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Abstract 

The aim of this thesis is to investigate the influence of nutrient uptake and nitrogen 

fixation on two temperate tree species grown in elevated carbon dioxide 

concentration: Alnus glutinosa and Pinus sylvestris. The former is a nitrogen-fixing 

deciduous species, the latter a mycorrhizal conifer. One short-term experiment (15 

weeks) and one long-term experiment (three years) were set up, both using seedlings 

grown in open top chambers (OTCs). In the short-term experiment, c. 90 one-year-

old Alnus seedlings (common alder) and 85 one-year-old Pinus seedlings (Scots pine) 

in pots were exposed to either ambient (or elevated [CO 2] for fifteen weeks. They 

were supplied with either a high nitrogen (N) fertiliser designed to allow maximum 

growth, or a low nitrogen fertiliser. Changes in growth, physiology and leaf 

biochemistry were measured in both experiments. Elevated [CO 2] affected the conifer 

and the deciduous nitrogen-fixer differently. Growth was enhanced in both species, 

although common alder trees grown in elevated [CO 2] were taller and responded 

more than Scots pine. The latter showed more signs of photosynthetic acclimation 

than common alder, unlike in the long-term experiment. Stem basal diameter of Scots 

pine was more stimulated by elevated [CO 2] then total biomass, especially in those 

trees receiving full nutrient fertiliser. 

In the long-term experiment, c.600 one-year-old common alder and Scots pine 

seedlings were planted directly into soil in OTCs in either ambient or elevated [CO21. 

Half the trees were supplied with a full nutrient solution designed to permit maximum 

growth rate. The remaining trees received no fertiliser. In July 1994 a spike addition 

of ' 5N-labelled fertiliser was added to half the trees. The allocation of labelled N to 

different tissues was followed from September 1994 to April 1996, and nitrogen 

fixation was measured in alder. Both species, especially common alder, grew bigger in 

elevated [CO2]  although leaf area remained the same and increased growth rate only 

occurred during the first year of growth. Net  assimilation rate was enhanced in alder 

but not in pine and leaf area ratio was reduced in both species. There was a larger 

mass of more efficient nitrogen-fixing nodules on elevated [CO 2] alder roots in 1995, 

but this effect seemed to disappear in 1996. Signs of photosynthetic acclimation 
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appeared around August 1995, particularly in alder which was more sink-limited than 

Scots pine. By summer 1996 starch had accumulated significantly in the leaves of 

alder, there was a slight reduction in photosynthetic proteins and photosynthetic 

acclimation was found. This is a surprising result since deciduous nitrogen fixing trees 

are expected to be less sink-limited than conifers. I attribute this reduction in growth 

stimulation after two growing seasons in alder to the occurrence of canopy closure 

and root restriction, as well as to the existence of an upper ceiling of nitrogen fixation. 

A nutrient effect on variables was usually not found, possibly because fertiliser 

addition and nitrogen fixation both produced similar growth rates. In Scots pine, in 

contrast, growth enhancement was larger in the fertiliser treatment than in the non-

fertilised plots. The only effect of elevated [CO 2] on allocation of labelled N to 

different tissues was increased allocation to the stem and leaves in common alder. 

Labelled N for new leaf growth was derived from the previous year's needles in pine, 

whereas in alder it seems to come from the stems. 
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Symbols and Abbreviations 

Symbol Description Units 

# number - 

[ 	] concentration mg g' 

A net photosynthetic rate tmol m 2  s 

A spectrophotometric absorbance (in [Jo/fl) nm 

Ca atmospheric [CO2 ] .tmoI mol' 

C, intracellular [CO 2 ] jimol moi' 

F variance value in ANOVA - 

G specific growth rate g g' day' 

I irradiance W m 2  

Jo unattenuated reference value W m 2  

L leaf mass g 

L I S leaf to shoot ratio 

M1  total dry mass g 

M1  fresh mass g 

Md dry mass g 

N nitrogen 

n treatment sample size - 

P inorganic phosphorus 

P level of probability - 

R root mass g 

r2  level of confidence in a linear regression - 

R / S root to shoot ratio 

R I L root to leaf ratio 

S shoot mass g 

(stem and branches without leaves) 
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Abbreviation Description 

A ambient [CO 2 ] treatment 

A-N ambient [CO 2
] treatment without fertiliser 

A+N ambient [CO2] treatment with fertiliser 

alb  ratio between chlorophyll a and chlorophyll b 

ATP adenosine triphosphate 

C control treatment (no OTC) 

CI 95 % confidence interval for a mean 

C-N control plot without fertiliser 

C+N control plot with fertiliser 

chi chlorophyll 

df degrees of freedom 

DMF dimethyl formamide 

FACE free air carbon dioxide enrichment 

E elevated [CO 2 ] treatment 

E-N elevated [CO 2 ] minus fertiliser treatment 

E+N elevated [CO2 ] 
plus fertiliser treatment 

G gigatonne 

H high nitrogen supply 

L low nitrogen supply 

LAT leaf area index 

LAR leaf area ratio 

LMR leaf mass ratio 

LSU large sub-unit of an enzyme 

NAR net assimilation rate 

ns not statistically significant 

NUE nitrogen use efficiency 

OTC open top chamber 

PPFD photosynthetic photon flux density 

r area of leaf disc core 

rbcS small sub-unit gene of Rubisco 

Rubisco ribulose 1,5 -bisphosphate carboxylase-oxygenase 
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RuBP ribulose 1,5-bisphosphate 

SE standard error of a mean 

SBD stem basal diameter 

SBA stem basal area 

SGR specific growth rate (see also 	
) 

SLA specific leaf area 

SSU small sub-unit of an enzyme 

FPI 
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CHAPTER 1 

Introduction 

1.1 Introduction 

1.1.1 The Greenhouse Effect and Rising Atmospheric Carbon Dioxide 

Amidst the controversy surrounding the greenhouse effect one core of evidence is 

difficult to refute. Atmospheric carbon dioxide concentrations, [CO 2], have been 

rising from the mid 18th century to the present (Eamus and Jarvis 1989, Bazzaz and 

Fajer 1992). Fuel combustion, cement manufacture and land use changes, especially 

tropical deforestation, are altering the earth's atmosphere via the production of 

'greenhouse gases' such as carbon dioxide, methane, nitrous oxides, ozone and 

clorofluorocarbons (CFCs). Water vapour is another important greenhouse gas and 

there are large uncertainties in the role it plays in global warming. Greenhouse gases 

are transparent to incoming short-wave radiation from the sun but absorb long-wave 

radiation emitted from the earth's surface, thus warming the earth's atmosphere and 

keeping it at an overall mean temperature of 15 °C. Carbon dioxide contributed 50 % 

to the greenhouse effect in the 1980s (Boyle and Ardill 1989). [CO 2 ] in the earth's 

atmosphere has fluctuated throughout geological time, but the present increase in 

[CO2] is occurring at a rate hitherto unseen in historical records (Bowes 1993). [CO 2 ] 

is currently increasing at a rate of c. 1.8 tmol moF' (0.5 %) per year, and is predicted 

to double its current concentration between 2050 and 2100 if the current trend 

continues (Boyle and Ardill 1989, Evans 1994). 

In 1896 the Swedish scientist Arrhenius was the first to predict that increased 

atmospheric [CO2] caused by industrial activities could, over a period of centuries, 

double the amount of carbon dioxide in the atmosphere and cause global warming 

(Boyle and Ardill 1989, Rodhe et al. 1997). Until 1957 most climatologists dismissed 

Arrhenius' warnings but the breakthrough came with the first report to put global 

warming on the scientific agenda produced by the Scripps Institution of 

Oceanography in California. In 1958 the first atmospheric measurements of [CO2] 

were made at Mauna Loa in Hawaii and at the South Pole, and atmospheric [CO2] 



has been recorded ever since. There is now a global consensus amongst scientists that 

[CO2] has increased from c. 280 JLmol mol' [CO 2] in pre-industrial times to c. 363 

jimol mof' [CO2
] 

in 1996 (Rodhe et al. 1997). Ice-core data from Vostok in 

Antarctica have shown that periods of high atmospheric [CO 2] occurred at the same 

time as increases in temperature (Boyle and Ardill 1989, Jouzel et al. 1993). Despite 

general agreement in the scientific community that increasing [CO 2] will engender 

some form of climate change, the extent of such a change is still hotly debated. Until 

recently temperature measurements made from space with satellites indicated a 

cooling of the troposphere in contrast to measurements at meteorological stations and 

to climate models which reported a warming of the atmopshere (Hansen et al. 1998). 

Wentz and Schnabel's (1998) correction to the satellite data seems to have removed 

the inconsistency between the satellite data and surface measurments (Gaffen 1998, 

Hansen et al. 1998). The new calculations of atmospheric temperatures measured by 

satellites, take into account the decline in orbital height (altitude) of the satellites 

(Gaffen 1998). Rising temperatures will affect global evaporation, precipitation and 

cloud formation patterns and there are still many uncertainties regarding negative and 

positive feedbacks on the greenhouse effect. General circulation models (GCM) 

predict that a doubling of atmospheric [CO 2 1 some time in the next century will cause 

mean annual temperatures to increase between 1.5 and 4.5 °C (Boyle and Ardill 1989, 

Melillo et al. 1993) depending, amongst other things, on whether increased water 

vapour in the atmosphere will be a positive or a negative feedback (Pearce 1997). 

Predictions so far of carbon dioxide-induced temperature rises for this century exceed 

the actually observed warming of c. 0.5 °C. Despite all the above-named ambiguities 

with regard to the extent of the greenhouse effect, increasing [CO 2] will have direct 

effects on plants since CO 2  is crucial to photosynthesis in all terrestrial higher plants 

(Bowes 1991, Long 1991, Lawlor 1993). Inevitably, increasing [CO 2] has prompted a 

multitude of research in the field of plant responses to such a change. 

Estimates of the global carbon budget indicate that c. 7.5 gigatonnes (G) of carbon 

are released into the atmosphere from fossil fuel burning and deforestation (sources) 

annually. Approximately 5 to 6 G of carbon dioxide have been accounted for in the 

oceans and atmosphere leaving us with a 'missing' sink of c. 1-2 G of carbon (Sedjo 
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1992). Although assessment of the global carbon cycle is based mostly on estimates 

and is still little understood, recent findings suggest northern forest ecosystems as the 

missing sink (Sedjo 1992, Jarvis 1995). 

1.1.2 Effects of Increasing [CO 2] on Forests 

Carbon enters the biosphere primarily through the photosynthetic process in plants. 

The global uptake of CO 2  in photosynthesis is c. 120 G annually and virtually all the 

carbon is assimilated through one enzyme, ribulose bisphosphate carboxylase / 

oxygenase (Rubisco). Rubisco initiates both the photosynthetic carbon reduction 

(PCO) cycle and the photorespiratory carbon oxidation (PCR) cycle. CO 2  acts as both 

activator and substrate at once, and CO 2  and oxygen compete for the active site of the 

enzyme. At the current atmospheric [CO 2 ] photosynthesis is limited by CO 2  and 

therefore any increases in the atmospheric [CO 2] / [ 02] ratio is expected both to 

stimulate photosynthesis and to diminish photorespi ration. An increase in 

photosynthesis is in turn expected to increase plant growth. Horticulturalists have 

long known of the positive effects of increased [CO 2 ] in greenhouses on plant 

productivity (Besford 1990). In general C 3  plants respond more to growth in elevated 

[CO2] than C4  plants (Bowes 1991, 1993, Poorter 1993), because the latter type of 

photosynthesis already involves CO 2  concentrating mechanisms. Recent studies on 

intact prairie communities and some field experiments have found no such difference 

or the reverse to be true (reviewed in Körner 1995) so that caution is required in 

making generalisations. C 3  plants constitute c. 95 % of all plants, however, and the 

large extent of forests, all C3, world-wide render impact studies of elevated [CO2] on 

forest structure and growth of vital importance. 

Forests cover a large area of the land surface of this planet, with estimates ranging 

from one fifth (Mousseau and Saugier 1992) to more than a third of land cover 

(Linder et al. 1996). 80 to 90 % of global biomass is found in forests (Körner 1995, 

Linder et al. 1996) compared with only 1 % in agrosystems (Körner 1995) despite 

lower annual productivity in the forests compared with crops. Forests are thus a major 

form of current and future land use and play a crucial role in the global carbon 

balance. Forests form long-lived communities so that increasing atmospheric [CO2] 
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and any concomitant temperature rise will have significant effects on the forests of 

both the present and the future (Eamus and Jarvis 1989, Linder et at. 1996). 

Forests may be a net sink or a net source of atmospheric carbon dioxide (Dixon et at. 

1994). Terrestrial higher plants assimilate c. 15 % of the atmospheric carbon pool 

each year and a similar amount is returned to the atmosphere via respiration and 

decomposition of soil organic matter and plant litter (Amthor 1995). A global change 

in carbon metabolism could thus influence atmospheric [CO 2] over a period of years 

to decades, especially since the CO 2  efflux from terrestrial plant and soil metabolism is 

larger in magnitude than that from fossil fuel burning (Amthor 1995). Model 

predictions indicate that forests may be substantial sinks for CO 2 . despite tropical 

deforestation, since the northern temperate and boreal forests are expanding and 

increased carbon uptake by trees in a changing climate has been predicted (Mellilo et 

at. 1993). There is still considerable uncertainty as to the present and future role of 

forests as carbon sinks or sources, however. In addition to the above considerations, 

an understanding of how forests will respond to rising [CO 2 ] is important for the 

management of forest systems in terms of future establishment, growth and timber 

quality (Conroy et at. 1990b) as well as for recreational, biodiversity and conservation 

purposes. 

1.1.3 The Special Case of Trees and Experimental Approaches 

The main characteristics of trees as compared with other plants are their size, 

longevity and their complexity (Ceulemans and Mousseau 1994, Norby et al. 1996). 

This makes them challenging to study in global climate change impact studies, since 

one cannot set up experiments which last for the whole life-cycle of the trees. The 

sheer size of trees means that most experiments are limited to using juveniles 

(reviewed in Eamus and Jarvis 1989) or only exposing branches of mature trees to 

elevated [CO 2] using branch bags (Barton et at. 1993). Juvenile trees are more 

sensitive to their environment than mature trees, often showing responses of stomatal 

conductance, photosynthesis and water use efficiency that are different to adult trees 

(Ceulemans and Mousseau 1994) so that it is difficult to know how mature trees, let 

alone whole forests will respond to climate change from their responses. 
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Only in the last decade or two has the emphasis on research in agricultural crops 

(Kimball et at. 1993) extended into the realm of forestry and tree responses to rising 

[CO21. There are many published reviews of terrestrial vegetation and ecosystem 

responses to elevated [CO 2] (e.g. Eamus and Jarvis 1989, Jarvis 1989, Bazzaz 1990, 

Field et al. 1992, Mousseau and Saugier 1992, Bowes 1993, Kimball et al. 1993, 

Poorter 1993, Ceulemans and Mousseau 1994, Amthor 1995). Most of the 

experiments have studied the response of agricultural species so that there is a need to 

improve our knowledge of tree reponses to climate change (Ceulemans and Mousseau 

1994, Norby et al. 1996). Nevertheless, studies on trees and climate change are 

increasing, not only on American species which formed the focus of most of the 

original tree experiments, but also on European species (see the Ecocraft Report, 

Jarvis 1998) and to a lesser extent Australian species (see Duff et at. 1994). 

Until 1992 most studies were undertaken for short time spans on young trees growing 

in controlled or semi-controlled environments, many without regard for either the 

nutritional status of the trees (Eamus and Jarvis 1989) or their rooting volume with 

plants grown in pots (McConnaughay et al. 1993). While experiments in controlled 

environments are crucial to understanding some of the mechanisms behind plant 

reponses to elevated [CO 2], it is difficult to extrapolate from them to the real world 

where plants do not grow in isolation or in pots (Morison 1990, Körner 1995). 

Despite the fact that numerous short-term experiments have shown a growth and 

photosynthetic stimulation in elevated [CO 2] in trees, there are still few experiments 

extending beyond two growing seasons in length (Ceulemans and Mousseau 1994, 

Lewis et al. 1996, Johnson et al. 1996, Rey 1997). In field experiments open top 

chambers (OTCs) are most commonly used (Leadley and Drake 1993) since they are 

better approximations to natural conditions than growth cabinets where small 

replication is an additional drawback. Until recently impact studies on intact 

ecosystems were very rare (reviewed in Körner 1995). So far there have been very 

few ecosystem experiments on trees using the free air, CO 2  enrichment system 

(FACE) which is the only realistic way of assessing the impact of climate change on 

whole forest ecosystems (Ceulemans and Mousseau 1994). Experiments at natural 

CO2  springs can also provide realistic results although the number of locations is 
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limited, and adequate replication and definition of conditions are proablematic. All 

methods of exposing plants to elevated [CO 2] have their advantages and 

disadvantages depending on the main aims of the study, which should be explicitly 

defined (Ceulemans and Mousseau 1994). The above points highlight the need for 

additional tools such as computer simulation models to explore responses and to 

make predictions for whole ecosystems at forest regional and global scales. These 

large scale process models need to be based on mechanistically sound sub-models, so 

that there will always be a need for basic empirical research such as the experiments 

presented in this thesis. Consequntly, there is a clear necessity for further, more 

realistic experiments on trees in the field in appropriately controlled conditions 

(Körner 1995). 

1.1.4 Interactions With Other Environmental Variables 

It is now clear that many environmental variables such as nutrient and light availability 

(Sage et al. 1990), drought (Townend 1993) and temperature (Ziska and Bunce 

1994) influence the response of plants to [CO 2]. This is becoming increasingly clear as 

the results of studies at different locations and times show a whole spectrum of 

growth and physiological responses, sometimes by the same species, without adequate 

explanation. 

Nutrient Availability 

Most natural terrestrial ecosystems, especially forests grow on soils that are nutrient 

limited (Linder and McDonald 1993, Körner 1995, Norby et at. 1996) so that impact 

studies with a luxurious mineral nutrient supply to the trees are not very relevant to 

natural vegetation. Woodward et at. (1991) and Körner (1995) point out that a wide 

range of the [CO2] reponses found in the literature can be 'produced' by altering 

mineral nutrition. Linder and McDonald (1993) also emphasise the importance of 

maintaining good control of mineral nutrition (and other environmental variables) in 

order to avoid attributing growth reponses to [CO 2 ] instead of the interaction of 

[CO2] and mineral nutrition. Experiments with free mineral supply are nonetheless of 

considerable use in agricultural and agroforestry systems (Körner 1995). Several 

authors have found that limitation by nutrients may have a larger effect on tree 



reponses than elevated [CO 2] (see Eamus and Jarvis 1989, Mooney et al. in press), 

although a number of field experiments have shown positive responses to [CO 2] by 

trees with low nutrient supply (see Kimball et al. 1993, Norby et at. 1996). The 

picture is made more complex becasue even poor natural soils when dug up may 

undergo enhanced mineralisation for some time afterwards thus improving nutrition 

(Körner 1995). It may take longer than the usual funding period for such soils to 

'settle'. Other factors which could come into play in plant responses to elevated 

[CO2] are atmopsheric nitrogen (N) deposition from atmospheric pollutants (up to 50 

kg ha-1 per annum in Europe) and enhanced mycorrhizal growth. Atmospheric 

nitrogen deposition from air pollution is another driving factor in climate change, 

along with rising [CO2], temperature, tropospheric ozone and increased U\ 1B (see 

Mooney et al. in press). It is as yet unclear whether atmospheric N deposition alone 

enhances growth or if the response is a positive interaction between rising [CO 2] and 

N deposition. There are reports of higher yield classes in old forest stands compared 

with the past (see Mooney et al. in press). The concept of 'critical load' of pollutants 

needs to be taken into consideration, however, since living systems have thresholds 

beyond which damage occurs (Rosen etal. 1992). 

Temperature 

Rising atmospheric [CO 2] will in all likelihood lead to an increase in mean 

atmospheric temperatures. Both factors are likely to affect photosynthesis and 

stomatal conductance in complex ways. Rising [CO 2] will reduce photorespiratory 

carbon loss whereas rising temperatures will increase respiration. The specificity of 

Rubisco and the solubility of CO 2  decrease as temperature rises favouring 

oxygenation (Long 1991). Overall, however, photosynthesis is more sensitive to 

[CO2] at higher temperatures than at lower temperatures. Elevated [CO 2] also affects 

photosynthetic response to temperature, often raising the temperature optimum (Long 

1991). Plants growing in warmer climates have generally shown a larger response to 

elevated [CO2] than those in colder climates (see Drake etal. 1997). 
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Water Availability 

A common response of plants to elevated [CO 2 ] is an increase in water use efficiency 

(see Drake et al. 1997, Mooney et al. in press) either via increased photosynthesis or 

decreased stomatal conductance, although a number of more recent studies on trees 

have found that stomata] conductance is often not reduced very much in elevated 

[CO2] (reviewed in Mooney et al. in press). There is a need for more experimentation 

and elucidation of mechanisms in this area. 

Plant-Plant Interactions 

Trees do not normally grow in isolation but interact with neighbouring plants. 

Responses of isolated trees in OTCs or controlled environment chambers to elevated 

[CO2] have been shown to be larger than when trees were grown close together 

(Körner 1995, Norby et al. 1996, Drake et al. 1997). Canopy closure reduced or 

removed the positive growth response, indicating that trees may grow faster at the 

seedling stage in a changing climate but once canopy closure occurs the difference my 

disappear (see Morison 1990). 

1.2 The Issues 

1.2.1 Growth and Biomass 

An almost universal response to short-term exposure to doubling [CO 2] is a 

stimulation of photosynthesis of between 25 and 75 % compared with photosynthesis 

in ambient [CO 2] (Stitt 1991). Increased carbon assimilation in elevated [CO 2 ] often 

leads to increased biomass production in the plant (Eamus and Jarvis 1989, Morison 

1990, Ceulemans and Mousseau 1994) although not always (Körner 1995). In C 3  

crop plants and trees this increase varies from 30 % to 70 % (Idso and Kimball 1991, 

Kimball et al. 1993, Poorter 1993, Ceulemans and Mousseau 1994). According to the 

review of Ceulemans and Mousseau (1994) deciduous trees show mean biomass 

increments of + 63 % compared with + 38 % in conifers. Often the largest 

enhancement of biomass was observed in nitrogen-fixing trees, where carbon-

expensive nitrogen fixation becomes more efficient (Norby 1987, Mousseau and 

Saugier 1992). C4  plants have generally been found to respond less to elevated [CO 2 } 

than C3 plants (Bowes 1991) although recent experiments on more natural systems 
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indicate that this tenet does not always hold true (Mooney et al. in press). Differential 

species reponses according to functional types (i.e. C 3  versus C4  or nitrogen fixers 

versus non-fixers) suggest that competitive interactions between plants could change 

in a changing climate, leading to new constellations of species and successional 

dynamics (Bazzaz 1990). 

Other observed effects of exposure to elevated [CO 2] are increased mycorrhizal 

infection of tree roots (Rey 1997), the inducement of earlier flowering as well as 

shortening of the life cycle because of earlier senescence (Mouseau and Saugier 

1992) and decreased respiration (Morison 1990, Ziska and Bunce 1993) and stomata] 

conductance although the last two responses are not always found (Mooney et al. in 

press). 

1.2.2 Biomass Allocation 

Biomass increases in elevated [CO 2] result from increases in carbon assimilates which 

are allocated to different plant structures, often changing the overall morphology of 

plants and in particular root to shoot ratios (Ceulemans and Mousseau 1994) In 

experiments with fertilised trees three different scenarios have been found with regard 

to the effect of elevated [CO 2] a) root biomass increases proportionally more than 

shoot biomass, b) root biomass decreases proportionally to shoot biomass, or c) the 

ratio remains unchanged (Mousseau and Saugier 1992). In unfertilised soils the root 

to shoot ratio usually increases substantially in elevated [CO 2 ] (
Rogers et al. 1992 and 

1994) and may ensure better acquisition of mineral nutrients. As a tree ages its pattern 

of biomass allocation changes, partitioning more carbon to woody tissues with time 

and less to assimilatory material. A general plant response to elevated [CO 2 ] 
is a 

speeding up of growth and development and a concomitant shortening of the growing 

season. Often interpretation of differences in biomass allocation found in elevated 

[CO2 ] 
impact studies has not considered such ontogenetic differences (Morison 

1990). 
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1.2.3 Short-Term and Long-Term Responses 

In the short-term, photosynthesis is stimulated in elevated [CO 2] in C3  plants by 

increasing rates of carboxylation of ribulose- 1 ,5-bisphosphate (RuBP) and decreasing 

photorespiration rates. It has been predicted that photosynthesis will increase in both 

light-saturated and light-limiting conditions (Long 1991). Whether plants will be able 

to sustain increased rates of carbon assimilation over long periods of time and 

whether they will have large enough sinks for the extra carbon is one of the most 

important questions addressed in this thesis and in more recent impact studies in 

general. 

Frequently observed initial increases in photosynthesis in short-term studies have been 

shown not to be sustained in the long-term where several scenarios have been 

observed. Either a) relative rates of photosynthesis show an overall decrease in 

assimilation, b) a readjustment in assimilation rates occurs so that the ambient [CO 2] 

trees 'catch up' with the elevated [CO 2] trees, or c) assimilation rates fluctuate over 

the season (Mousseau and Saugier 1992). These results are consistent with the idea 

that some limiting factor or feedback mechanism comes into play which slows down 

the newly stepped-up production. This negative feedback is manifest as a reduction in 

photosynthetic rate induced by either so-called down-regulation ('fine control') or 

acclimation ('coarse control'). The former involves a reduction in photosynthetic rate 

without a change in leaf composition, whereas in the latter case photosynthetic 

capacity is reduced via diminished photosynthetic components such as Rubisco, 

chlorophyll or other enzymes (Delgado et al. 1994). Photosynthetic acclimation has 

been associated with accumulation of carbohydrates because of low sink demand and / 

or reduction in Rubisco amount or activity (Stitt 1991). The exact mechanisms of 

acclimation are not yet known, but could act via limited availability of NADPH or 

ATP. For every molecule of RuBP regenerated in the carbon reduction cycle one 

molecule of carbon is used up. An increase in the activity of the cycle necessitates 

increased production of NADPH and ATP from the light reactions of photosynthesis 

(Lawlor 1993). Alternatively, limitation by phosphorus and / or protein regeneration 

because of reduced triose phosphate metabolism has been put forward as a potential, 

if short-term mechanism of photosynthetic acclimation (Stitt 1991). 
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The source-sink balance of a plant is a finely tuned web of processes which behaves 

in a homeostatic manner. Thus some plants grown in elevated [CO2] accumulate 

carbohydrates in the chioroplasts or export them as structural or non-structural 

carbohydrates to other parts of the plant. In the event of limited sink availability, the 

carbon is often exported to the rhizosphere (Mooney et al. in press). Alternatively the 

accumulation of starch has been seen to cause chioroplast disruption. Why it is that 

some plants restore the balance within their cells by sending the extra carbon to the 

rhizosphere whereas others let the carbohydrates accumulate until the chioroplast is 

disrupted, is unsure. Both could be strategies for coping with the extra assimilate, but 

the latter might be a consequence of the inability of the chioroplast to balance the 

carbon sink with the carbon source. Work by Van Oosten et al. (1994) provides a 

potential molecular model in which photosynthesis-associated genes (PAG) in the 

nucleus, but not those coded for in the chioroplast are down-regulated in elevated 

{CO2]. This could be the reason why disruption occurs in the chioroplast but not in 

the rest of the plant cell. Furthermore, Van Oosten et al. (1994a) found that the 

action of sugars mimics the regulation of genes thus acting like hormones. 

1.2.4 Can Nutrition Keep Up With Increased Carbon Assimilation? 

One of the most generally observed reponses of plant growth in elevated [CO 2 ] is an 

increased C N ratio (Mousseau and Saugier 1992, Poorter 1993, Ceulemans and 

Mousseau 1994). A dilution of nitrogen almost always occurs as more carbon gets 

incorporated into the plant. This dilution occurs either because nutrient uptake does 

not increase along with carbon fixation, or because of a protein dilution' effect (i.e. 

less nitrogen per unit plant mass than carbon per unit plant mass) or remobilisation of 

nitrogen from Rubisco to processes other than carbon fixation. 

Thus the carbon cycle seems to be closely linked to and dependent on the nitrogen 

(and phosphorus) cycle. Gifford (1994) disputes this, stating that the nitrogen cycle 

may actually be following the carbon cycle. The frequently observed phenomenon of 

increased root : shoot ratio in elevated [CO 2] as well as increased carbon exudation 

from the roots could be, with the help of increased temperatures, providing readily 
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metabolised carbon in the soil. Greater mineralisation and thus increased soil nitrogen 

would ensue, which would lead to a re-equilibrium of the C : N ratio. Other factors 

which could help re-balance C N ratios are nitrogen deposition from atmospheric 

pollutants (considerable in the case of Europe) and enhanced mycorrhizal growth. 

Drake, Gonzalez-Meler and Long (1997) dispute the commonly-held view that 

photosynthetic stimulation will be strongly limited in the long run by nutrient 

availability, providing evidence for increased nitrogen use efficiency in elevated [CO 2]. 

Evidence for this come from several long-term experiments in which l5lants  grown 

with low nitrogen supply were as stimulated in growth as those given high nitrogen 

supply. In addition, photosynthetic acclimation occurring after long periods of 

exposure rarely completely compensates for stimulation of the rate of photosynthesis 

by elevated [CO 21. 

1.2.5 Biochemical Responses to [CO2] 

The most common responses of leaves to longer-term growth in elevated [CO 2] are 

reduced nutrient concentrations especially [N] and decreased Rubisco, soluble protein 

and chlorophyll concentrations (Ceulemans and Mousseau 1994, Drake et al. 1997). 

Accumulation of soluble carbohydrates and starch in the leaves is also very frequently 

found (see Stitt 1991). There is some debate in the literature concerning the relative 

roles of carbohydrate accumulation (i.e. low sink strength) and decreases in 

photosynthetically important proteins in photosynthetic acclimation. For more details 

of this discussion and of possible mechanisms behind photosynthetic acclimation see 

Chapter 5. 

1.2.6 Nitrogen Fixation 

Nitrogen-fixing plants are universally predicted to be more responsive to elevated 

[CO2] than other plants. Trees generally do not usually increase their biomass 

production as much as herbaceous crop plants in elevated [CO 2 1, although some of 

the largest effects have been recorded in nitrogen-fixing trees (Norby 1987, Mousseau 

and Saugier 1992, Poorter 1993). However, more recent experiments on natural or 

semi-natural grassland swards do not confirm that growth of nitrogen-fixers is 
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necessarily strongly enhanced (see Körner 1995). Furthermore, studies involving 

complex assemblages of nitrogen-fixing plants exposed to elevated [CO 2] have also 

shown inconsistencies in this respect (Mooney et al. in press). Previous short-term 

studies of the effects of elevated [CO 2] on alder seedlings suggested that nodulated 

plants had higher whole plant photosynthesis, nitrogenase activity, nitrogen content 

and total biomass compared with nodulated plants grown in ambient carbon dioxide, 

or compared to non-nodulated plants grown in both ambient and elevated carbon 

dioxide concentrations (Norby 1987, Arnone and Gordon 1990). One possibility is 

that nitrogen-fixing trees grown in elevated carbon dioxide possess larger sinks than 

other trees and should be able to export extra photosynthate to increase nodulation of 

roots and so be more independent of external nitrogen additions. 

Nitrogen and carbon are nevertheless not the only important variables for nitrogen-

fixation. An important aspect of nitrogen fixation is phosphorus (P), which is very 

important for nodulation particularly in the nodule development stage (Sprent and 

Sprent 1990). Alder nodules were found to be larger when given a plentiful 

phosphorus supply. This suggests that nitrogen-fixing plants have a larger P 

requirement than other species, although Sprent and Sprent (1990) concluded that 

once the nodule system has been set up, an extra demand for phosphorus need not be 

the case per Se. Any advantage over other trees in growth stimulation of nitrogen-

fixing trees grown in elevated [CO21, therefore, is also dependent on phosphorus 

availability and uptake. There is, however, a three-way symbiosis in nature which can 

alleviate this problem. Some studies have shown that nodulated plants (legume and 

non-legume, annual and perennial) are sometimes infected with vesicular-arbuscular 

(VA) mycorrhizas, and that the latter can greatly improve phosphorus uptake (see 

Sprent and Sprent 1990). Thus the two endosymbionts may interact to produce an 

effect which is larger than the sum of its parts. Since mycorrhizas, like nodules, are a 

carbon cost to the host plant growth in elevated [CO 2 1 could alleviate this extra cost. 
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1.2.7 Nitrogen Allocation to Different Tissues 

Internal nitrogen cycling plays an ecologically important role in tree physiology and 

growth, in that it uncouples growth from nutrient uptake in the spring (Millard and 

Neilson 1989). It can provide up to 90 % of N required for leaf growth in both 

evergreen and deciduous species (Proe and Millard 1994, Millard 1995). Such cycling 

processes typically involve seasonal storage of N in the autumn followed by 

remobilisation during periods of growth or senescence (Millard 1995). One of the 

main forms of N storage is the enzyme Rubisco (Huffaker and Miller 1978, Camm 

1993, Millard 1996) although bark storage proteins have also been recently isolated 

(reviewed in Millard 1996). Since it is present at such high concentrations in leaves, 

often at higher levels than required for maximum photosynthesis (Long 1991, Stitt 

1991), Rubisco constitutes the largest sink for nitrogen in the photosynthetic system. 

Thus any changes in Rubisco concentration in leaves exposed to elevated [CO 2} could 

be correlated with N translocation to other parts of the plant as storage. To my 

knowledge, there is no experimental evidence to date on the reponse of internal N 

allocation in trees to elevated [CO2]. There is a need for experiments investigating the 

effects of elevated [CO2] on internal N cycling within plants if the responses within 

leaves and between tissues are to be better understood. 

1.2.8 Common alder and Scots pine 

Common alder (sometimes known as 'black alder'), Alnus glutinosa (L.) Gaertn., 

belongs to the deciduous Betulaceae family and is closely related to the birches 

(Betula). It is native to Europe, Western Asia, and North Africa. Common alder 

grows to a mature height of between 20 and 30 metres, with a trunk of up to 4 

metres in girth. It derives its Latin name from its glutinous young shoots (Bean 1973). 

Alder trees have been known for centuries to be well suited to wet sites often growing 

near rivers (Johns 1912). A prominent characteristic of alder being a nitrogen-fixing 

pioneer species is its ability to grow where many other tree species cannot, 

particularly on nutrient-poor soils (although not at low pH), in time rendering these 

soils more nutrient-rich. Alder species are thus often used on reclaimed sites such as 

disused open-cast coal spoils or derelict land reclaimed for forestry, where they, along 
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with conifers improve the site and tree nutrition (Hood 1993). Alnus spp fix nitrogen 

via a symbiotic relationship with Frankia spp of bacteria which form nodules on the 

roots (see the Introduction to Chapter 4 for further details). Alder species are 

sometimes used in mixed species plantations to make nitrogen available for the 

companion species. One particular example of this is the planting of inter-rows of 

alder and a coniferous species which improves the nutritional status of the conifer, 

although care must be taken since the alder species has a tendency to out-compete the 

conifer in the first years (Moffat et al. 1992). Although common alder is not a major 

plantation tree species, its use in the reclamation of disused industrial sites and its 

nitrogen-fixing capability make its use in climate change experiments very relevant. 

Scots pine, Pinus sylvestris (14, belongs to the economically important and extensive 

Pinaceae family and has a range which extends over northern Eurasia, from Scotland 

through Scandinavia, the Baltic region and Russia. It reaches a mature height of 

between 30 and 40 metres, with a trunk of up to 6 metres in girth. It can survive in 

the most inclement of conditions, from the Arctic circle to the borders of the steppe 

(Bean 1973). Scots pine grows best on sandy and light soils in conjunction with 

heather (Calluna vulgaris and Erica spp) and bilberry (Vaccinium myrtillus). It is 

wind-firm, light demanding, very frost-hardy and will grow under varying conditions, 

often regenerating naturally. In Britain, although now only native to Scotland, it is 

widely used in plantation forestry, despite competition from faster-growing species 

such as Pinus contorta Dougl. var. contorta (Lodgepole pine) or Pinus nigra var. 

maritima (Ait.) Melville (Corsican pine). Most importantly, it forms the dominant 

biomass in many areas of Boreal forest, rendering any study of its response to its 

changing environment very pertinent. 

Both species of tree have in common a capacity to grow on sites with low nutrient 

availability through the help of symbioses with other organisms, the one via nitrogen-

fixation, the other via mycorrhizal soil exploration. 
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1.3 Aims of the Study 

The main hypothesis in this research is that inadequate nutrient acquisition 

(particularly nitrogen) and the ensuing C N imbalance in Scots pine grown in 

elevated [CO2] without fertiliser will produce a more marked down-regulation of 

photosynthetic capacity than those trees grown in elevated [CO 2] with fertiliser. 

Common alder being able to fix nitrogen (particularly in conditions of low soil 

nitrogen availability) will be able to benefit more from the extra carbon availability by 

coupling it with additional nitrogen fixation. The increased availability of carbon, a 

rate-limiting step in nitrogen fixation, could result in enhanced growth in the nitrogen-

fixing trees. It is hypothesised that alder grown in elevated carbon dioxide should be 

able to export extra starch and sugars to increase nodulation of roots and so be more 

independent of external nitrogen additions. Inadequate nitrogen acquisition should not 

be the cause of down-regulation in the alder grown in elevated [CO 2] without 

fertiliser. In the longer-run a lack of adequate phosphate supplies for ATP or NADPH 

could cause a reduction in photosynthetic and growth stimulation (acclimation). An 

experiment was therefore started using a comparison between a nitrogen fixer (Alnus) 

and a non-fixer (Pinus). These species constitute a comparison between deciduous 

and coniferous and between nitrogen-fixing and mycorrhizal trees. 

The objective of this study was to determine the interactive effects of the 

environmental variables carbon dioxide and nitrogen on growth, physiology and 

biochemistry of the two species over three growing seasons, with particular reference 

to any changes in photosynthetic components and the source / sink balance of fixed 

carbon as well as nitrogen allocation to different tissues. 

To investigate both the short-term and long-term response of the two distinct tree 

species to growth in elevated [CO2] and fertiliser addition two experiments were set 

up in 1994. The short-term experiment at the Institute of Terrestrial Ecology lasted 

for fifteen weeks with seedlings grown in pots in OTCs, whereas the long-term 

experiment at Glendevon involved trees grown directly in the ground in OTCs for 

three consecutive years. 
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1.3.1 Specific Aims 

Specific aims of both the short-term experiment and long-term experiments were to 

elucidate whether: 

exposure to elevated [CO 21 leads to significant increases in growth and 

plant biomass of both Scots pine and common alder; 

nutrient addition would affect the growth and physiological response to 

elevated [CO2]; 

there would be interactive effects between elevated [CO 2] and nutrient 

addition on the growth, physiological and biochemical response of both 

species; 

biomass allocation would be altered in common alder and Scots pine grown 

in elevated [CO2 ]; 

starch and soluble carbohydrate accumulation would occur in the leaves of 

common alder and Scots pine grown in elevated [CO 2]; 

changes in leaf chlorophyll concentration would occur in elevated [CO 2 1; 

there would be species-specific responses to growth in elevated [CO 2], 

particularly in common alder where inorganic nitrogen could be fixed 

from the atmosphere and the trees thus be less dependent on soil nitrogen 

sources? 

Aims specific to the long-term experiment were as follows: 

to test whether long-term exposure to elevated [CO 2] also leads to increases 

in plant growth and biomass in both species; 

to test whether the growth stimulation often observed in short-term studies 

can be maintained over several growing seasons in the field or if 

photosynthetic acclimation occurs; 

to determine if nitrogen fixation was occurring in the alder and if it would 

increase or be more efficient in elevated[CO 2]; 

to study whether elevated [CO 2] would affect allocation of nitrogen to 

different tissues; 

to determine in both species where nitrogen was allocated over the winter 

and from which tissues nitrogen for new growth in the spring was derived; 
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13) 	to identify the main long-term changes in biochemical leaf composition in 

both species; and 

14) 	to determine whether nitrogen-fixing alder would exhibit less of a source- 

sink imbalance than Scots pine, since nitrogen-fixing nodules could act as a 

large sink for any extra carbon fixed? 

These hypotheses were tested using an array of growth, physiological and biochemical 

measurements on samples from trees grown both in soil in OTCs and in pots. The 

trees were sampled as well as destructively harvested at periodic intervals. A 

particular emphasis of the research was how leaf Rubisco concentration and nitrogen 

allocation were affected by [CO 2] and fertiliser addition. 

1.4 Outline of the Thesis 

The thesis is organised into six chapters that cover responses to elevated [CO 2] at 

different temporal and spatial scales. 

Chapter 1: Introduction 

This chapter introduces the background and sets the context for this thesis. It includes 

a general overview of the greenhouse effect and CO 2  experiments, the main issues in 

this study and the main aims of the experiments. 

Chapter 2: Materials and Methods 

This chapter presents the field sites, experimental design and set-up of both 

experiments in more detail than is provided in the methods sections of the results 

chapters. In addition OTC descriptions and performance are included. 
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Chapter 3: Growth, biomass and biochemistry of Alnus glutinosa and Pinus 

sylvestris grown in elevated carbon dioxide concentration - a fifteen-week 

experiment at the Institute of Terrestrial Ecology 

This chapter reports the short-term response of both species to growth in elevated 

[CO2] with different nutrient addition, at both the whole tree-scale and the leaf scale. 

It focuses on biomass changes and allocation, leaf morphology and leaf biochemical 

composition. 

Chapter 4: Growth and biomass, nutrient concentration and internal nitrogen 

cycling Alnus glutinosa and Pinus sylvestris grown in elevated carbon dioxide 

concentration - a three-year experiment at the Glendevon field site 

This chapter covers long-term growth and internal nitrogen responses to elevated 

[CO2
] 

in both species of tree from 1994 to 1996. In particular the effects of elevated 

[CO2] on allocation of labelled-nitrogen to different tissues over the winter and spring 

1994 / 1995 is reported. 

Chapter 5: Biochemistry of Alnus glutinosa and Pinus sylvestris grown in 

elevated carbon dioxide concentration - a three-year experiment at the 

Glendevon field site 

In this chapter the long-term biochemical responses to elevated [CO 2] at leaf scale are 

presented. These include the responses of chlorophyll, proteins, Rubisco 

concentration, soluble sugars and starch. 

Chapter 6: Synthesis and Conclusions 

This chapter brings together the most relevant conclusions from this study and 

includes a general discussion of the aims outlined in Chapter 1. 



CHAPTER 2 
Materials and Methods 

2.1 Introduction 

One of the main characteristic of field experiments is an increased incidence of 

experimental error compared with controlled environment studies, since 

environmental variables cannot be easily controlled in the field. This engenders a 

larger variability in environmental variables present in the field. In open top chamber 

(OTC) experiments such as the two outlined in this research, not only did the[CO 2
] 

and nutrient treatments affect the results of the experiment but also the presence of 

the glass chambers (Leadley and Drake 1993). Because of this inevitable chamber 

effect on the environment of the trees and hence on physiological processes, an Un-

chambered control plot was included in the experimental design. This enabled the 

effect of the chambers to be assessed separately from the effect of the [CO 2} or 

nutrient treatments. A second source of error in these experiments was the inherent 

variability of the seedlings, especially the alder. The seedlings were not clones and as 

such natural variation was high (sometimes visible morphologically). A third source 

of variability came from the lack of uniformity of the field site. 

All three sources of variability could have caused only large treatment effects to be 

statistically significant and many effects to be termed tendencies towards an effect. It 

was attempted to take these factors into account in the design of both experiments by 

using a randomised plot design in which the location of elevated or ambient [CO 2 ] 

chambers and fertilised or unfertilised quadrants were determined randomly and 

blocks were assigned each containing one treatment. The effect of lack of uniformity 

in the field site was also reduced by testing for the effect of differences between each 

individual chamber on the results. Whenever this effect was significant it was pointed 

out in the results sections of the chapters. Because of logistical constraints, the 

control plots were not assigned randomly amongst the chambers but were separate at 

both sites. Despite all these considerations the experimental error is considered to be 

relatively small and the number of replicates reduces this error, although financial 
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considerations involved in this kind of experimental set-up limited the replication that 

could be used. 

The variables described in this chapter relate mostly to the long-term field site at 

Glendevon since the construction of OTCs and CO 2  supply to the OTCs was very 

similar in both experiments. For details of most materials and methods see the relevant 

chapters. Outlined below are the experimental design and field site details including 

data on variables such as soil profile, soil pH, soil water, soil nutrient content and 

climate, which require more detail than could be dded to each individual chapter. In 

addition, the performance of CO 2  fumigation and soil fertiliser is shown below 

(section 2.4) as well as a detailed description of statistical considerations. 

2.2 Experimental Set-Up and Design 

For details of the Institute of Terrestrial Ecology and Glendevon field locations see 

the Methods sections in the appropriate chapters. A detailed description of 

experimental design and field conditions is given below for the Glendevon field site. 

For details of the ITE experimental design see the Methods section of Chapter 3. 

2.2.1 The OTC Set-Up 

The Chambers 

The chambers were constructed in an octagonal form, from lightweight aluminium 

frames containing 3 mm horticultural glass, and had a diameter of 3 m and a height of 

3.5 m. The chambers and control plots were set up in a multi-factorial manner, 

randomised with respect to carbon dioxide, nutrition, species and aspect (see Figure 

2. 1), although the control plots were located non-randomly away from the chambers. 

Each chamber was supplied with either ambient (350 pmol mol') or elevated 

(ambient + 350 tmol moF') carbon dioxide concentrations, and each chamber (or 

control plot) was separated into four quadrants separated from each other by a plastic 

barrier which reached 40 cm below the soil and 20 cm above soil level (see Photo 

2.5). Half the quadrants were planted with common alder, the other half with Scots 

pine. The alder trees were situated on the same side as the door in the chamber, the 

pine on the opposite side (see Figure 2.5). 
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Two quadrants per chamber received full strength nutrient solution (70 kg nitrogen 

ha' per season) provided at rates calculated previously from growth rate of the Sitka 

spruce (see below) added via a computer-controlled drip fertigation system (the 

fertiliser treatment) and one without any additional nutrition (the non-fertiliser 

treatment). An irrigation system with one outlet per seedling supplied the trees in 

each chamber daily with water for ten minutes (to field capacity). 

The Glendevon fertigation system was based on the Ingestad theory of plant nutrition 

(see Ingestad 1979, 1980 and 1981). This theory states that in order to maintain 

steady internal nutrient concentrations and hence optimum growth rate in a plant, the 

relative nutrient uptake rate must equal both the relative growth rate and the relative 

addition rate of nutrients. Every plant species has its own optimum growth rate which 

also changes according to climatic conditions such as air and soil temperature, water 

availability, photosynthetically active radiation and atmospheric [CO 2]. Relationships 

between nutrition and growth are characteristically linear in the sub-optimum range of 

the relationship between growth rate and relative addition rate. In the supraoptimum 

range this relationship is no longer controlled by the relative addition rate but by the 

external nutrient concentration, resulting in reduced growth (due to saturated nutrient 

utilization). In order to apply Ingestad nutrition correctly one must know the 

following parameters: firstly, the starting values for all variables (such as dry mass of 

plants and internal nutrient concentrations) and secondly, the rate of growth with 'free 

access' to nutrients enabling the calculation of optimum growth rate and nutrient 

concentrations needed for sub-optimal treatments earlier in the growing season. It is 

also helpful to track internal nutrient contents over the season to determine the extent 

of nutrient uptake. 

With these ideas in mind a computer-controlled system of Ingestad nutrition was set 

up at the Glendevon field site which supplied nutrients at different rates over the 

growing season (according to the optimum growth of Sitka spruce, the first species 

grown on site) to all three tree species growing at the site. This formed the main 

limitation of this system in that only one nutrient tank was available for the three 

species, and every tree species has a species- and climate-dependent optimum growth 
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rate and growth curve. In addition the optimal growth rate of trees in elevated [CO 2] 

versus trees in ambient [CO 2] is very likely to be different, necessitating the 

calculation of separate optima for the two treatments. One of the main assumptions 

behind the Ingestad approach is that the nutrient concentrations of plant tissues do not 

change over time or in different treatments. In conclusion, applying true Ingestad 

nutrition in a field experiment necessitates a pilot study to determine the optimal 

growth rate at the site in question and in the different treatments, which was not 

deemed useful in the case of Glendevon since three tree species were supplied with 

one nutrient solution. The Glendevon nutrition system nevertheless provided one of 

the most sophisticated Ingestad nutrition systems in use in field experiments. In 

looking at the proportions of macro- and micro-nutrients calculated for Sitka spruce 

and applied to the whole site (compared with the requirements of Scots pine and 

common alder) it seems that common alder was supplied with slightly sub-optimum 

proportions of phosphorus, magnesium and calcium and Scots pine with slightly 

supra-optimum proportions of potassium (see Appendix 3 and Ingestad 1979 and 

1980). The former could have had an effect on the nitrogen fixing capacity of 

fertilised alder trees, since phosphorus and magnesium are particularly important in 

nitrogen fixation. This would not have affected the non-fertilised plots, however. 

CO2  Control System 

Liquid carbon dioxide was delivered under pressure as enriched gaseous carbon 

dioxide (at a concentration of 350 pmol mol' above background, i.e. on average 700 

pmol mort) via a mass flow system to the elevated [CO 2] chambers (numbers 2, 3, 7 

and 12) (Figure 2.2). Since atmospheric [CO 2] varies diurnally, a constant amount of 

carbon dioxide was added to the elevated [CO 2] chambers allowing the concentration 

in these chambers to track the ambient atmospheric [CO 2]. 
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Figure 2.2 Excerpt from the Forestry Commission's Research Information Note 238: "A 

long-term carbon dioxide enrichment experiment examining the interaction with nutrition in 

Sitka spruce" (Durrant et al. 1993). Photo: Aerial view of an OTC containing one Sitka 

spruce tree per quadrant. The CO 2  monitoring and control system is depicted and described 

in detail at the bottom of the page. 
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Figure 2: View through the top of a chamber. . . 	 removable walkways 

The CO2 monitoring and control system (Figure 3) 
consists of sample and infection sub-units controlled by 
a personal computer via an interface card (Barton etal., 
1993). A diaphragm pump draws air continuously from 
all the chambers through nylon sample lines. To allow 
for different flow resistances in the sample lines, each is 
tilted with a needle valve flow meter, enabling flow rates 
through the lines to be balanced. Each sample line 
contains a three-way solenoid valve which, when 
activated, diverts the air stream to the infra-red gas 
analyser (IRGA), through which it is drawn by the 
IRGAs internal pump. On switching, the IRGA rapidly 
stabilises (20 seconds) on a new sample line. The 
solenoids are controlled by the computer via a 
multiplexer and relays. The control program cycles 
through the chambers, spending one minute on each 
sample line. The first 35 seconds are used to flush the 

IRG.A and to allow it to settle on the new reading. 
During the remaining 25 seconds a reading is taken 
every two seconds, and the average is logged to the 
hard disk and stored in the memory for graphical 
display. The elevated chambers have a natural diurnal 
cycle which is achieved, using the precision needle 
valves, by assuming the mass flow of air through the 
chamber is constant and requires a constant fixed 
addition of CO2 to the airstream. 

The CO2 is supplied from a 16 tonne tank (Distillers 
MG., U.K.) through a pressure reducing valve, and 
then through a fail-safe solenoid valve (in case of 
power failure). A data logger is used to record both 
environmental data and CO2 concentration, and the 
information is transmitted via a modem to the Forestry 
Commissions research station at Alice Holt Lodge, 
Surrey. 
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Photo 2.2 View of common alder seedlings inside an OTC in May 1994 not long after the 

seedlings had been transplanted into the soil. Note the fertigation system. 

Photo 2.3 View of Scots pine seedlings inside an OTC in May 1994 not long after the 

seedlings had been transplanted into the soil. 

Photo 2.4 Common alder growing in July 1995 within an OTC, showing the polythene 

'doughnut' through which CO 2  fumigated the chamber. 
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Photo 2.5 Digging up an alder root in December 1995 in a control plot. Note the 

plastic barrier separating the two species as well as the two nutrient treatments. 

Photo 2.6 View of Glendevon open top chambers (OTC) with surrounding Sitka 

spruce to simulate natural forest conditions and to reduce incident infra-red light 

on the seedlings in the chambers or control plot. 
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The [CO2] was monitored by needle valves in a control shed. One of the two valves per 

chamber operated at night, both during the day. If adjustment of the carbon dioxide level 

was required, the valves were turned to increase the [CO 2] (one turn corresponded to 

c.50 mg dm 3). A frustum and a glass shelf situated 0.5 in below the frustum were 

incorporated at the top of the chamber to reduce external air incursion into the chamber. 

Air (either at ambient or elevated [CO21)  was introduced into the chamber via a 

perforated polythene 'doughnut' (see Photos 2.4 and 2.6) that encircled the inside frame 

at a height of c. 1.5 m. [CO21 in chambers was monitored using an infra-red gas analyser 

(IRGA) connected to a computer system (see Figure 2.2 for more details of the CO 2  

monitoring and control system designed by Craig Barton, University of Edinburgh). 

Nutrient Treatments 

A full-strength nutrient solution (75 kg ha N) was supplied to half the plants (a total 

area of 85 m2) via an irrigation / fertiliser controller (Biotronic Cultivation Systems, 

Uppsala, Sweden) once a day (around 5 pm to 5.30 pm) (see Appendix 3 for details of 

solution). Computer-control of this system allowed the programming of the first day and 

last day of irrigation in each growing season, the initial injection of fertiliser, and an 

estimation of the timing of optimum growth (using Ingestad data on optimum growth 

rates of Sitka spruce, see section 2.2.1) was controlled via computer. Although there 

were three different species of tree growing on the site only one nutrient solution, that 

for Sitka spruce, could be used for all three species growing at the site (see section 2.2.1 

The Chambers for more details). The irrigation / fertiliser passed through piping and was 

added to the ground using irrigation nozzles (one per tree), which were checked for 

malfunctioning at the beginning of each season. In winter the [CO2] supply and fertiliser 

system were shut off. 

2.2.2 Statistical Considerations 

All data were checked for homogeneity of variance (using an F-test if the replicate 

numbers were equal or Levene's test if not) and normality. Any data which did not meet 

these assumptions were log transformed. Unless otherwise specified all statistical 

analyses were carried out with the SAS 6.1 general linear model (glm) and the 

probabilities for the F values at which significance was established are referred to as * p 
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<0.05, ** p <0.01, 	p  <0.001. Trends towards statistical significance were reported 

for probabilities of p < 0.1 as (*). 

SAS 61 programming for the Glendevon site 

A SAS 6.11 (SAS Institute Inc., Cary, NC 27513, USA) general linear model (glm) 

programme was written for analysing all variables measured (see appednix 8 for details 

of the model used). The model used a randomised, split-plot multi-factorial (a 2*3 

factorial layout) analysis of variance (SAS Sum of Squares Type III) with [CO 2] as the 

main plot factor. The nutrient treatments were sub 1plot factors nested inside each 

chamber or control plot, e.g. with or without fertiliser. Control plots were incorporated 

into the design so as to assess the effect of the open top chambers (chamber effect) on 

the measurements. In addition the variance attributable to each individual unit was 

assessed (unit effect) This effect was only mentioned in the results section if it was 

significant. As mentioned in the Introduction to this chapter the experimental design was 

completely randomised with respect to OTCs, [CO 2], and fertiliser treatment within each 

OTC or control plot (see Figure 2.1). In order to take account of any gradients across 

the field site and since the Glendevon site was on a slope, blocks were designated at 

random each containing one of the four replicated chambers (each in turn containing two 

nested nutrient treatments within each block) (Bailey 1981). The blocking procedure was 

the same at both field sites used in this research (ITE and Glendevon). 

Source of variation due to CO 2  treatment, nutrient treatment, [CO 2] and nutrient 

interaction, chamber effect and unit (i.e. chamber number) was calculated by the SAS 

programme. Calculation of error terms for [CO 2] and nutrient was made complicated by 

the nested character of the experiment. One error term related to the residuals from the 

comparison between [CO 2] treatments, the other related to the fertiliser treatments. With 

this experimental design one can either assign two error bars to each combined [CO 2 ] 

and nutrient treatment, or use the overall mean square as an error term (giving the same 

pooled overall variance for each treatment) for every treatment. Alternatively, one can 

indicate when the treatments are significantly different in the legend and give a standard 

error as an indication of the spread of the data. The latter choice was made in this study. 

Thus, although most of the tabulated data have been presented with one standard error 
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or 95 % confidence intervals, these should be treated with caution since they only show 

the variation of the combined treatment data sets (e.g. elevated [CO 2] and fertiliser) but 

do not show whether different treatments are significantly different. For this reason refer 

to ANOVA p values for statistical significance. 

2.3 Characteristics of the Glendevon Field Site 

2.3.1 Meteorological Data 

The climate at the Glendevon field site at an elevation of 600 m is harsher than the 

surrounding lowlands of Perthshire. In this experiment the growing seasons extended 

from early April until early October in 1994. In 1995 common alder did not lose their 

leaves until December because of a mild autumn. It is important to point out that 1995 

was a drier summer than 1994, with little rain throughout the growing season and high 

temperatures, particularly in August (see Figure 2.3b). Annual rainfall was 1586.6 mm in 

1994 compared to 1073.2 mm in 1995. The unusually dry 1995 growing season 

probably caused the fungal infection (Taphrina rosquinetti) in June on the common alder 

leaves. Leaves were wilted by August and some leaves were lost. The following graphs, 

Figures 2.3a - 2.3c, give an indication of the variability in rainfall across the three years 

of the study. 

2.3.2 Soil Water 

Soil water in every quadrant in every chamber and control plot was measured by Gail 

Jackson and Diarmuid O'Neill in April 1996 before the fertigation system was activated, 

using the wet and dry mass of a soil core. Percentage moisture was calculated by 

dividing the difference between the wet and dry mass by the wet mass and multiplying by 

a hundred. There was a significant difference between percent soil water in the [CO 2 ] 

treatments and the control plots with an average of 36.72 % in the ambient [CO 2 ] 

chambers, 36.20 % in the elevated [CO 2] and 38.78 % in the control plot. The difference 

between the means was very significant when analysed by one-way ANOVA (p = 

0.0070). There was also a significant chamber effect on soil water content when analysed 

for each species (p = 0.029 for Scots pine and p = 0.0043 for common alder). This 

highlights the key problem in trying to keep the chamber effect on the micro-environment 

to a minimum, namely that control of one environmental variable is often in conflict with 
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Figure 2.3a Total monthly rainfall (mm) in 1994 at the Gendevon field site. Daily 
measurements were made outside of the chambers. 
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Figure 2.3b Total monthly rainfall (mm) at the Gendevon field site in 1995. 
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Figure 2.3c Total monthly rainfall (mm) at the Glendevon field site from January 
to August 1996. 

controlling another (Leadley and Drake 1993). The presence of a frustum at the top of 

the chamber to reduce incursion of ambient air into the chamber had the disadvantage 

that it reduced the availability of rainfall into the chamber. The smaller stature of alder 

seedlings growing farthest from the middle of the chamber and nearest to the perforated 
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plastic 'donut' through which CO 2  entered the chamber could have been a result of less 

direct rainfall availability as well as lack of space. 

2.3.3 Soil Profile 

The soil at Glendevon is a cultivated shallow brown earth, locally podzolised. Soils of 

the brown earth group are divided into those of low base status and those of high base 

status. The Glendevon soils are of the former category with a tendency to acidity 

throughout the profile. The following is a detailed soil profile for the site (c /o Forestry 

Commission): 

0 -  18 cm 	humose (7.5 YR2/2) unmottled silt loam; 

Ap 	 common small and medium subangular stones, strongly developed 

subangular blocky and coarse granular structure ; abundant and very 

fine fibrous roots; smooth, nearly abrupt boundary. 

18 - 29 cm 	unmottled (7.5 YR4/4) sandy silt loam; 

Eb 	 common small and medium subangular stones; well developed 

medium and fine subangular blocky structure; many fine and very 

fine fibrous roots; smooth abrupt boundary 

29 - 39 cm 	unmottled (7.5 YR4/4) silty clay loam; 

R 	 common, small and medium subangular stones; well developed 

medium and fine subangular blocky structure with 7.5 YR3/2 ped 

faces; common fine and very fine fibrous roots; sharp boundary. 

At 39 cm 	Rock 

Is 

Legend - 

Ap 	 ploughed layer of cultivated soils 

Eb 	 brown (paler when dry) friable weakly structured horizon depleted of clay 
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humose a soil containing between 7.5 and 15 % organic carbon; the prefix is 

given together with the textural class of the mineral fraction e.g. 

humose sandy loam. 

small stones 1-5 cm 

medium stones 5-10cm 

large stones 10-20 cm 

7.5 YR 2/2 the colour of a moist soil fragment is compared with the Munsell Soil 

Color Charts; each colour is considered the result of three variables: 

the hue (e.g. 7.5 YR brown) indicating its relationship to the 

spectral colours yellow, red or blue 

the value - its lightness or darkness 	 - 

the chroma - the strength or departure from a neutral colour of the 

same value. The three variables are combined to give a notation such as 10 YR 5/6. 

2.3.4 pH of the Soil 

The Glendevon site has loamy, acidic soil. Table 2.1 indicates the small variation in soil 

pH. across the chambers used in this research. In a one-way ANOVA no statistically 

significant difference in soil pH was found between the [CO2] treatments (p = 0.6, 

sample size = 13). 

Table 2.1 Summary of pH (analysed in water) within each OTC in April 1996. Values are the 

means of four measurements, one from each quadrant within an OTC (numbers 1-12) or control 

plot (numbers 17, 18, 21 and 24). 

OTC number 	 mean pH per OTC 

4.7 

2 4.8 

3 4.6 

4 4.6 

7 4.8 

8 4.6 

11 4.7 

12 4.7 

17 4.5 

18 4.5 

21 5.0 

24 4.7 

overall mean 4.7 
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2.4 Performance 

2.4.1 CO2  Performance 

[G02] Performance at Glendevon 

Figure 2.4 shows a representative time course of [CO 2] recorded continuously over three 

days in an ambient chamber (base line) and one elevated [CO 2} chamber (number 12 in 

Figure 2.1). [CO2] concentrations were highest during the night time and there was 

considerable noise during this period in the elevated [CO 2] OTCs. [CO2] from February 

to August 1995 was on average 356.0 (0.058 SE) in the ambient [CO 2] chambers. 

Concentrations in the elevated [CO 2} chambers were on average 688.55 pmol moF' 

(0.53 SE) in OTC number 2; 686.54 p.mol moF' (0.62 SE) in OTC number 3; 688.61 

pmol mol' (0.58 SE) in OTC number 7; and 652.59 pmol mol' (0.68 SE) in OTC 

number 12. On average, 70 % of the time, the [CO,] was kept at the target value of 700 

jimol mol'CO2  ± 100 Itmol moF'. 
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Flgure2.4 Typical [CO 2] recorded over three days in July 1995 in the ambient 

and elevated [CO2] chambers. 

[CO2] Performance at ITE 

In summer 1994 the [CO2 ] inside the elevated CO 2  chambers varied around the target 

concentration of 700 pmol moi'CO 2  by ± 80 .Imo1 moF'. 

2.4.2 Fertiliser Performance 

The concentration of nitrogen in fertiliser coming through the irrigation nozzles located 

at each plant was monitored in June 1995 by collecting a sample of liquid overnight and 
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analysing for nutrient concentration in the lab (see nutrient analysis in Methods sections 

of Chapters 3 or 4 for details). Fertiliser samples from chambers 1, 2, 4, 8 and 12 had 

nitrogen concentrations of 8.82, 5.96, 3.55, 2.06 and 6.28 mg per dm 3. The variation in 

nitrogen concentrations could be a result of the collection beaker over-flowing or some 

of the fertigation nozzles may have been slightly blocked (due to an accumulation of 

residues and dirt, as well as disturbance within the chambers when sampling, measuring, 

harvesting etc.). All the nozzles were thoroughly checked for blockage at the beginning 

of the growing season. It is apparent that for a more even distribution of nutrients to the 

plants, one would have to check the nozzles for blockage more than once during a 

season. This was not possible in this experiment for logistical reasons. In conclusion, one 

can only be sure that all the nutrients diluted into the nutrient tank did end up in the 

appropriate quadrant, even if some parts of the quadrant (i.e. certain trees next to un-

blocked nozzles) may have received slightly more than others. 

Soil Nitrate and Ammonia at Glendevon 

In early April 1996 Gail Jackson and Diarmuid O'Neill took two soil samples per 

quadrant per chamber for the determination of soil nitrate and ammonia variation within 

and between chambers. NO 3  Epsilon, the sum of nitrate and nitrite, was determined in 

water by flow-injection analysis using a colorimetricc procedure (see Application note 

number ASN 62-03 / 84, Perstorp Analytical, Maidenhead, Berkshire, UK). NH 4  was 

determined in water on a flow-injection analyser using a gas diffusion method (see 

Application note number ASN 50-03 / 84, Perstorp Analytical, Maidenhead, Berkshire, 

UK). 

Results were expressed as mg / bOg of soil and analysed using the SAS glm for two-

way ANOVA. There was no significant [CO2], nutrient or interaction effect between the 

two on either soil ammonia or nitrate for both species (p > 0.05). Mean ammonia (mg / 

100 g soil) in quadrants without fertiliser addition during the two previous growing 

seasons was 2.28 versus 2.63 mg / 100 g of soil in the quadrants supplied with fertiliser. 

Nitrate concentrations were 5.42 mg / 100 g of soil in non-fertilised quadrants versus 

4.87 mg in fertilised plots. Since the soil samples were taken before the fertiliser system 

was activated at the start of the growing season, these results could be showing that after 
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the 1995 growing season most of the available fertiliser was either taken up into the 

plants or was leached from the soil during the winter. 

2.4.3 Temperature and Light Performance 

Glende von 

Air temperature and humidity within the OTCs was measured at a height of 1.5 m from 

the ground using an Ancom Combined Humidity and Temperature Probe. Outside air 

temperature was measured using a platinum resistance thermometer (PT 385 Delta-T 

devices Ltd, Burwell, Cambridge). Light was measured inside the OTCs using a tube 

solarimeter (Delta-T, Burwell, Cambridge) at a height of c. 1.5 m. Air temperature 

within the OTCs was generally higher than outside. The temperature inside and outside 

the OTCs in 1995 is shown in Figure 2.5 and the deviation from ambient temperature in 

1995 is shown in Figure 2.6. On average the temperature increase in the chambers 

compared with the outside was 2.8 °C in 1995. Other authors have found similar 

increases in temperature. Although such an increase in temperature will probably affect 

photosynthesis, respiration and water relations and may shift the temperature optimum of 

photosynthesis (Long 1991), the expected increase in global air temperature as a result 

of rising atmospheric [CO2] is similar to the increase caused by the chambers. 

Averaged over the whole of 1995 relative humidity within the OTCs was 18 % lower 

than outside the OTCs. It was not possible to assess light attenuation since the outside 

solarimeter was overgrown by the surrounding Sitka spruce giving lower values than 

those in the chambers. Light attenuation is usually 10 % in OTCs (see Leadley and Drake 

1993). 
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Figure 2.5 Temperature (C) inside and outside the OTCs in 1995. 
Each value is the mean temperature in all the chambers or outside 
over 24 hours. 
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Figure 2.6 Frequency histogram of deviation from ambient temperature 
in OTCs from January to December 1995. Values are based on 24-hour 
temperature means. 

ITE 

Air temperature was measured inside the OTCs at a height of c. 1.5 m from the ground 

using a T35 1-PX sensor. Outside air temperature was measured using a platinum 

resistance thermometer (Delta-T devices Ltd, Burwell, Cambridge) in the vicinity of the 

OTCs. On average the temperature increase in the chambers compared with the outside 

was c. 2.0 °C in the summer of 1994. 

2.5 Methods Not Described in Detail in Chapters 

2.5.1 Grinding of Plant Samples 

All sub-samples of tree tissues (mostly leaves and needles) used for biomass 

determination, labelled nitrogen analysis and biochemical analysis (except for Rubisco, 

soluble protein content and chlorophyll samples) were ground using different forms of 
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grinder. In order to obtain very evenly and finely ground samples for subsequent analysis, 

a ball-mill was used (Ball Mix, UK) with two steel ball bearings. This mill was used 

primarily for the ' 5N stable isotope analysis, since this required very even and fine sub-

samples. A centrifugal grinder (Retsch, Glen Creston, Stanmore, UK; 220 V, 50 Hz; 

mesh size 0.5 mm) was used for samples which were already relatively fine (leaves and 

small twigs). A large industrial grinding machine (C & N Laboratory Mill Size 8 ", 

Christy and Norris Ltd., Chelmsford, England) was used for larger tissues such as whole 

branches and stems, and the sample subsequently re-ground in the centrifuge machine. A 

coffee grinder (Braun Automatic) was also occasionally used to break down larger 

tissues into manageable sizes. 

2.5.2 Pest Incidence and Control 

Green-fly were a continuous presence on alder leaves during the growing seasons, 

although their presence did not seem to reduce plant vigour. This cannot be said for the 

fungus Taphrina tosquinetti, a form of leaf curl (Alexopoulos 1952) which was a 

problem at Glendevon in 1995. In June to September 1995 it infected common alder 

plants in all treatments and quite a number of leaves were lost because of it. Wind 

dispersal across the chamber compartments and away from the control plots did not 

enable the measurement of lost phytomass. In order to alleviate the problem one alder 

tree per quadrant was removed in June 1995, and the plants were sprayed. The biomass 

of the removed trees was incorporated into the cumulative biomass of all trees calculated 

at the end of the experiment. 

Pest control on the site was effected using 'Fightagrub' which contained the microscopic 

Heterohabditis nematode against vine weevil and sciarid fly, 'pp captan 80 wg' against 

apple, pear scab, and for the prevention of Gloeosporium and Phytophthora storage 

rots, or 'Murphy Mortegg' (sprayed on the alder in April 1995). 
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CHAPTER 3 

Growth, biomass and biochemistry of Alnus glutinosa and 
Pin us sylvestris grown in elevated carbon dioxide concentration - a 
fifteen-week experiment at the Institute of Terrestrial Ecology 

3.1. Introduction 

In response to the convincing evidence of rising atmospheric CO 2  concentrations, 

[CO2}, in the early nineteen eighties, the main focus in the scientific community fell on 

the effects of elevated [CO 2] on major crop plants (Cure and Acock 1986, Kimball et 

al. 1993). Woody plants have generally been under-represented in the large number of 

publications on this topic until recently (Eamus and Jarvis 1989, Mousseau and 

Saugier 1992, Ceulemans and Mousseau 1994). Over the past twenty years 

experiments with both herbaceous crop and woody tree species have shown varied 

photosynthetic and growth responses to carbon dioxide enrichment (Eamus and Jarvis 

1989, Mousseau and Saugier 1992, Kimball et al. 1993, Poorter 1993, Ceulemans 

and Mousseau 1994). Many studies have shown a capacity for increased growth, 

biomass production and photosynthesis as well as differing allocation of carbon and 

nitrogen in plants grown in elevated [CO 2] conditions (Mousseau and Saugier 1992, 

Kimball et al. 1993), whereas in other experiments significant stimulation of 

photosynthesis, growth or biomass production was not found (Mousseau and Enoch 

1989, Kimball et al. 1993). Often the impact of elevated [CO 2] on plants is closely 

inter-linked with the availability of other environmental variables, such as nitrogen, 

phosphorus, photosynthetic photon flux density (PPFD), temperature or water. The 

intricacies of these interactions need to be elucidated in order to have a better grasp 

of the mechanisms involved in response to elevated [CO 2]. Another complicating 

factor is that responses often appear to be species-specific, with some species 

exhibiting a large response and others barely any. Different species seem to have 

different limits to their plasticity such as size constraints which may be defined by their 

genetic makeup (determining the way in which they can grow) and by the 

environmental conditions. 

The question arises whether species that grow relatively quickly under optimum 

conditions respond more strongly than those with lower maximum relative growth 
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rates (Poorter 1993)? This question will be addressed in this study which is a 

comparison between two native trees with quite different developmental and growth 

patterns. Common alder (Alnus glutinosa (L.) Gaertn) is a deciduous pioneer species 

which can fix nitrogen from the atmosphere with the help of Frankia actinomycetes 

within root nodules. It is fast-growing and hardy but not a dominant forest species, 

and its shape and size are greatly affected by its habitat (Fife 1994). The alder has the 

capacity for indeterminate growth. This can be seen in its plasticity of growth in 

varying habitats. It can survive on wasteland or heathland with nutrient limited soils, 

as well as thriving on river banks often submerged in water. It is more restricted in its 

range than its cousin the birch (Betula spp), however and does not grow over as wide 

a range of altitudes and latitudes as Scots pine. Common alder is contrasted with a 

slower-growing, mycorrhizal conifer, Scots pine (Pinus sylvestris L.), a dominant 

forest species. Scots pine has a fibrous, ectomycorrhizal root system enabling, it to tap 

nutrients very well and it can tolerate a range of soils (acid and alkaline). It has 

determinate growth, but can have second flushes of (lammas) growth in new needles 

in the second half of the growing season. 

Previous short-term studies of the effects of elevated [CO 2 ] on alder seedlings 

suggested that nodulated plants had larger whole plant photosynthesis, nitrogenase 

activity, nitrogen content and total biomass compared to nodulated plants grown in 

ambient [CO2], or compared to non-nodulated plants grown in both carbon dioxide 

concentrations (Norby 1987, Arnone and Gordon 1990). One possibility is that 

nitrogen-fixing trees grown in elevated carbon dioxide are able to export extra 

photosynthate (sugars) to increase nodulation of roots and so be more independent of 

external nitrogen additions. While the Scots pine will not have this advantage, being 

evergreen, it can continue to fix carbon throughout the year when environmental 

conditions are suitable. 

Intraspecific variation has also been shown in some studies (Poorter 1993). This can 

sometimes be explained by the use of different seed provenances or clones, as well as 

different aged trees, ranging from seedling to mature (Lee and Jarvis 1996).The 

extent to which this is a product of varied methodologies (i.e. some plants grown for 
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longer or shorter periods than others, some grown in inadequate rooting medium or 

constricting pots) needs to be better understood. Although this is not directly relevant 

to this research, it is a point to be kept in mind when drawing conclusions from 

different authors' work scaling up to whole populations and stands. 

It is becoming increasingly clear that any particular response to elevated [CO2] in a 

species is often time-dependent, with negative feedback inducing a reduction in 

photosynthetic rate after a certain time period, by mechanisms that remain to be found 

(Mousseau and Saugier 1992). Photosynthetic acclimation has been associated with 

accumulation of carbohydrates because of low sink demand and / or reduction in 

Rubisco amount or activity (Stitt 1991). This longer-term acclimation effect of carbon 

dioxide enrichment varies in its time of onset in different plant species and in different 

clones. In addition, McConnaughay et al. (1993) found that the response to carbon 

dioxide can be further affected by growth in small pots. Although pots could not be 

avoided in this fifteen-week study, the longer term experiment used seedlings directly 

planted into the ground. The following short-term experiment had as an overall aim to 

investigate how elevated [CO 2] and nitrogen supply affects the growth, physiology 

and biochemistry of Alnus glutinosa and Pinus sylvestris. 

3.1.1 Hypotheses and Particular Aims 

The hypothesis is that common alder, by fixing nitrogen will be able to take advantage 

of the extra carbon assimilated in elevated [CO2] conditions and increase its growth, 

biomass and photosynthetic efficiency. In addition, nitrogen limitation and nitrogen 

dilution resulting from the extra carbon is not expected to occur. 

The Scots pine, on the other hand, after an initial increase in growth in elevated 

[CO2] may develop a source-sink imbalance in which excess starch and other 

carbohydrates induce a dilution of the nitrogen content leading to negative feedback 

with the result that particularly those trees without fertiliser addition will show no 

significant differences in growth, physiology and biochemistry compared to those 

grown in ambient [CO2]. An accumulation of starch and soluble sugars is likely to be 

visible during the peak growth period, but will taper off towards the end of the fifteen 

weeks. 
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The particular aims of this experiment were to elucidate: 

whether one-year old Scots pine and common alder seedlings grown in 

elevated [CO2] over a fifteen-week time span would respond by increased 

growth and biomass, or changes to their photosynthetic system compared to 

those grown in ambient [CO2}; 

whether the allocation of carbon would differ between the treatments, since 

trees grown in elevated carbon dioxide have been found to be ontogenetically 

more advanced than those grown in ambient conditions; 

whether there would be any interactive effects of the environmental variables 	- 

carbon dioxide and nitrogen on growth, physiology and biochemistry of the 

two species; and 

whether the nitrogen-fixing alder and the pine would respond differently to 

increased availability of carbon and possible concomitant dilution of nitrogen 

(creating a source-sink imbalance). 

3.2 Materials and Methods 

3.2.1 Site Description 

The open top chamber (OTC) site at the Institute of Terrestrial Ecology, Bush 

Estate, Penicuik, near Edinburgh, previously used for pollution studies, was set up for 

elevated carbon dioxide research. The site is situated at a latitude of 55 51' N, an 

altitude of 198 m and is surrounded by the Pentland Hills. Average yearly rainfall is 

1000 mm. 

3.2.2 Experimental Design 

The study was a fifteen-week experiment from 11 April 1994 until the end of July 

1994. Eighty-eight one-year-old common alder seedlings and eighty-five Scots pine 

seedlings were grown for a year in either elevated carbon dioxide concentration 

(ambient + 350 p.mol moF') or ambient carbon dioxide concentration greenhouses 

(c.350 jimol moF' CO2) at the Forestry Commission's Southern Research Station 

(SRS) in Alice Holt, Farnham, Surrey. The trees were transplanted into 4 dm 3  pots 

the alder in a mixture of peat, perlite and bark in a 1 : 1: 1 ratio by volume; the pine 

in a mixture of peat, perlite and sand (2: 1 : I ratio by volume), and grown in eight 
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open-top chambers (OTC), four in elevated (ambient [CO 2] + 350 pmoI mot') and 

four in ambient (c.350 J.tmol moF') {CO2} and an outside plot. Since carbon dioxide 

concentrations vary diurnally, a constant amount of carbon dioxide was added to the 

CO2-enriched chambers allowing the concentration in the elevated [CO 2 1 chambers to 

track that in the ambient chambers and control plot. For details of the CO 2  control 

system and performance see Chapter 2 Materials and Methods. The chambers were 

constructed in an octagonal form, from lightweight aluminium frames containing 3 

mm horticultural glass with an open top, and had a ground area of 7 m 2, a height of 

2.3 m and a sliding door for access. There were seven or eight individuals of each 

species in each OTC (see Photo 3.1 and Photo 3.2). An irrigation system with a 

nozzle for each individual plant was set up in each OTC at the beginning of the 

season. 

The experiment was a multi-factorial experiment (2 x 3 x 2) with four chamber 

replicates, two species, three carbon dioxide-chamber treatments (elevated [CO,] 

chambers, ambient [CO 2] chambers and a control plot), and two nitrogen treatments 

(low nitrogen and high nitrogen). This gives an experiment with two environmental 

factors, the first being 'CO 2 ' with two 'levels', the second 'fertiliser' with two 

'levels'. Each species was analysed separately (statistically) but impacts of carbon 

dioxide and nutrition were compared between species as well as between treatments 

(see section 3.2.4 on Statistical Analysis). 

3.2.3 Experimental Procedure 

General Overview 

All seedling were regularly supplied with water and fed weekly with nutrients 

(see sub-section on Nutrient Addition below). The saplings were placed inside 

the chambers along with trees from other experiments, namely three-year old 

beech (Fagus sylvatica) and two-year old Sitka spruce (Picea sitchensis). This 

could potentially have affected the experiment since the other saplings were 

larger, and thus slightly overshadowed the species in this experiment (see Photo 

3.2 showing Alnus glutinosa situated next to Picea sitchensis). 
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Photo 3.1 Pinus sylvesiris seedlings inside an OTC at the start of the fifteen-

week experiment. The seedlings were approximately 10 cm in height. 

Photo 3.2 Ainus glutinosa seedlings inside an OTC at the start of the fifteen-

week experiment. The seedlings were approximately 30 cm in height. 

11•. f:•
IIIN I: 

	

I 	q 

I 40 

: - 

	

- 	 - I 

• 

	

• 	 • 	•q r4.r ''1 

	

•: 	

• 	

• 	

1 

- 

45 



Nutrient Addition 

A nutrient solution developed for silver birch was considered satisfactory for the 

common alder, since common alder and silver birch have similar growth 

characteristics (Ingestad 1981). Half of the trees in each chamber were fed weekly 

with a full nutrient solution (macronutrients and micronutrients) (Ingestad and Lund, 

1986), see Appendix 1. The other half of the seedlings (low N) were given the full 

nutrient treatment except for nitrogen: ammonium nitrate, the main nitrogen-

contributing compound, was omitted from the solution (see Appendix 1). The Scots 

pine seedlings received the same nutrient solutions. 

Harvests, Growth and Sampling 

Trees were harvested at the beginning (initial harvest) and end of the experiment (final 

harvest) for growth and biochemical analyses. In the initial harvest (using trees which 

had not been inside chambers) the height, basal diameter, leaf number, branch number, 

and fresh mass (Mf) and dry mass (Md) were measured of 12 pine (six grown in 

elevated and six in ambient [CO 21, see Section 3.2.2) and 12 alder (six in elevated, six 

in ambient [CO 21). At the final harvest the 72 pines and 74 alder were destructively 

harvested; in addition to the measurements made at the initial harvest, biomass was 

separated into root, stem, leaves, and branches, oven dried at 80 °C and dry mass and 

total leaf area were measured. At both harvests sub-samples of the oven-dried leaves 

and current-year needles were collected for nutrient analysis and ground in a 

centrifugal grinder (Retsch, Glen Creston, Stanmore, UK; mesh size 0.5 mm). For leaf 

nutrient analysis in alder at the final harvest four samples per [CO 2] treatment per 

OTC and two per nutrient treatment per OTC were taken, although no samples from 

the control trees were taken. No Scots pine needles were analysed at the final harvest 

because the samples were mouldy. Heights of all trees were measured weekly 

throughout the experiment. Leaf area was measured using a leaf area meter (Li-300, 

Li-Cor Inc., Lincoln, Nebraska, USA). Measuring Scots pine needle area with the leaf 

area meter proved rather inaccurate, therefore the pine leaf area data and their 

derivatives need to be seen primarily as a comparison and not as absolute data. 

During week eight all the trees were sampled for chlorophyll, Rubisco and soluble 
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protein analysis. Six trees per [CO 2] treatment per OTC and three per nutrient 

treatment per OTC per species were sampled by removing three leaf discs 0.42 cm in 

diameter from the 2nd leaf from the top in alder, and three current-year needles c. 5 

cm from the top of the leader in pine as close to midday as possible. 

Biochemical Analyses 

Sampling at the initial harvest involved taking enough leaves c. 2 cm from the top of 

the seedlings to fill a 25 cm 3  Universal sampling vial (for carbohydrates) or three leaf 

discs or needles (for chlorophyll, Rubisco and soluble protein content) giving six 

[CO2] treatment samples per OTC per species and three per nutrient treatment per 

OTC. At subsequent sampling or at the final harvest two samples from each OTC per 

[CO2] treatment and one sample per nutrient treatment per OTC were sampled per 

species, giving a total of 24 trees per species per analysis. An exception to this was 

the soluble carbohydrate analysis for which two samples were pooled to make one, 

because of lack of sufficient plant material. 

Soluble carbohydrates were measured by anion exchange chromatography with pulsed 

amperometric detection (Dionex Corp., Sunnyvale, CA 94088, USA) using a 

Carbopak PA carbohydrate column (see Appendix 5 for details of integration 

parameters used to calculate peak area). 50 mg (± I mg) of freeze-dried and ground 

leaves in 10 cm3  of double distilled water were extracted once by shaking and placing 

in a 30 °C water bath for 15 minutes. After centrifuging at 4500 rpm for 15 minutes, 

the supernatant was removed, and filtered (0.2 1m nitro-cellulose membrane filters, 

Maidstone, England. The retrieved solution was diluted 1 : 10 and then analysed by 

ion chromatography using a Carbopak PA carbohydrate column (Ion Chromatography 

System hplc, DX500; see Appendix 5 for details of integration parameters used to 

calculate peak area). Each sample was run for one hour through the Dionex machine 

according to the following protocol: prior to sample injection the machine was 

washed with double distilled water, then 200 mmol dm -3  NaOH (100 % of the eluent) 

was injected into the system for the first 15 minutes of the 1 hour run (per sample), 

followed by 16 mmol din -3  NaOH (i.e. 8 % of the eluent) and double distilled water 

(92 % of eluent) for the last 45 minutes. This method was used on all the samples 
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analysed. A set of ten pure sugars and polyols (inositol, manitol, fucose, rhamnose, 

arabinose, galactose, glucose, xylose, fructose and sucrose) was run as a standard 

with each set of samples. 

Starch was analysed in perchloric acid extracts by the iodine method (Allen 1989) or 

in ethanol extracts by the enzyme method using amyloglucosidase (AGS) which 

splits the starch into D-glucose, followed by glucose phosphorylation and then the 

production of NADPH upon reaction with NADP (measured colorimetrically using a 

spectrophotometer) (Bohringer Mannheim 1994). Chlorophyll was analysed 

spectrophotometrically (Series 2, Cecil Grating, Cambridge, UK) in dimethyl 

formamide (DMF) according to the equations and extinction coefficients of Porra et 

al. (1989). Nutrient samples from the initial harvest (root and leaf samples) were 

analysed by the Forestry Commission at Alice Holt, using the same methods as 

outlined below for the samples analysed in Edinburgh. 

Nutrient concentrations were determined using an acid digest (Allen, 1974). Prior to 

analysis, an acid oxidation was necessary in order to oxidise the organic matter. The 

samples were first oven-dried at 80 °C for 48 hours, ground and then kept in 

desiccators until analysis. 2 cm 3  of 18 j.tmol mor' boiling sulphuric acid were added to 

100 ( ±10) mg of the ground sample, and 100 vol (2 x 0.75 cm 3 ) hydrogen peroxide 

added carefully and shaken. The sample tubes were then heated at 320 °C for six 

hours, cooled and transferred to 100 cm 3  volumetric flasks. 0.5 cm3 of 10 % 

lanthanum solution was added and flasks adjusted to correct volume. Nitrogen 

concentration was determined by a gas diffusion method using a flow injection 

analyser (Fiastar, Tecator Ltd, Wilsonville, OR, USA). Phosphorus concentration was 

determined using a molybdenum blue method, using a flow injection analyser (Fiastar, 

Tecator Ltd, Wilsonville, OR, USA). Potassium, calcium and magnesium were 

determined by flame emission spectroscopy using an atomic absorption spectrometer 

(Unicam 919, Cambridge, UK). The values obtained for the samples were compared 

with standards of known concentration (of 20, 40, 60 mg dm 3  Ca; 5, 10,15 mg dm 3  

Mg ; 10, 20, 40 mg dm -3  K). Each sample was measured three times, and a relative 

standard deviation calculated to trace large inaccuracies. Based on 100 mg of dried 
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plant material made up to a fixed volume of 100 cm 3 , the concentration of nutrients 

(mg g') was calculated as follows: 

cv/nz 	 (3.1) 

where c = measured concentration of sample (mg dm 3 ), 

v = volume used (0.05 dm3), and 

m = mass of sample (0.1 g). 

Rubisco and soluble protein content analysis was not possible for this short-term 

study because of a freezer shutdown which destroyed the samples. See Chapter 5 for 

Rubisco and soluble protein concentration results of the long-term experiment. 

Hypothesis Testing 

The methods outlined above were used to test the hypotheses in Section 3.1.2. Stem 

height, stem basal diameter, leaf area and biomass data were used to test the 

hypothesis that those seedlings grown in elevated atmospheric [CO2] will grow bigger 

than those in ambient conditions and show differing patterns of carbon allocation. 

Chlorophyll contents were used to assess any changes in the photosynthetic capacity 

of the leaves or needles. Nutrient content data were used to assess whether a nitrogen 

dilution effect took place, and carbohydrate contents (starch and other carbohydrates) 

were determined to see if a source-sink imbalance occurred. 

3.2.4 Statistical Analysis 

Data were analysed either using a Student's t-test (for data from the initial harvest 

where no nutrient treatments only carbon dioxide had been applied) or a two-way 

analysis of variance (ANOVA) using the general linear model (gim) in SAS 6.11 (SAS 

Institute Inc., Cary, NC 27513, USA). Unless otherwise specified all statistical 

probabilities relate to two-way ANOVA. Factors in this analysis were carbon dioxide 

concentration (350 pmol mo!' CO2  versus 700 .tmol moI' CO,), nutrient availability 

(no-fertiliser versus fertiliser) and chamber presence (no chamber versus chamber). 

The number of chamber replicates was four (n = 4). For further statistical details see 
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section 2.2.2 or Appendix 8. 

3.3 Growth and Biomass Results 

3.3.1 Stem Height, Growth Rate per Day and Stem Basal Diameter 

Stern Height 

Scots pine and common alder stem heights responded slightly differently to elevated 

[CO2]. In the Scots pine exposure to elevated [CO 2] did not significantly increase 

stem height (p > 0.05, sample size = 30) (see Figure 3.1a). Differences in mean height 

in the nitrogen treatments although not statistically significant (p > 0.05, sample size 

15) show fluctuating means across the season with a general tendency towards the 

ambient / low nitrogen (A - N) and the elevated / low nitrogen (E - N) treatment trees 

growing taller than the rest, (see Figure 3.1b). 
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Figure 3.1 a Seasonal course of mean stem height in Scots pine over the 

fifteen-week experiment. Values are the means of 30 measurements. AMB 

= ambient [CO2 ], ELEV = elevated [CO 2], CON = control plot. There were no 

significant differences between treatments (p> 0.1). 
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Figure 3.1 b Seasonal course of mean stem height in Scots pine over the 

fifteen-week experiment (showing all treatments except control). Values 

are the means of 15 measurements. 

A-N = ambient [CO2 ] low N, A+N = ambient high N; EN = elevated [CO 2 ] low 

N, E+N = elevated high N. There were no statistically significant nutrient or 

[CO2] effects (p  >0.1). 
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The common alder on the other hand showed an initial CO 2  effect, albeit in taller stem 

heights in the ambient not elevated [CO 2] seedlings in the first four to five weeks but 

which then seems to have cancelled out in the last ten weeks of the study (see 

Appendix 5 for full ANOVA details, and Figure 3.2a). A nutrient effect was only 

found in the common alder in weeks one and three (see Appendix 3). There is a 

general trend towards the 'ambient plus nitrogen' (A + N) alder seedlings reaching the 

tallest height of all the treatments, followed by A-N and then the elevated nitrogen 

treatments (see Figure 3.2b). Thus the hypothesis that common alder seedlings grown 

in elevated [CO 2} conditions without fertiliser (i.e. stimulating nitrogen fixation) 

would grow taller than those in other treatments was rejected. 
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Figure 32a Seasonal course of mean stem height in common alder over the 

fifteen-week experiment. Values are the means of 30 replicates. AMB = 

ambient [CO2 ] low and high N, ELEV = elevated [CO2] low and high N. AMB 

means were significantly higher than elevated in the first five weeks (* p < 

0.05). 
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Figure 32b Seasonal course of mean stem height in common alder over the 

fifteen-week experiment (showing all treatments except control). Values are 

the means of 15 replicates. A-N = ambient [CO 2] low N, A+N = ambient high N; 

E-N = elevated [CO2 ] low N, E+N = elevated high N. A significant nutrient effect 

was found on julian days 104 and 118 (p  <0.05). 

An increasing chamber effect in the alder occurred throughout the experiment 

(0.05 > p > 0.001) (see Appendix 3). Although the chamber effect was not 

statistically significant in the pine (p > 0.05), one can see in Figure 3.1 that such an 
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effect was clearly also occurring. Thus any differences in stem height in this short-

term experiment were primarily between the control plot trees of both species and 

those grown in chambers. 

Growth Rate Per Day 

The growth rate data for both common alder and Scots pine (Table 3.1) refute the 

hypothesis that the elevated-grown alder would have a larger advantage over the 

ambient-grown seedlings than the elevated [CO 2 ] 
pine trees. 

Table 3.1 Height growth rate per day (cm) of both common alder and Scots pine over 

the fifteen-week experiment, measured by calculating the difference in mean stem height 

(cm) between the start and the end of the experiment and dividing by the number of days 

in which this stem increase occurred. 

Treatment 	 common alder 	Scots pine 

cm day' 	 cm day' 

Ambient 	 0.821 	 0.161 

Elevated 	 0.815 	 0.159 

Outside 	 0.5 83 	 0.090 

Stem Basal Diameter (SBD) 

In the common alder exposure to elevated [CO 2] did not significantly increase SBD 

either at the beginning or at the end of the experiment, with initial harvest SBD means 

in ambient [CO2] of 8 mm ± 1.71 95 % confidence interval (CI) and of 7.36 mm ± 

0.84 CI in elevated [CO 2 1 (t-test, p> 0.05, n = 6). The elevated [CO 21 seedlings had 

higher mean SBD values than the ambient [CO 2] at the final harvest (p = 0.07) (see 

Table 3.2). The difference was not significant at p <0.05 but was at 

p <0.1 which indicates a trend towards larger SBD in the elevated [CO 2 ] treatment. 

Over the 95 days of the experiment, the ambient [CO 2] seedlings increased in mean 

basal diameter by 0.074 mm day', whereas the elevated [CO 2] seedlings increased by 

0.100mm day 2 . 
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Table 3.2 Alder mean stem basal diameters (plus 95 % confidence intervals) at the final 

harvest showing all treatment combinations. Means were derived from 25 measures for 

the ambient versus elevated [CO 2] comparison and 11 measures for the CO 2  plus 

nutrient treatments. Each measure consisted of the mean of two measurements at the 

base of the stem 2 cm above the lateral roots. 

Treatment 
	

Mean (95 % confidence interval) 

(mm) 

Ambient 15.33 (1.45) 

Elevated 17.28 (1.54) 

Outside 14.19 (0.79) 

A-N 16.94 (1.87) 

A+N 14.08 (2.07) 

E-N 17.10 (2.63) 

E+N 17.45 (1.96) 

C-N 14.25 (1.39) 

C+N 14.10 (1.01) 

In the Scots pine stem basal diameter was significantly different in ambient and 

elevated [CO 2 1 seedlings at the initial harvest with an ambient [CO 2] mean of 

3.71 ± 0.55 95 % CI and an elevated [CO2] mean of 4.64 ± 0.25 95 % CI (t-test, p < 

0.0 1, sample size = 6). Differences in stem basal diameter were also significant at the 

end of the period (p = 0.01, sample size = 24)(see Table 3.3). There was no nutrient 

effect (p > 0.05). Overall, these data do not confirm the hypothesis that 'elevated 

[CO2 ] plus nitrogen' pine seedlings grow bigger than seedlings in other treatments at 

first, followed by acclimation to elevated [CO 2]. The difference in SBD between 

seedlings in ambient and elevated [CO 2] seems to have been significant throughout the 

experiment not just at the beginning. 
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Table 3.3 Pine mean stem basal diameters (SBD) at the final harvest showing all 

treatment combinations. Means were derived from 25 measures for the ambient versus 

elevated [CO2] comparison and 11 measures for the [CO 2] plus nutrient treatments. Each 

measure consisted of the mean of two measurements at the base of the stem. 

Treatment 	 Mean (95 % confidence interval) 

(mm) 

Ambient 5.14 (0.43) 

Elevated 6.49 (0.86) 

Control 6.29 (0.58) 

A-N 5.12 (0.66) 

A+N 5.15 (0.65) 

E-N 7.17 (1.45) 

E+N 5.75 (0.90) 

C-N 6.03 (0.79) 

C+N 6.57 (0.97) 

A chamber effect was present in both species at the final harvest. Seedlings of both 

species grown in the control plot had significantly lower SBD values than those 

grown inside the chambers (common alder p = 0.017; Scots pine p < 0.05). This 

indicates that not only did the concentration of CO2 increase the basal diameter of the 

stems in both species, but also the presence of the glass chamber. 

3.3.2 Total Biomass 

There was no significant difference in total biomass of either Scots pine or common 

alder between ambient and elevated [CO 2] seedlings either at the beginning or at the 

end of the fifteen-week study (t-test, p > 0.1 for initial harvest ; p < 0.1 for final 

harvest data). In the alder, despite the lack of statistical significance, there was a 

20 % increase in total phytomass in elevated [CO 2} compared to ambient [CO2]. 

There was no nutrient effect (p <0.05). The A-N treatment mean was very similar to 

the elevated [CO2] treatment means and this may explain the lack of statistical 
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significance between the nitrogen treatments. 
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Figure 3.3 Mean total biomass of common alder at the final harvest after 

fifteen-week exposure to elevated [CO 2]. AMB = ambient [CO2 ] low and high 

N, ELEV = elevated [CO 2 ] low and high N, n = 16; A-N = ambient low N, A+N = 

ambient high N, E-N = elevated low N, E+N = elevated high N, n = 8. There 

were no significant differences between treatments (p > 0.1). 
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Figure 3.4 Mean total biomass of Scots pine at the final harvest after fifteen 

week exposure to elevated [CO 2 ]. AMB = ambient [CO 2 ] low and high N, 

ELEV = elevated [CO 2] low and high N, n = 16; n = 8 for combined [CO 2] and 

nutrient treatments. There were no significant differences between 

treatments (p > 0.1). 

In the case of Scots pine, the increase in total biomass of elevated [CO 2 ] seedlings 

compared with ambient [CO 2] seedlings was 10.5 %. There was no significant [CO 2 ] 

or nutrient effect (p > 0.05) (see Figure 3.4). Mean biomass of the E-N treatment was 

the largest, and this does not support the hypothesis that Scots pine seedlings growing 

in elevated plus fertiliser would grow best (see Section 3.1.2). Since nutrients were 

carefully measured and added by hand, the possibility that the fertilised plants did not 

have access to the nutrients is unlikely. 

There was no significant chamber effect in the Scots pine (p > 0.05) despite there 

being 20 % more biomass in elevated [CO2] compared with control seedlings. In 

contrast the increase from control to elevated [CO 2} trees in common alder was a 
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considerable 77 % and was significant at p  <0.06 (ANOVA on log-transformed data, 

chamber effect, p = 0.058). 

3.3.3 Allocation 

Biomass Allocation 

At the final harvest most of the biomass in common alder was allocated to the leaves 

(c. 40 %), with C. 20 % in the branches, 30 % in the stem and 10 % in the roots. This 

was true for all treatments since allocation was not affected by elevated [CO 2] 

(p > 0.1) (see Table 3.4). There was a slight tendency however, towards a [CO 2 ] 

effect on leaf fraction (LMR) at the final harvest (p = 0.11). Nutrient addition had a 

significant effect on LMR at the final harvest (p = 0.0032). For root and leaf fractions 

there was an interaction effect between [CO 2] and nutrients in alder (p = 0.019 and 

0.079, respectively). 

Looking at the raw data behind these ratios (dry mass per tissue, see Appendix 4) 

there is a trend towards leaves and roots in elevated [CO 2
] 

growing larger than those 

in ambient [CO2 ] (p 
 <0.1). Since there were only two harvests it was not possible in 

this study to look at ontogenetic changes in dry mass allocation in trees of the same 

mass compared to the above analysis using trees harvested at the same time (see 

Chapter 4 for details of this type of analysis of ontogenetic changes and their effects 

on specific growth rate). 

Allocation of dry mass in Scots pine was also not affected by elevated [CO 2] (p > 0. 1) 

except in the roots (p = 0.060) where there was a tendency towards more mass being 

allocated below ground (see Table 3.5). There was a significant nutrient effect only on 

needle fraction (or leaf mass ratio, LMR) (p = 0.01 l).There was also an interaction 

effect between [CO 2] and nutrients on needle allocation (p = 0.031) but not on any 

other tissues. Nutrient addition thus had a positive effect on needle fractions, with 

high N seedlings allocating more carbon to needles then low N seedlings. Data of dry 

mass per tissue (see Appendix 4) show that pine followed a similar pattern to common 

alder, with a tendency towards seedlings in elevated [CO 2] having more mass in the 

leaves and the roots than in ambient [CO 2]. In common alder there was no chamber 
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effect on any tissues, whereas in Scots pine there was a chamber effect on leaf mass (p 

= 0.0023) only. 

Table 3.4 Biomass allocation at the final harvest in common alder, shown as plant tissue mass to total 

biomass ratios. Total plant biomass is also shown (g). Data are the means of 14 measurements for [CO2] 

treatments and 7 measurements for nutrient and [CO2] treatments. 

Treatment 	Total 	 Leaf 	 Branch 	Stem 	 Root 

Mass 	 Fraction 	Fraction 	Fraction 	Fraction 

Ambient 206.01 0.39 0.18 0.32 0.11 

Elevated 245.31 0.41 0.16 0.30 0.13 

Outside 139.63 0.41 0.17 0.31 0.12 

A-N 239.29 0.41 0.19 0.31 0.94 

A+N 167.97 0.37 0.16 0.34 0.14 

E-N 240.74 0.39 0.17 0.30 0.14 

E+N 250.53 0.44 0.15 0.29 0.12 

C-N 153.48 0.41 0.18 0.30 0.12 

C+N 121.83 0.41 0.16 0.32 0.12 

Table 3.5 Biomass allocation at the final harvest in Scots pine, shown as plant tissue mass to total 

biomass ratios. Total plant biomass is also shown (g). Data are the means of 14 measurements for [CO2] 

treatments and 7 measurements for nutrient and [CO2] treatments; * = [CO2] effect significant at  < 

0.05; (*) = [CO2] effect significant at  < 0.1. 

Treatment 	Total 	 Needle 	Branch 	Stem 	 Root 

Mass 	 Fraction 	Fraction 	Fraction 	Fraction 

Ambient 24.52 0.54 0.11 0.24 0.10 

Elevated 26.81 0.53 0.11 0.22 0.14 (*) 

Outside 22.76 0.49 0.13 0.27 0.12 

A-N 24.76 0.52 0.12 0.26 0.10 

A+N 24.27 0.57 0.11 0.23 0.10 

E-N 28.43 0.52 0.10 0.23 0.14 

E+N 25.18 0.54 0.12 0.21 0.13 

C-N 20.00 0.49 0.13 0.26 0.12 

C+N 25.52 0.48 0.12 0.28 0.12 
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Root to Shoot Mass Ratio(R / 5) 

At the initial harvest the root to shoot mass ratios (R / S) of ambient and elevated 

[CO2]-grown seedlings were not significantly different (t-test, p > 0.05) in either 

common alder or Scots pine. The mean alder R / S ratios (and confidence intervals in 

brackets) of 0.71 ( 0.21) in ambient and 0.70 (0.127) in elevated [CO 2] seedlings 

show that the one-year-old seedlings were investing most of their carbon into their 

roots. The R / S ratios in Scots pine on the other hand, in ambient [CO 2] with a mean 

of 0.30 (0.086) and an elevated mean of 0.31 (0.091) show that approximately one 

third of the resources were being invested into their roots in both treatments. This 

difference between common alder and Scots pine highlights their very different initial 

allocation and growth strategies. After 15 weeks there was no statistically significant 

effect of [CO 2] on alder R / S ratio (Table 3.6). An interaction effect of [CO 2] and 

nutrients was almost significant however. The combined effect of nutrients and [CO 2 ] 

on the allocation of carbon to roots in this case is difficult to interpret (see Table 3.5) 

since there was no clear nutrient or carbon dioxide effect (i.e. the A + N and the E - N 

seedlings had the largest allocations of resources to the roots). For root to leaf ratio 

(R / L) see Chapter 4 Glendevon data. 

In the Scots pine at the final harvest the R / S ratio of the ambient and elevated [CO 2 ] 

trees were significantly different at p < 0.06 if not at p < 0.05 (see Table 3.7). 

Otherwise there were no significant differences in R / S ratios at the final harvest (see 

Table 3.7 below for details). 
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Table 3.6 Common alder and Scots pine mean root to shoot mass ratios at the final 

harvest. Data are means of seven measurements for the alder CO 2  and nutrient 

treatments, and means of 11 measurements for the pine. Ambient [CO 2] , elevated [CO2I 

and control treatment data are the means of 14 for the alder and 22 for the pine. 

Species 	 Mean ratio 	 95 % confidence interval 

Alder 

Ambient 0.13 0.028 

Elevated 0.15 0.020 

Outside 0.13 0.012 

A-N 0.10 0.022 

A+N 0.16 0.046 

E-N 0.16 0.024 

E+N 0.067 0.037 

C-N 0.13 0.010 

C+N 0.13 0.026 

Pine Mean 95 % confidence interval 

Ambient 0.11 0.012 

Elevated 0.17 0.046 

Outside 0.15 0.030 

A-N 0.11 0.017 

A+N 0.11 0.020 

E-N 0.18 0.074 

E+N 0.15 0.043 

C-N 0.14 0.049 

C+N 0.14 0.035 
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Table 3.7 Probability values (p) from two-way ANOVA on root to shoot mass ratio of 

common alder and Scots pine exposed to fifteen weeks of differing carbon dioxide and 

nutrient regimes. The data, from the final harvest, were log-transformed before ANOVA 

analysis and the p values shown relate to each treatment effect on R / S mass ratio; 

sample size = 7 per [CO2 ] and nutrient treatment for alder, and sample size = 11 for the 

pine; p value significant atp < 0.05 * , significant at p  <0.1 (*). 

Species 	CO2 	Nutrients 	CO2  x Nutr. 	Chamber 

Interaction 	Effect 

Alder 	0.15 	0.28 	0.017 (*) 	 0.59 

Pine 	0.056 (*) 	0.80 	0.97 	 0.25 

3.3.4 Leaf Area, Specific Leaf Area (SLA) and Leaf Area Ratio (LAR) 

Leaf Area 

Leaf area in both species of tree was not significantly affected by carbon dioxide or 

fertiliser (see Figure 3.5a and 3.5 b) at both the initial and final harvest (p > 0.1), 

although in Scots pine there was a tendency towards a nutrient effect at the final 

harvest (p = 0.10). 

The presence of chambers round the ambient and elevated alder trees had a positive 

effect on their leaf area (ANOVA on non-log transformed data, p = 0.02; log-

transformed data showed no significant chamber effect). 
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Figure 3.5a Effect of [CO2] and nutrients on leaf area in common alder 

at the final harvest. A+N and A-N = ambient plus or minus nutrients; Es-N 

and EN = elevated plus or minus nutrients. Data are the means of 12 or 

13 measurements. There were no significant differences at p <0.05. 
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Figure 3.5b Effect of [CO2] and nutrients on leaf area in Scots pine at 

the final harvest. A+Nand A-N= ambient plus or minus nutrients; Es-N 

and E-N=elevated plus or minus nutrients. Data are the means of 12 or 
13 measurements. There were no significant differences at p  <0.05. 

Specific Leaf Area 

Table 3.8 shows the specific leaf areas of the alder and the pine seedlings at the final 

harvest. Specific leaf area in the common alder was significantly different between the 

elevated and the ambient [CO21  chambers (p = 0.017) at the final harvest. There was 

no nutrient or carbon dioxide and nutrient interaction effect (p > 0.05). In the Scots 

pine, on the other hand, there were no significant differences between CO 2  treatments 

or nutrient treatments. It is possible that the lower SLA in elevated alder seedlings is 

an indication of either an increase in leaf thickness through an accumulation of starch. 

There was no chamber effect on SLA in common alder or in Scots pine (p> 0.05). 
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Table 3.8 Mean specific leaf area of alder and pine (m 2  kg') at the end of the fifteen-

week exposure to elevated [CO 2]. Data are the means and 95 % confidence intervals of 

12 measurements per [CO 2] and nutrient treatment (i.e. 24 measurements for each [CO 2 ] 

treatment). 

Alder 	 Pine 

Ambient 6.18 (0.27) 0.60 (0.09) 

Elevated 5.45 (0.31) 0.69 (0.10) 

Outside 6.18 (0.22) 0.67 (0.07) 

A-N 6.15 (0.30) 0.59 (0.11) 

A+N 6.16 (0.46) 0.61 (0.16) 

E-N 5.66 (0.26) 0.63 (0.13) 

E+N 5.20 (0.62) 0.75 (0.18) 

C-N 6.10 (0.35) 0.61 (0.07) 

C+N 6.30 (0.32) 0.73 (0.13) 

Leaf Area Ratio (L4R) 

Leaf area ratio in the alder was not significantly affected by [CO,] in this short-term 

experiment. There was no interaction effect of nutrients and [CO 2] on LAR (p > 0.1). 

Thus, exposure to elevated [CO 2] and the two different nutrient regimes did not 

significantly affect the ratio of assimilatory area to total plant mass i.e. LAR, (see 

Table 3.9). 
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Table 3.9 Mean leaf area ratio (LAR), m 2  kg, of common alder and Scots pine at the 

final harvest. Values are the means of 14 measurements for the carbon dioxide 

treatments and the means of seven measurements for the [CO 2  ] and nutrient treatments. 

95 % confidence intervals are in brackets after the means. 

Treatment 	 alder 	 pine 

Ambient 2.45 (0.34) 3.39 (0.53) 

Elevated 2.37 (0.22) 3.94 (0.69) 

Control 2.73 (0.21) 3.47 (0.41) 

A-N 2.82 (0.27) 3.35 (0.79) 

A+N 2.32 (0.66) 3.42 (0.86) 

E-N 2.51 (0.19) 3.85 (0.93) 

E+N 2.24( 	0.43) 4.03(l.20) 

C-N 2.92 (0.23) 3.50 (0.52) 

C+N 2.55 (0.35) 3.43 (0.73) 

In Scots pine there was no significant [CO 2] effect on LAR (p = 0.94) at the final 

harvest (see Table 3.9). There was also no nutrient effect or interaction effect between 

[CO2] and nutrients on LAR (p > 0.1). Exposure to elevated [CO 2] did not therefore 

significantly affect the ratio of assimilatory area to total plant mass i.e. LAR. 

There was no chamber effect on LAR in common alder (p > 0.1) and a tendency 

towards a chamber effect in Scots pine (p = 0.94). 

3.3.5 Specific Growth Rate 

Specific growth rate is also more commonly known as 'relative growth rate' or RGR, 

although the former is more in line with modern nomenclature. Elevated [CO 2] had no 

significant effect on specific growth rate (SGR) between the initial harvest and the 

final harvest in either species (Table 3.10). Any stimulation in SGR must have 

occurred prior to the experimental period, therefore, since total biomass increased in 
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elevated [CO 2]. The hypothesis that the SGR of common alder in elevated [CO 2 ] 

would be higher than in ambient [CO 2 ] is not clearly supported. The lack of 

significantly different SGRs in the Scots pine, on the other hand, could confirm that a 

negative feedback process was taking place, not enabling those seedlings grown in 

elevated [CO2] to take full advantage of the extra carbon dioxide available. 

Table 3.10 Mean SGR ( mg g' day') of common alder and Scots pine over the course of 

the fifteen-week experiment; calculated as (in M2  - in M 11) / t where M2 is mean total 

biomass of 30 seedlings at the final harvest and M, is mean total biomass of six seedlings 

at the initial harvest. 

Species 	Ambient 	Elevated 

Alder 	39.60 	39.80 

Pine 	26.60 	25.40 

3.4 	Biochemical Leaf Composition 

3.4.1 Nutrient Concentration 

Nutrient concentrations in the common alder seedlings were not significantly different 

at the start (see Table 3.11) or at the end of the study (p > 0. 1, see Table 3.12), 

despite exposure to elevated [CO 2] during the first year of growth as well as during 

the experimental period. This result has not usually been found in elevated [CO21 

experiments. Mousseau and Saugier (1992) state in their review that all tree species 

grown in elevated carbon dioxide were found to have lower concentrations of 

nitrogen than the control trees. This does not seem to be the case with common alder 

in this study. There was no nutrient or interaction effect of nutrients and [CO2] on 

nutrient concentration in common alder (p > 0.1). 
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Table 3.11 Concentrations (mg g') of nitrogen, phosphorus, potassium, magnesium and 

calcium of leaves and roots at the initial harvest. Data are means of six measurements for 

each treatment. * = significant difference between elevated and ambient [CO 2
] at  <0.05 

(t-test); (*) = trend towards significant difference between treatments at p > 0.1 (t-test). 

Species 	N 	 P 	 K 	 Mg 	Ca 

alder 

Leaves 

Ambient 25.6 3.3 8.6 1.9 4.0 

Elevated 26.7 3.3 9.0 1.9 4.0 

Roots 

Ambient 19.6 4.0 7.5 2.4 3.3 

Elevated 20.7 4.2 7.4 2.3 3.1 

Scots pine 	N 

Needles 

Ambient 17.6 

Elevated 16.4 

Roots 

Ambient 11.2 

Elevated 12.9 

P 	 K 	 Mg 	Ca 

2.0* 7.5* 1.2(*) 	3.0 

1.8* 6.9* 1.0(*) 	2.6 

1.8 6.2 1.0 	 1.2 

1.8 6.2 1.1 	 1.3 

Nutrient concentration data for Scots pine from the final harvest were not available, 

but at the initial harvest the nitrogen concentration was lower in the elevated [CO2] 

treatment needles (although not significant, t-test, p > 0.05) but not in the roots, 

where nutrient concentrations were higher than or similar to ambient [CO 2]. This 

pattern occurred with all the elements analysed (see Table 3.11). The only statistically 

significant differences in nutrient concentration were in phosphorus and potassium 
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concentration in the needles (p <0.05). There was a trend towards a significant effect 

of elevated [CO 2} on nitrogen concentration in the pine roots (p = 0.086), as well as 

on magnesium concentration in the needles (p = 0.067). These results, unlike the alder 

data, are in agreement with the statement by Mousseau and Saugier (1992) that all 

trees grown in elevated [CO 2] have lower nitrogen concentrations than in ambient 

[CO2]. 

Table 3.12 Concentrations of nitrogen, phosphorus, potassium, magnesium and calcium 

(mg gO') in alder leaves in the final'harvest. Data are means of five samples for each [CO 2
] 

and nutrient treatment No control samples were analysed. 

Treatment N 	 P 	 K 	 Mg 	Ca 

Ambient 17.2 1.0 4.8 6.2 16.2 

Elevated 18.1 1.3 4.8 5.6 15.9 

A-N 16.7 0.9 4.5 6.0 16.7 

A-i-N 17.8 1.2 5.0 6.3 15.7 

E-N 21.0 1.2 4.5 5.5 16.0 

E+N 15.1 1.4 5.0 5.8 15.8 

3.4.2 Chlorophyll Concentration 

At the initial harvest there was no significant difference in chlorophyll a and b 

concentration in common alder leaves, either on a dry mass or on an area basis (t-test, 

p > 0.05). In Scots pine, on the other hand, there were statistically different 

chlorophyll a and b concentrations on a dry mass basis but not on an area basis at the 

initial harvest (t-test, p = 0.03). 

66 



Table 3.13 Alder chlorophyll concentration on an area basis (mg m 2) of leaves sampled 

on the 30th May 1994 (week nine of experiment) and on the 10th June 1994. Values are 

means of 25 samples for the [CO 2] treatments, and at least 12 samples for the [CO 2} and 

nutrient treatments. 

Treatment 	 Chi. a 	Chi. b Chi. a + b 	Ratio a / b 

30 May 1994 (week nine) 

Ambient 1.94 0.80 2.74 2.43 

Elevated 1.82 0.75 2.52 2.43 

Control 1.91 0.77 2.68 2.48 

A-N 1.87 0.74 2.61 2.53 

A+N 1.97 0.85 2.82 2.32 

E-N 1.75 0.71 2.46 2.46 

E+N 1.88 0.80 2.68 2.35 

C-N 1.98 0.79 2.77 2.51 

C+N 1.83 0.75 2.58 2.44 

10 June 1994 (week ten) 

Ambient 1.49 0.51 2.00 2.92 

Elevated 1.47 0.53 2.00 2.77 

A-N 1.29 0.53 1.81 2.43 

A+N 1.73 0.49 2.22 3.53 

E-N 1.58 0.54 2.12 2.92 

E+N 1.36 0.51 1.87 2.67 

Differences between treatments in chlorophyll a, b, a + b, and the ratio a / b were not 

significant on any of the sampling dates for common alder (Table 3.13) or at the final 

harvest for either Scots pine or common alder (p <0.05) (Table 3.14). Although these 

data are not statistically significant (p > 0.05), there is a general trend in the alder (see 

Table 3.13) towards lower concentrations in elevated [CO 2 ] leaves than in ambient 
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[CO2] leaves. This is in agreement with general observations that chlorophyll 

concentration is reduced in elevated [CO 2] (Mousseau and Saugier 1992). The Scots 

pine do not show this tendency, however (Table 3.15). 

Table 3.14 Concentrations of chlorophyll in common alder leaves at the final harvest on 

a dry mass (mg kg) and an area basis (mg 11). Values are means of 25 samples for the 

[CO2] treatments, and at least 12 samples for the [CO 2] and nutrient treatments. 

Dry mass 	Chi a 	Chi b 	Chi a + b 	Ratio 

basis 	 alb 

Treatment 

Ambient 3.10 1.29 4.38 2.68 

Elevated 3.06 1.26 4.33 2.48 

A-N 2.79 1.08 3.88 2.60 

A+N 3.33 1.45 4.78 2.75 

E-N 3.25 1.34 4.59 2.58 

E+N 2.86 1.18 4.04 2.37 

Area basis 	 Chi a 	Chi b 	Chi a + b 

Treatment 

Ambient 1.94 0.80 2.74 

Elevated 1.82 0.75 2.57 

A-N 1.90 0.75 2.65 

A+N 1.97 0.85 2.82 

E-N 1.85 0.75 2.59 

E+N 1.79 0.75 2.54 
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Table 3.15 Concentration of chlorophyll in Scots pine needles at the final harvest on an 

area basis (mg m 2). Values are means of 25 samples for the [CO 2] treatments, and at 

least 12 samples for the [CO2] and nutrient treatments. 

Treatment Chl. a Chi. b Chl. a + b Ratio a / b 

Ambient 0.24 0.097 0.33 2.47 

Elevated 0.28 0.072 0.35 3.88 

Outside 0.24 0.094 0.33 2.55 

A-N 0.24 0.094 0.33 2.55 

A+N 0.23 0.087 0.32 2.64 

E-N 0.33 0.041 0.37 8.05 

E+N 0.22 0.11 0.32 2.00 

C-N 0.24 0.083 0.32 2.89 

C+N 0.24 0.11 0.35 2.18 

3.4.3 Soluble Carbohydrates and Starch 

Sugars 

Soluble carbohydrates in the Scots pine at the initial harvest were primarily inositol, 

glucose and fructose. Sucrose and xylose appeared in one in six of the samples only. 

There were no statistically significant differences between the treatments in percent 

inositol, glucose or fructose (t-test, p > 0.1) (see Table 3.16). At the final harvest total 

soluble sugar concentration (mg g) in Scots pine was 180.50 for ambient [CO 2 ] 

needles and 180.95 for elevated [CO2] needles (t-test, ns at p < 0.05). No calculation 

of the standard error of the means was possible here since two samples were pooled 

for each single 'sample' in order to have enough plant material for analysis. The alder 

samples were unfortunately lost in a freezer accident. 
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Table 3.16 Mean concentration of soluble sugars (mg g' dry mass) in Scots pine at the 

final harvest. Variance, and sample size for each treatment are given. 

Treatment 	 Mean 	Variance 	Sample Size 

Glucose 

Ambient 6.0 0.7 	4 

Elevated 8.4 1.1 	 8 

Fructose 

Ambient 6.0 0.7 	4 

Elevated 7.8 1.0 	8 

Sucrose 

Ambient 5.6 1.6 	4 

Elevated 3.4 1.0 	8 

Total Sugars 

Ambient 35.0 5.4 	4 

Elevated 36.0 6.6 	8 

Starch 

Scots pine needles grown in elevated [CO21 showed a significantly higher starch 

concentration at the final harvest than the ambient [CO 2] needles (four replicates per 

treatment, p = 0.01) (see Table 3.17). There was no nutrient or interaction effect on 

starch in Scots pine (p> 0.1). No significant effect of elevated [CO 2] or nutrients was 

found in the alder (for all treatment effects p > 0.1), although caution must be used 

here since there were only two replicates analysed per [CO21  and nutrient treatment. 
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Table 3.17 Starch concentration (mg g') in Scots pine needles at the final harvest. Data 

are means of eight samples for the [CO2] treatments, means of four samples for the CO2 

and nutrient treatments. * * = significantly different at  <0.01 in two-way ANOVA. 

Treatment Mean 95 % confidence interval 

Ambient 11.47 5.01 

Elevated 24.76 ** 8.56 

A-N 10.52 8.42 

A+N 12.43 11.64 

E-N 21.50 11.23 

E+N 28.03 20.53 
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3.5 	Discussion and Conclusions 

Tables 3.18 and 3.19 are summaries of the main effects of elevated [CO 2] on common 

alder and Scots pine seedlings. They enable a quick overview of the main effects but 

do not include interactions between [CO 2] and nutrient addition. Any interaction 

effects are discussed in more detail in the subsequent sections. 

Table 3.18 Summary of main effects of growth in elevated [CO 2] on common alder in the two 

nutrient treatments high supply, H and low supply, L, combined and separately. The table 

shows significant statistical differences and how a variable in elevated [CO 2] compared with the 

ambient [CO2] control. ++ large increase, + increase, (+) slight increase, - no change, (--) 

slight decrease, -- decrease, large decrease, ? not measured. Stars * indicate that the result 

was statistically significant (p < 0.05) at least at some time during the experiment. (*) = trend 

towards significant difference between treatments (p <0.1). 

Variable 	 H+L together 	H 	 L 

stem height  

growth rate per day - 

SBD - - 

total biomass + + - 

leaf allocation - - 

root allocation - - (+) 

branch allocation - - (--) 

stem allocation - (--) 

R/S (+)  

leaf area - (+) (--) 

SLA -- -- 

LAR - - - 

SGR - ? ? 

[N] (+) (+) (+) 

lip] - - - 

[K] - - - 

[Mg] - - - 

[Ca] - - - 

[chlorophyll]  

[sugars] ? ? ? 

[starch] - - - 
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Table 3.19 Summary of main effects of growth in elevated [CO 2] on Scots pine in the two 

nutrient treatments high supply, H and low supply, L, combined and separately . The table 

shows significant statistical differences and how a variable in elevated [CO 2] compared with the 

ambient [CO2] control. ++ large increase, + increase, (+) slight increase, - no change, (--) 

slight decrease, -- decrease, large decrease,? not measured. Stars * indicate that the result 

was statistically significant (p < 0.05) at least at some time during the experiment. (*) = trend 

towards significant difference between treatments. 

Variable 
	

H+L together 	H 
	

L 

stem height - - - 

growth rate per day - - 

SBD +* (+) + 

total biomass + + ++ 

needle allocation  

root allocation + * (+) + 

branch allocation - - 

stem allocation  

RIS +* + + 

leaf area - (+) (+) 

SLA - + 

LAR  

SGR - 

[N] (--) ? ? 

1P1 --* ? ? 

[K]  

NO __(*) ? 

[Ca] (--) ? ? 

[chlorophyll a] (+) - + 

[chlorophyll b] (--) (+) (--) 

[chlorophyll a + b] (+) - + 

chi a\bratio + -- ++ 

[sugars] - - - 

[starch] + * + + 
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In both common alder and Scots pine specific growth rate (SGR) was not affected by 

growth in elevated [CO 2] during the fifteen weeks of this experiment, although total 

biomass increased, although not significantly. For this reason I suggest that the 

growth rate was stimulated during the first year of growth, before the experimental 

period. Reports of elevated [CO 2] stimulating total plant biomass are widespread 

(Poorter 1993, Kimball 1993, Ceulemans and Mousseau 1994, Saralabai et al. 1997, 

Tissue et al. 1997). This growth enhancement has often been shown to decline or 

completely disappear over time (Bazzaz 1990, Reining 1994). In contrast, other 

studies have found no growth enhancement (Oberbauer et al. 1986, Mousseau and 

Enoch 1989, Overdieck 1996). The results of this experiment agree with the majority 

of other studies in that total biomass was stimulated by growth in elevated [CO 2}. 

Deciduous species and pioneer species were found by Poorter in his comprehensive 

review (1993) to be stimulated more than coniferous or slower-growing species (c. 54 

% for the former versus c. 23 % for the latter). This is in agreement with the increase 

in total biomass found in this study, although the growth stimulation was less 

pronounced here than Poorter's average stimulation. Norby and O'Neill (199 1) on the 

other hand, found a similar increase in total biomass to that found in alder in this 

study, in yellow poplar (tulip tree), Liriodendron tulipifera, grown in 371, 493 and 

787 pmol moF' CO2  (18 to 22 % stimulation). 

Common alder 

Common alder and Scots pine had quite different responses to elevated [CO 2] despite 

their total biomass being stimulated. In common alder stem height was significantly 

higher in ambient [CO 2 ] 
plants during the first weeks of the study, but this was 

cancelled out over the remaining weeks, indicating that the elevated [CO 2] seedlings 

were able to catch up with the ambient [CO 2 } plants. Extra carbon was assimilated in 

alder seedlings in this experiment via an enhanced photosynthetic rate (although not 

measured directly, biomass accumulation in this experiment and measurement of 

photosynthetic enhancement in the long-term experiment confirm this) and stimulation 

of growth rate during the first year of exposure. Pettersson and McDonald (1992) 

found that slightly higher SGR values during the first few weeks of development in 

birch seedlings were sufficient to produce appreciable differences in biomass over a 
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period of several growing seasons. 

Leaf area and LAR were not increased in elevated [CO 2] although alder leaves were 

thicker. This is contrary to the review of Mousseau and Saugier (1992) who found 

that LAR in many species of tree was significantly increased by elevated [CO 2]. 

Arnone and Gordon (1990) found that leaf area was larger in nitrogen-fixing Alnus 

rubra grown in pots in elevated [CO2]. It is not clear whether this lack of 

enhancement of leaf area was an artefact of the experiment, namely pot growth and 

hence root restriction, or if it was a genuine [CO 2] effect. Lower SLA does not seem 

to be attributable to starch accumulation in the leaves since starch concentration was 

similar in the two [CO2] treatments at the end of the experiment. The extra carbon 

seems to have been allocated to increased structural material in the leaf (perhaps as 

larger palisade cells and / or mesophyll cells) but also to new root growth. This is 

supported by the response of nitrogen fixation in alder in the long-term experiment 

(see Chapter 4) where elevated [CO 2] stimulated nodule growth and nitrogen fixation. 

Contrary to expectations, alder seedlings grown without fertiliser (and therefore more 

likely to fix nitrogen particularly those in elevated [CO 2] chambers) did not grow 

bigger or allocate more biomass to leaves. This is not the case, however, with biomass 

allocation to the roots where the seedlings grown without fertiliser addition have 

bigger root systems, especially those grown in elevated [CO 2] without fertiliser. This 

result is to be expected since plants grown with a low nutrient supply usually allocate 

more resources to the roots. The response of the alder seedlings shows that the 

nutrient addition in this experiment was effective in that one treatment actually 

received low N and the other high N, with concomitant differences in root allocation. 

This pattern of increased allocation to roots in the low N treatment could also be 

indicating an increased allocation of carbon to the site of nitrogen fixation in the root 

nodules. This is supported by measurements of nitrogenase activity in nodules of 

common alder in the long-term experiment, in which nodule mass was larger in 

elevated [CO2] and nitrogen fixation seemed more efficient (see Chapter 4 section 

4. 10). This supports the idea that nitrogen-fixing trees grown in elevated [CO 2] may 
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be able to export extra photosynthate (sugars) to increase nodulation of roots and so 

be more independent of external nitrogen additions. 

Nutrient concentrations were not affected by elevated [CO 2]. This is different to the 

findings of Arnone and Gordon (1990) or Norby (1987) where not only nitrogenase 

activity was enhanced by enriched carbon dioxide but also nitrogen concentration. 

Although elevated [CO 2] did not affect leaf nutrient concentrations, all alder leaves 

measured in this experiment started out with optimum nutrient amounts compared to 

those in the literature (Van den Burg 1985) but by the final harvest nitrogen 

concentration was intermediate to deficient and potassium and phosphorus were also 

intermediate, whereas other nutrients were still present in optimum amounts. Factors 

such as growth in pots and root restriction may have caused this reduction in leaf 

nitrogen. Field et al. (1992) point out that plants grown in elevated CO 2  often have 

decreased tissue nitrogen and biomass allocation to the leaves thus offsetting any 

extra respiratory costs caused by increased growth and maintenance. In this 

experiment biomass allocation to the leaves was reduced but leaf nitrogen was not. 

Photosynthetic capacity in the form of chlorophyll was reduced in alder grown in 

elevated [CO2], although not significantly. This agrees with the findings of other 

authors (El Kohen and Mousseau 1994, Mousseau and Saugier 1992) where 

chlorophyll content was reduced in elevated [CO 2}. This reduction in photosynthetic 

protein may have caused negative feedback which reduced the stimulation of 

photosynthesis and in turn the enhancement of growth rate. Common alder did not 

undergo acclimation to the same extent as Scots pine, however. This is in accordance 

with the idea that the nitrogen fixing alder is not limited by nitrogen availability in the 

soil and can increase its growth in conditions of elevated [CO 2}. 

Scots pine 

In Scots pine the response to elevated [CO 2] was increased SBD and a tendency 

towards increased total biomass, as well as increased allocation of carbon to the roots 

away from needles and stems. Nutrient concentrations in the needles were reduced, 

chlorophyll a I b increased slightly, and starch accumulated in the needles in elevated 
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[CO2]. Grulke et al. (1993) found no stimulation of either stem height or stem 

diameter in two full-sib ponderosa pine families, whereas total biomass was enhanced. 

The Scots pine growth response in this experiment was similar, although here SBD 

was significantly increased. Higginbotham et al. (1985) however, found an all-round 

positive response to elevated [CO 2 ] in lodgepole pine (Pinus contorta) grown in pots 

in growth chambers. Mean seedling height, leaf area, biomass of stems, secondary 

leaves and especially roots were all very stimulated by elevated [CO 2]. It seems 

therefore that different pine species react quite differently to elevated [CO 2]. On the 

other hand, it is unclear how much of the response was an artifact of growth in 

unnatural conditions and using different methodologies. 

Norby et al. (1986) found increased root exudation, mycorrhizal density and 

allocation of photosynthate to fine roots in Pinus echinata grown in elevated [CO 2], 

although root exudation did not persist after the 41st week. They hypothesised that 

increased root exudation of carbon compounds could enhance nutrient availability for 

plants growing in elevated [CO 2]. The fact that nutrient concentrations were reduced, 

and starch accumulated in the needles in Scots pine in this study supports the idea that 

nutrient limitation occurred and the plants responded by allocating more carbon to the 

roots. Whether this carbon was then exuded from the roots into the soil or whether it 

was mainly used for increased fine root growth was beyond the scope of this short-

term experiment. 

The pine thus showed signs of having acclimated to elevated [CO 2] 
in the form of 

carbon export to the roots (including potential root exudation), decreased nutrient 

concentrations and starch accumulation in the needles. A decrease in nutrient content 

has often been found in plants grown in enriched carbon dioxide (Mousseau and 

Saugier 1992). Chlorophyll a and b concentrations were affected differently by 

elevated [CO2]. Thus, an interesting result of this study was that there was a trend 

towards the ratio of chlorophyll a to b (a / b) changing in elevated [CO 2}. Growth in 

elevated [CO2] changed the photosynthetic system slightly, and starch accumulation 

occurred. 
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This provides support for the hypothesis that a source-sink imbalance occurred in the 

Scots pine with starch accumulation in the leaves as the end result, as was predicted 

by Stitt (199 1) in his review on rising CO 2  concentrations and their effects on carbon 

flow in photosynthetic cells. The exact mechanisms of this limitation can not be 

derived from this short-term experiment. Pettersson and McDonald (1992) 

hypothesised that decreases in SGR over time are mediated by decreases in NAR (net 

assimilation rate), explaining why growth enhancement stops. Increased nutrient 

demand decreases plant nutrient status leading to possible reduction in NAR and 

carbon allocation to the leaves. Exactly when this acclimation occurred is not clear, 

but the enhancement in growth rate seems to have only occurred during the first 

weeks of the study. Starch accumulation and possible chloroplast disruption in Scots 

pine needles may have induced a stronger negative feedback on the rate of 

photosynthesis or growth rate than in common alder (see Poorter 1993). 

Comparison Between Species 

As other authors have found (Kaushal etal.. 1989, Poorter 1993) there is a significant 

positive correlation between the potential growth rate of a plant and its reaction to 

elevated [CO2]. The difference between fast-growing species and slow-growing 

species is the biggest of all the comparisons in Poorter' s review (1993), although 

caution is needed when interpreting this result since no exact growth rate data for 

these species were available. He found in his experiment using ten species that fast-

growing species had increased LAR compared with slow-growing species but NAR 

and the rate of photosynthesis were stimulated to the same extent. Thus any absolute 

gain in carbon per unit plant mass in the fast-growing species was because of larger 

leaf area per unit plant mass. This does not agree with the results in this experiment, 

where alder did not increase in LAR or leaf area in elevated [CO 2 1. Growth 

stimulation was higher in the pioneer species compared with the conifer, however. 

The fact that common alder responded more positively to elevated [CO 2], and 

experienced less photosynthetic acclimation than Scots pine, may be attributable 

to its capacity for fast, indeterminate growth and its ability to fix nitrogen. Conifers 

like Scots pine, on the other hand, are constrained in their growth response by 
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determinate growth patterns and slower growth rates than common alder. Barton 

(1997) found that Sitka spruce seedlings were able to initiate new shoots midway 

through the season when exposed to elevated [CO 2}. Growth in elevated [CO 2] has 

been found to enable second flushes of growth in several conifer species. This was 

only observed in a small percentage of the seedlings in this experiment, however. 

Thus, although some of the extra carbon was allocated to the stem (increased SBD) in 

Scots pine an appreciable amount of the carbon assimilated seems to have been 

exuded from the root system, thus inducing acclimation to elevated [CO 2]. 

The response of the fast-growing alder is made more complex by the capacity to fix 

nitrogen. Fertilised and unfertilised plants were stimulated in growth to an equal 

extent by exposure to elevated [CO 2]. The treatment without fertiliser enables one to 

look at how nitrogen fixation may have been reacting to the extra carbon availability 

without the added complication of a fertiliser addition. As many other authors have 

found (see Woodward 1992, Hood 1993) nitrogen addition seems to have suppressed 

nitrogen fixation in this experiment, and trees grown without fertiliser and therefore 

fixing nitrogen were not able to grow more than those with fertiliser. Ingestad (1980) 

found that inoculated grey alder (Alnus incana) grown without added mineral 

nitrogen, had optimum nitrogen status but only half the maximum SGR. It seems 

therefore that nitrogen fixation was not very efficient. As Ingestad found, however the 

maximum fixation rate has an upper ceiling compared with the total nitrogen uptake 

rate required for maximum growth. Alnus glutinosa in this study seems to have been 

able to fix more nitrogen in elevated [CO 2] but the extent of this fixation stimulation 

may have been limited by intrinsic limitations to nitrogen fixation such as phosphorus 

availability. 

It is important to note that growth in pots may be an extra factor affecting results in 

this experiment. Experiments with plants grown in pots have found clear growth 

stimulation as well as those using plants grown in the ground (Pettersson and 

McDonald 1992, Kimball et al. 1993), although caution should be used when 

interpreting results from pot experiments since root restriction and nutrient limitation 

can affect the overall response to [CO 2] (Eamus and Jarvis 1989, McConnaughay et 
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al. 1993). This may have been the case in this short-term experiment. For a 

comparison of the same tree species in a long-term experiment without pots, see 

Chapters 4 and 5. 

Conclusions 

- 	Both species of tree had greater total biomass in elevated [CO 2] (20% 

increase in alder and 10% in pine) but the difference was not statistically 

significant. SBD was significantly higher in pine in elevated [CO 2], whereas 

stem height in elevated [CO 2] alder caught up with initially higher values in 

ambient [CO2]. Thus there was a trend towards total biomass stimulation in 

elevated [CO 2] as well as a significant stimulation of SBD in pine and stem 

height in alder. 

- 	Allocation of carbon changed in elevated [CO 2]. In common alder the extra 

carbon assimilated was allocated to the roots. In Scots pine more carbon was 

allocated to the roots in elevated [CO 2] and less was allocated to the stem and 

needles. 

- 	Leaf morphology in alder changed in elevated [CO 2] since SLA was 

significantly lower. 

- 	There was generally no interaction effect of elevated [CO 2] and nutrient 

addition on the state variables measured. 

- 	The hypothesis that the alder would not suffer a source-sink imbalance to the 

same extent as the pine was supported. The faster-growing and nitrogen 

fixing species was better able to use the extra carbon to increase total 

biomass. Scots pine showed typical signs of having acclimated to elevated 

[CO2], i.e. starch accumulation, reduced nutrient concentration and altered 

chlorophyll a and b ratios. The alder did not show these responses although 

SGR remained the same in elevated [CO 2] and biomass was not stimulated as 

much as expected. This could be because of the fact that nitrogen fixation is 
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limited in the extent to which it can produce growth stimulation. Another 

factor which could have played a role in each species' response to elevated 

[CO2 1 was root restriction because of growth in pots, as well as genotypic 

determination a plant's overall development and growth. 

This experiment was short-term and seedlings were grown in pots which 

could have affected nutrient availability and root not directly in the ground. 

In order to be able to clearly differentiate between effects and their causes 

plant growth and development, longer-term experiments with plants grown 

directly in the soil are recommended. 
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CHAPTER 4 

Growth and biomass, nutrient concentration and internal nitrogen 
cycling in Alnus glutinosa and Pinus sylvestris grown in elevated 
carbon dioxide concentration - a three-year experiment at the 
Glendevon field site 

4.1 Introduction 

Many impact studies on the effect of elevated [CO 2] on tree growth and physiology 

have been short-term experiments of less than one year in duration, with juvenile 

plants grown in pots (Eamus and Jarvis 1989, McConnaughay et al. 1993). Significant 

increases in plant biomass of c. 30-70% have been reported (Idso and Kimball 1991, 

Mousseau and Saugier 1992, El Kohen et al. 1993, Kimball et al. 1993, Poorter 1993, 

Ceulemans and Mousseau 1994) as well non-statistically significant increases up to 20 

% (Mousseau and Enoch 1989, Bazzaz et al. 1990, Kimball et al. 1993, Poorter 

1993). In most short-term (up to one growing season) and longer-term experiments 

(from one growing season to five years) plants show increased photosynthesis and 

biomass accumulation in the first weeks or months of exposure to elevated [CO 2
] 

(Gunderson and Wullschleger 1994, Reining 1994, Drake et al. 1997). There is 

generally a tendency to increased growth rates and shifting carbon allocation patterns 

towards roots (Chu et al. 1992, Idso and Kimball 1992, Rogers et al. 1992, Rogers 

and Runion 1994). The increase in photosynthetic capacity is engendered by a larger 

availability of CO2, a major substrate of Rubisco in carboxylation and also an 

activator of Rubisco via carbamylation. The competition between carbon and oxygen 

(photorespiration) for the Rubisco active site also shifts in favour of carboxylation in 

elevated [CO 2]. All these factors stimulate the rate of photosynthesis. 

Increased [CO2] results in an increased demand by trees for other resources, such as 

nitrogen (Lee et al. 1998). Seedlings often undergo a negative feedback after a 

certain, species-specific time point (Grulke et al. 1993, Reining 1994). This negative 

feedback is manifested as a reduction in photosynthetic rate induced by either so-

called down-regulation ('fine control') or acclimation ('coarse control'). The former 
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involves a reduction in photosynthetic rate without a change in photosynthetic leaf 

composition, whereas in the latter case photosynthetic capacity is reduced via 

diminished photosynthetic components (Delgado et al. 1994), such as Rubisco, 

chlorophyll or other enzymes. Photosynthetic acclimation has been associated with 

accumulation of carbohydrates because of low sink demand and / or reduction in 

Rubisco amount or activity (Stitt 1991). This longer-term acclimation effect of carbon 

dioxide enrichment varies in its time of onset, but short-term experiments, varying 

from days to one growing season, have shown a temporary increase in photosynthetic 

rate as predicted by leaf models. In longer term studies this enhancement may be 

reduced after a few weeks or months (Mousseau and Saugier 1992). Many 

hypotheses have been put forward to explain acclimation. These range from a) 

limitation of RuBP regeneration, b) nitrogen or phosphorus limitation, c) loss of extra 

carbon via root exudation, d) carbohydrate accumulation which induces a source-sink 

imbalance and sometimes chloroplast rupture, and e) canopy closure which limits the 

potential for increased assimilatory leaf material. Often the impact of elevated [CO 2] 
is 

closely inter-linked with and limited by other environmental variables, such as 

nitrogen, phosphorus, photon flux density (PPFD), temperature or water. The 

intricacies of these interactions need to be elucidated in order to have a better grasp 

of the mechanisms involved in response to elevated [CO 2]. Another complicating 

factor is that responses to elevated [CO 2] often appear to be species-specific, with 

some species exhibiting a large response and others barely any (Garbutt et al. 1990, 

Poorter 1993). This interspecific variation is difficult to assess accurately because of 

varied methodologies (e.g. some plants are grown for longer or shorter periods than 

others, some in inadequate rooting medium or constricting pots and with various CO 2  

concentrations) as well as the use of various clones or trees of different age or seed 

provenance (Lee and Jarvis 1996). However, more and more mixed-species 

experiments, as well as better conducted ones, are showing that interspecific variation 

in response to elevated [CO2] is a reality and can be strikingly large (Oberbauer et al. 

1985, Ziska et al. 1991, Duff et al. 1994, Norby et al. 1996). Different species seem 

to have different limits to their plasticity such as size constraints which are defined by 

their genetic makeup or by the environmental conditions. 
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The question arises as to whether species that grow relatively quickly under optimum 

conditions respond more strongly than those with lower maximum relative growth 

rates (Oberbauer et al. 1985, Poorter 1993)? This question will be addressed through 

a comparison between two native trees with quite different developmental and growth 

patterns. The common alder (Alnus glutinosa (L.) Gaertn) is a deciduous pioneer 

species which belongs to the group of actinorhizal nitrogen-fixing species which fix 

dinitrogen from the atmosphere through an endosymbiotic relationship with a 

bacterium of the Frankia genus. These filamentous, gram-positive bacteria known as 

actinomycetes, possess branched septate hyphae and sporangia which invade root 

hairs and develop root nodules in alder from within cortical cells (Hood 1993). 

This species is contrasted with a slower-growing, mycorrhizal conifer, Scots pine 

(Pinus sylvestris L.). Previous short-term studies of the effects of elevated [CO 2] on 

alder seedlings suggested that nodulated plants had higher whole plant photosynthesis 

and nitrogenase activity, and larger nitrogen content and total biomass compared with 

nodulated plants grown in ambient [CO 2}, or compared to non-nodulated plants 

grown in both ambient and elevated carbon dioxide concentrations (Norby 1987, 

Arnone and Gordon 1990). One possibility is that nitrogen-fixing trees grown in 

elevated [CO 2] are able to export extra photosynthate (sugars) to increase nodulation 

of roots and so be more independent of external nitrogen additions. While Scots pine 

does not have this advantage, being evergreen it can continue to fix carbon 

throughout the year when environmental conditions are suitable. 

As discussed in Chapter 1, nitrogen cycling within plants enables the uncoupling of 

growth from nutrient uptake in the spring thus playing an important role in tree 

physiology and growth. Nitrogen budgets, previously used to estimate N cycling, have 

been replaced by isotopic studies, which are capable of more accurate quantification. 

The use of the stable 15N isotope in experiments has shown that factors such as soil 

fertility affect the amount of N stored but have no direct effect on the amount of N 

remobilised (Millard 1995). To my knowledge, there is no experimental evidence to 

date on the reponse of internal N cycling in trees to elevated [CO 2}. Berntson and 

Bazzaz (1998) studied the effects of [CO 2] on below ground growth and N cycling in 
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two mesocosms containing a variety of tree species. Their research concentrated 

mainly on below ground processes such as remineralisation and uptake rates of N but 

did not quantify storage and remobilisation of N within the plants. The particular aim 

of this research on the other hand, was to see which tree tissues acted as storage 

organs over the winter, and which were sources of remobilised N for new growth in 

the spring. Considering that Scots pine is a mycorrhizal conifer and common alder a 

deciduous N-fixer, storage of N over the winter and remobilisation in the spring 

would be expected to be very different in the two species. In addition, the availability 

of elevated [CO 2] could influence the movement of N within the tree. The addition of 

a ' 5N stable isotope spike to the fertiliser enabled these questions to be addressed. 

The following long-term experiment using seedlings planted directly into the ground, 

had as an overall aim to investigate how elevated [CO 2] and nitrogen supply affected 

the growth, physiology and N cycling in Alnus glutinosa and Pinus sylvestris. 

4.1.1 Hypotheses and Aims 

The hypothesis addressed is that common alder, by fixing nitrogen will be able to take 

advantage of the extra carbon assimilated in the elevated [CO 2] conditions and 

increase its growth, biomass and photosynthetic efficiency. In addition, nitrogen 

limitation and nitrogen dilution as a result of the extra carbon is not expected to 

occur. Nitrogen fixation will increase and become more efficient in elevated [CO 2 1. 
Nitrogen storage in alder over the dormant period of the year is expected to occur 

mainly in the stem but also in the roots. In addition, the allocation of nitrogen to new 

growth in the spring might show different patterns in elevated [CO 2]. 

The Scots pine, on the other hand, after an initial increase in growth in elevated 

[CO2}, may develop a source-sink imbalance in which excess starch and other 

carbohydrates induce a dilution of the nitrogen content. This may lead to negative 

feedback with the result that those trees without fertiliser addition in particular will 

show no significant differences in growth, physiology and biochemistry compared to 

those grown in ambient [CO 2]. An accumulation of starch and soluble sugars is likely 
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to be visible during part of or all of the initial growing season, but will not be 

sustained in further months or years. 

The particular aims of this experiment were to elucidate: 

whether Scots pine and common alder seedlings grown in elevated [CO 2} over 

a three-year time span would respond by increased growth and biomass, or 

changes in nutrient concentrations compared with those grown in ambient 

[CO2]; 

whether the short-term stimulátion of growth found in the short-term 

experiment (see Chapter 3) would be sustained over several growing seasons 

under field conditions; 

whether the allocation of carbon would differ between the treatments, since 

trees grown in elevated carbon dioxide have been found to be ontogenetically 

more advanced than those grown in ambient conditions; 

whether there would be any interactive effects of the environmental variables 

carbon dioxide and nutrients on growth, physiology and biochemistry of the 

two species; 

whether the nitrogen-fixing alder and the mycorrhizal pine would respond 

differently to increased availability of carbon and possible concomitant dilution 

of nitrogen (creating a source-sink imbalance); 

whether nitrogen fixation was occurring in individual trees and whether 

nitrogen fixation would increase and be more efficient in elevated [CO 2]; 

whether nitrogen would be stored mainly in the stem over the winter in alder, 

as in other deciduous species, whereas Scots pine should store nitrogen in the 

previous year's needles; and 

whether elevated [CO 2] would alter the partitioning of nitrogen over the 

winter and remobilisation for spring growth? 
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4.2 Materials and Methods 

4.2.1 Site Description 

The Glendevon field site, near Yetts O'Muckart, Perthshire, Scotland (National Grid 

Reference N0311058, latitude 56 O  12' N, longitude 36 O  W) was set amongst a large 

Forestry Commission Sitka spruce (Picea sitchensis) plantation. Prior to 1994 the 

open top chambers (OTC) on the site were extended to 3.5 rn in height and modified 

for both larger trees (four to five-year old conifers) and one-year old seedlings. The 

trees were planted into the site in early May 1994 and grew in the chambers and 

control plots until autumn 1996 for the alder (until the trees outgrew the chambers) 

and autumn 1997 for the pine, with the advantage of at least three growing seasons 

worth of data. For more information on variables such as soil nutrients and soil water, 

pH, or meteorology, see section 2.3 in Chapter 2 Materials and Methods. 

4.2.2 Experimental Design 

Introduction 

576 one-year old seedlings of common alder and Scots pine (from registered seed 

stand 89(2009) Elgin) were transplanted directly into the ground in eight open-top 

chambers (OTC), four at ambient [CO 2] (c.350 pmol moF5,  four at ambient [CO 2] + 

350 jtmol mol' CO2  and four control plots (see Figure 2.2 in Chapter 2). Since 

carbon dioxide concentrations vary diurnally, a constant amount of carbon dioxide 

was added to the elevated [CO 2] chambers allowing the concentration to track that in 

the ambient chambers and control plot. For more information on the design of the 

field site, [CO2] and fertiliser performance, the prevalence of pests and their 

treatment, see Chapter 2, Materials and Methods. 

4.2.3 Experimental Procedure 

Growth 

Seasonal growth of the trees was monitored by regular measurements of height 

(monthly) of a sub-sample of 192 trees (4 per quadrant, 16 per chamber). Stem basal 

diameters (SBD) were measured (the average of two measurements made at 90° to 
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one another using a digital micrometer) at the beginning and the end of each growing 

season on all trees. Data for stem heights and stem basal diameters were used to 

calculate the volume of trees at the beginning and the end of the growing season, by 

multiplying the diameter squared by the height. Two forms of growth rate were 

calculated (according to Beadle 1993): growth rate per day (cm) derived from stem 

heights, and specific growth rate (SGR or ), the basic component of growth 

analysis. The latter variable represents the dry mass increase per unit dry mass present 

per unit of time, and is derived from biomass data using the following equation: 

I 	f 	dM 1 	 4.1) 

M 	dt 

where M is total biomass, t is time. Instantaneous SGR is the slope of the curve of In 

M against time, but mean SGR (G) is in practice measured between two discrete time 

intervals (t1 and t2) using the following equation: 

G 	 jpJvj2 -In M1 	 (4.2) 

t2 - ti 

Since interpolation between total biomass at r1  and t2 (using stem basal diameter and / 

or stem height to calculate total biomass at a later time) was not very accurate (low r2  

values), trees harvested at t1 and t2 were paired according to the method of Hunt 

(1978) using total tree biomass, such that smaller trees at t1 were paired with smaller 

trees at t2 etc.. SGR was then calculated using the paired tree dry masses. In addition, 

to test for any ontogenetic effects, trees with similar mean biomass per [CO 2] 

treatment were picked to calculate SGR of trees of the same size. This was done by 

pairing two tree biomass means from different harvests for each [CO 2] treatment. 

Mean biomass of similar size (within 20 g of each other) was used for each [CO 2] 

treatment as well as between treatments (ambient [CO 2] mean biomass was c.65 g 

whereas mean biomass in elevated [CO 2] was c. 110 g). 
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Sampling 

Leaves for analysis were sampled from one tree per quadrant (i.e. from the minus and 

plus nutrients treatments, thus two per chamber per species) giving a chamber 

replication of four. Three discs (1 cm in diameter) were sampled from an alder leaf 

c. 20 cm from the top of the seedling, and three current-year needles, c. 5 cm from the 

tip of the leader shoot in pine, were sampled monthly during the growing season for 

chlorophyll, Rubisco and soluble protein analysis. During periods of low turgidity or 

fungal disease (see section 2.3.1 in Chapter 2) five leaf discs were taken. The Rubisco 

/ soluble protein and chlorophyll samples were frozen directly in liquid nitrogen (using 

a cryoshipper) and kept in - 80 ° C and - 20 C freezers, respectively, until analysis. 

The carbohydrate / starch samples were kept on frozen-ice in the field, freeze-dried in 

the laboratory, and then kept in a vacuum until analysis. Universal 25 cm 3  vials were 

filled with needles or leaves because more material was required for carbohydrate and 

starch analysis. 

Leaf Area Measurements 

Dry leaf mass was measured at intervals in 1995 and converted to leaf area using 

mean specific leaf area (SLA) for each [CO 2] and nutrient treatment in July 1994. This 

method was deemed the most reliable considering that no direct leaf area 

measurements were made during the long-term experiment. It should be noted, 

however, that these calculations are based on the assumption that the mean SLA did 

not change substantially over time. This is a potentially fallible assumption and the 

results must be seen as relative amounts not absolutes. In addition, measuring needle 

area of the Scots pine using the leaf area meter was problematic and therefore the 

original pine leaf area data (see Chapter 3) and the leaf area converted from SLA data 

should also be seen primarily as comparative data. SLA was not ascertained for Scots 

pine since there were no direct leaf area measurements and SLA from the short-term 

experiment was used to calculate leaf area in the long-term experiment. A second 

point to note is that it was not found appropriate to express variables such as soluble 

sugars and starch on a leaf area basis since no leaf discs were taken for these analyses 

and no SLA data was available from which to calculate leaf area of samples. Although 

alder leaf discs were used for Rubisco and soluble protein analysis, no such leaf area 
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data were available for pine. For this reason it was decided to show these variables 

expressed on a dry mass basis only in the results. Leaf area ratio (LAR, total leaf area 

per total tree dry mass), leaf mass ratio (LMR, leaf area per unit total plant dry mass) 

and net assimilation rate (NAR) were also determined. 

The mean NAR (N) between ti and t2 is given by: 

1 121 dM 
N 	= 	f_x_ 	 (4.3) 

t2—tl, 1 S 	dt 

where S is leaf area, M is total biomass and t is time. 

The relationship between total biomass and leaf area was found to be linear (r2  = 0.91 

for Scots pine and r2  = 0.81 for common alder, see Figures 4.1a and 4.1b) and total 

biomass and leaf area were not found to be discontinuous functions of time thus 

fulfilling the assumptions for integrating equation (4.3): 
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Figure 4.1 a The relationship between total biomass and leaf 
area in common alder in August 1995. Each point is an 
individual tree measurement, and all treatments were pooled 
together. 	 - 
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Figure 4.1 b The relationship between total biomass and leaf 
area in Scots pine in August 1995. Each point is an individual 
tree measurement, and all treatments were pooled together. 

Mean NAR between April and December 1995 was determined for both species by 

integrating equation (4.3) to give: 

	

NAR = 	M2-Mi) (In Sz-InSi 	 (4.4) 

(S 2 - S 1 ) (t2-t1) 

where M is total biomass, t is days and S is leaf area. 

Harvests 

A total of nine harvests was made of common aider and ten harvests of Scots pine. As 

concerns the numbering of the harvests, the two harvest in the short-term experiment 

(Chapter 3) were harvest 1 and 2; the first harvest at Glendevon (September 1994) 

was therefore, called harvest 3. In September 1994 a sub-sample of 96 trees at 
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Glendevon was destructively harvested (harvest 3). Two trees within each quadrant in 

each chamber or control plot was selected for this purpose. The trees were divided 

into sub-sections (tissues) of root, stem 1993, stem 1994, needles 1993, needles 1994, 

or leaves 1994 (in alder), and lamrnas growth at the end of the season (in pine). The 

tissues were oven- dried for 48 hours at 80 °C and weighed. These masses were used 

to calculate total biomass per tree, biomass allocation and also for following the fate 

of labelled N within the trees. The trees were harvested and sampled by myself in 

1994, 1995 and the first harvest in 1996. Dr. Gail Jackson and Diarmuid O'Neil 

continued the experiment during the rest of the 1996 growing season making three 

further harvests of above-ground biomass for the alder and two for the pine. 

The leaves and 1994 needles were sub-sampled and ground for nutrient analysis (N, P, 

K, Mg, Ca) sampling from one tree per quadrant per chamber, using eight trees per 

[CO2 1 treatment and four trees per combined nutrient and [CO 2] treatment. Tissues 

(root, leaves or needles 1993, 1994, stem 1993 or 1994) from the harvested trees 

grown in nitrogen-fertilised quadrants (+N, or 'H' in Figure 2.2 in Chapter 2) were 

also finely ground and sub-sampled for atomic absorption/mass spectrometric analysis 

of the ' 5N and N concentrations. In subsequent growing seasons the number of tissue 

categories were increased accordingly (i.e. stem 1994, 1995 etc.). 

In 1995 there were four more harvests of very similar type to harvest 3, except that 

24 trees of each species were harvested instead of 48. All the + N trees were sub-

sampled, ground in a centrifuge grinder and then a ball-mill and sent to MLURI, 

Aberdeen for mass spectrometry. In harvest 7 in October 1995, pine 1995 needles 

instead of 1994 needles were sampled for nutrient analysis since they have higher 

concentrations of nitrogen at this time of year. Earlier on in the season, the 1994 

needles contained adequate, detectable levels of N, and consisted of enough material 

for sampling, without damaging the seedling too much (D.C.Malcolm pers. comm. 

1995). In June 1995, because of competition between the alder seedlings, and hence 

increased fungal and aphid infestation, some trees were thinned out of the alder 

quadrants (approximately two from each quadrant, 51 trees total) and their fresh and 

dry mass measured. These data were incorporated into the calculation of cumulative 
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biomass of all trees of each species (see below for calculation details and Section 4.4 

Total Biomass for results). 

In early April 1996 48 trees were again harvested to compare storage and movement 

of labelled nitrogen in the trees after the winter and to identify potential patterns of 

nitrogen remobilisation. Cumulative biomass of all trees was calculated using mean 

total biomass data from the six harvests made by myself, including the thinned alder 

biomass data (see above). 

Biochemical Analysis 

Nutrient Analysis (N, P. K, Mg, Ca) 

Nutrient concentrations were determined using an acid digest (Allen 1974). The 

samples were first oven-dried at 80 °C, ground and kept in desiccators until analysis. 

100 (±10) mg of ground sample (per tree) was dissolved carefully in 100 vol. (2 x 

0.75 cm3) hydrogen peroxide and 2 cm 3  of boiling sulphuric acid (containing 2 % 

lanthanum chloride, LaCl2) and shaken. The sample tubes were then heated at 320 °C 

for six hours, cooled and then made up to 100 cm 3  in distilled water. Nitrogen 

concentration was determined by a gas diffusion method using a flow injection 

analyser (Fiastar, Tecator Ltd, Wilsonville, OR, USA). Phosphorus concentration was 

determined using a molybdenum blue method, using a flow injection analyser (Fiastar, 

Tecator Ltd, Wilsonville, OR, USA). Potassium, calcium and magnesium were 

determined by flame emission spectroscopy using an atomic absorbtion spectrometer 

(Unicam 919, Cambridge, UK). The values obtained for the samples were compared 

with standards of known concentration (of 20, 40, 60 mg dm. -3  Ca ; 5, 10, 15 mg 

dm Mg ; 10, 20, 40 mg dm. -3  K). Each sample was measured three times, and a 

relative standard deviation based on the three measurements calculated to trace large 

inaccuracies. Based on 100 mg of dried plant material made up to a fixed volume of 

100 cm3 , the concentration (mg g') of a particular nutrient was calculated as: 

C 	X 	V 
	 (4.5) 

1000 X m 
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where c = measured concentration of sample (mg dm 3), 

v = volume used (50 CM)  , and 

m = mass of sample (0.1 g). 

Internal Nitrogen Cycling 

In order to compare nitrogen (N) partitioning and potential remobilisation within the 

trees in the subsequent growing season(s), the nutrient solution was enriched with 

15NH4NO3  in July 1994. Half the ground area of each OTC received nutrients and 

these were fed with 20 dm  of water containing 300 g of nitrogen enriched by 4.0901 

atom % abundance 15N (measured from a nutrient tank sample) (see Figure 2.2 in 

Chapter 2). This spike addition of enriched fertiliser enabled the partitioning of N over 

the winter of 1994 and 1995 to be studied in different treatments and any subsequent 

movement of labelled N within the trees from one tissue to another to be detected. 

Any subsequent uptake of nitrogen by the roots in 1995 would have been at natural 

abundance. This work was done in collaboration with Dr. Peter Millard of the 

Macaulay Land Use Research Institute (MLURI), Aberdeen. 

A sub-sample from every oven-dried and finely ground tissue (see Harvests section 

for description of age classes) was sent to Aberdeen for mass spectrometric analysis. 

Total nitrogen and ' 5N enrichment were determined using an ANA-SIRA mass 

spectrometer (VG Isogas, Middlewich, Cheshire, U. K.) coupled with an elemental 

analyser. One analysis was made per sample. The elemental analyser separated the 

sample into its gaseous components, by dropping it into a combustion furnace (He 

and 02) and the products of combustion were taken through a reduction column 

where oxides of nitrogen were converted to nitrogen gas. During mass spectrometry 

gases were separated using a large, curved magnet and samples of varying masses 

were quantified : 28 (' 4N2) ; 29 ( 14N' 5N) ; 30 (' 5N2). The natural abundance of ' 5N 

must been taken into account when calculating how much enriched nitrogen has 

fertiliser as its source. All natural sources of nitrogen, from the gas to complex 

organic material, contain a small amount of the stable isotope of nitrogen, ' 5N as well 

as the major component ' 4N. Thus, in enrichment studies one must subtract this 

natural abundance (delta, ö) from the enrichment measured by the mass spectrometer 

94 



to find out the actual enrichment of the sample. Natural abundance is c. 0.3663 atom 

% in N2  gas in air. 

Mass spectrometry provided the mass of nitrogen (mg), nitrogen % and the atom % 

enrichment of ' 5N of each plant tissue. The contributions of labelled fertiliser N and of 

unlabelled (' 4N) soil N to the N content of leaves, different age-classes of needle and 

stem, and roots were calculated for six harvests (September 1994 to April 1996) using 

the following equations: 

A 	 CD/E 	 (4.6) 

B 	= 	(1-C/E)xD 	 (4.7) 

where A = labelled N and unlabelled N in tissue from fertiliser spike (mg), B = 

unlabelled soil N not derived from the fertiliser spike (mg), C = atom % ' 5N excess in 

tissue, D = N content of tissue (mg) and E = atom % ' 5N excess in fertiliser. Values 

of C and E were corrected for natural abundance (taken to be 0.366 atom % ' 5N, 

International Atomic Energy Agency, 1983), hence the term 'excess'. 

There were two main assumptions in this study. The first was that the ' 4N isotope 

behaved in a similar manner to the ' 5N-enriched isotope so that the contribution of the 

fertiliser to each tissue's growth could be determined. The second was that uptake of 

labelled N was finished by the autumn of 1994 so that by April 1995 any N taken up 

was at natural abundance. There are several points to take into consideration 

regarding this second assumption. Since the trees were not grown in sand but in 

natural field conditions, the uptake of native soil N at natural abundance at the same 

time as the uptake of fertiliser ' 5N cannot be allowed for. This can cause an 

underestimation of nitrogen cycling. Thus it was not possible to quantify the absolute 

amount of N within the trees which was derived from the enriched fertiliser spike, nor 

to know if the trees had taken up all the labelled N in the soil. Some of the labelled N 

could have been immobilised by bacteria and fungi and have then been released later 

on in the experimental period. Plant size was therefore incorporated into the statistical 
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analysis as a co-variate, in order to see if any subsequent increase in total ' 5N in whole 

trees was because of remineralistion of microbial ' 5N, root exudates or the results of 

variation in plant size at different harvests. This experiment was a tracer experiment 

only, because of the difficulty in working with enriched fertiliser in field conditions. 

Two-way ANOVA was used to analyse labelled ' 5N and unlabelled ' 4N data over time 

in the two [CO2] treatments (p values are given). 

Nitrogen Fixation 

When nodules were assumed fully developed in August 1995 (harvest 6), Dr. Sue 

Grayston from MLURI, Aberdeen, sampled half of the harvested alder roots for 

nodules, which were then analysed in Aberdeen for acetylene reduction, a test for the 

presence of nitrogen fixation. Nodules were sampled from the roots of all the non-

fertilised alder trees harvested (12 trees) and the roots and nodules washed and 

weighed (fresh and dry mass). An acetylene reduction assay (ARA) was used to 

assess whether or not the alder seedlings were fixing nitrogen and to give an 

indication of the relative fixation rates of the different trees. Nitrogenase activity was 

expressed in moles of ethylene produced. 

Statistical Analysis 

All data were analysed for two-way ANOVA using a general linear model (glm) in 

SAS 6.11 (SAS Institute Inc., Cary, NC 27513, USA). Factors in this analysis were 

carbon dioxide concentration (c. 350 .tmol moF' CO2  versus ambient +350 j.tmol mol -
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CO), chamber presence (no chamber versus chamber; note that this factor is not 

independent of the CO 2  factor) and nutrient availability (no-fertiliser versus fertiliser). 

For further details of statistical considerations see Section 2.2.2. 

4.3 Growth Results 

Overall, any visible differences in growth and phenology varied depending on the time 

of the year. At the beginning of the season the control plot trees grew less vigorously 

than those in chambers, whereas later on there seemed to be a balancing-out effect. 

Although lammas growth (second flush) in the Scots pine did not occur in all trees in 

the late season of 1994 and 1995, the general trend was that trees grown in elevated 
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[CO2] had a tendency to a second flush of growth, with a treatment average of 

between ig and 2 g dry mass of lammas needles per tree in 1995 compared with 

ambient [CO2] means of 0.6 g in one tree (this was the only occurrence of lammas 

growth in ambient trees, in August 1995). In contrast to the ambient [CO 2] seedlings, 

lammas growth was observed in the elevated [CO 2 1 seedlings in every late-season 

harvest. There was no conclusive evidence that elevated [CO 2
] 

increased the length 

of the growing season, although the elevated [CO 2] seedlings initiated stem growth 

slightly earlier than the ambient [CO 2] seedlings (two of the four 'E-N' pine trees at 

the second harvest on 27 April 1995 had started producing new stem, compared with 

no stem elongation at this time in all other pine trees). 

4.3.1 Stem Height 

Scots pine and common alder stem heights responded very differently to elevated 

[CO2 ]. In the common alder there was no significant difference between those plants 

grown in elevated [CO2] and those grown in ambient [CO 2
] (

p > 0.05) although there 

was a trend towards taller trees in elevated [CO 2] in August 1994 on julian day 217 (p 

= 0.085) (see Figure 4.2a). There was no nutrient effect on stem height except on the 

29th of July 1996 (julian day 940) (Figure 4.2b) when trees grown with fertiliser were 

taller than those without (p = 0.018). No interaction between [CO 2] and nutrients 

occurred. Thus the hypothesis that common alder seedlings grown in elevated [CO 2 ] 

conditions without fertiliser (i.e. stimulating nitrogen fixation) would grow taller than 

those in other treatments was rejected. 
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Figure 4.2a Seasonal course of mean stem height in common alder over three 

growing seasons (1994-1996). Time is shown as Julian days (i.e. adding 365 

days to each consecutive year). Hevated [CO2) plus and minus nutrients = 

a.EV; ambient [CO2] plus and minus nutrients = AMB; control plot plus and 

minus nutrients =CO(sample size =24).() trend towards statistical 

significance at p  <0.1. 
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Figure 4.2b Seasonal course of mean stem height of nutrient and [CO 2] 

treatments in common alder over three growing seasons (1994-1996). Time 

is shown as Julian days (i.e. adding 365 to each consecutive year). Ambient 

minus nutrients = A-N; ambient plus nutrients = A+N; elevated minus 
nutrients = E-N and elevated plus nutrients = E+N(sample size = 12). * = 

statsitically significant difference at p  <0.05. 

In Scots pine, the effect of [CO 2] on stem height was significant at the start of the 

experiment and continued to be throughout the first two growing seasons (p = 0.0042 

to 0.047 with the lowest probabilities in April 1994 and in autumn 1995). In 1996 

however, there was no significant [CO2] effect on height (p = 0.134 and 0.420 on 

julian days 955 and 1018 respectively) despite the gap between ambient [CO 2] and 

elevated [CO2] stem heights widening with time after 1994 (see Figure 4.3a). A 

nutrient effect was only found on the 19 August (julian day 606) and the 6 October 

1995 (julian day 644) (p = 0.045 and 0.02 respectively) (see Figure 4.3b). There was 
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no interaction between [CO 2] and nutrients. Thus, [CO2] had a larger effect on stem 

height in Scots pine than in common alder. Overall, these data confirm the hypothesis 

that those trees grown in elevated [CO 2] and especially those with fertiliser grow 

better than seedlings in other treatments at first, followed by acclimation to elevated 

[CO2]. Although stem heights in pine in 1996 were larger in elevated [CO 2], the 

difference was not significant, indicating possible acclimation to elevated [CO 2]. 
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Figure 4.3a Seasonal course of mean stem height in Scots pine over three 

growing seasons (1994-1996). Time is shown as julian days (i.e. adding 365 

days to each consecutive year). Bevated (CO2] = D..EV; ambient [CO2] = AM B; 

control plot = CON; (n = 24). * = statistically significant at p <0.05. 

I 20 

'2 	 CTO 	 too 	(00 	Czr 	In  

julian day over the course of three years 

Figure 4.3b Seasonal course of mean stem height of nutrient and [CO 2] 

treatments in Scots pine over three growing seasons (1994-1996). Time is 

shown as julian days (i.e. adding 365 to each consecutive year). Ambient 

minus nutrients =A-N ambient plus nutrients =A+N; elevated minus 

nutrients = EN and elevated plus nutrients = EfN (n = 12). * = statistically 
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An increasing chamber effect on stem height in the common alder was visible in 1994 

and 1995 (p < 0.1, mostly p < 0.01) although this was only a trend in 1996 (see 

Figure 4.2a). In the Scots pine the chamber effect was only significant after mid July 

1995 (p <0.05). 

4.3.2 Height Growth Rate 

Daily height growth rate in both common alder and Scots pine was increased by 

exposure to elevated [CO 2]. Elevated [CO 2] alder grew half a centimetre more than 

ambient [CO2] alder per day (see Table 4.1). The high growth rate of the elevated 

minus nitrogen trees is in agreement with the hypothesis that the alder would be able 

to take advantage of the extra carbon to increase growth via nitrogen fixation. In 

Scots pine the growth rate per day in elevated [CO 2] was only a mean of 0.1 

centimetres higher than in the ambient [CO 2]. This small difference between the 

ambient and the elevated [CO 2] treatments summed over a whole growing season 

supports the hypothesis that the Scots pine would not experience a sustained increase 

in growth (see Figure 4.3a). 

Table 4.1 Height growth rate (cm d') and mean tree volume in common alder and Scots 

pine in 1995. Height growth rate was calculated by dividing the difference in stem height 

between spring and autumn by the number of days in the time period. 

height growth rate alder pine 

Ambient 1.11 0.55 

Elevated 1.64 0.65 

Control 0.87 0.51 

A-N 1.12 0.43 

A+N 1.11 0.67 

E-N 1.96 0.59 

E+N 1.32 0.71 
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Mean tree volume (cm 3, with one standard error in brackets) was estimated by 

calculating the stem basal diameter (cm) squared, multiplied by the stem height (cm), or 

d2  x h. Sample size per [CO2] treatment in common alder was n = 32 in April 1995 and 

24 in October 1995; for Scots pine sample size per [CO 2] treatment was n = 32 in April 

1995 and n = 26 in October 1995. Sample sizes per nutrient and [CO 2] treatment was 

half that of the [CO 2] treatment. 

volume 
	 April 1995 

	
October 1995- 

common alder 

Ambient 51.45 (8.92) 121.06 (20.84) 

Elevated 53.33 (4.08) 141.18 (11.57) 

A-N 49.56 (10.22) 99.99 	(22.95) 

A+N 53.43 (11.41) 142.12 (22.30)* 

E-N 50.41 (4.38) 120.54 (17.11) 

E+N 56.24 (7.47) 161.82 (12.84) * 

volume April 1995 October 1995 

Scots pine 

Ambient 26.14 (2.59) 193.48 (15.98) 

Elevated 33.15 (3.12) 334.55 (27.84) * 

Control 19.32 (2.40) 144.65 (17.69) 

A-N 22.39 (2.62) 153.93 (18.70) 

A+N 29.88 (3.96) * 233.00 (24.48) ** 

E-N 30.26 (2.89) 258.10 (19.73) 

E+N 36.03 (3.78) * 411.01 (45.96) ** 

[CO2] only had a statistically significant effect on mean tree volume in Scots pine in 

October 1995 (p = 0.00 14), whereas there was no effect in common alder (p > 0.05). 

Nutrient addition on the other hand, had a significant effect in both species in October 

1995 and in common alder in April 1995, with those trees given fertiliser growing 
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bigger than those without. There was no chamber effect on tree volume in either 

species (p > 0.05). 

4.3.3 Stem Basal Diameter (SBD) 

Stem basal diameter (SBD) in both species of tree responded positively to elevated 

[CO2] over the course of the three growing seasons (see Figures 4.4a and b, and 4.5a 

and b). In common alder, although not initially, [CO 2] had a significant effect on SBD 

from autumn 1995 (October) onwards, continuing throughout 1996 (p = 0.0349, and 

p = 0.0029 in July '96, p = 0.0136 in October 1996). However, the mean ambient 

SBD mean was larger than the mean elevated SBD mean in October 1996. There was 

no nutrient effect on SBD, or interaction between nutrients and [CO 2] at any time 

during the experiment (see Figure 4.4b). These results support the hypothesis that the 

alder would grow bigger in response to the extra availability of carbon with respect to 

SBD, although there is an indication that acclimation was occurring in October 1996. 
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Figure 4.4a Seasonal course of mean stem basal diameter in common alder 

over three growing seasons. Bevated [CO2] = B..EV; ambient [CO2] = AMB; 

control plot = CON; n = 96 in 1994, 80 and 36 in 1995, and 8 in 1996. (CO2] had a 

significant effect from October 1995 onwards ( = p <0.05). 
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Figure 4.4b Seasonal course of mean stem basal diameter in common alder 

over three growing seasons for nutrient and [CO 21 treatments. Am bient 

minus or plus nutrients =A-Nor A+N;elevated minus or plus nutrients =E.N 

or E+N. n = 48 in 1994,40 and 18 in 1995 and 4 in 1996. There was no significant 

nutrient effect at any point (p  <0.05). 

The Scots pine SBD data also showed a clear difference between the main [CO 2 ] 

treatments. Significant differences in SBD between elevated [CO 2] and ambient [CO 2 ] 

trees were found at the beginning of the experiment (p = 0.032), in October 1995 (p = 

0.0068) and throughout 1996 (p = 0.040 and 0.037). There was a nutrient effect only 

in October 1995 (p = 0.0002) (see Figure 4.4b). On the same date there was an 

interaction between nutrients and [CO 2] (p = 0.06) as well as in April 1995 (p = 

0.0 16). Overall, this does not support the hypothesis that the pine undergoes an initial 

spurt in growth which is subject to negative feedback after a certain time point. 
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Figure 4.5a Seasonal course of mean stem basal diameter in Scots pine over 

three growing seasons. Ambient [CO 2] = AMB; elevated [CO2] = REV; control plot 

= CON. n = 96 in 1994, 80 and 36 in 1995, and 8 In 1996. [CO2] had a significant effect 

( = p <0.05) at all dates except April 1995. 
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Figure 4.5b Seasonal course of mean stem basal diameter in Scots pine over 

three growing seasons for nutrient and [CO2] treatments. Ambient minus 

nutrients, plus nutrients =A-Nor A+N respectively; elevated plus or minus 

nutrients = E*N or E-N. n = 48 in 1994, 40 or 18 In 1995, and 4 in 1996. Nutrient effect 

was significant (*=p  <0.05) in October 1995 only. 

The presence of chambers had a significant effect on alder at the beginning and at the 

end of the experiment (p = 0.078 and 0.00 12, respectively), but on the pine only at the 

start of the experiment (p = 0.018 and 0.096 in the spring of 1994 and 1995, 

respectively). 
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4.3.4 Stem Basal Area (SBA) 

Stem basal area (SBA) was consistently higher in elevated [CO 2] trees than in ambient 

[CO2], although the difference was only statistically significant in October 1995 (p = 

0.028 for alder and p = 0.00 19 for pine). There was also a significant nutrient effect in 

October 1995 in both species (p = 0.041 in alder, and p = 0.0001 in pine), but again 

not in April 1995 (p > 0.05). There was an interaction effect in Scots pine in both 

April and October 1995 (p = 0.026 and 0.029, respectively). 

Table 4.2 Mean stem basal area (mm 2) in common alder and Scots pine in April and 

October 1995. Values are the means (and one standard error in brackets) of 80 

measurements in April in both species, and 28 measurements in alder, 36 measurements 

in pine in October for the [CO 2] treatments, sample size = half these values for the 

nutrient and [CO 2] treatments (i.e. A-N etc.). 

Treatment 	 April 	 October 

common alder 

Ambient 164.66 (9.160) 435.63 (36.94) 

Elevated 205.82 (10.65) 554.65 (33.64) 

Control 211.36 (9.10) 499.01 (24.49) 

A-N 160.05 (14.93) 374.91 (49.59) 

A+N 169.52 (10.50) 496.35 (51.64) 

E-N 204.02 (13.80) 519.72 (43.33) 

E+N 207.63 (16.40) 591.76 (51.70) 

C-N 204.68 (12.29) 464.37 (30.45) 

C-i-N 217.88 (13.22) 524.21 (35.24) 
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Table 4.2 continued 

Treatment April October 

Scots pine 

Ambient 73.04 (4.97) 221.84 (13.24) 

Elevated 81.93 (3.44) 323.72 (18.81) 

Control 63.37 (4.10) 197.62 (12.71) 

A-N 66.71 (5.60) 179.13 (13.11) 

A+N 79.37 (8.16) 262.41 (18.74) 

E-N 76.85 (4.36) 259.07 (18.37) 

E+N 87.14 (5.29) 394.54 (26.59) 

C-N 70.84 (7.36) 205.41 (14.92) 

C+N 55.90 (3.23) 190.43 (20.57) 

4.4 Total Biomass 

Cumulative biomass of all trees harvested (the sum of harvest means from September 

1994 to April 1996) was higher in elevated [CO2] in both species. Elevated [CO2] 

cumulative biomass in alder was 1390.4 g compared with 1008.5 g in ambient [CO 2 ] 

and 1116.5 g in the control. In Scots pine the same treatment means were 375.5 g, 

409.3 g and 289.3 g, respectively. 

Overall, growth in elevated [CO 2] stimulated total biomass in common alder by an 

average of 59.1 % , and 33.5 % in Scots pine (see Table 4.3). Although these 

percentage increases in total biomass were considerable they were not always 

statistically significant. In common alder significant differences in total biomass due to 

[CO2] were found in September 1994 and June 1995 (p = 0.059 and 0.002 

respectively) but not in April, August or December 1995 (p > 0.1). No alder root data 

were available after April 1996 but the total above-ground biomass was statistically 

different in May and July (p = 0.084 and 0.042, respectively). There was a tendency 

towards a nutrient effect in April 1996 (p = 0.087) and an effect in July 1996 (p = 

0.016). No interaction between [CO 2] and nutrients was found. These data over three 
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growing seasons indicate that the alder was, as hypothesised, able to grow larger in 

response to elevated [CO 2] although the difference in total biomass was not always 

statistically significant. In addition, mean total biomass of the elevated [CO 2] trees 

was lower than that in ambient in the spring of both seasons. The response was 

therefore very seasonal and was largest in September 1994 and June 1995. It should 

also be noted that the alder suffered fungal attack (Taphrina tosquinetti) in the 

summer of 1995 (peaking in August) such that the loss of vigour could have affected 

total biomass results. 

Table 4.3 Percentage increase in total biomass in common alder and Scots pine over 

time. Values were calculated by subtracting the ambient [CO 2] mean from the elevated 

[CO2] mean, dividing by the ambient mean and multiplying by 100. 

date 	 alder 	 pine 

September 1994 

April 1995 

June 1995 

August 1995 

Dec. / Oct 1995 

April 1996 

October 1996 

mean % increase 

54.48 

66.91 

101.03 

23.32 

49.85 

29.87 (negative) 

59.12 

47.76 

48.26 

27.80 

5.27 

16.11 

13.71 (negative) 

55.67 

33.48 
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Figure 4.6a Seasonal course of mean total biomass (g) in common alder. Values are the 

means of eight replicates. Ambient [CO,] =AMB; elevated [CO2] = B..EV; contol plot = CON. 

[CC,] had a significant effect in Sep. 94 and June 95 ( = p <0.05). 
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Figure 4.6b Seasonal course of mean total biomass (g) for nutrient and [CC,] treatments 

in common alder. Values are the means of four replicates. Ambient plus and minus 

nutrients = A-N and A+N; elevated plus and minus nutrients = E-N and E+N. There was no 

nutrient effect at any time (p  <0.05). 

In Scots pine there was a significant difference in total biomass between ambient and 

elevated [CO 2] trees in September 1994 (p = 0.012), in April 1995 (p = 0.04) and in 

October 1996 (p = 0.06 1), but not at any other time in-between (see Figures 4.7a and 

b). Although there were no data for total biomass in May and July 1996, aboveground 

pine biomass in July was significantly affected by [CO 2]. Nutrient treatments only had 

a significant effect on total biomass in October 1995 (p = 0.030) but there was a trend 

towards a nutrient effect in October 1996 (p = 0.08). No interaction between [CO 2] 

and nutrients was found. As in common alder, total biomass of Scots pine was 
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affected by [CO 2] differently depending on the time of year. The hypothesis that Scots 

pine shows an initial increase in growth followed by negative feedback is partly 

confirmed by these data since there was a significant difference in total biomass in 

September 1994 and in April 1995. On the other hand, there was a significant 

difference in October 1996 at the end of the experiment which does not support this 

hypothesis. 
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Figure 4.7a Seasonal course of mean total biomass (g) in Scots pine. Values are the 

means of eight replicates. Ambient [CO2] = AMB; elevated [CO2] = aEV; contol plot = 

CON. [CO2] had a significant effect in Sep. 94, April 95 and Oct. 96 ( = p <0.05). 
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Figure 4.7b Seasonal course of mean total biomass (g) for nutrient and (CO 2] 

treatments in Scots pine. Values are the means of four replicates. Ambient plus and 

minus nutrients =A-N and A+N; elevated plus and minus nutrients =EN and E+N. = 

statistically significant at p  <0.05, () =a trend towards a significant effect at p <0.1. 
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There was no chamber effect on total biomass in the common alder at any time in the 

three growing seasons (p < 0.05). In Scots pine there was tendency towards a 

chamber effect in June 1995 (p = 0.065) as well as an effect on the total above-ground 

biomass in July 1996 (p = 0.025). Overall, the presence of OTCs did not affect total 

biomass much. 

4.5 Allocation 

4.5.1 Biomass allocation 

In common alder there was a significant [CO 2] effect on biomass allocation to leaves 

in April and June and August 1995 (p = 0.054, 0.0017 and 0.083, respectively) (see 

Table 4.4 and section on Leaf Mass Ratio below for more detail). In June 1995 there 

was a trend towards an effect on allocation to 1994 shoots (p = 0.068). 

There was a nutrient effect on allocation to 1994 shoot in September 1994 (P = 0.02) 

and on allocation to leaves in June 1995 (p = 0.0018) but not on any other tissue 

allocation. There was no interaction effect of [CO2] and nutrients. 

Table 4.4 Biomass allocation to different tissues in common alder in the September 1994 

harvest. Values are mean tissue biomass fractions (R root, L leaf, S shoot) with standard 

errors in brackets, of eight samples for [CO2] and four samples for nutrient and [CO2]. 

Treatment 	 R 	 L 	 1993S 	1994S 

Ambient 0.36 (0.057) 0.24 (0.044) 0.24 (0.032) 0.22 (0.081) 

Elevated 0.40 (0.021) 0.16 (0.034) 0.25 (0.036) 0.23 (0.036) 

Control 0.42 (0.039) 0.16 (0.026) 0.28 (0.023) 0.15 (0.043) 

A-N 0.35 (0.044) 0.21 (0.021) 0.20 (0.039) 0.22 (0.081) 

A+N 0.36 (0.069) 0.26 (0.067) 0.28 (0.025) 0.22 (0.081) 

E-N 0.36 (0.038) 0.17 (0.031) 0.31 (0.082) 0.16 (0.032) 

E+N 0.43 (0.040) 0.14 (0.036) 0.18 (0.032) 0.30 (0.039) 

C-N 0.43 (0.040) 0.14 (0.039) 0.30 (0.017) 0.13 (0.049) 

C+N 0.40 (0.037) 0.17 (0.012) 0.26 (0.029) 0.17 (0.037) 
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Photos 4.1- 4.3 Common alder at different stages of the 1995 growing season. 

4.1 An alder seedling in an OTC in bud in April 1995. 4.2 Alder in full leaf in 

August 1995. 4.3 A harvested alder tree in December 1995. 
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In Scots pine there was no effect of elevated [CO 2] on biomass allocation at any time 

in 1995 except on allocation to 1993 needles in September 1994 (p = 0.024) (see 

Table 4.5). There was a trend towards a nutrient effect in September 1994 on 

allocation to 1994 needles (p = 0.068) and a significant effect in June 1995 (p = 0.03). 

There was also a trend towards a nutrient effect on 1994 stem and total needle mass 

in October 1995 (p = 0.075 and 0.071 respectively). There was an interaction effect 

of nutrients and [CO 2] on 1995 stem and 1995 needle allocation in June 1995 (p = 

0.048 and 0.068 respectively). There was also trend towards an interaction effect on 

1994 stem in October 1995 (p = 0.075). 

Table 4.5 Biomass allocation to different tissues in Scots pine in the September 1994 

harvest. Values are mean tissue biomass fractions (R root, N needle, S shoot) with 

standard errors in brackets, of eight sample for [CO 2] and four samples for nutrient and 

[CO2]. S = shoot; N = needles. 

Treatment 	R 	 1993S 	1994S 	1993 N 	1994 N 

Ambient 0.19 (0.033) 0.14 (0.012) 0.17 (0.063) 0.09 (0.014) 0.48 (0.037) 

Elevated 0.19 (0.020) 0.15 (0.019) 0.17 (0.039) 0.05 (0.017) 0.49(0.048) 

Control 0.28 (0.073) 0.19 (0.032) 0.15 (0.0081) 0.081 (0.014) 0.40 (0.053) 

A-N 0.15 (0.019) 0.14 (0.012) 0.16 (0.084) 0.071 (0.016) 0.51 (0.056) 

A+N 0.22 (0.046) 0.14 (0.012) 0.18 (0.042) 0.10 (0.012) 0.45 (0.018) 

E-N 0.17 (0.029) 0.13 (0.020) 0.14 (0.047) 0.066 (0.022) 0.50 (0.062) 

E+N 0.20 (0.010) 0.16 (0.018) 0.20 (0.031) 0.034 (0.011) 0.48 (0.034) 

C-N 0.20 (0.0051) 0.18 (0.0088) 0.15 (0.010) 0.077 (0.0035) 0.46 (0.055) 

C+N 0.35 (0.14) 0.20 (0.055) 0.15 (0.0061) 0.084 (0.024) 0.33 (0.050) 

Leaf Mass Ratio (LMR) 

Exposure to elevated [CO 2] affected the mean allocation to leaves, LMR, in Scots 

pine and common alder differently. In alder elevated [CO 2] had a significant effect on 

LMR, lowering it throughout the whole of 1995 (p < 0.05) except in December (p = 

0. 13). Mean LMR in June 1995 in elevated [CO2] was 0.24 g g' (SE 0.018) whereas 

in ambient [CO2 ] it was 0.31 g g' (SE 0.019). In August 1995 mean LMR in elevated 

[CO2] was 0.24 g g' (SE 0.009) versus 0.29 g g' (SE 0.05 1) in ambient [CO 2] and 
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0.30 g g' (SE 0.030) in the control trees. There was no nutrient effect or interaction 

effect of the former with [CO2] on LMR in alder (p > 0.1). Thus the alder was 

allocating less biomass to the leaves during the 1995 growing season. 

In Scots pine there was no significant [CO 2] effect on LMR at any time in 1995 

(p > 0.1). Mean LMR in August 1995 in elevated [CO2] was 0.50 (SE 0.029) 

compared with 0.49 (SE 0.018) in ambient [CO 2] and 0.51 (SE 0.010) in the control. 

There was a trend towards a nutrient effect on LMR in October 1995 (p = 0.072). No 

interaction effect was found (p > 0.1). 

The presence of chambers had a very significant effect on LMR in alder in April and 

June 1995 (p = 0.0006 and 0.0006, respectively). In Scots pine there was a significant 

effect in the same time periods (p = 0.028 and 0.042, respectively). 

Number of Branches 

Neither [CO 2], nutrient addition or the interaction between them had a significant 

effect on number of branches in either species of tree (p > 0.1). In July 1996 the mean 

number of alder branches in elevated [CO 2] was 41.13 (SE 3.56) compared with 

40.53 (SE 3.55) in ambient [CO2] and 43.83 (SE 5.31) in the control plot. In July 

1996 the mean number of branches in Scots pine grown in elevated [CO 2] was 20.4 

(SE 3.5) compared with 17.5 (SE 2.56) in ambient [CO 2] and 17.0 (SE 0.91) in the 

control plot. Elevated [CO 2] increased the number of branches in the pine, if not 

significantly, but not in the alder. 

There was no chamber effect on branch number in either species (p> 0.05). 

Leaf to Shoot Ratio (LF / SH) 

Elevated [CO2] had no significant effect on leaf to shoot ratio in June 1995 and 

August 1995 in Scots pine (p > 0.1). In common alder, however there was a 

significant [CO2] effect on LF/SHin June 1995 (p = 0.046), if not in August 1995 (p 

= 0.507) (see Table 4.6). There was a nutrient effect and interaction effect between 

[CO2 ] and nutrient addition in alder in June 1995 (p = 0.0 19 and 0.055, respectively). 
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There was no significant chamber effect on LF / SH except in alder in June 1995 

(p = 0.00 16). 

Root to Leaf Ratio (RT/LF) 

There was no significant effect of [CO21 on RT I LF in either species in June or 

August 1995 (p > 0.1). In August 1995 there was a trend towards a [CO 2] effect on 

RT / LF in alder (p = 0.094) (see Table 4.6). There was no nutrient or interaction 

effect between the former and [CO 2] on RT/LF in either species. 

No significant chamber effect on RT / LF was found in either species in June or 

August 1995 (p >0.1). 

Table 4.6 Mean leaf to shoot ratio (LF / SH) and root to leaf ratio (RT / LF) in common 

alder and Scots pine in June and August 1995. Values are the means (with one standard 

error in brackets) of eight samples. 

Treatment June August 

LF/SH 

common alder 

Ambient 0.80 (0.058) 0.58 (0.02) 

Elevated 0.59 (0.038) 0.54 (0.08) 

Control 0.40 (0.091) 0.64 (0.04) 

Scots pine 

Ambient 1.090 (0.060) 1.27 (0.07) 

Elevated 1.020 (0.090) 1.32 (0.12) 

Control 0.95 	(0.070) 1.28 (0.03) 
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Table 4.6 continued 

RT/LF 

common alder 

Ambient 	 1.12 (0.08) 	 0.81 (0.084) 

Elevated 	 1.41 (0.12) 	 2.34(l.08) 

Control 	 3.92(l.51) 	 0.91 (0.22) 

Scots pine 

Ambient 	 0.30 (0.030) 	 0.24 (0.020) 

Elevated 	 0.31 (0.043) 	 0.24 (0.028) 

Control 	 0.36 (0.018) 	 0.25 (0.010) 

4.5.2 Root to Shoot Mass Ratio (R / S) 

The ratio of root to shoot was not significantly affected by elevated [CO 2] in either 

species of tree (see Table 4.6 and 4.7). In common alder, in August 1995 there was a 

tendency (p = 0.063) towards trees grown in elevated [CO 2] allocating more mass to 

the roots than those grown in ambient [CO2], but not at any other harvest (p <0.1). 

There was no nutrient effect or interaction effect of nutrients and [CO 2] on R / S. In 

Scots pine, there was no significant effect on R / S of either [CO2] or nutrients or any 

interaction between them (see Table 4.7). Ontogenetic differences (which would be 

visible in trees of the same size but of different age) were not considered further, since 

there was no significant difference between ambient and elevated [CO2]  trees of the 

same age, possibly because differences in size were small. 
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Table 4.6 Mean root to shoot mass ratio including leaves (with one standard error in brackets) in common alder over time. Values are the means of eight 

samples for [CO2] treatment, and four samples for the nutrient and [CO2] treatments. 

Treatment 1994 1995 1996 

September April June August December April 

Ambient 0.59 (0.095) 0.94 (0.12) 0.53 (0.034) 0.30 (0.030) 1.56 (0.56) 0.47 (0.047) 

Elevated 0.67 (0.050) 0.99 (0.092) 0.49 (0,037) 0.45 (0.056) 0.61 (0.19) 0.78 (0.20) 

Control 0.70 (0.070) 0.91 (0.083) 0.61 (0.041) 0.35 (0.083) 1.44 (0.81) 0.61 (0.12) 

A-N 0.56 (0.12) 0.79 (0.083) 0.47 (0.070) 0.28 (0.032) 1.22 (0.82) 0.53 (0.054) 

A+N 0.62 (0.17) 1.10 (0.14) 0.58 (0.15) 0.32 (0.05) 1.89 (0.84) 0.40 (0.070) 

E.N 0.58 (0.95) 1.10 (0.14) 0.50 (0.070) 0.50 (0.10) 0.41 (0.03) 1.06 (0.47) 

E+N 0.75 (0.012) 0.88 (0.11) 0.48 (0.039) 0.41 (0.05) 0.81 (0.37) 0.58 (0.05) 

C-N 0.75 (0.12) 0.95 (0.13) 0.61 (0.041) 0.30 (0.041) 0.70(0.07) 0.47 (0.081) 

C+N 0.67 (0.09) 0.86 (0.12) 0.61 (0.08) 0.40 (0.15) 2.17(l.64) 0.84 (0.21) 
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Table 4.7 Mean root to shoot mass ratio including needles (with one standard error in brackets) in Scots pine over time. Values are the means of eight 

samples for [CO 2] treatment, and four samples for the nutrient and [CO21 treatments. 

Treatment 	1994 	 1995 	 1996 

September 	April 	 June 	 August 	 December 	 April 

Ambient 0.24 (0.046) 0.26 (0.020) 0.15 (0.020) 0.13 (0.010) 0.36 (0.19) 0.20 (0.030) 

Elevated 0.23 (0.025) 0.24 (0.009) 0.15 (0.015) 0.13 (0.010) 0.23 (0.070) 0.22 (0.030) 

Control 0.63 (0.38) 0.24 (0.016) 0.16 (0.01) 0.14 (0.0057) 0.18 (0.015) 0.19 (0.010) 

A-N 0.18 (0.026) 0.27 (0.039) 0.18 (0.028) 0.13 (0.021) 0.56 (0.38) 0.22 (0.055) 

A+N 0.30 (0.083) 0.25 (0.015) 0.12 (0.0052) 0.13 (0.0081) 0.16 (0.019) 0.18 (0.012) 

E-N 0.21 (0.042) 0.25 (0.015) 0.15 (0.092) 0.12 (0.022) 0.30 (0.130) 0.20 (0.017) 

E+N 0.26 (0.024) 0.23 (0.011) 0.14 (0.031) 0.14 (0.019) 0.16 (0.015) 0.24 (0.054) 

C-N 0.25 (0.0080) 0.22 (0.014) 0.17 (0.0060) 0.14 (0.012) 0.17 (0.015) 0.17 (0.016) 

C+N 0.84 (0.060) 0.25 (0.029) 0.15 (0.026) 0.14 (0.0037) 0.19 (0.028) 0.20 (0.012) 
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4.6 Leaf Area, Leaf Area Ratio and Net Assimilation Rate 

4.6.1 Leaf Area 

There was no significant effect of [CO2] on alder leaf area in either April, June August 

or December 1995 (p > 0.1). There was also no nutrient or interaction effect of nutrients 

and [CO2] at any of these harvests (p> 0.1). 

Elevated [CO2] had a temporary effect on needle area in Scots pine. There was a 

significant [CO2] effect on needle area in April 1995 (p = 0.0073) but not at later harvest 

dates (p > 0.1) (see Table 4.8). Nutrient addition had a significant effect in October 1995 

(p = 0.00 19), but not at any other time (p > 0.1). There was no interaction effect on 

[CO2] and nutrient addition at any time point (p> 0.1). 

There was no chamber effect on leaf area in either species of tree at any harvest in 1995 

(p>0.1). 
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Table 4.8a Mean total leaf area (cm 2) in common alder in 1995 (with one standard error in brackets). Values are the means of eight samples per 

[CO2] treatment and four samples per [CO 2] and nutrient treatment. 

Treatment 	April 
	

June 
	

August 
	

December 

common alder 

Ambient 
	

135.85 (20.04) 
	

1109.15 (151.72) 
	

5257.58 (644.39) 

Elevated 
	

138.18 (28.50) 
	

1511.79 (300.78) 
	

4787.51 (744.26) 

Control 
	

117.25 (22.29) 
	

805.75 (184.90) 
	

5475.58 (763.63) 

A-N 

A+N 

E-N 

E+N 

C-N 

C+N 

129.78 (30.17) 

141.91 (30.64) 

142.29 (44.78) 

134.08 (27.67) 

127.51 (27.67) 

109.55 (36.19) 

1069.14 (291.76) 

1149.16 (145.71) 

1965.56 (458.52) 

1058.02 (273.26) 

503.25 (147.59) 

1108.25 (277.05) 

5680.97 (1119.54) 

4834.20 (751.60) 

3984.12 (737.39) 

5858.70 (1529.66) 

6121.35 (964.35) 

4829.80 (1230.18) 
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Table 4.8b Mean total leaf area (cm) in Scots pine in 1995 (with one standard error in brackets). Values are the means of eight samples per [CO 2
] 

treatment and four samples per [CO 2] and nutrient treatment. 

Treatment 	April 
	

June 
	

August 	 October 

Scots pine 

Ambient 59.67 	(4.77) 108.19 (22.12) 217.90 (13.18) 345.64 (58.80) 

Elevated 106.89 (16.44) 153.75 (20.97) 256.23 (34.18) 403.71 (48.28) 

Control 63.36 	(7.60) 88.97 (16.56) 189.47 (32.98) 308.56 (33.60) 

A-N 56.20 (5.19) 81.27 (23.24) 159.21 (37.41) 262.28 (40.65) 

A+N 63.14 (8.44) 135.12 (35.49) 222.96 (11.48) 428.98 (99.27) 

E-N 70.72 (16.24) 150.57 (24.02) 286.34 (29.94) 494.63 (42.09) 

E+N 143.06 (11.15) 156.94 (38.32) 286.34 (29.94) 494.63 (42.09) 

C-N 61.61 (8.70) 76.10 (12.68) 226.13 (62.85) 245.92 (22.68) 

C+N 65.70 (15.70) 101.84 (31.76) 219.73 (55.88) 371.21 (46.23) 
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4.6.2 Leaf Area Ratio (LAR) 

Elevated [CO2] had a significant effect on LAR in common alder in the first half but not 

in the second half of 1995 (Table 4.6). Elevated [CO 2] had a significant effect on LAR in 

common alder in April and June 1995 (p = 0.0087 and 0.0057, respectively). In August 

1995, however, there was only a trend towards an effect (p = 0.074 and 0.082, 

respectively). There was a nutrient effect and an interaction effect on LAR in June 1995 

(p = 0.0018 and 0.052, respectively). Thus elevated [CO 2] reduced LAR in alder 

compared with ambient [CO2] trees, i.e. the elevated trees had more biomass per unit leaf 

area than the ambient. 

In Scots pine elevated [CO2] had a significant effect on LAR in April and August 1995 

(p = 0.022 and 0.016. respectively) but not in-between (p > 0.1). There was a nutrient 

effect on LAR in August and October 1995 (p = 0.013 and 0.029, respectively). There 

was only an interaction effect between [CO 2] and nutrient addition on LAR in October 

1995 (p = 0.052). 

There was a large chamber effect on LAR in alder in April 1995 (p = 0.0003) and in June 

1995 (p = 0.0005) but not in August or December (p >0.1). In Scots pine there was only 

a chamber effect on LAR in August 1995 (p = 0.047). 

Table 4.10 Mean LAR (m2  kg') of [CO2] treatments in common alder and Scots pine in 

1995 (with one standard error in brackets). Values are the means of eight samples per [CO 2] 

treatment. 

Treatment 	 April 	June 	August 

common alder 

Ambient 	 4.09 (0.80) 	18.71 (1.27) 	17.60 (0.52) 

Elevated 	 2.78 (0.52) 	12.71 (0.67) 	15.05 (1.27) 

Control 	 1.74 (0.26) 	10.26 (1.86) 	17.79 (1.36) 
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Table 4.10 continued 

Treatment April 	June 	August 	October 

Scots pine 

Ambient 	3.11 (0.083) 2.69 (0.072) 2.95 (0.080) 3.12 (0.25) 

Elevated 	3.70 (0.21) 	3.02 (0.20) 	3.40 (0.16) 	3.05 (0.19) 

Control 	2.91 (0.30) 	2.54(0.22) 	3.35 (0.13) 	3.05 (0.19) 

4.6.3 Net Assimilation Rate (NAR) 

In common alder there was a significant effect of elevated [CO 2] on NAR between April 

and December 1995 (p = 0.029). There was no nutrient or interaction effect on NAR in 

alder (p > 0.1). In Scots pine on the other hand, elevated [CO2] had no significant effect 

on NAR (p = 0.45), but there was a very significant interaction effect on NAR in Scots 

pine (p = 0.0075). There was however no nutrient effect on NAR in Scots pine (p> 0.1). 

There was no chamber effect on NAR in pine (p > 0.1) and there were no control data 

for alder. 

Table 4.11 Mean NAR (mg m 2  d') in common alder and Scots pine between April 1995 and 

December (alder) or October 1995 (pine). Values are the means (one standard error in brackets) 

of eight samples for the [CO 2] treatments, and four samples for the nutrient and [CO 2] treatment. 

Treatment 	 alder 	 pine 

Ambient 	 14.80 (1.94) 	33.05 (3.39) 

Elevated 	 23.46 (1.53) 	 29.96 (2.99) 

Control 	 -- 	 32.17 (2.09) 

A-N 14.33 (2.024) 28.53 (4.61) 

A+N 15.28 (3.65) 37.58 (4.33) 

E-N 23.06 (2.75) 37.00 (2.88) 

E+N 23.86 (1.81) 22.92 (0.66) 

C-N -- 33.17 (3.47) 

C+N -- 30.84 (3.07) 
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4.7 Specific Growth Rate (SGR) 
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Figure 4.8a Natural log of total biomass against time in common alder over three 
growing seasons. Values are the means of eight replicates except for April 1994 where 

n =6. AMB = ambient [CO2 ] plus and minus nutrients; ELEV =elevated [CO2] plus and 

minus nutrients; CON = control plot plus and minus nutrients. 
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Figure 4.8b Natural log of total biomass against time in Scots pine over three 
growing seasons. Values are the means of eight replicates except in April 1994 

when n =6. 

SGR in common alder was measured between April and December 1995. In Scots pine 

mean SGR of total biomass was measured between April 1994 and October 1996 

(p = 0.18) as well as between the same 1995 months as for alder (p = 0.54). Elevated 

[CO2] had no significant effect on SGR of total biomass, shoot biomass (including 

leaves) or root biomass in either species of tree (p > 0.1). In Scots pine, SGR of total 

biomass, shoot mass and root mass in elevated [CO 2] was lower than in ambient [CO 2 1 
(see Table 4.12). In contrast, in alder mean SGR was higher in elevated than in ambient 

[CO2] except in the roots, where mean SGR was lower (see Table 4.11). If one looks at 
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Figures 4.8a and 4.8b showing the natural logarithm of total biomass per harvest over 

time, however it is visible that SGR was slightly higher in the elevated [CO 2} treatment 

(with a steeper slope of the line) from April 1994 to about September 1994 in both 

species, but especially in pine. These data do not agree completely with SGR data 

calculated by pairing trees of similar stature, since the former values are mean total 

biomass values of all treatment trees over time (i.e. SGR of quite varied individual trees) 

and the latter involved a more accurate analysis of SGR in similar trees. 

The only significant effect, interestingly, was on the interaction between [CO 2 ] and 

nutrients in both species. In alder there was an almost significant interaction effect on 

SGR of total biomass (p = 0.058). In pine there was a significant interaction effect on 

total biomass and shoot SGR (p = 0.0084 and 0.042, respectively). In both species it 

seems that those trees grown in elevated [CO2] without fertiliser addition (E-N) were 

more stimulated in their specific growth rate, than would be expected by [CO2] or 

nutrient treatment alone. This was especially the case with the SGR of total biomass in 

both species, as well as with the SGR of shoots in pine. 

Table 4.11 Mean SGR (mg g' dO') of total, shoot and root biomass in common alder 

between April and December 1995, with one standard error in brackets. Values are the 

means of data; sample size = eight per [CO 2] treatment and sample size = four per 

nutrient and [CO2] treatment. 

Treatment 	 total biomass 	shoot mass 	 root mass 

Ambient 9.51 (0.48) 8.93 (0.92) 9.26 (1.50) 

Elevated 9.58 (0.91) 10.62 (1.15) 7.72 (1.15) 

Control 5.88 (0.38) 5.67 	(0.97) 5.46 (0.73) 

A-N 9.43 (0.36) 8.76 (1.050) 9.03 (2.48) 

A+N 9.59 (0.98) 8.76 (1.050) 9.49 (2.09) 

E-N 10.77 (1.32) 12.48 (1.30) 8.27 (1.45) 

E+N 8.38(1.10) 8.76 (1.47) 7.18 (1.96) 

C-N 5.02 (0.37) 5.60 	(0.67) 4.34 (0.44) 

C+N 6.75 (0.14) 5.75 	(2.00) 6.58 (1.22) 
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Table 4.12 Mean SGR (mg g' d') of total, shoot and root biomass in Scots pine between 

April and December 1995, with one standard error in brackets. Values are the means of 

data; sample size = eight per [CO 2 ] treatment and sample size = four per nutrient and 

[CO2.] treatment 

treatment 	 total biomass 	shoot biomass 	root biomass 

Ambient 9.97 (0.84) 10.50 (0.80) 8.80 (0.71) 

Elevated 9.37 (0.59) 9.47 (0.69) 8.25 (0.85) 

Control 9.23 (0.40) 9.50 (0.40) 7.90 (0.40) 

A-N 8.57 (0.93) 9.17 (0.73) 8.63(l.25) 

A+N 11.36 (1.050) 11.83 (1.14) 8.96 (0.86) 

E-N 10.30 (1.01) 10.16 (1.37) 9.85 (l.25) 

E+N 8.45 (0.19) 8.78 (0.20) 6.65 (0.34) 

C-N 8.78 (0.62) 9.00 (0.60) 7.64 (0.66) 

C+N 9.84 (0.27) 10.16 (0.17) 8.24(l.36) 

When trees of similar size were analysed for SGR, no difference was found in alder (0.53 

mg g d' in ambient and 0.47 mg g' d' in elevated [CO21).  In Scots pine, it was more 

difficult to find trees of similar sizes at different harvests. Mean SGR for trees of similar 

size was 11.05 mg g' d' in ambient and 7.6 mg g' d' in elevated [CO 2]. The mean SGR 

is higher since the time period between the chosen harvests was smaller. Elevated [CO2] 

pine of similar size had a lower mean SGR than in ambient [CO2]. 

4.8 Foliar Nutrient Analysis 

In both Scots pine and common alder growth in elevated [CO2] did not significantly 

affect nitrogen concentrations in 1995 (p > 0.1) (see Table 4.13). Nutrient addition had 

no significant effect on nitrogen concentration in either species of tree (P > 0. 1, see 

Appendix 6 for p values) except in September 1994 where there was a trend towards an 
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effect (p = 0. 10) in Scots pine. There was no interaction effect of [CO 2] and nutrient 

addition in either species. 

There was a slight tendency for phosphorus concentrations in Scots pine to be increased 

by elevated [CO2] in September 1994 (p = 0.077), when mean [P] was 2.0 mg g 1  in 

elevated and 0.18 mg g' in ambient [CO 2]. No nutrient effect on phosphorus 

concentration was found in Scots pine (p > 0.1). There was, however an interaction 

effect between [CO 2] and nutrients in September 1994 (p = 0.02). 

In common alder there was no [CO 2] or nutrient effect (p > 0.1) on phosphorus 

concentration. [F] ranged from 3.3 mg g -1  in both [CO2] treatments in April 1994 (first 

harvest), to 3.8 mg g' in ambient and 4.1 mg g' in elevated [CO 2 ] in April 1995, and 1.2 

mg g-1  in ambient and 1.4 mg g' in elevated [CO 2 ] in December 1995. There was an 

interaction effect between [CO 2] and nutrient addition in April 1995 however (p = 

0.054). 

The presence of chambers only had an effect on phosphorus concentration in alder in 

April 1995 (p = 0.02). In Scots pine a chamber effect on phosphorus concentration was 

found in September 1994 (p = 0.058) and there was also a between-chamber effect 

(p = 0.063). Chamber presence affected nitrogen concentration in September 1994 also 

(p = 0.0059) but not at any other harvest. 
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Table 4.13 Nitrogen concentration (mg g') in leaves of alder and pine over time. Values are 

the means (one standard error in brackets) of eight samples for [CO 2] treatment and the 

means of four samples for nutrient and [CO2]. (*) = trend towards a statistically significant 

effect (p <0.10). 

Treatment 	Sep. 1994 	April 1995 Aug. 1995 	Dec. 1995 

common alder 

Ambient 22.7 (2.1) 37.1 (2.6) 25.0(2.0) 24.9 (2.9) 

Elevated 22.5 (1.9) 37.1 (3.5) 22.0 (1.5) 20.2 (2.4) 

Control 24.3 (0.6) 41.0 (1.8) 

A-N 24.7 (2.2) 33.7 (2.8) 23.8(l.5) 26.2 (2.4) 

A+N 20.6 (2.0) 40.5 (2.3) 26.2 (2.7) 25.8 (3.4) 

E-N 25.2 (2.5) 36.2 (3.0) 22.3(l.9) 20.2 (l.5) 

E+N 19.7(1.2) 38.0(3.9) 21.5(1.0) 20.4(3.3) 

C-N 22.8 (0.9) 41.9 (2.1) 

C+N 25.9 (2.3) 40.0 (1.4) 

Treatment 	Sep. 1994 	April 1995 Aug. 1995 	Oct. 1995 

Scots pine 

Ambient 15.3(l.0) 15.5 (2.0) 9.1 (0.5) 12.1 (1.0) 

Elevated 16.1 (0.4) 15.7 (0.8) 10.3 (0.3) 11.2 (0.3) 

Control 18.7 (0.3) 17.5 (0.4) 8.6 (0.4) 12.2(l.0) 

A-N 14.2 (0.4) 17.5 (3.1) 9.3 (0.3) 13.7(l.1) 

A+N 16.3 (1.6) (*) 13.5 (0.1) 9.2 (0.7) 11.8 (0.9) 

E-N 15.4 (0.5) 15.6 (0.8) 10.5 (0.3) 11.8 (0.2) 

E+N 16.7 (0.3) (*) 15.7(l.4) 10.1 (0.3) 10.6 (0.3) 

C-N 17.9 (0.3) 17.8 (0.7) 8.6 (0.8) 10.8(l.9) 

C+N 19.6 (0.2) 17.2 (0.06) 11.1 (0.3) 13.7(l.1) 
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4.9 Allocation of Labelled Nitrogen Over Time 

4.9.1 Labelled and Unlabelled Nitrogen Per Tree 

This study was based on the assumption that uptake of labelled N was finished in the 

autumn of 1994 after the spike addition of ' 5N labelled fertiliser in July 1994, and that in 

April 1995 any N uptake from the soil was at natural abundance. Some of the labelled N 

will have been lost through leaching and some immobilised in the soil by fungi and 

microbes, but the assumption is that further uptake of labelled N did not occur in the 

spring of 1995. Overall, the concentration of labelled N as a proportion of total plant N 

is expected to fall over time as unlabelled ' 4N dilutes the labelled N. The amount of 

labelled N, however should stay approximately similar (approximately, since different 

individual trees were harvested each time). Figures 4.9a and 4.1 Oa below show that the 

amounts of labelled N in trees of both species generally fell over time except in the 

spring-time when an increase occurred. The largest increase occurred between autumn 

1995 and April 1996. ANOVA analysis of harvest differences in dry mass data for the 

trees at these times indicated that the spring 1996 increase in labelled N could not be 

attributed to larger trees in April 1996 compared with October or December 1995 (one-

way ANOVA, alder p = 0. 12, pine p = 0.38). Since the trees in this experiment were 

grown in soil, it is likely that some of the labelled  N was immobilised in the soil by 

microbes and fungi, after the spike addition of fertiliser. As root turnover and 

remineralisation often takes place in the spring, labelled N previously immobilised in the 

soil could have been released and taken up by the plants, accounting for the increase in 

labelled N found in spring 1996. Allocation of labelled N in September 1994 and April 

1995 was of most interest in this study, since the pulse of labelled N was only applied 

once and not over a longer period (see discussion for more details). The only increase of 

labelled N of note (but ns at p = 0.24) in April 1995 was in the ambient [CO 2 } pine trees. 

However, since this increase in labelled N content was not statistically significant, the 

assumption that uptake of labelled N finished in autumn 1994 can be considered to have 

been met. In addition, there was no significant difference in labelled N per tree between 

harvests in either common alder or Scots pine. Pooled ambient and elevated data over 

time were not significantly different in either species (one-way ANOVA, p = 0.28 for 

alder, and p = 0.14 for pine). Equally, [CO 2
] 

had no significant effect on alder (p = 0.31) 
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or pine (p = 0.41) labelled N contents. There was also no effect of time on labelled N in 

either species (p = 0.94 in alder,p = 0.17 in pine). 

As far as unlabelled ' 4N derived from the soil (and / or the atmosphere in alder) before, 

during and after the spike addition of labelled N was concerned, amounts increased over 

time, as expected (see Figures 4.9b and 4.10b). Most of the uptake occurred between 

June and August in common alder, when mean unlabelled N rose from c. 1000 mg per 

tree to c. 4000 mg per tree. By comparison, in Scots pine most of the unlabelled N 

uptake took place in the late summer and autumn, when unlabelled N rose from 

c. 450 mg per tree to c.1250 mg per tree (see Figure 4.1Ob). There was increased N 

uptake by elevated [CO 2] alder between June and August 1995 compared with ambient 

[CO2] trees (see Figure 4.9b). The pattern then changed in autumn however, with 

ambient [CO2] alder continuing to take up N until December, whereas elevated [CO 2] 

alder stopped taking up N in August 1995. In Scots pine, the pattern of N uptake (see 

Figure 4.10b) was different with steady increase in N uptake from June to October. 

There was no clear pattern in which more N was taken up in elevated versus ambient 

[CO2] trees. 
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Figure 4.9a Mean amount of labelled N per tree in common alder over time. Each 
data point is the mean of four replicates for ELEV and AMB trees, and eight 
replicates for the total mean (see Table 4.14 for standard errors). Labelling 
occurred in July 1994. 
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Figure 4.9b Mean amount of unlabelled N per tree in common alder over time. 
Each data point is the mean of four replicates for AMB and ELEV trees, and eight 
replicates for the TOTAL treatment (see Table 4.14 for standard errors). 
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Figure 4.9a Mean amount of labelled N per tree in common alder over time. Each 
data point is the mean of four replicates for ELEV and AMB trees, and eight 
replicates for the total mean (see Table 4.14 for standard errors). Labelling started 
in July 1994. 
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Figure 4.9b Mean amount of unlabelled N per tree in common alder over time. 
Each data point is the mean of four replicates for AMB and ELEV trees, and eight 
replicates for the TOTAL treatment (see Table 4.14 for standard errors). 

4.9.2 Ratio of ' 5N to ' 4N 

The second assumption upon which this research was based, was that the labelled N and 

the unlabelled N taken up during July to October 1994 were treated in the same way by 

the trees. This assumption also included the idea that labelled N and unlabelled N taken 

up in summer 1994 would be allocated to the tissues in a similar way the following 

spring. Biological processes usually discriminate against heavier isotopes, such that in 

this case one might find that ' 4N was preferentially taken up over ' 5N. Nevertheless, this 

error is very small compared with the magnitude of the enriched fertiliser 'signal' which 

was many times greater (at 4.09 atom % excess versus 0.366 atom %) than any natural 

' 5N abundance discrimination. Thus, one can make the assumption that any differences in 
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discrimination by the plants between ' 5N and ' 4N were negligible compared with the 

magnitude of the ' 5N-enriched fertiliser spike. 
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Figure 4.1 Oa Mean amount of labelled N per tree in Scots pine over time. Each 
data point is the mean of four replicates for AMB and ELEV trees, and eight 
replicates for the TOTAL treatment (AMB + ELEV) (see Table 4.14 for standard 
errors). Labelling occurred in July 1994. 
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Figure 4.1 Ob Mean unlabelled N per tree in Scots pine over time. Each data point 
is the mean of four replicates for AMB and ELEV trees, and eight replicates for 
the TOTAL treatment (AMB+ELEV) (see Table 4.14 for standard errors). 
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Table 4.14 Single standard errors (±) for mean labelled N and unlabelled N per tree over time (see Figures 4.9a and b and 4.10a and b for means) 
in common alder and Scots pine (rng per tree). Values are the standard errors of four (occasionally three) samples per [CO 2] treatment. Pooled = 
ambient and elevated data pooled together. 

1994 	1995 	 1996 
Treatment 	Sep. 	April 	June 	Aug. 	Oct. 	April 

alder 
labelled N 
Ambient 27.83 38.72 55.29 12.70 645 11.76 
Elevated 7.81 26.47 65.45 26.66 18.02 28.70 
Pooled 35.46 36.57 42.29 13.69 11.14 17.23 

unlabelled N 
Ambient 144.78 174.93 132.52 423.73 598.20 779.46 
Elevated 538.43 277.37 255.63 954.28 1825.34 369.27 
Pooled 253.16 155.62 141.40 583.92 1087.10 484.02 

pine 
labelled N 
Ambient 14.83 24.83 19.10 8.58 5.72 19.71 
Elevated 12.23 7.34 6.48 17.27 12.69 10.78 
Pooled 9.020 13.73 9.43 9.14 6.48 10.71 

unlabelled N 
Ambient 46.20 25.08 109.61 17.95 221.78 426.72 
Elevated 34.38 16.59 75.34 177.06 154.93 137.13 
Pooled 28.64 49.04 61.58 83.29 134.49 244.81 
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4.9.3 Labelled N Allocation 

Up to 20 % of total N was labelled in common alder trees in September 1994, compared 

with up to 14 % in Scots pine (see Tables 4.15 to 4.18) . In both species these 

percentages fell to c. 2 % by the end of 1995. This dilution effect was most likely caused 

by the uptake of further unlabelled N into the trees after the July 1994 spike addition of 

labelled N fertiliser but also by the decline in labelled N content shown in Figures 4.9a 

and 4. lOa. Elevated [CO 2] did not seem to change the percentage of plant N derived 

from uptake of labelled fertiliser in Scots pine, but in alder this percentage was 

consistently higher in elevated [CO2] trees from September 1994 to June 1995 (13.4 % 

in elevated [CO2} versus 5.2 % in ambient [CO 2] alder in September 1994; in April 1995 

elevated [CO 2] alder had 21 % labelled N versus 9.5 % in ambient [CO21). By August 

1995 however, at which point most of the N uptake had taken place (see section on 

Labelled N and Unlabelled N Per Tree), the effect of elevated [CO 2] on percentage 

labelled N was neutralised. This was probably caused by continuing uptake in ambient 

[CO2] alder into the autumn, compared with the end of uptake in elevated [CO 2] alder 

(see previous section on Labelled N and Unlabelled N Per Tree). 

Labelled N taken up in July 1994 contributed 8.2 % to ambient [CO 2] alder leaf growth 

in April 1995 compared with 26.6 % in elevated [CO 2] alder. Labelled N also 

contributed 9.6 % to new shoot growth in June 1995 in ambient [CO 2] alder compared 

with 14.3 % in elevated [CO 2]. In Scots pine, the labelled N contribution to 1995 needles 

was 13.3 % in ambient [CO 2] compared with 25.1 % in elevated [CO 2 1. Labelled N 

contribution to 1995 shoot growth was 10.1 % in ambient compared with 8.0 % in 

elevated [CO2]. Thus up to 25 % of the N used for new growth in 1995 was derived 

from N which was taken up after the spike addition of labelled fertiliser in July 1994 and 

allocated to certain tissues over the winter. In this experiment any reference to 

remobilisation is remobilisation of N derived from the enriched fertiliser, and it is defined 

as any labelled N recovered in new growth (leaves or stem) in 1995. The proportion of 

labelled N that was remobilised for spring leaf growth was greater in elevated [CO 2
] 

trees in both species. This was also the case for the proportion of N remobilised for 1995 

shoot growth in alder but not in pine. 
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Effect of Elevated [CO 2] on Labelled N Allocation in Different Tissues 

As far as ' 5N allocation to tissues was concerned, elevated [CO2] had no significant 

effect on the different tissues of Scots pine at any harvest (from September 1994 to April 

1996) (p >0.05) (see Appendix 8 for ANOVA results, Table 4.17 for data). In common 

alder on the other hand, a significant [CO 2] effect was found in September 1994, in 1993 

and 1994 shoot tissue (p = 0.01 and 0.022, respectively) with more labelled N present in 

the elevated [CO2] tissues (see Table 4.16). In April 1995 [CO 2] also had a significant 

effect on the labelled N contents of 1993 and 1994 shoots (p = 0.017 and 0.024, 

respectively) and in the leaves (p = 0.03). Again, the elevated tissues contained more 

labelled N than the ambient ones. Differences in dry mass of the ambient and elevated 

[CO2] tissues in question were not significant in September 1994 and April 1995 (p > 

0.05) indicating that the significant differences in labelled N were not due to elevated 

[CO2] tissue being larger. In April 1994, however there was a trend towards the elevated 

{CO2] 1994 shoot dry mass being larger than the ambient [CO 2] dry mass (p = 0.15), 

which could account for the larger amount of labelled N in elevated [CO 2} 1994 shoots. 

During the summer of 1995 elevated [CO 2] had no significant effect on the labelled N 

content of alder trees (p > 0.05). In April 1996, however, there was a trend towards a 

[CO2] effect on the labelled N content of roots (p = 0.07) with more labelled N present in 

the elevated [CO 2] roots. This was not because the elevated [CO 2] trees has larger roots 

than ambient [CO 2] trees (p = 0.90), therefore one can conclude that the elevated [CO 2 ] 

roots contained more labelled N per unit root mass than ambient [CO 2] roots. 

Overall, therefore, more labelled N was present in elevated [CO 2] alder shoots in autumn 

1994 and spring 1995 than in ambient [CO 2 1 shoots. However, since the April 1995 

harvest was made after bud-burst it was not possible to determine which tissues had been 

used to store N over the winter since remobilisation had probably already occurred. 

What we see here, does nevertheless indicate increased allocation of nitrogen over the 

autumn and winter to shoots in elevated [CO 2] alder trees. In contrast, elevated [CO2]- 

grown Scots pine showed no significant difference in labelled N allocation at any time 

during the three growing seasons. 
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The Origin of Labelled N Found in New Growth 

Common alder 

The harvests of particular interest in this respect were September 1994 and April 1995, 

since one could be sure that any labelled N found in new leaf or shoot growth had been 

remobilised from other tissues. Table 4.15 shows that remobilisation of winter-stored N 

was complete by June 1995, since the largest amounts of labelled N in leaves were found 

at this time. The same table shows that in elevated [CO 2] trees, labelled N content of 

both roots and 1993 shoots increased slightly from September 1994 to April 1995 but 

then was reduced between April and June. In alder, 1994 shoot was the only category in 

which the amount of labelled N decreased. Statistically, there were no significant 

differences in labelled N content in any tissues in this time period (p > 0.05). There was a 

drop in labelled N in 1994 shoot and a rise in labelled N in root and 1993 shoot, 

however. Looking at the unlabelled N alder data in Table 4.17, shows that the amount of 

N found in the new leaves was equivalent to the amount lost from 1994 shoot over this 

time period (c. 84 mg). However, the amount of unlabelled N in the elevated [CO 2] roots 

(Table 4.17) also fell from September 1994 to April 1995. The unlabelled N for new 

growth could, therefore, have been derived from the roots in elevated [CO 2] trees, 

although the fact that labelled N levels in the rootss remained similar from the autumn to 

the spring does not confirm this possibility. 

The mean dry mass of elevated [CO 2] alder 1994 shoot decreased from 31.3 g in 

September 1994 to 12.7 g in April 1995 (t-test n = 4, p = 0.03). In addition, the ratio of 

mg of labelled N to g dry mass in 1994 shoot increased from September to April in the 

elevated [CO 2] treatment (from 1.25 to 6.16). This is not what one would expect if there 

had been a net transfer of labelled N from 1994 shoot to new growth. On the other hand, 

the lower dry mass of 1994 shoot in the spring compared with the autumn could have 

swamped any possibility of detecting a net labelled N transfer. The April 1994 shoot dry 

mass data were very variable. This could have been because of natural variation in the 

trees harvested or an artefact of the experiment, since it had started to become difficult 

to distinguish between 1993 shoot and 1994 shoot during April 1995 harvesting. 

Deciduous trees store N in woody tissues over the winter (Millard 1996). Bark storage 

proteins (BSP) which are synthesised in the autumn and broken down in spring shoot 
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growth, have recently been isolated in deciduous trees (reviewed in Millard 1996). Roots 

of young trees have also been shown to store N (Millard 1996). Taking all the above 

factors into account, therefore, the N for new shoot and leaf growth in elevated [CO 2 ] 

alder seems to have come from the 1994 shoot or possibly the roots. It is not possible to 

clearly state from which tissue the nitrogen was derived. 

In alder trees grown in ambient [CO 2] the allocation of labelled N between September 

1994 and April 1995 was similar to that of the unlabelled N (see Tables 4.15 and 4.17). 

The only drop in labelled N over this time period was found in 1994 shoot (p = 0.63). 

Changes in labelled N in all tissues were again not statistically significant (p > 0.05), 

although there were biologically significant increases and decreases in different tissues. 

1994 shoot lost c. 4 mg of labelled N and 9.2 mg were recovered in the leaves. 1994 

shoot also lost a similar amount of unlabelled N from September to April to that found in 

the new leaves (c. 100 mg were lost from 1994 shoot and 100 mg recovered in the 

leaves). As with the elevated [CO2]  alder, 1994 shoot dry mass was significantly lower in 

April 1995 compared with September 1994 (p = 0.047) and again, this could have been 

natural variation in the trees or an artefact of the experiment because of the difficulty in 

discriminating between 1993 and 1994 shoot. The ratio of mg labelled N to g dry mass 

of 1994 shoot also increased in ambient [CO 2], but not as much as in elevated [CO 2] 

(from 0.23 in autumn to 0.38 in spring). These changes are biologically significant 

because the variability of the data was high and the replication small, such that rigorous 

statistical tests such as ANOVA will not necessarily pick up processes of biological 

significance. In this case the data agree with the findings of other authors on N 

translocation patterns in evergreen and deciduous trees (reviewed by Millard 1996) 

lending credibility to the results. 

In contrast to 1994 shoot, root and 1993 shoot labelled N and unlabelled N amounts in 

ambient [CO2] remained similar between September 1994 and April 1995. On balance, it 

is more likely that the labelled N for new leaf and shoot growth came from 1994 shoot, 

although it is not possible to state this with certainty. This is in agreement with the 

findings of other authors that deciduous trees store N over the winter primarily in their 

stems (Millard 1996). It is possible that the N was stored as bark storage protein (BSP). 
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Because the harvest in April 1995 was made after bud-burst one can only talk of labelled 

N allocation over the winter not N storage, since remobilisation had probably already 

occurred. 

Scots pine 

In Scots pine, remobilisation of N for growth to 1995 needles was complete by April 

1995, when the largest amount of labelled N was found in the new needles (c. 15 mg in 

ambient and c. 25 mg in elevated [CO 2]). The movement of unlabelled N compared with 

labelled N between tissues from September 199d to April 1995 followed similar patterns 

(in both [CO2] treatments) (see Tables 4.16 and 4.18). The change in labelled N in all 

pine tissues over this time period was not significantly different (p > 0.05), but 

biologically there were some significant changes in labelled N in different tissues. In 

elevated [CO2] pine, the only big drop in labelled N from September 1994 to April 1995 

was in 1994 needles (p = 0.52). Labelled N in 1994 shoot also decreased over this period 

but only very slightly (ns at p = 0.78). Labelled N in roots remained the same in both 

harvests (p = 1.0), whereas 1993 shoot and 1993 needles both had increased labelled N 

(p = 0.22 and 0.61, respectively). If one looks at the dry mass data for these tissue in the 

respective harvests, one finds that no changes in dry mass from autumn to spring were 

significant (p > 0.05), except in elevated 1993 needles (p = 0.03). The mass of 1993 

needles however was very low and variable, such that no clear conclusion can be drawn 

from the increase in labelled N in spring of 1993 needles despite unlabelled N and dry 

mass decreasing. 

Most the N used in new needle growth in elevated [CO 2 1 pine came from 1994 needles. 

The dry mass of 1994 needles increased in elevated [CO 2] (from a mean of 4.0 to 6.4 g). 

One can conclude that a net movement of N from 1994 needles to 1995 needles occurred 

in the elevated pine needles over the winter, since the amount of labelled N in 1994 

needles decreased from 30.6 mg to 17.8 mg from September to April, despite the dry 

mass going up during the same period. 

In ambient [CO21  pine there were no statistically significant differences in labelled N from 

autumn 1994 to spring 1995 (p > 0.05). In contrast to in elevated [CO 2] pine, labelled N 
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and unlabelled N decreased in all tissues in ambient [CO 2 ] pine. The biggest drop in 

labelled N in ambient [CO2
] 

pine from autumn 1994 to spring 1995 was again in the 

1994 needles (from 24.9 mg to 8.8 mg, ns at p = 0.14 but showing a trend towards a 

significant difference). The 17 mg of labelled N lost from 1994 needles is closely 

equivalent to the 15 mg present in the new needles. The dry mass of all tissues over the 

same time period showed no significant differences (p >0.05), except in 1994 needles (p 

= 0.02). 1994 needle dry mass decreased over the time period in ambient [CO 2] (from a 

mean of 7.3 to 4.0 g). The ratio of labelled N to dry mass also decreased from autumn to 

spring (from 3.32 mg g' to 2.5 mg ga ), however. Had the decrease in labelled N only 

been due to a decrease in dry mass of the tissue, the ratio of labelled N to dry mass 

would have remained the same or have increased. Since the opposite was the case, one 

can be relatively sure (given that the unlabelled N behaved in a very similar manner) that 

the N for new needle growth was derived from 1994 needles. These results are in 

agreement with other research, where it was found that evergreen trees store N in the 

foliage over the winter, and that conifers store N in the previous year's needles (Proe and 

Millard 1994, Millard 1996). 
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Table 4.15 Mean labelled ' 5N, mg, per tissue (with one standard error in brackets) in common alder over time. Values are the means of four 
replicates (occasionally three). R = root; S = shoot; L = leaf. After August 1995 it was no longer possible to distinguish between 1993 shoot and 
1994 shoot, so they were pooled. 

1994 	1995 
Tissue 	 Sep. 	April 	June 	 Aug. 

Ambient 
R 26.43 (13.62) 40.75 (26.11) 35.18 (17.09) R 19.95 (3.76) 
1993S 9.66 	(5.22) 12.66 (6.91) 12.05 (8.02) 93+94S 30.62 (4.10) 
1994S 8.75 	(7.21) 4.81 	(3.14) 7.14 	(3.89) 95S 5.59 	(0.60) 
1995S -- 0.37 (one #) 5.54 	(2.78) L 22.49 (3.89) 
L 12.09 (6.68) 9.19 	(3.21) 40.29 (24.33) 

Elevated 
R 78.68 (33.97) 84.50 (20.48) 75.42 (28.37) 	R 24.53 (9.18) 
1993S 35.84 (3.44) 43.42 (6.29) 22.51 (9.88) 	93+94S 31.43 (12.09) 
1994S 52.89 (12.52) 40.00 (11.27) 22.51 (9.88) 	95S 5.88 	(3.69) 
1995S -- 1.22 	(0.26) 6.94 	(2.43) 	L 15.83 (6.46) 
L 65.90 (44.17) 30.39 (6.47) 55.79 (19.75) 

1996 
Dec. 	 April 

23.15 (8.88) 	20.61 (4.88) 
10.96 (10.80) 	33.94 (5.09) 
5.39 (one #) 	12.91 (2.98) 
7.97 (2.33) 	-- 

35.85 (20.79) 	42.23 (8.68) 
43.11 (11.00) 	62.24 (17.80) 
10.11 (0.16) 	13.42 (6.95) 
5.79 (1.69) 	-- 
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Table 4.16 Mean labelled 15N per tissue, mg, (with one standard error in brackets) in Scots pine over time. Values are the means of four 
replicates (occasionally three). R = root; S = shoot; N = needles. 

1994 	 1995 	 1996 
Tissue 	 Sep. 	 April 	 June 	 Aug. 	 Oct.. 	 April 

Ambient 
R 6.42 (3.02) 4.89(l.19) 3.52 (1.31) 1.58 (0.53) 1.84 (0.80) 4.71 (2.07) 
1993S 7.23 (4.31) 3.36 (0.31) 2.87 	(1.17) 1.00 (0.34) 1.35 (0.31) 3.27(l.17) 
1994S 3.54(l.16) 3.04 (0.31) 3.31 	(1.43) 1.32 (0.46) 2.87(l.81) 3.53 (0.93) 
1995S -- -- 7.23 (2.90) 3.79(l.44) 3.51 (0.33) 8.55 (2.66) 
1993N 2.37 (1.40) 1.25 (0.12) 3.57 	(1.93) 0.17 (0.10) 0.26 (0.18) 0.95 (0.69) 
1994N 24.85 (7.74) 8.75 (0.94) 12.52 (4.92) 3.41(l.15) 9.57 (6.89) 19.44(15.14) 
1995N -- 15.32 (1.80) 11.63 (5.24) 14.75 (4.83) 9.01 (2.92) 30.26(11.32) 

Elevated 
R 8.65 (4.39) 8.64 (2.97) 4.01(l.61) 2.22 (0.72) 2.65(l.27) 5.86(l.45) 
1993S 2.31 (0.92) 6.04 (2.60) 2.40 (0.56) 1.79 (0.80) 1.22 (0.62) 5.60 (2.10) 
1994S 6.84(l.87) 5.90 (0.27) 3.30 (0.74) 2.54(l.16) 1.66 (0.91) 2.42 (0.92) 
1995S -- -- 5.20 (0.55) 5.47 (2.25) 4.80(l.93) 11.17 (2.69) 
1993N 1.63 (0.42) 1.95 (0.41) 1.65 (0.78) 0.29 (0.10) 0.13 (0.10) 0.31 (0.16) 
1994N 30.58 (9.35) 17.78 (5.99) 10.25 (3.73) 6.38 (2.93) 2.46(l.39) 4.03 (2.25) 
1995N -- 24.72 (11.14) 10.69 (2.77) 17.95 (9.59) 11.60 (7.60) 27.21 (4.80) 
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Table 4.17 Mean unlabelled ' 4N, mg, (with one standard error in brackets) in common alder tissues over time. Values are the means of four replicates 
(occasionally three). R = root; S = shoot; L = leaves. Note that after August 1995, 1993S and 1994S are pooled and known as 94S. 

1994 	 1995 	 1996 
Tissue 	Sep. 	 April 	 June 	 Aug. 	 Dec. 	 April 

Ambient 
R 321.4 (112.4) 345.8 (112.8) 239.7 (41.6) R 482.8 (52.1) 	1669.8 (332.4) 	1023.1 (317.3) 
1993S 134.7 (31.9) 139.7 (25.5) 95.1 	(11.3) 1994S 884.8 (151.6) 	1993.2 (81.7) 	1933.1 (357.2) 
1994S 155.1 (54.5) 55.1 	(18.9) 63.3 	(8.3) 1995S 417.6 	(94.1) 	-- 	 1228.5 (203.9) 
1995S -- 75.7 	(71.3) 51.8 	(18.8) L 1992.1 (295.9) 	937.9 	(104.8) 	-- 
L 396.5 (115.2) 102.9 (24.0) 337.6 (74.2) 

Elevated 
R 654.8 (143.8) 377.5 (130.7) 378.2 (111.2) R 	1145.2 (374.5) 1361.8 (235.8) 	923.5 	(136.9) 
1993S 155.5 (91.1) 266.0 (76.8) 128.6 (38.2) 1994S 	1232.0 (348.3) 2045.8 (445.3) 	1163.7 (228.8) 
1994S 219.1 (91.2) 135.8 (50.7) 107.5 (37.1) 1995S 	703.8 	(260.9) 1001.1 (319.0) 	649.7 	(96.8) 
1995S -- 4.9 	(2.0) 41.2 	(10.7) L 	2309.2 (709.2) 783.8 	(211.5) 	-- 
L 406.5 (338.8) 84.1 	(30.3) 338.7 (65.5) 
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Table 4.18 Mean unlabelled ' 4N, mg, (with one standard error in brackets) in Scots pine tissues over time. Values are the means of four replicates 
(occasionally three). R = root; S = shoot; N = needles. 

Tissue 
1994 
Sep. 

1995 
April June Aug. Oct. 

1996 
April 

Ambient 
R 40.1 	(11.2) 35.6 (7.5) 42.5 	(7.7) 38.5 	(3.9) 93.5 	(22.0) 173.5 (38.4) 
1993S 31.9 	(15.1) 22.1 	(6.6) 31.4 (4.9) 19.8 	(1.2) 41.5 	(8.0) 80.1 	(15.7) 
1994S 25.6 	(7.3) 13.9 	(1.3) 34.6 (6,0) 26.5 	(1.7) 75.6 	(35.7) 102.9 (22.8) 
1995S -- -- 64.1 	(22.2) 113.9 (23.5) 164.9 (48.7) 286.8 (51.8) 
1993N 24.2 	(6.7) 10.3 	(3.9) 44.0 (28.0) 2.8 	(0.9) 6.9 	(5.6) 306.1 (268.6) 
1994N 147.9 (23.9) 37.3 (3.9) 108.3 (20.6) 44.7 	(7.4) 194.8 (134.4) 336.4 (300.2) 
1995N -- 99.4 (15.2) 138.2 (36.4) 401.1 (15.7) 609.3 (71.4) 560.3 (221.7) 

Elevated 
R 62.0 (16.7) 60.8 (4.9) 48.3 	(5.5) 32.0 (5.2) 117.0 (25.1) 121.9 (17.1) 
1993S 23.1 	(3.3) 49.0 (6.0) 29.2 	(7.0) 21.5 	(4.5) 52.9 	(10.2) 83.8 	(25.2) 
1994S 40.0 (9.2) 33.6 (4.2) 36.4 	(8.7) 38.6 (7.3) 93.7 	(10.5) 39.0 	(11.0) 
1995S -- -- 59.5 	(10.5) 88.0 	(19.3) 218.7 (24.20 237.8 (43.6) 
1993N 14.3 	(2.0) 10.3 	(3.9) 17.7 	(5.6) 3.2 	(0.7) 6.0 	(3.4) 4.0 	(1.6) 
1994N 176.6 (28.9) 108.5 (8.4) 96.2 	(25.8) 50.6 	(9.6) 52.1 	(7.5) 40.7 	(17.6) 
1995N -- 73.8 	(42.1) 130.0 (38.9) 352.2 (127.8) 857.4 (109.3) 639.9 (88.7) 
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Ambient 	Elevated 	Control 

4.10 Nitrogen Fixation inAlnus glutinosa Grown in Elevated [CO2] 

Upon harvesting the trees, the nodules on elevated [CO 2]-grown roots were visibly 

smaller, more numerous and less clumped than those on ambient [CO 2] roots (see Photos 

4.5 and 4.6). This was confirmed by Dr Sue Grayston, who determined the acetylene 

reduction of the nodules in August 1995. Total nodule mass was larger in elevated [CO 2 ] 

- N nodules, although not significantly so (6.89 g in ambient versus 7.28 g in elevated 

[CO2
], p = 0.95, n = 4), whereas total nodule mass was less in elevated [CO 2} (again not 

significantly) when fertilised nodules were also included in the analysis (with a mean of 

6.15 g in ambient [CO 2] versus 5.88 g in elevated [CO 2], p = 0.89, n = 8). Root mass 

was larger in elevated [CO 2] than in ambient [CO2] but not significantly so (p> 0.1). 

Acetylene reduction, effected by the nitrogenase enzyme and thus an indication of the 

extent of nitrogen fixation, was also different in the different [CO 2] treatments. Nodules 

from the elevated [CO 2} treatment reduced more acetylene per mass of nodule per hour 

than did those in the ambient [CO 2] treatment (see Figure 4.11, data from Sue Grayston) 

although not significantly. When calculated on a whole plant basis, more acetylene was 

also reduced per plant per hour in elevated [CO 2 1 conditions, although not significantly 

so (Figure 4.11). 
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Figure 4.11 Mean ethylene reduction per gramme of nodule and per plant from alder trees 

growing at ambient and elevated [CO 2]. Values are the means of four samples. 
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Photo 4.4 Nitrogen-fixing root nodules on root of common alder in summer 1994. 
Photo 4.5 Common alder root nodules from a tree grown in elevated [CO 2] and 
harvested on the 2nd April 1996. 
Photo 4.6 Common alder root nodules from a tree grown in ambient [CO 2 1 in the 
control plot and harvested on the 2nd April 1996. 
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4.11 Discussion and Conclusions 

Tables 4.19 and 4.20 are summaries of the main effects of elevated [CO 2] and nutrition 

on common alder and Scots pine seedlings. They enable a quick overview of the main 

effects but do not include interactions between [CO 2] and nutrient addition. These results 

are discussed in more detail in the subsequent sections. 

4.11.1 Growth and Biomass 

Longer-term experiments with trees grown in the ground are becoming more widespread 

and generally show increased growth over a certain time period which then becomes 

reduced in response to various limiting factors (Stitt 1991, Rey 1997, Tissue et at. 

1997). In addition, such experiments indicate that every species has an individual 

response to elevated carbon dioxide. The response of the deciduous alder and the 

coniferous pine in this study agree closely with Poorter's 1993 review, which found that 

deciduous species and pioneer species were more stimulated than coniferous or slower-

growing species (c. 54 % increase in biomass for the former versus c. 23 % for the latter, 

compared with an average biomass increase of 59 % in alder and 33 % in pine in this 

study). Norby (1987) also found that total biomass of Alnus glutinosa was stimulated 49 

% in elevated [CO2]. 

Alder 

Elevated [CO2] did not significantly affect specific growth rate of biomass during the 

third year of growth, although the interaction of [CO 2] and nutrient addition increased 

SGR in E-N plants. This suggests a slight stimulation of growth rate in the E-N 

treatment but no significant [CO 2] or nutrient effect alone. Norby et al. (1996) also 

found no change in SGR in white oak and yellow poplar and attributed this fact to 

decreased LAR, as in this experiment. Rey (1997) found very similar results in her long-

term experiment with four-year old Betula pendula grown in the field, where SGR was 

not stimulated and yet total biomass (up 58 %), stem height and basal diameter were 

increased in elevated [CO 2]. 
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Table 4.19 Summary of main effects of growth in elevated [CO2] on common alder in the two 

nutrient treatments, fertiliser supply, F and no fertiliser supply, NF , combined and separately. 

The table shows significant statistical differences and how a variable in elevated [CO 2] compared 

with the ambient [CO 2] control. ++ large increase, + increase, (+) slight increase, - no change, (--) 

slight decrease, -- decrease, --- large decrease, ? not measured. Stars * indicate that the result 

was statistically significant (p < 0.05) at least at some time during the experiment. (*) = trend 

towards a significant difference between treatments (p < 0.1). R = root; L = leaf; S = shoot (without 

leaves); R / S = root to shoot ratio; R / L = root to leaf ratio; L / S leaf to shoot ratio. 

Variable 
	 F + NF together 	F 

stem height - + * 

growth rate per day + + + 

SBD + + 

stem basal area + * + * + * 

total biomass ++ * + + 

cumulative biomass + ? 

leaf allocation  

root allocation .- - 

branch allocation - - - 

stem allocation (+) (*) + + * 

R/S (i)(*) - - 

RIL ()(*) - - 

LIS --* 

leaf area - - 

LAR --* --* 

NAR +* - - 

SGR - - - 

[NJ - - - 

[P] (±)(*) - 

ethylene reduction + ? 

nodule no. + ? 

labelled N in shoots + ? 

labelled N in roots - ? 

labelled N in leaves + 

N for new growth from previous year's stem and branches 
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Table 4.20 Summary of main effects of growth in elevated [CO 2] on Scots pine in the two nutrient 

treatments, fertiliser supply, F and no supply, NF, combined and separately. The table shows 

significant statistical differences and how a variable in elevated [CO 2] compared with the ambient 

[CO2} control. ++ large increase, + increase, (+) slight increase, - no change, (--) slight decrease, - 

- decrease, --- large decrease, ? not measured. Stars * indicate that the result was statistically 

significant (p <0.05) at least at some time during the experiment. (*) = trend towards significant 

difference between treatments (p <0.1). 

Variable 
	

F + NF together 
	

F 

stem height 

growth rate per day 

SBD 

stem basal area 

total biomass 

cumulative biomass 

leaf allocation 

root allocation 

branch allocation 

stem allocation 

RIS 

RIL 

LIS 

leaf area 

LAR 

NAR 

SGR 

[N] 

[P] 

labelled N in shoots 

labelled N in roots 

labelled N in leaves 

N for new growth 

+* 

+ 	 + 	 + 

+ 	 +* 

+* 	 +* 

+ 

+ 
	

9 
	

7 

* 	 * 	 * 

+* 

* 	 * 	 * 

(+) (* 

7 

7 
	

9 

7 
	

9 

from previous year's needles 
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The fact that fertiliser addition did not have a significant effect on alder growth indicates 

that those trees given no fertiliser and hence fixing nitrogen were able to grow as well as 

those supplied with full nutrients to the soil. The nodules exposed to elevated [CO 2] 

were smaller and therefore their nitrogenase activity higher (Wilson and Coutts 1985). 

Wilson and Coutts (1985) indicated that evidence for a strong correlation between 

nodule dry mass and growth was accumulating. [N] was not decreased in elevated [CO2] 

in either nutrient treatment despite the increase in total biomass, corroborating this idea. 

Pine 

The reponse of Scots pine to elevated [CO 2] was not as large as that in alder. As in alder, 

SGR was not stimulated despite increase in total biomass, stem basal diameter and area. 

In contrast to the short-term experiment in this long-term experiment stem height was 

enhanced in elevated [CO 2] in pine but not in alder. Stem elongation per day was also 

higher in elevated [CO 2]. This reponse, particularly that of increased stem basal diameter, 

was very similar to that found by Ewa Jach (University of Antwerpen, pers. comm.) in 

her experiment with Scots pine. Very varied reponses of different pine species to 

elevated [CO2] have been reported in the literature with Pinus ponderosa and Pinus 

taeda in North America, Pinus sylvestris in Europe and Pinus radiata in Australia. All-

round positive responses during the first or second growing season have been shown in 

P. taeda (Lewis etal. 1996, Tissue et al. 1997) but in contrast Griffin et al. (1993) only 

found seedling growth of P. taeda to be stimulated when soil nitrogen was high. 

Higginbotham et a! (1985) found an all-round positive response in lodgepole pine, P. 

contorta, grown in pots in chambers, whereas Grulke et al. (1993) found no stimulation 

of stem height or diameter in P. ponderosa. In Pinus radiata, Conroy et al. (1990) 

found that elevated [CO 2] increased whole plant dry mass only when phosphorus was in 

adequate supply. 

These results highlight how different species in the same genus can respond very 

differently to elevated [CO 2], and these differences derive mainly from different 

developmental strategies (Mousseau and Saugier 1992) as well as possible genetic 

restraints to growth (Poorter 1993). Another example of this is the work of Duff et al. 

(1994) in which Eucalyptus tetrodonta increased its total biomass significantly under 
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elevated carbon dioxide conditions, whereas Eucalyptus miniata did not. These results 

confirm the suggestion that increased SGR may not persist for long periods (DeLucia et 

al. 1994). As Pettersson and McDonald's work on Betula seedlings (1992) pointed out, 

slightly higher SGR values during the first few weeks of development in birch seedlings 

were sufficient to produce important differences in biomass over a period of several 

growing seasons. This is probably what happened in this long-term experiment. 

Unfortunately it was not possible to measure SGR during the first and second growing 

seasons because of lack of harvests. The most common plant response to elevated [CO 2
] 

is that growth and total biomass are increased but the growth stimulation is offset after a 

certain time period (varying from days to a few years) by various limiting factors. Such 

acclimation is often species-specific and the mechanism not yet clearly known, although 

down-regulation of photosynthesis occurs when carbon sources outstrip carbon sinks 

(Stitt 1991). Other authors have postulated that increased growth during the first 

developmental stages causes increased demand for nutrients and concomitant dilution of 

nitrogen which in turn causes NAR and allocation to the leaves to be reduced (Pettersson 

and McDonald 1992). Although NAR was stimulated in 1995 in alder, it is probable that 

the effect was reduced in 1996 (since there were signs of acclimation), especially since 

there was no increase in leaf area over the entire experimental period and [N] was 

reduced in 1996. The relatively long period of growth in alder (from 1993 to 

approximately August 1995 when canopy closure occurred) before acclimation set in, 

seems to have been a result of adequate nutrient availability from the soil for the trees 

grown with fertiliser, and adequate supply of nitrogen fixed from the atmosphere in trees 

grown without fertiliser. This enabled the trees to maintain the same [N] until 1996 when 

there was a significant reduction in [N] in alder leaves. Johnson et al. (1996) found that 

increases in growth of Pinus taeda were accompanied by a more efficient use of N only 

in the first six months of growth. It seems that this was the case in both alder and pine in 

this experiment, although the period of increased nitrogen use was at least two growing 

seasons long. 
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4.11.2 Allocation 

Alder 

Biomass allocation was much less affected by elevated [CO 2 ] in pine than in alder. There 

is evidence that the extra carbon in alder tended to be allocated to the stem and branches 

(collectively called shoots). Carbon was allocated away from the leaves in elevated 

[CO2 1 throughout 1995, whereas increased allocation to the shoot only occurred 

significantly in June 1995. Field et al. (1992) pointed out that plants grown in elevated 

[CO2] often have decreased allocation to the leaves so that respiratory costs for growth 

and maintenance are reduced, thus offsetting any extra respiratory costs caused by 

increased growth and maintenance. This could be the case with the alder in this study. 

Root to shoot ratio has often been found to increase in elevated [CO 2], although this has 

often been in experiments with nutrient limitation, in which extra carbon is allocated to 

the roots (Bazzaz 1990, Rogers et al. 1992). This seems to be more a response to poor 

nutritional conditions rather than to elevated [CO 2] however, which is backed up by 

many tree experiments with adequate fertilisation in which R / S was unchanged in 

elevated [CO2] (Bazzaz 1990, Chu et al. 1992, Tissue et al. 1996, Tissue et al. 1997). 

There was only a temporary tendency for alder R / S to increase in August 1995, whereas 

during the rest of the experiment there was no significant difference in R / S. This 

supports the idea that those trees growing without fertiliser addition were able to keep 

up a high enough supply of N to support increased growth in elevated [CO 2}, via 

fixation of N from the atmosphere. A point to also keep in mind is that the alder were 

quite densely planted within each quadrant and as they grew larger, the root systems may 

have been restricted (see Norby et at. 1996). Leaf to shoot ratio (L / 5) was reduced in 

June but not August 1995, whereas R / L ratio was, curiously, not affected by elevated 

[CO2]. The reduction in L / S in June 1995 fits with evidence of increased allocation to 

the shoot in the same month, whereas allocation away from the leaves occurred 

throughout 1995. Leaf mass ratio (LMR) was reduced in elevated [CO 2] throughout 

most of 1995. This is to be expected since total biomass was stimulated but leaf area 

remained the same. 
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Pine 

In Scots pine the only change in biomass allocation in elevated [CO 2] was in the 1993 

needles and the effect only occurred in September 1994. Less biomass was partitioned to 

the needles at this time. Otherwise there were no differences in allocation in trees grown 

in elevated [CO 2], neither in RIS, US, RIL, LMR, or in allocation to other plant tissues at 

any time during the experiment. Jarvis (1995) stated that carbon allocation is barely 

affected if the nutrient supply is maintained. This seems to be the case, especially in Scots 

pine where hardly any changes in biomass allocation were found. It is rather puzzling, 

however, that the trees grown without fertiliser were also not affected in their allocation 

of biomass to different tissues. 

4.11.3 Assimilatory Material and Net Assimilation Rate 

Alder 

Norby (1987) found increased leaf area but decreased LAR in Alnus grown in elevated 

[CO2], which indicated increased NAR, as was found here, despite leaf area not 

increasing significantly. Gail Jackson found that alder SLA in the present study was also 

not significantly affected in elevated [CO 2 ] in 1996 (unpublished data). SLA during 1995 

was not affected by elevated [CO 2], unlike in the short-term experiment. Overdieck and 

Forstreuter (1995) found no change in beech (Fagus sylvatica) leaf area grown in 

elevated [CO 2] for three years. El Kohen and Mousseau (1994) on the other hand, found 

that leaf area of sweet chestnut (Castanea sativa) was only increased in elevated [CO 2 ] 

supplied with fertiliser. In a study with yellow poplar (Liriodendron tulipifera L.), leaf 

area was reduced in elevated [CO 2] (Norby and O'Neill 1991) and increased total 

biomass was wholly ascribed to an increase in NAR. This is a similar result to that found 

in this experiment on alder. Norby et al. in their long-term experiment on Liriodendron 

tulipifera and Quercus alba (1996) found species-specific leaf responses to elevated 

[CO2]. Leaf area in the former species was reduced by 10 % compared with a 95 % 

increase in the oak. LAR was reduced in both species however. As a result growth 

stimulation in oak was very large compared with no reponse in poplar (despite increased 

photosynthetic rates). In this case the slower growing species benefited much more from 

elevated [CO2} than the faster growing one. In his study of ten fast-growing species, 

Poorter (1993), on the other hand, found increased LAR compared with slower-growing 
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species, but NAR and the rate of photosynthesis were stimulated to the same extent. This 

was not the case with Scots pine and common alder in this long-term experiment, where 

LAR was decreased in both species but NAR was only enhanced in alder. These varied 

results once again indicate how species-specific and different tree reponses to elevated 

[CO2] can be. 

Another very important aspect of tree response to elevated [CO 2 ] in the field, is canopy 

closure. There were 12 alder seedlings per quadrant at the beginning of the experiment, 

which meant that despite harvesting and the June 1995 thinning, canopy closure occurred 

in summer 1995. Unfortunately it was not possible to ascertain whether canopy closure 

occurred earlier in elevated [CO 2 ] plants or not. Norby et al. (1996) postulate that the 

only lasting effect of early growth enhancement in elevated [CO 2] may be a shortening of 

the time requires to reach canopy closure. However, they also state that although 

biomass production may not continue to the same degree after canopy closure, there is 

no particular reason why the relative effect of elevated [CO 2] on growth efficiency would 

decline after canopy closure. Interestingly, signs of a reduction in growth stimulation, i.e. 

acclimation, appeared around August 1995 when [N] and [P] changed from being 

optimum to being intermediate, root mass was significantly larger in elevated [CO 2] and 

R I S tended to increase. LAR was significantly lower in April and June 1995 but not 

after this date, whereas leaf to shoot ratio was lower in June but not in August. 

Pine 

In Scots pine leaf area increased in elevated [CO 2] in April 1995 but not at any other 

date, whereas LAR was reduced in April and August 1995 (but not at any harvest in-

between). In contrast to alder, NAR was not stimulated by elevated [CO 2]. DeLucia et 

al. (1994) found a similar effect on Pinus ponderosa grown in a phytotron, where 

increases in biomass were offset by decreases in LAR. 

These results differ from many [CO 2] experiments, in which leaf area was found to 

increase, along with leaf biomass and thickness (Mousseau and Saugier 1992, Jarvis 

1995). Saralabai et al. (1997) postulate that the common increase in leaf area in elevated 

[CO2 ] is caused by more extensive branching in dicotyledons. It should be kept in mind 
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however, that total leaf area is often not measured directly, but calculated from a sub-

sample of leaves or from previous relationships between leaf area and SLA as in this 

experiment. As such it is difficult to be sure if the lack of effect of elevated [CO 2] on 

leaves in this experiment was an artefact of the methodology or a real [CO 2] effect. 

4.11.4 Leaf Nutrient Concentration 

Alder 

[N] in alder was not affected by elevated [CO 2] although there was a tendency for the 

concentration to be lower in elevated [CO 2] trees (see Table 4.13). According to Van 

den Burg's (1985) compilation of tree nutrient data, the alder leaves had neither deficient 

nor optimum concentrations of N, although some from the elevated [CO 2] treatment 

were in the deficient range (2.2 to 2.9 %). Concentrations dropped to deficient in 

elevated [CO 2] in August 1995 and continued to be so in December. In contrast, [P] was 

optimum at the beginning of the experiment until August 1995, when [P] became 

intermediate. [P] also increased slightly in elevated [CO 2] ( if us). These results are very 

different from other experiments with Alnus spp, in which [N] was decreased (Norby 

1987) or increased in elevated [CO 2] (Arnone and Gordon 1990). Since the [N] 

remained similar in elevated [CO 2] and total biomass increased, the amount of N must 

have increased along with the amount of carbon in order for N dilution not to have taken 

place. Tracking of carbon amounts by nitrogen could have been brought about by the 

ability to fix nitrogen in the alder (see section 4.9.6 on Nitrogen Fixation for more 

discussion of this). A key question that springs to mind is, how did the alder (and pine) 

manage to increase [P] in the leaves in elevated [CO 2], since there was no nutrient 

addition effect on [P] (in either species)? I suggest that the extra availability of carbon 

increased mycorrhizal growth and activity which in turn lead to positive feedback for the 

plants. 

Pine 

[N] in pine was not affected by elevated [CO 2] but [N] was deficient (Ito 2 %) to 

intermediate (1 to 3 %). Interestingly, [N] was deficient in August 1995 which seems to 

be a possible date for the start of acclimation in both species. [P] in pine needles was 

optimum to intermediate and, as in alder, the drop from optimum to intermediate 
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occurred in August 1995 (or possibly in June since there were no data for nutrient 

concentrations in the June harvest). [P] was also slightly higher in elevated [CO 2}. Many 

experiments with trees grown in elevated [CO 2] have found that foliar nutrient 

concentrations decrease (Chu et al. 1992, Ceulemans and Mousseau 1994, Rogers et al. 

1994), although it needs to be pointed out that many of these experiments involved 

plants grown in pots or otherwise nutrient limited. Rogers et al. (1994) found in their 

review that when plants were supplied with large amounts of nutrients, nutrient 

concentration and nutrient uptake efficiency were generally not significantly affected by 

elevated [CO 2]. This seems to be th case in this study, although it is difficult to explain 

why those trees grown without fertiliser had similar [N] concentration in elevated [CO 2 ] 

to ambient [CO2]. See section 2.4.2 in Chapter 2 for details of soil nitrogen 

concentrations within the chambers. 

4.11.5 Labelled N Partitioning 

Trees store N during winter and summer and remobilise the stored N in the spring to 

support new growth (Millard 1996). The pattern of N storage depends on whether trees 

are evergreen or deciduous. Deciduous trees tend to remobilise nitrogen from perennial 

woody tissues (stem, bark and sometimes roots) in the spring (Kang and Titus 1980a). 

Bark storage proteins (BSP) which are synthesised during the autumn and broken down 

in the spring have been isolated (reviewed in Millard 1996) and gene expression for BSP 

has been associated with both short-day photoperiod and high N availability. This 

suggests a role for such proteins in seasonal storage of N and during periods of excess N 

availability (Millard 1996). Conifers, on the other hand, often store nitrogen in the 

previous year's needles during the winter (Nambiar and Fife 1991, Millard 1994, Millard 

1996), mostly in the form of Rubisco (the most abundant C 3  plant protein). Camm 

(1993) found a decline in photosynthetic capacity in mature Douglas fir needles during 

leaf flushing suggesting that the photosynthetic apparatus could be serving as an N 

source for leaf growth. Both storage strategies enable plants to uncouple their ability to 

grow in the spring from the availability of nutrients in the soil (Millard 1996). In the 

summer, both evergreen and deciduous trees store N in their leaves. During autumn 

senescence of deciduous leaves, removal of this stored N occurs, mostly in the form of 

Rubisco (up to 90 %) (Kang and Titus 1980a). 
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Alder 

In this ' 5N spike experiment most uptake of unlabelled N occurred between June and 

August 1995 in alder, compared with late summer and autumn in pine. Elevated [CO 2] 

trees showed increased N uptake compared with ambient [CO 21 trees, during the period 

of maximum uptake. This pattern was reversed in autumn. Labelled N found in new 

leaves in April 1995 contributed 8.2 % to leaf growth in ambient [CO 2] compared with 

26.6 % in elevated [CO 2]. Elevated [CO 2] seems to have increased the proportion of N 

in new leaves derived from winter stored N. Millard (1994) found that remobilised N 

contributed about one third of the N for new leaf growth in Acer pseudoplatanus in the 

spring. Feigenbaum et al. (1987) found evidence for a substantial contribution of 

remobilised N (c. 75 %) to new growth in mature citrus trees. This confirms that mature 

trees are less dependent on nutrient uptake and more dependent on internal nutrient 

cycling than seedlings. 

Labelled N allocated to other tissues was generally not affected by elevated [CO 2], 

however, except in September 1994 and April 1995, in 1993 and 1994 shoot. In addition 

there was more labelled N in elevated [CO 2] leaves in April 1994 (as stated above). The 

increase in labelled N present in the 1993 and 1994 shoots in April 1995 may have been 

the result of the increase in dry mass in these tissues, whereas in September 1994 dry 

mass variation could not account for the extra labelled N. This corroborates the 

suggestion that more labelled N in elevated [CO 2] was being allocated over the winter 

into the shoot than in ambient [CO 2]. Increased allocation to the shoot in alder (see 

section 4.9.2 on Allocation) confirms this finding. 

Remobilisation of N for new growth in the spring of 1995 was complete by June 1995 

(when the largest amounts of labelled N were found in the leaves). In contrast, in Scots 

pine remobilisation was complete by April 1995. These findings are in agreement with 

those of Millard (1994) from his work on Acer pseudoplatanus and Picea sitchensis in 

which remobilisation in the conifer occurred before bud burst, whereas in sycamore 

remobilisation occurred between bud burst and root uptake of N. 



As regards the origin of the labelled N found in new growth, it is not entirely clear where 

it came from. It is most likely (see 4.5.3) that the N for leaf growth in spring 1995 was 

derived from the previous year's shoot (Stem and branches). Feigenbaum et al. (1987) 

also found evidence of N storage in wooded branches of mature citrus trees over the 

winter, and little evidence for storage in the roots. In contrast, Marmann et al. (1997) 

showed that in ash (Fraxinus excelsior) most of the N remobilised in the spring for new 

growth came from the roots and not from the stem. Bark storage proteins (BSP) or 

Rubisco may have been the primary form of N stored in this way over the winter and 

remobilised to new leaves and stem in the spring. Millard et al. (1998) found a ten-fold 

increase in citrulline and glutamine in the xylem sap of Betula pendula during spring 

remobilisation. Kang and Titus (1980b) also identified glutamine as a key amino acid in 

N storage and remobilisation. 

Pine 

Labelled N contributed more to new needle growth in elevated [CO 2} than in ambient 

(13.3 % versus 25.1 %), whereas there was little difference in the contribution of labelled 

N to new shoot growth (10.1 % versus 8.0 %, respectively). Allocation of labelled N to 

different pine tissues was not otherwise significantly affected by elevated [CO 2] at any 

time point from September 1994 to April 1996. Remobilisation of N to the new needles 

was complete by April 1995. There were no statistically significant changes in labelled N 

in the different tissues between September 1994 and April 1995, but the drop in labelled 

N found in 1994 needles is indicative of the origin of remobilised N for new needle 

growth. This drop occurred in both ambient and elevated [CO 2] trees. 

Different patterns of N storage and remobilisation in evergreen and deciduous trees were 

confirmed in this experiment. Common alder has the added characteristic that it can fix 

nitrogen from the atmosphere. One would possibly expect the alder therefore, to be less 

dependent on remobilised N (of fertiliser origin in the previous summer) for new growth 

than the pine. A major constraint to this could be that nodule development is not 

compete by early spring. In evergreen nitrogen fixing plants the ability to fix nitrogen 

could have an effect on remobilisation of stored N. Interestingly, Thornton et al. (1995) 

found that the ability to fix nitrogen did not affect the proportion of N remobilised in the 
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spring in Ulex europaeus. Alder in this experiment did not seem to be less dependent on 

remobilised N, however. N partitioning and remobilisation in common alder responded 

more than Scots pine to elevated [CO 2]. The proportion of labelled N remobilised for 

spring leaf growth was larger in elevated [CO 2 1 trees of both species, whereas the 

proportion of labelled N remobilised for spring shoot growth was only larger in elevated 

[CO2] alder trees. In addition, in alder more labelled N was allocated to 1994 shoots over 

the winter elevated [CO 2] than in ambient [CO2]. In Scots pine there were no differences 

in [CO2] treatments in allocation of labelled N at any time during the experiment. These 

results are in agreement with the general reponse of alder and Scots pine to elevated 

[CO2], in that the alder had a much larger response than the latter. The mechanisms by 

which more N was remobilised for spring growth in alder in elevated [CO 2}, and why 

more labelled N was allocated to the 1993 and 1994 elevated [CO 2] shoots in alder than 

in pine are not clear. 

4.11.6 Nitrogen fixation 

The classification of Frankia species, the bacteria which form a symbiosis with Alnus 

species, has changed with the advent of advanced bacterial classification methods such as 

nucleic acid content, biochemical and morphological characteristics which has enabled 

researchers to again classify the bacteria at the species level. Originally classification at 

the species level was abandoned when it was found that the symbiont was capable of 

infecting a number of different host species (Sprent and Sprent 1990). Nowadays 

Frankia alni and F. elaeagni are commonly used. 

Frankia are long-lived organisms, surviving up to eight years and there is evidence that 

the actinomycete microbe Frankia can travel in soil from one plant to another (Wilson 

and Coutts 1985). In the actinorhizal symbiosis with common alder a recognition system 

(as yet little understood) enables root hairs to be infected by Frankia bacteria producing 

branched root hairs (as opposed to curled root hairs in legumes). Considerable amounts 

of secondary wall material are then produced in and around the infection site on the roots 

(Sprent and Sprent 1990). 
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During the chemical process of nitrogen fixation uncombined nitrogen from the 

atmosphere is reduced to ammonium by combining with hydrogen. This occurs via 

MoFe- and Fe-proteins which form a nitrogenase complex, coupled with a suitable 

source of ATP and reducing power, with oxygen usually acting as the acceptor molecule. 

The first product of this process is ammonia which is protonated to ammonium. The 

latter represses nitrogenase activity making rapid assimilation of ammonium crucial. 

Ammonium is initially transformed into glutamate via reaction with glutamic acid and 

ATP which enables rapid assimilation of ammonium pools at low concentrations (Sprent 

and Sprent 1990). Glutamate is in turn transformed into a number of export products in 

vascular plants, the main ones in Alnus being asparagine, citrulline and allontoin. These 

products are exported via the vascular bundle to the plant's sinks (Sprent and Sprent 

1990). 

As well as the direct transfer of nitrogenous compounds to the host plant, nitrogen 

fixation in Alnus plays an indirect role in forests. Leaf fall, excretion from roots of 

organic compounds such as phenols, fatty acids and amino acids and nodule decay all 

may contribute to soil nitrogen, improve growth of free-living nitrogen-fixing organisms 

and reduce soil pathogens (Sprent and Sprent 1990). 

The importance of a supply of photosynthetic products from the plant host for symbiotic 

nitrogen fixation has long been recognised (Gordon and Wheeler 1978). Gordon and 

Wheeler (1978) demonstrated with Alnus glutinosa of different genetic stock and grown 

in varying environmental conditions, that carbon and nitrogen fixation are closely 

correlated in young alder. As mentioned earlier, nitrogen-fixing plants with limited access 

to soil nutrients are expected to respond the most to elevated [CO 2] (Körner 1995). This 

is because the addition of nitrate to soil inhibits nitrogen fixation (Woodward 1992), and 

N-fixing trees should be able to use the extra carbon for increased N-fixation and 

growth. In addition the indirect release of nitrogenous compounds via nodule decay or 

from the roots would be expected in the longer-term to improve soil status with a 

positive feedback on plant growth. Thus it would be expected that in conditions of 

elevated [CO2] when the ability to fix nitrogen is hypothesised to stimulate growth (see 

section 4.1.1), this stimulation would be limited to the non-fertilised plots. Unfortunately, 
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acetylene reduction was only determined in nodules from roots in unfertilised plots, 

giving no indication of whether added nitrate did inhibit nitrogen fixation. These trees 

grown without fertiliser seemed all to be fixing nitrogen. 

On the other hand one would expect those trees in unfertilised plots to grow larger and 

have higher nitrogen concentrations than those in the fertilised plots. This was not the 

case for stem height, SBD or total biomass in alder in both the plus or minus nutrient 

treatments, except in June and December 1995 when the total biomass of E-N trees was 

larger than in all other treatments (see Figure 4.5b). Thus the hypothesis that the ability 

to fix nitrogen in conditions of excess CO 2  would stimulate growth was not supported, 

although total biomass, SBD and stem height were all greater in elevated [CO 2]. As 

mentioned earlier (section 4.9.1), it seems that the ability to fix nitrogen gave the alder 

grown without fertiliser the ability to respond positively to elevated [CO2}, and the 

addition of adequate fertiliser enabled the alder to also respond positively. Ingestad 

(1980) found that inoculated grey alder (Alnus incana) grown without added mineral 

nitrogen, had optimum nitrogen status but only half the maximum SGR. This response 

could not be explained by the energy costs of nitrogen fixation. It seems therefore that 

nitrogen fixation was not very efficient. This experiment showed that the alder was more 

stimulated in its growth than the pine, and that this extra growth could well be 

attributable to the ability to fix nitrogen. As Ingestad found the maximum N fixation rate 

probably had an upper ceiling compared with the total nitrogen uptake rate required for 

maximum growth. The Alnus glutinosa trees in this study were able to fix more nitrogen 

in elevated [CO 2] but the extent of this stimulation was probably limited by limitations to 

nitrogen fixation such as phosphorus availability. 

Wilson and Coutts (1985) point out that nodules of Frankia are long-lived, unlike 

mycorrhiza, and that their nitrogenase activity per unit dry mass decreases with increase 

in nodule size. The alder nodules in this experiment accord with this view: the smaller but 

more numerous nodules in elevated [CO 2] had higher nitrogenase activity per unit dry 

mass. This was also the case in 1996 (Gail Jackson, pers. comm.) even if the difference 

was again not significant. 
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There is a trend in the data for nitrogen fixation to have become more efficient in 

elevated [CO2]. The rate of reduction of acetylene per unit mass of nodule as well as per 

plant was higher in elevated [CO 2] than in ambient [CO2]. This is in accordance with 

work by Norby (1987) on Alnus incana in which plants and nodules grown under 

nutrient-poor conditions were larger in elevated [CO 2], and total nitrogenase activity 

assayed by the acetylene reduction method was significantly higher. It is noteworthy, 

however, that in Norby's work, specific nitrogenase activity was not significantly 

affected. Higher nitrogenase activity, nodule and plant dry mass were also found by 

Arnone and Gordon (1990) in Alnus rubra, although in their experiment the significant 

differences were concomitant with changes in allocation to above-ground biomass. In 

this study, allocation of biomass was not much affected by [CO 2], and total biomass was 

not always significantly stimulated. Nitrogen fixation seems therefore to have been 

positively affected by elevated [CO 2] but to a lesser extent and with less of an impact 

than found by other authors. Nevertheless, these data do support the premise that 

nitrogen limitations does not exclude growth stimulation by elevated [CO 2] in nitrogen 

fixing woody plants. 

Conclusions 

- 	Both species of tree showed stimulated growth and biomass accumulation (up to 

100 % in alder) in elevated [CO 2}. Stem basal diameter and area were increased 

in both species, whereas stem height was only increased in pine (despite stem 

elongation per day increasing in both species). Specific growth rate in 1995 was 

not affected by elevated [CO 2 } in either species, whereas NAR was increased in 

alder. Leaf area remained the same in alder and was temporarily increased in 

pine. [N] was unaffected in either species, although [P] temporarily increased in 

elevated [CO2
] 

in pine. 

- 	The stimulation of biomass accumulation and carbon assimilation did not persist 

throughout the three year experimental period, with signs of acclimation of 

photosynthesis and growth in August 1995 in both species. 
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- 	Changes in allocation mostly occurred in alder, with reduced carbon allocation 

to the leaves, and increased allocation to the shoots. Although root biomass was 

significantly larger until August 1995, R / S was not generally affected by 

elevated [CO 2]. Leaf to shoot ratio was reduced in elevated [CO2].  In Scots pine 

the only change in allocation of carbon was a reduction in biomass allocation to 

the needles. 

- 	In general there was little interaction effect of [CO 2] and fertiliser addition on the 

variables measured. Overall there was no clear nutrient effect on the response to 

elevated [CO 2]. 

- 	Common alder experienced more growth and biomass stimulation than Scots 

pine, although acclimation of photosynthesis seems to have occurred at around 

the same time. The faster-growing and nitrogen fixing species was better able to 

use the extra carbon to increase total biomass, net assimilation rate and nitrogen 

use efficiency (see Chapter 5 for more details on NUE). 

- 	Nitrogen fixation was found to be occurring in the alder and seemed to be made 

more efficient in elevated [CO 2]. 

- 	Nitrogen allocation to different tissues over the winter and remobilisation for 

spring growth was different in pine and alder, with N being allocated to and 

remobilised from the previous year's stem in alder, but from the previous year's 

needles in pine. There was no [CO2] effect on this pattern. 

- 	In alder in elevated [CO 2], more N was partitioned to the shoot (stem and 

branches) over the winter than in ambient [CO 2] whereas in Scots pine there 

was no [CO2] effect on partitioning of N over the winter. 

- 	In order to clarify the mechanism for acclimation of photosynthesis in elevated 

[CO2] and the effect of nutrient addition on the response, further experiments are 

needed. 
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In particular, a detailed analysis of the effect of different fertiliser addition and 

nitrogen fixation is necessary in order to have a better grasp on the whole plant 

response. 
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CHAPTER 5 

Biochemistry of Alnus glutinosa and Pinus sylvestris grown in 
elevated carbon dioxide concentration - a three-year experiment at 
the Glendevon, Perthshire field site 

5.1 	Introduction 

As discussed in Chapters 3 and 4, plants grown in elevated [CO 2] usually show an 

enhanced rate of carbon fixation and increased biomass production (Eamus and Jarvis 

1989, Mousseau and Saugier 1992, Kimball et al. 1993, Poorter 1993), although this 

change in photosynthetic rate does not necessarily translate into a sustained increase 

in growth (Stitt 1991, Stitt and Schulze 1994). Such acclimation responses have not 

been found in all experiments on plant growth and CO 2  and have in the past 

sometimes been attributed to restricted growth in pots (Eamus and Jarvis 1989, 

McConnaughay et al. 1993) or unnatural conditions in growth chambers (Körner 

1995, Norby et al. 1996), although recent evidence from longer-term, field 

experiments is mounting that acclimation in plants grown in elevated CO 2  is not / not 

only an artefact of pot growth or root restriction but a reality (Tissue et al. 1993, 

Johnson et al. 1996, Rey 1997). Acclimation is a common response to plant growth in 

elevated [CO 2] (Sage et al. 1989, Besford 1990, Van Oosten et al. 1992, Sicher et al. 

1994, Jacob et al. 1995), and on the whole acclimation seems likely to be the rule 

(Bowes 1991, Reining 1994) since trees in particular generally live in nutrient-limited 

environments (Linder and McDonald 1993, Drake et al. 1997, Rey 1997) and the 

photosynthetic process behaves homeostatically bringing any non-limiting components 

back into balance with limiting components (Stitt and Schulze 1994). 

Growth and photosynthetic responses of plants have been the main focus of research 

on the impacts of elevated [CO 2] on plants over the past twenty years, with particular 

attention to classical growth analysis and gas exchange measurements (Cure and 

Acock 1986, Eamus and Jarvis 1989, Mousseau and Saugier 1992, El Kohen et al. 

1993, Kimball et al. 1993, Long et al. 1993, Poorter 1993, Ceulemans and Mousseau 

1994, Delgado et at. 1994). Fewer studies have concentrated on metabolic responses 

in leaves (Sage 1990, Bowes 1991, Stitt 1991, Sicher et al. 1994, Stitt and Schulze 
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1994) although the metabolic activity in leaves largely regulates plant growth and 

development. Acclimation to elevated [CO 2 ] in trees and other plants comes in a wide 

variety of forms ranging from morphological and anatomical to physiological and 

biochemical. Plants respond from the leaf to the whole plant or stand scale to elevated 

[CO2]. The intricacies of response at each level need to be elucidated in order to have 

a better grasp of the overall mechanisms involved in response to elevated [CO 2]. 

On a biochemical level much attention has been focused on Rubisco, the world's most 

abundant enzyme accounting for up to 50 % of total soluble protein in leaves (Lawlor 

1993), which catalyses the carboxylation of ribulose-1,5-bisphosphate (RuBP), the 

first molecule in the photosynthetic carbon reduction (PCR) cycle. This enzyme 

constitutes the largest nitrogen sink in the photosynthetic apparatus, often existing at 

higher concentrations than is necessary for maximum photosynthesis at high 

irradiance, suggesting a possible additional role as a nitrogen store (Stitt 1991). 

Rubisco is a rather slow enzyme with a low turnover and low affinity for CO 2  

(Miziorko and Lorimer 1983, Bowes 1991). Oxygen and carbon dioxide both 

compete for the active site of this enzyme. Given these characteristics, Rubisco limits 

the rate of photosynthesis in C 3  plants at current atmospheric [CO 2] and [02] (Lawlor 

1993). The short-term increase in photosynthetic capacity in C 3  plants grown in 

elevated [CO2 } is engendered by a higher availability of CO 2 , a major substrate of 

Rubisco in carboxylation and also an activator of Rubisco via carbamylation. The 

competition between carbon (photosynthetic carbon reduction, PCR cycle) and 

oxygen (photorespiration or carbon oxidation PCO cycle) for the Rubisco active site 

also shifts in favour of carboxylation in elevated [CO 2]. All these factors stimulate the 

rate of photosynthesis. 

A common response of trees and other plants to longer-term growth in elevated 

[CO2 ] is acclimation in the form of decreased leaf [N], in both chlorophyll and 

Rubisco, and accumulation of non-structural carbohydrate in the leaves (Eamus and 

Jarvis 1989, Mousseau and Saugier 1992, Poor -ter 1993, Ceulemans and Mousseau 

1994, Wilkins et al. 1994, Norby et al. 1996). In these cases photosynthetic capacity 

is reduced via diminished photosynthetic components (Delgado et al. 1994, Wilkins et 
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al. 1994), such as Rubisco, chlorophyll or other enzymes. There are several proposed 

mechanisms for this acclimation, for example whether acclimation is mediated via 

Rubisco and the PCR cycle, or a source-sink imbalance caused by accumulation of 

starch and soluble carbohydrates in the chioroplast which in turn causes down-

regulation of photosynthetic components. In models of photosynthesis describing the 

regulation of Rubisco, electron transport and triose phosphate use in response to 

PPFD and I or [CO2], the main assumption is that non-limiting processes are brought 

back into balance with limiting processes (Farquhar 1979, Farquhar et al. 1980, Sage 

1990, Bowes 1991, von Caemrnerer et al. 1994). The location of the main limiting 

step in such models depends on the prevailing conditions (Stitt 1991). It is 

hypothesised that RuBP regeneration limits photosynthesis at high [CO 2] or in low 

PPFD (Farquhar et al. 1980), whereas at low [CO2] or in high light the [RuBP] is in 

excess of the number of binding sites on Rubisco, and photosynthesis is limited by 

Rubisco activity or concentration (Bowes 1991). A third limitation to photosynthesis 

often proposed in models is triose phosphate limitation of sucrose synthesis (Bowes 

1991, Stitt 1991). 

Stitt and Schulze (1994) cite mounting evidence that photosynthetic metabolism is 

regulated in highly complex and interactive ways, which cannot be assigned to just 

one rate-limiting step dependent on prevailing conditions. They postulate that control 

over a pathway can be shared between two enzymes and the relative distribution of 

this control varies depending on the prevailing conditions. In addition, in conditions of 

high [CO2] the PPFD-saturated rate of photosynthesis may be restricted by the rates 

of sucrose and starch synthesis (Stitt and Quick 1989). This form of limitation of 

photosynthesis is one of the direct ways in which starch and carbohydrate 

accumulation could be regulating photosynthesis, along with direct chioroplast 

disruption (Stitt 1991). An indirect and more adaptive way in which photosynthesis 

could be limited by carbohydrate accumulation is via reduction in protein levels and 

other photosynthetic components. This can be viewed as more adaptive because it 

engenders a readjustment of the source-sink imbalance and allow for the reallocation 

of nitrogen and other components from the leaves to new or already established sinks. 

Recent experiments have also highlighted the potential importance of canopy closure 
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and restriction of rooting volume (Drake et al. 1997). All of these sometimes 

conflicting hypotheses need further investigation in order to elucidate the role a 

particular protein plays in the acclimation of plants to long-term growth in elevated 

[CO2]. 

The long-term response of trees to elevated [CO 2] in nutrient limited conditions is an 

important question, since these are the conditions in which most forest trees grow 

(e.g. Linder and McDonald 1993, Norby et al. 1996, Drake et al. 1997). This chapter 

concentrates on the biochemical responses of common alder and Scots pine to long-

term exposure to elevated [CO 2] and nutrient addition, to evaluate whether and how 

leaf composition changes in order to gain a better grasp of the potential mechanisms 

underlying long-term acclimation to elevated [CO 2]. Specific aims of the experiment 

were to elucidate whether: 

Scots pine and common alder would respond to elevated [CO 2] by 

reductions in concentrations of Rubisco, soluble protein and chlorophyll in 

leaves as found in other investigations of trees grown in elevated [CO 2}; 

there would be a species-specific biochemical response to long-term growth 

in elevated [CO 2], particularly in common alder where inorganic nitrogen 

could be fixed from the atmosphere and the trees thus be less dependent on 

soil nitrogen sources; 

whether alder would exhibit less of a source-sink imbalance than Scots pine 

since nitrogen-fixing nodules could act as a large sink for any extra carbon 

fixed; 

whether nutrient addition would affect the biochemical response to elevated 

[CO2]; and 

whether starch and soluble carbohydrate accumulation would occur in the 

leaves of alder and pine grown in elevated [CO 2]. 

167 



5.2 Materials and Methods 

5.2.1 Sampling Procedure 

Details of the Glendevon experimental design and procedure are given in Chapter 4. 

Samples of leaves for biochemical determinations were taken monthly starting in 

August 1994 and continuing throughout 1995. Gail Jackson and Diarmuid O'Neill 

continued with monthly sampling in the 1996 growing season. The same kind of 

leaves were taken for biochemical analysis throughout the experimental period. 

Leaves were sampled from one tree from each of the fertilised and non-fertilised 

quadrants, thus two per chamber per species. Three discs (1 cm in diameter) were 

sampled from an alder leaf, c. 20 cm from the top of the seedling and three current-

year needles c. 5 cm from the tip of the leader shoot in pine were sampled monthly 

close to midday during the growing season for chlorophyll, Rubisco and soluble 

protein. During periods of low turgidity or fungal disease (see Chapter 2) five leaf 

discs or needles were taken. The Rubisco / soluble protein and chlorophyll samples 

were frozen directly in 0.2 cm 3  screw top microcentrifuge tubes (Camlab Ltd., 

Cambridge, UK) in liquid nitrogen (using a cryoshipper) and kept in - 80 °C and - 20 

°C freezers, respectively, until analysis. A second set of leaf samples was collected at 

the same time from the same leaves. The fresh and dry mass of the second set of 

leaves was determined (M1  and Md)  and these data were used in the calculation of 

Rubisco, soluble protein and chlorophyll concentrations. This second leaf sample was 

necessary since a period of lengthy weighing leaves away from a freezer would leave 

the protein denatured. Rubisco activity in Scots pine fluctuates periodically over the 

year and depending both on needle-age and on the prevailing climate conditions 

(Gezelius 1986). This may have introduced extra variability into the results, although 

by consistently sampling new needles from near the top of the trees it was hoped to 

reduce this extra variation. 

For carbohydrate and starch determination Universal 25 cm' vials were filled with 

needles or leaves (since more material was required than for the other biochemical 

analyses). Carbohydrate and starch samples were kept on frozen-ice in the field, 

freeze-dried in the laboratory, ground in a centrifuge grinder (Retsch, Glen Creston, 

Stanmore, UK) and then kept in a vacuum until analysis. 
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5.2.2 Chlorophyll Determination 

Chlorophyll a, chlorophyll b and total chlorophyll were determined 

spectrophotometrically (Series 2, Cecil Grating, Cambridge, UK) in N, N-dimethyl 

formamide (DMF). Intact leaf tissue was immersed in DMF in darkness for four to 

seven days until the chlorophyll was fully extracted. Absorbances were measured at 

647, 664 and 750 nm with DMF as a blank reference. The following equations 

derived from Porra et at. (1989) were used to calculate chlorophyll concentrations 

(pg g- 
1): 

ChI a 	= 	12 x (A664 	- 3.11 x (A ,042 	x 3 	5.1) 
Md 

Chl b = 	20.78 xL(A647 	 ) - 4.88 x (A) x 3 	5.2) 
Ma 

Chla+b 	 x3 	5.3) 
Md 

where 	Md = dry mass of leaf discs (alder) or needles (pine) 
A = absorbance (nm) at a particular wavelength 

For expression on a leaf area basis the above concentrations were multiplied by: 

Mat 
	

5.4) 

where 	r = area of leaf discs (cm 2) 

5.2.3 Soluble Carbohydrate and Starch 

Soluble Sugar Concentration 

Soluble carbohydrates were analysed using anion-exchange chromatography with 

pulsed amperometric detection (Dionex Corporation, Sunnyvale, CA, USA). A 

sample of 50 mg (± 1 mg) of freeze-dried and ground leaves in 10 cm 3  of double 

distilled water were extracted once by shaking and placing in a 30 °C water bath for 

15 minutes. After centrifuging at 4500 rpm for 15 minutes, the supernatant was 

removed, and filtered using Whatman 0.2 gm nitro-cellulose membrane filters 
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(Maidstone, England). The retrieved solution was diluted 1: 10 and then analysed by 

ion chromatography using a Carbopak PA carbohydrate column (Ion Chromatography 

System hplc, DX500). 

Each sample was run for one hour through the Dionex machine according to the 

following protocol: prior to sample injection the machine was washed with double 

distilled water, then 200 mmol din-3  NaOH (100 % of the eluent) was injected into the 

system for the first 15 minutes of the 1 hour run (per sample), followed by 16 mmol 

din -3  NaOH (i.e. 8 % of the eluent ) and double distilled water (92 % of eluent) for 

the last 45 minutes. This method was used on all the samples analysed. A set of ten 

pure sugars and polyols (inositol, manitol, fucose, rhamnose, arabinose, galactose, 

glucose, xylose, fructose and sucrose) was run as a standard with each set of 10 

samples. Unknown peaks were not included in the results since the peaks were 

consistently very small. On exception to this was pinitol found in pine needles. 

Pinitol's peak was found very close to that of inositol but it was possible to 

distinguish between the two, so the sugars were discussed separately in the results 

section 5.3.2. Peaks obtained during the analysis were integrated using Peaknet 

Dionex Software (see Appendix 5 for details of integration parameters used to 

calculate peak area for each sample) followed by a linear calibration. The 

concentration of sugars in the samples (mg g) was calculated as follows: 

c x d x 
	

5.5) 

Md 

where d = dilution factor 

Md = sample dry mass 

c = concentration provided by integration calculation (mg din-3) 

v = volume used in extraction (CM) 

Starch Concentration 

Chemical methods for the analysis of starch are faster and cheaper than their 

enzymatic counterparts but are highly unspecific, such that one can not be sure that 
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the results relate only to starch. Certain acids used in the process extract not only 

starch but cellular components such as other insoluble carbohydrates (cellulose, 

hemicellulose etc.) leaving all but lignin left in the pellet (Dr. M. Forstreuter, pers. 

comm.). In addition, the use of dangerous chemical reagents renders the process less 

attractive as a laboratory method. For this reason I intended to determine starch using 

the enzyme method. Unfortunately, many of my 1995 freeze-dried samples were 

found to be mouldy and could no longer be analysed. I have thus included Gail 

Jackson and Diarmuid O'Neill's 1996 starch results using the chemical iodine and acid 

method in my results, to give an indication of how starch changed over time. 

Table 5.1 shows a comparison of the two starch methods, in order to assess their 

compatibility. The higher values for starch using the iodine method are probably 

indicative that not just starch has been measured but also cellulose and hemicellulose 

etc. This should be taken into account when discussing the 1996 results. 

Table 5.1 A comparison of [starch] (mg g) in common alder leaves in July 1994 

determined by the iodine method (Allen 1989) and the enzyme method (Bohringer 

Mannheim 1994). 

Treatment Sample Iodine method Enzyme method 

E-N 1 76.02 19.31 

E-N 2 87.81 16.16 

E+N 3 240.27 55.50 

E+N 4 48.19 17.85 

A-N 5 122.51 25.86 

A-N 6 64.56 33.74 

A+N 7 2.02 1.96 

A+N 8 71.77 26.95 

In 1995 starch concentration was determined in ethanol extracts by the Bohringer 

Mannheim (1994) enzyme method using amyloglucosidase (AGS) which split the 
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starch into D-glucose, followed by glucose phosphorylation and the production of 

NADPH upon reaction with NADP (determined colorimetrically using a 

spectrophotometer). Starch was extracted from 100 (± 10) mg freeze-dried and 

ground samples, in 80 % ethanol by heating in a Water bath (60 °C) for 30 minutes. 

The pellet was then centrifuged (at 4000 rpm) and again washed with 80 % ethanol, 

shaken and centrifuged. 10 cm  of distilled water was added to the pellet and the 

samples were then autoclaved for one hour, cooled and again centrifuged. The 

supernatant was analysed colorimetrically for starch as follows: 200 nun  of 

amyloglucosidase (AGS) and 100 mm 3  of extracted sample (or distilled water blank) 

were added to each cuvette and the cuvettes incubated for 20 minutes in a water bath 

at 50 °C. Then 2.7 cm 3  of pH 6.9 buffer (made up of 250 mmol m 3  

triethanolaminehydrochloride, 10 mmol m 3  MgSO4, 1 mmol m 3  NADP and I mmol 

rrc 3  ATP) were added to each cuvette, the solution was mixed and the absorbance 

read at 340 nm (E o) after three minutes. Finally, 20 nun  of hexokinase and G6P-

dehydrogenase was added to the corner of each cuvette, the solution was mixed and 

read at 340 nm (E 1 ) after 15 minutes. Absorbance E 1  was subtracted from absorbance 

E0  to give EA.  Each sample was measured twice in this way and the average EA used 

to calculate starch concentration (mg g - ' dry mass) as follows: 

0.77705 x E 

Md X  

where v 	= 	volume of water in which sample was analysed 

EA 	= 	the difference between the two absorbances measured 

	

Md = 	dry mass of sample 

In 1996 Diarmuid O'Neil and Gail Jackson determined starch in perchloric acid 

extracts by the iodine method described by Allen, modified (1989). The blue colour 

produced when starch reacts with iodine is measured colorimetrically. Starch was 

extracted in HC10 4  (32 % v / v) for 30 minutes at room temperature. 1 cm 3  aliquots 

were diluted in distilled water in 25 cm 3  flasks. Absorbance of the solution was 
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measured at 610 nm after having added 0.1 N HC1 (four drops) and 2 % iodine 

solution (250 nun 3).  Standards of known starch concentration were analysed with 

each set of samples. These standards were used to make a calibration curve from 

which the concentration (mg g.) of starch in the samples was calculated as follows: 

C 	X 	V1 	X 	v2 	 5.7) 

	

V3 	X 	Md 

	

where c 	= concentration of starch from calibration curve (mg CM-3) 

Md = dry mass of freeze-dried sample (mg) 

	

V I 	= volume of flask (cm -3 ) 

	

V2 	= volume of perchioric acid added (cm -3 ) 

	

V3 	= volume added to flask (cm -3) 

5.2.4 Rubisco Concentration 

Determination of Concentration of Rubisco Standard 

The concentration of Rubisco standard was determined according to the method of 

Wishnick and Lane (1971). An aliquot of purified Rubisco was diluted 1:100 in Tris 

buffer (pH 7.4) and centrifuged at 14 000 rpm in a microfuge. The solution was 

measured in the ultra-violet range on a UV and visible double beam 

spectrophotometer (Cecil CE 594) at 280 nm (A280) and then 260 nm (A 260). The 

following calculation (5.8) enabled the extinction coefficient (E) of the protein to 

determined as: 

	

1.55 x A 	n - 	0.77 x A 	 5.8) 

10 

The concentration (mg / cm) of protein was obtained by multiplying the extinction 

coefficient by the absorbance at 280 nm: 

E x A280 
	 5.9) 
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The ratio of absorbance at 280 nm / 260 nm is 1.9 for pure protein. Lower ratios 

indicate contamination with interfering substances such as nucleic acids. The aliquots 

of Rubisco standard used for this research had ratios of between 0.73 and 1.68. 

Optimisation of Enzyme -Linked Immunosorption Assay (ELISA) 

In order to make the ELISA work with Scots pine and common alder samples the 

assay was optimised for common alder and Scots pine by running a series of differing 

sample and antibody dilutions over a period of months. The results of these different 

assay conditions are outlined below in Table 5.2. 

Enzyme Concentration Determination using ELISA 

A modified immunological assay specific to the plant protein Rubisco developed from 

conventional ELISA assays by Catt and Millard (1988) was used to determine 

Rubisco. Catt's and Millard's assay differs from the conventional sandwich assays 

(primary antibody, protein, antigen) in that the protein is the first to bind to the plate, 

followed by the primary and then secondary antibodies. The assay is a positive assay 

and takes two days. The primary antibody, specific for Rubisco, was obtained by 

injecting pure Rubisco into a sheep and extracting polyclonal antiserum after a certain 

period. 

Rubisco Extraction 

Four leaves or needles were ground to a powder in liquid nitrogen, 4 cm 3  of PVPP, 4 

cm  of cold extraction buffer (pH 7.4) containing 50 mmol m 3  HEPES, 

5 mmol m 3 MgCl2 , 1 mmol m 3 EDTA, 1 mmol m 3 EGTA, 10% (v/v) glycerol, 

20 mmol m 3  DTT and (10 mm 3  per cm3  of buffer) of benzamidine, E-Aminocaproic 

acid and PMSF. The extract was left to thaw, centrifuged in a microcentrifuge (3 

minutes at 1400 rpm), the supernatant retrieved poured into two micro-centrifuge 

tubes, one for total soluble protein analysis (see section 5.2.4), the other for Rubisco 

determination. The latter was diluted appropriately (1:1000 for pine, 1:5000 for alder; 

see Table 5.2 above on Optimisation of ELISA) in 50 mmol m 3  carbonate / sodium 

bicarbonate buffer (pH 9.6) and 100 nun   aliquots used to coat individual wells on an 

ELISA plate. 
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Photo 5.1 SDS Get of purified Prunus aviuin Rubisco. The bands of the large 

and small sub-units (at the end of the gel) are visible. Photo 5.2 An Elisa Plate 

with rows of Rubisco standard (no samples), at the end of the assay, showing the 

yellow colour formation in various grades according to Rubisco concentration. 
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2 	 pine sample 	alder sampfe_ 	starting 	Ist 2nd mgo f test 	success? 
199-; 	 bqffer 	dilution 	dilution— :- standard—  antibody_ .  anfibody-. ledtf 

( MI) 	 conc. 	dilution 
28-29 Nov. 	3 piiic. 	4 	1 	5000 	1: 500() 	A = 	1: 200 

dilution 
1: 300 ' 	16.46 mg 2 

1995 	3 alder) 	 1: 10000 	1: 10000 	6.66 tg (pine) 	(neg. 
1: 20000 	1: 20000 	/ml 14.6 mg 	values) 

(alder)  
3 1-2 Dec. 1 4 1: 5000 same as for A = 1: 100 1: 300 approx. very few 

1995 1: 10000 pine 6.66 ug/ 10, 15,20 positive 
1: 20000 ml mg per results 

species  
4 5-6 Dec. 2 4 1: 1000 same as pine B = 1: 100 1: 200 55. 5 mg NO 

1995 1: 5000 3.33 ug / of one (plate 
1: 10000 ml pine tipped 
1: 20000  needle slightly) 

5 7-8 Dec. 2 4 1: 1000 same as pine B = 1: 100 1 	300 58 mg of YES 
1995 1: 5000 3.33 ug / one pine (but low 

1: 10000 ml needle absorb.) 
1: 20000  

6 30-31 Jan. 2 4 1: 1000 same as for C = 1: 100 1 	300 55.2 = p1 YES 
1996 1: 5000 pine 1.66 ug 55.6 = p2 (pine 

1: 10000 ml 40.6 = al best 
44.3 =a2 1: 1000, 

alder 
1:5000) 

7 7-8 Feb. 1 4 1: 1000 1: 5000 B = 3.33 1: 200 1: 300 44.5 mg YES 
1996 ug / ml = alder 

52 mg 
pine  
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The ELISA Assay 

ELISA plates, which are conventionally used for immunological protein assays, have 

8 rows (labelled A-H) and 12 columns (labelled 1-12) with a total of 96 wells, each 

holding 150 mm3 , see Photo 5.2 (in Determination of Concentration of Rubisco 

Standard). Since there was variability across plates and between wells, one sample 

was pipetted into one column per plate and two or four columns were filled with 

Rubisco standard (also diluted in carbonate buffer, with progressive dilution down the 

column in order to generate a calibration curve). For a schematic description of the 

ELISA assay see Appendix 9. All wells on a plate were coated with 125 nun  of 

appropriately diluted samples and Rubisco standard, and the plate was incubated for 

18 hours at 4 °C in moist conditions (the protein sticks to the wells). Day 2: after 18 

hours the plates were inverted and shaken to remove samples from the wells, and the 

plates were washed three times with Tris / NaCl Buffer (pH 7.4) containing 10 mmol 

M-3  Tris and 150 mmol m 3  NaCI. Any remaining active sites on the plates were 

blocked by incubating each well with the Tris buffer (above) containing 1 % (w I v) 

bovine serum albumin (BSA) and 0.01 % (v / v) Tween-20 for one hour at room 

temperature. The plates were again washed three times with Tris buffer, but this time 

with added BSA and Tween-20 to remove any unattached protein. 150 mm 3  of the 

primary antibody (sheep) diluted 1:200 in the Tris / BSA / Tween-20 buffer, was 

pipetted into each well and left to incubate for two hours at room temperature. The 

same washing procedure as above was repeated and the plates then coated with 150 

nun  of the 2nd antibody (anti-sheep alkaline phosphatase conjugate, Sigma A5187, 

St Louis, MO 63178, USA) diluted 1:300 in Tris / BSA / Tween-20 buffer, and left 

for one hour at room temperature. The plates were again washed three times with Tris 

/ BSA / Tween-20 buffer. 150 min  of 50 mmol m 3  carbonate / sodium bicarbonate 

buffer (pH 9.6) containing 0.1 % p-Nitrophenol phosphate was added to each well and 

left to develop colour. The p-Nitrophenolphosphate removed the phosphate tail on the 

second antibody which produces a yellow colour. The reaction was stopped by the 

addition of 10 mm3  of 3 mol m 3  NaOH to each well. The optical density of each well 

was read at 405 nm using an ELISA plate reader (Softmax automatic plate reader, 

Softmax, UK). 
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Rubisco Calibration Analysis 

Absorbance means (at 405 nm) for each sample (each sample was present in one 

column per plate, therefore in eight wells) and for the standards (each standard 

concentration was present in three wells per plate) were calculated from the output of 

the automatic plate reader. A calibration curve, derived from the standard averages, 

was plotted on a half-log scale (x axis) against absorbance (), axis) (see Figure 5.1). 

Sample absorbances were mostly in the linear part of the curve, such that equations of 

the lines of best fit were obtained using linear regression analysis, from which the 

sample absorbance was then calculated. 

2.5 
A 

2 

00 0.5 

[Rubisco] (10g1) 

Figure 5.1 Rubisco standard calibration curve (ng 1cm3 , log 10) 
against absorbance, derived from an ELISA assay on 15 February 
1996 and used for Scots pine April 1995 samples. Each data point is 
the mean of three standard samples at one concentration. 

The sample absorbance in question was read from the calibration curve and the 

dilution and fresh or dry mass or mg CM-2  of leaf area (in alder) of the sample taken 

into account in calculating the concentration of Rubisco (mg g'). It was decided to 

report Rubisco and soluble protein data on a fresh mass basis since fresh leaf material 

was used, and water content did not affect the pattern of monthly change in Rubisco. 
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Protein concentrations expressed on a dry mass and area basis were nevertheless also 

analysed statistically and the results of these tests are given in the text. 

The following regression equations derived from standards on different ELISA plates 

(date of assay in brackets) were used to calculate the Rubisco concentrations in 

common alder: 

April 1995 

Y  = -2.38 + 1.21x (1-2  = 0.76) (13 February 1996) 

Y  = -2.35 + 1.26x (?= 0.93) (15 February 1996) 

y= -1.35 + 1.05x (r2 = 0.88) (8 May 1996) 

June 1995 

Y  = -1.66+ 1.1 9x (r2  = 0.86) (8 May 1996) 

Y  = -2.02 + 1.05x (r2  = 0.85) (8 May 1996) 

y= -1.64+ 1. 17x (r2  = 0.86) (8 May 1996) 

Y  = -1.44 + 1.09x (r2  = 0.86) (8 May 1996) 

August 1995 

y= -2.38+ 1.20x (r2  = 0.86) (13 February 1996) 

y= -1.70 + 1.1 Ox (?= 0.89) (6 May 1996) 

Y  = -2.02 + 105x (r2  = 0.85) (8 May 1996) 

Y  = -1.64+ 1. 17x (1-2  = 0.86) (8 May 1996) 

Y  = -1.44+ 1.09x (r2  = 0.86) (8 May 1996) 

September 1995 

Y  = -2.07 + 1.28x (r2 = 0.99) (1 May 1996) 

Y = -2.02 + 1.24x (r2 = 0.98) (1 May 1996) 

October 1995 

Y = -2.38 + 1.2 lx (r2  = 0.86) (13 February 1996) 

Y = -2.37 + 1.28x (r2  = 0.92) (15 February 1996) 

Y = -2.02 + 1.05x (r2  = 0.85) (8 May 1996) 

The following regression equations (date of assay in brackets) were used to calculate 

the Rubisco concentration in Scots pine: 

April 1995 

Y  = 	-2.17 + 1.1 Ix 	(r2  = 0.85) 	(13 February 1996) 
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Y  = -2.39 + 1.27x (r2  = 0.92) (15 February 1996) 

Y  = -1.34 + 1 -05x (r2  = 0.88) (8 May 1996) 

August 1995 

y= -2.17+ 1.1 Ix (r2 = 0.85) (13 February 1996) 

Y  = -2.02 + 1.34x (r2  = 0.94) (6 May 1996) 

Y  = -1.95 + 1.28x (r2  = 0.95) (6 May 1996) 

Y  = -1.70 + 1.17x (r2  = 0.95) (6 May 1996) 

September 1995 

y= -2.07+ 1.28x (r2 =0.99) (1 May 1996) 

Y  = -2.02 + 1.24x (r2  = 0.98) (1 May 1996) 

October 1995 

Y  = -2.41 + 1.28x (?= 0.84) (13 February 1996) 

y= -2.17+ 1.1 Ix (? = 0.91) (15 February 1996) 

Y  = -2.02 + 1 .05x (1-2  = 0.85) (8 May 1996) 

5.2.5 Total Soluble Protein 

This assay is an optimised version of Bradford's total protein assay (Read and 

Northcoate 1981), using Bovine Serum Albumin (BSA) and BlO-RAD dye 

(phosphoric acid and methanol). Since BSA is an animal protein and Rubisco a plant 

protein, a comparison between Rubisco and soluble protein (i.e. the proportion of 

total protein that is Rubisco) will not necessarily be very accurate, since the use of 

BSA as a standard underestimated the concentration of soluble protein in the leaves. 

Using pure Rubisco as a standard could possibly have produced better absolute 

results, although the sample absorbance was often higher than the range of the 

Rubisco calibration curve. Also, lack of enough purified Rubisco enzyme did not 

allow for the use of Rubisco as a standard. 

Three BSA standards (250, 500 and 750 nun   per cm3  of water) were made up from a 

standard stock solution of 1 mg BSA / 1 cm 3  water (purified by Millipore). Two 

replicates per sample were analysed for soluble protein, one supernatant diluted 1:10, 

the other undiluted supernatant. The diluted samples gave inconsistent results and so 

were not used for the calculation of total soluble protein. 5 cm3  of diluted BlO-RAD 
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(1:5 from stock) was added to 100 nun  of the standards, the sample and the blank, 

the contents mixed well, and left to develop colour over 5 minutes after which the 

samples were read in plastic cuvettes in a double beam spectrophotometer at 

598 nm. Linear regression of the calibration curve of the standards (absorbance 

against concentration, jig CM-3)  was used to calculate the concentration of protein (mg 

g') in the samples, taking into account the fresh mass, dry mass, water content and 

area of the sample and how much extraction buffer was used in the extraction. The 

following linear regression equations were used to calculate the concentration of 

protein in alder leaf samples: 	 - 

April 1995 

Y = 	0.0057 + 0.00097x (r2  = 0.997) (13 February 1996 assay) 

Y  = 	-0.0010 + 0.0012x (?= 0.996) (15 February 1996 assay) 

Y  = 	0.13 + 0.0085x 	(r2  = 0.996) (6 May 1996 assay) 

June 1995 

Y = 	0. 13 + 0.001 Ox 	(1-2  = 0.994) (6 May 1996 assay) 

August 1995 

Y  = 	0.023 + 0.00094x 	(r= 0.996) (13 February 1996 assay) 

Y  = 	0.13 + 0.00085x 	(r2  = 0.996) (6 May 1996 assay) 

V = 	0.13 +0.001 Ox 	(r2  = 0.99) 	(8 May 1996 assay) 

September 1995 

Y  = 	0.13 + 0.00078x 	(r2  = 0.98) 	(3 May 1996 assay) 

October 

Y  = 	-0.0010 + 0.0012x (r2 = 0.997) (15 February 1996 assay) 

Y  = 	0.0057 + 0.00097x (r2  = 0.997) (13 February 1996 assay) 

Y  = 	0.13 + 0.00 1 O (r2  = 0.99) (8 May 1996 assay) 

The following linear regression equations were used to calculate the concentration of 

protein in pine needle samples: 

April 1995 

Y  = 	-0.0010 + 0.0012x (r2 = 0.996) (15 February 1996 assay) 

Y  = 	0.10 + 0.00090x 	(r2  = 0.997) (13 February 1995 assay) 

Y = 	0.13 + 0.00085x (r2  = 0.996) (6 May 1996 assay) 
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August 1995 

y= 	0.12+0.0078x 

y= 	0.13 +O.00085x 

September 1995 

y= 	0.13 +0.00078x 

October 1995 

y= 	0.10+0.00090x 

y= 	-0.0010+0.0012x 

y= 	0.13+0.001Ox 

(r2  = 0.98) 	(13 February 1996 assay) 

(r2  = 0.996) (6 May 1996 assay) 

(r2  = 0.98) 	(3 May 1996 assay) 

(r2  = 0.997) (13 February assay) 

(r2 = 0.996) (15 February 1996 assay) 

(r2  = 0.994) (8 May 1996 assay) 

5.2.6 Statistical Analysis 

All data were checked for homogeneity of variance (F-test or Levene's test) and 

normality (test of fitted values versus residuals) and met these assumptions, except 

for the ratio of chlorophyll a / b which were transformed logarithmically. Since the 

variance of the Rubisco and soluble protein data was sometimes higher than the mean, 

the data was analysed twice, once with non-transformed data and once with log 

transformed data, but the results were the same. This indicates the power of SAS gim 

models in dealing with very variable data. 

5.3 Results 

5.31 Chlorophyll 

In Figures 5.2a and 5.2b total chlorophyll concentration in alder on a leaf dry mass 

and leaf area basis of fully expanded leaves is reported for each [CO 2] treatment over 

time. Figure 5.3 shows total chlorophyll concentration on a needle dry mass basis over 

time per [CO2] treatment. Tables 5.3 and 5.4 show alder chlorophyll a, chlorophyll b 

and the ratio of a / b on a dry mass basis and an area basis, respectively. Table 5.5 

shows the same data for Scots pine on a mass basis. 
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Figure 5.2a Seasonal course of mean total [chlorophyll] (ug g 1) on a mass basis 
in common alder. Values are the means of eight replicates. AMB = ambient 
[CO2] plus and minus nutrients; 9..EV --elevated  [CO2] plus and minus 
nutrients; CON = control plot. [CO 2] had a significant effect in August 1995 (p = 

0.018). 
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Figure 5.2b Seasonal course of mean total [chlorophyll] (ug cm 2) on an area 
basis in common alder. Values are the means of eight replicates. AMB = 

ambient [CO2] plus and minus nutrients; H..EV = elevated [CO 2] plus and minus 

nutrients; CON = control plot. [CO 2] had a significant effect In September 1995 (p 

=0.016) and a trend towards an effect in August 1995 (p =0.06). 

Total Chlorophyll Concentration 

Concentration of chlorophyll was highest in common alder in August 1994, followed 

by August and September 1995 (dry mass basis), and in June 1995 on an area basis 

(see Figure 5.2a and 52b). In Scots pine the highest concentrations were also found 

in August and September on a dry mass basis (see Figure 5.3).Total chlorophyll in 

both species was consistently lower in elevated [CO 2} although the difference was 

rarely significant. The elevated [CO 2] treatment showed a decrease in total 

chlorophyll of between 9.9 and 14 %, except in May 1995 (on an area basis) when 

there was a slight increase in total chlorophyll. There was no other clear seasonal 

pattern. 
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Nutrient addition had no significant effect on total chlorophyll on a dry mass basis 

(p > 0.05), but there was a significant nutrient effect in August 1995 (p = 0.004) and 

in September 1995 (p = 0.01) on total chlorophyll on an area basis. Interestingly, 

there was an interaction effect of [CO 2] and nutrients on total chlorophyll in alder in 

May 1995 (p = 0.02 on a mass basis, p = 0.003 on an area basis), but not at any other 

time (p > 0.05). 
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Figure 5.3 Seasonal course of mean total [chlorophyll] (ug g') on a mass basis 

in Scots pine. Values are the means of eight replicates. AMB= ambient [CO 2] 

plus and minus nutrients; aEV =elevated [CO2] plus and minus nutrients; CON 
= control plot. [CO2] had a trend towards a significant effect in August 1995 (). 
(p =0.11) only. 

In Scots pine, [CO2] had no significant effect on total chlorophyll on a dry mass basis 

at any time, although in August 1995 there was a trend towards an effect (p = 0.11). 

Total chlorophyll (on a dry mass basis) decreased by 35.3 % in August 1994, 8.24 5 

in June 1995, and 22.0 % and 23.57 % in August and September 1995, respectively. 

Total chlorophyll on an area basis was only measured in August 1994 and no 

significant [CO 2] effect occurred (p> 0.05). There was only a nutrient effect on total 

chlorophyll (dry mass basis) in August 1995 (p = 0.02). There was no interaction 

effect of [CO2] and nutrient addition on total chlorophyll (dry mass basis) at any time 

during 1994 or 1995 (p > 0.05). 

There was a significant chamber effect in alder in June 1995 on total chlorophyll on a 

dry mass basis (p = 0.05). On an area basis in alder there was a significant chamber 

effect on total chlorophyll in September 1995 (p = 0.04) and a trend towards an effect 
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in August 1995 (p = 0.07). There was no chamber effect on total chlorophyll in Scots 

pine at any time (p > 0.05). 

Chlorophyll a and Chlorophyll b 

In common alder both chlorophyll a and chlorophyll b on a mass basis were 

consistently lower in elevated [CO 2] than in ambient [CO 2}, although mostly not 

significantly (see Appendix 10, Table 5.3). Chlorophyll a was more affected by [CO 2 ] 

than chlorophyll b. Percentage decrease in chlorophyll a on a dry mass basis in 

elevated [CO 2] ranged from 13.8 % in August '1994, 6.56 % in May 1995 to 44.26 % 

in August 1995 (significant at p <0.05). Percentage decrease in chlorophyll b on a dry 

mass basis in elevated [CO 2] was highest in September 1995 (27.97 %). In alder, 

chlorophyll a on both a dry mass basis and an area basis was significantly affected by 

[CO2] 
in August 195 (p = 0.0076 and 0.05, respectively) (Appendix 10, Tables 5.3 

and 5.4). Chlorophyll b was not affected by [CO 2] (p > 0.05) (Appendix 10, Table 

5.4). Thus there was a trend towards chlorophyll a / b being significantly affected by 

elevated [CO2 ] (p = 0.063). 

There was a significant nutrient effect on alder chlorophyll a and chlorophyll b on an 

area basis in September 1995 (p = 0.03 chl a, p = 0.0033 chl b) as well as on the ratio 

of a / b (p = 0.03) but not at any other time. An interaction effect of [CO 2] and 

nutrients was found in alder in May 1995 on chlorophyll a both on a dry mass and an 

area basis (p = 0.027 and 0.0032, respectively). 

In Scots pine chlorophyll a and chlorophyll b (on a dry mass basis) were consistently 

lower in elevated [CO 2}, except chlorophyll b in June 1995. There were few 

significant reductions in chlorophyll a or b in leaves of Scots pine (see Appendix 10, 

Table 5.5). The only nutrient effect on chlorophyll a or b or a / b in pine was a trend 

in September 1995 on a / b (p = 0.06). In the same month there was an interaction 

effect of [CO 2] and nutrients on a / b (p = 0.004) and a trend towards an effect on 

chlorophyll b (dry mass) (p = 0.07). In August 1994 there was also a trend towards an 

interaction effect on chlorophyll b (area basis) (p = 0.09). 

The presence of chambers only affected chlorophyll a and b in alder in May 1995 
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(p = 0.03 chi a, area basis; p = 0.085 chi a mass basis), June 1995 (chlorophyll a dry 

mass basis p = 0.006). Thus, there doesn't seem to have been a clear chamber effect 

on chlorophyll a or b concentration in alder. In Scots pine there was very little 

chamber effect on chlorophyll a or chlorophyll b, notably in May 1995 (p = 0.03 chi a 

dry mass basis) and a trend towards a chamber effect in August 1995 (p = 0.09 chi b 

mass basis). 

5.3.2 Soluble Sugars 

In general total soluble sugars were not significantly affected by elevated [CO 2 ] 

although there were some significant effects on individual sugars (see section on 

Partitioning of Soluble Sugars). Changes in individual sugar concentrations were not 

sufficient to affect total soluble sugar concentration, however. 

Total Soluble Sugars 

In both common alder and Scots pine elevated [CO 2] had no significant effect on total 

soluble sugar concentration (dry mass) at any time from the middle of 1994 to the end 

of 1995 (p > 0.05) (see Appendix 11, Tables 5.6). There was no nutrient or 

interaction effect of [CO 2] and nutrients on total soluble sugar concentration in both 

species (p> 0.05). 

Partitioning of Soluble Sugars 

In common alder the main soluble sugars over the time period September 1994 to 

October 1995 were inositol, glucose, xylose and fructose, with the occasional 

appearance of galactose and sorbitol. The only months in which soluble sugars were 

significantly affected (p < 0.05) by elevated [CO 2] were September 1994 (xylose and 

sorbitol) and September 1995 (glucose and fructose, see Appendix 11, Table 5.7). 

These significant differences had disappeared by October 1995, however (p> 0.05). 

There was only a significant nutrient effect in September 1994 on inositol 

(p = 0.045) and a trend towards a nutrient effect in September 1995 on glucose 

(p = 0.07). An interaction effect was found only in September 1995 on inositol 

(p = 0.058). 
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In Scots pine the main soluble sugars were pinitol, inositol, glucose and fructose, with 

occasional appearance of sorbitol and sucrose. 

In pine elevated [CO 2] only had a significant effect in August 1995 on sorbitol, 

glucose and sucrose (p <0.05) (see Table 5.7 in Appendix 11). There was no nutrient 

effect on soluble sugars at any time in 1994 or 1995 (p > 0.05). There were a number 

of interaction effects (p < 0.05) between nutrients and [CO 2 ] in September 1994 

(inositol), in August (sucrose), in September 1995 (glucose), and in October 1995 

(fructose). 

There were several cases of a chamber effect on main soluble sugar concentration in 

both species. In alder there was a chamber effect on xylose and glucose in June, 

August and September 1995 (p <0.05). In Scots pine, there was a chamber effect on 

pinitol and inositol in August 1995 (p <0.05) and a trend towards a chamber effect on 

fructose in June 1995 (p = 0.08) and on sucrose in August 1995 (p = 0.084). 

5.3.3 Starch 

At the first Glendevon harvest in April 1994 there was no significant difference in 

starch between elevated and ambient [CO 2] treatments in either species (p > 0.05), 

although [starch] in pine needles was higher in elevated [CO 2] than ambient [CO2I 

(mean of 20.85 mg g', SE 2.28 versus a mean of 17.29 mg g', SE 2.91, 

respectively). Some of the 1995 starch samples were unfortunately mouldy and thus 

not available for analysis. In the data which were available however (see Table 5.8) 

there were no significant environmental effects on [starch] (p > 0.05) in either species. 
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Table 5.8 Mean starch concentration (mg g' dry mass) in common alder and Scots pine 

in 1995. Values are the means (plus one standard error in brackets) of eight samples for 

the [CO 2] treatments and four samples for the [CO 2] and nutrient treatments. 

Treatment 	 May 	 August 

common alder 

Ambient 	 2.85 (0.35) 

Elevated 	 3.59 (0.69) 

A-N 3.09 (0.63) -- 

A+N 2.61 (0.39) -- 

E-N 2.50 (0.31) -- 

E+N 4.67(l.16) -- 

Scots pine 

Ambient 12.08 (1.16) 4.25(l.21) 

Elevated 10.84 (0.65) 4.38(l.41) 

Control -- 6.41 (0.53) 

A-N 13.63 (1.97) 4.64 (2.08) 

A+N 10.53 (0.88) 3.67(l.03) 

E-N 9.90 (0.59) 5.74 (2.86) 

E+N 11.77 (1.02) 3.03 (0.07) 

C-N - 6.68 (0.84) 

C+N -- 6.23 (0.81) 

In May and in August 1995 starch concentration in pine current year needles was not 

significantly affected by elevated [CO 2] (p> 0.05). In May 1995 the elevated [CO2] 

needles had lower starch than the ambient (10.26 % lower), whereas in August 1995 

the reverse was true (3.06 %, despite not being significant). Nutrient addition and the 

interaction between [CO 2] and nutrients also had no significant effect on starch 

concentration in the needles (p > 0.05). In young, fully expanded common alder 
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leaves in May 1995 there was also no significant effect of either [CO 2], nutrients or 

the interaction of the two (p > 0.05), although the elevated starch was 25.96 % higher 

than that in ambient [CO 2] (see Table 5.8). 

In 1996 percentage increase in starch in common alder in the elevated [CO 2] 

treatment compared with the ambient [CO 2] treatment was 66.7 % in May, 30.8 % in 

June, 146.7 % in July, 60.4 % in August and 56.1 % in September. Starch in common 

alder was significantly affected by elevated [CO 2
] in May and July (p = 0.042 and 

0.0042, respectively) and there was a trend towards a [CO 2] effect in June 1996 (p = 

0.07 1 ).The addition of nutrients had no significant effect on starch except in June 

when there was a tendency towards a nutrient effect (p = 0.061). There was no 

interaction effect between nutrients and [CO 2] on starch in alder at any time in 1996 

(p > 0.05). The percentage increase in starch in elevated [CO 2] compared with 

ambient [CO2 1 was smaller in Scots pine than in common alder, and starch levels even 

decreased in the elevated treatment in September 1996. Percentage increases in 

elevated [CO 2] were 2.5 % in May, 8.3 % in June, 97.6 % in July and - 22.2 % in 

September (see Table 5.9). In Scots pine elevated CO 2  had a significant effect on 

starch in July 1996 only (p = 0.030) but not in May, June or September (p > 0.05). 

Nutrient addition had a significant effect on starch in May (p = 0.0 15) but not at any 

other time in 1996 (p > 0.05). As in alder, there was no interaction effect of nutrients 

and [CO2] on starch in Scots pine (p > 0.05). 

In common alder there was a significant chamber effect on starch in all five months 

sampled (p = 0.082 in May, p = 0.0053 in June, p = 0.026 in July, p = 0.0 18 in August 

and p = 0.000 1 in September), whereas in Scots pine there was a temporary chamber 

effect on starch in May and July (p = 0.000 1 and 0.0033, respectively), alder, whereas 

in Scots pine the effect was only temporary. 
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Table 5.9 Mean starch concentration (mg g) in common alder and Scots pine in 1996. Values are the means (plus one standard error in brackets) 

of eight samples for the [CO 2] treatments and four samples for the [CO 2] and nutrient treatments. Data provided by Gail Jackson and Diarmuid 

O'Neill. * = significant [CO2
] 

effect (p <0.05) on starch; (*) = trend towards a significant [CO 2
] 

effect on starch (p <0.10). 

Treatments 	May 
	

June 
	

July 
	

August 
	

September 

common alder 

Ambient 34.5 (8.7) 143.1 (21.3) 24.2 (4.9) 22.0 (3.9) 17.1 (4.7) 

Elevated 57.5 (7.8) * 187.2 (25.4) (*) 59.7 (11.9) ** 35.3 (6.2) 26.7 (5.9) 

Control 15.6(1.5) 64.8 (5.2) 49.0 (8.2) 44.8 (9.2) 53.3 (31.2) 

A-N 37.0 (9.1) 166.4 (45.3) 17.7 (3.2) 20.5(l.1) 16.6(1.4) 

A+N 32.0 (8.9) 119.8 (11.2) 30.7 (15.9) 23.4 (3.7) 17.6 (3.2) 

E-N 68.1 (15.6) 205.2 (20.0) 67.5 (1.1.6) 34.4 (5.2) 23.3 (3.3) 

E+N 46.8 (3.4) 169.1 (32.9) 51.9 (8.4) 36.2 (7.1) 30.1 (9.1) 

C-N 18.2 (2.5) 79.6 (9.9) 44.6 (8.5) 49.2(l.0) 44.6 (24.3) 

C+N 12.9(l.2) 49.9 (5.9) 53.3 (9.9) 40.3 (8.7) 61.9 (33.2) 
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Table 5.9 continued 

Treatments 	May 	 June 	 July 	 September 

Scots pine 

Ambient 215.7 (10.1) 167.1 (27.8) 16.6 (4.2) 4.5 (0.22) 

Elevated 221.0 (12.5) 180.9 (34.6) 32.8 (6.1) * 3.5 (0.56) 

Control 96.3 (4.9) -- 41.9 (7.9) 5.7 (0.19) 

A-N 203.9 (10.2) 180.7 (26.2) 14.8 (4.6) 2.1 (0.3) 

A+N 227.4 (11.9) 153.5 (41.4) 18.3 (4.7) 6.9(3.8) 

E-N 203.6 (13.7) 184.0 (34.4) 39.5 (5.2) 2.4 (0.7) 

E+N 238.4 (16.8) 177.7 (36.0) 26.0 (8.6) 4.6(l.3) 

C-N 81.1 (2.9) -- 36.1 (7.5) 6.2(2.2) 

C+N 111.5 (13.9) -- 47.7 (8.8) 5.1 (2.3) 
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5.3.4 Rubisco, Soluble Protein and Photosynthesis 

Rubisco Concentration 

Tables 5.10 and 5.11 in Appendix 12 show Rubisco concentration on a fresh mass 

basis in 1995. In common alder elevated [CO 2] had a significant effect on Rubisco in 

April 1995 and October 1995 (p = 0.012 and 0.051, respectively) (Table 5.10 

Appendix 12). In April the elevated [CO 2
] 

leaves had higher Rubisco concentrations 

than the ambient leaves but in October the effect was reversed, with elevated [CO 2 ] 

leaves having lower Rubisco than the ambient [CO 2] ones. Thus there was 

considerable seasonal fluctuation of Rubisco over the 1995 growing seasoIi. There 

were no nutrient or interaction effects on Rubisco in common alder (p> 0.05). 

In Scots pine there was no significant [CO 2], nutrient or interaction effect on Rubisco 

at any time during 1995 (p > 0.05, see Table 5.11 in Appendix 12) when the data 

were log transformed (the variances were larger than the means). In the un-

transformed data there was a nutrient effect on Rubisco expressed on a fresh and dry 

mass basis in September 1995 (p = 0.0076 and 0.045, respectively). 

A chamber effect and a tendency towards a chamber effect on Rubisco was only 

found in Scots pine, and only in April and August 1995 (p = 0.0062 and 0.07, 

respectively). 

It is difficult to draw any firm conclusion from these data, except that elevated [CO 2
] 

and nutrient addition had no significant effect on [Rubisco] in Scots pine, and a 

temporary, varying effect on [Rubisco] in common alder. 

Total Soluble Protein 

The total soluble protein data were very variable, and very few statistically significant 

differences between treatments were found. It is not clear whether this reflected the 

true state of total protein concentration in the leaves and needles or if the data were 

too variable for a vigorous statistical test to be able to pick up any differences. 

Soluble protein concentrations in elevated [CO 2] fluctuated over the season in a 

similar way to Rubisco, with elevated [CO 2] occasionally being higher than ambient 
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[CO2] means (e.g. alder in April) and vice versa. (e.g. alder in June). Elevated [CO 2 ] 

had no significant effect on total soluble protein concentration in common alder, 

although there was a slight trend towards an effect in April 1995 

(p = 0. 112) when protein at elevated [CO 2] was higher (see Table 5.12 in Appendix 

12). There was an tendency to an interaction effect of [CO 2] and nutrients in 

September 1995 on a fresh mass and a dry mass basis (p = 0.08 and 0.09). 

In Scots pine there was a significant [CO 2] effect on soluble protein expressed on a 

fresh mass and dry mass basis in April 1995 (p = 0.039 and 0.049, respectively). 

There was no other significant [CO 2] effect in 1995. In October 1995 there was a 

significant nutrient effect on protein (p = 0.042 fresh mass, p = 0.035 dry mass). No 

interaction effect of [CO 2] and nutrients on protein was found in Scots pine (p > 

0.05). 

There was only a tendency to a chamber effect on protein in Scots pine in August 

1995 (p = 0.095); otherwise there was no chamber effect in either Scots pine or 

common alder. 

Photosynthesis 

Although photosynthesis was not measured directly in 1995, Dr Gail Jackson 

measured gas exchange at 350 pmol mol d  versus 700 jtmol mor' [CO 2 11 in current 

common alder and Scots pine leaves in 1996 and 1997 (see Figures 5.4, 5.5 and 5.6). 

Although A / Ci curves were not available, these data show a clear acclimation of 

photosynthesis in common alder grown with and without fertiliser in 1996 (see Figure 

5.4). In Scots pine needles on the other hand, elevated [CO 2] needles measured at 350 

pmol moF' [CO2] showed an acclimation of photosynthesis in July 1996 but no clear 

acclimation in September 1996 or in 1997 (see Figures 5.5 and 5.6). 
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Figure 5.4 Net photosynthesis and stomatal conductance in common alder leaves grown 

in elevated or ambient [CO 2], with or without fertiliser at Glendevon in 1996 (do Gail 

Jackson). All leaves were measured at the [CO 2] in which they were growing and at the 

other [CO 2] in order to assess whether acclimation had occurred. 
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Scots pine gas exchange at Glendevon (1996) 
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Figure 5.5 Net photosynthesis and stomatal conductance in new growth Scots pine 

needles grown in elevated or ambient [CO 2], with or without fertiliser at Glendevon in 

1996 (do Gail Jackson). 
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Gas exchange of 'current' (C) Scots pine 
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Figure 5.6 Net photosynthesis and stomatal conductance in new growth Scots pine 

needles grown in elevated or ambient [CO 2], with or without fertiliser at Glendevon in 

1997 (do Gail Jackson). 
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5.4 	Discussion and Conclusions 

A summary of any changes in leaf composition in common alder and Scots pine 

grown in elevated [CO 2] compared with ambient [CO2] is reported below in Table 

5.14 and Table 5.15. 

Table 5.14 Summary of main effects of growth in elevated [CO 2] on biochemistry of common 

alder in the two nutrient treatments, fertiliser supply, F and no supply, NF, combined and 

separately. The table shows significant statistical differences and how a variable in elevated 

[CO2] compared with the ambient [CO 2] control. ++ large increase, + increase, (+) slight 

increase, - no change, (--) slight decrease, -- decrease, large decrease. * = statistically 

significant (p < 0.05) at least at some time during the experiment. (*) = trend towards 

significant difference between treatments (p <0.1). It should be noted that any * against either 

the F or NF treatment is only indicative that there was a significant nutrient effect; it does not 

indicate between exactly which treatment combinations this effect was found. 

Variable 	 F + NF 	F 	 NF 

together 

total [chlorophyll] (dry mass basis) -- * -- -- 

total [chlorophyll] (area basis)  

[chlorophyll a] (dry mass basis) -- * -- -- 

[chlorophyll b] (dry mass basis) () (*) + -- 

[chlorophyll a] (area basis) -- * -- -- 

[chlorophyll b] (area basis) - -- -- 

alb +* + - 

[total soluble sugars] - - 

[sorbitol] + * + + 

[xylose] + * + + 

[glucose] + * + + 

[fructose] + * + + 

[starch] 1995 + + -- 

[starch] 1996 + * + + 

[Rubisco] (see Appendix 12) + I -- * + I -- + / -- 

[soluble protein] (see Appendix 12) - - - 
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Table 5.15 Summary of main effects of growth in elevated [CO 2] on biochemistry of Scots pine 

in the two nutrient treatments, fertiliser supply, F and no supply, NF, combined and 

separately. The table shows significant statistical differences and how a variable in elevated 

[CO2,] compared with the ambient [CO 2] control. ++ large increase, + increase, (+) slight 

increase, - no change, (--) slight decrease, -- decrease, large decrease, + I-- increase 

followed by decrease, ? not measured. Stars * indicate that the result was statistically 

significant (p < 0.05) at least at some time during the experiment. (*) = trend towards 

significant difference between treatments (p <0.1). 

Variable 	 F + NF together 	F 	 NF 

[total chlorophyll] 

[chlorophyll a] -- (*)  

[chlorophyll b] -- * 	 -- 	 -- 

alb ...(*) 	 -- 	 -- 

[total soluble sugars] - 	 - 

[glucose] + * 	 + 	 + 

[fructose] + (*) 	 + 	 + 

[sucrose] + * 	 + 	 + 

[starch] 1995 -- / + 	 - 	 - 

[starch] 1996 + * 	 + 	 + 

[Rubisco] (see Appendix 12) 

[soluble protein] + * 	 + 	 + 

5.4.1 Chlorophyll 

A reduction in chlorophyll on a dry mass and area basis in leaves of plants exposed to 

elevated [CO2] has been observed in many impact studies (Mousseau and Enoch 

1989, Tissue et al. 1993, El Kohen and Mousseau 1994, Wilkins et al. 1994). Other 

investigators have found no significant [CO 2] effect on chlorophyll (Delgado et al. 

1994). The results presented here for both common alder and Scots pine show a 

consistent reduction in chlorophyll (both total chlorophyll and chlorophyll a or b) 

over 1994 and 1995 and 1996, although mostly not a statistically significant 

reduction. Evans (1994) and Rey (1997) found similar results with birch grown in 

elevated [CO 2] (the former's trees grown in pots, the latter in the field) in which 
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chlorophyll was consistently reduced if not significantly or only occasionally 

significantly. Inadequate nitrogen supply is known to affect chlorophyll. It is 

interesting to note that nutrient addition did not in general significantly affect 

chlorophyll in either alder or pine. In August and September 1995 there was a 

significant nutrient effect on total chlorophyll in alder on an area basis only, and in 

August 1995 there was a significant nutrient effect on pine in which E-N and E+N 

trees had lower chlorophyll than A-N and A+N trees, respectively. This is different to 

the findings of El Kohen and Mousseau (1994) in which leaf chlorophyll was reduced 

in unfertilised sweet chestnut but not in fertilised trees. As with some other variables 

measured at Glendevon, there was no clear-cut response to nutrient addition. 

Chlorophyll was only reduced by c. 9 - 14 % in alder and by c. 8 - 20 % in pine. Since 

chlorophyll is believed to be present in the leaf at concentrations higher than is 

required for maximum photosynthesis and as such is rarely limiting except in 

conditions of severe stress (discussed in Rey 1997), it is possible that the light-

harvesting capacity in alder and pine was not inhibited or if there was a decline in 

light-harvesting capacity it was not the main controlling factor in any acclimation of 

photosynthesis. 

5.4.2 Soluble Protein and Rubisco 

Elevated [CO2] affected soluble protein and Rubisco in different ways depending on 

the time of year. In common alder both soluble protein and Rubisco followed the 

same pattern of fluctuation over the 1995 growing season: increasing and declining or 

remaining the same together. The only exception to this was in October 1995 when 

soluble protein increased very slightly in elevated [CO 2] but Rubisco was significantly 

decreased by 19.96 %. In Scots pine soluble protein and Rubisco were decreased in 

elevated [CO 2] although not significantly (p <0.05). Soluble protein was reduced by a 

larger proportion than chlorophyll. Since many soluble proteins play an important role 

in photosynthesis in the light reactions and in the PCR cycle, photorespiration, CO 2  

assimilation, RuBP regeneration and sucrose and starch synthesis) a change in their 

concentration is likely to affect photosynthetic rates. 
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As mentioned in the Introduction, a very common response to elevated [CO 2
] 

is a 

reduction in photosynthetic proteins, especially Rubisco and chlorophyll (Besford 

1990, Stitt 1991, Van Oosten 1992, Mousseau and Saugier 1992, Sicher et al. 1994, 

Stitt and Schulze 1994, Wilkins et al. 1994, Besford 1998, Jacob et al. 1995). Sage et 

al. (1989) in their study of five C 3  species found acclimation to elevated [CO 2 ] in all 

five species although Rubisco content was lower in only two of the five. Rubisco 

activation state was reduced between 19 % and 48 % in all five species. There have 

been cases of increased Rubisco activity or content in trees grown in elevated [CO 2 ] 

although these are much less common than the generally found decline in the 

enzyme's activity and / or content (e.g. in Beaupre clones of poplar, Besford et at. in 

press). The Ecocraft survey of European trees (see Besford et al. 1998) also reported 

that Quercus ilex (Italy) grown in elevated [CO 2] did not show any reduction in 

activity, content or activation state of Rubisco. 

There is considerable debate in the literature as to whether the long-term reduction in 

photosynthesis is mediated through a decline in activity and amount of Rubisco or 

accumulation of carbohydrates in the leaves, i.e. inhibition of sucrose synthesis 

(Bowes 1991). Stitt (1991) postulated that photosynthesis is inhibited in elevated 

[CO2] because of inadequate demand for carbohydrate in the rest of the plant and that 

such an imbalance between sources and sinks is dependent on the species and may 

explain species-specific differences in responses to elevated [CO 2]. Stitt (1991) also 

hypothesised that direct inhibition of photosynthesis through accumulation of large 

starch grains or Pi limitation due to inhibition of sucrose synthesis was likely to only 

be a short-term response to elevated [CO 2]. The more likely long-term response 

would probably be indirect and hence adaptive (bringing all photosynthetic processes 

back into balance) and be mediated via a decline in key photosynthetic enzymes, 

including Rubisco. This has as an end effect that N is allocated away from the leaves 

and into the sinks thus readjusting the source-sink imbalance (Stitt 1991). 

Tissue et al. (1993) found in their long-term study on loblolly pine, that 

proportionately less N was invested in Rubisco and N was reallocated elsewhere, to 

light reaction components not to any sinks outside of the leaf. In loblolly pine, 
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photosynthetic acclimation occurred in the third year of exposure to elevated [CO 21 
with reduced Rubisco activity by 30 % which nearly balanced Rubisco ad RuBP 

regeneration regulation of photosynthesis (Lewis et al. 1996). There is mounting 

molecular evidence that carbohydrate accumulation can control photosynthesis. Other 

authors have hypothesised that changes in pH of the stroma as a result of PGA 

accumulation could cause the reduction in photosynthetic proteins (Sharkey 1985, 

cited in Rey 1997) although there is as yet little experimental evidence for this 

hypothesis. 

The mechanism for the reduction in Rubisco activity or content commonly found in 

elevated [CO 2] has been studied with transformed tobacco plants and is attributed to a 

change in activation state of the enzyme (Sicher et al. 1994, Stitt and Schulze 1994). 

A larger proportion of the residual enzyme is converted into the active form via 

carbamylation by Rubisco activase (Stitt and Schulze 1994). Van Oosten et al. 

(1994b) reported that the abundance of transcripts coding for the SSU of Rubisco 

(rbcS), chlorophyll a / b binding proteins and for Rubisco activase were reduced in 

tomato plants exposed to elevated [CO 2]. In addition when sucrose or glucose was 

fed to leaf tissue grown in elevated [CO 2], the response of the transcripts was 

mimicked and, conversely, an up-regulation of enzymes involved in carbohydrate 

metabolism was found (Van Oosten 1994a). Camm (1993) found that Rubisco also 

functioned as a form of N storage in mature needles of Douglas fir, where total foliar 

protein and Rubisco concentration increased prior to and declined during shoot 

elongation. That Rubisco not only acts as a crucial enzyme in the PCR cycle but it 

may also act as a storage protein has been known since the seventies (Huffaker and 

Miller 1978). Rubisco exerts little or no control of photosynthesis at low light or high 

[CO2 1 (Sage 1990, Bowes 1991). Thus, reductions in Rubisco content or activity 

may occur with no significant effect on photosynthesis. This would depend on the 

species and the environmental conditions in which the plant was growing, however, 

since Rubisco is highly responsive to environmental stresses (Huffaker and Miller 

1978). Photosynthetic acclimation can also occur when no loss of Rubisco protein is 

found but the activity changes via reduced carbamylation (Socias et al. 1993). 
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It seems that in the present study Rubisco was not greatly affected by growth in 

elevated [CO2], especially in Scots pine. It is likely that the proportional reduction in 

Rubisco was insufficient to be a main controlling factor of photosynthetic rate at high 

[CO2]. Although not statistically significant, the reduction in Rubisco was more 

consistent in Scots pine than in alder, and starch accumulation occurred to a lesser 

extent in pine. Combined with inconclusive evidence for continuous photosynthetic 

acclimation to elevated [CO 2], it is possible that the pine trees were better able to 

restore the balance between Rubisco activity and regeneration of important 

components of the PCR cycle and / or sugar metabolic processes than the alder trees. 

The end result was that alder showed larger signs of photosynthetic acclimation. 

Starch did nevertheless accumulate in Scots pine needles and there were signs of 

photosynthetic acclimation. 

The experiment of Sicher et al. (1994) in which acclimation to elevated [CO 2 ] 

occurred in tobacco plants irrespective of whether Rubisco levels were transgenically 

decreased or not, could shed some light on the situation at Glendevon. Conversely to 

many the findings of other authors in which the decline in Rubisco was attributed to a 

decrease in activation state, Sicher et al. (1994) found that reduced specific activity of 

Rubisco was responsible for acclimation. No measurement of Rubisco activity, 

activation state or specific activity or carbamylation was made in the present study but 

it is possible that acclimation occurred in both Scots pine and common alder 

irrespective of whether Rubisco amounts decreased or not, as found by Socias et al. 

(1993) in Phaseolus vulgaris. In their study acclimation was mediated via a reduction 

in carbamylation which in turn reduced Rubisco activity, with no loss of protein. It is 

possible, however, that in the present study there were no significant changes in either 

Rubisco, activity or activation state in the long-run. This leads us back to the idea that 

starch accumulation played an important role in the down-regulation of 

photosynthesis in alder (and pine) at Glendevon. It would have been very interesting 

also to have Rubisco data for 1996, to see what happened to Rubisco in the next 

growing season. 
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Another factor which could be playing a role in photosynthetic acclimation of trees in 

elevated [CO2] is phosphate deficiency. Conroy et al. (1 990c) found that phosphorus 

deficiency generally diminished the response to elevated [CO 2]. They found that when 

soil phosphorus (P) was low, higher P uptake occurred in elevated [CO 2] and 

hypothesised that this may have been related to changes in mycorrhizal competition 

(Conroy et al. 1990a). Higher foliar P concentrations were necessary for realisation 

of maximum growth potential in Pinus radiata and Pinus caribaea. Scots pine in the 

present experiment had more mycorrhizae in elevated [CO 2] than in ambient. Lewis et 

al. (1994) reported that mycorrhizal seedlings of loblolly pine supplied with low 

phosphorus in elevated [CO 2] experienced phosphorus limitation, and they related this 

to effects on Rubisco activity and RuBP regeneration rates. Extreme phosphate 

deficiency affected the specificity factor of Rubisco in favour of oxygenation (Jacob 

and Lawlor 1993). Phosphorus concentrations in Scots pine needles were optimum at 

Glendevon until about June 1995, after which concentrations were in an intermediate 

range (see Van den Burg 1985), whereas nitrogen was in the deficient to intermediate 

range in 1995. Although phosphate deficiency did not occur in either pine or alder in 

this experiment, it is possible that exposure to elevated [CO 2 } induced changes in 

mycorrhizae and this in turn produced increased phosphorus uptake initially in Scots 

pine. How exactly this may have affected photosynthetic rates is not known. 

5.4.3 Soluble Sugars and Starch 

The most common response in trees and other plants to elevated [CO 2 ] is an 

accumulation of non-structural carbohydrate in the leaves (Stitt 1991, Mousseau and 

Saugier 1992, Ceulemans and Mousseau 1994). If growth at elevated [CO 2] induces 

more carbohydrate production, availability of the latter for the plant is increased (Luo 

et at. 1994). This additional sugar has three possible fates: it can be stored in leaves as 

starch and / or soluble sugars, it can be used for additional structural growth in the 

leaves, such as more layers of mesophyll cells, or it can be transported out of the leaf 

(Luo et al. 1994). If the carbohydrate accumulates as starch and I or sugars in the leaf 

and nitrogen dilution occurs, then photosynthetic capacity can be down-regulated via 

feedback inhibition (Stitt 1991). If the additional carbohydrate is used for mesophyll 

growth, this could compensate either completely or partially for nitrogen dilution. If 
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all the additional carbohydrate is exported out of the leaf then leaf composition and 

photosynthesis may hardly change (Luo et al. 1994). 

As in many other studies, starch accumulated in the leaves of alder and pine when 

exposed in the long-term to elevated [CO 2]. Jacob et al. (1995) found increased non-

structural carbohydrates (sugars and starch) in the sedge Scirpus olneyi which had 

been exposed to elevated [CO 2} for a period of eight years. Starch also accumulated 

in both fertilised and unfertilised sweet chestnut, although the accumulation lasted 

longer in the unfertilised trees (El Kohen and Mousseau 1994). Norby et al. (1996) 

found that [starch] increased significantly in two very different tree species, 

Liriodendron tulip jfera and Quercus alba, grown in elevated CO2 . Amongst the 

findings of the Ecocraft group of researchers, all trees exposed to elevated [CO 2] 

showed starch accumulation in the leaves (Besford et al. 1998). 

Demonstration that starch accumulation occurred in alder and pine leaves in 1995 was 

inconclusive although accumulation in the elevated [CO 2] treatment was higher than 

ambient [CO2 ] 
in the two of the three sets of data available, although not significantly 

(May for alder and August for pine). Nevertheless in 1996 starch accumulated 

significantly in leaves of alder (in May, June and July) and pine (in July), with a larger 

accumulation occurring in alder. In both species the concentration dropped after the 

mid-season high and although starch in elevated [CO 2 ] was still higher than in ambient 

[CO2] the difference was no longer significant. This drop in starch build-up could be 

the result of acclimation of photosynthesis to elevated [CO 2]. A similar accumulation 

and subsequent depletion of carbohydrate was found by Chomba et al. (1993) when 

Picea engelmannii was exposed to elevated [CO 2], indicating that elevated [CO 2] 

increased the rate of carbohydrate accumulation but not the final concentration before 

cold storage (i.e. dormancy). Gas exchange measurements on alder leaves made by 

Gail Jackson at Glendevon in July, August and September 1996 showed not only 

increased photosynthesis in elevated [CO 2], irrespective of fertiliser addition, but also 

clear down-regulation of photosynthesis (gas exchange in elevated [CO 2]-grown 

leaves measured in ambient was lower than ambient [CO 2]-grown leaves measured in 

ambient [CO21). Stomatal conductance was also reduced in elevated [CO 2] in July and 
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August. There seems to have been a time-lag between down-regulation of 

photosynthesis (which could have started to occur at any time before July 1996, and 

judging by the growth reponses of the alder, could have occurred around August 

1995, see Chapter 4 Discussion and Chapter 6 Synthesis and Conclusions). In Scots 

pine there was a tendency towards down-regulation of photosynthetic capacity but the 

effect was not as clear-cut as in alder (Gail Jackson, data not shown). 

Total soluble sugars were generally not affected by growth in elevated [CO 2] in both 

Scots pine and common alder. Generally sucrose was not found in the leaves of either 

alder or pine in 1995, which could have been indicating inhibition of sucrose synthesis 

in the leaves, which is associated with increased starch synthesis (Stitt and Quick 

1989). Sucrose, a disaccharide, is the main transport form of carbohydrate within 

plant cells and as such is central to the distribution of photosynthate. Starch is 

synthesised in two distinct situations: firstly for short-term storage when the capacity 

of chloroplast to synthesise carbon exceeds the capacity to export it to the cytoplasm 

and secondly starch is synthesised in storage tissues such as seeds or tubers for long-

term storage (Smith 1993). 

Stitt and Quick (1989) reported from studies with mutants that the rate of starch 

synthesis can be increased in response to lowered rates of sucrose synthesis, but not 

vice-versa. Sucrose synthesis is inhibited by low Pi whereas starch synthesis is 

stimulated by low Pi. Thus if Pi levels in the cytoplasm fall below an optimum level, 

sucrose synthesis is inhibited and starch synthesis is set in motion. This has 

implications in leaves exposed to elevated [CO 2] with the common response of 

enhanced photosynthetic rate, because temporarily up-regulated photosynthetic rate 

could lead to Pi regeneration limitation which in turn would induce starch synthesis 

but not sucrose synthesis. Starch granules would accumulate in the chioroplast but 

this extra carbon would not be exported out of the leaf, in the form of sucrose. Lenz 

et al. (1995) also found no increase in sucrose concentration but starch accumulation 

in beech leaves grown at elevated [CO 2] for three years. They hypothesised that this 

could have been caused by unchanged sucrose transport from the leaf and 

concomitant starch accumulation, indicating that the starch pool could not be 
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removed to other parts of the plant fast enough to prevent accumulation. It is 

probable that this is what happened in alder and pine in this experiment, although the 

lack of sucrose in the leaves during several months's sampling is more indicative of 

sucrose synthesis inhibition. Often, only some individual trees had sucrose in their 

leaves at any one sampling time. Temporarily increased levels of glucose and fructose 

could be an indication of sucrose synthesis, however. SLA in common alder (data not 

available for pine) was not affected by elevated [CO 2] in 1995, indicating that 

increased leaf thickness caused by starch accumulation or production of new 

mesophyH layers did not seem to have occurred. 

Direct inhibition of photosynthesis through accumulation of large starch amounts 

could have also occurred in this experiment, particularly in alder. As a pioneer species 

and a nitrogen-fixing tree, alder is often considered to be source-limited (Bowes 

1991). Growth of such trees in elevated [CO21  should be less sink-limited than in 

species such as Scots pine. It is strange, therefore, that starch accumulated more in 

alder leaves than in pine needles in this experiment. 

It can be concluded that neither Scots pine nor alder were able to utilise all the extra 

carbon fixed in elevated [CO 2}, since sucrose synthesis and concomitant transport of 

carbon out of the leaf did not seem to have been taking place. Sucrose was found 

more often in pine needles than in alder leaves, starch accumulated more in alder and 

down-regulation of photosynthesis was more pronounced in alder. Canopy closure in 

common alder seems to have played a key role in photosynthetic acclimation. It is 

possible that Scots pine was able to export more sugar as sucrose out of the leaves 

and thus not show such marked down-regulation of photosynthesis as common alder. 

The results from this study once again show that starch accumulation and 

photosynthetic acclimation are not restricted to pot studies, but occur with trees 

grown over the longer-term in field conditions. These finding agree with those of Ana 

Rey's with field grown birch (1997), although the extent of starch accumulation was 

less than in her study. Of particular interest is the finding that the nitrogen-fixing, fast-

growing alder showed clearer signs of acclimation than the slower-growing, 
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mycorrhizal pine, despite the findings of other authors that fast-growing pioneer 

species and / or nitrogen-fixers are more stimulated by growth in elevated [CO 2] than 

other species (Bowes 1991, Poorter 1993). 

Conclusion 

Growth in elevated [CO 2 1 over four years did change leaf composition in both pine 

and alder and produced photosynthetic acclimation in common alder. The reponses in 

this study are similar to those in other experiments although the magnitude of the 

response was less. Probably as a result of growth in field conditions. The mechanim 

by which photosynthetic acclimation occurred in this experiment is not clear, although 

it seems likely that a complex interaction of effects was at play. Starch accumulation 

played an important role as well as reductions in Rubisco, soluble protein and 

chlorophyll. Yelle et al (1989) found that acclimation in two different tomato species 

could not be explained entirely by accumulation of starch and / or sugar. This may 

have also been the case at Glendevon. Particular conclusions are as follows: 

declines in Rubisco, soluble protein and chlorophyll were found in both 

species, although mostly the declines were not statistically significant at 

p<O.O5; 

changes in leaf composition were more pronounced in common alder, 

where more of a source-sink imbalance occurred than in pine: this surprising 

result is at variance with the hypothesis (see Chapter 4 Introduction) that 

alder, with its ability to fix nitrogen, would be able to keep additional 

carbon and nitrogen availability in balance; 

nutrient addition did not generally affect leaf composition in either Scots 

pine or common alder in elevated [CO 2]; and 

starch accumulation occurred in both common alder and Scots pine grown in 

elevated [CO21, although the effect was more pronounced in common alder 

leaves. 
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CHAPTER 6 

Synthesis and Conclusions 

This chapter is a synthesis of the results from the short-term and long-term 

experiments. The observed differences in response to elevated [CO 2] and nutrient 

addition of common alder and Scots pine are interpreted with respect to different time 

scales and experimental conditions as well as the different functional groups of -the 

species. The main conclusions from the experiments are presented and suggestions for 

future research given. 

6.1 Schematic Representation of Results 

Figures 6.1 and 6.2 provide an overview of the main changes in common alder and 

Scots pine in the long-term experiment. 

6.2 Photosynthesis and Growth 

As discussed in Chapter 5 photosynthetic rate in C 3  plants is almost always stimulated 

in response to elevated [CO 2] and this is related to the increased carboxylation 

efficiency of Rubisco. Photosynthesis as measured monthly in common alder and 

Scots pine at Glendevon by Gail Jackson in 1996 and 1997 was indeed significantly 

enhanced in elevated [CO 2] (see Figures 5.4, 5.5 and 5.6). Although not measured 

directly, photosynthetic enhancement in both the short-term experiment and the long-

term experiment in 1994 and 1995 must have occurred, since biomass accumulation 

was stimulated but leaf area was not affected by elevated [CO 2]. I define 

photosynthetic 'acclimation' as a reduction in photosynthetic components and 'down-

regulation' as a reduction in photosynthetic rate without a change in photosynthetic 

components (see Delgado et al. 1994). 
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Figure 6.1 Schematic representation of the proposed mechanism of photosynthetic acclimation at elevated [CO 2
] 

in common alder 

in the long-term experiment. 

Increased [CO 2 ] 

4! 
Increase in photosynthesis 

Increased carbohydrate 	 Increased biomass and
No 

accumulation 	- 	Increased growth rate 	 eventual canopy closure 
(initially) 

4! 
Photosynthetic acclimation  

I Reduction in sink strength 
despite nitrogen fixation 

I Reduction in leaf 	I 	I Slight reduction in I 	I Starch accumulation 	I 
nitrogen concentrtaion 	i-- I photosynthetic 	I 	I in leaves 	 I 

proteins 	I 	I 	 I 

209 



Figure 6.2 Schematic representation of the main responses of Scots pine in the long-term experiment to elevated [CO 2]. 

Increased [CO 2 ] 

Increase in photosynthesis 

"V 

Increased carbohydrate 
4 

accumulation 
Increased growth rate 

-3 	 (initially) 
Carbon exudation from 
roots and increased 
myccorhizal infection 

"V 

Increased resource use 
efficiency and NUE 

Starch accumulation 
in leaves 

cafN_ Eht reduction in I
in trees without

Slight reduction in liser 	
photosynthetic proteins 

Icreased biomass and 
stem basal diameter 

Decreased leaf area 
ratio in 1995 

Only partial photosynthetic and 
growth acclimation, especially 
in trees grown without 

fertiliser 

210 



Photosynthetic acclimation is generally measured by comparing photosynthetic rates 

measured in ambient [CO2] of elevated [CO2] grown plants with those of ambient 

[CO2] grown plants (Bowes 1991). This measure indicates that the photosynthetic 

apparatus in elevated [CO 2] plants has been reduced and can therefore not keep up 

the same photosynthetic rates as ambient-grown trees when measured in ambient 

[CO2]. Nevertheless Pearcy and Bjoerkman (1983, cited in Bowes 1991) maintain that 

the most relevant comparison is between plants grown and measured at ambient 

[CO2] and those grown and measured at elevated [CO 2]. Using the first measure, 

photosynthetic acclimation occurred in both common alder and Scots pine af 

Glendevon. Photosynthetic acclimation was more consistent and more pronounced in 

common alder than in Scots pine, especially in 1997. This acclimation was coincident 

with a larger starch accumulation in the leaves of alder than in those of pine in 1996. 

For further discussion of this result and its possible mechanisms see sections 6.4 to 

6.6. 

Despite evident photosynthetic enhancement, specific growth rate in both the short-

term and long-term experiment and in both tree species was not found to be increased 

in elevated [CO2] during the experimental period 1995-1996. Caution should be 

exercised when interpreting these results since it was not possible to measure the 

specific growth rate of the same individual trees over time. The graphical 

representation of natural log of biomass against time using mean biomass data (see 

Figure 4.8a and 4.8b in Chapter 4) indicates a potential increase in specific growth 

rate between April 1994 and September 1994 especially in Scots pine, however. Since 

total seedling biomass was not significantly different at the initial harvest in April 

1994, I propose that there was a stimulation of growth rate in the long-term 

experiment in the 1994 growing season (difficult to measure for lack of harvests). In 

the short term experiment it seems that any stimulation in growth rate occurred during 

the first year of growth prior to the start of the experiment. This is in agreement with 

many impact studies in which photosynthesis and growth rate were found to be 

stimulated only during the first weeks to months of exposure to elevated {CO 2] (see 

Mousseau and Saugier 1992, Poorter 1993, Ceulemans and Mousseau 1994). 
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As in many other impact studies, biomass accumulation increased in both tree species 

in elevated [CO 2] (see Norby 1987, Arnone and Gordon 1990, Poorter 1993, Norby 

et al. 1996, Tissue et al. 1996). The relative accumulation of biomass was largest in 

common alder compared with Scots pine and in the long-term experiment compared 

with the short-term experiment. I attribute the difference between the experiments to 

root restriction in the pot-experiment as well as to specific growth rate, i.e. the larger 

the plant the more assimilatory material it has which in turn maintains its larger size. 

Biomass accumulation in common alder probably responded more to elevated [CO 2 ] 

than in Scots pine because of functional differences between the species. Common 

alder is a fast-growing, nitrogen-fixing pioneer species with an indeterminate growth 

pattern and thus was able to derive more of an advantage from elevated [CO 2] than 

Scots pine, a slow-growing species with a determinate growth pattern. Although 

second flushes of needle growth (lammas growth) were observed more frequently in 

individual elevated [CO 2 1 trees of Scots pine than in ambient [CO 2], the extra carbon 

fixed by such needles would have been small relative to the carbon fixed by the rest of 

the tree and second flushes of growth did not occur on all trees. 

Interesting differences in the nature of biomass accumulation occurred between the 

two experiments. Stem height increased in elevated [CO 2] alder in the short-term but 

not in the long-term experiment, whereas the opposite pattern was found with respect 

to stem basal diameter. In Scots pine stem basal diameter was significantly increased 

in both experiments but stem height was only enhanced in the long-term experiment. 

These results show the plasticity of potential growth responses to elevated [CO 2]. The 

same species can show different biomass accumulation patterns depending on the 

length and nature of the experiment. 

6.3 Allocation 

Biomass allocation in Scots pine and common alder was affected differently by 

elevated [CO2}. In the short-term experiment biomass allocation was generally not 

much affected by elevated [CO 2]. In contrast there were significant changes in 

biomass allocation in Scots pine such as increased root to shoot ratio in elevated 

[CO2]. In Scots pine the needle mass fraction increased in response to fertiliser supply 
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but not to growth in elevated [CO 2]. As with biomass growth discussed in section 6.2, 

the pattern of species response was reversed in the long-term experiment with 

common alder experiencing more changes in allocation than Scots pine. I attribute the 

increased root to shoot ratio in Scots pine in the short-term experiment to a 

reallocation of resources to roots in order to increase nutrient acquisition. This was 

not necessary in the long-term experiment where the roots were not restricted by pots 

and increased nitrogen use efficiency enabled non-fertilised trees to be stimulated in 

growth as well as fertilised trees. The case of common alder is more complicated. I 

suggest that higher rates of carbon assimilation and biomass growth and increasing 

competition between plants (see section 6.4) in the long-term experiment led to more 

changes in resource allocation than in the short-term experiment. In the long-term 

experiment photosynthetic acclimation in alder occurred from about July-August 1995 

onwards. This was coincident with shifts in biomass allocation away from the leaves 

and into the stem. Norby et al. (1992) also found no significant growth response in 

yellow-poplar grown in elevated [CO 2] and changed allocation of carbon, notably a 

decline in leaf production and an increase in fine root biomass. Although these 

changes reduced the stimulatory effect of growth in elevated [CO 2] they also 

represent a more efficient use of resources over the longer term. 

It has been suggested that woody plant species will be able to respond to elevated 

[CO2 1 more than herbaceous species, since woody plants can allocate excess carbon 

to the development of wood thus reducing photosynthetic acclimation (see Barton 

1997). In the long-term experiment, leaf to shoot ratio in common alder was 

significantly reduced in June 1995 but not in August 1995. The proportion of wood to 

'functional' tissue was thus temporarily increased in alder but not in pine. This change 

in allocation in August may have been related to the onset of canopy closure, since it 

has been suggested that allocation between foliage and stem-wood varies with canopy 

closure (see Lucas 1998). A potential increase in wood in mature trees may increase 

carbon sequestration in the medium to long-term. Nevertheless it is extremely difficult 

to predict the response of mature trees to climate change from seedlings. In addition 

common alder is not a dominant forest tree species but a typical high production, 
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short rotation 'energy forest' species, so that the length of any extra carbon 

sequestration is likely to be restricted compared to a dominant forest species. 

6.4 Are photosynthetic and growth stimulation maintained in the long-term? 

Photosynthetic acclimation occurred in both the short-term and the long-term 

experiment. In the former Scots pine showed more of a source-sink imbalance than 

common alder, as hypothesised. In the long-term experiment photosynthetic 

acclimation (in 1996 and 1997) occurred to a larger extent and more consistently in 

common alder than in Scots pine. Photosynthesis measured in September 1996 even 

showed no acclimation of photosynthesis in those trees grown with fertiliser in 

elevated [CO 2], although this pattern was not consistent throughout 1996 or 1997. 

This is a surprising result which does not support the hypothesis that common alder 

would be less sink-limited than Scots pine in elevated [CO 2]. 

Although photosynthetic acclimation to elevated [CO 2] clearly reduces photosynthetic 

capacity, the reduction in photosynthetic rate rarely completely compensates for the 

stimulation of the rate by elevated [CO 2] (Drake et at. 1997). This was the case at 

Glendevon where photosynthetic acclimation occurred but the rate of photosynthesis 

in the trees grown and measured in elevated [CO 2] still remained higher than in trees 

grown and measured in ambient [CO 2]. Although photosynthetic rate and net 

assimilation rate in alder were stimulated in 1995 these effects were offset by various 

other factors such as decreased leaf mass ratio throughout the 1995 growing season 

and reduced leaf area ratio in spring 1995. In Scots pine photosynthetic rates 

increased but net assimilation rate and leaf mass ratio were not affected by elevated 

[CO2}. Leaf area ratio decreased significantly in April and August 1995, however, 

which again could have offset any photosynthetic stimulation. DeLucia et at. (1994) 

also found that decreased leaf area ratio in Pinus ponderosa counteracted the increase 

in photosynthetic and net assimilation rate. 

I suggest that the tree-density within the chambers (there were initially twelve 

seedlings per quadrant) affected responses of the two species to a large extent. Scots 

pine, being a slow growing species did not grow to canopy closure over the three 
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years of the long-term experiment and thus there was little competition for light 

between individuals. Furthermore, the distance between the seedlings suggests little 

interaction between plants. Common alder seedlings, in contrast, grew much faster 

than the pine and formed a closed canopy by the summer months of 1995, when roots 

of one seedling were growing in the vicinity of roots of the neighbour. In addition the 

summer of 1995 was hotter and drier than that in 1994 (see Chapter 2 Materials and 

Methods section 2.3.1). The dry 1995 growing season probably caused the fungal 

infection (Taphrina tosquinetti) in June on the common alder leaves. Leaves wilted in 

August and were lost. I propose that these factors contributed significantly to the 

appearance of signs of photosynthetic and growth acclimation in elevated [CO 2} 

around July-August 1995. Although photosynthesis was not measured directly in 

1995, signs of acclimation in alder in August 1995 were: increased root to shoot ratio, 

previously significant differences in root mass were no longer significant, previously 

reduced leaf to stem ratio readjusted, and leaf nitrogen concentrations went from 

being intermediate-optimum before August 1995 to being deficient (according to the 

criteria of Van den Burg 1985). There were few signs of acclimation of 

photosynthesis in Scots pine in summer 1995 although nitrogen concentrations 

previously intermediate also changed to being deficient in August 1995 and 

phosphorus concentrations dropped from optimum to intermediate in the same month. 

Enhanced photosynthesis in elevated [CO 2] does not always translate into increased 

biomass (Körner 1995), although this was the case in both the short-term and the 

long-term experiment in this study. The largest increases in biomass occurred in 1995 

in common alder, prior to canopy closure in July to August. By 1996 there was no 

significant difference in total biomass in alder in elevated [CO 2]. In Scots pine, in 

contrast, the largest increase in biomass was found in 1996. I attribute this continuing 

stimulation of biomass increment in Scots pine to a slower growth rate of pine and 

therefore lack of competition between trees, as well as the lack of consistent 

photosynthetic acclimation. It may be that Scots pine would have experienced 

appreciable photosynthetic acclimation in 1998 or later, or that the trees may have 

been physiologically able to continue accruing biomass in the longer term. This has 

implications for increased carbon sequestration in boreal forests where Scots pine is a 
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dominant tree species. There are no experiments of a decade or more with which to 

compare and predict the longer-term response of Scots pine to elevated [CO 2]. 

Haettenschwiler et al. (1997) found a 12 % larger final radial stem width of Quercus 

ilex growing for 30 years in the vicinity of natural CO2 springs. Analysis of tree ring 

width showed that this increase in stem width occurred largely when the trees were 

young. 

6.5 Did Nutrition Keep Up With Increased [CO2]? 

In the short-term experiment the nitrogen-fixing common alder seedlings did not show 

reduced leaf [N] whereas Scots pine did. The response of the latter is in agreement 

with many short-term experiments in which growth at elevated [CO2] reduces leaf [N] 

(Mousseau and Saugier 1992, Ceulemans and Mousseau 1994) and I attribute the lack 

of change in [N] in alder to the ability to fix nitrogen. It is a commonly held view that 

plants grown in elevated [CO 2] with limited nutrient availability will experience a 

larger acclimation of photosynthetic rate than those provided with a high nutrient 

supply (Bazza.z 1990, Bowes 1993, El Kohen and Mousseau 1994). A more recent 

viewpoint is that plants grown in elevated [CO2] have increased efficiency of nitrogen 

use (Drake et al. 1997). Could it be that the effect of increasing [CO 2] is not the 

removal of a limitation but increased efficiency of use? Lloyd and Farquhar (1996) 

analysed the available evidence and found that the relative stimulation of plant growth 

with low nitrogen supply was not any smaller than stimulation of plant growth with 

high nitrogen supply. 

As hypothesised, common alder grown without fertiliser was able to fix nitrogen from 

the atmosphere and thus was not nitrogen-limited in elevated [CO 2}. Contrary to 

expectations, however, those trees grown without fertiliser did not show more growth 

stimulation in response to [CO 2] than those with fertiliser. It is not clear what the 

exact mechanisms of this nutrient response were. I suggest that nitrogen-fixing plants 

have an upper ceiling to nitrogen fixation, probably regulated via phosphorus 

limitation (see the Chapter 4 Discussion) and that this upper ceiling explains the lack 

of nutrient treatment effect in this study. Trees provided with fertiliser were not 
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nutrient limited and those without fertiliser fixed nitrogen from the atmosphere and 

were as enhanced in growth by elevated [CO 2] as the former. 

Scots pine grown without fertiliser addition did not suffer photosynthetic acclimation 

as much as expected. Although plants provided with fertiliser in elevated [CO 2 ] 

temporarily had taller stems, larger stem basal area and total biomass than plants 

grown without fertiliser, this effect was not consistent and clear-cut. In addition 

changes in proteins and carbohydrates at the leaf scale were generally not affected by 

nutrient addition. Thus elevated [60 2] probably facilitated the acquisition of 

additional nutrients from the soil even without fertilisation. Norby et al. (1986) found 

increased root exudation, mycorrhizal density and allocation of photosynthate to fine 

roots in Pinus echinata grown in elevated [CO2]. This is in agreement with Gifford's 

viewpoint that the nitrogen cycle in the long-term follows the carbon cycle, rather 

than the reverse on a seasonal scale (1994). Increased root exudation of carbon 

compounds may lead to faster rates of nitrogen mineralisation. I suggest, therefore, 

that a combination of and increased carbon exudation from the roots in elevated 

[CO2], higher mycorrhizal density and improved nutrient acquisition may have enabled 

Scots pine to respond positively despite low nutrient supply. 

It is now generally accepted that photosynthetic acclimation in elevated [CO 2] can be 

a response to nutrient limitation (Mousseau and Saugier 1992). There is a real risk 

that differences in growth have been wrongly attributed to elevated [CO 2] alone, 

instead of to the interaction between elevated [CO 2] and nutrient limitation (Linder 

and McDonald 1993). In the long-term experiment reduced leaf nutrient 

concentrations in both species coincided with starch accumulation in 1996. However, 

initial signs of photosynthetic and growth acclimation in alder occurred in the summer 

of 1995 suggesting that the initial acclimation was related primarily to the effects 

elevated [CO2]. Johnson et al. (1996) studied the effects of [CO 2] and nitrogen on 

growth and nitrogen dynamics in Ponderosa pine over two growing seasons and 

found increased NUB in the first 6 months but that this disappeared by 18 months. 

217 



There are few impact studies in which the effects of phosphorus (P) interaction with 

elevated [CO 2] have been investigated. Conroy et al. (1990a) found increased P 

uptake in Pinus radiata and Pinus caribea when soil P was low and attributed this to 

changes in mycorrhizal competition. Higher P concentrations were required in 

elevated [CO2] to satisfy the increased potential for growth. Interestingly in the short-

term experiment [P] in the needles of Scots pine was significantly reduced by the end 

of the experiment, whereas in the long-term experiment leaf [P] was not affected by 

elevated [CO2 1 in either species. 

6.6 Biochemical Response 

In the short-term experiment there were classical signs of photosynthetic acclimation 

in Scots pine such as starch accumulation and reduced leaf nutrient concentrations, 

but not in common alder. Common alder in the long-term experiment experienced a 

time lag between signs of growth acclimation coincident with canopy closure and root 

restriction and biochemical changes at the leaf scale. In the early 1995 growing season 

there was no starch accumulation and changes in leaf proteins were variable but rarely 

significantly affected by elevated [CO 2]. Although by August 1995 chlorophyll 

concentrations in both species were significantly reduced in elevated [CO 2] other 

proteins showed only slight, non-significant reductions in response to elevated [CO 2]. 

A number of authors have reported changes in the kinetics of Rubisco, especially 

increases in activation state, in response to elevated [CO 2] even though concentrations 

of the enzyme did not change (Bowes 1991). It is possible that the kinetics of Rubisco 

were changed in the trees in this study despite the lack of consistent reduction in 

content of the enzyme, but it is beyond the scope of this work to ascertain whether 

this was the case or not. 

It was only in 1996 that starch accumulated significantly in alder and pine leaves, and 

to a larger extent in the former. I propose therefore that although important 

photosynthetic proteins such as Rubisco were slightly reduced in elevated [CO 2
] 

in 

1995, photosynthetic acclimation in common alder in August 1995 was mainly caused 

by canopy closure, root restriction and reduced leaf area ratio as well as by reduced 

leaf chlorophyll concentration. Accumulation of starch in 1996 seems to have been a 
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consequence of the changes in 1995, not the direct cause of acclimation. Stitt and 

Quick (1989) found that activation of sucrose phosphate synthase (SPS), important in 

the synthesis of sucrose from glucose and fructose, was altered by wilting of leaves. It 

may be that the wilted leaves in common alder in August 1995 experienced changes in 

sucrose synthesis, perhaps inducing more starch synthesis. Such changes may have 

contributed to photosynthetic acclimation at this time. 

Although photosynthetic acclimation in Scots pine was measured in certain months of 

1996 and starch accumulation occurred, this accumulation was not as large as in 

common alder and leaf nitrogen concentrations remained similar in elevated [CO 2]. It 

can be concluded that neither species, but especially common alder, was able to utilise 

all the extra carbon fixed. This is a very commonly observed effect of long-term 

growth in elevated [CO 2
] (

Stitt 1991, Chomba et al. 1993, Ceulemans and Mousseau 

1994). Starch concentrations in both species dropped after July 1996 which I 

attribute to photosynthetic acclimation in alder, although Scots pine may have been 

able to supply growth from starch as well as photosynthate production. 

McMurtrie and Comins (1996) using the ecosystem model G'DAY found that plant 

nitrogen to carbon ratios (N:C) were particularly important in determining species 

responses to elevated [CO 2]. They showed that if the N:C ratio changes little the 

response to [CO2
] 

is much less than if the N:C ratio falls a lot. In this study, the N:C 

ratio decreased in association with extra carbon assimilation both in Scots pine and 

common alder, but the lack of corresponding significant reductions in leaf nutrients or 

proteins in Scots pine, in contrast to the decrease in Rubisco in common alder, led to 

a larger decrease in N:C. I propose that Scots pine was able to sustain its positive 

growth response under nutrient-limited conditions as a result of increased mycorrhizal 

exploration of the soil, increased N uptake, particularly increased NUE. 

Additional evidence which supports the suggestion that changes at the leaf scale in 

Scots pine were not particularly pronounced, are the findings of Heyworth et al. (in 

press) on carbon based secondary compounds in the Scots pine seedlings at 

Glendevon in 1995. Of the condensed tannins and monoterpenes measured, only the 

219 



monoterpene (x-pinene was significantly increased in elevated [CO 2]. This suggests 

that changes in litter decomposition or herbivory are not to be expected in Scots pine 

in a changing climate (see Woodward 1992, Penuelas and Estiarte 1998, Mooney et 

al. in press). 

6.7 Nitrogen Fixation 

Nodules on common alder roots grown in elevated [CO 2] were smaller, more 

numerous and of larger mass, although not significantly. Nitrogenase activity per unit 

dry mass has been found to increase with decrease in nodule size (Wilson and Coutts 

1985). Nitrogenase activity was higher per mass of nodules and per plant per hour in 

elevated [CO2 ] in 1995, although not significantly. It is unclear whether these trends 

towards increased nitrogen fixation observed in 1995 also occurred in 1996, since the 

differences in nodule mass were not statistically significant in 1996. Changes in nodule 

size and distribution (see Photos 4.4 to 4.6) were nevertheless apparent and showed 

that nitrogen fixation in common alder responded primarily to elevated [CO 2] via 

changes in nodule morphology. This is in agreement with the work of Norby (1987) 

on nitrogen-fixing trees, one of which was common alder, in which specific 

nitrogenase activity was not consistently or significantly increased by elevated [CO2], 

despite increased nodule mass and total plant mass. This suggests that the nodules 

were fixing nitrogen more efficiently, at least in the first growing seasons of growth in 

elevated [CO2]. Significant increases in nitrogenase activity seem to only occur when 

leaf area increases as well as total biomass (see Arnone and Gordon 1990). 

As discussed Chapter 1, two key aspects of nitrogen-fixing plants are the need to keep 

the C:N ratio high in order to be successfully competitive and the importance of 

phosphorus for nodulation. Growth in elevated [CO 2] should supply ideal conditions 

for a high C:N ratio, whereas phosphorus supply in the long-term experiment could 

have been limiting in the non-fertilised plants. Although leaf [P] in 1996 was not 

significantly reduced by elevated [CO 2] in alder, it is possible that the continued 

stimulation of photosynthesis and growth required larger amounts of phosphorus than 

were available from the soil. Fertilised trees probably received sufficient phosphorus 

but nitrogen fixation may have been suppressed by the addition of nutrients. This 
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might explain why photosynthetic acclimation occurred irrespective of nutrient 

treatment. By 1996 above-ground biomass in common alder was larger in the 

fertilised trees than in the non-fertilised trees, although not significantly, suggesting 

that an upper ceiling to nitrogen fixation had been reached. 

The above discussion of the effects of elevated [CO 2] and nutrient addition on the 

nitrogen-fixing alder highlights the fact that there are still many uncertainties in this 

area, particularly when more than two factors (i.e. [CO 21, nutrients, nitrogen fixation) 

are acting at once in an experiment. Mooney et al. (in press) found that one of the 

most important conclusions from the study of species-specific responses to elevated 

[CO2 } in mixed communities was that plants of traditional functional type (such as 

nitrogen fixers, C3 versus C4) did not respond consistently, rendering such grouping 

of individual species into functional types with respect to elevated [CO 2 1 of limited 

use. For example the species which responded the least in a highly diverse calcareous 

grassland exposed to elevated [CO 2] were five nitrogen-fixing species of Trfo1ium, 

whereas a slow growing sedge was most responsive. 

6.8 Nitrogen Allocation to Different Tissues 

The pattern of N storage in trees depends on whether trees are evergreen or 

deciduous. Allocation of nitrogen in common alder and Scots pine over the winter and 

its contribution to spring growth responded in a similar way to other species (e.g. 

Nambiar and Fife 1991, Millard 1996). Nitrogen was allocated to and remobilised for 

spring growth from the previous year's stem in alder, but from the previous year's 

needles in pine. 

More N from the labelled fertiliser was taken up by alder in elevated [CO 2} than in 

ambient [CO2] and this may explain how growth of the fertilised alder seedlings was 

able to be as stimulated as growth of the non-fertilised trees. N from the labelled 

fertiliser also contributed more to new leaf growth in elevated [CO 2]. Elevated [CO 2 ] 

did not affect N allocation to different tissues in Scots pine, but 1993 and 1994 

common alder stems contained more labelled N both in autumn 1994 and spring 1995. 

Leaves of common alder also contained more labelled N in elevated [CO,] in spring 
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1995. These results suggest increased sink capacity in alder grown in elevated [CO 2], 

at least in early 1995, before photosynthetic and growth acclimation set-in. 

Rubisco has often been proposed as one of the main forms of N storage in plants over 

the winter in conifers (Camm 1993, reviewed in Millard 1996). Increases in Rubisco 

concentration in needles of Scots pine in autumn 1995 were not found, indicating that 

Rubisco may not have played a significant role in N storage over the winter. Rubisco 

concentration in common alder also did not increase before the onset of winter. 

6.9 Species comparison 

Common alder and Scots pine are taxonomically, structurally and physiologically 

different kinds of trees and they responded quite differently to growth in elevated 

[CO2]. Although the response was largest in common alder, the length of the positive 

response was longest in Scots pine. I attribute the latter to the occurrence of canopy 

closure and root restriction in common alder and therefore to a lack of sinks for the 

extra carbon fixed. Although Scots pine showed a more prolonged response, it is 

possible that it too would experience more negative feedback on growth stimulation 

had it grown to canopy closure. Nevertheless there are also ecological characteristics 

of both species which could partially explain their different responses. 

It has been found before that species with indeterminate growth respond faster to 

elevated [CO 2 1 than those showing determinate growth (see also Lucas 1998). 

According to the classical logistics of population growth, both common alder and 

Scots pine are K-selected organisms, being perennial and more growth-orientated than 

reproduction-orientated (r-selected) organisms (Fitter and Hay 1987). Grime (1977, 

1979, cited in Fitter and Hay 1987) suggested a more complex functional 

classification with three rather than two poles. Plants can be considered as stress 

tolerators, ruderal plants and competitive plants depending on the favourability of the 

environment and the level of disturbance. Since trees are not annuals and are K-

selected, most of them live in conditions of reasonable environmental favourability 

and minimum disturbance, putting them into Grime's competitive category. I propose 

that pioneer species which fix nitrogen from the atmosphere such as common alder, 
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are not only competitive organisms but are also stress tolerators, capable of growth 

on unfavourable sites with considerable disturbance such as disused opencast-coal-

spoils. Common alder is a mid-successional species and not a dominant forest tree, 

although it is sometimes grown in association with conifers on reclamation sites 

(Hood 1993). By inter-planting alder with conifers, site and tree nutrition can be 

improved, although there is a tendency for alder to out-compete the conifer in the first 

years. 

I suggest that as in such mixed-species planting scenarios, common alder has the 

biggest advantage during the first months to years of growth in an unfavourable 

environment. When soil nitrogen levels are high the competitive advantage is lost and 

carbon invested into growth gives more competitive ability than carbon invested into 

nitrogen fixation. One result of this is that nitrogen fixers are generally rare in mature 

communities (Fitter and Hay 1987). Not being a dominant forest species with 

characteristics such as longevity and large height and girth, alder may not be able to 

keep up stimulated rates of growth compared to a dominant forest species such as 

Scots pine in elevated [CO 2]. Alders are not as long-lived as pines and therefore invest 

more resources into rapid growth in the early stages of their life-cycle. The results of 

this long-term study seem to agree with these ecological attributes. Common alder 

was able to respond more positively at first but there was an upper ceiling to nitrogen 

fixation indicating that even in elevated [CO 2] nitrogen fixation was not able to 

become much more efficient and thus to avoid photosynthetic acclimation. 

Scots pine on the other hand showed more signs of increased resource use efficiency, 

probably via enhanced mycorrhizal growth and nutrient acquisition, which in turn was 

most likely stimulated by carbon exudation out of the roots. Ectomycorrhizas can 

grow along the root surface, whereas nodules, although perennial, require separate 

point inoculations to be induced (Wilson and Coutts 1985). It may be that 

mycorrhizas are able to respond more flexibly than nodules to elevated [CO 2] and thus 

were able to improve the nutrient status of Scots pine more than the nodules did in 

common alder. 
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One implication for forests and their possible carbon sequestration is that Scots pine, 

if it shows similar response patterns to elevated [CO2]  when mature, may be a 

significant carbon sink. However, assessing the role of both common alder and Scots 

pine in potential global carbon sequestration is beyond the scope of this study. 

6.10 Experimental Limitations and Contributions 

Limitations 

The use of pots in the short-term experiment led to different results than the long-

term field experiment, indicating that the results from past experiments using pots 

could have been misleading. Results from the long-term experiment were used to 

assess these consequences. 

In common with all other studies using OTC to expose plants to elevated [CO 2] the 

environmental conditions were affected to a certain degree. The main differences 

between the environments of the OTCs and the outside control plots were in 

temperature, radiation and wind turbulence. The presence of chambers may affect 

growth and physiology, often to the same extent as the effect of [CO 2], but such 

effects are not universal or consistent (Leadley and Drake 1993).. The design of the 

experiment with outside control plots enabled the magnitude of the chamber effect to 

be separated from the effect of [CO2],  however. 

In nature atmospheric [CO 2
] 

is rising gradually whereas in this and other impact 

studies the trees were subjected to a doubling of current atmospheric [CO 2] or 

discrete increases. 

In nature atmospheric temperatures are predicted to rise gradually whereas in the 

OTCs the trees experienced a mean increase in temperature compared to the outside 

of 2.8 °C. 

Cost and logistics limited the number of replicates possible and this may have 

precluded the results from reaching the statistical significance that might be found 

with a larger sample size. Replication is still usually higher in experiments using OTCs 
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than in controlled environment chambers, however, and the OTCs provide a more 

natural environment. 

More generally, it is difficult and expensive to measure directly the response of forest 

ecosystems to elevated [CO 2] because trees are long-lived, large and form very 

complex systems. Even with FACE, now being used in loblolly pine plantations and 

elsewhere, only a snapshot in time can be investigated. Recent evidence from 

ecosystem experiments on grasses and shrubs show that the outcome of many 

experiments can be drastically changed by competition. 

Predicted effects of global warming include increased climatic perturbations and 

uncertainty. Increases in storms and natural disasters cannot be taken into account 

when assessing the effects of climate change on trees and forests. 

Contributions 

Assessment of the response of two very different tree species in the same experiment 

enabled any differences in response to be attributed to real species responses and not 

to differences in methodology. 

The characterisation of the response to elevated [CO2] of an evergreen tree species 

widely distributed throughout the North temperate and boreal forest zone and an 

important mid-successional, deciduous, nitrogen-fixing species often used in land 

reclamation, has provided a useful contrast. 

This study is one of the longer field studies so far using trees planted directly in the 

ground in conditions as close to natural as possible. The length of the study enabled 

the examination of long-term responses including acclimation. 

The split plot experimental design enabled the effect of nutrient addition to be 

incorporated into the experiment, allowing assessment of the interactive effect of the 

former with elevated [CO 2]. 
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This study involved the investigation of a wide variety of responses from the whole 

tree scale to the biochemical scale, including a study of nitrogen cycling within the 

trees, giving a good overall picture of the growth responses of the trees. 

6.11 Conclusions 

Exposure to elevated [CO 2] led to significant increases in growth and biomass 

in both species (although total biomass was not statistically significant in the short-

term experiment). Specific growth rate was enhanced in both species in the first year 

of growth in the short-term experiment (before the start of the experiment) and in the 

early stages of the second year of growth in the long-term experiment. 

Nutrient addition had some unexpected effects on plant response to elevated 

[CO2 ] in both species. Nitrogen fixation in common alder grown without fertiliser had 

a very similar growth response to common alder grown with fertiliser, indicating that 

nitrogen fixation has an upper ceiling. This upper limit to nitrogen fixation capacity 

may be related to phosphorus limitation or may be genetically controlled. In Scots 

pine trees grown without fertiliser were generally not as stimulated in growth and 

biomass as those with fertiliser. There was evidence, nevertheless, of increased 

resource use efficiency and increased nutrient availability via increased mycorrhizal 

infection. Thus a stimulation of growth in Scots pine grown in nutrient-limited forest 

soils cannot be ruled out. 

There were generally few cases of an interaction effect of elevated [CO2] and 

nutrient addition on growth, biomass or leaf composition. 

The species which experienced more photosynthetic and growth acclimation 

in each experiment showed more changes in biomass allocation than the species which 

was less down-regulated. In the short-term experiment this was Scots pine, in the 

long-term experiment common alder. 

226 



Starch accumulated in the leaves of all species as a response to growth in 

elevated [CO2 1, especially in the long-term experiment in 1996 in common alder. 

Chlorophyll was reduced more in common alder than Scots pine in both experiments. 

There were clear species-specific responses in both experiments. Whereas 

photosynthetic acclimation occurred more in Scots pine in the short-term experiment, 

the opposite was true in the long-term experiment. In fact Scots pine only showed 

consistent photosynthetic acclimation in 1996 and 1997 in trees grown without 

fertiliser. An important factor in the acclimation of common alder was the advent of 

canopy closure and root competition between individual trees. This highlights the 

importance of distinguishing between responses of trees grown in relative isolation 

and those grown to canopy closure. It is not known whether Scots pine would have 

shown similar photosynthetic acclimation to that in common alder had canopy closure 

occurred. 

The differing results of the short-term and long-term experiment show very 

clearly that the impacts of elevated [CO 2] on growth are often different depending on 

the length and nature of the experiment. Short-term experiments in pots should be 

avoided if possible since they can provide misleading results. Although the long-term 

experiment lasted three years, a longer period would have yielded more interesting 

and conclusive results. 

Nitrogen fixation seemed to become more efficient in common alder, at least 

in 1995. Trees grown without fertiliser addition did not grow more than trees with 

fertiliser, however, suggesting and upper ceiling to nitrogen fixation. 

Elevated [CO2] did not affect the allocation of labelled nitrogen to different 

tissues in Scots pine, but in common alder there was evidence for increased allocation 

of nitrogen over the autumn and winter to stems. 

Nitrogen was allocated to the previous year's needles in Scots pine and 

possibly to stems in common alder over the winter and withdrawn from these tissues 
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in the spring. Growth in elevated [CO 2
] 

increased the allocation of labelled N to the 

stems and leaves in alder. Alder grown in elevated [CO 2] took up more labelled 

fertiliser than alder in ambient [CO 2] which may have enabled fertilised alder trees to 

grow as well as nitrogen-fixing, unfertilised trees. 

Changes in biochemical leaf composition were of a lesser magnitude than often 

found in [CO2 1 impact studies. In keeping with the relative lack of effect of elevated 

[CO2] on nitrogen allocation, protein concentrations were generally not affected by 

elevated [CO2]. 

6.12 Suggestions for Future Research 

The interactive effects of elevated [CO 2] and nitrogen are better understood than the 

effect of phosphorus and other nutrients on plant growth in elevated [CO 2]. There is a 

need for more experiments with different phosphorus supply rates to examine how 

phosphorus limitation affects tree responses. 

The complexity of the interaction between nitrogen-fixation, fertilisation and elevated 

[CO2
] 

in this study highlights the need for more extensive information on the 

interactive effects of elevated [CO 2] and fertilisation on nitrogen fixation. 

There is a need for experiments designed to investigate photosynthetic acclimation 

mechanisms in the long-term. In particular interaction between the kinetics of Rubisco 

and the accumulation of carbohydrates in leaves needs more attention. 

Allocation to hidden components such as fine root turnover, mycorrhizal growth and 

root exudation needs to be quantified since it is clear from this study and others that 

such changes often play a larger role than growth of biomass. 

Further tracer experiments with labelled nitrogen are required to elucidate the effects 

of elevated [CO 2] and nutrient addition on internal nitrogen cycling. An improvement 

on the design used in this study would be the application of a tracer signal over a 

longer period and using high and low nitrogen fertilisation. 
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There is a need for impact studies on different tree species grown together, as in 

mixed deciduous forests, to investigate how competition between plants affects a 

species response to elevated [CO 2]. 

More longer-term experiments of at least three years with plants grown in soil in the 

ground in as natural conditions as possible are needed to assess the possible long-term 

effects of climate change on forests. These, in conjunction with controlled chamber 

experiments to assess the mechanisms of photosnthetic acclimation, should provide a 

clearer picture of possible future tree response to climate change. 

Investigations at more than two CO 2  concentrations are necessary. The response of 

photosynthesis to [CO 2 ] is saturated, with no further stimulation of photosynthesis, at 

a certain, species-specific [CO 2]. Experiments which use an elevated [CO 2] beyond a 

plant's saturation point can have very different results to experiments with an elevated 

[CO2] below the saturation point (see Körner 1995). 

The interaction of elevated [CO 2] and temperature on plants has mostly not been 

investigated in climate change impact studies. Such experiments are crucial if the 

response of trees grown in OTCs are to be scaled-up to the response of natural 

ecosystems living in a 'greenhouse' world with probable temperature rises associated 

with rising atmospheric [CO21. 
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Appendix 1 
Nutrient solution used for plants in OTCs at the 
Institute of Ecology - after the Ingestad and Lund 
solution for Betula sp. (1986) 

For optimum growth the following ratios of nutrients by mass are recommended: 

N 	100; K 	65; P 	13; 	Ca 	7; 
Mg 	8.5; S 	9; 	NH4  38.8; NO3  61.2 

Nutrient Solution Contents 
The following was made up as two separate solutions and only mixed when 
diluted: 
Solution 1 (mol dm 3  
chemical compound final desired conc stock solution 

(mg / dm 3 ) (g / dm3 ) 

K2SO4  48.97 0.00490 
K2HPO4  33.62 0.00336 
KH2PO4  30.89 0.00310 
KNO3  49.24 0.00492 
NH4NO3  (note- this was 221.6 0.00222 
left out for the low nutrient 

Solution 2 (mol dm 
- 	 final desired conc. 	stock solution 

(m/dm3 ) 	 ( g/dm3 ) 

Ca(NO3 ) 2 	 28.72 	 0.00287 
Mg(NO3 )2 	 51.92 	 0.00519 

Micronutrients (mmol dm 3) mg / dm3  
chemical compounds desired final conc stock soln. 

(g/dm3 ) (mg/dm3 ) 

Fe(NO3 ) 2  302.4 0.0003024 
Mn(NO3 ) 2  130.3 0.001303 
H3 B03  114.4 0.000114 
Zn(NO3 )2 17.4 0.0000174 
CuC1 2  6.35 0.0000064 
Na2MoO4  1.50 0.0000015 
HNO3  106.6 0.00107 

Addition was varied depending on rate of growth, half strength solutions were 
added weekly in May and June, three-quarter strength in July (full strength 
would have been used in August). Thus in the field the stock solution was 
diluted 100 times, and each plant received a certain volume of nutrient solution. 
which varied over the season. 



Appendix 2 
Nutrient solution used for plants in OTCs at the 

Glendevon Field Site for both common alder and Scots pine 

The following Walico Plant Nutrition (Sweden) solution was applied on 85 m2  
(c. 7 m2  per chamber) of the site corresponding to half of the ground area in the 
chambers and control plots via a computer-controlled fertigation system (see Chapter 
2 Materials and Methods for details). 

element 	grammes 

N 40 (ammonium) 
60 (nitrate) 

K 65 
S 9 
Ca - 

Mg 4 
Fe 0.7 
Mn 0.4 
B 0.2 
Zn 0.06 
Cu 0.03 
Mo 0.007 

pH 3.5 ; density (per dm 3 ) 1.223 

This solution was diluted 1: 10 when applied to the site, giving 10 g of nitrogen per 
dm3 . 20 dm  of solution were diluted at a time in a 25 dm 3  tank. On the 30 August 
1995, 240 g of calcium and magnesium were added to each quadrant in each chamber 
and control plot, to account for the lack of calcium and magnesium in the WalIco 
nutrient solution. 



Appendix 3 

ANOVA probability values (p) relating to the effect of [CO 21 and nutrients on stem hieght of 
common alder and Scots pine in the short-term experiment. Data are p values for the effects of 
[CO2], nutrient addition, [CO 2] x nutrient interaction and chamber. ** = significant atp < 
0.01; * = significant at  <0.05, () = significant at  <0.10. 

common alder [CO2] nutrient CO21 x nutrient Chamber 

week 1 0.015 * 0.499 0.047 * -- 

week 2 0.021 * 0.133 0.354 -- 

week 3 0.012 * 0.052 (*) 0.381 -- 

week 5 0.064 (*) 0.881 0.025 * 0.035 * 

week 7 0.140 0.272 0.301 0.140 

week 8 0.082 (*) 0.820 0.082 (*) 0.001 ** 

week 9 0.185 0.823 0.195 0.001 ** 

week 12 0.242 0.394 0.273 0.001 

week 15 0.117 0.322 0.501 0.001 ** 

Scots pine [CO2] 
nutrient [CO2} x nutrient Chamber 

week 1 0.5 14 0.225 0.271 0.5 14 

week 2 0.604 0.224 0.582 0.604 

week 3 0.995 0.242 0.419 0.995 

week 5 0.803 0.522 0.203 0.248 

week 7 0.933 0.366 0.709 0.560 

week 8 0.956 0.499 0.168 0.115 

week 9 0.832 0.170 0.974 0.636 

week 12 0.583 0.428 0.067 (*) 0.146 

week 15 0.649 0.530 0.474 0.707 



Appendix 4 

Mean dry mass (g) of tissues of common alder and Scots pine at the final harvest in the 

short-term experiment. Data are means of 25 for ambient / elevated I control treatments, 

and means of 12 for [CO 2 ] and nutrient treatments; * = [CO2] effect significant at  < 

0.05; (*) = [CO2] effect significant at  <0.1. 

Treatment 	 Roots 	Branches 	Stems 	Leaves 

common alder 

Ambient 22.32 39.67 65.35 83.00 

Elevated 30.49 (*) 41.18 66.93 97.63 (*) 

Control 16.15 24.86 41.8 56.78 

A-N 23.45 47.09 72.18 98.40 

A+N 21.19 32.24 58.51 67.60 

E-N 33.47 37.74 64.22 83.58 

E+N 27.51 44.61 69.65 111.68 

C-N 18.18 28.6 45.73 63.09 

C+N 14.13 21.12 37.88 50.46 

Treatment Roots Branches Stems Leaves 

Scots pine 

Ambient 2.52 2.95 5.74 13.32 

Elevated 3.40 3.13 6.16 14.56 

Control 2.47 2.97 6.00 11.05 

A-N 2.56 3.10 6.12 13.02 

A+N 2.48 2.79 5.37 13.63 

E-N 3.67 3.08 6.58 15.11 

E+N 3.13 3.18 5.73 14.01 

C-N 2.20 2.82 5.01 10.31 

C+N 2.75 3.13 7.01 11.8 



Appendix 5 
Integration parameters used for the calculation of soluble carbohydrate 
peak area on the Dionex hpae / pad machine 

Peak Width 	 2 seconds 

Peak Threshold (baseline) 	35 

Area Reject 	 10,000 counts 

Reference: 	 Area Reject 1000 area counts 



Appendix 6 

ANOVA probability values (p) relating to the effect of [CO 2] and nutrients on nitrogen 
concentration (mg g') in leaves of common alder and Scots pine in the long-term 
experiment. Data show p values for the effects of [CO 21, nutrient addition, [CO2] x 
nutrient interaction and chamber. ** = significant at  <0.01; * = significant at  < 0.05, 
(*) = significant at  <0.10. 

Treatment 	 [CO2] 	nutrient 	[CO2] x nutrient 	Chamber 

common alder 

Sep. 1994 0.612 0.178 0.112 0.433 

April 1995 0.980 0.288 0.261 0.269 

August 1995 0.249 0.493 0.169 0.249 

December 19950.348 0.195 0.421 0.278 

Treatment [CO2] 
nutrient [CO2] 

x nutrient Chamber 

Scots pine 

Sep. 1994 0.382 0.100 0.905 0.006 ** 

April 1995 0.601 0.350 0.594 0.141 

August 1995 0.183 0.655 0.281 0.797 

October 1995 0.159 0.693 0.75 1 0.159 



ANOVA probability values (p) relating to the effect of [CO 2] and nutrients on 
phosphorus concentration (mg g') in leaves of common alder and Scots pine over time. 
Data show p values for the effect of [CO 2], nutrient and [CO2], [CO2] x nutrient 
interaction and chamber. ** = significant atp <0.01; * = significant atp <0.05, (*) = 
significant at  <0.10. 

Treatment 	 [CO2] 	nutrient 	[CO2] x nutrient 	Chamber 

common alder 

Sep. 1994 	 0.668 	0.758 	0.915 	 0.365 

April 1995 	 0.4 19 	0.188 	0.0538 (*) 	 0.0202 * 

August 1995 	0.559 	0.992 	0.573 

December 19950.211 	0.247 	0.705 

Treatment 	 [CO2] 	nutrient 	[CO2] x nutrient 	Chamber 

Scots pine 

Sep. 1994 0.0767 (*) 0.227 0.0178 * 0.058 1 (*) 

April 1995 0.542 0.359 0.900 0.278 

August 1995 0.4503 0.413 0.786 0.843 

October 1995 0.640 0.787 0.735 0.641 



Appendix 7 

Results of one-way ANOVA of labelled N in common alder and Scots pine tissues grown at elevated and ambient [CO 2}. Each [CO 2] treatment 
had four replicates (occasionally three). R = root; S = shoot; L = leaves; N = needles. * significant atp <0.05. 

1994 	1995 	 1996 
Tissue 	Sep. 	April 	June 	 Aug. 	Dec. 	April 

common alder 
R 0.30 0.23 0.27 R 0.71 0.59 	0.07 
1993S 0.01 	* 0.017* 0.40 1994S 0.95 0.14 	0.18 
1994S 0.022 * 0.024 * 0.20 1995S 0.94 0.04 * 	0.11 
1995S -- 0.31 0.72 L 0.46 0.48 	-- 
L 0.14 0.03 	* 0.64 

1994 1995 1996 
Tissue Sep. April June Aug. Oct. 	April 

Scots pine 
R 0.69 0.28 0.82 0.50 0.61 0.66 
1993S 0.31 0.35 0.73 0.40 0.86 0.37 
1994S 0.23 0.42 0.99 0.32 0.57 0.43 
1995S -- -- 0.46 0.55 0.60 0.52 
1993N 0.63 0.16 0.35 0.44 0.55 0.34 
1994N 0.65 0.26 0.73 0.38 0.35 0.35 
1995N -- 0.51 0.78 0.78 0.76 0.79 



Appendix 8 

The SAS 6.1 general linear model used for analysis of 

variance of variables measured 

data one; 

infile 'c:\user\datafile.csv ' firstobs=4 lrecl=300 dlm=','; 

input unit co2 cpres nut dw; 

trt=co2+cpres; 

proc glm data--one; 

class trt unit nut; 

model dw= trt unit(trt) nut trt*nut  /ss3 p; 

random unit(trt)/test; 

Ismeans unit (trt) / tdiff pdiff e= unit(trt); 

Ismeans nut /tdiff pdiff e= nut; 

contrast 'no chamber v. chamber no CO2' trt -11 0 / e=unit(trt); 

contrast 'CO2 v.no CO2' trt 0 -1 1 / e=unit(trt); 

output out=dw p=pdw; 

title FIRST ANALYSIS; 

proc sort; 

by co2 nut cpres; 

proc means mean stderr; 

var dw; 

by co2 nut cpres; 

data two; 

set one; 

if cpres=0 then delete; 

proc gim data=two; 

class co2 unit nut; 

model dw=co2 unit(co2) nut co2*nutlss3; 



random unit(co2)/test; 

Ismeans co2*nutltdiff pdiff; 

contrast co2 v no coT co2 -1 1/e=unit(co2); 

title "ANALYSIS EXCLUDING OUTSIDE PLOTS"; 

run; 



Appendix 9 

Additional information for determining Rubisco 
concentration 

Rubisco Standard Purification for Calibration Use 

In order to determine Rubisco by enzyme-linked immunosorbtion assay (ELISA) one 

Rubisco standard of known concentration is required, preferably purified from the 

same or a similar species of plant. Since the large sub-units of Rubisco which are 

recognised by the primary antibody show very little inter-species variation (Catt and 

Millard 1988, Afif et al. 1993), a deciduous tree species, Prunus avium x 

pseudocerasus Colt, was chosen for the extraction as half the study-trees were 

deciduous, and some of the standard was used by Dr. Renate Wendler at the 

Macaulay Land Use Research Institute, also working on deciduous trees. The bulk 

purification of Rubisco standard was made in April 1995 in the laboratories of 

Horticulture Research International (Littlehampton) using the deciduous tree species 

Prunus avium and the methodology of Besford (1990) adapted from Maechler, Keys 

and Cornelius (1980, cited in Besford 1990). The whole procedure was carried out at 

4 °C and involved an extraction phase, a centrifugation stage and dialysis and took 

five days. Day 1 and 2: Rubisco was extracted from 3 leaf discs or 3 needles ground 

in liquid nitrogen using 50 cm 3  of extraction buffer containing 50 mmol m 3  HEPES-

KOH (pH 8.0), 25 mmol m 3  KHCO3 , 5 mmol m 3  MgCl2, 0.2 mmol m 3  Na2EDTA 

and 10 mmol m 3  2-mercaptoethanol) and 5 g of PolyclarAT and then homogenised in 

a coffee blender for one minute. 

Using a Beckmann L8-80M ultracentrifuge, with a six-well, 70 Ti rotor (Beckmann 

Instruments Inc., Palo Alto, CA, USA) the homogenate was centrifuged at 37 500 

rpm (equivalent to 100 000 g) for 35 minutes at 4 °C under vacuum. The supernatant 

was pipetted onto each of six tubes of sucrose gradient (0.9 mol dm -3  and 0.23 mol 

dm -3  sucrose in extraction buffer without PolyclarAT, mixed together and then 

passed through sucrose density gradient apparatus) and the tubes were spun overnight 

for approx. 20 hours at 100 000 g . Day 3: the tubes were re-spun for 22.5 hours at 



37 500 rpm. Day 4: fractions were collected from the bottom of each gradient using a 

fraction collector (Retriever II fraction collector, ISCO, Lincoln, USA) and passed 

through a UV detector (ISCO Type 6 optical unit, UA-5 absorbance / fluorescence 

detector) in order to monitor the absorbance at A 280. Day 5 (dialysis): combined 

fractions from the first optically dense peak were dialysed against 5 mmol dm -3 
 

HEPES pH 8.0 and 1 mmol dm -3  DTT (reducing agent) overnight and subsequently a 

number of times for one or two hours. The Dialysis I viscing tubing (18/32) separated 

the larger molecules (molecular mass of 30 000) from the smaller molecules, which 

passed through it. The purified protein was then retrieved, kept at well below freezing 

temperatures, and subsequently freeze-dried in aliquots. 

Immunodetection of Rubisco Protein by Sodium Dodecyl Sulphate Polyacrylamide 

(SDS-PAGE) Gel Electrophoresis 

Supernatant (SN) from the Rubisco standard extraction process was diluted with SDS 

buffer (1:2, 1:5 and 1:10) and bromophenol blue. The standard used was 2 mm  of 

known proteins and 38 mm3  of SDS and mercaptoethanol. All dilutions were placed in 

a water bath at 95 °C for 5 minutes to denature the proteins. The buffers used were an 

SDS buffer (25 % (v / v) glycerol, 5 % SDS (w / v), 1 % (v / v) mercaptoethanol, 

0.5 mol dm -3  Tris-HC1) and an electrode buffer containing a Tris base (15 g dm 3) and 

glycine (72 g dm 3). The silver reagent and the oxidiser concentrate were diluted ten 

times. The SDS-PAGE was carried out at 100 V for 10 minutes through a 3 % (w/v) 

acrylamide stacking gel, and then at 150 V for 50 minutes through a 10 % (w/v) 

acrylamide resolving gel. The gel was then developed in the same way as a black and 

white photograph (see Photo 5.1 in Chapter 5). 

Accuracy and Choice of ELISA Assay 

Determining Rubisco using the ELISA assay gives direct and unambiguous 

information on the amount of protein present, although care should be taken since 

ELISAs show larger variability between replicate determinations than enzyme activity 

measurements (Stitt and Schulze 1994). Although the best approach is to use both 

activity assays and immunological tests and to compare them, logistical considerations 

did not allow for this in the present research. Since any Rubisco protein present in an 



extract is activated using the activity assay, the two tests should be compatible. 

Indeed, Stitt and Schulze (1994) found a strict linear relationship between 

immunological Rubisco amounts and Rubisco activity using antisense plants with 

decreased Rubisco content. Given the focus of this PhD on nitrogen and on 

concentrations of photosynthetic components, it was considered of more importance 

to investigate Rubisco content via ELISA assay than to measure activity (which 

would be more appropriate with detailed gas exchange research) (R.T. Bes ford, pers. 

comm.). Partial proteolytic degradation during extraction can also cause less 

accuracy, although the extraction buffer used contained an array of protective 

chemicals such as DTT (which protects sulphur bonds in protein) and 

polyvinylpolypropyrrolidone (PVPP; protects enzymes against phenolics and tannins). 

Schematic Representation of Elisa Assay 

Key 	

It 	= Rubisco protein 

=BSA protein 

= primary antibody 

= secondary antibody 

Day I 

The diluted samples and Rubisco standards are pipetted into the wells on the Elisa 

plates and incubated overnight for 18 hours at 4 °C. 



Day 2 

Invert and shake all plates to remove all that is not attached to the wells, and wash 

three times with Tris I NaCl buffer. Then fill all wells with Tris buffer containing 

bovine serum albumin (BSA) and Tween-20 and leave for one hour at room 

temperature in order to block any unused sites in the wells. 

Wash again as above but using the Tris buffer with added BSA and Tween-20 in 

order to remove any unattached protein. Add the diluted primary antibody diluted in 

the Tris bufferIBSAII'ween-20 to all the wells and incubate for two hours at room 

temperature. 

An MID ttltfr 

Wash again as above and then add the secondary antibody diluted in Tris 

bufferfBSA/Tween-20 and leave for one hour at room temperature. 

I!II'11II!1!I11 



Wash again three times and add carbonate / bicarbonate buffer containing 

p-nitrophenolphosphate and leave to develop colour. The latter removes the tail on 

the secondary antibody producing a yellow colour which is read 

spectrophotometrically. The reaction is stopped using strong sodium hydroxide. 

ikrr iWr 



Appendix 10 

Table 5.3 Mean chlorophyll a and chlorophyll b concentration in common alder leaves on a dry mass basis (mg gO') and the a / b ratio of young 

fully expanded leaves from August 1994 to September 1995. Values are the means (with one standard error in brackets) of eight samples for the 

[CO2] and four samples for the [CO 2] and nutrient treatment. * = significant [CO2
] 

effect at p  <0.05; (*) = trend towards a [CO 2
] effect at p < 

0.10. 

Treatment 	Aug. 94 
	

May 95 
	

June 95 
	

Aug. 95 
	

Sep. 95 

chlorophyll a 

Ambient 9.02 (1.08) 3.81 (0.37) 4.60 (0.41) 7.43 (0.71) 5.63 (0.25) 

Elevated 7.78 (0.83) 3.57(0.11) 4.11 (0.29) 4.14 (0.60) * 4.56 (0.30) 

Control 11.25 (2.34) 3.39 (0.20) 6.38 (0.41) 7.80(l.96) 5.31 (0.19) 

A-N 10.86 (3.44) 4.51 (0.42) 4.45 (0.63) 6.44 (0.95) 5.82 (0.43) 

A+N 7.19 	(0.13) 3.13 (3.13) 4.71 (0.50) 8.42 (0.57) 5.45 (0.16) 

E-N 8.70 (1.09) 3.34 (0.09) 4.18 (0.13) 3.78 (0.41) 4.32 (0.17) 

E+N 6.86 	(3.00) 3.80 (0.16) 4.05 (0.60) 6.02 (0.65) 4.81 (0.53) 

C-N 12.02 (3.00) 3.27 (0.32) 6.79 (0.63) 6.02 (0.65) 4.94(l.81) 

C+N 10.48 (2.44) 3.50 (0.10) 5.97 (0.54) 9.58 (3.87) 5.68 (2.64) 



Table 5.3 continued 

Treatment Aug. 94 May 95 June 95 Aug. 95 Sep. 95 

chlorophyll b 

Ambient 4.22 (0.96) 1.63 (0.21) 2.00 (0.40) 2.90 (0.90) 2.72 (0.51) 

Elevated 4.04 (0.85) 1.34 (0.076) (*) 1.60 (0.20) 2.42 (0.40) 1.96 (0.20) 

Control 4.18 (0.89) 1.36 (0.1 1) 2.80 (0.22) 2.32 (0.70) 1.98 (0.77) 

A-N 4.06(l.28) 2.06 (0.28) 2.05 (0.42) 2.51 (0.42) 2.55 (0.24) 

A+N 4.38 (0.94) 1.21 (0.078) 1.9 (0.40) 3.30(l.25) 2.88 (0.84) 

E-N 5.97 (l.71) 1.19 (0.027) 1.38 (0.080) 2.06(0.41) 1.50 (0.065) 

E+N 2.1 (0.16) 1.50 (0.10) 1.82 (0.36) 2.78 (0.42) 2.42 (0.43) 

C-N 4.75 (0.80) 1.37 (0.21) 3.01 (0.49) 2.26 (0.43) 1.93 (0.77) 

C+N 3.62(l.21) 1.35 (0.12) 2.58 (0.54) 2.39(l.00) 2.01 (0.86) 

alb 

Ambient 2.24 (0.29) 2.40 (0.10) 2.39 (0.19) 3.72(l.56) 2.19 (0.20) 

Elevated 2.52 (0.34) 2.69 (0.11) * 2.71(0.22) 1.85 (0.25) (*) 2.51(0.21) 

Control 3.13 (0.89) 2.60 (0.21) 2.34 (0.25) 2.61 (0.28) 2.61 (0.28) 



Table 5.4 Mean chlorophyll a and chlorophyll b concentration of young fully expanded leaves in common alder on an area basis (tg an 2)  from 

August 1994 to September 1995. Values are the means (with one standard error in brackets) of eight samples for the [CO 2] treatment and four 

samples for the [CO2] and nutrient treatment. * = significant [CO 2] 
effect atp <0.05; (*) = trend towards a [CO 2

] 
effect atp <0.10. 

Treatment 	Aug. 94 	 May 95 	 June 95 	 Aug. 95 	 Sep. 95 

chlorophyll a 

Ambient 31.43 (3.93) 22.28 (0.36) 86.81 (6.15) 40.14 (7.98) 39.84 (5.81) 

Elevated 31.51 (3.64) 23.94 (0.72) 82.19 (5.64) 24.51 (1.87) * 27.94 (2.54) * 

Control 42.96 (6.98) 25.16 (0.68) 90.66 (6.46) 29.75 (4.06) 30.04 (4.29) 

A-N 31.91 (4.37) 25.64 (0.64) 85.26 (7.74) 32.96 (5.14) 29.87 (2.26) 

A+N 30,94 (3.73) 18.92 (2.13) 88.36 (4.53) 47.32 (9.77) 49.81 99.94) 

E-N 32.50 (4.78) 22.59 (0.70) 78.34 (4.82) 23.46 (1.32) 27.23 (0.86) 

E+N 30.52 (1.06) 25.29 (0.74) 86.04 (6.64) 25.86 (2.36) 28.64 (3.07) 

C-N 48.81 (8.95) 25.17 (0.71) 85.87 (9.99) 24.50 (2.11) 25.11 (4.17) 

C+N 37.11 (5.24) 25.14 (0.56) 95.45 (2.93) 35.0 (5.68) 34.97 (4.42) 



Table 5.4 continued 

Treatment Aug. 94 May 95 June 95 Aug. 95 Sep. 95 

chlorophyll b 

Ambient 15,25 (2.05) 9.47 (0.68) 37.26 (4.56) 14.95 (4.98) 18.52 (1.99) 

Elevated 15.02 (2.38) 9.05 (0.76) 32.19 (4.05) 14.81 (2.76) 11.92 (1.46) * 

Control 16.13 (3.01) 10.25 (1.42) 40.51 (4.25) 10.76 (0.92) 12.08 (2.45) 

A-N 12.00 (1.29) 11.62 (0.87) 38.80 (4.48) 13.33 (3.15) 13.25 (1.69) 

A+N 18.49 (3.62) 7.31 (0.58) 35.72 (4.33) 16.56 (5.50) 23.80 (2.82) 

E-N 20.52 (0.97) 8.09 (0.50) 25.75 (1.36) 12.66 (2.30) 9.52 (0.80) 

E+N 9.51 (0.97) 10.00 (0.75) 38.63 (6.36) 16.96 (3.69) 14.31 (2.60) 

C-N 19.68 (2.83). 10.70 (1.82) 38.91 (7.32) 9.22(l.77) 10.01 (2.31) 

C+N 12.57 (3.38) 9.80(l.29) 42.10 (3.86) 12.29 (0.78) 14.15 (2.26) 



Table 5.5 Mean chlorophyll a and chlorophyll b in Scots pine on a dry mass basis (mg g-1) and the a / b ratio of young needles from August 1994 

to September 1995. Values are the means (with one standard error in brackets) of eight samples for the [CO 2 ] and four samples for the [CO 2] and 

nutrient treatment. * = significant [CO2] effect at  <0.05; (*) = trend towards a [CO2] effect at  <0.10. 

Treatment 	Aug. 94 
	

May 95 
	

June 95 
	

Aug. 95 
	

Sep. 95 

chlorophyll a 

Ambient 3.92(l.20) 2.59 (0.36) 2.21 (0.33) 5.64 (0.54) 4.30(l.51) 

Elevated 3.33 (0.58) 2.44 (0.26) 1.71 (0.42) 4.18 (0.30) 2.91 (0.38) 

Control 4.78 (0.30) 6.50 (0.59) 1.86 (0.29) 4.96 (0.30) 3.63 (0.56) 

A-N 5.45(l.22) 2.80 (0.55) 2.49 (0.16) 5.50 (0.44) 4.68(l.83) 

A+N 2.39(l.20) 2.38 (0.091) 1.92 (0.42) 5.77(l.00) 3.93 (0.92) 

E-N 2.62 (0.46) 2.94 (0.37) 1.75 (0.36) 3.86 (0.45) 2.64 (0.42) 

E+N 4.05 (0.73) 1.94 (0.17) 1.67 (0.59) 4.51 (0.30) 3.18 (0.16) 

C-N 7.27 (3.66) 3.83 (0.72) 1.45 (0.24) 4.61 (0.59) 3.24 (0.52) 

C+N 2.30(l.04) 3.16 (0.26) 2.26 (0.37) 5.31 (0.13) 4.03 (0.64) 



Table 5.5 continued 

Treatment 	Aug. 94 	 May 95 	 June 95 	 Aug. 95 	 Sep. 95 

chlorophyll b 

Ambient 2.61 (0.73) 1.77 (0.16) 1.12 (0.66) 3.36 (0.61) 3.41 (0.17) 

Elevated 1.20 (0.062) * 1.71 (0.29) 1.33 (0.42) 2.28 (0.43) (*) 2.32 (0.16) 

Control 1.92 (0.85) 1.57 (0.21) 0.91 (1.05) 2.17 (0.16) 1.74 (0.53) 

A-N 2.47 (0.65) 1.74 (0.21) 1.36 (0.66) 2.83 (0.61) 3.41 (1.73) 

A+N 2.75 (0.90) 1.79 (0.52) 0.87 (0.24) 3.88 (0.81) 1.66 (0.55) 

E-N 1.02 (0.076) 1.76 (0.49) 1.19 (0.32) 2.31 (0.29) 1.81 (0.36) 

E+N 1.38 (0.050) 1.67 (0.38) 1.46 (0.54) 3.31 (0.68) 2.83 (0.091) 

C-N 6.15(l.47) 1.35 (0.30) 0.51 (0.17) 2.25 (0.40) 1.06 (0.26) 

C+N 0.69 (0.21) 1.79 (0.28) 1.31 (0.61) 2.09 (0.089) 2.42 (0.80) 

alb 

Ambient 1.68 (0.56) 1.51 (0.13) 2.99(l.10) 1.90 (0.34) 2.10 (0.32) 

Elevated 2.76 (0.51) 1.99 (0.70) 1.40 (0.22) 1.62 (0.230 1.35 (0.19) 

Control 3.99 (0.22) 2.39 (0.23) 5.66 (3.56) 2.36 (0.26) 2.60 (0.34) 



Appendix 11 

Table 5.6 Mean total soluble sugar concentration (mg g 1) in common alder and Scots pine from September 1994 to October 1995. Values are the 

means (and on standard error in brackets) of eight samples for the [CO 2] treatments and four samples for the [CO 2] and nutrient treatments, 

unless otherwise stated. In August 1995 there were only 13 alder samples analysed out of a potential 24, with only three elevated [CO 2] replicates; 

in the same month there were 14 pine samples. There was no significant [CO 2 ] effect (p > 0.05) in either species in any month on total soluble 

sugar concentration. 

Treatment 	Sep. 94 	 June 95 	Aug. 95 	Sep. 95 	 Oct. 95 

common alder 

Ambient 62.9 (2.9) 73.1 (5.4) 80.6 (7.6) 103.3 (1.02) 53.8 (3.0) 

Elevated 79.5 (13.2) 68.8 (8.5) 76.8(l.1) 125,2 (0.66) 54.1 (5.9) 

Control 76.7 (3.8) 81.1 (6.3) 79.6 (6.3) 95.7 (0.70) -- 

A-N 55.4 (l.0) 78.0 (2.3) 72.8 (3.7) 93.4 (5.5) 56.1 (4.0) 

A+N 70.3 (5.6) 68.1 (8.7) 88.3 (14.4) 113.1 (15.9) 51.4 (2.6) 

E-N 77.0 (24.5) 76.1 (14.0) 53.6 (one sample) 124.9 (7.6) 51.0 (5.8) 

E+N 81.9 (4.4) 61.5 (2.9) 100.0 (14.1) 125.4 (5.9) 57.1 (6.0) 

C-N 75.7 (3.5) 83.7 (8.7) 82.6 (12.7) 95.4 (7.2) -- 

C+N 77.7 (5.5) 78.4 (4.5) 76.6 (3.2) 95.9 (6.0) -- 



Table 5.6 continued 

Treatment 	 Sep. 94 	 June 95 	 Aug. 95 	Sep. 95 	 Oct. 95 

Scots pine 

Ambient 41.8 (5.1) 65.8 (8.8) 60.3 (8.2) 54.8 (6.1) 53.8 (3.0) 

Elevated 49.0 (4.0) 68.0 (8.2) 62.5 (8.8) 65.5 (2.7) 40.6 (2.9) 

Control 39.2 (7.2) 78.9 (4.0) 66.5 (10.1) 61.3 (7.3) -- 

A-N 48.2 (2.0) 69.4 (7.7) 60.2 (7.2) 49.7 (7.9) 38.1 (4.4) 

A+N 35.3 (7.1) 62.1 (9.5) 60.3 (9.9) 59.8 (4.4) 37.5 (2.9) 

E-N 50.0 (3.8) 73.3 (13.0) 68.9 (7.8) 65.1 (2.8) 36.2 (2.1) 

E+N 47.9 (4.5) 62.6 (2.7) 56.1 (10.2) 65.9 (2.8) 44.9 (3.8) 

C-N 37.2 (7.5) 83.4 (3.9) 64.2 (9.3) 59.7 (8.4) -- 

C+N 41.2 (7.0) 74.4 (4.0) 68.7 (10.4) 62.9 (7.7) -- 



Table 5.7 Main soluble sugar concentrations (mg g') in common alder and Scots pine in September 1995. Values are the means (plus one 

standard error in brackets) of eight samples for the [CO 2] treatments and four samples for the [CO 2] and nutrient treatments. * = significant 

[CO2] effect at  <0.05. 

Treatment 	glucose 	 xylose 
	

fructose 

common alder 

Ambient 29.5 (2.9) 11.6 (3.4) 45.6 (2.9) 

Elevated 47.3 (3.8) * 8.3 (2.7) 56.0 (4.3) * 

Control 36.4(2.9) 5.2(1.4) 38.5(3.1) 

A-N 24.8 (3.8) 10.6 (3.2) 44.2(l.6) 

A+N 34.1 (2.5) 12.5 (4.5) 47.0 (1.6) 

E-N 45.0 (4.4) 11.2 (2.7) 52.1 (4.2) 

E+N 49.5 (3.5) 5.4 (2.8) 59.9 (6.6) 

C-N 36.9 (3.4) 7.0 (1.5) 37.3 (2.7) 

C+N 35.9 (2.7) 3.3(l.3) 39.7 (3.7) 



Table 5.7 continued 

Scots pine 	inositol 	pinitol 	glucose 	fructose 	sucrose 

Ambient 19.8 (0.5) 2.9 (5.5) 14.1 (2.7) 17.1 (1.9) 10.8 (3.9) 

Elevated 13.6 (0.5) 3.1 (5.9) 21.6 (1.8) * 20.3 (1.9) 10.0 (1.2) 

Control 10.8 (7.9) 4.1 (3.3) 17.0 (2.0) 17.3 (2.4) 13.8 (5.9) 

A-N 13.4 (0.6) 2.7 (0.50) 9.4 (3.0) 16.4 (1.1) 14.6 (6.8) 

A+N 12.7 (0.6) 3.0 (0.63) 18.8 (2.6) 17.7 (2.2) 7.0(1.4) 

E-N 13.5 (0.6) 3.0 (0.73) 20.7(l.5) 20.6 (1.1) 9.0 (1.6) 

E+N 13.7 (0.5) 3.2 (0.40) 22.5 (1.9) 20.0 (2.3) 11.0(1.0) 

C-N 11.0(0.71) 4.2 (0.23) 19.0 (0.2) 17.5 (3.0) 12.5 (0.63) 

C+N 10.6 (1.0) 4.0 (0.59) 17.2 (2.3) 17.2 (2.3) 15.0 (0.52) 



Appendix 12 
Leaf Rubisco and soluble protein in common alder and Scots pine in the Glendevon experiment 

Table 5.10 Mean Rubisco concentration (mg g' fresh mass) in fully expanded leaves of common alder from April to October 1995. Values are the 

means of eight samples per [CO 2] treatment and four samples per [CO 2] and nutrient treatment. * = significant [CO 2
] 

effect atp <0.05. 

Treatment 	April 
	

June 
	 August 

	
September 	October 

Ambient 22.14 (2.76) 23.21 (5.410 34.41 (5.28) 34.01 (4.39) 43.48 (6.54) 

Elevated 31.04 (3.63) * 16.84 (3.52) 34.25 (4.92) 45.51 (10.19) 34.80 (2.54) * 

Control -- -- 27.42 (1.30) 51.87 (6.20) -- 

A-N 17.07 (3.32) 26.19 (10.53) 50.23 (18.77) 31.37 (7.28) 57.96 (one #) 

A+N 25.95 (3.15) 21.22 (7.46) 18.59 (4.97) 36.64 (6.97) 39.87 (7.02) 

E-N 26.34 (4.09) 21.25 (3.64) 52.32 (12.56) 38.64 (4.98) 36.18 (3.67) 

E+N 35.73 (5.47) 10.23 (3.36) 16.18 (4.33) 52.39 (22.45) 32.15 (2.31) 

C-N -- -- 23.83 (1.33) 35.84 (2.68) -- 

C+N -- -- 31.01 (4.64) 67.89 (17.81) -- 

ii 



Table 5.11 Mean Rubisco concentration (mg g' fresh mass) in young needles of Scots pine from April to October 1995. Values are the means (one 

standard error in brackets) of eight samples per [CO21  treatment and four samples per [CO 2] and nutrient treatment. There was no significant 

[CO2] effect on Rubisco in Scots pine (p <0.05) at any time in 1995. 

Treatment 	April 
	

August 
	

September 	October 

Ambient 4.23(l.10) 5.02 (0.65) 4.74(l.22) 4.67 (0.94) 

Elevated 3.06 (0.80) 5.27 (0.64) 3.87 (0.68) 3.93 (0.88) 

Control 1.14 (0.15) 7.94(l.41) 5.53 (0.23) 5.53 (0.23) 

A-N 6.36(l.18) 5.62 (0.91) 4.91 (1.81) 4.76 (2.04) 

A+N 2.10(1.14) 4.29 (0.89) 4.57 (l.39) 4.61 (0.88) 

E-N 3.37(l.29) 5.27 (0.82) 3.40 (0.71) 3.96(l.38) 

E+N 2.74(1.10) 5.27(1.11) 4.34(1.21) 3.91 (1.32) 

C-N 0.98 (0.29) 7.25(l.70) 4.12 (0.15) -- 

C+N 1.30 (0.09) 8.64 (2.47) 6.94 (0.92) -- 



Table 5.12 Mean total soluble protein (mg g' fresh mass) in young leaves of common alder in 1995. Values are the means (one standard error in 

brackets) of eight samples for the [CO 2 ] treatment and four samples for the [CO 2] and nutrient treatment. * = significant [CO 2
] 

effect atp <0.05. 

Treatment April June August September October 

Ambient 17.85 (4.98) 16.10 (4.25) 24.56 (12.93) 42.05 (11.59) 25.08 (8.72) 

Elevated 29.00 (5.02) 9.93 	(1.36) 23.66 (5.82) 47.89 (6.97) 25.64 (4.99) 

Control -- -- 16.66 (3.36) 58.63 (9.37) -- 

A-N 14.61 (5.69) 21.33 (3.85) 38.24 (17.93) 44.45 (19.94) 20.58 (9.37) 

A+N 21.08 (7.96) 10.86 (7.28) 4.02 (2.36) 38.83 (11.65) 29.58 (10.74) 

E-N 30.75 (8.85) 6.60 	(0.75) 15.67 (8.02) 38.16 (9.37) 28.59 (5.32) 

E+N 27.24 (4.79) 13.26 (3.74) 27.65 (7.62) 60.86 (4.15) 22.70 (6.08) 

C-N -- -- 12.26 (2.73) 43.35 (7.40) -- 

C+N -- -- 18.53 (8.77) 73.90 (14.12) -- 



Table 5.13 Mean total soluble protein (mg g' fresh mass) in young needles of Scots pine in 1995. Values are the means (one standard error in 

brackets) of eight samples for the [CO 2] treatment and four samples for the [CO 2] and nutrient treatment. * = significant [CO2
] 

effect atp <0.05. 

Treatment 	April 
	

August 
	

September 
	

October 

Ambient 2.69 	(6.18) 17.27 (4.45) 7.63 (4.99) 

Elevated 24.63 (13.92) * 2.91 	(8.34) 4.89 (2.88) 

Control 0.53 	(4.08) 20.34 (6.77) 13.44 (3.12) 

A-N 3.78 (7.45) 10.37 (1.86) 10.08 (2.49) 

A+N 1.60(2.25) 13.80 (6.10) 5.17(9.12) 

E-N 9.47 (8.51) 0.59 (10.40) 4.80 (2.97) 

E+N 39.75 (20.29) 5.23 (7.58) 4.98 (3.34) 

C-N 0.32 (3.71) 14.47 (13.69) 14.86 (6.34) 

C+N 0.74 (8.89) 26.20 (1.04) 12.01 (2.39) 

3.36 (0.98) 

1.79 (0.32) 

2.11(l.35) 

4.60 (0.91) 

0.08 (0.38) 

3.49 (0.31) 


