spectra and polymer peaks (retention time <18 min) observed 

on the GPC. To eliminate the influences of biomolecules, 1H NMR and GPC analyses for cell 

lysate were conducted with no “polymer like” peaks observed. These results indicate the 

compatibility of the polymerisation system to diverse monomers. 
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Figure 18. (a) and (b) Polymerisation of NaSS in cell lysate with resulting 1H NMR spectrum (in D2O) 
and GPC trace. GPC trace gave Mn (and Đ) = 10 kDa (1.8). (c) and (d) Polymerisation of VAN in cell lysate 
with resulting 1H NMR spectrum (in DMSO-d6) and GPC trace. GPC trace gave Mn (and Đ) = 14 kDa (2.0). 
(e) and (f) Polymerisation of FMMA in cell lysate with resulting 1H NMR spectrum (in C6D6) and GPC 
trace. GPC trace gave Mn (and Đ) = 12 kDa (1.3). (g) and (h) 1H NMR spectrum (in D2O) and GPC trace 
of cell lysate. Reaction mixtures analysed directly without purification. GPC traces were performed 
using DMF with 0.1% w/v LiBr as an eluent. 
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3.2.5. Isolation of Polymers from Cells 

To confirm the generation of polymers inside cells, a monomer was used that would enable 

the isolation of the in situ polymerised polymer from cells. Thus biotin-PEG-methacrylate 

(biotin-PEGMA)69 was synthesised (Figure 19) and used to provide a handle for streptavidin 

directed magnetic nanoparticle isolation. Thus an esterification reaction was conducted 

using EDC as the activator and DMAP as the catalyst, to give the biotin-PEGMA in 30% yield. 

The synthesised biotinylated PEG-methacrylate monomer was purified by silica gel column 

chromatography to give a narrow mass range of the monomers for intracellular experiments.  

 

 

Figure 19. (a) Synthesis of biotin-PEGMA. Biotin was activated by EDC (1.5 equivalent) with DMAP 
(0.15 equivalent) as a catalyst, and coupled to  hydroxyl terminated PEGMA (Mn = 560) followed by 
column chromatography purification to give biotin-PEGMA in 30% yield. (b) 1H NMR spectrum of 
biotin-PEGMA in CDCl3. (c) Evaluation of cell viability of biotin-PEGMA using an MTT assay with cells 
incubated for 48 h, n = 6. As a negative control, the cells were treated with 50% DMSO in DMEM.  

 

The biotin-PEGMA had an IC50 of 11 mM (Figure 19c). HeLa cells were thus “polymerised” 

using biotin-PEGMA (5 mM) and HPMA (50 mM) as the monomers and the cells were lysed 

and the poly(biotin-PEGMA-co-HPMA) polymers extracted using streptavidin functionalised 

magnetic nanoparticles (Figure 20). To allow non-specifically bound natural proteins to be 
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removed, a temperature gradient (40 °C, 60 °C, 80 °C and 97 °C) was applied for polymer 

elution from the particles with > 80% (weight percentage) released at 60 °C (see 1H NMR 

spectra in experimental Figure 83). The released polymers were analysed by MALDI-TOF MS, 

GPC and 1H NMR (Figure 21), with the mass of the repeating unit (HPMA, 143 g/mol) clearly 

observed in the MS spectra. The molecular weight of the polymer (calculated from MALDI) 

was in good agreement with the GPC data (Mn = 2.8 kDa). The streptavidin nanoparticle 

isolation process was repeated for the cell lysate without polymerisation and the elution was 

analysed by GPC to eliminate the potential influence of natural polymers (see Figure 21e). 

There was no obvious polymer peaks detected, indicating the absence of synthetic polymers. 

Comparison of the 1H NMR spectrum of poly(biotin-PEGMA-co-HPMA) isolated from living 

cells to the polymer synthesised in PBS, showed no significant differences, again indicating 

the effectiveness of the polymerisation process within biological conditions.  

 

 

Figure 20. Isolation of biotinylated polymer poly(biotin-PEGMA-co-HPMA) using streptavidin magnetic 
nanoparticles. “Polymerised” cells were lysed and the lysate incubated with streptavidin magnetic 
nanoparticles. The nanoparticles were collected by a magnet and the unbound fractions discarded. 
The nanoparticles were then washed with PBS and heated at 40 °C, 60 °C, 80 °C and 97 °C with the 
buffer changed at each steps to give the poly(biotin-PEGMA-co-HPMA).  

 

However, the location of the generated polymers, i.e. whether the extracted polymers are 

from the inside of the cells or the plasma membrane, need to be further confirmed. 

Therefore, evaluation of the polymer locations were conducted utilising two in situ generated 

fluorescent polymers and analysed by confocal microscopy (see details in Chapter 3.2.7).  
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Figure 21. Characterisation of the poly(HPMA-co-biotin-PEGMA) extracted from Hela cells. (a) 
Synthesis of poly(HPMA-co-biotin-PEGMA) and (b) 1H NMR spectrum (in D2O) of isolated poly(HPMA-
co-biotin-PEGMA) polymerised in PBS (upper) and in cells (lower). The polymer synthesised in PBS was 
isolated by dialysis against water, (molecular weight cut off 1000). The polymer synthesised in cell 
lysate was isolated using streptavidin magnetic beads and released at 60 °C (in water). (c) MALDI-TOF 
MS spectrum of poly(HPMA-co-biotin-PEGMA) extracted from the cell lysate. (d) GPC trace of 
poly(HPMA-co-biotin-PEGMA) extracted from the Hela cell lysate (giving Mn = 9 kDa and Đ = 1.7) and 
(e) GPC trace of the extraction from the HeLa cell lysate (without polymerisation). 

 

 

3.2.6. Intracellular Polymerisation Changed the Cell Cycle Behaviour, the Cell 

Mobility and the Cytoskeleton Structure 

3.2.6.1. Evaluation of the Cell Cycle 

Although the proliferation assay (see Section 1.2) demonstrated that the 

photopolymerisation did not have any effect to the total amount DNA synthesised by the 
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cells, it was important to gain insight into the effect of intracellular polymerisation on the cell 

cycle. Flow cytometry based cell cycle analysis is one of the most widely used methodologies 

for quantifying cell numbers in different phases of the cell cycle.70 DNA binding fluorophores 

can be used to label cells in different phases based on the differences in fluorescence 

intensities and then quantified by flow cytometry. Cells in the G2 and M phases have almost 

double the amount of DNA comparing to the cells in G0 and G1 phases while any cells having 

fluorescence intensities in between can be attributed as being in the S phase where the DNA 

is being synthesised. Thus, Hela cells were “polymerised” using the monomer HPMA and 

cultured under normal cell culture conditions for 2 h, 24 h, 48 h and 72 h before analysis by 

flow cytometry using a Vybrant DyeCycle Green (λex/em = 488/534 nm) nuclear stain (Figure 

22 to 25).  

Flow cytometry data (Figure 26) showed that there were no significant differences in the G0 

and G1 phases between the “polymerised” and “untreated” cells with around 50% cells found 

in these phases for both the “polymerised” and untreated cells (Figure 26a). However, the 

number of cells in S phase was observed to be affected by the polymerisation. After 2 h 

incubation, the “polymerised” cell (15%) population showed a significant increase in quantity 

over the untreated cells (10%), but decreased to 8% and 5% when the incubation time was 

extended to 24 h and 48 h (12% for untreated cells at both time point). These changes 

indicated the influences of the polymerisation to the DNA synthesis in the cells, however the 

influence was observed to be recovered after 72 h where the “polymerised” cells had a 

similar DNA content after 72 h (Figure 26b). Although it is believed that DNA damage induces 

cell death by apoptosis,71 here the reduced number of cells in S phase was not accompanied 

by an increased apoptotic response following polymerisation, where the number of 

apoptotic cells were all in a similar range from 6%-17% and 5%-11% for the “polymerised” 

cells and the untreated cells, respectively (Figure 26d). For the G2/M phases, the ratio of both 

the “polymerised” cells and the untreated cells were stable (26%-33% and 23%-30% for the 

“polymerised” cells and the untreated cells, respectively) after 72 h (Figure 26c). In addition, 

there were no notable differences in cell cycle progression when comparing cells with and 

without illumination where the ratio of cells in S phase was in the range of 10%-12% and 

10%-13% for untreated cells and cells illuminated at 365 nm for 5 min. This indicated that the 

illumination did not result in any changes in DNA synthesis (Figures 22 to 25). 
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Figure 22. Cell cycle analysis using flow cytometry. Hela cells were treated (HPMA, 50 mM and 
Irgacure2959, 2 mM) or untreated, with or without illumination at 365 nm for 5 min. The cells were 
then washed and incubated for 2 h at 37 °C in fresh media. Cell cycle and cell death were quantified 
by cell staining using Vybrant DyeCycle Green following the manufacturer’s instruction, and analysed 
on a flow cytometer (λex/em = 488/525 nm). Forward versus side scatter profiles were used to gate 
intact cellular materials. All flow cytometry analyses are based on analysis of 10,000 cells. 
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Figure 23. Cell cycle analysis using flow cytometry. Hela cells were treated (HPMA, 50 mM and 
Irgacure2959, 2 mM) or untreated, with or without illumination at 365 nm for 5 min. The cells were 
then washed and incubated for 24 h at 37 °C in fresh media. Cell cycle and cell death were quantified 
by cell staining using Vybrant DyeCycle Green following the manufacturer’s instruction, and analysed 
on a flow cytometer (λex/em = 488/525 nm). Forward versus side scatter profiles were used to gate 
intact cellular materials. All flow cytometry analyses are based on analysis of 10,000 cells. 
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Figure 24. Cell cycle analysis using flow cytometry. Hela cells were treated (HPMA, 50 mM and 
Irgacure2959, 2 mM) or untreated, with or without illumination at 365 nm for 5 min. The cells were 
then washed and incubated for 48 h at 37 °C in fresh media. Cell cycle and cell death were quantified 
by cell staining using Vybrant DyeCycle Green following the manufacturer’s instruction, and analysed 
on a flow cytometer (λex/em = 488/525 nm). Forward versus side scatter profiles were used to gate 
intact cellular materials. All flow cytometry analyses are based on analysis of 10,000 cells. 
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Figure 25. Cell cycle analysis using flow cytometry. Hela cells were treated (HPMA, 50 mM and 
Irgacure2959, 2 mM) or untreated, with or without illumination at 365 nm for 5 min. The cells were 
then washed and incubated for 72 h at 37 °C in fresh media. Cell cycle and cell death were quantified 
by cell staining using Vybrant DyeCycle Green following the manufacturer’s instruction, and analysed 
on a flow cytometer (λex/em = 488/525 nm). Forward versus side scatter profiles were used to gate 
intact cellular materials. All flow cytometry analyses are based on analysis of 10,000 cells. 
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Figure 26. Data extracted from the flow cytometry graphs (Figure 22 to 25). The data is presented as 
a mean ± standard deviation (n = 3 for each group). Significant differences were analysed using two-
way analysis of variance followed by Sidak’s multiple comparison test compared to an untreated 
control group (* P < 0.05, ** P < 0.01).  

 

In summary, the intracellular polymerisation altered cell cycle by affecting DNA replication in 

S phase, although no apoptotic responses were observed, indicating the polymerisation 

chemistry do not affect cell viability.  

3.2.6.2. Evaluation of the Cell Mobility 

Cell movement is a fundamental process of all cellular organisms and contributes to tissue 

repair and regeneration, and is also related to diseases such as cancer.72, 73 To investigate the 

role synthetic “intracellular polymers” play in altering cellular migration, a wound healing 

migration assay was utilised (Figure 27). Hela cells were seeded in the two wells of the 

removable insert mode in a culture dish (Ibidi insert) and allowed to attach to the bottom of 



Chapter 3 

38 

 

the wells. The mode were then removed and a “wound” (500 μm) was generated between 

the two groups of cells. The migration was quantified by measuring the “wound area” at 

different time points in comparison to the original area (at 0 h).  

 

Figure 27. (a) Cell migration was analysed by a wound-healing assay using a HeLa cell monolayers. 
“Wounds” were created using the Ibidi insert kits and “wound closure” was monitored by bright-field 
microscopy at 24 h, 48 h, and 72 h with untreated cells and treated cells (incubated with HPMA (50 
mM) and Irgacure2959 (2 mM) for 4 h) with and without 5 min illumination at 365 nm. Wound areas 
were measured using ImageJ and are coloured in blue. Scale bar = 100 µm. (b) The normalised wound 
area vs time (calculated as the ratio of the remaining wound area at the given time point and at t = 0 
h) (data represent the mean ± SD, n = 3).  
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For the cells polymerised using the monomer HPMA, the percentage of wound closure was 

similar to untreated cells after 24 h (67% and 65%, respectively). However, after 48 h and 72 

h the “polymerised” cells showed significantly reduced motility compared to untreated HeLa 

cells (46% and 29% area remaining for “polymerised” cells comparing to 14% and 0% for 

untreated cells, after 48 and 72 h respectively). The “polymerised” cells presumably 

migrating more slowly as a consequence of the “internal polymer” resulting in a phenotype 

that had reduced translocation ability.72 Individual treatments of UV illumination or 

monomer/initiator did not cause any significant differences in the wound healing 

rate/migration, with the wound area remaining at 10% for both the illuminated cells and the 

monomer/initiator treated cells while an area of 14% was left for untreated cells after 48 h 

incubation and full closure observed for all three cases after 72 h (see Figure 27).  

 

 

Figure 28. Cell migration experiments using a wound-healing assay of a HeLa cell monolayer. 
Untreated cells were used as a control and compared with “polymerised” cells using HPMA and 
Irgacure2959 as the monomer and the initiator, respectively. 
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The effect of molecular weight of polymer on cell migration was evaluated by applying 

different monomer/initiator ratios (25:1, 50:1 and 125:1) in the wound healing assay (Figure 

27). As described previously (see Section 1.5), lower initiator ratios generate larger polymers 

(Table 4, Figure 17) and here contributed to slower migration of the cells (Figure 28). Thus, a 

monomer to initiator ratio of 125:1 (250 mM and 2 mM) gave wound areas of 81% and 62% 

after 48 and 72 h, respectively, whereas with a ratio of 25:1 (50 mM and 2 mM) and 50:1 

(100 mM and 2 mM) gave gaps of 49% and 42% after 48 h and 25% and 29% after 72 h, 

compared to 18% and 0% for untreated cells after 48 and 72 h incubation. There were no 

significant changes in cell proliferation for the “polymerised” cells compared to the untreated 

cells (Figure 13), but the formation of polymers inside the cells did modify their migration 

abilities. 

3.2.6.3. Evaluation of Alternations in Cytoskeleton Structure 

The cell migration was shown be affected by the intracellular polymerisation which is directly 

related to the cytoskeleton, which is a network of proteins responsible for most of the 

mechanical activities in cells. Therefore, the cytoskeleton is essential to cells and directly 

related to many cell functions, such as the generation of force, motion, sensing of force and 

cell division.74, 75 Affecting cytoskeleton artificially can contribute to the inhibition of 

migration and proliferation and inducing apoptosis to cancer cells. Thus such chemicals (e.g. 

DNA and organic small molecules) interacting with cytoskeleton proteins may be used as 

anticancer drugs.76 For example, the gene PTEN (or MMAC1) can be used as a tumour 

suppressor by reducing the tyrosine phosphorylation of the focal adhesion kinase FAK and 

therefore negatively regulates cancer cell regatation with extracellular matrix.77 Paclitaxel 

(also known as Taxol) is used for treating cancers by binding to the β subunit of tubulin, 

preventing tubulin chain depolarisation and thus inducing apoptosis.76  

Understanding how intracellular polymerisation affects cytoskeleton may offer a deep insight 

to the functions of cytoskeleton and may contribute to new therapeutic method 

development. Actin, a linear polyanionic protein, is one of the most important structural 

proteins of the cytoskeleton.78, 79 Since intracellular polymerisation will increase intracellular 

viscosity, it may alter G-actin polymerisation and result in structural changes in the 

cytoskeleton.80 It was worthwhile to get further insight into the influences of the 

polymerisation on cytoskeleton structures and functions.  
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Hela cells “polymerised” with HPMA as monomer and were stained with a Alexa Fluor 488 

labelled phalloidin (a bicyclic peptide that specifically binds to F-actin81). Because of the 

inaccessibility of phalloidin to plasma membranes, the Hela cells were fixed and the cell 

membranes were removed using a surfactant (Triton X100) prior to the actin reorganisation 

by phalloidin and the cells were analysed by confocal microscopy (Figure 29).82, 83 Remarkable 

differences were observed between “polymerised” cells and untreated cells.  

In comparison to the untreated cells, the “polymerised” cells showed a “well-spread” 

phenotype and an elongated and polarised morphology. The actin fibres were observed to 

be aligned with each other (orientation close to 0 degree) and cluster into large locally 

ordered microdomains, while the untreated cells correlated with an orthoradial actin 

distribution, together with small adhesion complexes mostly distributed at the cell edge 

(Figure 29).83 In addition, an increased area containing intracellular microdomains was 

observed to be 30% total cell area after 48 h incubation (comparing to 18% for untreated 

cells) and further increased to 40% after 72 h incubation (Figure 30). The anisotropy of the 

actin was observed to be significantly higher for “polymerised” cells after 72 h which was 

scored as 0.18 comparing to 0.03 for untreated cells and 0.04 for illuminated cells (365 nm, 

5 min) (Figure 30).84  
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Figure 29. Confocal images of untreated cells, with and without illumination, and “polymerised” cells 
stained for actin filaments (F-actin, after removal of cellular membranes) after (a) 48 h and (d) 72 h. 
Scale bar = 10 µm. (b) and (e) Corresponding orientation plots for actin staining, where the different 
colours indicate different orientations of actin filaments, as per the given colour map. The actin 
orientations were quantified in (c) and (f) (the convention of anisotropy score: 0 for no order (purely 
isotropic) and 1 for perfect order (perfect alignment)). 
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Figure 30. Data from the confocal microscope images in Figure 29. (a) Area of actin microdomains 
relative to cell area (Ar) for untreated cells with and without illumination (5 min at 356 nm), and 
“polymerised” cells incubated for 48 h and 72 h (data represent the mean ± SD, with each data point 
corresponding to 20 cells.) (b) Quantitative analysis of the anisotropy of actin from confocal images of 
HeLa cells (n ≥ 20 cells per condition, mean ± SD). (c) Aspect ratio of cell shape for untreated and 
“polymerised” cells after incubation for 48 h and 72 h. At least 20 cells were analysed for each 
experiment. Significance was analysed by two-way analysis of variance followed by Sidak’s multiple 
comparison test compared to untreated cells with and without illumination (* P < 0.05, ** P < 0.01, 
*** P < 0.001, **** P < 0.0001).  

 

3.2.7. Polymerisation Induced Fluorescence 

Fluorescent imaging techniques are widely used in biology and diagnostics.85-87 In comparison 

to small molecular fluorescent markers, polymer based fluorophores can provide improved 

biocompatibility and fluorescence intensity and contribute to long-term stability in living 

systems.88, 89 In situ generation of fluorescent polymers would open up the window to enable 

a wash-free method for labelling cells. Poly(NaSS) and poly(VAN) are known fluorescent 

polymers generated from non-fluorescent styrene monomers.90-92  
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To confirm the properties of these fluorescent polymers, NaSS (50 mM) was initially 

polymerised in PBS using the same condition as for polymerisations in cells (Irgacure2959 

(2mM) as photoinitiator and illumination at 365 nm for 5 min). The representative broad 

resonance peaks (7.85-6.97 ppm and 2.36-1.63 ppm) together with the peak in the GPC trace 

indicated the formation of polymers. The fluorescence property of the poly(NaSS) was 

evaluated by the fluorescence emission spectra recorded in PBS before and after 

photopolymerisation and showing a 3.4-fold increase in fluorescence intensity of the 

polymerised NaSS compared to the solution before illumination (see Figure 31).  

 

 

Figure 31. Photopolymerisation of NaSS in PBS with initiator Irgacure2959 (2 mM) and illumination at 
365 nm for 5 min. The polymer was purified by dialysis and (b) analysed by 1H NMR (in D2O) and (c) 
GPC (eluted with DMF). GPC trace gave the molecular weights (and Đ) of poly(NaSS) as 5 kDa (1.0). (d) 
Emission spectrum (ex = 480 nm) of solution of NaSS (50 mM) and initiator (2 mM) in PBS before 
(black line) and after (green line) photo-polymerisation (365 nm, 5 min) showing an increase in 
fluorescent intensity.  
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Polymerisation of NaSS was then carried out in Hela cells using the previously optimised 

conditions and the cells were analysed by confocal microscopy and flow cytometry (Figure 

32). The “polymerised” cells were co-stained with a nuclear stain (Hoechst 33342, λex/em = 

353/483 nm) and a plasma membrane stain (CellMaskTM Deep Red, λex/em = 649/666 nm) for 

confocal microscopy. The localisation of the in situ formed poly(NaSS) was confirmed to be 

homogeneously localised in the cytoplasma (Figure 32). When quantified by flow cytometry, 

the fluorescence increase (10-fold) of the whole cell population also confirmed that 

polymerisation happened intracellularly while controls (treated with monomer/initiator or 

illumination at 365 nm) showed negligible fluorescence increases. 

 

Figure 32. (a) Confocal fluorescence microscopy images of HeLa cells, with and without illumination, 
showing the intracellular polymerisation of NaSS. (i) Merged image of nucleus and NaSS or poly(NaSS), 
(ii) Merged image of nucleus and cell membrane; (iii) Merged image of all channels and 3D confocal 
image (Z-stacks projection) showing polymerised NaSS inside the cell with a vertical cross-section 
through the cells. Scale bar = 10 µm. (b) Dot plots of untreated and “polymerised” cells. (c) The 
population of cells shifted to higher intensity of fluorescence after polymerisation, but no difference 
was observed for untreated cells with and without illumination and treated cells without illumination. 
Poly(NaSS) was analysed (ex/em = 488/525 nm) with forward versus side scatter profiles used to gate 
intact cells. Flow cytometry analysis was based on analysis of 10,000 cells.  
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Similarly, the polymerisation of VAN were evaluated in PBS using the same polymerisation 

conditions as for poly(NaSS). 1H NMR (7.18-6.15 ppm and 2.33-1.90 ppm) and the polymer 

peak in the GPC trace indicated the formation of the desired polymer while the fluorescence 

spectra confirmed the fluorescence intensity increase (3.7-fold) from the VAN monomer to 

the corresponding polymer (see Figure 33).  

 

 

Figure 33. Photopolymerisation of VAN in PBS using the initiator Irgacure2959 (2 mM). The polymer 
was purified by dialysis and (b) analysed by 1H NMR (in D2O) and (c) GPC (eluted with DMF). The GPC 
trace gave the molecular weights (and Đ) of poly(NaSS) as 6 kDa (1.1). (d) Emission spectrum (ex = 480 
nm) of a solution of VAN (50 mM) and initiator (2 mM) in PBS before (black line) and after (green line) 
photo-polymerisation (365 nm, 5 min) showing an increase in fluorescent intensity.  

 

The polymerisation of VAN also produced “fluorescent cells” as analysed by confocal 

microscopy (co-stained with Lysotracker red (λex/em = 577/590 nm) for lysosome staining and 

Hoechst 33342 (λex/em = 353/483 nm) for nucleus staining) and showed the localisation of 

poly(VAN) in the cellular lysosomes (Figure 34), probably directed by the protonation of the 

polyaniline moiety (pKa = 4.6).93, 94 Quantification by flow cytometry showed a 9-fold increase 
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in fluorescence intensity of the “polymerised” cells comparing to the untreated cells. These 

observations further confirmed that the polymerisations were taken place inside the cells. 

 

 

Figure 34. (a) Fluorescence microscopy images of HeLa cells treated with VAN (50 mM) and 
Irgacure2959 (2 mM) with and without illumination. (b) Histograms of untreated and “polymerised” 
Hela cells. (c) The population of cells shifted to higher intensity of fluorescence after polymerisation. 
Poly(VAN) was analysed (ex/em = 488/525 nm) with forward versus side scatter profiles used to gate 
intact cells. Flow cytometry analysis was based on analysis of 10,000 cells. 

 

Despite the attractiveness of the in situ generation of fluorescent polymers, the overall 

fluorescence intensities were not sufficient for fluorescence studies over multiple cell 

passages. Thus, a bright fluorescent rhodamine based acrylic monomer AOTCRhB95 (5 μM, 

IC50 = 20 μM, analysed by MTT assay, Table 1) was copolymerised with HPMA (20 mM) and 

Irgacure2959 (1 mM) in Hela cells. The low IC50 of AOTCRhB limited high concentration. The 

“polymerised cells” were analysed by fluorescent microscopy (Figure 35) and flow cytometry 

(Figure 36) for up to 5 passages (cells were passaged and analysed every 2 days). A 
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remarkably higher fluorescence intensity was observed in the “polymerised cells” compared 

to untreated cells (100-fold increase) directly after the polymerisation. The fluorescence 

intensity naturally decreased over passages, the “polymerised cells” exhibiting higher 

fluorescence intensities of 10 and 3-fold over untreated cells for passage 1 and passage 5, 

respectively as quantified by flow cytometry (Table 5). The long-term retention of 

fluorescence within the “polymerised cells” indicated that intracellular polymerisation is a 

viable strategy for creating long-term cellular tracking reporters, an important requirement 

in regenerative medicine where there is powerful need to track implanted cells.89 

 

 

Figure 35. (a) Intracellular copolymerisation of HPMA and AOTCRhB. (b) Microscopy images of the 
HeLa cells with bright field, rhodamine (λex = 527-563 nm, λem = 570-650 nm) and merged image. Cells 
were treated with HPMA (20 mM) and AOTCRhB (5 µM) and initiator (2 mM) with and without 
illumination (365 nm 5 min). Cells were then harvested for imaging over 5 passages every two days. 
No fluorescent cells were observed for the cells without polymerisation after 3 passages, but the 
fluorescent cells (in circles) were still observed after 5 passages for the “polymerised cells”.  
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Figure 36. Analysis of cell passages (P1, P2, P4, and P5) following intracellular co-polymerisation of 
HPMA and AOTCRhB by flow cytometry. Poly(HPMA-co-AOTCRhB) was analysed using the rhodamine 
B channel (ex/em = 536/617 nm). Forward versus side scatter profiles were used to gate intact cellular 
materials. Flow cytometry analysis was based on analysis of 10,000 cells. P1 and P5 for treated cells 
with and without illumination are shown. P1, P2, P3 and P5 are summarised as histograms in (i) with 
no illumination and (ii) with illumination (5 min illumination). The population of “polymerised cells” 
still retained their higher fluorescence intensity after 5 passages when compared to cells without 
polymerisation. Cells at P0 saturated the detector at the same settings and was not shown.  

 

Table 5. Fluorescence intensities of Hela cells after 1, 2, 4 and 5 passages following polymerisation 
(cells treated with/without AOTCRhB (5 μM), HPMA (20 mM) and Irgacure2959 (1 mM), with/without 
illumination (365 nm)). Fluorescence intensity quantified by flow cytometry (ex/em = 536/617 nm). 

AOTCRhB 
concentration 

Illumination 
Fluorescence intensity (a.u.) 

P1 P2 P4 P5 

5 μM Yes 147 57 30 20 

5 μM No 14 10 8 7 

0 Yes 8 7 7 7 

0 No 8 7 7 7 
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3.2.8. Polymerisation Induced Intracellular Polymer Aggregation 

Polymerisation induced nanoparticle formation is of interest because monomers and in 

polymer nanoparticles would have different accessibility to cellular organelles and could 

affect cellular functions. Ferrocene based polymers and nanoparticles (e.g. poly(FMMA) and 

ferrocene functionalised polyethyleneimine) have been found in the cytoplasm but shown 

no accessibility to the nucleus, whereas ferrocene conjugated small molecules, e.g. 

anthracene─ferrocene with a Mn of 388 Da was used for the in situ detection of reactive 

oxygen species in Hela cells and was found to be nucleus accessible.96-99  

 

Figure 37. (a) Photo-polymerisation of FMMA (20 mM) in the presence of initiator Irgacure2959 (1 
mM) was followed by self-aggregation to form nanoparticles in PBS. The nanoparticles were collected 
by centrifugation and washed with PBS. (b) GPC trace (partially dissolved and eluted with DMF) of the 
isolated poly(FMMA) giving a Mn = 8 kDa with Đ = 2.2. (c) 1H NMR of poly(FMMA) in d6-DMSO. 

 

To investigate the aggregation behaviour of poly(FMMA), the polymerisation was initially 

conducted in PBS as a proof of concept (Figure 37). Because of the solubility of the monomer 

FMMA, 20 mM was used for photopolymerisation with Irgacure2959 (1 mM) as initiator. The 

polymer precipitated while being formed and allowed collection by centrifugation. The 

collected poly(FMMA) was analysed by 1H NMR and showed representative polymer 
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resonance peaks while the GPC trace gave a molecular weight of 8 kDa with a dispersity of 

2.2 (see Figure 37).  

 

Figure 38. (a) (i) TEM image of ferrocene polymeric nanoparticles formed in vitro, showing both 
individual and small clusters of particles; (ii) Clusters of nanoparticles; (iii) Individual nanoparticles. 
Scale bars = (i) 1 µm; (ii) and (iii) 500 nm. (b) and (c) TEM images of “polymerised” HeLa cells and 
untreated cells, respectively. The cells were fixed, sliced, and treated with uranyl acetate to stain 
membranes and lead citrate to stain the nucleus. Red arrows show the nuclear membrane and green 
arrows ferrocene nanoparticles. (i) A single cell and (ii) magnification of nuclear membrane. Scale bars: 
(b) (i) = 2 µm, (ii) = 500 nm; (c) (i) = 1 µm, (ii) = 500 nm.  
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To investigate the polymerisation of FMMA induced nanoparticle formation in cells, the 

ferrocene monomer (10 mM) was polymerised in Hela cells (with 1 mM Irgacure2959). TEM 

analysis of fixed cells showed 50─70 nm diameter nanoparƟcles in the cytoplasm and the 

nucleus after polymerisation (Figure 38b), which were not present in cells treated with 

FMMA but without illumination (Figure 38a). Control polymerisations in PBS showed similar 

nanostructures, suggesting that the formation of nanoparticles was driven by the 

polymerisation.  

In situ formation of precipitations intracellularly using the monomer without a metal can be 

achieved using HEMA and O-HPMA, which are water soluble monomers that can polymerise 

as water insoluble polymers inducing the formation of polymeric nanoparticles.100, 101 As a 

proof of concept, the polymerisations were initially performed in PBS (with monomer 

concentration of 50 mM) and the polymers were purified by dialysis. Similar to other 

monomers, representative polymer peaks were observed in both the 1H NMR spectra and 

GPC traces, indicating good polymerisation reactivity (see Figure 39).  

Intracellular formation of polymeric nanoparticles of HEMA and O-HPMA were carried out in 

HeLa cells. Although both monomers showed cytotoxicity to Hela cells above 10 mM (MTT 

assay, Figure 39), the monomers were taken up by the cells (quantified by extraction of 

monomers by DCM followed by HPLC analysis, Figure 39) and nanoparticles were observed 

via TEM after the photopolymerisation. (Figure 40). The images of “polymerised cells” 

showed nanoparticles in aggregates localised mainly on the plasma membrane and nuclear 

envelope while no similar structures were observed in non-illuminated cells.  
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Figure 39. (a) and (b) Photopolymerisation of HEMA and O-HPMA in PBS, respectively. The resulting 
polymers were purified by dialysis. (c) and (d) 1H NMR spectra (in d6-DMSO) of poly(HEMA) and poly(O-
HPMA) in d6-DMSO, respectively. (e) and (f) GPC traces (eluted with DMF) of poly(HEMA) and poly(O-
HPMA) gave the molecular weights (and Đ) of 14 kDa (2.0) and 11 kDa (1.78), respectively. (g) 
Evaluation of cell viability of HEMA and O-HPMA using an MTT assay with cells incubated for 48 h, n = 
6. As a negative control, the cells were treated with 50% DMSO in DMEM. (h) Concentrations of 
monomer/initiator recovered from cell lysate after 4 h incubation with 50 mM O-HPMA or HEMA and 
2 mM Irgacure2959. Compounds were extracted by DCM and quantified by HPLC.  
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Figure 40. TEM images of HeLa cells treated with HEMA (50 mM) or O-HPMA (50 mM) and polymerised. 
The cells treated with monomer/initiator without illumination were used as controls. The cells were 
fixed, sliced, and treated with uranyl acetate to stain membranes and lead citrate to stain the nucleus. 
The precipitated polymers found in cells are highlighted within red arrows. Scale bar = 2 µm for (i) and 
(ii) and 1 µm for (iii). Cell were fixed directly after the polymerisation because of the monomer toxicity. 

 

3.3. Conclusions and Outlook 

A strategy of photo-induced free radical polymerisation in an intracellular microenvironment 

was developed utilising a series of biocompatible functional acrylic and styrene monomers. 

The free radical mechanism of the polymerisation process was confirmed and the radical 

initiating the polymer chain propagation was proven not to be influenced by the radical 

scavenging species in cells. The successful polymerisation was confirmed by characterisation 

of the isolated polymers from cells. In addition, the optimised polymerisation allowed the 

manipulation, tracking and tuning of cellular behaviour by the generation of unnatural 

macromolecules. Basic cell functions including cell viability, proliferation ability, cell cycle, 

cell migration and cytoskeleton structures were evaluated and found to be affected by 

intracellular polymerisation. The intracellular polymerisation processes were observed to 
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have negligible effects on cell viability and the cell proliferation activity. However, the 

synthesis of HPMA based polymers in cells induced delay of the cells to access the S-phase of 

the cell cycle. The generation of polymers were also found to alter the cell mobility by 

restricting their movements, while the generation of polymers with larger molecular weights 

induced greater reduction of cell movement rates. The cytoskeleton structures of the 

“polymerised” cells were observed to be more anisotropic than the “untreated” cells with 

the actin fibres more parallel to each other and the cellular structure more “elongated”. 

Moreover, various polymers with different functions were generated intracellularly. 

Fluorescent polymers were synthesised from non-fluorescent monomers and fluorescent 

copolymers were generated with the elongated cellular retention time. Nanostructures were 

induced by in situ precipitation of polymers from water soluble monomers. The potential 

power of the approach allow us to begin to understand the free radical chemistries in cells 

and explore new biocompatible chemistries and control cellular functions. 

As this is the first time that biocompatible intracellular photopolymerisation has been 

reported, many improvements can be made to further optimise the polymerisation process. 

For example, less harmful visible light (> 400 nm) could be utilised as a light source potentially 

allowing efficient polymerisation with less cytotoxicity. More chemically robust living 

polymerisations, e.g. RAFT or ATRP, could also be investigated which may contribute to more 

controlled polymer size/distribution and allow introduction of functional groups to individual 

polymer chains. Monomers carries more functionalities could be utilised in the 

polymerisation system such as norbornene methacrylates (see Chapter 4). 

Other cells, such as stem cells and primary cells could be alternatives to the cancer cells used 

here to further broaden the application. For instance, it would be interesting to investigate 

how polymerisation affects the differentiation of stem cells and whether the polymerisation 

reaction can act as a stimuli to trigger stem cell differentiation in specific directions. In 

addition, the polymerisation in normal cells could be investigated to see whether the 

generation of polymers can induce resistance of the cells towards certain diseases, e.g. 

bacterial/viral infection.  

The monomer “tool box” can be extended to more biocompatible monomers allowing the 

production of structurally and functionally diverse polymers. For instance, a protein binding 

monomer could be applied to the cells, following co-polymerisation with other 
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biocompatible monomers and crosslinkers, allowing rigidly solidified cells with permanently 

immobilised cellular organisms to be achieved without damaging cellular structures.  
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Chapter 4. Polymer–Protein Conjugates for Signal 

Amplification 

 

4.1. Introduction  

4.1.1. Signal Amplification in Biology 

As a fundamental tool in biology and medical science,86, 102 fluorescent imaging has become 

highly developed as demand for the detection and tracking of proteins, bacteria, viruses and 

cells has grown. This has benefited from the development of multiple fluorescent reporters 

established over the past few decades, including small molecule dyes,103 nanoparticles (e.g. 

quantum dots),104, 105 synthetic polymers (e.g. intrinsically fluorescent conjugated 

polymers),106, 107 and fluorescent proteins (e.g. green fluorescent protein)108. However, the 

fluorescence intensity of many fluorophores are unsatisfactory, especially when being used 

in vivo, such as for cancer diagnostics16, 104 which may result in poor sensitivities, high error 

rates and narrow ranges of detection, particularly with low abundance targets. Therefore, 

new amplification methods are required for enhanced fluorescence-based detection.  

4.1.1.1. Chain Reaction Based Amplification 

Since the first example of the polymerase chain reaction (PCR) reported in the 1980s,109, 110 

chain reaction based amplification methods have rapidly developed and are widely used in 

biology and medicine.111-113 The exponential amplifications of target DNA or RNA sequences 

occurs as shown in Figure 41, where double-stranded DNA is melted to give single-stranded 

DNA, annealed with a primer (an oligonucleotide providing the starting point for DNA chain 

growth) and the nucleoside triphosphate monomers added sequentially onto the primer by 

a polymerase. Originally, PCR based amplifications required temperature cycling for single-

stranded DNA formation and primer annealing. Now isothermal amplification methods have 

been developed, such as strand-displacement amplification, rolling circle amplification and 

helicase-dependent DNA amplification. In the strand-displacement amplification method, 

double-stranded DNAs are nicked enzymatically and the synthesis of new chains directly 

started at the nick point displacing the downstream strand during the polymerisation.114 In 
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rolling circle amplification, the amplification starts from a circular template DNA, which is 

nicked at a desired position and a new DNA chain grows (requiring a DNA polymerases) from 

the nick point using the circular DNA as the template. This allows continuous growth of the 

DNA chain with copying of the circular DNA template.115-117 The efficiency of amplifying long 

nucleic acids has been further improved by applying helicase-dependent DNA amplification 

methods, which utilises helicase for unwinding duplex DNA, improving the reaction rate and 

reactivity.113, 118  

 

Figure 41. Principle of the standard polymerase chain reaction. The target double-stranded DNA is 
melted at 95 °C to give two separated strands and annealed with two DNA primers at 55 °C. From the 
primer, elongation takes place with the aid of a polymerase at 72 °C. The temperature cycling is 
repeated and gives an exponential increase in the number of DNA strands.  

 

Although highly efficient, most enzyme-based amplification methods require specific 

substrates, costly materials, e.g. enzymes, and often require denaturing process. 

Hybridisation chain reaction based amplification has emerged as an alternative enzyme-free 

amplification technique that can be used under mild conditions.16, 119, 120 Unlike other chain 

reaction based methods using nucleotide triphosphates for synthesising DNA chains, 

hybridisation based chain reactions use two species of DNA hairpins, triggered by an initiator 

to drive a cascade events leading to a nicked double-stranded DNA with multiple signal 

reporters (see Figure 42). Because of the unique mechanism, signal amplifications are not 
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achieved by multiplication of the template DNAs but through the introductions of multiple 

(tens to hundreds) of alternative DNA sequences to one DNA analyte (Figure 42).121 

Incorporating functional moieties such as fluorophores,122 nanoparticles123 and 

electrochemical reagents124 to the DNA hairpins allows their detection with signal 

amplification of the analyte. However, challenges exists, such as the difficulties in designing 

and synthesising DNA hairpins and amplification of other analyte besides DNA or RNAs.  

 

Figure 42. Principle of the hybridisation chain reaction. The introduction of the DNA target (a*-b*, as 
a primer) initiates the hybridisation chain reaction with sequence a of the hairpin 1 recognising the 
DNA primer and producing the double-stranded complex and expose the c-b* domain. Hairpin 2, 
stably co-exists with hairpin 1 without the primer. This thus opens hairpin 2 and exposed the a*-b* 
domain. The introduction of hairpin 1 and hairpin 2 can then be repeated automatically until the 
supply of the hairpins is exhausted.  

 

Despite the power of these chain reactions for amplifications of analytes, the shortcomings 

are still obvious. For instance, amplification methodologies desired for nucleic acids are 

difficult to apply directly to other types of analytes. As a result, other signal amplification 
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strategies have emerged and have been successfully applied, including enzyme catalysed 

deposition based amplifications, and nanoparticle and polymer scaffold based amplifications.  

4.1.1.2. Catalysed Reporter Deposition Amplification 

Catalysed reporter deposition amplification, also known as tyramide signal amplification, was 

developed by Kerstens et al. in the 1990s125 and widely used for detection of a range of 

biological analytes.126 The amplification is achieved by deposition of multiple biotin labelled 

tyramides around horseradish peroxidase targeted to the analyte (Figure 43). Specifically, a 

DNA probe (for detection of selected DNA sequence) is labelled with biotin, which is then 

targeted by an anti-biotin antibody and a biotinylated secondary antibody. The exposed 

biotin is then labelled with a streptavidin tagged horseradish peroxidase, so that the 

peroxidase is bound to the DNA analyte with high specificity. The streptavidin labelled 

tyramide is subsequently activated by oxidation of the in situ generation of hydrogen 

peroxide which non-specifically reacts with surrounding proteins (the tyramide labelling is 

located at the target region due to the high reactivity of the activated tyramide). 

Fluorescently labelled biotin then binds to the streptavidin to achieve fluorescence 

amplification. Originally, this amplification method was established for signal amplification 

of fluorescence in situ hybridisation to reduce detection limits, but nowadays is used in many 

more areas such as detection of RNA,127 bacteria,128 and other immunohistochemistries129.  

To simplify the protocol, the technique has been developed. For example, streptavidin 

tagged horseradish peroxidise can be used to directly target the biotinylated DNA probe,17 

while conjugation of the peroxidase directly to the oligonucleotide probe provides an even 

simpler experimental procedures.130 The peroxidase has also been replaced with alkaline 

phosphatase which catalyses the dephosphorylation of a soluble fluorophore to form an 

insoluble precipitate or allow visualisation of in situ generated fluorescent nanoparticles 

which displays a large Stokes shift (λex/em = 360/530 nm).127 Application of such powerful 

amplification technology (together with in situ hybridisation) allows real time detection of 

multiple genes, proteins (by applying an protein targeting moiety to the peroxidase) and even 

cells in living organisms.131, 132  
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Figure 43. Principle of the original catalysed reporter deposition amplification. Streptavidin tagged 
horseradish peroxidase is introduced onto the target DNA/RNA analyte through a series of 
immunological reactions, which then in situ oxidation (activation) of the fluorescently labelled 
tyramide driving complex formation of the activated tyramide with local proteins to achieve 
fluorescence amplification.  

 

4.1.1.3. Nanoparticle Assisted Amplification Technologies 

The development of enzyme free amplification methods are still of interest and nanoparticle 

based amplification methods have emerged for signal amplification. Nanoparticles possess 

unique properties such as capacity for carrying multiple targeting motifs with plasma 

membrane accessibility. These may contribute to enhanced tumour targeting specificities 

with nanoparticles having been applied as an amplification platform for the detection of DNA, 

RNA, proteins and cells.  

For example, CdSe nanoparticles loaded with RNA detection probes were utilised for 

detection of low abundant microRNAs. The targeted RNA sequences induced release of Cd2+ 

ions which subsequently “turned on” the fluorescence of Rhod-5N to achieve fluorescence 

amplifications with a detection limit of 35 fM.133 WS2 nanosheets, which specifically bind to 

single-strand oligonucleotide fragments, have been used for microRNA detection by 

selectively binding and quenching of oligo-DNA probes (which is linked to a fluorophore and 
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is fluorescent in solution) by the WS2 nanosheets while leaving microRNA bound probes 

fluorescent (RNA analytes anneal to DNA probes to generate doubled-stranded structures 

that do not bind to WS2).134  

However, due to the cytotoxicity of heavy metals and the water solubility of the fluorophores 

(the fluorescent molecules were homogeneously distributed in solutions), such 

methodologies can only be applied for in vitro screening assays. Silica nanoparticles loaded 

with DNA probes have been developed for concentration of DNA analytes (prelabelled with 

a fluorophore) on their surfaces (by in situ hybridisation). Multiple intrinsically fluorescent 

conjugated polymers, acting as an Förster resonance energy transfer energy donor for the 

fluorophore on the analyte, were electrostatically absorbed onto the nanoparticle and 

amplified the fluorescent signal (>100-fold increase, compared to the free analyte in solution 

where no Förster resonance energy transfer occurred).135 A polymer─bovine serum albumin 

(BSA) nanoparticle system with aggregation induced emission fluorophores (which only emit 

fluorescence in an aggregated state) doped inside the particles were applied for in vivo 

visualisation of tumour tissues. Targeting peptide sequences were attached to the particle 

surfaces to direct particles specifically to cancer cells.136 Amplification was achieved by 

Förster resonance energy transfer between the conjugated polymers (energy donor) and the 

nanoparticles (with multiple aggregation induced emission accepters attached), where free 

aggregation induced emission fluorophores in solution was non-fluorescent and thus cannot 

obtain energy from the polymers.  

4.1.1.4. Polymer─Protein Conjugates Based Amplification 

One of the shortcome of nanoparticles is their relatively large size and the requirement for 

multiple targeting moieties labelling to allow stable target─probe conjugates. In comparison, 

targeting motifs such as antibodies tagged with functional polymer scaffold offer promising 

performance in fluorescence amplification. For example, an ATRP initiator was selectively 

attached to an antibody and used for controlled in situ polymerisation of a fluorescent 

copolymer, allowing fluorescent signal amplification for immune detection in vitro.137 More 

recently, a dendrimer bearing multiple trans-cyclooctene moieties (Mn = 2 kDa) was 

conjugated to an antibody, allowing subsequent click chemistry with tetrazines carrying a 

radioligand to amplify radiative signals.138 Signal amplification using a polymer scaffold 

provides a flexible platform for labelling various targeting moieties (e.g. DNAs, RNAs, 
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peptides and antibodies) with tuneable marker densities and signal intensities. (See detailed 

introduction of polymer-protein conjugates in Section 4.1.2.)  

4.1.1.5. Other Amplification Technologies 

Other amplification methods such as protein multimerisations showed promising efficiency 

in biological applications. Amplifications are achieved by recruitment of multiple fluorescent 

proteins (e.g. green fluorescent protein) to a targeting moiety (e.g. antibody and DNA) by 

gene transfection, so that the amplified fluorescence is introduced it. The probe with 

amplified fluorescent signals could be utilised for antigen and DNA detections.85, 139-141 DNA 

binding proteins have been used to protect multiple fluorophore labelled DNA analytes from 

digestion (by a nuclease) with efficient Förster resonance energy transfer dequenching 

following cleavage.142 Another Förster resonance energy transfer based amplification system 

was developed using a dendrimeric scaffold with multiple Dansyl motifs as the donor and a 

Dabsyl as a quencher. Upon enzyme cleavage of the linker between the donor and the 

accepter, the fluorescence was dequenched and amplified.143-145  

4.1.1.6. Enzyme-Linked Immunosorbent Assay 

Enzyme-linked immunosorbent assays (ELISA), are widely used for in vitro diagnostics in 

biological research and medicine and are highly specific, safe (compared to 

radioimmunoassay, another commonly used diagnostic method), to detect antigens at 

ultralow concentrations. As a powerful detection tool, many ELISAs have been 

commercialised and used for various applications. The first commercialised ELISA detection 

system developed and marketed by Organon Teknika was for the hepatitis B surface antigens, 

and more recently, the CUBE and SMART analysers were marketed by Eurolyser Diagnostica 

for clinically relevant analyte detections, such as biomarkers and bacteria.146  

The principle of ELISA is to detect the analyte (often an antigen) using an enzyme 

immunoassay (see Figure 44). Specifically, antigens from the sample are anchored onto a 

solid support (e.g. a multi-well plate) directly (by physical adsorption) or by capture by an 

immobilised antibody (referred as a “sandwich ELISA”). The support surface is extensively 

washed to reduce biomolecules from non-specific binding and then treated with a blocking 

buffer (e.g. BSA in PBS) to block any unspecific binding site on the substrate. An enzyme 

labelled antibody (specific to the antigen) is introduced to deliver the enzyme to the antigen 
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to form an “immune complex”. The enzyme specific substrate is incubated within the systems 

to allow the enzyme catalysed reaction and gives a detectible product and quantified by 

spectrometry.  

 

 

Figure 44. The principle of ELISA. The antigen is anchored to the substrate and treated with a blocking 
buffer. An antigen specific antibody with a labelled enzyme is then bound to the antigen. With the 
catalysis of the enzyme, the colourless substrate is converted to a coloured product and detected.  

 

Driven by the huge market for ELISAs based applications, many developments have been 

reported to further improve its performance. For example, the antibody binding step can be 

divided into two steps to increase the specificity, where a primary antibody (targeting the 

antigen) is used initially and an enzyme labelled secondary antibody (target the primary 

antibody) is then applied to introduce the enzyme.147 However, the use of antibodies have 

some potential issues including the relatively complicated and time-consuming approach, 

and their instability at room temperature or above. Several alternative targeting moieties 

have been developed such as aptamers (also known as “chemical antibodies”), which are 

single-stranded DNAs or RNAs that bind to a wide range of molecules with high specificity 

and affinity.148 Successful applications of utilising aptamers in ELISA based assays have been 

reported to permit the detection of contaminants, e.g. arsenic, lead and toxic polymers in 

water,149 and disease biomarkers, e.g. T. cruzi excreted secreted antigens in rats,150 with 
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promising specificity. Another alternative to antibodies are so-called nanobodies, a single 

domain heavy chain antibody expressed without the light chains. In comparison to traditional 

antibodies, nanobodies have a simpler design, are readily expressed and engineered, and 

have been used for ELISA for the detection of natural mycotoxins (e.g. aflatoxin).151  

Optimisations are also focused on the detection techniques and the enzyme based catalysts. 

For instance, electrochemical detection has been used for detection of in situ formed silver 

nanoparticles (by reduction of water soluble Ag+ ions by p-aminophenol, which was 

generated by alkaline phosphatase catalysed hydrolysis of p-aminophenyl phosphate), and 

used to detect H7N9 avian influenza virus achieving a single virus detection limit.152 An 

enzyme-free version of the ELISA was reported by applying the specific and strong interaction 

between Fe3+ ions and poly(glutamic acid). Similar to other ELISAs, the antigen anchoring and 

antibody binding were performed initially, but the antibody was decorated with 

poly(glutamic acid) instead of an enzyme. The subsequent introduction of iron salt induced 

the formation of a deeply coloured iron complex. This approach showed an high sensitivity 

for detection of the microcystins-LR (12 pg/mL).153 

4.1.2. Chemical Modification of Proteins with Polymers 

As described in Chapter 1, proteins are extensively used in biology and medicine.154, 155 

However, shortcomings such as immunogenicity, poor stability, solubility and circulation 

time in vivo can limit their usefulness.156 Since the first example of a polymer covalently 

conjugated to a protein in the 1970s,157 the strategy of decorating native proteins with 

synthetic polymers has developed and shown potential to overcome some of these the 

limitations158-160 while providing new functionalities such as cargo delivery, catalysis, 

diagnostics, and sensing to name but a few.161-165  

Generally, there are three strategies for synthesising polymer─protein conjugates as shown 

in Figure 45.158 The “graft from” approach is achieved by introducing an initiator or chain 

transfer agent to the protein and subsequent living polymerisation (e.g. ATRP and RAFT) 

directly from the protein.166, 167 This strategy contributes to high grafting efficiency and simple 

purification benefiting from the significant molecular weight differences between the 

monomer and the polymer─protein conjugate. However, the complex 3D structure of 

proteins and the steric issue leads to lower polymerisation reactivity (e.g. monomers cannot 
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easily reach the initiating moieties buried inside the protein structure and the radicals tend 

to transfer to be quenched by hydroxyls or amides on the protein). Less controlled 

polymerisation and thus broader distributions compare to the same polymerisations in 

solution are resulted. The polymerisation condition and monomer used also has to fulfil many 

criteria for sensitive proteins to avoid denaturation.158  

The “graft to” approach directly conjugates preformed polymers to proteins, provides 

accessibility to most of the polymerisation methods with a wide screen of functional 

monomers. However the yield of the conjugation step is often low due to the steric hindrance 

between two macromolecules, and multiple purification steps are often required to isolate 

the product from the macromolecular reactants.159  

 

 

Figure 45. Strategies for fabricating polymer─protein conjugates. (top) The “graŌ from” approach 
requires initiating motifs to be introduced onto the protein surfaces and subsequent in situ 
polymerisation gives controlled polymer chains conjugated to the proteins. (middle) The “graft to” 
approach requires polymer chains to be initially synthesised with a terminal functional group allowing 
coupling reactions to the protein. (bottom) The “graft through” requires the protein molecules to be 
functionalised with a polymerisable moiety which allowing copolymerisation with other monomer(s) 
to give multiple protein conjugated polymers. 
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The third method is often referred as the “graft through” approach, which chemically 

modifies proteins with polymerisable motifs and conducts the polymerisation to obtain 

comb-shaped polymer structure with multiple proteins present.158 Due to limited 

polymerisation reactivity, yields of the “graft through” polymers are low and the number of 

reported examples and applications are limited. In summary, to achieve high quality 

polymer─protein conjugates, it is essential to consider the conjugation strategy, the type of 

protein and polymer utilised, the chemical reaction for the coupling reactions and key issues 

such as purifications.  

4.1.2.1. “Graft from” approach 

The “graft from” method, which directly grows polymer chain from the protein, has gained 

increasing attention because of its high yield and ease of purification since the early 2000s.166, 

168 Incorporating the initiating motif to the protein of interest is key and will directly affect 

the reactivity of the in situ polymerisation and the properties and dispersity of the resulting 

conjugates. The most widely used conjugation strategy is to conduct coupling reactions at 

the site of native reactive centres e.g. lysines or cysteines on the protein surfaces with various 

available reactive moieties, such as active esters, isocyanates, maleimides and 

halogenides.156, 159 The general coupling reactions included active ester─amine coupling, 

thiol─maleimide 1,4-addition and thiol─disulfide exchange, which covalently conjugate the 

initiating motifs to proteins.169-173 However, because of the presence of multiple lysines and 

cysteines on proteins, such conjugation may result in heterogeneous conjugates with 

undetermined numbers and locations of the conjugations, with the risk of changing the 

solubility and/or loss of biofunction.166, 174 Introducing unnatural amino acids or replacing 

reactive lysines or cysteines with other amino acids by mutagenesis allows site specific 

modifications at desired site. However, such methods suffer from complicated designs and 

needs to synthesise the desired mutants and limits the choice of coupling reactions. Other 

site specific modifications such as α-amine selective coupling using optimised conditions 

(typically by tuning pH) also show good selectivity and efficiency, but required precise 

optimisation for individual protein candidates and are difficult to translate to different 

protein structures.175  

From the initiator proteins, polymerisations can be conducted to generate polymer chains 

directly on the protein. To date, only a few polymerisation approaches (most commonly, 
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ATRP176 and RAFT polymerisation177) with a limited number of monomers (e.g. N-

isopropylacrylamide, PEG methacrylate and N,N-dimethyl acrylamide) have been possible. 

This is due to the need to preserve the native protein structures and carry out the chemistry 

in aqueous solution at mild pH and low temperature. ATRP was initially applied with in situ 

polymerisation on proteins using Cu(I) as the catalyst.166-168 The successful introduction of 

ATRP initiators onto proteins, e.g. BSA, streptavidin, lysosome, trypsin and the P22 capsid. 

This is achieved with marcoinitiator formation strategies including biotin─streptavidin 

interaction, thiol─maleimide 1,4-addition and thiol─disulfide exchange, which permitted 

subsequent controlled polymerisations of monomers such as N-isopropylacrylamide, PEG 

methacrylate, 2-aminoethyl methacrylate, acrylamide, N,N-dimethyl acrylamide and N,N-

dimethylaminoethyl methacrylate, (Figure 46). This has given desired polymer─protein 

conjugates that have shown enhanced protein stabilisation.166-168, 178, 179  

 

 

Figure 46. Structures of the RAFT agents and examples of monomers used to graft onto proteins 
directly. 
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However, ATRP requires a heavy metal catalyst and the residue left may limit applications of 

the product. Another living polymerisation technique, RAFT polymerisation, has also been 

explored avoiding the use of heavy metal catalysis using unique RAFT reactive centres, e.g. 

dithiocarbamates, trithiocarbonates and xanthates, see Figure 46. These are proved to have 

high reactivity and robustness in aqueous solutions.170, 171, 174, 180 The subsequent 

polymerisation under mild conditions allows the in situ growth of the polymer chains on the 

proteins with the desired chain length and density of function groups. For example, RAFT 

agents were covalently conjugated to the target proteins, e.g. BSA and lysosome followed by 

RAFT polymerisation of N-isopropylacrylamide and gave controlled polymer─protein 

conjugates in high yield without affecting protein activity.169-171, 174 

It is worth noting that synthetic polypeptides can be decorated with polymers using this 

“graft from” method in an even simpler procedure than natural proteins. Some examples 

that have shown success including coupling of RAFT agent to the synthesised polypeptide 

directly on the solid supports via different coupling chemistries, e.g. Cu catalysed 

alkyne─azide cycloaddiƟon and carboxylic acid─amine coupling. Subsequent living 

polymerisations gave well-tuned polymer─pepƟde conjugates.181-183  

4.1.2.2. “Graft to” approach 

Different from the “graft from” method, where an in situ polymerisation process is required 

in the presence of the fragile proteins, the “graft to” approach requires only one step 

chemical reaction with the target protein substrate (using the presynthesised polymers). The 

first example using this method was introduced by Abuchowski in the 1970s, where activated 

PEGs were covalently introduced onto lysine residues on BSA or bovine liver catalase and 

showed loss of immunogenicity.157, 184 Although showing poor coupling efficiency, this 

conjugation method is used in various applications because of the available functional 

polymers and the straight forward synthesis procedure.158, 165  

The most widely used polymer for protein conjugation is poly(ethylene glycol). For example, 

PEGylation of proteins protect the proteins from enzymatic degradation and reduced the 

immunological uptake by the phagocyte system (e.g. macrophages). Several PEG-protein 

products have been developed and approved by the Food and Drug Administration for 
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therapeutic uses (e.g. PEG-asparaginase (Oncaspar) and PEG-growth hormone receptor 

antagonist (Somavert)).185, 186 

Other terminal functionalised polymer scaffolds are accessible through diverse synthetic 

strategies, e.g. free radical polymerisation (with chain transfer agent), living radical 

polymerisations, ring open polymerisations, anionic polymerisations and post 

functionalisation of commercial polymers.165 The polymer scaffolds generated can be directly 

used for conjugation or further modified with “clickable” functional groups.  

The conjugation step, which links the polymer chain to the protein, is a key step. As described 

above, amine and thiol groups are the most common reactive centres for incorporation of 

artificial motifs to proteins. Active esters are widely used for amine coupling, and has been 

applied for polymer─protein conjugaƟon by coupling poly(N-isopropylacrylamide-co-N-

acryloxysuccinimide) to a series of proteins (egg lysozyme, horse myoglobin, human 

haemoglobin, human serum albumin and bovine γ-globulin), and used for studying the 

aggregation properties of the conjugates.187 Interestingly, most of the reported examples 

showed negligible influence on the polymer conjugated proteins (with undefined number of 

unspecific binding sites), whereas some even showed increased enzymatic activities such as 

the trypsin upon poly(N-isopropylacrylamide) addition.188 Some alternatives to N-hydroxy 

succinimide esters, such as 2,4,5-trichlorophenol ester189 and pentafluorophenyl ester,190, 191 

have also been established and used for conjugation of comb shaped PEG polymers and N-

isopropylacrylamide copolymers to proteins, e.g. collagen and anti-p24 IgG antibody with 

high yields.  

In comparison to highly abundant lysines on protein surfaces, free cysteines are much rarer 

especially for those accessible (not buried inside the 3D structures). Therefore, modification 

of proteins with only one available free thiol group allows site selective conjugation. Similar 

to the initiator coupling reaction used in the “graft from” approach, thiol─maleimide 1,4-

addition and thiol─disulfide exchange have been commonly used for polymer conjugations 

with thiols.165, 192 For example, maleimide terminated poly(N-isopropylacrylamide)s was 

synthesised by RAFT polymerisation with a set of different molecular weights (10-30 kDa) 

and were coupled to a small molecular weight DNA binding protein (rcSso7d, 7 kDa). The 

systematic increase in molecular weight dramatically varied the folding structure and 

contributed to a well organised 3D structure in bulk which was rare for the wild type 
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protein.193 Similarly, a maleimide terminated poly(N-isopropylacrylamide) was conjugated to 

a green fluorescent protein derivative amilFP497 via thiol─maleimide 1,4-addition which self-

assembled with the anticancer drug doxorubicin, permitting the thermal controlled release 

of drug molecules with the ability of simultaneously tracing the degree of release by 

fluorescence life time microscopy.194 A pyridyl disulfide (as an activated disulphide bond) 

functionalised poly(2-hydroxyethyl methacrylate) was synthesised by ATRP and conjugated 

to the model protein BSA in high yield.195 Because of the reduction cleavable nature of the 

disulfides in biological systems, the resulting conjugates may be utilised for targeted cargo 

release applications.  

However, despite the rapid kinetics and high selectivity of the thiol─maleimide 1,4-addition 

in aqueous environment, the instability of the thiosuccinimides (thiol─maleimide adduct) 

caused by oxidation196 or retro-1,4-addition197 reactions dramatically limit its application in 

vivo and are therefore not favourable for conjugation chemistries.198 In addition, the 

disulphide bonds formed by thiol─disulfide exchange are unstable to reduction and not 

suitable for permanent linkages in vivo.  

Benefiting from the rapid development of bioorthogonal chemistry over the past two 

decades,33 many unnatural functional groups have been introduced into protein structures 

chemically or genetically and have opened a new field of site specific protein labelling via 

click chemistries (Figure 47). The most commonly used functional groups introduced onto 

protein structures include azides,199 aldehydes (ketones),200 strained alkenes201 and 

alkynes202 which provide the potential for rapid and selective conjugation of functionalised 

polymers to proteins within biological relevant environments in high yields, although real 

examples of such applications are still rare.158 
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Figure 47. Typical bioorthogonal reactions used for protein labelling. (a) Ketones (aldehydes) condense 
with a hydroxylamine derivative or a hydrazide; (b) An azide undergoes a trapping Staudinger ligation 
with a triarylphosphine; (c) Azides reacts with a terminal alkyne through a copper catalysed 
cycloaddition or reacts with a strained alkyne; and (d) A strained alkene undergoes an inverse electron 
demand Diels─Alder cycloaddiƟon with an 1,2,4,5-tetrazine.  

 

Some supramolecular interaction based conjugation methods, e.g. biotin─streptavidin 

interactions and metal chelation have also been reported. For example, a biotinylated 

poly(N-isopropylacrylamide) was synthesised via RAFT polymerisation and conjugated to a 

fluorescent streptavidin and was used for protein─protein conjugaƟons with BSA.203 

Nitrilotriacetic acid functionalised polymers, e.g. polystyrene, poly(N-acryloylmorpholine-co-

N-acryloxysuccinimide) and pyridylthiourea-grafted polyethylenimine have enabled 

immobilisation of Ni2+ ions onto the polymer with recognition and binding to hexahistidine 
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tags on target proteins, e.g. GFP and streptavidin, permitting enzyme immobilisation, in vivo 

imaging and drug delivery.204-206 

4.1.3. Purification Techniques for Polymer─Protein Vonjugates 

The yield of the aforementioned polymer─protein conjugaƟon methods rarely reach 100% 

and purification steps are usually required to isolate the conjugation product from the 

macromolecular reactants.207 Dialysis is the most commonly used method and works well 

when separating small molecules from large proteins, although it lacks efficiency when 

separating mixtures of proteins, e.g. isolation of polymer modified proteins from unreacted 

proteins. For more precise separation of proteins, protein chromatography techniques have 

been developed,208, 209 which allow separation of proteins based on their size, charge, affinity 

and hydrophobicity, e.g. size exclusion, ion-exchange, affinity and hydrophobic interaction 

chromatographies.210  

4.1.3.1. Size Dependent Chromatography Purification 

Size dependent chromatography, e.g. gel permeation, size exclusion and molecular sieve 

chromatographies, separate macromolecules depending on their hydrodynamic volume 

(relates to their molecular weight) (Figure 48). It is the most widely used separation method 

for polymer─protein conjugates due to the significant change of the protein molecular 

weights before and after polymer addition.88, 194, 211, 212 When eluting through the porous 

stationary phase matrix (also referred as a gel), high molecular weight molecules elute first 

because they are excluded from the pores in the matrix while the small molecules are 

retained longer due to their accessibility into the larger volume within the porous matrix.213 

Benefiting from this mechanism, polymer─protein conjugates can be isolated from the 

reactant mixture (with the presence of unreacted protein and polymer fragments, coupling 

agents, catalysts and inorganic salts). 88, 211, 212 However, due to the limited resolution of the 

technique, it is challenging to provide highly pure products in high yields if aiming for 

clinical/industrial application.213  
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Figure 48. Mechanism of size dependent chromatography. The porous stationary matrix only allows 
small molecules into their internal pores, so that they have a greater “free volume” to go through and 
therefore are retained for a longer time in the column, while the macromolecules can only go through 
the voids between matrix particles and thus retained for a shorter elusion time. However, the method 
has very limited resolving power as fractions are not usually well separated. 

 

4.1.3.2. Affinity chromatography purification 

The development of scalable and simple purification methods are of great interest to avoid 

costly chromatography equipment and complicated purification procedures. Affinity 

chromatography was established for isolating target molecules from complex biological 

mixtures aided by specific interactions (e.g. antibody─anƟgen interacƟon, cofactor binding, 

lectin─carbohydrate interacƟon and metal chelaƟon) between the target and the staƟonary 

support. Although usually referred as affinity chromatography, a loaded and optimised 

column is not always needed for such techniques with magnetic particles, a widely used 

alternative to columns, providing a simpler purification procedure.214  

Metal chelation based methods, i.e. immobilised metal ion affinity chromatography, 

immobilise target proteins onto an insoluble support (by metal ion chelation with ligands on 

the protein), with elution of the protein from the solid support by a low pH buffer or a 

competitive displacement to give purified proteins in high purity.215 The best known 

application is the purification of hexahistidine tagged proteins by Ni2+ loaded affinity resins, 

ranging from a bench scale to an industrial scale.216-219 Specifically, a chelating ligand, e.g. 
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nitrilotriacetic acid, the most commonly used tetradentate ligand, is introduced onto a solid 

support (e.g. agarose gel, silica particle, polymeric resin and/or magnetic particles) and the 

metal ions (normally Ni2+ with coordination number of 6) chelated to the ligand with two 

water binding sites displaced by the protein.220 When eluting through or incubated with the 

support, the hexahistidine tagged protein is selectively bound and isolated from other 

biomolecules by simple filtration and washing of the solid support (the washing buffer usually 

contains inorganic salt, e.g. NaCl, and/or detergents to minimise unspecific ionic or 

hydrophobic interactions). The loaded proteins are eluted from the solid support at the 

optimised condition (or through a gradient eluting buffer) to elute fractions with different 

affinities. The target protein can be obtained in high quality and high yield while the matrix 

can be reused by simple washings and reloading of metal ions.216  

Examples of successful application of the immobilised metal ion affinity chromatography can 

be found in many areas. An enzymatically cleavable histidine tag can be genetically 

introduced to a set of protein mutants which permitted the efficient isolation of target 

proteins in one chromatography step and was used for purification of Fab fragments221 and 

antibodies222. Naturally occurring polyhistidine motifs on protein surfaces, e.g. growth 

hormone, prolactin and recombinant human feron γ, have been used for the direct isolation 

of proteins although the existence of these kind of proteins are not common in nature.223-225 

In addition, introducing hexahistidine tags into the heavy chain of antibodies enables 

immobilised metal ion affinity chromatography purification without affecting antigen binding 

properties.226-230 However, little attention has been paid to applying such a powerful 

purification technique for chemically modified proteins. To the best of our knowledge, there 

have not been any examples reported using affinity chromatography for isolating 

polymer─protein conjugates, although it may overcome the problem of generaƟng high 

quality conjugation products.  

4.1.4. Tetrazine Quenched “Turn on” Probes 

Fluorescent imaging is widely used in diagnostics, permitting the visualisation of a target of 

interest by specific labelling with fluorophores. However it has to face the barrier of non-

specific bindings and may need extra washing steps to minimise background fluorescence. 

An alternative strategy is to use fluorogenic reporters, which are quenched and only 

fluoresce after undergoing a specific reaction or a change in environment, permitting wash-
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free in vivo diagnostics with high efficiency and specificity. As a bioorthogonal reactive group 

as well as a fluorescence quencher, tetrazine quenched fluorophores have drawn many 

attentions.  

The general strategy for designing tetrazine based fluorogenic markers were to covalently 

conjugate fluorophores to tetrazine cores to allow efficient quenching of the fluorescence. 

Because of the unique electron structure (high electron affinity)231 and the absorbance 

spectra of tetrazines, fluorescence quenching of tetrazine based fluorogenic markers can be 

achieved through the “through bond energy transfer mechanism”,232 the photoinduced 

electron transfer mechanism233 or the Förster resonance energy transfer mechanism234. 

Boron dipyrromethenes (BODIPY) are lipophilic fluorophores with high fluorescence 

intensities, and are conjugated to tetrazines to give fluorogenic fluorophores (see examples 

in Figure 49).233 Other tetrazine quenched green fluorogenic fluorophores have also been 

reported (e.g. tetrazine-Oregon Green 488, Figure 49). 233, 235  

Many efforts have been made to develop tetrazine based fluorogenic reporters with emission 

across the full visible spectrum. Recent work by Park et al. report the synthesis of tetrazine 

quenched fluorophores from green to red using an emission tuneable Seoul-Fluor fluorescent 

core skeleton (see Figure 49b), which gives a general strategy for synthesising predictable 

fluorogenic markers through a relatively simple route.234  

The flexible spacer (shown in red in Figure 49) between the tetrazine, i.e. the tetrazine not 

directly conjugated to the fluorescent core, and fluorescent moieties may not be able to 

effectively facilitate the quenching and results in limited fluorescence increases upon 

activation.236 To further optimise the performance of the fluorogenic reporters, several 

fluorophores (coumarin,237 BODIPY,236, 238 fluorescein,238, 239 rhodamine,239 phenoxazine240 

and cyanine,241 see Figure 49) have been conjugated to the tetrazine core with improved 

“through bond energy transfer” efficiency and showed improved fluorescence dequenching.  
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Figure 49. Examples of tetrazine quenched fluorogenic reporters. (a) Green tetrazine linked (quenched) 
fluorophores (b) Tetrazine linked (quenched) fluorophores based on an emission tuneable Seoul-Fluor 
fluorescent core. The substitution of the fluorescent core contributes to various emission wavelength 
(493, 530 and 625 nm). (c) Fluorogenic fluorophores conjugated to tetrazines.  

 



Chapter 4 

78 

 

Taking advantages of these “turn on” fluorogenic reporters, wash-free in vivo diagnostics has 

been achieved. However, few examples has been reported to further amplify the fluorescent 

signal of the fluorogenic markers which may further improve the signal to background ratio.  

In this chapter, the first strategy for simultaneous switch on and amplification of fluorescent 

signals is reported. A polymer scaffold providing reactive centres for inverse electron-

demand Diels–Alder chemistry was synthesised with a hexahistidine tag handle for 

purification. This presynthesised polymer was covalently conjugated to the antibody 

Herceptin allowing specific cancer cell targeting. The dequenching of the tetrazine quenched 

fluorogenic fluorophore with the polymer─anƟbody conjugates took place on live cells to 

achieve simultaneous switch on and amplification of the fluorescent signal. 
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4.2. Results and Discussions 

4.2.1. Synthesis of Polymer–Protein Conjugates Through a “Graft From” Approach 

To synthesise the polymer scaffold, a “graft from” approach was initially applied (see Figure 

50). As previously described, this approach offers a high yield and easy product isolation 

procedures. Thus as a proof of concept, a commercially available active ester functionalised 

RAFT chain transfer agent (RAFT agent) was conjugated to the lysine or N terminal amine of 

bovine serum albumin (BSA) through active ester-amine coupling reaction in PBS (giving 1), 

followed by photoinduced electron transfer RAFT polymerisation using N,N-

dimethylacrylamide (DMAA) to give the polymer–protein conjugate 2 (see Figure 50). The 

conjugation reaction was initially conducted in PBS at 37 °C to give the macro-RAFT agent 

and the successful conjugation was confirmed by MALDI-ToF mass spectrometry (Figure 50). 

The mass increase to BSA (of 1050 Da) implied the degree of substitution of the protein was 

2.6, sufficient for the subsequent photoinduced electron transfer RAFT polymerisation from 

the protein. The macro-RAFT agent generated was purified and used directly for the RAFT 

polymerisation. 
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Figure 50. (a) Synthesis of polymer─protein conjugates through a “graft from” approach. The active 
ester functionalised RAFT agent was conjugated to BSA by reacting with the lysine motifs and/or the 
N terminus in PBA at 37 °C to give the “macro-RAFT agent” 1. A photoinduced electron transfer RAFT 
polymerisation of DMAA was then conducted in PBS aided with Eosin Y as a photosensitiser, and 
triethylamine as an electron transfer agent and 470 nm illumination to give poly(DMAA) grafted BSA 
2 in quantitative yield. (b) MALDI-ToF mass spectra of BSA (black) and macro-RAFT agent 1 (red), 
showing a difference of around 1050 Da. MALDI-ToF mass spectra were obtained using a linear 
reflective scan method with sinapinic acid as the matrix. 

 

To optimise the polymerisation conditions, DMAA was used as a model monomer looking at 

a range of concentrations between 1 μM and 1 M with the concentration of the macro-RAFT 

agent 1 set at 100 μM with monomer conversions quantified by 1H NMR (Table 6). No 

polymerisation was observed with monomer concentrations lower than 100 mM but 

polymer–BSA conjugates with molecular weights of 299 kDa and 860 kDa were found with 

DMAA concentrations of 100 mM and 1 M, respectively (Mn of BSA = 67 kDa). However, the 

molecular weights of the conjugates could not be easily controlled by tuning the monomer-

RAFT agent ratio, and issued when aiming for small molecular weight conjugates. This is 

probably because of the low concentrations of the activated RAFT agents generated in the 

system58 and were not able to initiate the polymerisation unless high concentration of 
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monomers were introduced to drive the reaction. The problem could be overcome by 

applying a higher concentration of the macro-RAFT agent but would be limited by the 

solubilities of the conjugates. The stability of the protein materials needs to be considered if 

concentrated reactants, e.g. monomers and fluorophores, has to be used, which can cause 

denaturation of proteins. As a result, an alternative “graft to” approach was explored. 

 

Table 6. Optimisation of monomer concentration for the photoinduced electron transfer RAFT 
polymerisation. The DMAA (1 μM to 1 M), marco-RAFT agent 1 (100 μM), Eosin Y (200 μM) and 
triethylamine (10 mM) were dissolved in PBS (pH = 7.4) and illuminated for 4 h at 470 nm (monomer 
conversion was quantified by 1H NMR by comparing the integration of the monomer peaks and the 
polymer peaks). The Mn of the polymer BSA conjugates were quantified by GPC. 

Monomer 

concentration 
1 μM 10 μM 

100 

μM 
1 mM 

10 

mM 

100 

mM 
1 M 

Monomer conversion <1% <1% <1% <1% <1% 65% 59% 

Mn (kDa) - - - - - 299 860 

 

4.2.2. Synthesis of Polymer–Protein Conjugates Through a “Graft To” Approach 

Another approach is to conjugate preformed functional polymers to proteins (the “graft to” 

approach) and to provide the opportunity of comparing polymer–protein conjugates with 

different polymer structures and molecular weights. However, the coupling efficiency 

between the two macromolecules is often low and requires tedious purification and typically 

provides low yields.158 Histidine tagging and affinity chromatography is well developed and 

routinely applied in protein purification.204, 242, 243 By combining the “graft to” polymer 

modification approach and affinity chromatography, polymers carrying a hexahistidine 

affinity tag offer the opportunity for ease of purification of the resulting polymer─protein 

conjugate.  
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4.2.2.1. RAFT Chain Transfer Agent Synthesis and Characterisation 

A RAFT polymerisation approach, which was developed by Rizzardo in 1990s,177, 244 was 

selected for the synthesis of polymer scaffolds. It is widely used in biology, e.g. protein 

conjugation, due to the precise control over molecular weight, topology structure and the 

negligible cytotoxicity of the RAFT process itself and the generated polymers.158, 245, 246  

Here as a key part of the RAFT polymerisation, the new trithiocarbonate RAFT agent 8 bearing 

a hexahistidine tag was synthesised as shown in Figure 52. The trithiocarbonate moiety was 

chosen as a reactive centre for the RAFT polymerisation because of its good performance 

with acrylic monomers. In comparison to dithiocarbamates and xanthates, trithiocarbonates 

provide higher reactivity and better distribution control for acrylic monomers (as described 

previously) while the aliphatic tail contributes to better solubility in organic solvents.247, 248 

The hexahistidine tag and the ω-carboxylic acid moieties were directly incorporated into the 

RAFT agent in order to give even distribution of functional groups in individual polymers (one 

functional group per polymer). The functional RAFT agent 8 was synthesised using a solid 

phase synthesis strategy, which allows straight forward synthesis in high yield and again ease 

of purification.182, 249  

The carboxylic acid functionalised RAFT agent 3 was synthesised according to published 

procedure (Figure 51).250 Specifically, n-butanethiol was deprotonated by KOH and added to 

carbon disulphide to form the trithiocarbonate anion which was coupled to bromopropanoic 

acid to give 3 in 63% yield. The 1H NMR spectrum shows representative peaks of the RAFT 

agent, e.g. the broad peak at 13.16 ppm showed the presence of the carboxylic acid, while 

HPLC showed the good purity of the compound (see Figure 51).  
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Figure 51. (a) Synthesis of carboxylic acid functionalised RAFT agent 3. (b) 1H NMR of 3 in d6-DMSO 
with representative resonances shows the corresponding protons resonances. (c) HPLC trace of 3 with 
a peak at 5.49 min showing the presence of compound 3 (HPLC was performed using water/MeCN 
(with 0.1% formic acid) as the mobile phase and with UV detection at 254 nm). 

 

Fmoc-aminohexanoic acid was coupled onto a chloro-2-chlorotrityl functionalised PS resin 

(giving 5 after Fmoc deprotection) (Figure 52). Six histidines (Fmoc-His(Trt)-OH) were then 

sequentially coupled to the amino acid sequence end (giving 6) by standard amidation 

chemistry followed by coupling of the carboxylic acid functionalised RAFT agent 3 using the 

same reaction condition to give the hexahistidine tag bearing a RAFT initiating moiety 7. This 

was cleaved using a mixture of TFA/water and was purified by reverse-phase column 

chromatography to give the target RAFT agent 8 in 63% overall yield. The compound was 

characterised by 1H NMR, 13C NMR (see Chapter 6), HRMS (see Chapter 6) and HPLC (see 

Figure 52). NMR analyses and high resolution MS demonstrated the successful synthesis of 

the target compound while HPLC indicated its high purity.  
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Figure 52. Synthesis of the hexahistidine tagged RAFT agent 8. (b) 1H NMR of 8 in d6-DMSO. (c) HPLC 
trace of 8 with a peak at 3.42 min showing the presence of compound 8. 

 

4.2.2.2. Norbornene Acrylamide Monomer Synthesis and Characterisation 

To introduce reactive centres for the inverse electron-demand Diels–Alder chemistry with 

the tetrazine quenched fluorophores, a norbornene acrylate monomer 11 was designed and 
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synthesised that could be incorporated into the polymer scaffolds (see Figure 53). In 

comparison to methacrylate or methacrylamide, acrylamide monomers typically show higher 

reactivity and undergo faster polymerisations.245, 251 Importantly, having a similar chemical 

structure to DMAA (which provides good water solubility for the resulting polymers),245, 252 

the propagation rate of the norbornene monomer 11 should be similar to DMAA and results 

in relatively homogeneous copolymers with evenly distributed functional groups.  

 

 

Figure 53. Synthesis of norbornene acrylamide monomer 11. (b) 1H NMR of 11 in d6-DMSO. (c) HPLC 
trace of 1 with a peak at 3.12 min showing the presence of compound 11. 

 

The norbornene acrylamide monomer 11 was synthesised through a three step route (Figure 

53). Specifically, a Boc-protected ethylene diamine was coupled to the exo-norbornene 

carboxylic acid through a standard anhydride-amine amidation coupling followed by Boc 

deprotection to give the primary amine terminated norbornene 10. Acryloyl chloride was 

subsequently coupled onto the primary amine to give the norbornene acrylamide monomer 
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11 in 19% overall yield. The yield of the last step was only 22%, which was attributed to the 

competition of two possible reactions where the acid chloride could react with the primary 

amine to give an amide bond (the desired product), or a 1,4 addition of the primary amine 

forming a secondary amine as a side product. By silica gel chromatography, the norbornene 

acrylamide monomer 11 was effectively purified and indicated by 1H NMR and HPLC (see 

Figure 53). Both the acrylamide double bond protons (at 6.19 ppm, 6.07 ppm and 5.58 ppm) 

and the norbornene double bond protons (6.12 ppm) were observed via the 1H NMR 

spectrum. The clear HPLC trace showed only a single peak at 3.13 min demonstrating the 

high purity of the monomer.  

4.2.2.3. Polymer Synthesis and Characterisation 

In a standard RAFT polymerisation, three key components were required for the synthesis of 

a RAFT polymer: the radical initiator, the RAFT agent and the monomer(s).58, 177 Here, AIBN 

was used as the thermal initiator (which generates free radicals at 60-90 °C) to initiate the 

polymerisation. The amount of the radical initiator AIBN was set at 0.1 equivalent to the RAFT 

agent to insure that all free radical could be deactivated by the RAFT agent to avoid free 

radical chain propagation. The ratio’s used were set at DMAA:11:8:AIBN = 100:10:1:0.1 to 

control polymer size and the norbornene density. A solvent mixture of dioxane/water (95:5) 

(the addition of water accelerates the polymerisation) was used to allow the polymerisation 

process to be controlled, i.e. a high water content causes polymer precipitation and thus less 

controlled polymerisation.58, 177 To avoid radical quenching by oxygen, the polymerisation 

was conducted under argon.  

The monomer conversion was monitored by 1H NMR with > 90% of the monomers consumed 

within 4 h (Figure 54). Uncontrolled chain transfer and termination leads to broad molecular 

weight distributions and typically happens with high radical-monomer ratios, i.e. when most 

of the monomers were consumed. To minimise this issue, the polymerisation time was set 

to 4 h (where the active monomers has not been fully consumed) and the polymerisation 

was quenched by freezing the reaction mixture in liquid nitrogen and thawed in the presence 

of air to allow the oxygen to quench any active radicals.  
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Figure 54. Plot of monomer conversion (for both norbornene acrylamide 11 and DMAA) versus time. 
Polymerisation was carried out under argon at 70 °C. Aliquots of reaction mixtures were taken every 
hour, diluted in d6-DMSO and analysed by 1H NMR. The conversions were quantified by comparing the 
integration of the monomer and polymer peaks. 

 

 

 Figure 55. (a) Synthesis of the functional polymers P1 to P5. (b) 1H NMR spectrum of polymer P1 in 
d6-DMSO.  

 

In order to evaluate how the polymer composition affects conjugation efficiency and the 

activity of the resulting polymer–protein conjugates, five polymers with different molecular 
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weights (P1, P2 and P3) and densities of reactive centres (P1, P4 and P5) were synthesised 

using the optimised polymerisation condition described above (Table 7). Conversions of all 

polymers were over 89% after 4 h except P5 (78%), which may be attributed to the bulky 

norbornene functional group, resulting in less reactive radicals and therefore slower reaction. 

The molecular weights of the polymers were confirmed by GPC and 1H NMR, which matched 

well the theoretical values, indicating the well-controlled polymerisation process. This was 

further confirmed by the narrow dispersity from the GPC traces. The chemical composition, 

i.e. the monomer ratio in the copolymers and the presence of the hexahistidine moiety, were 

established by 1H NMR (Figure 55). The presence of aromatic resonances at 6.80 ppm and 

7.86 ppm confirmed the presence of the histidine moiety and the integration ratios at 

6.80/4.41 ppm (RAFT agent), 6.12 ppm (norbornene monomer), 2.58-3.15 ppm (DMAA 

monomer) and 0.68-1.85 ppm (polymer backbone) indicating the polymer composition.  

 

Table 7. Characterisations of the functional polymers P1 to P5. Synthesis shown in Figure 55. The 
conversions of monomer mixtures were quantified by 1H NMR by comparing the integration of the 
monomer peaks and the polymer peaks. Theoretical Mn of polymers were calculated by addition of all 
molecular weights of the components (RAFT agent and monomers, assuming all converted monomers 
were in the polymers). Mn of polymers were determined by GPC (DMF), and 1H NMR (by comparing 
the integration of the representative monomer peaks (in polymers) and the RAFT agent peaks). 

Polymer 
8:11:DMAA 

(Experimental) 

8:11:DMAA 

(1H NMR) 

Conversion 

[a] 

Mn (kDa) 

(Theoretical) 

Mn (kDa) 

(1H NMR) 

Mn (kDa) 

(GPC) 
Đ 

P1 1:10:100 1:8.0:101 90% 13 13 14 1.5 

P2 1:4.0:40 1:3.3:57 91% 6.1 7.6 7.1 1.2 

P3 1:25:250 1:21:240 89% 32 23 30 1.8 

P4 1:4.0:100 1:2.8:107 96% 12 12 11 1.4 

P5 1:25:100 1:18:89 78% 17 14 16 1.7 

[a] Calculated for the monomer mixture. 
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4.2.2.4. Polymer to protein conjugation  

The polymer scaffolds P1 to P5 were covalently conjugated to the protein via an active ester 

coupling reaction with the surface amines, which is efficient and widely used in 

bioconjugation as discussed above.165, 170, 171, 174 Specifically, the ω-carboxylic acid in the 

polymers was firstly activated using EDC and NHS to give the NHS active ester terminated 

polymers PA1 to PA5 that were isolated by precipitation. Activated polymer scaffolds PA1, 

PA2 and PA3 (700 μM) were reacted with BSA (140 μM) (as a model protein) in PBS to give 

the corresponding polymer─BSA conjugates P1-BSA, P2-BSA and P3-BSA, respectively (Figure 

56).  

 

 

Figure 56. Polymer P1, P2 and P3 were activated by EDC and NHS and conjugated BSA and purified by 
dialysis (to remove the excess polymers) to give polymer–BSA conjugates P1-BSA, P2-BSA and P3-BSA. 

 

As described above, the conjugation of two macromolecules often results in low yields and 

requires the removal of excess of polymer or unreacted protein.158 The excess of polymer (if 

small) can be efficiently removed by dialysis benefitted from the molecular weight 

differences between the polymers and the polymer─protein conjugates, but unreacted 

proteins cannot be removed by dialysis and thus other purification methods are needed. 

Immobilised metal-affinity chromatography was used in this study due to its high efficiency, 
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compatibility with proteins and simple operation (Figure 57). Thus the polymer─protein 

conjugate was concentrated to 200 μL, shaken with the affinity chromatography resin to 

allow the polymer–protein conjugates to be loaded onto the resin. The resin was washed and, 

finally, the polymer–protein conjugates were eluted from the resin using an elution buffer 

(containing the optimised concentration of imidazole, pH = 8.0, see Figure 58 for 

optimisation). 

 

 

Figure 57. Purification/isolation of the polymer–protein conjugates. i) Conjugated proteins were 
bound to the Ni(II)-charged immobilised metal-affinity chromatography resin;242 ii) Unmodified 
proteins were removed by washing; iii) Polymer–protein conjugates were eluted; iv) polymer–protein 
conjugates were isolated. 

 

To optimise the elution buffer, P1-BSA was loaded onto the resin as described above and 

eluted using a series of buffers with a 10 mM to 500 mM gradient concentration of imidazole. 

The samples eluted from the resins were collected by filtration and concentrated followed 

by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis (Figure 

58). The loading showed no obvious polymer─protein conjugates bands from the column 

flow in the washing step (lane 3). The polymer conjugated BSA began to be competed off by 

imidazole at a concentration of 100 mM (lane 7) and was completed at an imidazole 

concentration of 200 mM (lane 8). In order to collect all the proteins from the resin, the 

concentration of imidazole was chosen as 500 mM as no additional protein bands were 

observed at such a concentration (lane 9).  
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Figure 58. Optimisation of the elution condition for immobilised metal-affinity chromatography. SDS-
PAGE of BSA conjugated to polymer P1 (P1-BSA) showing protein eluting from the affinity 
chromatography resin using different concentrations of imidazole. Markers: Precision Plus Protein™ 
Kaleidoscope™ Prestained Protein Standards, 10-250 kDa; Lane 1 unmodified BSA; Lane 2 P1-BSA 
before purification; Lane 3 column flow; Lane 4 elution buffer with 10 mM imidazole; Lane 5 elution 
buffer with 20 mM imidazole; Lane 6 elution buffer with 50 mM imidazole; Lane 7* elution buffer with 
100 mM imidazole (“smear” showed polymer─BSA conjugates); Lane 8* elution buffer with 200 mM 
imidazole (“smear” showed polymer─BSA conjugates); Lane 9 elution buffer with 500 mM imidazole. 
Staining was carried out with Coomassie blue (0.1% w/v in 1:4:5 acetic acid/water/MeOH for 2 h) and 
destained using a mixture of 1:7:2 acetic acid/water/MeOH for 24 h. Bright field images of the gel was 
taken using a Universal Hood II Gel Doc System (Bio-Rad). 

 

The optimised purification approach was applied for the polymer BSA conjugates (P1-BSA, 

P2-BSA and P3-BSA), which were analysed by SDS-PAGE and GPC with the data shown in 

Table 8, Figure 59 and Figure 60. As quantified by measuring the absorbance of the protein 

conjugate solutions at 280 nm, the yield for the conjugation reaction after the purification 

was 42% for P1-BSA and 52% for P2-BSA. However, the conjugation of P3 to BSA gave only a 

15% yield, which may be attributed to the poor reactivity of the coupling reaction due to the 

steric hindrance of the longer polymer chain.158 The power of the hexahistidine tags enabled 

efficient removal of unreacted protein fractions from the mixture, which was confirmed by 

electrophoresis. Comparing lane 2 to lane 3, and lane 4 to lane 5, and lane 6 to lane 7 (Figure 

59), unmodified protein was not visible after the purification. This was further confirmed by 

water phase GPC with the native BSA bands not visible in the GPC trace (Figure 60, top). The 

obvious broad weight distributions of the polymer–protein conjugates are due to both the 
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inherent polydispersity of the polymer scaffold and the various degrees of substitution of the 

protein, which is common for such synthetic polymer─protein conjugates.166, 174  

 

 

Figure 59. SDS-PAGE of polymers conjugated to BSA before and after metal-affinity chromatography 
based-purification. Markers: Precision Plus Protein™ Kaleidoscope™ Prestained Protein Standards, 10-
250 kDa; Lane 1 BSA; Lane 2 P1-BSA (before purification); Lane 3 P1-BSA (after purification); Lane 4 
P2-BSA (before purification); Lane 5 P2-BSA (after purification); Lane 6 P3-BSA (before purification); 
Lane 7: P3-BSA (after purification) (the faint “smear” is due to low yield of the conjugation). Staining 
was carried out with Coomassie blue (0.1% w/v in 1:4:5 acetic acid/water/MeOH for 2 h) and destained 
using a mixture of 1:7:2 acetic acid/water/MeOH for 24 h. Bright field image of the gel was taken using 
a Universal Hood II Gel Doc System. 

 

Table 8. Synthesised polymer–protein conjugates. 

Conjugate Protein Polymer Yield[a] 

P1-BSA BSA P1 42% 

P2-BSA BSA P2 52% 

P3-BSA BSA P3 15% 

[a] Yield quantified by UV spectroscopy at λ = 280 nm 
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Figure 60. GPC traces of unmodified BSA (lower trace), P1-BSA before purification (middle trace) and 
P1-BSA after purification (top trace). The GPC was run using H2O as an eluent at 40 °C at 1 mL/min 
with an RI detector.  

 

4.2.2.5. Synthesis of Polymer–Antibody Conjugates 

Herceptin (Her) is an antibody developed for the treatment of breast cancers, which 

selectively binds to and facilitate degradation of the tyrosine kinase receptor HER2 

(overexpressed in some breast cancers) and causes cancer cell death. The conjugation 

methodology (Figure 56) was applied to Herceptin to give polymer─anƟbody conjugates P1-

Her to P5-Her (Figure 61a) and the same purification strategy (Figure 57) was applied to 

remove the unconjugated antibody, and the purified antibody conjugates were analysed by 

SDS-PAGE (Figure 61b). In a similar manner to the polymer─BSA conjugates, the Herceptin 

conjugates showed additional high molecular weight bands by SDS-PAGE with widely 

dispersed bands implying uneven substitution. The light chain fragments, which are essential 

for antibody activity, were still clearly present, suggesting that the amidation coupling 

reaction mainly happened on the heavy chains, minimising the influence on the antibody 

binding affinity.  



Chapter 4 

94 

 

 

Figure 61. (a) Synthesis of polymer─anƟbody conjugates. AcƟvated polymers PA1 to PA5 (685 μM) 
were treated with Herceptin (137 μM) in PBS at 37 °C for 4 h and purified by dialysis and affinity 
chromatography to give the purified polymer─anƟbody conjugates P1-Her to P5-Her. (b) SDS-PAGE of 
purified polymer─anƟbody conjugates and the native antibody. Marker: Precision Plus Protein™ 
Kaleidoscope™ Prestained Protein Standards, 10-250 kDa. Staining was carried out with Coomassie 
blue (0.1% w/v in 1:4:5 acetic acid/water/MeOH for 2 h) and destained using a mixture of 1:7:2 acetic 
acid/water/MeOH for 24 h. The bright field image of the gel was taken using a Universal Hood II Gel 
Doc System. 

 

The conjugation yields were quantified by UV-vis spectroscopy and are given in Table 9. In 

comparison to BSA (Mn = 67 kDa with roughly 20 lysine residuals), Herceptin has a larger 

molecular weight (146 kDa) and more lysine moieties (approximately 90).253, 254 For the 

smaller polymer P2 (7 kDa), the conjugation yields for the antibody were similar to BSA (45% 

and 52%, respectively). As described above, the large polymer P3 (30 kDa) was not efficiently 
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conjugated to BSA (15% yield). However, when Herceptin was used, the coupling efficiency 

was greatly improved (88% yield), which may be attributed to the higher number of 

accessible lysines on the antibody surfaces. When polymers with similar molecular size (P1, 

14 kDa and P4, 11 kDa) were used for the antibody conjugation, similar yields were obtained 

(72% and 73%, respectively), although conjugation of P5 (16 kDa) gave decreased yields 

(56%), which may due to the higher steric hindrance and the hydrophobicity of the polymer 

due to increased norbornene density.  

 

Table 9. Details of the synthesised polymer–antibody conjugates. 

Conjugate Protein Polymer Yield[a] 

P1-Her Herceptin P1 72% 

P2-Her Herceptin P2 45% 

P3-Her Herceptin P3 88% 

P4-Her Herceptin P4 73% 

P5-Her Herceptin P5 56% 

[a] Yield quantified by UV spectroscopy at λ = 280 nm. The yield was calculated by comparing the 
amount of the polymer─protein conjugate to the protein used for conjugaƟon. 

 

4.2.3. “Switch on” of Tetrazine Quenched Fluorophore (with A. Gambardella) 

To simultaneously “turn on” and amplify a fluorescent signal using the polymer–protein 

conjugates, the tetrazine quenched BODIPY fluorophore Tz1 was synthesised.238 The 

reactivity of the tetrazine ligation towards norbornene was evaluated by monitoring the 

time-dependent fluorescence increase (over 0.5, 1 and 2 h) of the reaction mixture. (Figure 

62 and 63).  
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Figure 62. “Switch on” of the tetrazine quenched fluorophore Tz1 (λex/em = 488/512 nm) by reacting 
with norbornene decorated polymer P1. P1 and Tz1 were dissolved in PBS and incubated at 37 °C for 
0.5, 1 or 2 h and analysed on a fluorescence spectrometer.  

 

 

Figure 63. Fluorescence spectra of Tz1 (a) 0.5 μM, (b) 1 μM, (c) 2 μM and (d) 5 μM incubated with 
polymer P1 (12 μM) at 0, 0.5, 1 and 2 h. Fluorescence measurements were carried out on a FluoroMax-
3 fluorimeter (λex = 488 nm) using a quartz cuvette. Fluorescence intensities were normalised to the 
intensity after 2 h. 
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The reactions of norbornene bearing polymer P1 (with an average of 8 norbornenes per 

polymer chain, 12 μM) with four concentrations (0.5, 1, 2, 5 μM) of the tetrazine BODIPY Tz1 

were evaluated by fluorescence spectrometry. The fluorescence intensity increased over 

time over the first two hours with the reaction rate increasing with higher concentration of 

Tz1 (Figure 63) and the fold increases of fluorescence intensities of Tz1 (compared to the 

fluorescence intensity of Tz1 at 0 h) were calculated (see Table 10). For application in 

biological systems, both a fast reaction rate and high signal to noise ratio are required.  

 

Table 10. Fold increase of fluorescence intensity of Tz1 over time. Tz1 (0.5-5 μM) was incubated with 
polymer P1 (12 μM) for 0.5, 1 and 2 h and the fluorescence recorded. The fluorescence intensities 
were monitored at λex/em = 488/511 nm and compared to the intensity before incubation (t0) to 
calculate the fold increase. 

Tz1  

concentration 

Incubation time 

0.5 h 1 h 2 h 

0.5 μM 3 6 13 

1 μM 24 30 41 

2 μM 15 23 36 

5 μM 4 12 16 
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Figure 64. Stability studies of Tz1 in PBS, serum-free media, cell culture media (10% FBS, v/v) 
conducted in a black 96-well plate with 1 µM solutions of Tz1. The fluorescence intensities monitored 
using a multimode plate reader (λex=465-505 nm, λem=508-548 nm), with readings taken every 5 min 
at 37 °C.  
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In order to investigate the stability of the tetrazine quenched fluorophore under biologically 

relevant conditions, the fluorescence intensities of Tz1 were monitored over time in PBS, cell 

culture media (containing 10% v/v serum) and serum free media (Figure 64). Only negligible 

increases in fluorescence were observed during 10 h incubation indicating the stability of Tz1. 

This is important as many tetrazines are not stable under such conditions.  

The fluorescence dequenching of Tz1 was evaluated on the model polymer─protein 

conjugate P1-BSA (Figure 65). P1-BSA (2.5 μM) was treated with excess amount of Tz1 (25 

μM) for 4 h and analysed by SDS-PAGE (Figure 65b) to demonstrate the compatibility and 

selectivity of the polymer─protein conjugates. Clear fluorescence was observed in lane 4 (P1-

BSA treated with Tz1) while no fluorescence was seen in lane 2 (where native BSA was 

treated with Tz1 at the same conditions as the control). This indicated the selectivity of the 

tetrazine quenched fluorophore between the polymer labelled BSA and the corresponding 

unmodified variant.  

 

Figure 65. (a) Fluorescence of the polymer conjugated BSA with Tz1 giving BODIPY-P1-BSA; (b) SDS-
PAGE of the resulting fluorescent BSA conjugate BODIPY-P1-BSA. MW Markers: Precision Plus 
Protein™ Kaleidoscope™ Prestained Protein Standards, 10-250 kDa; Lane 1 BSA; Lane 2 BSA (2.5 μM) 
incubated with Tz1 (25 μM); Lane 3 P1-BSA; Lane 4 P1-BSA (2.5 μM) incubated with Tz1 (25 μM). 
Staining was carried out with Coomassie blue (0.1% w/v in 1:4:5 acetic acid/water/MeOH for 2 h). 
Staining was carried out with Coomassie blue (0.1% w/v in 1:4:5 acetic acid/water/MeOH for 2 h) and 
destained using a mixture of 1:7:2 acetic acid/water/MeOH for 24 h. Bright field and fluorescent 
images (λex = 365 nm, λem = 520 ± 30 nm) of gels were taken using a Universal Hood II Gel Doc System. 
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Figure 66. (a) and (b) Fluorescence of the polymer conjugated Herceptin treated with Tz1 giving 
BODIPY-P1-Her to BODIPY-P5-Her. The tetrazine quenched BODIPY Tz1 was incubated with 
norbornene bearing polymer antibody conjugates P1-Her to P5-Her in PBS (pH = 7.4) at 37 °C for 4 h 
and purified by dialysis to give BODIPY-P1-Her to BODIPY-P5-Her. (c) SDS-PAGE of the resulting 
fluorescent Herceptin conjugate BODIPY-P1-Her. MW Markers: Precision Plus Protein™ 
Kaleidoscope™ Prestained Protein Standards, 10-250 kDa; Lane 1 Herceptin; Lane 2 Herceptin (2.5 μM) 
incubated with Tz1 (25 μM); Lane 3 P1-Her; Lane 4 P1-Her (2.5 μM) incubated with Tz1 (25 μM). 
Staining was carried out with Coomassie blue (0.1% w/v in 1:4:5 acetic acid/water/MeOH for 2 h) and 
destained using a mixture of 1:7:2 acetic acid/water/MeOH for 24 h. Bright field and fluorescent 
images (λex = 365 nm, λem = 520 ± 30 nm) of gels were taken using a Universal Hood II Gel Doc System.  
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The same in situ dequenching strategy was applied to the antibody conjugate P1-Her to 

investigate the reactivity and selectivity of Tz1 to the antibody conjugate (Figure 66). Similar 

to the BSA conjugates, a clear but broad fluorescent smear was observed on the gel for the 

polymer─anƟbody conjugate treated with Tz1 (lane 4, Figure 66c). No non-specific binding of 

the fluorophores to the native antibody was observed (Figure 66c).  

 

4.2.4. Polymer Conjugation Affects the Antibody Binding Rate but not Affinity (with 

Dr M. Ucuncu) 

As described previously, the clinically used antibody Herceptin selectively binds to tyrosine 

kinase receptor HER2 and was used here as the targeting moiety for the polymer based 

fluorescent probes. The HER2 receptor positive cancer cell line SK-BR-3 was selected and 

used for immunological studies, while a HER2 receptor negative cancer cell line MCF-7 was 

used as a negative control.  

To investigate the binding kinetics of antibody to HER2 receptors and optimise the incubation 

conditions, e.g. antibody concentration and incubation time, an NHS functionalised BODIPY 

fluorophore 12255 was coupled to the antibody Herceptin to give a fluorescently labelled 

antibody BODIPY-Her (see Figure 67) and this enabled analysis of binding rates by flow 

cytometry. The concentration of antibody was optimised by analysing the fluorescence 

intensity change of cell populations with increasing concentrations of the fluorescent 

antibody BODIPY-Her. In comparison to untreated cells, a fluorescence increase was 

observed with different concentrations of the BODIPY-Her with 1.7, 3.2 and 3.2 fold increases 

for 1, 10 and 50 nM, respectively. There were no significant differences in fluorescence 

intensity when 10 nM and 50 nM of BODIPY-Her was used, indicating saturation of the HER2 

receptors.  
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Figure 67. Synthesis of the fluorescently labelled antibody BODIPY-Her. Herceptin (137 μM) was 
treated with the active ester functionalised BODIPY 13 (1.4 mM) at 37 °C for 4 h in PBS (pH = 7.4) and 
purified by dialysis.  

 

The optimal incubation time was evaluated using a similar strategy, with the fluorescently 

labelled antibody BODIPY-Her (10 nM) incubated with SK-BR-3 cells for 0.5, 1, 2, 4 and 6 h 

before analysis by flow cytometry. The fluorescence intensities were normalised to the 

fluorescence saturated cells (after 6 h incubation) and shown in Figure 68. The fluorescence 

was saturated within 2 h with a t1/2 of 18 min. 

 

 

Figure 68. Flow cytometry histograms of antibody concentration optimisation on SK-BR-3 cells. Cells 
were treated with BODIPY-Her at various concentrations: 1 nM (blue), 10 nM (orange) and 50 nM 
(green), with untreated cells (red) used as a control. 
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Figure 69. Kinetics of binding of antibody conjugates (a) BODIPY-Her; (b) P1-Her; (c) P2-Her and (d) 
P3-Her to the HER2 expressing cell line SK-BR-3 and the non-HER2 expressing cell line MCF-7 
(quantified by flow cytometry with an antibody concentrations of 10 nM, λex/em = 488/525 nm). (e) 
Comparison of binding affinities. Fluorescence intensity normalised to the intensity of fluorescence 
saturated cells (6 h incubation), n = 3. 

 

To investigate how chemical modification of antibodies with different molecular weight 

polymers affected the antibody binding affinity, the kinetics of the polymer─anƟbody 

conjugates P1-Her, P2-Her and P3-Her binding to the HER2 receptor was evaluated. The 

tetrazine BODIPY fluorophore Tz1 was used to pre-label the polymer─anƟbody conjugates in 

vitro (see Figure 66) to enable fluorescent analysis by flow cytometry (Figure 69). As the 

molecular weight of the polymers increases (P2, 7 kDa, P1, 14 kDa and P3, 30 kDa), the 

binding rates of the antibody conjugates decreased (BODIPY-P2-Her t1/2 = 38 min, BODIPY-

P1-Her t1/2 = 44 min, and BODIPY-P3-Her t1/2 = 52 min). Although the polymer conjugation 

induced a small delay in fluorescence saturation time, receptor saturation with all 

polymer─anƟbody conjugates took place within 4 h, while the saturaƟon Ɵme of the small 
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molecule labelled antibody BODIPY-Her was approximately 2 h. As a result, the incubation 

time of the polymer─anƟbody conjugates was set at 4 h. For the HER2 receptor negaƟve cells 

MCF-7, no significant fluorescence increase in cell populations were observed when treated 

under the same conditions (6 h) (Figure 69), indicating the specificity of the antibody 

conjugate based fluorescent probes.  

4.2.5. Cytotoxicity of the Antibody Conjugates and the Tetrazine BODIPY 

Fluorophore 

Before moving onto the next step of applying the polymer–antibody conjugates to cells, the 

biocompatibility of these materials was evaluated utilising an MTT assay (Figure 70). For the 

native antibody Herceptin, the viability of cells were over 90% at concentrations lower than 

20 nM, but dropped to 81% at 50 nM (Figure 70a), in agreement with the literature.256 The 

chemically modified antibodies (P1-Her to P5-Her and BODIPY-Her, 1-50 nM) showed high 

viability (>90%) at all tested concentrations (0.5-50 nM, Figure 70), indicating that 

modification of the antibody may slightly affect the degradation rate or the degradation 

mechanism of the HER2 receptor.257 SK-BR-3 cells treated with Tz1 showed over 90% viability 

up to 2 μM.  
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Figure 70. SK-BR-3 cell viability against: (a) Herceptin; (b) BODIPY-Her, (c) Tz1 and (d) to (h) P1-Her to 
P5-Her. The viabilities were measured using a standard MTT assay (4 h incubation with 
diphenyltetrazolium bromide) with cells incubated with the compounds for 24 h, n = 3. As a negative 
control, cells were treated with 50% DMSO in DMEM).  
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Considering the reactivity of the tetrazine with norbornene and the cytotoxicity of Tz1, the 

concentrations of polymer─anƟbody conjugates P1-Her to P5-Her and Tz1 were set at 10 nM 

and 1 μM, respectively, for cell based experiments.  

4.2.6. In Cellulo Fluorescence Switch on and Amplification 

To demonstrate fluorescence “switch-on” and amplification, HER2 receptor positive SK-BR-3 

cells were treated with the polymer─anƟbody conjugates P1-Her to P5-Her (10 nM) for 4 h 

followed by addition of the tetrazine quenched BODIPY fluorophore Tz1 (1 μM) for 30 min, 

and the cells analysed by fluorescent microscopy and flow cytometry (Figure 71 and 72). As 

controls, SK-BR-3 cells were treated with ether the antibody conjugates or the quenched 

fluorophore individually, which all gave negligible fluorescence. In comparison to the cells 

treated with small molecule fluorophore labelled antibody BODIPY-Her (10 nM), remarkable 

fluorescence intensity increases were observed (see Figure 72). The fold increase in the 

fluorescence intensities (compared to BODIPY-Her treated cells as the control) were 

quantified by flow cytometry (Table 11), which showed fluorescence increases greater than 

80-fold for P3-Her and P5-Her.  

 

Figure 71. Flow cytometry histograms of SK-BR-3 cells treated with the BODIPY labelled Herceptin 
(BODIPY-Her, 10 nM orange), Tz1 (1 μM, blue), and the polymer–antibody conjugates (P1-Her, 10nM) 
followed by Tz1 (1 μM, green), (untreated control cells are shown in red) and the data plotted as 
fluorescence intensity normalised to the highest intensity (cells treated with P3-Her (10 nM) followed 
by Tz1 (1 μM)), λex/em = 488/525 nm); 
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Figure 72. Fluorescent and bright field images taken using a Zeiss AxioVert 200M fluorescence 
Microscope (λex=447-494 nm, λem=500-554 nm). Cells were treated with or without BODIPY-Her (10 
nM) or the polymer─anƟbody conjugates (10 nM) for 4h followed by addition of the quenched 
tetrazine fluorophore Tz1 (30 min at 1 μM) (scale bar: 50 μm).  
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The fluorescence intensity could be tuned by ether changing the length of the polymer 

scaffold (P1-Her, P2-Her and P3-Her) or changing the functional group densities (P1-Her, P4-

Her and P5-Her) (see Table 11). Confocal microscopy analysis showed antibody conjugates 

both in the cytoplasm and on the plasma membranes (Figure 73), in agreement with the 

localisation of the small molecule labelled antibody BODIPY-Her. Different degrees of 

fluorescent increases were observed when using polymer─anƟbody conjugates with 

different number of reactive centres (see different brightness of BODIPY channel in Figure 

73).  

 

 

Figure 73. Confocal fluorescence microscopy images of SK-BR-3 cells treated with BODIPY labelled 
Herceptin (BODIPY-Her, 10 nM), polymer-antibody conjugates (P1-Her and P3-Her, 10 nM) followed 
by Tz1 (1 μM) and untreated cells as a control. Cell nuclei were stained with Hoechst 33342 (blue, 
λex/em = 353/483 nm), and the plasma membrane stained with CellMaskTM Deep Red (red, λex/em = 
649/666 nm), Tz1 (green, λex/em = 488/512 nm). Scale bar = 10 μm. 

 



Chapter 4 

108 

 

Table 11. Properties of the polymers and the fold increase in fluorescence intensity of SK-BR-3 cells 
treated with the polymer─anƟbody conjugates P1-Her to P5-Her (10 nM) and subsequent addition of 
Tz1 (1 μM) in comparison to BODIPY-Her treated cells.  

polymer─anƟbody 
conjugates 

P1-Her P2-Her P3-Her P4-Her P5-Her 

Polymer Mn (kDa) 14 7.1 30 11 16 

DMAA:7 (molar ratio 

in polymers) 
100:8 100:6 100:9 100:3 100:20 

Fold increase of 
fluorescence intensity  

47 11 84 7 84 

 

4.3. Conclusions and Outlook 

With the development of modern medical science, various therapeutic technologies have 

been developed for treating cancers, where surgery remains the most efficient therapy. 

Fluorescent imaging techniques have been developed for cancer diagnostics and for image 

guided surgery, but these techniques would benefit from amplification technologies to 

visualise tumours with high resolution and signal to background ratios. Here, a polymer–

antibody conjugate based fluorescent probe was developed and applied for cancer cell 

imaging. The polymer scaffolds bearing a norbornene reactive centre and a hexahistidine tag 

purification handle were synthesised through RAFT polymerisation and covalently 

conjugated to a clinically used antibody to give the fluorescent probe. With easy purification 

by affinity column chromatography, the polymer─anƟbody conjugates with different 

molecular weights and reactive centre densities were obtained in high quality. A tetrazine 

quenched fluorophore was applied for in situ “switch on” and amplification of fluorescent 

signals by undergoing an inverse electron-demand Diels–Alder reaction with norbornene 

moieties on the polymer─anƟbody conjugates. When applied in cell imaging, the 

fluorescence was dequenched in situ and amplified with up to an 80-fold increase in 

comparison to a traditional fluorophore labelled antibody. Such improvement may 

contribute to the improvement of fluorescence-guided surgery of cancers and other 

biomedical applications. 
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The application of such polymer scaffold antibody conjugates is not limited to fluorescent 

signal amplifications, but can be applied for loading cargo in other biological systems. For 

example, MRI agents or heavy metals cores could be loaded onto the antibody conjugates to 

amplify signals for MRI or radiation-therapy; while cleavable drug molecules could be loaded 

to the antibody conjugates to enable drug release. In addition, the reactive centres are not 

limited to norbornene, but could be other reactive groups that fulfil the bioorthogonality 

such as strained alkynes, azides and aminooxy groups. The terminal trithiocarbonate could 

be incorporated into a peptide, another polymer chain, an additional targeting moiety or a 

fluorophore to track the probe.  

Although highly efficient and selective, this antibody based fluorescent amplification method 

still has some shortcomings. The polymer–antibody conjugation was based on an active 

ester-amine coupling reaction using the lysine residues (and the N terminus amine), thus the 

degree of substitution will be variable while the substitution may change the hydrophobicity 

of the proteins. As previously indicated, genetic incorporation of orthogonal reactive centres 

into protein structures has been reported258 and may overcome such shortcomings but the 

substitution position will need to be optimised for both the reactivity and the protein activity. 

The BODIPY dye used here was a “green fluorophore” (λex/em = 488/512 nm), which may not 

be ideal for biological applications especially for in vivo studies due to the strong 

autofluorescence of tissues. A red or near infrared fluorophore might provide even higher 

signal to noise ratios and may also improve the penetration depth.  
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Chapter 5. Experimental 

 

5.1. General Information 

Anhydrous solvents were purchased from Sigma Aldrich and used under a N2 atm using 

Schlenk techniques. Culture-Insert 2 Well µ-Dishes were obtained from Ibidi. Hoechst 33342, 

CellMaskTM Deep Red plasma membrane stain, Alexa FluorTM phalloidin (488), RIPA cell lysis 

buffer, and DynabeadsTM MyOneTM Streptavidin T1 were purchased from Thermo Fisher 

Scientific. Acryloxyethyl thiocarbamoyl rhodamine B was purchased from Polysciences Inc. 

All other chemicals were purchased from Acros Organics, Alfa Aesar, Fisher Scientific or Sigma 

Aldrich and used without further purification, unless otherwise indicated. A Blak-Ray B-100 

UV lamp was used as the light source and had a measured intensity of 5 mW cm-2. 2-

Chlorotrityl polystyrene resin was purchased from GL Biochem (Shanghai) Ltd. 4-20% Mini-

PROTEAN TGX precast protein gels, 2 × Laemmli Sample Buffer, and Ni-charged Profinity™ 

IMAC Resin were purchased from Bio-Rad. Dialysis membrane (molecular weight cut off 7000 

Da) was purchased from Medicell Membranes Ltd. Reverse phase chromatography was 

carried out on an Isolera™ Spektra One system (Biotage) equipped with a Biotage® SNAP 

Ultra C18 column. SDS-PAGE was performed using a Bio-Rad Laboratories Mini-Protean® 3 

Cell System (Bio-Rad). 

1H and 13C NMR spectra were recorded on a Bruker AVA500 spectrometer (500 and 125 MHz, 

respectively) or a Bruker AVA600 spectrometer (600 and 150 MHz, respectively) at 298 K in 

deuterated solvents. Chemical shifts for proton and carbon spectra are reported on the δ 

scale in ppm. All coupling constants (J values) were measured in Hz. ES mass spectra were 

recorded using a VG Platform Quadrupole Electrospray Ionisation mass spectrometer. 

Reverse phase analytical HPLC (RP-HPLC) was performed using an Agilent 1100 ChemStation, 

with a Kinetex 5u XB-C18 (50 × 4 × 60 mm) column, eluting with 5% ACN in water to 95% ACN 

in water over 10 min (both with 0.1% formic acid).at a flow rate of 1 mL/min with evaporative 

light scattering detection (ELSD) (Polymer Lab PL-ELS 1000) with simultaneous detection at 

220, 254, 260, 282 and 495 nm. All solvents used were HPLC grade. Flow cytometry analysis 

was carried out on a Becton Dickinson (BD) FACScan XP5 using FlowJo software for data 
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analysis. The absorbance of 96-well plates was read on a BioTek HT Synergy multimode 

reader at 570 nm using the Microplate manager 4.0 software. Transmission Electron 

Microscope (TEM) analysis was conducted on a JEOL JEM-1400 Plus and representative 

images were collected on a GATAN OneView camera. Fluorescence spectra were recorded 

on a SPEX Fluoromax, using 1 cm path length fused quartz cuvettes. HeLa and SK-BR-3 cells 

were monitored using a 20x objective (Leica fluorescence microscope) under brightfield and 

488 nm excitation. Confocal images were taken on a Leica SP5 confocal microscope and Zeiss 

510 Meta software was used for digital acquisition. Polymers were analysed by gel 

permeation chromatography (GPC) using two PLgel MIXED-C columns (200-2,000,000 g mol-

1, 5 µm) using DMF with 0.1% w/v LiBr at 60 °C at 1 mL min-1 as an eluent or an Agilent 1100 

GPC equipped with an PL aquagel-OH 30 column (8 μm) and one PL aquagel-OH MIXED-H 

column (8 μm) using H2O as an eluent at 40 °C at 1 mL/min. Molecular weights obtained were 

relative to narrow dispersity poly(methyl methacrylate) and poly ethylene glycol standards. 

The number of repeating units in a polymer was determined by 1H NMR (using the integrals 

of the initiator and the vinyl moiety to calculate the molecular weight of the polymers). 

Matrix-assisted laser desorption/ionization-Time of Flight (MALDI-TOF) mass spectroscopy 

was carried out on Bruker UltraflexExtreme MALDI-TOF, with sinapinic acid (SA) or 2-(4’-

hydroxybenzeneazo)benzoic acid (HABA) as matrices. UV-Vis spectra of protein samples were 

recorded on a NanoDrop® ND-1000 UV-Vis spectrophotometer (Thermo Fisher Scientific). 

Stability studies were carried out recording the fluorescence spectra on a BioTek HT Synergy 

multi-mode reader.  

 

 

 

 

 

5.2. Small Molecule Synthesis 

Biotin-PEG-methacrylate 
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A mixture of biotin (1.0 g, 4.1 mmol), PEG-monomethacrylate (1.5 g, 4.1 mmol, average 

molecular weight = 500), EDC (0.78 g, 4.1 mmol), 4-DMAP (0.05 g, 0.22 mmol) were dispersed 

in DMF (50 mL) and stirred for 24 h. The solvent was removed in vacuo and the crude product 

was re-dissolved in DCM and washed with 5% NaHCO3 aqueous solution, 1% HCl and 

saturated brine (three times each). The solvent was removed in vacuo and the product was 

purified by column chromatography eluting with DCM/MeOH (from100:2 to 100:10), to give 

0.75 g of the product (yield 30%).  

1H NMR (500 MHz, CDCl3): δ = 6.15 (s, 1H, Hj), 5.60 (s, 1H, Hj), 4.55 (m, 1H, Ha), 4.15 (m, 1H, 

Hb), 3.80–3.50 (m, 48H, Hi), 3.12 (dt, J = 8.4, 4.4 Hz, 1H, Hd), 2.89 (m, 1H, Hc), 2.72 (m, 1H, Hc), 

2.34 (t, J = 7.6 Hz, 2H, Hh), 1.68 (s, 3H, Hk), 1.54–1.37 (m, 4H, He, Hg); 1.29 (m, 2H, Hg). 

13C NMR (500 MHz, CDCl3): δ = 173.5, 167.4, 162.7, 136.2, 125.7, 70.6, 69.1, 64.1, 63.9, 63.5, 

61.8, 60.0, 55.2, 50.9, 40.5, 33.7, 28.2, 24.7, 18.3;  

IR λmax (cm-1) 3350, 2868, 1703, 1456, 1298, 1254, 1101, 952;  

MS (C40H72N2O17S): [M+H]+: 885.16, found: 885.20.  

Data was in agreement with the literature.69 

 

 

 

 

 

Carboxylic acid tagged RAFT agent 3 
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To a suspension of potassium hydroxide (9.0 g, 0.16 mol) in tetrahydrofuran (150 mL), a 

solution of 1-butanethiol (16 g, 0.18 mol) in THF (50 mL) was added and stirred for 30 minutes 

followed by addition of carbon disulfide (17 g, 0.23 mol) in THF (50 mL). The resulting mixture 

was stirred overnight and then concentrated in vacuo to 50 mL. The crude product was used 

without purification. 

A solution of tetrapropylammonium bromide (22 g, 0.15 mol) in THF (50 mL) was added 

dropwise and the resulting solution was stirred 24 hours before concentrated onto silica gel 

(200 g) in vacuo and purified by flash column chromatography (eluted with DCM) to give the 

title compound as a bright yellow solid (22 g, 63%).  

1H NMR (600 MHz, DMSO-d6): δ/ppm 13.16 (s, 1H, Hg), 4.69 (q, J = 7.4 Hz, 1H, He), 3.40 (t, J = 

6.8 Hz, 2H, Hd), 1.64 (tt, J = 8.6, 6.8 Hz, 2H, Hc), 1.52 (d, J = 7.4 Hz, 3H, Hf), 1.46–1.31 (m, 2H, 

Hb), 0.90 (t, J = 7.4 Hz, 3H, Ha).  

13C NMR (150 MHz, DMSO-d6): δ/ppm 222.9, 172.0, 48.6, 36.7, 30.1, 21.9, 17.2, 13.9.  

HRMS (ESI) for C8H14O2S3 [M+H]+: calcd.: 239.0229; found: 239.0242.  

Rf = 0.41 (DCM/EtOAc, 9:1).  

Data was in agreement with the literature.250 

 

 

 

 

 

 

(Fmoc-amino)hexanoic acid linker bound resin 4 
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In an SPE filter cartridge (12 mL, fitted with a polyethylene frit with 20 μm porosity, Sigma-

Aldrich), thionyl chloride (40 μL, 0.55 mmol) was added to preswollen (in anhydrous DCM) 2-

chlorotrityl chloride resin (500 mg, loading 0.95 mmol/g, GL Biochem) in anhydrous DCM 

under a N2 atm, and the reaction mixture was shaken for 1 h. The solvent was drained and 

the resin was washed with anhydrous DCM (3 × 5 mL) and anhydrous DMF (3 × 5 mL). The 

activated resin was swollen in anhydrous DCM for 10 min, followed by the addition of Fmoc-

Ahx-OH (237 mg, 1.8 mmol) and DIPEA (275 μL, 1.7 mmol) in anhydrous DMF (5 mL) and 

shaken for 1 h. The resin was drained and washed sequentially with anhydrous DCM (3 × 5 

mL), anhydrous DMF (3 × 5 mL) and then treated twice with DCM/MeOH/DIPEA (80:15:5, 5 

mL) and washed with DCM (3 × 5 mL) and DMF (3 × 5 mL). The coupling reactions were 

monitored by a ninhydrin test259. 

 

6-Aminohexanoic acid linker bound resin 5 

 

To the hexanoic acid linker bound resin 4 (500 mg, pre-swollen in DCM), piperidine (5 mL, 20% 

v/v in DMF) was added and the resin was shaken for 20 min. The solvent was drained and the 

resin was washed with DCM (3 × 5 mL), DMF (3 × 5 mL), MeOH (3 × 5 mL) and diethyl ether 

(3 × 5 mL). The coupling reactions were monitored by a ninhydrin test259. 

 

 

 

 

 

 

 

Hexahistidine tag resin 6 
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Fmoc-His(Trt)-OH (930 mg, 1.5 mmol) and ethyl cyano(hydroxyimino) acetate (213 mg, 1.5 

mmol) were dissolved in DMF (5 mL) and stirred for 10 min. N,N′-Diisopropylcarbodiimide 

(232 μL, 1.5 mmol) was added and stirred for further 2 min. The mixture was added to the 6-

aminohexanoic acid linker bound resin 5 (500 mg, pre-swollen in DCM) and shaken for 3 h. 

The solution was drained and the resin washed with DCM (3 × 5 mL) and DMF (3 × 5 mL). The 

resulting resin was swollen in DCM and piperidine (5 mL, 20% v/v in DMF) was added and 

shaken for 20 min, before the solvent was drained and the resin was washed with DCM (3 × 

5 mL), DMF (3 × 5 mL), MeOH (3 × 5 mL) and Et2O (3 × 5 mL). This procedure was repeated 6 

times to build the hexahistidine tag moiety. The coupling reactions were monitored by a 

ninhydrin test259. 

 

Hexahistidine tagged RAFT agent bound resin 7 

 

2-{[(butylsulfanyl)carbonothioyl]sulfanyl} propanoic acid 3250 (358 mg, 1.5 mmol), and ethyl 

cyano(hydroxyimino) acetate (213 mg, 1.5 mmol) were dissolved in DMF (5 mL) and stirred 

for 10 min. N,N′-diisopropylcarbodiimide (232 μL, 1.5 mmol) was added and stirred for 

further 2 min. The mixture was added to the hexahistidine tag resin 6 (500 mg, pre-swollen 

in DCM) and reaction mixture was shaken for 3 h. The solution was drained and the resin was 

washed with DCM (3 × 5 mL) and DMF (3 × 5 mL). The coupling reactions were monitored by 

a ninhydrin test259. 

 

 

 

Hexahistidine tagged RAFT agent 8 
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The hexahistidine tagged RAFT agent bound resin 7 (500 mg, pre-swollen in DCM) was shaken 
in TFA/water (95:5, v/v, 5 mL) for 2 h. The filtrate was collected and the resin was washed 
with TFA/water (3 × 5 mL). The solutions were combined and evaporated in vacuo. The crude 
product was purified by reverse phase column chromatography using a gradient of 
acetonitrile (5% to 95% over 10 min, v/v, with 0.1% formic acid) in water as the eluent (170 
mg, 63%).  

1H NMR (600 MHz, DMSO-d6): δ/ppm 8.97–8.73 (m, 6H, Hf), 8.68–8.13 (m, 7H, Hamide), 7.42–

7.08 (m, 6H, Hg), 4.81–4.41 (m, 7H, Hc, Hd), 3.34 (t, J = 7.4, 2H, Hb), 3.16–2.81 (m, 14H, He, Hh), 

2.18 (t, J = 7.4, 2H, Hi), 1.61–1.13 (m, 13H, -CH2- and -CH-CH3), 0.88 (t, J = 7.4 Hz, 3H, Ha).  

13C NMR (150 MHz, DMSO-d6): δ/ppm 223.1, 174.9, 170.6, 170.5, 170.4, 170.4, 170.2, 170.1, 

170.0, 159.6, 159.3, 159.1, 158.9, 134.4, 134.3, 130.3, 130.2, 130.0, 129.9, 120.5, 118.5, 

117.3, 117.2, 117.1, 116.5, 114.6, 52.6, 52.5, 52.5, 52.3, 50.1, 49.8, 39.0, 38.7, 36.6, 35.8, 

34.1, 30.0, 29.0, 27.6, 26.4, 26.3, 25.5, 24.7, 24.6, 21.8, 18.5, 18.0, 13.9.  

HRMS (ESI) for C50H67N19O9S3 [M+H]+: calcd.: 1174.4604; found: 1174.4599.  

HPLC tR= 1.49 min. (Purity >98% by ELSD). 

 

 

 

 

 

 

 

 

Exo-2-tert-butoxycarbamatoethyl-carboxamidonorborn-5-ene 9 
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To a solution of N-Boc-ethylenediamine (3.6 g, 23 mmol) and exo-5-norbornenecarboxylic 

acid (2.8 g, 20 mmol) in DMF (50 mL), N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide 

hydrochloride (4.2 g, 22 mmol) was added and the reaction mixture was stirred overnight. 

The solvent was removed in vacuo and the crude product was purified by flash column 

chromatography (eluting with EtOAc/DCM, 2:8) to give compound 9 as a white solid (5.0 g, 

89%).  

1H NMR (600 MHz, DMSO-d6): δ/ppm 7.83 (t, J = 5.7 Hz, 1H, Hf), 6.77 (t, J = 5.7 Hz, 1H, Hh), 

6.16–6.09 (m, 2H, Ha), 3.07─2.98 (m, 4H, Hg), 2.83 (m, 2H, Hc), 2.02 (m, 1H, He), 1.78 (m, 1H, 

Hd), 1.62 (m, 1H, Hd), 1.38 (s, 9H, Hi), 1.20–1.11 (m, 2H, Hb).  

13C NMR (150 MHz, DMSO-d6): δ/ppm 175.2, 156.1, 138.2, 136.7, 78.1, 47.3, 46.1, 43.5, 41.4, 

30.2, 28.7.  

HRMS (ESI) for C15H24N2O3 [M+H]+: calcd.: 281.1860; found: 281.1859.  

Rf = 0.10 (DCM/EtOAc, 9:1).  

Data was in agreement with the literature.260 

 

 

 

 

 

 

Exo-2-aminoethyl-carboxamidonorborn-5-ene hydrochloride 10 
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To a solution of Boc-protected amino norbornene 9 (3.6 g, 12.8 mmol) in 1,4-dioxane (5 mL), 

4 M HCl in 1,4-dioxane (25 mL) was added and the mixture was stirred overnight. The solvent 

was removed in vacuo to give the titled compound as a white solid (2.3 g, 98%). 

1H NMR (600 MHz, DMSO-d6): δ/ppm 6.17–6.09 (m, 2H, Ha), 3.35–3.28 (m, 4H, Hf, Hg), 2.85 

(m, 2H, Hc), 2.07 (m, 1H, He), 1.83–1.62(m, 2H, Hd), 1.23–1.15 (m, 2H, Hb).  

13C NMR (150 MHz, DMSO-d6): δ/ppm 175.8, 138.3, 136.7, 47.2, 46.2, 43.6, 41.5, 39.1, 37.1, 

30.3.  

HRMS (ESI) for C10H16N2O [M+H]+: calcd.: 181.1335; found: 181.1330.  

Rf = 0.16 (9:1, CH2Cl2/CH3OH). 

Data was in agreement with the literature.260 

 

 

 

 

 

 

 

 

 

Exo-2-acrylamidoethyl-carboxamidonorborn-5-ene 11 
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To a solution of S2 (2.3 g, 13mmol) and triethylamine (2.7 mL, 19 mmol) in anhydrous THF 

(20 mL), acryloyl chloride (1.2 mL, 14 mmol) in anhydrous THF (10 mL) was added dropwise 

at 0 °C. The reaction mixture was stirred for 2 h, concentrated in vacuo and purified by 

column chromatography (eluting with EtOAc/DCM, 4:6) to give 11 as a white solid (0.8 g, 

22%).  

1H NMR (600 MHz, DMSO-d6): δ/ppm 8.11 (t, J = 5.1 Hz, 1H, Hf), 7.91 (t, J = 5.3 Hz, 1H, Hh), 

6.19 (m, 1H, Hj), 6.13 (m, 2H, Ha), 6.07 (m, 1H, Hj), 5.58 (m, 1H, Hi), 3.22–3.12 (m, 5H, Hg, Hc), 

2.86–2.78 (m, 1H, Hc), 2.35 (m, 1H, He), 1.79 (m, 1H, Hd), 1.63 (m, 1H, Hd), 1.17 (m, 2H, Hb).  

13C NMR (150 MHz, DMSO-d6): δ/ppm 175.3, 165.3, 138.2, 136.8, 132.3, 125.5, 47.3, 46.1, 

43.5, 41.4, 39.0, 38.9, 30.2.  

HRMS (ESI) for C13H18N2O2 [M+H]+: calcd.: 235.1447; found: 235.1445.  

Rf = 0.49 (DCM/MeOH, 9:1).  

 

 

 

 

 

 

 

5.3. Polymer Synthesis 

Poly(HPMA) 
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N-(2-Hydroxypropyl) methacrylamide (7.2 mg, 50 μmol) and initiator Irgacure2959 (0.4 mg, 

2 μmol) were added to PBS (1 mL) and the mixture illuminated at 365 nm for 5 min. The 

polymer was purified by dialysis against water for 72 h (2.5 L, exchanged twice every 24 h, 

molecular weight cut off 1000 Da) and freeze dried (42% yield).  

1H NMR (500 MHz, DMSO-d6): δ/ppm 3.68 (Ha), 2.91 (Hb), 1.68 (He), 1.21–0.91 (Hd), 0.82 (Hc).  

13C NMR (125 MHz, DMSO-d6): δ/ppm 171.40, 92.89, 58.91–53.38, 28.94, 20.69.  

See GPC data in Figure 17 and Table 4. 

 

 

 

 

 

 

 

 

 

 

 

 

Poly(HPMA-co-biotin-PEGMA) 
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N-(2-Hydroxypropyl) methacrylamide (7.2 mg, 50 μmol), biotin-PEGMA (4.2 mg, 5 μmol) and 

initiator Irgacure2959 (0.4 mg, 2 μmol) were added to PBS (1 mL) and the mixture illuminated 

at 365 nm for 5 min. The polymer was purified by dialysis against water for 72 h (2.5 L, 

exchanged twice every 24 h, molecular weight cut off 1000 Da) and freeze dried (43% yield).  

1H NMR (500 MHz, Chloroform-d): δ/ppm 4.12─3.91 (Hi, Hj, Hg), 3.8–3.45 (Hf), 3.22 (Hc), 2.58–

2.28 (Hd, Hk, Hh), 1.63 (Ha, He).  

13C NMR (125 MHz, Chloroform-d): δ/ppm 169.39, 139.73, 132.43, 119.96, 114.20, 70.59, 

67.67, 47.18, 28.71, 21.09, 18.67.  

GPC (DMF) Mn=9 kDa, Đ = 1.7. 

 

Poly(NaSS) 

 

Sodium 4-styrenesulfonate (10.3 mg, 50 μmol) and initiator Irgacure2959 (0.4 mg, 2 μmol) 

were added to PBS (1 mL) and the mixture illuminated at 365 nm for 5 min. The polymer was 

purified by dialysis against water for 72 h (2.5 L, exchanged twice every 24 h, molecular 

weight cut off 1000 Da) and freeze dried (56% yield).  

1H NMR (500 MHz, DMSO-d6): δ/ppm 7.85–6.97 (Ha, Hb), 2.36–1.63 (Hc).  

13C NMR (125 MHz, DMSO-d6): δ/ppm 164.59, 147.89, 70.26, 59.69–54.65, 50.19.  

GPC (DMF) Mn=5 kDa, Đ = 1.0. 

Poly(VAN) 
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4-Vinylaniline (6.0 mg, 50 μmol) and initiator Irgacure2959 (0.4 mg, 2 μmol) were added to 

PBS (1 mL) and the mixture illuminated at 365 nm for 5 min. The polymer was purified by 

dialysis against water for 72 h (2.5 L, exchanged twice every 24 h, molecular weight cut off 

1000 Da) and freeze dried (62% yield).  

1H NMR (500 MHz, DMSO-d6): δ/ppm 7.18–6.15 (Ha, Hb), 2.33–1.90 (Hc).  

13C NMR (125 MHz, DMSO-d6): δ/ppm 173.80, 155.34, 146.13, 60.26–52.69.  

GPC (DMF) Mn=6 kDa, Đ = 1.1. 

 

Poly(FMMA) 

 

Ferrocenylmethyl methacrylate (5.7 mg, 20 μmol) and initiator Irgacure2959 (0.4 mg, 2 μmol) 

were added to PBS (1 mL) and the mixture illuminated at 365 nm for 5 min. The polymer was 

purified by dialysis against water for 72 h (2.5 L, exchanged twice every 24 h, molecular 

weight cut off 1000 Da) and freeze dried (25% yield).  

1H NMR (500 MHz, DMSO-d6): δ/ppm 4.98–4.60 (Ha), 4.38–4.03 (Hb), 2.18–1.85 (Hd), 1.33–

0.47 (Hc).  

13C NMR (125 MHz, DMSO-d6) δ 176.50, 162.53, 136.42, 133.72, 130.07, 126.20, 82.03, 69.68, 

68.90, 63.03, 18.50.  

GPC (DMF) Mn=8 kDa, Đ = 2.2. 

 

Poly(HEMA) 



Chapter 5 

123 

 

 

2-Hydroxyethyl methacrylate (6.5 mg, 50 μmol) and initiator Irgacure2959 (0.4 mg, 2 μmol) 

were added to PBS (1 mL) and the mixture illuminated at 365 nm for 5 min. The polymer was 

purified by dialysis against water for 72 h (2.5 L, exchanged twice every 24 h, molecular 

weight cut off 1000 Da) and freeze dried (42% yield).  

1H NMR (500 MHz, DMSO-d6): δ/ppm 5.09─4.23 (He), 4.16–3.38 (Hc, Hd), 2.33–1.71 (Ha), 1.44–

0.48 (Hb).  

13C NMR (125 MHz, DMSO-d6): δ/ppm 179.13, 70.26, 66.67, 58.93, 26.80.  

GPC (DMF) Mn=14 kDa, Đ = 2.0. 

 

Poly(O-HPMA) 

 

O-2-Hyroxypropyl methacrylate (7.2 mg, 50 μmol) and initiator Irgacure2959 (0.4 mg, 2 μmol) 

were added to PBS (1 mL) and the mixture illuminated at 365 nm for 5 min. The polymer was 

purified by dialysis against water for 72 h (2.5 L, exchanged twice every 24 h, molecular 

weight cut off 1000 Da) and freeze dried (43% yield).  

1H NMR (500 MHz, DMSO-d6): δ/ppm 4.72 (Hd, Hf), 4.08–3.53 (Hc), 2.31–1.53 (Ha), 1.30–0.89 

(He), 0.88–0.68 (Hb).  

13C NMR (126 MHz, DMSO-d6): δ/ppm 175.10, 70.26, 64.14, 61.20, 20.63.  

GPC (DMF) Mn=11 kDa, Đ = 1.8. 
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Hexahistidine tagged poly(exo-2-acrylamidoethyl-carboxamidonorborn-5-ene-co-

N,N’dimethylacrylamide) P1 to P5 

 

N,N’-dimethylacrylamide (103 μL, 41 μL, 258 μL, 103 μL and 103 μL for P1 to P5, respectively), 

norbornene acrylamide 11 (23 mg, 9.4 mg, 59 mg, 9.4 mg, 59 mg for P1 to P5, respectively), 

RAFT agent 8 (12 mg, 10 μmol) and 2,2′-azobis(2-methylpropionitrile) (0.16 mg, 1.0 μmol) 

was dissolved in 1,4-dioxane (1 mL) and degassed by freeze-pump-thaw cycling. The 

polymerisation solution was stirred at 70 °C under Ar atm for 4 h and subsequently quenched 

by freezing in liquid nitrogen and thawed in the presence of air. The solvent was removed in 

vacuo and the resulting polymer was purified by dialysis (2.5 L, exchanged twice every 24 h, 

molecular weight cut off 30 kDa) against deionised water for 3 days (water changed every 12 

h).  

P1 (90% yield): 

1H NMR (600 MHz, DMSO-d6): δ/ppm 8.32–7.45 (Ha), 6.81 (Hb), 6.11 (Hc), 4.42 (Hd), 3.15–2.58 

(He), 1.85–0.68 (Hf).  

13C NMR (150 MHz, DMSO-d6): δ/ppm 38.7–37.3, 33.4.  

GPC (DMF) Mn=14 kDa, Đ = 1.5. 

 

P2 (91% yield): 

1H NMR (600 MHz, DMSO-d6): δ/ppm 8.35–7.50 (Ha), 6.80 (Hb), 6.19 (Hc), 4.36 (Hd), 3.02–2.61 

(He), 1.85–0.66 (Hf).  

13C NMR (150 MHz, DMSO-d6): δ/ppm 38.7–37.3, 33.2.  

GPC (DMF) Mn=7 kDa, Đ = 1.2. 
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P3 (88% yield): 

1H NMR (600 MHz, DMSO-d6): δ/ppm 8.34–7.41 (Ha), 6.78 (Hb), 6.21 (Hc), 4.39 (Hd), 3.24–2.43 

(He), 1.96–0.62 (Hf).  

13C NMR (150 MHz, DMSO-d6): δ/ppm 39.1–37.2, 33.0.  

GPC (DMF) Mn=30 kDa, Đ = 1.8. 

 

P4 (91% yield): 

1H NMR (600 MHz, DMSO-d6): δ/ppm 8.33–7.48 (Ha), 6.69 (Hb), 6.02 (Hc), 4.33 (Hd), 3.05–2.50 

(He), 1.82–0.57 (Hf).  

13C NMR (150 MHz, DMSO-d6): δ/ppm 38.9–37.2, 33.4.  

GPC (DMF) Mn=11 kDa, Đ = 1.4. 

 

P5 (78% yield): 

1H NMR (600 MHz, DMSO-d6): δ/ppm 8.44–7.38 (Ha), 6.79 (Hb), 6.11 (Hc), 4.39 (Hd), 3.18–2.61 

(He), 1.80–0.56 (Hf).  

13C NMR (150 MHz, DMSO-d6): δ/ppm 39.0–37.7, 33.0.  

GPC (DMF) Mn=16 kDa, Đ = 1.7. 
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Polymer NHS esters PA1 to PA5 

 

Polymers P1 to P5 (1 equivalent, 10 mg) and 10 equivalent of N-hydroxysuccinimide (0.88 

mg, 1.5 mg, 0.50 mg, 0.93 mg, 0.80 mg for PA1 to PA5, respectively) were dissolved in 

anhydrous DMF and stirred for 5 min, followed by addition of 10 equivalent N-(3-

dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (1.5 mg, 2.5 mg, 0.83 mg, 1.5 mg, 

1.3 mg for PA1 to PA5, respectively). The reaction mixture was stirred under a N2 atm. for 16 

h and the product precipitated from Et2O (50 mL). The polymer active esters were redissolved 

in the minimum amount of DMF and precipitated from Et2O a further 3 times before drying 

in vacuo.  

PA1 (> 95% yield): 

1H NMR (600 MHz, DMSO-d6): δ/ppm 8.19–7.64 (Ha), 6.79 (Hb), 6.09 (Hc), 4.40 (Hd), 3.12–2.79 

(He), 1.85–0.62 (Hf).  

13C NMR (150 MHz, DMSO-d6): δ/ppm 38.7–37.3, 33.4.  

GPC (DMF) Mn=16 kDa, Đ = 1.6. 

 

PA2 (> 95% yield): 

1H NMR (600 MHz, DMSO-d6): δ/ppm 8.21–7.66 (Ha), 6.80 (Hb), 6.11 (Hc), 4.36 (Hd), 3.12–2.62 

(He), 1.65–0.72 (Hf).  

13C NMR (150 MHz, DMSO-d6): δ/ppm 38.8–37.3, 33.2.  

GPC (DMF) Mn=7 kDa, Đ = 1.2. 
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PA3 (> 95% yield): 

1H NMR (600 MHz, DMSO-d6): δ/ppm 8.11–7.61 (Ha), 6.79 (Hb), 6.11 (Hc), 4.39 (Hd), 3.14–2.51 

(He), 1.96–0.62 (Hf).  

13C NMR (150 MHz, DMSO-d6): δ/ppm 39.1–37.2, 33.1.  

GPC (DMF) Mn=32 kDa, Đ = 1.7. 

 

PA4 (> 95% yield): 

1H NMR (600 MHz, DMSO-d6): δ/ppm 8.16–7.64 (Ha), 6.89 (Hb), 6.22 (Hc), 4.51 (Hd), 3.15–2.60 

(He), 1.72–0.66 (Hf).  

13C NMR (150 MHz, DMSO-d6): δ/ppm 38.9–37.2, 33.1.  

GPC (DMF) Mn=11 kDa, Đ = 1.6. 

 

PA5 (> 95% yield): 

1H NMR (600 MHz, DMSO-d6): δ/ppm 8.09–7.58 (Ha), 6.88 (Hb), 6.23 (Hc), 4.40 (Hd), 3.19–2.58 

(He), 1.80–0.67 (Hf).  

13C NMR (150 MHz, DMSO-d6): δ/ppm 39.0–37.7, 33.5.  

GPC (DMF) Mn=15 kDa, Đ = 1.6. 

 

5.4. Synthesis of Protein Conjugates  

Macro-RAFT agent 1 

To BSA (9 mg, 140 nmol) in PBS (1 mL, pH = 7.4), 1-succinimidyl-4-cyano-4-[N-methyl-N-(4-

pyridyl) carbamothioylthio] pentanoate (140 μL, 10 mM solution in DMSO) was added and 
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the mixture was stirred at 37 °C for 4 h. The solution was diluted with PBS (2 mL) and dialysed 

against water (2.5 L, exchanged twice every 24 h, molecular weight cut off 12,000 Da) for 24 

h and freeze dried to give the titled compound in quantitative yield. The macro-RAFT agent 

was stored at 4 °C. 

 

Poly(DMAA) grafted BSA 2 

Macro-RAFT agent 1 (2.7 mg, 50 nmol), N,N’-dimethylacrylamide (1 nmol to 1 mM), Eosin Y 

(130 μg, 200 nmol) and triethylamine (1.4 μL, 10 μmol) were mixed in PBS and illuminated at 

470 nm for 4 h. The crude was dialysed against water (2.5 L, exchanged twice every 24 h, 

molecular weight cut off 12,000 Da) for 24 h and freeze dried to give poly(DMAA) grafted BSA 

2 in quantitative yield. The poly(DMAA) grafted BSA was stored at 4 °C. 

 

P1-BSA, P2-BSA and P3-BSA 

 

To BSA (0.9 mg, 14 nmol) in PBS (100 μL, pH = 7.4), 10 eq. polymer active ester PA1 to PA3 

(1.8 mg, 1.0 mg, 3.2 mg for P1-BSA, P2-BSA and P3-BSA, respectively) were added and the 

mixtures stirred at 37 °C for 4 h. The solution was diluted with PBS (5 mL) before being 

concentrated to 100 μL using an Amicon Ultra-15 centrifugal filter unit (molecular weight cut 

off 30 kDa, 30 kDa, 100 kDa for P1-BSA, P2-BSA and P3-BSA, respectively) and the dilution 

and concentration were repeated 10 times. The protein conjugate solutions were stored at 

4 °C. 

 

 

 



Chapter 5 

129 

 

P1-Her to P5-Her  

 

To Herceptin (20 mg/mL, 137 μM, 20 μL) in PBS, 10 eq. of the polymer active esters PA1 to 

PA5 (0.4 mg, 0.2 mg, 0.7 mg, 0.4 mg, 0.4 mg for P1-Her to P5-Her, respectively) were added 

and stirred at 37 °C for 4 h. The solution was diluted with PBS (5 mL, pH = 7.4) and 

concentrated to 100 μL using an Amicon Ultra-15 centrifugal filter units (molecular weight 

cut off 100 kDa) and the dilution and concentration were repeated for 10 times. The protein 

conjugate solutions were stored at 4 °C.  

 

Purification for polymer–protein conjugates 

The polymer–protein conjugates were purified using an immobilised metal-affinity 

chromatography resin following the manufacturer’s instructions. Specifically, Ni-charged 

Profinit IMAC Resin slurry (500 μL) was transferred to a SPE filter cartridge (12 mL with a 

polyethylene frit with 20 μm porosity, Sigma-Aldrich) and washed with deionised water (3 × 

5 mL) and drained. The polymer–protein conjugates (20 μL, 14 μM) were solvent exchanged 

into the washing buffer (50 mM sodium phosphate, 300 mM NaCl, 5 mM imidazole, pH = 8.0) 

using an Amicon Ultra-15 centrifugal filter unit (molecular weight cut off 30 kDa), 

concentrated to 200 μL, and added to the immobilised metal-affinity chromatography resin. 

The resin slurry was shaken for 30 min, the solvent drained, and the resin washed with the 

washing buffer (3 × 5 mL) and then treated with optimised elution buffer (3 × 5 mL, 50 mM 

sodium phosphate, 300 mM NaCl and 500 mM imidazole, pH = 8.0, see optimisation below) 

The solution was collected by filtration before concentrated to 100 μL using an Amicon Ultra-

15 centrifugal filter units (molecular weight cut off 30 kDa) and washed with PBS (pH = 7.4) 

10 times. The protein conjugate yields were determined by measuring the absorbance of the 

protein samples at 280 nm using a NanoDrop® ND-1000 UV-Vis Spectrophotometer and 

calibrated with 5 concentrations of the native corresponding protein solutions (sample 

volume = 1 μL, n = 3). The polymer–protein solutions were stored at 4 °C. 
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The imidazole concentration in the elution buffer was optimised by loading P1-BSA to the 

immobilised metal-affinity chromatography resin (using the same protocol as mentioned 

above) and eluted with a set of elution buffers (3 × 5 mL, 50 mM sodium phosphate, 300 mM 

NaCl  and a gradient concentration of 10, 20, 50, 100, 200 and 500 mM imidazole, pH = 8.0). 

The elution was analysed using SDS-PAGE (see Figure 58). Staining was carried out with 

Coomassie blue (0.1% w/v in 1:4:5 acetic acid/water/MeOH for 2 h). Protein markers used 

were Precision Plus Protein™ Kaleidoscope™ Prestained Protein Standards, 10-250 kDa (Bio-

Rad). Bright field and fluorescent images (λex = 365 nm, λem = 520 ± 30 nm) of gels were taken 

using a Universal Hood II Gel Doc System (Bio-Rad). 

 

 

Figure 74. Protein yield calibration curve of (a) BSA and (b) Herceptin with absorbance at 280 nm using 
a NanoDrop® ND-1000 UV-Vis Spectrophotometer.   
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Table 12. Protein yields calibrated using a UV-Vis Spectrophotometer. The absorbance of the 
polymer─protein conjugate soluƟons at 280 nm was recorded and compared to the calibraƟon curve 
to give the molar concentration. The yield was calculated by comparing the amount of the 
polymer─protein conjugate to the protein used for conjugation. The data is presented as a mean ± 
standard deviation (n = 3 for each group). 

Polymer-protein 
conjugates 

Absorbance Concentration (nM) Yield (%) 

P1-BSA 0.59 ± 0.02 0.76 ± 0.01 42 ± 1 

P2-BSA 0.73 ± 0.01 0.95 ± 0.01 52 ± 1 

P3-BSA 0.23 ± 0.01 0.27 ± 0.01 15 ± 1 

P1-Her 1.72 ± 0.04 1.59 ± 0.04 72 ± 2 

P2-Her 1.12 ± 0.01 1.00 ± 0.01 45 ± 1 

P3-Her 2.07 ± 0.03 1.94 ± 0.03 88 ± 2 

P4-Her 1.73 ± 0.04 1.61 ± 0.04 73 ± 1 

P5-Her 1.35 ± 0.01 1.24 ± 0.01 56 ± 1 

 

Synthesis of the BODIPY labelled antibody BODIPY-Her 

 

To Herceptin in PBS (pH = 7.4, 20 μL, 137 μM), NHS ester functionalised BODIPY 13 in DMSO 

(2 μL, 14 mM) was added and mixture was stirred at 37 °C for 4 h. The mixture was diluted 

with PBS (5 mL) and concentrated to 100 μL using an Amicon Ultra-15 centrifugal filter unit 

(molecular weight cut off 30 kDa), and the dilution and concentration repeated 10 times. The 

labelled-antibody solutions were stored at 4 °C. 
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In vitro BODIPY labelling of polymer–antibody conjugates 

 

To the polymer antibody conjugates P1-Her, P2-Her and P3-Her in pH 7.4 PBS (10 μL, 2.7 μM, 

pH = 7.4), Tz1 in DMSO (1 μL, 274 μM) was added and the mixture was shaken at 37 °C for 4 

h. The mixture was diluted with PBS (5 mL) and concentrated to 100 μL using an Amicon 

Ultra-15 centrifugal filter units (molecular weight cut off 30 kDa), and the dilution and 

concentration were repeated for 10 times to give BODIPY-P1-Her, BODIPY-P2-Her and 

BODIPY-P3-Her. 

 

5.5. Biology 

Cell culture 

HeLa, human adipogenesis mesenchymal stem, SK-BR-3 and MCF-7 cells were maintained in 

25 cm3 tissue culture flasks (Corning) in DMEM, supplemented with 10 % (v/v) FBS, L-

glutamine (100 U, Gibco) and penicillin/streptomycin (100 U/mL, Sigma), in a cell incubator 

(37 °C and 5 % CO2). Cell passaging was conducted by treating cells with trypsin (1% in PBS, 

v/v, 1 mL). The detached cells were diluted with fresh media (4 mL) to deactivate the trypsin 

and 20% cells were transferred to a new flask with fresh media (4 mL) added. The process 

was repeated every 2 days. 
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General procedure for intracellular polymerisation 

HeLa cells were seeded in a 96-well plate at a density of 1 × 104 cells per well (5 × 104 cells 

per well in a 24-well plate and 5 × 105 cells per well in a 6-well plate) and cultured overnight. 

The cells were then treated with monomer HPMA (50 mM) and Irgacure2959 (2 mM) for 4 h. 

The cells were washed with PBS (3 × 200 µL) and fresh medium added (200 µL). 

Polymerisation was initiated by illumination at 365 nm for 5 min, with the lamp fixed 5 cm 

above the plate. The cells were incubated at 37 °C. Polymerisation of other monomers 

typically followed the same procedure. Untreated cells were used as control, unless 

otherwise stated. 

 

Cytotoxicity studies 

HeLa or SK-BR-3 cells were seeded in a 96-well plate at a density of 1 × 104 cells per well and 

incubated overnight. The cells were then treated with a series of concentrations of monomer 

or initiator and incubated for 48 h at 37 °C (n = 3). To test illumination cytotoxicity, the lamp 

was fixed at the height of 5 cm above the plate and illuminated at 365 nm for 5 min, 10 min 

and 15 min and followed by 48 h incubation at 37 °C.  

 

MTT assay 

Cells (Hela, human adipogenesis mesenchymal stem, SK-BR-3 or MCF-7) seeded in 96-well 

plate (1 × 104 cells per well) were incubated with 100 µL of 3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide (MTT) solution (0.7 mg/mL) in PBS/media (7:3) for 4 h at 37 °C. 

Then 100 µL of solubilising solution (9:1 Triton-X 100/Isopropanol, pH = 1) were added to 

each well. The plate was shaken horizontally for 60 min to dissolve the formazan crystals. The 

absorbance at 570 nm was measured by a plate reader. Cell viability was calculated 

compared to untreated cells. All of the experiments were repeated three times.  
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Table 13. HeLa cell viability after illumination at 365 nm for 5, 10 and 15 min. Viability was measured 
using an MTT assay. The data is presented as a mean ± standard deviation (n = 3 for each group). 

Illumination time (min) Absorbance (a.u.) Viability (%) 

0 1.54 ± 0.26 100 ± 17 

5 1.49 ± 0.20 97 ± 13 

10 1.29 ± 0.25 84 ± 16 

15 0.62 ± 0.17 40 ± 11 

 

Table 14. HeLa cell viability after incubation with Irgacure2959 (1 mM, 2 mM, 5 mM, 10 mM, 20 mM 
and 50 mM) for 48 h. Viability was measured using an MTT assay. The data is presented as a mean ± 
standard deviation (n = 6 for each group). 

Concentration (mM) Absorbance (a.u.) Viability (%) 

0 1.76 ±1.17 100 ± 10 

1 1.95 ± 0.14 111 ± 8 

2 1.49 ± 0.10 85 ± 6 

5 1.37 ± 0.12 78 ± 7 

10 1.20 ± 0.16 68 ± 9 

20 0.14 ± 0.08 8 ± 4 

50 0.01 ± 0.03 1 ± 2 
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Table 15. HeLa cell viability after incubation with BABO-ONa (0.1 mM, 0.5 mM, 1 mM, 2 mM, 5 mM 
and 10 mM) for 48 h. Viability was measured using an MTT assay. The data is presented as a mean ± 
standard deviation (n = 6 for each group). 

Concentration (mM) Absorbance (a.u.) Viability (%) 

0 0.68 ± 0.04 100 ± 6 

0.1 0.83 ± 0.03 121 ± 4 

0.5 0.84 ± 0.03 122 ± 2 

1 0.85 ± 0.02 124 ± 2 

2 0.78 ± 0.01 115 ± 1 

5 0.68 ± 0.07 100 ±10 

10 0.49 ± 0.05 72 ± 7 
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Table 16. HeLa cell viability after incubation with N-(2-hydroxypropyl) methacrylamide (HPMA) (1 mM, 
3 mM, 10 mM, 30 mM, 100 mM and 250 mM) for 48 h. Viability was measured using an MTT assay. 
The data is presented as a mean ± standard deviation (n = 6 for each group). 

Concentration (mM) Absorbance (a.u.) Viability (%) 

0 0.50 ± 0.04 100 ± 8 

1 0.54 ± 0.04 108 ± 8 

3 0.54 ± 0.07 107 ± 4 

10 0.47 ± 0.04 93 ± 8 

30 0.47 ±0.08 93 ± 15 

100 0.38 ±0.07 77 ± 14 

250 0.25 ± 0.07 50 ± 14 
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Table 17. HeLa cell viability after incubation with sodium 4-styrenesulfonate (NaSS) (1 mM, 3 mM, 10 
mM, 30 mM, 100 mM and 250 mM) for 48 h. Viability was measured using an MTT assay. The data is 
presented as a mean ± standard deviation (n = 6 for each group). 

Concentration (mM) Absorbance (a.u.) Viability (%) 

0 0.50 ± 0.05 100 ± 10 

1 0.65 ± 0.09 130 ± 19 

5 0.64 ± 0.09 127 ± 18 

10 0.70 ± 0.01 138 ± 1 

20 0.48 ± 0.02 95 ± 4 

50 0.51 ± 0.07 102 ± 14 

100 0.06 ± 0.02 11 ± 4 
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Table 18. HeLa cell viability after incubation with 4-vinylaniline (VAN) ((1 mM, 5 mM, 10 mM, 20 mM, 
50 mM and 100 mM) for 48 h. Viability was measured using an MTT assay. The data is presented as a 
mean ± standard deviation (n = 6 for each group). 

Concentration (mM) Absorbance (a.u.) Viability (%) 

0 2.35 ± 0.27 100 ± 12 

1 2.50 ± 0.04 107 ± 2 

5 2.67 ± 0.20 114 ± 9 

10 2.78 ± 0.52 118 ± 22 

20 2.20 ± 0.21 94 ± 9 

50 1.13 ± 0.09 48 ± 4 

100 0.81 ± 0.27 35 ± 12 
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Table 19. HeLa cell viability after incubation with ferrocenylmethyl methacrylate (FMMA) (1 mM, 5 
mM, 10 mM, 20 mM, 50 mM and 100 mM) for 48 h. Viability was measured using an MTT assay. The 
data is presented as a mean ± standard deviation (n = 6 for each group). 

Concentration (mM) Absorbance (a.u.) Viability (%) 

0 0.63 ± 0.08 100 ± 12 

1 0.60 ± 0.06 95 ± 9 

5 0.46 ± 0.01 72 ± 1 

10 0.41 ± 0.02 65 ± 3 

20 0.34 ± 0.02 54 ± 3 

50 0.30 ± 0.04 47 ± 6 

100 0.29 ± 0.05 46 ± 8 
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Table 20. HeLa cell viability after incubation with biotin-PEGMA (0.1 mM, 0.5 mM, 1 mM, 2 mM, 5 mM 
and 10 mM) for 48 h. Viability was measured using an MTT assay. The data is presented as a mean ± 
standard deviation (n = 6 for each group). 

Concentration (mM) Absorbance (a.u.) Viability (%) 

0 2.07 ± 0.79 100 ± 13 

1 1.97 ± 0.11 95 ± 6 

5 1.63 ± 0.13 79 ± 6 

10 1.19 ± 0.11 57 ± 5 

20 0.23 ± 0.06 11 ± 3 

50 0.23 ± 0.08 11 ± 4 

100 0.21 ±0.01 10 ± 1 
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Table 21. HeLa cell viability after incubation with 2-hydroxyethyl methacrylate (HEMA) ((1 mM, 5 mM, 
10 mM, 20 mM, 50 mM and 100 mM) for 48 h. Viability was measured using an MTT assay. The data 
is presented as a mean ± standard deviation (n = 6 for each group). 

Concentration (mM) Absorbance (a.u.) Viability (%) 

0 2.40 ± 0.13 100 ± 5 

1 2.10 ± 0.17 82 ± 8 

5 1.78 ± 0.26 74 ± 11 

10 0.96 ± 0.13 40 ± 5 

20 0.31 ± 0.04 12 ± 2 

50 0.18 ± 0.03 8 ± 1 

100 0.13 ± 0.02 5 ± 1 
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Table 22. HeLa cell viability after incubation with O-2-hydroxypropyl methacrylate (O-HPMA) ((1 mM, 
5 mM, 10 mM, 20 mM, 50 mM and 100 mM) for 48 h. Viability was measured using an MTT assay. The 
data is presented as a mean ± standard deviation (n = 6 for each group). 

Concentration (mM) Absorbance (a.u.) Viability (%) 

0 2.19 ±0.02 100 ± 10 

1 2.26 ± 0.20 103 ± 9 

5 2.12 ± 0.17 97 ± 8 

10 1.65 ± 0.12 76 ± 6 

20 0.82 ± 0.07 38 ± 3 

50 0.11 ± 0.05 5 ± 2 

100 0.03 ± 0.02 2 ± 1 
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Table 23. HeLa cell viability after “polymerisation” (The cells were treated with HPMA, (1 mM, 3 mM, 
10 mM, 30 mM, 100 mM and 250 mM), and Iggacure2959 (2 mM) for 4 h and illuminated at 365 nm 
for 5 min) and incubation in fresh media for further 48 h. Viability was measured using an MTT assay. 
The data is presented as a mean ± standard deviation (n = 6 for each group). 

Concentration 

(mM) 

Absorbance (a.u.) Viability (%) 

- hv + hv - hv + hv 

0 0.51 ± 0.08 0.91 ± 0.13* 100 ± 16 96 ± 15* 

1 0.65 ± 0.09 0.82 ± 0.03 130 ± 19 90 ± 3 

3 0.64 ± 0.09 0.86 ± 0.14 127 ± 18 94 ± 15 

10 0.70 ± 0.07 0.86 ± 0.11 138 ± 1 94 ± 12 

30 0.48 ± 0.02 0.73 ± 0.04 95 ± 4 81 ± 6 

100 0.51 ± 0.07 0.70 ± 0.03 102 ± 14 79 ± 5 

250 0.06 ± 0.02 0.59 ± 0.01 14 ± 4 66 ± 2 

* Hela cells without 365 nm illumination was used as a control with their viability set as 100%. 
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Table 24. Human adipogenesis mesenchymal stem cell viability after “polymerisation” (The cells were 
treated with HPMA, (1 mM, 3 mM, 10 mM, 30 mM, 100 mM and 250 mM), and Iggacure2959 (2 mM) 
for 4 h and illuminated at 365 nm for 5 min) and incubation in fresh media for further 48 h. Viability 
was measured using an MTT assay. The data is presented as a mean ± standard deviation (n = 6 for 
each group). 

Concentration 

(mM) 

Absorbance (a.u.) Viability (%) 

- hv + hv - hv + hv 

0 0.36 ± 0.03 0.33 ± 0.02* 100 ± 9 90 ± 6* 

1 0.34 ± 0.01 0.35 ± 0.01 95 ± 1 98 ± 4 

3 0.33 ± 0.01 0.37 ± 0.01 91 ± 4 101 ± 3 

10 0.29 ± 0.03 0.35 ± 0.01 81 ± 9 96 ± 4 

30 0.30 ± 0.03 0.31 ± 0.01 82 ± 9 87 ± 3 

100 0.23 ± 0.02 0.27 ± .0.02 64 ± 5 76 ± 6 

250 0.01 ± 0.01 0.00 ± 0.00 1 ± 1 0 ± 0 

* Hela cells without 365 nm illumination was used as a control with their viability set as 100%. 

 

CellTiter-Glo 

HeLa cells were seeded in opaque-walled 96-well plates at a density of 1 × 104 cells per well 

and incubated overnight. The cells were then treated with HPMA (50 mM), NaSS (50 mM), 

VAN (50 mM), FMMA (20 mM) and biotin-PEGMA (2 mM) and Irgacure2959 (2 mM) for 4 h. 

The medium was replaced with fresh medium followed by illumination at 365 nm for 6 min. 

After 7 d incubation, the well plate was equilibrated for 30 minutes and 100μl of CellTiter-

Glo® 2.0 reagent was added directly to the culture media and the content was mixed for 2 
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minutes on an orbital shaker followed by 10 min incubation. The luminescence was measured 

on a plate reader. Cell viability was calculated compared to untreated cells.  

 

Table 25. HeLa cell viability after “polymerisation” Viability measured using a CellTiter-Glo assay. The 
data is presented as a mean ± standard deviation (n = 6 for each group). 

Monomer 

Luminescence (a.u.) Viability (%) 

- hv + hv - hv + hv 

Control 
449000 ± 

37000 

498000 ± 

36000* 
100 ± 8 111 ± 7* 

HPMA (50 mM) 
413000 ± 

15000 

542000 ± 

20000 
92 ± 24 121 ± 4 

NaSS (50 mM) 
471000 ± 

68000 

545000 ± 

11000 
105 ± 15 121 ± 2 

VAN (50 mM) 
64000 ± 

13000 

409000 ± 

85000 
14 ± 3 91 ± 17 

FMMA (20 mM) 
500000 ± 

15000 

493000 ± 

30000 
111 ± 3 110 ± 6 

Biotin-PEGMA 

(2 mM) 

456000 ± 

93000 

512000 ± 

34000 
102 ± 21 114 ± 7 

* Hela cells without 365 nm illumination was used as a control with their viability set as 100%. 
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Cell proliferation 

Hela cells (5 × 104) were incubated with monomers (HPMA, NaSS or FMMA, 50 mM) and 

initiators (Irgacure2959 or BAPO-ONa, 2 mM) for 4 h, washed and illuminated 5 min at 365 

nm. The cells were then incubated at 37 °C for 7 d and analysed by the Click-iT EdU flow 

cytometry assay. Specifically, the cells were incubated with EdU for 2 h, and harvested. The 

cells were pelleted by centrifugation and washed with PBS (1mL) for 3 times and fixed using 

paraformaldehyde (4% in PBS, w/v). The cells were then pelleted and washed with PBS (1mL) 

for 3 times and incubated with a saponin solution (1% in PBS, v/v) to remove the cell 

membrane. The cells were labelled with an Alexa Fluor 488 azide probe in a “Click it” buffer 

(from the manufacturer) and analysed by flow cytometry (ex/em = 488/525 nm). Forward 

versus side scatter profiles were used to gate intact cellular materials. All flow cytometry 

analyses are based on analysis of 10,000 cells. 
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Table 26. Hela cell proliferation quantified by flow cytometry. Intact cells were gated using forward 
versus side scatter profiles.  

Monomer + 

initiator 

Intact cells (%) Proliferating cells (%) 

- hv + hv - hv + hv 

Control 88 ± 2 92 ± 1 36 ± 3 33 ± 1 

HPMA + 

Irgacure2959 
91 ± 2 92 ± 1 32 ± 1 28 ± 1 

HPMA +   

BAPO-ONa 
92 ± 0 89 ± 1 33 ± 2 27 ± 1 

NaSS + 

Irgacure2959 
89 ± 2 92 ± 1 34 ± 2 30 ± 1 

VAN + 

Irgacure2959* 
17 ± 9 9 ± 2 - - 

FMMA + 

Irgacure2959 
89 ± 5 92 ± 0 33 ± 7 30 ± 7 

* 4-Vinylaniline treated cells showed a significant reduction in the number of intact cells and therefore 
the proliferation assay could not be carried out. 

 

Cellular uptake  

For the measurement of cellular uptake of monomer and initiator, calibrations were first 

established by HPLC. A series of concentrations of monomers (from 0.1 mM to 5 mM) and 

initiator (from 0.1 mM to 5 mM) in ACN were made up and analysed by HPLC and the 

calibration curves were then plotted (Figure 75 to 82). 
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Hela cells were then seeded in 24-well plate at a density of 1 × 104 cells per well and incubated 

overnight. Monomers and initiator were added to the medium at a final concentration of 50 

mM and 2 mM, respectively. After incubation for 2, 3 or 4 h, HeLa cells were collected, 

washed (× 3) and lysed using RIPA cell lysis buffer. After mixing by pipetting 20 times, MeOH 

was added and the precipitated proteins were removed by centrifugation (at 4 °C and 12,000 

rpm for 10 min). The supernatant was collected and dried under a flow of nitrogen before re-

solubilisation of the residue in ACN and HPLC analysis. HPLC was performed using a reverse 

phase column with 10 μL injections, using water/MeCN (95:5 to 5:95 over 10 min, v/v, with 

0.1% formic acid) as the mobile phase and UV detection at 254 nm. 

 

 

Figure 75. (a) HPLC trace of the initiator Irgacure2959 (2 mM) recovered from Hela cells after 4 h 
incubation with the compound. (b) HPLC traces of Irgacure2959 at 0.1 mM, 0.2 nM, 0.5 mM, 1 mM, 2 
mM and 5 mM. The peak at 4.06 min represents Irgacure2959. (c) Calibration curve of Irgacure2959, 
amounts were plotted against integration of the peaks on the HPLC.  
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Figure 76. (a) HPLC trace of the monomer HPMA (50 mM) recovered from Hela cells after 4 h 
incubation with the compound. (b) HPLC traces of HPMA at 0.1 mM, 0.2 nM, 0.5 mM, 1 mM, 2 mM 
and 5 mM. The peak at 2.11 min represents HPMA. (c) Calibration curve of HPMA, amounts were 
plotted against integration of the peaks on the HPLC. 
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Figure 77. (a) HPLC trace of the monomer NaSS (50 mM) recovered from Hela cells after 4 h incubation 
with the compound. (b) HPLC traces of NaSS at 0.1 mM, 0.2 nM, 0.5 mM, 1 mM, 2 mM and 5 mM. The 
peak at 3.67 min represents NaSS. (c) Calibration curve of NaSS, amounts were plotted against 
integration of the peaks on the HPLC. 
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Figure 78. (a) HPLC trace of the monomer VAN (50 mM) recovered from Hela cells after 4 h incubation 
with the compound. (b) HPLC traces of VAN at 0.1 mM, 0.2 nM, 0.5 mM, 1 mM, 2 mM and 5 mM. The 
peak at 7.06 min represents VAN. (c) Calibration curve of VAN, amounts were plotted against 
integration of the peaks on the HPLC.   
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Figure 79. (a) HPLC trace of the monomer FMMA (20 mM) recovered from Hela cells after 4 h 
incubation with the compound. (b) HPLC traces of FMMA at 0.2 mM, 0.4 nM, 1 mM, 2 mM, 4 mM and 
10 mM. The peak at 6.71 min represents FMMA. (c) Calibration curve of FMMA, amounts were plotted 
against integration of the peaks on the HPLC.   
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Figure 80. (a) HPLC trace of the monomer biotin-PEGMA (2 mM) recovered from Hela cells after 4 h 
incubation with the compound. (b) HPLC traces of biotin-PEGMA at 0.01 mM, 0.02 nM, 0.05 mM, 0.1 
mM, 0.2 mM and 0.5 mM. The peaks at 4.61 to 5.75 min represents biotin-PEGMA. (c) Calibration 
curve of biotin-PEGMA, amounts were plotted against integration of the peaks on the HPLC.   
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Figure 81. (a) HPLC trace of the monomer HEMA (50 mM) recovered from Hela cells after 4 h 
incubation with the compound. (b) HPLC trace of HEMA at 0.2 mM, 0.4 nM, 1 mM, 2 mM, 4 mM and 
10 mM. The peak at 2.58 min represents HEMA. (c) Calibration curve of HEMA, amounts were plotted 
against integration of the peaks on the HPLC.   
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Figure 82. (a) HPLC trace of the monomer O-HPMA (50 mM) recovered from Hela cells after 4 h 
incubation with the compound. (b) HPLC trace of O-HPMA at 0.2 mM, 0.4 nM, 1 mM, 2 mM, 4 mM and 
10 mM. The peak at 3.01 min represents O-HPMA. (c) Calibration curve of O-HPMA, amounts were 
plotted against integration of the peaks on the HPLC.   
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Table 26. Intracellular initiator/monomer concentration determined after 4 h incubation. Uptakes 
(molar concentration) were determined by comparing the absorbance integration of compounds to 
their calibration curves. Cellular concentration was calculated by the equation below: (Amount of 
compound was calculated from the calibration curves. sample volume = 1 mL, injection volume = 10 
μL) 

𝑈𝑝𝑡𝑎𝑘𝑒 =  
𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑐𝑜𝑚𝑝𝑜𝑢𝑛𝑑 × 𝑠𝑎𝑚𝑝𝑙𝑒 𝑣𝑜𝑙𝑢𝑚𝑒

𝑖𝑛𝑗𝑒𝑐𝑡𝑖𝑜𝑛 𝑣𝑜𝑙𝑢𝑚𝑒 × 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑒𝑙𝑙𝑠 × 𝑑𝑖𝑙𝑢𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟
 

Initiator/Monomer 
Absorbance 

integration 

Number of 

cells 
Dilution factor 

Uptake 

(pmol/cell) 

Irgacure2959 1200 ± 300 5 × 104 2 0.01 ± 0.00 

HPMA 135 ± 9 1 × 104 5 0.26 ± 0.01 

NaSS 89000 ± 13000 1 × 104 5 0.82 ±0.11 

VAN 360 ± 40 1 × 104 5 0.10 ± 0.01 

FMMA 61 ± 9 1 × 104 10 0.20 ± 0.03 

Biotin-PEGMA 40 ± 2 1 × 105 20 0.03 ± 0.00 

HEMA 48 ± 8 1 × 104 5 0.17 ± 0.04 

O-HPMA 29 ± 2 1 × 104 5 0.10 ± 0.01 

 

 

Identification of free radicals and ROS in cells  

Hela cells were seeded at a density of 50,000 cells per well in a 24-well plate and incubated 

overnight. Then the medium was changed with fresh medium without phenol red and serum. 

Cells were incubated with HPMA (50 mM) and/or initiator (2 mM) for 3.5 h before the 

addition of 2’,7’-dichlorodihydrofluorescein diacetate (DCFH-DA) (10 µM) and incubated for 



Chapter 5 

157 

 

another 30 min following 5 min illumination at 365 nm. The cells were gently washed with 

PBS (3 times) and treated with trypsin for 5 min before suspending in 500 µL of phenol red 

free medium. The cell suspensions were analysed by flow cytometry using a FITC filter (ex/em 

= 488/525 nm). 

 

Extraction of polymer from cells 

HeLa cells were seeded in 6-well plates at a density of 5 × 105 cells per well (16 wells in total) 

and incubated overnight. BiotinPEGMA, HPMA and initiator Irgacure2959 were added to 

media at a final concentration of 5 mM, 50 mM and 2 mM, respectively. After incubation for 

4 h, cells were washed and photo-polymerised by illumination at 356 nm for 5 min. The cells 

were washed three times with PBS and harvested. The collected cells were lysed using RIPA 

cell lysis buffer and the polymer extracted from the cell lysate with DynabeadsTM M-280 

Strepavidin according to the manufacturer’s protocol, summarised as follows: 

Cell lysate was added to the washed Dynabeads™ magnetic beads in a centrifuge tube (15 

mL, Flacon) and incubated for 30 min at RT with slow end-over-end mixing. The tube was 

placed in a magnet for 5 min and the supernatant was removed. The beads were washed 

three times with washing buffer and water and re-suspended in water and incubated at 40°C 

for 10 min. The supernatant was collected and another portion of water was added and 

incubated at 40°C for another 10 min. The supernatant was collected combined with the 

previous portion and freeze-dried. The releasing steps were repeated at 60°C, 80°C and 97°C. 

The collected samples were characterised by 1H NMR (see Figure 83). 
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Figure 83. 1H NMR spectra (in D2O) of poly(HPMA-co-biotinPEGMA) isolated from cells using magnetic 
beads and the polymer released at 40 °C, 60 °C, 80 °C and 97 °C. 

 

Table 27. Recovery of poly(HPMA-co-biotin-PEGMA) (mass percentage of the total amount of 
polymers collected) from the nanoparticles.  

Incubation temperature (°C) Mass of polymer (mg) Recovery (%) 

40 < 0.1 < 1 

60 1.9 83 

80 0.4 17 

97 < 0.1 < 1 
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Cell cycle study 

HeLa cells were seeded in a 24-well plate at a density of 5 × 104 cells per well and incubated 

at 37 °C overnight. To each well, HPMA (50 mM) and Irgacure2959 (2 mM) were added and 

incubated at 37 ˚C for 4 h, followed by washing and polymerisation as described above. The 

cells were then incubated at 37 ̊ C for 48 h. The media was removed and the cells were gently 

washed twice with PBS. The cells were treated with 1% trypsin (200 µL) for 10 min and the 

detached cells were suspended in fresh media (800 µL) and transferred to test tubes. To each 

tube, Vybrant® DyeCycleTM Green (2 µL of a 5 mM stock solution) was added and incubated 

for 30 min in dark. The samples were analysed on a flow cytometer using a FITC filter (λex = 

488 nm). 

 

Cell migration study 

HeLa cells were seeded in Ibidi® Culture-Insert 2 Well µ-Dish at a density of 1.5 × 104 cell per 

well (in 70 µL media) and incubated at 37 °C overnight. To each well, HPMA (3.5 µmol) and 

Irgacure2959 (0.14 µmol) was added and incubated at 37 ˚C for 4 h, followed by gentle 

washing with PBS (3 × 70 µL). Fresh media (70 µL) was added and the plate with cells was 

illuminated for 5 min from the top. The media was removed and the cells were gently washed 

three times with PBS. The PBS was decanted and the insert modes were removed, followed 

by addition of fresh media (2 mL) to the dish. Microscopy images were taken using the bright 

field channel every 24 h and the diameter of the void between cells measured using ImageJ 

with the Wound Healing Tool plugin, using the variance method. 

The influence of polymer size over cell mobility was determined by applying different 

concentration s of HPMA (50 mM, 100 mM and 250 mM) with Irgacure2959 concentration 

set as 2 mM. The wound closure assay was carried out using the same protocol as described 

above (Table 29).  
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Table 28. “Wound” area remaining in the wound healing assay. HPMA and Irgacure2959 
concentrations were set at 50 mM and 2 mM respectively. Percentage of area remaining was 
calculated by comparing the remaining areas to the area at time 0. 

Monomer/ 

Initiator 
Time (h) 

Area remaining 
Percentage of area 

remaining (%) 

365 nm 
No 

illumination 
365 nm 

No 
illumination 

Yes 0 
283000 ± 

6000 
346000 ± 

3000 
100 ± 2 100 ± 1 

Yes 24 
189000 ± 

11000 
218000 ± 

21000 
67 ± 4 63 ± 6 

Yes 48 
130000 ± 

8000 
35000 ± 
14000 

46 ± 3 10 ± 4 

Yes 72 
82000 ±  

6000 

0 ±  

0 
29 ± 2 0 ± 0 

No 0 
346000 ± 

3000 
400000 ± 

8000 
100 ± 4 100 ± 2 

No 24 
218000 ± 

21000 
268000 ± 

16000 
63 ± 6 67 ± 4 

No 48 
35000 ± 
14000 

56000 ± 
12000 

10 ± 4 14 ± 3 

No 72 
0 ± 

0 

0  ± 

0 
0 ± 0 0 ± 0 
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Table 29. “Wound” area remaining in the wound healing assay. HPMA concentrations were set at 50 
mM, 100 mM and 250 mM with Irgacure2959 concentration set at 2 mM. Percentage of area 
remaining was calculated by comparing the remaining areas to the area at time 0. 

HPMA 

concentration (mM) 
Incubation Time (h) Area remaining 

Percentage of area 

remaining (%) 

0 0 406000 ± 13000 100 ± 3 

50 0 409000 ± 12000 67 ± 3 

100 0 400000 ± 20000 18 ± 0 

250 0 361000± 15000 0 ± 0 

0 24 272000 ± 12000 100 ± 3 

50 24 286000 ± 16000 70 ± 4 

100 24 272000 ± 16000 49 ± 5 

250 24 303000 ± 14000 25 ± 2 

0 48 73000 ± 4000 100 ± 5 

50 48 201000 ± 20000 68 ± 4 

100 48 168000 ± 24000 42 ± 6 

250 48 292000 ± 18000 29 ± 1 

0 72 0 ± 0 100 ± 4 

50 72 102000 ± 8000 84 ± 4 

100 72 116000 ± 4000 81 ± 5 

250 72 223000 ± 47000 62 ± 3 
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Actin staining and measurement of actin filament orientation 

HeLa cells were seeded Ibidi® 8 Well μ-Slide at a density of 1 × 104 cells per well and incubated 

overnight. HPMA (50 mM) and Irgacure2959 (2 mM) were added to the medium and the cells 

were incubated at 37 °C for 4 h, followed by washing and polymerisation as described above. 

After 48 h and 72 h incubation at 37 °C, cells were washed three times with PBS and fixed by 

4% PFA following permeabilisation with 0.1% Triton™ X-100 in PBS for 15 minutes. The cells 

were stained with Alexa Fluor™ 488 Phalloidin (10 μg/mL) for 30 min at RT, and images (λex = 

475 nm, λem = 509 nm) were taken by confocal laser scanning microscopy. The images of cells 

with fluorescently labelled actin filaments were analysed using ImageJ with OrientationJ 

plugin and the anisotropy of actin was quantified using FibrilTool. Measurement of actin area. 

Images of fluorescently labelled cells were smoothed using a Gaussian filter in ImageJ, 

followed by removal of the background using a 20 µm diameter rolling ball. The images were 

then thresholded and the actin microdomains were analysed to obtain the area.  

 

Synthesis of fluorescent polymers (poly(NaSS) and poly(VAN)) in cells 

Hela cells were seeded in 24-well plate at a density of 5 × 104 cells per well and incubated 

overnight. Monomer sodium 4-vinylbenzenesulfonate (NaSS) (50 mM) or 4-vinylaniline (VAN) 

(50 mM) and initiator (2 mM) were added to each well. After incubation for 4 h, cells were 

washed and the medium replaced, followed by 5 min illumination at 365 nm. Subsequently, 

the nuclei and plasma membrane were stained with Hoechst 33342 and CellMask™ Deep Red 

Plasma Membrane Stain, and the stained samples were imaged by confocal laser scanning 

microscope (CLSM) and quantified buy flow cytometry. 

 

Cell passage study 

HeLa cells were seeded in a 6-well plate at a density of 1 × 105 cells per well and incubated 

at 37 °C overnight. To each well, acryloxyethyl thiocarbamoyl rhodamine B (50 µM), HPMA 

(20 mM) and Irgacure2959 (2 mM) was added and incubated at 37 °C for 4 h, followed by 

washing and polymerisation as described above. For each passage analysis, cells were treated 

with 1% trypsin/EDTA (500 µL) for 10 min and the detached cells were suspended in fresh 



Chapter 5 

163 

 

media. ¾ cell suspensions were transferred to cytometry tubes and analysed on a flow 

cytometer using a PI filter (λex/em = 488/586 nm). The rest of the cells were seeded back into 

new well plate (1 × 105 cells per well) and incubated at 37 °C. The trypsinisation process, 

microscopy imaging and flow cytometry analysis were repeated every 48 h for 5 passages. 

 

FMMA polymerisation in cells 

HeLa cells were seeded in 6-well plates at a density of 1 × 105 cells per well and incubated 

overnight (16 wells in total). FMMA and initiator were added to the medium at a final 

concentration of 10 mM and 1 mM, respectively. After incubation for 4 h, the medium was 

replaced with fresh medium followed by 5 min illumination. Subsequently, the cells were 

washed three times with cold PBS and harvested for TEM analysis. Untreated cells were used 

as the negative control. 

For TEM analysis, photo-polymerised HeLa cells were fixed with 3% glutaraldehyde in 0.1 M 

sodium cacodylate buffer (pH 7.3) for 2 hours and washed in 0.1 M sodium cacodylate (three 

times 10 min). Specimens were then post-fixed in 1% osmium tetroxide in 0.1M sodium 

cacodylate for 45 min, then washed with 0.1 M sodium cacodylate buffer (three times 10 

min). The samples were then dehydrated in 50%, 70%, 90% and 100% ethanol (three times) 

for 15 min each, then two times (10 min each) in propylene oxide. Samples were then 

embedded in TAAB 812 resin. Sections (1μm thick) were cut on a Leica Ultracut 

ultramicrotome, stained with toluidine Blue, and viewed in a light microscope to select 

suitable areas for investigation. Ultrathin sections, 60 nm thick, were cut from selected areas, 

stained with uranyl acetate and lead citrate and viewed in a JEOL JEM-1400 Plus TEM. 

(Conducted by Dr S. Mitchell) 

 

Sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-PAGE)  

SDS-PAGE was performed with a Bio-Rad Laboratories Mini-Protean 3 Cell System using a 4-

20% Mini-PROTEAN TGX precast protein gel at 100 V and 95 mA for 90 min. Samples were 

dissolved in PBS (10 μL, 1.37 μM, pH = 7.4), mixed with 2 × Laemmli Sample Buffer (10 μL)261 

and heated at 95 °C for 5 min before loading. Staining was carried out with Coomassie blue 
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(0.1% w/v in 1:4:5 acetic acid/water/MeOH for 2 h). Protein markers used were Precision 

Plus Protein™ Kaleidoscope™ Prestained Protein Standards, 10-250 kDa (Bio-Rad). Bright 

field and fluorescent images (λex = 365 nm, λem = 520 ± 30 nm) of gels were taken using a 

Universal Hood II Gel Doc System (Bio-Rad). 

 

Kinetics of Herceptin binding 

Binding kinetics were followed by measuring the rate of fluorescence intensity increase in 

individual cells over time by flow cytometry. An BODIPY-NHS ester255 (10 eq.) was incubated 

with Herceptin to give BODIPY-Her as a model of the native antibody (details see above ). 

Polymer protein conjugates P1-Her, P2-Her and P3-Her were treated with Tz1 (10 eq.) to give 

fluorescent conjugates. The four antibody samples were incubated with SK-BR-3 cells for 

different time points and the fluorescence intensity recorded by flow cytometry. The 

fluorescence intensities were normalised to the intensity of saturated cells. Each of the 

antibody samples was incubated MCF-7 cells as a negative control. 

SK-BR-3 cells was seeded in 24 well plates (5 × 104 cells/well in 500 μL DMEM) 24 h prior to 

the experiments. The BODIPY labelled antibody BODIPY-Her (10 nM) and the BODIPY labelled 

polymer antibody conjugates BODIPY-P1-Her, BODIPY-P2-Her and BODIPY-P3-Her (all at 10 

nM) were added to the cells and incubated for different period of time (0.5, 1, 2, 4 and 6 h). 

The cells were washed with PBS (3 × 1 mL, pH = 7.4), harvested, and the fluorescence intensity 

was analysed by flow cytometry, Becton Dickinson (BD) FACSAria™, laser excitation at 488 

nm and emission filter of 530/30 nm).  
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Table 30. Kinetics of BODIPY-Her binding. Fluorescence intensities were measured using flow 
cytometry. Fluorescence intensity normalised to the intensity of fluorescence saturated cells (n = 3). 
Untreated cells were used as a control. 

Incubation Time (h) Fluorescence intensity (a.u.) 
Normalised fluorescence 

intensity 

0.5 (untreated cells) 4 ± 0 - 

4 (untreated cells) 4 ± 0 - 

0.5 22 ± 1 0.88 ± 0.02 

1 24 ± 1 0.95 ± 0.03 

2 26 ± 1 1.01 ± 0.04 

4 25 ± 0 0.98 ± 0.01 

6 26 ± 0 1.00 ± 0.00 

 

 

Table 31. Kinetics of P1-Her binding. Fluorescence intensities were measured using flow cytometry. 
Fluorescence intensity normalised to the intensity of fluorescence saturated cells (n = 3).  

Incubation Time (h) Fluorescence intensity (a.u.) 
Normalised fluorescence 

intensity 

0.5 850 ± 50 0.82 ± 0.05 

1 920 ± 10 0.88 ± 0.01 

2 1010 ± 40 0.97 ± 0.03 

4 1070 ± 10 1.03 ± 0.01 

6 1040 ± 70 1.00 ± 0.07 
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Table 32. Kinetics of P2-Her binding. Fluorescence intensities were measured using flow cytometry. 
Fluorescence intensity normalised to the intensity of fluorescence saturated cells (n = 3).  

Incubation Time (h) Fluorescence intensity (a.u.) 
Normalised fluorescence 

intensity 

0.5 220 ± 6 0.88 ± 0.02 

1 250 ± 5 0.99 ± 0.02 

2 260 ± 10 1.01 ± 0.05 

4 250 ± 20 0.99 ± 0.09 

6 252 ± 0 1.00 ± 0.00 

 

Table 33. Kinetics of P3-Her binding. Fluorescence intensities were measured using flow cytometry. 
Fluorescence intensity normalised to the intensity of fluorescence saturated cells (n = 3).  

Incubation Time (h) Fluorescence intensity (a.u.) 
Normalised fluorescence 

intensity 

0.5 1620 ± 10 0.87 ± 0.00 

1 1710 ± 30 0.92 ± 0.01 

2 1830 ± 50 0.98 ± 0.03 

4 1860 ± 20 1.00 ± 0.01 

6 1860 ± 20 1.00 ± 0.01 
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Fluorescence switching on and amplification 

SK-BR-3 cells were seeded in 24-well plates (5 × 104 cells/well in 500 μL DMEM) 24 h prior to 

the experiments. The BODIPY labelled antibody BODIPY-Her (10 nM) and the polymer 

antibody conjugates P1-Her, P2-Her, P3-Her, P4-Her and P5-Her (10 nM) were added to the 

cells and incubated for 4 h. The cells were washed with PBS (3 × 1 mL, pH = 7.4) and treated 

with/without Tz1 (1 μM) for 30 min before washing with PBS (3 × 1 mL, pH = 7.4). The cells 

were analysed by flow cytometry (Becton Dickinson (BD) FACSAria™, laser excitation at 488 

nm and emission filter of 530/30 nm). For confocal microscopy, the cell nuclei were stained 

with Hoechst 33342 (blue, λex/em = 353/483 nm), the plasma membrane stained with 

CellMask™ Deep Red (red, λex/em = 649/666 nm) and the cells were imaged using Zeiss LSM 

880 Airyscan confcocal microscope with a 40x / 1.3 oil immersion objective. 
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Table 34. Signal amplification on SK-BR-3 cells. Fluorescence intensities were measured using flow 
cytometry (n = 3). Untreated cells and BODIPY-Her treated cells were used as controls.  

Polymer─protein 

conjugates 
Tz1 Fluorescence intensity (a.u.) 

Untreated cells No 6 ± 0  

Untreated cells Yes 32 ± 6 

BODIPY-Her No 22 ± 1 

BODIPY-Her Yes 28 ± 2 

P1-Her No 6 ± 0 

P1-Her Yes 1040 ± 50 

P2-Her No 6 ± 0 

P2-Her Yes 250 ± 10 

P3-Her No 7 ± 0 

P3-Her Yes 1860 ± 110 

P4-Her No 6 ± 0 

P4-Her Yes 140 ± 10 

P5-Her No 6 ± 0 

P5-Her Yes 1860 ± 60 
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