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Abstract

This doctoral thesis outlines several methodological advances in network science aimed

towards uncovering rapid, complex interdependencies of electromagnetic brain activity

recorded from the Electroencephalogram (EEG). This entails both new analyses and

modelling of EEG brain network topologies and a novel approach to analyse rapid dynamics

of connectivity. Importantly, we implement these advances to provide novel insights into

pathological brain function in Alzheimer’s disease.

We introduce the concept of hierarchical complexity of network topology, providing both an

index to measure it and a model to simulate it. We then show that the topology of functional

connectivity estimated from EEG recordings is hierarchically complex, existing in a scale

between random and star-like topologies, this is a paradigm shift from the established

understanding that complexity arises between random and regular topologies. We go

on to consider the density appropriate for binarisation of EEG functional connectivity, a

methodological step recommended to produce compact and unbiased networks, in light of its

new-found hierarchical complexity. Through simulations and real EEG data, we show the

benefit of going beyond often recommended sparse representations to account for a broader

range of hierarchy level interactions.

After this, we turn our attention to assessing dynamic changes in connectivity. By constructing

a unified framework for multivariate signals and graphs, inspired by network science and graph

signal processing, we introduce graph-variate signal analysis which allows us to capture rapid

fluctuations in connectivity robust to spurious short-term correlations. We define this for

three pertinent brain connectivity estimates- Pearson’s correlation coefficient, coherence and

phase-lag index- and show its benefit over standard dynamic connectivity measures in a range

of simulations and real data.

Applying these novel methods to EEG datasets of the performance of visual short-term memory

binding tasks by familial and sporadic Alzheimer’s disease patients, we uncover disorganisation
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Abstract

of the topological hierarchy of EEG brain function and abnormalities of transient phase-based

activity which paves the way for new interpretations of the disease’s affect on brain function.

Hierarchical complexity and graph-variate dynamic connectivity are entirely new methods for

analysing EEG brain networks. The former provides new interpretations of complexity in static

connectivity patterns while the latter enables robust analysis of transient temporal connectivity

patterns, both at the frontiers of analysis. Although designed with EEG functional connectivity

in mind, we hope these techniques will be picked up in the broader field, having consequences

for research into complex networks in general.
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Lay summary

The brain is a vastly complex system in which great scientific efforts are being made to uncover

its functional mechanisms. Its complex, dynamically changing nature requires high temporal

resolution recording approaches such as the electroencephalogram (EEG). The EEG is also

a particularly practical method for use in the detection and prevention of brain diseases and

disorders at the earliest possible stages over the general population.

In this thesis, we will explore novel methods for modelling and capturing the architecture of

brain function, as well as robustly capturing its dynamics, from direct recordings of the brain’s

electrical activity recorded at the scalp, i.e. non-invasive EEG. Since estimated brain function

from EEG signals commonly takes the form of a network, it is naturally suited to analysis using

techniques from the field of network science. To this end, I will introduce a number of novel

network science methodologies designed with the EEG in mind.

It is shown that the hierarchical topology of EEG networks is strikingly complex compared

to known network models. From this it is considered whether hierarchical complexity should

play a role in determining the number of connections to analyse in the network. Whereas

the literature generally recommends very few connections, the evidence suggests that a larger

number of connections better captures the full range of complex network interactions.

We will then consider the problem of capturing dynamic connectivity. Since connectivity is

usually defined as an average of a function over a period of time, being able to capture transient

connectivity poses big problems in terms of finding a robust measure with high resolution.

To address this, we will see that weighting instantaneous signal dynamics by long-term

connectivity estimates provides a highly resolved, robust estimate of dynamic connectivity.

I will then apply these techniques of hierarchical complexity and dynamic connectivity to the

problem of characterising Alzheimer’s Disease (AD) at early stages and show that AD indeed

has abnormal characteristics of hierarchical topology and dynamic connectivity, providing

important insights into the pathology of this critical disease.
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List of Symbols

• G is a graph.

• V = {1, 2, . . . , n} is the node set of a graph.

• E = {(i, j) : i, j ∈ V} is the edge set of a graph.

• W is a weighted graph adjacency matrix.

• wij is the entry of W corresponding to (i, j).

• A is a binary graph adjacency matrix.

• aij is the entry of A corresponding to (i, j).

• n is the size (number of nodes) of a graph.

• m is the number of edges of a graph.

• ki is the degree of node i.

• F is a general function.

• X is a multivariate signal.

• xi is a single time-series of X.

• t is the index for time samples.

• T is the number of samples in a signal.

• x̄i is the mean value of x.

• Pxixj is the cross-spectral density function.

• ω is a frequency.

• Ω is a frequency band.
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• sai (t) is the instantaneous amplitude of xi.

• φi(t) is the instantaneous phase of xi.

• C is the global clustering coefficient of a graph.

• Cloc is the local clustering coefficient of a graph.

• L is the characteristic path length of a graph.

• E is network efficiency.

• Q is the modularity of a graph.

• qi is the normalised degree of a graph.

• pi is the proportion of nodes in a graph with the same degree as i.

• H is the entropy of a graph.

• L is the graph Laplacian.

• D is the degree diagonal matrix.

• si is the neighbourhood degree sequence of node i.

• di,j is the jth element of si.

• D is the set of degrees of a graph.

• R is the hierarchical complexity of a graph.

• D is the number of distinct degrees of a graph.

• µkj is the mean value of element j over all k-length degree sequences of a graph.

• rk is the number of nodes of degree k in a graph.

• p is the discrete cumulative distribution function parameter of the Weighted Complex

Hierarchy (WCH) model.

• s is the additional weight parameter of the WCH model.

• l is the hierarchy level parameter of the WCH model.
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• V is the degree variance of a graph.

• k is the degree sequence of a graph.

• P is the density of a graph.

• Ḡ is the weighted average of a set of graphs.

• W is the average of a set of weighted adjacency matrices.

• K3 and K4 are the complete graphs of size 3 and 4, respectively.

• Cw is the weighted clustering coefficient.

• LF is the leaf fraction of a graph.

• D is the diameter of a graph.

• MD is the maximum degree of a graph.

• Γ is a graph-variate signal.

• FV is a general node function of a graph-variate signal.

• FE is a general edge function of a graph-variate signal.

• F̄E is an edge dimension preserving function of a graph-variate signal.

• F̄V is a node dimension preserving function of a graph-variate signal.

• J is a tensor of node functions for graph-variate signal analysis.

• ∆ is a graph-variate network.

• HV is function of connectivity of two signals.

• C is a graph connectivity adjacency matrix.

• θ is a Graph-Variate Dynamic (GVD) connectivity function.

• θi is a node GVD connectivity function.

• θVa is a module GVD connectivity function.
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• θVa,Vb is a between module GVD connectivity function.

• z(t) is an autoregressive process.

• ε is white Gaussian noise.

• ρ is Pearson’s correlation coefficient.

• Ŵ is the weighted adjacency matrix with self-loops.

• τ is an epoch of a signal.

• µV is a micro volt.

xii



List of Acronyms

• AD - Alzheimer’s Disease

• BOLD - Blood Oxygen-Level-Dependent

• CST - Cluster-Span Threshold

• CWN - Complete Weighted Network

• E-R - Erdös-Rényi
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Chapter 1

Introduction

1.1 Motivation

The work described here is motivated by the search to understand more about the dynamic

interdependencies of brain function, particularly for practical applications in detecting

pathology in the screening of the general population. The first step towards this was to explore

state-of-the-art graph theoretic methods. In this exploration it became clear that there is

much work still to be done in providing informative and robust tools to capture meaningful

topological information. Thus, it is in graph topology where I take a large amount of focus in

this thesis.

Amongst a wide range of problems from which this topic can benefit, one of the more pressing

ones is the clinical problem of how to non-invasively and cost-effectively characterise and

detect Alzheimer’s Disease (AD) at an earlier stage than is currently possible. This is a problem

of immediate and great importance due to the ageing population and the prevalence of AD in the

elderly. To this end I apply my methods to Electroencephalogram (EEG) recordings of patients

and healthy controls undergoing novel Visual Short-Term Memory (VSTM) tests. By targeting

working memory functions involved in the early pathological decline of cognition, these tasks

show promise in the sensitive and specific detection of AD. It is hoped that uncovering the

functional underpinnings of task performance will go beyond providing insights into early

pathology towards the uncovering of functional abnormalities before any outward symptoms

can be seen. In the event of effective treatments of disease, success in this endeavour would

provide enormous benefits to society in preventing brain damage associated with AD at earlier

stages than is currently possible in the general population.
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Chapter 1. Introduction

1.2 Objectives and Hypotheses

The main objectives of this thesis are:

• To aid in the construction of a concise and comprehensive network framework for EEG

functional connectivity.

• Introduce powerful novel methods for topological analysis of EEG functional

connectivity.

• Introduce powerful novel methods for temporal analysis of EEG functional connectivity.

It is hypothesised that by introducing novel complex network methods tailored to the EEG, we

can better understand and extract information from the multivariate EEG activity.

Applying methods to EEG functional connectivity of AD, I expect to uncover novel information

relating to abnormalities in AD functional connectivity.

1.3 Contributions

This thesis provides innovations in the topological and temporal analysis of networks.

For topology I introduce an entirely new concept of the hierarchical complexity of complex

networks. I go on to provide an index to quantify hierarchical complexity and a generative

model which traces a scale between networks with no topological hierarchy and networks

with a strict topological hierarchy [1]. I then demonstrate the hierarchical complexity of EEG

functional networks. I test the hypothesis that hierarchically complex weighted networks are

best binarised in a medium density range, finding a non-arbitrary binarisation solution called

the Cluster-Span Threshold which tends to dwell in this range, to be promising [2].

For temporal analysis, I introduce a novel approach, called graph-variate signal analysis,

for assessing dynamic connectivity of networks constructed from multivariate signals. This

begins with a unified framework for multivariate signals and network science from which

graph-variate signal analysis is derived. I then formulate Graph-Variate Dynamic (GVD)

connectivity for short-time dynamic connectivity estimation of multivariate signals [3] and

provide formulae for the computation of modular GVD connectivity analysis [4]. These are

2
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then applied in a number of simulated and real world experiments, including resting-state and

task related EEG functional connectivity, finding GVD connectivity to be more robust and

powerful than state-of-the-art approaches.

1.4 Structure of the Thesis

The remainder of the thesis is organized as follows:

Chapter 2: Review of the field. This chapter discusses the literature for brain networks, taking

a focus on the networks of EEG functional connectivity. Various considerations which come

up in the methodological pipeline are covered including connectivity estimation, binarisation,

and state-of-the-art topological and temporal network analyses. Efforts made in AD research

to date are also discussed.

Chapter 3: Hierarchical complexity of complex networks. The formulation, measurement

and modelling of hierarchical complexity of binary networks is outlined. Its relevance to the

network analysis of EEG functional connectivity, particularly in detailing the range of network

density most appropriate for capturing hierarchical topologies, is then demonstrated.

Chapter 4: Accounting for hierarchical complexity in network binarisation. Following the

new found knowledge of hierarchical complexity, I explore how this affects the way in which

binarisation of the functional connectivity should be considered to provide the most meaningful

and powerful binary network. It is shown that a hierarchically complex network is better

characterised by larger densities than the sparse densities consistently recommended in the

literature and that a complex hierarchical structure is more robust to targeted attacks of network

hubs.

Chapter 5: Graph-variate signal analysis. The unified framework of multivariate signals and

network science is formulated, from which graph-variate signals and their analysis are derived.

I then define temporal connectivity for correlation, coherence and the phase-lag index and

elaborate on a network science approach of graph-variate signals including node and modular

components.

Chapter 6: Applications to visual short-term memory binding task performance and impairment

3



Chapter 1. Introduction

in AD. Hierarchy driven topological effects of task performance in Mild Cognitive Impairment

(MCI) with high probability of progression to AD are determined. Dynamic functioning of

healthy task performance in lateralised tasks are then located and it is found that these are of

relevance to pathology in familial and sporadic AD in datasets involving binding tasks with a

slightly different set-up.

Chapter 7: Discussion and conclusions. The main findings of the thesis are summarised

followed by discussion of limitations and, finally, scope for future work is presented based

on the novel developments herein.

4



Chapter 2

Review of the field

2.1 Introduction

In 1736 Leonard Euler, one of the most prolific mathematicians in history, provided a solution

to a light-hearted puzzle: whether it was possible to traverse the seven bridges of the city

of Königsberg exactly once each on a single walk [5]. The answer to this problem was in the

negative. What is more important however, was that to solve it rigorously required him to invent

a whole new branch of mathematics now known as graph theory. The term ‘graph’ here is not

to be confused with the plotting of curves on an x-y axis. A graph is an object comprised of a

set of points, which are commonly termed ‘nodes’, that share pairwise connections, typically

drawn as lines in a dot-to-dot fashion, named edges [6]. By formulating the separate land

masses of Königsberg as nodes and the bridges joining them as adjacent edges, Euler saw that

the number of nodes with an odd number of adjacent edges needed to provide such a solution

should be at most two since the path would need to leave each node, other than the starting and

finishing ones, as many times as it arrived. This was not the case for Königsberg which had

four landmasses all with an odd number of connecting bridges.

Since these humble beginnings, graph theory has evolved into a challenging branch of

mathematics with famous problems such as the four colour theorem [7] and the graph

isomorphism problem [8]. Even more recently, and arguably of more practical significance,

graphs have been applied to deepen our understanding of the complex networks present

throughout nature, providing new insights pertaining to structure and interdependency

in problems of sociology [9], computer science [10], biology [11], economics [12], data

science [13], and even linguistics [14], to name a few. In this thesis, we will focus on the
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Figure 2.1: Illustration of a neuron with its various parts clearly labelled. Found online under
a creative commons license [15].

development of methods for an exciting area in which the science of networks is helping to

revolutionise the understanding of the subject– neuroimaging.

The brain is composed of billions of neurons (nerve cells). Each neuron has a central

nucleus inside the cell body (soma), with a singular axon and numerous dendrites branching

off like tentacles to make contact with other neurons, see Fig 2.1 for an illustration. This

point of contact is called a synapse and interactions between neurons take place by means

of electrochemical impulses. Each cell delivers this activity through its axon and receives it

through its dendrites.

There are thus two major aspects to connectivity in neuroimaging– understanding the structure

of physical connections between neurons, known as structural connectivity, and understanding

the functionality of the brain through the inter-regional dependencies elicited through the

electrochemical impulses, known as functional connectivity [16]. The function of the human

brain– the way in which neurons, organised into function specific regions, interact with one

another– is where we will focus our attention in this thesis. It is a vast topic of study whose

importance is not only of an existential nature, in dealing with important questions such as

how we think and perceive and how all the disparate functions of human consciousness are

integrated to form a single seamless subjective experience, but its immediacy becomes apparent

in the need to understand and tackle a wide array of pathological conditions including AD [17],

epilepsy [18] and schizophrenia [19].
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Recordings of whole-scale brain function generally come in the form of multivariate signals

where each signal is associated to activity of localised, spatially separated neuronal clusters.

These are recorded directly using sensors in the case of the EEG or the Magnetoencephalogram

(MEG) or level of blood oxygenation, as the Blood Oxygen-Level-Dependent (BOLD) signal,

in functional Magnetic Resonance Imaging (fMRI) [16].

2.2 The Electroencephalogram

The apparatus required to record the EEG consists of a cap holding a set of electrodes placed at

usually evenly spaced distances over the scalp, as shown in Fig 2.2, according to a standardised

system, such as the 10-20 system [20]. It directly records the aggregated voltages of electrical

activity from the brain, eliciting the use of reference electrodes due to the relativity of voltage.

EEG recordings provide a unique opportunity to deepen our understanding of human brain

function across a healthy lifespan and in diseases of the nervous system [21]. In the clinical

context, the low cost, practicality and portability of the EEG offers a strong feasibility for

screening purposes in contrast to the MEG and fMRI which require expensive hi-tech stationary

equipment and special magnetically shielded and radio frequency shielded rooms, respectively.

The EEG can thus aid in the early detection of brain dysfunction associated to diseases

which have an impact on the worldwide population, such as dementia [22–24]. In a broader

context, the high temporal resolution of the EEG presents a great opportunity to study the

rapid interdependent processes which underlie cognition [21]. Thus, the EEG provides an

unparalleled matching of practicality and data richness for neurological diagnostics.

That being said, it would be amiss not to recognise certain limitations of the EEG. Particularly,

it has low spatial resolution, which is compounded by being unable to reliably solve the inverse

problem to retrace the activity at the scalp to accurate brain sources. Apart from the fact that

the number of sources at any moment in time is unknown, which is necessary to accurately

solve such a problem, volume conduction through the irregular biological tissues between

brain and scalp surface causes unpredictable and non-negligible errors in localisation [25].

However, this by no means deters us from extracting meaningful features of brain activity

from EEG and particularly in understanding complex dynamic relationships of brain function

which can be captured using network science methods at the sensor level [16, 26, 27]. In this
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Figure 2.2: Picture of an EEG cap worn by a man seated in front of a computer. Courtesy of
Dr. Mario A. Parra, Psychology Department, Heriot-Watt University.

case we are not so much interested in the specifics of where activity is occurring, which, for

example, might typically be the case if we wished to identify a region of abnormal excitatory

activity giving rise to seizures suitable for ablation, but rather in characterising the topology

of statistical dependencies between more general brain regions. This does mean, however, that

results obtained need to be analysed with care.

2.3 Estimates of EEG functional connectivity

Network topologies of function from EEG recordings are established by assigning each signal

to a node and implementing a bivariate analysis on all signal pairs which are encoded as

weights of the relevant adjacent edges, see Fig 2.3 for an illustration. This is often preceded by

filtering the EEG signal in a frequency band of interest. A very common suggestion, based on

spectral analysis, are frequency bands of Delta (0-4Hz), Theta (4-8Hz), Alpha (8-13Hz), Beta

(13-32Hz), and Gamma (32-60Hz), although the exact interval of the bands can vary.

Formally, we define G = (V, E ,W) as a graph where V = {1, 2, . . . , n} is the node set,

E = {(i, j) : i, j ∈ V} the edge set and W the weighted adjacency matrix with entries wij the

weight (estimated connectivity strength) of edge (i, j) for i 6= j and wii = 0 ∀i ∈ V . The edge

density of a network, P = 2m/n(n − 1), normalises the number of edges in a network with

respect to its size. For additional details of the important basic concepts of network science see

Fig 2.4.
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Figure 2.3: Illustration of the construction of a graph from multivariate brain signals. Signal
i and j are mapped to nodes i and j of a graph. The output of connectivity estimation between
these signals becomes the weight of the edge between them.

The weighted functional connectivity adjacency matrix, W, is generally computed as the

output of a function, F , on the multivariate signal X ∈ Rn×T as

W = F (X) (2.1)

and

wij = F (xi,xj), (2.2)

where xi and xj are the individual time-series, i.e. rows, of X related to nodes i and j of the

graph. Specifying the function F is a challenging research area with many proposed solutions.

Taking x̄i as the mean of xi over epoch T , a basic attempt would be to take F as Pearson’s

correlation coefficient:

F (xi,xj) =

∑T
t=1(xi(t)− x̄i)(xj(t)− x̄j)√∑T

t=1(xi(t)− x̄i)2

√∑T
t=1(xj(t)− x̄j)2

. (2.3)

This tracks the behavioural similarities of the signal amplitudes, where large positive values

are attained when both signals instantaneously go in the same direction, relative to their means,

and large negative values attained going in opposite directions. However, signal amplitudes of

nearby electrodes are highly susceptible to spuriously high values due to volume conduction

[25], illustrated in Fig 2.5.

Coherence is another proposed measure which works with the power and cross-power spectral
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Figure 2.4: Illustration of basic network science concepts. Networks can be weighted (top
left) where wider edges indicate larger weights, or directed (top right) where arrows indicate
direction of edges, but we are interested mostly in unweighted and undirected graphs (top
centre). Networks can also have loops (2nd row, left) and multiple edges (2nd row, middle),
but these are generally not allowed in functional connectivity networks. The degree of a node
(2nd row, right) is the number of edges adjacent to it. A path (3rd row, left) is a sequence of
unique edges from which one can get from a given node to another. A cycle (3rd row, right) is a
path which starts and ends at the same node and a tree (bottom left) is a graph with no cycles.
Modules (bottom right) are subsets of nodes which are often chosen in a way that the within
module nodes are highly connected and less connected to the rest of the graph.

density functions, Pxixj (ω), for i = j and i 6= j, respectively, and frequency ω [28]. For a

frequency band of interest, Ω, we write

F (xi,xj ,Ω) =
1

|Ω|
∑
ω∈Ω

|Pxixj (ω)|2

Pxixi(ω)Pxjxj (ω)
. (2.4)

This assesses correlations of the frequency components of time-series, but is similarly effected

by volume conduction as correlation. Indeed, since volume conduction through the head is

practically speaking instantaneous to all electrodes it will always be present as synchronised
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Figure 2.5: Illustration of volume conduction of neural electrochemical activity through head
tissue and fluid. Each medium has its own conductivity. In this example, the neural activity is
closer to the left electrode but will be picked up strongly in the right electrode also.

activity and thus any computation based on amplitudes or frequency synchronisations will be

corrupted by volume conduction.

Instead, more promising approaches look at non-synchronised frequency dependencies. These

are much more likely to be true dependencies since they cannot be directly accounted for by

volume conduction. There are a number of different formulations of such measures, for a

comprehensive list see [29] or [30] for example. Here, we will focus on the Phase-Lag Index

(PLI) [31] which has been consistently successful in providing insights into AD, particularly,

from EEG/MEG signals [32–35].

Recall that the analytic signal of xi is composed of instantaneous amplitude and phase

components xai (t) = sai (t)e
jφi(t), where sai (t) is the envelope of the signal t and φi(t) is the

instantaneous phase at time t. The PLI is defined as

F (xi,xj) = |〈sgn(φi(t)− φj(t))〉|, (2.5)

i.e. the magnitude of the average over time of the signed values of differences of the

instantaneous phases of signals xi and xj . This measures the consistent phase differences

between time-series, indicating lead/lag dependencies. Generally, this is taken as an

undirected value since determining whether one signal is truly leading or lagging another is

an issue which requires careful consideration. For example, one could study the expected
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delays between inter-regional signal transmissions to infer plausible phase dependencies.

Estimation here could be based on Euclidean distances between sensor placements or on

fibre tract trajectory of structural connectivity data. One would also need to consider indirect

dependencies from longer transmission pathways. Such involved processes are beyond the

scope of this thesis and we will be content just now with looking at undirected PLI.

2.4 Binarising functional connectivity

Whichever connectivity measure is chosen, functional connectivity defined between all

possible pairs of signals presents the researcher with a full adjacency matrix whose entries

are only distinguished by relativity of weights. The most popular network science techniques

are based on binary networks [36], where in the notation above W is replaced with binary

adjacency matrix A with entries aij ∈ {0, 1} indicating non-existence (0) or existence (1) of

an edge. This led initial efforts on the analysis of brain network topologies to be implemented

via the binarisation of the weights using some arbitrarily chosen thresholds with some good

success [16, 37, 38].

Still, studying the original weighted networks holds appeal in that it is more direct and

has advantages of maintaining the information of relative strengths of connections [39].

But serious complications exist in that these computed weights are known to vary due to

any number of different pre-processing choices or connectivity analyses implemented, thus

complicating comparisons and obfuscating results [40, 41]. Furthermore, since the weights

of dependency measures generally follow a non-scaling distribution between 0 and 1, many

interesting topological considerations in binary networks, such as concerning paths, become

redundant in light of the fact that the shortest weighted path between any two nodes is likely

to be just the weighted edge connecting them [42]. Therefore, binarising the weights remains

a more widely used approach which can explain the main topology of the underlying activity

while alleviating methodological biasing and topological redundancy of weights.

Arbitrarily defining edges is both wide open to bias, where researchers can pick and choose

the best threshold for their particular dataset, see Fig 2.6, and makes comparisons between

studies intractable since many network analyses are dependent on the network’s number of

edges. Taking the most reasonable route that the strongest connections are those which should
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Figure 2.6: Illustration of how the chosen threshold affects the network topology and thus
introduces subjective bias to the research. Left is an example of a network with 30% of strongest
connections kept and right with 15% of strongest connections kept.

be kept and weakest discarded, the problem is best illustrated by realising that the total possible

number of thresholds to choose from is equal to the number of edges, which, in a complete,

weighted, undirected network, is n(n− 1)/2.

Network binarisation is thus an important active problem in brain network research. Two

main approaches exist to non-arbitrarily define the threshold. These are statistical methods

and topological methods. In the former case, the problem is posed as finding those edges

which are statistically likely to be true connections. However, rather than resolving arbitrary

choices, we note that this merely diverts it towards the statistical significance paradigm, where

arbitrary standards (e.g. significance level α = 0.05 in widespread statistical tests) have long

been adopted to mitigate an intractable problem. Further problems with a statistical approach

relate to difficulties in finding the correct solutions for the numerous available connectivity

measures in a way that is consistent and reliable, biases from the size of available data, and, in

the case of data surrogate methods, biases due to network size [26]. Topological approaches

to binarisation, on the other hand, have attracted attention recently, providing criterion for

binarisation which are not subject to arbitrary threshold decisions and inherently complement

the analysis of network topology.

One method gaining traction in the field is the Minimum Spanning Tree (MST) [43,44]. A tree

in graph theory is a graph with no cycles, see Fig 2.4. A spanning tree of a graph is a connected

tree subgraph that includes all nodes of the graph. The MST is thus the spanning tree of a

weighted graph that requires the least total weight. Fortunately, the algorithm to construct

the MST is quite simple and is included in popular toolboxes, e.g. in MATLAB [45]. For
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functional connectivity, we are not interested in the minimum weight, but in fact the maximum

weight (strongest connectivity), though the nomenclature of using ‘minimum’ has stuck [43].

The algorithm is exactly the same regardless– one adds the strongest connectivity weights to

the network one by one; if at any point a cycle is created, the edge is discarded and we move

on to the next one; the algorithm ends when a spanning tree has been constructed [46].

Another method is the Union of Shortest Path graphs (USP) [47]. The shortest path between

two nodes in a network is the set of edges with the minimum sum of weights connecting them.

This can be constructed using Dijkstra’s [48] algorithm to find the shortest paths between each

pair of nodes in the network, adding all the edges of those paths to an initially empty binary

network. Because connectivity has an inverse relation to distance, the weights of the network

must first be relationally inverted in order to construct the shortest paths. This inversion process

can take several forms which involves a certain amount of subjective discretion and depends

largely on the distribution of the original weights.

The Cluster-Span Threshold (CST) chooses the binary network at the point where open to

closed triples are balanced [49]. A triple is a path of length two, containing three nodes and

two edges. A closed triple, or triangle, is a path of length three which begins and ends on

the same node, containing three nodes and three edges, and an open triple is a triple which is

not closed. A closed triple, {(i, j), (j, k), (k, i)}, thus contains three triples– {(i, j), (j, k)},

{(j, k), (k, i)} and {(i, k), (k, j)}– and a complete graph is the only graph in which all triples

achieve closure. The number of closed triples is calculated from the sum of the diagonal of

A3 (number of paths of length 3 beginning and ending at the same node), and the number of

triples is calculated by summing all non-diagonal elements of A2 (diagonal elements being the

number of ‘paths’ of length two consisting of traversing the same edge twice– {(i, j), (j, i)}

and non-diagonal elements, aij , being the number of triples starting at i and ending at j).

The balance of open and closed triples is thus assessed by the fraction of triples which are

closed. Importantly, the balancing of this topological characteristic necessarily endows the

binary network with a trade-off of sparsity to density of edges. We see this since a network

is sparse if most triples are open and dense if most triples are closed. It is hypothesised that

this balance achieves an informational richness useful for capturing different topologies of EEG

functional connectivity [42]. For the case of fMRI connectivity, where structural connectivity is
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known, it has yet to be considered whether matching the clustering coefficient to the structural

data could achieve a more appropriate threshold than the CST.

The final threshold we shall look at is the Efficiency Cost Optimisation (ECO). The ECO

proposes a threshold to keep the strongest 1.5n edges– equivalent to a density threshold of

3/(n − 1)– which is an approximation based on consistent observations of simulated and real

brain networks of the maximum ratio of the combined local and global network efficiencies

and density [50]. It is hypothesised that such a trade-off of network efficiency and sparsity

provides networks which are meaningful to the concept of economy in brain function [51].

2.5 Network topology of functional connectivity

Once the network has been binarised, the network is ripe for a wide array of topological

analyses both at the level of individual nodes (local indices) and whole-scale properties of

the network (global indices). Initial studies of brain network topology derive from the seminal

work by Watts and Strogatz [52] which described small-world characteristics of a network as

having a high clustering coefficient, interpreted as segregation of a network into clusters, and a

low characteristic path length, interpreted as a well integrated network.

Two forms of the clustering coefficient exist, the global clustering coefficient, C, and the local

clustering coefficient, Cloc. C is the ratio of closed to open triples in the network, depicted in

Fig 2.7, which can be formulated, for a network with at least one triple, as

C =

∑n
i,j,k=1 aijajkaki∑n
i,j,k=1 aijajk

(2.6)

where aij are the entries of the binary adjacency matrix A. Cloc is, instead, the average over

nodes of the triples centred at a given node which achieve closure and reflects local properties

of clustering. This can be written as

Cloc =
1

n

∑
i s.t. ki>1

∑n
j,k=1 aijajkaki∑n
j,k=1 aijaik

, (2.7)

where ki is the number of edges adjacent to i, called the degree of i. The fraction within the

first summand is the local clustering coefficient of node i, Ciloc.
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Figure 2.7: Illustrations of clustering and shortest paths in a network. If node A shares an edge
with A’s neighbour, the formerly open triple, whose edges are denoted by the dark grey arrows,
becomes closed. The shortest path from A to B is the path with the smallest number of edges
(not necessarily unique) starting at A and finishing at B, indicated by the black edges.

The characteristic path length, L, is the average of the shortest paths, depicted in Fig 2.7,

between all pairs of nodes. It can be written

L =
1

n(n− 1)

n∑
i,j=1

d(i, j), (2.8)

where d(i, j) is the number of edges in the shortest path between nodes i and j. This is related

also to network efficiency defined as

E =
1

n(n− 1)

n∑
i 6=j=1

1

d(i, j)
, (2.9)

i.e. the average inverse shortest path length, which is set to measure the efficiency of

connectivity pathways in the network.

Adopted in the very first studies of functional connectivity networks [53, 54], these measures

have found small-world properties suggesting a trade-off of integrative and segregative

behaviour in brain function [16, 55] allowing for ‘economic’ operations [51].

Another seminal paper in complex networks by Barabási and Albert [56] noted that the degree

distributions of real-world networks tend to be close to scale-free and following up on this it

was found that this property also appears in functional brain networks [57, 58]. Essentially,

the scale-free property of the degree distribution means that there are a few very high degree

nodes whereas most nodes have small degrees. In fact, for sparse networks found in many

real-world situations, there can only be a few very high degree nodes, as the number of edges
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is limited, thus perhaps the more interesting aspect of a scale-free distribution is the existence

of these high degree nodes. In brain networks, these nodes are called hub nodes [59] and are

seen as key components allowing for the integration and distribution of information flow, since

the brain is essentially a large information flow control system [60].

These preliminary studies provided important insights into the topology of functional brain

networks, however, in our own analysis, we found that they can be refined and in Chapter 3 we

will discuss how the concepts of integration/segregation and hub dominance can be captured

using single indices, paying particular attention to EEG functional connectivity.

Another key aspect of network topology is that of community structure, introduced

by Newman and Girvan [36, 61]. The community structure of a network refers to the

decomposition of the network into highly intra-connected modules of nodes which are

relatively weakly interconnected. Modularity is defined as the difference between the number

of within module edges in the network with those predicted by random network with the same

degree distribution, written as

Q =
1

2m

n∑
i,j=1

(
aij −

kikj
2m

)
δ(Vi,Vj), (2.10)

where Vi is the module containing node i and δ() is the Kronecker delta function which is 1

if Vi = Vj and 0 otherwise. This then requires predefined modules. The general strategy for

an arbitrary network is to find the maximal value of Q over all possible non-trivial module

decompositions of the network. Efficient algorithms have been created [61, 62] aiming to do

this, attaining reasonable results. Applied to functional connectivity, modular organisation has

indeed been found in functional connectivity networks [63, 64], suggesting brain function is

facilitated through the integration of specialised functional modules.

These three aspects of network topology– integration/segregation, scale-freeness and

modularity– have been proposed as the main ‘dimensions’ of graph topology [65] and

due to successful findings in brain networks, this has been brought forward for functional

connectivity [55, 66].
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2.6 Complexity of network topology

The inherent complexity of networks, rather than being an independent aspect in and of itself,

is presumed to arise as a result of networks finding a trade-off between orderly structures

and the efficiency provided by random topologies [51], see Fig 2.8.A. We do not take this

view. We propose that the complexity of a network is more intrinsically dependent on the

hierarchical structure of node degrees, related to the relationship of network hubs and lower

degree nodes. Particularly, neither random nor regular networks have any hub nodes, whereas

hubs are one of the main characteristics of real-world networks. Chapter 3 details methods

which substantiate this proposition. We devise a novel network index called hierarchical

complexity to assess the complexity of a network based on hierarchical levels. We then create

a model whose main parameter, s, goes from random networks at s = 0 to strict class-based

networks at s = 1, see Fig 2.8.B. Applying this to EEG resting-state data, we seek to assess the

hierarchical complexity of EEG functional connectivity compared to the model and whether

or not complexity can be seen to arise from either the random to regular spectrum hypothesis

or the hierarchical spectrum hypothesis of equal node networks to class-based networks. Note

that, with respect to brain networks, the concept of hierarchy can be applied in several ways,

e.g. [64, 67], but in this work we consider the hierarchy of network degrees and the inter-level

relationships of this hierarchy.

We note that network entropy is an index which has been used to assess complexity of the

network [65]. This is defined using the normalised degree distribution qi = kipi/
∑

j kjpj ,

where ki is the degree of node i and pi is the proportion of nodes in the graph with the same

degree as node iwhich relates to probabilities of ‘going to’/ ‘coming from’ neighbouring nodes

in directed graph problems. Then the entropy of graph G is a straightforward derivation of

Shannon’s entropy equation [68] for the degrees of the graph:

H = −
n∑
i=1

qi log(qi), (2.11)

encoding the eccentricity of the graph degrees. We compare hierarchical complexity with this

measure and show its greater performance in identifying different network types.
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Figure 2.8: A. The previous model of network complexity: randomly rewiring a regular lattice
one obtains a small-world network before a complete rewiring returns a random graph. B. The
proposed model of network complexity: starting from a random graph, one adds additional
weight, s, to the adjacent edges of chosen nodes. For s < 0 a complex hierarchical topology
emerges, whereas s ≥ 1 returns an ordered hierarchy. Notice that the complex hierarchical
model emerges from randomness, whereas the small-world model emerges from orderliness.

The hierarchical complexity of network topology brings forth important considerations of

how the weighted functional connectivity network should be binarised. Sparse representations

such as the MST and ECO seek a minimalistic model based on the sparsity found in structural

connectivity [38]. However, considering a complex hierarchical structure, such sparsity would

conceivably severely limit topological information by being dominated by interactions of

hub nodes and disregarding more nuanced connectivity information available throughout

the hierarchy. We hypothesise that for more subtle changes in functional connectivity,

such as relating to different cognitive tasks or early stages of diseases, sensitivity will be

enhanced by considering denser networks that contain more information of a network’s degree

hierarchies. We explore this hypothesis in Chapter 4 and also look at the effect of network

attacks– compromises to the network weights which aim to simulate noise and/or functional
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degeneration– on the sensitivity of different binarisation approaches in picking up differences

in populations of differently configured network models.

2.7 Dynamic connectivity

Static network topologies of functional connectivity allow us to assess local and whole-scale

stable interdependencies of brain regions. However, one of the major aspects of brain function

is its transient, dynamic nature [69]. For instance, in a single cognitive task lasting only a few

seconds, several functionally important and distinct periods may be recognised which last only

a fraction of a second each, e.g. pre-stimulus, stimulus, retention, test, response (e.g. [70]).

It is expected that each of these periods will require or induce separate functional activities

and inter-regional relationships. Therefore, the importance of developing dynamic network

models of functional connectivity, particularly for high temporal resolution EEG, is paramount

for understanding the complexities of brain function [26, 27, 69].

A large contingent of research solutions for temporal networks take the form of events

occurring at edges (i.e. between two nodes) which change over time, geared towards data in

which node specific activity is either not available or not meaningful [71]. Such outputs are

also well suited to a multi-layer network framework where chronologically separated networks

can be integrated as layers into a multi-layer network with a tensor adjacency matrix in which

topological considerations, such as closure of triples, can span the layers [72].

Initial attempts have done well to devise temporal and multi-layer network methods to analyse

multivariate signals where most recent studies go the route of implementing disjoint [73] or

overlapping [74–76] windows to construct a number of distinct chronologically separated

graphs to gain a foothold on changing connectivity patterns. However, this is limited by

the length of the window– the less samples used to define the network, the less reliable is

the connectivity estimate. Fig 2.9 (a) illustrates this, showing independent realisations of an

autoregressive process in which spurious strong correlations can be found in short windows. On

the other hand, the larger the window used the less meaningful it is at determining temporally

refined connectivity estimation. Therefore obtaining reliable transient information is difficult.

Another study proposes the signals’ instantaneous phase differences as a measure of
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Figure 2.9: (a) Specific example of spurious short-term correlation coefficient, ρ, from
independent realisations of an autoregressive model. (b) Illustration of how long-term
connectivity weighting (black edges connecting blue nodes) improves robustness of analysis of
short-term transient dynamics. Nodes i, j and k all exhibit similar behaviour in the windowed
epoch. However, from the topology of long-term connectivity it is clear that the correlation
between i and j, with a shortest path of 1, is more meaningful whereas correlations between
i/j and k, with shortest paths of 6, are spurious and should be disregarded.

instantaneous connectivity [77]. Though this allows signal resolution analysis, it is still wide

open to spurious connections, Fig 2.9 (a), and noisy fluctuations.

Another promising framework for exploring the possibility of dynamic connectivity analysis

is found in Graph Signal Processing (GSP). In GSP, a signal, whose samples occur at

graph nodes, is processed over the graph topology. However, GSP is mainly concerned

with the development of a cohesive signal processing theory for graph signals, analogous

to classical signal processing [78]. Spectral graph techniques are implemented, using the

eigen-decomposition of either the graph adjacency matrix [79] or its Laplacian [78], to

process graph signals in a method called the Graph Fourier Transform (GFT) which has been

applied in topics such as big data [80] and neuroscience [81]. Recent work on the integration

of the temporal domain within the GSP framework is also under way [82, 83]. This spectral

approach, however, presents hurdles in interpretation in light of the fact that the frequencies of

the graph signal emerge through graph eigenvectors which relate to a still unquantified extent

to the graph topology. Further, the graph signal itself remains a passive component in the

analysis treated as a vector separate from the graph adjacency matrix.

On the other hand, the Dirichlet energy of a graph signal, another component of the GSP

framework, is a more directly extracted feature which weights instantaneous activity by graph
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weights [78]. This is defined as

xTLx =
n∑

i,j=1

wij(xi − xj)2 (2.12)

for graph weights wij and graph signal x, where L is the graph Laplacian defined as D −W

where D is the matrix whose diagonal is the degrees of W and zero elsewhere. In chapter 5

we will describe the advancement of this perspective of Dirichlet energy towards a general

dynamic connectivity estimate for functional connectivity based on a novel graph-variate

signal analysis framework which unifies multivariate signals and graphs in a fully flexible

way. The advantage of this method for EEG functional connectivity is that, by weighting the

short-term connectivity estimates by stable long-term dependencies, a more robust estimate

can be realised. The illustration in Fig 2.9.(b) provides a useful intuitive grasp of this, where

instantaneous connectivity between nodes i and j is of high interest whereas that between i/j

and k is likely to be spurious based on the information obtain from stable connectivity estimates

indicated by the edges.

2.8 Application to Alzheimer’s Disease

To show the power and new insights offered by the novel methods described in this thesis, in

Chapter 6 we apply them to data retrieved for research into AD. AD is a neurodegenerative

disease whose physical hallmarks are the presence of toxic amyloid plaques [84] and

neurofibrillary tangles of Tau proteins [85] originating in memory related regions such as the

entorhinal cortex and the hippocampus but eventually progressing throughout the whole brain

in a process lasting many years. These toxic plaques cause neuronal deaths which instigate

initial problems of memory loss, leading to the complete decimation of brain function and

eventual death.

Two important forms of AD are the sporadic version, occurring in elderly individuals and set

to be a major problem in the future due to the increasingly elderly population, and the familial

version which occurs with certainty in specific inherited genes with onset in middle age [86].

Of course, many genetic variants have been identified that increase the risk of sporadic AD,

but unlike those for familial AD, these in themselves are not sufficient to cause the disease.
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Figure 2.10: Diagram of the progression of AD and of current markers for its detection. This
model derives from familial AD, but is thought to apply to sporadic AD also. Clearly, early,
pre-clinical markers are necessary to help in the hopeful prevention of irreversible whole-scale
damage to the brain. Found in [87].

Since the aetiological pathway is clear in familial AD and it is also possible to predict who will

develop the disease many years before symptoms of the disease occur, familial AD is often

adopted as a model for sporadic AD. It is commonly thought that people with sporadic AD

usually pass through a phase where memory deficits are not too severe and where the impact

of these on daily social and occupational functioning is minimal which is labelled as MCI.

However, not all people who fulfil diagnostic criteria for MCI (i.e. have mild cognitive deficits)

progress to AD. Since treatments are thought to be most effective before symptoms of AD have

appeared, identifying those with MCI who will progress to AD is of great current importance.

Especially considering that by this point the physical damage done by the disease is already

substantial, Fig 2.10.

Because of the associated neuronal deaths it is proposed that early, non-invasive signs of

the disease may be found in disruptions to the brain’s functional architecture via synaptic

failure [88]. Following this, studies of functional connectivity have been conducted to validate

this hypothesis. Initial studies of resting-state EEG functional connectivity of AD focused on

small-world characteristics, finding deviations from healthy ageing [32,37,89] that were related

to a loss of complexity and efficiency. Progressively, investigations have looked closer into the
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key role of the deterioration of network hubs in corrupting functional integration in pathology

[32, 90–92]. Other important associated factors of hierarchical network topology such as

loss of assortativity [89]– neighbouring degree correlations– and loss of hub connectivity to

distant nodes [93, 94] have been found. Since these aspects relate directly to the hierarchy of

network degrees, where hubs are top level nodes and assortativity describes the strength of

bonds within hierarchy levels, it is of interest to look more closely into the details of network

topology vis-à-vis hierarchical structure. Furthermore, using the EEG as a tool for screening

purposes over the general population is very promising since it is non-invasive, cost-efficient

and practical.

Honing in on initial stages of the disease related to memory loss or even before MCI, a

promising explorative approach based on EEG functional connectivity relates to performance

of short-term memory cognitive tasks. Evidence suggests that the binding of shape and colour

in VSTM [95] is depreciated in both sporadic AD [70, 96] and familial AD [97] compared

to performance of VSTM of single features (shape or colour alone). Following this, we

will explore topological and temporal analysis of EEG functional connectivity during VSTM

binding in familial MCI developing AD with certainty and elderly MCI at high-risk of AD. In

doing so we seek to assess the physiological underpinnings of the expected dysfunction in AD

causing poor task performance and thus take steps towards possible early EEG biomarkers of

this disease.

This will provide important evidence of the utility of the introduced methods to a major societal

problem and we believe this can be extended to various clinical diseases such as schizophrenia,

epilepsy and Parkinson’s as well as more broad understanding of functional connectivity during

various cognitive processes and conscious or unconscious states.
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Chapter 3

The Complex Hierarchical Topology of EEG

Functional Connectivity

The contributions of this chapter were published in the Journal of Neuroscience Methods in

January, 2017 [1].

3.1 Introduction

Complexity is understood neither to mean regularity, where obvious patterns and repetition

are evident, nor randomness, where no pattern or repetition can be established, but attributed

to systems in which patterns are irregular and unpredictable such as in many real world

phenomena [98]. Particularly, the brain is noted to be such a complex system [99]. Here,

hierarchical complexity is concerned with understanding how the degree hierarchy of the

network contributes to its complexity.

We introduce a new index aptly named hierarchical complexity, R, which is based on targeting

the structural consistency at each hierarchical level of network topology. Alongside this,

we introduce the Weighted Complex Hierarchy (WCH) model which simulates hierarchical

structures in weighted networks. This model works by modifying uniform random weights

by addition of multiples of a constant, which is essentially a weighted preferential selection

method with a highly unpredictable component provided by the original random weights. We

show that it follows very similar topological characteristics of networks formed from EEG

phase-lag connectivity. Intrinsic to our model is a strict control of weight ranges for hierarchical

levels which offers unprecedented ease, flexibility and rigour for topological comparisons in

applied settings and for simulations in technical exploration for brain network analysis. This
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also provides an alternative to methods which randomise edges [52, 53] or weights [39] of the

original network.

Any rigorous evaluation of brain networks should address their inherent complete weighted

formulation [26]. However, the current field has largely lacked any concerted effort to build an

analytical framework specifically targeted at Complete Weighted Networks (CWNs), preferring

instead to manipulate the functional connectivity CWNs into sparse binary form (e.g. [44, 53,

100] as well as wide-spread use of the Watts-Strogatz [52] and Albert-Barabasi [56] models)

and using the pre-existing framework built around other research areas– such as social science

and the internet– which have different aims and strategies in mind [6]. In our methodological

approach we propose novel generalisations of pre-existing sparse binary models to CWN form

and thus allow a full density range comparison of our techniques. Due to the intrinsic properties

of these graph types we find minimal and maximal topologies which can help to shed light on

a wide variety of topological forms and their possible limitations [65] in a dense weighted

framework.

Further, as part of our study we seek after straightforward indices to evaluate other main aspects

of network topology for comparisons [65, 66] and, in this search, found it necessary to revise

key network concepts of integration-segregation [41, 45, 52] and scale-freeness [57, 101]. We

provide here these revisions: i) that the clustering coefficient, C, is enough to analyse the scale

of integration and segregation, finding it unnecessary and convoluted to use the characteristic

path length, L, as a measure of its opposite as previously proposed [16, 52]; ii) we provide

mathematical justification that the degree variance, V , and thus network irregularity [102] is a

strong indicator of the scale-free factor of a topology.

3.2 Network science: proposed methods and key revisions

3.2.1 Hierarchical Complexity Index

The ideas of order and complexity are well known in the discussion of networks (indeed,

real world networks are often called complex networks [16, 27, 103]). In mathematics, the

graphs studied derive from some theoretical principles. These can involve set patterns, without

random fluctuations of edges, such as regular networks, fractal networks, star networks and
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grid networks. On the other hand much interest is shown in more randomly generated

topologies, such as random graphs and other graphs involving random processes, as these

express something of the more erratic and irregular quality of edges in networks constructed

from real world phenomena [52,104]. However, such phenomena differ from random processes

in that there is a clear organisational behaviour apparent throughout the structure [64] and

there is a distinct presence of very highly connected nodes [56], presenting a hierarchy of

node degrees. Although this structure is perhaps impossible to retrace, because its formation

inevitably involves many unknown generative processes, we can provide methods for its

analysis.

Studying the relationships of node degrees has provoked interesting findings in brain networks.

For example it has been found that a small group of highly connected nodes create a rich club

[103] and nodes with generally lesser connectivity exist on a peripheral lower levels. Further,

it is seen that a node’s relationship within the context of the network is greatly determined by

the other nodes to which it is connected [105]. Thus, to understand the hierarchical complexity

of a network we propose to study the behaviour of nodes of a given degree by looking at the

degrees of nodes in their neighbourhoods. Instead of determining centralities of nodes as in

eigenvector centrality, for example, we are interested in the variability of connections found in

nodes with the same level of centrality in order to understand the complexity of organisational

principles in the network. We define D as the set of degrees of a graph, G. Similar to the idea

of node degree sequences [106], we can construct neighbourhood degree sequences specific to

each node in the graph. That is, for a node i of degree k ∈ D we have a sequence

si = {di,1, di,2, . . . , di,k} s.t. di,1 ≤ di,2 ≤ · · · ≤ di,k ∈ D,

where di,j is the degree of the jth node connected to node i (see Fig 3.1.A). For all nodes of a

given degree, k, the corresponding neighbourhood degree sequences have equal length, k.

We define the hierarchical complexity, R, of a network as the average variance of the k-degree

neighbourhood degree sequences and can be expressed as:

R =
1

D
∑
rk>1

1

k(rk − 1)

 k∑
j=1

∑
i∈Dk

(ski(j)− µkj)2

 , (3.1)
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Figure 3.1: A. Example of a node degree neighbourhood. Here is shown a part of a network
relating to the neighbourhood of the blue node. The blue node has neighbourhood degree
sequence {1, 2, 3, 4, 4}, i.e. the ordered degrees of the orange nodes. Grey edges indicate all
the additional edges of the orange nodes in the network. B. Example for graph complexity. Here
is shown a 20 node network with varying ordered-ness at different degree levels. C. Diagram
of the construction of the WCH model. Above is the probability distribution function for a
geometric distribution with p = 0.6 for a three level hierarchy. Below is a graphic displaying
the additional weight added between nodes in given hierarchy levels.

where D is the number of distinct degrees in the graph, Dk is the set of nodes of degree k,

ski(j) is the jth element of the ith k-length sequence, µkj is the mean value of element j over

all k-length sequences and rk is the number of nodes of degree k.

Organisation of the graph at the level of k-degree nodes can be seen by comparing the jth

elements of their neighbourhood sequences. If all of the jth elements of all the sequences are

equal, that is si = sj for all si, sj of length k, then there is a high degree of order present in

the k-degree nodes of the graph. If these sequences differ widely however, then it can be said

that the k-degree nodes are either disorganised or more complexly organised. For example, in

Fig 3.1.B the two degree nodes all have the same degree sequences– {3, 4}– whereas the three

degree nodes are split into two different degree sequences– {1, 2, 2} and {1, 1, 4}– and finally
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the neighbourhood degree sequences of the four degree nodes are all different– {1, 1, 1, 4},

{1, 2, 2, 4} and {2, 3, 3, 3}. So the complexity of just the two degree nodes is 0, the complexity

of just the three degree nodes is 2((2−1.5)2+(1−1.5)2+(2−3)2+(4−3)2)/(4×3×3) = 5/36

and the complexity of just the four degree nodes is (2(1− 4/3)2 + (2− 4/3)2 + 2((1− 2)2 +

(3− 2)2) + 2(4− 11/3)2 + (3− 11/3)2)/(4× 3× 2) = (16/3)/24 = 8/36, the complexity

over all three levels being the average: 13/108.

This measure is thus minimal (0) for graphs in which, for each k and k′, every k-degree node is

connected to exactly the same number of k′-degree nodes. This property, for example, is seen in

ring lattices, and quasi-star graphs and is close to minimal in the line graph, fractal graphs and

grid lattices. Furthermore, the degrees of random networks are known to have a fairly small

spread which is a factor penalised by our complexity value. Thus random networks should

obtain low values of our complexity measure. On the other hand, R values of real networks are

expected to be higher given the high spread and degree fluctuations of those networks caused

by hub nodes promoting a high degree irregularity while the spontaneous nature of real-world

edges should promote a high variability of the neighbourhood degree sequences. This measure

can be used in networks with leaf nodes, isolated nodes and disconnected components without

error and maintaining the same interpretation. Note that this index is as yet not fully normalised

and thus it can be expected that one may attain larger values of R in larger networks and

it is certainly possible to achieve values of R greater than 1. It is hoped that normalisation

is possible and future work will be undertaken to determine a suitable formula. Until then,

caution is advised when comparing R between networks of different sizes.

3.2.2 Weighted Complex Hierarchy Model

The foundation of our model is the random CWN model. The most general random network

is the Erdös-Rényi (E-R) random network [104] which is formed by assigning a probability, p,

to the question of the existence or non-existence of edges on a network with n nodes. Such

a construct is, in fact, an ensemble of graphs denoted G(n, p). A sample of this ensemble is

obtained by generating a random value for every possible edge and applying the probability

value p as a threshold to see whether or not that edge should exist in our sample. The random

CWN model is thus simply a symmetric matrix with zero diagonal and randomly generated

values wij ∈ [0, 1] elsewhere. If we threshold the CWN at weight p, we recover a binary
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Erdös-Rényi random graph from the random graph ensemble G(n, p).

Starting from an Erdös-Rényi CWN we randomly distribute the nodes into hierarchy levels

based on some discrete cumulative distribution function, p, by generating a random number, r,

between 0 and 1 for each node and putting the node in the level for which r−p is first less than

0. We then distribute (l − 1)s additional weight to all edges of adjacent nodes in the lth level,

for some suitably chosen s. The parameters of this model are then (n, s, l,p). The parameter

n is the number of nodes in the network. The parameter s is the strength parameter, which is

constant since the random generation of the initial weights is enough to contribute to weight

randomness. The parameter l is the number of levels of the hierarchy, with a default setting of a

random integer between 2 and 5. The vector p is the cumulative probability distribution vector

denoting the probabilities that a given node will belong to a given level where the default, which

we use here, is a geometric distribution with p = 0.6 in hierarchical levels (1, 2, . . . , l) where

the nodes with highest connectivity (top hierarchical level) are at the tail end of the distribution.

Fig 3.1.C plots an example of the geometric distribution for a three level hierarchy. The text

inside the box plots, above, indicates the additional weights given to edges adjacent to nodes

inside the given level. The graphic below that explains the additional weights provided by the

strength parameter of edges between nodes in different levels as well as in the same level. For

example, an edge between a level 1 node and a level 2 node has additional strength 3s which

consists of one s provided by the node in Level 1 and 2s provided by the node in Level 2. At

s = 0, we have the E-R random network and at s = 1 the weights of the network are linearly

separable by the hierarchical structure producing a strict ‘class-based’ topology. Between these

values a spontaneous ‘class-influenced’ topology emerges.

3.2.3 Revision of concepts from network science

Here we present justifications for indices as measures of key topological factors– the global

clustering coefficient, C, for degree of segregation and the degree variance, V , for irregularity,

linked to scale-freeness.
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3.2.3.1 Integration-Segregation

The concept of integration in brain networks is closely tied in to the small world phenomenon

[107], where real world networks are found to have an efficient ‘trade off’ between segregative

and integrative behaviours [51]. The most widely used topological indices in network science–

C and the characteristic path length, L– are commonly noted as measures of these quantities,

respectively.

Since integration implies a non-discriminative behaviour in choice, we argue that the random

graph ensemble [104], defined by its equal probability of existent edges between all pairs of

nodes, is the most exemplary model of an integrated network. Anything which deviates from

equal probability is a discriminative factor which favours certain edges or nodes over others,

likely leading to more segregated activity. Further, it is clear that integration and segregation are

opposite ends of the same spectrum– something which is not integrated must be segregated and

vice versa. Having one index to inform on where a network lies on that spectrum is therefore

sufficient.

Thus, here we propose C as the topological measure to evaluate levels of integration (and so

segregation) of a given network. Firstly, we note that values of C for random graphs and

small-world graphs are often much more distinguishable than those of L [52] and it is certainly

assumed that these graphs have very different levels of integration. Secondly, since the random

network is optimally integrated and E[Cran] = E[Pran] [6], where Pran is the edge density

of the random network, then the larger the deviation from 1 of the value γ = C/E[Cran] =

C/E[Pran] = C/P , the more segregated is the network. We will include both L and C in our

analysis in order to provide evidence to back the above proposal.

3.2.3.2 Regularity and Scale-Freeness

Another topological factor of small world networks is noted as a scale-free nature characterised

by a power law degree distribution [101]. To understand this aspect of network topology

another factor of network behaviour is formulated distinguishing between line-like and star-like

graphs [17, 41].

Here, we show that characterisation of scale-freeness is closely connected to the regularity of a
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network. Regular graphs have been studied for over a century [108]. They are defined as graphs

for which every node has the same degree. An almost regular graph is a graph for which the

highest and lowest degree differs by only 1. Thus a highly irregular graph can be thought of

as any graph whose vertices have a high variability. Such behaviour can be captured simply by

the variance of the degrees present in the graph, that is

V = var(D), (3.2)

where D = {ki}i∈V , is the set of node degrees on a given graph [102].

For regular graphs V = 0 by definition, but more probing is necessary to distinguish high V

topology. For a graph with degrees k = {k1, k2, . . . , kn}, and
∑n

i=1 ki = 2m, on multiplying

out the brackets V simplifies to

V =
1

(n− 1)

n∑
i=1

(
2m

n
− ki

)2

=
‖k‖22

(n− 1)
− 2mP,

where P = 2m/n(n− 1) is the edge density and ‖k‖22 =
∑n

i=1 k
2
i , is the squared `2 norm of

k. This tells us that V is proportional to the sum of the squares of the degrees of the graph,

‖k‖22, and, for fixed number of edges, m, V in fact depends only on ‖k‖22. Now, it is known

that ‖k‖22 is maximal in quasi-star graphs and quasi-complete graphs [109]. Essentially, the

quasi-star graph has a maximal number of maximum degree nodes in the graph for the given

edge density and the quasi-complete graph has a maximal number of isolated, or zero-degree,

nodes in the graph. This tells us that, for low P , high V denotes the presence of a few high

degree nodes and a majority of relatively low degree nodes, i.e. scale-free-like graphs. Thus,

due to the restriction placed on possible degree distributions by the number of edges (the small

number of edges in sparse networks means the number of high degree nodes is very limited),

the irregularity of degrees is a strong indicator of the strength of decay of the given distribution,

relating to how scale-free the graph is.
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3.2.4 Complete Weighted Network Archetypes

Here we detail the method to generalise sparse binary network archetypes to CWN form.

Suppose we have a set of unweighted graphs G1 = (V, E1,A1), G2 = (V, E2,A2), . . . , Gq =

(V, Eq,Aq), where V is a common vertex set, {Ei}qi=1 are the edge sets and {Ai}qi=1 are the

adjacency matrices, such that G1 ⊂ G2 ⊂ · · · ⊂ Gq. Then we define the weighted average

form of the set of graphs {Gi}qi=1 as

Ḡ = (V, Eq,W̄)

where W̄ is a weighted adjacency matrix defined as

W̄ =
1

q

q∑
i=1

Ai.

Particularly, if Gq is the complete graph then Ḡ is a complete weighted graph. In fact we

can always arbitrarily choose Gq as such since all binary graphs on the same vertex set are

contained within the complete graph on that vertex set. We callHi = Ai−Ai−1 the ith weight

category of Ḡ, i.e. the adjacency matrix corresponding to all the edges existing in Gi which are

not present in Gi−1. We say that Hi is the stronger weight category to Hi−1, reflecting the fact

that those edges correspond to the ones with larger weights in Ḡ.

We now present the complete weighted graphs for the regular ring lattice, star, grid lattice and

fractal modular networks (see Fig 3.2 A,B,C,D respectively).

3.2.4.1 Regular Ring Lattice

A regular ring lattice is a network which we can illustrate by evenly spacing nodes in a circle

and connecting each node to its k closest neighbours, giving a regular graph of degree k (Fig

3.2.A). Note that k must be an even number since equal spacing on a circle means that closest

nodes come in pairs. The exception to this is when n − 1 is odd and k = n − 1 forms the

complete graph. The regular ring lattice is then defined by the parameters (n, k). Some special

examples are the closed triple with (3, 2) and the regular ring lattice with parameters (n, 4),

which was presented by Watts and Strogatz to represent regular networks for comparison with
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Figure 3.2: A. A 12 node ring lattice of degree 6, comprising the three strongest weight
categories of the ring lattice CWN. B. The quasi-star with 4 nodes of degree n − 1 and
n − 4 nodes of degree 4, also comprising the first four categories of the star CWN. C.
The grid lattice weight categorisation (relating to the grey node) in a 30 node network (see
supplementary material). Colours of edges denote category: black, blue, green, orange and
red edges are in weight categories 1, 2, 3, 4 & 5, respectively. The increasingly lighter
boundaries thus represent ’catchment’ areas around the node by increasing category. Centring
these ‘catchment’ areas around a given node gives the respective categorisation of edges
adjacent to the new node. D. Fractal modular CWN weight categorisation on 30 nodes.
Edges shown (black) are 1st weight category edges. In this instance, increasingly lighter
background represents areas within which all pairs of nodes become connected by edges when
the network is subject to the threshold corresponding to the respectively increasing category
(see supplementary material in [1]).

small world networks [52].

The CWN for the ring lattice is thus formed with binary graphs {Gi}n/2i=1 defined as the regular

ring lattice with parameters (n, 2i) for i = 1, . . . , n/2 when n − 1 is even. When n − 1 is

odd the binary graphs are {Gi}(n−1)/2
i=1 , the complete network Kn being added to the end of the

sequence as the largest graph.

3.2.4.2 Star

A star graph can be thought of as the archetypal scale-free-like graph with one node sharing

edges to every other node and no other edges. Thus it has one node of degree n− 1 and n− 1

nodes of degree 1. We can construct a complete weighted generalisation of the star graph by
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taking the classic star as G1 and the subsequent graphs G2, G3, . . . , Gn−1 associated with the

increasingly higher density quasi-star graphs, i.e. Gi being the quasi star graph with i nodes

adjacent to every other node in the network. Gn−1 is the complete graph, where the (n− 1)th

node connects to the nth node to complete it. Eventually we have a CWN with n − 1 weight

categories consisting of n− 1, n− 2, . . . , 2, 1 edges, respectively. Fig 3.2.B, shows the edges

corresponding to the first four weight categories in a star CWN.

3.2.4.3 Grid Lattice

Another common lattice graph is the grid lattice where nodes are placed at the intersection

of lines in a grid. This graph is a strictly ‘class-based’ graph by which we mean nodes can

be separated into clearly distinct classes based on degree– corner nodes (k = 2), side nodes

(k = 3) and central nodes (k = 4). We use this as an archetype for a distance based graph

where closer nodes are more strongly connected. In order to construct a complete weighted

graph following from the grid lattice topology we propose to categorise the edges as shown in

Fig 3.2.C. This graph is similar to the regular lattice in that the nodes have stronger edges to

nodes they are closer to. However weight categorisation by closeness is instead best represented

by placing square ‘catchment’ areas around the nodes (Fig 3.2.C). Each category then consists

of the edges within the corresponding catchment area placed around every node minus all the

edges in the previous category. This results in an inhomogeneous number of edges at each node

in a given category, creating a hierarchy of nodes based on degree, contrasting with the regular

ring lattice where all nodes have equal degree by definition.

3.2.4.4 Fractal Modular

In order to obtain an ordered graph with a highly modular topology, we define here methods

for constructing fractal modular graphs from some number of K3s and K4s, the complete

graphs on 3 and 4 nodes, respectively. Here, we simply connect these K3 and K4 subgraphs

in a ring as shown in Fig 3.2.D. All integers above 5 can be expressed as a sum of 3s and

4s so this method can be used to construct a graph with any n > 5. These networks are

fractal because at each step the smaller modules merge into larger modules until we eventually

have a complete graph, these steps are shown in Fig 3.2.D by the increasingly lighter grey

backgrounds where nodes within the shaded area indicate that edges exist at that category
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level. To select a 3, 4-summation of n as well as the ordering of module forming at each step

we can simply use our discretion for graphs with a fairly low number of nodes. Here, for 30

nodes we choose sixK4s and twoK3s connected in a ring to construct the first weight category

and progressive module forming as depicted in Fig 3.2.D. For 64 nodes we choose an initial

weight category consisting of sixteen K4s connected in a ring with similar progressive module

forming. Generally, the higher the power of 2 which is a factor of the initial combined number

of K3 and K4 modules, the better the 3, 4-summation it is for the fractal composition of the

network.

3.3 Methods

Here we apply methods to graphs of 64 nodes, typical of medium density EEG, to validate

the developments in Section 3.2. For analysis we employ edge density thresholds at integer

percentages of strongest weighted edges, rounded to the nearest whole number of edges. We

then compute indices for each of these binary networks and plot the obtained values on a curve

against edge density, similar as in e.g. [37, 110]. This generates index curves plotted against

edge density which provides a detailed analysis of the CWN topology. Other methods exist

to analyse CWNs such as weighted indices [39] or density integrated indices [111], but these

indices still give only singular values for a given network which belies little of the topological

behaviour at different scales of connectivity strength.

For random and WCH CWNs we use sample sizes of 100 for each network and for the EEG

functional connectivity CWNs we have a sample size of 109 [112]. On the index curves for

these we plot the median with the interquartile range shaded in. For ordered networks there is

only one network per type by definition.

Our analytical framework is composed of a mixture of entirely new concepts and novel

generalisations of existing concepts to CWN form. It is constituted of the following elements:

four indices, R, C, V , Q characterising four important and distinct topological features; five

CWN archetypal models– Random, Star, Regular Lattice, Fractal Modular, Grid Lattice, and

the WCH model.
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3.3.1 Indices

In [65, 66] an ‘architecture’ of network topology is proposed involving the three most widely

studied properties of brain networks– integration (and segregation) [41, 45, 52], scale-freeness

[57,101] and modularity [36,64]. For our analysis in comparison with hierarchical complexity,

R, we choose a straightforward index for each of these topological factors– C for integration,

V for scale-freeness and Q for modularity [36].

3.3.2 Comparisons for the WCH model

We implement comparisons with the Watts-Strogatz small-world model [52] which randomly

rewires a set proportion of edges starting from a regular lattice. We use the full range of

parameters for initial degree specification (2 up to 62) and random rewiring parameters from

0.05 in steps of 0.05 up to 0.95. For each combination of parameters, 100 realisations of the

model were computed and C, V , Q, and R were measured.

We also compare with Albert-Barabasi’s scale-free model [56] which begins with a graph

consisting of a core of highly connected nodes to which the rest of the nodes are added one by

one with a set degree but paired by edges to randomly selected nodes. We use an initial number

of 15 nodes and the additional node’s degree from 3 up to 14 in order to reach larger densities,

since the size of the core limits the number of edges a new node can be adjacent to and thus

limits the possible density.

3.3.3 EEG networks

We use an eyes open, resting EEG data set with 64 nodes. We report on networks created from

the Beta band (13-32Hz) using coherence and the PLI in order to account for different possible

types of EEG networks while reducing redundancy of similar topological forms found between

the frequency bands (see supplementary material of [1]).

The dataset, recorded using the BCI2000 instrumentation system [113], was freely acquired

from Physionet [112]. The signals were recorded from 64 electrodes placed in accordance with

the international 10-10 system and are sampled at 160Hz. We took the eyes open resting state

condition data, consisting of 1 minute of continuously streamed data which were partitioned
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into 1s epochs and averaged for each of 109 volunteers.

FieldTrip [114] was used for pre-processing where the 64 channels were re-referenced using

an average reference. The signals were then filtered with an order 40 Finite Impulse Response

(FIR) filter with hamming windows in Beta before computing the connectivity measure on all

possible pairs. This produces adjacency matrices where connectivity estimate between signal i

and j is the ijth (and jith, due to symmetry) entry. We chose to analyse the matrices obtained

from both the coherence and the PLI [115] to look for differences between network topologies

of zero and non-zero phase lag dependencies in the channels [30].

3.4 Results

3.4.1 Index Comparisons

Fig 3.3 shows the index curves (i.e. index plotted against network density) for C, V , Q, R, L

and H (all introduced in Section 2.5 except R (3.1)) for all archetypes as well as for the EEG

PLI (red shade) and coherence (blue shade) networks. From these plots we can note proxy

maximal and minimal topologies for the given topological characteristics. These maximal and

minimal topologies are explained as the curves whose lines are consistently lowest or highest

over all densities. Fractal Modular networks (purple lines) are maximal for both C and Q

(top left and centre left, respectively). This is to be expected since the modules are complete

sub-networks with very few edges between modules, maximising Q. Further this restricts the

number of open triples in the graph, maximising C, by restricting open triples to relating only

to those few edges which do extend between modules. The star CWN (orange lines) acts as

a maximal topology for V , as expected from the theory explained in Section 3.2. It is also a

theoretical minimum topology for L (bottom left), since all node pairs which do not share an

edge have a minimum path that is the next smallest possible– 2– traversing through any of the

nodes of degree n − 1. Regular graphs, such as the ring lattice network (blue lines), give 0

degree variance and hierarchical complexity, thus are minimal topologies of these features.

Comparing the plots in Fig 3.3 of C (top left) with L (bottom left), and R (centre right) with H

(bottom right), it is immediately clear that L and H show extreme behaviour at low densities

while remaining consistent at higher densities. This exemplifies how these indices are aimed
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Figure 3.3: Topological index values for integration (C), regularity (V ), modularity (Q),
hierarchical complexity (R), characteristic path length (L) and network entropy (H) against
network density, P . Curves relate to network models as indicated in the legend (bottom
right). Random and EEG curves show the median, with interquartile range shaded, over all
realisations/subjects.

at analysis of sparse networks, where it appears that values can take a much greater range than

for higher density networks.

To explore these comparisons further we perform statistical analysis with population t-tests

on the differences of distributions of index values of EEG PLI and E-R random networks as

well as of EEG PLI and EEG coherence networks (Fig 3.4). The results show that C (right)

and R (left) attain a greater range over edge density, P , of significant differences than their

counterparts, L and H . Particularly, R distinguishes differences in 77 of the densities analysed

with an average effect size (Cohen’s d) of 0.6413 in the EEG PLI and coherence comparison

(solid blue line), whilst H finds 71 differences with a average effect size of 0.5976 (solid
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yellow line). Comparing the EEG PLI networks with E-R random networks (Fig 3.4, left,

dashed lines), both indices find differences at all levels, but the mean effect size found by R,

1.4054, exceeds that of H , 1.2024. Thus, overall our index outperforms H in both magnitude

and range of differences found.

Figure 3.4: Effect sizes of significant differences found between PLI and coherence networks
(solid lines) and PLI and random networks (dashed lines) using complexity indices R and H ,
left, and integration/segregation indices C and L, right. These are computed for, and plotted
against, each integer percentage density, P . A zero indicates no significant difference found.

Similarly, C finds a greater range and magnitude of differences than L, Fig 3.4 right. For PLI

vs coherence, C discerns differences at 97 densities with an average effect size of 1.4599, while

L finds 86 differences with an average effect size of 1.1909. For PLI vs random networks, C

discerns 98 differences with average effect size of 1.6502 and L discerns 94 differences with

average effect size of 1.2979. Furthermore, L displays inverse differences at low densities

(1-12%) compared to higher densities in the PLI vs random comparison (dashed yellow line).

This inconsistency is undesirable for translatability of integrative behaviour of network types

from sparse networks to more dense networks.

Given these results, for the rest of our analysis, we will drop L and H and focus on the four

proposed indices, C, V , Q and R. We must emphasise that this is taken purely in terms of the

simplicity of explaining a general topological factor and does not mean that L and H are not

useful for other purposes.

3.4.2 Weighted Complex Hierarchy Null Model

Fig 3.5 shows the mean results of C (top left), V (top right), Q (bottom left) and R

(bottom right) over 100 realisations of each of the WCH models. We include a reduced
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number of strength parameters in the figure (s = 0.1, 0.2, . . . , 0.7) than those computed

(s = 0.05, 0.1, . . . , 0.75) for greater clarity. Above 0.75 the parameter begins to saturate as

the weights of the hierarchy levels tend to linear separability (linear separability occurs when

s = 1 since 0s, 1s, 2s, ... then places the edge weights, originally in [0, 1], in disjoint ranges

[0, 1], [1, 2], [2, 3], ...). We see that WCH networks (grey shaded lines) exhibit curve behaviour

similar to the EEG networks and E-R random graphs (as in Fig 3.3). The scale-free model

(red error bars) also exhibits a similar behaviour, however in stark contrast, the small-world

model (blue error bars) exhibits very different behaviours than those of the EEG or WCH

networks, exhibiting a strong unsuitability for comparisons with EEG networks with much

higher modularity and highly right skewed V curve (Fig 3.5, top left) towards high densities

as well as a similar right skew in R (bottom left) which is opposite to the left skew found for

WCH and EEG network types. Although the scale-free model exhibits similar tendencies in

topological indices to the WCH and EEG networks, its range of values and densities is clearly

very limited and so, therefore, its ability for topological refinement.

By increasing the strength parameter of the WCH model we change the topology in a smooth

fashion with decreasing integration, regularity and modularity (Fig 3.5, top left, top right

and bottom left, respectively). Interestingly, R (bottom right) rises with increasing strength

parameter from s = 0.05 up to s = 0.3 where it takes its maximum values at densities ranging

from 1-30% before falling again from s = 0.35 until s = 0.7. Further, above s = 0.3, the

curves begin to deviate significantly from those of the EEG PLI networks, exhibiting greater

plateaus of high complexity (lighter grey lines) which are more comparable with the EEG

coherence networks.

Interestingly, the complexity of the EEG PLI networks appears to attain maximal values of R

of all the networks studied here (Fig 3.3). The only model which comes close is the WCH

model (Fig 3.7, bottom right). To clarify this observation we perform population t-tests on

R values of the EEG PLI networks against that of the WCH model with strength parameters

ranging from s = 0.2 up to s = 0.4, i.e. two steps before and after the maximal complexity

setting of s = 0.3. The results are displayed in Fig 3.6. In the vast majority of instances of

strength parameter and density, the EEG PLI networks do indeed exhibit greater complexity

than the WCH model. Exceptions to this are shown between network densities in the range
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Figure 3.5: The topological characterisation of network models by clustering coefficient, C,
degree variance, V , modularity, Q and hierarchical complexity, R, plotted against network
density, P . Grey lines indicate mean values of the weighted complex hierarchy model with
increasing light shade indicating increasing strength parameter from s = 0.1 in steps of 0.1
up to s = 0.7. Red error bars indicate values of the Albert Barabasi scale-free model. Blue
errorbars indicate values of the Watts Strogatz small-world model with increasingly light blue
indicating increasing proportion of edges being randomly rewired.

0− 0.2, this is particularly strong for the WCH model with parameter s = 0.3 although effect

sizes in this range only get just above 0.5, which is still quite low. Also, as the weight parameter

increases, the high plateaus previously mentioned begin to take effect as in the medium ranges

of density the R values of the PLI networks and WCH model becomes more indistinguishable,

with greater complexity found in the range 40-70% in the WCH models with s = 0.35 and

s = 0.4 with effect sizes reaching above 1.
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Figure 3.6: Effect sizes of significant differences found between EEG PLI networks and WCH
models with parameters as indicated in the legend. Zero indicates p-value insignificant at 5%
level. P is the network density.

Figure 3.7: Clustering coefficient, C, degree variance, V , modularity, Q, and complexity, R,
against edge density, P , of binarised weighted networks, for WCH model (red) and EEG PLI
neworks (blue). Curves show median with interquartile range shaded.
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3.4.3 Null model approaching EEG phase-lag networks

Fig 3.7 shows the values of the four topological features– hierarchical complexity, integration,

regularity and modularity for EEG PLI networks and the WCH network with strength

parameter 0.2. We see clearly that these networks behave very similarly with respect to the

given indices. The most obvious difference is that the modularity, Q, of PLI EEG networks

is higher (bottom left). Also, as previously discussed, the PLI network complexity is greater

than the WCH model, but it is still by far the most comparable model for complexity of those

presented here.

3.5 Discussion

The behaviour demonstrated by the WCH model with respect to R indicates that high

complexity arises from a hierarchical structure in which a greater degree of variability is

present in the rankings of weights with respect to hierarchy level. Too little difference between

levels and the hierarchy is too weak to maintain complex interactions, too much difference

between levels and the complexity of the hierarchy is dampened by a more ordered structure

produced from the tendency towards linear separability of the edge weights enforced by the

strength parameter. Thus, we provide evidence that topological complexity is not driven by

integration, arising as a middle ground between regular and random systems as previously

conjectured [52, 99], but, driven by hierarchical complexity, arising in the middle ground

between weak hierarchical topology or ‘all nodes are equal’ systems, such as random or

regular networks, and strong hierarchical topology, such as star or strict class-based systems

including grid lattice and fractal modular networks (see Fig 3.5). Thus the hierarchical

structure can be seen as a key aspect of the complexity inherent in complex systems.

The PLI EEG networks display a generally greater hierarchical complexity than that expressed

by our model which is specifically designed to probe complex interactions in hierarchical

structures. Thus we pose such complexity as a key aspect of brain function as modelled by

phase-based connectivity.

There are two clear reasons why the WCH model is a good fit for functional connectivity

networks from EEG recordings. Not only does it create several hub like nodes giving a high
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degree variability, but furthermore it simulates the rich club phenomena found in complex brain

networks [103,116], as the higher the hierarchy levels of two nodes, the stronger the weight of

the edge will be between them, see Fig 3.1.C. Specifically, the rich-club coefficient is defined

as φ(k) = 2E>k/N>k(N>k − 1), where E>k is the number of edges between nodes of degree

greater than k and N>k is the number of nodes of degree greater than k. Now, let us consider

the nodes in the top level of the hierarchy as a possible rich-club in a WCH model with l levels.

Then the additional weight given to each such rich-club edge in the model is the maximum

additional weight of the model– 2(l − 1)s. Relating this to probabilities, the edges with the

most expectation to exist are precisely the “rich-club” edges and thus φ(k) will be large in our

model and will increase with increased weight parameter s as the randomness provided by the

ER weights, wER, becomes less prominent to the overall weight w = wER + 2(l − 1)s.

One of the greatest benefits of this model over others is that it simulates brain networks previous

to network processing steps because it creates CWNs rather than sparse networks. This means

that any and all techniques one wants to use on the brain networks can be applied elegantly and

in parallel with this single null model free from any complications. Particularly, methods which

create sparse binary networks directly, whether these models are built independently from the

brain networks [53,56] or are constructed by the randomisation of edges of the networks being

compared [45, 52], run into problems with density specification (in the case of independent

models) and reproducibility (in both types of model). With the WCH model, we can simply

create a bank of simulated CWNs which can be used throughout the study in exactly the same

way as we use the functional connectivity CWNs.

As an example of the power and elegance of the proposed model, say we want to find maximum

spanning trees [43] of our brain networks and compare with a null model, then we simply take

the maximum spanning trees of our null model. In contrast, in [44] they use a convoluted

reverse engineering process by assigning random weights to the edges of Watts-Strogatz small

world networks (which are themselves of limited comparability to brain networks) and compute

the MST from these resulting sparse weighted networks.

Further, as seen in Fig 3.1.C, for technical studies which rely on network simulations, the WCH

model is built on parameters which can be altered to subtly change the resulting topology.

This allows for sensitive analysis of a new techniques ability to distinguish subtle topological
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differences. Such paradigms are evident in clinical studies where, for example, one may try to

distinguish between healthy and ill patients [17,110] or between different cognitive tasks [117],

so that this null model offers simulations which are directly relatable to clinical settings, as we

shall explore further in chapter 4.

We see there is a large difference in the integration, modularity and complexity of the EEG

coherence and PLI networks (Fig 3.3, top left, centre left and centre right, respectively). The

EEG coherence networks (blue shade) behave similarly to the ring (blue lines) and grid lattice

(yellow lines) networks, agreeing with the volume conduction effects that dominate zero-lag

dependency measures [30], i.e. the closer the nodes are the stronger the weights are. The

PLI networks (red shade) on the other hand have a more integrated and less modular nature,

which reflects the notion that phase-based functionality mitigates volume conduction effects

and is thus less confined by anatomical structure [30]. The very high complexity of the PLI

networks (and very possibly phase-lag measures in general [29]) provides evidence to support

that phase-based connectivity does indeed largely overcome the volume conduction effect and

therefore maintains a richer complexity echoing the complex interactions of brain functionality

[16].

With regards to how the WCH model advances our understanding of PLI and coherence

network differences, we note that the high segregation of the coherence networks (Fig 3.3

top left) is approached by the WCH model with high values of strength parameter (Fig 3.5, top

left) and is comparable with regular lattice and grid lattice CWN curves (Fig 3.3, top left, blue

and yellow lines, respectively), denoting a move to a more strict class-based topology. This is

also reflected in the hierarchical complexity (bottom right of corresponding figures), where the

lower complexity peaking at a later density to PLI (Fig 3.3, centre right) is mimicked in the

behaviour of increasing strength parameter in the WCH model (Fig 3.5, bottom right). This

provides further evidence of the relevance and flexibility of the WCH model. In contrast there is

an evident lack of ability to make similar comments with respect to the popular small world and

scale-free models. This criticism can be extended towards network models which randomise

edges while maintaining degree distributions [45], since such an enforced topological attribute

does not allow one to analyse how that very important attribute is actually constructed.

A striking feature seen is in the degree variance curves where a highly symmetric parabolic

46



Chapter 3. The Complex Hierarchical Topology of EEG Functional Connectivity

curve is noted with a central maximum value for random graphs, WCH networks and EEG

networks. This feature reveals to us that the scale-free paradigm known in the degree

distributions of sparse networks may be part of a broader picture of consistent behaviour at

higher densities also which can be detailed using weighted networks. Noted in our results,

as the density of the network increases one obtains more even distributions of high and low

density nodes, indicated by the high values of V , and, eventually, towards high densities the

symmetry of V values with low densities tells us that the scale-free network is characterised

by a small number of low degree nodes and a majority of high degree nodes, i.e. the inverse

(or complement) of the low density behaviour.

3.6 Conclusion

We introduced an index for measuring the hierarchical complexity of a network and a highly

flexible and elegant WCH model. These provided key insights into what distinguishes

functional brain networks from both ordered and spontaneous forms as generally the most

complex kind of topology and the important role that hierarchical structure plays in this.

Further, we showed that phase-based connectivity topology was more complex than amplitude

influenced connectivity topology, which we extrapolated as due to the more ordered structure

enforced by volume conduction effects. In our analysis we constructed a framework for

CWNs for brain functional connectivity to replace the framework for sparse networks adopted

from other network science research areas. This included the synthesis of concepts from

the literature in a succinct manner and the generalisation of sparse binary archetypes to

CWN form. The perspective allowed by this comprehensive analysis provided new evidence

regarding key factors of network topology in general. For example, we note possible parallels

of the scale-free paradigm for all network densities through binarisations of weighted

networks. Particularly, these insights help towards a comprehensive understanding of the

framework within which functional connectivity networks are set and thus provide invaluable

information and tools for future clinical and technical research in neuroscience. Matlab

codes for all synthesis and analysis of the networks as introduced in this chapter are publicly

available at http://dx.doi.org/10.7488/ds/1520.
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Chapter 4

Accounting for the Complex Hierarchical

Topology of EEG Functional Connectivity in

Network Binarisation

The contributions of this chapter were published in PLOS ONE in October, 2017 [2].

4.1 Introduction

Selecting a method to binarise functional connectivity networks is a major step in network

construction in which the researcher is presented with a large degree of subjective choice [26,

27, 30, 40]. Because of this, recent research emphasises the importance of solutions to the

binarisation problem in functional connectivity [30,44,47,50,111,118–121]. While some find

sparsity desirable based on the physiological hypothesis that function should be regarded as

emerging through physically connected regions explained by a low wiring cost [38, 44, 50], in

real data analysis others found higher densities to be as or more relevant [37, 49, 120]. We

attempt to gain a foothold on answering why analysis of the data may not conform to the

sparsity hypothesis by determining how the informational density of hierarchical structure of

the functional network contributes to useful binarisation.

As shown in Chapter 3, the hierarchical structure of EEG functional connectivity is a key

aspect of its informational complexity [1]. Also shown was that functional connectivity is

characterised by high degree variance which is indicative of the large range of the general

strength of network nodes. That is, one can expect that certain nodes have generally large

adjacent weights, while others may have generally small adjacent weights. For a given node,
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the relativity of weight magnitudes of edges adjacent to the other nodes in the network is thus

important to keep track of throughout the network and not just in the largest connections and

nodes in the highest hierarchy levels as would be promoted in sparse densities, see Fig 4.1.

Thus we propose that any useful binarisation technique for functional connectivity should

necessarily be able to account for the density of information inherent in a broad complex

hierarchical structure. It should follow that sparsity is not necessarily a desirable feature

of brain functional networks and also that statistical thresholds on a case by case basis of

the connectivity computations does not necessarily translate to a topological advantage in the

resulting networks.

Figure 4.1: Illustration of the likelihood of an edge appearing between nodes i and j, in
hierarchy levels denoted by the x and y axes, in the binarised form of a weighted hierarchical
network. Left, the effects of increasing binarised network density (strongest weights kept) on the
hierarchical information of the network where black indicates 0% density and white indicates
100% density.

To provide rigorous simulation results for binarisation techniques, we implement the WCH

model [1]. Since the parameters of the model provide a fine-tuning of hierarchical topology,

we can create a ground truth of subtly different topologies. This can be exploited to assess the

ability of binarisation methods to correctly identify topological differences between networks.

Here, we intentionally do this to echo the set-up of a neuroscientific study and make the

50



Chapter 4. Accounting for the Complex Hierarchical Topology of EEG Functional Connectivity in
Network Binarisation

simulations as relevant as possible to the research community. This follows since, for the

lack of a ground truth, studies in network neuroscience are generally based on contrasting

conditions such as in cognitive tasks or contrasting populations where, for example, network

features of patients are compared against those of healthy, age-matched controls [17].

Using simulations, we seek to clarify how network size and density range may affect the

ability to discern small topological differences in network topology. In analysis, we compare

state-of-the-art non-arbitrary binarisation techniques– MST [43, 44], USP [47], CST [42, 117]

and ECO [50]– with a number of arbitrary percentage thresholds, as well as the original

weighted networks to directly compare binary and weighted approaches.

We then analyse these techniques when the simulations are subject to random and targeted

topological attacks. We regard these as random and targeted attacks [122] which preserve

the network size. This is desirable given that many index values are dependent on network

size [123]. By randomising a percentage of weights in populations of subtly different complex

hierarchical networks in parallel we can test how well the binarisation techniques can still

uncover the differences between these populations under varying sizes of attack. We implement

these analyses to test the binarisation techniques’ robustness in representing true network

characteristics in the face of noise and/or outliers in the estimation of coupling between brain

time series.

We go on to apply our non-arbitrary binarisation techniques to three real EEG datasets.

We compare our thresholds on distinguishing the well known Alpha activity existing

between eyes open vs eyes closed resting state conditions in healthy volunteers with a 129

channel EEG [124]. We then compare these techniques for distinguishing VSTM binding

tasks in healthy young volunteers with a 30 channel EEG [117]. Finally, we compare our

techniques in distinguishing between AD patients and healthy control in a 16 channel EEG

set-up [125]. The varying sizes of these networks provides evidence for the translatability

of the methods to different network sizes in the applied setting. The scripts, functions and

data sets used in this study are available at the University of Edinburgh’s data depository:

http://datashare.is.ed.ac.uk/handle/10283/2783.
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4.2 Methods

This section details the network simulations (4.2.1), binarisation techniques (4.2.2), network

indices (4.2.3) and statistical tests (4.2.4) used in this study.

4.2.1 Simulated experiments

4.2.1.1 Experimental design

For the simulations, we follow the procedure as illustrated in Fig 4.2. WCH models are

generated as a ground truth to test the ability of binarisation techniques to distinguish subtly

different populations of size 20. These different populations are generated using realisations of

the WCH model with small differences– 0.05– in the strength parameter, s. The procedure thus

follows that of a typical clinical study, where small populations of contrasted conditions are

analysed using network science techniques with statistical tests used to determine significance

of the differences between the populations. This methodology is used for networks with 16,

32, 64 and 128 nodes, spanning a large range of network sizes as used in current research, e.g.

see [17].

4.2.1.2 Random and targeted topological attacks

We test the robustness of the given binarisation techniques by subjecting these same simulated

networks to random and targeted topological attacks before implementing similar topological

comparative analysis as above. Random and targeted attacks were originally formulated by

deleting entire nodes from the network [122]. We implement a weight randomising approach,

thus preserving network size which is important when comparing different indices [123].

Further, this is more relevant to brain networks where the network size is determined a priori,

but rather the information recorded at the nodes are susceptible to attacks such as signal

noise or corruption. These random topological attacks are implemented by substituting the

WCH model’s weights with corresponding non-zero entries of a sparse, uniformly random and

symmetric weighted adjacency matrix. The steps involved here are i) generate a sparse random

weighted matrix, E, using the sprand function in Matlab with a particular density and the same
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Figure 4.2: Methodological steps in the evaluation of binarisation techniques for determining
ground truth topological differences.

size as the adjacency matrix of interest, W. ii) set the diagonal of E to zero to ensure no

loops. iii) make E symmetric by mirroring the lower triangle to the upper triangle of matrix.

iv) replace all wij with eij for eij 6= 0 ∈ E. We implement this comparison by increasing

the density of the sparse matrix, i.e. densities of 0, 0.05, 0.1, ..., 0.95, 1. Targeted topological

attacks are implemented similarly except the attacks are restricted only to those nodes whose

average adjacent weight is over one standard deviation above the mean, relating to those nodes

with abnormally strong connectivity. Such strongly weighted nodes are known as hub nodes

for their importance to the topology of the network.

4.2.2 Network binarisation

Details of the topological binarisation methods used are, other than as detailed below, found in

Section 2.4.

4.2.2.1 Cluster-span threshold

The CST chooses the binary network at the point where open to closed triples are balanced [49].

This balance occurs whenC = 0.5, which is obvious from the definition. The algorithm for the
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CST computes the binary networks for each possible number of strongest edges between 15%

to 85%, rounded to the closest real edge density. The clustering coefficient is then computed

for each of these networks, obtaining a vector C = {C15, C16, . . . , C84, C85}, where Ci is

the clustering coefficient of the binary network at the ith % density, rounded to the nearest

number of edges. Then the network of the CST is the binary network corresponding to

Z = argmini(Ci− 0.5), i.e. the threshold achieving minimum value of the vector C minus the

clustering coefficient value which obtains an equilibrium between triangles and non-triangle

triples, 0.5. The values of 15% and 85% are chosen as safe values based on experimental

evidence [42, 49]. Particularly, below 15%, real brain networks can have a tendency to

fracture into more than one component, thus making calculations of metric values, including

the clustering coefficient, inconsistent and unreliable [37].

4.2.2.2 Union of Shortest Paths

For the union of shortest paths we will use weight transformation Ŵ = − ln(W)/α, where

α = min{N} s.t. maxi,j(ŵij) < 1, (4.1)

as it has been shown to offer a better spread of metric magnitudes which is important for

shortest path problems [42].

4.2.2.3 Arbitrary proportional thresholds

Arbitrary thresholds can be implemented by either choosing a weight above which edges are

kept and below which edges are discarded, or by choosing a percentage of strongest weighted

edges to keep in the network. The latter choice is more robust and easier to compare between

different set-ups and subjects because it keeps the connection density constant and thus is not

affected by the values of the weights, which may vary wildly particularly when considering the

comparison of different connectivity measures. In order to cover the density ranges of both the

sparsity hypothesis and the hierarchical complexity hypothesis, we choose arbitrary thresholds

which maintain the strongest 5%, 10%, 20%, 30%, 40%, and 50% of edges to make sure we

cover the relevant array of connection densities whilst reducing redundancy. Note, very sparse

densities are already covered by the MST and ECO thresholds.
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4.2.3 Network indices

To analyse the simulated and real EEG networks we use a variety of common metrics. As well

as L, E, D, C, P and V in Chapter 2, the following indices for weighted networks and MSTs

will be used:

• The diameter, D, of a graph is the largest shortest path length between any two nodes

in the graph [44].

• The weighted clustering coefficient, CW, is a weighted version of the clustering

coefficient for binary networks [39].

• The leaf fraction, LF, of a tree is the fraction of nodes in the graph with degree one.

Note, every path containing such a node either begins or ends at that node [44].

• The edge density, P , is the ratio of the number of edges in the graph to the total possible

number of edges for a graph with the same number of nodes, i.e. P = 2m/n(n− 1) [6].

For the CST, P takes an inversely relational position to C of proportional thresholds.

This can be seen by considering two weighted networks whose values of C increase

monotonically with increasing P and such that one has higher values of C than the other,

which is a working assumption in our case. Then the network with the greater values of

C will attain its CST at a lower density, P . In a similar vein, P of the USP is inversely

related to L of proportional thresholds– the higher the density of the USP, the shorter the

average shortest path in the weighted network.

• The maximum degree, MD, of a network is just as named– the degree of the node with

the most adjacent edges in the network [44].

Note that, though we introduced R in Chapter 3, we do not use it here since, as yet, there is

no weighted equivalent and we wish to be as fair as possible in our comparisons using well

documented and widely used indices.

For each binarisation technique we choose three metrics to analyse the subsequent binary

networks. These differ for each technique because of the construction of the network.

Particularly, the MST metrics are chosen based on the study of Tewarie et al. [44]. Similarly,

we choose three weighted metrics for analysing the original weighted networks. These choices

can be found in Table 4.1. We try as much as possible to stick to three main categories of
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metrics for each binarisation technique: segregation (M1 in Table 4.1), efficiency (M2) and

irregularity (M3) [1, 16]. This notably deviates for M3 in the weighted case where the mean

weight of the network edges, µW, is an appropriate and more obvious choice of metric than

the variance of those weights.

Table 4.1: Grouped Topological Indices- Three for Each Network Type.

Index CST MST USP ECO Weight %T
M1 P LF C C CW C

M2 L D P L E L

M3 V MD V V µW V

4.2.3.1 Functional connectivity

For the real EEG datasets, FIR bandpass filters were implemented for Alpha, Beta or both

bands, as specified in the Materials, Section 4.3. A filter order of 70 is used to provide a good

trade-off between sharp transitions between the pass and stop bands while keeping the filter

order low in comparison with the length of the signals. The filtered signals were then analysed

for pairwise connectivity using the PLI [31].

4.2.4 Statistical testing

Each simulation iteration undergoes 50 simulated trials of two populations of 20 networks. A

population of networks is selected from a bank of 1000 WCH networks with given strength

parameter. These banks exist for s = 0, 0.05, 0.1, 0.15, 0.2, 0.25 and 0.3. The other

population in the trial then comes from a WCH bank with strength parameter with 0.05

difference. We undergo such trials for all possible combinations of 0.05 differences. We

binarise these networks using each of our binarisation methods. We then compute the three

indices, M1, M2 and M3, for each of these networks (weighted indices are computed from

the original weighted networks). We perform population t-tests of these indices for the WCH

binarisations. We choose the best index of the three to represent the ability of the binarisation

method to discern subtle topological differences where the ‘best’ index is chosen as that which

attains the maximum number of significant p-values out of the 50 simulated trials which are

less than the standard α = 0.05 level. If two or more indices obtain the maximum value, we

then choose the one with the lowest mean log of p-values. Choosing the log in this instance
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emphasises the importance of smaller p-values for distinguishing differences. The number of

differences discovered, taken as a percentage of the total number of trials run, then represents

the ‘accuracy’ of the binarisation technique at distinguishing the ground truth, i.e. that the

topologies of the populations are different.

4.3 Materials

4.3.1 Eyes open - eyes closed resting state data

The eyes-open, eyes closed 129 node dataset is available online under an Open Database

License. We obtained the dataset from the Neurophysiological Biomarker Toolbox tutorial

[124]. It consists of 16 volunteers and is down-sampled to 200Hz. We used the clean

dataset which we re-referenced to an average reference before further analysis. The data were

filtered in Alpha, according to known effects [126], using an order 70 FIR bandpass filter with

hamming windows at 0.5Hz resolution. For each subject we take one arbitrarily long 1000

sample epoch (5s) from the 1000-2000th samples.

4.3.2 Visual short-term memory binding task data

The stimuli were non-nameable shapes and non-primary colours known to be difficult to

rehearse verbally [96, 127]. Two arrays of three items each were presented to the left and

to the right of a fixation cross centred on the screen on a grey background (Fig. 4.3). Each

array was presented in a virtual 3×3 grid, 4◦ horizontally centred, 8◦ vertically centred and

3◦ to the left and right from fixation. Each item took up 1◦ and the distance between items

was never less than 2◦. Items for the study display were randomly selected from a set of eight

polygons and eight colours [96] and randomly allocated to 3 of the 9 positions within the grid.

For the test display the items were randomly shuffled within the same locations used in the

study display. Hence, items were never presented in the same locations across study and test

displays, rendering location uninformative.

Trials were self-initiated. A fixation cross appeared in the centre of the screen and remained on

throughout the trial. After a button press, 500 ms lapsed before the arrow clues were presented.

Two arrows appeared for 200 ms one above and one below fixation which indicated which
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of the two visual arrays (left or right) the participants were to attend. An interval of random

duration selected from 400, 500 or 600 ms followed the cues. The study display was then

shown for 200 ms. After an unfilled retention interval of 900 ms the test display appeared and

remained visible until the participant responded.

In the Shape condition each array of the study display presented three black shapes. The test

display also showed three shapes. In 50% of the trials the content of the test display matched

the content of the study display (“same trial”). The test display for the “different trials” showed

two new shapes. In the Bind condition each visual array consisted of three shapes in different

colours. In the test display for the “different trials” two coloured shapes swapped their colours.

The participants responded “same” or “different” by pressing two keys previously allocated

with both hands. The participants completed 8 practice trials before undergoing 170 test trials

for each of the conditions.

Each participant undertook four different conditions of the VSTM task which are distinguished

by two different binary manipulations: 1. Shape or Bind: the test items consist of black shapes

(shapes only) or shapes with colours (shape-colour binding). 2. Left or Right: the test items

are shown on the left side or the right side of the screen (or hemifield) to which the participant

is prompted before stimulus onset. The task was to detect whether or not a change occurred

across two sequential arrays shown on an initial study display and a subsequent test display.

EEG signals were recorded for 23 healthy young volunteers while they performed VSTM

tasks. These four tasks are categorised by two binary conditions- shape or binding and objects

displayed in left hemifield or right hemifield, as described in Fig.4.3. For further specific task

details, see [128]. Five of the volunteers were left-handed and eight were women. The mean

and standard deviation of the age of participants and number of years of education is 23.0 ±

4.3 and 17.1 ± 2.8, respectively. Informed consent was obtained from all subjects. The study

was approved by the Psychology Research Ethics Committee, University of Edinburgh, and

methods in data collection were carried out in accordance with their guidelines.

The EEG data was collected using NeuroScan version 4.3. The EEG was sampled at 250 Hz.

A bandpass filter of 0.01-40 Hz was used. Thirty EEG channels, corrected for ocular artefacts

using ICA, were recorded relying on the 10/20 international system.
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Figure 4.3: Chronology and design of the Visual Short Term Memory tasks. Arrow cues
pre-stimulus indicate to the participant the hemifield being tested. The study stimulus consists
of either black shapes (middle, top box) or shapes with associated colours (middle, bottom
box). After a delay, the participant is presented with a test stimulus to discern whether the set
of objects in the relevant hemifield are the same or different to the study stimulus. Courtesy of
Dr. Mario A. Parra.

Further artefact rejection was conducted, rejecting trials which contained magnitudes of voltage

fluctuations above 200 microvolts, transients above 100 microvolts and electro-oculogram

activity above 70 microvolts. Only the trials with correct responses were kept as incorrect

responses do not inform on working memory load in task comparisons. It is important to

emphasise the distinction between a study of healthy brain function of task performance, as

conducted here, for which the number of correct trials is not indicative, and a study of the

performance of tasks by healthy people, for which the number of correct trials is indicative.

In a few cases, no useful data was available for a volunteer performing one of the conditions

resulting in an unequal number of volunteers per condition.

To keep comparisons straightforward, we chose only to look at those 19 participants of the

original 23 for whom data on all of the conditions was available. We focused on the encoding

(i.e., study display) and maintenance (delay) periods of VSTM, since these seem to be the

stages of memory informing about the functional principles of organisation with regard to

capacity and format of representation (Shape vs Bind) [127].

The mean± standard deviation over participants for the number of kept trials for each condition

were as follows: Shape, Left hemifield- 69.74 ± 6.67; Bind, Left hemifield- 63.79 ± 8.72;
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Shape, Right hemifield- 66.32 ± 15.06; Bind, Right hemifield- 63.58 ± 16.26.

Based on relevant results [49, 117], the data were filtered in Beta using an order 70 FIR

bandpass filter with hamming windows at 0.5Hz resolution. The epochs are 1s long and the

number of trials is 65.7 ± 9.27 (mean ± SD). PLI adjacency matrices are averaged over trials.

This dataset was provided by Dr. Mario A. Parra, Heriot-Watt University.

4.3.3 Alzheimer’s disease data

The EEG recordings were taken from 12 AD patients and 11 healthy control subjects. The

patients –5 men and 7 women; age = 72.8 ± 8.0 years, mean ± SD– were recruited from

the Alzheimer’s Patients’ Relatives Association of Valladolid (AFAVA). They all fulfilled the

criteria for probable AD. EEG activity was recorded at the University Hospital of Valladolid

(Spain) after the patients had undergone clinical evaluation including clinical history,

neurological and physical examinations, brain scans and a Mini Mental State Examination

(MMSE) to assess their cognitive ability [129]. The ethics committee of the Hospital Clinico

Universitario de Valladolid approved the study and control subjects and all caregivers of the

patients gave their written informed consent for participation. The 16 channel EEG recordings

were made using Profile Study Room 2.3.411 EEG equipment (Oxford Instruments) in

accordance with the international 10-20 system. Full details can be found in [125]. The

data were filtered both in Alpha and Beta as in [42], for separate analysis, using an order 70

FIR bandpass filter with hamming windows at 0.5Hz resolution. Recordings were visually

inspected by a specialist physician who selected epochs with minimal artefactual activity of

5s (1280 points) from the data for further analysis. The average number of these epochs per

electrode per subject was 28.8 ± 15.5 (mean±SD). This dataset was provided by Dr. Daniel

Abasolo, University of Surrey.

The EEG PLI adjacency matrices used in this study are available at the University of

Edinburgh’s data depository at http://datashare.is.ed.ac.uk/handle/10283/2783.
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Table 4.2: Grand average percentage of topological differences discovered between WCH
models. Underlined are the best non-arbitrary technique (first rows) and any arbitrary density
threshold that does as well or better than non-arbitrary techniques (last rows).

CST MST USP ECO Weighted
71.3% 22.4% 50.0% 53.4% 40.5%
T50% T40% T30% T20% T10%
70.4% 71.5% 67.3% 60.0% 41.3%

4.4 Results

4.4.1 Sensitivity to subtle topological differences in synthetic EEG connectivity

Fig 4.4 shows the results for differences discovered between WCH models with differences in

strength parameter of 0.05. The grand averages are shown in Table 4.2. The CST is shown

to outperform other non-arbitrary methods in general. In testing the comparisons of the WCH

model with varying strength parameter, s, it discovers significant differences at the α = 5%

level 71.3% of the time over all strength comparisons and network sizes, as seen in Table

4.2. On the other hand, the MST discovers just 22.4% of the differences, the USP discovers

50% of the differences, the ECO 53.4 % and the weighted metrics discover just 40.5% of the

differences. Out of these methods, in fact, it discovers the most differences in all but two

cases– those being the 0.1 vs 0.15 comparison in the 16 node networks and the 0.25 vs 0.3

node comparison in the 128 node cases, of which the USP is best on both occasions.

In comparison with arbitrary percentage thresholds the CST appears to perform approximately

the same as the 40% proportional threshold which discerns a slightly higher rate of 71.5% of

differences over all cases. The 50% threshold also appears to be good at discerning differences

here with an overall rate of 70.4% of differences discovered. These results agree with the

hypothesis that complex hierarchical structures are best captured by larger density ranges. It

is important to recall that we need non-arbitrary solutions rather than simply to find the best

possible threshold for these specific simulations due to the possibility of over-fitting. With this

in mind we can see that, compared to the other techniques, the CST outperforms the field in

this study.

61



Chapter 4. Accounting for the Complex Hierarchical Topology of EEG Functional Connectivity in
Network Binarisation

Figure 4.4: Percentage of topological differences discovered from population t-tests between
WCH models. The y-axis shows s = a vs. s = b for WCH populations with strength parameter,
s. The x-axis shows the binarisation method used where W is the weighted approach and
percentages indicate arbitrary density thresholds.

4.4.2 Robustness to random and targeted topological attacks

The robustness to random and targeted topological attacks is evaluated by comparing the

metrics from the attacked WCH models over all non-arbitrary binarisation techniques using

population t-tests as before. For these analyses we look at the case in Fig 4.4 with the maximum

ratio between the mean and standard deviation of accuracy over binarisation techniques, i.e.

the case which maximises the ratio of average performance and comparability of performances

across the compared methods. This ensures a level playing field for the methods where they

all are performing fairly well. This happens in the 32 node case (6.3538) with differences in
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strength parameter of s = 0.1 and s = 0.15, see the boxed row in Fig 4.4. The grand percentage

over all sizes of attack for p-values below 0.05 for each metric is presented in Fig 4.5 for both

random and targeted topological attacks. Generally, the binarisation methods as well as the

weighted metrics are more robust to targeted attacks than to random attacks. Notably, the CST

maintains the highest average accuracy of distinguishing topological differences for all metrics

and both random and targeted attacks. This is particularly evident in the targeted attacks. For

both kinds of attack, the weighted metrics come in second best while the ECO, the USP and

MST perform relatively poorly.

Figure 4.5: Percentage of topological differences discovered from population t-tests via
binarisation methods (CST,MST, USP, ECO and weighted network (W)) between WCH models
(s = 0.1 vs. s = 0.15) with random and targeted network attacks. Averaged over all sizes of
attack. M1, M2 and M3 as in Table 4.1

The metric achieving highest accuracy for each binarisation technique and for each size of

attack is shown in Fig 4.6 for both random and targeted topological attacks. Strictly in terms

of robustness (with respect to depreciation from starting value) as opposed to best accuracy,

the weighted networks prove the best with the least detriment noted by increasing the size

of attack in its topological accuracy (green). The CST also does well here. For the random

topological attacks, even at 50% of connections attacked, the CST notes an accuracy of 70%

(blue line). The USP (yellow), MST (red) and ECO (purple) networks are not at all robust to

random topological attacks in this scenario with immediate drop offs on the implementation of

attacks.

63



Chapter 4. Accounting for the Complex Hierarchical Topology of EEG Functional Connectivity in
Network Binarisation

Figure 4.6: Percentage accuracy of method for distinguishing topological differences between
attacked WCH models against the size of those attacks for random topological attacks (left)
and targeted topological attacks (right). The values plotted are the maximum from the three
indices, M1, M2 and M3 (as in Table 4.1), for the corresponding technique as indicated in the
legend.

For the targeted topological attacks (Fig 4.6, right), the CST network (blue) shows the most

resilience with no noticeable depreciation of accuracy. The other methods, in contrast, show a

notable decrease in accuracy as more weights are randomised.

4.4.3 Real dataset results

We maintain our focus on comparing non-arbitrary methods since arbitrary approaches are

inappropriate for neurophysiological studies where one can pick from an order of n(n − 1)/2

thresholds.

Table 4.3 shows the results for distinguishing the difference in Alpha activity well known

to exist between eyes-closed and eyes-open conditions [126]. The CST finds a significant

difference in V of eyes open and eyes closed resting state activity indicating that the

phase-dependent topology of EEG activity has lower hierarchical spread in the eyes-open

condition implying greater hub dominance in the eyes-closed condition, see Fig 4.7, left.

All of the weighted metrics also find significant differences. Neither the MST nor USP find

any differences between these conditions. Probing further, ρ(M1,M2) being the correlation

coefficient of metric values across subjects of metrics M1 and M2 as defined in Table 4.1, the
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weighted metrics in this case are all very highly correlated (all > 0.95 Pearson’s correlation

coefficient, ρ, Table 4.4) within condition. Therefore they cannot be seen to provide any

distinct topological information. The corresponding correlations of the CST show a more

distinct topological characterisation, also in Table 4.4.

Table 4.3: The p-values from paired t-tests between eyes open (EO) and eyes closed (EC) in
Alpha band 129-channel EEG PLI Networks. Underline: Best value for each method. Bold:
Significant values. M1, M2 and M3 as in Table 4.1

Index CST MST USP ECO Weighted
M1 0.7504 0.4178 0.5063 0.6034 0.0016
M2 0.9319 0.4513 0.9942 0.5281 0.0034
M3 0.0006 0.9616 0.6577 0.6805 0.0016

Table 4.4: Pearson correlation coefficients of indices in Eyes Open (EO) - Eyes Closed (EC)
Dataset for the CST and Weighted indices (wgt)

Index corr. EC (CST) EO (CST) EC (wgt) EO (wgt)
ρ(M1,M2) 0.7662 0.9692 0.9993 0.9512
ρ(M1,M3) -0.0458 -0.7301 0.9999 0.9996
ρ(M2,M3) -0.1695 0.6677 0.9994 0.9576

Figure 4.7: Scatter plots of degree variance for CST networks of Eyes Open vs Eyes closed
resting state conditions in Alpha, left, and degree variance for CST networks of shape vs
binding conditions in the Right screen in Beta, right.

Table 4.5 shows the results for distinguishing the difference in Beta activity existing between

shape and binding tasks when tested in the Left and Right sides of the screen separately. A

significant difference is found in V of the CST networks in the Right condition. This indicates
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that the phase-dependent topology of EEG activity has less hierarchical spread in the binding

condition implying greater hub dominance in the shape condition, see Fig 4.7, right. On the

other hand, a significant difference (p = 0.0059) is found in C for the ECO networks in the

Left condition. This indicates sparse density topology of EEG activity is less integrated in the

binding condition.

Table 4.5: The p-values from paired t-tests between shape and binding tasks in Beta band
30-channel EEG PLI networks. Formatting as in Table 4.3

Hemifield Index CST MST USP ECO Weighted
M1 0.5128 0.7186 - 0.0059 0.1007

Left M2 0.0898 0.1383 - 0.1870 0.1010
M3 0.8997 0.0911 - 0.0238 0.1010
M1 0.5877 0.1919 - 0.5504 0.7742

Right M2 0.9196 0.5716 - 0.5038 0.7733
M3 0.0088 0.8146 - 0.2138 0.7733

Noticeably, the USP failed to find meaningful network information in this task because, even

after transformation, all the weight magnitudes were in a range such that the shortest weighted

path between each pair of nodes was the weight of the single edge joining them.

Table 4.6 shows the results for distinguishing the difference in both Alpha and Beta activity

existing between AD patients and healthy age matched control. For the CST, an effect is noticed

in V of Alpha activity (Fig 4.8, right) and a larger effect is found in the P of Beta activity (Fig

4.8, left). Since P of CST networks is inversely relational to C of arbitrary threshold networks,

this tells us that Beta of AD patients is less segregated than control. Contrasting with this, the

activity in Alpha suggest a more heterogeneous network in the Alpha band of AD patients than

in age matched control.

Table 4.6: The p-values from population t-tests of network measures AD and control in
16-channel EEG PLI Networks

Freq. band Index CST MST USP ECO Weight
M1 0.0852 0.3468 0.1167 0.7496 0.6736

Alpha M2 0.3634 0.2630 0.1081 0.0582 0.4189
M3 0.0406 0.7324 0.0942 0.2089 0.5570
M1 0.0062 0.4618 0.1500 0.9775 0.7080

Beta M2 0.0529 0.6245 0.1485 0.4946 0.4215
M3 0.1782 0.5437 0.1397 0.2575 0.5564
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Figure 4.8: Box plots of connection density, left, and degree variance, right, for CST networks
of AD and control in Beta and Alpha, respectively.

4.4.4 Density

The densities for the datasets used in this study are as in Table 4.7. For the USP we see both

a dependency on network size, where the WCH networks are less dense with increasing size,

and on the distribution of weights, where analysis of real datasets becomes implausible since

connectivity, averaged over trials, creates a smaller spread and so redundant shortest paths. The

MST and ECO are dependent on network size as is obvious from their formulations. The CST

binarises the network consistently with a density between 0.3-0.5. From the models we notice

that the higher the parameter, s, the less dense are the resulting CST networks. Network size

appears to have much less effect, which provides evidence to suggest that the CST is dependent

on topology, but not on network size.

4.5 Discussion

From the simulation results of complex hierarchy models we see from proportional thresholds

that a larger density range is more effective than sparse models. This agrees with our hypothesis

that complex hierarchical models contain a density of information beyond what sparse levels

of binarisation can reveal. The fact that the real results for EEG datasets confirm the results

in simulations provides further strength to the argument that EEG functional connectivity is

highly hierarchically complex and so that sparsity is not always the best working hypothesis
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Table 4.7: Mean and standard deviation (M ± SD) of densities of CST, USP, MST and ECO
networks. WCH## = Weighted Complex Hierarchy model of size ##; s = strength parameter
of WCH model; PLI## = PLI networks of size ##.

Dataset Condition CST USP MST ECO
s = 0.1 0.49± 0.04 0.53± 0.08
s = 0.15 0.46± 0.05 0.59± 0.08

WCH16 s = 0.2 0.44± 0.06 0.62± 0.08 2/16 3/15
s = 0.25 0.41± 0.06 0.64± 0.09
s = 0.3 0.40± 0.06 0.64± 0.05

s = 0.1 0.48± 0.02 0.45± 0.07
s = 0.15 0.45± 0.03 0.50± 0.06

WCH32 s = 0.2 0.42± 0.04 0.52± 0.07 2/32 3/31
s = 0.25 0.39± 0.04 0.53± 0.07
s = 0.3 0.37± 0.04 0.54± 0.08

s = 0.1 0.48± 0.01 0.38± 0.05
s = 0.15 0.45± 0.03 0.42± 0.05

WCH64 s = 0.2 0.41± 0.04 0.44± 0.05 2/64 3/63
s = 0.25 0.38± 0.04 0.45± 0.05
s = 0.3 0.36± 0.04 0.45± 0.06

s = 0.1 0.47± 0.01 0.33± 0.04
s = 0.15 0.45± 0.02 0.35± 0.03

WCH128 s = 0.2 0.40± 0.04 0.37± 0.03 2/128 3/127
s = 0.25 0.37± 0.04 0.37± 0.04
s = 0.3 0.35± 0.03 0.37± 0.06

PLI16 Patient 0.47± 0.04 1± 0 2/16 3/15
Control 0.41± 0.05 0.98± 0.05

Shape Left 0.41± 0.07 1± 0
PLI30 Shape Right 0.40± 0.06 1± 0 2/30 3/29

Bind Left 0.42± 0.06 1± 0
Bind Right 0.41± 0.08 1± 0

PLI129 Eyes closed 0.35± 0.07 0.98± 0.04 2/129 3/128
Eyes open 0.36± 0.07 0.98± 0.06

for functional brain networks. Other evidence in EEG studies alluding to the benefit of

medium density ranges has been documented [37, 49, 120]. For a physiological rationale for

medium densities we can, for instance, regard function as not only emerging through physical

connections as hypothesised in the sparsity hypothesis, but through globally interdependent

synchronisations via rapid interregional communications. This interpretation holds in so far

as the time necessary for such communication is available, as in the examples studied, and

should be adjusted for cases in which only direct communications are feasible within the epoch

analysed [130].

68



Chapter 4. Accounting for the Complex Hierarchical Topology of EEG Functional Connectivity in
Network Binarisation

Binarised networks generally outperformed weighted approaches in our simulations.

Furthermore, weighted network metrics should be used with caution. Particularly, we advise

checking their correlations with the mean connection strength.

Other efforts looking to study the role of less strong connections in brain networks have also

considered ‘intermediate’ thresholds by considering networks constructed not from strongest or

weakest connections, but from connections within intermediate ranges of connectivity strength

[118, 131]. However, studying such topologies is hindered by the fact that the true overlying

hierarchical structure becomes hidden. Nodes having more edges in an intermediate level does

not, for instance, indicate that that node is a hub, but rather that most of its connections lie

within the given range. That is to say that intermediate connections maybe interesting to study,

but constructing network topologies from them for analysis is rather obscure. The role of the

weakest connections, or, if you will, topological gaps of brain connectivity is also an active

area of research [131]. One can consider, in fact that medium density binarisation does much

more to account for such features than sparse binarisations since these gaps become much more

defined in higher densities.

As an important addition, the results show that the random topological attacks, rather than

targeted topological attacks, are the most effective at deconstructing the topology of our

simulations. This perhaps seems counter-intuitive, but can be explained by the fact that only the

very top levels of the hierarchy are attacked in the targeted setting, whereas the topology in the

remaining levels remains largely intact, maintaining the differences exhibited in the strength

parameter, s, between the two sets of topology. In fact this agrees with previous functional

connectivity studies which detailed the greater resilience of functional brain networks to

targeted attacks [59, 132]. These simulations thus provide the clues as to how the hierarchical

structure of functional brain networks play a vital role in this resilience.

The results for V in both the eyes open vs eyes closed and VSTM shape vs binding datasets

combined can explain that more intensive stimulation (eyes open and binding) leads to a drop

in network efficiency where more localised activity is required for higher functional processing

[16, 41]. For the VSTM task, in particular, this drop in V for the more complex task may

be explained by higher recruitment through a wider range of nodes. The results for the AD

dataset both indicates the increased power in binarisation with the CST compared to other
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approaches and highlights the importance of binarisation itself for distinguishing dysfunctional

AD topology.

AD network studies, over varying platforms, network sizes and density ranges, have been found

to show seemingly contrasting results found by Tijms et al. [17]. Particularly, they reported

that these studies were at different density ranges, and in many cases the density range was

simply not recorded. Importantly, no functional studies reported density ranges over 25%.

Nonetheless, we note that our results are in agreement with a 149 node MEG PLI study by

Stam et al. [32], showing lower clustering in AD than control (density not recorded). This is

indicative of a move to a more random topology [52].

In terms of network size our simulations suggest that the larger the networks are, the more

likely it is that topological differences will be picked up by commonly used metrics. This trend

is bucked by the MST for which there is a marked drop off from 32 nodes to 128 nodes. This,

however may be explained by the fact that at 32 nodes, the MST makes up 2/n = 6.25% of all

possible connections whereas at 64 nodes this percentage is 3.12% and for 128 nodes it is just

1.56% which is in line with the previous discussion that lower network densities can inhibit the

ability to find topological differences.

The CST is presented here as a sensitive and powerful binarisation technique for network

modelling of EEG phase-based functional connectivity. In simulations it performed to a

high standard in all network sizes and topological comparisons as well as in robustness to

topological attacks. This was echoed in the results of the real data sets where it was consistently

able to identify differences in the presented conditions with not obviously correlated metrics.

From the simulation results we can infer a large part of this ability to the density range in

which the CST binarises the network. We must note, of course, that all of our real data

were from EEG recordings and thus we are cautious of similar comparisons for e.g. fMRI.

Indeed, we must acknowledge the limitations and narrow focus of this study for EEG PLI

networks. Further, although we conjecture that hierarchical complexity of network topology

may be behind the CSTs success, there remain unanswered questions and there is certainly

scope for better topological thresholds to be developed based on such hypotheses. We hope

this study will stimulate interesting discussions and inspire future research in this direction.
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The MST is seen to be robust to fluctuations of the underlying network [44]. It holds appeal in

studies where sparsity is desirable, showing utility in a number of other studies [33, 133–135],

although it must be noted that in these studies it was not compared with other binarisation

methods. In our study, however it appears ineffective and particularly so in larger networks

which noticeably corresponds to the MST making up less and less of the connection density as

the network grows. This concurs with a recent study where we argued that the robustness to

fluctuations also means a poverty of information, supported by evidence from an EEG dataset

of cognitive tasks [49].

The USP is the set union of those edges which form the shortest paths between all possible pairs

of electrodes. Since, in general, all weights of a functional connectivity network lie between 0

and 1, it is likely that a large percentage of the shortest paths in the network will be constituted

of just the single edge joining those nodes. Thus, we can expect very high density networks

which only differ in topology by the weakest connections. Indeed, in the original paper [47]

the authors did not implement any transformation of the weights and reported densities above

90%. To try and counter this unwanted outcome we used a negative exponential transform of

the weights before extracting the union of shortest paths, however, in the end it appeared that

this was limited in its ability to mitigate the flaws of this method. This was most apparent in the

VSTM tasks where it turned out that every shortest path was just the edge between each pair

of nodes, redundantly returning complete networks. We believe that further work would need

to be done regarding the reliability of the USP in order to make it of use to the neuroscience

community.

Although generally outperformed by the CST, we note an agreement with the introductory

paper of the ECO threshold [50] that it generally outperforms the MST. Therefore, we would

recommend it over the MST in cases where sparse densities appear more important. It was also

able to detect differences in the left hemifield condition of the VSTM dataset. The fact that a

mutually exclusive difference was found in the right hemifield condition with the CST suggests

the interest in considering how different density ranges may reveal different topological traits

of conditions. For example, one may conclude from these results that the backbone of the

network is effected by binding in the left hemifield, but that in the right hemifield the binding

effect is notable rather in the ‘fleshed out’ regions of the network.
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As we have seen, it can be more beneficial to include a large number of edges in the network

since it allows for richer information coming from the hierarchical relationships of lower degree

nodes. This is important since it contradicts the implementation of statistical thresholds which

looks for only connections whose strengths are statistically likely to be true connections. In

such cases, it may be topologically more beneficial to keep more edges than what is allowed

based on an arbitrary cut-off point of statistical significance. Other researchers look towards the

integration of different density ranges, however such an approach will have a tendency towards

diluting the potency of potential differences [111] or falling prey to the multiple comparison

problem.

4.6 Conclusion

The hierarchical topologies of simulated weighted complex hierarchy models and several real

datasets of EEG functional connectivity assessed from phase dependencies are found to be well

characterised by non-arbitrary binarisations using the CST and arbitrary density binarisations

in the range of 40%-50%. It is conjectured that this is due to their topologies in this range

accounting for a wider range of hierarchical structure, i.e. not just the connectivity in the

largest degree nodes. The CST and weighted networks were shown to be robust to random

and targeted topological attacks when compared with MST, USP and ECO graphs. In three

real datasets constituting varied neuroscientific questions, the medium density range which the

CST occupies does indeed appear to be useful with other evidence showing that the ECO is

useful in sparse densities. Considering both sparse and larger densities in tandem may prove

a more effective way forward than either on their own. We were able to successfully identify

different topologies in resting states, in VSTM cognitive tasks and in AD patients compared

with control with a notable performance from the CST. This study also validates the WCH

model as a sensitive tool for topological comparisons of great relevance to the EEG.
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Chapter 5

Graph-Variate Signal Analysis: Framework

and Applications to the EEG

The work in this chapter covers and extends the work published in Scientific Reports in

February 2017 [4]. The extension provides a general framework within which the methods of

this publication are framed, with which we explore and open up new possibilities for analysis.

A pre-print is available online [3] and is currently under review.

5.1 Introduction

We wish to explore concretely the analysis of multivariate signals using graphs where each

signal is assigned to a node of a graph. To do this we construct a unified framework

encompassing both multivariate signals and graphs. With this, new modes of analysis become

apparent. Notably, we can provide techniques which implement general bivariate functions

on the signal which are then weighted by the graph topology, integrating the signal within a

special graph adjacency matrix. This stems from studying the Dirichlet energy of a graph signal

from GSP [78] which, in our new framework, can be noted as a particular case of our analysis.

Exploring this connection, we show that matrix multiplications of an adjacency matrix with a

signal vector is limited in the forms it can deliver and thus our framework provides a broader

and more free setting for analysis of multivariate signals with graphs. We go on to describe

interesting new ways to analyse multivariate signals using graphs including a new form of

dynamic connectivity estimation and a form of network analysis conducted at the temporal

resolution of the original signal. The former is particularly timely and promising in light of

new efforts required for estimating dynamic connectivity from multivariate brain signals [69].
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This theory provides a general approach for temporo-topological analysis of multivariate

signals. Importantly, we provide a general framework for computing Graph-Variate Dynamic

(GVD) connectivity and we provide reasonable solutions for frequency and phase-based

connectivity in the form of correlation, coherence and PLI. We then demonstrate the power of

our methodology by determining its ability to correctly identify the presence of correlations

from various sizes of multivariate signals generated from an autoregressive process from

which only a single couple of correlated signals exists. Furthermore, we demonstrate how

the more refined analyses enabled by our generalisation provides greater accuracy in a simple

randomly travelling spheroid detection problem than comparable approaches. Finally, we

test the method on studying activated brain regions in terms of either amplitude or phase in

neurophysiology in resting state and task-related activity.

5.2 Graph-variate signals

The framework is initialised with the introduction of a graph-variate signal which includes

a multivariate signal associated with the node set similarly to how graph definitions usually

include the weighted adjacency matrix associated with the edge set. Through this definition,

one provides an object unifying multivariate signals and network science.

Definition 1. We define the object Γ = (V,X, E ,W) as a graph-variate signal where V is the

set of vertices with |V| = n; X ∈ Rn×p the multivariate signal indexed by V; E = {(i, j) :

i, j ∈ V} the set of edges with |E| = 2m; and W = {wij}(i,j)∈E ∈ Rn×n the weighted

adjacency matrix encoding a relevant topology in which the multivariate signal is set. Then

• (V,X) is the node space composed of a matrix X whose first dimension is indexed by

the node set V and second dimension is indexed by a sequential characteristic of activity

at the nodes, typically time.

• (E ,W) is the edge space composed of a weighted matrix W indexed by the edge set E .

• Γ constitutes the graph space of the combined node and edge spaces where vertices and

edges joining those vertices are determined by the node labels {1, . . . , n}.

Note that, in the simplest case, W is fixed, but it is straightforward to consider an extension

in which W also changes over time. Nevertheless, in the case where W is estimated from
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the signal itself, as we shall later study, it is recommended that W represent the longest time

window possible to increase robustness. The node space, being that which contains the activity

at the nodes, frames the standard analysis of multivariate signals. Indeed, this is formalised by

a general node function, FV , defined on the node space (V,X) as

FV : Rn×p → Rm×q

X 7→ FV(X),
(5.1)

and, when applied in a single instance to pairs of channels at sample s, as

FV : R1×2 → R

[xi(s), xj(s)] 7→ FV(xi(s), xj(s)).
(5.2)

Useful examples of such functions where n = m and p = q include weight thresholds and a

spectral filtering function, e.g. for bandpassing the signal in a frequency band of interest.

The edge space, on the other hand, is a topological space whose elements are the unlabelled

isomorphism classes of graphs of size n. This is where one finds the standard analysis of

networks. A function FE on the edge space (E ,W) is defined on Rn×n as

FE : Rn×n → Rm×l

W 7→ FE(W).
(5.3)

Such functions can be thresholds when n = m = l, global network indices, such as transitivity

or characteristic path length,when m = l = 1 and local network indices, such as the local

clustering coefficient or betweenness centrality, when m = n and l = 1. These are necessarily

all invariants under graph isomorphisms- individuality of nodes is not considered.

The following definitions will be useful for specificity in the rest of this section.

Definition 2. An edge dimension preserving function, F̄E , maps the adjacency matrix, W ∈

Rn×n, to a new matrix W̃ ∈ Rn×n.

Definition 3. A node dimension preserving function, F̄V , maps the multivariate signal, X ∈

Rn×p, to a new signal X̃ ∈ Rn×p.
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This framework and GSP both share in common a difference from temporal networks– where

events occur at specific times between nodes (i.e. at edges)– in that the graph edges are fixed

and we are instead concerned with the study of signal activity occurring at the nodes. A key

distinction to make here is that in this framework the signals are sampled with respect to a

sequential characteristic, such as time, but the interdependencies are known or estimated and

encoded in a graph topology, whereas in GSP the signal is sampled and thus processed over

a graph topology. By theoretical considerations we will demonstrate that the former is more

flexible for analysing multivariate signals.

We shall now consider how node and edge spaces can be combined to produce meaningful

analyses for the graph-based analysis of multivariate signals. Important considerations of such

operations pertain to how edge space operations can act on the node space and, reciprocally,

how node space operations can act on the edge space. In the usual graph sense it is required

that these operations preserve the inner dimensions whose size is the same as the node set, n,

before acting on their reciprocal space.

5.2.1 Edge-dependent operations acting on the node space

Since the inner-dimensions of the edge space and node space agree, the output of any

edge-dimension preserving function together with the usual matrix multiplication, ·, provide

useful operations which act on the node space, (V, X̂):

F̄E(W)· : Rn×p → Rn×p

X 7→ F̄E(W) ·X.
(5.4)

We thus realise that F̄E(W)· is in fact a node dimension preserving function. Some of the

simplest examples include the weighted adjacency matrix, W, and the graph Laplacian, L.

Indeed, this property is exploited to formulate the various aspects of GSP where important

definitions involve pre-matrix multiplication of the graph signal by matrices derived from

graphs. For example, the GFT treats the eigenvectors of the Laplacian or the graph adjacency

matrix as a basis for the decomposition of graph signals into graph frequency components.

The lth eigenvector produces the lth frequency component of the graph signal, x ∈ Rn×1,

defined as ul · x. Similarly, graph convolution, translation, modulation and graph wavelets
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can be formulated as matrix multiplication on linear components of the graph signal. Further,

polynomials of the adjacency and Laplacian matrices are implemented to construct graph signal

filters in GSP in [79] and [78], respectively, which are then matrix multiplied by the graph

signal. We will now evolve a new analysis of graph-variate signals by reciprocally considering

node space functions acting on adjacency matrices.

5.2.2 Node-dependent operations acting on the edge space

Because the edge space is composed of pairs of elements in the node space, when combining

the output of node space functions with the adjacency matrix it is most sensible to impose that

the elements acting on the weight wij be bivariate functions of the signal at nodes i and j. In

this manner, we define graph-variate signal analysis.

Definition 4. Graph-variate signal analysis is an all-to-all bivariate analysis of the signal X

weighted by the corresponding edge weights in W.

Graph-variate signal analysis is facilitated by formulating a tensor, J ∈ Rn×n×p, which is the

output of a node space function defined as

Jijt =

 FV(xi(t), xj(t)), i 6= j

0, i = j,
(5.5)

for some node space function FV .

In order to fully encode the graph-variability we consider both the edge and node spaces,

(W ◦ J(t))ij =

 wijFV(xi(t), xj(t)), i 6= j

0, i = j,
(5.6)

where J(t) denotes the tth n×n matrix of J and ◦ is the mode-k Hadamard product. This way,

wij , which encodes the relationship between nodes i and j, is multiplied by the relevant node

space function on xi and xj .

It is also useful to define a new operator which allows node space operations to act on the edge

space to provide local graph-variate analysis for each node.
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Definition 5. For a matrix A ∈ Rn×n and 3D tensor B ∈ Rn×n×p, composed of the p n × n

matrices {B(k)}
p
t=1, their signal product, A � B, is a matrix whose kth column is the vector

[
∑

j AijBjik]
n
i=1, which is the dot product of the ith rows of A and the ith columns of B(k).

Then

(W � J)it =

n∑
j=1

wijFV(xi(t), xj(t)). (5.7)

A special case of this is GSP’s node gradient formula [78] where FV(xi(t), xj(t)) = (xi(t)−

xj(t))
2.

This operator has the interesting property of providing a reciprocal approach (up to linear

combinations) for the matrix multiplication operator which allows edge space operations to

act on the node space. From this, the limitations of the GSP framework for our ends are made

most apparent. It is straightforward to note that node space functions xj(t) and xi(t)−xj(t) are

solutions for FV in (5.7) to the equations W�J = W ·X and W�J = L ·X, respectively. The

limitations of adjacency matrix multiplication with signal vectors are revealed in the following.

Proposition 1. For the output of an edge dimension preserving function F̄E(W) and of a node

dimension preserving function F̄V(X),

F̄E(W) ·X = W � F̄V(X) (5.8)

if and only if F̄V(X) = aijxi(t) + ajixj(t) for some constants aij , aji ∈ R, and

F̄E(W) =



∑
j a1jw1j a21w12 . . . an1w1n

a12w21
∑

j a2jw2j . . . an2w2n

...
...

. . .
...

a1nwn1 a2nwn2 . . .
∑

j anjwnj

 . (5.9)

Proof. We first note that matrix multiplication with X is linear on the entries of X thus we

cannot consider equating F̄E(W) ·X to a graph weighted non-linear node space function– one

cannot obtain elements xi(t)p for p > 1. Further, since each element of F̄E(W) is multiplied

by an element of X and each element of F̄V(X) is multiplied by an entry of W, there can be

no constants in either function.
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Now, in the linear case without constants for x ∈ Rn×1,

(W̃ ·X)ti =
n∑
j=1

wij(aijxi(t) + ajixj(t))

⇐⇒ w̃ij =


∑n

p=1 aipwip i = j

ajiwij i 6= j,
(5.10)

for coefficients aij ∈ R, satisfying the proposition.

This goes beyond realising that W and L as operators for graph signals obtain only special

forms of GVD connectivity, but further that no graph matrix can be constructed to allow for

non-linear node functions via matrix multiplication with graph signal vectors.

5.2.3 Graph-variate networks

Interestingly, from (5.6) we note that ∆(t) = W ◦ J(t) itself takes on a weighted adjacency

matrix form and thus the tensor ∆ ∈ Rn×n×p is a multi-layer network of sequentially related

graphs. This is useful as we can then explore topological characteristics of a graph-variate

signal at every sample. In classical network science, there are many methods proposed to

analyse the topology of a graph by applying operations in the edge space, that is, on the

edge weight matrix, W. Such methods provide important insights and classifications of

the interdependent relationships of the underlying objects [6]. In our experiments, we will

implement a simple example of a local clustering coefficient, Cloc, of node i at time t, defined

for the graph-variate signal as

Cloc(i, t) =

n∑
j,k=1

∆ijt∆ikt∆jkt = (∆3
(t))ii. (5.11)

Implementing network science on ∆ could, for example, provide insights into rapid

fluctuations in the topological relationships of the signals or, as we will focus on in Section

5.4.2, could be used to develop techniques based jointly on pairwise signal dependencies and

their spatial distances.
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5.3 Graph-variate dynamic connectivity analysis

Now we turn out attention to the special case in which the graph weights encode

pairwise dependencies which have been estimated using the whole multivariate signal

itself. Specifically, for important connectivity measures, we demonstrate how appropriate

consideration of the node space function in graph-variate signal analysis provides a sample

resolution analysis of dynamic connectivity. The following makes use of the instantaneous

amplitude and phase components of the analytic representation of the univariate signals xi, of

X, xai (t) = sai (t)e
jφi(t).

We define a function of connectivity of pairwise channels, {xi,xj}, in X as

HV : R2×p → R

{xi,xj} 7→ HV(xi,xj),
(5.12)

where HV is a node function of the entire signals xi and xj and HV(X) = C ∈ Rn×n such

that

cij =

 HV(xi,xj), i 6= j

0, i = j.
(5.13)

If the function is symmetric, then the matrix C is regarded as the weighted adjacency matrix

of an undirected graph. Otherwise the graph is directed. We focus only on the undirected case

here, however directed graphs may also be considered. Note that C is equivalent to W in the

general case.

We define GVD connectivity as a graph-variate signal analysis with a suitably chosen node

space function (5.5) weighted by a connectivity adjacency matrix, C, derived from the signal.

GVD connectivity then takes the form

θ(xi,xj , t) =

 cijFV(xi(t), xj(t)), i 6= j

0, i = j.
(5.14)

By an appropriate choice of FV this can reveal information of the significance of specific
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points in time of the connectivity over which the adjacency matrix is constructed. From

another perspective, the connectivity adjacency matrix acts as a filter for extracting useful

information from the node space function, FV - strong connectivity implies those vertices are

sharing or communicating important information consistently, thus these connections amplify

the function at those vertices, whereas weak connectivity implies the opposite and suppresses

the function at those vertices [4]. The outline of GVD connectivity is very flexible, but this also

means that in its application it requires a carefully considered formulation, as we undertake

here, to avoid data-dredging.

A particularly useful analysis for exploring the GVD connectivity associated with a particular

node is the node GVD connectivity:

θi(X, t) =

n∑
j=1

cijFV(xi(t), xj(t)). (5.15)

We will use this a number of times in our experiments. The operator which extracts the vector

of node temporal connectivities is defined in (5.7).

We can also easily carry out analysis of modules, module GVD connectivity:

θVa(X, t) =
∑
i∈Va

n∑
j=1

cijFV(xi(t), xj(t)). (5.16)

following the disjoint composition of the underlying node set into q modules,

V =

q⊔
i=1

Vi. (5.17)

Further, we can analyse activity between modules

θVa,Vb(X, t) =
∑
i∈Va

∑
j∈Vb

cijFV(xi(t), xj(t)). (5.18)

for two disjoint modules Va and Vb. Modular analysis is particularly useful for understanding

activity related to brain regions.

Here we present node functions for three pertinent examples of connectivity adjacency

matrices- correlation, coherence and PLI- of which the reader may refer back to Section 2.3
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for further details. For clarity of exposition, in each case we will first present the formulae for

these connectivity estimates before going on to describe the chosen node space functions to

compute GVD connectivity.

5.3.1 Correlation

Taking the connectivity estimate as the correlation coefficient we have

cij =

∑
t∈T (xi(t)− x̄i)(xj(t)− x̄j)√∑

t∈T (xi(t)− x̄i)2
√∑

t∈T (xj(t)− x̄j)2
(5.19)

where T is the epoch of interest, and x̄i is the mean of the values over time of the node i. As a

preliminary formulation, we will consider as node function:

θ(xi,xj , t) = cij(x̃i(t)− x̃j(t))2, (5.20)

derived from the Dirichlet energy form from GSP [78], where x̃i(t) is the normalised signal

over the node space, i.e.

x̃i(t) =
xi(t)− x̄(t)√

1
n−1

∑n
k=1(xk(t)− x̄(t))2

, (5.21)

where x̄(t) = 1
n

∑n
k=1 xk(t) is the mean over vertices of the signal at time t. Notably, the

entries of the matrix may be negative which is an important principle for maintaining the

anti-correlative information, as we shall see.

With some careful thought we see that even this simple form can be regarded as an appropriate

function for correlation. Consider the relation

cij(x̃i(t)− x̃j(t))2 (5.22)

where cij is the correlation, possibly negative, between signals i and j over epoch T . When

correlation between signals is low, the magnitude of (5.22) is small and we cannot infer much

from the signals. Now we consider when the magnitude of the correlation is large. There are

four cases to consider: i) cij > 0 and (x̃i(t)− x̃j(t))2 is large; ii) cij > 0 and (x̃i(t)− x̃j(t))2

is small; iii) cij < 0 and (x̃i(t)− x̃j(t))2 is large; iv) cij < 0 and (x̃i(t)− x̃j(t))2 is small.
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The first case says there is a strong positive correlation, cij , between signals i and j and xi

and xj at time point t are dissimilar. Since high positive correlation denotes that the signal

amplitudes behave similarly, this large positive value indicates a likely discrepancy between

the connectivity information over the epoch T and the behaviour of the signals at time point t.

Here the output is positive and large. The second case, on the other hand says that there is a

strong positive correlation between the signals i and j and the signals are similar at t. This, in

contrast to the first case, gives two agreeing components and the output is positive and small.

The third case says there is a strong negative correlation, cij , between signals i and j and there

is a large difference between signals i and j at time t. Since high negative correlation denotes

that the signal amplitudes behave dissimilarly, this large positive value indicates agreement

between the connectivity information over the epoch T and the behaviour of the signals at time

point t. The output is negative and large. The fourth case, on the other hand, says that there is

a strong negative correlation between the signals i and j and the signals are similar at t. This,

in contrast to the third case, gives two disagreeing components and the output is negative and

small.

Consider summing a variety of these components, for instance over part or whole of the graph.

If the result is large and positive, we can say that the activity of the signals at time t is mostly

in disagreement with the connectivity over T . On the other hand, if the output is large and

negative, we can say that the activity of the signals at time t is mostly in agreement with the

connectivity over T .

On the other hand, from our generalised setting, we can consider an instantaneous correlation

deriving more directly from (5.19):

θ(xi,xj , t) = cij |(xi(t)− x̄i)(xj(t)− x̄j)|, (5.23)

where the node space function here can be understood as a measure of instantaneous correlation

coefficient at the time point t. These methods shall be compared in simulations and real data

to help reveal the benefits of using more nuanced functions than the classical Dirichlet form.
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5.3.2 Coherence

The coherence of two channels is a function of frequency, ω, and can be interpreted as a

correlation of signal component at ω of the channels. For a chosen frequency band we have

cij =
∑
ω∈Ω

|Pxixj (ω)|2

Pxixi(ω)Pxjxj (ω)
, (5.24)

as in Section 2.3.

Similarly as for correlation, we will consider both the squared difference and instantaneous

correlations of the instantaneous amplitudes to compute GVD connectivity for coherence, after

bandpassing in the frequency range of interest, i.e.

θ(xi,xj , t) = cij(s
a
i (t)− saj (t))2. (5.25)

and

θ(xi,xj , t) = cij |(sai (t)− s̄ai )(s
a
j (t)− s̄aj )|, (5.26)

respectively. Coherence cannot be negative, thus it is a more straightforward case than

correlation- high coherence and large differences in the instantaneous amplitudes can be taken

generally as a contrast of information; whereas a small difference in amplitudes implies

agreement of information. Thus large GVD connectivity implies some notable epoch of interest

in the given time window with the underlying long-term connectivity.

5.3.3 Phase-lag index

The PLI [31] measures the consistent phase differences between time-series, indicating lead/lag

dependencies. As a connectivity estimate, we write

cij = |〈sgn(φi(t)− φj(t))〉|. (5.27)

We choose FV for phase-based connectivity indexes as the sign of the phase difference of the
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signals stemming directly from (5.27), giving

θ(xi,xj , t) = cijsgn(φi(t)− φj(t)). (5.28)

Because of the negative symmetry of this function, the global GVD connectivity of the system

at time t is

∑
i,j

θ(xi,xj , t) =
∑
i<j

(θ(xi,xj , t) + θ(xj ,xi, t))

=
∑
i<j

(θ(xi,xj , t)− θ(xi,xj , t)) = 0.
(5.29)

However, summing over a subset of these elements, for example, only over those edges relating

to a given node or subset of nodes, would reveal the strength and general nature of the node(s) to

lead (positive) or lag (negative) in the network at the given epoch. In experiments we will apply

these GVD connectivity functions to several simulated and real datasets to provide document

of their usefulness.

5.4 Experiments

We now demonstrate these methods in simulations and real data sets. An autoregressive model

is implemented first to illustrate the broad idea and benefit of graph-variate signal analysis

before we explore the ability of GVD connectivity to correctly discover differences between

two large datasets which differ only by the presence (and lack thereof) of a single correlated

couple (Section 5.4.1). To test the effectiveness of temporal network clustering coefficient

metric (5.11), we devise a simple regime to detect a spheroid travelling over a 3D grid (Section

5.4.2). We then apply our techniques to real high complexity datasets of EEG brain functional

connectivity to provide evidence of the benefits delivered by a graph-variate analysis approach

(Sections 5.4.3-5.4.5).
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5.4.1 Detecting correlated sources

We generate 5 realisations, 1 × 1000 vectors {zi}5i=1, of a stationary autoregressive process

with governing equation

z(t) = 0.5 + 0.7z(t− 1) + 0.25z(t− 2) + ε, (5.30)

where ε ∼ N (0, 0.1) and consider the multivariate signal


x1

x2

x3

 =


1
2

1
2 0 0 0

1
2 0 1

2 0 0

0 0 0 1
2

1
2




z1

z2

z3

z4

z5


, (5.31)

so that all xi are the average of two realisations of (5.30); x1 and x2 are correlated via the

information in z1; and x3 is independent of x1 and x2. Fig 5.1 shows the computation of

instantaneous correlation coefficients and corresponding node GVD connectivity computed

using correlation coefficient (5.23) over the entire signal. The corresponding graph weights

are w12 = 0.6934, w13 = −0.0576, w23 = 0.0943. Node GVD connectivity (bottom) is

computed over 5 samples in non-overlapping windows. The corresponding short-term graph

weights computed over 5 samples and the un-weighted instantaneous correlation are shown

in the 2nd and 3rd plots, respectively. Unsubstantiated dependencies are produced using

the short-term graph weight and instantaneous correlation methods where often the three

components are roughly equivalent. GVD connectivity, on the other hand suppresses the

uncorrelated data using the long-term connectivity estimates and the prevailing information

comes forth from the truly correlated data relating to edge (1, 2). This is most obviously seen in

comparing instantaneous correlation (third) with GVD connectivity (bottom), where the signals

are identical except that GVD connectivity weights them by long-term correlations, hence the

yellow, (2, 3), and orange, (1, 3), time-series are suppressed relative to the blue time-series,

(1, 2).

Note that the amount of data required to measure statistical moments of a random variable
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Figure 5.1: The original signal (top), dynamic graph weights (second) Instantaneous
correlations (third) and corresponding GVD connectivity (bottom) of edges as shown in the
legend. The benefit of long-term graph weights is evident, where the GVD connectivity correctly
emphasises important information (that related to edge (1,2)).

that is correlated in time to a given accuracy is dependent on the amount of temporal

correlation present. What theoretical results there are exist for Gaussian random signals that

are independent from sample to sample in time. If we use N samples of such to estimate the

mean of a Gaussian variable then the estimate is also a random variable with the same mean

(i.e. unbiased) but the variance of the estimate is 1/N the variance of the original random

signal. When the signal is correlated in time even more data is required to estimate the mean

to a given accuracy. This provides the statistical argument for what is happening in this toy

example and the reason for using long-term dependency estimates to ameliorate attempts at

measuring transient dynamic dependencies.

We now extend this to quantitatively assess the ability to determine a single couple of correlated

signals from increasingly large sets of signals. Following the same autoregressive process as

(5.30), we generate 2 × h realisations for h = 2, 4, 8, 16, . . . , 512. Then two sets of signals
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Figure 5.2: The p-values of one-sample t-tests of correctly identified correlated sources for
different sizes of dataset (x-axis) and population (y-axis) for the original signal (left) and
GVD node connectivity with squared difference (middle) and instantaneous correlation (right).
White indicates a non-significant difference, black indicates a p-value value smaller than 5 ×
10−10.

are formed. The first uncorrelated set takes the average of each consecutive disjoint couple of

realisations as the multivariate signal X ∈ Rh×1000. The second set is almost the same except

the second signal is formed from the 1st and 4th (rather than 3rd and 4th) realisations so as

to be correlated with the first signal. We generate populations of such multivariate signals of

sizes 5, 10, 15, . . . , 50 to track effects due to population size. We then compute the difference

between the uncorrelated and correlated original signals and GVD connectivity analysis using

(5.20) and (5.23) and sum over time. We implement a one-sample t-test on the null hypothesis

that the population values have a zero mean with significance indicating rejection of the null

hypothesis at the α = 0.05 level. The results for each population and signal size are shown in

Fig 5.2.

The values for the original signals are provided for reference since we do not expect them

to perform well given that they rely only on magnitudes. The results clearly indicate that

GVD connectivity using instantaneous correlation has greater sensitivity to differences than

using squared difference. Specifically, we can state that GVD connectivity with instantaneous

correlation can correctly and reliably identify differences in the autoregressive processes with

a population size of 25 or greater with at least 128 signals. Squared difference can detect

differences in 128 signals only with a population size of 50. However, even with a population

of 50 this is not reliably since it fails to detect the difference in the 32 signal case.
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5.4.2 Spheroid travelling randomly on a 3D grid

We construct a 10×10×10 grid in Euclidean space where each point corresponds to a univariate

signal. A weighted connectivity graph is formed from the inverse distance, computed as

wij = exp(−d2
ij/4), between the intersecting points in the grid and amplitudes are distributed

normally at random to the vertices asN (0, 0.3). At time t, the amplitude at node i is increased

arbitrarily by an amount, δ, and amplitudes at those vertices one unit away from i are increased

by 3
4δ. At time t+ 1, again amplitudes are assigned normally at random but one of the vertices

assigned 3
4δ increased amplitude at time t is now randomly selected for a δ amplitude increase

and its closest neighbours are now assigned 3
4δ. We can liken this to a spheroid travelling

randomly across a grainy image. This process continues for 1000 time steps for values of

δ ranging from 0.1 in steps of 0.1 up to 0.9. We now consider the appropriate node space

function to use in this scenario. The randomness of movement means that using approaches

which try to assess a direction, such as Kalman filtering, are of little value. Thus, a more basic

maximisation approach is adopted. Considering that higher amplitudes close together should

produce high values, we implement graph-variate signal analyses using a multi-layer graph, ∆,

with a node space function which takes the average of each signal pair so that:

∆ijt = 1
2wij(xi(t) + xj(t)). (5.32)

We then calculate the weighted clustering coefficient, Cloc, from (5.11), at each node at each

point in time. The task is then to detect the spheroid at each point in time. We compare with

simply choosing the node with highest amplitude and also by implementing graph filtering

approaches based on the graph adjacency matrix with self-loops, Ŵ = I + W [79], and the

graph Laplacian [78], as well as using the heat kernel, e−τL [78]. That is, at time t, we select

the highest value of the vectors ŴX(t), LX(t), and e−LX(t) and also the cubed versions

Ŵ3X(t), L3X(t), and e−3LX(t) to compare a simple GVD connectivity approach with some

standard GSP approaches.

We take the largest clustering coefficients as the measure to detect the spheroid at each point in

time and compare with just taking the highest amplitude value of the signal and the highest

value of the outlined GSP approaches. Fig 5.3 details the number of correctly identified
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spheroid centres (left) and the number of identifications at any point of the spheroid (right),

i.e. within one grid square of centre, for each δ. Our approach using Cloc (green) achieves

best results in 7/9 cases in the former and in all cases in the latter. Our approach shows best

overall results in both, see Table 5.1, being one percentage point clear of the next best in

detecting the centre and nearly ten percentage points clear of the next best in detecting any

part of the spheroid. Of the GSP approaches, the best are the single adjacency matrix filter

Ŵ (Fig 5.3, dark blue) and the heat kernel e−3L (orange), which perform relatively well in

detecting the centre point. However, they fair much less well when taking into account the

sides of the spheroid, where they do not fair much better than the default maximum amplitude

approach (black). Since W and L fair better than their cubic versions, we know that the

improvement noted by the clustering coefficient method is not down to the cube of the graph

distance information resulting from (5.11). Indeed, the graph topology being emphasised in

higher powers of the adjacency matrix and graph Laplacian leads to a decrease in the relevant

information contained in the signal, which is not dependent on the topology of the grid.

Figure 5.3: Total of correct guesses, left, and guesses anywhere on the spheroid, right, out of
1000 time points using amplitude height only (max. amp.), signal function graph clustering
coefficient, Cloc and graph signal filtering approaches where δ is the increased amplitude of
the central point of the sphere.

Table 5.1: Percentages (%) for different methods in correctly locating spheroid centre (Centre)
and in identifying spheroid at any point (Any) over all sizes of strength δ

Locate max Cloc Ŵ Ŵ3 L L3 e−L e−3L

Centre 9.7 18.4 17.4 1.9 4.8 2.5 1.8 16.6
Any 28.2 41.1 30.3 7.7 16.7 10.3 4.5 21.4
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Figure 5.4: Example of reduced noise and increased accuracy through clustering coefficient.
The highest amplitude is detected at node 452, however the maximum clustering coefficient,
Cloc, detects the actual centre at node 462.

An example of how the proposed method is able to correctly identify a spheroid centre which

has been incorrectly identified using the highest amplitude is shown in Fig 5.4. In this example,

the increased amplitude of 3/4δ given to one of the nearest vertices, 452, provides a larger

overall amplitude to the δ given to the central node. By using the graph-variate method,

however, this error due to noise is corrected since most of the nearest vertices to 452 have

a very small comparative amplitude to those of the true centre at 462.

Analysis of the formulation of the Cloc shows its power for the suppression of noise and

promotion of clustered phenomena. In the problem illustrated we can consider the expected

value of the signal triple

E[(xi + xj)(xj + xk)(xk + xi)] = 8E[x3]

= 8(µ3 + 3E[X]E[X2] + 2(E[X])3)

= 8(µ3 + 3µ(σ2 + µ2) + 2µ3). (5.33)

where µ is the mean and µ3 is the third moment of variable x. For only noisy data x ∼
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N (0, σ2), this is just zero from the fact that odd moments of a symmetric distribution are zero

and µ = 0. On the other hand, the expected value for x ∼ N (δ, σ2), i.e. data with true value

δ in the presence of noise, is 24σ2δ + 40δ3. For the GSP filtering approaches, the adjacency

matrix provides E[xi] = 0 for noise and E[xi] = δ for the true value which explains why it

also fairs well at detecting the correct centre point, whereas the Laplacian provides E[xi − xj ]

which is zero for noise and true value which explains its poor performance here. Of course,

we note that this may be a very specific instance, there are undoubtedly other scenarios where

the Laplacian/adjacency filter approach may fair much better. However, this highlights the

necessity for the appropriate consideration of analysis for the problem at hand which can be

assessed more fully within the proposed graph-variate framework. To increase comparability

and the pursuit of a simple example, these approaches are chosen to be free from parameters and

more complicated methodologies such as using iterative denoising. We recognise, though, that

other more elaborate techniques such as implementing wavelets using a dictionary of spheroid

shaped atoms [136] or joint time-graph denoising [83] may provide a more intensive treatment

of the problem.

5.4.3 GVD connectivity of resting state EEG data

We study the eyes-closed, eyes-open dataset of 129-channel EEG activity as detailed in Section

4.3.1. These long recordings- 4.4355 ± 0.2861 mins (mean ± SD)- allow us to arbitrarily

take windows starting at the 1000th sample (5s) to avoid the possibility of pre-processing

artefacts at the beginning of the signal. We choose epochs, τ , lasting 16, 32, 64, . . . , 2048

samples (80ms up to 10.24s). We investigate dynamic connectivity using correlation, coherence

and PLI in Alpha. For analysis, modules (subsets of nodes) of interest are chosen based on

observable differences in the average weights over graphs computed from the largest window-

2048, Fig 5.5. Choosing modules, instead of global connectivity, allows us to compute our

phase-based methods without redundancy (5.29). Clearly, around 1-30 nodes and 60-90 nodes

show differences in all connectivity measures (Fig 5.5, black lines mark 30, 60 and 90), thus

we choose these as Module A and Module B, respectively, to compare our methods. Note

that modules are chosen here from visual inspection as opposed to using module detection

algorithms since such algorithms can be expected to choose different nodes between groups

whereas we want a robust and unbiased comparison of modules between groups. As a result,
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Figure 5.5: Weighted graph adjacency matrices of correlation, coherence and PLI for eyes
closed (top) and eyes open (bottom) conditions. The colour axes, yellow being the largest
weights, are the same for eyes open and eyes closed conditions. Modules are selected based on
the most different activity between conditions- Module 1: nodes 1-30, Module 2: nodes 60-90,
indicated by the black lines.

these modules are spatial, based on proximity of electrodes, rather than topological. Modular

connectivity is computed as per the formula:

∑
t∈T

∑
i∈Va

∑
j∈V

cijF (xi(t), xj(t)), (5.34)

where Vx are the module vertices and T is the epoch of interest. Here, i sums over the module

and j sums over the entire graph to assess the modules effects on the entire graph. Equation

(5.34) is applied for correlation using (5.20) and (5.23), coherence using (5.25) and (5.26), and

PLI using (5.28).

For this dataset we seek to clarify the usefulness of our methods compared to weighted graphs

by themselves, as implemented in e.g. [73–76], as well as the benefit of the graph support

in GVD connectivity as opposed to using un-weighted node space functions i.e. putting all

weights equal 1 in (5.34), as used in [77].

For modules A and B, we compute GVD connectivity using the pair (T, τ), where the graph

weight is computed over epoch τ and the node function over disjoint epochs of length T ,
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Table 5.2: Number of cases (T, τ) and p-values within those cases (cases:p-values) for which
GVD connectivity (GVD) finds more significant differences (>) than node functions alone (NF)
and vice versa. First column indicates GVD method used (graph/node function) where Cor-
correlation, Ch- Coherence, sqd- squared difference, ico- instantaneous correlation and phs-
sign of phase difference.

Method Module A Module B
— GVD>NF NF>GVD GVD>NF NF>GVD

Cor/sqd 8:16 3:3 10:21 0:0
Cor/ico 4:4 3:3 6:11 0:0
Ch/sqd 14:62 0:0 6:7 1:1
Ch/ico 9:15 6:6 2:2 3:3

PLI/phs 10:21 4:5 4:9 6:9
Total 45:118 16:17 28:50 10:13

such that T ≤ τ ∈ {16, 32, 64, . . . , 2048}. This gives a total of 36 cases corresponding to

each combination of (T, τ) and a minimum of one p-value (when T = τ ) and maximum

of 2048/16= 128 p-values for these cases. For each (T, τ) we then compute the density,

(differences found)/(total possible), of significant p-values found from paired t-tests of eyes

closed vs eyes open conditions across the 16 participants. The results for each (T, τ) are shown

in Fig 5.6 for modules A and B for GVD connectivity, the node functions by themselves (no

graph) and a dynamic graph approach (graph only).

It is clear that for both modules the GVD connectivity approach performs better than the graph

only approach for correlation and coherence. The PLI fairs poorly in this paradigm in general,

but we shall see later that it may be leveraged to greater effect in time-locked task presentation

data. It is not clear by observation whether the GVD connectivity approach is better than the

no graph approach. To see this more evidently, we compute the number of cases, (T, τ), for

which GVD connectivity outperforms the no graph approach and vice versa, as well as the

greater number of significant p-values shown by GVD connectivity within those cases and vice

versa. Table 5.2 shows the results. We see that GVD connectivity consistently outperforms the

no graph approach with a total of 45 cases, consisting of 118 a p-values, in which it exceeds

it in module A, and 28 cases, consisting of 50 p-values, in which it exceeds it in module B.

The opposite, in which the no graph approach exceeds GVD connectivity is much lower with

just 16 cases, consisting of 17 p-values, in module A and 10 cases, consisting of 13 p-values in

module B.
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Figure 5.6: Results of eyes open vs eyes closed EEG data for Module A, top and Module B,
bottom plotted by density of p values which are significant for T < τ . GVD (first row) is GVD
connectivity where the graph comes from τ and the GVD is computed over T . The axes of τ
against T , shown on the bottom right plot, indicates the signal length considered in powers of
2, i.e. 5 is 25 = 32, etc. No graph (second row) is the non-graph weighted node space function.
Graph only (third row) refers to graphs computed over T . Wcor is the adjacency matrix of
correlations, Wch of coherence and Wpli of PLI. Here, xi is the original signal, sai the signal
envelope and φi the instantaneous phase, where x′i and sai

′ are the signals minus their expected
values as in (5.23) and (5.26), respectively.
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5.4.4 PLI during face recognition task

To try the PLI in a more appropriate task-related setting where consisting phase dependencies

of brain function over many trials can be picked out, we look at a face presentation task, detailed

in [137]. The dataset consists of 16 subjects undergoing a face presentation task lasting 1.5

seconds (0.5s pre-stimulus) down-sampled from 1kHz to 250Hz. Mean and SD of trials is

294.19 ± 2.32. After bandpassing in Alpha (8-13Hz), the PLI is computed for each trial and

then averaged to construct an adjacency matrix per subject. GVD connectivity and the no graph

approach are then conducted using sign of instantaneous phase differences. This is conducted

per trial, then averaged over trials after which the absolute value is taken. Fig 5.7 shows the

mean adjacency matrix over subjects ((a) top right) and the resulting Cloc for instantaneous

phase and GVD connectivity estimates, averaged over subjects. In the GVD connectivity,

we can see clearly a strong pattern of dynamic connectivity in nodes 40-60 occurring around

0.3-0.5s after stimulus which dies away and then appears to return again near the 1s mark.

This activity occurs after N175 event related potential known to play an important role in face

perception tasks [138], suggesting a post N175 phase-based functional response to the visual

stimuli. Topoplots, where the sum of Cloc of node i is mapped as an intensity to the electrode

position, confirm that this is more evident using the GVD approach, Fig 5.7 (b), where a strong

polarity of activity from front right to back left from 0.3-0.5s reoccurring at 0.9-1s is contrasted

with a drop in activity from left to back right. Activity from 0.3-0.5s is suggested also in the

top left of instantaneous phase only but is less apparent and the reappearance near 1s is not

evident.

5.4.5 ERP correlations of VSTM binding

Here we study the data described in Section 4.3.2. The 30 channels were re-referenced to the

average EEG activity having already been processed using ICA to remove ocular artefacts.

From the continuous EEG, we extracted epochs of 1.2 s starting at -200 ms pre-stimulus onset

(baseline). We focused on the encoding (i.e. study display from 0-0.2 ms) and maintenance

(delay from 0.2-1000 ms) periods of VSTM, since these seem to be the stages of memory

informing about the functional principles of organisation with regard to capacity and format of

representation (shape vs binding) [127]. We then computed the average Event Related Potential
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Figure 5.7: a) Phase activity from a face presentation task. Top left is the alpha signal for
one subject. Top right is the mean connectivity adjacency matrix over all subjects. Bottom
left is Cloc for each node at each time point for instantaneous PLI, averaged over subjects.
Bottom right is Cloc for each node at each time point for GVD connectivity, averaged over
subjects. b) Topoplots of the sum of Cloc phase activity in a given time window from a face
presentation task. Colour axis has a minimum (blue) of the 10th and maximum (yellow) of
the 90th percentile over all values, time points and subjects. Top is for instantaneous PLI and
bottom for GVD connectivity, averaged over subjects.

(ERP) signal over correct trials (number of correct trials per participants, per condition: mean-

65.7, SD- 9.27) for each VSTM condition performed by each participant resulting in a set of
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Figure 5.8: The frontal and occipital modules defined for network analysis. Labelled electrodes
follow the 10-20 system.

4×19 thirty-channel EEG signals.

For each subject and task, graphs were created for encoding and maintenance periods where

the edge weights were defined as the absolute value of correlation coefficient [120, 139, 140]

between the pairwise channels for the broadband of frequencies (0.01-40Hz). The correlation

coefficient is chosen, rather than phase-dependent connectivity, in order to analyse amplitude

related effects from ERPs. The broadband was considered to reflect the real-time amplitudes

important to our novel analysis and in keeping with our processing-light approach. Further, a

previous study of ERP broadband analysis on these tasks gave promising results [128].

In order to find differences in cognitive task conditions that are representative of the sampled

population (e.g. controlling for sources of individual variability such as head size, small

electrode displacements, etc.), we considered activity over broader regions involving several

electrodes, relating to modules of the constructed graphs. To this aim, we defined two modules

using well known scalp regions (see Fig 5.8) which are relevant to working memory processing

[141] and previously reported to be involved in the task investigated [127, 142]. These are the

frontal module (F3, Fz, F4, FC3, FCz and FC4) and the occipital module (O1, Oz, O2, PO1 and

PO2). To avoid combinatoric issues, these modules were chosen on physiological principles

to be symmetric, of comparable size and with considerations of locality and generality in

mind. Defining a priori modules on the graph allows us to combine these hypotheses with the
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Table 5.3: Average node GVD connectivity over task conditions and participants for each
electrode

FP1 -32.45 F8 -19.33 T3 -11.74 CP3 -10.27 P4 -30.00
FP2 -32.07 FT7 -15.5 C3 -10.36 CPz -13.60 O1 -59.71
F7 -23.67 FC3 -17.66 Cz -14.00 CP4 -16.01 Oz -54.68
F3 -23.96 FCz -20.21 C4 -12.81 TP8 -26.07 O2 -55.89
Fz -28.09 FC4 -16.09 T4 -14.75 P3 -25.70 PO1 -56.29
F4 -20.32 FT8 -13.45 TP7 -17.45 Pz -26.32 PO2 -46.65

information inside the signal, creating a topology of potential similarity between electrodes.

The composition of the modules (i.e. electrodes chosen) was constructed after considering

the node GVD connectivity (5.15) computed for each node of the graph during the entire

encoding and maintenance period to determine their suitability for the modules (i.e. using

GVD connectivity to identify outliers). The occipital module was chosen considering all

those electrodes in the occipital region. This choice is evidentially justified by the GVD

node connectivity where there is clearly far larger magnitude values than in the rest of the

electrode array (see Table 5.3, column 5). In choosing the frontal module we wish to consider

a comparable size of module to the occipital. If we consider the suitability of electrodes FP1

and FP2 for the frontal module, we see these electrodes have node GVD connectivity over 2

SD above the mean drawn from the rest of the electrode array excluding the occipital electrodes

which exhibit obviously stronger values (-18.56 ± 5.97 mean ± SD) thus we excluded them to

avoid their overpowering influence since this highlights a strong contrast in activity. We then

seek to form a symmetric module of comparable size to the occipital region, which leaves {F3,

Fz, F4, FC3, FCz and FC4} as the physiologically feasible choice (Fig 5.8). Normalisation

to correct for such influences is neither obvious nor advisable since each edge in a graph

corresponds to two nodes and any such process would act to negate the heterogeneous nature

of the underlying EEG network degree distributions [1]. We investigated differences in the

encoding period (0-200ms) and the maintenance period (200-1000ms) of the tasks by analysing

the total modular weight:

wVa =
∑
i∈V

∑
j∈Va

wij , (5.35)

of the specified modules. We contrast these values for shape vs binding conditions in the left

hemifield and in the right hemifield using paired t-tests. Using modular GVD connectivity
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L1H2 L1:H3

L2H1 L2H2 L2H3 L2H4 L2H5 L2H6

L1H1

L3H1 L3H2 L3H3 L3H4 L3H5 L3H6 L3H7 L3H8 L4H9

Figure 5.9: Example of hierarchical hypothesis tree for hierarchical false discovery rate
procedure. ’LiHj’ indicates the jth comparison in the ith level of the hierarchy. Red
indicates no discovery, green indicates valid discovery, grey indicates exclusion from correction
procedure due to false or no discovery made.

(5.16), we then introduce a second level of analysis to discover if particular parts of the

original epochs are driving the discovered effects. Given the clear hierarchical structure of the

hypotheses, we then use hierarchical False Discovery Rate (FDR) [143] to control for Type-I

errors and allow a only the strongest temporal differences to be shown. Hierarchical FDR

follows a level by level procedure of false discovery detection where a parent-child relationship

is evident between these levels. Only those hypotheses whose parents were accepted as true

discoveries are considered in the next level. In our study, the parent hypotheses relate to the

total modular weights and the child hypotheses relate to GVD connectivity. Fig 5.9 shows

a model of a hypothesis hierarchy and the principles of rejection and acceptance of discovery

through the FDR corrective procedure. We implemented a strict FDR with q = 0.05 throughout

the procedure [143].

From the effects found in the edge weight testing, we compute the modular GVD connectivity

(5.16) for the frontal and occipital modules and the between module GVD connectivity (5.18)

between the frontal and occipital modules. Note that, for module Va, the latter is contained in

the former, i.e. θVa,Vb ⊂ θVa , so that the latter probes the modules specifically for the interaction

of the frontal and occipital modules.

We contrast shape and binding values throughout, therefore metrics are usefully presented as

‘shape−binding’ which implies the difference of the given metric values between the shape

and binding condition. For this reason, we present box plots indicating where the 0 line

is for the modular weights in the frontal and occipital modules (Fig 5.10, top left), and the

GVD connectivity for modules and between modules (Fig 5.10, bottom row). A summary of
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Figure 5.10: Top Left: difference in modular weights between the shape and binding tasks in
the Frontal and Occipital modules. Top centre and right: Evolution (mean over subjects) of
modular GVD connectivity of shape (solid) and binding (dashed) in the right hemifield during
the encoding period for the occipital module (centre) and the frontal module (right) calculated
over non-overlapping 20 ms (5 time sample) windows. The dotted lines indicate the beginning
and ending of the epochs displaying significant differences in activity. Bottom: Box plots of
modular GVD connectivity for each epoch for occipital (left), frontal (centre) and the between
module GVD connectivity of Frontal and Occipital modules (right), where ’Epoch’ refers to
the 20ms windows, labelled consecutively ’1’ to ’10’.

the results at two levels of analysis is presented in Tables 5.4 and 5.5. Paired t-tests were

performed over participants for the measurements obtained for shape and binding conditions

and subsequent p-values were controlled using hierarchical FDR [143]. The normality of the

distributions was tested for each paired t-test using the one-sample Kolmogorov-Smirnov test.

No significant deviations from the normal distribution were found at the 5% level. We report

the following:

Level 1:

In the first level, the long-term total modular edge weights computed from the absolute values

of correlation are analysed for the conditions to be contrasted. These contrast are left shape

vs left binding and right shape vs right binding in both Frontal and Occipital modules during
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both encoding and maintenance periods. Results found here thus inform on which periods,

modules and task related hemifields are important in binding tasks. From the paired t-tests,

after FDR correction, significant differences were found for the contrast involving shape vs

binding conditions in the right hemifield (left hemisphere stimulation) for both Frontal and

Occipital modules during the encoding period (see Table 5.4). These showed that the binding

condition weights were less than those of the corresponding shape conditions (Fig 5.10),

top left. No differences were found in the maintenance period and, further, no differences

were discovered when contrasting shape vs binding conditions in the left hemifield for either

encoding or maintenance periods. The supplementary material (section 3) of [4] provides a

parallel analysis for modules chosen for different scalp areas, showing that we do not miss out

on important activity happening elsewhere in the EEG signal correlates and further highlights

the anatomical specificity of the activity elicited during this memory paradigm. We further

consider an analysis of the sensitivity of electrode selection for our modules by removing and

adding electrodes to the module to see how this effects the results. The results shows our

methodological approach is robust to small modifications in electrode choice, demonstrating

that the physiological considerations made for module choice do not substantially influence the

results of the study.

Level 2:

In the second level of analysis, we perform modular GVD connectivity analysis over

non-overlapping 20ms (5 time samples) windows over the modular weights (signed

correlations) in Level 1. Our analysis now focuses only on those hypotheses from which their

parent hypothesis in the first level were seen as ‘true discoveries’. Thus, we present results of

the GVD connectivity for Frontal and Occipital modules during the encoding period of shape

vs binding condition contrasts displayed in the right hemifield. An extended table of results

including those for the left hemifield can be found in the supplementary material (section 4)

of [4]. Further, we study the GVD connectivity between Frontal and Occipital modules to

discover if there are epochs where dependencies occurring between these regions show strong

effects.

After FDR correction, effects are found in the GVD connectivity of the occipital module in the

epochs between 100-120ms and 120-140ms, showing a larger negative GVD connectivity in
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Table 5.4: p-values for paired t-tests of modular sum of edge weights in shape vs binding
conditions. O = occipital module, F = frontal module, E = encoding period, M = maintenance
period, L = left hemifield condition, R = right hemifield condition. Blue = true discovery, red
= false discovery, black = null hypothesis not rejected at the 5% level.

O.E.L O.M.L O.E.R O.M.R F.E.L F.M.L F.E.R F.M.R
0.1873 0.8709 0.0102 0.4514 0.2119 0.9040 0.0044 0.4806

Table 5.5: p-values for paired t-tests of Modular GVD (MGVD) connectivity and Between
module GVD (BGVD) connectivity in shape vs binding conditions. Legend as in Table 5.4.

Time (ms) MGVD - O.E.R MGVD - F.E.R BGVD - F.O.E.R
0-20 0.2036 0.4088 0.0942

20-40 0.0909 0.3891 0.0957
40-60 0.0432 0.1380 0.1408
60-80 0.0718 0.8074 0.1805

80-100 0.0254 0.1918 0.0412
100-120 0.0038 0.0465 0.0073
120-140 0.0010 0.0851 0.0028
140-160 0.0278 0.0070 0.0120
160-180 0.0919 0.0059 0.0167
180-200 0.6661 0.5464 0.9644

the shape task. In the Frontal module, an effect is found straight after this, between 140-160ms

and 160-180ms, again showing a larger negative GVD connectivity in the shape task. Further,

the GVD connectivity between modules shows an effect in the epochs of 100-120ms and

120-140ms (see Table 5.5). Notably, all the values in this study were strong negative values

indicating generally matching information between the signals and the connectivity weights, as

explained in the methods. This is exactly as is expected, since the signals are those from which

the connectivity information is taken.

5.4.6 Discussion

The results from the simulations and resting-state and face presentation task EEG datasets

show the greater power and suitability of implementing a graph-variate signal analysis

approach over comparable state-of-the-art approaches. The greater power and flexibility,

and thus suitability, to different datasets of the framework is displayed in Section 5.4.1,

with instantaneous correlation outperforming Dirichlet energy, and Section 5.4.2, with GVD

connectivity outperforming a wide range of GSP approaches. The generalisability also allows

us to consider a wide array of problems in EEG functional connectivity– from resting-state
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Figure 5.11: The p-values for shape vs binding contrasts in the right hemifield during the
encoding period for GVD connectivity in the occipital module (blue), the frontal module (red),
and between modules (yellow) calculated over non-overlapping 20ms (5 time sample) windows.
The y-axis is on a logarithmic scale.

conditions in Section 5.4.3, to ERP analysis in Section 5.4.5, to phase-based task responses in

Section 5.4.4.

In the ERP analysis of VSTM binding tasks, the results provide entirely new evidence of a

focused prolonged functional difference between shape and binding conditions beginning in

the occipital area at around 100ms, with a dependency between occipital and frontal areas from

100ms to 140ms and then shifting towards the frontal area between 140-180ms, see Fig 5.11.

The strong chronological dependency of p-values over non-overlapping epochs is remarkable.

Additionally, it is noticeable that all these effects have entirely vanished by the 180-200ms

epoch, which is in accordance with the lack of findings found for the maintenance period.

From the GVD connectivity, we note that the effects reported in the occipital module appear to

be driven by amplitude based activity between 100-140ms into the encoding phase of the task.

This coincides with the P100 of visual evoked potentials and shows that with our methodology

we are able to pick up on ERP activity over the network. During P100, the shape condition

exhibited a noticeable dip in GVD connectivity which was much less apparent in the binding

case (Fig 5.10, top centre). It is reasonable to suggest that this is caused by the greater work

load in the binding condition. The involvements of visual association cortices in regions of the

occipital lobe during short-term memory binding has been documented previously [127]. This
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appears to be a key area of the visual integrative functions.

This evidence of contrasting brain function of shape vs binding conditions occurs during the

encoding period in both the frontal and occipital modules supports the evidence found in Pietto

et al. [128] that these tasks involve rapid functional activity in the frontal module which is

picked up by the EEG. Recent electro-physiological studies indicate that frontal nodes may be

contributing both specific (i.e. binding) and more general resources during working memory

processing. The effect seen here between the frontal and occipital modules from 100-140ms

and that seen in the frontal module between 140-180ms concurs with this, suggesting that

a contrast exists in the functional dependency between these regions for shape vs binding

conditions shortly after the onset of P100 activity. Further the activity occurring in the Frontal

module indicates a difference in higher function post-visual processing.

As an important aside, these techniques are particularly timely for extending work done on

uniting structure and function of the brain as in [144], in which the framework explores

functional activations over the brain structure but does not yet accommodate for network

relationships of synchronously active brain regions, for which graph-variate analysis provides

a straightforward solution.

5.5 Conclusion

We defined and provided a general framework for graph-variate signals- unifying frameworks

for multivariate signals and graphs. We developed novel analysis of graph-variate signals,

considering general graph weighted node space functions. We showed the unique setting

occupied by this new form of analysis within the framework, particularly with respect

to graph signal processing. We then elaborated on novel methodologies for this analysis

towards the temporo-topological analysis of multivariate signals and reliable connectivity

estimation at signal resolution. In simulations we showed the robustness of the approach

to finding correlations and detecting true activity within large datasets, in the latter instance

outperforming similar state-of-the-art approaches. Pertinently, in differentiating coupling

changes between EEG eyes-open and eyes-closed resting states, the methods generally

outperformed graph only approaches. Using VSTM task data in healthy young volunteers,

we also revealed dynamic task-related connectivity differences related to occipital and frontal
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brain regions occurring within 80ms. Beyond brain networks, the implications of this theory

reach into every domain in which network analysis of multivariate signals is used, such as in

an application to gas-water two-phase flow [145].
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Chapter 6

Illustration in Alzheimer’s Disease

6.1 Introduction

Here we will apply the methods developed in Chapters 3, 4 and 5 to two clinical datasets of

VSTM binding tasks of relevance to AD. Of note, these datasets concern different forms of AD,

namely sporadic AD which, as its name suggests, occurs sporadically in the elderly population

and familial AD which is hereditary, occurring with certainty during middle-age in those who

possess the genetic variant [146]. It is particularly important to compare these two types of

AD since findings from the rare familial form of AD are generally extrapolated to the common

sporadic form of AD.

The VSTM paradigm we look at involves tasks which are specifically designed to test the ability

of participants to store information of either shapes alone (shape) or shapes with associated

colours (binding) for short-term memory recognition. In this instance it is found that patients

are particularly impaired in the binding condition [70, 96, 97]. This VSTM task has been

found to be both sensitive and specific to early AD [70] making it promising in the detection

of preclinical disease [96, 97, 147]. Note, that these tasks are different from that detailed in

Section 4.3.2 where, notably, the task is presented only in the centre of the screen, not in right

and left hemifields, and the stimulus lasts 0.5s rather than 0.2s. Therefore, any results here

cannot straightforwardly be reconciled with those already seen in Chapters 4 & 5 and we shall

therefore treat these independently.

We shall assess hierarchical characteristics of EEG functional connectivity during VSTM

binding of pre-clinical AD patients using degree variance (hierarchical spread) and
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hierarchical complexity, of relevance to AD abnormalities as described in section 2.8,

alongside an analysis of its GVD connectivity. Taking an EEG functional connectivity

approach allows a non-invasive and practical analysis driven by the established hypothesis

of functional disconnections behind AD pathology [148]. Due to the abnormal hub activity

associated with discussed in Section 2.8, we expect to find abnormal behaviour in hierarchical

characteristics of the network topology in patients compared to healthy control and due to

the poor performance of patients in VSTM tasks we expect to find abnormal topological and

temporal behaviour associated with the binding function. If evidence is found to support these

expectations, it will establish interest for further research to be undertaken into the use of these

approaches as early biomarkers of AD.

6.2 Methods

6.2.1 Visual short-term memory tasks

The binding function of VSTM is singled out by contrasting tasks for the recognition of

coloured shapes, which requires binding of shape and colour in memory retention (binding),

and the recognition of single shapes or colours which only requires the retention of constituent

features. For reference, an illustration of the task is shown in Fig 6.1. In the change detection

task assessment of VSTM for shape alone, the arrays consist of three different black shapes

and in the binding task the arrays consist of three different shapes each with a different colour.

Each task trial consists of an encoding period (500ms), during which a study array is displayed

on screen, followed by an unfilled short delay (900ms) and test period with a test array. During

the test period, participants are prompted to respond whether or not the objects in the two

arrays are identical. The positions of the objects are randomised between arrays to avoid use

of location as a memory cue. Both shapes and colours are chosen randomly for each trial from

sets of eight shapes and eight colours. A randomly chosen fifty percent of the trials have the

same objects in both arrays. In the other fifty percent, two shapes seen during the encoding

periods are replaced with two new shapes selected from the set, whereas in the binding task

two coloured shapes of the test display swap the colours they had during the encoding period.

All participants start with a brief practice session before undergoing one hundred trials per task.

Binding and shape tasks are delivered in a counterbalanced order across participants.
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Figure 6.1: Illustration of chronology of the VSTM task presentation. Courtesy of Dr. Mario A.
Parra [128].

6.2.2 Data

In this study, the aim is to test at the ‘pre-clinical’ phase of the disease to see if there is evidence

of functional abnormalities of brain function that can aid in strategies for early detection. That

is, the familial AD participants have not yet developed symptoms of AD, but will do so in due

course. To test an equivalent sporadic AD group, we choose participants who are also in an

asymptomatic, prodromal phase of the disease. Thus both populations are chosen as those with

MCI.

6.2.2.1 Familial Alzheimer’s disease dataset

The subjects are 10 patients– 44.4± 3.2 years old (mean ± SD), years of education 7.3± 4.1,

MMSE scores 25.20± 4.50– and 10 healthy controls– 44.3± 5.6 years old, years of education

6.8 ± 2.9, MMSE scores 29.10 ± 1.10– from Antioquia, Colombia. Each patient carried

mutation E280A of the presenilin-1 gene which guarantees early-onset familial AD. The

data consist of sixty-channel EEG activity recorded with a sixty-four channel EEG cap using

SynAmps 2.5 in Neuroscan at 500Hz and bandpass filtered from 1-100Hz with impedances

below 10KΩ. Four ocular channels were discarded after being used to factor out oculomotor

artefacts.
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6.2.2.2 Sporadic Alzheimer’s disease dataset

The subjects are 13 patients diagnosed with MCI– age 73.08 ± 9.01, education 14.08 ±

4.44, MMSE scores 26.46 ± 2.47– and 19 healthy controls– age 67.21 ± 10.14, education

16.50±1.99, MMSE scores 29.50±0.52– recruited from the Institute of Cognitive Neurology

(INECO), Buenos Aires, Argentina. Criteria implemented for diagnosis derived from Petersen

[149] and Winblad et al. [150]. Nine of the patients were at particularly high risk from

AD conversion having been classified as single or multi-domain amnestic MCI while three

classified as non-amnestic MCI multi-domain [151]. The data consist of one hundred and

twenty eight-channel EEG activity recorded with a Biosemi Active 128-channel Two system at

512Hz and bandpass filtered from 1-100Hz. This was then down-sampled to 256Hz.

6.2.2.3 Notes for both datasets

Patients were evaluated with the MMSE and numerous other tasks with results detailed in [128].

The tasks were performed in an electrically shielded room with dim lighting. Subjects sat

comfortably at a desk facing the task display screen. The subjects were checked to ensure that

none had a history of psychiatric or neurological diseases. All participants provided written

informed consent in agreement with the Helsinki declaration and the studies were approved by

the Ethics Committees of the University of Antioquia and INECO.

We use data from the encoding period during the performance of shape only and shape-colour

binding tests since deficits at this stage seem to be responsible for the VSTM binding problems

found in AD [152]. This consists of 1.2s of continuous activity with 0.2s pre-stimulus.

Signals were re-referenced to an average reference before proceeding. Further oculomotor

artefacts were removed using visual inspection and independent component analysis and

epochs with other artefacts exceeding±100µV were discarded. We seek to uncover underlying

physiological substrates of the impaired binding function. In this way incorrect responses are

not informative so only the trials where the subject responded correctly are included.
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6.2.3 EEG functional connectivity estimation and binarisation

The PLI was computed to assess the phase-dependent functional connectivity of the EEG

channels. The PLI is computed for each trial and for each signal pair after being bandpassed in

Delta (0-4Hz), Theta (4-8Hz), Alpha (8-13Hz), Beta (13-32Hz) and Gamma (32-60Hz) using

an order 70 FIR filter with Hamming windows. These connectivity computations are then

averaged over trials for each task and for each subject to remove inter-trial variability and so

better bring out the specific task function. The resulting averages constitute adjacency matrices

of weighted networks, one for each subject-task-frequency band triple.

6.2.4 Characteristics of a network hierarchy

Before studying the network hierarchies, the weighted PLI connectivity networks are binarised

using the CST which is known to provide a sensitive and powerful binarisation of EEG PLI

connectivity [2]. The hierarchy of a network is here defined based on the number of edges

adjacent to each node. Nodes with more adjacent edges are higher in the node hierarchy,

being more central to the network topology. We study two indices of network hierarchies

described in Chapter 3. The degree variance, V , measures the spread of the hierarchy and

thus is an important indicator of the dominance of hub nodes. The hierarchical complexity,

R, measures the complexity of interactions between hierarchy levels which provides a more

nuanced evaluation of hierarchical order.

6.2.5 Graph-variate Dynamic Connectivity

We study graph-variate dynamic connectivity of PLI with node function (5.28), following the

protocol laid out in Section 5.4.4. First, the average PLI matrix over trials is computed for each

task of each subject. Then GVD connectivity is computed for each trial using the average PLI

matrix and these results are then averaged to provide the mean GVD connectivity for each task

of each subject.
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6.2.6 Statistical tests

Differences of network index values for binding and shape are computed. These differences

are contrasted between patients and controls and between elderly and middle-aged adults using

population t-tests with statistical significance noted at the standard α = 0.05 level. Effect sizes

using Cohen’s d for paired data are reported for significant differences.

6.3 Results

6.3.1 Observations of data

Initial observations of the data are shown in Fig 6.2 and 6.3 which displays the median PLI

adjacency matrix over subjects in all 5 standard frequency bands for familial AD and sporadic

AD datasets, respectively. It is notable that activity in Alpha in familial AD is remarkably

similar to that of Theta in sporadic AD with a strong contrasting activity appearing smoothly

over the matrix and that activity in Beta in familial AD also behaves similarly to that of Alpha

in sporadic AD with patients showing increased activity in horizontal/vertical lines indicating

hub activity (the specifics of nodes cannot be gathered here because of differences in the EEG

layout). This suggests that relevant phase dependencies of these tasks corresponds to a drop in

frequency which can be interpreted as age-related slowing of activity. There is also corruption

apparent in Gamma of the familial AD dataset, so we will not use this band.

Fig 6.4 shows the adjacency matrix to the left of a connectivity map of the mean strength of

PLI connectivity for each electrode in the scalp-space. For the connectivity maps, intensity

is relative to the strongest (pure red) and weakest (pure blue) node values over patient’s

shape and binding performance and control’s shape and binding performance to ensure

comparability. These are shown for Alpha and Beta of the familial AD dataset (top and bottom

left, respectively) and Theta and Alpha of the sporadic AD dataset (top and bottom right,

respectively).

Alpha activity during tasks in the familial AD dataset (top left) shows strong frontal and

occipital connectivity with weaker connectivity in the central region. Average patient

connectivity appears weaker than average control connectivity and this is particularly apparent
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Figure 6.2: The median weighted adjacency matrices over subjects of PLI in 60 node familial
Alzheimer’s disease dataset.

in binding, although these are not statistically significant across subjects. Beta (bottom

left) shows a multi-faceted contrast with connectivity being strongest in right and left

temporal regions where average patient connectivity is notably stronger than average control

connectivity, particularly in binding.

Moving to the sporadic AD dataset, we notice that the Alpha response in the younger familial

AD and controls is mirrored in the lower frequency Theta band in the elderly. This supports the

hypothesis of a slowed functionally related electromagnetic pulses with age in visual short-term

memory, where functional phase differences at 8-13Hz in 50-60 year olds is occurring at

roughly half the frequency, 4-8Hz, in the elderly. We thus use Theta in the sporadic dataset

as a parallel to Alpha in the familial dataset. Similarly, in Alpha of the sporadic dataset we

are obtaining connectivity maps more similar to Beta in the familial dataset with connectivity

peaking in right and left temporal regions which seems particularly strong in patient binding.

Thus we hypothesise that phase differences in Beta (13-32Hz) in 50-60 year olds is similarly
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Figure 6.3: The median weighted adjacency matrices over subjects of PLI in 128 node sporadic
Alzheimer’s disease dataset.

slowed and should thus be evident in Alpha (8-13Hz, roughly half the frequency) in the elderly.

6.3.2 Hierarchical characteristics

For the familial AD dataset we compute V and R for all subjects in both tasks in Alpha and

Beta. Population t-tests are then implemented for patients versus controls in the binding and

shape tasks separately and paired t-tests are implemented for shape versus binding tasks in

patients and healthy controls separately. This allows us to directly probe differences in MCI

from healthy control in the binding task compared to the shape task and abnormalities of VSTM

binding function in MCI from task differences compared to healthy control. A significant

difference (p = 0.0018) is noted in V in Beta for shape versus binding in MCI, Table 6.1, left,

with no difference found in healthy controls. In nine of the ten patients, the hierarchical spread

of the Binding condition is larger than in the Shape condition, Fig 6.5, left, with an effect size

of 1.3778. On the other hand, 7 out of ten controls exhibited an opposite characterisation.
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Figure 6.4: The median scalp-space EEG node functional connectivity over subjects of
phase-lag indices. Top shows Theta and Alpha in the sporadic Alzheimer’s disease dataset.
Arrows indicate the forward facing direction. PS- patient shape, PB- patient binding, CS-
control shape, CB- control binding.

Figure 6.5: Scatter plots showing changes of hierarchical topology in phase dependencies of
EEG activity in familial (left) and sporadic (right) AD patients in CST PLI networks.

Correspondingly, for the sporadic AD dataset we compute V andR for all subjects in both tasks

in Theta and Alpha and population t-tests are then implemented for patients versus controls and

paired t-tests for shape versus binding. A significant difference (p = 0.0051) is noted in R in

Alpha, Table 6.1, right. In twelve of the thirteen patients, the hierarchical complexity of the

binding condition is larger than in the shape condition, Fig 6.5, right, with an effect size of

0.9476. The controls are roughly balanced between higher shape and higher binding. A less
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Table 6.1: Significant differences of hierarchical characteristics of CST PLI networks in
familial AD. Presented are the p-values for population t-tests of shape vs binding for MCI
and healthy controls and population t-tests of MCI vs healthy controls for shape and binding.
Legend: MCI = MCI binding vs shape; CON = control binding vs shape; SHP = shape MCI
vs control; BND = binding MCI vs control.

Familial Alpha Familial Beta Sporadic Theta Sporadic Alpha
Test V R V R V R V R

MCI 0.9407 0.9785 0.0018 0.1385 0.8645 0.6725 0.0506 0.0051
CON 0.0697 0.8430 0.4059 0.2716 0.1927 0.3192 0.2686 0.2810
BND 0.0621 0.4453 0.1128 0.4303 0.2651 0.5123 0.5452 0.1405
SHP 0.4852 0.5389 0.2598 0.2880 0.0293 0.0714 0.8219 0.1745

convincing significant difference (p = 0.0293) is also noted in V between MCI and healthy

controls during the shape task in Alpha.

6.3.3 GVD connectivity

We wish to check for temporal abnormalities of MCI in binding tasks during Beta in the

middle-aged familial AD and Alpha in elderly sporadic AD, i.e. those exhibiting diferences in

Section 6.3.2. The median over subjects for mean clustering coefficient of GVD connectivity

at each node is displayed in Fig 6.6. Similarities between datasets are seen in strong activity

occurring laterally over nodes for two small epochs with a dip in activity in between indicating

that this phase-based activity plays an important role in functional processing of VSTM tasks.

However, surprisingly, these epochs are not positioned at the same times over the datasets. The

first epoch of increased activity in the familial AD dataset occurs between 0.16-0.24s and the

second between 0.64-0.72s, whereas for the sporadic AD dataset they occur earlier, between

0-0.2s and 0.39-0.47s, respectively. Though it is reasonable to suggest that this sequence of

activities relates to the same functional processing, the difference is surprising not least because

the faster response appears to occur in the older people at lower frequencies. It is thus quite

difficult to reconcile this information with the previous results in an obvious way, but we will

carry on with statistical analysis of these epochs regardless.

Similarly as for the analysis of hierarchical characteristics, we seek differences between MCI

and healthy controls in binding tasks and differences between binding and shape tasks in MCI

to explore abnormal functioning behind the depreciated performance of binding in AD. Table

6.2 provides the results from population t-tests and paired t-tests, where appropriate, of activity
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Figure 6.6: Median clustering coefficient over subjects of GVD connectivity. This is computed
using PLI from EEG recordings of VSTM tasks performed by familial and sporadic MCI and
healthy age matched control. Axes are as labelled on the top left most plot and frequency band
and dataset are as noted in the panel titles.

Table 6.2: The p-values for paired t-tests of shape vs binding for MCI and healthy controls
and population t-tests of MCI vs healthy controls for shape and binding. Values come from the
mean clustered GVD connectivity for EEG PLI connectivity in the given epochs.

Epoch (s) MCI Control Shape Bind
0.16-0.24 0.0166 0.6029 0.0671 0.7526

Familial AD Beta 0.40-0.60 0.0169 0.0204 0.9290 0.9147
0.64-0.72 0.0036 0.2564 0.1921 0.4584
0.00-0.20 0.8191 0.5901 0.6715 0.2127

Sporadic AD Alpha 0.20-0.39 0.3952 0.3980 0.7906 0.0074
0.39-0.47 0.6579 0.9405 0.2892 0.0998

in the aforementioned epochs as well as in the epoch of decreased activity in between. In the

familial AD dataset, differences are apparent in MCI between shape and bind tasks in all three

epochs, most convincingly (p = 0.0036) between 0.64-0.72s where binding is found to be

greater than shape with an effect size of 1.2364. A difference in controls is only observed

(p = 0.0204) in the middle epoch, 0.4-0.6s, again suggesting binding greater than shape with

an effect size of 0.8884. No differences are found between MCI and healthy controls

In the sporadic AD dataset, a single difference (p = 0.0074) is apparent in the middle epoch

between MCI and healthy control in the binding task. This shows greater activity in patients

with an effect size of 0.9317. No differences are found in the shape task and no differences

found between shape and binding in either MCI or healthy controls.
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6.4 Discussion

The results of hierarchical topology analysis suggest that familial MCI patients with a certainty

of progression to AD show a greater recruitment of hub activity in VSTM binding tasks than in

shape tasks which may be explained by compensatory effects due to degradation of functional

connections caused by AD. In elderly MCI patients at high risk of developing sporadic AD,

the difference is more subtle and seen in a greater complexity of hierarchical organisation of

functional connectivity, again suggesting possible compensatory effects due to normal network

degradation. That these are both tested at MCI stage and it is not expected that familial AD lasts

longer than sporadic AD means that the more obvious hierarchical degradation of familial MCI

is unlikely to be due to more damage, for example. Together, the results suggest hierarchical

characteristics are of high relevance in exploring functional EEG networks in early stage AD

and show promise for developing potential biomarkers of disease.

Analysis using GVD connectivity provides interesting additional information about specific

epochs of time showing abnormal activity in VSTM binding of MCI patients. In familial

MCI, patients showed particularly increased activity during VSTM binding at 0.64-0.72s

post-stimulus onset compared to the VSTM shape only tasks which was not present in controls.

In this epoch the task generally elicits increased activity and so the greater activity in MCI

supports the hypothesis of compensatory effects in binding function due to a degradation of

the neural connectivity. These were not seen in sporadic MCI, but instead a mutually exclusive

effect was seen between patients and healthy control during the binding function at 0.2-0.39s.

This epoch of the task generally elicits a decrease in activity between epochs of heightened

activity. The inability of sporadic MCI to settle to normal levels during this epoch suggests an

increased functional difficulty in dealing with the binding task.

Given the data, the results from both of these forms of analysis could be interpreted in two

ways. Either age related differences in the aberrant topology of functional EEG networks in

early stage AD or early stage differences in how sporadic and familial AD effect the functional

activity. Either of these hypotheses are interesting to explore and require a greater reference to

specialist literature than is within the scope of this thesis. That being said, the promising results

suggest that hierarchical complexity and GVD connectivity of EEG during VSTM tasks could
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be progressed as a potential diagnostic tool for AD. Future studies will attempt to establish

this and the hope is that such analysis could eventually be implemented as part of general

screening assessments in the clinic. It is important to recognise that confounding factors in

comparing network topologies of these datasets may exist relating to e.g. MMSE scores [37] or

discrepancies in years of education and that more work needs to be done in order to understand

these factors in future research.

6.5 Conclusion

Hierarchical characteristics of PLI EEG networks and PLI GVD connectivity were studied

in familial and sporadic MCI subjects performing a VSTM binding task. Abnormal activity

during binding was found in both datasets using both analyses. Particularly, it was found

that familial MCI requires increased hierarchical spread in VSTM binding than in the VSTM

shape task (Beta) whereas sporadic MCI requires increased hierarchical complexity in VSTM

binding than in the VSTM shape task (Alpha), where the corresponding frequency bands

containing these differences were found to relate to the similar task processing explained by

slowed activity due to ageing. Further, GVD connectivity of VSTM binding was larger than

VSTM shape in familial MCI whereas VSTM binding of sporadic MCI was larger than healthy

controls. This showcases the fruitfulness of pursuing the novel analytical methods introduced

in this thesis to a major societal problem.
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Chapter 7

Conclusions and Future Work

7.1 Discussion

In this thesis, I introduced a range of novel complex network methods geared towards

neuroimaging applications to understand more about brain function of which I focused on

non-invasive EEG for its high temporal resolution and practicality. These were successfully

applied to the problem of detecting early stage AD.

In Chapter 3, hierarchical complexity of network topology was defined on network degrees

and a novel index to measure it was introduced based on the degrees of nodes’ neighbours.

Complementing this, the WCH network model was introduced, opening a new complexity

paradigm between random and strict degree hierarchical topology. I showed that EEG

functional connectivity, as measured by PLI, was hierarchically complex compared to a range

of network archetypes and matched the maximum complexity achieved by the WCH model.

The complexity of EEG topology was much better explained through this new paradigm

than the pre-existing small-world paradigm, eliciting values that better approached those of

EEG networks at all densities. I believe this should pave the way for a paradigm shift in how

complexity of network topology is to be viewed.

Alongside this, the work covered the analysis of index curves [37, 38] (indices applied to each

integer percentage binarisation of a weighted network) by suggesting simplifications of the

integration/segregation concept and proposing a known index, degree variance, to characterise

scale-freeness or, perhaps more accurately, the hierarchical spread of the degree distribution.

I also introduced methods to generalise known binary network archetypes to weighted form
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by evolving the archetype up to greater densities and eventual completeness before defining

a complete weighted graph by taking an average over these densities. These developments

allowed the comparison of the introduced weighted model against known archetypes over the

entire possible density range.

In Chapter 4, our attention was then turned towards the important open problem of network

binarisation [30,44,47,50,111,118–121] and how hierarchical complexity of network topology

expresses itself in a binarised network. Included in this was a novel binarisation method- the

CST- which binarises the network in medium density ranges (40-50%). Although current trends

promote sparse densities, it was hypothesised that complex hierarchical topologies would be

best captured by non-sparse densities. This hypothesis was tested by attempting to discern

differences between populations of subtly different topologies defined using the WCH model.

The evidence indeed backed the hypothesis, showing the power of using medium density

ranges, including the CST, in network binarisation compared to weighted networks alone or

using sparse methods such as MSTs or the ECO threshold. It was further shown that the

CST was robust to random and targeted network attacks. This evidence was validated in

practice using analysis of PLI connectivity from three EEG datasets in which the CST found

interpretable differences in each case, where the MST, USP, ECO and weighted networks were

found lacking.

In Chapter 5, the novel framework of graph-variate signal analysis was presented. This

framework was inspired by research conducted in GSP in which a signal is supported over

a graph topology. It was found that the GSP framework was too rigid for the direction I

wished to explore and thus a generalised framework was presented to unify frameworks for

multivariate signals and graphs. From this new setting, a new form of dynamic connectivity-

GVD connectivity- was formulated with its main benefit being robust connectivity estimates

at arbitrarily high temporal precision. Appropriate functions for GVD connectivity were

provided for correlation, coherence and PLI, and a network science of GVD connectivity was

illustrated. The proposed methods could detect evidence of a single correlated source within

128×127/2 = 8128 edges. They were then compared favourably to existing GSP approaches

for a randomly travelling spheroid detection problem. Applied to EEG functional connectivity,

GVD connectivity outperformed state-of-the-art dynamic connectivity approaches in
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determining differences between eyes-closed and eyes-open resting states and were shown to

be of promising use to detect important changes in task-related activity.

Finally in Chapter 6, I applied indices of degree hierarchy (degree variance and hierarchical

complexity) and GVD connectivity to get new insights into aberrant topological and temporal

connectivity behaviour produced in early-stage AD of both familial and sporadic types. These

datasets involved performance of cognitive VSTM memory tasks (shape vs binding) which

show promising potential as biomarkers of disease and it is hoped efforts to understand

physiological underpinnings of these tasks in health and disease can help in detecting early

signs when the disease has yet to show symptoms. The analysis revealed abnormal hierarchical

topology in both sporadic and familial MCI. It also revealed that the form of abnormality for

these two types was different- that binding function in middle-aged familial MCI required

greater hierarchical spread than shape only whereas binding function in elderly sporadic

MCI required greater hierarchical complexity than shape only. Healthy controls showed no

differences. The GVD connectivity analysis revealed heightened PLI activity in binding of

MCI patients in short epochs of task related function. Familial MCI showed a particular

difference between VSTM shape and binding between 0.64-0.72s whereas the VSTM binding

showed greater activity in sporadic MCI than healthy controls between 0.2-0.39s. This novel

information opens up important considerations for clinical interpretation in terms of how

familial and sporadic AD appear to disrupt normal hierarchical organisation of VSTM binding

functionality in different ways, though both pointing to compensatory effects– increased hub

activity vs increased complexity. Further, the GVD connectivity of PLI reveals temporally

specific compensatory effects in binding as well as an unintuitive task based response where

the older patients exhibit the same activity in lower frequencies and yet task-based response

appears to occur more quickly.

7.2 Limitations

Certain limitations occurring in this thesis relate to the sample sizes of the real EEG datasets

used, where we generally consider the comparison of populations of size 20 or less. Using

larger populations would allow more powerful statistical testing and more convincing

results. This is by no means unique to this thesis as obtaining data from large populations of
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pathological patients is practically very difficult. In light of this, where possible extensive

simulations have been implemented to provide more conclusive evidence for the benefits of

these methodologies.

Regarding neuroscience imaging studies, it should be noted that, without a ground truth,

we rely on the assumption that contrasting conditions provokes a contrast in functional

connectivity. Also, although, the PLI was found to be reliable and straightforward to interpret

it should be recognised that finding appropriate connectivity measures is a much debated topic

with many considerations including hypotheses of how brain function takes place; the part

and frequencies of the signals that should be used for a given paradigm; whether the measure

should provide directed-ness; and whether the signals should be orthogonalised or relocated to

the source space.

Regarding the VSTM familial and sporadic AD data, the study lacks a longitudinal component.

Particularly, following up on the sporadic MCI patients to find out exactly those who go on to

develop AD and also to assess cognitive effects as disease progresses in both datasets would

significantly enrich the study. That being said, such longitudinal data are difficult to obtain due

to problems of drop-out rates due to unexpected circumstances. In the future, it is hoped such

data will become available and the first steps towards understanding VSTM deficits in disease

progression can be undertaken.

7.3 Future Work

There are many routes for future work based on the contributions of this thesis owing to the

introduction of various brand new methods. Notably, the abstract mathematical nature of the

proposed hierarchical complexity and graph-variate signal analysis allows these methods to

be applied in various neuroscience studies, but also to various other engineering problems

of complex systems such as in economics [153], social sciences, fluid dynamics [145] and

geophysics [3], with suitable adaptations. But I also hope these methods will inspire new ideas

and further explorations into the theory of network science and multivariate signals and will

expend most effort on these considerations for the rest of the chapter.

Hierarchical complexity provides an interesting nuanced analysis of network topology and
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shows success in distinguishing pathological from healthy brain function. However it appears

rather unpredictable compared to other more straightforward indices, indicated by the higher

within population variability of the index compared to others, Fig. 3.3. I conjecture that this

is likely owed to the fact that the analysis within neighbourhood degree sequences of the same

length may be easily influenced by small changes in topology. Taking a careful analytical

consideration of this would hopefully lead to an index more predictable within populations and

studying neighbourhood degree sequences in other ways, for example the number of unique

degree sequences in the network, is also of interest.

The WCH model is able to mimic well the topological characteristics of EEG networks and has

parameters which can provide powerful simulation abilities usable for the assessment of new

methods such as in binarisation techniques (as shown in chapter 4) or network indices. There

are several apparent ways I consider to improve or extend the model. The first would be to seek

a model with fewer parameters. Particularly, the idea of hierarchy levels has some benefits,

but we would expect the reality of a real world hierarchy to not be so rigid and pursuing,

for instance, statistical distributions to determine the hierarchy is of high interest. Secondly,

the initial weights on which the model is founded are uniformly random, whereas real world

networks are likely to have more nuanced preliminary foundations for connections, such as, for

example, the physical space in which the network is set. This is obviously the case for the brain

where the the neurons are physically inter-connected via the axons and dendrites. Thirdly, one

must consider the form with which a known hierarchy acts on the foundational weights. The

model adds hierarchical weights linearly to the foundational weights, but it is worth considering

whether other transformations (e.g. multiplication) are more effective. These aspects will be

explored in a future work currently under preparation.

The CST provides a medium density binarisation of the network which was shown to be more

useful for EEG PLI networks than weighted networks and MST, USP and ECO thresholds.

However, it is of interest to consider if complex hierarchy is of paramount importance to the

utility of a binarisation method, in which case thresholds based specifically on such a concept

would be preferred.

The framework of graph-variate signal analysis provokes fundamental considerations of how

to formulate the best analyses of multivariate signals using graphs for any given problem. The
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methods of GVD connectivity and GVD network science provide powerful and interesting

tools to analyse data in new ways and I have already established a collaboration with a

group at Tianjin University, Tianjin, China, on applying basic GVD connectivity methods to a

gas-water two-phase flow problem which now has an accepted conference paper to the IEEE

International Instrument and Measurement Technology Conference 2018 [145]. However,

there is much room to explore the best implementations and uses of GVD connectivity. This

includes exploring more deeply the relationship between the stable connectivity estimate and

the node function which would hopefully help define ideal, rather than simply recommended,

node functions to use for a given connectivity estimate. I am also keen to utilise the GVD

connectivity to the important problem of structure-function relationships in neuroimaging, with

which I believe there is much scope for interesting analyses by treating the stable connectivity

as structural connectivity and the GVD node function as functional connectivity. With such

advancements these tools, with high sensitivity to correlated sources, could be of particular use

in detecting the source of epileptic seizures in which currently 1/3 of all surgery operations are

unsuccessful in removing the correct sources [154].

The methods developed provide interesting new insights into VSTM binding function of two

important forms of AD. Pursuing further research in this area is of high interest. This includes

gaining access to datasets from larger cohorts to get more powerful evidence of disease

abnormalities; applying to other modalities such as fMRI and MRI structural connectivity

to get more spatially refined insights into how degree hierarchical topology is linked in

structure-function of disease; and employing more powerful classification techniques using

machine learning (e.g. from support vector machines to convolutional neural networks however

the scale dictates) to aid in detection of disease and move towards practical biomarkers over

the general population.

7.4 Conclusions

Overall, the developments in this thesis open up new ways to consider graph-based analysis of

data both topologically, using methods to understand and exploit the hierarchical complexity of

EEG functional connectivity, and temporally, using a novel framework for graph-based analysis

of multivariate signals to explore instantaneous connectivity patterns in a robust way. The
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methods in both of these domains show promise in detecting the critical societal problem of AD

in both early- and late-onset forms and I expect the impact of these methods to extend to other

brain pathologies, as well as other problems which benefit from complex network modelling. I

hope the style of enquiry elicited will inspire others to challenge established or growing ideas

and perspectives in the science community to promote creativity and lateral thinking and ward

off the dulling effects of institutionalisation.

127



Chapter 7. Conclusions and Future Work

128



Appendix A: List of publications

1. K. Smith, H. Azami, M.A. Parra, J.M. Starr, J. Escudero, “Cluster-span threshold: an

unbiased threshold for binarising weighted complete networks in functional connectivity

analysis”, IEEE Proceedings of the EMBC2015, 2840-2843, 2015.

2. K. Smith, H. Azami, J. Escudero, M.A. Parra, J.M. Starr, “Comparison of network

analysis approaches on EEG connectivity in Beta during visual short-term memory

tasks”, IEEE Proceedings of the EMBC2015, 2207-2210, 2015.

3. K. Smith, B. Ricaud, N. Shahid, M.A. Parra, J.M. Starr, J. Escudero, P. Vandergheynst,

“Distinguishing EEG activity in visual short-term memory tasks using modular Dirichlet

energy”, OHBM 2016 Annual Meeting, abstract 2086, 2016.

4. K. Smith, D. Abásolo, J. Escudero, “A comparison of the cluster-span threshold and the

union of shortest paths as objective thresholds of EEG functional connectivity networks

from Beta activity in Alzheimer’s disease”, IEEE Proceedings of the EMBC2016,

2826-2829, 2016.

5. J. Escudero, K. Smith, H. Azami, D. Abásolo, “Inspection of short-time resting-state

electroencephalogram functional networks in Alzheimer’s disease”, IEEE Proceedings

of the EMBC2016, 2810-2813, 2016.

6. K. Smith, J. Escudero, “Weighted Complex Modular Hierarchy Model”, The 5th

International Workshop on Complex Networks & Their Applications, Book of abstracts:

18-20, 2016.

7. K. Smith, J. Escudero, “The complex hierarchical topology of EEG functional

connectivity”, Journal of Neuroscience Methods, 276: 1-12, 2017.

8. K. Smith, B. Ricaud, N. Shahid, S. Rhodes, J. Starr, A. Ibanez, M.A. Parra M.A,

J. Escudero, P. Vandergheynst, “Locating temporal functional dynamics in visual

short-term memory tasks using modular Dirichlet energy”, Scientific Reports, 7: 42013,

2017.

9. K. Smith, D. Abásolo, J. Escudero, “Accounting for the complex hierarchical topology

129



Chapter 7. Conclusions and Future Work

of EEG phase-based functional connectivity in network binarisation”, PLOS ONE,

12(10): e0186164, 2017.

10. K. Smith, L. Spyrou, J. Escudero, “Graph-variate signal analysis”, pre-print: https:

//arxiv.org/abs/1703.06687, under revision, 2018.

11. Y. Shen, C. Tan, K. Smith, J. Escudero, F. Dong, Gas-water two-phase flow pattern

recognition based on ERT and ultrasound Doppler, accepted to IEEE I2MTC2018, 2018.

130

https://arxiv.org/abs/1703.06687
https://arxiv.org/abs/1703.06687


Bibliography

[1] K. Smith and J. Escudero, “The complex hierarchical topology of EEG functional connectivity,”
Journal of Neuroscience Methods, vol. 276, pp. 1–12, 2017.

[2] K. Smith, D. Abásolo, and J. Escudero, “Accounting for the complex hierarchical topology of
EEG phase-based functional connectivity in network binarisation,” PLOS ONE, vol. 12, no. 10,
p. e0186164, 2017.

[3] K. Smith, L. Spyrou, and J. Escudero, “Graph-variate signal analysis,” 2017. [Online]. Available:
https://arxiv.org/abs/1703.06687

[4] K. Smith, B. Ricaud, N. Shahid, S. Rhodes, J. Starr, A. Ibanez, M. Parra, J. Escudero, and
P. Vandergheynst, “Locating temporal functional dynamics in visual short-term memory tasks
using modular Dirichlet energy,” Scientific Reports, vol. 7, p. 42013, 2017.

[5] R. Shields, “Cultural topology: the seven bridges of Königsberg 1736,” Theory Culture and
Society, vol. 29, no. 4-5, pp. 43–57, 2012.

[6] M. Newman, Networks. Oxford, UK: Oxford University Press, 2010.
[7] K. Appel and W. Haken, “Every planar map is four colorable. Part 1: Discharging,” Illinois

Journal of Mathematics, vol. 21, no. 3, pp. 429–490, 1977.
[8] R. Read and D. Corneil, “The graph isomorphism disease,” Journal of Graph Theory, vol. 1,

no. 4, pp. 339–363, 1977.
[9] F. Vega-Redondo, Complex Social Networks. Cambridge University Press, 2007.

[10] A. Broder, R. Kumar, F. Maghoui, P. Raghavan, S. Rajagopalan, R. Stata, A. Tomkins, and
J. Wiener, “Graph structure in the web,” Computer Networks, vol. 33, pp. 309–320, 2000.

[11] M. Girvan and M. Newman, “Community structure in social and biological networks,” PNAS,
vol. 99, no. 12, pp. 7821–7826, 2001.

[12] W. Souma, Y. Fujiwara, and H. Aoyama, “Complex networks and economics,” Physica A, vol.
324, no. 1-2, pp. 396–401, 2003.

[13] M. Kubat, An introduction to machine learning. Springer, 2017, ch. Artificial neural networks,
pp. 91–111.
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[75] U. Braun, A. Schäfer, H. Walter, S. Erk, N. Romanczuk-Seiferth, L. Haddad, J. Schweiger,
O. Grimm, A. Heinz, H. Tost, A. Meyer-Lindenberg, and D. Bassett, “Dynamic reconfiguration
of frontal brain networks during executive cognition in humans,” PNAS, vol. 112, no. 37, pp.
11 678–11 683, 2015.
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[147] A. Ibáñez and M. Parra, “Mapping memory binding onto the connectome’s temporal dynamics:
toward a combined biomarker for Alzheimer’s disease,” Frontiers in Human Neuroscience, vol. 8,
p. 237, 2014.

[148] X. Delbeuck, F. Collette, and M. Van deVan der, “Is Alzheimer’s disease a disconnection
syndrome? evidence from a crossmodal audio-visual illusory experiment,” Neuropsychologia,
vol. 45, no. 14, pp. 3315–3323, 2007.

[149] R. Petersen, “Mild cognitive impairment as diagnostic entity,” Journal of International Medecine,
vol. 256, no. 3, pp. 183–194, 2004.

[150] B. Winblad, K. Palmer, M. Kivipelto, V. Jelic, L. Faratiglioni, and e. a. Wahlund, L-O, “Mild
cognitive impairment- beyond controversies, ttoward a consensus: report of the international
working group on mild cognitive impairment,” Journal of International Medecine, vol. 256, no. 3,
pp. 240–246, 2004.

[151] J. Mitchell, R. Arnold, K. Dawson, P. Nestor, and J. Hodges, “Outcome in subgroups of
mild cognitive impairment (MCI) is highly predictable using a simple algorithm,” Journal of
Neurology, vol. 256, no. 9, pp. 1500–1509, 2009.

138



Bibliography

[152] M. Parra, E. Mikulan, N. Trujillo, S. Della Sala, F. Lopera, F. Manes, J. Starr, and A. Ibáñez,
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