
 
 
 
 

 
Walking Molecules 

 
 
 
 
 
 

Mark D. Symes 
 
 
 
 
 
 
 
 
 

Degree of Doctor of Philosophy 
School of Chemistry 

University of Edinburgh 
April, 2009 

 



 ii 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
For my parents 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 iii 

Table of Contents 

 

Abstract         vi 

 

Declaration         vii 

      

List of Meetings and Lectures Attended and Presentations Given  viii 

 

Acknowledgements        x 

 

List of Abbreviations        xii 

 

General Remarks on Experimental Data     xiv 

 

Layout of Thesis        xv 

 

Chapter 1: Introduction       1 

Synopsis         2 

1.1 Introduction        3 

1.2 Motor Proteins       3 

 1.2.1 Rotary Motor Proteins     3 

 1.2.2 Linear Motor Proteins      4 

1.3 Kinesin        6 

1.4 Controlled Motion with Synthetic Molecular Machines  10 

 1.4.1 Switches       10 

 1.4.2 Doing Work with Controlled Molecular Motion  13 

1.5 Designing Walking Molecules     17 

 1.5.1 Walkers with Passive Tracks and Linkers   18 

 1.5.2 Walkers with Active Tracks and Linkers   24 

 1.5.3 Walking Systems as Functional Molecular  

Transport Devices      31 

 1.5.4 Rational Designs for Molecular Walkers   34 



 iv 

1.6 Synthetic “Walking” Molecules     37 

1.7 Summary and Outlook      43 

1.8 References and Notes       44 

 

Chapter 2: Cadiot-Chodkiewicz Active Template Synthesis of   

Rotaxanes and Switchable Molecular Shuttles  

with Weak Intercomponent Interactions   50 

Synopsis         51 

2.1 Introduction        52 

2.2 Model Studies        53 

2.3 Design and Synthesis of a Switchable Molecular  

Shuttle with Weak Intercomponent Interactions   55 

2.4 Conclusions        59 

2.5 Experimental Section       59 

2.6 Shuttling Experiments       69 

2.7 Computational Studies      71 

2.8 References and Notes       74 

 

Chapter 3: A Switchable Palladium-Complexed Molecular 

 Shuttle and Its Metastable Positional Isomers  78 

Synopsis         79 

3.1 Introduction        80 

3.2 Basis of the Design: Protonation/Deprotonation-Driven  

Ligand Exchange Experiments     80 

3.3 Synthesis and Characterisation of Palladium-Coordinated 

Molecular Shuttle L2Pd       81 

3.4 Macrocycle-to-Py-Station Protonation-Driven Shuttling 

Experiments        83 

3.5 Ligand Exchange Experiments and X-ray Crystallography  

Using 2,6-Dialkyl-Substituted Heterocycles    85 

3.6 Macrocycle-to-DMAP-Station Deprotonation-Driven  

Shuttling Experiments       86 



 v 

3.7 Conclusions        87 

3.8 Experimental Section       87 

3.9 Protonation of DMAP-L2HPd and Py-L2Pd and Rotaxane 

Shuttling Experiments       106 

3.10 Synthesis of Model Compounds and Representative  

Shuttling Experiments       108 

3.11 General crystal data and structure refinement for  

L1Pd(2,6-dipropylDMAP) and L1Pd(2,6-dipropylPy)  114 

3.12 References and Notes       117 

 

Chapter 4: A First Generation Molecular Walker   121 

Synopsis         122 

4.1 Introduction        123 

4.2 The Design of a First Generation Synthetic Molecular Walker 125 

4.3 Retrosynthesis        128 

4.4 Synthesis        131 

4.5 Summary and Outlook      141 

4.6 Experimental Section       142 

4.7 References and Notes       171 

 

Chapter 5: Towards a Molecular Walking System Based on  

Co(II)/Co(III) Redox Chemistry    174 

Synopsis         175 

5.1 Introduction        176 

5.2 Model Studies        177 

5.3 Retrosynthesis        184 

5.4 Synthesis        188 

5.5 Ongoing and Future Work      192 

5.6 Experimental Section       196 

5.7 References and Notes       211 

 

Appendix: Published Papers      214 



 vi 

Abstract 

 

Inspired by the motor protein kinesin, an ambitious and unprecedented mimic is 

proposed – a synthetic molecular motor that can walk. This thesis aims to explain the 

basic principles which define such walking molecules, with reference to both natural 

and synthetic systems. In light of these tenets, the rational design of the proposed 

synthetic kinesin analogue will then be expounded. The putative design envisages the 

use of a series of stimuli-induced binding events to cause a “walker unit” to process 

along a polypyridyl track in a unidirectional, hand-over-hand fashion. The chemistry 

behind the stepping mechanisms of both feet of the walker unit will be discussed in 

detail, along with a complete description of the synthesis of the track and walker unit 

to date. The future challenges and potential applications of the proposed system will 

be addressed. 
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Synopsis 

 

Controlling molecular-level motion is fundamental to all life processes. Without the 

ability to direct and regulate motion on the sub-nanometre scale, there would be no 

functioning enzymes; no self-replicating macromolecules. The Earth would be 

barren and sterile; the seas would be desolate voids. And yet it is only within the last 

half-century that a true appreciation of the molecular basis of life has been achieved. 

It is interesting and unsettling to note that whilst Nature uses controlled molecular 

motion to perform nearly all its key operations, the human race at the dawn of the 

21
st
. century uses controlled molecular motion for nothing. This cannot remain the 

case indefinitely, however. The demands of technology and the very real dangers 

threatening our planet demand that we obtain the ability to manipulate matter on the 

smallest of scales. In this regard, chemistry is of vital importance. Synthetic 

molecular machines allow us to probe the most fundamental of the physical laws and 

to build imaginative and ingenious devices from the bottom up. Where Nature has 

shown possibilities, chemistry can deliver the practical and precise solutions 

required for our species’ continued advancement. 

 

This thesis aims to address one small area of this quest to control molecular-level 

motion. Biochemical assays have revealed a wealth of information on the natural 

motor proteins. Those motor proteins collectively known as Kinesins are known to 

“walk” along filaments within the cell, pulling molecular cargoes with them to 

defined destinations. However, despite the intense study these systems have received, 

very few attempts have been made to mimic their modes of action or to create 

synthetic systems able to move directionally. Those systems which have been created 

to date all rely on highly complex intercomponent interactions to achieve their goals 

and as a result further elaboration may prove very challenging. What is required is a 

set of principles laying out how such systems may be realised in minimalist, tuneable 

and robust systems. The design and synthesis of just such a fundamental, minimalist 

molecular walking system is the subject of this thesis. 
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1.1 Introduction 
 

The challenges associated with the manipulation and control of objects on the sub-

micrometre scale were first explicitly referred to by Richard Feynman in a landmark 

address to the American Physical Society fifty years ago.1 Although a physicist, 

Feynman’s inspiration came from biological systems; “At the atomic level, we have 

new kinds of forces and new kinds of possibilities, new kinds of effects. The 

problems of manufacture and reproduction of materials will be quite different. I 

am…inspired by the biological phenomena in which chemical forces are used in 

repetitious fashion to produce all kinds of weird effects…” The desire to know more 

about how cells use chemistry to achieve their multifarious ends has led to an 

explosion of understanding in the biological sciences since Feynman gave his 

lecture. Of particular relevance to the current discussion are studies aimed at 

elucidating the mode of action of motor proteins. Nature uses an array of motor 

proteins that are capable of controlled nano- and micrometre scale movements. These 

fall into two broad classes: rotary motors and linear motors. 

 

1.2. Motor Proteins 

 

1.2.1 Rotary Motor Proteins 

 

One of the best studied, and certainly one of the most famous of all the motor 

proteins is the F0F1-ATPase (Figure 1.1a). The F0 subunit of this enzyme sits in the 

mitochondrial inner membrane and exploits a transmembrane proton gradient to turn 

the camshaft unit � and hence the F1 subunit to which � is attached. This facilitates 

the production of adenosine triphosphate (ATP) from adenosine diphosphate (ADP) 

and an inorganic phosphate molecule, by opening and closing the relevant active 

sites as the F1 subunit rotates.2,3 Rotary motor proteins are also capable of producing 

motion on the macroscopic level, with the bacterial flagellar motor being a pertinent 

example (Figure 1.1b). As in the F0F1-ATPase, the rotation of the bacterial flagellum 

is driven by a motor whose energy source is a proton gradient across a membrane 

(the cytoplasmic membrane in this case). Proton flux is tightly coupled to motor 

rotation and is directly proportional to motor speed.4,5  
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Figure 1.1 (a) A cartoon derived from the crystal structure of the F0F1-ATPase, adapted by 
permission from Macmillan Publishers Ltd: Nature, copyright 1998.3 (b) A cartoon of the key torque-
generating elements of the bacterial flagellar motor, adapted with permission from The National 
Academy of Sciences of the United States of America.5 

 

On the macroscopic level, it is the conrotary motion of a bacterium’s flagella that 

allows it to undertake ordered chemotaxsis towards (or away from) a particular 

stimulus. This transformation of nanometre-scale movements into macroscopic 

motion provides valuable insight into how synthetic molecular devices could be 

incorporated into the everyday world, at more human dimensions. In this regard, it is 

interesting to note that various filaments and beads have been successfully tethered 

to rotary motor proteins and these appendages used to observe the rotation of the 

motors directly under varying conditions.6-9 It must be stated, however, that all rotary 

motor proteins are necessarily localised in the membranes that provide them with the 

ion gradients they need to function. Hence linear motor proteins provide greater 

scope for probing motion on the nanometre scale, as they are much less constrained 

with regards to their location within the cell. 

 

1.2.2 Linear Motor Proteins 

 

There are three general classes – or “superfamilies” – of linear motor proteins; 

myosins, dyenins and kinesins (Figure 1.2). The primary mode of locomotion 

a)            b) 
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exhibited by all of these proteins differs fundamentally from that of the rotary motor 

proteins in that linear motors undertake translation, i.e. a net displacement of the 

motor itself from one part of the cell to another in a controlled fashion. The 

cytoplasm is an extremely crowded and viscous environment and as a consequence 

diffusion alone would be too slow to support the many competing reactions 

occurring within the cell. The controlled movement of specific cargoes to specific 

locations by linear motor proteins is thus essential to life.2  

 

 

Figure 1.2 A comparative representation of the three main classes of linear motor protein. The 
yellowish “motor domains” contain the microtubule/actin binding sites, adapted by permission from 
Macmillan Publishers Ltd: Nature Reviews Molecular Cell Biology, copyright 2000.10 

 

Part of this element of control is provided by the track to which individual motor 

proteins adhere and along which they can move, in much the same way as 

locomotives move on a railway. The myosins use actin filaments as tracks, whilst 

dyenins and kinesins both operate on microtubules. Kinesins as a family are 

generally well-suited to manipulation with the tools of molecular biology and the 

fundamental properties of these proteins have been established by the use of in vitro 

motility assays capable of measuring the physical and mechanical properties of 

single molecules.11,12 Hence, although kinesins are the most recent of the three 

superfamilies of linear motor proteins to be discovered,13 there is now a significant 

body of information concerning their behaviour, particularly kinesin-1 (also known 

as conventional kinesin) due to its ease of purification from the brain. The genome-

sequencing project has revealed 45 different kinesins in humans alone, but only in 
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the motor domain is there any significant sequence homology.14 The following more 

detailed description, therefore, will look specifically at the mode of action of 

conventional kinesin (hereafter referred to simply as “kinesin”). 

 

1.3 Kinesin 

 

Kinesin is a homodimeric motor protein capable of directional walking with high 

processivity along microtubules, i.e. it is capable of walking large distances on the 

cellular scale in a defined direction without dissociation from its guiding rail. It 

consists of two motor heads (or “hands”), connected to a 70 nm long coiled-coil stalk 

(or “body”) by a flexible neck linker region that enables motor stepping (Figure 

1.3).15 The stalk holds the two motor heads at an optimum separation (around 8.3 

nm) and also connects the motor heads to the cargo-binding domain which can 

recognise various organelles and vesicles.14,16 

 

Figure 1.3 The domain organisation of conventional kinesin, based on the crystal structure of the 
catalytic domains and neck and electron-microscopy images of the stalk and tail regions, adapted by 
permission from Macmillan Publishers Ltd: Nature Reviews Molecular Cell Biology, copyright 
2000.10 

 

For the purposes of the current discussion, the mode of action of the head and neck 

regions will be of the most relevance. The two head units are identical and each 

consists of a catalytic core (the motor domain) that binds to tubulin subunits in the 

microtubule track with nucleotide-dependent affinity. When not bound to a 

nucleotide molecule, a head unit binds tubulin strongly. Nucleotide (normally ATP) 

binding then causes a conformational change in the head and neck regions of the 

motor domain, giving rise to a weakly-bound state. Hydrolysis of the bound ATP to 
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ADP and inorganic phosphate then occurs and the head dissociates completely from 

the microtubule track.2 During this ATP binding and hydrolysis process, the other 

head of the kinesin dimer remains in the nucleotide-free and strongly bound 

conformation, preventing the complete dissociation of kinesin from the 

microtubule.17-21 There then follows a “waiting period”, during which the dissociated 

head may or may not be close in space to the strongly-bound head (Figure 1.4). 

However, the order of events that leads to ADP dissociation from the unbound head 

(causing it to then bind strongly to the microtubule track) and the subsequent binding 

of ATP to the previously strongly-bound head remains unclear, although recent 

evidence suggests that direct head-tail interactions play a key role.22 

 

Kinesin body
and cargo

Kinesin body
and cargo

Kinesin body
and cargo

Kinesin body
and cargo

A

B

C

D
 

Figure 1.4 Possible locations for the dissociated head of kinesin (green) during the ATP waiting 
period: (A) completely detached from the track and “floating” somewhere near the strongly-bound 
head (red), (B) weakly bound to the “forward” binding site, (C) weakly bound to the last binding site, 
(D) diffusing between the forward and backward sites. 

 

There is, however, no longer any significant debate regarding the mode of kinesin’s 

walk. Previously, it was known that kinesin moved in 8.3 nm increments 

(corresponding to the typical distance between kinesin’s heads as well as being 

roughly the spacing of the tubulin dimers in microtubules), with the hydrolysis of 

one molecule of ATP per step.2 However, it was unclear whether kinesin conformed 
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to a “hand-over-hand” or an “inchworm” model of locomotion. In a hand-over-hand 

system, it is the trailing head that dissociates from the track and at some point during 

the ATP waiting period moves in front of the strongly bound head, eventually 

binding tightly to the rail at a distance of 2x from where it originally dissociated 

(where x is the observed step length – see Figure 1.5). The heads then swap roles, so 

for processive hand-over-hand motion both heads must hydrolyse ATP.  

x

2x

Tubulin
dimer

 

Figure 1.5 The hand-over-hand mechanism of walking, where the heads alternate roles as leading and 
trailing head. Heads have been coloured for clarity. 

 

Alternatively, under an inchworm regime (Figure 1.6), one head always leads the 

other. This would imply that each head moves only in increments corresponding to 

the distance x. It would also imply that kinesin catalyses ATP hydrolysis in only one 

of its heads, as both its heads must move for a net displacement of x, but only one 

molecule of ATP is hydrolysed. To elucidate the mechanism of kinesin’s walk, 

Kaseda et al
23 synthesised mutant kinesins where one head hydrolysed ATP 18 times 

slower than the other. Hence, depending on the position of the mutant head, an 

inchworm kinesin should either move at normal speed or be slowed by a factor of 18. 

Instead, a slowing of all the kinesins by a factor of 9 was observed. This indicates a 

hand-over-hand mechanism, where per net displacement of 2x there is one ATP 

hydrolysis at the usual rate (wild-type head) and one hydrolysis at a rate reduced by a 

factor of 18 (mutant head). Thus per step x, we see the averaged kinesin speed, 

reduced by a factor of 9. Yildiz et al
21 provided further evidence for a hand-over-

hand mechanism using fluorescence labelling with one-nanometre accuracy 

(FIONA) to directly visualise a pre-labelled kinesin head moving only in steps of 

16.6 nm (2x). 
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x

2x

 

Figure 1.6 The inchworm mechanism of walking, where one head always trails the other on the 
microtubule. Heads have been coloured for clarity.  
 

Another notable feature of kinesin’s walk is its unidirectionality – i.e. kinesins tend 

to walk in only one direction along microtubules. The precise mechanism behind this 

still remains unclear,18 but what is known is that microtubule tracks possess 

polarity.24 Each tubulin dimer has a positive and a negative end, and these allow the 

self-assembly of many such dimers into long fibres which inherit the polarity of their 

constituents (Figure 1.7). 

 

Tubulin heterodimers
contain � and � subunits
that have polarity-� +�

Self-assembly into protofilament

_ +

Aggregation of protofilaments to form
microtubule with net polarity

_ +

Cargo

Kinesin

Direction of Walk

 
 
Figure 1.7 Cartoon outlining the self-assembly of tubulin into microtubules, along which 
conventional kinesin moves unidirectionally. Heads are coloured for clarity. 
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The vast majority of kinesins transport their cargoes away from the centre of the cell, 

towards the periphery – only three of the 45 human kinesins are known to walk 

towards the nucleus.14 Furthermore, single-molecule studies in the 1990’s revealed 

that kinesin is capable of completing around 100 ATP turnovers and hence walk up 

to 800 nm (in the same direction!) before dissociating from its rail.11 By joining 

several kinesins to a particular cargo, cooperative binding effects can significantly 

increase the total distance travelled by a load before complete dissociation from the 

microtubule (the “run length”) – theoretical calculations suggest that the run length 

scales as 5N-1/N, where N is the number of motors pulling a particular cargo.25 

Additionally, motility assays with kinesins attached to beads have shown that 

individual motors are capable of pulling against a load of up to 7 pN before stalling  - 

i.e. an individual kinesin motor will continue to process unidirectionally towards the 

positive end of a microtubule, even against a retarding force of 7 pN (the stall force 

in this sense is the retarding force that gives an equal probability of a kinesin dimer 

either stepping forwards or of stepping backwards).20  

 

1.4 Controlled Motion with Synthetic Molecular Machines 

 

1.4.1 Switches 

 

The discussion above shows that despite the dominance of viscous effects and 

Brownian motion at the molecular level,26-28 controlled nanoscale motion is possible. 

Moreover, physical studies would suggest that the power output of a typical motor 

protein is around a billion times less than the random environmental buffeting 

experienced by molecules in solution at room temperature.29,30 Thus the fact that 

motor proteins can do work has served as a great source of inspiration to synthetic 

chemists and has spawned a significant body of literature relating to systems where 

there is control of nanoscale motion.31-35 The first example of a synthetic molecular 

machine capable of harnessing Brownian motion to produce well-defined movement 

of its constituent parts was described by Stoddart and Kaifer in 1994.36 Their design, 

outlined in Scheme 1.1, uses a rotaxane architecture consisting of a thread 

(containing biphenol and benzidine units) and a tetra-cationic cyclophane 
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macrocycle. At 229 K, 1H NMR and UV-visible absorption shows that the majority 

of the macrocycles are on the benzidine station at any one time. The system is very 

much in dynamic equilibrium, however, and a certain small percentage of the 

benzidine stations are unoccupied at all times. Upon addition of two equivalents of 

acid, any unoccupied benzidine units become protonated and the resulting 

unfavourable electrostatic interaction between the benzidine and the positively 

charged ring prevents the macrocycle from re-associating with the protonated 

benzidine station. This has the effect of steadily amplifying the amount of 

unoccupied benzidine in a sample, giving rise to a new statistical distribution of the 

macrocycle strongly in favour of the neutral biphenol station. 

 

Scheme 1.1 The first switchable molecular shuttle.36 Adapted by permission of WILEY-VCH Verlag 
GmbH & Co. KGaA, Weinheim, Germany.35  

 

Since the Stoddart-Kaifer molecular shuttle was published, there has been increasing 

interest in designing systems where the motion of one component of a molecular 

machine relative to the other components can be accurately controlled. To this end, 

several groups have achieved unidirectional motion with synthetic molecular 

machines, the first example being that of Kelly in 1999.37,38 In Kelly’s system 

(Scheme 1.2), a triptycene subunit is essentially prevented from rotation relative to a 

helicene moiety by sterics – model studies show that the rate of rotation is extremely 
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slow and proceeds with equal probability in both senses. If the amino group is 

ignored, all three energy minima for the position of the helicene with respect to the 

triptycene are identical: the energy profile for 360° rotation would appear as three 

equal energy minima, separated by equal barriers. However, by adding phosgene 

(which reacts with the amino group to form the highly reactive isocyanate), the 

molecule becomes “primed” such that any small rotation that places the isocyanate 

near to an alcohol will lead to the formation of a more stable urethane linkage (the 

“ratcheting” step in Scheme 1.2). Although the direction of this rotation is random, 

the chiral nature of the molecule renders clockwise and anticlockwise rotations 

inequivalent. Hence, by judicious placement of the ratcheting alcohol group, it is 

possible to trap the molecule in an unfavourable geometry, from which the strain can 

only be released via a unidirectional 120˚ rotation (“relaxation”). Adding water to the 

system then destroys the urethane and reforms the original alcohol and amine 

functionalities, with the two subunits only capable of restricted rotation relative to 

each other as before. 

 

Scheme 1.2 Kelly’s molecular rotor. One aromatic ring of the triptycene is coloured for clarity. 
Adapted by permission of WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany.35 

 

A limitation of Kelly’s rotor is that it only performs unidirectional motion over 120˚. 

Feringa and co-workers, however, have devised systems capable of continuous 

unidirectional rotation, driven both chemically39 and with light,40 and have recently 

immobilised similar molecules on surfaces in order to study their properties.41 In the 

basic light-driven system (Scheme 1.3), irradiation of isomers A and C at 280 nm 
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results in stereospecific isomerisation of the double bond, giving isomers B and D 

respectively. However, isomers B and D are both unstable and so undergo thermal 

relaxation to the more stable conformations. Hence, by sequential irradiation at the 

correct wavelengths continuous unidirectional rotation can be achieved. 
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Scheme 1.3 Feringa’s light-driven molecular rotor.40 

 

1.4.2 Doing Work with Controlled Molecular Motion 

 

An alternative approach to unidirectional rotation based on [2]- and [3]catenanes42,43 

has been pursued within the Leigh group, as an extension of their work with photo-

responsive molecular shuttles.44 The basic shuttle design (Scheme 1.4) consists of a 

thread containing both trans-fumaramide and succinamide binding sites.  

254 nm

�

 

Scheme 1.4 Leigh’s photo-responsive hydrogen-bonded molecular shuttle. The trans-fumaramide 
station is shown in green, the suucinamide station in orange and the cis-maleamide station in purple. 
Adapted by permission of WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany.44  
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At room temperature, the macrocycle is free is explore both binding sites, but the 

statistical distribution lies in favour of the fumaramide station, on account of its 

greater pre-organisation for hydrogen-bonding to the amide hydrogens of the 

macrocycle. However, irradiation at 254 nm brings about the photoisomerisation of 

the trans-fumaramide station to its cis-maleamide isomer, resulting in the loss of a 

number of thread-ring hydrogen bonds. The statistical distribution of the macrocycle 

is now found to lie in favour of the saturated succinamide station, whilst the cis-

maleamide station hydrogen-bonds to itself. This macrocycle-succinamide co-

conformation is then dominant until the cis-maleamide station is converted back to 

the trans-fumaramide isomer by an appropriate stimulus, at which point the original 

equilibrium distribution is restored. 

 

This shuttling mechanism has been used to produce unidirectional rotation in both 

[2]catenanes (Scheme 1.5)42 and [3]catenanes.43 In the case of [2]catenanes, 

combining sequential removal/reattachment of two different bulky groups (tBuSiMe2 

and CPh3) with the isomerisation reactions shown in Scheme 1.4, causes the smaller 

ring to rotate unidirectionally around the larger ring. Scheme 1.5 shows this rotation 

to be dependent on the order of the removal/reattachment reactions; one order gives 

clockwise rotation, the other gives rise to anticlockwise rotation as drawn. Hence 

complete control over the direction of rotation is possible. The bulky groups are 

essential if the ensemble is to do work, as they allow the system to be “reset” to its 

initial isomerisation state without undoing the work done (i.e. without changing the 

distribution of the smaller macrocycle). Selective removal of one of the bulky groups 

then allows the system to return to equilibrium in a directional fashion.  
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Scheme 1.5 Unidirectional rotation in a [2]catenane. Adapted by permission of WILEY-VCH Verlag 
GmbH & Co. KGaA, Weinheim, Germany. 35 

 

 

Systems such as this that are capable of transporting Brownian particles away from 

equilibrium are known as Brownian ratchets and fall into two general classes: 

Energy ratchets
45

 and Information ratchets.46,47 In an energy ratchet mechanism, the 

energy maxima and minima of the potential surface are varied irrespective of the 

Brownian particle’s location – all identical binding sites within an ensemble are 

affected equally by an applied stimulus. In contrast, the potential energy surface in an 

information ratchet varies as a function of the position of the Brownian particle, 

allowing stimuli to be applied that only produce effects local to that particle (Figure 

1.8). An information ratchet system is a much more efficient way of producing 

controlled motion on the molecular scale, as a given energy input can be directed to 

the locale of the particle undergoing that directed motion, rather than being applied 

globally to effect multiple identical changes, most of which have no bearing on the 

state of the Brownian particle. 
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Figure 1.8 A particle (denoted �) undertaking biased Brownian motion via an energy ratchet 
mechanism (left, shown in blue) and an information ratchet mechanism (right, shown in red). The 
black arrows show how the energy levels are varied in order to get motion of the Brownian particle 
from a site “2” to site “1”. In an energy ratchet mechanism, the particle is passive and changes its 
position in response to what happens globally to the system – all equivalent parts of the energy profile 
change in the same way each time a particular stimulus is applied. Contrastingly, in an information 
ratchet mechanism, the potential energy surface changes because of where the particle is and so a 
given stimulus may produce effects only local to the Brownian particle – the rest of the surface 
remains unchanged. In this example, the particle sees a reduced kinetic barrier for passing from “2” to 
“1” (top, highlighted in blue), but the kinetic barrier for the reverse process is much higher (below, 
highlighted in blue). Hence the statistical distribution of the particle can be shifted in favour of the 
energetically uphill state by trading information for energy.  
 
 

Despite the growing body of literature surrounding directional molecular motion 

within mechanically interlocked architectures such as those discussed above, 

examples of non-interlocked systems capable of controlled linear motions (e.g. 

molecular walkers) are still very rare. A 2005 review by Kelly48 covers almost all the 

important examples of synthetic walking molecules to date, and even then identifies 

only four papers that could conceivably fall into that category (all of them based on 

DNA). However, before embarking on a detailed description as to how these walkers 

operate, the issue of what constitutes a walking molecule and the fundamental 

principles necessary for their design and operation must be undertaken. 
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1.5 Designing Walking Molecules 

 

Firstly, we must define what a walking molecule is. The Collins English Dictionary 

defines walking as, “Moving along or travelling on foot…advancing in such a 

manner that at least one foot is always on the ground,” whilst stepping is defined as, 

“The manner of walking or moving the feet; the act of raising the foot and setting it 

down again in coordination with the transference of the weight of the body.” Hence 

any walking molecule must possess “feet” – at least two recognisable points of 

attachment to a track or surface, such that at least one foot is always in contact with 

the track or surface at any time, regardless of the state of the other foot/feet. 

Furthermore, the feet - whatever their precise nature and whatever other functions 

they may perform - must be the only points of attachment necessary for the molecule 

to walk; that is to say the feet must be well-defined species that are capable of 

mediating stepping. These distinctions are necessary in order to preclude rolling and 

tumbling from any discussion of walking molecules (see Section 1.5.3): it would 

indeed be an exaggeration to say that a man falling down a flight of stairs was 

walking on n different feet, where n could only be defined after the walk by tallying 

the injuries sustained. This does not mean to say that the steps taken by any given 

walker (molecular or otherwise) must be of regular interval in terms of time between 

steps or the distance travelled – hesitant limping is still walking. Nor does it mean 

that the feet must always move in a concerted (or predictable) manner, or even in any 

predictable order – stumbling using your right hand sometimes and your left hand 

occasionally still constitutes walking. You would, however, cease to be a walker and 

become either a roller or a slider at such a time as your centre of mass was 

translocated without the use of discrete steps – a slalom skier does not walk downhill 

any more than a cyclist walks the Tour de France (despite there being defined points 

of attachment always in contact with the relevant surface in both cases), as both can 

perform directed motion without the use of discrete steps. Given these provisos, there 

are two general classes of walker – those that use interactions between the feet and 

the surface alone to walk (walkers with passive linkers and tracks), and those that use 

some sort of active linker between the feet or the binding sites on the track (like a 
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spring, for example) to drive stepping. We shall address these in turn, starting with 

the simplest case: the walker with only two feet.49 

 

1.5.1 Walkers with Passive Tracks and Linkers 

 

Consider a track with two alternating stations A and B and a passing-leg (hand-over-

hand) walker with two feet 1 and 2 that are not interlocked with that track.  The feet 

are linked by a non-rigid but inelastic linker which allows the feet to be a maximum 

distance of x apart, where x is also the distance between adjacent stations.  We shall 

specify that 1 and 2 will bind to both A and B to form stable complexes such that the 

generic complexes 1A, 1B, 2A and 2B can all be formed.  We shall also state that foot 

1 can switch its binding preference in response to a certain stimulus without affecting 

the status of foot 2 and vice-versa.  Let us now consider what happens in a track of 

the form ABABAB (Figure 1.9). 

X

1 2

A B  

Figure 1.9 A generic two-footed walker on an ABABAB track in state [1A, 2B].  

 

Let us take the initial position of the walker to be [1A, 2B], where the right entry in 

the brackets indicates the rightmost foot on the track as drawn. Foot 1 is shown in 

yellow, foot 2 in green and A and B are red and blue respectively. Now suppose that 

we apply some stimulus that makes complex 1A labile whilst not affecting the status 

of 2B. This generates the intermediate [2B]1*, where foot 2 is still strongly bound to 

the track at B and 1* indicates that foot 1 is free to explore alternative binding sites. 

(For the purposes of this discussion, it will be assumed that the foot/foothold pairing 

not being stimulated is not labile.) If we allow rotation about the 2-B bond, then 

remove or reverse the labilising stimulus such that foot 1 now favours association 

with A, the complex 1A will re-form generating two spatial isomers in a statistical 1:1 

ratio; [1A, 2B] and [2B, 1A’] (Figure 1.10), where 1A’ indicates that this complex is 

one AB unit away from the origin. 
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Figure 1.10 The mid-step co-conformation of [2B]1* (top) gives rise to equal populations of the two 
states [1A, 2B] (left) and [2B, 1A’] (right) when a stimulus is applied favouring the formation of the 
generic complex 1A.  

 

Let us now apply a second stimulus that allows 2 to dissociate from B without 

affecting 1A or 1A’, such that states of the type [1A]2* are formed. Random rotation 

about the 1-A bond followed by removal of the labilising stimulus then regenerates 

the complex 2B, now with three statistically populated translational isomers; [1A, 

2B], [2B, 1A’] and [1A’, 2B’] in the ratio 2:1:1 (Figure 1.11). This distribution comes 

about as all the walkers starting from state [1A, 2B] (half the total number) are 

prevented from any movement down the track to the next station by the inelastic 

linker to (non-labile) foot 1 on the first station A.  Those walkers in state [2B, 1A’] 

when the stimulus is applied (the remaining half of the total number of walkers) are 

able to adopt one of two states upon stimulus-removal; they either perform the self-

transformation to recover state [2B, 1A’] or they can advance to [1A’, 2B’], each with 

a probability of 0.5.   

[1A, 2B], 50%                         [2B, 1A’], 25%                        [1A’, 2B’], 25%
 

Figure 1.11 The three co-conformers possible after the second step of an ABABAB walker. 

 

Reapplying the first stimulus (labilising the complexes 1A) then generates various 

states [2B]1*, which give rise to four different spatial isomers when that stimulus is 

removed or reversed in a 3:3:1:1 ratio (Figure 1.12).  
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[1A, 2B]    37.5%

[2B, 1A’]   37.5%

[1A’, 2B’]   12.5%

[1A’’, 2B’]  12.5%  

Figure 1.12 The distribution of walkers after the third cycle. 

 

At first sight, it appears as if the ensemble is undergoing a net directed motion to the 

right. However, this is only because the walker started at one extreme of the chain. 

To explain what is happening, it is instructive to model the system as a Markov 

Chain - a sequence of random variables X1, X2, X3, ... with the Markov property.50 

The Markov property means that given the present state of a system, any future states 

are completely independent of states in the past, i.e. a full description of the present 

state constitutes all the information necessary to predict a given future state of the 

system. More specifically, the Markov property asserts that the conditional 

probability distribution of the state in the future, given the state of the process 

currently and in the past, depends only on its current state and not on its state in the 

past. With regards to this simple ABABAB system, each step of the walker can be 

taken as a discrete stochastic process, with p = 0.5 for a forward or backward step 

from an intermediate state [Nx]y* (the direction of the step is the random element). 

We shall assume that the probability of the walker dissociating from the track 

completely is zero. Such a Markov chain has a trivial transformation matrix and if 

run for an arbitrarily long time yields the probability distribution of the walkers as a 

normal distribution about the centre of the chain – i.e. the equilibrium distribution of 

walkers on the track is a normal distribution with the modal population class in the 

centre. Hence the apparent directed motion to the right is in fact just the system 

moving to equilibrium – had we started in the centre of the chain the averaged net 

displacement of the walkers would be zero (as might be expected from a system 

where there is nothing to bias the direction of stepping). 
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A more chemically intuitive way of interrogating such systems is to consider them as 

compartmentalised molecular machines operating through Brownian ratchet 

mechanisms (see Section 1.4.2). Thus, by treating the walker unit as a point particle 

on a potential surface, the qualitative energy diagram shown in Figure 1.13 can be 

obtained, where the point particle walker is denoted �. When the walker is bound to 

the track in the state [1A, 2B], labilisation of 1A leads to [2B]1* at which point the 

walker is free to sample configurations [1A, 2B] and [2B, 1A’]. These states represent 

minima of identical energy (as the binding sites available to the labile foot are the 

same) and conversion between the two forms is made possible by the low kinetic 

barrier between them (dotted arrows). Progression to states further down the track 

(e.g. [1A’, 2B’]) is not possible however, as 2B is not labile, effectively giving all the 

other states infintite kinetic barriers in this simplified system (red arrows). Hence the 

walker is restricted to the two potential wells indicated by the dotted arrows and 

cannot access other states even though they have exactly the same energy. Applying 

a stimulus to cause the complex 1A to become non-labile then generates the 1:1 ratio 

of [1A, 2B] and [2B, 1A’] derived before (Figure 1.10 and Figure 1.13, right hand 

side). If the complex 2B is now allowed to become labile, those walkers in state [1A, 

2B] are trapped in one minimum and cannot escape (as the complex 1A is locked to 

the track) and so the green foot cannot access any binding sites other than the one it 

is already on (white circle). For walkers in state [2B, 1A’] (filled circle) two lowest-

energy conformations are accessible [2B, 1A’] and [1A’, 2B’], both of the same 

energy and with a relatively low kinetic barrier between them. Hence, the 

equilibrium distribution of 50:25:25 [1A, 2B]:[2B, 1A’]:[1A’, 2B’] (Figure 1.11) 

between the three possible conformations is obtained, with infinite kinetic barriers 

(provided by the non-labile complex 1A) preventing the walker from sampling any 

other states. 
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Position on Track

Energy

[1A, 2B]        [2B, 1A’]          [1A’, 2B’] 

Position on Track

[1A, 2B]        [2B, 1A’]          [1A’, 2B’] 

 

Figure 1.13 Left hand side: The potential energy surface as seen by a walker in state [2B]1*, when 1A 
is labile. Right hand side: The potential energy surface seen by walkers in states [1A]2* (�) and 
[1A’]2* (�) when 2B is labile. 

 

Figure 1.13 suggests that if the potential energy surface available to the walker could 

be made asymmetric during the intermediate states [Nx]y*, then directional motion 

should be possible. Interestingly, this can be achieved by simply re-ordering the 

stations of the track to give an AABBAABB arrangement (provided stations A and B 

are not energetically equivalent), as any stepping foot is now allowed to sample one 

red and one blue station instead of two stations of the same energy (Figure 1.14). 

Position on Track

Energy

 

Figure 1.14 An asymmetric track presents the stepping foot (shown here in mid-step) with an 
asymmetric energy profile. Stepping will occur predominantly to the left as drawn. Stepping to 
alternative energetically equivalent sites (not shown) is again prevented by the kinetic barriers 
imposed by the non-labile foot/foothold complex which acts with the inelastic linker as a ratchet, 
effectively restricting the stepping foot to only two possible binding sites out of the many on the track. 

 

This Brownian energy ratchet approach to molecular-scale walking systems shows 

that each foot of a walker acts very much like a bis-stable switch, with a certain set 

of stimuli required to bring about stepping. For processive, directed walking, each set 

of stimuli must comprise: 
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1. An impulse “breaking detailed balance”, which could be a stimulus altering 

the relative energies of the binding sites available to a given foot (producing a 

thermodynamic driving force in favour of the desired step direction), or some 

sort of non-equilibrium chemical process coupled to stepping (see Section 

1.5.2) 

2. A second “linking” impulse allowing the selected foot to sample the available 

binding sites and thus to generate a new equilibrium as dictated by the 

balance breaking stimulus (this corresponds to lowering the kinetic barrier 

between neighbouring binding modes) 

3. A third impulse to raise the kinetic barrier between the competing binding 

modes once the new equilibrium has been established, to give strongly-bound 

complexes that are incapable of further exchange (“fixing”).51 

 

Points 2 and 3 above relate to kinetics; the ability to switch a foot/binding site 

ensemble between being labile (to allow stepping) and non-labile (to allow that 

ensemble to act as the ratchet whilst the other foot is stepping). Point 1 is a 

thermodynamic consideration; the extent to which a stepping foot can be biased 

between one potential binding site and another determines the fidelity with which the 

walker processes – a strong thermodynamic bias in one direction will give rise to 

stepping predominantly in that direction, whilst little or no bias will result in little or 

no net directed motion of walkers when the linking stimulus is applied. It should be 

noted, however, that the orientation of the walker(s) on the AABBAABB track in 

Figure 1.14 is critical if there is to be directed motion in the bulk. This is because the 

walker can initially bind to the track in two energetically equivalent binding modes, 

giving rise to two spatial isomers in a 1:1 ratio (Figure 1.15). Application of the same 

order of stimuli to these populations would bring about unidirectional motion of half 

the walkers in one direction whilst the other half processed the other way, with no 

net unidirectional motion. 
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Figure 1.15 The same set of stimuli gives rise no net directed motion if the walker can bind to the 
track both ways round. Initially, a walker free in solution binds to two blue stations, in two 
energetically equivalent orientations. Applying a set of stimuli to make the yellow foot move to a red 
station, followed by a similar set making the green foot prefer a red station then produces two equal 
walker populations going in opposite directions.  

 

This tells us that in order to perform directed motion in such a system, we need to 

know which way round the walkers are – we need information about their 

orientations in order to achieve unidirectional motion with a given set of stimuli. As 

chemists, this problem can be circumnavigated by using a more complicated track, so 

that the walkers can only bind to the track one way round under a given set of 

conditions (note that this does not mean that the walkers have ceased to behave like 

Markov chains as their orientation at any given point is still enough to tell us which 

way they will move). Some examples of how this can be achieved are given in 

Sections 1.5.2 and 1.5.4. 

 

1.5.2 Walkers with Active Tracks and Linkers 

 

All the walking systems covered in Section 1.5.1 had linker regions between the two 

feet of the walker that were essentially inert throughout the stepping process. Their 

only role was to act as a tether between the two feet, preventing the unbound foot 

from sampling more than one (or sometimes two) binding site(s) of the same energy. 

However, a linker capable of assuming two or more different, rigid extension states 

can bring about directional motion using an energy ratchet mechanism and operating 

on a very similar track to that seen in Figures 1.9-1.13.52-54 This is because the 
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variable linker is now the agent supplying the balance-breaking impulse – the 

relative depths of the potential wells are given as a function of the linker length 

alone. As long as the various foot/binding site complexes are subject to orthogonal 

linking/fixing stimuli, directed motion along a track can be achieved simply by 

alternately elongating and contracting the linker (Figure 1.16). Thus applying a 

stimulus to labilise the complex of the yellow foot and red station followed by linker 

extension from length L1 to L2 gives rise to directed motion to the right upon addition 

of a fixing stimulus (as long as the linker is rigid and inflexible enough to prevent re-

association with the original red station). Subsequent labilisation of the green 

foot/blue station complex and linker contraction back to L1 then returns the system to 

its original state, one AB unit displaced to the right. The two feet need only form 

stable complexes with one type of station and as they will therefore only bind to the 

track one way round, we do not need any information regarding their orientation in 

order to achieve directed motion in the bulk.55  

L1

L2

L1

Energy

Position on Track

Position on Track

Energy

 

Figure 1.16 An active linker allows directed motion on an ABABAB track, without needing to know 
the orientation of the walker(s) by rendering otherwise identical binding sites energetically 
inequivalent. The energy diagrams on the right hand side show how the potential surface changes as 
the linker is elongated and contracted (black arrows, showing how the energy levels change in the 
following step). Note that the energies of all equivalent states are raised and lowered by the same 
amount as the linker expands and contracts, but that the walker is restricted to only two possible states 
by the ratcheting foot (giving the infinite kinetic barriers shown by the red arrows). A stepping foot is 
then biased towards its next foothold by thermodynamics alone (the lower of the accessible energy 
states being the one that puts the least strain on the walker/track ensemble), making this an energy 
ratchet walking mechanism.  
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Interestingly, if the orientation of the walkers on the track can be determined with 

certainty, then it can be shown that directed motion is possible with such a system 

even if all the stations are identical! Hence, as long as the complexes the two feet 

make with the track can be addressed separately, the appropriate order of stimuli will 

give rise to directed motion in the bulk (Figure 1.17). 

L1

L2

L1

 

Figure 1.17 Directed motion on an AAAAAA track is possible, provided the orientation of the 
walker(s) is known.  

 

Walking systems where the active component is in the track can also be envisaged 

(Figure 1.18), but as multiple elements are undergoing elongation/contraction (most 

of them not leading to productive stepping events of the walker) such a system would 

probably be much less efficient than the active linker walker systems outlined above.  
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L1

L2

L2 � L1

L1

Dashed L2 � L1

L1 � L2

 

Figure 1.18 An active-track walking system. The track contains two active elements (solid lines and 
dashed lines), which can be switched orthogonally between contracted (L1) and extended (L2) forms. 
Hence by making the yellow foot/red station complex labile whilst simultaneously extending one set 
of these active elements, two otherwise energetically identical sites can be rendered inequivalent, 
allowing directional motion.  

 

Active linker systems also provide a possible route to branched structures, in which a 

walking molecule may select one of several paths in response to appropriate stimuli.  

Consider the situation with a walker capable of three different (inelastic) states of 

linker extension; L1, L2 and L3 and an ABABAB track incorporating these three lengths 

(Figure 1.19). As long as L3 satisfies certain parameters (such as L3 � L1 + L2), then 

application of the appropriate stimulus at the chain branching point should lead to a 

walker favouring either the “L2” or “L3” pathways. Indeed, judicious choice of 

stimulus should allow a walker on any pathway to select either of the other pathways 

at a junction. 
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L1 L2

L1

L3

L1 L2

 

Figure 1.19 A branched active linker walker.  

 

An alternative class of active linker walker uses well defined rotary motion to 

produce unidirectional translation along a chain. Consider a track consisting of 

repeating asymmetric footholds and a walker that has at least one foot that forms a 

diastereotopic ensemble with the track, such that that foot will only bind to the track 

in one orientation (Figure 1.20). This determines how the walker will associate with 

the track from solution. The other foot may be allowed to bind to the track regardless 

of orientation.  

Relaxation

Second 180˚ rotation

Binding, 180˚ rotation

 

Figure 1.20 Turning rotary motion into linear motion using a highly constrained diastereotopic 
walker, where relaxation of a high energy state leads to directed motion as determined by the track’s 
inherent polarity (“rectification”). 

 

The stepping mechanism relies on a highly rigid walker that is capable of two 

separate 180° rotations, but only when the appropriate stimuli are applied. Firstly, we 

supply the system with some stimulus that makes the yellow foot labile whilst a 180° 

rotation about the linker / green triangle bond takes place (note that rotation about 

this bond must only occur when the appropriate stimulus is applied if the walkers are 
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all to bind to the track in the same orientation at the start). This has the effect of 

swinging the yellow foot in front of the green foot. If the yellow foot is then made 

non-labile, a second 180° rotation about the rigid linker / green foot bond leads to a 

high energy state where the diastereotopic complementarity between the green foot 

and the track is broken - a situation that can be remedied by a further 180° rotation 

via Brownian motion (“relaxation”). 

 

So far, all the simple walking systems that have been considered have operated via 

energy ratchet mechanisms. Walkers based on information ratchets are also possible, 

however, and should operate highly efficiently as the energy input necessary for 

directed walking is always targeted at the walkers themselves, rather than applied to 

the system as a whole. An extreme example of such an information ratchet walker is 

the “burnt bridge” system, where a foot destroys the binding site to which it is 

currently bound before stepping to a new binding site.56 An example of an 

information ratchet walker with more potential for repeated use of the same track is 

shown in Figure 1.21. In this case, the walker has two identical feet and the track has 

only one type of foothold, which is diastereotopic such that the walker can only bind 

to the track one way round. Both feet have sites on them to which an allosteric 

effector (the red triangle) can bind, but the binding site on the front foot is masked by 

the rear foot, such that the effector cannot bind to the front foot. When bound, the 

effector causes the foot to which it is attached to become labile, allowing that foot to 

sample alternative binding sites. At the same time, the binding of the effector to the 

rear foot causes a conformational change in the front foot (black triangle) preventing 

it from binding a second equivalent of effector (which would lead to complete 

dissociation of the walker from the track). In addition to this, the binding sites on 

each foot are capable of catalysing the transformation of the effector to a “waste” 

compound (white triangle), which diffuses rapidly from the binding site.  
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Energy

Position of Walker

 

Figure 1.21 An information ratchet walking system that processes by virtue of the fact that only the 
rear foot can bind to an allosteric effector, which is itself consumed during stepping. The energy 
diagram on the right hand side highlights the information ratchet walking mechanism: a foot taking a 
forward step (denoted �) sees only a small kinetic barrier to forming the effector-bound intermediate 
(black curve) but a foot stepping backwards (blue circle and curve) sees a large barrier to forming the 
analogous intermediate (as the walker/track ensemble would have to undergo considerable 
deformation to allow the effector to access the binding site on the front foot). Hence directional 
walking is possible, even though the various binding sites in the track all have the same affinity for 
both feet. 

 

After binding a red triangle and catalysing its transformation to a white triangle, 

there are two possible fates for the stepping foot – it can re-associate with the track in 

its original position or it can swing in foot of the standing foot, at which point the 

standing foot becomes the rear foot (we shall assume that reassociation of the track 

and stepping foot after dissociation of the white triangle is fast compared to effector 

binding to improve efficiency and processivity). The fact that the effector “fuel” is 

destroyed during the stepping process is essential if the system is to walk 

directionally – the second law of thermodynamics states that energy must be 

expended if net directional motion of the walker is to be obtained. The 

thermodynamically favourable conversion of effector to white triangles can then be 

considered as being coupled to walking, just as Nature uses thermodynamically 

favourable reactions to drive otherwise unfavourable processes. 
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In this light, it is instructive to return to kinesin (Section 1.3). When a kinesin head is 

in the nucleotide-free state, it binds strongly to microtubules and operates as a ratchet 

for the other head. Upon binding and hydrolysing ATP, the head then becomes labile 

and it is able to dissociate from the track – in this sense ATP binding can be 

considered as the linking stimulus, just as effector binding is the linking stimulus in 

Figure 1.21. This situation continues until the ADP formed from ATP hydrolysis 

dissociates from the “unbound” head, at which point that head favours re-association 

with the microtubule in the strongly-bound (ratcheting) state. Hence ADP 

dissociation can be viewed as the fixing stimulus. The balance-breaking stimulus 

comes from the fact that the ATP hydrolysis reaction that allows kinesin to step is 

not at equilibrium in living cells15 – ATP hydrolysis is coupled to directional 

stepping. The fact that the heads alternate their roles (i.e. the trailing head is the one 

that binds ATP and dissociates, not the leading head that has just completed a step) is 

highly reminiscent of the mode of action of the system in Figure 1.21 and suggests 

that kinesin operates via an information ratchet mechanism. As kinesin rarely takes 

idling steps (i.e. it rarely hydrolyses an ATP molecule without taking a forward step), 

it seems likely that some sort of conformational change takes place during the 

stepping process that swings the trailing foot in front of the standing foot – in this 

regard we can consider kinesin to possess some sort of active linker powered by ATP 

hydrolysis.57,58 

 

1.5.3 Walking Systems as Functional Molecular Transport Devices 

 

The fact that Nature uses walking molecules to achieve directed transport of cargoes 

in cells has significant implications in regard to synthetic attempts towards 

controlled, processive linear motions at the molecular scale. From an operational 

point of view, the inherent compartmentalisation of walking systems gives them 

substantial benefits over other potential approaches to such directional motion. For 

example, consider the putative molecular “roller” (essentially a one-headed walking 

system) depicted in Figure 1.22. The roller (green) can form stable interactions with 

both the red and blue stations and its affinity for one over the other can be accurately 

controlled. Furthermore, the roller is confined somehow (within a tube for example), 
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such that it is not able to detach from the track but must roll along it. In order to 

produce directional motion, the roller must be prevented from sampling other 

stations on the track of the same energy and this can be achieved by using blocking 

groups that are bulky enough to prevent the roller getting past (shown in yellow and 

grey). If these blocking groups can be selectively removed/reattached as the roller’s 

binding preference is switched from red to blue and back to red, directional motion in 

either vector can be obtained. However, such a system presents more challenges to 

its realisation than a walker. The roller must be able to discriminate between the red 

and blue stations, which requires one switching mechanism. The stimuli needed for 

removal/reattachment of the two different blocking groups must be orthogonal not 

only to each other but also to the stimulus that switches the roller’s binding 

preference (if the roller is to be capable of controlled rolling in both directions along 

the track). Hence the need for three orthogonal switching mechanisms for such a 

roller (based on an energy ratchet mechanism). Finally, the confinement of the roller 

(so that it does not drift off into solution or circumnavigate the blocking groups) 

necessitates the enclosure of the whole system, which could seriously impair any 

additional functions that the roller might be required to have, such as moving cargoes 

about in a controlled manner or being able to choose one pathway over another at a 

track-branching point.59  

 

 

Figure 1.22 A molecular roller capable of controlled directed motion, operating through an energy-
ratchet mechanism. 

 



__________________________________________________________Chapter One 

 33 

Conceivably, a molecular roller operating via an information ratchet mechanism 

would require only two orthogonal processes for directed motion along a track in 

both directions, but the efficiency of that directed motion would drop off 

substantially with increasing distance from the origin. Consider the system illustrated 

in Figure 1.23, where there is only one type of binding site for the roller, and 

blocking groups that can be addressed so that they only detach from the track 

(allowing the roller to pass) when the roller approaches from the right (stimulus 1) or 

the left (stimulus 2). As long as these two stimuli are truly orthogonal, the roller can 

be “pumped” from one end of the track to the other by repetitiously applying (for 

example) stimulus 1, and pumped in the reverse sense by application of stimulus 2. 

However, as there is nothing to bias the position of the roller when a particular bulky 

group is removed from the track, only half the rollers will progress to the next site 

per application of the stimulus, leading to an exponential drop-off in roller 

populations with increasing distance from the starting point. Obviously, the system 

could be made more efficient by using an ABABAB-type track (as in Figure 1.22), but 

that would require the additional complexity of the associated switching mechanism. 

1
2

1

1

 

Figure 1.23 A molecular roller operating by an information ratchet mechanism, under action of a 

stimulus (1) causing the bulky groups to let the roller past only when the roller approaches the barrier 
from the right as drawn. Note that bulky groups not adjacent to the roller are not affected by the 
removal/reattachment stimuli. 

 

In contrast to both these rollers, a walking system has at least two points of 

attachment to its track, and the foot that is not stepping acts as both an anchor to keep 

the ensemble connected to the track (ensuring processivity) and as a ratchet to restrict 
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the potential energy surface seen by the stepping foot. This allows controlled, 

efficient directed motion in either direction with the need for only two orthogonal 

switches (see Sections 1.5.1, 1.5.2 and 1.5.4) - i.e. walkers necessarily perform the 

roles of the blocking groups and confinement by virtue of the fact that one foot is 

always strongly bound to the track and that the two feet are physically joined to one 

another. 

 

1.5.4 Rational Designs for Molecular Walkers 

 

Sections 1.5.1 and 1.5.2 both dealt with walking systems whose design was 

minimalist from a theoretical point of view. All the examples given involved tracks 

with at most two different binding sites and walkers with at most two different feet. 

However, whilst it is relatively straightforward to draw such structures and show 

how they could lead to directional motion, actually designing real-world systems that 

would behave in the same way is much more challenging. In this regard, systems that 

at first might seem more complicated may, in fact, be easier to realise. As previously 

discussed, in order to ensure processive, directional translation it must be possible to 

address each foot/foothold complex independently of the other(s), using a set of 

balance-breaking/linking/fixing stimuli as outlined in Section 1.5.1. From a 

molecular machines perspective, this set of interactions constitutes a molecular 

switch, and so a possible compartmentalised approach to walking systems would be 

to use two such switches in tandem as shown in Figure 1.24. Here, the two 

orthogonally switchable interactions in question are that the green unit can bind to 

either the turquoise or red stations, whilst the yellow moiety forms stable complexes 

with either the blue or white stations. By combining these four different stations in a 

track with an alternating ABCDABCD pattern, a walker with green and yellow feet 

can be made to process unidirectionally along the track by alternately operating each 

switch, taking four switching events to complete a full cycle. In addition, the 

operator does not need to know the initial orientation of the walkers in order to 

perform directed motion in either vector – there should be only one way in which the 

walkers can bind to the track under a given set of conditions, and the walkers should 

all then process in the same direction under the action of a given set of stimuli 
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(although if the walkers were allowed to associate with the track at random from 

solution, then how far along the track they were would not be known). 

 

Energy

Position on Track

Energy

Position on Track

   

Figure 1.24 A walking system based on two orthogonal switches (green/red-green/turquoise and 
yellow/blue-yellow/white) with an ABCDABCD track. This operates via an energy ratchet mechanism, 
as shown by the potential energy curves on the right corresponding to the two steps drawn. The black 
arrows show how the energy surface of the entire track changes as the walker (considered here as a 
point particle, �) is made to step. Note that although potential wells of the same energy exist 
elsewhere in the track, the walker is prevented from accessing them as this would require both feet to 
dissociate from the track (for which the kinetic energy barrier is very high: red arrows). Half of a 
complete cycle (two switching events) is shown. 

 

Inspection of this system reveals that there is a level of redundancy in its design – the 

two feet could be the same provided that they formed independently addressable 

complexes with the track, which could potentially ease the synthesis of such 

ensembles.  

 

A related idea to this, where the feet would have to bind to all the stations of the 

track, is walking systems based on an ABCABC track (Figure 1.25). In this design 

too, both feet can be the same and the orientation of the walkers need not be known 

for directed motion in either sense. However, although the track requires only three 

stations, implementation of such an ABCABC walking ensemble may prove more 

challenging than the system outlined in Figure 1.24, as the feet would have to form 
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stable and independently addressable complexes with all three different track 

stations, instead of just two as required by an ABCDABCD system. 

 

Figure 1.25 A walking system operating on an ABCABC track. Both feet must bind to all three 
stations. 
 
 

These last two examples constitute just a few of the ways in which the basic 

principles expounded in Sections 1.5.1 and 1.5.2 can be applied to design a myriad of 

walking devices to suit the operator’s requirements. Both are energy ratchet walkers: 

information ratchet walking systems can be envisaged (see Section 1.5.2), but such 

devices may well prove harder to design and synthesise. All the examples addressed 

so far have also had only two feet. However, systems with multiple feet allow 

simpler tracks to be utilised whilst simultaneously decreasing the chances of the 

walker and track dissociating. Consider the tripedal walking system depicted in 

Figure 1.26. As long as the three feet can form stable and independently addressable 

complexes with both stations of the track, directional (and highly processive) motion 

can be achieved. However, in this case, it would be necessary to have accurate 

information on the starting position of the walkers, as it is possible for the walker to 

associate with the track in two different isoenergetic orientations, the populations of 

which would process in opposite senses under the same set of stimuli. 
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Figure 1.26 A three-legged walker can perform unidirectional motion on an ABABAB track using an 
energy ratchet mechanism. It is assumed that a stepping foot can only stretch to the binding sites on 
either side of the two feet that are anchored to the track and that there cannot be any vacant stations 
between the feet, such that the “middle” foot of the walker is effectively restricted to only one possible 
binding site. 

 

Hence the range of walkers that can be designed seems limited only by the 

imagination. Equipped with these guidelines, definitions and mechanistic insights, it 

is now possible to review the current state of the art concerning molecular walkers in 

a constructive and rigorous fashion. 

 

1.6 Synthetic “Walking” Molecules 

 

Despite a not insubstantial body of literature dedicated to modelling the action of 

both natural15,60-69 and artificial52,70-73 walking systems, the practical complexities of 

synthesising such molecules mean that actual examples of synthetic walking 

machines are still very rare. Moreover, there exists some considerable confusion 

regarding walking terminology, which threatens to obscure some of the intricate 

science behind these devices. For example, Kwon et al
74 observed 9,10-

dithioanthracene (DTA) undertaking 1D Brownian walks after deposition on a 

Cu(111) surface at 50-70 K (Figure 1.27). This phenomenon results from a mismatch 

between the periodicity of the copper surface and the distance between the sulfur 

atoms in a DTA molecule, which means that only one sulfur atom is able to assume 

its preferred geometry with regards to the surface at any one time. This sulfur atom 

then acts as an anchor for the other, which binds to the surface much less strongly 

making the whole molecule largely free to rotate. Stepping occurs when random 

rotation of the DTA molecule places the essentially unbound sulfur atom in a 

configuration where it can bind to the surface strongly, at which point there is a non-

zero probability of that sulfur binding strongly to the surface and the previously 
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anchoring sulfur atom becoming “unbound”. STM imaging was used to monitor the 

direction of motion of these molecules and it was found that they moved exclusively 

along only one axis. 

S

S

Strongly 
bound 
sulfur
acts as anchor

Weakly bound sulfur
free to rotate 

Random rotation

This sulfur now strongly bound

S

S

Movement along
this axis only

 

 

Figure 1.27 A DTA molecule undertakes a 1D random walk on a copper(111) surface at low 
temperatures. 

 

Whilst this system does not fall foul of the definition of walking as outlined in 

Section 1.5, the authors’ assertion that the motion is unidirectional appears 

inaccurate. Indeed, the authors themselves state that there is no bias in the system 

and so each walker is free to step in either direction at any time: the STM images 

show only diffusion events (albeit along a single axis). Hence we must consider this 

system as performing a 1D random walk and not directed motion.75 

 

The remaining examples of synthetic walking machines in the literature are all based 

on DNA. The autonomous DNA transport device reported by Yin et al
76 (Figure 

1.28) uses a walker module which moves along a DNA track in a fashion highly 

reminiscent of a crowd surfer being carried across a mosh pit. The concept uses DNA 

restriction and ligation enzymes to selectively join and then cut segments of DNA, 

with the net result that a six nucleotide fragment of DNA (the walker) is transported 
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from one end of the track to the other. Initially, this fragment (coloured red and 

denoted * in Figure 1.28) is attached to anchorage A on the track, giving A*.  

A*                     B                        C

A*B                            C

A                      B*                       C

A                                         B*C                   

A                        B                      C*

T4 ligase

PflM 1

T4 ligase

BstAP 1

 

Figure 1.28 A molecular conveyor belt for the six nucleotide walker *, coloured red. Adapted by 
permission of WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany.76  

 

Action of T4 ligase then connects the anchorage A/walker hybrid to anchorage B via 

the three nucleotide sticky end on anchorage B, giving A*B. In so doing, a 

recognition site for the restriction enzyme PflM 1 is created, allowing this enzyme to 

cut the complex A*B in such a way that the six nucleotide fragment passes to 

anchorage B, giving B*. At this point T4 ligase can either re-ligate B* to A to give 

A*B again (an idling step), or it can join B* to C to give B*C (the forward step). 

However, whilst re-ligation of B* to A can be undone by the action of PflM 1 

(regenerating B*), ligation of B* to C represents the point at which the walker cannot 

return to A, as B*C does not contain a restriction site for PflM 1. Instead, the final 

state C* must be generated by the action of a second restriction enzyme, BstAP 1, for 

which a restriction site is created when B* is ligated to C. As the walker cannot 

return to A after B*C has been formed, the authors rightly assert that the motion of * 

is unidirectional.77 Yin et al were also unable to detect the linkage of two tracks by 
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one walker unit, suggesting that the motion undertaken is processive, and that 

scrambling of walkers and tracks does not occur. Furthermore, the unidirectional 

motion of the DNA fragment is autonomous under the conditions used by the authors 

– all that was necessary to complete the transport of * from one end of the track to 

the other was to mix all the components together and wait. Despite its rather 

unconventional gait, this system does constitute a walking system as defined in 

Section 1.5 – it has two feet (the two different ends of the six-nucleotide fragment), 

one of which is always in contact with the track, and it is able to step (by DNA 

restriction and subsequent ligation) in a reproducible (if not always reversible) 

manner.  

 

The remaining examples of walking systems are more akin to the designs of Section 

1.5.4. The first of these was reported by Sherman and Seeman78 at around the same 

time as Yin et al published their autonomous transporter. Again based on DNA, the 

Sherman and Seeman design exploits the hybridisation of complementary strands of 

DNA to form double helices that anchor one foot to the track (also comprised of 

DNA), whilst allowing the other foot to dissociate from it. Both movement and 

standing still are achieved using single-stranded DNA oligomers known as “set 

strands” and “unset strands”. Set strands hybridise both to a foothold on the track and 

to a foot of the walker module, forming stable double helices. At the top of each set 

strand, there is a short (8 nucleotide) “toehold” region that is not complementary to 

any of the feet or footholds (Figure 1.29). Unset strands complementary to a given 

set strand in its entirety (including the toehold) are then able to hybridise to the set 

strands preferentially and remove them as double helix “waste”. This leaves the foot 

and foothold free to dissociate, and the addition of a set strand complementary to 

both the free foot and another foothold will cause the walker to step to that position. 

In this way, judicious choice of DNA sequences for the various set and unset strands 

and an appropriate order of addition leads to directed motion of the walker along the 

track (Figure 1.29).79 
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Figure 1.29 Pictorial representation of the Sherman-Seeman walker system.  

 

Tian and Mao80 have used a very similar idea to create a system of DNA-based 

“molecular gears”, where two DNA “nanocircles” possessing single-stranded DNA 

“toeholds” are connected to one another by the addition of appropriate linking 

strands (Figure 1.30). These linking strands contain regions that are not 

complementary to any toeholds, such that addition of a removal strand with 

complementarity to the whole of the linker strand causes the removal of the linker 

strand as duplex waste. By careful ordering of the addition of linker and removal 

strands, the two nanocircles could be made to step around each other in a processive 

fashion. 
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Figure 1.30 Pictorial representation of Mao’s Molecular Gears. The linking strand L1 causes the two 
nanocircles (A and B) to associate, whilst addition of a second linking strand (L2) causes a second 
DNA duplex connection to be formed. Addition of a removal strand (R1) which is complementary to 
all of L1 (including the single stranded overhang) then breaks the original AL1-BL1 duplex. 
Subsequent addition of appropriate linking and removal strands then allows the circles to step 
processively around each other in a directional fashion. 

 

Shin and Pierce81 have expanded on these ideas, and have been able to create a 

walker/track system where the biped moves in a hand-over-hand fashion (the 

Sherman-Seeman walker/track ensemble operates under an inchworm regime). To do 

this, they designed a track consisting of four different footholds and a walker with 

two different feet. Set strands (A1, A2 – see Figure 1.31) are used to bind a given 

foot to a given foothold on the track, and unset strands (D1, etc.) can then be added 

which nucleate with the relevant (perfectly complementary) set strand via a 10-base 

toehold, removing the set strand as double helix waste and allowing the foot and 

foothold to dissociate. Again, the authors were able to demonstrate that the walking 

was both unidirectional (given a specific order of addition of set/unset strands) and 

processive. 
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Figure 1.31 The Shin-Pierce hand-over-hand DNA walker81 Adapted by permission of WILEY-VCH 
Verlag GmbH & Co. KGaA, Weinheim, Germany from Reference 48. 

 

It is interesting to note that the Shin-Pierce system uses four different footholds (or 

binding sites) on the track, and two different feet. In this way, we can consider it to 

have an ABCDABCD track, where one foot of the walker hybridises only to 

footholds A and C and the other foot forms stable interactions only with footholds B 

and D. From a synthetic point of view, such a division or compartmentalisation of 

the interactions necessary for processive directed walking can be of immense 

assistance in simplifying a very complex problem down to a basic initial target: two 

orthogonally addressable switching mechanisms, each comprising a foot and its 

corresponding footholds. 

 

1.7 Summary and Outlook 

 

The success of the DNA-based molecular walkers shows that the synthesis of truly 

artificial walking molecules is possible. All of these designs rely on DNA base-pair 

recognition to promote stepping, with the dominant interactions (as in the association 

of kinesin with microtubules) being non-covalent interactions such as the hydrogen 

bond.2 Although individual hydrogen bonds are relatively weak, multiple interactions 

can generate remarkably stable assemblies with a significant degree of specificity 

provided by the three-dimensional arrangement of the hydrogen bond donors and 
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acceptors within a given sequence. However, if minimalist walking molecular 

machines are to be realised, then an elaborate array of hydrogen bonding groups is 

not an appropriate basis for stepping or standing. Moreover, with the full range of 

interactions available to the synthetic chemist, there is no reason to suppose that 

highly robust, tuneable and addressable molecular walkers cannot be synthesised 

from wholly non-natural building blocks on a scale far smaller than that achieved by 

Nature. The design and synthesis of just such a fundamental synthetic molecular 

walking system will be addressed in the following Chapters. 
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Synopsis 

 

The synthesis of rotaxanes has benefited greatly from the application of template-

directed syntheses. However, the interactions between the thread and macrocycle 

which produce the template effect generally remain in the final rotaxane, thereby 

dictating the properties of the resulting molecule. Conversely, systems which lack 

significant intercomponent interactions, or have interactions that are too weak to 

lead to successful templates (e.g. single contact H-bonds) cannot be made to form 

interlocked architectures in useful yield. If mechanically interlocked molecules that 

contain only very weak intercomponent interactions are to be produced, a new 

templating method must be developed.  

 

The Leigh group has introduced the active-metal template approach for the 

formation of rotaxanes. Active-template syntheses differ from classical template 

reactions in that a single species acts as both a template and a catalyst for covalent 

bond formation. Combining these two roles has several potential advantages over 

conventional “passive” template syntheses, including inherent efficiency and the 

possibility of traceless assembly.  

 

This Chapter describes a traceless Cadiot-Chodkiewicz active-metal template 

pathway to heterocoupled [2]rotaxanes and its application to the synthesis of a 

molecular shuttle containing only a single thread-macrocycle H-bond, which would 

be extremely difficult to realise using traditional rotaxane-forming methods. 
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2.1 Introduction 

 

The noncovalent binding motifs used to template the synthesis of mechanically 

interlocked architectures are generally retained in the final products.[1] This feature 

has been widely exploited to make molecular shuttles,[2] rotaxanes with two or more 

discrete binding sites or ‘stations’ on the thread between which the macrocycle 

shuttles incessantly through Brownian motion. However, the noncovalent 

interactions used to maximise the rotaxane yield and localise the position of the ring 

on the thread also provide the major contribution to the activation energy to 

shuttling.[3] To achieve faster moving rotaxane-based molecular machines, it will be 

necessary to make molecular shuttles with much weaker intercomponent interactions 

than are typically introduced with classical template methods.[4] Here we report on a 

new rotaxane-forming reaction that can produce rotaxanes with unsymmetrical 

threads (as required for switchable molecular shuttles) but does not leave strong 

intercomponent binding motifs in the rotaxane product. Instead the active template[5] 

Cadiot-Chodkiewicz[6] reaction is compatible with building blocks that can provide 

relatively modest macrocycle-thread binding motifs in the rotaxane, but which are 

still strong enough to afford good positional integrity of the ring. The methodology is 

exemplified through the synthesis of a ‘weak interaction’ molecular shuttle in which 

a single hydrogen bond between the components determines the predominant 

position of the macrocycle in each of two well-defined states, which can be switched 

between by reversible complexation with Li+ or protonation. 

 

Active template syntheses differ from classical ‘passive-template’ reactions in that a 

single species acts as both the template for the product architecture and as the 

catalyst for the formation of the covalent bond(s) that captures it.[5] Although 

combining these two roles has several potential advantages,[5a] controlling the 

positions of the metal-ligated building blocks during the reaction to template the 

product puts additional demands (which can themselves provide insight into the 

reaction pathway[5d]) on the mechanism of catalysis. Accordingly, successful 

combinations of ligands and metal-catalysed reactions for active template syntheses 

are still rare and the development of new systems remains challenging[5e]. 
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2.2 Model Studies 

 

The active metal template homodimerisation of acetylenes to form rotaxanes[5b, 5c] 

introduces a relatively rigid linear connector which inhibits folding—potentially 

desirable for fully exploiting the spatial separation of the ring between different 

states[7]—but can only be used to make [2]rotaxanes with symmetrical axles. The 

coupling of two different building blocks is necessary to produce bistable molecular 

shuttles in which the macrocycle can be switched between two different positions on 

the thread. The Cu(I)-mediated Cadiot-Chodkiewicz[6] heterocoupling of a terminal 

alkyne with an alkyne halide appeared a suitable candidate reaction for such studies 

(Table 2.1).  

 

Entry Alkyne 

 halide 

Solvent Rotaxane yield 

1+2+3�4+5+6 

Selectivity  

4:5:6 

1 1a (i-Pr)2NH 40% 10:9:1 

2 1a NEt3 20% 2:15:1 

3 1a pyrrolidine <2% no rotaxane 

4 1a benzene
[b]

 35% 1.7:1:1 

5 1b (i-Pr)2NH <5% 2:5:1 

Table 2.1 Preliminary solvent screen for the bis-acetylene rotaxane forming active template Cadiot-
Chodkiewicz reaction.[6] Conditions: [a] a solution of 1, 2, 3 and CuI (all one equivalent) was allowed 
to stir at 298 K under an atmosphere of N2 for 18 hours. [b] Plus two equivalents of (i-Pr)2NH.  

 

Promisingly, [2]rotaxane was produced (Table 2.1) using appropriately ‘stoppered’ 

alkyne-halide (1a or 1b) and aryl-alkyne (2) derivatives and a bidentate macrocycle 

(3) under typical conditions[6] used for the Cadiot-Chodkiewicz reaction in non-

aqueous solvents. However, in these initial studies poor selectivity for the 

heterocoupled rotaxane (4) versus the homocoupled rotaxanes (5 and 6) was 

observed, together with low overall conversion of the alkyne starting materials to bis-
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acetylene products. In an attempt to improve both the reaction yield and the 

selectivity for the heterocoupled rotaxane, we investigated changing the traditional 

Cadiot-Chodkiewicz procedure of mixing the alkyne and alkyne-halide components 

with neutral amine bases, to pre-forming the copper acetylide by treatment of 

terminal alkyne 2 with n-BuLi, followed by transmetallation with CuI (Table 2.2).[8]  

 

 

Entry 
Terminal 

acetylene
[a]

 

Bromo 

acetylene 

Rotaxane 

yield [%] 

Select- 

ivity 

1 
  

84 >98%
[b]

 

2 
  

32 
1.7:8:1 

4:5:6 

3 
  

85 >98%
[b]

 

4 
 

 

 
74 >98%

[b]
 

 

Table 2.2 Substrate scope of the Cadiot-Chodkiewicz active metal template synthesis of 
heterocoupled [2]rotaxanes. [a] R=(t-BuC6H4)3CC6H4; [b] No homocoupled rotaxanes observed. 
Stacked plots of the 1H NMR spectra for 4 and 10 (Figures 2.3 and 2.4, respectively) are given in 
Section 2.5. 

 

Following this protocol, we were delighted to find that subsequent addition of 

bipyridine macrocycle 3 and bromoacetylene 1b led to the desired [2]rotaxane 4 in 

high yield (84%) and with excellent selectivity (>98%) for the heterocoupled product 

(Table 2.2, entry 1).[9] Although the procedure did not prove compatible with 

reversing the reactive bromine/hydrogen functionalities of the alkyl and aryl-

acetylene building blocks (7 with 8, Table 2.2, entry 2),[10] when coupling two 

different alkyl alkynes (7 with 9 or 11 with 1b to give 10) either could be used 

successfully as the bromoacetylene partner whilst maintaining high yields and 

apparent exclusive selectivity for the heterocoupled rotaxane (Table 2.2, entries 3 

and 4). 
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The Cadiot-Chodkiewicz reaction is thought to proceed via a different mechanism to 

the (also Cu(I)-catalysed) Glaser homocoupling of alkynes,[11] and the proposed 

pathway for the active-metal template rotaxane assembly of 4 is shown in Scheme 

2.1. The pre-formed copper (I)-acetylide I is sequestered by bipyridine macrocycle 

3.[12] Oxidative addition across the C-Br bond of the bromoacetylene occurs from the 

opposite face of the macrocycle to produce the Cu(III) intermediate II and 

subsequent reductive elimination furnishes the heterocoupled [2]rotaxane. 

 

 

Scheme 2.1 Proposed mechanism for the Cadiot-Chodkiewicz active metal template formation of 
[2]rotaxane 4.[11] 

 

2.3 Design and Synthesis of a Switchable Molecular Shuttle with Weak 

Intercomponent Interactions 

 

To demonstrate the utility of this new active template reaction, we synthesized a 

stimuli-switchable molecular shuttle, 12, with modest strength intercomponent 

interactions of a type that would be difficult or impossible to access by traditional 

template methods. The single contact H-bond that molecular modelling (see Section 

2.7 and Figure 2.2) indicates exists between the aniline unit of the thread and 

bipyridine group of the macrocycle in 12 is too weak to template rotaxane formation 

through ‘stoppering’ or ‘clipping’ strategies[1] and no passive metal templates which 
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utilize a 1+2 donor ligand set have been reported to date. However, the modified 

Cadiot-Chodkiewicz active metal template method readily produced molecular 

shuttle 12 in good yield (61%) from functionalized building blocks 13 and 14 with 

no homocoupled rotaxane products being detected (Scheme 2.2).  

 

 

Scheme 2.2 Active template synthesis and stimulus-induced translocation of the macrocycle in 
molecular shuttle 12. The stimulus applied is either protonation (MX = HOTs) or complexation with 
Li+. 

 

1H NMR spectroscopy clearly shows the macrocycle to be predominantly held over 

the axle aniline unit in neutral molecular shuttle 12 at 300 K in CD2Cl2. The 1H NMR 

spectrum of the rotaxane (Figure 2.1b) displays significant upfield shifts (Hd 0.2 

ppm, He 0.4 ppm, Hg 0.6 ppm) of signals associated with the aniline station relative 

to those in the free thread (Figure 2.1a). Calculations on the macrocycle-station 

fragments for 12 in CH2Cl2 at B3LYP/3-21G* level[13] (see Section 2.7) show that the 

minimum structure intercomponent binding energy, ∆Gbind, of -3.9 kcal mol-1 is 

largely attributable to a single contact H-bond of 2.1 Å between the N-H of the 

aniline and one nitrogen atom of the macrocycle bipyridine unit (Figure 2.2a). A 

review of the Cambridge Structural Database (CSD) reveals a range of 2.1-2.4 Å for 

similar aniline-to-pyridine contacts in the solid state.[14] 
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Figure 2.1 
1H NMR spectra (400 MHz, CD2Cl2, 300 K) of (a) non-interlocked thread, (b) rotaxane 12, 

(c) rotaxane 12 plus one equivalent TsOH, (d) non-interlocked thread plus one equivalent TsOH, (e) 
non-interlocked thread in the presence of excess LiI, (f) rotaxane 12 in the presence of excess LiI. 

 

Addition of one equivalent of p-toluenesulfonic acid (TsOH) to a solution of 

rotaxane 12 in CD2Cl2 causes significant shifts in several of the axle signals in the 1H 

NMR spectrum (Figure 2.1c).[15] Protons Hd, He and Hg associated with the aniline 

unit return to the position they occupy in the non-interlocked thread in the presence 

of TsOH (Figure 2.1d), while those of the 4-dimethylaminopyridine (DMAP) station 

(Hj and Hl each 0.5 ppm, Hk 0.2 ppm) shift to higher field. This is consistent with 

protonation of the DMAP nitrogen and translocation of the macrocycle along the 

thread so that the pyridinium N-H hydrogen bonds strongly with the bipyridine 

moiety of the macrocycle (Scheme 2.2, MX = HOTs). B3LYP/3-21G* level 
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calculations (see Section 2.7) indicate that the protonated-DMAP-bound co-

conformation is now favoured by ~0.9 kcal mol-1 (Figure 2.2b). A search of the CSD 

finds that the calculated H-bond contact distance of 1.8 Å is in the 1.4-1.9 Å range 

found  for pyridinium-to-pyridine H-bonds in the solid state.[16] Treating a solution of 

rotaxane 12-H+ with solid Na2CO3 quantitatively regenerates the neutral molecular 

shuttle 12, returning the macrocycle to its original position on the thread. 

 

 

Figure 2.2 B3LYP/3-21G* level quantum chemical calculated minimum energy macrocycle-station 
structures in CH2Cl2 at 298 K showing the single hydrogen bond interactions between the macrocycle 
and (a) aniline and (b) protonated-DMAP (tosylate counterion) stations present in molecular shuttle 12 
and 12-H+.[13] Hydrogen atoms not attached to N atoms are not shown for clarity. Intercomponent N-
H…N distances and angles: 12 2.1 Å (153.6°); 12-H+ 1.8 Å (170.3°). Intercomponent binding 
energies (kcal mol-1): Electronic, �Ebind, 12 -8.0 (±0.05), 12-H+ -14.1 (±0.05); enthalpic, �Hbind, 12       
-6.7 (±0.04), 12-H+ -11.4 (±1); free energy, �Gbind, 12 -3.9 (±0.1), 12-H+ -4.8 (±1). The errors in the 
calculations were estimated by increasing the solvent cavity radius by 0.5 Å. 

 

A similar change in co-conformation could be generated by shaking a solution of 

rotaxane 12 in CD2Cl2 with excess LiI (Scheme 2.2, MX = LiI). The 1H NMR 

spectrum of the shuttle after treatment with LiI (Figure 2.1f) displays significant 

upfield shifts and broadening of the resonances of the pyridyl station (Hj, and Hl) 

compared with the corresponding protons in the non-interlocked thread in the 

presence of excess LiI (Figure 2.1e).[17] As was seen with protonation, the signals of 

the rotaxane aniline station Hd, He and Hg return to the position they occupy in the 

non-interlocked thread. These changes are consistent with the mechanically 

interlocked components of rotaxane 12 coordinating Li+ though the bipyridine 

moiety of the macrocycle and the DMAP station of the axle. A simple aqueous wash 

removes the metal salt and regenerates rotaxane 12 in its original form. 
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2.4 Conclusions 

 

The utility of the Cadiot-Chodkiewicz active template strategy has been exemplified 

through the construction and operation of a switchable molecular shuttle which 

features a single hydrogen bond between the mechanically interlocked components 

in each state, much less than half the intercomponent binding energy found in typical 

molecular shuttles yet still strong enough to ensure a high degree of positional 

integrity of the macrocycle in both forms. The methodology paves the way for faster 

moving, faster responding, mechanically interlocked molecular machines which can 

be designed to feature only the weakest noncovalent interactions necessary for their 

function.  

 

2.5 Experimental Section 

 

Terminal acetylenes 2,[5d] 7
[5c] and 11

[5a] were prepared according to previously 

published procedures. Bromoacetylenes 1b, 8 and 9 were prepared by treatment of 

the corresponding terminal acetylenes with NBS and AgNO3 in THF or acetone.[18] 

Macrocycle 3 was prepared according to a previously published procedure.[5c] 

Building blocks S3, S4 and S5 were prepared according to literature 

procedures.[19,15j,20]  

 

 

Scheme 2.3 Synthesis of rotaxane 4. Reagents and conditions: n-BuLi, THF, -78 °C; ii) CuI, 0 °C → 

RT; iii) 3, 1b, -78 °C → RT, 20 h, 84%. 
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A solution of acetylene 2 (20 mg, 0.032 mmol) in THF (0.4 mL) was cooled to -78 

°C. To this solution was added n-BuLi (0.32 mL, 0.1 M in THF) at -78 °C. The 

resulting solution was allowed to warm to 0 °C over 15 minutes. CuI (6.2 mg, 0.032 

mmol) was added at 0 °C and the resulting yellow solution allowed to warm to RT 

over 15 minutes. The reaction mixture was returned to -78 °C and bipyridine 

macrocycle 3 (18 mg, 0.032 mmol) and bromoacetylene 1b (22 mg, 0.032 mmol) 

were added as a solution in THF (0.6 mL). The resulting orange solution was 

allowed to stir at RT for 20 h before the reaction was quenched by addition of an 

aqueous solution of 17.5% NH3 saturated with EDTA. The layers were allowed to 

stir in air for 40 minutes during which time the aqueous layer turned blue. The 

aqueous layer was extracted with CH2Cl2 (3 x 50 mL) and the combined organic 

layers washed with brine and dried over MgSO4. Column chromatography on silica 

(7:2.5:0.5 hexane:CH2Cl2:MeCN) yielded [2]rotaxane 4 as a colourless film (47 mg, 

84%): 1H NMR (400 MHz, CDCl3): δ 7.97 (d, J = 7.5, 2H, HA), 7.50 (dd, J1 = 7.6, J2 

= 7.5, 2H, HB), 7.28 (d, J = 7.6, 2H, HC), 7.26-7.22 (m, 12H, Hb+o) 7.12-7.05 (m, 

18H, Hc+g+n+F), 7.02-6.97 (m, 4H, Hd+m), 6.85 (d, J = 8.3, 2H, Hh), 6.62 (d, J = 8.6, 

4H, HG), 6.52 (d, J = 8.9, 4H, He+l), 4.56 (s, 8H, HD+E), 4.48 (s, 2H, Hf), 3.75 (t, J =  

6.6, 4H, HH), 3.69 (t, J =  6.0, 2H, Hk), 2.30 (t, J =  7.0, 2H, Hi), 1.73 (m, 2H, Hj), 

1.58 (m, 4H, HI), 1.31 (s, 54H, Ha+p), 1.26-1.05 (m, 12H, HJ+K+L). 13C NMR (100 

MHz, CDCl3): δ 158.6, 158.2, 156.4, 155.4, 155.2, 148.3 (x 2), 144.2 (x 2), 139.7, 

139.4, 137.9, 137.0, 132.3, 132.1, 130.7, 129.7 (x 2), 127.0, 124.1 (x 2), 124.0 (x 2), 

121.2, 120.9, 119.6, 114.4, 113.2, 112.9, 83.6, 74.9 (x 2), 74.4, 72.4, 72.1, 69.0, 67.6, 

65.6, 63.1, 63.0, 34.3, 31.4, 31.2, 29.7, 29.4, 29.0, 28.8, 28.0, 25.8, 15.3. LRFAB-

MS (3-NOBA matrix): m/z = 1755 [M+H]+. HRFAB-MS (3-NOBA matrix): m/z = 

1755.0772 [M+H]+ (calc. for 12C122
13C2H140N2O6, 1755.0779 [M+H]+). 
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Stacked plot of the 1H-NMR spectra of 4 and S1 in CDCl3: 

 

Figure 2.3 The 1H NMR spectra (400 MHz, CDCl3, 300 K) of a) macrocycle 3, b) the [2]rotaxane 4, 
c) the thread S1. The lettering corresponds to the 1H NMR assignments given above. 

 

BrRO

1b

RO

N N

O O

O O

3

O

O

O

N N

O

O

a

b

c

d e

f

g

h

i j k

l

m

n

AB

C

D

E

G

H

J

F

I

K

L

O

10

11

 

Scheme 2.4 Synthesis of rotaxane 10. Reagents and conditions: n-BuLi, THF, -78 °C; ii) CuI, 0 °C → 

RT; iii) 3, 1b, -78 °C → RT, 20 h, 74%. 
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A solution of acetylene 11 (18 mg, 0.032 mmol) in THF (0.4 mL) was cooled to -78 

°C. To this solution was added n-BuLi (0.32 mL, 0.1 M in THF) at -78 °C. The 

resulting solution was allowed to warm to 0 °C over 15 minutes. CuI (6.2 mg, 0.032 

mmol) was added at 0 °C and the resulting yellow solution allowed to warm to RT 

over 15 minutes. The reaction mixture was returned to -78 °C and bipyridine 

macrocycle 3 (18 mg, 0.032 mmol) and bromoacetylene 1b (22 mg, 0.032 mmol) 

were added as a solution in THF (0.6 mL). The resulting orange solution was 

allowed to stir at RT for 20 h before the reaction was quenched by addition of an 

aqueous solution of 17.5% NH3 saturated with EDTA. The layers were allowed to 

stir in air for 40 minutes during which time the aqueous layer turned blue. The 

aqueous layer was extracted with CH2Cl2 (3 x 50 mL) and the combined organic 

layers washed with brine and dried over MgSO4. Column chromatography (SiO2, 

7:2.5:0.5 hexane:CH2Cl2:MeCN) yielded [2]rotaxane 10 as a white foam (40 mg, 

74%). 1H NMR (400 MHz, CDCl3): δ 8.02 (d, J = 7.6, 2H, HA), 7.51 (dd, J1 = 7.8, J2 

= 7.6, 2H, HB), 7.27 (d, J = 7.8, 2H, HC), 7.26.7.20 (m, 12H, Hb+m), 7.10-7.02 (m, 

16H, Hc+l+F), 6.98 (d, J = 8.9, 2H, Hk), 6.93 (d, J = 8.9, 2H, Hd), 6.61 (d, J = 8.6, 4H, 

HG), 6.54 (d, J = 8.9, 2H, Hj), 6.33 (d, J = 8.9, 2H, He), 4.58 (s, 4H, HD or E), 4.56 (s, 

4H, HD or E), 4.38 (s, 2H, Hi), 3.79-3.73 (m, 4H, HH), 3.36 (t, J =  5.9, 2H, Hf), 1.97 (t, 

J =  7.1, 2H, Hh), 1.63-1.59 (m, 4H, HI), 1.47-1.40 (m, 2H, Hg), 1.31-1.20 (m, 66H, 

Ha+n+J+K+L). 13C NMR (100 MHz, CDCl3): δ 158.6, 158.2, 156.3, 155.4, 155.3, 148.3, 

148.2, 144.2, 144.1, 140.2, 139.3, 137.1, 132.1, 132.0, 130.7, 129.7, 129.6, 124.1 

(×4), 119.7, 114.4, 113.0, 112.8, 80.9, 72.4 72.2, 71.9 (×2), 70.7, 67.6, 65.4, 64.8, 

63.0, 56.0, 34.3 (×2), 31.4 (×2), 29.4, 28.9, 28.8, 27.7, 25.7, 15.8. LRFAB-MS (3-

NOBA matrix): m/z = 1679 [M+H]+. HRFAB-MS (3-NOBA matrix): m/z = 

1678.0542 [M]+ (calc. for C118H136N2O6, 1678.0477 [M]+). 



__________________________________________________________Chapter Two  

 63 

Stacked plot of the 1H-NMR spectra of 10 and S2 in CDCl3: 

 

Figure 2.4 The 1H NMR spectra (400 MHz, CDCl3, 300 K) of a) macrocycle 3, b) the [2]rotaxane 10, 
c) the thread S2. 

 

The non-interlocked threads S1 and S2 were prepared following standard Cadiot-

Chodkiewicz type coupling procedure[6c] in 94% and 76% yield respectively and 

characterised for comparison with rotaxanes 4 and 10:  
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Mp 235-238 °C; 1H NMR (400 MHz, CDCl3): δ 7.49 (d, J = 8.3, 2H, Hg), 7.37 (d, J 

= 8.3, 2H, Hh), 7.24 (d, J = 8.5, 12H, Hb+o), 7.18 (d, J = 7.4, 2H, Hd or m), 7.11-7.07 

(m, 14H, Hc+n + Hd or m), 6.82-6.78 (m, 4H, He+l), 5.02 (s, 2H, Hf), 4.06 (t, J = 5.5, 

2H, Hk), 2.59 (t, J =  6.9, 2H, Hi), 2.04 (m, 2H, Hj), 1.31 (s, 54H, Ha+p). 
13C NMR 

(100 MHz, CDCl3): δ 156.5, 156.4, 148.3 (x 2), 144.1, 144.0, 140.1, 139.7, 138.1, 

132.7, 132.3, 132.2, 130.7 (x 2), 127.3, 124.0 (x 2), 121.4, 113.2, 112.9, 83.7, 74.7, 
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74.4, 69.4, 65.9, 65.8, 65.6, 63.0, 34.3 (x 2), 31.4 (x 2), 28.1, 16.5. LRFAB-MS (3-

NOBA matrix): m/z = 1187 [M]+. HRFAB-MS (3-NOBA): m/z = 1187.7701 [M+H]+ 

(calc. for C88H99O2, 1187.7645 [M+H]+).  

 

Mp 255-258 °C; 1H NMR (400 MHz, CDCl3): δ 7.24 (d, J = 8.3, 12H, Hb+m), 7.12-

7.07 (m, 16H, Hc+d+k+l), 6.82 (d, J = 8.9, 2H, Hj), 6.75 (d, J = 8.9, 2H, He), 4.70 (s, 

2H, Hi), 4.01 (t, J = 5.9, 2H, Hf), 2.51 (t, J =  6.9, 2H, Hh), 2.00 (m, 2H, Hg), 1.31 (s, 

54H, Ha+n). 
13C NMR (100 MHz, CDCl3): δ 156.5, 155.4, 148.3, 148.2, 144.1, 144.0, 

140.5, 139.7, 132.3, 132.2, 130.7 (×2), 124.0 (×2), 113.2, 112.9, 80.9, 71.9, 70.8, 

65.8, 65.0, 63.0 (×2), 56.3, 34.3 (×2), 31.4 (×2), 28.0, 16.2. LRFAB-MS (3-NOBA 

matrix): m/z = 1111 [M]+.  HRFAB-MS (3-NOBA): m/z = 1110.7191 [M]+ (calc. for 

C82H94O2, 1110.7254 [M]+). 
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Scheme 2.5 Synthesis of half-thread 13. Reagents and conditions: i) Pd(PPh3)2Cl2, CuI, THF, Et3N, 
RT, 36 h, 98%; ii) KF, MeOH, THF, RT, 24 h, 89%. 
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To a solution of iodide S3
[15j] (200 mg, 0.25 mmol) in THF (20 mL) and Et3N (10 

mL) was added Pd(PPh3)2Cl2 (9.0 mg, 0.013 mmol), CuI (5.0 mg, 0.025 mmol) and 

acetylene S4
[20] (63 mg, 0.38 mmol) and the reaction stirred at RT for 36 h. After this 

time, the reaction was quenched with aqueous saturated NH4Cl (25 mL), the layers 

separated and the aqueous layer was extracted with dichloromethane (2 x 50 mL). 

The combined organic extracts were then washed with brine and dried over Na2SO4. 

Removal of the solvents under reduced pressure followed by column 

chromatography on silica (eluting first with 1:4 Et2O:hexane and then 1:1 

Et2O:hexane) gave acetylene S5 as a white solid, m.p. 113-114 °C (210 mg, 98%). 

1H NMR (400 MHz, CDCl3): δ 7.25-7.21 (m, 6H, Hb), 7.11-7.06 (m, 8H, Hc+d), 6.90-

6.86 (m, 2H, He), 6.63 (s, 2H, Hg+i), 4.87 (s, 2H, Hf), 4.46 (s, 2H, Hj), 4.31 (s, 2H, 

Hk), 2.98 (s, 6H, Hh), 1.30 (s, 27H, Ha), 0.19 (s, 9H, Hl). 
13C NMR (100 MHz, 

CDCl3): δ 155.7, 154.2, 148.3, 144.0, 142.6, 142.5, 140.3, 132.3, 130.7, 124.0, 

113.3, 109.7, 109.6, 100.5, 92.2, 86.6, 86.4. 82.8, 82.6, 63.0, 57.5, 57.0, 56.4, 39.2, 

34.3, 31.3, -0.2. LRFAB-MS (3-NOBA matrix): m/z = 826 [M]+. HRFAB-MS (3-

NOBA matrix): m/z = 827.4966 [M+H]+ (calc. for C56H67N2O2Si, 827.4972 

[M+H]+). 
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KF (290 mg, 4.98 mmol) in MeOH (7 mL) was added to a solution of S5 (206 mg, 

0.249 mmol) in THF (25 mL) and the reaction mixture was allowed to stir at RT for 
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24 h. The solvents were then removed in vacuo and the crude residue was purified by 

column chromatography on silica (1:1 hexane:Et2O) to yield terminal acetylene 13 as 

a white solid, m.p. 104-106 °C (168 mg, 89%). 1H NMR (400 MHz, CDCl3): δ 7.24-

7.21 (m, 6H, Hb), 7.11-7.06 (m, 8H, Hc+d), 6.89-6.86 (m, 2H, He), 6.65-6.63 (m, 2H, 

Hg+i), 4.87 (s, 2H, Hf), 4.47 (s, 2H, Hj), 4.32 (d, J = 2.4, 2H, Hk), 2.99 (s, 6H, Hh), 

2.46 (t, J = 2.4, 1H, Hl), 1.30 (s, 27H, Ha). 
13C NMR (100 MHz, CDCl3): δ 155.7, 

154.3, 148.3, 144.0, 142.5 (x 2), 140.4, 132.3, 130.7, 124.1, 113.3, 109.8, 109.7, 85.6 

(x 2), 82.7 (x 2), 78.9, 75.1, 60.2, 57.1, 56.7, 56.4, 39.3, 34.3, 31.4. LRFAB-MS (3-

NOBA matrix): m/z = 755 [M+H]+. HRFAB-MS (3-NOBA): m/z = 755.4544 

[M+H]+ (calc. for C53H59N2O2, 755.4577 [M+H]+). 
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Scheme 2.6 Synthesis of half-thread 14. Reagents and conditions: K2CO3, 1,3-dibromopropyne, NMP, 

80 °C, 16 h, 50%. 
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A suspension of aniline S6
[19] (0.504 g, 1.00 mmol, 1.0 equiv.) and K2CO3 (0.550 g, 

4.00 mmol, 1.0 equiv.) in NMP (2 mL) was stirred at 80 °C for 1 h at which time a 

solution of 1,3-dibromopropyne[21] (2.0 M in NMP 0.500 mL, 1.00 mmol, 1.0 equiv.) 

was added and the mixture stirred for 16 h at 80 °C. The reaction mixture was 

partitioned between Et2O (200 mL) and water (200 mL) and the layers separated.  

The organic phase was washed with water (2 x 200 mL), dried (MgSO4) and the 
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solvent removed under reduced pressure. Column chromatography on silica (10:3 

hexane:CH2Cl2) gave bromoacetylene 14 as a pale yellow foam, m.p. 113-115 °C 

(310 mg, 50%). 1H NMR (400 MHz, CDCl3): δ 7.24-7.22 (m, 6H, Hb), 7.10-7.08 (m, 

6H, Hc), 7.03-7.00 (m, 2H, Hd), 6.57-6.54 (m, 2H, He), 3.93 (s, 2H, Hg), 3.87-3.77 

(br, 1H, Hf), 1.31 (s, 27H, Ha). 
13C NMR (100 MHz, CDCl3): δ 156.4, 156.1, 148.3, 

144.0, 132.3, 132.2, 130.7, 127.3, 124.0, 113.2, 69.4, 34.3 (x 2), 31.4. LRFAB-MS 

(3-NOBA matrix): m/z = 620 [M79Br+H]+, 622 [M81Br+H]+. HRFAB-MS (3-

NOBA): m/z = 620.2896 [M79Br+H]+ (calc. for C40H47N
79Br, 620.2886 [M79Br+H]+). 

 

A solution of acetylene 13 (48 mg, 0.064 mmol, 1.0 equiv.) in THF (0.4 mL) was 

cooled to -78 °C. To this solution was added n-BuLi (0.1 M in THF, 0.64 mL, 0.064 

mmol, 1.0 equiv.) at -78 °C. The resulting solution was allowed to warm to 0 °C over 

15 minutes. CuI (12 mg, 0.064 mmol, 1.0 equiv.) was added at 0 °C. The resulting 

yellow solution was allowed to warm to RT over 15 minutes. Bipy macrocycle 3 (36 

mg, 0.064 mmol, 1.0 equiv.) and bromo acetylene 14 (40 mg, 0.064 mmol, 1.0 

equiv.) were added as a solution in THF (1.2 mL) at -78 °C. The resulting orange 

solution was allowed to stir at RT for 20 h before the reaction was quenched by 

addition of an aqueous solution of 17.5% NH3 saturated with EDTA (50 mL). The 

layers were allowed to stir in air for 40 minutes after which the aqueous layer turned 

blue. The aqueous layer was extracted with CH2Cl2 (3 x 50 mL) and the combined 

organic layers washed with brine and dried (MgSO4). Purification by column 

chromatography on silica (gradient elution from 1% to 5% acetone in CH2Cl2) 

yielded the title product 12 as a white foam (73 mg, 61%). 1H NMR (400 MHz, 

CD2Cl2): δ 8.04 (d, J = 7.8, 2H, HA), 7.62-7.56 (m, 2H, HB), 7.31 (d, J = 7.7, 2H, 
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HC), 7.29-7.21 (m, 12H, Hb+q), 7.18-7.02 (m, 18H, Hc+o+p+F), 6.88 (d, J = 8.4, 2H, 

Hd), 6.67 (d, J = 8.8, 2H, Hn), 6.65-6.59 (m, 6H, Hj+l+G), 6.11 (d, J = 8.4, 2H, He), 

4.69 (s, 2H, Hm), 4.61-4.52 (m, 8H, HD+E), 4.29 (s, 2H, Hi), 4.19 (s, 2H, Hh), 3.96-

3.86 (br, 1H, Hf), 3.79 (t, J = 6.6, 4H, HH), 3.40 (s, 2H, Hg), 2.93 (s, 6H, Hk), 1.65-

1.50 (m, 4H, HI), 1.36-1.09 (m, 66H, Ha+r+J+K+L). 13C NMR (100 MHz, CD2Cl2): δ 

158.6, 158.5, 155.6, 155.4, 154.3, 148.4, 148.2, 144.8, 144.5 (x 2), 142.5, 142.4, 

140.4, 137.2, 136.8, 131.9, 131.4, 130.5, 130.4, 129.9, 129.8, 124.3, 124.2, 121.6, 

119.7, 114.3, 113.3, 111.8, 109.7 (x 2), 86.7, 86.6, 82.2 (x 2), 77.5, 73.1, 72.4 (x 2), 

71.1, 67.7, 66.4, 63.0, 57.2, 57.1, 56.3, 39.1, 34.2 (x 2), 33.5, 31.1 (x 2), 29.7, 29.4, 

28.9, 28.8, 25.8; LRFAB-MS (3-NOBA matrix): m/z = 1862 [M+H]+. HRFAB-MS 

(3-NOBA): m/z = 1862.1265 [M+H]+ (calc. for C129H146N5O6, 1862.1307 [M+H]+). 

 

 

Scheme 2.7 Synthesis of thread S7. Reagents and conditions: n-BuLi, CuI, 2,2'-dimethylbipyridine, 

THF, -78 °C → RT, 20 h, 29%. 
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To a solution of acetylene 13 (37 mg, 0.049 mmol, 1.0 equiv.) in THF (1 mL) at -78 

°C was added n-BuLi (0.16 M in THF, 0.31 mL, 0.049 mmol, 1.0 equiv.) and the 

solution stirred at -78 °C for 20 minutes. This solution was then transferred via 

cannula to a mixture of CuI (9.3 mg, 0.049 mmol, 1.0 equiv.) and 2,2'-

dimethylbipyridine (9.0 mg, 0.049 mmol, 1.0 equiv.) in THF (2 mL) at -78 °C and 

the resulting solution allowed to stir at 0 °C for 15 minutes. The solution was then re-
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cooled to -78 °C and a solution of bromoacetylene 14 (30 mg, 0.049 mmol, 1.0 

equiv.) in THF (2 mL) was added. The orange reaction mixture was then allowed to 

warm to RT and stirred overnight. The reaction was quenched by addition of an 

aqueous solution of 17.5% NH3 saturated with EDTA (10 mL). The layers were 

allowed to stir in air for 40 minutes after which the aqueous layer turned blue. The 

aqueous layer was extracted with EtOAc (2 x 50 mL) and the combined organic 

layers washed with brine and dried (Na2SO4). Purification by column 

chromatography on silica (5:1 hexane:EtOAc with 1% Et3N) yielded thread S7 as an 

off-white foam (18 mg, 29%). 1H NMR (400 MHz, CDCl3): δ 7.24-7.19 (m, 12H, 

Hb+q), 7.11-7.06 (m, 14H, Hc+o+p), 7.03-6.99 (m, 2H, Hd), 6.89-6.85 (m, 2H, Hn), 

6.65-6.62 (m, 2H, Hj+l), 6.56-6.53 (m, 2H, He), 4.86 (s, 2H, Hm), 4.45 (s, 2H, Hi), 

4.37 (s, 2H, Hh), 4.00 (s, 2H, Hg), 3.90-3.73 (br, 1H, Hf), 2.98 (s, 6H, Hk), 1.29 (s, 

54H, Ha+r). LRFAB-MS (3-NOBA matrix): m/z = 1295 [M+H]+. HRFAB-MS (3-

NOBA): m/z = 1294.8171 [M+H]+ (calc. for C93H104N3O2, 1294.8129 [M+H]+). 

2.6 Shuttling Experiments 
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A solution of rotaxane 12 (9.8 mg, 0.0053 mmol, 1.0 equiv.) in CD2Cl2 was charged 

with p-TsOH (1.0 mg, 0.0053 mmol, 1.0 equiv.) and the mixture sonicated gently at 

RT for 10 minutes. After this time, 1H NMR analysis indictated the formation of 

pyridinium 12-H+. 1H NMR (400 MHz, CD2Cl2): δ 8.08-7.83 (m, 4H, HA+B), 7.68 (d, 

J = 8.1, 2H, HTsOAr-H), 7.57-7.41 (m, 2H, HC), 7.31-7.19 (m, 12H, Hb+q), 7.17-7.09 

(m, 18H, Hc+d+o+p+TsOAr-H), 7.01-6.88 (m, 4H, HF), 6.86-6.74 (br, 2H, Hn), 6.67-6.54 

(m, 6H, He+G), 6.34-6.02 (br, 2H, Hj+l), 4.58-4.43 (m, 6H, Hm+D), 4.43-4.37 (m, 4H, 

HE), 4.16 (s, 2H, Hi), 4.04-3.93 (m, 4H, Hg+h), 3.87-3.80 (m, 4H, HH), 2.94-2.78 (br, 
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6H, Hk), 2.30 (s, 3H, HTsOAlk-H), 1.77-1.67 (m, 4H, HI), 1.34-1.20 (m, 66H, 

Ha+r+J+K+L). 

Hf  and the pyridinium H+ are too broad to identify. 

Passing pyridinium 12-H+ through a plug of Na2CO3 (eluting in CH2Cl2) then 

regenerated rotaxane 12 as previously characterised. 
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A solution of rotaxane 12 (7.0 mg, 0.0038 mmol) in CD2Cl2 was charged with excess 

anhydrous LiI and the mixture sonicated gently at RT for 10 minutes. After this time, 

1H NMR analysis indictated the formation of metal complex 12-Li+. 1H NMR (400 

MHz, CD2Cl2): δ 7.95 (d, J = 7.8, 2H, HA), 7.86 (t, J = 7.8, 2H, HB), 7.37 (d, J = 

7.8, 2H, HC), 7.27-7.22 (m, 12H, Hb+q), 7.17-7.11 (m, 14H, Hc+o+p), 7.08-7.04 (m, 

6H, Hd+F), 6.66-6.62 (m, 6H, Hn+G), 6.57 (d, J = 8.2, 2H, He), 6.40 (s, 1H, Hj or l), 

6.31 (s, 1H, Hj or l), 4.72-4.65 (m, 4H, HD), 4.57-4.50 (m, 4H, HE), 4.43 (s, 2H, Hm), 

4.25 (s, 1H, Hf), 4.02 (s, 4H, Hg+i), 3.90-3.80 (m, 6H, Hh+H), 2.97 (s, 6H, Hk), 1.73-

1.66 (m, 4H, HI), 1.39-1.23 (m, 66H, Ha+r+J+K+L). 

Washing the NMR sample of metal complex 12-Li+ with water for 10 minutes, 

followed by separation of the organic phase and drying over Na2SO4 regenerated 

rotaxane 12 as previously characterised. 

Threads S7-H+
 and S7-Li+ were prepared from thread S7 in an analogous fashion to 

the rotaxanes.  
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1H NMR (400 MHz, CD2Cl2): δ 7.70 (d, J = 7.8, 2H, HTsOAr-H), 7.29-7.22 (m, 12H, 

Hb+q), 7.20-7.13 (m, 14H, Hc+o+p), 7.10-7.07 (m, 4H, Hd+TsOAr-H), 6.88-6.84 (m, 2H, 

Hn), 6.70 (s, 2H, Hj+l), 6.58 (d, J = 7.9, 2H, He), 4.86 (s, 2H, Hm), 4.44 (s, 2H, Hi), 

4.33 (s, 2H, Hh), 4.01 (s, 2H, Hg), 3.12 (s, 6H, Hk), 2.25 (s, 3H, HTsOAlk-H), 1.30-1.26 

(m, 54H, Ha+r).   

Hf  and the pyridinium H+ are too broad to identify. 
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N
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I-

S7-Li+

 

1H NMR (400 MHz, CD2Cl2): δ 7.27-7.24 (m, 12H, Hb+q), 7.18-7.14 (m, 14H, 

Hc+o+p), 7.08-7.06 (m, 2H, Hd), 6.83 (d, J = 8.7, 2H, Hn), 6.64-6.60 (m, 2H, Hj+l), 

6.57-6.54 (m, 2H, He), 4.85 (s, 2H, Hm), 4.42 (s, 2H, Hi), 4.35 (s, 2H, Hh), 4.01-3.94 

(m, 3H, Hf+g), 2.97 (s, 6H, Hk), 1.29 (s, 54H, Ha+r). 

2.7 Computational Studies 

 

Geometry optimisations and frequency calculations were carried out at B3LYP/3-

21G* level with the Gaussian03 program.[13a] The hybrid exchange-correlation 

B3LYP[13b] functional was adopted on the basis of its reported suitability to describe 

both hydrogen-bonding interactions and aromatic stacking interactions,[13c] 
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particularly in the presence of N-based �-electron systems such as those here 

considered.[13d] Specifically, it has been shown to properly account for geometry, 

proton and hydrogen bonding affinity of both aniline[13e,f] and pyridinium based 

systems in the gas-phase.[13g] Solvent phase CH2Cl2 calculations were performed 

with the self-consistent reaction field method (SCRF)[13h] as implemented in the 

Gaussian program.[13a] Within the SCRF approach, the solvent is modelled as a 

uniform dielectric around a spherical cavity of radius a0, occupied by the solute. The 

dielectric constant used in the calculations for CH2Cl2 was the experimental one 

(8.93). Cavity radii were determined on the basis of the recommended 0.001 e bohr
-

[13a] constant density contours/envelops and the dependence of the results on the 

isocontour value checked by arbitrarily increasing the cavity radius by 0.5 Å.  

 

In order to further reduce the computational cost, both 12 and 12-H+
 were modelled 

considering only the corresponding fragment of the global thread. This was 

accomplished by cutting the global thread at the etheric junctions (see Figure 2.5). 

a                                                               b

 

Figure 2.5 Optimised structures of a) 12, b) 12-H+. 

 

The terminal oxygen atom was eventually saturated with one hydrogen atom and one 

methyl group for 12 and 12-H+, respectively. By changing the terminal hydroxyl 

group for a terminal methyl group, the binding (electronic) energy of 12 was found to 

be converged within 0.04 kcal mol-1. In line with previous results which have 

thoroughly shown the suitability of B3LYP to properly account for the H-bonding 

affinities of aniline, anilinium and anilide complexes,[13g] the calculated binding 
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enthalpy of -5.76 kcal mol-1 for 12 (see Table 2.3) is found to be reasonably smaller 

(i.e. larger in absolute value) than for the ammonia dimer in vacuum (experimental 

value: -4.30 kcal mol-1)[13d] and, at the same time, the larger extent of the modelled 

association enthalpy for 12-H+ (-19.12 kcal mol-1) finds a robust correspondence in 

the experimentally reported values of -24.6 kcal mol-1 and -17.21 kcal mol-1 for 

pyridnium-pyridine and pyridinium-ammonia complexes, respectively.[13d] 

 

 N····H �Ebind �Hbind �Gbind 

12 (vacuum) 2.07 (153.5°) -7.70 -5.76 -5.29 

12 (CH2Cl2) 2.07 (153.6°) -8.03 (±0.05) -6.65 (±0.04) -3.89 (±0.09) 

12-H+
 

(vacuum) 
1.79 (171.3°) -22.36 -19.12 -9.01 

12-H+
 

(CH2Cl2) 
1.77 (170.3°) -14.10 11.43(±1.03) -4.78(±1.02) 

 
Table 2.3 Selected quantum chemical results for 12 and 12-H+: N···H distances are given in Å, with 
the hydrogen bond angles given in brackets; the electronic binding energy, �Ebind, enthalpy, �Hbind 
and free energy, �Gbind, are given in kcal mol-1. The error bars of the CH2Cl2 calculations have been 
estimated by changing (+0.5 Å) the cavity radius, a0. 

 

The calculated binding free energies (Table 2.3) can be considered in semi-

quantitative agreement with the experimental one, although likely overestimated due 

to the neglect of the configurational contributions and ensuing dissipative effects on 

the calculated binding free energies. Specifically for the 12-H+ fragment, the reported 

values can be considered as two limiting cases of the actual complex stability. The 

reduced effects of the solvent with respect to the binding free energies (with 

deviations smaller than 1.5 kcal mol-1 between gas-phase and solvent phase binding 

free energies) can be understood by considering that the solvent is weakly polar, 

while the donor-acceptor systems have larger dipole moments. The energy of 

solvation, Gsolv, is proportional to the product of the dipoles and therefore is small for 

all systems (both when they are complexed and when they are not). Complexation 

reduces partly the surface of the solutes accessible to the dipoles of each solvent 

molecule, but the variation of Gsolv is only by a modest amount of an already small 

contribution to the total free energy. 
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Synopsis 

This Chapter reports the design, synthesis, characterisation, and operation of a 

[2]rotaxane in which a palladium-complexed macrocycle can be translocated 

between 4-dimethylaminopyridine (DMAP) and pyridine monodentate ligand sites 

via reversible protonation, the metal remaining coordinated to the macrocycle 

throughout. The substitution pattern of the ligands and the kinetic stability of the Pd-

N bond mean that changing the chemical state of the thread does not automatically 

cause a change in the macrocycle's position in the absence of additional inputs (heat 

and coordinating solvent/anion). Accordingly, under ambient conditions all of the 

four possible states of the rotaxane (neutral and protonated with the macrocycle on 

DMAP, and neutral and protonated with the macrocycle on pyridine) can be isolated, 

manipulated and characterised.  
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3.1 Introduction 

Despite the success and influence of the redox-responsive Cu(I)/Cu(II) catenane and 

rotaxane systems developed in Strasbourg,1,2 there are no other examples of stimuli-

switchable molecular shuttles3 based on the manipulation of metal-ligand interactions 

between the components.4,5 This lack of switchable metal coordination motifs for 

interlocked molecules may be set to change, however, following the recognition of 

the need to vary the kinetics of binding events and transportation pathways (e.g., 

ratcheting and escapement6) in any mechanical molecular machine more 

sophisticated than a switch,7 and the crucial role played by metastability in the 

functioning of rotaxanes currently being investigated for molecular electronics.8 Here 

we describe a simple-to-assemble-and-operate [2]rotaxane in which a palladium-

complexed macrocycle can be translocated between 4-dimethylaminopyridine 

(DMAP) and pyridine (Py) ligand sites via reversible protonation (the metal 

remaining coordinated to the macrocycle throughout). The substitution pattern of the 

ligands and the kinetic stability of the Pd-N bond mean that changing the chemical 

state of the thread (adding or removing protons) does not automatically cause a 

change in the macrocycle's position in the absence of heat and a coordinating solvent 

or anion. Accordingly, under ambient conditions all four of the possible co-

conformers of the [2]rotaxane can be selected, manipulated, isolated, and 

characterised. 

3.2 Basis of the Design: Protonation/Deprotonation-Driven Ligand 

Exchange Experiments  

The shuttle is based on a recognition motif previously used to assemble rotaxanes 

and catenanes by organizing tridentate pyridine 2,6-dicarboxamide and appropriately 

derivatised monodentate pyridine ligands about a square planar Pd(II) template.9 In a 

simple exchange experiment with non-interlocked versions of these ligands (Scheme 

3.1a), we found that the pyridine group of L1PdPy was rapidly10 and quantitatively 

substituted for DMAP.11 By adding an equivalent of p-toluenesulfonic acid (TsOH), 

the process could be reversed (Scheme 3.1b).12  
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Scheme 3.1 Reversible substitution of pyridine and DMAP ligands in macrocycle-Pd complex 
L1PdPy/DMAP in d7-DMF at 298 K. Upon mixing the substrates, equilibrium is reached within the 
time taken to acquire a 1H NMR spectrum. (a) Neutral conditions; (b) in the presence of TsOH (one 
equivalent). 

The reasons for the selectivity in Scheme 3.1b are quite subtle: although both 

heterocycles are "coordinated" (one to Pd(II) and one to H+) on both sides of the 

equation (Scheme 3.1b), protonation of the more basic heterocycle determines the 

position of equilibrium because the N-H bond is significantly stronger than the Pd-N 

bond.13 In other words, a proton differentiates DMAP and Py more effectively than 

does Pd(II). The results suggested that a palladium-complexed [2]rotaxane 

incorporating both DMAP and Py binding sites in the thread could operate as a 

proton-switchable molecular shuttle.  

3.3 Synthesis and Characterisation of Palladium-Coordinated Molecular 

Shuttle L2Pd  

A candidate [2]rotaxane, L2Pd, was synthesized in nine steps using a "threading-

followed-by-stoppering" strategy14 (Scheme 3.2). 2,6-Diiodo-4-

dimethylaminopyridine, 1, was prepared via a modified literature procedure15 

(Scheme 3.2, step a) and subjected to consecutive Sonogashira cross-coupling 

reactions,16 first with propargyl alcohol (one equivalent) and then with decadiyne 

(five equivalents), to afford the unsymmetrical DMAP-station17 intermediate 3 

(Scheme 3.2, step c). The synthesis of the Py-station fragment was achieved by 

desymmetrisation of commercially available 2,6-dibromopyridine through a 

Sonogashira cross-coupling with one equivalent of propargyl alcohol to give 2 
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(Scheme 3.2, step b), followed by hydrogenation (over PtO2) and Mitsunobu 

reaction18 with bulky phenol 419 to give 5 (Scheme 3.2, step d). The coupling of 3 

and 5 via another Pd-catalysed Sonogashira reaction and subsequent hydrogenation 

over Pd(OH)2/C, afforded the saturated monostoppered thread, 6 (Scheme 3.2, step e). 

Coordination of the macrocycle-palladium complex to the DMAP site of 6 occurred 

upon simple stirring with L1Pd(CH3CN)9c in dichloromethane (298 K, one hour). 

The resulting threaded pseudo-rotaxane complex was captured covalently with 4 

(DIAD, PPh3, THF) to give the [2]rotaxane, L2Pd, in 26% yield20 after column 

chromatography (Scheme 3.2, step f).  

 

Scheme 3.2 Synthesis of Palladium-Complexed Molecular Shuttle L2Pd. Reagents and conditions: (a) 
BF3·OEt2, LDA, I2, THF, 40%; (b) propargyl alcohol, Pd(PPh3)4, CuI, Et3N/THF, 66%; (c) (i) 
propargyl alcohol, Pd(PPh3)4, CuI, Et3N/THF, 75%, (ii) 1,9-decadiyne (5 equiv), Pd(PPh3)4, CuI, 
Et3N/THF, 77%; (d) (i) H2, PtO2, EtOH/Et3N, 94%, (ii) 4, DIAD, PPh3, THF, 61%; (e) (i) Pd(PPh3)4, 
CuI, Et3N/THF, 66%, (ii) H2, Pd(OH)2/C, THF, 88%; (f) (i) L1Pd(CH3CN), CH2Cl2, 90%, (ii) 4, 
DIAD, PPh3, THF, 25% (from 6); (g) (i) L1Pd(CH3CN), CH2Cl2, 67%, (ii) 4, DIAD, PPh3, THF, 21% 
(from 7); (h) 4, DIAD, PPh3, THF, 26%. 

Mass spectrometry confirmed the constitution of the product as L2Pd, and 1H NMR 

spectroscopy (Figure 3.1b) showed the co-conformation formed to be exclusively 

DMAP-L2Pd;17 i.e., the Pd-macrocycle fragment, L1Pd, was solely coordinated to 

the DMAP binding site. A comparison of the spectra of free thread 8 (Figure 3.1a) 

and DMAP-L2Pd in CDCl3 (Figure 3.1b) shows significant differences between the 

signals of the DMAP station (Hd-f) for the rotaxane and thread, while the Py station 

signals (Hi-k) of the rotaxane occur at very similar values to those of the free thread. 
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Interestingly, attempting the threading protocol with 7, a close analogue of 6 in 

which the positions of the two stations were reversed (i.e., the Py binding site was 

closest to the unstoppered end of the thread; Scheme 3.2, step g), led mainly to the 

formation of Py-L2Pd. The outcomes of the two threading reactions indicate that the 

pyridine and DMAP binding sites are both very efficient at capturing the Pd-

macrocycle component from L1Pd(CH3CN) on its initial pass over the heterocycle at 

the open end of the thread, irrespective of relative orientation, solvation, or other 

factors. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 1H NMR spectra (400 MHz, CDCl3, 300 K) of palladium rotaxane L2Pd in its four 
different protonated and co-conformational states, and for comparison the free thread: (a) Thread 8; (b) 
DMAP-L2Pd; (c) DMAP-[L2HPd]OTs; (d) Py-L2Pd; (e) Py-[L2HPd]OTs. The lettering in the figure 
refers to the assignments in Scheme 3.2. 

 

3.4 Macrocycle-to-Py-Station Protonation-Driven Shuttling Experiments  

Switching of the macrocycle position in DMAP-L2Pd was attempted by the addition 

of one equivalent of TsOH in CDCl3 (Scheme 3.3). The 1H NMR spectrum of the 

resulting adduct (Figure 3.1c) showed significant changes in the Py resonances, Hi-k, 
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but no discernible shift of the DMAP signals, Hd-f, indicating that protonation of the 

Py station had occurred but the position of the macrocycle had not changed; i.e., the 

chemical structure was now DMAP-[L2HPd]OTs (Scheme 3.3). No changes to the 

1H NMR spectrum of the sample were observed over several days, indicating that 

this co-conformer is effectively stable at room temperature in CDCl3. Somewhat 

surprisingly, however, given the results of the exchange experiments reported in 

Scheme 1,10 even in neat coordinating solvents (d6-DMSO or d7 -DMF) no evidence 

of translocation of the ring in DMAP-[L2HPd]OTs was observed at room 

temperature. Translocation of the palladium macrocycle subcomponent (L1Pd) only 

takes place at elevated temperatures (383 K), in both coordinating (d7 -DMF) and 

non-coordinating solvents (C2D2Cl4), in both cases reaching an equilibrium 89:11 

ratio of Py:DMAP-[L2HPd]OTs (Scheme 3.3) after 16 hours (d7 -DMF) or 36 hours 

(C2D2Cl4).  

 

Scheme 3.3 Operation of the palladium-complexed molecular shuttle L2Pd. †No macrocycle 
translocation observed over 24 hours in d7 -DMF at 298 K or in C2D2Cl4 over 24 hours at 383 K; ‡No 
macrocycle translocation observed in either d7 -DMF or C2D2Cl4 at 298 K over 24 hours. 
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3.5 Ligand Exchange Experiments and X-ray Crystallography Using 2,6-

Dialkyl-Substituted Heterocycles  

The dramatic kinetic stability of the DMAP-Pd bond in the protonated [2]rotaxane 

led us to re-examine the kinetics of non-interlocked ligand exchange, this time using 

2,6-dialkyl-substituted heterocycles (Scheme 3.4). Indeed, using 2,6-dipropylPy and 

2,6-dipropylDMAP as the monodentate components of the L1Pd-heterocycle 

complex (Scheme 3.4) produced the same extremely slow exchange of ligands as 

observed in the [2]rotaxane.  

 

Scheme 3.4 Reversible substitution of 2,6-dipropylpyridine and 2,6-dipropylDMAP ligands in 
macrocycle-Pd complex L1Pd(2,6-dipropylPy)/(2,6-dipropylDMAP) in d7–DMF. (a) Neutral 
conditions; (b) in the presence of TsOH (one equivalent). Time required to reach equilibrium:10 †60 
minutes at 358 K; ‡130 minutes at 358 K. No exchange of the 2,6-dipropylheterocycle ligands was 
observed in CDCl3, under either neutral conditions or in the presence of TsOH, even under heating at 
reflux over seven days. 

Single crystals of both L1Pd(2,6-dipropylPy) and L1Pd(2,6-dipropylDMAP) were 

subsequently grown by vapour diffusion of diethyl ether into saturated solutions of 

the complexes in dichloromethane. The X-ray crystal structures of these two 

complexes (Figures 3.2a and 3.2b) are indicative of the likely coordination mode and 

geometry of the macrocycle at the two different binding sites in the [2]rotaxane. The 

crystal structures suggest that the reason for the enhanced kinetic stability of the Pd-

coordinated 2,6-dialkylheterocycle units is that the �-hydrogen atoms of the alkyl 

substituents block the pathway of incoming nucleophiles to the Pd(II) centre.21  
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Figure 3.2 X-ray crystal structures of (a) L1Pd(2,6-dipropylPy) and (b) L1Pd(2,6-dipropylDMAP). 
Carbon atoms of the macrocycle are shown in light blue, and those of the monodentate ligands, in 
orange and green, respectively; oxygen atoms are red; nitrogen, dark blue; and palladium, gray. 
Selected bond lengths [Å] and angles [deg]: (a) N1-Pd 1.94, N2-Pd 2.03, N3-Pd 2.06, N4-Pd 2.03, 
N2-Pd-N4 161.6; (b) N1-Pd 1.93, N2-Pd 2.03, N3-Pd 2.06, N4-Pd 2.02, N2-Pd-N4 161.4. 

 

3.6 Macrocycle-to-DMAP-Station Deprotonation-Driven Shuttling 

Experiments  

Deprotonation of the 89:11 Py:DMAP equilibrium mixture of [L2HPd]OTs (Na2CO3, 

CH2Cl2, 30 minutes) generated the neutral co-conformers which were readily 

separated by column chromatography to give pure, kinetically stable samples of both 

DMAP-L2Pd (minor product) and Py-L2Pd (major product). Their 1H NMR spectra 

are shown in Figure 3.1b and 3.1d, respectively. As before, the relative shifts of the 

resonances of the DMAP and Py stations unambiguously confirmed the position of 

the macrocycle in the Py-L2Pd isomer. Reprotonation of Py-L2Pd (one equivalent of 

TsOH in CDCl3) quantitatively generated Py-[L2HPd]OTs (1H NMR spectrum, 

Figure 3.1e), as another kinetically stable, out-of-equilibrium co-conformer.  

To complete the cycle of operations on L2Pd, pure Py-L2Pd and the non-equilibrium, 

11:89, mixture of DMAP/Py-L2Pd were each heated at 383 K in d7 -DMF. After 90 

minutes both had reached identical 86:14 ratios of DMAP/Py-L2Pd which did not 

change upon further heating (Scheme 3.3). Unlike the proton-driven translocation, no 

macrocycle translational isomerisation was observed when Py-L2Pd was heated in 

C2D2Cl4. Similarly, 2,6-dipropylDMAP did not undergo a substitution reaction with 

L1Pd(2,6-dipropylPy) in non-coordinating solvents (Scheme 3.4).  



_________________________________________________________Chapter Three 

 87 

3.7 Conclusions 

The practical realisation and mechanistic investigation of molecular-level systems in 

which both the kinetics and thermodynamics of binding events can be varied and 

controlled is profoundly important for the development of sophisticated molecular 

machine systems.7b Although nature is clearly able to achieve this through the rapid 

manipulation of hydrogen bonding and electrostatic interactions, the transient nature 

of such weak binding events makes it hard to see how to emulate this in synthetic 

systems given current levels of understanding and expertise. We anticipate that 

metal-ligand coordination (and dynamic covalent) chemistry will play a prominent 

role in the early development of synthetic molecular machine systems. 

 

3.8 Experimental Section 

General 

Propargyl ether, 1,9-decadiyne and 2,6-dibromopyridine were purchased from the 

Aldrich Co. 4-Hydroxybenzylamine,22 trans-dichloro(1,3-bis-(2,6-

diisopropylphenyl)imidazolylidinium)(3-chloropyridine)palladium (PEPPSI)23-27 and 

4-[tris-(4-tert-butylphenyl)methyl]phenol19 (4) were prepared according to literature 

procedures. 
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Scheme 3.5  (i) a) BF3�Et2O, THF, 0.5 h, 0 ˚C; b) LDA, THF, 1 h, -78 ˚C; c) I2, THF, 20 h, -78 ˚C � 
RT, 40%, (ii) propargyl alcohol, Pd(PPh3)4, CuI, THF, Et3N, 36 h, RT, 75%; (iii) 1,9-decadiyne, 
Pd(PPh3)4, CuI, THF, Et3N, 16 h, RT, 77%. 
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To solution of DMAP (7.50 g, 61.0 mmol, 1.0 equiv.) in THF (400 mL) at 0 °C was 

added boron trifluoride diethyl etherate (8.55 mL, 67.0 mmol, 1.1 equiv) via syringe. 

The resulting suspension was stirred at 0 °C for 30 minutes and then cooled to -78 

°C.  In a separate flask, n-butyllithium (1.6 M in hexanes, 100 mL, 153 mmol, 2.5 

equiv.) was added via cannula to a 0 °C solution of diisopropyl amine (22.0 mL, 153 

mmol, 2.5 equiv.) in THF (100 mL) and was stirred for 30 minutes. The solution of 

lithium diisopropyl amide was then transferred via cannula to the –78 °C solution of 

the DMAP-boron trifluoride complex. The resulting mixture was stirred for 30 

minutes at –78 °C.  Iodine (40.0 g, 159 mmol, 2.6 equiv.) was dissolved in THF (150 

mL) and transferred via cannula to the –78 °C solution.  After the addition was 

complete the reaction mixture was warmed to RT and stirred overnight.  Saturated 

aqueous Na2S2O3 (200 mL) was added and the layers were separated. The aqueous 

phase was extracted with EtOAc (3 x 200 mL) and the combined organic layers were 

washed with brine (200 mL) and dried (Na2SO4). After removing the solvents under 

reduced pressure, the residue was purified by column chromatography on silica 

(hexane:EtOAc 2:1) followed by recrystallisation (hexane/CH2Cl2) to provide 2,6-

diiodo-4-(dimethylamino)-pyridine (2,6-diiodoDMAP, 1) as a white solid, m.p. 142-

145 ˚C (9.18 g, 40%). 1H NMR (400 MHz, CDCl3): δ 2.93 (s, 6H, Hb), 6.86 (s, 2H, 

Ha). 
13C NMR (100 MHz, CDCl3): δ 39.3, 116.0, 116.6, 155.0. LRESI-MS 

(MeOH/TFA): m/z = 375 [M+H]+. HRFAB-MS (THIOG matrix): m/z = 374.8854 

(calc. for C7H9N2I2, 374.8855 [M+H]+). 

I N

NMe2

OH
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S1  

To a solution of 2,6-diiodoDMAP 1 (5.00 g, 13.4 mmol, 1.0 equiv.) in THF (40 mL) 

and Et3N (20 mL), was added CuI (0.153 g, 0.804 mmol, 0.06 equiv.) and Pd(PPh3)4 

(0.465 g, 0.402 mmol, 0.03 equiv.).  Propargyl alcohol (0.750 g, 0.780 mL, 13.4 
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mmol, 1.0 equiv.) was then added to the reaction and the mixture was stirred in the 

absence of light for 20 h at RT.  After this time the solvent was removed under 

reduced pressure. The resulting residue was dissolved in EtOAc (100 mL) and 

washed with saturated aqueous NH4Cl (3 x 50 mL). The aqueous phase was 

extracted with EtOAc (3 x 50 mL) and the combined organic extracts were washed 

with brine (50 mL) and dried (Na2SO4). The solvent was removed under reduced 

pressure and the resulting residue purified by column chromatography on silica 

(CH2Cl2:acetone 19:1), providing S1 as a white solid, m.p. 150 °C (dec.) (3.01 g, 

75%). 1H NMR (400 MHz, CDCl3): δ 2.51 (br, 1H, He), 2.97 (s, 6H, Hb), 4.49 (s, 2H, 

Hd), 6.63 (d, J = 2.4, 1H, Hc), 6.83 (d, J = 2.4, 1H, Ha). 
13C NMR (100 MHz, 

CDCl3): δ 39.3, 51.4, 84.5, 87.1, 109.9, 116.2, 118.1, 154.5, 157.7. LRESI-MS 

(MeOH/TFA): m/z = 303 [M+H]+. HRFAB-MS (3-NOBA matrix): m/z = 302.9984 

(calc. for C10H12N2OI, 302.9994 [M+H]+). 

N

NMe2

HO
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g i

lj
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h  

To a solution of S1 (0.855 g, 2.83 mmol, 1.0 equiv.) in THF (40 mL) and Et3N (20 

mL), was added CuI (0.108 g, 0.566 mmol, 0.2 equiv.) and Pd(PPh3)4 (0.327 g, 0.283 

mmol, 0.1 equiv.).  Subsequently 1,9-decadiyne (1.90 g, 14.2 mmol, 5.0 equiv.) was 

added and the mixture was stirred in the absence of light at RT for 12 h.  After this 

time, the solvent was removed under reduced pressure and the resulting residue was 

redissolved in CH2Cl2 (100 mL) and washed with a saturated aqueous solution of 

NH4Cl (50 mL). The aqueous phase was extracted with CH2Cl2 (3 x 100 mL), and 

the combined organic extracts washed with brine (100 mL) and dried (Na2SO4). The 

solvent was removed under reduced pressure and the resulting residue purified by 

column chromatography on silica (Et2O:hexane 1:1 then Et2O), to give 3 as a white 

solid, m.p. 85-86 °C (0.688 g, 77%). 1H NMR (400 MHz, CDCl3): δ 1.38-1.64 (m, 

8H, Hg+h+i+j), 1.94 (t, J = 2.6, 1H, Hl), 2.19 (td, J = 2.6, 7.0, 2H, Hk), 2.27 (br, 1H, 

Ha), 2.39 (t, J = 7.1, 2H, Hf), 2.98 (s, 6H, Hd), 4.48 (s, 2H, Hb), 6.55 (d, J = 2.5, 1H, 

He), 6.59 (d, J = 2.5, 1H, Hc). 
13C NMR (100 MHz, CDCl3): δ 18.3, 19.2, 28.2, 28.2, 
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28.3, 28.4, 39.2, 51.3 68.2, 80.6, 84.6, 85.2, 86.1, 89.4, 108.8, 109.0, 142.4, 143.6, 

154.4. LRESI-MS (MeOH/TFA): m/z = 309 [M+H]+. HRFAB-MS (3-NOBA matrix): 

m/z = 309.1957 (calc. for C20H25ON2, 309.1967 [M+H]+). 
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Scheme 3.6  (i) 2,6-pyridinedicarbonyl dichloride, Et3N, THF, 12 h, 78 ˚C � RT, 99%, (ii) 1,12-
dibromododecane, K2CO3, butanone, 48 h, reflux, 46%, (iii) Pd(OAc)2, CH3CN, 6 h, RT, 89%. 
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A solution of 4-hydroxybenzylamine22 (3.15 g, 25.6 mmol, 2.0 equiv.) in THF (100 

mL) and Et3N (3.24 g, 4.46 mL, 32.0 mmol, 2.5 equiv.) was cooled to –78 °C and 

2,6-pyridinedicarbonyl dichloride (2.61 g, 12.8 mmol, 1.0 equiv.) in THF (50 mL) 

added to the reaction mixture dropwise over 2 h whilst maintaining the temperature 

at –78 °C. When the addition was complete, the reaction was allowed to warm to RT 

and stirred overnight. The resulting precipitate was collected via vacuum filtration 

and washed with CHCl3 to afford S2 as an off-white solid, m.p. 200 °C (dec.) (4.80 g, 

99%). 1H NMR (400 MHz, d6-DMSO): δ 4.48 (d, J = 6.4, 4H, HD), 6.69-6.73 (m, 4H, 

HF), 7.10-7.14 (m, 4H, HE), 8.16-8.25 (m, 3H, HA+B), 9.23-9.33 (br, 2H, HG), 9.79 (t, 

J = 6.4, 2H, HC). 13C NMR (100 MHz, d6-DMSO): δ 41.6, 115.0, 124.3, 128.1, 129.4, 

139.4, 148.7, 156.2, 163.1. LR-FABMS (3-NOBA matrix): m/z = 378 [M+H]+. HR-
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FABMS (3-NOBA matrix): m/z = 395.1717 [M+NH4]
+ (calc. for C21H23N4O4, 

395.1714 [M+NH4]
+). 
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A mixture of S2 (1.00 g, 2.65 mmol, 1.0 equiv.), 1,12-dibromododecane (0.869 g, 

2.65 mmol, 1.0 equiv.), K2CO3 (3.66 g, 26.5 mmol, 10.0 equiv.) and butanone (1 L) 

was heated at reflux for 48 h. After this time, the reaction mixture was filtered 

through celite and the filtrate concentrated under reduced pressure. The resulting 

crude residue was purified by column chromatography on silica (EtOAc:CH2Cl2 1:4) 

to give S3 as a white solid, m.p. 230-232 °C  (0.661 g, 46%). 1H NMR (400 MHz, 

CDCl3): δ 1.24-1.33 (m, 12H, HJ+K+L), 1.41-1.47 (m, 4H, HI), 1.73-1.80 (m, 4H, HH), 

3.95 (t, J = 6.4, 4H, HG), 4.63 (d, J = 6.2, 4H, HD), 6.82-6.86 (m, 4H, HF), 7.21-7.25 

(m, 4H, HE), 7.85-7.88 (m, 2H, HC), 8.05 (t, J = 7.8, 1H, HA), 8.41 (d, J = 7.8, 2H, 

HB). 13C NMR (100 MHz, CDCl3): δ 25.4, 28.2, 28.4, 28.7, 28.9, 42.8, 67.6, 114.6, 

125.3, 129.1, 129.8, 138.9, 148.8, 158.6, 163.3. LR-FABMS (3-NOBA matrix): m/z 

= 544 [M+H]+. HR-FABMS (3-NOBA matrix): m/z = 544.3164 (calc. for 

C33H42N3O4, 544.3175 [M+H]+). 

 



_________________________________________________________Chapter Three 

 92 

A

N
O

N

O

N

OO

Pd

N

CH3

L1Pd(CH3CN)

E

C

D

B

F

GH

IJ

K

L

 

To a solution of S3 (0.918 g, 1.69 mmol, 1.0 equiv.) in CH3CN (150 mL) was added 

a solution of Pd(OAc)2 (0.455 g, 2.03 mmol, 1.2 equiv.) in CH3CN (30 mL) and the 

solution stirred at RT. The reaction mixture turned black almost immediately and 

subsequently a yellow precipitate formed. The extent of the reaction was monitored 

by 1H NMR and was found to be complete after 6 h, at which point the suspension 

was gently heated until all the yellow precipitate had dissolved. Filtration through 

celite whilst hot afforded a yellow solution, which was concentrated under reduced 

pressure to yield an off-yellow solid. Recrystallisation from hot CH3CN gave 

L1Pd(CH3CN) as a yellow crystalline solid, m.p. 250 °C (dec.) (1.04 g, 89%). 1H 

NMR (400 MHz, CDCl3:CD3CN 98:2): δ 1.21-1.49 (m, 16H, HH+I+J+K), 1.70-1.82 

(m, 4H, HG), 1.99 (s, 3H, HL), 3.91 (t, J = 6.5, 4H, HF), 4.45 (s, 4H, HC), 6.75-6.80 

(m, 4H, HE), 7.14-7.21 (m, 4H, HD), 7.74 (d, J = 7.8, 2H, HB), 8.06 (t, J = 7.8, 1H, 

HA). 13C NMR�(100 MHz, CDCl3:CD3CN 98:2): δ 1.8, 25.4, 28.3, 28.4, 28.9 (x 2), 

49.5, 67.6, 114.1, 116.4, 124.7, 128.4, 133.3, 140.9, 153.0, 157.6, 170.4. LRESI-MS 

(MeOH/TFA): m/z = 689 [M+H]+; HR-FABMS (3-NOBA�matrix): m/z = 689.2313 

(calc. for C35H43N4O4
106Pd, 689.2316 [M+H]+).  

O
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Scheme 3.7  (i) propargyl alcohol, Pd(PPh3)4, CuI, THF, Et3N, 20 h, RT, 66%, (ii) PtO2, H2, EtOH, 
Et3N, 2 h, RT, 94%, (iii) 4, PPh3, DIAD, THF, 72 h, 0 ˚C � RT, 61%. 
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To a solution of 2,6-dibromopyridine (3.00 g, 12.7 mmol, 1.0 equiv.) in THF (20 mL) 

and Et3N (10 mL) was added propargyl alcohol (0.710 g, 0.740 mL, 12.7 mmol, 1.0 

equiv.), Pd(PPh3)4 (0.761 g, 0.658 mmol, 0.05 equiv.) and CuI (0.241 g, 1.27 mmol, 

0.1 equiv.). The resulting mixture was stirred at RT for 20 h. The solvent was 

removed under reduced pressure and the residue was redissolved in CH2Cl2 (100 mL) 

and washed with a saturated aqueous solution of NH4Cl (3 x 50 mL) and brine (100 

mL). The organic layer was dried (Na2SO4), the solvent removed under reduced 

pressure and the crude residue purified by column chromatography on silica 

(CH2Cl2:acetone 85:15) to give 2 as a white solid, m.p. 87-88 °C (1.77 g, 66%). 1H 

NMR (400 MHz, CDCl3): δ 2.15 (br, 1H, He), 4.52 (s, 2H, Hd), 7.38 (dd, J1 = 7.5, J2  

= 0.9, 1H, Hc), 7.44 (dd, J1 = 8.0, J2 = 0.9, 1H, Ha), 7.50-7.54 (m, 1H, Hb). 
13C NMR 

(100 MHz, CDCl3): δ 51.2, 83.5, 88.3, 125.8, 127.8, 138.5, 141.6, 143.1. LRESI-MS 

(MeOH/TFA): m/z = 212 [M79Br+H]+, 214 [M81Br+H]+. HR-FABMS (3-NOBA 

matrix): m/z = 213.9592 (calc. for C8H7NO81Br, 213.9692 [M81Br+H]+). 
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To a solution of 2 (2.89 g, 13.6 mmol, 1.0 equiv.) in degassed EtOH (70 mL) and 

Et3N (3.5 mL) was added PtO2 (0.309 g, 1.36 mmol, 0.1 equiv.), and the mixture was 

stirred at RT under a hydrogen atmosphere for 2 h.  After this time, the solvents were 

removed under reduced pressure and the residue purified by column chromatography 

on silica (Et2O:hexane 1:1 then Et2O) to give S4 as a pale yellow oil (2.77 g, 94%).  

1H NMR (400 MHz, CDCl3): δ 1.95-2.01 (m, 2H, He), 2.35 (br, 1H, Hg), 2.98 (t, J = 

7.3, 2H, Hd), 3.70 (t, J = 6.1, 2H, Hf), 7.13 (d, J = 7.5, 1H, Hc), 7.31 (d, J = 7.8, 1H, 

Ha), 7.44-7.48 (m, 1H, Hb). 
13C NMR (100 MHz, CDCl3): δ 31.9, 34.5, 62.1, 121.8, 

125.4, 138.9, 141.4, 163.2. LRESI-MS (MeOH/TFA): m/z = 216 [M79Br+H]+, 218 

[M81Br+H]+. HRESI-MS: m/z = 216.9923 [M81Br]+ (calc. for C8H10NO81Br, 

216.9920 [M79Br]+). 
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To a solution of 4 (0.752 g, 1.49 mmol, 1.0 equiv.) and PPh3 (0.469 g, 1.79 mmol, 

1.2 equiv.) in THF (20 mL) was added a solution of S4 (0.355 g, 1.64 mmol, 1.1 

equiv.) in THF (10 mL). The resulting mixture was cooled to 0 ºC and a solution of 

DIAD (0.412 mL, 2.09 mmol, 1.4 equiv.) in THF (15 mL) was added to the reaction 

mixture dropwise over 2 h at 0 ºC. When the addition was complete, the resulting 

orange solution was allowed to warm to RT and stirred for 72 h. After this time, the 

solvent was removed under reduced pressure and the residue purified by column 

chromatography on silica (EtOAc:hexane 1:19) to give 5 as a white solid, m.p. 200 

ºC (dec.) (0.639 g, 61%). 1H NMR (400 MHz, CDCl3): δ 1.30 (s, 27H, Hk), 2.17-2.24 

(m, 2H, He), 2.94-2.98 (m, 2H, Hd), 3.97 (t, J = 6.1, 2H, Hf), 6.73-6.76 (m, 2H, Hg), 

7.05-7.10 (m, 8H, Hh+i), 7.14 (d, J = 7.3, 1H, Hc), 7.21-7.25 (m, 6H, Hj), 7.31 (d, J = 

7.7, 1H, Ha), 7.43-7.46 (m, 1H, Hb). 
13C NMR (100 MHz, CDCl3): δ 29.1, 31.4, 34.3, 

34.4, 63.0, 66.7, 112.9, 121.8, 124.0, 125.5, 130.7, 132.2, 138.6, 139.5, 141.6, 144.1, 

148.3, 156.7, 163.1. LR-FABMS (3-NOBA matrix): m/z = 702 [M79Br+H]+, 704 

[M81Br+H]+. HR-FABMS (3-NOBA matrix): m/z = 704.3301 (calc. for 

C45H53NO81Br, 704.3290 [M81Br+H]+).   
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Scheme 3.8  (i) Pd(PPh3)4, CuI, THF, Et3N, 48 h, RT, 66%, (ii) Pd(OH)2/C, H2, THF, 4h, RT, 88%, 
(iii) a) L1Pd(CH3CN), CH2Cl2, 1 h, RT, 90%; b) 4, PPh3, DIAD, THF, 36 h, RT, 29% (26% from 6). 
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To a solution of 5 (1.52 g, 2.17 mmol, 1.0 equiv.) in THF (80 mL) and Et3N (40 mL), 

was added CuI (82.0 mg, 0.433 mmol, 0.2 equiv.) and Pd(PPh3)4 (0.250 g, 0.217 

mmol, 0.1 equiv.).  Subsequently 3 (0.668 g, 2.17 mmol, 1.0 equiv.) was added and 

the mixture stirred at RT in the absence of light for 48 h. After this time, the solvent 

was removed under reduced pressure and the resulting residue was redissolved in 

EtOAc and washed with saturated aqueous NH4Cl (3 x 50 mL). The aqueous phase 

was then extracted with EtOAc (3 x 100 mL), and the combined organic extracts 

washed with brine (100 mL) and dried (Na2SO4). The solvent was removed under 

reduced pressure and the resulting residue purified by column chromatography on 

silica (EtOAc), followed by recrystallisation from CH2Cl2/CH3CN to give S5 as a 

cream solid, m.p. 113-115 °C (1.32 g, 66%). 1H NMR (400 MHz, CDCl3): δ 1.30 (s, 

27H, Hv), 1.45-1.51 (m, 4H, Hh+i), 1.59-1.68 (m, 4H, Hg+j), 1.95 (br, 1H, Ha), 2.16-

2.23 (m, 2H, Hp), 2.39-2.46 (m, 4H, Hf+k), 2.93-3.00 (m, 8H, Hd+o), 3.96 (t, J = 6.2, 

2H, Hq), 4.47 (s, 2H, Hb), 6.56-6.59 (m, 2H, Hc+e), 6.73-6.76 (m, 2H, Hr), 7.05-7.09 

(m, 9H, Hn+s+t), 7.21-7.24 (m, 7H, Hl+u), 7.49- 7.53 (m, 1H, Hm). 13C NMR (100 

MHz, CDCl3): δ 19.2, 19.3, 28.1 (x 2), 28.4, 28.5, 29.4, 31.3, 34.2, 34.8, 39.1, 51.3, 

62.9, 66.8, 80.5, 80.7, 85.5, 85.7, 89.3, 90.6, 108.8, 109.0, 112.9, 121.6, 123.9, 124.4, 

130.6, 132.1, 136.3, 139.4, 142.4, 143.3, 143.7, 144.1, 148.2, 154.3, 156.7, 161.6. 

LR-FABMS (3-NOBA matrix): m/z = 931 [M+H]+. HR-FABMS (3-NOBA matrix): 

m/z = 930.5943 (calc. for C65H76N3O2, 930.5938 [M+H]+). 
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To a solution of S5 (1.22 g, 1.31 mmol, 1.0 equiv.) in THF (40 mL) was added 10% 

Pd(OH)2/C (0.280 g, 20% b/w) and the mixture stirred at RT under a hydrogen 

atmosphere for 4 h. After this time, the reaction mixture was filtered through celite, 

concentrated under reduced pressure and purified by column chromatography on 

silica (MeOH:acetone 1:5) to give 6 as a cream solid, m.p. 159-161 °C (1.09 g, 88%). 

1H NMR (400 MHz, CDCl3): δ 1.21-1.39 (m, 40H, Ha+j+k+l+m+n+o+bb), 1.63-1.73 (m, 

4H, Hi+p), 1.91-1.98 (m, 2H, Hc), 2.16-2.23 (m, 2H, Hv), 2.65-2.75 (m, 4H, Hh+q), 

2.90-2.95 (m, 4H, Hd+u), 3.01 (s, 6H, Hf), 3.71-3.73 (m, 2H, Hb), 3.97 (t, J = 6.3, 2H, 

Hw), 6.21-6.25 (m, 2H, He+g), 6.72-6.77 (m, 2H, Hx), 6.95-6.98 (m, 2H, Hr+t), 7.05-

7.09 (m, 8H, Hy+z), 7.21-7.23 (m, 6H, Haa), 7.46-7.50 (m, 1H, Hs). 
13C NMR (100 

MHz, CDCl3): δ 29.4 (x4), 29.5 (x3), 29.8, 30.1, 31.3, 31.4, 34.2, 34.7, 35.5, 37.5, 

38.4, 39.3, 62.2, 62.9, 67.0, 102.9, 103.2, 112.9, 119.8, 119.8, 123.9, 130.6, 132.1, 

136.5, 139.3, 144.1, 148.1, 155.8, 156.7, 159.5, 160.3, 160.5, 162.0. LR-FABMS (3-

NOBA matrix): m/z = 943 [M+H]+. HR-FABMS (3-NOBA matrix): m/z = 942.6866 

(calc. for C65H88N3O2, 942.6877 [M+H]+). 
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To a solution of 6 (0.043 g, 0.046 mmol, 1.0 equiv.) in CH2Cl2 (30 mL) was added 

L1Pd(CH3CN) (0.032 g, 0.046 mmol, 1.0 equiv.) and the solution stirred at RT for 1 

h. The solvent was removed under reduced pressure and the crude residue was 

purified by column chromatography (MeOH:CH2Cl2, 4:96) to give the threaded pre-

rotaxane (0.066 g, 90%). LRESI-MS (MeOH/TFA): m/z = 1590 [M106Pd]+. To a 

solution of this pre-rotaxane (0.054 g, 0.030 mmol, 1.0 equiv.), PPh3 (0.013 g, 0.051 

mmol, 1.5 equiv.) and 4 (0.026 g, 0.051 mmol, 1.5 equiv.) in THF (10 mL) was 

added DIAD (0.010 mL, 0.051 mmol, 1.5 equiv.) via microsyringe, and the resulting 

solution was stirred at RT for 36 h. After removal of the solvent under reduced 

pressure, the crude residue was purified by column chromatography on silica 

(EtOAc:CH2Cl2 2:3) and washed with ice-cold CH3CN to yield DMAP-L2Pd as a 

yellow solid, m.p. 170-172 °C (0.025 g, 29% from the pre-rotaxane, 26% from 6). 1H 

NMR (400 MHz, CDCl3): � 1.01- 1.43 (m, 84H, Ha+g+n+o+p+q+r+s+ff+H+I+J+K), 1.61-

1.79 (m, 6H, Ht+G), 1.90-2.13 (m, 4H, Hh+m), 2.15-2.25 (m, 2H, Hz), 2.65-3.38 (m, 

14H, Hj+l+u+y+C’), 3.43-3.67 (m, 2H, Hf), 3.80-3.89 (m, 4H, HF), 3.98 (t, J = 6.3, 2H, 

Haa), 5.10-5.41 (br, 2H, HC), 5.68-5.97 (br, 1H, H(i or k)), 6.40-6.80 (m, 13H, 

He+bb+D+E+(i or k)), 6.93-7.02 (m, 2H, Hv+x), 7.05-7.11 (m, 16H, Hc+d+cc+dd), 7.19-7.25 

(m, 12H, Hb+ee), 7.45-7.53 (m, 1H, Hw), 7.83 (d, J = 7.8, 2H, HB), 8.04 (t, J = 7.8, 1H, 

HA). LRESI-MS (MeOH/TFA): m/z = 2076 [M106Pd+H]+. HR-FABMS (3-NOBA 

matrix): m/z = 2075.2072 [M]+ (calc. for C135H168N6O6
106Pd  2075.2060 [M]+). 
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Scheme 3.9  (i) CBr4, PPh3, CH2Cl2, 12 h, 0 ˚C � RT, 86%, (ii) 4, K2CO3, butanone, 36 h, reflux, 

95%. 
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To a solution of S1 (1.17 g, 3.87 mmol, 1.0 equiv.) and CBr4 (1.41 g, 4.26 mmol, 1.1 

equiv.) in CH2Cl2 (100 mL) at 0 °C was added PPh3 (1.12 g, 4.26 mmol, 1.1 equiv.), 

and the solution was stirred at RT overnight. The solvent was removed under 

reduced pressure and the crude residue purified by column chromatography on silica 

(CH2Cl2) to give S6 as an off-white solid, m.p. 120 °C (dec.) (1.21 g, 86%). 1H NMR 

(400 MHz, CDCl3): � 2.96 (s, 6H, Hb), 4.09 (s, 2H, Hd), 6.62 (d, J = 2.3, 1H, Hc), 

6.83 (d, J = 2.3, 1H, Ha). 
13C NMR (CDCl3, 100 MHz): δ 14.3, 39.2, 83.4, 85.2, 

110.3, 116.4, 118.2, 141.7, 154.3. LRESI-MS (MeOH/TFA): m/z = 365 [M79Br+H]+, 

367 [M81Br+H]+. HRFAB-MS (THIOG matrix): m/z = 366.9124 (calc. for 

C10H11
81Br127IN2, 366.9131 [M81Br+H]+).� 
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To a solution of S6 (0.179 g, 0.490 mmol, 1.0 equiv.) and 4 (0.247 g, 0.490 mmol, 

1.0 equiv.) in butanone (50 mL) was added K2CO3 (0.677 g, 4.90 mmol, 10 equiv.) 

and the resulting mixture was heated at reflux for 36 h. After this time, the reaction 
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was filtered through celite, and the resultant solution concentrated under reduced 

pressure and the crude residue purified by column chromatography on silica 

(CH2Cl2), to give S7 as a white solid, m.p. 250 °C (dec.) (0.368 g, 95%). 1H NMR 

(400 MHz, CDCl3): � 1.30 (s, 27H, Hi), 2.96 (s, 6H, Hb), 4.85 (s, 2H, Hd), 6.65 (d, J 

= 2.4, 1H, Hc), 6.83-6.89 (m, 3H, Ha+e), 7.05-7.13 (m, 8H, Hf+g), 7.20-7.25 (m, 6H, 

Hh). 
13C NMR (CDCl3, 100 MHz): δ 31.4, 34.3, 39.2, 56.4, 63.1, 83.6, 85.8, 110.3, 

113.4, 116.3, 118.3, 124.0, 130.7, 132.3, 140.5, 142.0, 144.0, 148.3, 154.4, 155.5. 

LRESI-MS (MeOH/TFA): m/z = 789 [M+H]+. HRFAB-MS (THIOG matrix): m/z = 

789.3280 (calc. for C47H54IN2O, 789.3281 [M+H]+). 
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Scheme 3.10 (i) 1,9-decadiyne, Pd(PPh3)4, CuI, THF, NEt3, 48 h, RT, 90%, (ii) Pd(PPh3)2Cl2, CuI, 
THF, NEt3, 48 h, RT, 72%, (iii) Pd(OH)2/C, H2, THF, 2h, RT, 67%, (iv) 4, PPh3, DIAD, THF, 24 h, 
RT, 25%, (v) L1Pd(CH3CN), CH2Cl2, 1 h, RT, 67%; b) 4, PPh3, DIAD, THF, 12 h, 0 ˚C � RT, 21% 
(from 7). 
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To a solution of 2 (1.74 g, 8.21 mmol, 1.0 equiv.) in THF (20 mL) and Et3N (10 mL), 

was added CuI (0.156 g, 0.821 mmol, 0.10 equiv.) and Pd(PPh3)4 (0.474 g, 

0.410 mmol, 0.05 equiv.). Subsequently 1,9-decadiyne (5.51 g, 41.0 mmol, 

5.0 equiv.) was added and the mixture was stirred in the absence of light for 48 h at 

RT. After this time, the solvents were removed under reduced pressure and the 

resulting residue was redissolved in CH2Cl2 (50 mL) and washed with saturated 

aqueous NH4Cl (50 mL). The aqueous phase was extracted with CH2Cl2 (3 x 100 

mL), the combined organic layers were then washed with brine (100 mL) and dried 

(Na2SO4). The solvent was removed under reduced pressure and the crude residue 

was purified by column chromatography on silica (Et2O:hexane 1:1) to give S8 as a 

cream solid, m.p. 57-59 °C (1.96 g, 90%). 1H NMR (400 MHz, CDCl3): � 1.40-1.66 

(m, 8H, Hg+h+i+j), 1.94 (t, J = 2.6, 1H, Hl), 2.10-2.23 (m, 3H, Ha+k), 2.43 (t, J = 7.1, 

2H, Hf), 4.50 (s, 2H, Hb), 7.29-7.32 (m, 2H, Hc+e), 7.57 (t, J = 7.8, 1H, Hd). 
13C NMR 

(100 MHz, CDCl3): δ 18.3, 19.3, 28.1, 28.2, 28.3, 28.4, 51.4, 68.2, 79.9, 84.5, 84.6, 

87.7, 91.7, 125.5, 126.2, 136.4, 142.7, 144.2. LRESI-MS (MeOH/TFA): m/z = 266 

[M+H]+. HRFAB-MS (THIOG matrix): m/z = 266.1542 (calc. for C18H20NO, 

266.1545 [M+H]+). 
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To a solution of S7 (1.24 g, 1.57 mmol, 1.0 equiv.) in THF (100 mL) and Et3N 

(50 mL) was added CuI (60.0 mg, 0.314 mmol, 0.2 equiv.) and Pd(PPh3)2Cl2 

(0.110 g, 0.157 mmol, 0.1 equiv.). A solution of S8 (0.416 g, 1.57 mmol, 1.0 equiv.) 

in THF (15 mL) was added to the reaction via cannula and the mixture was stirred in 

the absence of light at RT for 48 h. After this time, the solvents were removed under 

reduced pressure and the resulting residue was redissolved in EtOAc (100 mL) and 
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washed with saturated aqueous NH4Cl (100 mL). The aqueous phase was extracted 

with EtOAc (3 x 200 mL), the combined organic layers were washed with brine 

(100 mL) and dried (Na2SO4). The solvent was removed under reduced pressure and 

the crude residue purified by column chromatography on silica (EtOAc:CH2Cl2 1:9) 

to give S9 as a cream solid, m.p. 180 °C (dec.) (1.04 g, 72%). 1H NMR (400 MHz, 

CDCl3): � 1.29 (s, 27H, Ht), 1.45-1.51 (m, 4H, Hh+i), 1.57-1.66 (m, 4H, Hg+j), 2.00 

(br, 1H, Ha), 2.39-2.44 (m, 4H, Hf+k), 2.97 (s, 6H, Hm), 4.49 (s, 2H, Hb), 4.86 (s, 2H, 

Ho), 6.56 (d, J = 2.5, 1H, Hl), 6.60 (d, J = 2.5, 1H, Hn), 6.85-6.89 (m, 2H, Hp), 7.05-

7.11 (m, 8H, Hq+r), 7.20-7.24 (m, 6H, Hs), 7.27-7.32 (m, 2H, Hc+e), 7.56 (t, J = 7.8, 

1H, Hd). 
13C NMR (CDCl3, 100 MHz): δ 19.2, 19.3, 28.0, 29.2, 28.4, 28.5, 31.4, 

34.3, 39.2, 51.4, 56.5, 63.1, 80.0, 80.8, 82.3, 84.7, 86.8, 87.4, 89.3, 91.7, 109.2, 

109.2, 113.4, 124.0, 125.4, 126.2, 130.7, 132.3, 136.4, 140.3, 142.3, 142.7, 143.9, 

144.0, 144.2, 148.3, 154.3, 155.7. LRESI-MS (MeOH/TFA): m/z = 927 [M+H]+. 

HRFAB-MS (THIOG matrix): m/z = 926.5629 (calc. for 926.5625, C65H72N3O2 

[M+H]+). 

 

To a solution of S9 (0.441 g, 0.476 mmol, 1.0 equiv.) in degassed THF (25 mL) was 

added 10% Pd(OH)2/C (88.0 mg, 20% b/w) and the reaction was stirred under a 

hydrogen atmosphere at RT for 2 h. After this time the reaction was filtered through 

celite, the solvent was removed under reduced pressure and the resulting crude 

residue purified by column chromatography on silica (CH2Cl2:CH3CN:NH3 

79.5:20:0.5) to give 7 as a cream solid, m.p. 129-131 °C (0.302 g, 67%). 1H NMR 

(400 MHz, CDCl3): � 1.22-1.37 (m, 40H, Ha+j+k+l+m+n+o+bb), 1.64-1.72 (m, 4H, Hi+p), 

1.93-1.99 (m, 2H, Hc), 2.15-2.22 (m, 2H, Hv), 2.63-2.67 (m, 2H, Hq), 2.72-2.76 (m, 

2H, Hh), 2.82-2.86 (m, 2H, Hu), 2.91-2.97 (m, 8H, Hd+s), 3.72 (t, J = 5.7, 2H, Hb), 

3.95-3.99 (m, 2H, Hw), 6.21-6.24 (m, 2H, Hr+t), 6.75-6.78 (m, 2H, Hx), 6.94-6.97 (m, 
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2H, He+g), 7.07-7.11 (m, 8H, Hy+z), 7.21-7.24 (m, 6H, Haa), 7.48 (t, J = 7.6, 1H, Hf). 

13C NMR (100 MHz, CDCl3): δ 29.2, 29.3, 29.4 (x3), 29.5, 29.6, 29.8, 30.4, 31.2, 

31.3, 34.2, 34.9, 35.7, 38.0, 38.8, 39.1, 62.3, 62.9, 67.0, 102.8, 103.1, 112.9, 112.0, 

120.2, 123.9, 130.6, 132.1, 137.0, 139.2, 144.1, 148.1, 155.2, 156.8, 160.3, 160.5, 

161.4, 161.9. LRESI-MS (MeOH/TFA): m/z = 943 [M+H]+, 472 [M+2H]2+. 

�

To a solution of 7 (0.039 g, 0.041 mmol, 1.0 equiv.), 4 (0.21 g, 0.41 mmol, 10 equiv.) 

and PPh3 (0.022 g, 0.83 mmol, 2.0 equiv.) in THF (10 mL) was added DIAD (0.016 

mL, 0.83 mmol, 2.0 equiv.) and the solution was stirred at RT for 24 h. After this 

time, the solvent was removed under reduced pressure and the crude residue purified 

by column chromatography on silica (MeOH:CH2Cl2 3:97) to give 8 as an off-white 

solid, m.p. 250 °C (dec.) (0.015 g, 25%). 1H NMR (400 MHz, CDCl3, 298 K): � 

1.25-1.34 (m, 58H, Ha+p+q+ff), 1.57-1.91 (m, 12H, Hm+n+o+r+s+t), 2.13-2.30 (m, 4H, 

Hg+z), 2.69-2.78 (m, 2H, Hu), 2.83-3.17 (m, 12H, Hh+j+l+y), 3.92-4.01 (m, 4H, Hf+aa), 

6.25-6.30 (m, 2H, Hi+k), 6.70-6.78 (m, 4H, He+bb), 6.95-6.99 (m, 2H, Hv+x), 7.05-7.10 

(m, 16H, Hc+d+cc+dd), 7.19-7.25 (m, 12H, Hb+ee), 7.48 (t, J = 6.7, 1H, Hw). LR-

FABMS (3-NOBA matrix): m/z = 1430 [M+H]+. HR-FABMS (3-NOBA matrix): 

m/z = 1430.0153 (calc. for C102H130N3O2, 1430.0197 [M+H]+). 
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To a solution of 7 (0.105 g, 0.118 mmol, 1.0 equiv.) in CH2Cl2 (30 mL) was added 

L1Pd(CH3CN) (82.0 mg, 0.118 mmol, 1.0 equiv.) and the solution stirred at RT for 1 

h. After this time, the solvent was removed under reduced pressure to give the 

threaded pre-rotaxane, which was isolated in 67% yield using column 

chromatography (MeOH:CH2Cl2 1:19), and used without further purification. 

LRESI-MS (MeOH/TFA): m/z = 1590 [M106Pd]+. This complex was dissolved in 

THF (50 mL) together with PPh3 (93.0 mg, 0.354 mmol, 3.0 equiv.) and 4 (0.179 g, 

0.354 mmol, 3.0 equiv.). Subsequently DIAD (70.0 mL, 0.354 mmol, 3.0 equiv.) was 

added to the solution dropwise over 15 minutes at 0 °C. When the addition was 

complete, the reaction was allowed to warm to RT and stirred for 18 h. The solvent 

was removed under reduced pressure and the crude residue purified by column 

chromatography on silica (MeOH:CH2Cl2 1:19) to give Py-L2Pd as a yellow solid 

(0.051 g, 30% from pre-rotaxane, 21% from 7). 1H NMR (400 MHz, CDCl3): � 1.07-

1.43 (m, 82H, Ha+n+o+p+q+r+s+ff+H+I+J+K), 1.47-1.72 (m, 10H, Hm+t+z+G), 2.14-2.23 (m, 

2H, Hg), 2.57-3.00 (m, 12H, Hh+j+l+y), 3.29-3.43 (m, 4H, Hu+C), 3.52-3.59 (m, 2H, 

Haa), 3.78-3.88 (m, 4H, HF), 3.93-4.00 (m, 2H, Hf), 4.59 (d, J = 12.5, 2H, HC’), 6.21-

6.23 (m, 2H, Hi+k), 6.44-6.47 (m, 4H, HD), 6.49-6.56 (m, 4H, HE), 6.68-6.79 (m, 4H, 

He+bb), 6.92 (d, J = 7.6, 1H, Hx), 7.05-7.11 (m, 16H, Hc+d+cc+dd), 7.17-7.24 (m, 13H, 

Hb+v+ee), 7.79-7.82 (m, 1H, Hw), 7.84-7.87 (m, 2H, HB), 8.05-8.09 (m, 1H, HA). 

LRESI-MS (MeOH/TFA): m/z = 2075 [M106Pd]+. 
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3.9 Protonation of DMAP-L2HPd and Py-L2Pd and Rotaxane Shuttling 

Experiments 

 

To a solution of DMAP-L2Pd (29.5 mg, 0.0142 mmol, 1.0 equiv.) in CDCl3 (2 mL) 

was added TsOH (2.70 mg, 0.0142 mmol, 1.0 equiv.) and the reaction stirred at RT 

until all TsOH had dissolved (5 minutes). Analysis by 1H NMR revealed quantitative 

formation of DMAP-[L2HPd]OTs had occurred. 1H NMR (400 MHz, CDCl3): � 

1.00-1.40 (m, 82H, Ha+n+o+p+q+r+s+ff+H+I+J+K), 1.59-1.77 (m, 10H, H Hg+m+t+G), 2.03 

(br, 2H, Hh), 2.19-2.31 (m, 5H, Hz+ii), 2.69-3.42 (m, 14H, Hf+j+u+y+C), 3.56 (br, 2H, 

Hl), 3.79-3.94 (m, 6H, Haa+F), 5.23 (br, 2H, HC’), 5.82 (br, 1H, H(i or k)), 6.39-6.71 (m, 

13H, He+(i or k)+bb+D+E), 7.05-7.14 (m, 18H, Hc+d+cc+dd+hh), 7.21-7.24 (m, 12H, Hb+ee), 

7.44 (br, 2H, Hv+x), 7.82-7.85 (m, 4H, Hgg+B), 8.02-8.14 (m, 2H, Hw+A). 
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To a solution of Py-L2Pd (22.1 mg, 0.0106 mmol, 1.0 equiv.) in CDCl3 (2 mL) was 

added TsOH (2.02 mg, 0.0106 mmol, 1.0 equiv.) and the reaction stirred at RT until 

all TsOH had dissolved (5 minutes). Analysis by 1H NMR revealed quantitative 

formation of Py-[L2HPd]OTs had occurred. 1H NMR (400 MHz, CDCl3): � 1.47-

1.66 (m, 82H, Ha+n+o+p+q+r+s+ff+H+I+J+K), 1.58-1.81 (m, 10H, Hm+t+z+G), 2.16-2.32 (m, 

5H, Hg+ii), 2.53-2.63 (m, 2H, Hy), 2.83-3.26 (m, 12H, Hh,j,l,C), 3.40-3.53 (m, 4H, 

Hu+aa), 3.79-3.90 (m, 6H, Hf+F), 4.74 (d, J = 13.9, 2H, HC’), 6.28 (d, J = 7.6, 2H, 

Hi+k), 6.42-6.57 (m, 8H, HD+E), 6.66-6.71 (m, 4H, He+bb), 6.88 (d, J = 7.3, 1H, Hx), 

7.02-7.15 (m, 19H, Hc+d+v+cc+dd+hh), 7.18-7.26 (m, 12H, Hb+ee), 7.80-7.86 (m, 5H, 

Hw+gg+B), 8.06-8.10 (m, 1H, HA), 14.00 (br, 1H, DMAP-H+). 

 

Representative shuttling experiments 

 

DMAP-[L2HPd]OTs (32.2 mg, 0.0142 mmol) was dissolved in DMF-d7 (1 g) and a 

control 1H NMR spectrum acquired. The sample was then heated to 110 °C and 

monitored regularly by 1H NMR. Analysis of the 1H NMR showed that an 

equilibrium of 89:11 Py:DMAP -[L2HPd]OTs had been reached after 16 h, and this 

ratio remained unchanged upon further heating. (Similarly, heating DMAP-

[L2HPd]OTs at 110 °C in C2D2Cl4 for 36 h also gave the above ratio of isomers and 

subsequent heating did not alter the product distribution.) After removal of d7-DMF 

under reduced pressure, the reaction mixture was redissolved in CH2Cl2 (10 mL) and 

stirred with a large excess of Na2CO3 (5 g) for 30 minutes. Filtration through celite 

followed by removal of the solvent under reduced pressure gave a yellow solid. 1H 
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NMR (400 MHz, CDCl3) analysis revealed that the crude residue was comprised of a 

mixture of Py:DMAP-L2Pd in an unchanged ratio of 89:11. These two compounds 

were separated by column chromatography on silica (MeOH:CH2Cl2 1:19) to give 

pure samples of both Py-L2Pd and DMAP-L2Pd as previously characterised. The 

Py-L2Pd thus obtained was subsequently heated to 110 °C in d7-DMF (1 g) and 

monitored via 1H NMR at regular intervals. A ratio of 86:14 DMAP:Py-L2Pd had 

been established after 1.5 h and further heating did not alter this ratio. Upon heating 

Py-L2Pd to 110 °C in C2D2Cl4, no isomerisation was observed, even after 7 days 

heating at 110 °C. 

 

 

3.10 Synthesis of Model Compounds and Representative Shuttling 

Experiments 
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Scheme 3.11  (i) CH2Cl2, 1 h, RT, 90%; (ii) CH2Cl2, 1 h, RT, 95%. 
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A solution of L1Pd(CH3CN) (0.050 g, 0.070 mmol, 1.0 equiv.) and pyridine (7.1 mg, 

0.090 mmol, 1.25 equiv.) was stirred in CH2Cl2 (5 mL) at RT for 1 h. After 

evaporation of the solvent the greenish-yellow solid was purified by column 

chromatography on silica (CH2Cl2 then CH2Cl2:acetone 3:2) yielding L1Pd(Py) as a 

yellow solid, m.p. 188 ˚C (dec.) (0.047 g, 90%). 1H NMR (400 MHz, CDCl3): δ 

1.27-1.34 (m, 12H, HI+J+K), 1.42-1.47 (m, 4H, HH), 1.72-1.78 (m, 4H, HG), 3.87 (t, J 

= 6.5, 4H, HF), 4.13 (s, 4H, HC), 6.59 (d, J = 8.8, 4H, HE), 6.65 (d, J = 8.8, 4H, HD), 

7.08 (m, 2H, Hb), 7.72 (m, 1H, Hc),  7.82 (d, J = 7.8, 2H, HB), 8.05 (t, J = 7.8, 1H, 

HA), 8.09 (d, J = 5.0, 2H, Ha). 
13C NMR (100 MHz, CDCl3): δ 25.5, 28.4, 28.5, 28.9, 

28.9, 48.6, 67.6, 114.0, 124.7, 125.0, 128.0, 132.9, 138.1, 140.6, 151.7, 152.9, 157.6, 

170.9. LR-FABMS (3-NOBA matrix): m/z = 727 [M106Pd+H]+. 
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A solution of L1Pd(CH3CN) (0.050 g, 0.070 mmol, 1.0 equiv.) and DMAP (9.8 mg, 

0.080 mmol, 1.1 equiv.) was stirred in CH2Cl2 (5 mL) at RT for 1 h. After 

evaporation of the solvent the greenish-yellow solid was purified by column 
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chromatography on silica (CH2Cl2 then CH2Cl2:acetone 3:1) yielding L1Pd(DMAP) 

as a yellow solid, m.p. 180 ˚C (dec.) (0.051 g, 95%). 1H NMR (400 MHz, d7-DMF): 

δ 1.26-1.44 (m, 12H, HI+J+K), 1.66-1.74 (m, 8H, HG+H), 3.11 (s, 6H, Hc), 3.89-3.93 (m, 

8H, HF+C), 6.40 (br, 2H, Hb), 6.69 (d, J = 8.4, 4H, HE), 6.79 (d, J = 8.5, 1H, Ha), 6.83 

(d, J = 8.4, 4H, HD), 7.03 (d, J = 8.5, 1H, Ha’), 7.79 (d, J = 7.8, 2H, HB), 8.34 (t, J = 

7.8, 1H, HA). 13C NMR (100 MHz, CDCl3): δ 25.6, 28.4, 28.7, 29.0, 29.2, 38.8, 47.6, 

67.3, 114.1, 124.4, 128.5, 130.5, 133.9, 141.7, 152.8, 153.1, 155.0, 157.9, 170.7. LR-

FABMS (3-NOBA matrix): m/z = 770 [M106Pd+H]+. 
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Scheme 3.12 (i) PrZnBr,28 PEPPSI, NMP, THF, 5h, RT, 96%, (ii) L1Pd(CH3CN), CH2Cl2,  
16 h, RT, 92%. 
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According to Huo’s protocol,28 iodine (0.136 g, 0.540 mmol, 0.3 equiv.) was added 

to a suspension of n-propylbromide (0.976 mL, 10.7 mmol, 6.0 equiv.) and activated 

zinc dust (1.05 g, 16.1 mmol, 9.0 equiv.) in NMP (4 mL), and the suspension was 

heated for 4 h at 85 ˚C. The reaction mixture was transferred via cannula to a 

solution of LiBr (1.87 g, 21.5 mmol, 12 equiv.), PEPPSI (60.8 mg, 0.090 mmol, 0.05 

equiv.) and 2,6-diiodo-DMAP 1 (0.669 g, 1.79 mmol, 1.0 equiv.) in NMP (4 mL) 

and THF (4 mL). After stirring for 5 h at RT the reaction was diluted with Et2O (20 

mL) and washed successively with an aqueous solution of Na3EDTA (1 M, 20 mL), 

water (20 mL) and brine (20 mL). After drying (MgSO4) the solvent was 

concentrated under reduced pressure and the residue purified by column 
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chromatography on silica (hexane:EtOAc 2:1 then hexane:EtOAc:Et3N 65:30:5) to 

give S10 as colourless oil (0.357 g, 96%). 1H NMR (400 MHz, CDCl3): δ 0.96 (t, J = 

7.2, 6H, Ha), 1.70-1.72 (m, 4H, Hb), 2.61-2.65 (m, 4H, Hc), 3.00 (s, 6H, He), 6.22 (s, 

2H, Hd). 
13C NMR (100 MHz, CDCl3): δ 14.0, 23.6, 39.2, 41.1, 102.9, 155.3, 161.8. 

LR-FABMS (3-NOBA matrix): m/z = 207 [M+H]+. HR-FABMS (3-NOBA matrix): 

m/z = 207.1859 (calc. for C13H23N2, 207.1861 [M+H]+). 
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To a solution of S10 (0.016 g, 0.080 mmol, 1.1 equiv.) in CH2Cl2 (8 mL) was added 

L1Pd(CH3CN) (0.050 g, 0.070 mmol, 1.0 equiv.) and the solution was stirred at RT 

overnight. The solvent was then removed under reduced pressure to give the crude 

complex which was purified by column chromatography on silica (CH2Cl2 then 

CH2Cl2:acetone 3:1) to yield L1Pd(2,6-dipropylDMAP) as a yellow solid, m.p. 220 

˚C (dec.) (0.055 g, 92%). Crystals suitable for X-ray analysis were obtained by slow 

diffusion of Et2O into a solution of the complex in CH2Cl2. 
1H NMR (400 MHz, 

DMF-d7): δ 0.34 (br, 3H, Ha), 0.84 (br, 3H, Ha’), 1.10-1.30 (m, 16H, HH+L+J+K), 1.40-

1.49 (m, 4H, HG), 1.65-1.72 (m, 4H, Hb), 1.72 (br, 2H, Hc), 2.13 (br, 2H, Hc’), 3.18 

(s, 6H, He), 3.60 (br, 2H, HC), 3.90 (t, J = 6.0, 4H, HF), 5.13 (br, 2H, HC’), 5.70 (br, 

1H, Hd), 6.40 (br, 1H, Hd’), 6.63 (d, J = 9.2, 4H, HE), 6.67 (d, J = 8.8, 4H, HD), 7.82 

(d, J = 7.7, 2H, HB), 8.36 (t, J = 7.7, 1H, HA). LR-FABMS (3-NOBA matrix): m/z = 

854 [M106Pd+H]+. HR-FABMS (3-NOBA matrix): m/z = 854.3855 (calc. for 

C46H62N5O4
106Pd, 854.3837 [M106Pd+H]+). 
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Scheme 3.13 (i) PrZnBr, Pd(PPh3)4, DMF, 20 h, RT, 43%, (ii) L1Pd(CH3CN), CH2Cl2, 16 h, RT, 

90%. 
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According to Huo’s procedure,28 iodine (0.596 g, 2.30 mmol, 0.1 equiv.) was added 

to a suspension of n-propylbromide (4.27 mL, 47.0 mmol, 2.5 equiv.) and activated 

zinc dust (4.60 g, 70.0 mmol, 3.0 equiv.) in DMF (24 mL), and the suspension was 

heated for 5 h at 85 ˚C. After the reaction cooled to RT, 2,6-dibromopyridine (4.40 g, 

18.6 mmol, 1 equiv.) and Pd(PPh3)4 (0.600 g, 0.500 mmol, 0.03 equiv.) in DMF (7 

mL) were added and the reaction mixture was stirred overnight at RT. The reaction 

was monitored by TLC (silica, hexane:EtOAc 1:1). Once complete, the reaction 

mixture was quenched with a 1:1 mixture of conc. aqueous NH3 solution (200 mL) 

and an aqueous solution of Na3EDTA (1 M, 200 mL) and extracted with EtOAc (2 x 

200 mL). The organic layer was washed with water (400 mL) and brine (400 mL). 

Drying (MgSO4) and removal of the solvent yielded a pale brown oil. Hexane was 

added to induce precipitation of unreacted starting material, which was removed by 

filtration, and the remaining oil was purified first by column chromatography on 

silica (hexane then hexane:EtOAc 1:1) and then by Kugelrohr (120 ˚C, approx. 100 

mbar) to yield 2,6-di-n-propylpyridine S11 as a colourless oil (1.30 g, 43%). 1H 

NMR and 13C NMR data were consistent with the published data.29 
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A solution of L1Pd(CH3CN) (0.050 g, 0.070 mmol, 1.0 equiv.) and S11 (0.017 g, 

0.080 mmol, 1.1 equiv.) were stirred at RT overnight in CH2Cl2 (10 mL). The solvent 

was removed under reduced pressure and the crude greenish-yellow solid was 

purified by column chromatography on silica (CH2Cl2 then CH2Cl2:acetone 3:1) 

yielding L1Pd(2,6-dipropylPy) as a yellow solid, m.p. 225 ˚C (dec.) (0.051 g, 90%). 

Crystals suitable for X-ray analysis were obtained by slow diffusion of Et2O into a 

solution of the complex in CH2Cl2. 
1H NMR (400 MHz, CDCl3): δ 0.80 (t, J = 7.2, 

6H, Ha), 1.25-1.47 (m, 20H, HG+H+I+J+K), 1.69-1.75 (m, 4H, Hb), 2.82 (t, J = 8.0, 4H, 

Hc), 3.84 (t, J = 6.0, 4H, HF), 3.96 (s, 4H, HC), 6.49 (d, J = 8.8, 4H, HE), 6.54 (d, J = 

8.8, 4H, HD), 7.03 (d, J = 7.6, 2H, Hd), 7.78 (t, J = 7.6, 1H, He), 7.88 (d, J = 7.8, 2H, 

HB), 8.11 (t, J = 7.8, 1H, HA). 13C NMR (100 MHz, CDCl3): δ 13.8, 20.9, 25.6, 28.4, 

28.8, 29.0, 29.3, 40.6, 49.3, 67.1, 113.7, 120.9, 124.7, 128.4, 133.1, 138.7, 140.3, 

152.9, 157.7, 163.9, 171.3. LR-FABMS (3-NOBA matrix): m/z = 811 [M106Pd+H]+. 

HR-FABMS (3-NOBA matrix): m/z = 811.3398 (calc. for C44H57N4O4
106Pd, 

811.3415 [M106Pd+H]+). 

 

Exchange Experiments  

 

The exchange of unsubstituted Py and DMAP ligands. 

 

L1Pd(DMAP) (0.013 g, 0.015 mmol, 1.0 equiv.) was dissolved in DMF-d7 (0.75 mL), 

to which pyridinium p-toluenesulfonate  (2.5 mg, 0.015 mmol, 1.0 equiv.) was added 

at RT and the 1H NMR spectrum acquired immediately. The 1H NMR spectrum 
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showed the presence of only protonated DMAP and L1Pd(Py) in a ratio of 

L1Pd(Py):L1Pd(DMAP) >98:2 (limit measurable by 1H NMR). 

 

The DMF-d7 solution of the complexes was filtered through a Pasteur pipette packed 

with cotton wool and Na2CO3 and the 1H NMR spectrum of the elute acquired 

immediately. This 1H NMR spectrum showed a product ratio of 

L1Pd(DMAP):L1Pd(Py) of >98:2, which remained unchanged over time. 

 

The exchange of 2,6-dipropylDMAP and 2,6-dipropylPy ligands. 

 

L1Pd(2,6-dipropylDMAP) (0.013 g, 0.015 mmol, 1.0 equiv.) was dissolved in DMF-

d7 (0.75 mL), and S11 (2.4 mg, 0.015 mmol, 1.0 equiv.) was added. The 1H NMR 

spectrum was acquired as a control. After addition of p-toluensulfonic acid 

monohydrate (2.8 mg, 0.015 mmol, 1.0 equiv.) the subsequent 1H NMR spectrum 

showed the presence of protonated S11 and L1Pd(2,6-dipropylDMAP); no ligand 

exchange had occurred at RT. Heating the reaction for 130 minutes at 85 ˚C yielded  

L1Pd(2,6-dipropylPy):L1Pd(2,6-dipropylDMAP in a ratio of 90:10. Continued 

heating of the sample resulted in no further change in the ratio of isomers. 

 

The above DMF-d7 solution of complexes was filtered through a Pasteur pipette 

packed with cotton wool and Na2CO3, which gave an unaltered 90:10 ratio of 

L1Pd(2,6-dipropylPy):L1Pd(2,6-dipropylDMAP by 1H NMR.   The sample was then 

heated to 85 ˚C, and after 60 minutes a 86:14 ratio of L1Pd(2,6-

dipropylDMAP):L1Pd(2,6-dipropylPy) was observed by 1H NMR spectroscopy. No 

further change in the ratio of isomers was observed upon prolonged heating. 

 

 

3.11 General crystal data and structure refinement for L1Pd(2,6-

dipropylDMAP) and L1Pd(2,6-dipropylPy) 

Structural data for both L1Pd(2,6-dipropylDMAP) and L1Pd(2,6-dipropylPy) were 

collected at 93 K using a Rigaku Mercury diffractometer (MM007 high-flux 

RA/MoKa radiation, confocal optic). All data collections employed narrow frames 
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(0.3–1.0) to obtain at least a full hemisphere of data. Intensities were corrected for 

Lorentz polarization and absorption effects (multiple equivalent reflections). The 

structures were solved by direct methods, non-hydrogen atoms were refined 

anisotropically with CH protons being refined in riding geometries (SHELXTL) 

against F2. 

 
 

Figure 3.3 A staggered (left) and side (right) view of the X-ray crystal structure of L1Pd(2,6-
dipropylDMAP). 

 

Table 3.1  Crystal data and structure refinement for L1Pd(2,6-dipropylDMAP). 

 
Identification code  L1Pd(2,6-dipropylDMAP) 
Empirical formula  C46H61N5O4Pd 
Formula weight  854.40 
Temperature  93(2) K 
Wavelength  0.71073 Å 
Crystal system  Monoclinic 
Space group  P2(1)/c 
Unit cell dimensions a = 18.098(2) Å a= 90°. 
 b = 18.151(2) Å b= 91.62(3)°. 
 c = 12.7405(14) Å g = 90°. 

Volume 4183.6(8) Å3 
Z 4 

Density (calculated) 1.357 Mg/m3 

Absorption coefficient 0.493 mm-1 
F(000) 1800 

Crystal size 0.0800 x 0.0800 x 0.0800 mm3 
Theta range for data collection 1.59 to 25.36°. 
Index ranges -21<=h<=18, -21<=k<=19, -15<=l<=14 
Reflections collected 27337 
Independent reflections 7572 [R(int) = 0.0510] 
Completeness to theta = 25.00° 99.1 %  
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Absorption correction Multiscan 
Max. and min. transmission 1.0000 and 0.6966 

Refinement method Full-matrix least-squares on F2 
Data / restraints / parameters 7572 / 0 / 506 

Goodness-of-fit on F2 1.125 
Final R indices [I>2sigma(I)] R1 = 0.0512, wR2 = 0.1178 
R indices (all data) R1 = 0.0642, wR2 = 0.1268 

Largest diff. peak and hole 1.273 and -1.090 e.Å-3 

 

 

 

Figure 3.4 A staggered (left) and side (right) view of the x-ray crystal structure of L1Pd(2,6-
dipropylPy). 
 

Table 3.2 Crystal data and structure refinement for L1Pd(2,6-dipropylPy). 

 
Identification code  L1Pd(2,6-dipropylPy) 
Empirical formula  C44H56N4O4Pd 
Formula weight  811.33 
Temperature  93(2) K 
Wavelength  0.71073 Å 
Crystal system  Monoclinic 
Space group  P2(1)/c 
Unit cell dimensions  
a = 14.437(6) Å a= 90°. 
b = 18.314(6) Å b= 12.170(9)°. 
c = 16.522(6) Å g = 90°. 

Volume 4045(3) Å3 
Z 4 

Density (calculated) 1.332 Mg/m3 

Absorption coefficient 0.505 mm-1 
F(000) 1704 

Crystal size 0.0500 x 0.0300 x 0.0300 mm3 
Theta range for data collection 1.52 to 25.36°. 
Index ranges -11<=h<=17, -22<=k<=22, -19<=l<=19 
Reflections collected 26021 
Independent reflections 7361 [R(int) = 0.2872] 
Completeness to theta = 25.00° 99.5 % 
Absorption correction Multiscan 
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Max. and min. transmission 1.0000 and 0.7249 

Refinement method Full-matrix least-squares on F2 
Data / restraints / parameters 7361 / 34 / 479 

Goodness-of-fit on F2 0.953 
Final R indices [I>2sigma(I)] R1 = 0.0937, wR2 = 0.1565 
R indices (all data) R1 = 0.2561, wR2 = 0.1982 

Largest diff. peak and hole 1.263 and -0.812 e.Å-3 
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Synopsis 
 

The Introduction laid down the basic requirements for the directional procession of a 

walker along a track. Central amongst these were the requirements that the standing 

foot acts as a ratchet whilst the stepping foot is labile and that both feet are capable 

of switching between standing and stepping modes in response to orthogonal stimuli. 

It was then shown that two chemically different feet, where the labilisation of each 

foot was independently controlled would be one way in which to achieve this 

alternating standing/stepping regime for each foot.  

 

In the previous Chapter, a dynamic system based on ligand exchange at a Pd(II) 

centre was discussed. In this system, the labilising stimulus for the monodentate 

ligand is the presence of coordinating solvent/anion and elevated temperatures, 

whilst the fixing stimulus is simply to allow the system to cool to room temperature. 

The system can be biased in favour of one monodentate ligand in the thread over the 

other (when in the labile state) by the addition or removal of protons. However, 

regardless of the protonation state of the thread, translocation of the macrocycle is 

only observed when the labilising stimulus is applied. Hence it was reasoned that a 

walker foot based on a similar Pd(II) motif would display the required switchable 

kinetic stability required for a processive “hand-over-hand” walker. For the other 

foot, an orthogonal switching mechanism to protonation/deprotonation was sought, 

and redox-driven exchange at a Cu(I)/Cu(II) centre was chosen, based on the 

pioneering work of Jean-Pierre Sauvage. This Chapter outlines the design and 

synthesis of a walker/track system based on these two switching mechanisms. 
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4.1 Introduction 
 

The Pd(II)-based molecular shuttle detailed in Chapter Three displays remarkable 

kinetic stability when at room temperature or at elevated temperatures in non-

coordinating solvents.1 Model studies with the non-interlocked system shown in 

Scheme 4.1 indicated that the Pd(II)-monodentate ligand bond was only labile in 

coordinating solvent (d7-DMF) at 85 ˚C, suggesting that in DMF temperature could 

be used as a labilising/fixing stimulus for such complexes. Furthermore, it was found 

that it was possible to bias the thermodynamic equilibrium from strongly in favour of 

L1Pd(2,6-dipropylDMAP) under neutral conditions to strongly in favour of 

L1Pd(2,6-dipropylPy) in the presence of one equivalent of p-toluenesulfonic acid 

(TsOH). 

 

Scheme 4.1 The switchable kinetics and thermodynamics of the Pd(II)-based tridentate pyridine 2,6-
dicarboxamide binding motif described in Chapter Three. Conditions: † 60 min at 358 K; ‡ 130 min at 
358 K in d7-DMF. Reproduced with permission from The Journal of the American Chemical Society, 
Copyright 2007, American Chemical Society.1 

 

The switchable kinetics and thermodynamics displayed by this system seemed well-

suited to the requirements for a processive, hand-over-hand walking molecule on an 

ABCDABCD track (see Sections 1.5.1-1.5.4), and it was reasoned that this system 

could operate as one foot/binding site combination (Figure 4.1). 
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Figure 4.1 The Pd(II) chemistry from Chapter Three could be used as part of an ABCDABCD walking 
system. 

 

The compartmentalised approach to ABCDABCD walkers outlined in Chapter One 

calls for two orthogonally addressable switching mechanisms. Hence a second switch 

(corresponding to the states 2B and 2D in Figure 4.1) that could be operated 

independently of the palladium-based chemistry of Chapter Three was sought. 

Among the most prominent examples of stimuli-switchable molecular machines in 

the literature are the Cu(I)/Cu(II) redox-responsive catenanes2-4 and rotaxanes5-12 

developed by Jean-Pierre Sauvage and co-workers. These systems exploit the 

different preferred coordination geometries of copper when in its first (preferring 

tetrahedral environments) and second oxidation states (preferring pentavalent or 

hexavalent coordination environments). The archetypal molecular shuttle of this sort 

is shown in Scheme 4.2.5,7  

 

Scheme 4.2 Jean-Pierre Sauvage’s Cu(I)/Cu(II) redox-switchable molecular shuttle. Anions have been 
omitted for clarity.  

 

Shuttling of the macrocycle between the binding sites of the thread was achieved 

through both electrochemical and photochemical methods. Under the photochemical 

regime, light excitation at 464 nm in the presence of a suitable electron acceptor 

(para-nitrobenzylbromide in this case) caused oxidation of Cu(I) to Cu(II), with 

subsequent shuttling of the macrocycle from the phenanthroline station of the thread 
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to the terpyridine station, in accordance with the change in the metal’s preferred 

coordination number from four to five. Adding excess ascorbic acid to the rotaxane 

solution then gave reduction of Cu(II) back to Cu(I), and concomitant shuttling of the 

macrocycle to the phenanthroline station restored the original rotaxane co-conformer. 

Electrochemical switching was achieved by passing one Faraday per mole of 

rotaxane through a solution of the molecular shuttle in degassed acetonitrile at +1.0 

V (vs. SCE). This gave oxidation of Cu(I) to Cu(II), and shuttling of the macrocycle 

from the phenanthroline site to terpyridine site then took place over the course of 

several hours. A second electrolysis at –0.3 V then reduced Cu(II) to Cu(I), with 

shuttling of the macrocycle back to the phenanthroline station, to regenerate the 

original rotaxane solution. The highly reversible nature of this redox-driven 

exchange, along with the comparatively high kinetic stability of these and similar 

copper complexes13 implied that this system would be ideal as the second 

foot/foothold switch.  

 

4.2 The Design of a First Generation Synthetic Molecular Walker 

 

Combining the Pd(II) and Cu(I)/Cu(II) systems described in Section 4.1 gives the 

generic structure outlined in Figure 4.2, with walking from the left hand end of the 

track to the right (as drawn) occurring in response to an appropriate order of stimuli. 
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Figure 4.2 The proposed generic structure of the walking system. X = PF6 or some other non-
coordinating anion. 

 

Scheme 4.3 shows the proposed operation of the system, leading to processive 

directional motion. In the first instance, the ensemble was to be synthesised so that 

the walker was initially bound on the first set of DMAP and bipyridine stations of the 

six station track, yielding complex A. The point of this strategy was to ensure that all 

the walkers started from the same end of the track – in a system where the track is 
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only long enough for the walker to perform one complete cycle and there are two 

energetically identical sets of binding sites at either end, it is essential that the 

walkers all start from the same end of the track so that one complete cycle of directed 

motion can be demonstrated unambiguously. Treatment of this initial complex with 

two equivalents of TsOH, followed by heating in coordinating solvent would then 

result in protonation of both DMAP stations of the thread, with concomitant 

coordination of the tridentate Pd(II)-containing foot to the available pyridine station 

giving B. During this process, the walker unit would still be attached to the track via 

the copper-bound foot. Oxidation of copper(I) to copper(II) would then cause this 

“copper foot” to form a complex with the now more thermodynamically favoured 

terpyridine station, while the palladium-containing foot maintained structural 

integrity between the walker and the track, giving C. Removal of the protons from 

the DMAP pyridinium species and heating in coordinating solvent would then 

generate the third stepping movement, but unlike the first two steps the palladium-

containing foot would now have a choice of two DMAP sites with which to bind – 

the more remote starting position or the closer internal DMAP station. Provided that 

the distances between the stations on the track and the length of the walker linker are 

complementary, then the lower energy state at thermodynamic equilibrium (when the 

linking stimulus of heat is in operation) is the structure in which the palladium-

containing foot associates with the internal (nearest) DMAP station.14 Removal of 

this linking stimulus would then lead predominantly to state D, giving self-ratcheted 

directional motion. Finally, the reduction of Cu(II) back to Cu(I) would result in the 

formation of a tetrahedral copper complex between the walker and the neighbouring 

terminal bipyridine site, forming E. Overall the motion of the walker in response to 

these stimuli would be unidirectional from left-to-right along the track in Scheme 

4.3, with the walker proceeding through a full cycle (i.e. back to a state isoenergetic 

with its starting state) in the process. 
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Scheme 4.3 The proposed operation of the walker. Counterions have been omitted for clarity. 

 

It was hoped to be able to follow the progress of the walker along the track by 

monitoring the characteristic changes in various 1H NMR shifts. However, when 

paramagnetic Cu(II) was present, 1H NMR would probably not yield much useful 

information in this regard, and in those cases it was hoped to infer the position of the 

walker through UV-Visible analysis and/or cyclic voltammtery. Such studies would 

allow the position of the walker on the track to be ascertained, but they would not 

give any information on the processivity of the walk. In order to probe the 

processivity, it was proposed to synthesise two different versions of the track-walker 

ensemble. In one version, the track would have a 4-tert-butylphenol substituent at 

one end and the walker would similarly be labelled with two tert-butyl groups. In the 

other version, the track would have only a 4-methylphenol substituent and the walker 

would be unlabelled. These two walker systems should operate identically, as CPK 
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modelling suggested that the additional bulk of the tert-butyl groups would not affect 

the coordination of any of the track/walker metal complexes. Hence, if the two 

systems were then to be combined and the mixture subjected to the sequence of 

stimuli outlined in Scheme 4.3, ESI-MS of the reaction mixtures obtained at each 

step should allow the masses of all the species present to be seen and should 

highlight any scrambling between the two types of walker and the two types of track 

(which would indicate a lack of processivity). 

 

4.3 Retrosynthesis 

 

The proposed retrosynthesis of the walker units is shown in Scheme 4.4. The two 

mass-labelled tridentate binding sites were to be synthesised from chelidamic acid 

and appropriate commercial benzylamine derivatives. The bidentate metal binding 

site was to be prepared via a Sonogashira coupling15 between 5-hexyn-1-ol and 6-

bromo-2,2'-bipyridinyl.16 The alcohol of this unit would then be converted to the 

tosylate and coupled to one of the tridentate units via a Williamson ether coupling to 

give the two metal-free walker ligands. Subsequently, it was hoped to insert the 

palladium into the tridentate binding sites before coordinating the walkers to the 

appropriate first two stations of the track. The Cu(I) complex between the bipyridines 

of the walker and the track would then be made once the Pd(II)-containing foot had 

been coordinated to the track in this fashion (Scheme 4.5). 

 

 

Scheme 4.4 Retrosynthesis of the proposed walker units. 
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Scheme 4.5 Retrosynthesis of the walker on the first two stations of the track. Strategic choices such 
as the nature of the spacers on the track and the substitution patterns on the polypyridyl ligands will be 
discussed in Section 4.4. Counterions have been omitted and the walker unit coloured for clarity. 

 

The retrosynthesis of the walker on the first two stations of the track is shown in 

Scheme 4.5. The proposed strategy was repeated Sonogashira couplings between the 

relevant bromo- or iodo-(poly)pyridyls and various commercial acetylenes. To this 

end, it was proposed to synthesise an unsymmetrical bipyridyl moiety (by sequential 

reactions with propargyl alcohol and then propargyl ether) bearing a terminal alkyne, 

to which the mass-labelled first station of the track could be attached, again via a 

Sonogashira coupling. After hydrogenation of the acetylenes, it was proposed to 

coordinate the walker to the DMAP-derived station through its Pd(II)-containing 

foot, before then adding Cu(I) to give the mono cationic complex, ready for 

attachment to the rest of the track. 

 

Scheme 4.6 shows the retrosynthesis of the proposed final two-station block of the 

track. This was to be prepared in an analogous fashion to the first two stations of the 
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track, initially by reacting 6-bromo-2,2'-bipyridinyl with propargyl ether under 

Sonogashira coupling conditions. The terminal acetylene thus produced would then 

be coupled with 2,6-diiodoDMAP1 to give the mono-substituted DMAP-derivative, 

for connection  to the middle two stations of the track via another Sonogashira 

coupling. 

 

 

Scheme 4.6 Retrosynthesis of the final two stations of the track.  

 

The retrosynthesis of the proposed middle two stations of the track is shown in 

Scheme 4.7. It was proposed to synthesise the terpyridyl station of the track via 

Sonogashira coupling of 6,6''-dibromo-2,2':6',2''-terpyridine17 and propargyl ether, to 

give a di-substituted moiety which would then be desymmetrised by a further 

Sonogashira coupling with the pyridine-derived station. This pyridine-derived station 

was be to prepared from 2-bromo-6-(hydroxymethyl)-pyridine18 and phthalimide. 

 

 

Scheme 4.7 Retrosynthesis of the middle two stations of the track. 

 

Sonogashira coupling of the middle two-station block with the final two-station 

block would then provide (after hydrogenation of the acetylenes and removal of the 

phthalimide protecting group) the completed four-station unit for attachment to the 

walker/first two station unit shown in Scheme 4.5. It was proposed to perform the 
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final coupling reaction by converting the amine of the four station block to the 

isocyanate, which would then be reacted with the free alcohol of the walker/first two 

station units to give the completed walker/track ensembles connected by a urethane 

linkage as shown in Scheme 4.8. 

 

 

Scheme 4.8 Retrosynthesis of the completed walker/track ensemble. Counterions have been omitted 
and the walker coloured for clarity. 

 

4.4 Synthesis 

 

The synthesis of the proposed walker unit shown in Scheme 4.4 is outlined in 

Scheme 4.9. For the copper-binding foot, 6-bromo-2,2'-bipyridinyl (1) was 

synthesised via a literature procedure16 and derivatised with 5-hexyn-1-ol under 

Sonogashira coupling conditions to give alcohol 2 in good yield. Subsequent 

hydrogenation over Pd/C followed by activation of primary alcohol 3 with para-

toluenesulfonyl chloride generated bipyridine 4. The two mass-labelled palladium-

binding feet were synthesised using  pentaflourophenol (PFP) promoted amide 

couplings19 of chelidamic acid monohydrate with either benzylamine (furnishing 

ligand 5a) or 4-(t-butyl)benzylamine (giving ligand 5b). Ligand 5a was then 

connected to bipyridine 4 by a Williamson phenol ether synthesis to give the free 

(unmetallated) walker unit 6. 
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Scheme 4.9 The synthesis of free walker unit 6. Reagents and conditions: (i) 5-hexyn-1-ol, 
Pd(dppf)Cl2, CuI, THF/Et3N, 16 h, RT, 88%, (ii) Pd/C, H2, THF, 12 h, RT, 81%, (iii) p-TsCl, Et3N, 
CH2Cl2, 18 h, RT, 75%, (iv) (a) EDCI, PFP, CH2Cl2, 20 h, RT, 90%, (iv) (b) EDCI, PFP, CH2Cl2, 20 
h, RT, 90%, (v) (a) benzylamine, Et3N, CH2Cl2, 2 h, RT, 75%, (v) (b) 4-(t-butyl)benzylamine, Et3N, 
CH2Cl2, 2 h, RT, 88%, (vi) K2CO3, butanone, 24 h, reflux, 56%.  

 

It was then proposed to insert Pd(II) into the tridentate pyridine 2,6-dicarboxamide 

binding site by refluxing ligand 6 with Pd(OAc)2 in acetonitrile, as had proved 

efficacious for inserting palladium into similar tridentate ligands in the past.20,21 

However, none of the desired product (i.e. with Pd(II) bound in the tridentate binding 

site) could be isolated, either under these conditions or the more aggressive approach 

of treating ligand 6 with three equivalents of NaH in DMF and then refluxing 

overnight in the presence of PdCl2(CH3CN)2.
22 The model studies outlined in 

Scheme 4.10 give the reason for this. The simple pyridine 2,6-dicarboxamide ligand 

7
23 was treated with one equivalent of Pd(OAc)2 in acetonitrile in the presence of one 

equivalent of 2,2'-bipyridine. When the reaction was monitored by 1H NMR, no 

change was observed in the signals corresponding to ligand 7 but there were 

significant changes in the signals attributed to 2,2'-bipyridine, indicating that Pd(II) 

was coordinated to the bidentate ligand in a manner which is known from the 

literature.24 The spectrum remained unchanged after heating at reflux for 12 hours, 

indicating that the Pd(II) complex with 2,2'-bipyridine is remarkably stable, and that 

there was little prospect of introducing Pd(II) selectively into the tridentate site.25 
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Scheme 4.10 Pd(II) shows a strong preference for 2,2'-bipyridine over the tridentate binding site. 
Reagents and conditions: (i) Pd(OAc)2, CH3CN, 12 h, reflux. 

 

In an attempt to “block” the bipyridine on the walker unit, such that addition of 

Pd(II) would give palladation of the tridentate site, ligand 6 was stirred in acetonitrile 

at room temperature with half an equivalent of [Cu(CH3CN)4](PF6), giving the deep 

red complex 8 in quantitative yield (Scheme 4.11). However, all subsequent efforts 

to insert palladium into the tridentate site resulted in displacement of Cu(I) from the 

bipyridines (as evinced by the rapid loss of the deep red colour from solutions of 

complex 8 when treated with various Pd(II) salts) and gave very complicated 

mixtures of products as identified by 1H NMR and ESI-MS. 

 

Scheme 4.11 Addition of Cu(I) to ligand 6 in an attempt to prevent the Pd(II) binding to the 
bipyridine of the walker. Reagents and conditions: (i) [Cu(CH3CN)4](PF6), CH3CN, 0.5 h, RT, 99%, 
(ii) Pd(OAc)2, CH3CN, 12 h, RT or Pd(OAc)2, CH3CN, 12 h, reflux or PdCl2(CH3CN)2, NaH, DMF, 
12 h, RT or PdCl2(CH3CN)2, NaH, DMF, 12 h, reflux. L = CH3CN. 

 
Failure to introduce the palladium into the tridentate site under any conditions when 

2,2'-bipyridine was present implied that a synthetic route where Pd(II) was inserted 

into the pyridine 2,6-dicarboxamide motif before the bidentate binding site was 

added to the molecule would be expedient. However, attempts to metallate ligand 5a 

gave no palladium-containing products, possibly as a result of tautomerisation of the 
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ligand to the less reactive keto-form. Hence it was decided to alkylate the phenolic 

oxygen of ligands 5a and 5b before inserting Pd(II) (Scheme 4.12). This was 

achieved by Williamson ether couplings of ligands 5a and 5b with commercially 

available ethyl 7-bromoheptanoate, followed by hydrolysis of the crude reaction 

mixtures with lithium hydroxide to furnish acids 9a and 9b in 92% and 65% yield 

respectively over two steps. It was envisaged that the carboxylic acid functionality 

thus introduced would be amenable to a range of coupling reactions with which to 

attach the bipyridine foot to the walker. This coupling reaction would have to be mild 

enough to prevent demetallation of the palladium-containing foot and also not 

involve any reagents that might coordinate irreversibly to the Pd(II) centre. In light 

of this, it was decided to convert acids 9a and 9b to the activated esters 10a and 10b 

via EDCI-mediated conjunctions with N-hydroxysuccinimide. Metallation of these 

ligands was then performed by stirring esters 10a and 10b at room temperature 

overnight with Pd(OAc)2 in acetonitrile to give complexes 11a and 11b respectively. 

Complex 11a was then protected as the Pd(II)-DMAP adduct 12 and subsequent 

addition of 5-(aminomethyl)-2,2'-bipyridine26 in CH2Cl2 at room temperature gave 

the model palladium-containing walker unit 13 in good yield.27 
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Scheme 4.12 Synthesis of model walker unit 13. Reagents and conditions: (i) (a) ethyl 7-
bromoheptanoate, K2CO3, butanone, 20 h, reflux, (i) (b) ethyl 7-bromoheptanoate, K2CO3, butanone, 
20 h, reflux, (ii) (a) LiOH, THF/H2O, 36 h, RT, 92% (over two steps), (ii) (b) LiOH, THF/H2O, 36 h, 
RT, 65% (over two steps), (iii) (a) N-hydroxysuccinimide, EDCI, DMAP, CH2Cl2, 20 h, RT, 92%, 
(iii) (b) N-hydroxysuccinimide, EDCI, DMAP, CH2Cl2, 20 h, RT, 63%, (iv) (a) Pd(OAc)2, CH3CN, 20 
h, RT, 83%, (iv) (b) Pd(OAc)2, CH3CN, 20 h, RT, 81%, (v) DMAP, CH2Cl2, 15 mins, RT, 75%, (vi) 
5-(aminomethyl)-2,2'-bipyridine, CH2Cl2, 16 h, RT, 64%. 
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With a general strategy for the synthesis of the walker unit now in place, synthetic 

efforts were directed towards the track. Following on from the successful synthesis 

of the Pd(II)-containing molecular shuttle reported in Chapter Three,1 it was decided 

to construct the track via repeated Sonogashira couplings between a terminal 

acetylene-bearing spacer precursor and the relevant ortho-bromo or iodo 

(poly)pyridines. The spacer precursor chosen was propargyl ether, due to its 

commercial availability. Once incorporated into the track, hydrogenation of the 

acetylenes from this spacer would leave -(CH2)3-O-(CH2)3- units, which would give 

a spacing of seven atoms between each station. This distance was found by CPK 

modelling to be complementary to a range of walker linker lengths from 6-10 atoms, 

allowing significant synthetic freedom should further alterations to the walker be 

necessary. Furthermore, the central oxygen atom of this spacer would act to simplify 

1H NMR spectra of the hydrogenated track and track/walker ensembles. 

  

The substitution pattern of the track stations was chosen to be ortho to the pyridyl 

nitrogen(s) both for synthetic ease and in order to mimic the favourable kinetics 

around the metal centre seen with the Pd(II)-containing shuttle from Chapter Three. 

It was decided to synthesise the track in three blocks of two stations, two of which 

would be joined to give a four station unit while the third block would be coordinated 

to the walker unit before attachment to the rest of the track (see Schemes 4.5-4.8). 

For this final coupling step, a mild, high yielding and robust reaction was sought, and 

it was decided that the reaction of an isocyanate and an alcohol to form a urethane 

would meet these requirements. Scheme 4.13 summarises the synthesis of the first 

two stations of the track, incorporating the alcohol for this proposed urethane 

formation. 
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Scheme 4.13 Synthesis of the first two stations of the track. Reagents and conditions: (i) propargyl 
alcohol, Pd(dppf)Cl2, CuI, toluene/Et3N, 36 h, reflux, 40%, (ii)  Pd(dppf)Cl2, CuI, toluene/Et3N, 20 
mins (microwave), 100 ºC, 82%, (iii) K2CO3, MeOH/THF, 0 °C, 1 h, 98%, (iv) 4-Pentyn-1-ol, 
Pd(PPh3)2Cl2, CuI, THF/Et3N, 20 h, RT, 80%, (v) p-TsCl, Et3N, CH2Cl2, 18 h, RT, 84%, (vi) (a) 
K2CO3, butanone, 20 h, reflux, 56%, (vi) (b) K2CO3, butanone, 24 h, reflux, 80%, (vii) (a) 
Pd(dppf)Cl2, CuI, toluene/Et3N, 20 mins (microwave), 100 ºC, 74%, (vii) (b) Pd(dppf)Cl2, CuI, 
toluene/Et3N, 40 mins (microwave), 100 ºC, 60%, (viii) (a) Pd(OH)2/C, H2, THF, 5 h, RT, 97%, (b) 
Pd(OH)2/C, H2, THF, 5 h, RT, 99%. 

 

The bidentate binding site of this two-station block was prepared by desymmetrising 

6,6'-dibromo-2,2'-bipyridine (14)28 with propargyl alcohol under Sonogashira 

coupling conditions to give the monosubstituted bipyridine derivative 15. A second 

(microwave-promoted) Sonogashira coupling with excess trimethyl-(3-prop-2-

ynyloxy-prop-1-ynyl)-silane (16)29 then gave bipyridine 17, which was deprotected 

cleanly to give the terminal acetylene-bearing bipyridine 18 in good yield. The first 

monodentate station of the track was then prepared from 2,6-diiodoDMAP (19). A 

high-yielding desymmetrisation with 4-pentyn-1-ol, followed by activation of the 

alcohol with para-toluenesulfonyl chloride furnished tosylate 21, upon which 

Williamson ether syntheses were carried out with either commercially available 4-

methylphenol (22a) or 4-tert-butylphenol (22b) to give DMAP stations 23a and 23b 

respectively. Microwave-assisted Sonogashira coupling of bipyridine 18 with either 

DMAP stations 23a or 23b then gave the rigid two-station blocks 24a and 24b 

respectively, both of which were then hydrogenated over Pd(OH)2/C to give track 
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blocks 25a and 25b in excellent yield, ready for complexation to the appropriate 

walker units.30 

 

The synthesis of the final two-station block of the track is shown in Scheme 4.14. 2-

Bromo-6-iodopyridine (26)31,32 was reacted under Sonogashira coupling conditions 

with the mono-protected propargyl ether derivative 16 to give pyridine 27 in 

excellent yield. Subsequent Negishi coupling33 of pyridine 27 with commercially 

available 2-pyridylzinc bromide (28) produced bipyridyl 29, which was subjected to 

in situ deprotection with DBU/water followed by Sonogashira coupling with 2,6-

diiodoDMAP (19) to furnish the two-station block 30 in good yield. 
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Scheme 4.14 Synthesis of the final two stations of the track. Reagents and conditions: (i) 
Pd(PPh3)2Cl2, CuI, THF/Et3N, 16 h, RT, 90%, (ii) Pd(PPh3)4, THF, 20 h, reflux, 65%, (iii) 
Pd(PPh3)2Cl2, CuI, DBU, water, benzene, 36 h, RT, 65%. 

 

The central two station block was synthesised as shown in Scheme 4.15. 6,6''-

Dibromo-2,2':6',2''-terpyridine (31) was coupled to mono-protected propargyl ether 

16 under Sonogashira conditions to give terpyridine 32, which was mono-

deprotected by stirring with one equivalent of potassium carbonate at 0 ˚C in a 

methanol/tetrahydrofuran solvent system, yielding terpyridine 33 in 45% yield. 

Another 45% of unreacted 32 could be recovered from the reaction mixture and 

recycled. 
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Scheme 4.15 Synthesis of the middle two stations of the track. Reagents and conditions: (i) 
Pd(dppf)Cl2, CuI, toluene/Et3N, 6 h, reflux, 93%, (ii) K2CO3, MeOH/THF, 30 mins, 0 ˚C, 45%, (iii) 
phthalimide, PPh3, DIAD, THF, 16 h, 0 ºC � RT, 85%, (iv) DMEDA, CuI, NaI, dioxane, 105 ˚C, 48 
h, 90%, (v) Pd(PPh3)4, CuI, THF/Et3N, 5 days, 35 ˚C, 85%, (vi) K2CO3, MeOH/THF, 3 h, 0 ˚C, 95%. 

 

Meanwhile, 2-bromo-6-(hydroxymethyl)-pyridine (34) was coupled to phthalimide 

in a Mitsunobu reaction34 to give the protected amine 35. Attempts to couple 35 with 

terpyridine 33 under Sonogashira conditions gave only trace amounts of the desired 

product 37, and so it was decided to convert 35 to the more reactive iodo compound 

(36) via an aromatic Finkelstein reaction35 prior to reaction with terpyridine 33. This 

furnished two-station block 37 in excellent yield after prolonged stirring with mild 

heating. A final deprotection with potassium carbonate in methanol/tetrahydrofuran 

gave two-station block 38, ready for coupling to block 30, as outlined in Scheme 

4.16. 
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Scheme 4.16 Synthesis of the four station block 41. Reagents and conditions: (i) Pd(PPh3)4, CuI, 
THF/Et3N, 5 days, 35 ˚C, 65%, (ii) PtO2, H2, THF/EtOH, 16 h, RT, 63%, (iii) N2H4.H2O, EtOH, 6 
days, reflux, 18%. 

 

Sonogashira coupling of two station blocks 38 and 30 proceeded smoothly with 

gentle warming for five days to give the relatively rigid hexa-acetylene four-station 

unit 39 in 65% yield. However, hydrogenation of the acetylenes of molecule 39 

could only be accomplished by using platinum(IV) oxide in a protic solvent mixture, 

which also led to full hydrogenation of the phthalimide unit, giving track element 40. 

All attempts to deprotect the amine to render the desired four-station block 41 (for 

conversion to the isocyanate and subsequent coupling to the first two stations of the 

track) gave only very low yields, perhaps as a consequence of the unexpected over-

hydrogenation encountered in the previous step. 

 

However, more serious problems were encountered during preparation of the walker 

unit on the first two stations of the track (Scheme 4.17). The initial complexation of 

walker module 11a to 4-methylphenol-labelled track unit 25a proceeded in excellent 

yield, and coupling of the resulting complex 42 with 5-(aminomethyl)-2,2'-bipyridine 

to give walker/track complex 43 gave similarly satisfactory results. The copper-

containing completed walker/two station moiety 44 was then prepared by suspending 

complex 43 in acetonitrile and adding [Cu(CH3CN)4](PF6), the desired product being 
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characterised by ESI-MS and showing only one main peak, corresponding to the 

molecular ion [M-PF6]
+.  

 

Scheme 4.17 Coordination of the walker to the first two stations of the track. Reagents and 
conditions: (i) d7-DMF, 1 h, RT, 89%, (ii) 5-(aminomethyl)-2,2'-bipyridine, CH2Cl2, 16 h,  RT, 71%, 
(iii) [Cu(CH3CN)4](PF6), CH3CN, 30 mins, RT. The walker unit has been coloured for clarity. 
 

However, 1H NMR spectra of complex 44 at room temperature (in both CDCl3 and 

CD3CN) showed only broad peaks, making assignments impossible. After standing 

at room temperature overnight, the intensity of both samples relative to background 

noise had decreased markedly. Continued monitoring of the 1H NMR spectra showed 

that the signal intensity got progressively lower and lower over the course of several 

days, and after about a week an amorphous red precipitate had formed in both 

samples. These data all seemed to suggest that whilst complex 44 had formed 

initially, it was unstable in solution with respect to oligomerisation, the products of 

which became less soluble as they got bigger and hence precipitated from solution, 

with a concomitant reduction in the 1H NMR signal strength. This result was very 

disappointing, as it implied that the Cu(I) complex formed was labile (and hence able 

to scramble and oligomerise) even in a non-coordinating solvent (chloroform) at 

room temperature. Hence the stability of such complexes under the conditions 

required to labilise the Pd(II)-containing foot (heating in coordinating solvent) would 
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almost certainly be insufficient to prevent the complete dissociation of the walker 

from the track.  

 

Further evidence of the highly labile nature of the copper walker/track complex 44 

was obtained by treating complex 43 with only a quarter of an equivalent of  

[Cu(CH3CN)4](PF6), added as a solution in acetonitrile dropwise over the course of 

two hours to a solution of the ligand (in 6:1 acetonitrile:dichloromethane). The 1H 

NMR spectrum of the resulting red solution did not show a 3:1 ratio of ligand 43 to 

copper complex 44, but instead gave a spectrum looking qualitatively very much like 

that obtained when the ratios of complex 43 and [Cu(CH3CN)4](PF6) were equal, 

implying that there was ready exchange of ligands around the Cu(I) centre. 

Furthermore, low temperature 1H NMR experiments with this mixture evinced 

dynamic behaviour as low as 230 K in a 1:1 mix of CDCl3 and CD3CN. Removal of 

the copper (but not the Pd(II)) proved possible, by simply shaking a dichloromethane 

solution of complex 44 with an aqueous EDTA/K2CO3 solution for 15 minutes, 

cleanly regenerating complex 43 in quantitative yield.  

 

4.5 Summary and Outlook 

 

The unexpected lability of the copper track/walker complex 44 precludes its use as 

one of the foot/foothold pairings in an ABCDABCD walker system akin to that 

envisaged in Figure 4.1. The dynamic exchange shown by this system even at very 

low temperatures is convincing evidence that it would not act as an effective ratchet 

for the Pd(II)-containing foot and that opportunities for processive walking using 

such complexes would therefore be very limited with the proposed design. 

Additionally, it was noted that a new protection strategy was necessary for the amine 

of the four-station unit, as yields for the late-stage removal of the phthalimide 

protecting group were unacceptably low. However, we were encouraged by other 

elements of the synthesis of both the walker and track, notably the creation of a 

walker unit able to bind two different metals in specific locations and the overall 

success of the Sonogashira coupling strategy for synthesising extended polypyridyl 
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chains. A revised target walking system incorporating these strengths and addressing 

the weaknesses of this initial approach is expounded in Chapter Five. 

 

4.6 Experimental Section 

 

General 

 

Chelidamic acid monohydrate, 2,6-dibromopyridine, 2-pyridylzinc bromide (28), 4-

methylphenol (22a), 4-tert-butylphenol (22b), ethyl 7-bromoheptanoate, propargyl 

ether and propargyl alcohol were purchased from the Aldrich Co. 6-Bromo-2,2'-

bipyridinyl (1),16 pyridine-2,6-dicarboxylic acid bis-benzylamine (7),23 2,6-diiodo-4-

(dimethylamino)pyridine (19),1 2-bromo-6-iodopyridine (26),31,32 6,6'-dibromo-2,2'-

bipyridine (14),28 6,6''-dibromo-2,2':6',2''-terpyridine (31),17 2-bromo-6-

(hydroxymethyl)-pyridine (34),18 trimethyl-(3-prop-2-ynyloxy-prop-1-ynyl)-silane 

(16)29 and 5-(aminomethyl)-2,2'-bipyridine26 were prepared according to literature 

procedures.  
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To a solution of 6-bromo-2,2'-bipyridinyl (1) (0.500 g, 2.13 mmol, 1.0 equiv.) in 

THF (20 mL)/Et3N (10 mL) was added CuI (41.0 mg, 0.213 mmol, 0.1 equiv.) and 

Pd(dppf)Cl2 (87.0 mg, 0.106 mmol, 0.05 equiv.). 5-Hexyn-1-ol (0.523 g, 0.594 mL, 

5.33 mmol, 2.5 equiv.) was then added and the reaction stirred at RT overnight. After 

this time, the solvents were removed under reduced pressure and the resulting residue 

redissolved in EtOAc and washed with an aqueous saturated NH4Cl solution (2 x 50 

mL), and brine (2 x 50 mL). The combined organic fractions were dried (Na2SO4), 

filtered, concentrated under reduced pressure, and then subjected to column 

chromatography on silica (eluting in 1:1 hexane:EtOAc), giving crude 2 as a brown 

oil. This was redissolved in CH2Cl2 and acidified to pH 2-3 (0.6 N HCl in Et2O), 

extracted into water (3 x 20 mL) and the combined aqueous extracts neutralised with 

aqueous NaOH (1 M). This aqueous suspension was then extracted with CH2Cl2 (3 x 
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100 mL) and the organic fractions concentrated in vacuo to give 2 as a yellow oil 

(0.470 g, 88%). 1H NMR (CDCl3, 400 MHz): δ 1.44 (t, J = 5.4, 1H, Hl), 1.74-1.81 

(m, 4H, Hi,j), 2.53 (t, J = 6.6, 2H, Hh), 3.72-3.76 (m, 2H, Hk), 7.28-7.33 (m, 1H, Hb), 

7.39 (d, J = 7.6, 1H, Hg), 7.72-7.82 (m, 2H, Hc,f), 8.30 (d, J = 7.9, 1H, He), 8.43 (d, J 

= 8.0, 1H, Hd), 8.65 (d, J = 4.3, 1H, Ha). 
13C NMR (CDCl3, 100 MHz): δ 18.9, 24.5, 

24.6, 62.2, 80.9, 90.4, 119.9, 121.5, 123.9, 126.9, 136.9, 137.0, 143.1, 149.0, 155.4, 

156.2. LRESI-MS (MeOH): m/z = 253 [M+H]+. HRESI-MS: m/z = 253.1336 

[M+H]+ (calc. for C16H17N2O1, 253.1335).  
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A solution of 2 (0.530 g, 2.10 mmol) in THF (15 mL) was charged with 10% Pd/C 

(10% by weight, 53.0 mg) and degassed first with nitrogen and then with hydrogen. 

The mixture was stirred under a hydrogen atmosphere at RT for 12 h, after which the 

reaction mixture was filtered through a plug of celite. Concentration of the filtrate in 

vacuo gave the title compound as a yellow oil (0.437 g, 81%). 1H NMR (CDCl3, 400 

MHz): δ 1.30 (t, J = 5.3, 1H, Hn), 1.40-1.47 (m, 4H, Hj,k), 1.54-1.62 (m, 2H, Hi), 

1.79-1.86 (m, 2H, Hl), 2.87 (t, J = 7.7, 2H, Hh), 3.62-3.67 (m, 2H, Hm), 7.15 (d, J = 

7.6, 1H, Hg), 7.28-7.32 (m, 1H, Hb), 7.69-7.73 (m, 1H, Hf), 7.79-7.83 (m, 1H, Hc), 

8.17 (d, J = 7.8, 1H, He), 8.42-8.44 (m, 1H, Hd), 8.65-8.69 (m, 1H, Ha). 
13C NMR 

(CDCl3, 100 MHz): δ 25.3, 29.5, 32.5 (x 2), 38.0, 62.5, 118.1, 121.2, 122.6, 123.3, 

136.8, 136.9, 148.8, 155.2, 156.4, 161.7. LRESI-MS (MeOH/TFA): m/z = 257 

[M+H]+. HRESI-MS: m/z = 257.1641 [M+H]+ (calc. for C16H21N2O1, 257.1648). 
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To a solution of 3 (0.437 g, 1.70 mmol, 1.0 equiv.) and p-toluenesulfonyl chloride 

(0.390 g, 2.05 mmol, 1.2 equiv.) in dry CH2Cl2 was added Et3N (0.290 mL, 2.05 

mmol, 1.2 equiv.) and the mixture stirred at RT for 18 h. After this time, the reaction 
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mixture was mixed directly with an aqueous saturated NH4Cl solution (50 mL), the 

layers separated and the aqueous phase extracted with CH2Cl2 (3 x 50 mL). The 

combined organic extracts were then washed with brine (2 x 50 mL), dried (Na2SO4) 

and concentrated in vacuo. The resulting residue was then purified by column 

chromatography on silica (5:1 hexanes:EtOAc), giving 4 as a brown oil (0.524 g, 

75%). 1H NMR (CDCl3, 400 MHz): δ 1.30-1.42 (m, 4H, Hj,k), 1.62-1.69 (m, 2H, Hi), 

1.72-1.80 (m, 2H, Hl), 2.43 (s, 3H, Hp), 2.81 (t, J = 7.6, 2H, Hh), 4.02 (t, J = 6.5, 2H, 

Hm), 7.13 (d, J = 7.6, 1H, Hg), 7.27-7.35 (m, 3H, Hb,o), 7.71 (t, J = 7.6, 1H, Hf), 

7.76-7.83 (m, 3H, Hc,n), 8.18 (d, J = 7.6, 1H, He), 8.41-8.43 (m, 1H, Hd), 8.65-8.69 

(m, 1H, Ha). 
13C NMR (CDCl3, 100 MHz): δ 21.5, 25.2, 28.6, 28.7, 29.2, 37.6, 70.5, 

118.9, 122.0, 123.5, 124.0, 129.5, 129.7, 132.9, 133.0, 137.8, 138.5, 144.6, 147.8, 

154.6, 161.7.  LRESI-MS (acetonitrile): m/z = 411 [M+H]+. HRESI-MS: m/z = 

411.1732 [M+H]+ (calc. for C23H27N2O3S1, 411.1737).  
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A 250 mL oven dried flask was charged with chelidamic acid monohydrate (6.03 g, 

32.5 mmol, 1.0 equiv.) and pentafluorophenol (10.1 g, 55.0 mmol, 2.2 equiv.). 

CH2Cl2 (100 mL) was added to the solids and the resulting suspension was cooled to 

0 °C. EDCI (11.1 g, 55.0 mmol, 2.2 equiv.) was added as a solid and the reaction 

mixture was warmed to RT and stirred for 20 h during which time all the solid 

materials dissolved yielding a yellow solution. The volume of solvent was then 

reduced and the residue was chromatographed on silica (3:2 EtOAc:hexane) and the 

solvents were removed under reduced pressure affording the bis-pentafluoroester 

intermediate as a clear oil (11.2 g, 90%). 1H NMR (CDCl3, 400 MHz): δ 7.98 (s, 2H, 

Ar-H). LRESI-MS (MeOH): m/z = 514 [M-H]-. This oil was immediately dissolved 

in dry CH2Cl2 (200 mL) and cooled to 0 °C. Benzylamine (7.82 g, 70.0 mmol, 

3.0 equiv.) and Et3N (12.3 g, 16.9 mL, 0.120 mol, 5.0 equiv.) were added dropwise 

via syringe and the reaction mixture was stirred at RT for 2 h. The solvents were 

removed under reduced pressure and the residue redissolved in EtOAc (100 mL) and 
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washed successively with a 1 M HCl solution (2 x 100 mL), saturated NH4Cl 

solution (2 x 50 mL), water (2 x 50 mL), and brine (1 x 100 mL). The organic layer 

was collected and dried over MgSO4. Filtration, followed by removal of the solvent, 

yielded the crude product as a tan solid which was recrystallised from acetone/Et2O 

to give the title compound as a white solid, m.p. 232 – 234 °C (6.56 g, 75%). 1H 

NMR (d6-acetone, 400 MHz): δ 4.56 (d, J = 6.4, 4H, Hd), 7.20-7.30 (m, 10H, He,f,g), 

7.78 (s, 2H, Hb), 9.16 (t, J = 6.4, 2H, Hc). 
13C NMR (d6-acetone, 100 MHz): δ 43.3, 

112.6, 127.8, 128.1, 129.2, 140.3, 152.6, 164.2, 167.5. LRESI-MS (MeOH/TFA 

99:1): m/z = 362 [M+H]+. HRESI-MS: m/z = 362.1501 [M+H]+ (calc. for 

C21H20N3O3 362.1499 [M+H]+). 
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A 250 mL oven dried flask was charged with chelidamic acid monohydrate (1.73 g, 

8.62 mmol, 1.0 equiv.) and pentafluorophenol (3.49 g, 18.0 mmol, 2.2 equiv.). 

CH2Cl2 (100 mL) was added to the solids and the resulting suspension was cooled to 

0 °C. EDCI (3.79 g, 19.0 mmol, 2.3 equiv.) was added as a solid and the reaction 

mixture was warmed to RT and stirred for 20 h during which time all the solids 

dissolved, yielding a yellow solution. The volume of solvent was reduced and the 

residue was chromatographed on silica (3:2 EtOAc:hexane). The solvents were 

removed under reduced pressure giving the bis-pentafluoroester as a clear oil (4.00 g, 

90%). 1H NMR (CDCl3, 400 MHz): δ 7.98 (s, 2H, Ar-H). LRESI-MS (MeOH): m/z 

= 514 [M-H]-1. This oil was immediately dissolved in dry CH2Cl2 (100 mL) and 

cooled to 0 °C. 4-(t-butyl)benzylamine (3.77 g, 23.0 mmol, 3.0 equiv.) and Et3N 

(3.10 g, 4.29 mL, 31.0 mmol, 4.0 equiv.) were dropwise added via syringe and the 

reaction mixture was stirred at RT for 2 h. The solvents were removed under reduced 

pressure, the residue taken up in ethyl acetate (100 mL), and washed successively 

with a 1M HCl solution (2 x 100 mL), saturated NH4Cl solution (2 x 50 mL), water 

(2 x 50 mL) and brine (1 x 100 mL). The organic layer was collected and dried with 

MgSO4. Filtration, followed by removal of the solvent, yielded the crude product as a 



_________________________________________________________Chapter Four 

 146 

tan solid which was purified by column chromatography (Et2O:acetone 1:0 then 1:1) 

to yield a white solid, m.p. 181-183 ˚C (3.25 g, 88%). 1H NMR (d6-acetone, 400 

MHz): δ 1.27 (s, 18H, Hg), 2.95 (br, 1H, Ha), 4.51 (d, J = 6.3, 4H, Hd), 7.21 (d, J = 

8.4, 4H, He), 7.34 (d, J = 8.4, 4H Hf), 7.79 (s, 2H, Hb), 9.17 (t, J = 6.3, 2H, Hc). 
13C 

NMR (d6-acetone, 100 MHz): δ 31.6, 35.0, 43.0, 112.6, 126.1, 128.0, 137.3, 150.5, 

152.3, 164.1, 167.5. LRnanoESI-MS (MeOH/NH4OAc): m/z = 474 [M+H]+. HRESI-

MS (MeOH/NH4OAc): m/z = 474.2749 [M+H]+ (calc. for C29H36N3O3  474.2751 

[M+H]+). 
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4 (0.524 g, 1.28 mmol, 1.0 equiv.), 5a (0.463 g, 1.28 mmol, 1.0 equiv.) and 

K2CO2 (0.529 g, 3.83 mmol, 3.0 equiv.) were suspended in butanone (40 mL) and 

the mixture heated to reflux for 24 h. After this time, the reaction was filtered 

through celite and the resulting filtrate concentrated under reduced pressure and 

purified by column chromatography on silica (2:1 hexane:acetone), to give the title 

compound as a yellow gum (0.428 g, 56%). 1H NMR (CDCl3, 400 MHz): δ 1.42-

1.56 (m, 4H, Hj,k), 1.78-1.88 (m, 4H, Hi,l), 2.87 (t, J = 7.6, 2H, Hh), 4.09 (t, J = 6.5, 

2H, Hm), 4.59 (d, J = 6.2, 4H, Hp), 7.15 (dd, J1 = 7.7, J2 = 0.8, 1H, Hg), 7.21-7.28 

(m, 11H, Hb,q,r,s), 7.70 (t, J = 7.7, 1H, Hf), 7.78-7.82 (m, 1H, Hc), 7.84 (s, 2H, Hn), 

8.15-8.20 (m, 3H, He,o), 8.41-8.44 (m, 1H, Hd), 8.63-8.66 (m, 1H, Ha). 
13C NMR 

(CDCl3, 100 MHz): δ 25.6, 28.5, 28.8, 29.4, 38.1, 43.2, 68.7, 111.2, 118.1, 121.2, 

122.7, 123.4, 127.1, 127.4, 128.3, 136.9, 137.0, 138.0, 148.8, 150.5, 155.1, 156.4, 

161.5, 163.7, 167.6. LRESI-MS (MeOH/TFA, 99/1): m/z = 600 [M+H]+. HRESI-

MS: m/z = 600.2975 [M+H]+ (calc. for C37H38N5O3 600.2969 [M+H]+).  

���
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7 (0.054 g, 0.090 mmol, 1.0 equiv.) was dissolved in dry CH3CN (10 mL) and then 

added via cannula to a stirred solution of [Cu(CH3CN)4](PF6) (0.017 g, 0.045 mmol, 

0.5 equiv.) in dry CH3CN (5 mL), and the resulting deep red solution stirred at RT 

for 30 minutes. After this time, the solvent was removed under reduced pressure, 

giving 8 as a dark red solid (0.060 g, 99%). 1H NMR (CD3CN, 400 MHz): δ 0.73-

0.91 (m, 8H, Hj,k), 1.26-1.42 (m, 8H, Hi,l), 2.50 (t, J = 7.8, 4H, Hh), 3.83 (t, J = 6.3, 

4H, Hm), 4.56 (d, J = 6.5, 8H, Hp), 7.16-7.22 (m, 4H, Hs), 7.24-7.32 (m, 16H, Hq,r), 

7.50 (d, J = 7.8, 2H, Hg), 7.55-7.57 (m, 2H, Hb), 7.64 (s, 4H, Hn), 8.01 (t, J = 7.8, 

2H, Hf), 8.07-8.09 (m, 2H, Hc), 8.25 (d, J = 7.8, 2H, He), 8.38-8.40 (m, 2H, Hd), 

8.51-8.53 (m, 2H, Ha), 8.98 (t, J = 6.5, 4H, Ho). LRESI-MS (MeOH/TFA, 99/1): m/z 

= 1262 [M-PF6]
+.   
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To a solution of 5a (2.65 g, 7.34 mmol, 1.0 equiv.) and ethyl 7-bromoheptanoate 

(2.60 g, 2.15 mL, 11.0 mmol, 1.5 equiv.) in butanone (60 mL) was added K2CO3 

(5.06 g, 36.7 mmol, 5.0 equiv.). The suspension was heated at reflux for 20 h. 

Subsequently, the reaction mixture was filtered through celite, washed with acetone, 

and the resulting filtrate concentrated under reduced pressure. The residue obtained 

was redissolved in THF (30 mL) and a solution of LiOH (3.13 g, 76.8 mmol, 10.0 

equiv.) in water (10 mL) was added and the suspension was stirred at RT for 36 h. 

The solvents were then removed under reduced pressure and the residue suspended 

in EtOAc (50 mL), cooled in an ice bath, and acidified with 1 M HCl until the pH = 
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1. The organic layer was separated and washed successively with a 1 M HCl solution 

(1 x 100 mL), saturated NH4Cl solution (2 x 50 mL), water (2 x 50 mL), and brine 

(1 x 100 mL). The organic layer was collected and dried (Na2SO4). The resulting 

yellow oil was purified by column chromatography (solvent gradient, 

CH2Cl2:acetone 9:1 to 6:4) to yield 9a as a white solid, m.p. 110-112 ˚C (3.30 g, 

92%). 1H NMR (CDCl3, 400 MHz): δ 1.24-1.30 (m, 4H, Hi,j),  1.46-1.50 (m, 2H, Hh), 

1.61-1.69 (m, 2H, Hk), 2.16 (t, J = 7.3, 2H, Hl), 3.91 (t, J = 6.5, 2H, Hg), 4.42 (d, J = 

6.1, 4H, Hd), 7.06-7.21 (m, 10H, Ha,b,c), 7.64 (s, 2H, Hf), 7.86 (t, J = 6.1, 2H, He), 

10.24 (br, 1H, Hm).  13C NMR (CDCl3, 100 MHz): δ 24.5, 25.5, 28.5, 28.6, 33.9, 

43.3, 68.7, 111.4, 127.3, 127.5, 128.5, 138.0, 150.4, 164.1, 167.8, 178.8. LRESI-MS 

(MeOH/TFA, 99/1): m/z = 490 [M+H]+.  HRESI-MS: m/z = 490.2338 [M+H]+ (calc. 

for C28H32N3O5 490.2336 [M+H]+). 
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To a solution of 5b (2.15 g, 4.54 mmol, 1.0 equiv.) and ethyl 7-bromoheptanoate 

(1.61 g, 1.32 mL, 6.81 mmol, 1.5 equiv.) in butanone (40 mL) was added K2CO3 

(3.13 g, 22.7 mmol, 5.0 equiv.). The suspension was heated at reflux for 20 h. 

Subsequently, the reaction mixture was filtered through celite, washed with acetone, 

and the resulting filtrate concentrated under reduced pressure. The residue thus 

obtained was redissolved in THF (30 mL) and a solution of LiOH (1.91 g, 45.4 

mmol, 10.0 equiv.) in water (10 mL) was added and the suspension was stirred at RT 

for 36 h.  The solvents were then removed under reduced pressure and the residue 

suspended in EtOAc (50 mL), cooled in an ice bath, and acidified with 1 M HCl until 

the pH = 1. The organic layer was separated and washed successively with a 1 M 

HCl solution (1 x 100 mL), saturated NH4Cl solution (2 x 50 mL), water (2 x 50 

mL), and brine (1 x 100 mL). The organic layer was collected and dried (Na2SO4). 

The resulting yellow oil was purified by column chromatography (hexanes:Et2O 1:3) 

to yield 9b as a white solid, m.p. 79-81 ˚C (1.70 g, 65%). 1H NMR (CDCl3, 400 
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MHz): δ 1.29 (s, 18H, Ha), 1.38-1.52 (m, 4H, Hi,j), 1.64-1.71 (m, 2H, Hh), 1.79-1.85 

(m, 2H, Hk), 2.37 (t, J = 7.2, 2H, Hl), 4.11 (t, J = 6.4, 2H, Hg), 4.61 (d, J = 6.2, 4H, 

Hd), 7.25 (d, J = 8.8, 4H, Hc), 7.33 (d, J = 8.8, 4H, Hb), 7.86 (s, 2H, Hf), 8.12 (t, J = 

6.2, 2H, He). 
13C NMR (CDCl3, 100 MHz): δ 24.5, 25.4, 28.4, 28.6, 31.3, 33.8, 34.5, 

43.1, 68.8, 111.6, 125.6, 127.6, 135.0, 150.6, 150.7, 163.6, 167.9, 178.2. LRESI-MS 

(acetonitrile): m/z = 624 [M+Na]+.  HRESI-MS: m/z = 602.3583 [M+H]+ (calc. for 

C36H48N3O5 602.3588 [M+H]+). 
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To a solution of 9a (2.99 g, 5.10 mmol, 1.0 equiv.), N-hydroxysuccinimide (620 mg, 

5.36 mmol, 1.05 equiv.) and DMAP (620 mg, 5.10 mmol, 1.0 equiv.) in CH2Cl2 

(50 mL) was added EDCI (1.07 g, 5.61 mmol, 1.1 equiv.) and the resulting solution 

stirred at RT for 20 h. Subsequently, the reaction mixture was concentrated under 

reduced pressure and purified by column chromatography on silica (CH2Cl2:acetone 

9:1 then 8:2). Removal of the solvents in vacuo yielded 10a as a colourless oil (2.30 

g, 92%).  1H NMR (CDCl3, 400 MHz): δ 1.50-1.56 (m, 4H, Hi,j), 1.79-1.91 (m, 4H, 

Hh,k), 2.65 (t, J = 7.3, 2H, Hl), 2.85 (s, 4H, Hm), 4.18 (t, J = 6.4, 2H, Hg), 4.69 (d, J = 

6.2, 4H, Hd), 7.28-7.36 (m, 10H, Ha,b,c), 7.90 (s, 2H, Hf), 8.02 (t, J = 6.2, 2H, He).  

13C NMR (CDCl3, 100 MHz): δ 24.4, 25.3, 25.5, 28.2, 28.4, 30.8, 43.3, 68.7, 111.4, 

127.3, 127.6, 128.6, 138.2, 150.6, 163.7, 167.8, 168.5, 169.4.  LRESI-MS 

(MeOH/TFA, 99/1): m/z = 587 [M+H]+. HRESI-MS: m/z = 587.2500 [M+H]+ (calc. 

for C32H35N4O7 587.2490 [M+H]+). 
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To a solution of 9b (1.71 g, 2.80 mmol, 1.0 equiv.), N-hydroxysuccinimide (350 mg, 

3.04 mmol, 1.05 equiv.) and DMAP (355 mg, 2.80 mmol, 1.0 equiv.) in CH2Cl2 

(15 mL) was added EDCI (611 mg, 3.08 mmol, 1.1 equiv.). The resulting solution 

was stirred at RT for 20 h. Subsequently, the reaction mixture was concentrated 

under reduced pressure and purified by column chromatography on silica (CH2Cl2). 

Removal of the solvents in vacuo yielded 10b as a white solid, m.p. 74-76 ˚C (1.23 g, 

63%).  1H NMR (CDCl3, 400 MHz): δ 1.29 (s, 18H, Ha), 1.49-1.51 (m, 4H, Hi,j), 

1.77-1.87 (m, 4H, Hh,k), 2.63 (t, J = 7.2, 2H, Hl), 2.81 (s, 4H, Hm), 4.13 (t, J = 6.4, 

2H, Hg), 4.61 (d, J = 6.0, 4H, Hd), 7.26 (d, J = 8.4, 4H, Hc), 7.34 (d, J = 8.4, 4H, Hb), 

7.86 (s, 2H, Hf), 8.08 (t, J = 6.0, 2H, He). 
13C NMR (CDCl3, 100 MHz): δ 24.5, 25.3, 

25.6, 28.2, 28.4, 30.9, 31.3, 34.5, 43.1, 68.7, 111.5, 125.6, 127.5, 135.1, 150.6, 150.8, 

163.5, 167.8, 168.5, 169.2. LRESI-MS (acetonitrile): m/z = 721 [M+Na]+. HRESI-

MS: m/z = 699.3747 [M+H]+ (calc. for C40H51N4O7 699.3752 [M+H]+). 
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Compound 10a (0.500 g, 0.0850 mmol, 1.0 equiv.) was dissolved in dry CH3CN 

(30 mL) and Pd(OAc)2 (0.219 g, 0.0980 mmol, 1.15 equiv.) was added under a 

nitrogen atmosphere. After gentle warming for 1 minute (heat gun), the reaction was 

allowed to stir at RT overnight. The yellow precipitate was then collected by suction 

filtration, redissolved in boiling CH3CN and passed (hot) through a plug of celite. 

Removal of the solvent under reduced pressure followed by recrystallisation from 

CH3CN gave the title compound as a yellow gum (0.565 g, 83%). 1H NMR (d6-

DMSO, 400 MHz): δ 1.52-1.56 (m, 4H, Hd,e), 1.73-1.77 (m, 2H, Hc), 1.82-1.88 (m, 
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2H, Hf), 2.18 (s, 3H, Hm), 2.78 (t, J = 7.1, 2H, Hb), 2.90 (s, 4H, Ha), 4.35 (t, J = 6.3, 

2H, Hg), 4.39 (s, 4H, Hi), 7.20 (s, 2H, Hh), 7.28-7.46 (m, 10H, Hj,k,l). 
13C NMR (d6-

DMSO, 100 MHz): δ 0.0, 23.0, 23.5, 24.3, 26.3, 26.6, 28.9, 46.5, 68.3, 109.1, 117.0, 

124.9, 125.7, 126.9, 140.1, 152.6, 167.6, 167.8, 168.4, 169.1. LRFAB-MS (noba): 

m/z = 691 [M106Pd-CH3CN+H]+.  HRESI-MS: m/z = 689.1384 [M-CH3CN+H]+ 

(calc. for C32H33N4O7
104Pd 689.1376 [M-CH3CN+H]+). 
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Compound 10b (0.500 g, 0.0720 mmol, 1.0 equiv.) was dissolved in dry CH3CN 

(30 mL) and Pd(OAc)2 (0.223 g, 0.0820 mmol, 1.15 equiv.) was added under a 

nitrogen atmosphere. After gentle warming for 1 minute (heat gun), the reaction was 

allowed to stir at RT overnight. Evaporation of the solvent yielded an orange-yellow 

solid that was redissolved in boiling CH3CN and passed (hot) through a plug of 

celite. Removal of the solvent under reduced pressure followed by washing with cold 

Et2O gave the title compound as a pale yellow solid, m.p. 150-152 ˚C (0.490 g, 

81%). 1H NMR (CDCl3, 400 MHz): δ 1.29 (s, 18H, Hl), 1.49-1.52 (m, 4H, Hd,e), 

1.77-1.87 (m, 4H, Hc,f), 2.09 (s, 3H, Hm), 2.63 (t, J = 7.2, 2H, Hb), 2.83 (s, 4H, Ha), 

4.15 (t, J = 6.4, 2H, Hg), 4.52 (s, 4H, Hi), 7.24-7.31 (m, 10H, Hh,j,k). 
13C NMR (d6-

DMSO, 100 MHz): δ 0.0, 23.0, 23.5, 24.3, 26.3, 26.6, 28.9, 30.0, 32.9, 46.2, 68.2, 

109.0, 117.0, 123.5, 125.7, 137.1, 147.2, 152.7, 167.6, 167.8, 168.3, 169.1.  LRFAB-

MS (noba): m/z = 803 [M106Pd-CH3CN+H]+.  HRESI-MS: m/z = 801.2637 [M-

CH3CN+H]+ (calc. for C40H49N4O7
104Pd 801.2636 [M-CH3CN+H]+). 
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11a (0.430 g, 0.587 mmol, 1.0 equiv.) was dissolved in CH2Cl2 (20 mL) and DMAP 

(80.0 mg, 0.656 mmol, 1.1 equiv.) was added and the solution stirred at RT for 15 

minutes. After this time, the reaction was passed through a pad of silica to give 12 as 

a yellow solid, m.p. 165-167 ˚C (0.360 g, 75%). 1H NMR (CDCl3, 400 MHz): δ 

1.47-1.60 (m, 4H, Hd,e), 1.75-1.92 (m, 4H, Hc,f), 2.64 (t, J = 7.2, 2H, Hb), 2.80-2.88 

(br, 4H, Ha), 3.01 (s, 6H, Ho), 4.16 (t, J = 6.4, 2H, Hg), 4.22 (s, 4H, Hi), 6.09 (d, J = 

7.2, 2H, Hn), 6.91-6.96 (m, 4H, Hj), 7.05-7.12 (m, 6H, Hk,l), 7.29 (s, 2H, Hh), 7.47 (d, 

J = 7.2, 2H, Hm). 13C NMR (CDCl3, 100 MHz): δ 24.4, 25.2, 25.5, 28.1, 28.2, 30.8, 

39.2, 49.0, 69.3, 107.1, 110.7, 125.8, 127.0, 127.7, 141.3, 149.7, 154.1, 154.2, 168.5, 

169.1, 169.2, 171.0. LRESI-MS (MeOH): m/z = 713 [M106Pd-DMAP+Na]+. HRESI-

MS: m/z = 713.1175 [M106Pd-DMAP+Na]+ (calc. for C32H32N4O7
106PdNa, 713.1198 

[M106Pd-DMAP+Na]+).  
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To a solution of 12 (0.275 g, 0.265 mmol, 1.0 equiv.) in CH2Cl2 (5 mL) was added a 

solution of 5-(aminomethyl)-2,2'-bipyridine (48.0 mg, 0.265 mmol, 1.0 equiv.) in 

CH2Cl2 (2 mL) dropwise over 30 minutes. After addition was complete, the reaction 

was stirred at RT overnight. The solvent was then removed under reduced pressure 

and the crude residue purified by column chromatography on silica (CH2Cl2:MeOH 

15:1) to give 13 as a yellow solid (0.150 g, 64%). 1H NMR (CDCl3, 400 MHz): δ 

1.33-1.48 (m, 4H, Hl,m), 1.63-1.82 (m, 4H, Hk,n), 2.22-2.29 (m, 2H, Hj), 2.99 (s, 6H, 

Hw), 4.03 (t, J = 6.5, 2H, Ho), 4.15 (s, 4H, Hq), 4.53 (d, J = 6.0, 2H, Hh), 6.07 (d, J = 
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7.2, 2H, Hv), 6.80 (t, J = 6.0, 1H, Hi), 6.87-6.98 (m, 4H, Hr), 7.04-7.11 (m, 6H, Hs,t), 

7.21 (s, 2H, Hp), 7.27-7.31 (m, 1H, Hb), 7.44 (d, J = 7.2, 2H, Hu), 7.74-7.77 (m, 2H, 

Hc,f), 8.27-8.34 (m, 2H, Hd,e), 8.55 (d, J = 2.0, 1H, Hg), 8.63-8.70 (m, 1H, Ha). 

LRESI-MS (MeOH/TFA): m/z = 657 [M-Pd-DMAP+H]+. 
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6,6'-Dibromobipyridine (14) (4.06 g, 12.9  mmol, 1.0  equiv.) was dissolved in a 

mixture of toluene (200 mL) and Et3N (100 mL) and CuI (246 mg, 1.29 mmol, 

0.1 equiv.), Pd(dppf)Cl2 (527 mg, 0.650  mmol, 0.05  equiv.) and propargyl alcohol 

(0.197 g, 0.207 mL, 3.51 mmol, 1.1 equiv.) were added and the reaction mixture 

heated to 110 °C for 36 h. Subsequently, the reaction mixture was filtered through 

celite and then concentrated under reduced pressure. The resulting brown solid was 

redissolved in a toluene/acetone mixture and purified by column chromatography 

(silica, CH2Cl2:acetone 1:0 then 9:1) to yield 15 as a white solid, 190 °C (dec.) 

(1.49 g, 40%). 1H NMR (CDCl3, 400 MHz): δ 2.85 (s, 1H, Ha), 4.48 (s, 2H, Hb), 7.56 

(dd, J1 = 7.7, J2 = 0.9, 1H, Hc), 7.68 (dd, J1 = 7.9, J2 =  0.8, 1H, Hh), 7.91 (t, J = 7.7, 

1H, Hd), 7.97 (t, J = 7.9, 1H, Hg), 8.34 (dd, J1 = 7.7, J2 = 0.9, 1H, He), 8.45 (dd, J1 = 

7.9, J2 =  0.8, 1H, Hf). 
13C NMR (d6-acetone, 100 MHz): δ 51.9, 85.3, 90.7, 121.7, 

122.0, 129.5, 130.4, 139.6, 142.0, 143.1, 144.7, 156.4, 158.4. LRnanoESI-MS 

(MeOH/NH4OAc): m/z = 289 [M79Br+H]+.  HRESI-MS (MeOH/NH4OAc): m/z = 

288.9969 [M+H]+ (calc. for C13H10
79BrN2O  288.9971 [M+H]+). 
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To a solution of 15 (0.760 g, 2.63 mmol, 1.0 equiv.), CuI (50.0 mg, 0.260 mmol, 

0.1 equiv.) and Pd(dppf)Cl2 (0.107 g, 0.130 mmol, 0.05 equiv.) in toluene (40 mL) 

and Et3N (20 mL) was added trimethyl-(3-prop-2-ynyloxy-prop-1-ynyl)-silane (16) 
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(0.656 g, 3.94 mmol, 1.5 equiv.). The resulting mixture was heated to 100 °C for 

20 minutes at atmospheric pressure in a CEM microwave reactor (power level = 

150 W). Subsequently, the reaction was quenched with aqueous NH4Cl (25 mL) and 

the organic phase washed with water (20 mL) and brine. After drying (Na2SO4) and 

removal of the solvents under reduced pressure, the crude residue was subjected to 

column chromatography on silica (7:3 Et2O:hexane) to give the title compound as a 

tan solid, m.p. 83-85 ºC (0.808 g, 82%). 1H NMR (CDCl3, 400 MHz): δ 0.10 (s, 9H, 

Hk), 1.77 (t, J = 6.3, 1H, Ha), 4.35 (s, 2H, Hj), 4.54 (s, 2H, Hi), 4.56 (d, J = 6.3, 2H, 

Hb), 7.46-7.50 (m, 2H, Hc,h), 7.75-7.82 (m, 2H, Hd,g), 8.39-8.43 (m, 2H, He,f). 
13C 

NMR (CDCl3, 100 MHz): δ 0.0, 51.8, 57.4, 57.9, 84.5, 85.3, 86.3, 87.3, 92.6, 100.6, 

121.3 (x 2), 127.7, 127.8, 137.4 (x 2), 142.2 (x 2), 155.9, 156.0  LRESI-MS 

(MeOH/TFA, 99:1): m/z = 375 [M+H]+, 397 [M+Na]+.  HRESI-MS: m/z = 375.1528 

[M+H]+ (calc. for C22H23N2O2Si  375.1523 [M+H]+). 
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To a solution of 17 (1.08 g, 2.87 mmol, 1.0 equiv.) in MeOH (20 mL) and THF (20 

mL) was added finely ground K2CO3 (0.400 g, 2.87 mmol, 1.0 equiv.). The resulting 

reaction mixture was stirred at 0 °C for 1 h. The reaction mixture was then quenched 

by addition of a saturated aqueous NH4Cl solution (30 mL) followed by extraction 

with EtOAc (3 x 50 mL). The combined organic layers were washed with water and 

brine and dried over MgSO4. Evaporation of the solvent yielded the title compound 

as a white solid, m.p. 113-115 °C (0.850 g, 98%). 1H NMR (CDCl3, 400 MHz): δ  

2.43 (t, J = 2.4, 1H, Hk), 4.30 (d, J = 2.4, 2H, Hj), 4.49-4.50 (m, 4H, Hb,i), 7.39-7.43 

(m, 2H, Hc,h), 7.70-7.74 (m, 2H, Hd,g), 8.32-8.36 (m, 2H, He,f).  
13C NMR (CDCl3, 

100 MHz): δ 56.8, 57.2, 65.9, 75.3, 78.8, 84.1, 85.1, 86.2, 87.2, 121.1 (x 2), 127.5, 

129.6, 137.2 (x 2), 141.9, 142.1, 155.7, 171.2. LRESI-MS (acetonitrile): m/z = 325 

[M+Na]+. HRESI-MS (MeOH/NH4OAc): m/z = 303.1128 [M+H]+ (calc. for 

C19H15N2O2 303.1128 [M+H]+). 
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To a solution of 2,6-diiodoDMAP (19, 3.75 g, 10.0 mmol, 1.0 equiv.) in THF 

(30 mL) and Et3N (20 mL) were added CuI (0.380 g, 2.00 mmol, 0.2 equiv.) and 

Pd(PPh3)2Cl2 (0.701 g, 1.00  mmol, 0.1 equiv.). 4-Pentyn-1-ol (0.925 g, 1.02 mL, 

11.0 mmol, 1.1 equiv.) was then added and the mixture was stirred at RT for 20 h. 

The reaction mixture was then quenched by addition of a saturated aqueous NH4Cl 

solution (30 mL) followed by extraction with CH2Cl2 (3 x 50 mL). The combined 

organic layers were washed with water and brine and dried (Na2SO4). The solvent 

was then removed under reduced pressure and the resulting residue purified by 

column chromatography on silica (CH2Cl2 to CH2Cl2:acetone, 4:1) giving the title 

compound as a yellow oil (2.64 g, 80%). 1H NMR (CDCl3, 400 MHz): δ 1.76-1.80 

(m, 2H, He), 2.46 (t, J = 7.0, 2H, Hd), 2.68 (br, 1H, Hg) 2.89 (s, 6H, Hb), 3.73 (t, J = 

6.2, 2H, Hf), 6.49 (d, J = 2.4, 1H, Hc), 6.73 (d, J = 2.4, 1H, Ha).  
13C NMR (CDCl3, 

100 MHz): δ 15.9, 31.0, 39.3, 61.3, 80.4, 90.0, 109.6, 115.8, 118.1, 143.2, 154.5. 

LRESI-MS (MeOH/TFA, 99/1): m/z = 331 [M+H]+.  HRESI-MS: m/z = 331.0300 

[M+H]+ (calc. for C12H16IN2O 331.0302 [M+H]+). 
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A solution of 20 (3.18 g, 9.63 mmol, 1.0 equiv.) and Et3N (1.94 g, 2.66 mL, 

19.0 mmol, 2.0 equiv.) in anhydrous CH2Cl2 (50 mL) was cooled to 0 °C. p-

toluenesulfonyl chloride (2.20 g, 11.5 mmol, 1.2 equiv.) was added and the solution 

was stirred at RT for 18 h. The reaction was then quenched with water (100 mL) and 

the organic layer was separated and dried (MgSO4). After filtration and concentration 

under reduced pressure, the resulting crude oil was purified by column 

chromatography on silica (solvent gradient, hexane:EtOAc 9:1, 8:2 then 6:4) to yield 
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21 as a yellow oil (4.03 g, 84%). 1H NMR (400 MHz, CDCl3): �  1.90-1.94 (m, 2H, 

He), 2.41 (s, 3H, Hi),  2.44-2.48 (m, 2H, Hd), 2.97 (s, 6H, Hb), 4.16 (t, J = 6.1, 2H, 

Hf), 6.55 (d, J = 2.4, 1H, Hc), 6.82 (d, J = 2.4, 1H, Ha), 7.32 (d, J = 8.3, 2H, Hh), 7.79 

(d, J = 8.3, 2H, Hg). 
13C NMR (100 MHz, CDCl3): � = 15.7, 21.7, 27.5, 39.3, 69.0, 

81.0, 87.7, 109.8, 115.9, 118.3, 127.9, 129.9, 132.8, 142.9, 144.9, 154.5. LRESI-MS 

(MeOH/TFA, 99/1): m/z = 485 [M+H]+. HRESI-MS: m/z = 485.0384 [M+H]+ (calc. 

for C19H22IN2O3S, 485.0384 [M+H]+). 
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To a solution of 21 (3.10 g, 6.40 mmol, 1.0 equiv.) and 4-methylphenol (22a) 

(80.0 mg, 0.770 mL, 7.36 mmol, 1.15 equiv.) in butanone (50 mL) was added K2CO3 

(4.00 g, 32.0 mmol, 5.0 equiv.) and the suspension heated at reflux for 20 h. After 

this time, the reaction mixture was filtered through celite, washed with acetone, and 

the filtrate concentrated under reduced pressure. The resulting yellow oil was 

purified by column chromatography on silica (hexane:EtOAc 9:1 to 7:3) to yield 23a 

as a white solid, m.p. 68-70 ºC (1.52 g, 56%). 1H NMR (CDCl3, 400 MHz): δ 1.97-

2.01 (m, 2H, He), 2.21 (s, 3H, Hi), 2.54 (t, J = 7.1, 2H, Hd), 2.89 (s, 6H, Hb), 3.99 (t, J 

= 6.1, 2H, Hf), 6.49 (d, J = 2.4, 1H, Hc), 6.72-6.76 (m, 3H, Ha,g), 7.00 (d, J = 8.2, 2H, 

Hh). 
13C NMR (CDCl3, 100 MHz): δ 16.2, 20.5, 28.0, 39.2, 66.4, 80.5, 89.3, 109.7, 

114.4, 115.8, 118.3, 129.9, 143.2 (x 2), 154.5, 156.7. LRESI-MS (MeOH/TFA, 

99/1): m/z = 421 [M+H]+. HRESI-MS: m/z = 421.0777 [M+H]+ (calc. for 

C19H22IN2O, 421.0771 [M+H]+). 
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To a solution of 21 (1.84 g, 3.80 mmol, 1.0 equiv.) and 4-tert-butylphenol (22b) 

(0.660 g, 4.37 mmol, 1.15 equiv.) in butanone (30 mL) was added K2CO3 (2.62 g, 
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19.0 mmol, 5.0 equiv.). The suspension was heated at reflux for 24 h. After this time, 

the reaction mixture was filtered through celite, washed with acetone, and the filtrate 

concentrated under reduced pressure. The resulting yellow oil was purified by 

column chromatography on silica (hexane:EtOAc 9:1) to yield 23b as a colourless oil 

(1.40 g, 80%). 1H NMR (CDCl3, 400 MHz): δ 1.29 (s, 9H, Hi), 2.06 (m, 2H, He),  

2.60 (t, J = 7.1, 2H, Hd), 2.94 (s, 6H, Hb), 4.06 (t, J = 6.0, 2H, Hf), 6.55 (d, J =2.4, 

1H, Hc),  6.80 (d, J = 2.4, 1H, Ha),  6.84 (d, J = 8.8, 2H, Hg), 7.29 (d, J = 8.8, 2H, 

Hh). 
13C NMR (CDCl3, 100 MHz): δ 16.2, 28.1, 31.6, 34.1, 39.2, 66.3, 80.5, 89.3, 

109.7, 114.0, 115.8, 118.3, 126.2, 143.2, 143.3, 154.5, 156.6. LRESI-MS 

(acetonitrile): m/z = 463 [M+H]+. HRESI-MS: m/z = 463.1246 [M+H]+ (calc. for 

C22H28IN2O, 463.1241 [M+H]+). 
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18 (0.400 g, 1.32 mmol, 1.0 equiv.) and 23a (0.556 g, 1.32 mmol, 1.0 equiv.) were 

dissolved in toluene (30 mL) and Et3N (20 mL). Pd(dppf)Cl2 (54.0 mg, 66.0 �mol, 

0.05 equiv.) and CuI (25.0 mg, 0.132 mmol, 0.1 equiv.) were then added as solids 

and the resulting reaction mixture was heated to 100 °C for 20 minutes at 

atmospheric pressure in a CEM microwave reactor (power level = 150 W). The 

reaction was then quenched with aqueous NH4Cl (25 mL) and extracted with CH2Cl2 

(2 x 100 mL). The organic phase was washed with water (20 mL), brine (20 mL) and 

then dried (Na2SO4). The solvent was removed under reduced pressure and the crude 

residue was subjected to column chromatography on silica (CH2Cl2:acetone 9:1 to 

7:3). Removal of the solvents in vacuo then gave 24a as a white solid, m.p. 62-64 ºC 

(0.580 g, 74%). 1H NMR (CDCl3, 400 MHz): δ 2.03-2.10 (m, 2H, He), 2.27 (s, 3H, 

Ha), 2.61 (t, J = 7.0, 2H, Hf), 2.96 (s, 6H, Hh), 4.06 (t, J = 6.0, 2H, Hd), 4.54-4.62 (m, 

6H, Hj,k,r), 6.55 (d, J = 2.5, 1H, Hi), 6.62 (d, J = 2.5, 1H, Hg), 6.78-6.83 (m, 2H, Hc), 

7.04-7.08 (m, 2H, Hb), 7.43-7.49 (m, 2H, Hl,q), 7.74-7.79 (m, 2H, Hm,p), 8.38-8.43 

(m, 2H, Hn,o). 
13C NMR (CDCl3, 100 MHz): δ 16.1, 20.5, 28.2, 39.1, 51.1, 57.4, 57.5, 

66.4, 81.0, 82.7, 84.3, 84.4, 86.2, 86.8, 88.2, 88.5, 109.2 (x 2), 114.3, 120.9, 121.0, 
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127.4, 127.6, 129.8 (x 2), 137.2 (x 2), 141.9, 142.2, (x 2), 143.5, 154.3, 155.2, 155.6, 

156.7. LRESI-MS (MeOH/TFA, 99:1): m/z = 595 [M+H]+, 617 [M+Na]+. HRESI-

MS (MeOH/NH4OAc): m/z = 595.2713 [M+H]+ (calc. for C38H35N4O3  595.2704 

[M+H]+). 
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18 (0.682 g, 2.26 mmol, 1.0 equiv.) and 23b (1.05 g, 2.26 mmol, 1.0 equiv.) were 

dissolved in toluene (30 mL) and Et3N (20 mL). Pd(dppf)Cl2 (92.0 mg, 0.110 mmol, 

0.05 equiv.) and CuI (43.0 mg, 0.230 mmol, 0.1 equiv.) were then added as solids 

and the resulting reaction mixture was heated to 100 °C for 40 minutes at 

atmospheric pressure in a CEM microwave reactor (power level = 150 W). The 

reaction was then quenched with aqueous ammonia (20% b/w, 25 mL) and extracted 

with CH2Cl2 (4 x 70 mL). The organic phase was washed with water (20 mL) and 

brine (20 mL) and then dried (MgSO4). The solvent was removed under reduced 

pressure and the crude residue was subjected to column chromatography on silica 

(CH2Cl2:acetone 9:1), giving 24b as a white solid, m.p. 80-82 ºC (0.838 g, 60%). 1H 

NMR (CDCl3, 400 MHz): δ 1.28 (s, 9H, Ha), 2.05-2.09 (m, 2H, He), 2.61 (t, J = 6.4, 

2H, Hf), 2.60-2.75 (br, 1H, Hs), 2.95 (s, 6H, Hh),  4.07 (t, J = 6.0, 2H, Hd), 4.57 (s, 

4H, Hj,k), 4.60 (s, 2H, Hr), 6.54 (d, J = 2.4, 1H, Hi), 6.61 (d, J = 2.4, 1H, Hg), 6.83-

6.85 (m, 2H, Hc), 7.27-7.29 (m, 2H, Hb), 7.43-7.48 (m, 2H, Hl,q), 7.75 (t, J = 7.6, 2H, 

Hm,p), 8.36-8.40 (m, 2H, Hn,o). 
13C NMR (CDCl3, 100 MHz): δ 16.1, 28.2, 31.5, 34.0, 

39.2, 51.4, 57.4, 57.5, 66.3, 81.1, 82.6, 84.4, 84.9, 86.2, 86.9, 87.5, 88.5, 109.2, 

109.3, 114.0, 121.0, 121.1, 126.2, 127.4, 127.7, 137.2 (x 2), 142.0, 142.1, 142.3,  

143.3, 143.6, 154.3, 155.6, 155.7, 156.6. LRESI-MS (acetonitrile): m/z = 637 

[M+H]+. HRESI-MS: m/z = 637.3176 [M+H]+ (calc. for C41H41N4O3  637.3173 

[M+H]+). 
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24a (0.540 g, 0.910 mmol, 1.0 equiv.) was dissolved in THF (40 mL) and Pd(OH)2/C 

(20% b/w, 0.108 g) was added. The mixture was thoroughly degassed and then 

stirred at RT under a hydrogen atmosphere for 5 h. Then the reaction was filtered 

through celite, washing with acetone and the resulting filtrate concentrated under 

reduced pressure to give the title compound as a pale brown oil (0.536 g, 97%). 1H 

NMR (CDCl3, 400 MHz): δ 1.52 (m, 2H, Hf), 1.68-1.85 (m, 4H, He,g), 1.94-2.16 (m, 

6H, Hm,p,y), 2.26 (s, 3H, Ha), 2.63-2.68 (m, 2H, Hh), 2.71-2.77 (m, 2H, Hl), 2.91-2.95 

(m, 8H, Hj,q), 3.01-3.04 (m, 2H, Hx), 3.46-3.52 (m, 4H, Hn,o), 3.74 (t, J = 5.9, 2H, 

Hz), 3.90 (t, J = 6.6, 2H, Hd), 6.20 (d, J = 2.4, 1H, Hi), 6.24 (d, J = 2.4, 1H, Hk), 

6.75-6.79 (m, 2H, Hc), 7.02-7.06 (m, 2H, Hb), 7.14-7.17 (m, 2H, Ht,u), 7.69-7.72 (m, 

2H, Hs,v), 8.12 (d, J = 7.4, 1H, Hr), 8.25 (d, J = 7.8, 1H, Hw). 13C NMR (CDCl3, 100 

MHz): δ 20.4, 25.9, 29.2, 29.5, 30.1, 30.3, 31.1, 34.8, 35.3, 35.4, 38.8, 39.3, 62.4, 

67.9, 70.2, 70.4, 102.9, 103.0, 114.3, 118.3, 119.0, 122.9, 123.0, 129.6, 129.8, 137.2, 

137.6, 155.3 (x 2), 155.9, 156.9 160.7, 161.2 (x 2), 161.7. LRESI-MS (MeOH/TFA 

99:1): m/z = 611 [M+H]+.  HRESI-MS (MeOH/NH4OAc): m/z = 633.3770 [M+Na]+ 

(calc. for C38H50N4O3Na  633.3775 [M+Na]+).  
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24b (0.544 g, 0.850 mmol, 1.0 equiv.) was dissolved in THF (40 mL) and Pd(OH)2/C 

(20% b/w, 0.108 g) was added. The mixture was thoroughly degassed and then 

stirred at RT under a hydrogen atmosphere for 5 h. Then, the reaction was filtered 

through celite, washing with acetone and the resulting filtrate concentrated under 

reduced pressure to give the title compound as pale brown oil (0.559 g, 99%). 1H 
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NMR (CDCl3, 400 MHz): δ 1.29 (s, 9H, Ha), 1.48-1.56 (m, 2H, Hf), 1.71-1.82 (m, 

4H, He,g), 1.98-2.14 (m, 6H, Hm,p,y), 2.65-2.67 (m, 2H, Hh), 2.72-2.74 (m, 2H, Hl), 

2.91-2.98 (m, 8H, Hj,q), 3.02-3.08 (m, 2H, Hx), 3.48-3.53 (m, 4H, Hn,o), 3.76 (t, J = 

5.6, 2H, Hz), 3.93 (t, J = 6.4, 2H, Hd), 6.21 (d, J = 2.4, 1H, Hi), 6.24 (d, J = 2.4, 1H, 

Hk), 6.79-6.83 (m, 2H, Hc), 7.17 (t, J = 7.6, 2H, Ht,u), 7.26-7.30 (m, 2H, Hb), 7.71-

7.75 (m, 2H, Hs,v), 8.11 (d, J = 8.0, 1H, Hr), 8.26 (d, J = 8.0, 1H, Hw).  13C NMR 

(CDCl3, 100 MHz): δ 26.0, 29.3, 29.5, 30.2, 30.3, 31.2, 31.5, 34.0, 34.8, 35.3, 35.4, 

38.9, 39.2, 62.4, 67.8, 70.2, 70.5, 102.9, 103.0, 113.9, 118.2, 119.0, 122.9, 123.0, 

125.5, 126.2, 137.3, 137.7, 143.0, 155.2, 155.3, 155.9, 156.8, 160.7, 161.2, 161.7. 

LRESI-MS (acetonitrile): m/z = 653 [M+H]+.  HRESI-MS: m/z = 653.4423 [M+H]+ 

(calc. for C41H57N4O3  653.4425 [M+H]+).  
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To a solution of 2-bromo-6-iodopyridine (26, 1.99 g, 7.03 mmol, 1.0 equiv.) in THF 

(50 mL) and Et3N (25 mL) were added CuI (0.260 g, 1.40 mmol, 0.2 equiv.) and 

Pd(PPh3)2Cl2 (0.490 g, 0.700 mmol, 0.1 equiv.). Trimethyl-(3-prop-2-ynyloxy-prop-

1-ynyl)-silane (16, 1.16 g, 7.03 mmol, 1.0 equiv.) was then added to the reaction 

mixture via syringe and the solution was stirred at RT for 16 h. Subsequently, the 

solvents were removed under reduced pressure, the resulting residue redissolved in 

EtOAc and washed with aqueous NH4Cl (2 x 50 mL) and brine (50 mL). The organic 

extracts were collected and dried with Na2SO4. After concentration under reduced 

pressure, the crude residue was purified by column chromatography on silica (9:1 

then 8:2 hexane:Et2O) yielding 27 as a white solid, m.p. 64-66 ºC (2.04 g, 90%). 1H 

NMR (CDCl3, 400 MHz): δ 0.00 (s, 9H, Hf), 4.12 (s, 2H, He), 4.30 (s, 2H, Hd), 7.21 

(dd, J1 = 7.4, J2 = 1.0, 1H, Hc), 7.26 (dd, J1 = 8.0, J2 = 1.0, 1H, Ha), 7.29-7.36 (m, 

1H, Hb).  
13C NMR (CDCl3, 100 MHz): δ 0.0, 57.1, 58.0, 84.8, 86.4, 92.8, 100.5, 

126.3, 128.1, 138.6, 142.0, 143.2.  LRESI-MS (MeOH/TFA, 99/1): m/z = 322 

[M79Br+H]+, 324 [M81Br+H]+.  HRESI-MS (MeOH/TFA 99:1): m/z = 322.0258 

[M79Br+H]+ (calc. for C14H17
79BrNOSi 322.0257 [M+H]+). 
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To a solution of 27 (2.80 g, 8.69 mmol, 1.0 equiv.) in THF (20 mL) was added 

Pd(PPh3)4 (1.00 g, 0.869 mmol, 0.1 equiv.). 2-Pyridylzinc bromide (28, 0.5 M in 

THF, 23.0 mL, 11.5 mmol, 1.3 equiv.) was added via syringe, and the reaction 

mixture was then heated to reflux for 20 h. The THF was then removed under 

reduced pressure and the resulting residue was redissolved in EtOAc and washed 

with aqueous EDTA/K2CO3 (2 x 100 mL). The layers were separated, the aqueous 

phase extracted with EtOAc (3 x 100 mL) and the combined organic extracts washed 

with brine and dried with Na2SO4. After concentration under reduced pressure, the 

crude residue was purified by column chromatography on silica (hexane:Et2O, 8:2 

then 6:4) providing 29 as a orange oil (1.81 g, 65%). 1H NMR (CDCl3, 400 MHz): δ 

0.20 (s, 9H, Hj), 4.36 (s, 2H, Hi), 4.54 (s, 2H, Hh), 7.30-7.34 (m, 1H, Hb), 7.48 (dd, J1 

= 7.7, J2 = 1.0, 1H, Hg), 7.79-7.83 (m, 2H, Hc,f),   8.36-8.38 (m, 1H, He), 8.42-8.44 

(m, 1H, Hd), 8.67-8.69 (m, 1H, Ha).  
13C NMR (CDCl3, 100 MHz): δ 0.0, 57.4, 57.9, 

84.4, 86.4, 92.6, 100.7, 120.9, 121.7, 124.3, 127.5, 137.1, 137.3, 142.2, 149.3, 155.5, 

156.7.   LRESI-MS (MeOH/TFA, 99/1): m/z = 321 [M+H]+, 343 [M+Na]+.  HRESI-

MS (MeOH/TFA 99:1): m/z = 321.1419 [M+H]+ (calc. for C19H21N2OSi 321.1418 

[M+H]+). 
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2,6-DiiodoDMAP (19, 1.86 g, 5.00 mmol, 1.0 equiv.) and 29 (1.60 g, 5.00 mmol, 

1.0 equiv.) were dissolved in degassed benzene (50 mL). Pd(PPh3)2Cl2 (0.350 g, 

0.490 mmol, 0.1 equiv.) and CuI (0.200 g, 1.05 mmol. 0.2 equiv.) were then added as 

solids. Subsequently, DBU (4.57 g, 4.48 mL, 30.0 mmol, 6.0 equiv.) and water 

(0.100 g, 0.100 mL, 5.55 mmol, 1.1 equiv.) were added to the reaction mixture and 

the resulting brown solution was stirred at RT for 36 h, during which time a white 

precipitate formed and the solution became black. The reaction mixture was 

quenched with water (10 mL) and extracted with EtOAc (3 x 50 mL). The organic 
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layer was then washed with an aqueous saturated NH4Cl solution (2 x 50 mL), and 

brine (2 x 50 mL). The combined organic fractions were dried (Na2SO4), filtered, 

concentrated under reduced pressure, and then subjected to column chromatography 

on silica (solvent gradient, EtOAc:hexane, 1:1 to 7:3) to give 30 as a yellow oil (1.56 

g, 65%). 1H NMR (400 MHz, CDCl3): � 2.87 (s, 6H, Hk), 4.49 (s, 2H, Hi), 4.52 (s, 

2H, Hh), 6.58 (d, J = 2.3, 1H, Hj),  6.76 (d, J = 2.3, 1H, Hl),  7.30-7.28 (m, 1H, Hb), 

7.41 (d, J = 7.4, 1H, Hg), 7.75-7.70 (m, 2H, Hc,f), 8.30 (d, J = 7.8, 1H, He), 8.37 (d, J 

= 8.0, 1H, Hd), 8.59 (d, J = 4.7, 1H, Ha).  
13C NMR (100 MHz, CDCl3): � 39.2, 57.5, 

57.6, 83.8, 84.1, 85.9, 86.5, 111.0, 116.3, 118.3, 120.7, 121.5, 124.1, 127.3, 136.9, 

137.2, 141.9, 142.0, 149.1, 154.4, 155.3, 156.5. LRESI-MS (MeOH/TFA): m/z = 495 

[M+H]+. HRESI-MS: m/z = 495.0673 [M+H]+ (calc. for C23H20IN4O 495.0676 

[M+H]+). 
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A suspension of 6,6''-dibromo-2,2':6',2''-terpyridine (31, 1.00 g, 2.30 mmol, 

1.0 equiv.) in toluene (50 mL) and Et3N (15 mL) was degassed with nitrogen for 

30 minutes. Subsequently, Pd(dppf)2Cl2 (56.0 mg, 70.0 �mol, 0.03 equiv.), CuI 

(26.0 mg, 0.140 mmol, 0.06 equiv.), and trimethyl-(3-prop-2-ynyloxy-prop-1-ynyl)-

silane (16, 1.15 g, 6.90 mmol, 3.0 equiv.) were added and the reaction mixture stirred 

at 105 ˚C for 6 h. The reaction mixture was then cooled to RT, filtered through celite, 

and the solvents were removed in vacuo to give 1.50 g of crude product which was 

purified by means of a short column (alumina (basic, activity II), hexane:Et2O 1:1) to 

yield 32 as a tan solid, m.p. 110-112 ˚C (1.20 g, 93%). 1H NMR (400 MHz, CDCl3): 

� 0.20 (s, 18H, Ha), 4.37 (s, 4H, Hb), 4.55 (s, 4H, Hc), 7.50 (dd, J1 = 8.0, J2 = 1.0, 

2H, Hd), 7.83 (t, J = 8.0, 2H, He), 7.95 (t, J = 8.0, 1H, Hh), 8.50 (d, J = 8.0, 2H, Hg), 

8.57 (dd, J1 = 8.0, J2 = 1.0, 2H, Hf). 
13C NMR (100 MHz, CDCl3): �  0.0, 57.4, 57.9, 

84.4, 86.4, 92.6, 100.7, 121.0, 121.9, 127.6, 137.2, 138.2, 142.2, 154.7, 156.7. 

LRESI-MS (acetonitrile): m/z = 562 [M+H]+. HRESI-MS: m/z = 562.2347 [M+H]+ 

(calc. for C33H36O2N3Si2 562.2341[M+H]+).  
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To a solution of 32 (1.08 g, 1.92 mmol, 1.0 equiv.) in THF (15 mL) and MeOH 

(70 mL) at 0 ˚C was added finely ground K2CO3 (1.52 g, 1.10 mmol, 1.0 equiv.). 

After 30 minutes, TLC analysis (alumina, hexanes:Et2O, 1:1) showed that traces of 

the doubly-deprotected species had begun to form, and so the reaction was quenched 

by adding saturated aqueous NH4Cl (30 mL). The mixture was then extracted with 

EtOAc (3 x 100 mL), the combined organic layers washed with brine (100 mL) and 

dried over MgSO4. After evaporation of the solvents the crude product was dissolved 

in 1 mL CH2Cl2, and subjected to column chromatography on silica (15% EtOAc in 

hexanes with 5% Et3N) to yield unreacted starting material 32 (0.484 g, 45%), the 

completely de-silylated bis-terminal acetylene (80.0 mg, 10 %) and the desired 

mono-deprotected alkyne 33 as a white solid, m.p. 106-108 ˚C (0.421 g, 45 %). 1H 

NMR (400 MHz, CDCl3): � 0.22 (s, 9H, Ha), 2.50 (t, J = 2.4, 1H, Ho), 4.34 (s, 2H, 

Hb), 4.38 (d, J = 2.4, 2H, Hn), 4.55 (s, 2H, Hc), 4.57 (s, 2H, Hm), 7.50 (dd, J1 = 8.0, J2 

= 1.0, 2H, Hd,l), 7.83 (dt, J1 = 8.0, J2 = 1.0, 2H, He,k), 7.95 (t, J = 8.0, 1H, Hh), 8.53 

(d, J = 8.0, 2H, Hg,i), 8.57 (dt, J1 = 8.0, J2 = 1.0, 2H, Hf,j). 
13C NMR (100 MHz, 

CDCl3): � 0.0, 57.0, 57.4 (x 2), 57.9, 75.4, 79.0, 84.1, 84.4, 86.3, 86.5, 92.5, 100.6, 

120.8, 120.9, 121.9 (x 2), 127.5 (x 2), 137.2 (x 2), 138.1, 142.1 (x 2), 154.6 (x 2), 

156.6 (x 2). LRESI-MS (acetonitrile): m/z = 512 [M+Na]+. HRESI-MS: m/z = 

490.1952 [M+H]+ (calc. for C30H28N3O2Si 490.1945 [M+H]+).  
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To a solution of PPh3 (0.950 g, 3.62 mmol, 1.2 equiv.) in dry THF (30 mL) was 

added DIAD (0.650 mL, 3.30 mmol, 1.1 equiv.) dropwise at 0 ˚C. The mixture was 

stirred for 15 minutes at this temperature during which time a creamy white 

suspension formed. 2-Bromo-6-(hydroxymethyl)-pyridine (34, 0.567 g, 3.02 mmol, 

1.0 equiv.) in THF (2 mL) was then added dropwise at 0 ˚C and the mixture stirred 

for another 20 minutes at 0 ˚C. After this, phthalimide (0.485 g, 3.30 mmol, 

1.1 equiv.) was added as a solid in one portion. The mixture became an orange 
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solution and was stirred for 16 h without further cooling. Subsequently, the solution 

was concentrated to give an orange oil which was purified by means of a short silica 

column (CH2Cl2) to give the pure title compound as a cream solid, m.p. 124-126 ˚C 

(0.813 g, 85 %). 1H NMR (400 MHz, CDCl3): � 4.99 (s, 2H, Hd), 7.16 (d, J = 7.6, 

1H, Hc), 7.37 (d, J = 7.6,  1H, Ha), 7.48 (t, J = 7.6, 1H, Hb), 7.74-7.78 (m, 2H, Hf), 

7.88-7.92 (m, 2H, He). 
13C NMR (100 MHz, CDCl3): � 42.5, 119.9, 123.6, 127.0, 

132.1, 134.2, 139.0, 141.9, 156.9, 167.9. LRESI-MS (acetonitrile): m/z =  317 

[M79Br+H]+, 319 [M81Br+H]+. HRESI-MS: m/z = 316.9923 [M79Br+H]+ (calc. for 

C14H10
79BrN2O2 316.9920 [M79Br+H]+). 

 

N
N

I

O

O

36

a

b

d

cf

e

 

A solution of N,N'-dimethylethylenediamine (41.0 mg, 50.0 �L, 0.470 mmol, 

0.1 equiv.) in dry dioxane (35 mL) was degassed with nitrogen for 30 minutes. 

Subsequently, CuI (45.0 mg, 0.240 mmol, 0.05 equiv.), NaI (8.90 g, 59.0 mmol, 

12.5 equiv.), and 35 (1.50 g, 4.73 mmol, 1.0 equiv.) were added and the mixture 

stirred vigorously at 105 ˚C for 48 h. The reaction mixture was then allowed to cool 

to RT, before aqueous ammonia (20 % b/w, 25 mL) was added and the mixture 

extracted into EtOAc (3 x 50 mL). The combined organic layers were washed with 

brine, then water, and dried with MgSO4. The crude product thus obtained was then 

purified by column chromatography on alumina (basic, activity II, eluting in 

CH2Cl2), to give the title compound as a white solid, m.p. 138-140 ˚C (1.55 g, 90%). 

1H NMR (400 MHz, CDCl3): � 4.98 (s, 2H, Hd), 7.15 (d, J = 7.8, 1H, Hc), 7.25 (t, J = 

7.8, 1H, Hb), 7.60 (t, J = 7.8, 1H, Ha), 7.74-7.78 (m, 2H, Hf), 7.88-7.92 (m, 2H, He). 

13C NMR (100 MHz, CDCl3): � 42.5, 117.8, 120.1, 123.6, 132.1, 133.8, 134.2, 138.0, 

157.3, 167.9. LRESI-MS (acetonitrile): m/z =  365 [M+H]+. HRESI-MS: m/z = 

364.9784 [M+H]+ (calc. for C14H10IN2O2 364.9781 [M+H]+). 
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A solution of 36 (0.280 g, 0.770 mmol, 0.95 equiv.) in a mixture of THF (10 mL) 

and Et3N (7 mL) was degassed with nitrogen for 30 minutes at 35 ˚C. After addition 

of Pd(PPh3)4 (36.0 mg, 30.0 �mol, 0.04 equiv.) and CuI (6.00 mg, 30.0 �mol, 

0.04 equiv.), acetylene 33 (0.402 g, 0.820 mmol, 1.0 equiv.) in THF (7.5 mL) was 

added over 2 h at 35 ˚C via syringe. The reaction mixture was then stirred for 5 days 

at 35 ˚C until TLC analysis (alumina, hexane:Et2O, 1:1) showed complete 

consumption of 36. After cooling to RT and filtering through celite, the solvents 

were evaporated, the residue washed with aqueous ammonia (15 % b/w, 30 mL) and 

extracted with EtOAc (3 x 70 mL). The combined organic layers were washed with 

brine, then water and dried with MgSO4. The crude product was purified by column 

chromatography on silica (CH2Cl2 then CH2Cl2:MeOH, 100:2) to yield 37 (0.505 g, 

85%) as a cream foam. 1H NMR (400 MHz, CDCl3): � 0.20 (s, 9H, Ha), 4.36 (s, 2H, 

Hb), 4.55 (s, 2H, Hn), 4.60 (s, 4H, Hc,m), 5.02 (s, 2H, Hr), 7.15 (d, J = 8.0, 1H, Hq), 

7.36 (d, J = 8.0, 1H, Ho), 7.50 (d, J = 7.6, 2H, Hd,l), 7.59 (t, J = 8.0, 1H, Hp), 7.72-

7.76 (m, 2H, Ht), 7.83 (t, J = 7.6, 2H, He,k), 7.87-7.91 (m, 2H, Hs), 7.94 (t, J = 7.6, 

1H, Hh), 8.48-8.52 (m, 2H, Hg,i), 8.57 (d, J = 7.6, 2H, Hf,j). 
13C NMR (100 MHz, 

CDCl3): � 0.0, 43.2, 57.4, 57.7 (x 2), 57.9, 84.3, 84.4, 84.8, 86.3, 86.4, 86.5, 92.6, 

100.7, 120.7, 120.9, 121.9, 122.0, 123.8, 123.9 126.3, 127.6 (x 2), 132.3, 134.4 (x 2), 

137.2, 137.3, 138.2, 142.1, 142.2, 142.5, 154.7 (x 2), 156.3, 156.7 (x 2), 168.2. 

LRESI-MS (acetonitrile): m/z = 726 [M+H]+, 748 [M+Na]+, 764 [M+K]+. HRESI-

MS: m/z =  726.2527 [M+H]+ (calc. for C44H36N5O4Si 726.2531 [M+H]+). 
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To a stirred solution of 37 (0.505 g, 0.697 mmol, 1.0 equiv.) in MeOH (50 mL) and 

THF (25 mL) at 0 ºC was added K2CO3 (96.0 mg, 0.697 mmol, 1.0 equiv.) in one 

portion. After 3 h, TLC analysis (alumina, Et2O) showed complete consumption of 
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the starting material and so the reaction mixture was quenched with saturated 

aqueous NH4Cl (50 mL) and extracted with EtOAc (3 x 75 mL). The combined 

organic layers were washed with brine, then water and dried with MgSO4. 

Evaporation of the solvents yielded 38 (0.432 g, 95%) as a yellow oil. 1H NMR (400 

MHz, CDCl3): � 2.50 (t, J = 2.4, 1H, Ha), 4.38 (d, J = 2.4, 2H, Hb), 4.57 (s, 2H, Hn), 

4.60 (s, 4H, Hc,m), 5.02 (s, 2H, Hr), 7.15 (d, J = 7.6, 1H, Hq), 7.36 (d, J = 7.6, 1H, 

Ho), 7.48-7.52 (m, 2H, Hd,l), 7.59 (t, J = 7.6, 1H, Hp), 7.72-7.77 (m, 2H, Ht), 7.83 (t, J 

= 7.8, 2H, He,k), 7.87-7.91 (m, 2H, Hs), 7.94 (t, J = 7.8, 1H, Hh), 8.48-8.52 (m, 2H, 

Hg,i), 8.58-8.54 (m, 2H, Hf,j). 
13C NMR (100 MHz, CDCl3): � 43.0, 56.9, 57.2, 57.5 

(x 2), 75.3, 78.9, 84.0, 84.1, 84.6, 86.1, 86.3, 86.5, 120.5, 120.7, 120.8, 121.7, 121.8, 

123.6, 126.2, 127.4 (x 2), 132.1, 134.2, 137.0, 137.1 (x 2), 138.0, 141.9, 142.0, 

142.3, 154.5 (x 2), 156.1, 156.5 (x 2), 168.0. LRESI-MS (acetonitrile): m/z = 654 

[M+H]+, 676 [M+Na]+, 692 [M+K]+. HRESI-MS: m/z = 654.2130 [M+H]+ (calc. for 

C41H28N5O4 654.2136 [M+H]+). 
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A solution of 30 (0.327 g, 0.662 mmol, 1.0 equiv.) in a mixture of THF (10 mL) and 

Et3N (7 mL) was degassed with nitrogen for 30 minutes at 35 ˚C. After addition of 

Pd(PPh3)4 (33.0 mg, 27.0 �mol, 0.04 equiv.) and CuI (5.10 mg, 27.0 �mol, 

0.04 equiv.), the acetylene 38 (0.432 g, 0.662 mmol, 1.0 equiv.) in THF (7.5 mL) 

was added over 2 h at 35 ˚C via syringe. The reaction mixture was then stirred for 5 

days at 35 ˚C until TLC analysis (alumina, hexane:Et2O, 1:1) showed complete 

consumption of the starting materials. After cooling to RT and filtering through 

celite, the solvents were evaporated, the residue washed with aqueous ammonia 

(15 % b/w, 30 mL) and extracted with EtOAc (3 x 70 mL). The combined organic 

layers were washed with brine, then water and dried with MgSO4. The crude product 

was purified by column chromatography on silica (CH2Cl2 then CH2Cl2:MeOH, 

100:2) to yield 39 as a creamy-white solid, 100 ºC (dec.) (0.438 g, 65%). 1H NMR 

(400 MHz, CDCl3): � 2.97 (s, 6H, Hk), 4.57-4.62 (m, 12H, Hh,i,m,n,x,y), 5.01 (s, 2H, 
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Hcc), 6.65 (s, 2H, Hj,l), 7.14 (d, J = 8.0, 1H, Hbb), 7.28-7.31 (m, 1H, Hb), 7.35 (d, J = 

8.0, 1H, Hz), 7.46-7.50 (m, 3H, Hg,o,w), 7.58 (t, J = 8.0, 1H, Haa), 7.73-7.90 (m, 8H, 

Hc,f,p,v,dd,ee), 7.93 (t, J = 7.8, 1H, Hs), 8.35 (d, J = 8.0, 1H, He), 8.44 (d, J = 8.0, 1H, 

Hd), 8.49 (d, J = 7.8, 2H, Hr,t), 8.55 (d, J = 8.0, 2H, Hq,u), 8.66-8.63 (m, 1H, Ha). 
13C 

NMR (100 MHz, CDCl3): � 39.2, 43.0, 57.4 (x 4), 57.5 (x 2), 82.8 (x 2), 84.1, 84.2 (x 

2), 84.6, 86.2 (x 2), 86.4, 86.5, 86.8 (x 2), 109.7, 120.5 (x 2), 120.7 (x 2), 121.5, 

121.8, 123.6, 124.1, 126.2, 127.4 (x 2), 128.5, 128.6, 132.0 (x 3), 132.1 (x 2), 134.2, 

137.0 (x 3), 137.1, 138.0, 141.9 (x 2), 142.3, 142.6, 149.1, 154.3, 154.5 (x 2), 155.3, 

156.1, 156.5 (x 3), 168.0 LRESI-MS (acetonitrile): m/z = 1020 [M+H]+, 1042 

[M+Na]+, 1058 [M+K]+. HRESI-MS: m/z = 1020.3611 [M+H]+ (calc. for 

C64H46N9O5 1020.3616 [M+H]+). 

 

  

39 (0.378 g, 0.371 mmol, 1.0 equiv.) was dissolved in THF/EtOH (40 mL/40 mL) 

and PtO2 (84.0 mg, 0.371 mmol, 1.0 equiv.) was added. The solution was then 

thoroughly saturated with hydrogen, and left to stir under a hydrogen atmosphere 

overnight. The reaction mixture was then filtered through a plug of celite, washing 

succesively with acetone and THF. After evaporation of the solvents, the crude 

product was purified by column chromatography (alumina IV, CH2Cl2:MeOH, slow 

gradient 100:0.2 to 100:2), giving 40 as a brown oil (0.250 g, 63%). 1H NMR (400 

MHz, CDCl3): � 1.50-1.41 (m, 4H, Hss,tt), 1.82-2.16 (m, 16H, Hi,l,r,u,gg,jj,qq,rr), 2.72-

2.81 (m, 6H, Hm,q,kk), 2.88-3.00 (m, 14H, Hh,o,v,ff,pp), 3.38-3.53 (m, 12H, Hj,k,s,t,hh,ii), 

4.76 (s, 2H, Hoo), 6.23 (s, 2H, Hn,p), 6.95-7.01 (m, 2H, Hll,nn), 7.14-7.18 (m, 3H, 

Hg,w,ee), 7.24-7.27 (m, 1H, Hb), 7.48 (t, J = 7.7, 1H, Hmm), 7.67-7.79 (m, 4H, Hc,f,x,dd), 

7.89 (t, J = 7.8, 1H, Haa), 8.17 (d, J = 7.8, 1H, He), 8.39-8.48 (m, 5H, Hd,y,z,bb,cc), 

8.63-8.65 (m, 1H, Ha). 
13C NMR (100 MHz, CDCl3): � 21.7, 23.7, 29.4 (x 3), 30.2, 

34.6, 34.7 (x 3), 35.3 (x 2), 39.1, 39.7, 42.8, 53.4, 70.0 (x 2), 70.1 (x 3), 70.4 (x 2), 

102.9, 117.9, 118.1, 118.2 (x 2), 120.7 (x 2), 121.1, 121.3, 122.7 (x 2), 122.8, 123.3, 

123.4, 132.1, 133.9, 136.6, 136.7, 136.8, 136.9, 137.5, 148.9, 153.9, 155.1 (x 2), 



_________________________________________________________Chapter Four 

 168 

155.3, 155.5 (x 3), 156.4, 160.9 (x 2), 161.0 (x 2), 161.3, 179.5. LRESI-MS 

(acetonitrile): m/z = 1051 [M+H]+. HRESI-MS: m/z = 1050.5980 [M+H]+ (calc. for 

C64H76N9O5 1050.5964 [M+H]+).  
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40 (0.035 g, 0.030 mmol, 1.0 equiv) was dissolved in EtOH (2 mL) and hydrazine 

monohydrate (8.0 mg, 8.0 �L, 0.15 mmol, 5.0 equiv.) was added via microsyringe. 

The reaction was heated to reflux for 6 days, at which point TLC analysis (alumina, 

CH2Cl2:MeOH, 20:1) showed no starting material present. The crude mixture was 

concentrated under reduced pressure and subjected to column chromatography 

(alumina grade IV, CH2Cl2:MeOH 100:0.2 to 100:5 (slow gradient)), giving 41 as a 

yellow gum (5.0 mg, 18%). 1H NMR (400 MHz, CDCl3): � 1.70-1.90 (br, 2H, Hpp), 

1.96-2.17 (m, 12H, Hi,l,r,u,gg,jj), 2.71-2.76 (m, 4H, Hm,q), 2.84-2.88 (m, 2H, Hkk), 2.92-

2.98 (m, 12H, Hh,o,v,ff), 3.44-3.54 (m, 12H, Hj,k,s,t,hh,ii), 3.92 (s, 2H, Hoo), 6.27 (s, 2H, 

Hn,p), 7.02 (d, J = 7.6, 1H, Hll), 7.06 (d, J = 7.6, 1H, Hnn), 7.15-7.19 (m, 3H, Hg,w,ee), 

7.25-7.29 (m, 1H, Hb), 7.52 (t, J = 7.6, 1H, Hmm), 7.67-7.80 (m, 4H, Hc,f,x,dd), 7.90 (t, 

J = 7.8, Haa), 8.18 (d, J = 7.4, 1H, He), 8.40-8.49 (m, 5H, Hd,y,z,bb,cc), 8.63-8.67 (m, 

1H, Ha). LRESI-MS (acetonitrile): m/z = 915 [M+H]+.  
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To a solution of 25a (0.217 g, 0.355 mmol, 1.0 equiv.) in d7-DMF (2 mL) was added 

a solution of 11a (0.260 g, 0.355 mmol, 1.0 equiv.) in d7-DMF (1 mL), and the 

solution stirred at RT for 1 h. The initially yellow solution was seen to turn dark 

brown. After this time, the reaction mixture was poured into CH2Cl2 (300 mL), and 
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washed with water (2 x 150 mL) and then brine (2 x 150 mL). After drying over 

Na2SO4, the crude reaction mixture was concentrated under reduced pressure to 

afford a brown residue, which was columned on silica (eluting in 1:1 

CH2Cl2:acetone) to give the title compound as a yellow gum (0.413 g, 89%). 1H 

NMR (400 MHz, CDCl3): � 1.25-1.39 (m, 4H, Hf,g), 1.45-1.54 (m, 4H, HH,I), 1.60-

1.70 (m, 4H, He,m), 1.74-1.88 (m, 4H, HG,J), 2.02-2.10 (m, 4H, Hp,y), 2.27 (s, 3H, Ha), 

2.63 (t, J = 7.2, 2H, HK), 2.74-2.93 (m, 10H, Hh,l,q,L), 3.02-3.10 (m, 8H, Hj,x), 3.23 (t, 

J = 6.7, 2H, Hn), 3.46 (t, J = 6.4, 2H, Ho), 3.75 (t, J = 5.7, 2H, Hz), 3.86 (t, J = 6.4, 

2H, Hd), 3.97-4.12 (m, 6H, HD,F), 6.11 (d, J = 2.5, 2H, Hi), 6.17 (d, J = 2.5, 2H, Hk), 

6.71-6.80 (m, 6H, Hc,C), 7.01-7.09 (m, 8H, Hb,A,B), 7.13-7.19 (m, 2H, Ht,u), 7.27 (s, 

2H, HE), 7.75-7.84 (m, 2H, Hs,v), 8.12 (d, J = 7.5, 1H, Hr), 8.26 (d, J = 7.5, 1H, Hw). 

13C NMR (100 MHz, CDCl3): � 20.4, 24.4, 25.2, 25.5, 25.9, 27.4, 28.0, 28.1, 28.2, 

29.0, 29.3, 30.8, 31.2, 34.6, 35.2 (x 2), 38.6, 39.4, 49.7, 62.3, 67.6, 69.3, 70.0, 70.2, 

103.4, 103.6, 110.7, 114.2, 118.2, 118.9, 122.8, 123.0, 126.1, 127.5, 127.8, 129.6, 

129.8, 137.2, 137.6, 141.3, 154.1, 155.2, 155.4, 155.8, 156.8, 160.6, 161.0, 161.4, 

161.9, 168.5, 168.9, 169.2, 171.3. LRESI-MS (MeOH): m/z = 1302 [M106Pd+H]+.  
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42 (0.240 g, 0.184 mmol, 1.0 equiv.) was dissolved in dry CH2Cl2 (10 mL) and 

added to a solution of 5-(aminomethyl)-2,2'-bipyridine (34.0 mg, 0.184 mmol, 1.0 

equiv.) in dry CH2Cl2 (10 mL), and the reaction mixture stirred at RT overnight. 

After this time, the crude mixture was concentrated in vacuo to give a yellowish oil, 

which was subjected to column chromatography (basic alumina, activity IV, 

CH2Cl2:MeOH, 99:1) to yield 43 as a yellow solid, m.p. 48-50 ˚C (0.179 g, 71%). 1H 

NMR (400 MHz, CDCl3): � 1.18-1.50 (m, 8H, Hf,g,H,I), 1.52-1.81 (m, 8H, He,m,G,J), 

2.00-2.08 (m, 4H, Hp,y), 2.22-2.30 (m, 5H, Ha,K), 2.73-2.77 (m, 2H, Hh), 2.83-2.92 

(m, 4H, Hl,q), 3.00-3.11 (m, 8H, Hj,x), 3.23 (t, J = 6.6, 2H, Hn), 3.45 (t, J = 6.4, 2H, 
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Ho), 3.78 (t, J = 5.9, 2H, Hz), 3.86 (t, J = 6.4, 2H, Hd), 3.96-4.08 (m, 6H, HD,F), 4.49 

(d, J = 5.7, 2H, HM), 6.11 (d, J = 2.3, 1H, Hi), 6.17 (d, J = 2.3, 1H, Hk), 6.40 (t, J = 

5.7, 1H, HL), 6.72-6.78 (m, 6H, Hc,C), 7.01-7.08 (m, 8H, Hb,A,B), 7.12-7.18 (m, 2H, 

Ht,u), 7.22 (s, 2H, HE), 7.27-7.32 (m, 1H, HS), 7.67-7.76 (m, 3H, Hs,v,O), 7.80 (dt, J1 = 

7.8, J2 = 1.8, 1H, HR), 8.11 (d, J = 7.7, 1H, Hr), 8.26 (d, J = 7.7, 1H, Hw), 8.31-8.37 

(m, 2H, HP,Q), 8.58 (d, J = 1.9, 1H, HN), 8.66 (d, J = 4.1, 1H, HT). 13C NMR (100 

MHz, CDCl3): � 20.4, 25.3, 25.4 (x 2), 25.9, 27.4, 28.0, 28.6, 29.0, 29.3, 31.2, 34.6, 

35.2 (x 3), 36.4, 39.4, 40.8, 49.8, 62.3, 67.6, 69.3, 70.0, 70.1, 103.4, 103.6, 110.7, 

114.2, 118.2 (x 2), 118.9, 120.9, 121.0, 122.8, 123.0, 123.6, 123.7, 124.8, 126.1, 

127.5, 127.6, 127.8, 128.6, 129.8, 143.3, 134.5, 136.4, 136.5, 136.9, 137.2, 137.6, 

141.3, 148.6, 149.1, 154.1, 155.5, 155.8, 161.0, 161.9, 168.8, 171.3, 173.0. LRESI-

MS (MeOH): m/z = 1372 [M+H]+, 1394 [M+Na]+. HRESI-MS: m/z = 1371.5960 

[M+H]+ (calc. for C77H89N10O7
106Pd 1371.5969 [M+H]+), 686.3018 [M+2H]2+ (calc. 

for C77H90N10O7
106Pd 686.3020 [M+2H]2+.  
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43 (0.022 g, 0.016 mmol, 1.0 equiv.) was suspended in dry CH3CN (20 mL), and a 

solution of [Cu(CH3CN)4](PF6) (6.0 mg, 0.016 mmol, 1.0 equiv.) in dry CH3CN (1 

mL) was added dropwise over 10 minutes. Upon complete addition, all the ligand 

was seen to have dissolved and the previously yellow solution was deep red. The 

reaction mixture was stirred at RT for 30 minutes, before being concentrated in 

vacuo to give 44 as a dark red solid (0.025 g, 99%). LRESI-MS (MeOH/TFA, 99:1): 

m/z = 1434 [M106Pd-PF6]
+.  
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Synopsis 

 

The apparent dynamic exchange shown by the Cu(I) complex of the putative 

molecular walker in Chapter Four means that a new switch orthogonal to the Pd(II) 

ligand exchange chemistry must be found. Given this, it was decided to try and keep 

the existing track if possible, and to screen other metals in the search for improved 

kinetic stability of the track/walker ensembles. 

 

Complexes of cobalt seemed to present an attractive alternative to the Cu(I)/Cu(II) 

redox switch in this regard. When the metal is in its divalent oxidation state, cobalt 

complexes are generally quite labile, exchanging ligands readily under mild 

conditions. However, oxidation to Co(III) slows ligand exchange markedly, to the 

extent that Co(III) complexes are often said to be inert to exchange. Both Co(II) and 

Co(III) are kinetically stable oxidation states under standard laboratory conditions, 

but conversion between the two can be achieved using very mild procedures. Hence 

it was envisaged that Co(III) complexes could act as effective ratchets under the 

rather forcing conditions necessary for the Pd(II)-containing foot to step, but that 

reduction to Co(II) would allow for the second foot to move without affecting the 

state of the Pd(II) centre. This Chapter addresses the search for suitable ligand sets 

for cobalt displaying the desired switchable kinetics, along with a discussion of how 

a thermodynamic bias might be incorporated into such systems to allow directional 

walking. An improved walker design based on these considerations will then be 

proposed, and details given of the progress towards this new target to date. 
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5.1 Introduction 
 

Following the disappointing results obtained in Chapter Four using Cu(I), it was 

decided that the processivity of stepping should be a paramount consideration in any 

new walking system design. Hence a highly reliable “on/off” kinetic switch was 

sought, which could be easily converted between its labile and inert forms. The 

Co(II)/Co(III) redox system seemed well suited to this task for several reasons. 

Firstly and most importantly, Co(III) polypyridyl complexes are well known for their 

extremely slow rates of ligand exchange,1 whilst Co(II) polypyridyl complexes are 

rather more labile. Hence when in its divalent oxidation state, stepping of the cobalt-

containing foot would be possible, whilst oxidation to Co(III) should give highly 

stable walker/track complexes that would allow processive stepping of the Pd(II)-

containing foot. Secondly, the stimuli for switching between Co(II) and Co(III) 

would still rely on redox chemistry, and so would be orthogonal to the switching 

mechanism for the palladium complexes used as the other foot/foothold combination.  

 

The issue of directionality was initially considered secondary to making sure that the 

walker stayed on the track. However, it was hoped that some measure of bias could 

be introduced during stepping by altering the nature and number of auxiliary ligands 

on the cobalt (Scheme 5.1). Hence it was envisioned that adding a Co(II) source such 

as CoCl2.6H2O would favour formation of Co(bipy)2Cl2-type complexes, with the 

anionic chlorides remaining bound to the metal centre and disfavouring the formation 

of [Co(terpy)(bipy)Cl]+-type systems. Oxidation to Co(III) would then give 

kinetically inert complexes of the generic type [Co(bipy)2Cl2]
+, stable enough to 

anchor the walker to the track whilst the Pd(II)-containing foot moved. Subsequent 

reduction of Co(III) to Co(II) would then make these complexes more labile, at 

which point washing the walker system with an aqueous EDTA solution would 

remove the cobalt salt entirely. By then adding a Co(II) salt lacking any coordinating 

anions, such as Co(ClO4)2.6H2O, it was hoped to bias the system in favour of the 

higher-valency chelating coordination site, giving complexes of the form 

[Co(terpy)(bipy)L]2+, where L is a solvent molecule or an additional equivalent of 

coordinating anion. Literature precedents for compounds of the type Co(bipy)2Cl2,
2 

[Co(bipy)2Cl2]
+ 2,3 and [Co(terpy)(bipy)L]2+ 4-6 gave cause for some optimism that 
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such an approach would prove profitable, especially as the existing track and walker 

unit seemed ideal structures for such a system. 
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Scheme 5.1 Proposed operation of the walker based on cobalt chemistry. Both Co(II) and Co(III) 

favour octahedral coordination environments, and so additional auxiliary ligands must be added to 
encourage the cobalt to take the quadra-dentate walker/track chelating binding site. Only the first four 
stations of the methylphenol-labelled ensemble are shown for clarity. 

 

5.2 Model Studies 

 

To this end, the walker/track system 1 was suspended in acetonitrile and treated with 

one equivalent of CoCl2.6H2O with gentle heating (Scheme 5.2). A marked colour 

change from yellow to blue accompanied the complete dissolution of the ligand, and 

the formation of the hetero-bimetallic species 2 was supported by ESI-MS (m/z = 

1465, 1467 = [2-37Cl]+, [2-35Cl]+). 
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Scheme 5.2 Synthesis of 2. Reagents and conditions: (i) CoCl2.6H2O, CH3CN, 30 mins, 40 ˚C. 

 

However, cyclic voltammetry studies on 2 in DMF with 0.1 M TBABF as supporting 

electrolyte revealed no wave corresponding to oxidation of Co(II) to Co(III) in the 

region -1.5 to +1.5 V vs. (Ag/AgCl) (Figure 5.2), despite the redox couple of similar 

species being reported to lie well within this range.7 

 

a

b

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Voltage (V)

C
u

rr
e
n

t 
(m

A
)

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Voltage (V)

C
u

rr
e
n

t 
(m

A
)

 

Figure 5.2a Cyclic voltammogram of a 1 mM solution of 2 in DMF, with 0.1 M TBABF as the 
supporting electrolyte. b Cyclic voltammogram of the same solution, in the presence of 1 mM 
ferrocene for reference. The reversible oxidation wave at ~ +0.55 V corresponds to the 
ferrocene/ferrocinium redox couple. Both voltammograms were recorded at 298 K under an N2 
atmosphere at a scan rate of 200 mV s-1. � denotes the start/end point of the scan. 
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In order to uncover the reason for this lack of redox activity, the two substituted 

bipyridyls 3 and 5 were added to solutions of CoCl2.6H2O and the reactivity of the 

resulting complexes towards the mild oxidants ferrocinium hexafluorophosphate and 

iodine probed by 1H NMR (Scheme 5.3). 

 

Scheme 5.3 Preparation and attempted oxidation of the model compounds 4 and 6. Reagents and 
conditions: (i) CoCl2.6H2O, MeOH, 15 mins, RT, (ii) ferrocinium hexafluorophosphate, MeOH, 1 h, 
RT or I2, MeOH, 5 mins, RT. X = I or PF6. 

 

Surprisingly, although formation of complex 4 seemed to proceed rapidly, producing 

a turquoise solid with only the molecular ion visible by ESI-MS (m/z = 214 = 

[Co(6,6'-dimethyl-2,2'-bipyridine)2]
2+), all subsequent attempts to oxidise the metal 

centre proved unsuccessful, as judged by 1H NMR (only broad signals, indicative of 

paramagnetic species were observed in the range -5 to +15 ppm relative to 

tetramethylsilane) and the naked eye (the complex did not change colour). When the 

substitution pattern of the bipyridyl ligand was changed from 6,6'-dimethyl (as in the 

track fragment of 1) to 5,5'-dimethyl (as for the foot of the walker), reaction with 

CoCl2.6H2O gave an orange solution, which was treated with ferrocinium 

hexafluorophosphate in methanol at room temperature. Within seconds the colour of 

the reaction mixture had changed to brown and a green precipitate was seen to form. 

After filtering off the precipitate, the brown filtrate was extracted with hexane (to 

remove any reduced ferrocene formed during the reaction) until the hexane layer was 

colourless, and concentrated to give a brown solid. The mass spectrum of this solid 

(6) was identical to that found for 4, and 1H NMR analysis again evinced the 

presence of paramagnetic species, indicating that oxidation of Co(II) to Co(III) had 

not occurred. However, the green precipitate (7) did give a clean 1H NMR spectrum, 

consistent with a highly symmetrical diamagnetic species containing 5,5'-dimethyl-
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2,2'-bipyridine, but with the peaks greatly shifted compared with the free ligand. 

Hence it initially appeared that the Co(III) compound trans-[Co(5,5'-dimethyl-2,2'-

bipyridine)2Cl2]PF6 had been produced.2,3 CPK modelling of 4 and 6 gave some 

indication as to the difference in behaviour of these compounds upon oxidation. 

Oxidation of Co(II) to Co(III) brings about a marked reduction in the ionic radius of 

the metal (from 0.65 to 0.55 Å),8,9 drawing the surrounding ligands closer in space. 

In the case of 4, the bulky methyl groups only just allow formation of cis-Co(6,6'-

dimethyl-2,2'-bipyridine)2Cl2, and any further contraction of the structure in response 

to oxidation of the metal centre is not possible (trans-Co(6,6'-dimethyl-2,2'-

bipyridine)2Cl2 cannot form at all). However, CPK modelling of 6 suggested that 

whilst formation of cis-Co(5,5'-dimethyl-2,2'-bipyridine)2Cl2 was somewhat 

disfavoured on steric grounds, formation of trans-Co(5,5'-dimethyl-2,2'-

bipyridine)2Cl2 should be even less favourable, and so any oxidation of either of 

these species to give stable Co(III) complexes was highly unlikely. On the other 

hand, CPK suggested that formation of complexes of the type [Co(5,5'-dimethyl-2,2'-

bipyridine)3]
2+ was facile, with apparently no steric factors preventing contraction of 

the metal centre within that ligand set. Moreover, the resulting oxidised complexes of 

the type [Co(5,5'-dimethyl-2,2'-bipyridine)3]
3+ should display highly symmetrical 1H 

NMR spectra, consistent with that already obtained. This supposition was given 

further credence by ESI-MS on the green precipitate, which gave mass ions at m/z = 

204, 214 and 305 corresponding to [Co(5,5'-dimethyl-2,2'-bipyridine)3]
3+, [Co(5,5'-

dimethyl-2,2'-bipyridine)2]
2+, and [Co(5,5'-dimethyl-2,2'-bipyridine)3]

2+ respectively. 

Repeating these reactions using iodine as the oxidant instead of ferrocinium 

hexafluorophosphate (in either methanol or acetonitrile) also proved efficacious for 

preparing [Co(5,5'-dimethyl-2,2'-bipyridine)3]
3+ moieties, but gave no diamagnetic 

species corresponding to any bis-bipy Co(III)-dichloride compounds of either 6,6'-

dimethyl-2,2'-bipyridine or 5,5'-dimethyl-2,2'-bipyridine. 

 

To confirm the unexpected formation and oxidation of 7, it was decided to prepare 

the same complex by a different route and compare the spectroscopic data obtained. 

Hence, three equivalents of 5,5'-dimethyl-2,2'-bipyridine were dissolved in 

deuterated methanol, and a methanolic solution containing one equivalent of 
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Co(ClO4)2.6H2O was added, gving a bright yellow solution. A solution of iodine in 

deuterated methanol was then added to this solution until the colour of iodine was 

seen to persist in the reaction mixture, at which point 1H NMR analysis of the crude 

mix indicated the quantitative formation of a highly symmetrical diamagnetic species 

containing 5,5'-dimethyl-2,2'-bipyridine, with peak shifts identical to those seen for 

complex 7. ESI-MS of this mixture evinced the presence of mass peaks 

(corresponding to m/z = 204, 214 and 305) consistent with the formation of [Co(5,5'-

dimethyl-2,2'-bipyridine)3]
3+. 

 

The failure to make any stable Co(III)-dichloride bis-bipyridyl species, coupled with 

the remarkable ease with which [Co(5,5'-dimethyl-2,2'-bipyridine)3](ClO4)2I could 

be synthesised,  led to the idea of using some sort of bipyridyl moiety in place of the 

two auxiliary ligands on Co(III) in the first instance (Scheme 5.1). Model studies 

carried out on [Co(phen)3](ClO4)2I (prepared via oxidation of [Co(phen)3](ClO4)2  

with iodine10) showed that there was no exchange of ligands around the Co(III) 

centre when this complex was heated in deuterated acetonitrile in the presence of 

excess 2,2'-bipyridine or 2,2':6',2''-terpyridine (terpy), as judged by variable 

temperature 1H NMR, and 1H NMR and ESI-MS of the reaction mixture after 12 

hours at 100 ˚C (Scheme 5.4). 

 

Scheme 5.4 The high kinetic stability of [Co(phen)3](ClO4)2I, as shown by its lack of ligand exchange 
in coordinating solvents at elevated temperatures in the presence of competing ligands. Reagents and 
conditions: (i) Co(ClO4)2.6H2O, CD3CN, I2, 5 mins, RT, (ii) either excess 2,2'-bipyridine, CD3CN, 12 
h, 100 ˚C, or excess 2,2':6',2''-terpyridine, CD3CN, 12 h, 100 ˚C. 

 

Furthermore, in the course of these model studies, an unexpected thermodynamic 

bias in favour of [Co(phen)3](ClO4)2I over [Co(terpy)2](ClO4)2I was discovered 

(Scheme 5.5). Treatment of two equivalents of terpy in deuterated acetonitrile with 

one equivalent of Co(ClO4)2.6H2O led to formation of a dark red solution of 

[Co(terpy)2](ClO4)2.H2O, as previously reported.10-12 However, addition of three 

equivalents of 1,10-phenanthroline to this solution immediately produced a change in 
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colour from deep red to orange. Oxidation of this mixture with iodine then gave an 

orange solid after extraction with hexane, showing major peaks in its 1H NMR 

spectrum corresponding to uncomplexed terpy and [Co(phen)3](ClO4)2I, with 

[Co(terpy)2](ClO4)2I present only in small amounts and no uncomplexed phen visible 

at all. Again, heating this mixture to 100 ˚C overnight in CD3CN produced no further 

ligand exchange. Hence it seemed that the complex [Co(phen)3](ClO4)2I showed the 

required kinetic stability necessary to act as one foot/foothold combination, and that 

a high level of thermodynamic bias was possible in favour of the tris-phen complex 

when the cobalt was in its divalent oxidation state. Oxidation would then “freeze” 

this thermodynamic distribution as the analogous inert Co(III) complexes. 

 

N

N N

i

N

N N

N

N N

Co

2ClO4
-

ii

N

N

N

N

N
N

Co

2ClO4
- I-

N

N N

8  

Scheme 5.5 Co(II) shows a thermodynamic bias for [Co(phen)3](ClO4)2I over [Co(terpy)2](ClO4)2I. 
Reagents and conditions: (i) Co(ClO4)2.6H2O, CD3CN, <5 mins, RT, (ii) 1,10-phenanthroline; then I2, 
5 mins, RT. 

 

Removal of the cobalt from [Co(phen)3](ClO4)2I was achieved by dissolving the 

complex in methanol and adding five equivalents of activated zinc powder as a solid. 

After stirring for 15 minutes at room temperature the initial orange colour had 

disappeared from the solution phase, which was almost colourless. At this point the 

reaction mixture was poured into dichloromethane and washed with an aqueous 

EDTA solution, giving a pale blue aqueous layer and a colourless organic fraction, 

from which uncomplexed phen was recovered in quantitative yield. In contrast, if 

[Co(phen)3](ClO4)2I was dissolved in a 1:1 mixture of methanol and an aqueous 

EDTA solution, no colour change was observed and no uncomplexed phen could be 

recovered by extraction with dichloromethane. These results served to confirm the 

high stability of [Co(phen)3](ClO4)2I with respect to ligand dissociation from the 

metal, as well as providing a mild route to reduction and removal of cobalt from such 

complexes. 
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Given the lower steric demands of a tris-bipyridyl ligand set on the metal centre 

compared with a (bipy)2Cl2 ligand set, the analogous model reactions were carried 

out on the original walker/track ligand 1, to see if the species [Co1(phen)](ClO4)2I 

could be prepared. To this end, 1 was suspended in deuterated acetonitrile and one 

equivalent of Co(ClO4)2.6H2O was added, giving a deep yellow solution. One 

equivalent of 1,10-phenanthroline was then added as the auxiliary ligand, causing the 

solution to brighten significantly, before oxidation with a solution of excess iodine in 

acetonitrile was attempted. However, the resulting 1H NMR spectrum of the crude 

reaction mixture showed [Co(phen)3](ClO4)2I as the only identifiable diamagnetic 

species, serving as final confirmation that the original track design (substitution at 

the 6,6' positions) did not constitute a suitable ligand environment for Co(III). 

However, it was noted during the course of these reactions that the Pd(II) complex in 

unit 1 was stable to both the oxidation and reduction/removal conditions developed 

for the Co(II)/Co(III) redox switch (i.e. oxidation with iodine, followed by reduction 

with activated zinc and removal of the Co(II) with EDTA). It was also noted that 

after removal of the Co(II) with EDTA, the auxilliary bidentate ligand could be 

easily removed from the reaction mixture by recrystallisation from an acetonitrile / 

diethyl ether solvent system. 

 

On account of this apparent chemical orthogonality between the two switches, as 

well as the excellent kinetic and thermodynamic properties shown by [Co(phen)3]X3 

complexes, it was decided to change the substitution pattern of the track bidentate 

binding sites to the 5,5'-isomers in order to accommodate Co(III). 5,5'-Disubstituted 

bipyridine was chosen for the track in preference to 3,8-disubstituted phenanthroline 

due to the relative ease of synthesis of the 5,5'-dibromo-2,2'-bypridyl starting 

material.13 It was also decided at this point to change the amine protecting group on 

the four-station track unit from phthalimide to tert-butoxycarbonyl (BOC), which 

should be more stable to hydrogenation and hence present fewer problems with 

removal compared to phthalimide (see Chapter Four and Section 5.3). Furthermore, 

it was resolved to reduce the acetylenes in the first two-station block of the track with 

deuterium gas, so that the two almost identical DMAP stations could be 

distinguished from one another. This would allow the chemical shifts and integration 
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of the 1H NMR signals of the methylene protons adjacent to the DMAP stations to be 

used to assign which DMAP station (if either) the walker was on.  

 

After the first step of the Pd(II)-containing foot, the cobalt-containing foot would be 

required to assume a quasi-five coordinate binding site between the bidentate walker 

ligand and the terpyridyl station of the track (Scheme 5.1). CPK modelling indicated 

that there should be few steric constraints to oxidation with this site, with room for 

an auxiliary sixth ligand such as a pyridine or halide around the Co(III) centre. 

Preliminary studies with Co(ClO4)2.6H2O and two equivalents of terpy in deuterated 

acetonitrile showed that clean conversion to diamagnetic [Co(terpy)2](ClO4)2I 

occurred upon addition of iodine, which had spectroscopic properties matching that 

of the analogous compound reported by Constable and co-workers.8 However, all 

attempts to prepare model compounds of the general formula [Co(terpy)(bipy)L]3+ 

(where L is a coordinating solvent, halide or monodentate pyridyl ligand) in order to 

measure their stability proved unsuccessful. Whilst Co(II) precursors of the type 

[Co(terpy)(bipy)L]2+ could be prepared by well-established literature procedures,4-6 

oxidation with either iodine or ferrocinium hexafluorophosphate gave only the two 

homoleptic species [Co(bipy)3]
3+ and [Co(terpy)2]

3+. Heteroleptic 

[Co(terpy)(bipy)L]3+ complexes should be easier to form in the walker system itself 

however, as the bidentate foot and terpyridyl station together will present a penta-

dentate chelating ligand to cobalt. Hence it was decided to address the issue of the 

precise nature of the required monodentate auxiliary ligand at such a time as the 

penta-dentate binding site was in hand. A retrosynthetic analysis for the revised 

target ensemble based on these Co(II)/Co(III) redox chemistry model studies is given 

in Section 5.3. 

 

5.3 Retrosynthesis 

 

The retrosynthesis of the proposed first two-station block of the track is shown in 

Scheme 5.6. Starting from 5,5'-dibromo-2,2'-bipyridine,13 two Sonogashira couplings 

(first with propargyl ether and then with trimethyl-(3-prop-2-ynyloxy-prop-1-ynyl)-

silane14 were proposed to furnish the unsymmetrical bipyridyl unit of this section of 
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the track. Removal of the trimethylsilyl group of this moiety would then allow a 

further Sonogashira coupling to either of the mass-labelled DMAP-derived first 

stations of the track, as described in Chapter Four. Finally, deuteration of the 

acetylenes would afford the desired two-station block, ready for complexation to the 

walker unit. 

 

Scheme 5.6 Retrosynthesis of the first two stations of the track. 

 

The complexation of the walker to this section of track was to be performed in an 

analogous fashion to the coordination of the track and walker detailed in Section 4.4. 

Hence it was proposed to stir the tracks with the appropriate walker/activated ester 

modules in DMF at room temperature, and then to couple the products of these 

reactions with 5-(aminomethyl)-2,2'-bipyridine15 (Scheme 5.7). Addition of one 

equivalent of Co(ClO4)2.6H2O and bipyridine, followed by oxidation with iodine 

would then generate the bi-metallic walker/track ensembles for subsequent 

connection to the rest of the track. 
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Scheme 5.7 Retrosynthesis of the bimetallic walker/first-two-station-track complexes. The walker unit 
has been coloured for clarity. 

 

The retrosynthesis of the final two stations of the track is shown in Scheme 5.8. 

Again following a Sonogashira coupling strategy, it was proposed to react 5-bromo-

2,2'-bipyridine13 with propargyl ether to generate the final station of the track bearing 

a terminal acetylene group. Reaction of this bipyridyl station unit with 2,6-

diiodoDMAP16 under Sonogashira conditions would then afford the final two-station 

block of the track. 
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Scheme 5.8 Retrosynthesis of the final two-station block of the track. 

 

The middle two stations of the track were to be synthesised from the mono-

trimethylsilyl-protected terpyridyl moiety described in Chapter Four and a BOC-

protected aminomethyl-pyridine derivative as shown in Scheme 5.9. This protected 

pyridine station was to be prepared from the analogous free amine compound, which 

could in turn be obtained from the phthalimide-protected aminomethyl-pyridine 

station encountered in Chapter Four. 

 

 
 

Scheme 5.9 Retrosynthesis of the middle two stations of the track. 

 

Sonogashira coupling of the final and middle two-station blocks followed by 

hydrogenation of the acetylenes would then furnish the completed four-station track 

segment, ready for isocyanate formation and subsequent urethane-coupling to either 

of the walker/first-two-station-track ensembles to give the completed walker/track 

systems as shown in Scheme 5.10. 
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Scheme 5.10 Retrosynthesis of the completed walker/track systems. The walker unit has been 
coloured for clarity. 
 

 

5.4 Synthesis 

 

The syntheses of new bidentate binding sites of the track (substituted at the 5,5'- 

positions) are outlined in Schemes 5.11-5.13. For the final (right-hand-end in 

Scheme 5.10) bipyridyl binding site, 5-bromo-2,2'-bipyridine (9) was coupled with 

an excess of commercially available propargyl ether via a Sonogashira coupling to 

give bipyridine 10 in excellent yield. A further Sonogashira coupling with 2,6-

diiodoDMAP (11) then generated the final two station block 12. 
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Scheme 5.11 Synthesis of the final two stations of the track. Reagents and conditions: (i) propargyl 
ether, Pd(PPh3)4, CuI, THF/Et3N, 22 h, 55 ˚C, 87%, (ii) Pd(PPh3)4, CuI, THF/Et3N, 22 h, 55 ˚C, 73%. 

 

Initially, it was hoped to synthesise the first two-station block of the track from 5,5'-

dibromo-2,2'-bipyridine (13) using an analogous Sonogashira strategy, as similar 

transformations on bipyridine 13 were known from the literature.17-19 However, 

reaction of bipyridine 13 with one equivalent of propargyl alcohol gave the desired 

alcohol 14 in only poor yield, and all subsequent attempts to couple 14 with 
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propargyl ether returned only starting material from the reaction mixture, even with 

extended heating in the presence of a large excess of the acetylene and high catalyst 

loading (Scheme 5.12). To circumvent this unexpected lack of reactivity under 

Sonogashira conditions, a strategy employing Stille couplings20 was devised. Firstly, 

propargyl alcohol was protected as its paramethoxybenzyl derivative via a literature 

procedure to give known acetylene 15.21 This compound was then converted to the 

tri-butyltin derivative 16 in near quantitative yield, before Stille coupling with 

bipyridine 13 to furnish mono-substituted bipyridinyl, 17. Attempts to couple 

bipyridine 17 with the mono-protected propargyl ether moiety 18 under Sonogashira 

conditions gave similarly disappointing results to those seen with bipyridine 14, and 

so propargyl ether 18 was activated for Stille coupling as its tri-butyltin analogue, 19. 

Gratifyingly, Stille coupling of stannane 19 and bipyridine 17 followed by 

desilylation of the crude mixture with NaOH/methanol furnished the desired bis-

substituted bipyridinyl 20 in 85% yield from bipyridine 17.  

 

 

Scheme 5.12 Synthesis of the unsymmetrical bipyridyl station 20. Reagents and conditions: (i) 
Propargyl alcohol, Pd(dppf)Cl2, CuI, MeOH/toluene/Et3N, microwave, 20 mins, 70 ˚C, 26%, (ii) 
propargyl ether, Pd(dppf)Cl2, CuI, MeOH/toluene/Et3N, microwave, 20 mins, 70 ˚C or Pd(PPh3)4, 
CuI, MeOH/toluene/Et3N, reflux, 20 h, (iii) n-BuLi, Bu3SnCl, THF, 16 h, -78 ˚C � RT, 98%, (iv) 
Pd(PPh3)4, DMF, 16 h, 110 ˚C, 42%, (v)  n-BuLi, Bu3SnCl, THF, 1 h, -78 ˚C � RT, quant., (vi) 
Pd(PPh3)4, DMF, 16 h, 110 ˚C, (vii) 1 M NaOH/MeOH, 1 h, 0 ˚C, 85% (over two steps). 

 

Bipyridine 20 then proved a suitable substrate for Sonogashira coupling to the 

methylphenol-labelled first station of the track, 21 (see Chapter Four), giving the 

rigid two-station block 22 in excellent yield (Scheme 5.13). Deuteration of the 

acetylenes present in two-station block 22 under neutral conditions (D2, THF, 
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Pd(OH)2/C; no evidence of any hydrogenation of the acetylenes by 1H NMR) was 

found to lead to a small but significant amount of ether cleavage (~10% by 1H 

NMR).22 This could be avoided by performing the reaction under mildly basic 

conditions (by adding solid K2CO3 to the reaction or by using a 95:5 THF/Et3N 

solvent system), although the rate of reaction was slowed considerably (reduction of 

the acetylenes is complete within three hours under neutral conditions, or 16 hours 

under basic conditions with the same catalyst loading). In addition to this, the 

addition of base prevented the removal of the paramethoxybenzyl protecting group 

on the alcohol, as would normally be expected under standard hydrogenation 

conditions.23 The product of reduction was therefore the paramethoxybenzyl-bearing 

two-station unit 23, which was obtained in quantitative yield. Removal of the 

paramethoxybenzyl protecting group with concentrated hydrochloric acid in the 

presence of triisopropylsilane as a cation scavenger then gave the completed two-

station block, 24, ready for complexation to the walker units. 
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Scheme 5.13 Synthesis of the first two-station block of the track. Reagents and conditions: (i) 
Pd(PPh3)4, CuI, THF/Et3N, 16 h, 55 ˚C, 87%, (ii) Pd(OH)2/C, D2, K2CO3, D2O/THF, 16 h, RT, quant., 
(iii) conc. HCl, triisopropylsilane, dioxane, 0.5 h, RT, 86%. 

 

The synthesis of the BOC-protected middle two-station block of the track is shown in 

Scheme 5.14. Starting from the phthalimide-protected iodo-pyridine moiety, 25 (see 

Chapter Four), free amine 26 was generated in excellent yield. Amine 26 was then 

converted to its mono-BOC derivative (27), in order to prevent decomposition and 

ease purification in subsequent steps. Sonogashira coupling of pyridine 27 and 

terpyridyl unit 28 (see Chapter Four) then afforded two-station unit 29 in very good 

yield. Subsequent deprotection of the terminal acetylene using K2CO3 in a 
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tetrahydrofuran/methanol mixed solvent system gave two-station block 30 in nearly 

quantitative yield. 

 

 

Scheme 5.14 Synthesis of the middle two-station block of the track. Reagents and conditions: (i) 
hydrazine monohydrate, EtOH, 4 h, reflux, 92%, (ii) BOC anhydride, CH2Cl2, 16 h, 0 ˚C � RT, 97%, 
(iii) Pd(PPh3)4, CuI, THF/Et3N, 5 days, 45 ˚C, 81%, (iv) K2CO3, MeOH/THF, 30 mins, 0 ˚C, 99%. 

 

The synthetic approach taken towards the free-amine four-station block 33 is shown 

in Scheme 5.15. Terminal acetylene 30 was coupled to iodoDMAP-derivative 12 

under Sonogashira conditions, requiring five days’ gentle heating under an inert 

atmosphere but providing the four-station unit 31 in excellent yield. Subsequent 

hydrogenation of the acetylenes under basic conditions proceeded smoothly, giving 

the BOC-protected four-station block 32 in 97% yield.  
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Scheme 5.15 Synthesis of the four-station block of the track. Reagents and conditions: (i) Pd(PPh3)4, 
CuI, THF/Et3N, 5 days, 45 ˚C, 83%, (ii) Pd(OH)2/C, K2CO3, H2, THF/EtOH, 16 h, RT, 97%. 

 

5.5 Ongoing and Future Work 

 

Removal of the BOC unit should then afford the free-amine four-station block 33. To 

test the efficacy of this proposed deprotection, a small amount of two-station unit 29 

(Scheme 5.14) was dissolved in a 5:1 CH2Cl2:TFA mixed solvent system and the 

solution stirred for one hour at 0 °C. After removal of the solvents, 1H NMR analysis 

of the crude reaction mixture showed that deprotection of the amine had occurred 

quantitatively, with no evidence of unwanted side-reactions. Deprotection of four-

station block 32 should therefore proceed equally as smoothly, generating track 

segment 33. It is then proposed to react amine 33 with phosgene to generate the 

analogous isocyanate, which will then be coupled to the bi-metallic walker/two-

station unit 37 (see Scheme 5.16) to give the completed methylphenol-labelled 

walker track ensemble as depicted in Scheme 5.10. It will also be necessary to couple 

a small amount of amine 33 to the first two-station block 24 in order to generate the 

six station track with no walker unit on it for comparison with the walker/track 

ensemble. 
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The route towards the walker/first-two-station-block ensemble, 37, is outlined in 

Scheme 5.16. Complexation of methylphenol-labelled two-station unit 24 with 

walker precursor 34 (see Chapter Four) was accomplished by stirring the two 

reactants in DMF at room temperature overnight, giving complex 35 in good yield. 

Subsequent coupling of complex 35 and 5-(aminomethyl)-2,2'-bipyridine in CH2Cl2 

afforded the cobalt-free walker unit 36 in 78% yield.  

 

 

Scheme 5.16 Synthesis of the walker on the first two station block of the track. Reagents and 
conditions: (i) d7-DMF, 16 h, RT, 60%, (ii) 5-(aminomethyl)-2,2'-bipyridine, CH2Cl2, 20 h, RT, 78%. 
The walker unit has been coloured for clarity. 

 

The synthesis of bimetallic walker/two-station complex 37 is currently under active 

investigation. It is hoped that iodine oxidation of a solution containing 36 and one 

equivalent each of 2,2'-bipyridine and Co(ClO4)2.6H2O will generate species akin to 

compound 37. Alternatively, a suspension of 36 in acetonitrile can be treated with 

one equivalent of CoCl2.6H2O to give the turquoise complex 38 as the only product 

detectable by ESI-MS (see Scheme 5.17). Addition of one equivalent of 2,2'-

bipyridine to a solution of complex 38 in 9:1 acetonitrile:methanol produced a rapid 

colour change from turquoise to yellow, indicative of the formation of Co(II) tris-

bipy species such as the reduced form of complex 37. However, subsequent attempts 

to oxidise this Co(II) complex with iodine to give the Co(III) homologue 37 have so 
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far proved unsuccessful. Reagents and conditions suitable for this oxidation step are 

now being pursued.  

 

Scheme 5.17 Formation of Co(II) complex 38. Reagents and conditions: (i) CoCl2.6H2O, CH3CN, 
MeOH, 5 mins, RT. The walker unit has been coloured for clarity. 

 

With the completed methylphenol-labelled walker/track ensemble in hand, the 

sequence of walking steps shown in Scheme 5.1 will be attempted. If these prove to 

be successful (as judged by 1H NMR), the synthesis of the analogous tert-

butylphenol-labelled walker/track ensemble will be undertaken and its operation 

investigated. Should the behaviour of this system also be satisfactory, equimolar 

amounts of the methylphenol- and tert-butylphenol-labelled ensembles will be mixed 

together and the processivity of walking will be probed by analysing mass spectra of 

this mixture after each step of the sequence of operations outlined in Scheme 5.1.24 

 

The demonstration of processive, unidirectional walking in such a system would 

represent a major milestone in metal-ligand coordination chemistry. From a scientific 

point of view, comparing the efficiency of walking in solution with that acheived 

when the track is attached to a surface (Figure 5.3) would offer unique insights into 

how molecular machines operate at solid/liquid interfaces (where most of the natural 

motor proteins operate).  
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Figure 5.3 A hand-over-hand molecular walker mounted on (e.g.) a gold surface. “X” indicates a 
potential attachment point for flourescence labels and/or molecular cargo. In order to discourage the 
heterocycles from interacting with the Au surface it may prove necessary to cover the surface with 
long chain alkyl thiols (not shown for clarity).25 
 
 

Furthermore, it is proposed to synthesise an analogous walking ensemble that would 

operate using an inchworm mechanism. A putative design for such a system, based 

on a pseudo-[3]rotaxane is shown in Figure 5.4.  

 

 

Figure 5.4 An inchworm walking system. The ligand exchange reactions necessary for directional 
walking with this ensemble could be the same as with the hand-over-hand system, or could employ a 
different second metal (“M+”). The feet would also have to move in a different order – the leading 
foot would have to move first as drawn. An inchworm mode of locomotion is enforced by the fact that 
the two macrocyles are interlocked with the track, thereby providing vertical confinement to the 
system.26 

 

As they are confined to only one track, inchworm walkers of the type shown in 

Figure 5.4 are not compatible with branched tracks. The same is not true, however, 

of hand-over-hand systems, which raises the intriguing possibility of designing 

walkers that are able to “choose” one pathway over another at track branching points, 

with potential applications in fields as diverse as medicine, molecular logic and 

advanced molecular machines. 
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5.6 Experimental Section 

 

General 

 

5,5'-Dimethyl-2,2'-bipyridine, 6,6'-Dimethyl-2,2'-bipyridine, 3,8-phenanthroline, 

propargyl ether, propargyl alcohol, tri-n-butyltin chloride and all Co(II) salts were 

purchased from the Aldrich Co.  5-Bromo-2,2'-bipyridine (9),13 2,6-diiodo-4-

(dimethylamino)pyridine (11),16 5,5'-bromo-2,2'-bipyridine (13),13 1-methoxy-4-

prop-2-ynyloxymethyl-benzene (15),21 trimethyl-(3-prop-2-ynyloxy-prop-1-ynyl)-

silane (18)14 and 5-(aminomethyl)-2,2'-bipyridine15 were prepared via  literature 

methods. 

 

2(ClO4)- PF6
-

N

N

N
N

Co

N

N

7

a
b

d
c

 

To a solution of 5,5'-dimethyl-2,2'-bipyridine (10 mg, 0.054 mmol, 3.0 equiv.) in 

CH3CN (2 mL) was added a pink solution of Co(ClO4)2.6H2O (7.0 mg, 0.018 mmol, 

1.0 equiv.) in CH3CN (1 mL). The reaction turned yellow at once, and was then 

stirred at RT for 10 minutes. After this time, ferrocinium hexafluorophosphate (12 

mg, 0.037 mmol, 2.0 equiv.) was added as a solid and the reaction turned 

greenish/brown. After stirring at RT for another 30 minutes, the reaction was 

extracted with hexanes (which turned yellow) and the CH3CN fraction concentrated 

in vacuo, giving 7 as a brown/red solid, 210 °C (dec.) (50 mg, 98%). 1H NMR 

(CD3CN, 400 MHz): δ 2.31 (s, 18H, Ha), 6.86 (s, 6H, Hb), 8.25 (d, J = 8.3, 6H, Hc), 

8.50 (d, J = 8.3, 6H, Hd). 
13C NMR (CD3CN, 100 MHz): δ 19.5, 127.0, 143.4, 144.6, 

151.6, 154.2. LRESI-MS (acetonitrile): m/z = 204 [M-PF6-2(ClO4)]
3+.  

 



__________________________________________________________Chapter Five 

 197 

N

N

N

N

N
N

Co

2ClO4
- I-

8
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To a stirred solution of 3,8-phenanthroline (20 mg, 0.11 mmol, 3.0 equiv.) in CH3CN 

(2 mL) was added a pink solution of Co(ClO4)2.6H2O (14 mg, 0.037 mmol, 1.0 

equiv.) in CH3CN (3 mL). The reaction turned yellow at once, and was then stirred at 

RT for 10 minutes. After this time, a solution of I2 (9.0 mg, 0.037 mmol, 1.0 equiv.) 

in CH3CN (1 mL) was added and the reaction turned orange/brown. After stirring at 

RT for another 5 minutes, the reaction was extracted exhaustively with hexanes (until 

such time as no more colour was extracted from the reaction) and the CH3CN 

fraction was concentrated under reduced pressure to yield 8 as a tan solid, 220 °C 

(dec.) (0.10 g, 98%). 1H NMR (CD3CN, 400 MHz): δ 7.39 (d, J = 5.5, 6H, Hd), 7.76 

(dd, J1 = 8.3, J2 = 5.5, 6H, Hc), 8.31 (s, 6H, Ha), 8.86 (dd, J1 = 8.3, J2 = 1.0, 6H, Hb). 

13C NMR (CD3CN, 100 MHz): δ 129.7, 129.9, 133.4, 143.0, 146.8, 154.3. LRESI-

MS (acetonitrile): m/z = 200 [M-I-2(ClO4)]
3+.  

 

N

N

O

a

c

db

h

g

e
f

i
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j

 

A 250 mL RBF was charged with THF (120 mL), Et3N (14 mL), 9 (3.00 g, 12.8 

mmol, 1.0 equiv.) and propargyl ether (5.00 g, 53.1 mmol, 4.2 equiv.) and degassed 

for 30 minutes. Pd(PPh3)4 (1.50 g, 1.28 mmol, 0.1 equiv.) and CuI (0.120 g, 0.640 

mmol, 0.05 equiv.) were then added and the reaction heated to 55 ˚C for 22 h. After 

this time, the reaction was allowed to cool to RT, quenched with a saturated solution 

of NH4Cl (100 mL) and extracted with CH2Cl2 (3 x 100 mL). The combined organic 

layers were washed with brine and dried over Na2SO4. Column chromatography on 

silica (1% MeOH in CH2Cl2) gave 10 as a tan solid, m.p. 60-62 ˚C (2.77 g, 87%). 

1H NMR (CDCl3, 400 MHz): δ 2.50 (t, J = 2.4, 1H, Hj), 4.40 (d, J = 2.4, 2H, Hi), 

4.53 (s, 2H, Hh), 7.29-7.33 (m, 1H, Hb), 7.79-7.87 (m, 2H, Hc,f), 8.36-8.40 (m, 2H, 

Hd,e), 8.66-8.69 (m, 1H, Ha), 8.72-8.74 (m, 1H, Hg). 
13C NMR (CDCl3, 100 MHz): δ 

56.7, 57.2, 75.2, 78.7, 83.7, 88.3, 119.3, 120.2, 121.3, 123.9, 136.9, 139.6, 149.2, 
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151.7, 155.1, 155.2. LRESI-MS (acetonitrile): m/z = 249 [M+H]+, 271 [M+Na]+. 

HRESI-MS: m/z = 249.1025 [M+H]+ (calc. for C16H13N2O, 249.1022 [M+H]+).  

 

N

N

O
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N

N
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c
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A 250 mL RBF was charged with THF (120 mL), Et3N (14 mL), 10 (1.30 g, 5.20 

mmol, 1.0 equiv.) and 11 (5.82 g, 15.6 mmol, 3.0 equiv.) and degassed for 30 

minutes. Pd(PPh3)4 (0.600 g, 0.520 mmol, 0.1 equiv.) and CuI (0.100 g, 0.520 mmol, 

0.1 equiv.) were then added and the reaction heated to 55 ˚C for 22 h. After this time, 

the reaction was allowed to cool to RT, quenched with a saturated solution of NH4Cl 

(100 mL) and extracted with CH2Cl2 (3 x 100 mL). The combined organic layers 

were washed with brine and dried over Na2SO4. Column chromatography on silica 

(1% MeOH in CH2Cl2) gave 12 as a orange solid, m.p. 128-130 ˚C (1.88 g, 73%). 

1H NMR (CDCl3, 400 MHz): δ 2.92 (s, 6H, Hk), 4.52 (s, 2H, Hi), 4.55 (s, 2H, Hh), 

6.62 (d, J = 2.3, 1H, Hj), 6.82 (d, J = 2.3, 1H, Hl), 7.27-7.32 (m, 1H, Hb), 7.77-7.87 

(m, 2H, Hc,f), 8.32-8.41 (m, 2H, Hd,e), 8.65 (d, J = 4.7, 1H, Ha), 8.71 (d, J = 1.4, 1H, 

Hg). 
13C NMR (CDCl3, 100 MHz): δ 39.1, 57.3, 57.5, 83.5, 83.8, 85.8, 88.5, 110.1, 

116.2, 118.2, 119.3, 120.1, 121.2, 123.9, 136.8, 139.6, 141.9, 149.1, 151.7, 154.3, 

155.0, 155.2. LRESI-MS (MeOH): m/z = 495 [M+H]+. HRESI-MS: m/z = 495.0688 

[M+H]+ (calc. for C23H20IN4O, 495.0676 [M+H]+).  

 

N

N
Br

HO

f
e

g

b

d
a

h

c

14

 

13 (0.333 g, 1.06 mmol, 1.0 equiv.) was dissolved in a mixture of MeOH (20 mL), 

toluene (10 mL) and Et3N (10 mL) and Pd(dppf)2Cl2 (43.0 mg, 53.0 µmol, 0.05 

equiv.) and CuI (20.0 mg, 0.106 mmol, 0.1 equiv.) were added. Propargyl alcohol 

(65.0 mg, 68.0 µL, 1.17 mmol, 1.1 equiv.) was then added to this mixture via 

syringe, and the reaction heated to 70 °C for 20 minutes at atmospheric pressure in a 

CEM microwave reactor (power level = 150 W). After this time, the solvents were 

removed in vacuo and the resulting brown residue purified by column 
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chromatography on silica (2% MeOH in CH2Cl2) to give 14 as a tan solid (80.0 mg, 

26%). 1H NMR (CDCl3, 400 MHz): δ 1.80-1.88 (br, 1H, Ha), 4.55 (d, J = 3.7, 2H, 

Hb), 7.84 (dd, J1 = 8.2, J2 = 2.1, 1H, Hc), 7.94 (dd, J1 = 8.5, J2 = 2.4, 1H, Hf), 8.30-

8.36 (m, 2H, Hd,e), 8.69-8.73 (m, 2H, Hg,h). 
13C NMR (CDCl3, 100 MHz): δ 51.6, 

82.6, 91.6, 119.8, 120.2, 121.4, 122.5, 139.5, 139.6, 150.3, 151.7, 153.8, 154.1. 

LRESI-MS (MeOH): m/z = 289 [M79Br+H]+, 291 [M81Br+H]+. HRESI-MS: m/z = 

288.9966 [M+H]+ (calc. for C13H10
79BrN2O, 288.9971 [M+H]+).  

 

O

O

Sn

16

a

c

d

b

e
f

g

h
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To a solution of 15 (9.52 g, 54.0 mmol, 1.0 equiv.) in THF (150 mL) was added n-

BuLi (20.0 mL of a 2.7 M solution in hexanes, 54.0 mmol, 1.0 equiv.) dropwise at    

-78 ˚C and the solution stirred at this temperature for 1 h. After this time, Bu3SnCl 

(17.6 g, 14.7 mL, 54.0 mmol, 1.0 equiv.) was added dropwise over 20 minutes and 

the solution allowed to stir at RT overnight. The reaction mixture was then poured 

into brine (500 mL), extracted with Et2O (3 x 200 mL), dried over Na2SO4 and 

concentrated in vacuo to afford 16 as a pale yellow oil (24.7 g, 98%). 1H NMR 

(CDCl3, 400 MHz): δ 0.93 (t, J = 7.4, 9H, Hi), 1.00-1.07 (m (with Sn satellites), 6H, 

Hf), 1.30-1.43 (m, 6H, Hh), 1.57-1.65 (m (with Sn satellites), 6H, Hg), 3.79 (s, 3H, 

Ha), 4.17 (s (with Sn satellites), 2H, He), 4.57 (s, 2H, Hd), 6.86-6.90 (m, 2H, Hb), 

7.28-7.32 (m, 2H, Hc). 
13C NMR (CDCl3, 100 MHz): δ 10.9, 13.5, 26.8, 28.7, 55.0, 

57.5, 70.4, 89.6, 105.8, 113.6, 129.6 (x 2), 159.1. LRESI-MS (FAB 3-Noba): m/z = 

409 [M-Bu]+. HRESI-MS: m/z = 409.1185 [M-Bu]+ (calc. for C19H29O2Sn, 409.1184 

[M-Bu]+). 
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13 (340 mg, 1.00 mmol, 1.0 equiv.) and Pd(PPh3)4 (58.0 mg, 50.0 µmol, 0.05 equiv.) 

were suspended in DMF (8 mL) and the mixture heated to 110 ˚C, at which 

temperature all the solids dissolved. To this solution was added 16 (512 mg, 1.10 

mmol, 1.1 equiv.) via syringe and the solution heated to 110 ˚C overnight. In the 

morning, the reaction was cooled to 0 ˚C, quenched with a 1 M solution of NaOH in 

MeOH (8 mL) and stirred at 0 ˚C for 1 h. The mixture was then poured into brine 

(150 mL) and extracted with CH2Cl2 (5 x 50 mL). The combined organic extracts 

were then dried over Na2SO4 and concentrated in vacuo. The resulting crude residue 

was subjected to column chromatography on silica (CH2Cl2) to give 17 as a white 

solid, m.p. 105-107 ˚C (173 mg, 42%). 1H NMR (CDCl3, 400 MHz): δ 3.81 (s, 3H, 

Ha), 4.40 (s, 2H, He), 4.62 (s, 2H, Hd), 6.88-6.93 (m, 2H, Hb), 7.31-7.35 (m, 2H, Hc), 

7.85 (dd, J1 = 8.3, J2 = 2.1, 1H, Hf), 7.94 (dd, J1 = 8.5, J2 = 2.4, 1H, Hj), 8.30-8.37 

(m, 2H, Hh,i), 8.71-8.73 (m, 2H, Hg,k). 
13C NMR (CDCl3, 100 MHz): δ 55.2, 57.4, 

71.6, 83.1, 89.8, 113.8, 119.9, 120.1, 121.4, 122.5, 129.2, 129.8, 139.5, 139.6, 150.2, 

151.8, 153.8, 154.0, 159.4. LRESI-MS (MeOH): m/z = 431 [M79Br+Na]+, 433 

[M81Br+Na]+. HRESI-MS: m/z = 409.0543 [M79Br+H]+ (calc. for C21H18
79BrN2O2, 

409.0546 [M79Br+H]+).  

 

O
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To a solution of 18 (9.27 g, 55.7 mmol, 1.0 equiv.) in THF (250 mL) was added n-

BuLi (20.6 mL of a 2.7 M solution in hexanes, 55.7 mmol, 1.0 equiv.) dropwise at    

-78 ˚C and the solution stirred at this temperature for 30 minutes. After this time, 

Bu3SnCl (18.1 g, 55.7 mmol, 1.0 equiv.) was added dropwise over 20 minutes and 

the solution then allowed to stir at RT for 1 h. The reaction mixture was then poured 

into brine (500 mL), extracted with Et2O (3 x 200 mL), dried over Na2SO4 and 

concentrated in vacuo to afford 19 as a yellow oil (25.1 g, 99%). 1H NMR (CDCl3, 
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400 MHz): δ 0.14 (s, 9H, Ha), 0.87 (t, J = 7.3, 9H, Hg), 0.93-0.99 (m (with Sn 

satellites), 6H, Hd), 1.24-1.36 (m, 6H, Hf), 1.49-1.57 (m (with Sn satellites), 6H, He), 

4.19-4.24 (m (with Sn satellites) 4H, Hb,c). 
13C NMR (CDCl3, 100 MHz): δ  -0.3, 

10.9, 13.5, 26.8, 28.7, 56.7, 57.3, 90.3, 91.3, 100.8, 104.7. LRESI-MS (FAB 3-

Noba): m/z = 399 [M-Bu]+. HRESI-MS: m/z = 399.1167 [M-Bu]+ (calc. for 

C17H31OSiSn, 399.1161 [M-Bu]+).  
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13 (1.32 g, 3.20 mmol, 1.0 equiv.), Pd(PPh3)4 (280 mg, 0.256 mmol, 0.08 equiv.) and 

19 (2.91 g, 6.40 mmol, 2.0 equiv.) were suspended in DMF (60 mL) and the mixture 

heated to 110 ˚C overnight. After this time, the reaction mixture was cooled to 0 ˚C 

and a 1 M solution of NaOH in MeOH (60 mL) was added and the resulting mixture 

stirred at 0 ˚C for 1 h. This was then poured into brine (500 mL) and extracted with 

CH2Cl2 (5 x 100 mL). The combined organic extracts were then washed with brine 

and dried over Na2SO4, before concentration under reduced pressure. The crude 

residue was then purified by column chromatography on silica (2% MeOH in 

CH2Cl2) to give 20 as a white solid, m.p. 74-76 ˚C (1.15 g, 85%). 1H NMR (CDCl3, 

400 MHz): δ  2.51 (t, J = 2.4, 1H, Hn), 3.81 (s, 3H, Ha), 4.35 (d, J = 2.4, 2H, Hm), 

4.40 (s, 2H, He), 4.54 (s, 2H, Hl), 4.62 (s, 2H, Hd), 6.89-6.93 (m, 2H, Hb), 7.31-7.35 

(m, 2H, Hc), 7.86 (dd, J1 = 8.2, J2 = 2.1, 2H, Hf,j), 8.38 (d, J = 8.2, 2H, Hh,i), 8.71-

8.75 (m, 2H, Hg,k). 
13C NMR (CDCl3, 100 MHz): δ 55.2, 56.8, 57.2, 57.4, 71.5, 75.2, 

78.7, 83.2, 83.7, 88.6, 89.8, 113.8, 119.6, 119.9, 120.5 (x 2), 129.2, 129.8, 139.6 (x 

2), 151.8 (x 2), 154.2, 154.4, 159.4. LRESI-MS (MeOH): m/z = 423 [M+H]+, 445 

[M+Na]+. HRESI-MS: m/z = 423.1712 [M+H]+ (calc. for C27H23N2O3, 423.1703 

[M+H]+). 
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To a solution of 20 (400 mg, 0.95 mmol, 1.0 equiv.) in THF (8 mL) and Et3N (2 mL) 

was added Pd(PPh3)4 (56 mg, 0.048 mmol, 0.05 equiv.) and CuI (18 mg, 0.095 

mmol, 0.1 equiv.) at RT. To this was added 21 (480 mg, 1.1 mmol, 1.2 equiv.) as a 

solid and the mixture heated to 55 ˚C overnight. After this time, the reaction was 

poured into CH2Cl2 (50 mL), quenched with an aqueous NH4Cl solution (25 mL) and 

the organic phase washed with water (20 mL) and brine. After drying (Na2SO4) and 

removal of the solvents under reduced pressure, the crude residue was subjected to 

column chromatography on silica (1% MeOH in CH2Cl2) to give 22 as a yellow gum 

(0.590 g, 87%). 1H NMR (CDCl3, 400 MHz): δ 2.04-2.10 (m, 2H, Hr), 2.27 (s, 3H, 

Hv), 2.61 (t, J = 7.0, 2H, Hq), 2.98 (s, 6H, Ho), 3.81 (s, 3H, Ha), 4.06 (t, J = 6.1, 2H, 

Hs), 4.40 (s, 2H, He), 4.54 (s, 2H, Hm), 4.59 (s, 2H, Hl), 4.62 (s, 2H, Hd), 6.56 (d, J = 

2.5, 1H, Hn), 6.62 (d, J = 2.5, 1H, Hp), 6.78-6.83 (m, 2H, Ht), 6.88-6.93 (m, 2H, Hb), 

7.04-7.09 (m, 2H, Hu), 7.30-7.35 (m, 2H, Hc), 7.86 (dt, J1 = 8.2, J2 = 2.3, 2H, Hf,k), 

8.37 (dd, J1 = 8.2, J2 = 2.0, 2H, Hh,i), 8.71-8.74 (m, 2H, Hg,j). 
13C NMR (CDCl3, 100 

MHz): δ 16.0, 20.4, 28.1, 39.1, 55.2, 57.4 (x 3), 66.3, 71.5, 80.9, 82.4, 83.2, 83.7, 

86.8, 88.4, 88.9, 89.7, 109.1, 109.2, 113.8, 114.3, 119.7, 119.8, 120.5 (x 2), 129.2 (x 

2), 129.8 (x 2), 139.6, 139.7, 142.1, 143.5, 151.8 (x 2), 154.2, 154.3 (x 2), 156.6, 

159.4. LRESI-MS (MeOH): m/z = 715 [M+H]+. HRESI-MS: m/z = 715.3270 

[M+H]+ (calc. for C46H43N4O4, 715.3279). 
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To a solution of 22 (320 mg, 0.448 mmol, 1.0 equiv.) in THF (5 mL) and D2O (0.1 

mL) was added Pd(OD)2/C (20% b/w, 64.0 mg) and K2CO3 (622 mg, 4.50 mmol, 

10.0 equiv.) and the mixture thoroughly degassed with nitrogen and then deuterium. 

The mixture was then allowed to stir under a deuterium atmosphere at RT overnight 

and subsequent filtration through Mg2SO4 and concentration of the reaction mixture 

in vacuo gave 23 as an analytically pure pale brown oil (325 mg, 99%). 1H NMR 

(CDCl3, 400 MHz): δ 1.49-1.57 (m, 2H, Hq), 1.78-1.86 (m, 2H, Hr), 2.29 (s, 3H, Hv), 

2.99 (s, 6H, Ho), 3.42-3.52 (m, 6H, He,l,m), 3.82 (s, 3H, Ha), 3.94 (t, J = 6.6, 2H, Hs), 

4.46 (s, 2H, Hd), 6.24 (d, J = 2.3, 1H, Hp), 6.27 (d, J = 2.3, 1H, Hn), 6.77-6.83 (m, 

2H, Ht), 6.91 (d, J = 8.6, 2H, Hb), 7.05-7.10 (m, 2H, Hu), 7.29 (d, J = 8.6, 2H, Hc), 

7.60-7.67 (m, 2H, Hf,k), 8.26-8.32 (m, 2H, Hh,i), 8.50-8.55 (m, 2H, Hg,j). 
13C NMR 

(CDCl3, 100 MHz): δ 20.3, 25.6, 28.1-30.3 (br, 6 x CD2), 29.1, 34.4 (br, CD2), 37.9 

(br, CD2), 39.1, 55.1, 67.8, 68.4, 69.2, 70.3, 72.6, 102.8 (x 2), 113.6, 114.2, 120.3 (x 

2), 129.2, 129.4, 129.7, 130.3, 136.7 (x 2), 136.9, 137.0, 149.2 (x 2), 153.9, 154.0, 

155.1, 156.8, 159.0, 160.9, 161.5. LRESI-MS (MeOH): m/z = 748 [M+H]+. HRESI-

MS: m/z = 747.5538 [M+H]+ (calc. for C46H43
2H16O4N4, 747.5535 [M+H]+).  
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To a solution of 23 (1.04 g, 1.39 mmol, 1.0 equiv.) in dioxane (50 mL) and conc. 

HCl (10 mL) was added triisopropylsilane (6.60 g, 8.54 mL, 41.7 mmol, 30 equiv.) 

and the reaction stirred at RT for 30 minutes. After this time, KHCO3 was added 

until no more bubbling was observed and pH = 7. The reaction was filtered through 

celite, concentrated in vacuo and the crude residue purified by column 

chromatography on alumina (Bockmann type I, neutral, activated), eluting in 

EtOAc:MeOH (95:5) to give 24 as a viscous colourless gum (0.750 g, 86%). 

1H NMR (CDCl3, 400 MHz): δ 1.48-1.54 (m, 2H, Hn), 1.75-1.85 (m, 2H, Ho), 2.27 

(s, 3H, Hs), 2.97 (s, 6H, Hl), 3.43 (s, 2H, Hi), 3.46 (s, 2H, Hj), 3.69 (s, 2H, Hb), 3.91 

(t, J = 6.6, 2H, Hp), 6.21 (d, J = 2.3, 1H, Hm), 6.24 (d, J = 2.3, 1H, Hk), 6.77 (d, J = 

8.4, 2H, Hq), 7.05 (d, J = 8.4, 2H, Hr), 7.60-7.67 (m, 2H, Hc,h), 8.23-8.29 (m, 2H, 

He,f), 8.47-8.54 (m, 2H, Hg,d). 
13C NMR (CDCl3, 100 MHz): δ 20.3, 25.6, 27.8-30.3 

(br, 5 x CD2), 29.1, 32.8 (br, CD2), 34.0 (br, CD2), 37.2 (br, CD2), 39.2, 61.2, 67.8, 

69.3, 70.2, 102.9, 103.0, 114.2, 120.4 (x 2), 129.5, 129.7, 136.7, 136.8, 137.0, 137.1, 

149.1, 149.2, 153.9 (x 2), 155.4, 156.8, 160.4, 161.0. LRESI-MS (MeOH): m/z = 627 

[M+H]+. HRESI-MS: m/z = 627.4949 [M+H]+ (calc. for C38H35
2H16O3N4, 627.4965 

[M+H]+).  
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25 (2.18 g, 6.00 mmol, 1.0 equiv.) and hydrazine monohydrate (0.350 mL, 6.00 

mmol, 1.0 equiv.) were suspended in EtOH (50 mL) and the mixture heated to reflux, 

at which point all the reactants dissolved. After 2 h reflux, additional hydrazine 

monohydrate (50.0 µL, 0.860 mmol, 0.15 equiv.) was added and the solution stirred 

at reflux for a further 2 h. At this time, the reaction mixture was allowed to cool to 

RT, diluted with Et2O (300 mL) and the solids removed via filtration. The filtrate 

was concentrated under reduced pressure and the resulting crude residue purified by 

column chromatography on silica (20% MeOH in CH2Cl2 with 1% Et3N) to give 26 
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as a yellow solid, m.p. 30-32 ˚C (1.29 g, 92%). 1H NMR (CDCl3, 400 MHz): δ 3.92 

(s, 2H, Hd), 7.24-7.30 (m, 2H, Ha,b), 7.58 (dd, J1 = 6.5, J2 = 2.1, 1H, Hc). 
13C NMR 

(CDCl3, 100 MHz): δ 47.2, 117.8, 120.2, 132.8, 137.9, 164.2. LRESI-MS 

(acetonitrile): m/z = 235 [M+H]+, 257 [M+Na]+. HRESI-MS: m/z = 234.9726 

[M+H]+ (calc. for C6H8IN2, 234.9727 [M+H]+).  
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27  

BOC anhydride (3.60 g, 16.5 mmol, 1.1 equiv.) was dissolved in CH2Cl2 (35 mL) 

and the solution cooled to 0 ˚C. To this was added 26 (3.51 g, 15.0 mmol, 1.0 equiv.) 

as a solid in one portion and the reaction mixture stirred at RT overnight. Removal of 

the solvents in vacuo, followed by column chromatography on silica (20% EtOAc in 

CH2Cl2) yielded 27 as a white solid m.p. 84-86 ˚C (4.86 g, 97%). 1H NMR (CDCl3, 

400 MHz): δ 1.46 (s, 9H, Hf), 4.38 (d, J = 5.8, 2H, Hd), 5.34-5.48 (br, 1H, He), 7.23-

7.32 (m, 2H, Ha,b), 7.59-7.63 (m, 1H, Hc). 
13C NMR (CDCl3, 100 MHz): δ 28.4, 45.4, 

79.7, 117.4, 120.8, 133.4, 138.1, 155.9, 159.9. LRESI-MS (acetonitrile): m/z = 335 

[M+H]+, 357 [M+Na]+. HRESI-MS: m/z = 335.0250 [M+H]+ (calc. for C11H16IN2O2, 

335.0251 [M+H]+).  
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27 (281 mg, 0.840 mmol, 0.95 equiv.) was dissolved in THF (10 mL) and Et3N (7 

mL) and the solution heated to 45 ˚C. At this temperature, Pd(PPh3)4 (39.0 mg, 34.0 

µmol, 0.04 equiv.) and CuI (6.40 mg, 34.0 µmol, 0.04 equiv.) were added as solids, 

and then 28 (435 mg, 0.884 mmol, 1.0 equiv.) was added as a solution in THF (10 

mL) dropwise over the course of 4 h. The reaction mixture was then stirred at 45 ˚C 

for 5 days, before being allowed to cool to RT and poured into concentrated NH4OH 

(150 mL). The aqueous phase was extracted with EtOAc (5 x 50 mL) and the 
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combined organic fractions dried over Na2SO4. The crude residue was then purified 

by column chromatography on silica (25% EtOAc in CH2Cl2) to afford 29 as a white 

solid, m.p. 88-90 ˚C (475 mg, 81%). 1H NMR (CDCl3, 400 MHz): δ 0.20 (s, 9H, Ha), 

1.45 (s, 9H, Ht), 4.36 (s, 2H, Hb), 4.43 (d, J = 5.5, 2H, Hr), 4.55 (s, 2H, Hc), 4.63 (s, 

4H, Hm,n), 5.42-5.54 (br, 1H, Hs), 7.25 (d, J = 6.5, 1H, Hq), 7.37 (d, J = 7.6, 1H, Ho),  

7.48-7.52 (m, 2H, Hd,l), 7.60-7.65 (m, 1H, Hp), 7.80-7.85 (m, 2H, He,k), 7.94 (t, J = 

7.8, 1H, Hh),  8.48-8.52 (m, 2H, Hg,i), 8.56 (d, J = 8.0, 2H, Hf,j). 
13C NMR (CDCl3, 

100 MHz): δ -0.2, 28.3, 29.6, 45.7, 57.1, 57.4, 57.5, 57.7, 84.0, 84.2, 84.5, 86.0, 86.1, 

86.4, 92.3, 100.4, 120.6, 120.7, 121.4, 121.7, 125.8, 127.3, 128.4, 128.5, 131.8, 

131.9, 132.0, 132.1, 136.9, 137.0, 137.9, 141.8, 141.9 (x 2), 154.4, 156.4, 158.2. 

LRESI-MS (acetonitrile): m/z = 697 [M+H]+, 719 [M+Na]+. HRESI-MS: m/z = 

696.3004 [M+H]+ (calc. for C41H42N5O4Si, 696.3001 [M+H]+).  
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29 (562 mg, 0.810 mmol, 1.0 equiv.) were dissolved in MeOH (40 mL) and THF (30 

mL) and cooled to 0 ˚C. Powdered K2CO3 (138 mg, 1.00 mmol, 1.2 equiv.) was 

added at this temperature and the reaction monitored by TLC on silica (25% EtOAc 

in CH2Cl2). When TLC analysis showed complete consumption of 29, the reaction 

mixture was poured into a saturated NH4Cl solution (250 mL) and extracted with 

CH2Cl2 (5 x 100 mL). The combined organic extracts were then washed with brine 

(200 mL) and dried over Na2SO4. Removal of the solvents in vacuo followed by 

column chromatography on silica (25% EtOAc in CH2Cl2) gave 30 as a white solid, 

m.p. 115-117 ˚C (500 mg, 99%). 1H NMR (CDCl3, 400 MHz): δ 1.45 (s, 9H, Ht), 

2.50 (t, J = 2.4, 1H, Ha), 4.37 (d, J = 2.4, 2H, Hb), 4.42 (d, J = 5.6, 2H, Hr), 4.56 (s, 

2H, Hc), 4.63 (s, 4H, Hm,n), 5.40-5.53 (br, 1H, Hs), 7.25 (d, J = 7.7, 1H, Hq), 7.37 (d, 

J = 7.7, 1H, Ho),  7.47-7.52 (m, 2H, Hd,l), 7.63 (t, J = 7.7, 1H, Hp), 7.82 (t, J = 7.8, 

2H, He,k), 7.94 (t, J = 7.8, 1H, Hh),  8.48-8.52 (m, 2H, Hg,i), 8.54-8.59 (m, 2H, Hf,j). 

13C NMR (CDCl3, 100 MHz): δ 28.3, 45.7, 56.8, 57.1, 57.4, 57.5, 75.2, 78.8, 79.6, 
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83.9, 84.0, 84.4, 86.0, 86.3, 86.4, 120.7 (x 2), 121.4, 121.7 (x 2), 125.8, 127.3 (x 2), 

136.9, 137.0 (x 2), 137.9, 141.8, 141.9, 154.4 (x 2), 155.9, 156.4 (x 2), 157.0, 158.2. 

LRESI-MS (MeOH): m/z = 624 [M+H]+, 646 [M+Na]+. HRESI-MS: m/z = 624.2605 

[M+H]+ (calc. for C38H34N5O4, 624.2605 [M+H]+). 

 

N
N

N
OO

N

N

N

O
N

N

n
r

p

qo

m
t

s

u

v

w

x y

aa

bbz
H
N O

a

c
db

ih

e
f

j l

k

cc

dd

g

31

O

ee

 

30 (220 mg, 0.350 mmol, 1.0 equiv.) was dissolved in THF (10 mL) and Et3N (7 mL) 

and the solution heated to 45 ˚C. At this temperature, Pd(PPh3)4 (25.0 mg, 22.0 µmol, 

0.04 equiv.) and CuI (4.00 mg, 22.0 µmol, 0.04 equiv.) were added as solids, and 

then 12 (208 mg, 42.0 µmol, 1.2 equiv.) was added as a solution in THF (10 mL) 

dropwise over the course of 3 h. The reaction mixture was then stirred at 45 ˚C for 5 

days, allowed to cool to RT and then poured into a concentrated NH4OH solution 

(150 mL). The aqueous phase was extracted with EtOAc (5 x 50 mL) and the 

combined organic fractions dried over Na2SO4. The crude residue was then purified 

by column chromatography on silica (25% EtOAc in CH2Cl2, followed by 25% 

EtOAc in CH2Cl2 with 3% Et3N) to afford 31 as a white solid, 75 ˚C (dec.) (289 mg, 

83%). 1H NMR (CDCl3, 400 MHz): δ 1.45 (s, 9H, Hee), 2.97 (s, 6H, Hk), 4.41 (d, J = 

5.6, 2H, Hcc), 4.54-4.63 (m, 12H, Hh,i,m,n,x,y), 5.43-5.59 (br, 1H, Hdd), 6.63-6.67 (m, 

2H, Hj,l), 7.24 (d, J = 7.7, 1H, Hbb), 7.27-7.32 (m, 1H, Hb), 7.36 (d, J = 7.7, 1H, Hz), 

7.47-7.52 (m, 2H, Ho,w), 7.61 (t, J = 7.7, 1H, Haa), 7.77-7.89 (m, 4H, Hc,f,p,v), 7.92 (t, 

J = 7.8, 1H, Hs), 8.34-8.40 (m, 2H, Hd,e), 8.47-8.51 (m, 2H, Hr,t), 8.53-8.57 (m, 2H, 

Hq,u), 8.64-8.68 (m, 1H, Ha), 8.72 (d, J = 1.6, 1H, Hg). 
13C NMR (CDCl3, 100 MHz): 

δ 28.3, 29.6, 39.1, 45.7, 57.3, 57.4 (x 3), 57.5, 79.6, 82.6, 82.7, 83.7, 83.9, 84.1, 84.4, 

86.0, 86.3, 86.4, 86.6, 86.7, 88.6, 109.6 (x 2), 119.3, 120.2, 120.6, 120.7, 121.3 (x 2), 

121.6, 121.7, 123.9, 125.8, 127.3 (x 2), 136.8, 136.9 (x 3), 137.8, 139.6, 141.8 (x 2), 

141.9, 142.5 (x 2), 149.2, 151.7, 154.2, 154.4 (x 3), 155.1, 155.2, 156.3, 156.4, 

158.2. LRESI-MS (MeOH): m/z = 991 [M+H]+, 1013 [M+Na]+. HRESI-MS: m/z = 

990.4063 [M+H]+ (calc. for C61H52N9O5, 990.4086 [M+H]+). 
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31 (0.600 g, 0.606 mmol, 1.0 equiv.) was dissolved in THF/EtOH (20 mL/20 mL) 

and K2CO3 (0.168 g, 1.21 mmol, 2.0 equiv.) was added. To this was added 

Pd(OH2)/C (25% b/w, 0.150 g) and the suspension thoroughly degassed with 

nitrogen and then hydrogen. The reaction was then stirred under an hydrogen 

atmosphere overnight. After this time, fitration through celite followed by removal of 

the solvents from the filtrate under reduced pressure afforded 32 as a viscous brown 

gum, which was used without further purification (0.595 g, 97%). 1H NMR (CDCl3, 

400 MHz): δ 1.46 (s, 9H, Hqq), 1.88-2.05 (m, 8H, Hi,l,r,jj), 2.09-2.18 (m, 4H, Hu,gg), 

2.70-2.79 (m, 6H, Hh,m,q), 2.82-2.88 (m, 2H, Hkk), 2.92-2.99 (m, 10H, Ho,v,ff), 3.42-

3.55 (m, 12H, Hj,k,s,t,hh,ii), 4.40 (d, J = 5.1, 2H, Hoo), 5.56-5.66 (br, 1H, Hpp), 6.23-

6.26 (m, 2H, Hn,p), 7.04 (t, J = 7.7, 2H, Hll,nn), 7.18 (d, J = 7.6, 2H, Hw,ee), 7.26-7.30 

(m, 1H, Hb), 7.53 (t, J = 7.7, 1H, Hmm), 7.62-7.66 (m, 1H, Hf), 7.71-7.82 (m, 3H, 

Hc,x,dd), 7.90 (t, J = 7.8, 1H, Haa), 8.29 (d, J = 8.1, 1H, He), 8.33-8.36 (m, 1H, Hd), 

8.40-8.44 (m, 2H, Hy,cc), 8.47 (d, J = 7.8, 2H, Hz,bb), 8.51 (d, J = 1.7, 1H, Hg), 8.64-

8.67 (m, 1H, Ha). 
13C NMR (CDCl3, 100 MHz): δ 28.4, 29.3, 29.5 (x 2), 29.7, 30.2 (x 

2), 31.0, 34.7, 34.8 (x 2), 35.4 (x 2), 39.2, 45.7, 69.5, 70.1, 70.2 (x 2), 70.4, 70.5, 

79.4, 103.0 (x 2), 118.3 (x 2), 118.7, 120.7, 120.8 (x 4), 121.1, 122.8 (x 2), 123.4, 

136.9 (x 4), 137.5, 137.6, 149.1, 149.4, 153.9, 155.3, 155.6 (x 4), 156.0, 156.2, 

156.5, 157.2, 161.0 (x 2), 161.1, 161.2. LRESI-MS (MeOH): m/z = 1014 [M+H]+. 

HRESI-MS: m/z = 1014.5963 [M+H]+ (calc. for C61H76N9O5, 1014.5969 [M+H]+).  
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To a solution of 24 (0.361 g, 0.576 mmol, 1.0 equiv.) in DMF (10 mL) was added 34 

(0.422 g, 0.576 mmol, 1.0 equiv.) as a solid in one portion and the solution stirred at 

RT for 16 h. After this time, the reaction was poured into CH2Cl2 (200 mL), washed 

with water (2 x 500 mL) and brine (100 mL) and dried over Na2SO4. After removal 

of the solvents under reduced pressure, the crude residue was purified by column 

chromatography on silica (CH2Cl2:acetone 1:1, then straight acetone) to afford 35 as 

a yellow foam, m.p. 64-66 °C (0.456 g, 60%). 1H NMR (CDCl3, 400 MHz): δ 1.26-

1.32 (m, 2H, Hn), 1.43-1.53 (m, 4H, HH,I), 1.60-1.84 (m, 6H, Ho,G,J), 2.28 (s, 3H, Hs), 

2.63 (t, J = 7.1, 2H, HK), 2.80-2.88 (m, 4H, HL), 3.09 (s, 6H, Hl), 3.22 (s, 2H, Hj), 

3.36 (s, 2H, Hi), 3.69 (s, 2H, Hb), 3.86 (t, J = 6.4, 2H, Hp), 3.98-4.09 (m, 6H, HD,F), 

6.11 (d, J = 2.7, 1H, Hm), 6.16 (d, J = 2.7, 1H, Hk), 6.74-6.81 (m, 6H, Hq,C), 7.02-

7.10 (m, 8H, Hr,A,B), 7.23 (s, 2H, HE), 7.59 (dd, J1 = 8.1, J2 = 2.0, 1H, Hg), 7.65 (dd, 

J1 = 8.1, J2 = 2.0, 1H, Hd), 8.24 (d, J = 8.1, 1H, Hf), 8.28 (d, J = 8.1, 1H, He), 8.47 

(d, J = 2.0, 1H, Hh), 8.51 (d, J = 2.0, 1H, Hc). 
13C NMR (CDCl3, 100 MHz): δ 20.3, 

24.3, 25.1. 25.4, 25.6, 27.7-30.5 (br, 6 x CD2), 28.0, 28.1, 28.9, 30.7, 34.5 (br, CD2), 

37.5 (br, CD2), 39.3, 49.6, 61.3, 67.5, 69.0, 69.1, 69.8, 103.4 (x 2), 110.6, 114.1, 

120.3, 120.4, 126.0, 127.4, 127.7, 129.5, 129.7, 136.7 (x 2), 136.8, 137.0, 141.2, 

149.1 (x 2), 153.8 (x 2), 153.9, 155.3, 156.7, 161.2, 161.8, 168.4, 168.8, 169.2, 

171.2. LRESI-MS (acetonitrile): m/z = 1318 [M106Pd+H]+.  
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To a solution of 5-(aminomethyl)-2,2'-bipyridine (85.0 mg, 0.459 mmol, 1.5 equiv.) 

in CH2Cl2 (10 mL) was added a solution of 35 (0.402 g, 0.305 mmol, 1.0 equiv.) in 

CH2Cl2 (20 mL), and the resulting yellow solution stirred at RT for 20 h. After this 

time, the reaction was concentrated under reduced pressure and the resulting crude 

foam purified by column chromatography on alumina (Bockmann type I, neutral, 

activated; acetone then 95:5 acetone/MeOH) to give 36 as a viscous yellow gum 

(0.332 g, 78%). 1H NMR (CDCl3, 400 MHz): δ 1.24-1.37 (m, 6H, Hn,H,I), 1.57-1.84 

(m, 6H, Ho,G,J), 2.23-2.29 (m, 5H, Hs,K), 3.09 (s, 6H, Hl), 3.22 (s, 2H, Hj), 3.33 (s, 2H, 

Hi), 3.63 (s, 2H, Hb), 3.86 (t, J = 6.4, 2H, Hp), 3.96-4.10 (m, 6H, HD,F), 4.50 (d, J = 

5.9, 2H, HM), 6.11 (d, J = 2.6, 1H, Hm), 6.16 (d, J = 2.6, 1H, Hk), 6.43-6.50 (br, 1H, 

HL), 6.74-6.80 (m, 6H, Hq,C), 7.01-7.09 (m, 8H, Hr,A,B), 7.17 (s, 2H, HE), 7.27-7.32 

(m, 1H, HS), 7.56 (dd, J1 = 8.0, J2 = 2.0, 1H, Hg), 7.64 (dd, J1 = 8.1, J2 = 2.0, 1H, 

Hd), 7.75 (dd, J1 = 8.0, J2 = 1.9, 1H, HO), 7.81 (dt, J1 = 8.0, J2 = 1.4, 1H, HR), 8.21 

(d, J = 8.0, 1H, Hf), 8.28 (d, J = 8.1, 1H, He), 8.34 (t, J = 8.0, 2H, HQ,P), 8.44 (d, J = 

2.0, 1H, Hh), 8.48 (d, J = 2.0, 1H, Hc), 8.56-8.59 (m, 1H, HN), 8.66 (d, J = 4.5, 1H, 

HT). 13C NMR (CDCl3, 100 MHz): δ 20.3, 25.2, 25.4, 25.6, 26.5 (br, CD2), 27.7-28.6 

(br, 3 x CD2), 28.0, 28.9, 29.1, 29.7 (br, CD2), 32.8 (br, CD2), 34.5 (br, CD2), 36.3, 

37.7 (br, CD2), 39.3, 40.6, 49.7, 61.2, 67.5, 68.8, 69.4, 69.7, 103.4 (x 2), 110.5, 

114.1, 120.2, 120.4, 120.8, 120.9, 123.6, 126.1, 127.4, 127.7, 129.5, 129.7, 134.4, 

136.4, 136.7 (x 2), 136.8 (x 2), 137.1, 141.1, 148.5, 149.0, 149.1, 149.2, 153.8 (x 2), 

153.9, 155.0, 155.4, 155.7, 156.7, 161.2, 161.8, 168.7, 171.2, 173.2. LRESI-MS 

(acetonitrile): m/z = 1388 [M106Pd+H]+, 1410 [M106Pd+Na]+. HRESI-MS: m/z = 

1387.6979 [M+H]+ (calc. for C77H73
2H16N10O7

106Pd, 1387.6955 [M+H]+).  
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To a suspension of 36 (29 mg, 0.021 mmol, 1.0 equiv.) in CH3CN (10 mL) was 

added a solution of CoCl2.6H2O (5.0 mg, 0.021 mmol, 1.0 equiv.) in MeOH (1 mL) 

and the resulting turquoise solution stirred at RT for 5 minutes. The formation of 38 

as the sole coordination product of the reaction was confirmed by ESI-MS; LRESI-

MS (MeOH): m/z = 722 [M106Pd-2Cl]2+. 

 

5.7 References and Notes 

 

(1) Cotton, F. A.; Wilkinson, G. Advanced Inorganic Chemistry - A 

Comprehensive Text; 4th. ed.; John Wiley & Sons Inc.: New York, 
1980, pp 773-775. 

 
 (2) Vlcek, A. A. Inorg. Chem. 1967, 6, 1425-1427. 
 

(3) Ghosh et al. have reported the 1H NMR of cis-[Co(bipy)Cl2]Cl, which 
shows no symmetry and contains 16 distinct signals, see: Ghosh, S.; 
Barve, A. C.; Kumbhar, A. A.; Kumbhar, A. S.; Puranik, V. G.; Datar, 
P. A.; Sonawane, U. B.; Joshi, R. R. J. Inorg. Biochem. 2006, 100, 
331-343.  

 
 (4) Huchital, D. H.; Martell, A. E. Inorg. Chem. 1974, 13, 2966-2969. 
 

(5) Mizuno, K.; Imamura, S.; Lunsford, J. H. Inorg. Chem. 1984, 23, 
3510-3514. 

 
(6) Ramprasad, D.; Gilicinski, A. G.; Markley, T. J.; Pez, G. P. Inorg. 

Chem. 1994, 33, 2841-2847. 
 
(7) Crumbliss et al. report the Co(bipy)3

2+/3+ redox couple at E1/2 = 
+0.128 V (vs. Ag/AgCl) for Co(bipy)3

3+ cations immobilised in 
carrageenan hydrogels. Buttry and Anson give values of the 
Co(bipy)3

2+/3+ redox couple of +0.15 V (vs. Ag/AgCl) for the complex 
in acetonitrile solution and +0.30 V (vs. Ag/AgCl) when the cations 
are incorporated in a Nafion coating on a graphite electrode, whilst 
Winkler and co-workers give an oxidation potential at +0.1 V (vs. 



__________________________________________________________Chapter Five 

 212 

Ag/Ag(ClO4)) for Co(bipy)3
2+ in a mixed toluene/acetonitrile solvent 

system, see: (a) Crumbliss, A. L.; Perine, S. C.; Kirk Edwards, A.; 
Rillema, D. P. J. Phys. Chem. 1992, 96, 1388-1394. (b) Buttry, D. A.; 
Anson, F. C. J. Am. Chem. Soc. 1983, 105, 685-689. (c) Winkler, K.; 
Płonska, M. E.; Re�ko, K.; Dobrzy�ski, L. Electochem. Acta 2006, 
51, 4544-4553. Vl�ek2 reports that both the cis and trans isomers of 
Co(bipy)2Cl2 can be oxidised to [Co(bipy)2Cl2]Cl by treatment with 
chlorine gas. The couple Cl2 + 2e- � 2Cl- has E

� = +1.14 V (vs. 
Ag/AgCl) implying that both Co(bipy)2Cl2 isomers have oxidation 
potentials below this value. No such potentials were observed during 
cyclic voltammetry on 2, however, suggesting that oxidation of Co(II) 
to Co(III) in this ligand set is not possible, see: (d) Atkins, P. W. 
Physical Chemistry; Oxford University Press, Oxford, United 
Kingdom, 1987, pp 267-269, 825. 

 
(8) Constable and co-workers have determined that [Co(terpy)2](PF6)2 is 

low spin. However, [Co(terpy)2]
2+ salts can be either high- or low-

spin, with the counterions and solvent playing important roles in 
determining the spin state. A high spin Co(II) ion has an ionic radius 
of 0.75 Å. [Co(terpy)2]

3+ salts are invariably low spin and 
diamagnetic, with an ionic radius of the Co(III) of 0.55 Å, see: Chow, 
H. S.; Constable, E. C.; Housecroft, C. E.; Kulicke, K. J.; Tao, Y. 
Dalton Trans. 2005, 236-237. 

 
(9) Blasse, G. J. Inorg. Nucl. Chem. 1965, 27, 748-750. 
 
(10) Baker, B. R.; Basolo, F.; Neumann, H. M. J. Phys. Chem. 1959, 63, 

371-378. 
 

 (11) Farina, R. D.; Wilkins, R. G. Inorg. Chem. 1968, 7, 514-518. 
 

(12) A small portion of this mixture was taken and oxidised with iodine, 
giving a compound with an ESI-MS spectrum containing peaks 
corresponding to [Co(terpy)2]

3+. 1H NMR of the oxidation product 
confirmed the presence of a diamagnetic species with six signals in its 
spectrum, all showing significant shifts compared to the uncomplexed 
ligand. This shows that [Co(terpy)2](ClO4)2.H2O can be oxidised by 
iodine and gives good reason to infer that the initial yellow solution 
was indeed [Co(terpy)2](ClO4)2.H2O. 

 
(13) Zdravkov, A.; Khimich, N. Russ. J. Org. Chem. 2006, 42, 1200-1202. 
 
(14) Chang, H.-T.; Jeganmohan, M.; Cheng, C.-H. Org. Lett. 2007, 9, 505-

508. 
 
(15) Panetta, C. A.; Kumpaty, H. J.; Heimer, N. E.; Leavy, M. C.; Hussey, 

C. L. J. Org. Chem. 1999, 64, 1015-1021. 
 



__________________________________________________________Chapter Five 

 213 

(16) Crowley, J. D.; Leigh, D. A.; Lusby, P. J.; McBurney, R. T.; Perret-
Aebi, L. E.; Petzold, C.; Slawin, A. M. Z.; Symes, M. D. J. Am. 

Chem. Soc. 2007, 129, 15085-15090. 
 
(17) De Nicola, A.; Goeb, S.; Ziessel, R. Tetrahedron Lett. 2004, 45, 7963-

7967. 
 
(18) Khatyr, A.; Ziessel, R. J. Org. Chem. 2000, 65, 7814-7824. 
 

 (19) Khatyr, A.; Ziessel, R. Tetrahedron Lett. 2000, 41, 3837-3841. 
 

(20) Scott, W. J.; Crisp, G. T.; Stille, J. K. J. Am. Chem. Soc. 1984, 106, 
4630-4632. 

 
(21) Organ, M. G.; Bratovanov, S. Tetrahedron Lett. 2000, 41, 6945-6949. 
 
(22) No evidence was found to suggest that the analogous reactions 

performed with Pd(OH)2/C in Chapter Four suffered from any ether 
cleavage of this sort. However, hydrogenation of the four-station 
block (Molecule 39 in Chapter Four) with PtO2 did lead to significant 
amounts of decomposition, consistent with cleavage of some of the 
track spacer ethers. 

 
(23) Heathcock, C. H.; Ratcliffe, R. J. Am. Chem. Soc. 1971, 93, 1746-

1757. 
 
(24) It may also be necessary to prepare both completed walker/track 

ensembles as mono-metallic species – i.e. containing no cobalt at all. 
Performing the first cycle of the operations in Scheme 5.1 upon a 
mixture of these two mono-metallic ensembles would then give a 
“pure scrambling” benchmark against which to compare the 
processivity of the bi-metallic species. 

 
(25) Berna, J.; Leigh, D. A.; Lubomska, M.; Mendoza, S. M.; Perez, E. M.; 

Rudolf, P.; Teobaldi, G.; Zerbetto, F. Nat. Mater. 2005, 4, 704-710. 
 
(26) For discussions on using vertical confinement to enforce an inchworm 

mechanism of walking, see: (a) Li, D.; Fan, D.; Wang, Z. J. Chem. 

Phys. 2007, 126, 245105. (b) Li, D.; Fan, D.; Zheng, W.; Le, Y.; 
Wang, Z. Chem. Phys. 2008, 352, 235-240. 

 
 

 
 



____________________________________________________________Appendix 

 214 

APPENDIX 
 

 
 
 

Published Papers 
 

 
 
 
 

A Switchable Palladium-Complexed Molecular Shuttle and Its Metastable Positional 

Isomers J. D. Crowley, D. A. Leigh, P. J. Lusby, R. T. McBurney, L.-E. Perret-Aebi, 

C. Petzold, A. M. Z. Slawin, and M. D. Symes, J. Am. Chem. Soc., 2007, 129, 
15085–15090. 

 
 
 
Cadiot-Chodkiewicz Active Template Synthesis of Rotaxanes and Switchable 

Molecular Shuttles with Weak Intercomponent Interactions J. Berná, S. M. Goldup, 
A.-L. Lee, D. A. Leigh, M. D. Symes, G. Teobaldi, F. Zerbetto, Angew. Chem. Int. 

Ed. 2008, 47, 4392-4396. 
 



Rotaxanes
DOI: 10.1002/anie.200800891

Cadiot–Chodkiewicz Active Template Synthesis of Rotaxanes and
Switchable Molecular Shuttles with Weak Intercomponent
Interactions**
Jos� Bern	, Stephen M. Goldup, Ai-Lan Lee, David A. Leigh,* Mark D. Symes,
Gilberto Teobaldi, and Francesco Zerbetto*

The noncovalent binding motifs used to template the syn-
thesis of mechanically interlocked architectures are generally
retained in the final products.[1] This feature has been widely
exploited to make molecular shuttles,[2] rotaxanes with two or
more discrete binding sites or “stations” on the thread
between which the macrocycle incessantly shuttles through
Brownian motion. However, the noncovalent interactions
used to maximize the rotaxane yield and localize the position
of the ring on the thread also provide the major contribution
to the activation energy to shuttling.[3] To achieve faster
moving rotaxane-based molecular machines, it will be neces-
sary to make molecular shuttles with much weaker intercom-
ponent interactions than are typically introduced with clas-
sical template methods.[4] Here we report on a new rotaxane-
forming reaction that can produce rotaxanes with unsym-
metrical threads (as required for switchable molecular
shuttles) but does not leave strong intercomponent binding
motifs in the rotaxane product. Instead the active template[5]

Cadiot–Chodkiewicz[6] reaction is compatible with building
blocks that can provide relatively modest macrocycle–thread
binding motifs in the rotaxane, but which are still strong
enough to afford good positional integrity of the ring. The
methodology is exemplified through the synthesis of a “weak
interaction” molecular shuttle in which a single hydrogen
bond between the components determines the predominant
position of the macrocycle in each of two well-defined states
which can be switched between by reversible complexation
with Li+ or protonation.

Active template syntheses differ from classical “passive-
template” reactions in that a single species acts as both the
template for the product architecture and the catalyst for the
formation of the covalent bond(s) that captures it.[5] Although
combining these two roles has several potential advantages,[5a]

controlling the positions of the metal-ligated building blocks
during the reaction to template the product puts additional
demands (which can provide insight into the reaction
pathway)[5d] on the mechanism of catalysis. Accordingly,
successful combinations of ligands and metal-catalyzed reac-
tions for active template syntheses are still rare and the
development of new systems challenging.[5e]

The active metal template homodimerization of acety-
lenes to form rotaxanes[5b,c] introduces a relatively rigid linear
connector which inhibits folding—potentially desirable for
fully exploiting the spatial separation of the ring between
different states[7]—but can only be used to make [2]rotaxanes
with symmetrical axles. The coupling of two different building
blocks is necessary to produce bistable molecular shuttles in
which the macrocycle can be switched between two different
positions on the thread. The CuI-mediated Cadiot–Chodkie-
wicz[6] heterocoupling of a terminal alkyne with an alkyne
halide appeared a suitable candidate reaction for such studies
(Table 1).

Promisingly, [2]rotaxane was produced (Table 1) using
appropriately “stoppered” alkyne halide (1a or 1b) and aryl
alkyne (2) derivatives and a bidentate macrocycle (3) under
typical conditions[6] used for the Cadiot–Chodkiewicz reac-
tion in nonaqueous solvents. However, in these initial studies
poor selectivity for the heterocoupled rotaxane (4) versus the
homocoupled rotaxanes (5 and 6) was observed together with
low overall conversion of the alkyne starting materials to bis-
acetylene products. In an attempt to improve both the
reaction yield and the selectivity for the heterocoupled
rotaxane, we investigated changing the traditional Cadiot–
Chodkiewicz procedure of mixing the alkyne and alkyne
halide components with neutral amine bases, to preforming
the copper acetylide by treatment of terminal alkyne 2 with
nBuLi, followed by transmetalation with CuI (Table 2).[8]

Following this protocol, we were delighted to find that
subsequent addition of bipyridine macrocycle 3 and bromoa-
cetylene 1b led to the desired [2]rotaxane 4 in high yield
(84%) and with excellent selectivity (> 98%) for the hetero-
coupled product (Table 2, entry 1).[9] Although the procedure
did not prove compatible with reversing the reactive bromine/
hydrogen functionalities of the alkyl and aryl acetylene
building blocks (7 with 8, Table 2, entry 2),[10] when coupling
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two different alkyl alkynes (7 with 9 or 11 with 1b to give 10)
either could be used successfully as the bromoacetylene
partner whilst maintaining high yields and apparent exclusive
selectivity for the heterocoupled rotaxane (Table 2, entries 3
and 4).

The Cadiot–Chodkiewicz reaction is thought to proceed
via a different mechanism to the (also Cu-catalyzed) Glaser

homocoupling of alkynes,[11] and the proposed pathway for
the active-metal template rotaxane assembly of 4 is shown in
Scheme 1. The preformed copper(I)–acetylide I is seques-

tered by bipyridine macrocycle 3.[12] Oxidative addition across
the C�Br bond of the bromoacetylene occurs from the
opposite face of the macrocycle to produce CuIII intermediate
II and subsequent reductive elimination furnishes the hetero-
coupled [2]rotaxane.

To demonstrate the utility of this new active template
reaction, we synthesized a stimuli-switchable molecular
shuttle 12 which has modest strength intercomponent inter-
actions of a type that would be difficult or impossible to access
by traditional template methods. The single contact H-bond
that molecular modeling (see the Supporting Information)
indicates (Figure 2) exists between the aniline unit of the
thread and bipyridine group of the macrocycle in 12 is too
weak to template rotaxane formation through “stoppering”
or “clipping” strategies[1] and no passive metal templates
which utilize a 1+2 donor ligand set have been reported to
date. However, the modified Cadiot–Chodkiewicz active
metal template method readily produced molecular shuttle
12 in good yield (61%) from functionalized building blocks 13
and 14 with no homocoupled rotaxane products being
detected (Scheme 2).

1H NMR Spectroscopy clearly shows the macrocycle to be
predominantly held over the axle aniline unit in neutral
molecular shuttle 12 at 300 K in CD2Cl2. The 1H NMR
spectrum of the rotaxane (Figure 1b) displays significant
upfield shifts (Hd 0.2 ppm, He 0.4 ppm, Hg 0.6 ppm) of signals
associated with the aniline station relative to those in the free
thread (Figure 1a). Calculations on the macrocycle-station

Table 1: Preliminary solvent screen for the bis-acetylene rotaxane form-
ing active template Cadiot–Chodkiewicz reaction.[6]

Entry Alkyne
halide

Solvent Rotaxane yield
1 +2 +3!4 + 5 +6

Selectivity
4 :5 :6

1 1a (iPr)2NH 40% 10:9:1
2 1a NEt3 20% 2:15:1
3 1a pyrrolidine <2% no rotaxane
4 1a benzene[b] 35% 1.7:1:1
5 1b (iPr)2NH <5% 2:5:1

[a] A solution of 1, 2, 3, and CuI (all 1 equiv) was allowed to stir at 298 K
under an atmosphere of N2 for 18 h. [b] Plus 2 equiv of (iPr)2NH.

Table 2: Substrate scope of the Cadiot–Chodkiewicz active metal
template synthesis of heterocoupled [2]rotaxanes.

Entry Terminal
acetylene[a]

Bromo-
acetylene

Rotaxane
yield [%]

Selectivity

1 84 >98%[b]

2 32 1.7:8:1 (4 :5 :6)

3 85 >98%[b]

4 74 >98%[b]

[a] R= (tBuC6H4)3CC6H4. [b] No homocoupled rotaxanes observed.

Scheme 1. Proposed mechanism for the Cadiot–Chodkiewicz active
metal template formation of [2]rotaxane 4.[11]
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fragments for 12 in CH2Cl2 at B3LYP/3-21G* level[13] (see the
Supporting Information) show that the minimum structure
intercomponent binding energy, DGbind, of �3.9 kcalmol�1 is
largely attributable to a single contact H-bond of 2.1 E
between the (N)H of the aniline and one nitrogen atom of the
macrocycle bipyridine unit (Figure 2a). A review of the
Cambridge Structural Database (CSD) reveals a range of 2.1–
2.4 E for similar aniline-to-pyridine contacts in the solid
state.[14]

Addition of 1 equivalent of TsOH to a solution of
rotaxane 12 in CD2Cl2 causes significant shifts in several of
the axle signals in the 1H NMR spectrum (Figure 1c).[15]

Protons Hd, He, and Hg associated with the aniline unit
return to the position they occupy in the non-interlocked
thread in the presence of TsOH (Figure 1d), while those of
the DMAP station shift to higher field (Hj and Hl each
0.5 ppm, Hk 0.2 ppm). This is consistent with protonation of
the DMAP nitrogen and translocation of the macrocycle
along the thread so that the pyridinium NH hydrogen bonds
strongly with the bipyridine moiety of the macrocycle
(Scheme 2, MX=HOTs). B3LYP/3-21G* level calculations
(see the Supporting Information) indicate that the protonat-
ed-DMAP-bound co-conformation is now favored by ca.
0.9 kcalmol�1 (Figure 2b). A search of the CSD finds that the
calculatedH-bond contact distance of 1.8 E is in the 1.4–1.9 E
range found for pyridinium-to-pyridine H-bonds in the solid
state.[16] Treating a solution of rotaxane 12·H+ with solid
Na2CO3 quantitatively regenerates the neutral molecular

shuttle 12, returning the macrocycle to its original
position on the thread.

A similar change in co-conformation could be
generated by shaking a solution of rotaxane 12 in
CD2Cl2 with excess LiI (Scheme 2, MX=LiI). The
1H NMR spectrum of the shuttle after treatment with
LiI (Figure 1 f) displays significant upfield shifts and
broadening of the resonances of the DMAP station (Hj

and Hk) compared with the corresponding protons in the
non-interlocked thread in the presence of excess LiI
(Figure 1e).[17] As was seen with protonation, the signals
of the rotaxane aniline station Hd, He, and Hg return to
the positions they occupy in the non-interlocked thread.
These changes are consistent with the mechanically
interlocked components of rotaxane 12 coordinating
Li+ through the bipyridine moiety of the macrocycle and
the DMAP station of the axle. A simple aqueous wash
removes the metal salt and regenerates rotaxane 12 in its
original form.

The utility of the Cadiot–Chodkiewicz active tem-
plate strategy has been exemplified through the con-
struction and operation of a switchable molecular shuttle
which features a single hydrogen bond between the

Figure 1. 1H NMR spectra (400 MHz, CD2Cl2, 300 K) of a) non-inter-
locked thread, b) rotaxane 12, c) rotaxane 12 + 1 equiv TsOH, d) non-
interlocked thread + 1 equiv TsOH, e) non-interlocked thread in the
presence of excess LiI, f) rotaxane 12 in the presence of excess LiI.

Scheme 2. Active template synthesis and stimuli-induced [by protonation
(MX=HOTs) or complexation with Li+ (MX=LiI)] translocation of the
macrocycle in molecular shuttle 12.
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mechanically interlocked components in each state, much less
than half the intercomponent binding energy found in typical
molecular shuttles yet still strong enough to ensure a high
degree of positional integrity of the macrocycle in both forms.
The methodology paves the way for faster moving, faster
responding, mechanically interlocked molecular machines
which can be designed to feature only the weakest non-
covalent interactions necessary for their function.

Experimental Section
Procedure for the Cadiot–Chodkiewicz active template synthesis of
rotaxane 4 : A solution of acetylene 2 (20 mg, 0.032 mmol) in THF
(0.4 mL) was cooled to �78 8C. To this solution was added nBuLi
(0.32 mL, 0.1m in THF) at �78 8C. The resulting solution was allowed
to warm to 0 8C over 15 min. CuI (6.2 mg, 0.032 mmol) was added at
0 8C and the resulting yellow solution allowed to warm to room
temperature over 15 min. The reaction mixture was recooled to
�78 8C and bipyridine macrocycle 3 (18 mg, 0.032 mmol) and
bromoacetylene 1b (22 mg, 0.032 mmol) were added as a solution
in THF (0.6 mL). The resulting orange solution was allowed to stir at
room temperature for 20 h before the reaction was quenched by
addition of an aqueous solution of 17.5% NH3 saturated with
ethylenediaminetetraacetic acid (EDTA). The layers were allowed to
stir in air for 40 min during which time the aqueous layer turned blue.
The aqueous layer was extracted with CH2Cl2 (J 3) and the combined
organic layers were washed with brine and dried over anhydrous
MgSO4. Chromatography (silica gel, 7:2.5:0.5 hexane:CH2Cl2:MeCN
as eluent) yielded [2]rotaxane 4 as a colorless film (47 mg, 84%).

Full details of the experimental procedures, compound character-
ization and molecular modelling are given in the Supporting
Information.
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Abstract: We report the design, synthesis, characterization, and operation of a [2]rotaxane in which a
palladium-complexed macrocycle can be translocated between 4-dimethylaminopyridine and pyridine
monodentate ligand sites via reversible protonation, the metal remaining coordinated to the macrocycle
throughout. The substitution pattern of the ligands and the kinetic stability of the Pd-N bond means that
changing the chemical state of the thread does not automatically cause a change in the macrocycle’s
position in the absence of an additional input (heat and/or coordinating solvent/anion). Accordingly, under
ambient conditions any of the four sets of protonated and neutral, stable, and metastable co-conformers
of the [2]rotaxane can be selected, manipulated, isolated, and characterized.

Introduction

Despite the success and influence of the redox-responsive
Cu(I)/Cu(II) catenane and rotaxane systems developed in
Strasbourg,1,2 there are no other examples of stimuli-switchable
molecular shuttles3 based on the manipulation of metal-ligand
interactions between the components.4,5 This lack of switchable
metal coordination motifs for interlocked molecules may be set
to change, however, following the recognition of the need to
vary the kinetics of binding events and transportation pathways
(e.g., ratcheting and escapement6) in any mechanical molecular
machine more sophisticated than a switch,7 and the crucial role
played by metastability in the functioning of rotaxanes currently
being investigated for molecular electronics.8 Here we describe

a simple-to-assemble-and-operate [2]rotaxane in which a pal-
ladium-complexed macrocycle can be translocated between
4-dimethylaminopyridine (DMAP) and pyridine (Py) ligand sites
via reversible protonation (the metal remaining coordinated to

† University of Edinburgh.
‡ University of St Andrews.
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1466.
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Int. Ed. Engl. 1997, 36, 1904-1907. (c) Ashton, P. R.; Ballardini, R.;
Balzani, V.; Baxter, I.; Credi, A.; Fyfe, M. C. T.; Gandolfi, M. T.; Go´mez-
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the macrocycle throughout). The substitution pattern of the
ligands and the kinetic stability of the Pd-N bond means that
changing the chemical state of the thread (adding or removing
protons) does not automatically cause a change in the macro-
cycle’s position in the absence of an additional input (heat and/
or coordinating solvent/anion). Accordingly, under ambient
conditions any of the four sets of protonated and neutral, stable,
and metastable co-conformers of the [2]rotaxane can be selected,
manipulated, isolated, and characterized.

Results and Discussion

Basis of the Design: Protonation/Deprotonation-Driven
Ligand Exchange Experiments.The shuttle is based on a
recognition motif previously used to assemble rotaxanes and
catenanes by organizing tridentate pyridine 2,6-dicarboxamide
and appropriately derivatized monodentate pyridine ligands
about a square planar Pd(II) template.9 In a simple exchange
experiment with non-interlocked versions of these ligands

(Scheme 1a), we found that the pyridine group ofL1PdPy was
rapidly10 and quantitatively substituted for DMAP.11 By adding
an equivalent ofp-toluenesulfonic acid (TsOH), the process
could be reversed (Scheme 1b).12 The reasons for the selectivity
in Scheme 1b are quite subtle: although both heterocycles are
“coordinated”sone to Pd(II) and one to H+son both sides of
the equation (Scheme 1b), protonation of the more basic
heterocycle determines the position of equilibrium because the
N-H bond is significantly stronger than the Pd-N bond.13 In
other words, a proton differentiates DMAP and Py more
effectively than does Pd(II). The results suggested that a
palladium-complexed [2]rotaxane incorporating both DMAP and
Py binding sites in the thread could operate as a pH-switchable
molecular shuttle.

Synthesis and Characterization of Palladium-Coordinated
Molecular Shuttle L2Pd. A candidate [2]rotaxane,L2Pd, was
synthesized in nine steps using a “threading-followed-by-
stoppering” strategy14 (Scheme 2). 2,6-Diiodo-4-dimethylami-
nopyridine,1, was prepared via a modified literature procedure15

(Scheme 2, step a) and subjected to consecutive Sonogashira
cross-coupling reactions,16 first with propargyl alcohol (1 equiv)
and then with decadiyne (5 equiv), to afford the unsymmetrical
DMAP-station17 intermediate3 (Scheme 2, step c). The synthesis
of the Py-station fragment was achieved by desymmetrization
of commercially available 2,6-dibromopyridine through a So-
nogashira cross-coupling with 1 equiv of propargyl alcohol to
give 2 (Scheme 2, step b), hydrogenation (over PtO2), and
Mitsunobu reaction18 with bulky phenol419 to give5 (Scheme
2, step d). The coupling of3 and 5 via another Pd-catalyzed
Sonogashira reaction, and subsequent hydrogenation over Pd-
(OH)2/C, afforded the saturated monostoppered thread,6
(Scheme 2, step e). Coordination of the macrocycle-palladium
complex to theDMAP site of 6 occurred upon simple stirring
with L1Pd(CH3CN)9c in dichloromethane (298 K, 1 h). The
resulting threaded pseudo-rotaxane complex was covalently

(8) (a) Tseng, H.-R.; Wu, D.; Fang, N. X.; Zhang, X.; Stoddart, J. F.
ChemPhysChem2004, 5, 111-116. (b) Steuerman, D. W.; Tseng, H.-R.;
Peters, A. J.; Flood, A. H.; Jeppesen, J. O.; Nielsen, K. A.; Stoddart, J. F.;
Health, J. R.Angew. Chem., Int. Ed.2004, 43, 6486-6491. (c) Flood, A.
H.; Peters, A. J.; Vignon, S. A.; Steuerman, D. W.; Tseng, H. -R.; Kang,
S.; Heath, J. R.; Stoddart, J. F.Chem.sEur. J. 2004, 10, 6558-6564. (d)
Flood, A. H.; Stoddart, J. F.; Steuerman, D. W.; Heath, J. R.Science2004,
306, 2055-2056. (e) Choi, J. W.; Flood, A. H.; Steuerman, D. W.; Nygaard,
S.; Braunschweig, A. B.; Moonen, N. N. P.; Laursen, B. W.; Luo, Y.;
Delonno, E.; Peters, A. J.; Jeppesen, J. O.; Xe, K.; Stoddart, J. F.; Heath,
J. R.Chem.sEur. J. 2006, 12, 261-279.

(9) (a) Fuller, A.-M.; Leigh, D. A.; Lusby, P. J.; Oswald, I. D. H.; Parsons, S.;
Walker, D. B.Angew. Chem., Int. Ed.2004, 43, 3914-3918. (b) Furusho,
Y.; Matsuyama, T.; Takata, T.; Moriuchi, T.; Hirao, T.Tetrahedron Lett.
2004, 45, 9593-9597. (c) Fuller, A.-M. L.; Leigh, D. A.; Lusby, P. J.;
Slawin, A. M. Z.; Walker, D. B.J. Am. Chem. Soc. 2005, 127, 12612-
12619. (d) Leigh, D. A.; Lusby, P. J.; Slawin, A. M. Z.; Walker, D. B.
Angew. Chem., Int. Ed. 2005, 44, 4557-4564. (e) Fuller, A.-M. L.; Leigh,
D. A.; Lusby, P. J.Angew. Chem., Int. Ed.2007, 46, 5015-5019.

(10) Exchange of the unsubstituted heterocycles in CDCl3, C2D2Cl4, or DMF-
d7 was complete within the time frame of mixing theL1PdPy complex
with DMAP and acquiring a1H NMR spectrum, as was the reverse proton-
driven exchange upon adding TsOH. However, the 2,6-dipropyl substituted
heterocycles did not exchange in CDCl3 even over extended periods (7 d)
or upon heating at reflux. In DMF-d7 at 358 K equilibrium was reached
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For full details of the exchange experiments, see the Supporting Information.

(11) For the exchange of various 4-substituted pyridine ligands at the fourth
coordination site of Pd-pincer complexes, see: (a) van Manen, H.-J.;
Nakashima, K.; Shinkai, S.; Kooijman, H.; Spek, A. L.; van Veggel, F. C.
J. M.; Reinhoudt, D. N.Eur. J. Inorg. Chem. 2000, 2533-2540. The
exchange of DMAP for poly(4-vinylpyridine) at the fourth coordination
site of bimetallic Pd- and Pt-pincer complexes has been exploited in the
chemoresponsive viscosity switching of a metallo-supramolecular network;
see: (b) Loveless, D. M.; Jeon, S. L.; Craig, S. L.J. Mater. Chem.2007,
17, 56-61.

(12) A proton-driven ligand exchange of diethylamine and lutidine coordinated
to Pd(II) has previously been reported; see: (a) Hamann, C.; Kern, J.-M.;
Sauvage, J.-P.Dalton Trans.2003, 3770-3775. For the proton-driven
exchange of one amine for another within copper-coordinated imine ligands,
see: (b) Nitschke, J. R.Angew. Chem., Int. Ed. 2004, 43, 3073-3075. (c)
Nitschke, J. R.; Schultz, D.; Bernardinelli, G.; Ge´rard, D. J. Am. Chem.
Soc. 2004, 126, 16538-16543. (d) Schultz, D.; Nitschke, J. R.Proc. Natl.
Acad. Sci. U.S.A. 2005, 102, 11191-11195. (e) Nitschke, J. R.Acc. Chem.
Res. 2007, 40, 103-112.

(13) (a) Sanderson, R. T.Chemical Bonds & Bond Energy; Academic Press:
New York, 1976. (b) Cotton, F. A.; Wilkinson, G.; Murillo, C.; Bochmann,
M.; Grimes, R.; Murillo, C. A.; Bochmann M.AdVanced Inorganic
Chemistry: A ComprehensiVe Text, 6th ed.; John Wiley & Sons: New
York, 1999. A contributing reason as to why the proton discriminates
DMAP and pyridine better than the Pd-macrocycle complex may be
because the proton is charged while the Pd-macrocycle is not. However,
since this is not the situation in ref 12a, where proton-driven ligand exchange
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(19) Gibson, H. W.; Lee, S. H.; Engen, P. T.; Lecavalier, P.; Sze, J.; Shen, Y.

X.; Bheda, M.J. Org. Chem.1993, 58, 3748-3756.

Scheme 1. Reversible Substitution of Pyridine and DMAP Ligands
in Macrocycle-Pd Complex L1PdPy/DMAP in DMF-d7 at 298 Ka

a Upon mixing the substrates, equilibrium is reached within the time taken
to acquire a1H NMR spectrum. (a) Neutral conditions; (b) in the presence
of TsOH (1 equiv).
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captured with4 (DIAD, PPh3, THF) to give the [2]rotaxane,
L2Pd, in 26% yield20 after column chromatography (Scheme
2, step f).

Mass spectrometry confirmed the product’s constitution as
L2Pd, and1H NMR spectroscopy (Figure 1b) showed the co-
conformation formed to be exclusivelyDMAP-L2Pd;17 i.e., the
Pd-macrocycle fragment,L1Pd, was solely coordinated to the
DMAP binding site. A comparison of the spectra of free thread
8 (Figure 1a) andDMAP-L2Pd in CDCl3 (Figure 1b) shows
significant differences between the signals of theDMAPstation
(Hd-f) for the rotaxane and thread, while thePy station signals
(Hi-k) of the rotaxane occur at very similar values to those of
the free thread. Interestingly, and for reasons that would become
apparent later, attempting the threading protocol with7, a close
analogue of6 in which the positions of the two stations were
reversed (i.e., thePybinding site was closest to the unstoppered
end of the thread; Scheme 2, step g), led exclusively to the
formation of Py-L2Pd! The outcomes of the two threading
reactions indicate that the pyridine and DMAP binding sites
are both astonishingly efficient at capturing the Pd-macrocycle
component fromL1Pd(CH3CN) on its initial pass over the

heterocycle at the open end of the thread, irrespective of relative
orientation, solvation, or other factors.

Macrocycle-to-Py-Station Protonation-Driven Shuttling
Experiments.Switching of the macrocycle position inDMAP-
L2Pd was attempted by the addition of 1 equiv of TsOH in
CDCl3 (Scheme 3). The1H NMR spectrum of the resulting
adduct (Figure 1c) showed significant changes in thePy
resonances, Hi-k, but no discernible shift of theDMAP signals,
Hd-f, indicating that protonation of thePy station had occurred
but the position of the macrocycle had not changed; i.e., the
chemical structure was nowDMAP-[L2HPd]OTs (Scheme 3).
No changes to the1H NMR spectrum of the sample were
observed over several days, indicating that the co-conformer is
effectively stable at room temperature in CDCl3. Somewhat
surprisingly, however, given the results of the exchange
experiments reported in Scheme 1,10 even in neat coordinating
solvents (DMSO-d6 or DMF-d7) no evidence of translocation
of the ring in DMAP-[L2HPd]OTs was observed at room
temperature. Translocation of the palladium macrocycle sub-
component (L1Pd) only takes place at elevated temperatures
(383 K), in both coordinating (DMF-d7) and non-coordinating
solvents (C2D2Cl4), in both cases reaching an equilibrium 89:
11 ratio of Py:DMAP-[L2HPd]OTs (Scheme 3) after 16 h
(DMF-d7) or 36 h (C2D2Cl4).

(20) The modest yield of rotaxane in the stoppering step is probably a
consequence of using a triphenylphosphine-mediated reaction with a Pd-
complexed pseudo-rotaxane. Alternative methodologies are currently being
investigated.

Figure 1. 1H NMR spectra (400 MHz, CDCl3, 300 K) of palladium rotaxaneL2Pd in its four different protonated and co-conformational states, and for
comparison the free thread: (a) Thread8; (b) DMAP-L2Pd; (c)DMAP-[L2HPd]OTs; (d)Py-L2Pd; (e)Py-[L2HPd]OTs. The lettering in the figure refers
to the assignments in Scheme 2.
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Ligand Exchange Experiments and X-ray Crystallography
Using 2,6-Dialkyl-Substituted Heterocycles.The dramatic
kinetic stability of theDMAP-Pd bond in the protonated [2]-
rotaxane led us to re-examine the kinetics of non-interlocked
ligand exchange, this time using 2,6-dialkyl-substituted hetero-
cycles (Scheme 4). Indeed, using 2,6-dipropylPy and 2,6-
dipropylDMAP as the monodentate components of theL1Pd-
heterocycle complex (Scheme 4) produced the same extremely
slow exchange of ligands observed in the [2]rotaxane. Single
crystals of bothL1Pd(2,6-dipropylPy) andL1Pd(2,6-dipropy-
lDMAP) were subsequently grown by vapor diffusion of diethyl
ether into saturated solutions of the complexes in dichlo-
romethane. The X-ray crystal structures of these two complexes
(Figure 2a and 2b) are indicative of the likely coordination mode

and geometry of the macrocycle at the two different binding
sites in the [2]rotaxane. The crystal structures suggest that the
reason for the enhanced kinetic stability of the Pd-coordinated
2,6-dialkylheterocycle units is that theR-hydrogen atoms of the
alkyl substituents block the pathway of incoming nucleophiles
to the Pd center.21

Macrocycle-to-DMAP-Station Deprotonation-Driven Shut-
tling Experiments. Deprotonation of the 89:11Py:DMAP
equilibrium mixture of [L2HPd]OTs (Na2CO3, CH2Cl2, 30 min)
generated the neutral co-conformers which were readily sepa-

(21) Similar effects have been observed upon increasing the steric bulk about
the coordination sphere in other Pd and Pt complexes. For examples, see:
(a) Atwood, J. D.Inorganic and Organometallic Reaction Mechanisms,
2nd ed.; Wiley-VCH: New York, 1997. (b) Yount, W. C.; Loveless, D.
M.; Craig, S. L.J. Am. Chem. Soc. 2005, 127, 14488-14496.

Scheme 2. Synthesis of Palladium-Complexed Molecular Shuttle L2Pda

a Reagents and conditions: (a) BF3‚OEt2, LDA, I2, THF, 40%; (b) propargyl alcohol, Pd(PPh3)4, CuI, Et3N/THF (1:2), 60%; (c) (i) propargyl alcohol,
Pd(PPh3)4, CuI, Et3N/THF, 75%, (ii) 1,9-decadiyne (5 equiv), Pd(PPh3)4, CuI, Et3N/THF, 77%; (d) (i) H2, PtO2, EtOH/Et3N, 94%, (ii) 4, DIAD, PPh3, THF,
61%; (e) (i) Pd(PPh3)4, CuI, Et3N/THF, 66%, (ii) H2, Pd(OH)2/C, THF, 88%; (f) (i)L1Pd(CH3CN), CH2Cl2 (90%), (ii) 4, DIAD, PPh3, THF, 26% (from6);
(g) (i) L1Pd(CH3CN), CH2Cl2 (67%), (ii) 4, DIAD, PPh3, THF, 21% (from7); (h) 4, DIAD, PPh3, THF, 25%.

Scheme 3. Operation of the Palladium-Complexed Molecular Shuttle L2Pda

a † No macrocycle translocation observed over 24 h in DMF-d7 at 298 K or in C2D2Cl4 over 24 h at 383 K;‡ No macrocycle translocation observed in
either DMF-d7 or C2D2Cl4 at 298 K over 24 h.
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rated by column chromatography to give pure, kinetically stable
samples of bothDMAP-L2Pd (minor product) andPy-L2Pd
(major product). Their1H NMR spectra are shown in Figure
1b and 1d, respectively. As before, the relative shifts of the
resonances of theDMAP and Py stations unambiguously

confirmed the position of the macrocycle in thePy-L2Pd isomer.
Reprotonation ofPy-L2Pd (1 equiv of TsOH in CDCl3)
quantitatively generatedPy-[L2HPd]OTs (1H NMR spectrum,
Figure 1e), as another kinetically stable, out-of-equilibrium co-
conformer.

To complete the cycle of operations onL2Pd, purePy-L2Pd
and the nonequilibrium, 11:89, mixture ofDMAP/Py-L2Pd were
each heated at 383 K in DMF-d7. After 90 min both had reached
identical 86:14 ratios ofDMAP/Py-L2Pd which did not change
upon further heating (Scheme 3). Unlike the proton-driven
translocation, no macrocycle translational isomerization was
observed whenPy-L2Pd was heated in C2D2Cl4. Similarly, 2,6-
dipropylDMAP did not undergo a substitution reaction with
L1Pd(2,6-dipropylPy) in non-coordinating solvents (Scheme 4).

Conclusions

The practical realization and mechanistic investigation of
molecular-level systems in which both the kinetics and ther-
modynamics of binding events can be varied and controlled is
profoundly important for the development of sophisticated
molecular machine systems.7b Although nature is clearly able
to achieve this through the rapid manipulation of hydrogen
bonding and electrostatic interactions, the transient nature of
such weak binding events makes it hard to see how to emulate
this in synthetic systems given current levels of understanding
and expertise. We anticipate that metal-ligand coordination (and
dynamic covalent chemistry) will play a prominent role in the
early development of synthetic molecular machine systems.

Experimental Section

Synthesis ofDMAP-L2Pd from 6 and Selected Spectroscopic
Data: To a solution of6 (0.043 g, 0.046 mmol, 1.0 equiv) in CH2Cl2
(30 mL) was addedL1Pd(CH3CN) (0.032 g, 0.046 mmol, 1.0 equiv),
and the solution stirred at RT for 1 h. The solvent was removed under
reduced pressure, and the crude residue was purified by column
chromatography (MeOH/CH2Cl2, 4:96) to give the threaded pseudo-
rotaxane (0.066 g, 90%). To a solution of the pseudo-rotaxane (0.054
g, 0.0304 mmol, 1.0 equiv), PPh3 (0.013 g, 0.0509 mmol, 1.5 equiv),
and4 (0.026 g, 0.0509 mmol, 1.5 equiv) in THF (10 mL) was added
DIAD (0.010 mL, 0.0509 mmol, 1.5 equiv)Via microsyringe, and the
resulting solution was stirred at RT for 36 h. After removal of the
solvent under reduced pressure, the crude residue was purified by
column chromatography on silica (EtOAc:CH2Cl2 2:3) and washed with
ice-cold CH3CN to yieldDMAP-L2Pd as a yellow solid (0.025 g, yield
) 29% from the pre-rotaxane, 26% from6). Mp 170-172°C; 1H NMR
(400 MHz, CDCl3): δ ) 1.01-1.43 (m, 84H,tBu-Stopper-H + thread-
alkyl-H + macrocycle-alkyl-H + Hb), 1.61-1.79 (m, 6H,thread-alkyl-H
+ macrocycle-alkyl-H), 2.01 (br, 4H,thread-alkyl-H + Hc), 2.15-
2.25 (m, 2H, Hm), 2.65-3.38 (m, 14H, Ha+e+h+l+C), 3.55 (br, 2H, Hg),
3.80-3.89 (m, 4H, HF), 3.98 (t,J ) 6.3, 2H, Hn), 5.25 (br, 2H, HC′),
5.82 (br, 1H, Hf), 6.40-6.80 (m, 13H,stopper-H + HD+E+d), 6.93-
7.02 (m, 2H, Hi+k), 7.05-7.11 (m, 16H,stopper-H), 7.19-7.25 (m,
12H, stopper-H), 7.45-7.53 (m, 1H, Hj), 7.83 (d,J ) 7.8, 2H, HB),
8.04 (t,J ) 7.8, 1H, HA); LRESI-MS (MeOH/CH2Cl2/TFA): m/z )
2075 [M+]; HR-FABMS (3-NOBA matrix): m/z ) 2075.20724 [M+]
(calcd for C135H168N6O6

106Pd, 2075.20601).
Preparation of DMAP-[L2HPd]OTs: To a solution ofDMAP-L2Pd

(0.0295 g, 0.0142 mmol, 1.0 equiv) in CDCl3 (2 mL) was added TsOH
(0.00270 g, 0.0142 mmol, 1.0 equiv), and the reaction stirred at RT
until all the TsOH had dissolved (5 min).1H NMR spectroscopy
revealed quantitative formation ofDMAP-[L2HPd]OTs.1H NMR (400
MHz, CDCl3): δ ) 1.00-1.40 (m, 82H,stopper-H + alkyl-thread-H
+ alkyl-macrocycle-H), 1.59-1.77 (m, 10H,thread-alkyl-H + Hb), 2.03

Scheme 4. Reversible Substitution of 2,6-Dipropylpyridine and
2,6-DipropylDMAP Ligands in Macrocycle-Pd Complex
L1Pd(2,6-dipropylPy)/(2,6-dipropylDMAP) in DMF-d7

a

a (a) Neutral conditions; (b) in the presence of TsOH (1 equiv). Time
required to reach equilibrium:10 † 60 min at 358 K;‡ 130 min at 358 K. No
exchange of the 2,6-dipropylheterocycle ligands was observed in CDCl3,
under either neutral conditions or in the presence of TsOH, even under
heating at reflux over 7 d.

Figure 2. X-ray crystal structures of (a)L1Pd(2,6-dipropylPy) and (b)
L1Pd(2,6-dipropylDMAP). Carbon atoms of the macrocycle are shown in
light blue, and those of the monodentate ligands, in orange and green,
respectively; oxygen atoms are red; nitrogen, dark blue; and palladium,
gray. Selected bond lengths [Å] and angles [deg]: (a) N1-Pd 1.94, N2-
Pd 2.03, N3-Pd 2.06, N4-Pd 2.03, N2-Pd-N4 161.6; (b) N1-Pd 1.93,
N2-Pd 2.03, N3-Pd 2.06, N4-Pd 2.02, N2-Pd-N4 161.4.
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(br, 2H, Hc), 2.19-2.31 (m, 5H,tosyl-H + Hm), 2.69-3.42 (m, 14H,
Ha+e+h+l+C), 3.56 (br, 2H, Hg), 3.79-3.94 (m, 6H, Hn+F), 5.23 (br, 2H,
HC’), 5.82 (br, 1H, Hf), 6.39-6.71 (m, 13H,stopper-H + Hd+D+E),
7.05-7.14 (m, 18H,stopper-H + tosyl-H), 7.21-7.24 (m, 12H,stopper-
H), 7.44 (br, 2H, Hi+k), 7.82-7.85 (m, 4H,tosyl-H + HB), 8.02-8.14
(m, 2H, Hj+A).

Preparation of Py-L2Pd Wia the Protonation-Driven Translational
Isomerization and Subsequent Deprotonation ofDMAP-[L2HPd]-
OTs: DMAP-[L2HPd]OTs (0.0322 g, 0.0142 mmol) was dissolved in
DMF-d7 (1 g), and a control1H NMR spectrum acquired before the
sample was heated at 383 K. The sample was monitored regularly by
1H NMR spectroscopy. An equilibrium ratio of 89:11Py:DMAP-
[L2HPd]OTs was reached after 16 h and remained unchanged upon
further heating. (Similarly, heatingDMAP-[L2HPd]OTs at 383 K in
C2D2Cl4 for 36 h gave the same ratio of isomers, and subsequent heating
did not alter the product distribution.) After removal of DMF-d7 under
reduced pressure, the reaction mixture was redissolved in CH2Cl2 (10
mL) and stirred with a large excess of Na2CO3 (5 g) for 30 min.
Filtration through celite followed by removal of the solvent under
reduced pressure gave a yellow solid.1H NMR (400 MHz, CDCl3)
analysis revealed that the crude residue was comprised of a mixture of
Py:DMAP-L2Pd in an (unchanged) 89:11 ratio. The two co-conformers
were separated by column chromatography on silica gel (MeOH/CH2-
Cl2 1:19) to give pure samples of bothDMAP-L2Pd (identical
spectroscopic and other physical data to the sample previously obtained)
andPy-L2Pd.1H NMR (400 MHz, CDCl3): δ ) 1.07-1.43 (m, 82H,
stopper-H + thread-alkyl-H + macrocycle-alkyl-H), 1.47-1.72 (m,
10H, thread alkyl-H + macrocycle-alkyl-H + Hg), 2.14-2.23 (m, 2H,
Hb), 2.57-3.00 (m, 12H, Hc+e+g+l), 3.29-3.43 (m, 4H, Hh+C), 3.52-
3.59 (m, 2H, Hn), 3.78-3.88 (m, 4H, HF), 3.93-4.00 (m, 2H, Ha),
4.59 (d,J ) 12.5, 2H, HC′), 6.21-6.23 (m, 2H, Hd+f), 6.44-6.47 (m,
4H, HD), 6.49-6.56 (m, 4H, HE), 6.68-6.79 (m, 4H,stopper-H), 6.92
(d, J ) 7.6, 1H, Hk), 7.05-7.11 (m, 16H,stopper-H), 7.17-7.24 (m,
13H, stopper-H + Hh), 7.79-7.82 (m, 1H, Hj), 7.84-7.87 (m, 2H,
HB), 8.05-8.09 (m, 1H, HA).

Preparation of Pure Py-[L2HPd]OTs: To a solution ofPy-L2Pd
(0.0221 g, 0.0106 mmol, 1.0 equiv) in CDCl3 (2 mL) was added TsOH
(0.00202 g, 0.0106 mmol, 1.0 equiv), and the reaction stirred at RT
until all the TsOH had dissolved (5 min).1H NMR spectroscopy
revealed quantitative formation ofPy-[L2HPd]OTs. 1H NMR (400
MHz, CDCl3): δ ) 1.47-1.66 (m, 82H,stopper-H + thread-alkyl-H
+ macrocycle-alkyl-H), 1.58-1.81 (m, 10H,thread-alkyl-H + mac-
rocycle-alkyl-H + Hm), 2.16-2.32 (m, 5H,tosyl-H + Hb), 2.53-2.63
(m, 2H, Hl), 2.83-3.26 (m, 12H, Hc+e+g+C), 3.40-3.53 (m, 4H, Hh+n),
3.79-3.90 (m, 6H, Ha+F), 4.74 (d,J ) 13.9, 2H, HC’), 6.28 (d,J )
7.6, 2H, Hd+f), 6.42-6.57 (m, 8H, HD+E), 6.66-6.71 (m, 4H,stopper-
H), 6.88 (d,J ) 7.3, 1H, Hk), 7.02-7.15 (m, 19H,stopper-H + tosyl-H
+ Hi), 7.18-7.26 (m, 12H,stopper-H), 7.80-7.86 (m, 5H, tosyl-H +
Hj+B), 8.06-8.10 (m, 1H, HA), 14.00 (br, 1H,DMAP-H).

Preparation of DMAP-L2Pd Wia Translational Isomerization of
Py-L2Pd: RotaxanePy-L2Pd was heated to 110°C in DMF-d7 (1 g)

and monitoredVia 1H NMR spectroscopy at regular intervals. A ratio
of 86:14DMAP:Py-L2Pd was established after 1.5 h, and further heating
did not alter this ratio. Upon heating purePy-L2Pd to 110°C in C2D2-
Cl4, no isomerization was observed, even after 7 days of heating at
383 K.

X-ray Crystallographic Structure Determinations. Single crystals
of L1Pd(2,6-dipropylPy) andL1Pd(2,6-dipropylDMAP) of suitable
quality for X-ray diffraction studies were grown by the vapor diffusion
of Et2O into CH2Cl2 solutions of the complexes. Structural data for
both L1Pd(2,6-dipropylPy) andL1Pd(2,6-dipropylDMAP) were col-
lected at 93 K using a Rigaku Mercury diffractometer (MM007 high-
flux RA/Mo KR radiation, confocal optic). All data collections
employed narrow frames (0.3-1.0) to obtain at least a full hemisphere
of data. Intensities were corrected for Lorentz polarization and
absorption effects (multiple equivalent reflections). The structures were
solved by direct methods, and non-hydrogen atoms were refined
anisotropically with CH protons being refined in riding geometries
(SHELXTL) againstF2. L1Pd(2,6-dipropylDMAP): C46H61N5O4Pd,Mr

) 854.40, yellow prism, crystal size) 0.08 × 0.08 × 0.08 mm3,
monoclinic,P21/c, a ) 18.098(2) Å,b ) 18.151(2) Å,c ) 12.7405-
(14) Å, â ) 91.62(3)°, V ) 4183.6(8) Å3, Z ) 4, Fcalcd ) 1.357 Mg
m-3; µ ) 0.493 mm-1, 27 337 data (7572 unique,Rint ) 0.0510),R )
0.0512 for 6199 observed data, wR2 0.1268, S ) 1.125 for 506
parameters. Residual electron density 1.273 and-1.090 eÅ-3. L1Pd-
(2,6-dipropylPy): C44H56N4O4Pd,Mr ) 811.33, yellow prism, crystal
size) 0.05× 0.03× 0.03 mm3, monoclinic,P21/c, a ) 14.437(6) Å,
b ) 18.314(6) Å,c ) 16.522(6) Å,â ) 112.17(9)°, V ) 4045(3) Å3,
Z ) 4, Fcalcd ) 1.332 Mg m-3; µ ) 0.505 mm-1, 26 021 data (7361
uniqueRint ) 0.2872),R ) 0.0937 for 3061 observed data, wR2 )
0.1982S) 0.953 for 479 parameters. Residual electron density 1.263
and-0.812 eÅ-3. CCDC 651736 and 651737 contain the supplemen-
tary crystallographic data for this paper. These data can be obtained
free of charge from the Cambridge Crystallographic Data Centre via
www.ccdc.cam.ac.uk/data_request/cif.
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