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To allmy children.
Just because the noise is louder doesn’t make it right.





Abstract

Synthetic speech is a valuable means of output, in a range of application contexts,
for people with visual, cognitive, or other impairments or for situations were other
means are not practicable. Noise and reverberation occur in many of these application
contexts and are known to have devastating effects on the intelligibility of natural
speech, yet very little was known about the effects on synthetic speech based on unit
selection or hidden Markov models.

In this thesis, we put forward an approach for assessing the intelligibility of
synthetic and natural speech in noise, reverberation, or a combination of the two.
The approach uses an experimental methodology consisting of Amazon Mechanical
Turk, Matrix sentences, and noises that approximate the real-world, evaluated with
generalized linear mixed models.

The experimental methodologies were assessed against their traditional counter-
parts and were found to provide a number of additional benefits, whilst maintaining
equivalent measures of relative performance. Subsequent experiments were carried
out to establish the efficacy of the approach in measuring intelligibility in noise and
then reverberation. Finally, the approach was applied to natural speech and the two
synthetic speech systems in combinations of noise and reverberation.

We have examine and report on the intelligibility of current synthesis systems in
real-life noises and reverberation using techniques that bridge the gap between the
audiology and speech synthesis communities and using Amazon Mechanical Turk. In
the process, we establish Amazon Mechanical Turk and Matrix sentences as valuable
tools in the assessment of synthetic speech intelligibility.
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CHAPTER1
Introduction

General purpose synthetic speech became generally available as a means of
output for computing devices in the early 1980s when the first dectalk
unit was released by Digital Equipment Corporation [Friedman, 1983]. Its

subsequent deployment in a range of augmentative and alternative communication
(aac) devices and widespread commercial availability meant that it (and the rule-
based formant synthesis it was based on) became the focus of numerous academic
studies into the intelligibility (and other aspects) of synthetic speech, including in the
presence of its most obvious hindrance—noise.

The initial enthusiasm for speech technology waned to the point that Shneiderman
and Plaisant [2004, p. 375] described it as, ‘the bicycle of user-interface design: It
is great fun to use and has an important role, but it can carry only a light load.’
However, the increasing eschewal of desktop computers in favour of mobile devices
with their small screen and the ubiquity of ear buds mean that two of the arguments
against using speech—the superiority of large visual displays and lack of privacy—have
fallen away, leading to a resurgence of interest, to the extent that the human-computer
interaction (hci) community is once again hosting workshops dedicated to its use1.

In the decades since the development of formant synthesis, a number of new
systems, using radically different methodologies, have been developed that have
improved synthetic speech such that it can now match natural speech for intelligibility
in benign acoustic environments (although its naturalness still lags some way behind)
[King and Karaiskos, 2009, 2010, 2011].

These newer synthesis systems appear to have received very little attention when

1e.g., Designing Speech and Language Interactions (http://www.cs.toronto.edu/dsli2014/)

1
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it comes to investigating the effects of noise and reverberation. Indeed, at the incep-
tion of the research for this thesis, there appeared only to be one study that had
systematically investigated either of the newest text-to-speech (tts) systems—that
is, those based on hidden Markov models (hmms) or unit selection—at different
signal-to-noise ratios (snrs) [Lancaster et al., 2004] and none that had investigated
the effect of reverberation. Yet noise and reverberation remain the Achilles heel
of synthetic speech, especially for applications in the home environment, where
background noises tend to be many and varied and reverberation ever-present. While
van Leeuwen and van Balken [2005] must have tested unit selection systems in their
experiment with noise, they do not specify the synthesis methodology used for any
of their systems.

If synthetic speech is to achieve its full potential, we need a fuller understanding
of the performance of current systems in real world circumstances: the presence of
noise and reverberation.

1.1 Goals and contribution

The goal of the research presented in this thesis is the development of a rigorous
methodology for the evaluation of speech synthesis and its application to modern
speech synthesis systems in a variety of acoustic conditions.

It should be noted that, although in some experiments comparisons with synthetic
speech without noise are made, it is not the intention in this work to provide an
analysis of the systems in quiet, since this is adequately covered elsewhere (notably in
the annual Blizzard Challenge, for example [King and Karaiskos, 2012]). Similarly, no
analysis or evaluation of naturalness is presented.

As previously mentioned, there is little work currently being carried out that
systematically investigates the effects of background noise on modern synthetic speech
and none at all on the effects of reverberation. Those studies that do exist [Lancaster
et al., 2004; King and Karaiskos, 2010] have tended to rely on evaluations using:

1. undergraduates wearing headphones in a professionally-equipped laboratory

2. semantically unpredictable sentences (suss) as stimuli

3. a single, stationary (often unrealistic) noise presented at one fixed snr

4. stimuli recorded in an anechoic chamber and presented through headphones,
that is, conditions that preclude reverberation.

Whilst such methodological decisions may provide experimental rigour, they are
not without shortcomings:
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1. The concern that results provided by undergraduates using professional equip-
ment in the lab may not be wholly generalizable to the general public in the
real world is readily apparent. Less obvious is the possibility that some systems
may be better suited, and perform better, outside the lab.

Whilst not a scientific concern, there is also the practical consideration that
engaging participants and funding listening labs are both expensive and time-
consuming.

2. Commentators such as Jurafsky and Martin [2008] and Taylor [2009] have
raised the concern that tuning tts systems for suss may be counterproductive
given that real applications are far more likely to generate sentences that are
highly semantically predictable.

As with using students in the lab, the generalizability of results gained from
suss, with their inherently higher cognitive load, to older listeners, non-natives,
and those with disabilities is questionable. Similarly, suss are not used in
hearing testing or screening so the potential to correlate synthetic speech
intelligibility with hearing (and, therefore, predict it) appears an unnecessarily
wasted opportunity.

3. Listeners to synthetic speech probably almost never listen to it in the presence
of a single, stationary noise at only one snr and it has long been known that
fluctuating noise is a factor in speech intelligibility [Festen and Plomp, 1990]

4. Likewise, other than when using headphones or ear buds, it is difficult to think
of a scenario in which synthetic speech would be heard without reverberation;
and it too is known to affect the intelligibility of speech [Whitman, 1915].

This thesis contains the first published evaluation of a crowdsourcing platform—
specifically, Amazon Mechanical Turk (amt)—as an alternative to the laboratory for
conducting listening tests. The use of amt and how it compares with the lab will be
of interest to anyone involved in language experiments seeking a cheaper, faster, and
more manageable alternative whilst maintaining experimental integrity.

Matrix sentences are proposed as an alternative, and possible solution, to the
problems with suss. Matrix sentences are meaningful sentences created from a phone-
mically balanced word set, which was developed for assessing speech intelligibility
in noise as part of an audiological test battery in the HearCom project [Wagener,
2009]. The analysis of Matrix sentences will provide a bridge to audiological research
not provided by suss that may allow audiologists to predict a person’s ability to
understand various types of synthetic speech given the results of an audiological test.
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Realistic, non-stationary background noises that have been carefully studied and
validated are added to natural and synthetic speech before being presented at a number
of levels likely to be representative of those occurring ‘in the wild’ and to have a
significant effect on intelligibility.

The effects of reverberation are investigated for the first time as are the combined
effects of noise and reverberation. The research into the effects of noise and/or
reverberation will pinpoint problematic snrs and levels of reverberation for the two
currently prevalent tts systems, the Hmm-based Speech Synthesis System (hts) and
Festival unit-selection (f-usel), thus allowing for their eventual improvement and
that of their successors.

1.2 Thesis outline

The remainder of this thesis is structured as follows.
Chapter 2: Evaluating the intelligibility of synthetic speech provides a comprehensive

literature review, which introduces the main concepts that form the basis of the rest
of the thesis. Background information is provided on: how speech is synthesized,
focusing on the different methods that have been put forward; work in the field of
human speech research, particularly tests of intelligibility in quiet and in noise and
the types and levels of noise used in testing; and a review of the intelligibility of
modern synthetic speech in noise.

Chapter 3: Experimental methodology sets out the recent developments in other
fields that were identified that could be used for the assessment of synthetic speech
and an evaluation of their efficacy compared with existing standard techniques.
These newer techniques include amt, Matrix sentences, and an ecologically-valid
background noise.

Chapter 4: Synthetic speech in noise includes an overview of the effect of noise
on human speech. It identifies the effect that various noises have on natural speech
and two synthetic versions, taking into account other factors, such as the age and
hearing ability of the listener. The chapter is underpinned by, and makes use of, the
evaluation of the techniques proposed in Chapter 3.

Chapter 5: Synthetic speech in reverberation reviews the causes of reverberation
and its effects on natural and synthetic speech, in much the same way as noise was
investigated in Chapter 4, once again calling on the work presented in Chapter 3.

Chapter 6: Synthetic speech in noise and reverberation. Since the effect of noise
and reverberation is greater than the individual components [Nabelek and Mason,
1981; Payton et al., 1994] it is important to study their combined effect on synthetic
speech. Chapter 6 brings together the work of the preceding chapters and shows how
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intelligibility is affected by this combination.
Chapter 7: Conclusion and future work summarizes the thesis and evaluates its

contribution to the wider speech synthesis community. Longer term goals, perhaps
for post-doctoral work, are set out for future work that could not be completed
during the PhD time frame and for ideas that arose from the work carried out.





CHAPTER2
Evaluating the intelligibility
of synthetic speech

Speech output can be provided in one of two ways: recording a human voice and
storing the samples as digitized sound waves; or using a computer to generate
digitized sound waves based on an algorithm, model, or a set of rules. The

former is known as digitized (or canned) speech and the latter as synthetic speech.
Canned speech has the advantage that it can sound more natural, but is generally
limited to a few stock words or phrases. Synthetic speech, on the other hand, is
generally able to synthesize any valid utterance in the target language [Taylor, 2009].
The preference for most applications would be synthetic speech so that names of
people, drugs, and other out-of-vocabulary words can be used and the message can be
personalized for individual users.

2.1 Synthetic speech

The most common form of synthetic speech production involves the transformation
of strings of text to audible acoustic waveforms and, consequently, is often known as
text-to-speech (tts). Other production methods can include those that use concepts
or phonemes as input. Whilst the transformation of text to speech might sound
straightforward, in practice it is not and involves: determining what needs to be
said; determining how it needs to be said; making an internal representation of the
utterance; and generating a waveform from the internal representation.

The first step is sentence tokenization, that is, establishing where each sentence

7
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begins and ends, whilst accounting for end-of-sentence markers, such as, exclamation
marks, full stops, and so on being used within a sentence, for example in abbreviations.

The next step is to normalize non-standard text, in other words, convert various
shorthands, such as numeric dates, pound signs, and abbreviations to their expanded
version as they would actually be spoken by a human.

Once the sentences have been determined and the words that need to be spo-
ken identified, work can begin on pronunciation. Firstly, words that have multiple
pronunciations must be identified, such as the present and past verb forms of the
word ‘read’. For the English language, the actual pronunciation of the words can be
provided by referring to a dictionary of pronunciations. Of course, this will only
work when the word to be pronounced appears in the dictionary. The pronunciation
of out-of-dictionary words has to be established using a letter-to-sound system based
on statistical likelihood or neural networks.

After the pronunciation of the individual words has been calculated, algorithms
to ascertain the intonational and rhythmic properties (or prosody) of the utterance
are employed. The prosody of a spoken utterance can provide information about
meaning (for example, whether the utterance is a statement or question), emotion,
social context, and other paralinguistic features.

For most synthesis methods, other than unit selection, which is described below,
the fundamental frequency (f0) and duration have to be calculated for each segment
of speech. At this point, the system now has an internal representation of all the
information it needs to generate the waveform and it is at this stage that the various
synthesis methods tend to diverge. Today’s most commonly encountered systems—
articulatory, formant, diphone, unit selection and hidden Markov model (hmm)—are
described below together with a discussion of their relative qualities.

2.1.1 Articulatory synthesis

The very earliest attempts at synthesizing speech were based on modelling the human
articulatory system, the first published account of which is that of von Kempelen
[1791]. In the past, the technique suffered from the difficulty of discovering exactly
how the human body produces speech and, therefore, what parameters to pass to any
model of it. The technique has not played a large part in mainstream speech synthesis
and is not, therefore, covered further here. However, in recent years the advent of
techniques such as magnetic resonance imaging and electromagnetic articulography
has enabled the use of articulatory features—often in specialized contexts—in the
control of some of the systems described below.
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2.1.2 Formant synthesis

The name ‘formant synthesis’ derives from the fact that the method uses formant
information to generate waveforms for voiced speech. Because it does this by following
a set of rules, it is also known as synthesis by rule, although all synthesis techniques
employ rules of one kind or another.

The technique was used by Holmes et al. [1964] to copy synthesize sentences that
were, eventually, virtually indistinguishable from the originals. It is the technology
used in the very popular dectalk system mentioned above, which was based on
mitalk [Allen et al., 1987].

Formants are generated by a model that is a (very) rough approximation of the
vocal tract, usually comprising components that model the nasal and oral cavities.
A periodic signal (for voiced sounds) and/or white noise (for obstruents) can be
passed through the oral-cavity components and/or the nasal-cavity components (for
nasalized sounds) and then through a ‘radiation’ component that emulates the effect
of the lips and nose.

One of the advantages of formant synthesis is that it provides almost complete
control over the input parameters, such as formant values, duration, and f0. Having
said that, the basic nature of the model means that—on its own—the naturalness of
its output rarely approaches that of human speech. Perhaps because of this, though,
and the fact that the targets are clear and distinct from one another, even if the
transitions between them are unnatural, formant synthesis has proved to be very
intelligible [Taylor, 2009]. Mirenda and Beukelman [1987] even found dectalk as
intelligible as human speech. In fact, partly because it suffers from fewer signal
processing artefacts than other systems, it remains intelligible even at high speeds,
making it invaluable in applications—such as screen readers—for people with visual
impairments. Its relatively low requirements for memory and storage mean that it
can be deployed on devices with limited capabilities and is, therefore, particularly
useful for augmentative and alternative communication (aac) devices.

2.1.3 Diphone synthesis

Diphone synthesis is one of a family of concatenative techniques that takes parts of
pre-recorded speech and joins the parts together to produce the desired output. A
diphone is created by cutting a piece of speech extending from the middle of one
phone to the middle of the following phone. The diphones are then joined together to
make up the waveform described by the internal representation. Diphones are used in
preference to phones to avoid discontinuities that may occur because of coarticulation.
Coarticulation is the assimilation of moving parts of the articulatory system (tongue,
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lips, etc.) either in preparation for saying the next phone or as a result of saying the
previous phone. Since there is, generally, more movement of the articulators (and,
hence, more variation) between phones, better joins can be achieved by joining at the
middles of phones. However, just using diphones does not exclude all discontinuities
in the joins and some signal processing is required to smooth the transitions between
them. Moreover, the pitch, energy, and duration of the concatenated diphones is
unlikely to match that required and will need adjusting. Whilst the rudiments of
a diphone synthesis system had been demonstrated by Olive [1977], its success
hinged upon finding techniques to minimize distortions in the waveform whilst
generating the correct prosody and maintaining naturalness. The Pitch-Synchronous
and OverLap-Add (psola) techniques of Moulines and Charpentier [1990] were
instrumental in this regard. Further improvements were made with the development
of the Multiband Resynthesis OverLap-Add (mbrola) techniques of Dutoit and
Leich [1993].

Even with the additional signal processing, the final result will contain some
artefacts caused either by the signal processing itself, or the fact that diphones are
created only with consideration of their nearest neighbours, ignoring the fact that
other phones further away may be exerting an influence.

Although, relative to model- or rule-based systems, diphone synthesis may be
seen as a data-driven approach to the problem of speech synthesis, its data storage
requirements are relatively small, since only one example of each diphone type needs
to be stored. However, this does mean that the quality of the synthesis is largely
dependent on the quality of the stored diphones, which, in turn, means that great
care should be taken in obtaining the diphones from speech.

2.1.4 Unit selection synthesis

Unit selection synthesis is similar to diphone synthesis in that it is a concatenative sys-
tem. However, instead of only concatenating diphones, it is capable of concatenating
any arbitrary length unit. In order to maximize the benefits of unit selection, as large
a database as possible of speech units is created, each with an extensive set of linguistic
features that differentiate it from similar units and can be used as a basis for selection.
In this way, it is possible that whole phrases or sentences of the desired utterance will
exist in the database and can be selected and used with very little further processing.
When nothing of the desired utterance exists in the database, diphone synthesis can
be used as a fall-back position. The first unit selection system was written for the
Japanese language [Sagisaka et al., 1992] before being used for English in the chatr
speech synthesis system [Black and Taylor, 1994] that was specifically designed to
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facilitate speech synthesis research.
Using very large databases of speech units raises the problem of deciding which

unit will provide the best output. A solution was proposed by Hunt and Black [1996]
that eventually lead to unit selection becoming the pre-eminent synthesis method.
Their solution is based on assigning a target cost and a join cost to each possible unit
and selecting the one with the minimum costs. The target cost is a measure of how
different the actual linguistic features of the unit are from those required and the join
cost is a measure of how far the join between one unit and the next is from being
ideal. (Bear in mind that the units in the database are as diverse as possible and are
not selected for their ability to join with their neighbours, as is the case with diphone
synthesis.) The best sequence of unit Û is then given by:

Û = argmin
u




N∑
t=1

T (ut , st ) +
N−1∑
t=1

J (ut , ut+1)



(2.1)

where ut is a unit, st is a set of desired features, T is the target cost, and J the join.
Unfortunately, if a suitable unit is not available, the system fails to produce

acceptable output in a rather obvious fashion. Other disadvantages of unit selection
synthesis tend to come from its need for very large databases, the lack of control, and
lack of expressiveness. The most obvious, the physical storage required, may not be a
problem on modern desktop computer systems, but still poses problems for mobile
and more limited devices. Another is the need to record all the features of each unit,
which, as we have seen, includes target and two sets of join features (one for left joins
and one for right). Recording the features is either a laborious hand-labelling task
or a machine-learning problem, neither of which is easy or fast. Fortunately, this
only has to be done once. The advantage of using a large database—the ability to
produce near-perfect output when the desired units are in the database—can also be a
double-edged sword in that the output is perceived as inconsistent when the desired
units are not found.

2.1.5 Hidden Markov model-based synthesis

Hidden Markov models were first used in automatic speech recognition (asr) rather
than speech synthesis [Baker, 1975]. In asr, speech is captured in a series of frames,
each with a set of characteristics of the acoustic information it holds and models
of phones consisting of multiple states are built. From a set of training data, it
is possible to build up a model comprising a sequence of states where each state
models a sequence of frames. When trying to recognize an utterance, the most likely
state sequence is found that would generate the speech in question. The process
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can be further refined and enhanced by storing the rate of change of the acoustic
characteristics between frames (the velocity or delta coefficients) and the rate of
change of those changes (the acceleration or delta-delta coefficients). Each phone
model is further divided into a number of states, representing different parts of the
phone. The probability of moving between each state, and back to itself, is modelled
so that it is possible to discover which sequence of states is most likely to have given
rise to the series of frames making up the phone and, hence, the series of phones
making up the utterance.

Synthesizing speech using hmms would seem to be, essentially, the reverse of
recognition and early work showed this to be the case [Ljolje and Fallside, 1986;
Falaschi et al., 1989]; however, it was the seminal work of Tokuda et al. [1995] that
lead the way for hmm-based synthesis. Speech synthesis differs from recognition
in that it uses the hmms to actually generate parameters and has four fundamental
requirements. Firstly, the most likely sequence of states and frames is generated
from the phone models usually taking into account the velocity and acceleration
coefficients to ensure a smoother waveform is created. Secondly, there are multiple
streams of parameters for f0 and prosodic features that are important for natural
sounding speech. Typically, there will be more than 50 parameters describing the
periodic and aperiodic spectral envelopes and the value of f0. Thirdly, duration
modelling has to be carried out separately, meaning that most hmm-based synthesis
actually uses a hidden semi-Markov model (hsmm). Finally, a model of the vocal
source is required to provide the actual output, which needs to be able to accept the
parameters generated by the hmm process. A full explanation of the techniques now
used in hmm-based synthesis can be found in the review by Zen et al. [2009].

Although hmm synthesis, like unit selection, can be described as a data-driven
approach, unlike unit selection, it does not generate speech directly from the data, but
from a statistical model of the characteristics of speech previously learnt from the data.
Thus, hmm-based synthesis systems require far less space for data storage than unit
selection and so can be deployed on devices with very limited capabilities. Because
building speech models is a statistical process that identifies the parameters that are
used to generate the speech, it does not require a large speech corpus, although,
generally speaking, performance is improved if one is used. When a large set of data
is available, an average voice model can be built, which can then be adapted from a
smaller set of data to change the characteristics of the output, so that it can be made
to sound like a particular person [Creer et al., 2009], or emulate emotional speech or
various speaking styles [Tachibana et al., 2005].

One of the disadvantages of hmm-based synthesis is that, because it does not use
recordings of real speech directly, the quality of the output is dependent on the quality
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of the source model, which can lead to its sounding buzzy, although using mixed
excitation can alleviate this.

Another disadvantage is that the speech can sound muffled because of the use
of statistical averaging in the parameter generation of the trajectory model. Again,
this can be alleviated using a technique called Global Variance [Toda and Tokuda,
2005], although this can generate its own problems, particularly artefacts in short
utterances.

2.1.6 The quality of synthetic speech

What constitutes ‘good’ synthetic speech is not clearly defined in the literature,
although most commentators will separate out ‘quality’ and ‘intelligibility’, both of
which are usually assessed by human listeners [Loizou, 2007; Jurafsky and Martin,
2008; Taylor, 2009].

Synthetic speech quality is difficult to measure as it is a subjective measure and,
although it may seem clearly defined as, say, ‘naturalness’, it is often not made clear
what constitutes naturalness. The focus of the work presented here is on evaluating
the intelligibility of synthetic speech (particularly in noise) rather than its quality.
Fortunately, intelligibility is a more objective measure, as participants report what
they actually hear, and is relatively straightforward to measure having much in
common with the measurement of the intelligibility of natural speech.

2.2 Evaluation of speech intelligibility

Intelligibility may be defined as ‘the proportion of speech items (e.g., syllables, words,
or sentences) correctly repeated by (a) listener(s) for a given speech intelligibility
test’ [Brand, 2009, p. 197]. However, the differing needs of researchers with an interest
in measuring intelligibility, such as audiologists, speech scientists, and engineers, have,
over the years, led to a wide range of intelligibility tests being proposed at the syllable,
word, and sentence levels; the more common of which are presented below. Of these
measures, many have been designed to test the intelligibility of speech in quiet and,
whilst some may also be used with noise—either specifically to test intelligibility
in noise, or to make the test more discriminative—only a few have been especially
designed to test the intelligibility of speech in noise.

It should be noted here that some sources (for example, Allen [2005]) differentiate
between intelligibility at the segmental level, where there is no meaning to be under-
stood, and the intelligibility of meaningful sentences, where ‘intelligibility’ includes
comprehension of the meaning; however, the term is widely used in the literature
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FIGURE 1 Typical example of SI function (solid line) for word intelligibility
test (closed response format with five response alternatives). The dashed
line denotes Lmid. The dotted lines denote the lower limit (1/A) and the
upper limit (SIasymp) of the SI function. Parameters: Lmid =−3!5 dBSNR"
SImax = 0!9 #SIasymp = 0!92$"A= 5" slope= 0!05/dB#s= 3!6 dB$.

SImax: parameter for maximum intelligibility. This can be smaller
than 1 in some cases (e.g., distorted speech signals or listeners
with hearing impairment). The asymptotic maximum of SI is
SImax+ #1−SImax$/A.

A: Number of response alternatives. For example, A = 10
when the listener should respond in a closed response
format using digits between “0” and “9”. In SI tests with
“open response format”, like word tests without limiting the
number of response alternatives, A is assumed to be infinite,
which means

SI= SImax
1

1+exp
(
− L−Lmid

s

) and slope= SImax

4 s
! (2)

The primary interest of many applications is the speech reception
threshold (SRT), which denotes the speech level (measured in
dB) for a given intelligibility (e.g., SI= 0!5 or 0.7).

Figure 2.1: Typical example of speech intelligibility function curve (solid line). Reproduced, with
permission, from Brand [2009]. In this particular example, the do�ed lines denote the upper and
lower bounds of intelligibility in practice and, hence, the srt occurs nearer 60 % of the theoretical
maximum intelligibility

to cover both meanings. In most cases, where the materials are presented at a fixed
speech level or signal-to-noise ratio (snr), the proportion of correctly identified
speech items (converted to a percentage) is used as the measure of intelligibility. In
circumstances where it is necessary to differentiate between two treatments, though,
this may result in ceiling effects that make it difficult to differentiate between them.

An alternative approach is to vary the speech level, or snr, systematically, from a
point where all the speech can be understood to where none of it can (or vice versa).
The resulting data points represent an empirical manifestation of the intelligibility
function—that is, the listener’s speech intelligibility, as a function of the speech level
or snr in decibels (dB) [Brand, 2009].

In practice, the range of intelligibility may be limited, for example, by distortions
in the speech stimuli, such that the minimum or maximum theoretical intelligibility
can never be achieved. The dB level at which 50% intelligibility occurs is known as the
speech reception threshold (srt). As psychoacoustic research has shown, illustrated
in Figure 2.1, this point is the steepest part of the curve and, therefore, yields the
highest sensitivity.

Instead of taking measurements along the whole of the speech intelligibility curve,
which is laborious and tedious for both tester and listener, finding the srt may be
simplified by using one of the up-down procedures described by Levitt and Rabiner
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[1967] and Levitt [1971], or similar variants. These procedures are an efficient and
practical way of finding the 50% level in far fewer measurements. The basic premise
is that the srt can be found by adaptively increasing or decreasing (using a given
step size) the snr at which stimuli are presented in response to incorrect and correct
answers, respectively. The stimuli usually consist of a fixed set of words or sentences
of equal difficulty. The srt is then estimated by taking an average of a fixed number
of the last stimuli presented. Alternatively, a sequence of changes of snr in the same
direction is identified as a run the midpoint of which is used as the estimate. The size
of the increase or decrease in snr (the step size) and whether or not it varies during
the procedure is one source of a variety of enhancements that have been proposed.

2.2.1 Syllable-level tests

Syllable-level tests consist of nonsense syllables formed from a particular combination
of consonants and vowels. Early tests consisted of more or less random arrangements
of consonant-vowel, vowel-consonant, or consonant-vowel-consonant (cvc). Stan-
dardization and refinement by Fletcher and Steinberg [1930] led to the common use of
cvc nonsense syllables in intelligibility testing. They also introduced the concept of
introductory sentences to be said before the syllable in order to bring its articulation
closer to that of everyday speech [Fletcher and Steinberg, 1930].

Miller and Nicely [1955] used a modified syllable test to establish which—and to
what extent—English consonants were confused with one another and what features
of these consonants were associated with the confusion.

Some criticisms of syllable-level tests are that: it can be difficult to construct lists
of equal difficulty; some training of listeners may be required [Loizou, 2007]; and
they do not truly reflect the intelligibility that the speech would have in an everyday
sentence.

In turn, one of the advantages of nonsense syllables is that there is no context
to confound the intelligibility score [Fletcher and Steinberg, 1930]. They may also
be particularly useful when investigating the intelligibility of some specific aspect of
language in isolation, such as, consonants.

2.2.2 Word-level tests

Word-level tests were devised in order to overcome some of the perceived problems
of nonsense syllables.

Egan [1948] developed 20 sets of 50 common English words (often known as the
Harvard test). The word lists were phonemically balanced so that they represented
the distribution of sounds in the English language and may also be known as the
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phonetically-balanced (pb) test for this reason. (Exact correspondence to the language
was not possible because of the need to meet other requirements for the lists, such as,
that the lists be of equal difficulty and that the words themselves should be of similar
difficulty within each list, to maximize discriminability.) Egan states that his word lists
do not require extensive training of listeners, unlike when using nonsense syllables,
although he does recommend training listeners until no further improvement results,
especially under difficult listening conditions, to obviate learning effects [Egan, 1948].

Other word-level tests are based on rhyming words that differ only in the initial
or final consonant. Fairbanks [1958] developed 50 sets of five monosyllable, cvc,
rhyming words, in which the words were also spelt the same, apart from the initial
consonant. Considerable effort was employed in making sure that the words were
well known, reflected the language, and were not biased against by taboo, spelling, or
variations in pronunciation. The test was known as the Rhyme Test and has formed
the basis of a number of variations. The Modified Rhyme Test (mrt) [House et al.,
1965] is a variation on the Rhyme Test using (originally) closed sets of six words that
differ in their final consonants.

Another variation, the Diagnostic Rhyme Test (drt) [Voiers, 1983] is still widely
used today. It is similar to the mrt, but uses sets of two words and the concept of
phonemic features proposed by Miller and Nicely [1955]. As its name suggests, in
addition to providing a score of intelligibility, it gives a ‘diagnosis’ of which features
of the language are causing confusion. The drt was shown to be reliable and to be
useful in speech-in-noise conditions [Voiers, 1983], although Smith [1979] found that
using different talkers produced highly significant differences in drt scores.

Word-level tests are presented either as individual words or as part of a neutral
carrier sentence and, therefore, provide no context to the listener, apart from the word
itself. However, it could be argued that in the real world, little, if any, communication
is conducted without some form of context and a number of sentence-level tests have
been created to accommodate this fact.

2.2.3 Sentence-level tests

One of the first sentence-level tests consisted of 100 phonetically-balanced sentences
and became known as the Harvard Psychoacoustic Sentence Test [Egan, 1948]. The
sentences are syntactically and semantically normal, which means they can suffer
from learning and ceiling effects, but are easy to administer and contain normal
prosody.

Whilst sentence-level tests may be seen as being more representative of real-world
speech, the longer the utterance used, the more difficult it is to ensure equality within
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and between tests. This fact was demonstrated by the development of the Speech
Perception In Noise (spin) test by Kalikow et al. [1977]. The authors went to great
pains to develop a set of sentence-level test materials that were representative of the
language in terms of word frequency and phonemic balance and that were balanced
for length, intelligibility, and key-word predictability. Despite this, however, later
work by Morgan et al. [1981] cast doubt on the equivalence of the forms of the
test and criticized the fact that they had only been tested with people with normal
hearing.

Although the spin test is a sentence-level test, it actually relies on the respondent
identifying the last word of the sentences. The sentences themselves fall into two
classes: high predictability or low predictability. High-predictability sentences are
designed to make the final (test) word more predictable by leading the listener to
it. For example, the sentence, ‘The boat sailed across the bay’, makes the word ‘bay’
very predictable; whereas, it is not predictable from the sentence, ‘John was talking
about the bay.’ Scoring of the test uses the high and low predictability sentences to
control for the level of semantic information.

An alternative to the spin test is the Hearing In Noise Test (hint) developed
by Nilsson et al. [1994]. This test consists of 25 lists of 10 (American) English
sentences and is scored on the percentage of correct words from the whole sentence.
It was designed to be presented using an adaptive srt method, that is, the presentation
level is increased for incorrect responses and decreased otherwise, as described above.
The mean of the fifth and subsequent presentation levels is used as the srt. This is in
contrast to the spin test, which is presented at a fixed snr, typically of 8 dB.

Killion et al. [2004] identified some potential disadvantages of the hint test,
namely that it is based on whole-sentence scoring, so more sentences are required
to achieve statistical reliability than when using key-word scoring, and that it uses a
stationary noise, which is not as realistic as babble noise. However, they did acknowl-
edge that these aspects could be seen as advantages, depending on the requirements of
the test.

In order to overcome these perceived disadvantages and to formulate a speech-in-
noise test that could be used as part of a battery of audiological tests, they developed
the Quick Speech In Noise (quicksin) test [Killion et al., 2004]. To facilitate its
widespread use in audiology, they recognized that it would need to be quick, easy to
administer, simple to score, be seen to have validity, and be useful for those with or
without hearing impairment.

Quicksin is based on the earlier speech in noise (sin) test [Killion and Villchur,
1993], which experienced a number of problems, not least of which was the fact that
audiologists reported its taking too long to administer [Killion et al., 2004]. The test
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consists of 12 equivalent lists of six Institute of Electrical and Electronics Engineers
( ieee) sentences [IEEE, 1969] that can be used with normal and hearing-impaired
listeners, presented in a four-talker babble noise at snrs from 25 dB to 0 dB in 5 dB
steps. (A further six lists are also available.) It is scored on the number of target
words (five per sentence) correctly identified. The quicksin is unusual in that it uses
a female speaker for its stimuli.

The use of a female talker apparently made the quicksin test too difficult for
some cochlear implant patients and a revised test, the bkb-sin test, was devised
as a result [Niquette et al., 2003]. It is called the bkb-sin test because it uses the
Bamford-Kowal-Bench sentences originally developed for use with partially-hearing
children [Bench et al., 1979]. The test consists of 18 list pairs, the first eight of which
consist of ten such sentences recorded at snrs from 21 dB to −6 dB in 3 dB steps by
a male speaker and presented in the same four-talker babble as the quicksin (the
remaining ten list pairs are for use with cochlear implant patients). The Bamford-
Kowal-Bench (bkb) sentences used in the bkb-sin test have more context than the ieee
ones used for the quicksin. The bkb-sin test is scored on the number of keywords
(four for the first sentence; three for subsequent sentences) identified correctly.

Both the quicksin and the bkb-sin tests are presented using a descending level
paradigm, that is, the sentences are presented at an increasingly unfavourable snr at
steps determined by the test protocol. In a descending-level method the 50% point
can be calculated using the Spearman–Kärber formula [Finney, 1952], the general
form of which is given by:

50% = i +
1
2

(d ) − (d )(n)/(w ) (2.2)

where i is the initial presentation level; d is the decrement size in dB; n is the number
of words correct; and w is the number of words per decrement. Although, in practice,
this can be simplified to Equation (2.3) for the quicksin test [Killion et al., 2004]
and Equation (2.4) for the bkb-sin [Niquette et al., 2003], which has four keywords
in the first sentence.

50% = 27.5 − (n) (2.3)

50% = 23.5 − (n) (2.4)

An evaluation of the bkb-sin, hint, and quicksin tests, along with Wilson’s own
Words In Noise (win) test [Wilson, 2003] can be found in Wilson et al. [2007].

Generally speaking, one would expect sentence-level tests to take longer to ad-
minister than word- or phone-level tests, but using descending-level or adaptive
presentation methods can result in a test that can be administered very quickly. With
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the (adaptive) hint test, ‘A threshold measurement with a single list usually takes less
than two minutes’ [Nilsson et al., 1994, p. 1095] and with the (descending) bkb-sin
test, ‘Each list of 10 sentences required 95 s to administer.’ [Wilson et al., 2007, p. 847].
A further advantage of srt-based tests is that they avoid ceiling and floor effects.
Moreover, when assessing the speech perception of listeners with hearing aids, using
stimuli less than sentence length may not give the hearing aid sufficient time to carry
out the necessary processing [Nilsson et al., 1994].

A potential disadvantage of sentence-level tests is that they may suffer from
memory effects, since the respondent is expected to remember the whole sentence—
rather than a single word—before responding. This is ameliorated to some extent in
the hint test by scoring slight variations as correct, for example substituting ‘a’ for
‘the’ or a past-tense verb for the present tense and in the quicksin and bkb-sin tests
by focusing on key-words. Potentially, it is more of a problem in tests based on the
semantically unpredictable sentence (sus).

Although Miller and Isard [1963] first used semantically anomalous sentences,
as they called them, to investigate the role of syntactic and semantic rules in the
perception of sentences in natural speech, almost without exception [van Wijngaarden
et al., 2002], suss have become a test of synthetic speech and will be discussed in detail
in Section 2.4.

A potential alternative to suss are Matrix sentences, which were developed for
assessing speech intelligibility in noise as part of an audiological test battery for the
HearCom project1 [Wagener, 2009]. Matrix sentences are comparable to Oldenburg
sentences [Kollmeier and Wesselkamp, 1997] as both are derived from the sentences
created by Hagerman [1982]. Each sentence consists of exactly five words in the
form ‘Name verb quantity adjective noun’, such as ‘Barry likes nine small spoons’.
Sentences are created by randomly choosing from a total of 50 words, ten from each
of the five word categories. The fifty words were chosen to be balanced and to cover
the phoneme set of British English. The resultant sentences have meaning (and are,
therefore, more memorable), but the individual words are relatively unpredictable,
thus reducing the potential advantage of contextual information.

2.2.4 The use of noise in intelligibility testing

Although intelligibility tests may be presented to listeners in quiet at a standard
loudness or sound pressure level (spl), they are often presented at various spls or
snrs and in one or more background noises. The variation of the spl or snr is usually
carried out to establish the srt. The use of a background noise might be to facilitate

1http://hearcom.eu

http://hearcom.eu
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variation of the snr or more specifically; to mask part, or all, of the speech sound
wave; or, more pragmatically, to test the impact of a specific noise on intelligibility.

Varying the spl or snr systematically from high to low (or vice versa) has the
effect of sensitizing the test, that is, making it more sensitive to small variations in
intelligibility and is often done as part of a srt method of testing. By reducing the
spl or snr the speech becomes more difficult to hear and deficiencies in the speaker’s
intelligibility or the listener’s hearing become apparent.

2.2.5 Types of noise used in intelligibility testing

One of the earliest uses of noise in testing was as a mask in audiometry. Here, the
intention is to restrict the non-test ear’s ability to contribute to the measurement
for the test ear. Audiologists recognize three types of noise: broadband, speech
spectrum, and narrowband; or white noise, pink noise, and narrowband masking
noise respectively.

White noise is, perhaps, the most obvious choice of masking noise since it contains
a range of frequencies at a constant spl at each frequency and would be expected to
mask any and all test frequencies. It has been used in intelligibility testing since the
1940s [Licklider and Miller, 1948]. However, it was discovered by Fletcher [1940]
that once a critical bandwidth around the frequency to be masked had been applied,
applying frequencies outside the critical bandwidth only added to the overall level
of noise without additional masking of the target frequency. White noise is also less
intense at lower frequencies.

Pink noise provides more efficient masking of speech since it has equal energy
in each critical band for normal-hearing listeners. Having an energy content that
decreases with frequency at −3 dB per octave, pink noise acts as a white noise filtered
to resemble the speech spectrum. It has more energy than white noise in the low
frequencies.

Narrowband noises may be created with the desired critical bandwidth by passing
a broadband noise through narrow band filters. In audiology, these are used to mask
the pure tones used in hearing tests.

In addition to white, pink, and narrowband noises, intelligibility tests may use a
range of other noises, many of which are speech-related. The most common is the
multi-talker babble, that is, between one and one hundred people talking at the same
time. In this case an actual recording may be made of several people talking at once
or a simulation made electronically from one or more people talking.

Speech-related noises may be presented as modulated or unmodulated, that is,
with or without the sorts of pauses and variations that occur in real speech.
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In specific circumstances, noises from a particular domain, such as cockpit, ma-
chine gun, factory, or office noises may be used.

2.2.6 Levels of noise used in intelligibility testing

Sound is carried through the air as a wave, which may be expressed in terms of
pressure in Pa. The human ear is able to hear in the range of 20 µPa (just audible to a
young, healthy ear) to 20Pa (the point at which pain occurs). Since this results in an
impractically large scale, a logarithmic scale of dB spl is used instead, defined as:

dB SPL = 10 log10

(
p
p0

)
(2.5)

where p is the sound measured and p0 is the reference value, 20 µPa.
Noise levels are usually expressed as the snr in decibels. Since the decibel scale is

logarithmic, an snr of 0 dB occurs when the spl of the signal and the noise are equal
and the snr rises by about 6 dB for every doubling of the signal’s spl and decreases
by 6 dB for every halving of the signal’s spl relative to the noise.

Most human speech takes place at a level of 40 dB to 60 dB spl up to a maximum
of approximately 65 dB spl measured at one metre from the speaker [Fant, 2005], so
it is common practice to normalize all speech samples to a level within this range and
to apply noise relative to that level. Deliberately applying a noise to a speech signal
for testing purposes may be achieved by one of two (or both) methods: additive and
multiplicative [Rothauser et al., 1968].

The additive method simply adds the noise signal to the speech signal in much
the same way as a background noise in a room gets added to the speech of a talker
in that room. Periods of speech silence will become periods of noise (assuming the
noise signal does not happen to be silent at that period).

The multiplicative method applies noise by convolving the speech signal with the
noise signal, so that any periods of speech silence will remain silent, and reflects the
effect of channel noise. Which method is chosen depends on the purpose of the test
and may have implications for the accuracy of the snr calculation.

Speech-in-noise stimuli, theoretically, can be presented at any snr or spl level;
however, exposure to noise can cause damage to the auditory system, with the amount
of damage caused being, primarily, a function of the intensity of the noise and its
duration [Katz et al., 2009]. Most guidelines on hearing protection use a 3 dB exchange
rate rule, that is, halving the length of allowed exposure for every 3 dBA rise in noise
above 90 dBA over the working day (normally defined as eight hours).

The snr chosen for a particular test will depend on the requirements for that
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B. Steepness of the psychometric function

Festen and Plomp !1990" measured entire psychometric
functions for speech in stationary and fluctuating noise.
Given the larger dynamic range of fluctuating noise, one
would expect a larger range in SNR in which the speech is
audible, hence a shallower slope for the fluctuating noise
masker. Indeed, with normal-hearing subjects, at the level for
which a score of 50% is obtained, Festen and Plomp !1990"
found a slope of 21.0%/dB and 11.9%/dB for stationary
noise and fluctuating noise, respectively. The present Fig. 4,
too, shows a shallower slope for fluctuating noise. With the
extended SII model, it is possible to predict the slope of the
curve obtained with fluctuating noise from that obtained with
stationary noise. To that end, it first should be noted that for
SNRs from !9 to !1 dB the psychometric curve with sta-
tionary noise in Fig. 6 of Festen and Plomp !1990" ranges
from 0% to 100%. Figure 4 shows that this SNR range cor-
responds to a range for the SII of 0.2 to 0.5. An important
observation hence is that within the range of 0.2 to 0.5 of the
SII, sentence intelligibility changes from 0% to 100%.
Within that range for the SII, both curves in Fig. 4 can be
well approximated by a linear function. The curve for sta-
tionary noise is given by

SIIS"!15#SNRS"/30, !1"

the curve for fluctuating noise is given by

SIIF"!27#SNRF"/40. !2"

Festen and Plomp !1990" describe their curves with a
logistic function

p!SNR""
1

1#e !M!SNR"/S , !3"

where M is the SNR for which the probability on a correct
response p(SNR) is equal to 0.5, and S is the steepness of
the function at p(SNR)"0.5. For the stationary noise curve
in Fig. 6 of Festen and Plomp !1990", M"!4.7 dB and S
"1.19 dB !corresponding to 21.0%/dB as given by Festen
and Plomp, 1990". For the fluctuating noise curve, M"
!9.7 dB and S"2.10 dB !corresponding to 11.9%/dB". The
data of Fig. 6 of Festen and Plomp !1990" are replotted in
Fig. 11, together with the two functions given by Festen and
Plomp !1990", given as solid curves. When SIIS"SIIF , Eqs.
!1" and !2" give the relation between SNRS and SNRF

SNRS"!21#3SNRF"/4. !4"

By insertion of Eq. !4" into Eq. !3", the shape of the function
for fluctuating noise is obtained. This curve is plotted as a
dotted line in Fig. 11. The predicted curve for fluctuating
noise has a slope of 15.6%/dB and a value for M of !13.3
dB. The curve is about 3.8 dB to the left of the data of Festen
and Plomp !1990", but has a slope that fits very well to the
data of Festen and Plomp !1990", as can be seen when the
curve is shifted 3.8 dB to the right, as has been done in Fig.
11 !dashed curve". The slope fits their data even better than
their calculated slope of 11.9%/dB. The fact that the calcu-
lated curve does not fall on top of the data of Festen and

Plomp !1990" is due to the fact that Festen and Plomp !1990"
shifted their data to the average results.

C. Effect of absolute threshold

With the calculation of the SII, it was assumed that all
subjects had normal hearing; that is, thresholds for all fre-
quencies were taken equal to 0 dB!HL". In real life, thresh-
olds deviate to some degree from this value, but with the
normal-hearing group it is generally assumed !ANSI S3.6-
1996, 1996" that the hearing level is equal to or less than 15
dB!HL". Given the dynamic range of speech !30 dB" and the
presentation level of the masking noise, one can calculate the
effect of an elevated threshold. With stationary speech noise
as a masker, audibility of average conversational speech
starts to play a role only at losses of 50 dB!HL" and larger, as
can be calculated with the existing SII model. In contrast,
with fluctuating noise and interrupted noise, effects become
already noticeable at thresholds of 30 or 15 dB!HL", respec-
tively. The effect of hearing loss on the SII is depicted in Fig.
12 for both a stationary noise masker and an interrupted
noise masker. As can be seen in this figure, elevating the
threshold from 0 to 15 dB!HL" has no effect on the SII with
stationary noise, but has a clear effect with interrupted noise.
The two curves with interrupted noise start to overlap near
an SNR of !15 dB. For the calculations with the extended
SII model, little differences in prediction of the SRT in sta-
tionary noise were found by variation of the absolute thresh-
old !HL $50 dB". Figure 12 nevertheless shows that with
these fluctuating noise maskers, the effect of absolute thresh-
old can be substantial, especially at lower presentation lev-
els. This could account for the large standard deviation be-
tween subjects found by SRT in fluctuating noises !de Laat
and Plomp, 1983; Festen, 1987, 1993; Festen and Plomp,
1990; Bronkhorst, 2000; Versfeld and Dreschler, 2002" com-

FIG. 11. Percentage of sentences correct as a function of signal-to-noise
ratio !dB", for a stationary noise masker !open symbols" and fluctuating
noise masker !filled symbols" !replotted from Festen and Plomp, 1990". The
two solid curves represent Festen and Plomp’s !1990" fit to the data. The
dotted curve is predicted by the extended SII model, based on the curve
given by Festen and Plomp !1990" for stationary noise. The dashed curve
!without symbols" is identical to the dotted curve, except for a shift of 3.8
dB to the right.

2189J. Acoust. Soc. Am., Vol. 117, No. 4, Pt. 1, April 2005 K. S. Rhebergen and N. J. Versfeld: Speech intelligibility index

Figure 2.2: Percentage of sentences correct as a function of snr (dB), for a stationary noise
masker (open symbols) and fluctuating noise masker (filled symbols) (replo�ed from Festen and
Plomp [1990]). The two solid curves represent Festen and Plomp’s fit to the data. The do�ed curve
is predicted by the extended sii model, based on the curve given by Festen and Plomp [1990] for
stationary noise. The dashed curve (without symbols) is identical to the do�ed curve, except for
a 3.8 dB shi� to the right. Reproduced with permission from Rhebergen, K. S. and Versfeld, N. J.
(2005). A speech intelligibility index-based approach to predict the speech reception threshold
for sentences in fluctuating noise for normal-hearing listeners. The Journal of the Acoustical
Society of America, 117:2181. Copyright 2005, Acoustical Society of America.

test. If the aim is to assess the effect of a particular level of a background noise, then
the stimuli may be presented at an appropriate, fixed snr. When establishing the
srt, the stimuli will be presented at systematically varied snrs so that the level at
which 50% of speech is intelligible can be ascertained. In the highly standardized,
generic, stationary noises such as white noise, pink noise, and multi-talker babble that
speech intelligibility is typically assessed, the srt occurs at about −4.5 dB, whereas in
fluctuating noise it occurs at about −12 dB as demonstrated in Figure 2.2 [Rhebergen
and Versfeld, 2005].

2.2.7 Summary of intelligibility tests

Table 2.1 provides a summary of some of the intelligibility tests available, from which
it can be seen that measuring the intelligibility of speech in noise is a complex process
of choosing a test, scoring system, analysis system, type and level of background
noise even without the added complication of having to use human listeners to
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carry out the assessment. It would be much simpler if it were possible to predict the
intelligibility from the speech and noise directly.

2.3 Predicting speech intelligibility in noise

Predicting speech intelligibility in noise is dependent on being able to create a model
of the speech, the noise, and the hearing ability of the listener and having a transfer
function that can convert this to intelligibility. The factors that govern intelligibility
and constitute such a model were first reported by French and Steinberg [1947]. Since
that time, our understanding has developed and been refined to the point where
a Speech Intelligibility Index (sii)—formerly the Articulation Index (ai)—can be
calculated that specifies how much of the audible speech is available at the listener’s
ear. The method for calculating the sii is fully specified by ANSI [2007]. Essentially,
it involves calculating the average speech spectrum, the average noise spectrum, and
the listener’s hearing threshold and using them to produce an index between zero
and unity. This is achieved by: a) filtering the speech and noise spectra into bands;
b) making adjustments for the upward spread of masking, inaudibility due to hearing
loss, and distortion (if necessary); c) calculating the snr for each band; d) applying a
weighting to each band (because different parts of the speech spectrum carry more
information than others); and e) summing the results. The basic process, that is,
where no adjustments are made at b), can be summarized by the equation:

SII =
n∑
i=1

IiAi (2.6)

where n is the number of bands; Ii is the importance of each of those bands; and Ai

is the proportion of speech cues audible in each band.
Unfortunately, as a predictor, the sii is not perfect and, whilst there is some

correlation, there is no direct mapping between the srt scores of normal-hearing
listeners and the sii. This is partly because different intelligibility tests produce
different srts, but also as a result of deficiencies in the sii itself. For example,
although it is known that the sii is good at predicting intelligibility in stationary
noise, it is less successful at predicting the srt in quiet and even less successful at
predicting it in fluctuating noise [Rhebergen and Versfeld, 2005], although proposed
extensions to the sii have been shown to be more accurate predictors in fluctuating
noise [Meyer et al., 2007].

An alternative to the sii is the Speech Transmission Index (sti) [Steeneken and
Houtgast, 1980]. Although, like the sii, it is based on the ai, it has developed in
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a slightly different direction. Rather than inspecting and analysing the speech and
noise signals directly, it treats the channel they are transmitted through as a ‘black
box’ and applies a specially modulated test signal with speech-like properties to it.
The reductions in the modulation caused by the channel are used as the measure of
intelligibility or sti. Equation (2.7) shows how the calculation of the sti is actually
quite similar to that of the sii in that both calculate an apparent snr across a number
of frequency bands, weight them, and sum them to arrive at an index between zero
and unity. The sti uses seven bands, hence the maximum value of i, a weighting
for each (wi ), and an apparent snr (SNRappi, j ) (30 is the assumed dynamic range of
speech in dB and 15 is the limit of the apparent snr range in dB).

STI =
7∑
i=1

wi ·

*.
,

1
14

14∑
j=1

SNRappi, j
+/
-
+ 15

30
(2.7)

An experimental comparison of the sii and sti and a variation on the sti, the Rapid
Speech Transmission Index (rasti) found very little difference between them in
terms of performance and, indeed, calculation methods [Larm and Hongisto, 2006].
The value of the two methods is that they are objective, require no listening tests,
and can be implemented in hardware to produce devices that can be used to predict
the intelligibility of a room or auditorium. Another common use is in predicting the
efficacy of signal processing techniques in hearing aids. A promising area of research
is in using the methods to adjust synthetic speech (or at least modify the choice of
units) to make it more intelligible in noise [Cernak, 2006].

2.4 Synthetic speech intelligibility evaluation

Intelligibility tests have been used as a measurement for engineering purposes for
a very long time, having seen considerable development during the early years of
the telephone [Campbell, 1910]. The range of tests, and the manner in which they
are employed in evaluating synthetic speech, are generally very similar to those
set out in Section 2.2 with the obvious difference that many tests will include a
comparison with natural speech. Again, the criteria for choosing an intelligibility test
for synthetic speech such as those promulgated by Loizou [2007]—good coverage of
the major speech phonemes, equal difficulty of test lists, and controlling for the effect
of contextual information in the test material—are the same as one would use when
testing natural speech. Within the field of speech synthesis, intelligibility tests may be
used for a variety of reasons, perhaps the foremost being to compare tts systems and



26 Evaluating the intelligibility of synthetic speech

their components. Other reasons include: comparing synthetic speech directly with
natural speech and assessing the intelligibility of synthetic speech to specific groups
of listeners, such as those who are older, younger, non-native, or harder of hearing.

2.4.1 Comparing text-to-speech systems

As we saw in Section 2.2, intelligibility may be measured at various granularities of
speech, from phoneme to whole sentence depending on need. When developing a
tts system, it is generally agreed [Benoît and Pols, 1992; Benoît et al., 1996; Taylor,
2009] that the choice of intelligibility measure should be related to the level of
the tts system being tested, such that unit testing might be based on phone- or
word-level tests and system testing on sentence-level or comprehension tests [Taylor,
2009]. The tests described in Section 2.2 can be used to measure the intelligibility of
synthetic speech with, perhaps, syllable-level tests being of particular benefit when
testing a particular component of a tts system for its production of, say, consonants,
or features such as, voicing and nasality [Taylor, 2009] just as sentence-level tests
may be more useful in assessing the sentence accenting and overall prosody of a
system [Benoît et al., 1996].

The syllable-level tests that have commonly been used for testing particular
components are the mrt and drt. The mrt was criticized by Nye and Gaitenby
[1974] as not being particularly useful for correcting synthesis errors although it was
useful in identifying poorly synthesized phones. The reasons they gave were that the
closed-response format forced listeners into inappropriate choices and that it did not
provide full enough coverage of the language. The drt may be useful for determining
where errors in synthesis are occurring.

When it comes to comparing different systems, a systematic evaluation of many
research, and some commercial, tts systems has taken place every year since 2005
in the Blizzard Challenge [Black and Tokuda, 2005; Bennett and Black, 2006; Fraser
and King, 2007; Karaiskos et al., 2008; King and Karaiskos, 2009, 2010, 2011, 2012].
Originally conceived by Black and Tokuda [2005], the first year saw six systems [Ben-
nett, 2005] being put through their paces, with a maximum of nineteen seen in 2008

and 2009 [Karaiskos et al., 2008; King and Karaiskos, 2009]. Although the specific
testing regime varies slightly from year to year, the challenge compares systems on
naturalness, intelligibility, and (more recently) speaker similarity. Mean opinion score
(mos) tests are used for naturalness and speaker similarity, whilst forms of the mrt
and/or sus test are used for intelligibility. (The mrt-like test was dropped from 2007

onwards [Fraser and King, 2007].)
The first recorded use of suss for synthetic speech testing was by Nye and
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Gaitenby [1974] who, as a result of their dissatisfaction with the mrt, devised the
Syntactically Normal Sentence Test (snst). More commonly known as Haskins
sentences, after the lab in which they were developed, they comprise a closed set of
100 sentences. Having only one syntactic structure means that they are limited in
generalizability and their ability to account for prosody as well as being susceptible
to learning effects. However, the test is easy to conduct and tests a wide range of
confusions.

Using Haskins sentences as a basis, the sus test was developed by Benoît et al.
[1996] with the twin aims of providing a test that could be used across a number of
European languages and that covered a wider range of prosodic patterns and syntactic
categories than previous tests. Implicit in the development of the test was the aim of
controlling for the effect of context and semantic information and, therefore, ceiling
effects that occur when testing highly intelligible tts systems. (Benoît et al. [1996]
stated that modern tts systems could attain perfect intelligibility for simple and
meaningful sentences and, although perhaps a little premature at the time of their
writing, this is certainly the case today [King and Karaiskos, 2011].) As proposed, the
sus test truly is a sentence-level test, since the scoring is a binary correct/incorrect for
the whole sentence. This, in turn, results in an intelligibility score noticeably lower
than other (even sentence-level) tests; however, there is a correlation between them.

It should be noted that only the suss used in the 2009 Blizzard Challenge were gen-
erated using the original specification [King and Karaiskos, 2009]; those in previous
years having been generated with the format ‘Determiner adjective noun verb deter-
miner adjective noun’, such as, ‘The unsure steaks overcome the zippy rudder’ [Black
and Tokuda, 2005] and scoring in all challenges has been on word error rate (wer)
rather than whole sentences correct.

In addition to the obvious advantage that suss provide no contextual information
to the listener, they use an open-response format such that an almost limitless number
of sentences can be constructed, which means that they scale particularly well for
use in large-scale comparison tests, such as the Blizzard Challenge. Furthermore, five
different syntactic structures were devised to mitigate against learning effects, which
has the added benefit that the test is very useful for differentiating between different
prosody implementations or different speakers in the same tts system.

However, it has been pointed out [Jurafsky and Martin, 2008; Taylor, 2009] that
real applications tend to generate sentences that are highly predictable and so tuning
tts systems for suss may be counter-productive. There is also the possibility that
some tts systems may be better at producing what are essentially out-of-domain
sentences than others.

It could be argued that speech does not have to be one hundred per cent intelligible
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for the message to be fully received by the listener. For example, in the case of
reminders, if a person hears, ‘Take . . . amoxycillin’, the fact that the word ‘your’ was
not heard may make no difference to the comprehension of the message. In such
circumstances, comprehension tests may be of value.

Pisoni [1987] was probably the first to use comprehension tests for the evaluation
of synthetic speech at the end of the development of the mitalk system. For this he
used standard adult reading comprehension tests and found that—for the second half
of the tests—comprehension levels were equivalent to those achieved by reading the
same passages of text. Subsequent studies of comprehension, summarized by Winters
and Pisoni [2006], suggest that, whilst comprehension levels of the highly-intelligible
dectalk synthetic speech match those of natural speech, comprehension takes longer
to achieve, thus suggesting that more cognitive resources are required.

More recently, Lines and Hone have used a form of comprehension test whilst
trialling their interactive domestic alarm system [Lines and Hone, 2003b,a]. Their
stimuli consisted of requests to move one of five shapes, in one of five colours to one
of four rooms in their own home [Lines and Hone, 2003b]. It is difficult to draw
conclusions on the efficacy of their method since only four people took part and it
seems their performance was at ceiling level.

The motivation for comparing tts systems, particularly on the scale of the annual
Blizzard Challenge, is that it is the ultimate goal of speech scientists to make synthetic
speech indistinguishable from natural speech. The obvious way to test for this is to
compare synthetic and natural speech directly.

2.4.2 Comparing directly with natural speech

The review of synthetic speech perception and comprehension by Winters and
Pisoni [2006] cites a number of studies undertaken between 1973 and 1993 that
consistently show how synthetic speech is less intelligible than natural speech, at
least at the segmental level using either open- or closed-response mrt tests (i.e.,
without any context). Although sentence-level intelligibility (i.e., with context) for
the best tts system at the time, dectalk, was found to be statistically equivalent to
natural speech [Mirenda and Beukelman, 1987]. The Blizzard Challenge of 2008 to
2012 [Karaiskos et al., 2008; King and Karaiskos, 2009, 2010, 2011, 2012] used suss
(the mrt-type test having been dropped in 2007), which test intelligibility without
context. In the 2008 challenge, systems T and V were statistically indistinguishable
from natural speech and six other systems were not significantly different from them.
In 2009, system S was as intelligible as natural speech [King and Karaiskos, 2009] as
were systems J and R in 2010 [King and Karaiskos, 2010] and system C in 2011 (2012
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did not include a comparison with natural speech). So it seems that intelligibility has
improved somewhat in the intervening years.

Many of the studies directly comparing synthetic and natural speech—and even
those comparing different tts systems—have used young, normal-hearing, native
speakers of the language as listeners leading to some concerns about the generaliz-
ability of the results to the wider population and, particularly, to those falling into
specific listener groups.

2.4.3 The intelligibility of synthetic speech to specific groups

Groups that can be identified that might have more difficulty in perceiving synthetic
speech are: naive listeners; non-native listeners; younger listeners (i.e., children); those
with a hearing impairment; and older adults.

Most people will have experienced having to ‘tune in’ to the speech of someone
with a strong regional accent or speech impairment. A similar process occurs, at
least subconsciously, with any speech we listen to and especially when that speech is
synthetic. It stands to reason, then, that a regular listener to a synthetic voice will
perform better on an intelligibility test than a naive listener. In order to control for
this in experiments, it is common practice to screen out regular listeners or to provide
a period of familiarization to all participants.

Greene [1986] first compared native and non-native listeners’ performance on a
mrt and a dictation task and showed that non-natives performed worse than natives
and that their performance was related to their proficiency in English. A similar
study, but this time using semantically anomalous sentences [Mack, 1988] found a
similar disparity between the two groups and suggested that the non-natives tended
to listen out for the wrong cues, perhaps influenced by their other (in this case,
German) language. Later studies in noise [Reynolds et al., 1996; Alamsaputra et al.,
2006] concurred with the earlier studies and showed that the added noise affected
non-natives more than natives. The lower performance of non-natives in both quiet
and noise means that this aspect needs to be controlled for in perceptual experiments.

In a similar vein, children’s language skills are thought to be the cause of their
consistently poorer performance on intelligibility tests in both quiet and noise. Since
the intelligibility of synthetic speech to children forms no part of the proposed work,
the interested reader is directed to Drager and Reichle [2010] for a comprehensive
review of the literature relating to this area of research.

People with hearing impairments have been shown to find synthetic speech less
intelligible than those with normal hearing, both in quiet [Kangas and Allen, 1990;
Nixon et al., 1990; Humes et al., 1991] and in noise [Nixon et al., 1990], so hearing
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loss was accounted for in the experiments we ran, but no systematic investigation of
the effects of different types of loss was undertaken. A number of participants did
have some hearing loss, not least because it forms part of the normal ageing process.

Presbycusis is the term that describes the loss of hearing that gradually occurs in
most individuals as they grow older [Katz et al., 2009]. Corso [1959] found it to be a
(usually) high-frequency sensorineural loss that progressively spreads down to the
lower frequencies; affects men earlier—and more—than women; is more diverse in its
presentation in men; and tends to affect both ears about equally. More recent studies
concur with these early findings, although it has been shown that women suffer
more low-frequency loss [Jerger et al., 1993]. For a detailed review of work on age-
related hearing loss, see Chisholm et al. [2003]. Traditionally, hearing ability has been
measured using pure-tone audiometry. As the name suggests, pure-tone audiometry
measures the lowest intensity at which various pure tones can be perceived, but
usually only up to 8 kHz [British Society of Audiology, 2004; Katz et al., 2009].
Because age-related hearing loss begins at higher frequencies, it is possible for a person
to ‘pass’ a pure-tone audiometry test and still have difficulty hearing speech.

A confounding factor in measuring intelligibility in older adults is the possibility
of cognitive decline. Whilst it is self-evident that those with diagnosed dementia
could be expected to have difficulty in perceiving natural and human speech, ‘normal’
cognitive ageing does not appear to have an effect. Simulating age-related hearing loss,
by presenting mrt stimuli in spectrally-shaped noise to younger listeners, Humes
et al. [1991] demonstrated that older age had no discernible effect on intelligibility.
However, Roring et al. [2007] cast doubt on the applicability of diphone-based
synthetic speech commonly used for aac devices. Studies using stimuli generated by
unit selection [Lines and Hone, 2003b; Wolters et al., 2007] produced similar findings
and found that older adults’ comprehension was not significantly different from
younger persons’, given sufficient context. The importance of context had earlier
been demonstrated by Drager and Reichle [2001], who also showed that the benefit
gained by older people was not significantly different from that gained by younger
people.

2.5 Synthetic speech intelligibility in noise evaluation

Background noises may be used in the evaluation of synthetic speech just as they are
for natural speech (see Section 2.2.4). The type and level of noise used will depend
on the use to which it is being put. The uses will be the same as when evaluating
synthetic speech in quiet with the addition of testing the effect on intelligibility of
the noise itself (usually in a particular domain); however, only those pertinent to this
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thesis are detailed in the following sections.

2.5.1 Comparing text-to-speech systems in noise

The Blizzard Challenge is the largest known comparison of systems currently carried
out and, as previously mentioned, a number of the systems are approaching—or
have already achieved—the level of intelligibility of natural speech. This means that
there is a real risk of ceiling effects occurring, so, to facilitate finer discrimination
between systems, the listening test needs to be made harder, which can be achieved
by introducing a background noise. The Blizzard Challenge 2010 introduced a speech-
in-noise test for the first time.

Nearly all previous studies of synthetic speech intelligibility in noise have focused
on formant synthesis and diphone concatenation systems. Since modern speech syn-
thesis methods such as unit selection [Hunt and Black, 1996] and hmm-based synthesis
engines [Zen et al., 2009] yield speech that is more intelligible than formant and
diphone synthesis, we would also expect them to be more intelligible in background
noise. This assumption is supported by the results of Lancaster et al. [2004], who
found that an at&t unit selection voice was more intelligible than dectalk’s Perfect
Paul in cockpit noise at snrs of −5, −8, and −11 dB.

As far as can be determined, there had been no systematic investigation of the
intelligibility of hmm systems, and only one [Lancaster et al., 2004] of unit selection,
under different snrs. While van Leeuwen and van Balken [2005] seem to imply
that they tested unit selection systems in their experiment, they do not specify the
synthesis methodology used for any of their systems.

Venkatagiri [2003] tested four of the most up-to-date products at the time, one
formant-based, one diphone-based, one half-phone-based, and a hybrid concatena-
tive/formant coding system. He used the mrt presented to normal-hearing listeners
in a 20-person multi-talker babble at snrs of 0 and 5 dB and found that no system
resisted noise better than the others, but all of them fared better at 5 dB than 0 dB.
The hybrid system had the worst intelligibility of all.

Venkatagiri [2003] also compared the speech of the four tts systems with natural
speech presented in a ‘comparable’ manner. Even the best tts systems were found
to be 22% less intelligible than natural speech, which, he concluded, made them
unlikely to be suitable for unrestricted output.

2.5.2 Comparing directly with natural speech in noise

Very few other studies seem to have been published that directly compare the percep-
tion of natural and synthetic speech in the presence of noise of normal hearing adults.
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Pisoni and Koen [1982] found that the intelligibility of synthetic speech suffered more
than natural speech over a range of snrs, using both an open- and closed-set mrt.
Using an open-response version of the mrt and a twelve-talker babble as background
noise at levels of 0, 15, and 25 dB, Koul and Allen [1993] found that the highly intelli-
gible dectalk Paul and Betty voices suffered more than natural speech from the effects
of the interfering noise; although, interestingly, they found no significant difference
between the male and female voices.

2.5.3 Measuring the effects of noise in various domains

Whilst some work has been done on assessing the effect of background noise on
synthetic speech, it has often focused on systems used in specialized situations, such as
over the telephone [Möller, 2004; Langner and Black, 2005], whilst driving [Morrison
and Casali, 1997], or in aircraft cockpits [van Leeuwen and van Balken, 2005]. The
telephone domain is highly complex, because noise can be present at the speaker’s
end and at the listener’s end and it can be introduced during transmission. For an
overview of the specialized assessment procedures required, see Möller [2004]. For
contexts such as driving a car or flying an aeroplane, a masking noise can be used that
represents typical spectral and temporal characteristics of background noise in these
situations.

Although some studies of the intelligibility of synthetic speech have been under-
taken in the home environment [Lines and Hone, 2003b,a], none appears to have
evaluated the effect of the noises found there.

2.5.4 Measuring the effects on older listeners

Langner and Black [2004, 2005] compared the effect of noise on older adults’ percep-
tion of synthetic speech as part of their work on creating a database of ‘speech-in-
noise’. (Here the term ‘speech-in-noise’ refers to the fact that the speaker was asked
to speak in the presence of noise, so that the speech would be modified to make
it more intelligible in noise. They felt the term ‘Lombard speech’ [Lombard, 1911]
inappropriate, as the level of background noise was small and they did not address
extremes of speech.) The aim was to record a voice talent speaking in quiet and with
noise being played through headphones, which, they believed, would allow them
to extract the differences between the two sets of speech so that any voice could be
made more robust in noise via ‘style conversion’. Unfortunately, ‘the style-converted
synthetic speech was nearly universally harder to understand than the original plain
speech’ [Langner and Black, 2005, p. 396]. However, their reports do suggest that
older adults have much more difficulty than younger adults in perceiving synthetic
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speech at the snr of −3.2 dB that they used [Langner and Black, 2004, 2005].
McCarty and Surprenant [2006] set out specifically to test the intelligibility of

at&t’s Natural Voices synthesizer to older adults at various snrs as compared with
natural speech using the spin test [Bilger et al., 1984]. An abstract produced by them
suggests that older adults found synthetic speech universally harder to understand
and remember. Unfortunately, their findings have not been written up as a complete
paper, leaving a number of intriguing questions, such as, whether they compared
older adults with younger adults and what controls they had put in place.

2.6 Summary

The flexibility of synthetic speech in its ability to generate any valid utterance and to
be configured for optimal output in various conditions makes it the preferred choice
over canned speech for many applications. Its importance as a means of output is
manifest in its continued development from formant and diphone systems through
to the current state-of-the-art systems based on unit selection or hmms.

Evaluation of the intelligibility of synthesis systems has followed the model
adopted for the assessment of natural speech, that is, measuring at the syllable, word,
or sentence level, often using noise as a discriminating factor. Although many of the
materials and methodologies for the assessment of natural speech have been brought
to bear in the assessment of synthetic speech, much research has been orthogonal,
with studies focusing on either natural or synthetic speech. A similar dichotomy is
evident between research in audiology and synthetic speech intelligibility.

A close inspection of the research literature reveals, not only a separation of
synthetic speech research from other domains, but also from the real world. Many of
the stimuli and masking noises do not occur in real-life situations and even experi-
mental participants tend to come from a very narrow section of the population. Our
intention in the following chapters was to develop and implement an experimental
methodology to bring together these various threads into a cohesive approach to
assessing synthetic speech.





CHAPTER3
Experimental methodology

This work was undertaken in the context of the provision of spoken reminders
in the home environment and having identified background noise and reverber-
ation as the biggest hindrances to their effective use. We determined to carry out

a series of experiments to establish the effects of each on current synthesis systems.

We, therefore, needed to identify techniques that could be used in all our ex-
periments that were ecologically valid—that is, approximated the real-world—whilst
maintaining scientific rigour. We refer to these as our ‘experimental methodology’.

The literature review presented in Chapter 2 reveals little recent work in evaluating
the intelligibility of synthetic speech in noise. The two studies that had been published
and used more recent synthesis systems had used aircraft engine noise at signal-to-
noise ratios (snrs) of −5, −8, and −11 dB with no demographic data on participants
provided [Lancaster et al., 2004]; or a noise ‘spectrally equivalent to cockpit noise’
and a speech reception threshold (srt) methodology with participants who were
only described as ‘Dutch’ [van Leeuwen and van Balken, 2005, p. 2].

The largest study of synthetic speech intelligibility in quiet, the Blizzard Challenge,
had been run annually using mainly undergraduate students and speech synthesis
researchers as listeners; and, since 2007, semantically unpredictable sentences (suss)
as stimuli [Fraser and King, 2007].

None of the techniques used in operationalizing the studies reviewed fully met
our needs, so we investigated alternatives. The remainder of this chapter documents
our assessment of the suitability—for use in the remainder of the thesis—of those
identified: Amazon Mechanical Turk (amt); Matrix sentences; and one of the noise
files created by the International Collegium of Rehabilitative Audiology ( icra).

35
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3.1 Amazon Mechanical Turk

Assessing the intelligibility of synthetic speech has traditionally been carried out by
inviting a number of participants to listen to speech stimuli in specially designed
booths that allow for the control of confounding variables, such as quality of listening
equipment and background noise, thus allowing for a definitive assessment of a
system’s intelligibility. However, more often than not, the absolute performance of
a system is less important that its performance relative to another and the cost (in
money and time) of maintaining a bespoke laboratory and recruiting participants
becomes hard to justify.

Moreover, the nature of experiments carried out in listening labs in universities is
that they attract primarily undergraduate students, who, by definition, tend to have
a very specific age range and education, and who may become ‘serial testers’ and,
therefore, not the naive listeners originally intended. Even without the preponderance
of students, labs limit the number of participants that can be recruited, which in turn
means that that small, but significant, effects may not be found [Bunnell and Lilley,
2007].

In recognition of these concerns, many researchers, including the organizers of
the first Blizzard Challenge [Black and Tokuda, 2005], began conducting listening
tests over the Internet. Although this removes the time and expense of running lab
sessions and travel expenses for participants, the problems of finding and paying
participants remain and new problems, such as the possibility of the same person
participating more than once, are introduced.

A possible solution for these remaining problems is the marketplace for crowd-
sourcing developed by Amazon and known as Amazon Mechanical Turk1. Crowd-
sourcing may be defined as, ‘The practice of obtaining information or services by
soliciting input from a large number of people, typically via the Internet and often
without offering compensation.’ [OED Online, 2013], although Amazon places a
specific emphasis on tasks that require human intelligence and that cannot currently
be completed by computers.

Although the term may be relatively new, the practice is not. As already stated,
synthetic speech has traditionally been assessed by soliciting large numbers of people
to listen to it and provide input on its intelligibility or naturalness; often using the
Internet as a recruitment tool or, as in the case of the Blizzard Challenge, as a means
of conducting listening tests remotely.

Amazon has commercialized crowdsourcing by implementing an Internet-based
system that simplifies and streamlines the process of advertising for, recruiting, and

1http://www.mturk.com

http://www.mturk.com
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paying participants such that amt has become the pre-eminent of such services.
As a result, crowdsourcing is increasingly used to create rich speech and language

data sets [Callison-Burch and Dredze, 2010]. Instead of relying on highly skilled
annotators and transcribers, researchers ask anonymous Internet users to contribute
annotations [Snow et al., 2008], transcriptions [Novotney and Callison-Burch, 2010;
Marge et al., 2010], and ratings [Kittur et al., 2008] for as little as a cent per task.

Of course, amt is not without problems of its own with rumours of participants
‘gaming’ the system—that is, giving answers that sped them through completion of
the task rather than the most accurate—being particularly prevalent. Furthermore,
the difficulties associated with any system for running experiments at a distance, such
as conducting hearing screens, remain. Ultimately, there will invariably be a trade-
off between running more experiments with more participants and fewer, smaller
experiments with more control.

3.2 Matrix sentences

Comparison of intelligibility between complete text-to-speech (tts) systems is gener-
ally undertaken using sentence-level tests, of which the sus test [Benoît et al., 1996]
has become the de facto standard. The test, as originally defined, allowed for the use
of five syntactic structures. In perhaps the most well-known test, the Blizzard Chal-
lenge, suss of the form ‘Determiner adjective noun verb determiner adjective noun’
are generally used and scored on individual word error rate (wer) with each word
carrying an equal weight. (Except in the case of the Blizzard Challenge 2009, when
a mixture of the original sus structures were used, but scored on wer rather than
sentences-correct [King and Karaiskos, 2009].)

Benoît et al. [1996] developed suss to control for context and semantic informa-
tion and, therefore, the ceiling effects that can occur when testing highly intelligible
tts systems. However, as with all sentence-level tests they may suffer from memory
effects, since the respondent is expected to remember the whole sentence—rather than
a single word—before responding. A further problem, in the context of our research,
was that the lack of meaning in the sentences undermined their ecological validity.

Ideally, we needed sentences that lacked context and, therefore, predictability,
but had meaning whilst having a length similar to that of a typical spoken reminder.
More generally, we were interested in finding stimuli that did not suffer from the
shortcomings identified in Chapter 1, namely the possibility that they tended to tune
tts systems towards producing non-realistic utterances, or that they were biased
towards systems that were inherently better at creating such utterances, for example,
favouring the Hmm-based Speech Synthesis System (hts) over Festival unit-selection
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(f-usel) [Yamagishi et al., 2009].
Matrix sentences [Wagener, 2009], discussed in Chapter 2, appeared to meet all

the above criteria, with the additional benefit that they had value outside synthetic
speech intelligibility testing, since they had been developed as an audiological test
and, thus, raised the possibility of equating hearing ability with synthetic speech
intelligibility. They have advantages over suss in that they are less difficult, have
meaning, are typically shorter, and are, therefore, well suited to reminders. In exper-
imental conditions, they have the additional advantage that fixed-format sentences
from a limited set of words are far less likely to suffer from spurious insertions, that
is, participants asserting that they had heard a word that was not in the stimulus.

One of the drawbacks of using short meaningful sentences is that they can lead
to ceiling effects, but this was accounted for in the choice of words used in the
development of the sentence materials. Moreover, as we envisaged conducting all of
our testing in the presence of noise, ceiling effects were not as likely to be encountered.

A disadvantage of using fixed-format sentences with a limited number of words
is that participants need to be trained in their use in order to obviate any possible
learning effect. This can be accounted for by always providing training at the start of
the experiment and using statistics to measure the extent of any learning effect that
occurred.

3.3 Background noises

Our intention for our experiments involving noise was that we would use noises
that were likely to occur in the home environment. However, our literature review
had revealed that speech intelligibility in noise is typically assessed using highly
standardized, generic noises such as white noise, pink noise, and multi-talker babble.
Those studies that had used realistic background noises often focused on those from
specific scenarios, such as using the telephone, driving, or flying an aeroplane, rather
than noises likely to be heard in the typical home.

Moreover, many of the noises are stationary, that is, they do not vary over time,
whereas speech and other man-made noises tend to be non-stationary, or fluctuating.
The snr at which fifty per cent of speech is intelligible (the srt) [Brand, 2009] varies
depending on the type of background noise. The srt in fluctuating noise occurs at
a snr of about −12 dB as opposed to −4.5 dB in stationary noise [Rhebergen and
Versfeld, 2005], which obviously has implications for our research.

We intended to use amt to establish what noises were, in fact, common in our
participants’ homes. In the meantime, we wanted to investigate the intelligibility of
unit-selection- and hidden Markov model (hmm)-based synthetic speech in everyday
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and home environments, using a fluctuating noise, as these are more realistic than
stationary noises [Rhebergen and Versfeld, 2005], so we hypothesized that the most
common background noise encountered in these environments is human speech,
either directly or indirectly via the television or radio. We, therefore, initially chose a
noise from the icra suite of noises [Dreschler et al., 2001].

The noises were developed for the International Collegium of Rehabilitative
Audiology by the Hearing Aid Clinical Test Environment Standardization (hactes)
working group in order to establish a collection of background noise signals that
could be used in testing hearing aids and other instruments. They are widely used in
audiology and audiological research, including by the HearCom project in the cre-
ation of the Matrix sentences [Wagener et al., 2007]. The noise signals are composed
of real speech modified with defined spectral and temporal characteristics to provide
real-life speech and babble noise.

The number of speakers in the background noise has an effect on the intelligibility
of the target speech, so we chose a noise that emulates a single speaker on the assump-
tion that this is the most likely scenario. Also, since it is known that understanding
speech in speech-shaped noise is more difficult if the noise matches the gender of
the speaker’s voice [Drullman and Bronkhorst, 2000], we always selected a noise
spectrally matched to the gender of the speaker used to generate the speech part of
the stimuli.

As Christensen et al. [2010] point out, humans alter their speech in the presence
of noise, so adding a noise to the same speech stimulus at various snrs may result in
a mixed signal that would never be encountered in real life; however, since speech
synthesis systems do not currently make any adjustments to their output in response
to background noise, we created stimuli by simply adding background noise to the
speech.

3.4 Methodology

We evaluated synthetic speech, either alone or with natural speech, using human
participants in listening experiments, using a mix of amt and the lab. Statistical
analyses were carried out using mixed model analysis [Gelman and Hill, 2006; Baayen,
2008], which is explained in Section 3.4.2.

3.4.1 Overview of experiments

We carried out four initial experiments. The first established a baseline for future
experiments; the second compared amt with the lab; the third compared Matrix
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Table 3.1: Overview of initial experimental-methodology experiments

Experiment Purpose Systems Stimuli Noise Snrs Design Participants Sec.

Baseline How intelligible
are current tts
systems?

Nick:
hts v.
f-usel

50 Matrix
sentences

icra
track 5

−10 dB
to
10 dB
in
5 dB
steps

Within-subjects.
Each heard both
systems and all
snrs in 1 of 10
balanced lists of
50 sentences

Native UK English:
20 in perception
labs

3.5

Amt Can amt
replace the lab?

US kal:
Diphone v.
hts
UK Nick:
f-usel v.
hts

50 suss None N/A Between-subjects.
Each heard the
same 50
sentences in one
system/voice

Native US English:
159 on amt; 20 in a
quiet room

3.6

Matrix Can Matrix
replace suss?

Nick:
hts v.
f-usel

50 Matrix
sentences

None N/A Between-subjects.
Each heard the
same 50
sentences in one
system/voice

Native US English:
59 on amt

3.7

New voice
and natural
speech

Can amt be
used with
another voice
and natural
speech?

Roger :
hts v.
f-usel v.
ns

60 suss None N/A Within-subjects.
Each heard 1 of 3
balanced lists of
60 suss

Native US English:
58 on amt
Native UK English:
24 in perception
labs

3.8

sentences with suss; and the fourth confirmed the utility of amt with another voice
and natural speech. Each experiment followed the same general format with the main
changes being the format of the stimuli used as required to suit the purpose of the
experiment. A summary of experiments is provided in Table 3.1.

No participant took part in more than one of the four experiments. Each exper-
iment was delivered using a series of web pages, broken down into parts. The first
part collected a standard set of demographic data for each participant; the second
technical data; the third data about the participant’s hearing; the fourth part presented
each stimulus on a separate web page and collected the typed response; and the last
collected supplementary data. The demographic and other data gathered are detailed
in Table 3.2.

In accordance with Amazon’s guidelines at the time, participants were permitted
to answer, ‘prefer not to say’ (which was recorded as ‘withheld’) to the demographic
questions, except place of birth and dialect. All items were self-reported. The same
information was collected for all subsequent experiments, except where stated.

3.4.2 Mixed model analysis

We used R [R Development Core Team, 2009] for all descriptive and analytical
statistics. We modelled the effect of speech synthesis system type on the number of
errors participants made using generalized linear mixed models [Gelman and Hill,



3.4 Methodology 41

Table 3.2: Demographic and other data collected from experiment participants

Part Data item Permi�ed responses

Demographics gender male; female; withheld

age range under 20 to over 80 in ten-year groups; withheld

education before high school; high school; some college;
bachelor’s degree; master’s degree; doctorate;
withheld

occupation retired; home maker; employed full-time; employed
part-time; student full-time; other; withheld

place of birth United States; Canada; United Kingdom; Australia;
New Zealand; Ireland; Other

dialect US or Canadian; UK; Irish; Australian; New
Zealand; South African

Technical computer scientist/engineer yes; no

work in speech technology yes; no

how o�en listen to
synthetic speech?

at least once a week; at least a couple of times a
year; rarely or never; I’m not sure

headphone type ear buds; in-ear; on-ear; full-ear

headphone features noise cancelling; sound isolating; none that I know
of

Hearing hearing aids no hearing aids; le� ear; right ear; both ears

ten questions of the hhia-s yes; sometimes; no

other hearing information free-form text

Supplementary environment quiet all the time; quiet most of the time; equally
quiet and noisy; noisy most of the time; noisy all
the time

kind of noise heard N/A; radio/television; conversation; music; tra�ic;
domestic appliance

noise characteristics N/A; constant; fluctuating; in short, isolated bursts

web browser Internet Explorer; Firefox; Mozilla; Opera; Safari;
Chrome; Other

current location New England; Mid-Atlantic; East North Central;
West North Central; South Atlantic; East South
Central; West South Central; Mountain; Pacific

experience of stimuli usually understand all of the words; usually
understand most of the words; words were very
hard to understand; I have trouble typing

any other comments free-form text
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2006; Baayen, 2008]. Mixed models are statistical models that account for both fixed
and random effects.

The term ‘fixed effects’ refers to those presumed to be caused by the explanatory
variables under investigation and are repeatable; whereas the term ‘random effects’
refers to those presumed to be caused by the latent variables introduced by the
experiment design and are not repeatable.

For example, we might ask 20 participants to listen to 50 different sentences syn-
thesized by two tts systems and record what they heard, measuring the proportion
of words they heard incorrectly as the wer. We would expect the effect of tts on wer

to be ‘fixed’ and to see similar overall wers if we ran the same experiment with 20

new participants. On the other hand, we would not expect any individual participant
in the second experiment to have exactly the same wer as any participant in the first;
nor for any particular sentence to return the same wer as any other if we used 50

new sentences. That is to say, the wer of any particular participant or sentence is
unpredictable, or ‘random’.

In simple terms, mixed models are an extension of the traditional linear model,
the formula for which is shown (in matrix terms) in Equation (3.1) where y is a
vector of responses (in our example, wers); X is the design matrix of explanatory
variables; β is an unknown vector of fixed effects; and ε is an unknown vector of
random errors.

y = X β + ε (3.1)

Mixed models explicitly model random effects by using a design matrix Z . Equa-
tion (3.2) shows the equivalent formula for a mixed model including the additional
term, Zγ, where γ is an unknown vector of random effects and Z is its design matrix.
Essentially, using our example, the individuality of participants and sentences has
been accounted for and ‘partitioned’ in the new term rather than being allowed to
spuriously affect the fixed effects or unnecessarily increase the number of errors. This
means the model more accurately reflects the real world allowing it to provide better
predictions.

y = X β + Zγ + ε (3.2)

A further advantage is that the errors in the error term (ε ) no longer have to satisfy
the requirement of being independent of one another. Mixed models confer further
advantages over the alternatives, such as analysis of variance (anova), in that they can
cope well with missing or sparse data and automatically account for nested designs.

Models throughout this thesis were fitted using the R [R Development Core
Team, 2009] package lme4 [Bates and Maechler, 2009]. The reporting of models
often includes reference to the Akaike information criterion (aic) [Akaike, 1974],
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a measure used to compare models. Although not an absolute test of a model, it
provides a measure of its quality relative to other models by measuring the trade-off
between how well the model fits the data and how complex it is. The lower the value
it returns, the better the model. The significance of the difference between models
can be established by means of the χ2 statistic returned from an anova comparison.

3.5 Baseline experiment

The review of the speech synthesis literature presented in Chapter 2 revealed that
little work had been carried out on assessing the intelligibility of modern synthetic
speech systems in the presence of a background noise and none on the effects of
reverberation. This first experiment, therefore, was conceived as a baseline to establish
the merit in further investigation and to trial the use of Matrix sentences and the
icra noise as potential vehicles for carrying out future studies.

Our main concern was to establish a baseline set of data that illustrates how unit
selection and hmm systems perform in a validated, fluctuating, background noise
appropriate to home (and other) environments. Secondly, we wanted to see which
system is better suited to providing speech in the presence of noise. Finally, we sought
to identify snrs that would be useful for future experiments.

3.5.1 Method

Since we wanted to establish a baseline for the intelligibility of tts systems in back-
ground noise, we chose to use two of the baseline systems from the Blizzard Challenge
2009 [King and Karaiskos, 2009]; namely, f-usel and the 2007 variant of hts. We
used the high quality RP-English voice Nick2 created for the Multisyn unit-selection
engine [Clark et al., 2007] for both systems, which means that only the synthesis
method is varied, not the underlying speech data.

We used one of the icra noises described in Section 3.3, specifically track number 5
from the icra compact disc (cd). The track is 5min 2.25 s in length and consists of
two channels of 3-band speech-modulated noise. It is has a male-weighted idealized
speech spectrum at normal effort and, therefore, closely matches the spectral and
modulation characteristics of the natural speech of a male speaker.

We presented the stimuli at snrs of −10, −5, 0, 5, and 10 dB. The lowest snr is
close to the srt in fluctuating noise for human speech, around −12 dB [Rhebergen
and Versfeld, 2005], and the highest snr is close to a value where ceiling effects may
occur.

2http://www.cstr.ed.ac.uk/projects/festival/onlinedemo.html

http://www.cstr.ed.ac.uk/projects/festival/onlinedemo.html
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Fifty unique sentences, in ten batches of five, were generated at random from the
word list given by Wagener [2009], ensuring that each word used occurred exactly
five times. In our design, there is a total of ten conditions (2 systems × 5 snrs). Using
a Latin square design of order ten, we created ten lists of sentences, ensuring that each
of the fifty sentences occurred in each of the ten conditions across our lists.

In order to ensure that both hts and f-usel used the same speaking rate, we
standardized the durations of both sets of stimuli. The mean durations of both sets
of speech files were calculated and the ratio of these means, 0.807 62, was used as the
adjustment factor to regenerate the hts files. We only changed the duration of hts
files because it allows for this to be done without unduly distorting the output (as
would occur by simply applying a linear ‘stretch’). The final mean sentence duration
of f-usel sentences was 1.88 seconds, with a standard deviation of 0.2 and the mean
duration of the hts sentences was 1.91 seconds, with a standard deviation of 0.1. The
sound pressure level (spl) of both sets of files was then adjusted to 65 dB to reduce
the possible effect of differences in amplitude.

Noise was added to each of the speech files by taking a matching-length, random
sample from the original noise file for each speech file at each of the five noise levels;
thus giving a total of 500 speech-with-noise files. Samples were not taken from the first
350ms and last 2 s of the icra noise, as these only contained silence. In standardizing
the spls and in calculating the snrs, we used the active speech level as determined by
method B of the ITU-T P.56 standard [ITU, 1993] using the matlab implementation
of Loizou [2007]. The active speech level is designed to match more closely what the
human ear actually perceives.

A total of 20 volunteers (15 male and 5 female) from staff and students at the
University of Edinburgh took part in the experiment. The spread of ages was: 1 under
20; 8 20 to 29; 8 30 to 39; and 3 40 to 49. Participants were asked to record the highest
level of education they had completed: 3 had completed high school; 3 a bachelor’s
degree; 6 a master’s degree; and 8 a doctorate. All participants were screened for
normal hearing using the Hearing Handicap Inventory for Adults Screening Version
(hhia-s) [Newman et al., 1991], substituting cinema for movies and using British
English spellings. All participants scored below ten, the threshold at which a hearing
test would be recommended. The mean score was 1.1, with a minimum of 0 and a
maximum of 8. All participants were native speakers of UK English.

Participants listened through Beyerdynamic dt770 pro 250Ω headphones fed
by a Focusrite Saffire le external FireWire sound card on an Apple Mac Mini in
an isolation booth at the Centre for Speech Technology Research (cstr). Two
participants were assigned to each list of sentences.

The composition of the Matrix sentences was explained to participants and they
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were given six sentences without noise with which to practise. They were asked to
adjust the volume of the headphones to a comfortable level at the start of the test and
not to adjust it further. They were prevented from playing any file more than once.
Instructions were given at the presentation of each file to type in what they thought
they heard and to guess when unsure. One file for one respondent failed to play and
the response was left unscored.

In order to be able to compare intelligibility without undertaking unnecessary
error analysis, we measured participant performance using wer [Bunnell and Lilley,
2007]. This was calculated using the Blizzard Challenge data analysis script3, which
determines the total ‘cost’ of transforming the participant’s response to the correct
string as the sum of the number of insertions, substitutions, and deletions divided by
the number of words in the correct string. For our analysis, we used the total number
of errors, since the number of words was the same in each sentence. The resulting
variable follows a Poisson-like distribution.

3.5.2 Results

Results are summarized in Figure 3.1. For a snr of 0 dB and better, results mirrored
what was known from comparative evaluations, such as the Blizzard Challenge [King
and Karaiskos, 2009], when hmm-based systems consistently outperformed pure
unit selection. For 5 and 10 dB, performance appears to be at ceiling, with next to
no errors. At −5 dB, participants make an average of one error per sentence for
both systems—the advantage of hts over f-usel disappears. At −10 dB, we even
find f-usel marginally outscoring hts (mean number of errors for hts: 2.21; mean
number of errors for f-usel: 2.01).

We examined the data in more detail using a generalized linear mixed model
(glmm) [Gelman and Hill, 2006]. Since the mean number of errors is 0.79, and
the variance is 1.44, the response variable is overdispersed. The negative-binomial
distribution is commonly used to model overdispersed count outcome variables and
can be seen as a more generalized form of the Poisson distribution, since it has the
same structure, but with an additional parameter to model the dispersion4. Figure 3.2
shows how the negative-binomial distribution fits our data better than the Poisson.

In order to evaluate our choice of the negative-binomial model, we carried out
a likelihood ratio test to compare Poisson and negative-binomial generalized linear
models of the data, which supported the choice ( χ2(1) = 6.69, p = 0.01). An ex-
amination of the quantile–quantile (q–q) plot of the residuals of the generalized

3http://www.cstr.ed.ac.uk/projects/blizzard/tools.html
4We originally used the quasi-Poisson family in our model instead of the Poisson family [Gelman

and Hill, 2006], but this has now been deprecated.

http://www.cstr.ed.ac.uk/projects/blizzard/tools.html
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Figure 3.1: Mean number of errors for f-usel (F) and hts (H) at all snrs. Dashed horizontal line
indicates error level at srt
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Figure 3.3: Coe�icients of individual-level predictors System, Snr × System, and Snr. Dots
correspond to point estimates, lines to 95 % confidence intervals

linear mixed model confirmed its fit to the data. The model was fitted using the lme4
package [Bates and Maechler, 2009] with the following formula:

Error ∼ Snr ∗ System − 1 + (1 | Participant) + (1 | Sentence) (3.3)

It consisted of two individual-level predictors, Snr and System, the interaction of
both predictors, Snr × System, and two group-level predictors, the identifiers for
participant and sentence. System is 1 if the system is hts; 0 if it is f-usel. We only
varied the intercept for each of the group-level predictors. Sentences that are more
difficult will contain more errors, and the higher error rate will be reflected in a
higher sentence-level intercept. Similarly, some people are more likely to mishear
words than others, and people who often get words wrong will have higher intercepts.
Thus, our group-level predictors allow us to correct for overall sentence difficulty and
overall performance differences between participants.

Following Gelman [2008], the individual-level predictors were rescaled to yield a
mean of 0 and a standard deviation of 0.5, which makes it easier to compare the effect
of the binary predictor, System, and the interval-sized predictor, Snr.

Figure 3.3 shows point estimates (dots) and confidence intervals (lines) for the
coefficients of the individual-level effects. Effects are significant if the ninety-five
per cent confidence interval does not include the coefficient 0. Negative coefficients
indicate that the number of errors decreases as the value of the predictor increases.
By far the largest effect is snr. The significant interaction between snr and system
indicates that hts benefits more from high snrs than f-usel. The smallest of the
three effects, system, indicates that hts mostly outperforms f-usel.

Since there are no single point estimates for group-level predictors, but a set of
estimates for each group, these predictors are typically summarized using the standard
deviation of the estimates—the higher the standard deviation, the stronger the group-
level variation. For our participant-level groups of scores, the standard deviation of
the intercept is 0.75, for sentence-level groups, it is 0.39, so participants account for
more variation in the scores than differences in the sentences we used.
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3.5.3 Discussion

Our results confirm the utility of carrying out further studies into the intelligibility
of modern tts systems in noise. We established the baseline set of data for the two
systems in fluctuating noise and, as expected, our results showed that intelligibility
decreased as the snr worsened. However, we had also expected one system to out-
perform the other across the whole snr range in the same way that Lancaster et al.
[2004] found that unit selection outperformed formant synthesis at all snrs. Instead,
our data show a puzzling interaction between snr and system type. We only observed
an advantage of hmm-based hts over unit-selection-based f-usel for non-negative
snrs; for negative snrs, performance was similar. It is not clear why the intelligibility
of hts should deteriorate more than the intelligibility of f-usel. Possible candidates
for an explanation include the richer acoustic detail preserved in unit selection, which
might be used by listeners in difficult listening conditions, and the algorithm used
to generate the glottal component of hts, which introduces a slight buzz into the
signal. Furthermore, the performance curve shown in Figure 3.1 also changed at 0 dB,
becoming markedly steeper. When plotting snr versus intelligibility, the shape of the
typical curve is sigmoidal, with a well-defined floor, a ceiling, and maximal slope at
the fifty per cent intelligibility point, the srt. Since average error rates are still below
2.5 at −10 dB, it appears that we have covered slightly less than half the typical curve,
thus indicating snrs warranting further investigation.

We successfully trialled Matrix sentences, simple declarative sentences with a fixed
structure, unlike many intelligibility studies, which rely on sus material. Despite
the relative simplicity of these sentences, we obtained meaningful results. Since the
vocabulary is highly controlled, it is possible to administer tests based on the Ma-
trix sentences using a multiple-choice paradigm. Another advantage of the Matrix
sentences is their use in audiological testing [Wagener, 2009]. Using the same stan-
dardized material for determining srts for human and synthetic speech not only
makes it easier to compare different types of systems, but also makes it easier to link
a person’s performance on an intelligibility test to their hearing. This raises a number
of interesting questions about the differences between Matrix sentences and sus, and
different paradigms for using Matrix sentences in intelligibility tests. A comparison
of Matrix sentences with suss was presented in Section 3.2.

Our use of the icra noise was vindicated by our results, once again allowing in-
telligibility testing of synthetic speech to be bridged to audiological testing. However,
since the type of noise is known to affect the srt [Rhebergen and Versfeld, 2005],
the generalizability of our results to different kinds of noise typical of the home had
not been established. Furthermore, the stimuli for this experiment only contained
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synthetic speech, so no comparison with natural speech could be made. We remedied
both these situations in future experiments by including natural speech and by using
background noises identified as being prevalent amongst participants on amt. We
also aimed to cover even lower snrs and determine the corresponding performance
floor in future work.

Our first step, though, was to establish amt as a platform for carrying out further
experiments.

3.6 Amazon Mechanical Turk experiment

In this experiment, our primary goal was to establish whether the intelligibility of
speech synthesis systems can be assessed using crowdsourcing, more specifically the
crowdsourcing platform Amazon Mechanical Turk.

In intelligibility tests, we measure to what extent participants can reproduce the
content of one or more utterances produced by a given speech synthesis system. The
degree to which participants are successful depends on many factors apart from the
synthesis system itself, such as the participant’s hearing [Wolters et al., 2007], the
listening environment [Venkatagiri, 2003], and the participant’s familiarity with the
languages and voices used. In laboratory settings, we can isolate the effect of system
quality by controlling most of these confounding factors. When crowdsourcing, this
is more difficult. We have no control over the circumstances under which participants
work, and we do not know to what extent they are honest about the information
they share.

In speech and language technology, amt had predominantly been used for anno-
tating and transcribing in order to create rich data sets [Callison-Burch and Dredze,
2010]. As in annotation and transcription, we have a ground truth in intelligibility
testing—the words that were spoken by the speech synthesis system. However, there
are two important differences. First, the more intelligible a system is, the smaller
wers will be, so distance to the gold standard cannot easily be used to weed out bad
participants. Because there are many legitimate sources of inter-participant variability,
we need to find a measure that allows us to separate representative participants and
outliers. Secondly, we are not only interested in absolute intelligibility scores, but we
also want to rank systems in terms of significant differences in intelligibility [King and
Karaiskos, 2009]. So, whether amt is a useful venue for administering intelligibility
tests does not just depend on the absolute scores generated, but on whether these
scores preserve the relative order of synthesis systems.

We hypothesized that the results of amt participants would yield similar rankings
of the intelligibility of speech synthesis systems compared to the results obtained in
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the laboratory with students, but that their absolute wers would be higher. Callison-
Burch and Dredze [2010] give a number of reasons why the data from amt may be of
a lower quality, such as the task being too complex or the instructions not being clear
enough. In our case, we expected that background noise and other distractions—which
are eliminated in a laboratory environment—would reduce performance.

Our secondary goals were to investigate the effect of participant-specific conditions
such as background noise and hearing on intelligibility, and to develop a method for
screening out unreliable respondents.

Since our focus was on exploring and validating the methodology, we set up a
two-part experiment for which the outcomes can be predicted relatively well from the
literature, the first comparing two systems with a US English voice and the second
comparing two systems with a UK English voice. In each pair we used the same
speaker to minimize speaker quality variation. In both cases, we expected hts to be
significantly more intelligible than the other system.

3.6.1 Method

For the part using the US English voice, we opted for the kal5 voice built with the
diphone system that is part of the standard Festival installation and the hts version
that was built at cstr for demonstration purposes. The hts version (2007) was
built using speaker-adaptive hmm synthesis [Yamagishi et al., 2009]. A total of 523
sentences taken from the Carnegie Mellon University (cmu) kal Communicator
database were used to adapt a basic model, which was mixed-gender and had been
trained on US English data. Since hts tends to score very well in comparative tests,
we hypothesized that the hts system would be more intelligible than the diphone.

For the UK English voice part, we chose the Nick voice with the systems reported
in Section 3.5.1, that is, f-usel and hts. Because we had found hts significantly
more intelligible than f-usel for high snrs, we hypothesized that hts would be
significantly more intelligible than f-usel. The Nick voice in f-usel is based on a
total of over ten hours of recordings conducted over two years. The hts version
was trained on around 7000 sentences (9.5 hours) of speech taken from the original
recordings and, as enough training data is available, uses only speaker-dependent
hmms [Zen et al., 2007].

We synthesized 50 suss for each of the four system and voice combinations. These
sentences are a subset of the 100 that were used in the Blizzard Challenge 2009 [King
and Karaiskos, 2009]. They consisted of twelve commands, eight questions, ten
statements with a relative clause (complex statements), and twenty statements with

5http://www.cstr.ed.ac.uk/projects/festival/onlinedemo.html

http://www.cstr.ed.ac.uk/projects/festival/onlinedemo.html
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no minor clauses (simple statements). The sequence of sentences was randomized
once for all four system and voice combinations. One of the commands occurred
twice, once in the middle of the sentence list and once towards the end, so that we
could test for participants gaming the system and for any learning effect.

Participants were recruited from two sources, the University of Edinburgh student
population (lab participants) and amt (amt participants). All participants were
required to be native speakers of US English to avoid effects of dialect [Lehiste and
Peterson, 1959]. Both sets of participants were presented with an identical set of web
pages. Those pages requesting demographic information had no defaults set and the
layout was designed so that no answer was easier to select than another. Responses to
the speech stimuli were typed in by the participant.

Lab participants were recruited through the University of Edinburgh’s student em-
ployment service and paid £5 for their participation. The experiment was conducted
in a quiet meeting room and participants listened to stimuli over Beyerdynamic
dt770 pro 250Ω headphones fed from an Apple MacBook Pro. We recruited a total
of 20 participants, 5 for each combination of system and voice. Each participant
heard only one combination, thus allowing us to present numerous sentences per
combination and to keep the amt task at a manageable size. Females accounted for
80% of participants and all were aged between 18 and 29—highlighting just how
unrepresentative of the population student participants can be. On the hhia-s, 16
participants scored 0, 1 scored 4, and 1 female participant scored 28, well above the
cut-off for potential sensorineural hearing loss. This participant did not report any
problems with her hearing in the free comment field and had the second-best average
wer out of the five students who listened to that particular combination of system
and voice. No participant wore hearing aids.

Participants recruited through amt were paid US$1 for the task, with the time
for completion set to one hour. We restricted the experiment to US participants and
required participants to wear headphones and be native speakers of US English. After
initial slow recruitment, the task was re-released every day at a time that roughly
corresponded to morning in the US. This led to an average of 20 new completed
assignments per day. Out of a total of 229 amt participants, 73% completed the
entire task, 11% completed the demographic questionnaire, but failed to transcribe all
50 sentences, and 16% did not complete any subset of the task. Completion rates were
spread evenly across system and voice combinations (Fisher’s Exact test, p = 0.83), so
it does not appear that participants withdrew simply because a particular system was
too difficult to understand.

In order to comply with the privacy policy of amt, we allowed amt participants
to opt out of almost all the demographic questions except for current location within
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the US, country of birth, and dialect of English, which we used to filter out people
who were not native speakers of US English and who were not born in the US. Only
6 of our participants were born outside the US; of these, 1 was born in New Zealand,
and the others were born in places not on our list of English-speaking countries. The
New Zealand native also reported being a native speaker of New Zealand English,
while the others all stated that they were native speakers of US English. Finally,
we excluded two additional participants with a mean wer above 0.9. One of these
had trouble playing the stimuli, but the other failed to mention any problems with
sound. This left us with a total of 159 participants. The wer criterion appears to
be a good method for filtering out amt participants who did not complete the task
conscientiously. The amt participant with the highest mean wer in the remaining
data set had a mean wer of 0.61 and scored 100 per cent wer on only 5 sentences.
The amt participant with the next worst mean wer (0.48) scored 100 per cent wer
on 2 out of a total of fifty sentences, only 1 other had two sentences with 100 per cent
wer, and 8 others had only one sentence with 100 per cent wer.

Whilst all 159 amt participants specified their occupation, 1 chose not to report
age; 1 did not report a gender; and 4 did not specify their level of education. Of
the remainder: 52% of amt participants were female; 47% male; 58% were aged
between 18 and 29, 33% between 30 and 49, and only 8% were aged 50 or older. Age
groups and genders are distributed evenly across system and voice combinations (age:
Fisher’s Exact test, p = 0.432, gender: Fisher’s Exact test, p = 0.797). Those 25%
who described themselves as computer scientists are distributed equally across all
four combinations ( χ2(3) = 1.88, p = 0.597). Synthetic speech was listened to at least
weekly by 17%. Full- and part-time work accounted for 42% of reported occupations,
25% were students, 28% were homemakers, retired, or fell into a category not covered
by our alternatives. While 74% had a college education or a bachelor’s degree. 11%
had a postgraduate degree and 12% had only completed high school. Although 2 had
not completed high school, one of these appears to have been a high school student.

We assessed background noise with three questions: level of background noise
(quiet all of the time, quiet most of the time, equally quiet and noisy, noisy most of the
time, noisy all of the time); type of noise (not applicable, radio/television (tv), chat,
music, traffic, domestic); and character of noise (not applicable, constant, fluctuating,
short bursts). Of all amt participants, 54% reported that their environment was
quiet all of the time, for 38%, it was quiet most of the time. Only 2% reported a
noisy environment most or all of the time. The most frequent type of noise reported
by the amt participants who heard a background noise was radio/television (40%),
followed by traffic (22%) and chat (16%). For 38% the noise came in short, isolated
bursts, for 25% it was constant, and for 26%, it fluctuated. Noise types, levels, and
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sources were evenly distributed across all four combinations of system and voice.
None of the amt participants had been fitted with a hearing aid. A number of

them (19) scored 10 or higher on the hhia-s, which means that they possibly have
a sensorineural hearing loss. In the free comments, an additional 7 who scored low
on the hhia-s mentioned hearing problems, either due to hearing loss or in specific
situations. However, none of these participants had the highest mean wer for the
stimuli they heard and only 3 of them were in the top 5 for their group.

3.6.2 Results

In the following, we retain wer for descriptive statistics, but for statistical modelling,
we converted it to the number of errors that were made on each sentence. Word error
rate itself is not normally distributed; 34% of all scores are 0 and 63% are below 0.2,
and 84% are below 0.4. By replacing wer with the corresponding number of errors,
we obtain an outcome variable that can be approximately characterized using the
negative binomial distribution that we used in our baseline experiment.

We modelled the effect of speech synthesis system type on the number of errors
made using glmms [Gelman and Hill, 2006; Baayen, 2008] with the formula:

Error ∼ System ∗ SentenceType + (1 + System | Sentence) + (1 | Participant) (3.4)

Individual-level effects were synthesis system (diphone versus hts for the kal voice;
f-usel versus hts for the Nick voice), and type of sentence (command, question,
statement, complex statement). We also included a term for the interaction between
system and sentence type. We added two sets of group-level predictors, a sentence-
level term and a participant-level term. The participant-level term only consisted
of an intercept, which reflects individual differences in performance. We can use
these intercepts to identify participants who have particular problems with the
material. The sentence-level term consisted of an intercept, which reflects differences
in difficulty between sentences, and a slope for speech synthesis system. If the slope
for a given sentence is negative, participants are less likely to make errors on that
particular sentence when a particular synthesis system is used; if the slope is positive,
participants are more likely to make errors.

Models were fitted using the R [R Development Core Team, 2009] package
lme4 [Bates and Maechler, 2009]; for Kruskal-Wallis, Wilcoxon, and Spearman tests,
we used the package coin [Hothorn et al., 2008]. Many p values are very small, even
though the actual improvement in model fit is relatively small, so we limited our
reporting of them to 0.001, even if the actual figure is smaller.

As we had hypothesized, the mean wer of amt participants across all four
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Figure 3.4: Mean wers by kal system with amt and lab participants

combinations was 0.2 compared to 0.13 for the lab participants—some 34% higher. If
we consider only those amt participants who identified themselves as students, the
difference between the two conditions is the same, with a mean wer of 0.19 for student
amt participants. Both differences are statistically significant at the p < 0.001 level
(Wilcoxon test). When comparing scores on the first and the last ten sentences, the
amt participants show significant learning effects (Wilcoxon test, Z = 5.7, p < 0.001),
but not the lab participants (Wilcoxon test, Z = 0.67, p = 0.501). None of the groups
managed to improve wers on the command that is repeated.

While absolute wer scores from amt are much higher, relative differences between
systems are either preserved or enhanced. Figure 3.4 summarizes wer for the two
systems based on the kal voice, and Figure 3.5 shows wer for the Nick voice. Both
figures are box-and-whisker plots, with the boxes representing the interquartile range
and the whiskers 1.5 ×the interquartile range. Dots are outliers; solid lines indicate
medians.

In order to examine the effect of speech synthesis system, type of sentence, and
the interaction between sentence type and the combination of system and voice,
we removed all variables that contained the predictor to be tested from the fitted
model. So, when testing for the effect of system and sentence type, we removed
both the variable itself and the interaction term, because otherwise part of the effect
of the removed variable would have been captured in that term. We then assessed
the difference between full and reduced models using anova and the χ2 test for
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Figure 3.5: Mean wers by Nick system with amt and lab participants

Table 3.3: Significance of individual-level predictors (anova model comparison, χ2 test) for the
glmm of the amt experiment

Nick Lab Nick Amt Kal Lab Kal Amt

Predictor aic p aic p aic p aic p

Baseline 918 — 9558 — 1286 — 11052 —
Sentence type 920 0.026 9565 0.004 1283 0.184 11055 0.014
System 935 0.001 9580 0.001 1282 0.362 11660 0.001
System x Sentence type 925 0.004 9569 0.001 1284 0.227 11057 0.010

establishing significance. The results are summarized in Table 3.3.
For each combination of experiment and participant group, we give the aic of

the baseline model with all predictors, followed by the aic of the models that result
when one of these predictors is removed, and the probability that the difference
between the original and the reduced model is significant. While the results from
the lab participants did not differentiate between the two systems used with the kal
voice, clear differences emerge from the data collected from amt. Looking at the
box-and-whisker plots in Figure 3.4, we see that this is due to a few of the laboratory
students who had particular problems understanding the hts version of the kal voice
(the upper end of the box-and-whisker plot is much bigger than the lower end).

There are also significant effects of sentence type and interactions between sen-
tence type and system. This is illustrated by Table 3.4, which gives mean wers by
sentence type and combination of system and voice, calculated from amt participants’
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Table 3.4: Mean wers for sentence types for all system/voice combinations

Nick Kal

Sentence type hts f-usel hts diphone total

Command 0.20 0.20 0.25 0.17 0.21
Complex statement 0.13 0.22 0.21 0.25 0.20
�estion 0.07 0.17 0.17 0.25 0.17
Statement 0.12 0.21 0.17 0.29 0.20

total 0.13 0.20 0.20 0.25 0.20

responses. Commands are easiest for people who heard the diphone version of kal;
for all other sentence types, Nick hts gives the best results.

Figures 3.4 and 3.5 reflect substantial variation in amt participants’ wer scores.
In order to find out whether participant and environmental characteristics affected
scores, we quantified the effect of exposure to synthetic speech, age group, gender,
background noise levels, and background noise type on participants’ mean scores
using a linear model. (Since the mean scores follow a log-normal distribution, we
predicted the logarithm of this variable.) An anova showed no significant effects
(R2 = 0.16, F(17, 141) = 1.63, p = 0.064). Nevertheless, looking at the residual plots,
we were able to identify three individuals who performed particularly well and one
person who performed much worse than expected—this is the amt participant with
the highest overall mean score.

We can do better than modelling mean scores, however. The statistical model
contains a term where separate intercepts are fitted for each participant. These
intercepts describe the overall wer trends for each participant after global effects
of speech synthesis system and sentence type have been taken into account. The
histograms for kal and Nick (Figure 3.6) show several clear outliers with very large
intercepts. These correspond to amt participants whose individual mean score is
more than two interquartile ranges above the mean for their respective group, which
brings us back to our original graphs of mean scores—such amt participants will also
be represented as circles in a typical box-and-whisker plot.

3.6.3 Discussion

To the best of our knowledge, this was the first time speech intelligibility was mea-
sured using a large scale crowdsourcing, or similar, service to recruit participants.
Although absolute wers are much worse than in the laboratory situation—probably
because of background noise and distractions, as we had speculated—the amt re-
sults reflect relative differences in intelligibility fairly well. For many applications,
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for example when a new speech synthesis approach needs to be compared to older
technology or to natural speech, this will be sufficient, but not if we want to know
whether it is possible to understand synthetic speech perfectly. Participants who
perform less well than expected can be identified through simple box-and-whisker
plots; these results agree well with the outcomes of glmms where separate group-level
intercepts are fitted for each participant.

The result of our experiment using the Nick voice is as expected, while the
outcome of the comparison of the kal systems is somewhat surprising, given that
hts generally yields very high-quality synthetic speech. The poor performance of
kal hts may be due to the lack of material available for adapting the average speaker
model. The results on the kal systems illustrate the particular advantage of amt. For
small effect sizes, many participants are needed to obtain sufficient power, especially
if the comparison is between subject. Thus, the amt data were able to reveal a clear
difference between the diphone and hts systems, which had not emerged from the
laboratory study due to the small number of participants. We also showed that it
is worth including the type of sus in the analysis, because difficulty varies by type,
and some systems seem to perform better on certain types of sentences, such as,
statements rather than commands.

All amt participants who completed the task met the recruitment criteria, except
for one who misread the instructions and five native speakers of US English who had
not been born in the US. The percentage of sentences that are completely wrongly
transcribed (100% wer) appears to be a good criterion for identifying people who
enter random words instead of carefully listening to the sentences. We were somewhat
concerned by the high drop-out rate. Around 16% of all amt participants failed to
complete any part of the task. We did not ask non-completers what their main
problem was, but from previous experience with Internet listening experiments, we
suspect that playing sound in the participant’s browser was the main culprit.

While the sample of amt participants we recruited is not representative of the
population of the US [Ipeirotis, 2010], it is far more diverse than the student and ex-
pert samples which are typically recruited for listening experiments. Overall wers are
in line with wers reported by Novotney and Callison-Burch [2010] for transcription
of spontaneous speech. Although the evaluation of amt in comparing natural speech
with synthetic was not conducted in this experiment, it is addressed in Section 3.8.
The wers obtained by the amt participants in our experiments also vary far more
than the wers of the lab participants. Although we asked all participants to fill in
an extensive questionnaire about their listening situation and their hearing, none of
these variables was able to cover a sizeable amount of this variation. Indeed, quite
a few amt participants who scored well on the hhia-s mentioned specific hearing



3.7 Matrix sentences experiment 59

problems in comments. The analysis of the hhia-s scores prompted a more detailed
study of the use of the hhia-s for screening in perception experiments [Wolters et al.,
2011].

We also suspect that the questions we used to assess environmental noise levels
during the test may not have adequately reflected true noise levels and sources. Often,
people are exposed to different types of background noise, for example a lorry passing
by the window while the radio is on in the background. In our questionnaire, we asked
people to highlight only one type of noise and failed to allow for these contingencies.
We addressed this shortcoming in subsequent experiments.

We established that amt is a viable platform for conducting speech intelligibility
tests, particularly for investigating methodological issues in intelligibility testing
that typically require a large number of participants, such as the choice of sentence
material and the effect of learning. Our results supported the use of amt in future
experiments, which we did in our next experiment to evaluate the use of Matrix
sentences and, subsequently, in the evaluation of noise and reverberation.

3.7 Matrix sentences experiment

Having established the viability of amt for hosting listening experiments and, specif-
ically, its ability to match the listening lab in measuring the performance of two
systems relative to one another, albeit with more variance, the next step was to
ascertain whether equivalent results could be achieved by replacing suss with Matrix
sentences. To this end, we designed this experiment so that the data collected would
match the data collected using amt for the UK English part (using the Nick voice) of
the experiment described in Section 3.6, with the exception that the fifty suss were
replaced by fifty Matrix sentences. Since this experiment was also run on amt, we
continued to collect data that would be useful in assessing amt and, in particular,
data on the types of noises present in participants’ listening environments.

3.7.1 Method

The stimuli were generated in the same way as for the baseline experiment described
in Section 3.5, that is: the Matrix sentences were chosen randomly using a Latin
square; the utterances were synthesized using the two systems used to generate the
Nick voice files in Section 3.6 (f-usel and hts); and the spl of the files was adjusted
to 65 dB.

All participants were recruited through amt and paid US$1 for their participation.
Non-US residents and native speakers of languages other than US English were
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excluded from the final analysis. Each participant heard either the f-usel or the hts
version of the voice. In accordance with the rules of amt, participants could withhold
some demographic information.

A total of 101 amt participants accepted the task, of whom: 60% completed
all of it; 18% completed the demographic questionnaire, but failed to transcribe
all fifty sentences; and 22% did not complete any part of the experiment (a 6%
increase over the last experiment). Completion rates were spread evenly across systems
(Fisher’s Exact test, p = 0.886).

Of the 61 who completed all parts of this experiment, 2 of the participants were
not born in the US and were excluded, leaving a total of 59 for the remaining analysis.
Unlike the previous experiment, no amt participants were excluded because of their
mean wer score, since the amt participant with the highest wer only scored 0.32
(with no scores at 100%) and only two 100% wer scores were recorded across all
participants.

Very little demographic information was withheld. Occupation was withheld by
only 2 participants. A different 2 withheld their gender, 1 of whom also withheld age.
This left 41% of the participants reporting themselves as working full- or part-time,
25% as students, and 31% as homemakers, retired, or in a category not covered by
our alternatives. Females made up 54% and males 42%; 54% were aged between 18

and 29, 31% between 30 and 49, and only 14% were aged 50 or older. Age groups
and genders are distributed evenly across systems (age: Fisher’s Exact test, p = 0.815,
gender: Fisher’s Exact test, p = 0.894). Listening to synthetic speech occurred at
least weekly for 14% and 25% described themselves as computer scientists; they are
distributed equally across systems ( χ2(1) = 0.27, p = 0.602). Having had a college
education or a bachelor’s degree accounted for 71%, whilst 10% had a postgraduate
degree and 19% had only completed high school. No participants reported their
environment being noisy most or all of the time and 58% reported it being quiet all
of the time. The remainder reported it as quiet most of the time (34%) or equally
noisy and quiet (8%).

No participant had been fitted with a hearing aid. Only 4 participants scored
10 or higher on the hhia-s, which means that they possibly have a sensorineural
hearing loss. In the free comments, an additional 3 who scored low on the hhia-s
mentioned minor hearing problems. Only one of these participants had a noticeably
high mean wer, which was still only the third highest for that group.

In addition to potential hearing loss (an hhia-s score of ten or higher) and a
reported problem with hearing, we used synthetic speech listening frequency, age
group, gender, and whether participants described themselves as a computer sci-
entist as predictors in a linear model. Because the mean wer was not normally
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Table 3.5: Occurrence of background noises among amt participants of the Matrix sentences
experiment. Figures in the grid only include the number of occurrences with another noise, whereas
total additionally includes the noise being reported alone
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total 31 0 8 1 8 11 6

distributed, we used boxcox in the mass package [Venables and Ripley, 2002] to calcu-
late a suitable power transformation (0.4), which was then applied to predict mean
wer raised to that power. An anova of the resultant model showed no significant
effects (R2 = 0.17, F(11, 47) = 0.89, p = 0.556).

For this experiment, rather than ask for a single main noise, we asked participants
to record which of one or more noises they heard. Slightly over half (53%) of
participants reported hearing no noise at all, which—although refuting our intuition
that background noise is present more often than not—demonstrates how prevalent
background noise is in everyday environments. Table 3.5 summarizes the frequency
with which each background noise was reported and its co-occurrence with other
noises. Although traffic noise was the single most commonly reported noise, when
we consider conversation and radio/tv together, the results tend to support our
hypothesis that speech-related noise is the most common. (Although we cannot
be sure, it is probable that reports for ‘Music’—and possible that ‘Other’—also
contained speech.) Participants were also asked to rate the overall loudness of the
noise using a five-point scale from 1 (no noise) to 5 (very loud). Whilst a linear model
showed the effect of noise level on the (transformed) mean wers was not significant
R2 = 0.06, F(3, 55) = 1.16, p = 0.333, the trend shown in Figure 3.7 is as expected, with
an increasing level of noise causing higher wers.

3.7.2 Results

The first of our concerns with Matrix sentences was that their simple nature could lead
to a ceiling effect, particularly, as in this experiment, when used without background
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Figure 3.7: Mean wers by background noise level perceived by amt participants in the Matrix
sentences experiment

noise. Inspection of the individual wer scores and the very low overall mean wer

(0.09) does suggest a tendency towards a ceiling effect. Indeed, 1 participant achieved a
mean wer of zero and no one scored more than a mean wer of 0.32. However, when
a histogram of wers using Matrix sentences is plotted alongside those from using
suss, from the previous experiment, using the same bin size they appear remarkably
similar (see Figure 3.8) and the large proportion of very low wers may just be a
symptom of the high intelligibility of modern synthetic speech rather than any failing
in the speech materials. However, it should be noted that, because Matrix sentences
can only ever have five words, a wer score between 0 to 1 can only take on the values
0, 0.2, 0.4, 0.6, 0.8, and 1; whereas, because suss come in lengths of 6, 7, and 8, the
resulting wers can take on nineteen separate values and the actual scores are given
in the bottom graph in Figure 3.8 for reference. From this it can be seen that, whilst
suss appear to be more discriminative, on closer inspection it is clear that the scores
to the right of 0 occur in bunches of three, each of which represents the number
of errors divided by the three lengths of sentence (6, 7, and 8 words). This in turn
means that the wer outcome is dependent on the choice of sus materials and we
have already shown in Table 3.3 that choice of sentence is a significant predictor of a
system’s performance.

Our intuition was that suss introduced more variability into the scores than
Matrix sentences, simply because suss can include questions, commands, and complex
statements and the number of words in each sentence varies. Aggregating the wer
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Figure 3.8: Distribution of wers with Matrix and semantically unpredictable sentences, using
the same bin sizes (top) and actual wers for suss (bo�om)

scores by sentence (rather than by person) reveals a mean of 0.17 and a standard
deviation of 0.09 for suss whereas for Matrix the figures are 0.09 and 0.07, respectively.
While the scores for suss are normally distributed, the very low mean for Matrix
sentences reflects a non-normal distribution with a high preponderance of scores of 0.

Investigating this further, we built a glmm for each of the experiments, using
the formula in Equation (3.5), to predict the number of errors with the system as an
individual-level predictor and the participant and sentence identifiers as group-level
predictors.

Error ∼ System + (1 + System | Sentence) + (1 | Participant) (3.5)

We allowed a random intercept for the participant and sentence identifiers and a ran-
dom slope for sentence. We then plotted the sentence-level intercepts produced by the
models. The intercepts reveal the overall wer trend for each sentence after the effects
of system have been taken into account, with a higher intercept indicating a higher
wer. Figure 3.9 show the intercepts for the Matrix and semantically unpredictable
sentences. The intercepts for Matrix sentences do appear to be slightly more tightly
bunched around zero, with fewer outliers, but with one very high outlier. However,
the graphs are not so different as to enable us to make clear inferences about either
set of sentences.

Our second concern with Matrix sentences was the learning effect likely to occur
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Table 3.6: Mean wers for first, penultimate, and last ten sentences (and percentage decrease
from first) for semantically unpredictable and Matrix sentences

Suss Matrix

hts f-usel hts f-usel

Position wer % wer % wer % wer %

First 0.165 0 0.199 0 0.067 0 0.190 0
Penultimate 0.145 12 0.198 0 0.054 20 0.134 29
Last 0.148 10 0.201 −1 0.045 34 0.080 58

with the repeated use of a fixed set of words. To assess the impact of any learning effect,
we compared wer scores on the first and last ten sentences stratified by synthesis
system, as we did with the previous experiment. The result was significant support
for a learning effect (Wilcoxon test, Z = 4.2, p < 0.001).

The normal response to using stimuli that could produce a learning effect is
to provide participants with sufficient training that learning ceases. Clearly, this
had not happened with the (albeit, limited) training we had provided and we
wanted to establish whether learning had peaked at any point in the experiment.
To this end, we compared performance on the last ten sentences with the previ-
ous (that is, penultimate) ten. Even at this late stage learning was still taking place
(Wilcoxon test, Z = 2.84, p = 0.005).

Although Matrix sentences appear to suffer from a definite and marked learning
effect, the same effect was found in the previous experiment when amt participants
listened to suss, although not with the lab participants. In order to visualize the
extent of the learning effect, we plotted, in Figure 3.10, the wer scores for the first
ten sentences, last ten sentences, and the penultimate ten sentences for Matrix and
semantically unpredictable sentences. The scale of the learning effect with Matrix
sentences is apparent, but not with suss and, after further investigation, it seems that
the learning effect previously observed with them was a result of the use of the kal
voice.

The extent of the learning effect is quantified in Table 3.6, which suggests the
effect is more pronounced for the f-usel system and this is borne out by an anova

on a linear model built to predict wer from position (first, penultimate, or last) and
the interaction of position and synthesis method (F(2, 171) = 5.82, p = 0.004).

In spite of the reservations over the potential shortcomings of Matrix sentences,
and as Figure 3.11 shows, whilst the absolute levels of wer are lower for both synthesis
systems when using Matrix sentences, the relative positions are remarkably similar
and both experiments rate hts as more intelligible than f-usel. In order to test
the significance of the difference between the two systems, using Matrix rather than
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Figure 3.10: E�ect of learning for hts and f-usel with Matrix and semantically unpredictable
sentences

Table 3.7: Significance of individual-level predictors (anova model comparison, χ2 test) for the
glmms of the Matrix and semantically unpredictable sentences

Matrix Suss

Predictor aic p aic p

Baseline 4228 — 9565 —
System 4400 0.001 9886 0.001

semantically unpredictable sentences, we used the glmms described above. For each
experiment, we compared two models: one with the predictor System and one
without. Table 3.7 shows the results of anova comparisons of the models from which
it can be seen that a significant difference between systems is found with both sets of
sentences, even though the absolute wers for Matrix sentences were somewhat lower.

3.7.3 Discussion

Despite our reservations about the learning and ceiling effects likely when using
Matrix sentences without background noise, Figure 3.11 and Table 3.7 demonstrate
that results can be obtained with Matrix sentences that match those with suss, whilst
enjoying the advantages Matrix sentences bring.

The ceiling effect noted with Matrix sentences does not appear materially different
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Figure 3.11: Meanwers for hts and f-usel with Matrix and semantically unpredictable sentences

from that seen with suss in the previous experiment. The wider range of wers
possible with suss does not seem to make them any more discriminative in practice
and, in any event, the differentials are lost once the wer is converted to numbers of
errors. On the other hand, the hypothesized reduction in variability of wer scores
resulting from Matrix sentences does not appear to have been realized and they offer
no significant advantage over suss in this regard.

The learning effect expected with Matrix sentences is significant and is more
pronounced than with suss. We presume that the reason for this is the predictability
inherent in using a relatively closed set of words. Even though the training we
provided was somewhat limited, it does not appear, from our results, that further
training would make any substantial difference, since learning occurred, at least, up
until the penultimate ten sentences. It is not clear why f-usel should suffer more
than hts with Matrix sentences when it suffered less (in fact, almost not at all) with
suss.

3.8 New voice and natural speech experiment

The experiments set out in Sections 3.6 and 3.7 had demonstrated the utility of
amt in conducting listening experiments when comparing two synthesis systems
and stimulus materials. However, both experiments used the Nick voice and neither
included natural speech in its comparisons, so it remained to be seen whether our
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results were generalizable to other voices and the inclusion of natural speech. In this
experiment we sought to test this by using a different voice and comparing stimuli
generated synthetically with the same stimuli recorded by the original speaker. The
natural speech thus recorded was not used in the training of either synthesis system.

We wanted to compare our results with those obtained from the previous exper-
iments, but were concerned that stimuli created with Matrix sentences in natural
speech without noise would have such a ceiling effect as to render the results unusable.
Previous experiments had not included natural speech, so its performance on amt

had not yet been compared with that in the lab. Therefore, we reverted to using suss
and ran the experiment on amt and in the lab, so that the performance of natural
speech on amt could be established.

3.8.1 Method

The stimuli were generated from sixty suss selected from the one hundred used for the
Blizzard Challenge 2009 [King and Karaiskos, 2009]. The sixty sentences contained
fifteen commands, fifteen questions, and thirty statements. In this experiment, all
the statements were simple, that is, without a relative clause. The sentence types
and three versions of each sentence: hts, f-usel, and natural speech (ns) were
balanced across three lists. Each participant listened to only one list and, therefore,
heard all three systems. Participants were either recruited through the University
of Edinburgh’s student recruitment service, and paid £5, or through amt, and paid
US$1 for participating. Non-US residents were again excluded as were non-US native
speakers of English. The same self-reported information as in Table 3.2 on page 41
was collected from each participant.

A total of 24 lab participants were recruited: 12 male and 12 female. Only two age
groups were represented with 96% of participants being between 18 and 29 and 4%
between 30 and 49. The majority (83%) were full-time students, with 12% employed
part-time, and 4% recorded as ‘other’. As for education, 8% reported having finished
high school, 46% some college, 21% a bachelor’s degree, and 25% a postgraduate
degree. Half of the lab participants (50%) rarely or never listened to synthetic speech
whilst 38% heard it at least twice a year, 4% heard it at least once a week, and 8%
were not sure. None of the participants wore a hearing aid or scored ten or over
on the hhia-s. The lab part of the experiment was conducted in the cstr listening
booths and with the equipment described in Section 3.5.1.

Of the 110 amt participants who accepted the task: 55% completed all of it,
16% completed the demographic questionnaire, but did not transcribe all sixty sen-
tences, and 28% did not complete any part of it (another increase of 6% over the
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last experiment). Completion rates were spread evenly across systems (Fisher’s Ex-
act test, p = 0.601). We excluded participants who were not born in the US, which
accounted for 3 of the 61 who completed all parts of this experiment, leaving a total
of 58 for further analysis.

As before, no amt participants were excluded because of their mean wer score,
since the amt participant with the highest mean wer only scored 0.27 (with no
individual utterance scores at 100%) and only 3 wer scores of 100% were recorded
by 3 different individuals.

A total of 4 items of information were withheld: occupation by 3 and gender by
1, which left 38% of the amt participants to report themselves as working full- or
part-time, 28% as students, and 29% as homemakers or in a category not covered by
our alternatives. Females accounted for 47% and males 52%; 69% were aged between
18 and 29, 28% between 30 and 49, and only 3% were aged 50 or older. Genders
(Fisher’s Exact test, p = 0.874) and age groups were distributed evenly across systems
(Fisher’s Exact test, p = 0.048). Of all the participants, 14% reported listening to
synthetic speech at least weekly and 34% described themselves as computer scientists;
they are distributed equally across all three systems ( χ2(2) = 2.04, p = 0.36). Having
had a college education or a bachelor’s degree accounted for 78%, whilst 3% had a
postgraduate degree and 17% had only completed high school. No participant had
been fitted with a hearing aid. There were 10 amt participants who scored 10 or
higher on the hhia-s, which means that they possibly have a sensorineural hearing
loss. In the free comments, an additional 2 who scored low on the hhia-s mentioned
minor hearing problems. Only 1 of these participants had a particularly high mean
wer score, being the highest for that particular group, but it was not the highest
overall and the participant’s hhia-s score was only 12.

No participant reported the listening environment being noisy most or all of
the time and 59% reported it being quiet all of the time. The remainder reported it
as quiet most of the time (31%) or equally noisy and quiet (10%). Over half (59%)
of participants reported hearing no noise at all, further confirming the results from
Section 3.7.1. Table 3.8 summarizes the frequency with which each background noise
was reported and its co-occurrence with other noises. In this experiment, conversation
rather than traffic noise was the single most commonly reported noise, with ‘radio/tv’
and ‘other’ also being relatively common.

Once again, the effect of noise level on mean wers was not found to be significant
from a linear model (R2 = 0.06, F(4, 53) = 0.88, p = 0.482), when participants were
asked to rate the overall loudness of the noise using a five-point scale from 1 (no noise)
to 5 (very loud) and the trend shown in Figure 3.12 does not seem as pronounced as
that in Figure 3.7 from the experiment that used Matrix sentences.
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Table 3.8: Occurrence of background noises among amt participants of the new voice and natural
speech experiment. Figures in the grid only include the number of occurrences with another noise
whereas total additionally includes the noise being reported alone
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Figure 3.12: Mean wers by background noise level perceived by amt participants in the new
voice and natural speech experiment
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Table 3.9: Significance of individual-level predictors (anova model comparison, χ2 test) for the
glmm of the new voice and natural speech experiment

Lab Amt

Predictor aic p aic p

Baseline 2383 — 7389 —
Sentence type 2372 0.996 7394 0.007
System 2877 0.001 7481 0.001
System x Sentence type 2376 0.978 7397 0.003
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Figure 3.13: Mean wers by system with amt and lab participants

3.8.2 Results

A linear model was built to predict an appropriate power (−0.1) of the mean wer

from potential hearing loss, synthetic speech listening frequency, age group, gen-
der, and being a computer scientist. The linear model showed no significant effects
(R2 = 0.26, F(10, 47) = 1.64, p = 0.125).

As we did in Section 3.6.1 for the Amazon Mechanical Turk experiment, we plot-
ted the mean wers for each of the systems for amt participants and lab participants,
the results of which can be seen in Figure 3.13. Comparing the performance of hts
and f-usel using the Roger voice in this experiment (Figure 3.13) with that of the
Nick voice in Section 3.6.1 (Figure 3.5 on page 55), the similarity is clear.

The results for ns for amt and lab participants are also shown in Figure 3.13.
As would be expected, wers for ns are lower than for both the synthetic systems
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Table 3.10: Mean wers for sentence types for all system/voice combinations

Amt Lab

Sentence type ns hts f-usel ns hts f-usel total

Command 0.033 0.123 0.280 0.011 0.117 0.171 0.132
�estion 0.025 0.163 0.153 0.007 0.105 0.113 0.102
Statement 0.042 0.187 0.211 0.012 0.130 0.129 0.130

total 0.035 0.165 0.214 0.011 0.121 0.136 0.124

for both sets of participants. As we would also expect, whilst the absolute wer for
each system is lower for lab participants, the relative placing of the systems is very
similar, although it does appear, from the graph, that there is no significant difference
between the wers for hts and f-usel for the lab participants.

In order to investigate this in more depth, we used glmms to model errors against
system and sentence type (and their interaction) as individual-level predictors and the
identifiers for participant and sentence as group-level predictors. The formula used
was:

Error ∼ System ∗ SentenceType + (1 + System | Sentence) + (1 | Participant) (3.6)

We allowed a random intercept for the participant and sentence identifiers and a
random slope for the sentence. The results of anova comparisons of models with and
without the individual-level predictors and their interaction appear in Table 3.9. As the
box plots in Figure 3.13 suggested, both the amt and lab results show a significant effect
of synthesis system, but only amt shows a significant effect of sentence type or the
interaction between sentence type and system. The reason for this is unclear. Perhaps
the most likely reason would be that the lab participants are a rather homogeneous
group of university students, but creating a model of the amt results using only those
amt participants who declared themselves as full-time students produces results that
closely match those for amt participants in general. Another candidate is the fact that,
whilst lab participants wore studio-quality headphones and listened in a sound-treated
booth, the amt participants wore domestic headphones and listened in their own
homes, many of which we know were noisy from participants’ own reports and these
more difficult conditions could have been enough to cause differentiation between
sentence types. Of course, it could just be that having a larger number of participants
allowed us to find a small, but significant effect. Unfortunately, as yet, there is no
universal agreement on how effect sizes should be calculated from glmms.

Table 3.10 and Figure 3.14 show in more detail how mean wers are spread across
system and sentence type for each of the cohorts. Clearly, the pattern of results in the
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Figure 3.14: Mean wers by sentence type and system with amt and lab participants

lab is mirrored on amt. However, there appear to be some anomalies. For example,
as might be expected, all sentence types in natural speech have a wer that is very
close to 30% lower for lab participants than for amt and the position is similar for
f-usel with wers being 26% to 39% lower. The range for hts, though, is much
broader with commands, statements, and questions scoring 5, 30, and 36% lower
respectively. Even more intriguing is that questions score lower for f-usel than hts,
and statements higher for f-usel than hts, with amt participants, but the opposite
is true in both cases with lab participants. (Although the margins are quite small in
both cases.) Of most pragmatic use, perhaps, is the fact that, within each experiment,
there is less variation between sentence types for hts than f-usel.

3.8.3 Discussion

We set out to establish whether our results for the use of amt were generalizable
to another synthetic voice and to natural speech. The results from this experiment
clearly confirm our earlier findings and demonstrate that amt is a suitable alternative
to the lab for establishing the rankings of synthesis systems amongst themselves and
against their natural speech equivalent.

As in the first experiment using amt reported in Section 3.6, we found a small
but significant effect of sentence type by using amt that would not have been found
by modelling the results from the lab alone. The persistence of the effect across two
different voices supports our assertion that sentence type should be an important
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consideration when choosing a synthesis system where practicable. In the case of
reminders, this could be achieved by framing the reminders using only one sentence
type and choosing a synthesis system with a particular bias for that type. For example,
a reminder to lock the door could be framed as a command, ‘Lock the door.’; a
statement, ‘The door needs to be locked.’; or a question, ‘Have you locked the door?’

The performance of natural speech using semantically unpredictable sentences was
very nearly at ceiling for amt (mean wer, 0.04) and lab (mean wer, 0.01) participants
and, because they are inherently more challenging than Matrix sentences, our decision
not to use Matrix sentences for real speech in the absence of noise appears to have
been vindicated. It would seem that Matrix sentences could not be recommended for
listening experiments involving natural speech without noise.

3.9 All Amazon Mechanical Turk experiments

The experiments presented in Sections 3.6, 3.7, and 3.8 all included components
conducted on amt, for which we collected demographic and environmental data.
These data give us an opportunity to provide an analysis of participants who opted
to take part in the listening experiments.

In all three experiments, many participants (27%, 40%, and 45%, respectively)
did not complete the whole experiment, with the number not completing any part
increasing by about 6% each time. In order to prevent participants completing any
experiment twice, and from taking part in more than one, we recorded their unique
identifier and used this to prevent them from taking part again. Unfortunately, it
was not possible to check a participant’s identifier until the assignment had been
accepted, at which point we could prevent access to the experiment. Although the
experiment instructions clearly stated that previous participants were excluded, it
is likely that some accepted subsequent assignments only to be refused access by us.
This would then account for some of those who completed no part of the experiment.
In an experiment where participants only hear one system or voice, a situation could
arise where numerous participants abandon assignments containing particularly
unintelligible speech, thus skewing the results. Our analysis of completion rates for
each experiment showed no differences between the groups participants were assigned
to, suggesting that no one abandoned an assignment simply because the speech was
too difficult to understand. Table 3.11 summarizes all the data collected from those
who completed the experiments, excluding the few who did not actually meet the
criteria. The data from the lab components of the two experiments that included
them are also presented.

We had taken care to minimize the potential for amt participants to ‘game’ the
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system. For example, we never set default values so that participants could simply
click a ‘proceed’ button without actually make selections themselves and we ensured
that no option was more difficult than any other to select. Of course, this did not
prevent a participant from selecting the ‘wrong’ gender or age group, but at least there
was no incentive to do so. A side effect of the care we took was that lab participants
also could not select options that would enable a more rapid completion of the
experiment. For this reason, the results, although self-reported, should be as accurate
as possible.

It is clear from Table 3.11 that amt participants form a more heterogeneous
group than lab participants, particularly with regards to age group, education, and
occupation. Nearly every lab participant was aged 18 to 29 and a full-time student.
Of course this does make for some consistency when assessing synthesis systems
over a series of experiments and we wanted to know how much variability there was
between cohorts of amt participants. Each of the factors in the leftmost column of
Table 3.11 forms part of a contingency table with the experiments listed along the top
of the table, so to assess the variability, we carried out a series of Fisher’s Exact tests
on these contingency tables. None of the tests found a significant difference between
the spread of participants across the factors for the three experiments when they were
carried out on amt. So it seems that amt cohorts are likely to be similar in make up,
certainly in the numbers that we recruited.

The fact remains that listening booths are very effective at eliminating extraneous
noise and focussing participants on the task in hand, so it is likely that performance
on amt will always be poorer in absolute terms.

3.10 Conclusion

At the start of the PhD project, we had discovered the paucity of recent research
into synthetic speech in noise and reverberation and had identified three recent
developments (amt, Matrix sentences, and the icra noise) that could be used in
an experimental methodology to enhance the assessment of the intelligibility of
synthetic speech in noise and reverberation.

We carried out a series of four experiments with which we sought to estab-
lish: baselines for synthetic speech performance and future experimental conditions;
whether the lab could be replaced by amt; whether Matrix sentences could replace
suss; what the consequences of each of these changes would be; and whether the
results were generalizable to another synthetic voice and natural speech.

The icra noise was deployed successfully in the baseline experiment to establish
the need for research into current synthesis systems by confirming a difference in
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Table 3.11: Demographic data collected from amt and lab participants from all experiments with
an amt component

Amt participants Lab participants

Experiment Experiment

Amt Matrix New voice total Amt New voice total

n % n % n % n % n % n % n %

Gender female 83 52 32 54 27 47 142 51 16 80 12 50 28 64
male 75 47 25 42 30 52 130 47 4 20 12 50 16 36
withheld 1 1 2 3 1 2 4 1 0 0 0 0 0 0

Age group 18–29 93 58 32 54 40 69 165 60 20 100 23 96 43 98
30–49 52 33 18 31 16 28 86 31 0 0 1 4 1 2
50+ 13 8 8 14 2 3 23 8 0 0 0 0 0 0
withheld 1 1 1 2 0 0 2 1 0 0 0 0 0 0

Education before school 2 1 0 0 1 2 3 1 0 0 0 0 0 0
high school 19 12 11 19 10 17 40 14 0 0 2 8 2 5
some college 72 45 31 53 25 43 128 46 5 25 11 46 16 36
bachelors 45 28 11 19 20 34 76 28 11 55 5 21 16 36
masters 15 9 5 8 2 3 22 8 4 20 6 25 10 23
doctorate 2 1 1 2 0 0 3 1 0 0 0 0 0 0
withheld 4 3 0 0 0 0 4 1 0 0 0 0 0 0

Occupation employed full-time 43 27 15 25 17 29 75 27 0 0 0 0 0 0
employed part-time 24 15 9 15 5 9 38 14 0 0 3 12 3 7
homemaker 18 11 8 14 6 10 32 12 0 0 0 0 0 0
other 24 15 9 15 11 19 44 16 0 0 1 4 1 2
retired 2 1 1 2 0 0 3 1 0 0 0 0 0 0
student full-time 40 25 15 25 16 28 71 26 20 100 20 83 40 91
withheld 8 5 2 3 3 5 13 5 0 0 0 0 0 0

Computer scientist no 119 75 44 75 38 66 201 73 16 80 18 75 34 77
yes 40 25 15 25 20 34 75 27 4 20 6 25 10 23

Work in speech technology no 158 99 59 100 58 100 275 100 19 95 23 96 42 95
yes 1 1 0 0 0 0 1 0 1 5 1 4 2 5

Listening Frequency at least once a wk 27 17 8 14 8 14 43 16 0 0 1 4 1 2
at least twice a yr 60 38 17 29 26 45 103 37 5 25 9 38 14 32
not sure 11 7 8 14 2 3 21 8 3 15 2 8 5 11
rarely or never 61 38 26 44 22 38 109 39 12 60 12 50 24 55

Headphones earbuds 66 42 29 49 22 38 117 42 0 0 3 12 3 7
full ear 30 19 13 22 13 22 56 20 19 95 21 88 40 91
in ear 19 12 8 14 10 17 37 13 1 5 0 0 1 2
on ear 44 28 9 15 13 22 66 24 0 0 0 0 0 0

Headphone features noise cancelling 16 10 3 5 7 12 26 9 0 0 0 0 0 0
none known 139 87 52 88 49 84 240 87 20 100 24 100 44 100
sound isolating 4 3 4 7 2 3 10 4 0 0 0 0 0 0

Hhia-s total 10 or above 19 12 4 7 10 17 33 12 1 5 0 0 1 2
below 10 140 88 55 93 48 83 243 88 19 95 24 100 43 98

Noisiness quiet all time 86 54 34 58 34 59 154 56 16 80 22 92 38 86
quiet most time 60 38 20 34 18 31 98 36 4 20 1 4 5 11
equal noise quiet 10 6 5 8 6 10 21 8 0 0 1 4 1 2
noisy most time 2 1 0 0 0 0 2 1 0 0 0 0 0 0
noisy all time 1 1 0 0 0 0 1 0 0 0 0 0 0 0

Browser Chrome 18 11 11 19 17 29 46 17 0 0 0 0 0 0
Firefox 92 58 36 61 32 55 160 58 13 65 0 0 13 30
IE 21 13 5 8 3 5 29 11 0 0 0 0 0 0
Mozilla 8 5 3 5 1 2 12 4 7 35 0 0 7 16
Opera 3 2 0 0 0 0 3 1 0 0 0 0 0 0
other 1 1 0 0 0 0 1 0 0 0 0 0 0 0
Safari 16 10 4 7 5 9 25 9 0 0 24 100 24 55

Location East North Central 33 21 4 7 10 17 47 17 0 0 1 4 1 2
East South Central 9 6 7 12 4 7 20 7 0 0 0 0 0 0
Mid Atlantic 17 11 11 19 6 10 34 12 0 0 2 8 2 5
Mountain 9 6 5 8 6 10 20 7 0 0 1 4 1 2
New England 10 6 3 5 0 0 13 5 0 0 1 4 1 2
Pacific 32 20 10 17 12 21 54 20 0 0 3 12 3 7
South Atlantic 23 14 13 22 19 33 55 20 0 0 0 0 0 0
West North Central 10 6 4 7 0 0 14 5 0 0 0 0 0 0
West South Central 16 10 2 3 1 2 19 7 0 0 0 0 0 0
CSTR Lab 0 0 0 0 0 0 0 0 20 100 16 67 36 82

Experience of stimuli usually all words 5 3 26 44 9 16 40 14 8 40 12 50 20 45
usually most words 121 76 32 54 45 78 198 72 10 50 12 50 22 50
very hard 33 21 1 2 4 7 38 14 2 10 0 0 2 5

total participants 159 100 59 100 58 100 276 100 20 100 24 100 44 100
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performance between hmm- and unit-selection-based systems and the discovery of an
interesting crossover at low snrs. The range of snrs it was presented at established a
baseline of performance and gave a good indication of those we should use in future
experiments.

Crowdsourcing, in the form of Amazon Mechanical Turk, was shown to be a valid
alternative to the laboratory in ranking the performance of synthetic and natural
speech across two different voices. The wider participant pool provided by amt

makes results more generalizable. Moreover, it was found to have an advantage over
laboratory experiments in having the power to find small but significant effects that
would otherwise be missed.

We successfully piloted Matrix sentences and found them to be equivalent to suss
in ranking synthesis systems, albeit at a lower absolute wer.

Our inclusion of questions for amt participants about environmental conditions
allowed us to select background noises for the experiments presented in the next and
following chapters.





CHAPTER4
Synthetic speech in noise

Communication using human speech involves at least two parties: a speaker
and a listener. The speaker effectively encodes the message to be commu-
nicated and the listener decodes it. The encoded message is transmitted

through air in the form of sound waves and, just like any other sound (or signal), it
is subject to constructive and destructive interference by unwanted sound waves (or
noise). How much the signal is distorted by the noise depends on a number of factors,
including: the frequencies and amplitude of each; the hearing ability of the listener;
and the listening environment.

4.1 The problem of noise

When listening to any sound, the closer the frequencies in the competing noise are
to the signal and the more power (loudness) it has, the harder the signal will be
to perceive. The log ratio of the power of the signal (Psignal) to the power of the
background noise (Pnoise) is known as the signal-to-noise ratio (snr), measured in
decibels (dB) using Equation (4.1). The snr may be negative when the level of the
background noise exceeds that of the signal.

SNR (dB) = 10 log10

(Psignal

Pnoise

)
(4.1)

In the case of speech, the situation is somewhat more complicated for a number of
reasons. Firstly, everyday speech can encompass a range of frequencies from about
50Hz to 20 000Hz, so different noises with different spectra will interfere with

79
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Figure 4.1: Speech spectrum data schematized in terms of formant areas. The ordinate is sensation
level versus free field threshold at 1 metre distance (that is, dB spl). Reproduced, with permission,
from Fant [2005]

(or mask) different parts of the speech [French and Steinberg, 1947]. Secondly, the
different frequencies are perceived as having different intensity levels by the human
auditory system, even when presented at the same intensity. Thirdly, the different
frequencies carry different information, with varying importance to the intelligibility
of the message being conveyed.

Figure 4.1 shows that the actual average range of frequencies is somewhat less than
the possible extremes and that the core range for speech, that is, the first formant
frequency (f1) and the second formant frequency (f2), is limited to about 250Hz to
2000Hz. The ‘speech banana’, as it is sometimes called, also shows a clear separation
between vowels and consonants and, indeed, between different types of consonant.
Originally, it was thought that consonants contributed more to the intelligibility of
speech and the early syllable-level tests were scored on the correct identification of
them. More recent work [Kewley-Port et al., 2007] has cast doubt on this assumption,
particularly for the intelligibility of whole, meaningful sentences.

Figure 4.1 is laid out as an audiogram and so can be used to estimate what sounds
would be heard by a person given their audiogram marked up with the frequencies
at which hearing loss has occurred—a fact that forms the basis of the Articulation
Index (ai) and its derivatives that were discussed in Section 2.3. More importantly,
for our purposes, it can also be used to determine what would not be heard in the
presence of any noise that has similar frequencies and amplitude. Clearly, the more
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similar the noise is to speech, the more it might be expected to interfere, such that
another speaker might be very detrimental, a dog whistle not at all, and music might
fall somewhere in between.

When the noise is fluctuating, the position becomes even more complicated. It is
self-evident that speech has periods of intensity interspersed with pauses or gaps. If
one thinks of these as a series of peaks and troughs and fluctuating noise as having
a similar structure, it is clear that it is unlikely that, at any given time, the two will
coincide. What may not be so evident is that, even when the signal and noise do
co-occur, the spectrogram of the additive mixture is almost exactly the maximum of
the individual spectrograms (for an explanation of why this is the case, see Roweis
[2003]).

Furthermore, human speech naturally has a high level of redundancy: each speech
sound is spread over a range of frequencies and persists over time. Together, this
means that at the times when speech is dominant (even if these are few and far
between) humans are able to catch ‘glimpses’ of the speech and use their knowledge
of the language to ‘fill in the blanks’ [Cooke, 2003].

Figure 4.2 demonstrates how fluctuating noise interferes with speech. The series
of six spectrograms shows an utterance used in the baseline experiment, ‘Steven has
ten dark desks.’, followed by the same utterance with an equal-length section of the
International Collegium of Rehabilitative Audiology ( icra) noise added at snrs of
10, 5, 0, −5, and −10 dB. The spectrograms are three-dimensional in that they show
time on the x axis, frequency on the y axis, and relative amplitude by intensity of
colour from blue to red, through cyan and yellow. The icra noise is fluctuating
in nature and it is particularly noticeable from the second and subsequent images
where it has been added to the beginning and end of the utterance where there was
no speech. Closer inspection also shows how the speech around the 1 s mark becomes
relatively less intense as the snr becomes more challenging.

Listening to speech in background noise is especially difficult for people with
hearing loss and is one of the most common complaints that they express [Plomp and
Mimpen, 1979; McArdle and Wilson, 2009]. Indeed, it is recognized by audiologists
as one of the first signs of auditory ageing. Much research into human speech in noise
has, therefore, been conducted by audiologists focused on measuring how much of
the speech an individual can perceive, both as a measure of their impairment and as
a measure of the efficacy of new hearing aids and the algorithms that underpin the
signal processing they carry out. Most of this work has been conducted in isolation
from the speech synthesis research community and we sought to bridge this gap with
the use of Matrix sentences.

When communicating in a background noise, it is common for speakers to make
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Figure 4.2: Spectrograms of ‘Steven has ten dark desks’, without noise and with icra noise added
at snrs of 10, 5, 0, −5, and −10 dB



4.2 Overview of experiments 83

adjustments to their speech in order to maintain its intelligibility to listeners. This
modified speech is known as Lombard speech after the investigator who first docu-
mented the effect [Lombard, 1911]. The adjustments that can be made are extensive
and include changes in amplitude, duration, pitch, formant frequencies, and short-
term power spectra of vowels [Summers, 1988]. Similar techniques can be used to
improve the intelligibility of synthetic speech (see, for example Cooke et al. [2013]).

Listeners, on the other hand, will try to maximize their reception of the speech by
moving closer to the speaker, by cupping their ears, or by paying more attention to
lip movements, body language, and the context of the spoken material. The effects of
adjustments made by speakers and listeners on the intelligibility of speech at various
snrs and in the presence of a variety of noise types can be wide and varied and have
been studied extensively by speech scientists for that reason.

The effect of the environment on intelligibility, other than the noise it contains,
is largely due to the physical structure of the surrounding space, whether this be a
park, a living room, or classroom. The multiplicative effect of sound bouncing off
walls and other physical objects is known as reverberation and is dealt with in detail
in Chapter 5.

4.2 Overview of experiments

Table 4.1 outlines the materials and methodologies used in the experiments carried
out into synthetic speech in noise for this chapter, along with the number of the
section in which the full details appear.

We wanted to evaluate the implementation of the experimental methodologies
discussed in Chapter 3 whilst measuring the intelligibility of modern synthesis
systems in ecologically-valid background noises. We piloted the implementation
before carrying out a full experiment.

The full experiment indicated the presence of the crossover first noted in our
baseline experiment, so we carried out a post hoc analysis of the Blizzard Challenge
2010 data, firstly, to check for any crossover and, secondly, to provide a measure of
intelligibility with a system that had been tuned specifically for use in noise.

4.3 Ecologically-valid noises experiment

We had established a baseline for the performance of current speech synthesis systems
from the experiment presented in Section 3.5. However, the results were limited by the
fact that we had only used one specific background noise, namely that from track 5 of
those validated by icra [Dreschler et al., 2001], and had not included natural speech.
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Table 4.1: Overview of synthetic-speech-in-noise experiments

Experiment Purpose Systems Stimuli Noise Snrs Design Participants Sec.

Ecologically-
valid noises

Can we use more
ecologically-
valid noises and
what are their
e�ects on
synthetic
speech?

Roger :
hts v.
f-usel

120 Matrix
sentences

None,
chat,
music,
both

−15 dB,
−5 dB,
and
10 dB

Mixed. Each
heard one
system with all
combinations of
noise and snr

Native UK English:
36 in perception
labs

4.3

Blizzard
analysis

Does the
crossover in
intelligibility
occur with other
stimuli?

rjs:
ns v.
hts v.
f-usel

78 suss
78 broadcast-
news
sentences

icra
track 9

0 dB,
−5 dB,
and
−10 dB

Mixed. Each
heard all
system/voice
combinations in
one snr

Native English:
202 in perception
labs

4.4

In this experiment, we sought to evaluate synthetic speech in more realistic noises
and to include natural speech for comparison. In order to accomplish this, we had to
select and deploy noises that were ecologically valid for the environments they would
be used in and had to find alternatives to the icra noise as it was designed for use in
laboratory settings and does not contain some common features of natural speech,
such as: more than one speaker speaking at once; a female speaker; and the periods of
quiet characteristic of natural speech. Moreover, it has its basis on read speech rather
than conversational speech, which is known to have different prosodic properties and,
particularly, fewer pauses [Howell and Kadi-Hanifi, 1991]. Additionally, of course,
the icra noise does not account for the non-speech noises that might be found in the
home environment.

Our studies using Amazon Mechanical Turk (amt) in the previous chapter had
shown conversation and radio/television (tv) as the most common background
noises encountered by amt participants. Since radio and tv often broadcast con-
versational speech and music, we chose to use noises that covered speech, music,
and a combination of the two. We were particularly keen to ensure that our noises
were as close as possible to those likely to occur in a real-life home environment
whilst ensuring that participants were equally distracted by them. The conversation
noise was, therefore, created by taking a sample from the Augmented Multiparty
Interaction (ami) corpus1 [Carletta et al., 2006]. The sample consisted of four na-
tive UK English speakers, of mixed gender (as our listeners were expected to be),
discussing the conceptual design of a remote control. Our motivation for choosing it
was that the conversation was real with individual words being audible, but that the
topic would be of no particular interest to our participants. The level of the speech
varies, but we selected a section with minimal silence and took a long-term average

1http://corpus.amiproject.org

http://corpus.amiproject.org
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when calculating snrs. Likewise, we chose a piece of music with minimal silence and
instruments (violin and harpsichord) that would not be too familiar to our expected
participants (undergraduate students). The music chosen was taken from the second
track of the first compact disc (cd) from the collection, Bach: The Six Sonatas for
Violin & Harpsichord [Laredo and Gould, 2007].

4.3.1 Method

The two base background noises (chat and music) were sourced as described above.
The chat was selected by visually inspecting the waveform to identify a section
without long silences (so that we would be able to achieve the desired snr when
added to speech) and listening for a good mix of speakers (to obviate the effect of
gender). In this way, we kept the noise as realistic as possible whilst maintaining
viability. The music was also chosen by visual inspection of the waveform, again by
avoiding long silences and by listening for a mix of instruments. The noise samples
were down sampled to match the speech and, in the case of the music, reduced from
two channels to one. The background noise with both chat and music was created by
combining the two base noises.

We wanted to be able to compare the performance of synthetic speech directly
with natural speech (ns) and, therefore, had to choose a voice for which we could
readily record the natural speech stimuli. For this reason, we used the RP-English voice
Roger built for the 2010 variant of the Hmm-based Speech Synthesis System (hts),
which we simply refer to as ‘hts’ and the Festival Multisyn unit-selection engine [Clark
et al., 2007], referred to as Festival unit-selection (f-usel), thus ensuring that only
the synthesis method varied, not the underlying speech data. The ns versions of the
sentences were recorded with the original speaker, using the same equipment used for
the recordings used to build the hts and f-usel versions. Generation of the synthetic
speech stimuli did not include data from the recordings of the natural speech stimuli.

Matrix sentences were used as the basis of the speech stimuli. Seventy-eight Matrix
sentences recorded for a previous study [Wolters et al., 2014] were supplemented
with forty-two randomly generated. Each sentence was unique and was allocated to
a batch of ten such that the repetition of words within the batch was minimized,
although not eliminated entirely. The sound pressure level (spl) of the speech and
individual background noises was adjusted to 65 dB. We presented the stimuli at snrs
of −15, −5, and 5 dB, by reducing the spl of the speech stimuli appropriately using
the active speech level as described in Section 3.5.1. The lowest snr is lower than the
value at which the amt experiment (Section 3.6) and previous work [Rhebergen and
Versfeld, 2005] suggest fifty per cent intelligibility would be achieved. The value of
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−5 dB represents the level at which our baseline experiment (Section 3.5) suggests that
f-usel and hts perform equally and 5 dB is a value at which we would expect hts to
outperform f-usel and ceiling effects to begin to appear.

For this experiment we used a mixed design, with the synthesis system being
between-participants and background noise and snr being within-participants. The
choice of design made the number of conditions manageable and meant that any
potential effect of hearing natural speech stimuli with synthetic speech was neutralized.
The total number of conditions was thirty-six, derived from: three systems (hts,
f-usel, and ns) ×four background noises (none, music, chat, and both) ×three snrs
(−15, −5, and 5 dB). All participants heard the same 120 sentences in one of the three
systems, spread across the four background noise conditions and the three snrs, such
that each combination of background noise and snr was presented in a batch of ten
sentences. The distribution of sentences across all conditions was balanced using a
Latin square.

Our previous experiments, like previous studies, had relied on participants wear-
ing headphones to listen to stimuli, but we were aware that reminders might eventu-
ally be played through speakers and that some amt participants might report using
headphones when, in fact, they were using speakers and that this could undermine our
results. For this reason, we decided to use speakers for our first experiment with noise
so that we could determine whether this had any effect on the results. Participants
listened to four blocks of thirty sentences from a pair of Genelec 8020a speakers
(chosen for their very low harmonic distortion) located 1m in front of them and 1m
apart. Each of the four blocks was accompanied by one of the background noises
played through another pair of the same speakers located 1m behind the participant
and 1m apart. The output of the speakers was equalized by taking sound level meter
readings at the midpoint of the ‘X’ described by an imaginary line connecting the
centres of the diagonally opposite pairs of speakers. The condition with no back-
ground noise was always presented in the first block, but the order of the other three
was determined by a Latin square. The background noise, when present, was started
automatically at the commencement of the block (before the presentation of the first
stimulus) and played continuously for its duration. The distribution of snrs within a
block was randomized.

The experiment was carried out in a studio in the sound laboratories at the
Centre for Speech Technology Research (cstr). The room was chosen as being the
closest to the average English living room [Department for Communities and Local
Government, 2012], although it has a smaller floor area (approximately 13m2 versus
approximately 17m2) and a slightly greater height (approximately 3m versus 2.5m)
and for having the space to have speakers in front of, and behind, the listener. The
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Figure 4.3: Mean wer by system, background noise, and snr (dB) of pilot experiment

studio is sound treated, so that any extraneous background noise or reverberation
would have been eliminated.

Our intention was to compare our results with those from our baseline experi-
ment. Specifically, we wanted to know: whether fifty per cent intelligibility is reached
at −15 dB snr; the relative performance of hts and f-usel at −5 and 5 dB snrs;
whether there was any difference in performance when using speakers rather than
headphones; and in what noise the crossover we had previously observed occurred, if
at all. Since this experiment used the 2010 variant of hts rather than the 2007, and
speakers rather than headphones, used in previous experiments, it was first piloted
and the mean word error rates (wers) for each of the systems, broken down by
background noise and snr, plotted as in Figure 4.3. We can clearly see the pattern
that would be expected, that is, increased wers for synthetic over natural speech, for
the lower snrs, and for the mixed background noise. The structure of the results
suggested that the design of the experiment was sound, so the experiment proper
was run with a total of 36 native UK English speakers, 15 male and the remainder
female. As for previous experiments, participants provided the demographic and
other data outlined in Table 3.2 on page 41 before typing in what they heard of the
speech stimuli into a web browser. Participants heard, and transcribed, six practice
sentences before hearing the main stimuli.

Participants were recruited through the University of Edinburgh’s student recruit-
ment service and reimbursed £5 for their time. Their profile was typical of a student
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cohort with all 36 of them being aged between 18 and 29; 35 being full-time students;
and 44% having completed high school, 39% a college education or a bachelor’s
degree, and 17% a master’s degree. No participant wore a hearing aid. However,
2 of the participants scored 10 or higher on the Hearing Handicap Inventory for
Adults Screening Version (hhia-s) and a further 2, who scored low on the hhia-s,
mentioned hearing problems in the free comments, although none of them had excep-
tionally high mean wers. No significant effects (R2 = 0.17, F(8, 27) = 0.7, p = 0.689)
were found from an analysis of variance (anova) of a linear model built to predict the
mean wer from potential hearing loss (an hhia-s score of ten or higher), a reported
problem with hearing, synthetic speech listening frequency, age group, gender, and
whether participants described themselves as computer scientists.

4.3.2 Results

The results of the full experiment, shown in Figure 4.4, bear out the results of the
pilot, albeit with more variance. The results are generally as one would expect, with
wer increasing in more difficult listening conditions. However, it does appear that
listening in the presence of music was more detrimental to intelligibility than listening
in chat; certainly at the −15 dB snr. This is contrary to what might be expected
given the expectation (elucidated in Section 4.1, based on Figure 4.1) that increased
similarity of a noise with a signal causes increased disruption to its intelligibility.
However, it might be that the music noise offers the listener fewer glimpses of the
speech stimulus, thus making it harder to perceive [Cooke, 2003]. Inspection of the
spectrograms of the noises given in Figure 4.6 on page 92 shows that this is likely to
be the case.

In order to visualize the performance of the synthesis systems against each other
and the natural speech, we plotted the mean number of errors for each background
noise and each snr, as shown in Figure 4.5. Taking the chat noise first, as it is the
closest to that used in our baseline experiment, we can see that the performance of
hts and f-usel is comparable to that of the baseline experiment shown in Figure 3.1
on page 46. However, the errors at −15 dB do not reach 2.5 (that is, 50% intelligibility)
as we might have expected and, indeed, is the case for the conditions with music and
both chat and music. Moreover, the wers are lower across the board. At −5 dB, in
all conditions except music, the performance of hts and f-usel is effectively equal,
with equality occurring between −5 and −10 dB for the music condition. At the snr
of 5 dB, hts performs as well as, or better than, f-usel in all conditions, although it
has to be said that the difference between them is small.

If the background noises we had chosen were to produce equivalent results to
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Figure 4.4: Mean wer by system, background noise, and snr (dB) of full experiment
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those using the icra noise in the baseline experiment, we would expect to see the
same crossover in intelligibility between hts and f-usel that we had seen previously.
Figure 4.5 clearly shows that the crossover is present. However, it does seem to vary in
somewhat unexpected ways depending on the background noise. In the chat noise, the
crossover is as we saw it in the baseline experiment with the icra noise; in music, the
crossover is much more pronounced; but in music and chat combined, the crossover
lessens. Perhaps most surprisingly, there is a crossover in the opposite direction when
the speech stimuli are in quiet, that is, the levels of the speech stimuli were simply
reduced to achieve the level of speech equivalent to that in the noise conditions.

As for previous experiments, we used generalized linear mixed models (glmms)
to analyse the data further, this time using the formula given in Equation (4.2).

Error ∼ System ∗Music ∗ Chat ∗ Snr + (1 | Sentence) + (1 | Participant) (4.2)

We chose the individual-level predictors System, Chat (whether present or not),
Music (whether present or not), Snr, and all their interactions and modelled their
effect on the number of errors participants made. The group-level predictors were
the sentence and participant identifiers, for both of which we allowed a random
intercept. We removed each of the predictors (and its interactions) in turn from
the fully-specified model and carried out an anova between the full and reduced
models. The results are shown in Table 4.2, from which it can be seen that each of
the predictors alone was found to be significant at the p < 0.001 level. As we had
found in previous experiments, the interaction System × Snr was also significant
(p < 0.001). Of the interactions accounting for the crossovers in Figure 4.5, only
System × Music × Snr is significant (p < 0.001).

4.3.3 Discussion

The purpose of this experiment was to build on the baseline experiment, using
the experimental methodologies we had evaluated in Chapter 3, by establishing the
performance of modern synthesis systems in the presence of noise that was more
realistic and ecologically-valid than noises used in previous studies. The experiment
was a success in that we obtained meaningful results with two new noises, individually
and in combination.

In general, we found that the results from this experiment support those of the
baseline experiment presented in Section 3.5.2 and demonstrate that, despite recent
advances, synthetic speech intelligibility suffers significant degradation in the presence
of noise. The use of the 2010 variant of hts in this experiment rather that the 2007
used previously, demonstrates that the effect has persisted over developments in
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Table 4.2: Significance of individual-level predictors (anova model comparison, χ2 test) for the
glmm of the ecologically-valid noises experiment

Predictor aic p

Baseline 7929 —
System 7968 0.001
Music 8256 0.001
Chat 8130 0.001
Snr 8849 0.001
System x Music 7929 1.000
System x Chat 7929 1.000
Music x Chat 7929 1.000
System x Music x Chat 7926 0.519
System x Snr 7929 0.001
Music x Snr 7929 0.001
System x Music x Snr 7929 0.001
Chat x Snr 7929 1.000
System x Chat x Snr 7929 1.000
Music x Chat x Snr 7929 0.001
System x Music x Chat x Snr 7929 0.114

hts. More specifically, the inclusion of natural speech enabled us to show that it
is still significantly more robust to reductions in the snr than synthetic speech
despite the intervening years of research since any major studies into synthetic-speech
intelligibility in noise were carried out. The robustness is evident from the shallower
slopes of the lines representing ns in Figure 4.5.

Furthermore, the different results obtained from using the music noise, in isolation
and combined with chat, demonstrate the need to test synthesis systems in a range
of the noises in which they are likely to be deployed, if a full understanding of
their potential performance is to be achieved. For example, the performance of both
systems with the music noise was better than might have been predicted from their
performance in chat (based on the assumption that background speech is likely to
cause the most interference to speech) and the much more pronounced crossover
suggests considerable thought should be given to the range of snrs that will be
encountered when choosing a synthesis system. To visualize the effect that our
background noises might have on speech, we created the spectrograms in Figure 4.6.
The spectrograms represent the first 10 s of the chat, music, and both noises used in
the experiment. For comparison purposes, we have also included the icra noise used
in our baseline experiment. It is clear that the chat noise contains some periods of
silence, which allow listeners larger glimpses of the stimuli and, therefore, to reduce
their wer. In contrast, the music and both noises having a more even spread of energy
across time and frequency, thus accounting for the higher wers in these noises. The
energy in the icra noise, although not as evenly distributed as in the music and both
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Figure 4.6: Spectrograms of the noises used in the ecologically-valid noises experiment (chat,
music, both) and the icra noise used in the baseline experiment

noises, does not fluctuate as randomly as the chat noise, which probably explains the
higher wers associated with it.

A comparison of the relative results from this experiment with the baseline
shows that whether participants listen to our stimuli through speakers or headphones
appears to have no appreciable effect on the results. This conclusion was confirmed
by a contemporaneous, but more rigorous, treatment of the issue [Raitio et al., 2012],
which found the same relative differences between systems with speakers and mono
or stereo headphones.

Our results also lend credence to our supposition that the crossover found in
the baseline experiment was not an experimental artefact, but a real effect of the
interaction between speech synthesis system and snr. Even though the icra noise
was replaced with one of three background noises, all of them—to a greater or lesser
degree—reproduced the crossover. It seems clear from the persistence of the crossover,
its variability against different background noises, and the glmm, that current state-of-
the-art systems fare differently in varying levels and types of background noise. This
highlights both the importance of selecting a synthesis system to match the expected
environment and the consequent importance of furthering our understanding of
synthetic speech intelligibility through research of this kind. It is not clear why
mixing music and chat should result in a less marked crossover.

We were intrigued by the recurrence of the crossover between hts and f-usel in
the noisy conditions and sought to investigate this further. Our concern was that it
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might be caused by the use of Matrix sentences and wanted to rule out this possibility.
We, therefore, chose to analyse the data from the most recent Blizzard Challenge as
this had included speech in noise with two different types of sentence, neither of
which were Matrix sentences.

4.4 Analysis of the Blizzard Challenge 2010 data

After the results of the baseline experiment had been submitted for publication, we
were approached by the organizers of the Blizzard Challenge, who wanted to use our
experiment as the basis of a section of the Blizzard Challenge 2010 involving speech in
noise [King and Karaiskos, 2010]. In fact, there were two sections: es2 for English and
ms2 for Mandarin. We provided the scripts to create the stimuli for the challenge and,
in return, were able to use the results to broaden our investigation of synthetic speech
in noise by including broadcast speech and semantically unpredictable sentence (sus)
stimuli.

We wanted to know whether the results from the Blizzard Challenge reflected
those from our baseline experiment. We hypothesized that the relative results would
be the same and that we would see the same crossover that was first seen in the
baseline experiment and had persisted into the ecologically-valid noises experiment.

The ultimate goal of our work is to contribute to the improvement of the intelligi-
bility of synthetic in noise, so we were particularly interested in seeing whether, and
by how much, the intelligibility of synthetic speech could be improved when it was
specifically tuned to be used in a noisy background as the systems in this challenge
had been.

4.4.1 Method

Researchers and commercial providers of speech synthesis systems were invited to
make submissions for one or both of the challenges es2 and ms2 of the Blizzard Chal-
lenge 2010. For es2, submitters were asked to build a system from Phonetic Arts’ rjs
speaker specifically for the assessment of intelligibility in additive noise, with no con-
sideration of naturalness or speaker similarity. No further information on the type
or severity of noise was given prior to submission. With this system, submitters were
asked to synthesize both broadcast-news and semantically unpredictable sentences.
The same criteria were given for ms2, except that the system was to be built from a
Mandarin corpus from the National Laboratory of Pattern Recognition, Institute of
Automation of Chinese Academy of Sciences. Since the study of languages other than
English is outside the scope of this current work, our focus here is on challenge es2
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only and no analysis of ms2 was undertaken.
After the synthesized sentences were received by the challenge organizers, noise

was added at snrs of 0, −5, and −10 dB using the procedure described in Section 3.5.1
for our baseline experiment, except that track 9 from the icra cd was used as
the noise. Track 9 differs substantially from track 5 and consists of 3-band speech
modulated noise from three male and three female speakers with an idealized speech
spectrum and speaking effort raised against a perceived background noise. Also
included in the challenge were three reference systems: A, B, and C. System A was
the natural speech of the speaker who recorded the corpus used for the challenge;
System B was the Multisyn Festival unit-selection system [Clark et al., 2006]; and
System C was a speaker-dependent hidden Markov model (hmm)-based system with
automatically produced labels built for the 2005 Blizzard Challenge [Zen and Toda,
2005] (an earlier version of the hts system used in our baseline experiment). Since the
exact systems used for our baseline experiment were not entered into the challenge,
we shall use these systems for comparison and refer to them as ns, f-usel, and hts,
respectively.

Participants who listened to the stimuli were either: volunteers or experts from
submitting teams and other sources, who listened over the Internet with their own
equipment; or were paid native English-speaking students recruited in Edinburgh,
who listened in sound-treated listening booths. Sentences, stimulus type (broadcast or
sus), systems, and snrs were balanced so that no participant heard the same sentence
twice and heard one example from each condition.

For the analysis presented below, we followed the protocol adopted for earlier
laboratory experiments and excluded all participants who had not been recruited
for the listening booths, had declared themselves as non-native speakers, or had not
attempted the full complement of sentences for the group they were allocated to.
Even with these restrictions, we were left with 202 lab participants—a far larger
cohort than we could have recruited.

4.4.2 Results

Two types of stimuli had been used for the challenge: broadcast-news and semantically
unpredictable sentences. Figure 4.7 shows the performance of ns, f-usel and hts

with both sets of sentences.
Comparing with our baseline experiment, broadcast-news sentences are proba-

bly the closest to the Matrix sentences we used, in that they make semantic sense,
although they differ by having a variable length and format and do not have a fixed
vocabulary. This similarity is reflected in the similarity of the results obtained from
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Figure 4.7: Wer by system, stimulus type, and snr for ns, hts, and f-usel

both experiments, with the crossover in performance being clearly visible at about the
same snr (compare Figure 3.1 on page 46 and the left section of Figure 4.7). However,
the wer is considerably higher, probably partly because the icra noise selected for
the Blizzard Challenge is more challenging and partly because the broadcast-news
sentence material is less predictable and has a higher preponderance of uncommon
words.

In the case of the ecologically-valid noises experiment, which also used Matrix
sentences rather than broadcast-news, the closest noise condition to the icra noise
used here is ‘Chat’, the results of which are depicted in the top-right section of
Figure 4.5 on page 89. Once again, the pattern of results is very similar to those
in the left section of Figure 4.7, albeit the crossover appears more pronounced in
the Blizzard Challenge data and the wers are much higher, probably for the reasons
already given.

Interestingly, the right-hand section of Figure 4.7 shows no crossover between the
performance of hts and f-usel when the stimuli are suss and hts performs slightly
worse than f-usel across all snrs. It seems from the graphs that ns and f-usel

perform almost identically with both types of sentence, but that the performance
of hts is more variable, becoming more stable with suss. We cannot be sure why
this might be, but speculate on it being the result of tuning and note it for further
investigation in Chapter 7.

Our secondary reason for analysing the data from the Blizzard Challenge was
to examine how intelligible it is possible for synthetic speech to be when it has
been tuned specifically for use in background noise. As Figure 4.8 shows, one of the
systems, System N, was able to outperform ns in both conditions where snr was
negative, that is, the noise was louder than the speech. This was possible even when
the nature of the background noise was not known in advance and shows, firstly, how
much progress can be made in improving the intelligibility of synthetic speech and,
secondly, how important it is to determine the nature of domestic background noise
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Figure 4.8: Wer by system, stimulus type, and snr for System N and natural speech

and the effect it has on intelligibility.

4.4.3 Discussion

The crossover in the performance of hts and f-usel first seen in our baseline
experiment and repeated in the ecologically-valid noises experiment is also present in
the Blizzard Challenge data. Therefore, it has persisted across three versions of hts and
five different background noises (albeit some of them were very similar). The results
obtained from the analysis of the Blizzard Challenge data in which broadcast-news
sentences were used, suggest that the crossover is not just a side effect of using Matrix
sentences. However, it is still possible that there is some correlation with whether the
stimuli used are semantically predictable, as the crossover is never seen with suss.

In addition to wanting to check for any crossover in the Blizzard Challenge data,
we had also wanted to compare the results of the reference systems with those from
our ecologically-valid noises experiment. Figure 4.9 shows mean wers by system and
snr for each of the three reference systems with broadcast-news and semantically
unpredictable sentence as stimuli. We can compare the results for −5 dB snr with
the chat noise at the same snr in Figure 4.4 on page 89. Bearing in mind that the chat
noise yielded lower absolute wers than the icra noise, the relative performance of
the three systems is comparable across the two experiments.

4.5 Conclusion

Background noise is a common, and potentially fatal, problem for spoken com-
munication and, therefore, its effects on natural speech have been widely studied.
Unfortunately, its effects on synthetic speech, although usually more destructive,
have not received the same level of attention and the use of noise in speech synthesis
research has often been limited to the use of static maskers as a means of increasing
discrimination in intelligibility tests.
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Figure 4.9: Mean wer by system and snr with broadcast-news and semantically unpredictable
sentences for the Blizzard Challenge

Our need to provide synthetic speech for potentially noisy environments necessi-
tated the development of realistic fluctuating noises for testing purposes. We used the
results from our experiments on amt to identify the most common types of noise
and develop ecologically-valid noises. We put our noises to the test in a laboratory
experiment and carried out an analysis of the Blizzard Challenge 2010 data, the stimuli
for which we had helped to generate.

We successfully trialled our new ecologically-valid noises and achieved similar
results, in relative terms, to those from the baseline experiment and to the Bliz-
zard Challenge 2010. This leads us to believe that the assessment of synthesis systems
relative to one another, and natural speech, can be achieved using our noises. More-
over, it seems that similar results are returned whether participants listen through
headphones or speakers. However, absolute wers from the ecologically-valid noises
experiment were lower than for any of the others.

The crossover we had first noticed in the baseline experiment recurred in sub-
sequent experiments, but not in the Blizzard Challenge results attained from using
suss. We suspect that this might be evidence of suss having an unnatural effect on
intelligibility.





CHAPTER5
Synthetic speech in
reverberation

Noise is not the only source of interference to act on human speech. The
sound waves of speech decay over time as they travel through a space and
are reflected back from objects in that space. These decaying sound waves

are known as reverberation and result in the sound from the first part of a sentence
still being present when a later part is uttered. How much interference is caused by
this phenomenon depends on a number of factors, including: the ‘strength’ of the
reverberation, the frequencies of the speech, the placement of objects in the space,
distance from the speech source, and the perceptual abilities of the listener.

Reverberation plays an important part in the perception of any sound by humans
and its significance to the perception of speech has been known for some time.
Consequently, it has been the subject of much research. Unfortunately, most of
the research has been focused on specific scenarios, such as in the classroom, in
the auditorium, or with hearing aids and has been orthogonal to synthetic speech
research.

5.1 The problem of reverberation

The arrival of sound waves at the human ear can be classified into direct, early, and
late. Direct signals are those that arrive from the source without reflection whilst
early reflections are those signals that have been reflected, but arrive within about
0.05 s, and late arrivals are those reflections that arrive after more than about 0.1 s.

99
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Generally speaking, direct signals give us the best representation of the sound; whilst
early reflections are used as clues to the size and shape of the environment and help us
locate the sound; and late arrivals form what we normally think of as reverberation
and are detrimental to our perception of sound.

The rate at which reflections accumulate in a space is proportional to the square
root of its volume. This, in turn, means that signals eventually lose sufficient energy
that they are no longer perceptible to the human ear. The time taken for a signal to
decay is known as its reverberation time (rt) and the standard measure of potential
reverberation in a room is the time it takes for a signal to reduce in intensity by 60 dB,
known as its rt60.

The rt60 of a room is calculated using the following formula derived empirically
by Sabine [1923]

RT60 =
24 ln(10)V

c
n∑
i=1

(si ai )
(5.1)

whereV is the volume of the room in m3, c is the speed of sound at 20 ◦C, and si and
ai represent the surface areas and noise absorbency of all the surfaces in the room.
Therefore, a small room with noise-absorbent wall coverings will have a smaller rt60
than a cathedral with bare stone walls and, consequently, much lower potential for
reverberation.

The situation for speech is somewhat more complicated, not least because different
frequencies within a signal will have different rts and, as we saw in Chapter 4, the
different components of speech occur at different frequencies within ranges that vary
according to age, gender, and even between individuals. In general, high frequencies
decay more quickly than low, so that in reverberant conditions vowels sound fuller
and tend to mask consonants, making it difficult, for example, to distinguish between
the words cat, cad, and can.

However, some reverberation is generally considered beneficial to speech percep-
tion, making it sound clearer and sharper, although too much late reverberation can
make speech incomprehensible. Boothroyd [2005] gave the visual analogy of text,
saying that early reverberation could work like a sentence printed twice slightly out
of phase, making it stand out; whereas late reverberation had the effect of a sentence
printed many times out of phase, making it disappear. The result is exemplified by
the two sentences below.

The effect of early reverberation.The effect of early reverberation. The effect of late reverberation.The effect of late reverberation.The effect of late reverberation.The effect of late reverberation.The effect of late reverberation.The effect of late reverberation.The effect of late reverberation.The effect of late reverberation.The effect of late reverberation.The effect of late reverberation.The effect of late reverberation.The effect of late reverberation.The effect of late reverberation.The effect of late reverberation.The effect of late reverberation.The effect of late reverberation.

In the case of natural speech, Bistafa and Bradley [2000] found that 100% intelligibility
could still be achieved at an rt60 of 0.4 s to 0.5 s.
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The effect of objects in a room on reverberation will be well known to anyone
who has emptied a room for decorating or has replaced a carpet with a solid floor.
What may not be quite so clear is that the position of objects in a space can have a
significant effect, since the position affects how sound ‘flows’ around and between
them. A good visual analogy would be to imagine the room filled with water and how
the ripples would look if a pebble were dropped in at the same point as the sound
source. Sound waves produce a similar result—sometimes acting together to make a
bigger wave and sometimes crashing into one another to make a ‘choppy’ area.

The analogy of ripples in water is also useful when considering how the effect
of reverberation will differ depending on its distance from the source. Since speech
reception will be a combination of the speech received directly and that reverberated,
the relative levels of each will depend on the listener’s distance from the speaker.
Clearly, there will be a point at which the two levels are equal and this is known as
the critical distance. The critical distance can be calculated as

dc =
1
4

√√√√
γ

n∑
i=1

(si ai )

π
(5.2)

where γ is the directionality of the signal from 0 to 1 and si and ai represent the
surface areas and noise absorption of all the surfaces in the room. If the volume of the
room is V (in m3) and the rt60 has already been calculated from Sabine’s formula in
Equation (5.1), the critical distance can be calculated using

dc = 0.057

√
γV
RT60

(5.3)

In the same way that they do for speech in noise, individuals differ in their ability
to perceive speech in reverberation, not only because of differences in their physiology,
but also because of differing mental acuity. For example, people with a hearing
impairment will suffer the same relative degradation of intelligibility as those with
normal hearing, but at a lower absolute level [Payton et al., 1994] and musical training
of more than eight years’ duration is known to make participants more resilient to
reverberation than those with no more than three years’ training [Bidelman and
Krishnan, 2010].

When carrying out experiments involving reverberation, it is common to capture
the acoustic characteristics of a room by recording its impulse response. The impulse
response is how the room responds to a very short signal (impulse). Since the way a
room responds and produces reverberation is essentially a mathematical function, the
capture of an impulse response effectively involves recording a known signal with its
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Table 5.1: Overview of synthetic-speech-in-reverberation experiments

Experiment Purpose Systems Stimuli Reverb Design Participants Sec.

Low-level
reverberation

What is the e�ect
of low reverb on
synthetic speech?
Does amt match
the lab?

Roger :
ns v.
hts v.
f-usel

90 Matrix
sentences

None
Lounge:
100 cm and
250 cm

Within-subjects.
Each heard all
systems in all
reverbs

Native UK English:
36 in perception labs
Native US English:
65 on amt

5.3

High-level
reverberation

What is the e�ect
of high reverb?

Roger :
ns v.
hts v.
f-usel

90 Matrix
sentences

None
Lounge:
250 cm and
Aula Carolina

Within-subjects.
Each heard all
systems in all
reverbs

Native US English:
35 on amt

5.4

reverberation and then removing the signal. We are then left with a recording that
can be combined with a stimulus (in our case speech) through a process known as
convolution to achieve a very similar reverberation to that which would have resulted
from playing the stimulus in the room, whilst excluding the unwanted effects of
using a real room. The convolution operation is summarized by Loizou [2007] as
Equation (5.4), where x is the vector to be convolved and ℎ is the vector containing
the impulse response.

y (n) =
∞∑
−∞

x (k)ℎ(n − k) (5.4)

The practical effect of reverberation can be seen from Figure 5.4 on page 113,
which shows spectrograms of an utterance used as a stimulus for the experiments in
this chapter. Without reverberation (top left), the speech is clearly demarcated, but as
the level of reverberation increases, the speech appears ‘smeared’ to the right (later
in time), clearly demonstrating how reverberated earlier speech interferes with later
speech.

5.2 Overview of experiments

Having established in Chapter 4 that synthetic speech still suffers more than natural
speech in the presence of noise and that different synthesis systems perform differently,
we turned our attention to the effects of reverberation. We wanted to explore how
reverberation affects synthetic speech and whether the results from the lab would be
reflected on Amazon Mechanical Turk (amt).

We carried out two experiments, the first in the lab and on amt with a low
level of reverberation and the second on amt that included a much higher level of
reverberation. Table 5.1 provides an overview of the two experiments.
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5.3 Low-level reverberation experiment

Our main aim in this experiment was to put our experimental methodology to the test
and establish the relationship—if any—between the intelligibility of natural speech
and the two synthesis systems we had used in previous experiments in reverberant
conditions.

Our secondary aim was to establish the viability of running experiments involving
reverberation on amt. We had concerns that the noise present in the environments
amt participants were using might interfere with the results of reverberation experi-
ments.

We hypothesized that:

• overall, increasing levels of reverberation would interfere more with intelligibil-
ity

• because the Hmm-based Speech Synthesis System (hts) has a tendency to sound
buzzy, particularly through headphones, a moderate level of reverberation
would disguise this and, by reducing the distraction to the listener, make it
more intelligible than with no reverberation

• amt would provide the same relative rankings as the laboratory.

We were also interested in seeing whether the first two hypotheses would result
in the crossover effect seen in the experiments with additive noise.

5.3.1 Method

In line with previous experiments, we carried out listening tests using Matrix sen-
tences in three levels of reverberation. Since it would have been impractical to have
participants attend a room with the desired acoustic characteristics and impossible
for amt participants to do so, we sought to create reverberant stimuli that could be
played through headphones, but would simulate listening to the stimuli in a rever-
berant room. Using headphones confers the further advantage that each participant
experiences exactly the same reverberation rather than one that has been altered by
their position in the room or objects in the room having been moved.

We were particularly keen to find a binaural impulse response that we could
convolve with our speech since there is known to be a significant difference between
monaural and binaural speech perception in reverberation [Nabelek and Robinson,
1982]. We also wanted to use reverberation levels typically encountered by real users in
real environments and, to this end, we were fortunate enough to be given permission
to use the impulse responses recorded for the Computational Hearing in Multisource
Environments (chime) project at the University of Sheffield [Christensen et al.,
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2010]. The purpose of the chime project was to establish a framework for the
assessment of automatic speech recognition (asr) in the presence of reverberation,
which necessitated the recording of impulse responses that could be used to add the
effect of reverberation to speech files. Binaural impulse responses (birs) were recorded
in a semi-detached, Victorian house, typical of those found in the UK. Recordings
were made systematically, in two rooms, from varying distances and azimuths with
responses to a sine sweep played from a b&k 4227 artificial mouth being recorded
using a b&k head and torso simulator (hats) at the same location.

The birs used for this experiment were those recorded in the lounge, a room
measuring 385 cm by 385 cm and 365 cm high—a 13% smaller floor area than the UK
average and nearly 50% higher ceiling [Department for Communities and Local
Government, 2012]. The room was measured as having a reverberation time (rt60 )
of 300ms using Schroeder integration. Using Equation (5.3), the maximum critical
distance (that is, the point beyond which the reverberant, rather than the direct,
sound field is predominant) for the room was calculated to be 0.765m. We used the
impulse responses from recordings at 100 cm and 250 cm distance and 0° azimuth
(i.e. head-on). Clean synthetic speech was normalized to 65 dB sound pressure level
(spl) before being upsampled to 96 kHz and convolved with each channel of the
appropriate impulse response. To simulate a condition without reverberation, an
equal length file of a one and all zeroes was used as the impulse response. After
convolution, the resultant ‘tail’ was removed and the mixed signal downsampled to
16 kHz.

The use of a stereo signal meant that, unlike in previous experiments, the stimuli
had two channels rather than one. The result is that participants’ left and right
ears would hear slightly different stimuli, which introduced the possibility of their
handedness having an effect on the results. We, therefore, added the Edinburgh
Handedness Inventory [Oldfield, 1971] to our pre-experiment questions to measure
how left- or right-handed participants were so that we could check for any effect.

Ninety Matrix sentences in natural speech (ns), the 2010 variant of the Hmm-
based Speech Synthesis System (hts), and Festival unit-selection (f-usel) were taken
from those generated as described for our ecologically-valid noises experiment in
Section 4.3.1. Each sentence was heard only once by each participant, who heard ten
sentences in each of nine conditions (ns, hts, and f-usel speech without reverbera-
tion (‘none’) and with the level of reverberation that would have been experienced
from distances of 100 cm and 250 cm). The two distances were chosen to be as near
as possible to the critical distance and at a point well beyond it. The presentation of
conditions, and sentences across conditions, was balanced using a Latin-square design
and participants were allocated to a group at random.
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Listeners were recruited either from the University of Edinburgh’s recruitment
service, were compensated for their time with £8; or through amt and compensated
with US$1. Lab participants listened to the stimuli with headphones in a listening
booth at the Centre for Speech Technology Research (cstr) as described in Sec-
tion 3.5.1. The participants from amt listened in their own environment with their
own equipment, but were instructed to wear headphones at all times and to record
what features they had.

Lab participants consisted of a total of 26 females and 10 males, all of whom were
native speakers of UK English. They were overwhelmingly full-time students (34
full-time students, 1 employed full-time; and 1 employed part-time) and followed a
typically student profile in terms of age and education, with 33% being under 20;
64% 20 to 29; and 3% 40 to 49; 3% not having completed high school; 53% having
completed high school; 19% a bachelor’s degree; and 25% some college. Age groups
and genders were distributed evenly across groups (age: Fisher’s Exact test, p = 0.528;
gender: Fisher’s Exact test, p = 0.875).

Surprisingly, nearly 39% of participants scored 10 or higher on the Hearing
Handicap Inventory for Adults Screening Version (hhia-s), suggesting that they
may have sensorineural hearing loss. A further 7 reported minor hearing problems,
but none was fitted with a hearing aid. None of those who reported problems or
had a high hhia-s score had remarkable word error rates (wers) and a linear model
predicting an appropriate transformation (power of −0.2) of the mean wer did not
show any significant effect. Nor did the same model show any significant effect of
synthetic speech listening frequency, age group, gender, or whether participants
described themselves as computer scientists (R2 = 0.27, F(9, 26) = 1.09, p = 0.403).

Participants recruited through amt consisted of a total of 32 females and 33 males,
all of whom were native speakers of US English. No participant chose to withhold
information when given the option (for gender, age, education, and occupation).
As expected, participants recruited through amt were not just students, with 40%
being employed full-time, 17% employed part-time, 9% being homemakers, 3%
having retired, 17% studying full-time, and 14% others. Likewise, the spread of age
ranges reflects a non-student population, with 5% being under 20, 51% aged 20 to 29,
26% aged 30 to 39, 9% aged 40 to 49, 8% aged 50 to 59, and 2% aged 60 to 69. As
for education, 2% left full-time education before high school, 12% completed high
school, 40% had some college education, 35% had a bachelor’s degree, 9% a master’s,
and 2% a doctorate. Age groups and genders are distributed evenly across groups
(age: Fisher’s Exact test, p = 0.616; gender: Fisher’s Exact test, p = 0.929).

None of the participants wore hearing aids and none self-reported problems
with hearing. Only 8% of amt participants scored 10 or higher on the hhia-s,
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Table 5.2: Significance of individual-level predictors (analysis of variance (anova) model com-
parison, χ2 test) for the glmm of the low reverberation experiment

Lab Amt

Predictor aic p aic p

Baseline 1979 — 6066 —
System 2009 0.001 6148 0.001
Reverberation 1972 0.545 6168 0.001
System x Reverberation 1974 0.535 6074 0.002

but the wers of two of them were the highest for their respective groups. How-
ever, a linear model predicting the transformed mean wer did not show this to
have had a significant effect. Nor did the same model show any significant effect
of synthetic speech listening frequency, age group, gender, whether participants de-
scribed themselves as computer scientists, or their degree of left- or right-handedness
(R2 = 0.13, F(8, 56) = 1.03, p = 0.425).

5.3.2 Results

The results from the lab participants can be seen in the top of Figure 5.1, which
shows traditional box plots (where the midline is the median value) of the mean wers
aggregated by system and level of reverberation with the mean value of each plot
indicated by the × symbol. We had hypothesized that natural speech would fare better
in reverberation than speech from either of the synthesis methods and Figure 5.1
would appear to support this hypothesis. Indeed, it appears to go further and show
that ns and f-usel become less intelligible with increasing reverberation, but that
hts enjoys an interesting increase in intelligibility in the reverberation at 250 cm,
in much the same way (but in the opposite direction) that it did in additive noise.
However, the range of wers covered by the graph is very small and, unsurprisingly, a
generalized mixed effects model built to predict the number of errors from system
and its interaction with level of reverberation—represented by the formula given in
Equation (5.5)—found no significant effects other than the difference between systems
themselves (see Table 5.2)

Error ∼ System ∗ ReverbLevel + (1 + System | Sentence) + (1 | Participant) (5.5)

The results from amt participants (shown in the bottom of Figure 5.1) mirror
those from the lab, albeit with more variance, as one would expect. As with the
results from lab participants, the wer for hts does not increase at the same rate as
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Figure 5.1: Mean wer by system and level of reverberation with the lab and amt

for natural and unit-selection speech, although it stays more or less static rather than
decreases. In the case of the amt results, the level of reverberation and its interaction
with system does become statistically significant, as Table 5.2 shows.

5.3.3 Discussion

Our first hypothesis was that an increased level of reverberation would result in a
corresponding increase in the wer for both natural and synthetic speech. The initial
results from the lab seem to contradict this and show no significant difference in
wer at the levels of reverberation we used. However, the same stimuli heard by
amt participants did reveal a significant effect of both reverberation level and the
interaction of reverberation level with speech system. The difference in these results
perhaps confirms our conjecture that experiments conducted only in the listening
lab do not provide a full picture of the likely performance of systems in the real
world. Although the differences between hts and f-usel are not great, the results
from amt suggest that the lower variance encountered with hts may make it a better
choice for reverberant environments, particularly at distances greater than the critical
distance, as in our 250 cm level. Moreover, even a small increase in intelligibility
may be perceived as a major benefit to someone who has to use the system over an
extended period. In any event, the results give a clear indication of the reduction
in intelligibility to be expected when using synthetic rather than natural speech at
moderate levels of reverberation. We expected the effect to be more marked in a
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higher level of reverberation, such as in a railway station or church and investigated
this in our next experiment.

We had wanted to compare amt with the laboratory for investigating reverber-
ation because we had hypothesized that any background noise present in the amt

listeners’ environments could be a confounding factor in the results. However, Fig-
ures 5.1 shows that the relative rankings of the three systems tested are maintained
when using amt. Nonetheless, we wanted to establish the effect of any background
noise in the amt listeners’ environments. For this reason, we had asked participants
to report how noisy the environment was in which they had taken the listening test,
along with a number of questions designed to elicit what other noise they could hear
and to cross-check their answers. The bottom of Figure 5.2 replicates the bottom of
Figure 5.1, but with results only from those participants we can be confident were
in a quiet environment all of the time (41 of the 65 total amt participants). We
determined these by dividing participants into two groups: those who reported no
noise whatsoever (so, as near as possible to lab conditions) and those who reported
any form of extraneous noise. Although lab students should not have been able to
hear any external noise, a number reported their environment as not being quiet all
of the time. We suspect that they were reporting the reverberation in the stimuli,
but to be sure we carried out the comparison only with those who had reported
their environment being quiet all of the time (the top of Figure 5.2). It seems that
any background noise the participants heard did not interfere significantly with their
ability to comprehend the stimuli.

However, to verify this, we built a generalized linear mixed model (glmm) to
assess the extent of the effect of background noise on the results from amt. The
model was built using the binary division of participants into those in quiet and
those in some form of noise described above. We then modelled the number of
errors predicted by system, reverberation level, the binary value of quiet or non-
quiet environment, and all possible interactions. An anova comparison of the full
model with a reduced model (with quiet and all its interactions removed) did not
find the effect of noise on the results to be significant ( χ2 test p = 0.02). Even so,
although we had already shown noise to have a significant effect on intelligibility in
previous experiments, it is somewhat surprising that it seems as though the noise
amt participants heard was sufficiently loud as to affect intelligibility almost to
the point of statistical significance even though they reported wearing headphones.
The ability of noise to act this way may be related to the contrary effects of noise
and reverberation. Whilst some reverberation seems to improve the intelligibility
of hts, noise has the opposite effect. It would seem prudent, then, when running
reverberation experiments on amt to enquire about the listening environment of
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Figure 5.2: Mean wer by system and level of reverberation with those lab and amt participants
who reported their environment quiet all of the time

participants and to exclude any results where any extraneous noise was reported. The
contrary effects of noise and reverberation had interesting implications for situations
in which they occurred together. We report on our investigation of this in Chapter 6,
but first we looked at the effects of a much greater level of reverberation.

5.4 High-level reverberation experiment

Having observed the slight improvement in intelligibility with hts in low reverbera-
tion, we wanted to see what would happen with a much larger reverberation. Many
of the prospective users of speech technology for reminders will wish to do so in
an environment of high reverberation, such as a train station, church, or simply the
stairwell of their building.

For this experiment, we introduced a binaural impulse response recorded for the
Aachen impulse response (air) database [Jeub et al., 2009]. The impulse response we
chose was recorded in the Aula Carolina, Aachen, a former church with a floor area of
570m2 and a high ceiling typical of those found in churches. We ran the experiment
on amt, as we had done for the previous experiment, using exactly the same materials
and method, except that the Aula Carolina impulse response was used instead of that
of the lounge at 100 cm used previously. This meant that participants heard stimuli
with reverberation levels equivalent to: none; at 250 cm in the lounge of the Victorian
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house; and that from the Aula Carolina.
We hypothesized that wers would increase significantly for all speech forms in

the increased reverberation, but that synthetic speech would suffer more than natural
speech. We also hypothesized that hts would not benefit significantly from the higher
reverberation in the way that it had done at 250 cm in the lounge of the Victorian
house.

5.4.1 Method

All participants—11 females and 23 males—were recruited via amt, were native
speakers of US English, and were reimbursed US$1 for their time. One participant
chose to withhold information about age, gender, education, and occupation, whilst
a further participant withheld information about occupation only.

The information provided showed that participants came from almost the full
range of ages, education, and occupations. Ages included 6% who were under 20,
40% aged 20 to 29, 29% aged 30 to 39, 11% aged 40 to 49, 9% aged 50 to 59, and
3% aged 60 to 69. Education included 3% who left full-time education before high
school, 14% who had completed high school, 37% who had some college education,
29% who had a bachelor’s degree, 9% a master’s, and 6% a doctorate. Occupations
included 37% who were employed full-time, 20% employed part-time, 11% were
homemakers, 9% were studying full-time, and 17% others. Age groups and genders
are distributed evenly across groups (age: Fisher’s Exact test, p = 0.641; gender:
Fisher’s Exact test, p = 0.911).

Only 6 per cent of amt participants scored 10 or higher on the hhia-s, but
most actually had the lowest wer for their group and a linear model predicting
transformed mean wers did not show this to have had a significant effect. Nor did
the same model show any significant effect of a reported problem with hearing,
synthetic speech listening frequency, age group, gender, whether participants de-
scribed themselves as computer scientists, or how left- or right-handed they were
(R2 = 0.39, F(11, 23) = 1.33, p = 0.27).

5.4.2 Results

Figure 5.3 clearly shows the effect of the much increased level of reverberation in the
Aula Carolina (ac) condition. As we had hypothesized, hts seems to benefit from
the 250 cm level of reverberation, as it did in the previous experiment, but loses the
advantage at the level found in the Aula Carolina. However, using the same formula
used for the previous experiment (Equation (5.5) on page 106), the results of glmm
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Figure 5.3: Mean wer by system and level of reverberation

Table 5.3: Significance of individual-level predictors (anova model comparison, χ2 test) for the
glmm of the high reverberation experiment

Predictor aic p

Baseline 5886 —
System 6276 0.001
Reverberation 7156 0.001
System x Reverberation 5887 0.053

comparisons represented by Table 5.3 show that the interaction between system and
reverberation was not significant in this experiment.

To assess the effect of noise on the results, we built a glmm in the same way that
we did for the previous experiment. There were 20 participants in lab-like conditions
and 15 who reported some form of background noise. Again, we found the effect of
noise not to be significant ( χ2 test p = 0.32).

5.4.3 Discussion

The levels of reverberation used in this experiment cover the range of reverbera-
tion levels likely to be encountered in day-to-day environments, from direct arrival,
through well past the critical distance in a typical lounge, to a highly reverberant edi-
fice. The wers elicited are comparable to those from the speech-in-noise experiments
in Chapter 4, ranging as they do from almost 100% to 0% intelligibility. We have,
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therefore, achieved a sound baseline for future experiments whilst allowing for the
higher wers we would expect from combined noise and reverberation.

Since any noise the amt participants experienced in their environment did not
significantly affect the results, the levels of reverberation also seem well suited for
experiments conducted using amt.

5.5 Conclusion

In much the same way as additive noise, reverberation has received scant attention
in speech synthesis research compared to research into the intelligibility of natural
speech. Our desire to test synthesis systems in ecologically-valid forms and levels
of reverberation prompted us to source existent binaural impulse response from
academic projects. In order to assess their use, we developed a process for combining
them with speech and carried out experiments in the lab and on amt. We sought to
establish the level of parity between lab and amt results and the effect of low and
high levels of reverberation on natural and synthetic speech.

Once again, our results showed that ns is more resilient to interference than either
of the synthetic speech systems, confirming our belief that research in this area is still
warranted.

Our belief in the utility of amt is further supported by the results in Table 5.2 on
page 106, which demonstrate that using amt has allowed us to find a significant effect
not found in the lab.

How and why reverberation increases wer is perhaps best exemplified by Fig-
ure 5.4. It shows how the speech sounds (particularly the first three formants) are
carried forward in time and appear as ‘smears’ on spectrograms. The figure shows the
same utterance, ‘Kathy wants twelve red mugs.’, with the four levels of reverberation
used in the experiments for this chapter. Even with the reverberation at 100 cm in
the lounge of the Victorian house, some smearing can be seen, which is particularly
noticeable at about the 4 kHz level just before 2 s has elapsed. It also seems clear that
the energy in the speech sounds is being dissipated, since the red areas are not as red in
the low frequencies and the yellow in the high frequencies is not as prevalent. In fact,
it seems that some of the high frequency sounds might be ‘lost’ completely, which
would account for the increased difficulty in perceiving consonants in reverberation.

The difference between the spectrograms for 100 cm and 250 cm is not immediately
obvious, although it is there, and probably accounts for why we found little difference
between them in the first experiment. It does seem clear that including these two
levels of reverberation in the same experiment is not particularly productive. On
the other hand, the justification for including reverberation from the Aula Carolina
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Figure 5.4: Spectrograms showing e�ects of various levels of reverberation

is obvious from the spectrogram alone. The much higher level of reverberation has
fundamentally changed the soundscape and almost completely obliterated the periods
of silence between the speech sounds. At first glance, it is difficult to see how any
part of the utterance could be intelligible and the increased wers experienced with
this level of reverberation would seem to be expected. The use of the conditions,
none, 250 cm, and ac would appear to be a good choice for experiments involving
intelligibility in reverberation.

In experiments involving noise, we would expect the reverberation of the noise to
exacerbate the interference with intelligibility, since the noise will also suffer from
‘smearing’ and would be expected to interfere with speech over a longer time frame
than otherwise would be the case. We investigated the effect of noise and reverberation
combined in our final experiment in Chapter 6.





CHAPTER6
Synthetic speech in noise and
reverberation

Although it appears that there have not been any studies investigating the in-
telligibility of synthetic speech in noise and reverberation combined, some
work has been carried out for natural speech, focused mainly on classrooms

and hearing impairment. Since noise and reverberation individually affect the intelli-
gibility of speech, their combined effect might be expected to do the same. In fact,
both Nabelek and Mason [1981] and Payton et al. [1994] found that the combined
effect was greater than the individual contributions.

In this chapter, we present the results of a large-scale experiment intended to
examine the combined effect of noise and reverberation on modern speech synthesis
and natural speech using the methodologies we developed for the purpose.

6.1 Method

In this experiment we wanted to assess the effect of simultaneous reverberation
and noise on the intelligibility of natural and synthetic speech, using the systems,
noises, noise levels, and reverberation levels used for previous experiments to allow
for accurate comparisons between experiments. Our primary aim was to establish
a baseline of intelligibility for modern systems in noise and reverberation and to
confirm that experiments run using Amazon Mechanical Turk (amt) would produce
results similar to those in the lab.

We used the short, non-confusing, reminder-like Matrix sentences we had used for
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previous experiments as we had shown that they provide the same relative rankings
as semantically unpredictable sentences (suss) and would enable comparisons with
previous experiments. The same three systems: natural speech (ns), the Hmm-based
Speech Synthesis System (hts), and Festival unit-selection (f-usel) that were used to
create the stimuli for the experiments in Chapter 5 were used to generate the stimuli
for this experiment.

Three reverberation levels were chosen: none; that found at 250 cm in the lounge
of the Victorian house; and that from the Aula Carolina (ac) (all of which are
described in Chapter 5). The ‘none’ level effectively gives us a control condition; the
ac a maximal level; whilst 250 cm is the level at which we had observed an interesting
interaction with hts.

We elected to use noises that had previously been used in the ecologically-valid
noises experiment described in Chapter 4, that is: none, chat, music, and both (the
noises are described in detail in Section 4.3). As with no reverberation, no noise
effectively gives a control condition and the other noises are those hypothesized
(and indicated by amt) to be most commonly found in domestic environments.
The levels at which the noises would be presented were chosen such as to achieve
signal-to-noise ratios (snrs) of 5, −5, and −15 dB. These snrs provide an evenly
distributed difficulty level ranging from, approximately, 100% to 50% word error
rate (wer) without reverberation.

The number of conditions for this experiment, therefore, would be 108, being
3 systems ×3 reverberation levels ×4 noises ×3 snrs. Since we intended to have
10 sentences per condition, participants would have been required to listen to 1080

sentences, which would have taken them at least four hours. In order to make the
experiment more manageable, we elected for a mixed design in which each participant
would hear all three reverberation levels, all three snrs, and one combination of
system and noise. That is to say, reverberation and snr effects would be measured
within participants with system and noise being measured between participants. Thus,
each participant would only need to listen to ninety sentences and a total of twelve
participants would be required to ensure the coverage of each combination of condi-
tions. However, in order to achieve a balance of sentences across conditions, three
arrangements were generated per combination of system and noise, thus necessitating
a minimum of thirty-six participants to ensure full coverage.

Each sentence, in each of the three systems, was normalized to the equivalent of
65 dB sound pressure level (spl) and was then convolved with either a vector of a one
and all zeroes for the condition without reverberation or the appropriate binaural
impulse response (bir) for the 250 cm and ac levels of reverberation. For each of the
four noises (none, chat, music and both) a section equal in length to the speech was
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selected at random. The selection was then adjusted to the same level as the speech
and convolved appropriately for all three reverberation levels before being added to
the speech at the required snr. The snr was achieved by adjusting the speech rather
than the noise so that the correct level of speech would be presented in the conditions
where there was no background noise.

Participants were recruited through amt and the University of Edinburgh’s
recruitment service. Demographic data collected from all participants is summarized
in Table 6.1.

Those participants recruited through amt were all native speakers of US English
and were reimbursed US$1 for their time. A total of 260 participants registered to
complete the experiment with only 77 actually completing all sections. Whilst it is
not possible to know why such a high number chose not to complete, comments from
some suggest that the difficulty of listening to the stimuli relative to the remuneration
may have been an issue. Just under 8 per cent of amt participants scored 10 or
higher on the Hearing Handicap Inventory for Adults Screening Version (hhia-
s). A linear model predicting appropriately transformed mean wers did not show
this, synthetic speech listening frequency, age group, gender, whether participants
described themselves as computer scientists, or how left- or right-handed they were to
have had a significant effect (R2 = 0.08, F(9, 67) = 0.68, p = 0.724). One participant
wore hearing aids in both ears and was removed from our analysis as we cannot be
certain what facilities the hearing aids had for compensating for noise or reverberation.
No participant self-reported a problem with hearing.

Participants recruited for the lab part of the experiment were paid £8 for their
time. Just under 8 per cent of the lab participants scored 10 or higher on the hhia-s
and a further two reported minor hearing problems. None of their mean wers gave
cause for concern and a linear model predicting appropriately transformed mean wers
did not show any significant effect. Neither did the same model show any significant
effect (R2 = 0.11, F(9, 61) = 0.86, p = 0.565) of synthetic speech listening frequency, age
group, gender, or whether participants described themselves as computer scientists.

6.2 Results

This experiment was built on those from Chapters 4 and 5 by including conditions
with both noise and reverberation. It also included conditions with either noise or
reverberation only so that we could make comparisons with previous experiments.

The overall results of the amt and lab parts of the experiment are summarized in
Figures 6.1 and 6.2 respectively. The pattern of results is as would be expected with
increasing noise and reverberation levels resulting in higher wers and ns performing
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Table 6.1: Demographic data collected from amt and lab participants

Amt Lab total

n % n % n %

Gender female 44 57 37 51 81 54
male 33 43 35 49 68 46

Age group 18–29 28 36 68 94 96 64
30–49 33 43 2 3 35 23
50+ 16 21 1 1 17 11
withheld 0 0 1 1 1 1

Education bachelors 32 42 8 11 40 27
doctorate 2 3 0 0 2 1
high school 3 4 26 36 29 19
masters 10 13 15 21 25 17
some college 30 39 22 31 52 35
withheld 0 0 1 1 1 1

Occupation employed full-time 33 43 0 0 33 22
employed part-time 14 18 2 3 16 11
homemaker 8 10 0 0 8 5
other 7 9 4 6 11 7
retired 4 5 0 0 4 3
student full-time 9 12 65 90 74 50
withheld 2 3 1 1 3 2

Computer scientist no 66 86 42 58 108 72
yes 11 14 30 42 41 28

Work in speech technology no 75 97 72 100 147 99
yes 2 3 0 0 2 1

Listening Frequency at least once a wk 12 16 14 19 26 17
at least twice a yr 29 38 22 31 51 34
not sure 6 8 7 10 13 9
rarely or never 30 39 29 40 59 40

Headphones earbuds 29 38 2 3 31 21
full ear 22 29 69 96 91 61
in ear 11 14 0 0 11 7
on ear 15 19 1 1 16 11

Headphone features noise cancelling 10 13 4 6 14 9
none known 60 78 58 81 118 79
sound isolating 3 4 4 6 7 5

Hhia-s total 10 or above 5 6 6 8 11 7
below 10 72 94 66 92 138 93

Noisiness noisy most time 1 1 5 7 6 4
quiet all time 61 79 66 92 127 85
quiet most time 15 19 0 0 15 10
equal noise quiet 0 0 1 1 1 1

Browser Chrome 37 48 0 0 37 25
Firefox 17 22 0 0 17 11
IE 9 12 2 3 11 7
Mozilla 2 3 0 0 2 1
other 1 1 0 0 1 1
Safari 11 14 67 93 78 52
Opera 0 0 3 4 3 2

Experience of stimuli hard to type 1 1 0 0 1 1
usually all words 7 9 10 14 17 11
usually most words 30 39 43 60 73 49
very hard 39 51 19 26 58 39

total participants 77 100 72 100 149 100
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better than the two synthetic systems in every condition. Similarly, the results from
amt mirror very closely those from the lab, but with more variance, as we have
come to expect. It seems that, once again, amt has proved to be as good as the
lab for investigating the relative performance of speech in noise and reverberation.
The results of analysis of variance (anova) comparisons of generalized linear mixed
models (glmms) are shown in Table 6.2. The fully-specified model was built with
the individual-level predictors System, Chat (whether present), Music (whether
present), Snr, and Reverberation and the person and sentence identifiers as group-
level predictors. The formula used is given in Equation (6.1). It can be seen that in
both the lab and amt parts of the experiment, all of the individual-level predictors
were significant.

Error ∼ System∗ReverbLevel∗Chat∗Music∗Snr+ (1 | Sentence)+ (1 | Participant)
(6.1)

Our results show the expected interaction between noise and reverberation: as
snr increases, the negative effect of reverberation on intelligibility is amplified. The
three systems also differ in their susceptibility to the combined effects of noise
and reverberation. At a snr of 5 dB, hts maintains its slightly better performance
relative to f-usel as reverberation increases, but at the snr of −15 dB, the advantage
disappears completely. The type of noise, on the other hand, does not appear to
influence the effect of reverberation on intelligibility.

In comparison with previous experiments, the ecologically-valid noises experiment
presented in Section 4.3 is most similar to the lab part of this experiment, without
reverberation (that is, those columns labelled ‘None’ under the label for noise type in
Figure 6.2). For ease of comparison with Figure 4.4 on page 89, Figure 6.3 shows only
those results from the lab part of this experiment that do not include reverberation.

On comparing the two, it is clear that this experiment resulted in wers that, across
the board, are somewhat higher. In fact, they are more in line with what we might have
expected with wers exceeding 50% at −15 dB as Rhebergen and Versfeld [2005], and
our own results from the baseline experiment (see Figure 3.1 on page 46), suggested
they would do. The implication is that, as we pointed out in Section 4.3.2, the wers
for our ecologically-valid noises experiment were unexpectedly low. In Section 4.3.2
we postulated that the reason for the lower wers was the more fluctuating nature of
the speech, which included pauses. However, these results contradict that suggestion
and lead us to believe that the true reason is the fact that, in the previous experiment,
the speech stimuli were presented from speakers in front of the listener and the noise
from behind, which perhaps allowed for better discrimination of the speech from the
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Figure 6.3: Mean wer by system, background noise, and snr (dB) of those lab results without
reverberation

noise. We had chosen that arrangement on the assumption that it would be the most
likely scenario in the home environment, as it seemed logical that more often than
not a sound source, such as a radio or television (tv) would be placed in front of the
listener and any noise would, consequently, be more likely to be behind, or at least
to the side of, the listener.

The high-level reverberation experiment in Chapter 5 was conducted solely with
amt participants and is, therefore, most similar to the amt parts of this experiment
without any background noise. However, unlike the previous experiment, this one
includes three snrs, none of which provides stimuli identical to those used previously.
In order to make a reasonable comparison, we have chosen to use only those stimuli
at a snr of −5 dB, being the middle of the three and as near as possible to that used
in the previous experiment. This subset of results is presented in Figure 6.4, which is
clearly very similar to those in Figure 5.3 on page 111.

6.3 Discussion

The spread of results shown in Figures 6.1 and 6.2 suggest that our choice of materials
for this experiment allows for testing across the full range of listening conditions with
appropriate wers being returned ranging from 0 to greater than 1. Even where we
might be concerned about floor and ceiling effects creeping in, the relative perfor-
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Table 6.2: Significance of individual-level predictors (anova model comparison, χ2 test) for the
glmm of the noise and reverberation experiment

Amt Lab

Predictor aic p aic p

Baseline 20568 — 15995 —
System 21072 0.001 16513 0.001
Reverberation 22387 0.001 18031 0.001
Chat 20987 0.001 16520 0.001
Music 20875 0.001 16433 0.001
Snr 23884 0.001 20423 0.001
System x Reverberation 20568 0.001 15995 1.000
System x Chat 20568 1.000 15995 0.001
Reverberation x Chat 20568 1.000 15995 1.000
System x Reverberation x Chat 20568 1.000 15995 0.001
System x Music 20568 1.000 15995 1.000
Reverberation x Music 20568 0.001 15995 1.000
System x Reverberation x Music 20568 1.000 15995 0.001
Chat x Music 20568 1.000 15995 1.000
System x Chat x Music 20568 0.001 15995 1.000
Reverberation x Chat x Music 20568 1.000 15995 1.000
System x Reverberation x Chat x Music 20575 0.005 15994 0.099
System x Snr 20568 1.000 15995 1.000
Reverberation x Snr 20568 0.001 15995 0.001
System x Reverberation x Snr 20568 0.001 15995 0.001
Chat x Snr 20568 0.001 15995 1.000
System x Chat x Snr 20568 1.000 15995 1.000
Reverberation x Chat x Snr 20568 1.000 15995 0.001
System x Reverberation x Chat x Snr 20568 1.000 15995 0.001
Music x Snr 20568 1.000 15995 1.000
System x Music x Snr 20568 1.000 15995 0.001
Reverberation x Music x Snr 20568 1.000 15995 1.000
System x Reverberation x Music x Snr 20568 1.000 15995 1.000
Chat x Music x Snr 20568 1.000 15995 1.000
System x Chat x Music x Snr 20568 0.001 15995 1.000
Reverberation x Chat x Music x Snr 20568 1.000 15995 1.000
System x Reverberation x Chat x Music x Snr 20564 0.389 15993 0.201
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Figure 6.4: Mean wer by system and level of reverberation of those amt results without noise
and with speech at the equivalent of −5 dB snr

mance of systems can still be determined.

Figure 6.2 allows us directly to compare the effect on intelligibility of noise versus
reverberation. The top two rows of labels indicate the noise and reverberation levels,
respectively. The three leftmost columns of the graph show the effect of increasing
levels of reverberation on speech without any background noise. Taking the −15 and
−5 dB snr conditions (that is, where the level of the noise exceeds that of the signal)
in these three columns and comparing them with the columns with a noise but no
reverberation (‘None’ in the second row of labels), it is evident that noise alone has a
greater impact on intelligibility than even the highest level of reverberation. However,
when the position is reversed and the snr is positive, the situation is less clear-cut and
the highest level of reverberation (ac) does exceed the disruption caused by noise.

We can also see that, as Nabelek and Mason [1981] and Payton et al. [1994] found
with natural speech, reverberation and noise together affect intelligibility more than
either of them alone. Looking at the conditions with noise in Figure 6.1 (those
columns headed, ‘Chat’, ‘Music’, or ‘Both’), where the snr is 5 and −5 dB, the wers
are greater when noise and reverberation are combined than they are with either
noise or reverberation alone. When the snr is −15 dB, the position is not as clear cut
as the wers are near ceiling levels, nonetheless they do increase slightly. The reason
for this is probably that when a fluctuating noise is subject to reverberation, the
smearing of the noise reduces the release from masking—that is, the gaps from which
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listeners can glimpse the speech stimulus—and it effectively becomes static in nature.
This is apparent from the spectrograms shown in figure 6.5. Each row represents a
separate utterance at each of the three snrs (5, −5, and −15 dB) and the columns
represent increasing reverberation, from none to that from the ac.

For conditions without reverberation, the wers in this final experiment were
higher than those for the similar experiment in Chapter 4 when they might have been
expected to be statistically the same, or even perhaps slightly lower, given the findings
of Raitio et al. [2012]. The fact that they were closer to our expectations than the
previous experiment highlights the anomalous nature of that experiment. It seems
that presenting speech and noise separately in front and rear speakers does not elicit
the same response as a mixed mono or stereo signal presented through headphones.
(Or, probably, a mixed signal presented through a multichannel speaker set-up as used
by Raitio et al. [2012].) The discrepancy highlights the effect experimental set-up can
have on results and, consequently, how important it is to match it with conditions in
the real world.

For conditions without noise, the results were as we would have expected, so
that, overall, we can be confident that the results from this experiment concur with
previous experiments and thus provide a true picture of the effects of the combination
of noise and reverberation relative to those experiments.

It seems that in the most difficult listening conditions participants achieved wers
greater than 100%. The reason appears to be that our chat background noise included
discernible words and some participants reported words from the noise rather than the
signal. This is unfortunate, since it undermines the advantage that Matrix sentences
have of having a fixed format and vocabulary set, such that they tend not to suffer as
much from the spurious insertion of extra words that were not actually presented.
Indeed, this was the first experiment we had carried out that returned wers in excess
of 100%. Clearly, this would not happen in experiments where the background noise
included speech-shaped noise, but no actual words, and we intend to investigate ways
of achieving this, without compromising the realistic nature of the background noise,
in future work.

6.4 Conclusion

The final experiment presented in this chapter brought together all our experimental
methodology to establish a baseline for performance of ns, f-usel, and hts in noise
and reverberation. The applicability of the methodologies to experiments run on
amt was confirmed through a close correlation with results from the lab.

To the best of our knowledge, this is the first systematic investigation of the
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combined effect of noise and reverberation on the intelligibility of synthetic speech.
Our results mirror existing findings, for natural speech, that there is an interaction be-
tween noise and reverberation. As we have seen earlier, under bad listening conditions
(high reverberation, low snr), synthetic speech intelligibility degrades far more than
the intelligibility of natural speech. We also found that the effect of reverberation is
higher on hts than on f-usel at the lowest snr.





CHAPTER7
Conclusion and future work

We have developed a rigorous methodology for the evaluation of speech
synthesis and applied it to provide a better understanding of the effects of

noise—both additive (in the form of background noise) and multiplicative (in
the form of reverberation)—on the intelligibility of synthesized speech that can be
applied immediately to state-of-the-art synthesizers, such as the Hmm-based Speech
Synthesis System (hts) and Festival unit-selection (f-usel) and, more generally, to
the development of future systems.

In Chapter 2, we presented a review of the literature covering studies of the
evaluation of synthetic speech. That review revealed a lack of recent research into the
intelligibility of modern synthesis systems in noise, reverberation, or a combination
of the two. Moreover, those studies that did exist had been carried out in a laboratory
with undergraduate students and tended to rely on noises and stimuli that do not occur
in the real world. As a result, we sought to develop an experimental methodology
that could bring to bear recent developments onto the assessment of synthetic speech
intelligibility.

In Chapter 3, we set out the components of the methodology: Amazon Mechanical
Turk (amt), Matrix sentences, and ecologically-valid noises, each of which was then
examined and evaluated for use in intelligibility, firstly with synthetic and, ultimately,
with natural speech.

Having satisfied ourselves that the new techniques elicit comparable results, but
with their own advantages, we went on to confirm their efficacy and to test the
intelligibility of two state-of-the-art synthesis systems with their natural speech
equivalent in noise, reverberation, and the two combined in Chapters 4, 5, and 6.

129
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7.1 Contributions

The primary contribution of this work is an in-depth investigation of the intelligibil-
ity of modern text-to-speech synthesis systems in settings that are more ecologically
valid than standard laboratory approaches. For this purpose, we introduced two
methodological innovations: the use of amt to move beyond the laboratory environ-
ment; and the use of Matrix sentences as a more accessible alternative to semantically
unpredictable sentences (suss), which also allows us to bridge intelligibility tests and
audiological assessments.

In order to increase ecological validity, we used a standardized, speech-shaped, fluc-
tuating noise, real chat, and music as our background noises. We also systematically
investigated the effect of reverberation, which has been neglected in the literature on
synthetic speech evaluation so far, even though reverberation is present in all real-life
listening situations that do not involve headphones.

For data analysis, we used generalized linear mixed models (glmms), which are
emerging as the statistical analysis method of choice in psycholinguistics and speech
perception.

7.1.1 Amazon Mechanical Turk

The use of a crowdsourcing platform in the work for this thesis was novel and
resulted in the first published presentation of its use for the evaluation of synthetic
speech intelligibility [Wolters et al., 2010]. This aspect of the thesis has probably
had the greatest impact in that the use of crowdsourcing, in the form of amt, has
subsequently been adopted by the organizers of the Blizzard Challenge, synthetic
speech researchers (for example, Watts et al. [2010] and Black et al. [2012]), and
commercial providers of speech synthesis systems. It is now routinely used for the
comparative assessment of synthesis systems, since it is cheaper and quicker than
running laboratory experiments and, as we have shown, allows for the recruitment
of a larger and broader-based cohort of participants enabling the detection of even
small, but significant, effects.

7.1.2 Matrix sentences

Similarly, prior to our use, we are not aware of any synthetic speech intelligibility
studies employing Matrix sentences. They have since been used more generally for the
assessment of objective measures of intelligibility [Valentini Botinhão et al., 2011a].
Matrix sentences have the advantage that they are multidisciplinary in that they
confer a link with audiological assessment, for which they were developed. More
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broadly, they enrich synthetic speech research by adding a set of stimuli that can
be generated in large number and that have the benefit of being realistic and non-
confusing for situations where this is a particular concern, such as with older or
cognitively-impaired participants.

7.1.3 Ecologically-valid noises

Our results clearly show that using different types of ecologically-valid noises and
settings affect the intelligibility of synthetic speech, and that different approaches to
speech synthesis may vary in their robustness to degradation.

Since the aim of the thesis was to evaluate speech synthesis intelligibility, we did
not perform an exhaustive evaluation of different types of noises. Instead, we initially
took our lead from audiology and used a standard speech-shaped fluctuating noise.
Our choice of more realistic background noises was motivated by a post-hoc analysis
of amt data, which revealed significant effects of chat and music. In order to establish
a stable baseline for other researchers, we selected chat and music samples that did
not vary much in intensity. In order to assess the effects of reverberation, we chose
realistic impulse responses that came from the home and from a standard, highly
reverberant environment.

7.2 Impact

The investigation into amt detailed in Section 3.6 was published as a workshop
paper [Wolters et al., 2010]; data collected from the experiments carried out for
Chapter 3, and other assistance, contributed to a conference paper [Wolters et al.,
2011]; and work carried out during the PhD project, but not presented in this thesis,
contributed to a third paper [Wolters et al., 2012].

The most obvious beneficiaries of this work are those working in synthetic speech
research, since not only will they be provided with an understanding of how up-to-
date systems perform in noise and/or reverberation, but, perhaps more importantly,
they will be left with a collection of methods that can be used in the assessment of
future systems as they evolve. However, the results of the research will be of wider
interest than just to those involved in speech synthesis.

Since the research was undertaken in the context of a project funded by the
Engineering and Physical Sciences Research Council (epsrc) investigating reminders
in the home environment, the work benefits from using conditions that might be
found in everyday environments whilst maintaining the rigour that comes from using
an experimental methodology. Therefore, researchers and practitioners in the field



132 Conclusion and future work

of human-computer interaction (hci) and, ultimately, anyone who uses synthetic
speech in noisy or reverberant conditions will have the information required to make
informed decisions about the interfaces they develop.

In the meantime, insight into how background noise and reverberation affect
modern (and future) synthetic speech might allow the choice of an appropriate system,
or modifications that might be made to a system, in order to improve intelligibility.

Clearly, the impact set out above could be deemed to have been achieved simply by
providing an analysis of synthetic speech in noise and reverberation and the validated
methods required to support that analysis. A more substantive measure of success
would be that the outcomes were taken up and used by the wider research community.
In the event, many of them have been. Many language researchers are now using amt,
including the annual Blizzard Challenge, following, as a prelude to this thesis, the
publication of the paper describing its use [Wolters et al., 2010].

Following its successful use in experiments for this thesis, the International
Collegium of Rehabilitative Audiology ( icra) noise was incorporated into a test of
synthetic speech in noise for the Blizzard Challenge 2010 [King and Karaiskos, 2010]
and subsequent research papers [Cooke et al., 2013; Valentini Botinhão et al., 2013].

Similarly, after establishing that Matrix sentences could, indeed, be used in place
of suss and elicited the same relative word error rate (wer) scores, they were taken
up by others, for example, Valentini Botinhão et al. [2011b,a]

7.3 Future work

As with any work of this nature, there remains much to be done, either because it
was outside the scope of a single PhD or because of limitations on time or resources.
Some areas for future work are laid out below.

7.3.1 Amazon Mechanical Turk

One of the advantages we have seen with using amt is the broadening of the range of
participants being recruited, so that we are no longer restricted primarily to young,
full-time undergraduate students with the bias that inevitably implies. However,
although amt participants are more representative of the wider population than lab
recruits, they are still not fully representative of the population [Ipeirotis, 2010]. This
leaves the possibility that amt has its own bias because of the demographics of the
subset of the population who use it. Further work on the exact demographics of its
users—from the basic factors, such as age and occupation, to more esoteric factors,
such as their motivation for choosing to take part in experiments is needed. We might
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find, for example, that blue-collar workers suffer more from hearing loss because a
high proportion of them work in noisy environments.

As a result of the publication of our work on using amt for experimental studies,
the data collection for the Blizzard Challenge of 2010 and 2011 [King and Karaiskos,
2010, 2011] contained a sizeable number of judgements collected via amt, which,
to our knowledge, have yet to be fully analysed and published. The relatively large
number of participants recruited for the challenges and the direct comparability of
the amt and non-amt parts would make their analysis a useful addition to our own
work and a useful comparison with it.

In August 2014, amt tightened its restrictions on its use by non-US companies
and residents, which could limit its accessibility to researchers in other parts of the
world without a US-based partner. There are crowdsourcing services other than amt,
but their equivalence to the lab would need to be ascertained before they could be
used for large-scale studies.

A related area of potential work would be the analysis of previous years’ data
from the Blizzard Challenge using glmms in order to make comparisons with the
statistical analysis currently used.

7.3.2 Matrix sentences

Additional work could consider why Matrix and semantically unpredictable sentences
perform differently—particularly why a crossover does, or does not, occur in the
performance of hts and f-usel. Is it simply that Matrix sentences make semantic
sense, or is it something more prosaic, for example that they differ in the distribution
of consonants in their make-up?

A more pragmatic concern for synthetic speech researchers is whether the use
of suss is tuning synthesis systems for them rather than improving the synthesis of
real-world utterances. We have mentioned this possibility several times and possibly
seen some evidence for it (such as the straight, parallel lines for both f-usel and
hts in Figure 4.7 on page 95), but have not addressed it directly. We could develop
hypotheses to explore whether suss are tuning systems or whether, in fact, the parallel
lines which suss generated suggest they make a level playing field and are actually
better for assessing intelligibility. An in-depth evaluation may also assist in answering
the question, raised in Section 4.4.3, of whether the crossover in the performance of
f-usel and hts is a product of whether the stimuli have semantic meaning.

In Section 3.7 we investigated and discussed the learning effects associated with
Matrix and semantically unpredictable sentences and showed how the effect was larger
for Matrix sentences. What we did not explore in any depth was why this might be.
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There could be several reasons: the restricted vocabulary size, which might result
in participants learning to recognize possible words; the high-frequency vocabulary
selected, which makes word recognition easier; and the simple, highly predictable
sentence structure. Further psycholinguistic research is required to establish to what
extent each of these factors contributes to the learnability of Matrix sentences and
how they affect the quality and validity of intelligibility judgements.

Part of our motivation for using Matrix sentences was to bridge the gap between
the synthetic-speech- and audiology-research communities. We had hoped to build on
this by including a speech reception threshold (srt) test as a measure of intelligibility
into our studies, since this is more common in audiology than the wer measure
universally used in synthetic speech research. Unfortunately, it proved not to be
possible to add our background noises to the standard tool for carrying out the
requisite up-down procedure.

Nonetheless, there remains a body of research in the speech synthesis commu-
nity orthogonal to that of the audiology community, but tantalizingly similar. For
example, George et al. [2008] carried out an experiment to establish srts of natural
speech in combined noise and reverberation with a number of similarities to our
own. A rough-and-ready interpolation of our wers reveals intriguingly similar srts,
but there is no procedure available to make a direct comparison between the two
experiments (or with others that used the srt as a measure). A validated and robust
procedure to convert wer scores to srt signal-to-noise ratios (snrs) would, in itself,
be a productive area of research and would have been particularly beneficial to us in
grounding our last experiment in the wider academic literature.

7.3.3 Ecologically-valid noises

The ecologically-valid noises we used only represent two types of noise: chat and
music. The chat was chosen to be a relatively boring conversation and the music to be
a relatively calm piece of Baroque. One obvious extension to our paradigm would be
to devise a rigorous sample of different kinds of noises and reverberation levels that
reflect typical environments in which synthetic speech is played. Assessing the effect
of these different noises on intelligibility is very difficult in a traditional laboratory
setting, but much easier when crowdsourcing. In a crowdsourcing design, noise type
can be treated as a between-participant variable, and it is comparatively easy to recruit
sufficient participants per noise.

An improvement that could be made to the way that the noises are used—rather
than the noises themselves—is how they are combined to achieve the required snr.
We took great care to ensure that our noises were as natural and as representative
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of real life as possible and were meticulous when combining them to ensure parity
between stimuli. In the future, if a synthesis system were developed that could alter
its output in the way that a human does when noise is present, it would be necessary
to add the noise into the auditory scene, as was done for the Computational Hearing
in Multisource Environments (chime) project Christensen et al. [2010], which would
necessitate much more in terms of time and resources than was available for the PhD.

As we saw in Chapter 6, the use of ecologically-valid noises may also require a
rethinking of assessment measures. In the most difficult listening conditions, where
the background noise included speech, participants were including words from the
background noise in their transcript of the speech stimuli. Traditional wer measures
fail to capture this interference. A new measure is required that assesses both the
degree to which the original signal was perceived (reflected in a corrected wer) and
the degree to which the background noise was confused with the foreground speech.

7.3.4 Methodological improvements

In our baseline experiment, we equalized the durations of the hts stimuli with those
of f-usel in order to obviate any bias caused by the length of the stimulus in the
different systems. This practice continued in the following experiments for synthetic
speech, but not for natural speech (ns). The consequence is that it is possible that the
longer durations of the ns stimuli will have had a bearing on the wers they elicited,
particularly in conditions that included reverberation, since the longer the stimulus,
the less reverberation there will be at the end of it. It would be prudent to investigate
whether this was the case and, if so, ways of achieving equality of durations between
all systems without adversely affecting the quality of any of the stimuli. Although
hts lends itself well to having the duration of an utterance varied, relying as it does
on statistical parameters for generation rather than recordings of speech, we should
also investigate whether doing so had any adverse effect.

When running our experiments, we provided a small number of practice stimuli
so that participants could become familiar with the voice being used. In many real-
life scenarios, such as reminder systems or robot companions, familiarization will
occur over a much longer time frame. Where such a use were envisaged, it would be
advantageous to carry out a longitudinal study to compare synthesis systems over a
much longer period.

7.3.5 Different listener groups

The research presented here should be seen as a starting point from which further
extensions could be made. For example, even though we broadened the range of
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participants who took part, by using amt, we have not done any work with older
people or those with hearing or cognitive impairment. These groups are often the
target audience for speech synthesis and have their own particular needs. Nor have
we included any work on the effect of modifications to the speech stimuli, such as
using clear or Lombard speech.

Moreover, synthetic speech has always had benefits for a range of applications,
especially in situations where other modes of interaction are not available or require
augmentation; either because of environmental conditions, or because of a disability
or personal preference on the part of the user. Indeed, for some situations, including
the provision of reminders in the home environment, synthetic speech has been
shown to be one of the most effective means of delivery [McGee-Lennon et al., 2007].

The importance of reminder systems and alarms in hospitals, transport, process
control, and industrial applications is well accepted [Noyes et al., 2006]. They can,
though, be just as important for safety in the home environment, for example, alarms
warning of appliances left on or doors left unlocked. Additionally, health care can be
enhanced; for example, reminder charts for patients being discharged from hospital
can significantly improve compliance with their drug regimen [Raynor et al., 1993].
Even more mundane reminders for appointments or events, mealtimes, toileting, or
even just the time of day can greatly enhance the quality of life for someone with
a cognitive impairment [Haigh et al., 2006]. The provision of reminders has the
potential to help not only the increasing number of older people in society, but also
people of any age who have cognitive or sensory impairments and, for this reason,
has received some attention in the literature.

The use of technologies such as mobile devices and wireless networking raise
exciting possibilities in presenting reminders. Presently, there is a plethora of systems
being developed and trialled to assist people in the home environment, many of which
include some form of reminder element. These systems are extremely heterogeneous
varying from large scale intelligent homes [Perry et al., 2004; Nugent et al., 2008],
through health-care systems [Zhou et al., 2010], to using pagers to provide self-
reminders [Aldrich, 1998].

Surprisingly, although speech is widely used in products for people with visual
impairment [RNIB, 2010], it has received little attention from the research com-
munity on its efficacy in presenting reminders. Nonetheless, the studies that have
specifically focused on spoken reminders have shown that they can be beneficial. In
addition to the obvious fact that a visual display is not required, the benefits have
been summarized [Lines and Hone, 2002, 2003a] as follows:

• the majority of older adults are able to understand speech
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• literacy is not required

• those with visual impairment can access information that would be difficult or
impossible to access otherwise

• information can be received when the hands and eyes are otherwise engaged

• those with mobility impairment do not need to accommodate their physical
position or location.

These benefits are likely to assume increasing importance as the number of older
people (who tend to have an increased reliance on them) continues to grow [ONS,
2011]—a point not lost on the UK Government, which had identified spoken reminder
systems as one way of promoting and supporting independent living in one’s own
home through technology, something it had identified as a key priority over the
coming years [Department of Health, 2006]. Clearly, many of these benefits would
be of interest to the wider population when receiving reminders or alarms.

Early work by Lines and Hone indicates that ‘speech outputs appear to be a
promising mode for interactive domestic alarm systems output’ [Lines and Hone,
2003b]. A small-scale study in participants’ own homes by Boman [2009] providing
spoken reminders was successful in improving the ability to remember to perform
activities and, therefore, quality of life for four of the five participants. In one of the
few studies to compare speech with other auditory reminders [McGee-Lennon et al.,
2007], speech significantly outperformed pager beeps and earcons [Blattner et al.,
1989].

The results of these studies should come as no great surprise, given that speech
is the primary means of communication for humans. The difficulty with spoken
reminders is that, almost by definition, the receiver will be engaged in another task
or, at the very least, will not be focused on the reminder. In the home environment
(and, often, outside it), many of these other tasks will occur in the presence of
noise; for example, talking with friends, listening to the radio, watching television, or
vacuuming. As anyone who has tried to hold a conversation in a noisy environment
will be aware, such background noise interferes with speech perception, making it
difficult to hear and understand the other person.

7.4 Conclusion

The methodologies introduced and implemented in the preceding chapters offer an
approach to assessing synthetic speech intelligibility that is grounded in the real world,
using real-life stimuli in ecologically-valid noises and reverberation. So, rather than
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the culmination of the work presented in this thesis, this chapter symbolizes the
establishment of a starting point for carrying out further work.
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