
The Design of a Sparse Vector Processor

T.M. Hopkins

Ph.D.

University of Edinburgh

1993

Abstract

This thesis describes the development of a new vector processor architecture

capable of high efficiency when computing with very sparse vector and matrix

data, of irregular structure.

Two applications are identified as of particular importance: sparse Gaussian

elimination, and Linear Programming, and the algorithmic steps involved in the

solution of these problems are analysed. Existing techniques for sparse vector

computation, which are only able to achieve a small fraction of the arithmetic per-

formance commonly expected on dense matrix problems, are critically examined.

A variety of new techniques with potential for hardware support is discussed. From

these, the most promising are selected, and efficient hardware implementations de-

veloped.

The architecture of a complete vector processor incorporating the new vector

and matrix mechanisms is described - the new architecture also uses an innovative

control structure for the vector processor, which enables high efficiency even when

computing with vectors with very small numbers of non-zeroes. The practical feas-

ibility of the design is demonstrated by describing the prototype implementation,

under construction from off-the-shelf components.

The expected performance of the new architecture is analysed, and simulation

results are presented which demonstrate that the machine could be expected to

provide an order of magnitude speed-up on many large sparse Linear Programming

problems, compared to a scalar processor with the same clock rate. The simulation

results indicate that the vector processor control structure is successful - the vector

half-performance length is as low as 8 for standard vector instruction loop tests.

In some cases, simulations indicate that the performance of the machine is limited

by the speed of some scalar processor operations.

Finally, the scope for re-implementing the new architecture in technology faster

than the prototype's 8MHz is briefly discussed, and particular potential difficulties

identified.

Declaration

I hereby declare

• that this thesis has been composed by myself; and

• that the work described herein is my own, except where stated in the text.

T.M. Hopkins

22nd January 1993

Acknowledgements

Many thanks are due to my supervisor, Roland Ibbett, for his advice, patience,

and friendly encouragement of this work, and for setting up and managing the ESP

project. The weekly meetings of the group working on ESP have provided many

useful ideas, and other members of the group have also been of great help. Ken

McKinnon, in particular, carried out the Linear Programming simulation study,

and through conversations with him, many useful changes have been made to

the ESP architecture. On the machine itself, Rainer Thonnes has carried out the

detailed circuit design, and Peter Lindsay is wiring the many thousands of connec-

tions. Two students in the Department of Computer Science, Alisdair Manning

and Goh Boon Seng, contributed greatly by developing further simulations of the

ESP architecture.

The author's research work was for a time supported by the Science and En-

gineering Research Council, who, together with High Level Hardware Ltd., have

also supported the construction of the prototype machine. All other facilities for

this research have been provided by the Department of Computer Science.

Table of Contents

Introduction
	 1

	

1.1 	Supercomputer architectures 1

1.1.1 	Vector processing2

1.1.2 	Parallel processing4

1.1.3 Using vector and parallel machines6

1.2 Sparse matrix problems7

1.2.1 Use of vector processors for sparse problems9

1.2.2 Use of parallel processors for sparse problems10

1.3 The Edinburgh Sparse Processor project11

Sparse Matrix Algorithms
	 14

	

2.1 	Introduction14

2.2 Direct solution of linear equations15

2.2.1 Choice of pivot element16

2.2.2 Gaussian elimination on sparse matrices17

2.2.3 Sparse matrices with regular structure17

2.2.4 Sparse matrices with irregular structure18

2.2.5 Pivot choice in sparse Gaussian elimination18

2.2.6 Pivot choice on sparsity grounds only19

Table of Contents 	 11

2.2.7 Size and sparsity of typical problems20

2.3 Iterative solution of linear equations21

2.4 Linear Programming22

2.4.1 	The simplex method22

2.4.2 Computational steps in the revised simplex method 25

2.4.3 Size and sparsity of typical LP problems28

	

2.5 	Summary 29

3. Implementing Sparse Matrix Computation 	 31

	

3.1 	Introduction31

	

3.2 	Array storage for vectors32

3.3 The order vector mechanism34

3.3.1 Handling fill-in in the order vector method36

3.4 The index/value array mechanism37

3.4.1 In-phase scan implementations of arithmetic38

3.4.2 Scatter/gather implementations of arithmetic39

3.4.3 Comparison of in-phase scan and scatter/gather methods . 42

3.5 The index/value list mechanism43

3.6 Associative memory storage44

3.7 Other data structure candidates47

3.7.1 	Tree structures48

3.7.2 	Hash table based structures49

3.8 Data structures for whole matrices50

3.9 A vector storage mechanism for ESP51

Table of Contents 	 jjj

4. Sparse Matrix Mechanisms in ESP 	 56

	

4.1 	The array form56

	

4.2 	The list form 57

4.2.1 Implementing linked lists in a single-level memory environment 59

4.2.2 Implementing linked lists in a hierarchical memory environ-

ment...............................60

4.2.3 	Writing list vectors 64

4.2.4 	Freeing list vector space 65

4.3 	Indirection and vector registers 68

4.4 	The Sideways List Unit 69

4.5 	Summary 72

5. The Architecture of ESP 	 73

	

5.1 	General structure73

5.2 The scalar processor and associated memories77

	

5.3 	The vector processor78

5.3.1 Vector instructions 79

5.3.2 Instruction decode and control 83

5.3.3 The Vector Read circuit 84

5.3.4 The Index Match circuit 85

5.3.5 The Arithmetic Unit 86

5.3.6 The Vector Output circuit 87

5.3.7 The Vector Write circuit 87

5.3.8 The Garbage Collection circuit 88

5.3.9 The Sideways List Unit 88

Table of Contents 	 iv

5.4 The interface between the scalar and vector processors89

5.4.1 	Instruction transfer89

5.4.2 Synchronisation between the scalar and vector processors 	90

5.4.3 Data transfer between the processors91

5.4.4 	Vector exceptions91

5.5 	The control processor 92

5.6 	The instruction set93

6. The Implementation of ESP
	

96

6.1 	Introduction96

6.2 	Basic design decisions96

6.3 Physical partitioning of the machine98

6.4 	The host interface board101

6.5 	The control processor 103

6.5.1 	The scalar bus104

6.6 	The host interface software105

6.7 	The scalar processor105

6.8 	The memory controller107

6.8.1 	The Vector Read circuitry109

6.8.2 	The Vector Write circuitry111

6.8.3 The Garbage Collection circuitry112

6.8.4 Vector memory request arbitration113

6.8.5 	The data transfer controllers114

6.9 	The vector memory116

6.10 The vector Arithmetic Section119 	-

Table of Contents 	 12

6.10.1 The Index Match circuit 	 . 120

6.10.2 The Arithmetic Unit122

6.10.3 The Vector Output circuit123

6.11 The Sideways List Unit123

6.12 Testing ESP124

7. The Performance of ESP 127

7.1 Introduction 127

7.2 The LP simulation study 130

7.2.1 	The model 130

7.2.2 	The results 131

7.3 The first SIM++ simulation study 134

7.3.1 	The model 134

7.3.2 	The 	results 136

7.4 The second SIM++ simulation study 138

7.4.1 	The model 138

7.4.2 	Results for vector instruction loops 139

7.4.3 	Results for Gaussian elimination 142

7.5 Summary 144

8. Summary and Conclusion 	 147

8.1 Evaluation of the ESP architecture148

8.1.1 The sparse vector handling mechanisms149

8.1.2 The Sideways List Unit149

8.1.3 The vector pipeline control strategy151

Table of Contents 	 VI

8.1.4 The scalar processor/vector processor interface151

8.1.5 	The implementation152

8.1.6 	Scalability of the design153

8.2 Evaluation of the design methodology154

	

8.3 	Further work on ESP156

	

8.4 	Conclusion 157

Bibliography
	 159

A. The Vector Processor Instruction Set
	

164

A.1 Vector Read circuit instructions165

A.1.1 Two operand output modes165

A.1.2 Single operand output modes 166

A.1.3 Null mode 166

A.1.4 Instruction termination 166

A.2 Index Match circuit instructions 167

A.2.1 I/V/V triple output modes 167

A.2.2 I/V pair output modes 168

A.2.3 Instruction termination 169

A.3 	Arithmetic Unit instructions 169

A.3.1 Data movement operations170

A.3.2 Arithmetic operations171

A.3.3 Logical operations174

A.3.4 Special operations175

A.3.5 Instruction termination175

Table of Contents 	 VII

A.4 Vector Output circuit instructions176

A.4.1 Instruction termination176

A.5 Vector Write circuit instructions177

A.5.1 Sideways List Unit instructions178

A.5.2 Instruction termination178

B. Reprint of published paper 	 179

Chapter 1

Introduction

1.1 Supercomputer architectures

Most of the largest and most time-consuming numerical computer applications

involve data in the form of vectors and matrices. Computing with such data re-

quires large numbers of arithmetic operations, each acting on single elements of

the vectors or matrices involved. The standard way of coding such a computation

in, for example FORTRAN (most scientific and engineering programs have, since

the 1960's, been writtenj one or another version of FORTRAN), is as a nest of

DO loops indexing through FORTRAN ARRAYs of one or more dimensions, and

this coding implies sequential execution of the elemental arithmetic operations.

However, these arithmetic operations can to a very large extent be carried out in

any order, without affecting the result, or they can be done simultaneously, and

thus these algorithms exhibit a degree of potential parallelism. The finest-grained

parallelism, between the elemental parts of a single vector operation, is homogen-

ous, in the sense that each of the parallel operations is identical, although each

operates on different data. Many numerical computations also exhibit potential

parallelism at higher levels, between separate vector operations, and between even

larger chunks of code. This coarser-grained parallelism is often heterogenous - it

involves different operations, which can be carried out in parallel.

Conventional computers are often able to overlap individual instructions, and

in some cases this process is assisted by executing instructions in a slightly dif-

ferent order from that defined by the program code itself. The maximum speed

of most conventional machines is limited by the fact that they can issue at most

1

Chapter 1. Introduction 	 2

one instruction per clock cycle, although the latest superscalar architectures are

able to average less than one cycle per instruction. However, all these standard

scalar processors are unable to take advantage of any of the levels of parallelism

described above. As there appears to be no limit to the size of numerical problem

which scientists and engineers can find good reason to solve (even on the fastest

machines available today, crucial numerical problems in fundamental physics take

months to solve), much effort has been spent, over three decades, in developing

improved computer architectures which can solve these problems faster. To do

so requires extra hardware, and that hardware has been arranged in one of two

general ways. Vector processors incorporate a pipeline of hardware elements for

executing, in sequence, each step of a single vector elmenta1 operation (address

calculation, data fetch, arithmetic and data store). Several elemental operations

may be in execution simultaneously, in different stages of the pipeline, and this

design takes advantage of the finest-grained parallelism described above. Parallel

processors contain a number of identical processing units. Depending on the con-

trol arrangement, a parallel processor may be able to exploit fine- or coarse-grained

parallelism in an algorithm.

1.1.1 Vector processing

Early examples of vector processors were the STAR-100 [24], later redeveloped

into the CYBER-205 [12], and the CRAY-1 [43]. The vector pipeline in these

machines is split into several tens of stages, through which a vector elemental op-

eration flows, one stage per clock cycle. When the pipeline is fully busy, a different

vector elemental operation is in execution in each pipeline stage, and one elemental

operation is completed per clock cycle. With this number of pipeline stages, each

stage can be kept simple, and the clock cycle is correspondingly fast. An entire

vector arithmetic operation is performed as a result of the issue of a single vector

instruction, which specifies the whereabouts of the vector operands, the elemental

operation to be performed (add, scalar product, etc), and the number of elemental

operations to be performed. The circuits required to perform a floating-point add

and a floating-point multiply are different, and separate add and multiply units are

Chapter 1. Introduction 	 3

therefore provided (each of which is split over several pipeline stages). Vector pro-

cessors can therefore include vector instructions which use both these arithmetic

units, to implement vector operations requiring both multiplication and addition

(eg scalar product), and so, on these instructions, the peak floating point perform-

ance of a single vector processor is two floating point operations (one add and one

multiply) per clock cycle.

In practice, it is difficult to obtain anything approaching this peak performance

from a vector processor, for two principal reasons. Firstly, although once a vector

instruction has got started, it proceeds at the rate of one elemental operation

completed (one or two floating-point operations performed) per clock cycle, the

instructions take a considerable time to start up. The instruction must be decoded,

the vector processor must be configured, and the first elemental operation must

pass through the length of the pipeline, before the first result is produced. The

start-up time for the CRAY X-MP [13] (the successor to the CRAY-1) is around

50 cycles, while for the CYBER-205 it is closer to 100 [25]. As a result, the overall

performance of a vector instruction is only close to the peak performance if the

vector operands are long; if the operands have the same number of elements as the

number of cycles start-up time, for example, the overall floating point performance

of a vector instruction can be no more than half the peak.

The second reason that processor performance may be much less than the

theoretical peak is that application programs do not consist entirely of operations

on vectors; much of the code involves operations on single scalar values, and control

operations. As a result, the vector processing hardware may be idle much of

time, while the machine executes scalar instructions. (The fact that the speed-up

available through the use of a vector processor is limited by the fraction of the

code which must execute on the scalar processor is known as "Amdahl's law" [61.)
This problem can be alleviated by careful algorithm design, including the use of

optimised hand-written assembler code, but it is also important that the processor

is able to carry out scalar operations fast enough to balance the vector processor

speed. The biggest failing of the commercially unsuccessful STAR-100 design,

corrected in its successor, the CYBER-205, was the poor scalar performance.

Chapter 1. Introduction 	 4

The mechanisms used to synchronise the execution of scalar and vector instructions

are also important in this respect.

Since the introduction of the first commercial vector machine, the CRAY-

1, in 1976, vector processing has been highly successful, with vector machines

in widespread use for numerically demanding applications. Other successful ma-

chines include the CDC CYBER-205, the CRAY X-MP, CRAY Y-MP and

CRAY-2 ranges, Japanese machines such as the Fujitsu FACOM series, the

Hitachi HITAC and the NEC SX1 and SX2 (described in [251), and the vec-

tor processor version of IBM's mainframe series, the IBM 3090VF [10]. More

recently, however, there has also been much interest in the parallel processing

alternative. -

1.1.2 Parallel processing

Parallel numerical processing involves the use of more than one arithmetic pro-

cessor simultaneously. However, parallel machines differ in their number of pro-

cessors, in the way in which instructions are issued to the separate arithmetic

units, and in the way that memory access is organised.

Array processors

One way of organising the use of parallel identical arithmetic units is to build them

into a processor which fetches a single stream of instructions which operate on rep-

licated data structures, such as vectors and matrices, but in which the arithmetic

operation(s) for each element in the operand structures are performed in a different

processor. Execution of the elemental operations proceeds in parallel. The number

of processing units may be a hundred or more, and each accesses data from its own

memory. Vectors/ matrices are distributed through the memory banks in a suit-

able way before computation commences, and instructions cause all the processing

units to operate simultaneously. A limited degree of variation in instruction exe-

cution between different processors is usually supported - a flag in each processor

may disable instruction execution, on a processor by processor basis, or an address

Chapter 1. Introduction 	 5

register in each processor may allow different processors to carry out the same in-

struction on data stored at different addresses. These machines are commonly

known as array processors or SIMD (Single Instruction Multiple Data) parallel

processors. The first such machine to be built was the ILLIAC IV [18], an exper-

imental design. The Burroughs BSP [8] was developed in the light of experience

with the ILLIAC IV, but was not exploited commercially, while commercial array

processors include the ICL DAP [40] and its successor, the AMT mini-DAP

from Active Memory Technology Ltd., and the Thinking Machines CM-1 [23]

and CM-2. In the DAP and CM machines, the individual arithmetic units are

much slower than those used in vector processors. The high level of parallelism,

however, (the CM-1 can be configured with 65,536 processors) means that very

high overall arithmetic rates can be achieved, but only on vectors/ matrices with

very large numbers of elements. Also, the distribution of data must be carefully

arranged, and hence programming is more difficult than for the vector processors.

Multiprocessors

Other parallel processors fetch a separate instruction stream for each processor -

the processors are executing separate program threads, but can communicate data,

and synchronise with each other. These machines are commonly called multipro-

cessors or MIMD (Multiple Instruction Multiple Data) machines. In machines

with a small number of processors, the processors may share a common memory;

examples include the IBM range of mainframe multiprocessors, and the Sequent

Balance series (described in [27]). Access to the shared memory soon becomes a

bottleneck as the number of processors is increased, and so machines with more

than a few processors use large caches or local memory for each processor, in ad-

dition to the shared memory. Alternatively, all the memory may be physically

distributed at the processors, but with each processor's memory mapped into the

other processors' address spaces, and accessible via a high-bandwidth intercon-

nection, as in the BBN Butterfly [41]. Other multiprocessor machines use no

shared memory at all - each processor operates with program and data held in a

local memory, and a communication network allows processors to synchronise and

Chapter 1. Introduction 	 6

exchange data. Examples of these distributed memory MIMD machines include

systems based on the INMOS Transputer [29] range of microprocessors, such as

the Meiko Computing Surface series [27]. Distributed memory MIMD parallel

machines may contain several hundred processors.

1.1.3 Using vector and parallel machines

The early popularity of vector processors was no doubt because they provided

a performance boost of perhaps ten times (compared to conventional scalar pro-

cessors of the same technology), at reasonable extra cost in hardware, and because

existing programs could easily be adapted to run on them. However, the full per-

formance of these machines is only available on problems which are sufficiently

vectorisable, ie the vectors must be long enough, and the algorithm must be cap-

able of expression as vector code without serious scalar bottlenecks. On the other

hand, for highly parallel problems, such as matrix multiplication, the peak perform-

ance of a vector machine is limited by the limited degree to which the parallelism

of the problem is exploited in the single vector pipeline.

Parallel processors with many arithmetic units are in theory able to reach much

higher peak performance, but at the cost of more difficult programming. Single

instruction stream array processors, even more than vector processors, are only

utilised efficiently on problems with a sufficient degree of fine-grained homogenous

parallelism, and the increased speed then provided by the multiple processing

units makes scalar bottlenecks more likely on array processors. These machines

also present the programmer with the additional problem of data distribution.

MIMD multiprocessors can be effective on any problem which can be decom-

posed into parallel parts, even if the decomposition is heterogenous (ie different

processors are carrying out different subtasks) - this class of problems includes

many which cannot make efficient use of vector or array architectures. However,

the programmer has the often difficult task of finding a problem decomposition

which will fit the machine architecture in such a way that each processor has a sim-

Chapter 1. Introduction 	 7

ilar amount of work to do, and such that synchronisation and data communication

between processors does not delay processing inordinately.

The vector processor and parallel processor approaches to performance im-

provement are not exclusive alternatives. Some commercial vector machines,

such as the CYBER-205 and the NEC SX-2, can incorporate up to four vec-

tor pipelines, and divide the elemental parts of a vector operation between the

pipelines, thus combining the vector and array approaches. Peak performance

is four times greater, but vectors must be four times longer to obtain the same

percentage of that peak.

There is potentially more to be gained from combining the vector and MIMD

multiprocessor approaches. The processors in an MIMD machine are usually rel-

atively loosely coupled, in the sense that synchronisation and data communication

between processors takes many cycles - this is particularly true of the larger, dis-

tributed memory systems. Because of this, MIMD machines are more suited to

exploiting the coarser-grained parallelism in an algorithm. An MIMD machine

consisting of a number of vector processors can simultaneously exploit parallel-

ism at different levels of granularity in many large-scale numerical problems, and

combines the performance advantages of each class of machine. Many vector pro-

cessors are available in small parallel MIMD configurations, with a shared memory

architecture supporting up to four processors. Examples include the CRAY X-

MP, Y-MP and CRAY-2 series of machines, and the IBM 3090VF (in which

the maximum number of processors is six).

1.2 Sparse matrix problems

Sparse matrices are those in which many of the matrix elements have the value

zero. They arise naturally in the formulation of problems in application areas

such as design, simulation and optimisation, and in finite approximation methods

for solving differential equations. In all cases, the matrix is sparse because most

or all of the linear equations in the formulation involve only a small subset of

Chapter 1. Introduction

.•- ••-.:

• 	 . 	d

Figure 1-1: Irregular sparse matrices arising from a chemical plant model (left)

and from an economic model (right), from [16]

the variables. This reflects the nature of the physical problem modelled - in- a

structural model, each piece of the structure usually connects only to a few other

pieces; in a large optimisation problem, most of the constraints involve only a few

of the variables; in a finite element formulation of a differential equation problem,

each element is affected only by adjacent elements. In the last example, the regular

pattern of elements and the fact that each 'connects' only to adjacent elements

mean that the pattern of non-zeroes in the resulting matrix is regular (often a band

along the diagonal), while for the other examples, the pattern reflects the pattern

of 'connections' between the elements of the model, and can be very irregular

(figure 1-1).

Many useful engineering or optimisation problems involve matrices which are

very large (tens of thousands of rows) and very sparse (the constraint matrix

for a large Linear Programming problem might typically have 5 to 7 non-zero

elements per column). Clearly such matrices must be treated specially - a matrix

of order 20,000 is much too large to handle on a computer if it were stored as an

ordinary, 'dense' matrix. These large sparse problems can only be solved because

the matrices can be stored in a compressed form with the zeroes removed, and

because arithmetic need only be performed on the non-zero elements. The amount

Chapter 1. Introduction 	 9

of arithmetic required to solve a sparse problem depends on the number of non-

zeroes in the matrix, but the arithmetic operations themselves tend to create

new non-zeroes as the computation proceeds - a process known as fill-in of the

matrix. The amount of fill-in which occurs depends very greatly on the order

in which computation is carried out, and thus sparse problems require special

algorithmic techniques to ensure a computation order which keeps fill-in to the

absolute minimum.

Sparse matrix computation researchers over the last three decades have de

veloped a variety of ways of minimizing fill-in, and have experimented with a

number of data structures for sparse matrices which support rapid identification

and execution of the required arithmetic operations. Much of the sparse mat-

rix software developed over this period has been for conventional scalar processor

architectures; little use has been made of vector processors, which are designed

specifically to operate on dense vector data structures. However, interest in vector

and parallel solution of sparse matrix problems has grown over the past few years,

partly as a result of the introduction of vector processor instructions which can, to

a limited extent, operate on sparse vectors stored in compressed form, and partly

as a result of the increasing availability of MIMD parallel machines able to take

advantage of coarser-grained parallelism in sparse matrix problems.

1.2.1 Use of vector processors for sparse problems

Vector processor instructions are designed to operate on dense vectors stored as

arrays - the elements of the vector are all present in memory, and occupy consec-

utive memory locations. In some sparse problems, where the non-zero structure

of the original matrix is regular (as it is in matrices arising from finite element

methods, for example), or where the matrix can be permuted to bunch together

the non-zeroes, dense vector data structures can be used for that small part of

each vector which contains the non-zeroes, and implementations can take then

advantage of vector processor facilities. Many problems, however, involve a highly

Chapter 1. Introduction 	 io

irregular pattern of non-zeroes, and the vectors must necessarily be stored in some

compressed form on which standard vector instructions will not operate.

In recognition of this problem, some vector processor developers have con-

sidered ways of providing vector instructions which operate on sparse vector oper-

ands stored in compressed form. This work was pioneered by the designers of the

CYBER-205 [12], who introduced in that machine two sets of novel instructions,

operating on sparse vectors stored in two different forms: the "order vector" form

and the "index vector" form. These mechanisms are discussed in chapter 3, and

for reasons explained there, the "order vector" mechanisms were not a success.

The "index vector" mechanisms actually comprised two operations only, called

"scatter" and "gather", which carry out subparts of a common implementation

of vector arithmetic on compressed sparse vectors. Using the scatter and gather

vector instructions, an addition operation between two sparse vectors stored in

compressed form can be implemented by a sequence of eight vector instructions,

and this can be considerably faster than a scalar implementation of the same vec-

tor arithmetic. The scatter and gather operations have been used in successfully

in sparse matrix software [19,16], and have become a standard feature on vec-

tor processors (all Cray models from the X-MP/48 onwards have incorporated

them, as do the Japanese machines and the IBM 3090VF). Because, even with

scatter and gather instructions, a sparse vector arithmetic operation requires a

sequence of several vector instructions, most of which involve data rearrangement,

not arithmetic, the overall arithmetic rate obtainable from a vector processor on

sparse vector arithmetic operations remains far below that obtainable from the

same processor on dense vectors.

1.2.2 Use of parallel processors for sparse problems

Of the two classes of parallel machine with substantial parallelism, the SIMD

array and MIMD multiprocessor, only the array processor has been available for

applications research for any length of time. Attempts have been made to mount

sparse matrix problems on such machines [39,37], but these have run into similar

Chapter 1. Introduction 	 ii

difficulties as those arising with conventional vector architectures - the machines

work well on dense vectors stored as arrays, but are hard to adapt to problems

involving arithmetic on compressed sparse vector data structures.

MIMD parallel processors (with a reasonable degree of parallelism) have only

become available for widespread research on program design in the past five years,

and parallel implementations of sparse matrix problems are thus at an earlier stage

of experimentation [7,14,34,45,51]. Nevertheless, it seems likely that the parallel-

ism of such machines can be exploited in many sparse problems, although the best

parallel decomposition of program and data is likely to be machine architecture

dependent. One MIMD parallel machine, the (SM) 2-II [3,4,5] has been developed

specifically for sparse matrix problems, and a small prototype is under evaluation.

As with dense matrix code, the parallelism exploitable on MIMD architectures

is coarser grained than that exploitable by vector processors, and research into

the implementation of sparse matrix software on both these classes of machine

remains potentially fruitful.

1.3 The Edinburgh Sparse Processor project

The Edinburgh Sparse Processor (ESP) project developed out of research on

the MU6V machine carried out at Manchester University [47,33,26]. In its final

form, MU6V was an MIMD parallel machine, designed for vector and matrix

applications, and each processor in the parallel machine was itself intended to be

a vector processor, with an instruction set which included vector instructions to

operate on sparse vectors, as well as the usual dense vector instructions. The focus

of research, however, was on the MIMD parallelism, and in the prototype each

vector processor was emulated using scalar code running on a Motorola 68010

microprocessor. A mechanism was proposed for implementation of sparse vector

storage and arithmetic, based on the CYBER-205 "index vector" mechanism,

but with more flexibility, but the sparse vector operations were never implemented

in the emulated vector processor, and the sparse mechanism was not developed.

Chapter 1. Introduction 	 12

However, the MU6V proposal had suggested that it might be possible to build a

vector processor capable of executing the full set of vector arithmetic instructions

directly on sparse vectors stored in compressed form. If so, the result would

be a performance improvement on sparse vector arithmetic, compared to scalar

processor implementations, at least as great as that provided by conventional

'vector processors for dense vector arithmetic.

The aims of the author's research were to investigate the feasibility of effi-

ciently supporting sparse vector arithmetic in a vector processor, and, if feasible,

to develop an architecture for a machine incorporating sparse vector instructions:

the Edinburgh Sparse Processor. ESP was intended to be a single vector processor

machine, although it was expected that, if the design was successful, an MIMD

parallel version, built by replicating the ESP architecture, would give even higher

performance on large sparse problems. The development of a prototype of the

machine has been supported by High Level Hardware Ltd., of Oxford, and the UK

Science and Engineering Research Council.

Specific objectives of the research described in this thesis were:

to identify the vector and matrix operations which must be implemented

efficiently to support chosen target applications;

• to identify mechanisms for storage of sparse vectors and matrices of a wide

range of sizes and densities, and for computation with those vectors and

matrices, including mechanisms for all standard vector operations, plus any

other operations identified as necessary for the target applications; to exam-

ine the feasibility of hardware support for those mechanisms, and to evaluate

their resulting efficiency;

• to develop a vector processor architecture capable of high performance on

the target applications, incorporating suitable sparse vector mechanisms and

supporting a full vector instruction set, based on that developed for MU6V,

plus any additional instructions identified as required for the target applica-

Chapter 1. Introduction 	 13

tions, and with each instruction able to operate efficiently, where appropri-

ate, with dense vector or sparse vector operands, or a mixture of the two;

• to evaluate the technical feasibility of the new architecture, by deigning an

implementation using off-the-shelf components, and to examine the effect-

iveness of the architecture by analysis, by simulation, and by building and

testing a prototype.

Chapter 2

Sparse Matrix Algorithms

2.1 Introduction

The principal chosen target application for ESP is Linear Programming (LP). This

is an application of great commercial interest, for example in the manufacturing,

transport and communications industries, and is also of importance as a sub-

problem of non-linear optimisation problems. Many LP problems are large and

sparse, and the availability, from a local research group, of a variety of real prob-

lems of different characteristics assists in the evaluation of the architecture and of

the machine. However, in developing the architecture of ESP, the simpler problem

of the direct solution of sparse systems of linear equations by Gaussian elimination

was also targetted, as this problem is both in itself an important application area,

and is a sub-problem of the most commonly used LP algorithm.

This chapter presents a general description of the methods currently used to

solve these sparse matrix problems, concentrating on the operations which must

be performed at matrix and vector level.

14

Chapter 2. Sparse Matrix Algorithms 	 15

2.2 Direct solution of linear equations

There are two classes of method for solving

Ax=b

- direct solution methods, and iterative techniques (the latter are considered in

section 2.3 below). Direct methods for the solution of linear equation systems are

based on the Gaussian elimination algorithm. The basic principle is to reduce

the matrix A (or some permutation of it) to upper triangular form by subtracting

multiples of each row from the rows below it, each time zeroing out a column in

the lower triangle. The same subtractions may be performed on the right hand

side b, as the solution proceeds, leaving a system of the form

Ux=b

which is solved by back substitution of the elements of x. Alternatively, the

sequence of subtraction multipliers may be stored, yielding an explicit factorisation

LU = A, which may be used to solve the equations for multiple right hand

sides, by forward-substitution to solve Ly = b, then back-substitution to solve

Ux = y. (The related Gauss-Jordan method diagonalises the original matrix in

one calculation, by applying the row subtractions to rows above the diagonal as

well as below it. It is not widely used in practice, as it involves more arithmetic

operations than the Gaussian method.)

An intermediate stage in Gaussian elimination is illustrated in fig. 2-1. The

principal operation required is vector subtraction:

A'. - A'1 - s * A,•

where A' is the current, partially triangularised, version of A. Using this operation

repeatedly, the lower part (ie the part below the diagonal) of a column of A' is

zeroed by subtracting suitable multiples of row p from all the rows i beneath it.

s i is a scalar chosen for each row i so that the subtraction zeroes the pth element

Chapter 2. Sparse Matrix Algorithms 	 16

xxxxxxxxxx
X X X X X X X X X
xxxxxxxx
xxxxxxx
xxxxxx

ZEROES xxxxx
Pivot " X X X X X

Element xxxxx
.xxxxx
xxxxx

- Pivot row p

Figure 2-1: Gaussian elimination

of the row. A', is known as the pivot row, and A', is the column of which the

lower part is being zeroed, and is called the pivot column. Element a is called
PP

the pivot element, and 8 2 is given by:

Iii
S. = a.

p I 	j 	pp

2.2.1 Choice of pivot element

In the basic Gaussian elimination algorithm described above, the pivot elements

are the diagonal elements of the matrix, and are used in order from top to bottom.

This is often unsatisfactory, however, because when a diagonal element is used

as the pivot its value may be relatively very small compared to the elements

below it in the pivot column, and this will necessitate subtraction of very large

multiples of the pivot row. Because of the limited precision of floating point

number representations, the size of such subtracted row element multiples may

swamp the original matrix entries, and the resulting error in the calculation will

render it useless. It is therefore normal to select the element to be used as pivot

at each stage of the elimination, either by exchanging rows to replace the diagonal

pivot element with the largest element in the pivot column (this operation is

known as partial pivoting), or by exchanging rows and columns to make the pivot

Chapter 2. Sparse Matrix Algorithms 	 i

the largest element in the submatrix remaining to be triangularised (full pivoting).

The overall effect is the same as applying row and column permutations to A before

factorisation, and then pivoting down the diagonal, but the pivot choices must be

made during factorisation, as the values of the relevant elements change during

the calculation. In practice, partial pivoting almost always provides sufficient

numerical stability, and full pivoting is not normally used.

In the special cases where the matrix A is symmetric and positive definite, or

diagonally dominant, pivoting can proceed down the diagonal, without permuta-

tion, as the factorisation will always be numerically stable.

2.2.2 Gaussian elimination on sparse matrices

Sparse systems of linear equations arise for example from engineering models,

where structures to be modelled often consist of (or may be approximated by)

many parts sparsely interconnected, from optimisation problems, and from differ-

ence methods for solving partial differential equations. All of these problem areas

can generate very large matrices, of order iO 4 or larger, but the problems differ in

the typical patterns of distribution of the non-zeroes through the matrix.

2.2.3 Sparse matrices with regular structure

Sparse matrices arising from partial differential equation solution by finite differ-

ences, and from many finite element methods, generally have a regular, banded

structure. The band is relatively dense, and there are no non-zeroes outside it. If

Gaussian Elimination proceeds using pivots on the diagonal, no fill-in will occur

outside the band. Partial pivoting will result in, at most, a doubling of the width

of the upper half of the band, without affecting the width of the lower half.

Obviously, only the parts of the rows within the band need be processed, and

it is efficient to store and process the band alone, as a set of dense vectors, using

the vector arithmetic mechanisms of an ordinary vector processor.

Chapter 2. Sparse Matrix Algorithms 	 18

2.2.4 Sparse matrices with irregular structure

Matrices arising from engineering or optimisation problems often have an irregular

distribution of non-zeroes, reflecting the inherent structure of the original problem

(see fig. 1-1). Algorithms exist to permute matrices to band structured matrices

with minimised band width - the resulting matrices may then be solved using

dense vector operations on the band. However, it is often not possible to permute

the non-zeroes into a dense enough band to make this method efficient.

In such a case, it is better to work on the matrix in its sparse form. To solve

large problems of this kind, the non-zeroes, and information about their positions,

must be stored in compressed form, but in such a way that the elimination and

pivot choice steps of the Gaussian elimination algorithm can proceed efficiently.

The elimination step (ie the subtraction of multiples of a single pivot row from

other rows in the matrix) here involves the subtraction of one sparse vector from

another (x - x - y), and will generally involve fill-in of the vector x - if the

positions of the non-zeroes in y do not coincide with the non-zeroes in x, the

updated vector x will contain more non-zero elements after the subtraction. The

storage scheme for the vectors must be able to deal with this.

If the matrix is sparse, it is only necessary to subtract the pivot row from those

rows in the matrix with a non-zero in the pivot column - the storage scheme must

therefore allow fast identification of the position of the non-zeroes in each column

of the updated matrix, as the elimination proceeds, or the time spent searching

for these will dominate the solution time. In order to calculate the scalar multiple

of the pivot row to be subtracted, the actual values of the non-zeroes in the pivot

column must also be rapidly accessible.

2.2.5 Pivot choice in sparse Gaussian elimination

The overall computation time will depend on the total number of non-zeroes pro-

cessed, and this number is increased by fill-in of the as yet unfactorised part of the

matrix, caused by previous pivot row subtractions. The amount of fill-in depends

Chapter 2. Sparse Matrix Algorithms 	 19

on the chosen sequence of pivots, because the more non-zeroes there are in the

chosen pivot row, the more fill-in is likely to occur in each row from which the

pivot row is subtracted, while the more non-zeroes there are in the pivot column,

the more such rows there will be. A second requirement, the need to minimize

fill-in, must therefore guide the choice of pivots in the sparse case, in addition to

the requirement to choose pivots which do not upset the numerical stability of the

calculation.

The most common criterion for pivot choice to minimise fill-in is known as

the Markowitz criterion [36]. It consists of choosing as pivot the element in the

unfactorised sub-matrix with the minimum product of number of non-zeroes in its

row, and number of non-zeroes in its column. To find such an element efficiently

requires rapid assessment, at each stage of the factorisation, of the number of

non-zeroes currently in each row and column of the matrix.

The usual way of combining the requirements of numerical stability and mm

imal fill-in is known as threshold pivoting [11]. The element to be used as the pivot

is chosen on fill-in grounds, using the Markowitz criterion, and its magnitude is

then checked against all other elements in its row (or alternatively, all other ele-

ments on or below the diagonal in its column). If the selected pivot is too much

smaller than the largest element in its row, it is rejected, and another candidate

chosen on fill-in grounds.

2.2.6 Pivot choice on sparsity grounds only

In special cases, for example where the matrix is symmetric and positive definite,

any permutation may be applied to it before factorisation, without risking numer-

ical instability. It is therefore normal practice to determine a permutation which

will minimise fill-in, before factorisation starts. (This can be done before factorisa-

tion because the amount of fill-in depends on the choice of pivots and the non-zero

structure of the original matrix, but, ignoring the rare possibility of cancellation

of a matrix entry to zero during a subtraction step, not on the values of the non-

zeroes.) Finding the optimal sequence of pivots is provably NP-complete, but

Chapter 2. Sparse Matrix Algorithms
	

20

Figure ..2-2: Typical pattern of non-zeroes in the factors L\U of a sparse matrix.

In this case, the original matrix was symmetric, and U = LT (from [16]).

heuristic methods based on a graph representation of the non-zero structure are

fast and work well [11]. Factorisation can then proceed without further checking

of pivots on sparsity or stability grounds.

2.2.7 Size and sparsity of typical problems

In [17], Duff et al. list a set of typical problem matrices, which they used to

compare different implementations of Gaussian elimination. These vary in order

from 156 to 5300, while the number of non-zeroes ranges from 371 for the order

156 matrix, to 21842, for the matrix of order 5300, with most matrices averaging

fewer than ten non-zeroes per row. As Gaussian elimination proceeds, fill-in accu-

mulates, so that the resulting factors L and U become increasingly dense towards

the bottom right-hand corner (see Fig. 2-2). The amount and pattern of fill-in

obviously depend on the structure of the original matrix, but, typically, the un-

factorised submatrix might be 25% full after 70% of the pivots have been used,

and 50% full after 80% of the elimination steps are done [151.

Chapter 2. Sparse Matrix Algorithms 	 21

2.3 Iterative solution of linear equations

If x0 is an inaccurate solution to Ax = b, then the accurate solution is

x = x0 + A'(b - Ax0)

If A' is a sufficiently close approximation to A', then the iterative sequence

x, 1 x + A 1 (b 	- Ax) 	 (2.1)

will converge to an accurate solution.

The trick is to choose A' to minimize the computation involved in evaluating

(2.1), while achieving fast convergence. If A is partitioned into its diagonal D,

the part below the diagonal AL, and the part above the diagonal A, so that

A = AL +D+Au , then the Jacobi method chooses A to be D, so that (2.1) may

be re-written

Dx1 = —(AL+AU)x fl +b

The right-hand side uses (most of) the original matrix, and takes full advantage

of its sparsity; Dx = y is trivial to solve.

The Gauss-Seidel method uses A = AL + D, so that

(A L + D)x1 = Aux + b

Again, full advantage is taken of the sparsity of A; (A L + D)x = y is solved

by forward-substitution.

Both the above methods are certainly convergent if A is diagonally dominant,

while Gauss-Seidel also converges if A is symmetric and positive-definite. The

convergence of the Gauss-Seidel method may be improved by relaxation - in this

Chapter 2. Sparse Matrix Algorithms 	 22

variant, A is chosen to be W'(WAL + D) with w a factor chosen by experience

and dependent on the problem type.

An alternative choice for A is to use an approximation to the LU factorisation

of A, A = Lt [16]. The factors L and U are generated by setting to zero any

matrix entries smaller than a chosen threshold encountered during the Gaussian

elimination of A, and are thus much sparser than accurate factors. Evaluating

the product term on the right hand side of (2.1) is done by forward- and back-

substitution using the sparse approximate factors.

Other, more sophisticated iterative methods, such as the conjugate gradient

method [9] may be used; these methods also take good advantage of the sparsity

of A, while converging faster than the simpler methods above. However, one often

cannot be sure in advance that iteration will converge satisfactorily, and in practice

this has restricted the use of iterative methods to special cases where convergence

is known to be good and where a good initial approximation is known. In any

case, these iterative algorithms are computationally relatively straightforward, and

the sparse vector operations required to implement them are included in the set

required to be supported by ESP for other applications which have been considered

in detail. For these reasons, iterative methods are not considered further.

2.4 Linear Programming

2.4.1 The simplex method

The general Linear Programming (LP) problem consists of finding a set of values

for a number of variables (represented here as an n-element vector x) which max-

imizes a given linear function of those variables (known as the objective function):

f=c
T

x

subject to linear constraints:

Chapter 2. Sparse Matrix Algorithms 	 23

li :5 A i.x < ui 	 1 < i < m 	 (2.2)

1m+j !~ X 	Um +j 	 1 < j < ii 	 (2.3)

Each constraint inequality defines a pair of hyperplanes in the n-dimensional

x space, between which any solution must lie. The inequalities together define a

convex region (simplex) in which the solution must lie (if the problem is feasible, ie

there are values of x which satisfy all the constraints, such a region will certainly

exist, and in a well-behaved problem it will be bounded). The maximum value

of the objective function will be attained at one (or more than one) corner of

the simplex. The simplex method consists of first finding a corner of the simplex,

then moving around the corners step by step, improving the value of the objective

function at each step, until no further improvement is possible.

The simplex method usually involves converting the problem set out in (2.2)

and (2.3) into a form in which all the inequality constraints refer to a single

variable only. This is done by introducing a unique extra variable into each of the

inequalities in (2.2), so that the inequality,

li < a 1 x 1 + a 2 x2 + +

becomes:

a 1 x 1 + a 2 x2 + + ai.x. + 	= 0

-Ui !~ X n+i

The newly introduced variables are known as logical, or alternatively slack or

surplus variables.

Applying this transformation to each inequality converts the problem set out

in (2.2) and (2.3) into the standard form for the simplex method:

Chapter 2. Sparse Matrix Algorithms 	 24

Maximize f = c 'x, subject to:

Ax=b 	 (2.4)

l<x 2 <u 	1 < i < n + m

With the introduction of the logical variables, x and c are now n + m long (the

elements of c corresponding to the logical variables are zero). A is m by n + m,

and includes the m by m identity matrix.

There are m independent equations in (2.4), so if n components of x are fixed,

(2.4) uniquely determines the remaining m components. If x is partitioned into n

components which are fixed (the 'independent' variables), written x 1 , and the re-

mainder (the 'dependent' variables), XD, equation (2.4) and the objective function

may be rewritten:

ADxD + A 1x1 = b

I =C DXD + C 'XI

XD and f may be determined from x 1 :

XD = A'b - A'A 1x1 	 (2.5)

TD -lb
	T -1

f =C AD b - (c1 - cDAD A 1)x1 	 (2.6)

If an initial feasible solution (ie a solution which satisfies all the constraints)

X, and partition XD I x1, are chosen such that each of the n independent variables

in x1 is at one of its bounds, this will correspond to a corner of the feasible

simplex, and the value of XD will indicate the distances from the remaining bounds.

Moving to an adjacent corner of the simplex corresponds to setting one of the XD

components to a bound, while allowing one of the x 1 components to come off its

Chapter 2. Sparse Matrix Algorithms 	 25

bound, and thus involves altering the XD I x1 partition by making one dependent

variable independent, and vice versa.

Each iteration of the simplex method involves choosing an independent variable

to move off a bound, and a dependent variable which will reach a bound. The

equations (2.5) and (2.6) must then be updated to reflect the new partition. The

value of A 1 b can easily be updated at each step, while the standard simplex

method also updates A'A J at each step. However, for problems of significant

size (n > 100), the revised simplex method is substantially faster. This involves

storing A' in a form which is easy to update as the XD I x1 partition changes,

and from which cA' and (the required part of) A'A 1 is calculated at each

step.

2.4.2 Computational steps in the revised simplex method

In the revised simplex method (also 'called the product form of inverse (PFI)

simplex method), the inverse matrix A 1 is stored as a list of matrices whose

product is the inverse matrix. Each of these matrices has the form of the unit

matrix, with one special column:

1 	0 	0 	0

0 	1 	... 	12 	... 0 0

0 0 ... 7m-1 	1 0

0 0 ... 	6 	0 1

These matrices are usually known as the 'q-matrices, and the interesting column

of the matrix as the 77-vector.

A single iteration of the simplex method replaces one column of AD with a

column from A 1 , and applying the old inverse matrix to this new AD would result

in a unit matrix with one filled column. The inverse matrix can therefore be

Chapter 2. Sparse Matrix Algorithms 	 26

updated by adding one extra 77-matrix to the front of the list, chosen so as to

reduce the extra column to a single entry, value 1, without affecting the other

columns. The 77-matrix list thus grows by one entry per iteration of the algorithm.

Choosing the variables to update

At each iteration, to choose the independent variable to be moved off its bound,

the effect on the objective function of changes in the value of each independent

variable must be known. This is given by the term in brackets in equation (2.6)

above. At each iteration A' changes, and cA' must be calculated anew. Its

value is given by:

cEE_ 1 ••E1

where the E are the 77-matrices described above.

If k is the column position of the vector ij within the matrix E, then c T E is

simply the vector

(c1,c2,. . . Ck_1 , (C. 1)),Ck+1,.. .Cm).

Thus cA' may be calculated via a sequence of scalar products, the result of

each of which updates a single element of c. The result is called the price vector ir,

and this calculation, which must be redone at every iteration, is called the BTRAN

operation.

Assessment of the effect on the objective function of a change to a single

independent variable now requires a scalar product of the price vector with the

corresponding column of A 1 (refer to equation (2.6) above). The independent

variable chosen to move from its bound is the one for which the rate of increase

in the objective function is largest, although when solving a large problem, it is

usually sufficient to make the choice from a subset of the independent variables

at each iteration (some versions of the algorithm, eg DEVEX [21], use slightly

Chapter 2. Sparse Matrix Algorithms 	 27

different criteria for choosing the variable). The calculation of the required scalar

products is known as the pricing operation.

To calculate how far the chosen independent variable can move off its bound,

it is necessary to ascertain which of the dependent variables reaches a bound first,

as the value of the independent variable changes.

The effect on xL5 of changes in a single independent variable is given by a single

column of A'A J (refer to equation (2.5) above). Once the independent variable

to be changed has been chosen at the pricing step, this column can be calculated

from the corresponding column in the original matrix A, by:

As matrix multiplication is associative, this can be evaluated from right to left,

and the result of pre-multiplying a vector a by the specially structured matrix E

is given by:

a + akil

where k is the position of the interesting column ij within the matrix E. The

calculation of the required column of A'A 1 can therefore be implemented as a

sequence of scaled vector addition steps. This calculation is known is the FTRAN

operation.

Once the FTRAN operation is complete, the resulting vector gives the rate of

change of each dependent variable with change in the chosen independent variable,

and, as the current values of the dependent variables are known, it is easy to

ascertain which reaches a bound first. The step in the independent variable is then

fixed, and all the dependent variables may be updated. The dependent variable

which is now on a bound becomes 'independent', while the independent variable

which was moved off a bound becomes 'dependent'. The result of the FTRAN

operation is also used to generate the new 77-matrix to update the representation

of Az', because it corresponds to the result of applying the existing A' to the

Chapter 2. Sparse Matrix Algorithms 	 28

new column introduced to AD when the XD I x1 partition is updated. The extra

77-matrix, which is added to the front of the list (ie becomes Ej+j in the notation

used above), effects the subtraction steps required to clear out this column to a

single 1.

The Re-invert Step

The product form of the inverse A 1 described above represents of a list of Gauss-

Jordan elimination steps, each with its pivot chosen as described above. After a

large number of iterations of the revised simplex method, this representation of the

inverse matrix becomes prone to excessive fill-in, because the order of pivot choice

ignores sparsity. Many implementations of the simplex method therefore use a

slightly modified representation of the inverse matrix Az', in which the inverse is

still represented as a product of elementary matrices of the form of the i'-matrices

described above (thus the BTRAN and FTRAN steps remain as described above)

but where those elementary matrices are initially generated by directly factorising

the matrix AD, choosing pivots by a method which minimises fill-in and ensures

stability, such as the threshold method described in section 2.2.5 above. This

product form of the Inverse is updated at each iteration (the exact method used to

update the factors differs between implementations), and as the updates proceed,

the number of non-zeroes in the ij columns grows. It is therefore worthwhile to

regenerate the inverse from time to time, by re-inverting the current matrix AD.

This re-invert step comprises a Gaussian elimination operation on the very sparse

AD, and is typically carried out every 100 or so iterations.

2.4.3 Size and sparsity of typical LP problems

The matrix A in a typical commercial problem might have 500 rows and 1500

columns [37] - the three to one shape is typical for large problems. Problems with

more than 1000 constraints are very common, while some have 10000 or more.

However, in a typical large problem, there are only a small number (perhaps 6

Chapter 2. Sparse Matrix Algorithms 	 29

to 10) non-zeroes in each column, thus a model with a few thousand constraints

would only be around 0.1% full.

At the very start, therefore, the 77 vectors are correspondingly sparse, but fill-

in caused by the application of the product-form inverse results in the columns

of A'A1 typically being around 20% full for most of the computation. This is

therefore the density of most 77 vectors added after a re-invert. The re-invert step

will typically reduce the 77 density to around 1%.

During BTRAN, the original vector c, which is usually very sparse, fills to

reach a density of around 20% or more during the BTRAN operation - the final

density of the price vector is problem dependent. During FTRAIV the column of

A being updated fills rapidly to about 20% full [37].

Although in theory the number of iterations required to solve an LP problem

can be exponential in the size of the problem, in practice the number of iterations

required is usually roughly proportional to problem size, typically a small factor

(1 to 10) times the number of constraints [11], ie many thousand iterations on a

large problem. In practical implementations, it is found that the most computa-

tionally intensive parts of the revised simplex algorithm are the BTRAN, pricing

and FTRAN steps - taking perhaps 30%, 35%, and 20% respectively of the total

solution time for a large sparse problem, while the re-invert step might consume

5% of the time [37,19].

2.5 Summary

From the descriptions given above, a set of vector and matrix operations which

must be efficiently supported by the new machine can be identified. For the

Gaussian elimination algorithm, efficient subtraction of a multiple of one sparse

vector from another is required, and the implementation must be able to handle

the fill-in which occurs. In addition, for pivot choice by the Markowitz criterion,

there must be a way of rapidly finding the number of non-zeroes in each row and in

each column of the updated matrix. Rapid access to the non-zeroes in the chosen

Chapter 2. Sparse Matrix Algorithms 	 30

pivot row is required, in order to check the chosen pivot (if using the threshold

pivoting method), and rapid access to the non-zeroes in the chosen pivot column

is needed to calculate the scalar multipliers for the subtraction step.

For fast implementation of Linear Programming, the machine must also sup-

port efficient implementation of the BTRAN, pricing and FTRAN operations.

If mechanisms can be developed which support all of the above operations

efficiently, in addition to sparse versions of the standard set of vector arithmetic

operations provided by a vector processor, then the resulting machine could be

expected to support well a wide range of problems involving sparse vectors and

matrices. In practice, it is also likely that the use of a machine offering new facilities

will develop in unexpected ways, as programmers exploit the new features to solve

problems in ways unanticipated by the designers of the architecture.

Chapter 3

Implementing Sparse Matrix

Computation

3.1 Introduction

One of the aims of the ESP development was to develop an architecture for a

processor supporting a general set of vector instructions, such as might be found

on many vector processor machines, but with the facility to work with sparse

vector, and mixed sparse/dense vector operands. A second aim was to ensure that

the architecture supports all the operations required for the Gaussian elimination

and Linear Programming algorithms described in chapter 2, and does so in a

balanced way - that is, there should be no 'holes' in the support for the algorithm,

which would result in the time for one step dominating the execution time. This

requirement has led to the development of new vector instructions, and to hardware

to support not just vector operations, but operations on complete matrices.

Close examination of the operations which need to be performed on vectors

during sparse matrix computation reveals that there are three basic suboperations

which need to be implemented efficiently:

1. Access to all of the non-zero indices, and often the values as well, in sequence.

Sometimes the sequence is required to be in order of ascending index.

31

Chapter 3. Implementing Sparse Matrix Computation 	 32

Access to the value of a single element, given its index.

Insertion of new non-zero elements, and updating of the value of existing

non-zeroes.

This chapter examines the ways in which a variety of data structures for sparse

vectors can support these suboperations so as to provide efficient implementations

for the required vector and matrix operations. These data structure operations

may be implemented in software, on conventional scalar and vector processors, or

by using special-purpose hardware additions to standard processor architectures.

Large sparse matrix problems require matrix storage in compressed form -

a suitable choice of data structure depends on a balance between the need to

minimise the memory space used, and the requirement for fast implementation

of vector and matrix operations; All representations save space by discarding the

zero values, and, because the memory location of a non-zero in the vector no longer

implies its index position, information about the index positions of the non-zeroes

must be represented in some other way.

Existing implementation techniques, both software and hardware, are discussed

in this chapter, and other options are examined.

3.2 Array storage for vectors

The standard data structure for storing a dense vector is what will be referred to

here as the array' - a vector with n elements, whose elements are each held in m

memory locations, is stored in mn consecutive locations starting at the location

'Many publications concerned with vector processing use the term vector to refer to

both the mathematical entity involved in the computation, and its concrete representa-

tion in the memory of the computer. This is confusing when dealing with sparse vectors,

for which a variety of concrete representations is possible, even for the same vector at

different times within a single program. The term vector will here be used exclusively

Chapter 3. Implementing Sparse Matrix Computation 	 33

with address A. The ith element of the vector starts at location A + m(i - 1).

Elements may be accessed sequentially in order of index, simply by using an ad-

dress counter, and because such accesses go to consecutive memory locations, pro-

cessors can provide increased memory bandwidth for given memory technology by

prefetching data from memory to reduce access latency, and by interleaving several

banks of memory to increase access bandwidth. Vector arithmetic operations on

arrays are implemented by vector processors as single instructions, and prefetching

and interleaving are among the factors on which the increased performance of such

processors depends. Vector arithmetic using array data structures is implemented

on scalar processors by tight loops of code, and again the hardware may allow

advantage to be gained from the sequential nature of the memory accesses, if the

processor has a predictive data cache which accesses blocks of consecutive data

words across interleaved banks of memory.

The array data structure is also ideal for operations which require 'random'

access to individual vector elements via given indices, although on most computers

such randomised accesses cannot proceed at the same rate as consecutive accesses.

This is partly because the addresses may not be available sufficiently in advance to

allow pipelining of memory access to reduce access latencies (although some recent

vector architectures do support pipelined 'random' indexed access into arrays -

described in section 3.4.2 below), but more significantly because consecutive ac-

cesses now fall into 'random' memory banks, and some of the memory bandwidth

increase provided by the bank interleaving is lost.

Some vector processors provide registers capable of holding complete arrays,

or sections of large arrays. Both consecutive and indexed access to such registers

is very fast. Scalar processors with large caches may be able to store the vector

operands for a series of vector operations entirely within the cache, and will gain

a similar performance advantage to that provided by vector registers.

to refer to the more abstract mathematical entity, while the term array will be used to

refer to a contiguous block of equal-sized pieces of memory.

Chapter 3. Implementing Sparse Matrix Computation 	 34

While it is of course possible to store sparse vectors in arrays, this is obviously

not an efficient use of space. Compressed forms of sparse vector storage are con-

sidered in the following sections. There are, however, two situations in which array

storage is commonly used in sparse matrix software. A single array is often used

to hold a de-compressed copy of a sparse vector while operations are performed on

it - examples are given in the sections below. The second situation arises because

computers incorporating conventional vector processors provide a greater vector

element computation rate for vectors stored as arrays and processed by the vector

processor, than for vectors stored in some compressed form, whether these com-

pressed vectors are processed by the vector or the scalar processors. The ratio of

the two rates depends on the machine architecture, :-.nd in particular on whether

the vector processor itself provides any support for operations on compressed vec-

tors, or whether all such operations must be carried out by the machine's scalar

processor. This speed difference means that for sparse vectors whose density is

above a certain threshold, computation is faster on the vector processor with the

vectors stored as arrays, even though many of the arithmetic operations performed

are on values of zero, and are therefore wasted. For the CRAY-1, for example,

the threshold density is around 20% [16]. As a result, sparse Gaussian elimin-

ation programs often include provision for switching from a compressed form of

vector storage to array storage, when the density of the remaining unfactorised

sub-matrix reaches the threshold value.

3.3 The order vector mechanism

The "order vector" method for storing sparse vectors was developed for the CDC

CYBER-205 computer [12], and is supported by hardware in the vector processor

of that machine. Sparse vectors are each stored in two arrays. The data array holds

the non-zero values from the vector, in ascending order of vector index position.

The order array (known as an "order vector" in CDC terminology) identifies the

positions of the non-zeroes within the vector. It is an array of single-bit elements

(stored 64 to a memory word) - the bits correspond one-to-one with the elements

Chapter 3. Implementing Sparse Matrix Computation 	 35

of the vector, with a bit set to zero if the corresponding vector element is not

present in the value array (ie is zero), and set to one if the element is in the

value array. Thus, by scanning the order array and the value array, the non-zero

values and positions may be identified. The amount of storage space saved by this

mechanism depends on the sparsity of the vector, and is limited by the use, in the

order array, of one bit for every vector element, zero or not. For vectors whose

values are represented as 32-bit quantities, the order vector mechanism reduces

the space required by a factor approaching 32 for very sparse vectors, while vectors

of 64-bit values are compressed by up to 64 times. This compression factor does

not seem large when compared with density figures of 0.1% or less for vectors in

large sparse matrix problems - in space terms, the order vector method is efficient

only for vectors whose density is above 1% or so.

The order vector data structure is not efficient for 'random' access to vector

elements by index - although one may quickly index into the appropriate bit of the

order array to determine whether a vector element is present in the value array,

determining the value of an element which is present involves a scan through both

the order and value arrays. The data structure is much better suited to those

operations which always require a scan of the vector, such as the vector arithmetic

operations (vector add, scalar product, etc), and the CYBER-205 provides a

set of such vector instructions to operate directly on sparse vectors stored in this

fashion.

Instructions such as vector add, which have two input and one output operand,

contain fields to identify the three value and the three order arrays. The vector

processor reads the input value and order arrays from memory and uses the or-

der arrays to identify the way in which the value streams should be aligned and

combined. For a vector add operation, for example, the output order array is a

bit-wise OR of the two input order arrays, and the output value array contains

values copied from one of the two input value arrays if only one of the corres-

ponding input order array bits was a one, and a sum of values from both input

arrays if both bits were one. An element-wise vector multiply on the other hand,

produces an output value only where the two input order arrays have ones in the

Chapter 3. Implementing Sparse Matrix Computation 	 36

same position. The output order array is a bit-wise AND of the two input order

arrays.

In addition to a range of vector operations on sparse vectors stored in this way,

the CYBER-205 provides instructions which support copying of vectors stored

as arrays to order vector form, and vice-versa.

Measured in terms of output values generated by the vector arithmetic pipeline

per unit time, the vector instructions which take order vector operands are slower

than corresponding vector instructions with array operands, because of the over-

head of fetching and examining the order arrays. As the operand vectors become

more sparse, the order vector arithmetic rate becomes relatively slower, because

the order arrays are mostly empty of ones, and the arithmetic pipeline is starved

while the order arrays are scanned. More relevant, however, is a comparison

between the time for a complete vector operation on sparse vectors stored as ar-

rays, and the time for the same operation on the same sparse vectors using the

order vector method. The array implementation keeps the arithmetic pipeline

busy, but it wastes most of its operations on processing zeroes. For sparse arrays

of the densities found in large Linear Programming problems (0.1 to 1%) the or-

der vector method will be more than ten times faster than the array method, but

nevertheless the rate of useful arithmetic operations, even using the order vector

method, is many times lower than the peak rate at these low vector densities.

In terms of vector instruction execution time, the order vector mechanism seems

appropriate for vectors with densities between 1% and perhaps 20%.

3.3.1 Handling fill-in in the order vector method

When two vectors stored in order vector form are added, the number of non-zeroes

in the result vector can range up to the sum of the numbers of non-zeroes in the

two original vectors - the exact number depending on the extent to which the

original vector non-zero positions coincide. In the CYBER-205 order vector im-

plementation, it is the programmer's responsibility to ensure that enough memory

space has been reserved in advance for the result value array. All such instruc-

Chapter 3. Implementing Sparse Matrix Computation 	 37

tions must have three distinct vector operands, for example z 	x + y; operations

which directly add one vector to another (ie x := x+y) are not possible, because,

depending on the relative positions of the non-zeroes within the two vectors, the

writing of the output value array might overtake the reading of the input value

array of x.

These considerations mean that code which uses order vector operations must

be integrated with code for dynamic management of memory allocation for the

value arrays. The latter code must handle reclaiming of arrays which are re-

placed with larger ones, and the resulting tendency towards fragmentation of the

memory area used will require periodic compression of the space used by copy-

ing all the value vectors. When the vectors involved are very sparse, the time

for the memory management operations, which must be performed by the scalar

processor, will dominate the vector instruction execution time. The memory man-

agement overhead has meant that the order vector mechanisms provided in the

CYBER-205 have not in practice been used by writers of sparse matrix software,

and no subsequent vector machine has incorporated these mechanisms. The order

vector mechanisms become very inefficient, in both space and time, for vectors

with a density of less than 1%, and without the special vector processor hardware

of the CYBER-205, the order vector data structure is more costly in both space

and time, for any vector density, than alternative compressed data structures de-

scribed below. It as not surprising, therefore, that there have been no reported

implementations of this method in software.

3.4 The index/value array mechanism

In the index/value array mechanism, the non-zero values of a sparse vector are

again stored compressed into an array, but their original vector index positions

are indicated not by an order array, but by an index array. The ith component of

the index array is an integer specifying the position in the vector of the non-zero

whose value is the ith component of the value array. In some variants of this data

Chapter 3. Implementing Sparse Matrix Computation 	 38

structure, the entries in the arrays are always maintained in ascending order of

index, while in other variants the arrays do not need to be kept in this order.

Assuming that the index array is an array of 32-bit integers, the amount of

space required to store a sparse vector using the index/value array mechanism is

clearly more than that required by the order vector method, for vector densities

above 3%. However, at lower densities, the index/value array method becomes

relatively by far the better, requiring about half the memory space of the order

vector method for a vector of density 1%, and less than a tenth the memory space

at a vector density of 0.1%.

Like the order vector mechanism, the index/value array mechanism does not

efficiently support access to a vector element by index - to find such an element

the index array must be searched to determine whether, and if so where, the index

occurs in it. Such a search is most simply implemented by a sequential scan,

but for vectors with more than a few non-zeroes, stored in ascending order of

index, a binary search or interpolation search may be faster. Operations such as

vector addition, element-wise multiplication, and scalar product can however be

implemented efficiently, in two rather different ways.

3.4.1 In-phase scan implementations of arithmetic

If the index and value arrays are maintained in ascending order of index, arithmetic

operations may be implemented by synchronised scans of the index arrays of both

vectors. For operations such as add, the index arrays are merged, simultaneously

merging the two value arrays; if an index appears in both input arrays, the corres-

ponding values are added. Element-wise multiply, and scalar product, require the

intersection of the two index sets to be determined, with corresponding arithmetic

operations. Each of these operations may be implemented in software on scalar

processors, but the vector hardware provided by conventional vector processors

does not support this type of operation.

The problems caused by the occurrence of fill-in are exactly those discussed

above (section 3.3.1) - as in the case of the order vector mechanism, operations

Chapter 3. Implementing Sparse Matrix Computation 	 39

which can cause fill-in, such as vector add and subtract, must place their result

in arrays distinct from those containing the two input operands, and complex

memory management algorithms are required.

3.4.2 Scatter/gather implementations of arithmetic

An alternative method may be used for vector arithmetic operations on sparse

vectors stored as index/value arrays, and this second method does not require

that the arrays be kept in ascending order of index. The idea is to copy one of

the operands into array format before performing the operation. For example,

a scalar product between two vectors x and y may be implemented on a scalar

processor by first converting x into array format: starting with a suitably-sized

array containing all zeroes, the entries of the value array of x are copied into the

positions specified by the index array of x (this operation is often called scatter).

The value and index arrays of y may then be scanned, with the corresponding

elements of x picked up by indexed accesses into the full array version of x, and

the scalar product accumulated.

On a machine incorporating a vector processor, the order of computation is

likely to be slightly different: once the new form of x is produced, the entries in it

corresponding to the non-zeroes of y may be collected into a compressed array of

values, by using y's index array to address the array version of x (this operation

is known as gather). The answer is then computed by a scalar product operation

(available on vector processors as a single MULTIPLY-AND-ACCUMULATE instruction,

or via linked execution of element-wise MULTIPLY and ACCUMULATE instructions)

between the array of gathered values and the value array of the vector y.

The CDC CYBER-205 incorporates vector instructions which directly im-

plement the scatter and gather operations. Each instruction specifies two source

and one result operand. For the SCATTER instruction, the source operands are

the two arrays containing the sparse vector non-zero values and indices, while the

result operand is the target array (entries in the target array whose indices are

not in the source index array are unchanged, so the target should normally have

Chapter 3. Implementing Sparse Matrix Computation 	 40

been preset to all zeroes). The source operands of the GATHER instruction are the

index array and the source array, while the result operand is the value array to

hold the gathered values. The number of elements processed by these instruc-

tions is equal to the number of members in the index array, and the instructions

process elements at a slower rate than other vector instructions, due to the ir-

regular pattern of full vector accesses, which prevents advantage being taken of

memory bank interleaving. However, the SCATTER and GATHER instructions oper-

ate many times faster than equivalent code loops executing on the CYBER-205's

scalar processor, and similar instructions have been included in most subsequent

vector processor designs. On such a machine, the scalar product between two

vectors x and y stored in index/value array form is calculated with three vector

instructions - a SCATTER of x, a GATHER using the index array of y, followed by

a MULTIPLY-AND-ACCUMULATE on the gathered value array and the value array of

y. An additional SCATTER operation is then normally required to zero out the

temporary storage array for future use.

Vector multiplication

Operations producing vector results are more complex. A vector processor imple-

mentation of an element-wise multiply between x and y would start by proceeding

as before, with the MULTIPLY-AND-ACCUMULATE instruction replaced by MULTIPLY.

The result is a value array of the same length as y's value array, but potentially

containing zeroes, due to zeroes picked up from x by the GATHER instruction. To

place the result in standard index/value form, this value vector must be scanned

for zeroes, and these zeroes must be deleted, with the corresponding elements de-

leted from a copy of the index array for y, to form the index array of the result.

The first step might be implemented, for example on the CYBER-205 vector

processor, using a COMPARE operation to identify the non-zeroes of the array result

of the MULTIPLY - this generates an array of single bits, of similar form to the

order array discussed in the previous section. The COMPRESS instruction takes two

source operands - a bit array, and an array of 32- or 64-bit values - this instruction

may be thus used twice, to remove the unwanted entries in the value array result

Chapter 3. Implementing Sparse Matrix Computation 	 41

of the MULTIPLY instruction, and in the index array for y, to produce the value

and index arrays of the final result. Other vector processors which support scat-

ter and gather, such as the IBM 3090VF, also have instructions corresponding

to the CYBER-205 COMPARE and COMPRESS. On a scalar processor, the gather,

multiply, compare and compress operations could be combined into a single loop,

and the relative speed of scalar and vector implementation would depend on the

number of non-zeroes in the operands, the relative scalar/vector arithmetic speeds

of the machine, and the time taken to start up each vector operation.

Vector addition

A vector addition operation is more complex still, because, where the element-

wise multiply result has non-zeroes in some or all of the y non-zero positions, the

add result has non-zeroes in all the non-zero positions of y, plus, in general, extra

non-zero positions from x. A typical scalar processor implementation, described in

[16], of x x + y involves first scattering y into an array. The index array of x is

then scanned, fetching the corresponding elements from the array version of y. If

an element is non-zero, it is added to the corresponding element of the value array

of x, and the non-zero value in the array is reset to zero. After this step, all the

elements of the result in positions of non-zeroes in the original vector x are correct,

but there may remain non-zeroes in other places in y to be added to the result. The

index array of y is therefore scanned next, and the corresponding values fetched

from y's array representation. If the value fetched is zero, this corresponds to a

non-zero of y which has already been added into x in the previous step. If the

value fetched is non-zero, it must be at a different index position from any non-

zero in the original x, and since we do not need to keep the result index and value

arrays in ascending order of index, the new non-zero and its index can simply be

appended to the end of the arrays representing x. As was the case with previous

vector addition examples, the program must ensure that sufficient memory space

has been allocated for the value and index arrays of x to expand to accommodate

the new non-zeroes.

Chapter 3. Implementing Sparse Matrix Computation 	 42

These steps may be implemented on a vector processor with SCATTER, GATHER,

COMPARE and COMPRESS instructions as a sequence of eight vector instructions.

Again, the relative speed of scalar and vector implementations depends on the

numbers of non-zeroes involved, the relative scalar/vector arithmetic speeds, and

the vector instruction start-up times.

3.4.3 Comparison of in-phase scan and scatter/gather meth-

ods

Although the in-phase scan methods for arithmetic on index/value arrays are

rather more straightforward than the scatter/gather methods, in scalar processor

implementations there is little difference in the speed of the two in most cases.

However, there are particular cases in which the scatter/gather methods are much

faster. As an example, consider a sequence of scalar products between a single

vector y and a number of different vectors x2 . If the vector y is the one scattered,

this needs to be done once only at the start of the sequence, and each scalar product

proceeds by considering only the elements of the full array version of y whose non-

zeroes appear in the index array of x2 . This is potentially faster than the in-phase

scan method, which would need to look at every entry in y's index array for each

new scalar product, as well as each entry in the index array of Xj. If the xi are

as dense as, or denser than y, the advantage is small, and may be outweighed

by other differences in speed due to the different detailed implementations of the

in-phase scan and scatter/gather methods, but if the x2 are substantially sparser

than y, the scatter/gather method will certainly be substantially faster. This

performance difference only occurs for a sequence of operations where one vector

operand remains the same throughout the sequence, and where each operation

can work by considering the index array of just one of the two operand vectors (eg

scalar product or element-wise multiply). (The BTRAN and pricing steps in LP

provide good examples of such a sequence of operations.)

Apart from such special cases, the relative speeds of the two methods will

depend on their detailed implementation. On a vector machine with instructions

Chapter 3. Implementing Sparse Matrix Computation 	 43

to support the scatter/gather methods, these will generally be faster, but only

if vectors contain enough non-zeroes for the increased element processing rate

of the vector instructions to outweigh the vector instruction start-up time. The

mechanisms described in this section are used in practice in many sparse matrix

programs [19,16,32].

The memory management overhead required to deal with fill-in during a com-

putation such as Gaussian elimination, using index/value array storage, is the

same whichever implementation is used for the individual vector operations.

3.5 The index/value list mechanism

The biggest difficulty in implementing sparse matrix code using the index/value

array method described above is the problem of handling fill-in caused by vector

addition or subtraction operations. The task of memory management is complex,

involving constant checks that the allocated space for value and index arrays is

large enough to hold the potential result of the next addition, allocation of new

array spaces as required, and periodic copying of the spaces in use in order to

reclaim garbage space in large enough blocks to be useful.

One way of simplifying this task is to store the non-zero indices and values of a

sparse vector not in arrays, but in linked lists - usually, for each vector, a single list

of records each of which contains the value and index of a single non-zero. Fill-in

can now be handled by linking new records into the lists. Memory management

is simpler, as it is not necessary to determine, before an addition operation, how

much space the result will require, and garbage collection does not require periodic

rearrangement of space in use - any space which becomes free can be linked onto

a free list.

The detailed algorithms for implementation of vector arithmetic on linked list

representations of vectors are exactly analogous to the in-phase scan and scat-

ter/gather methods described above, and because of the simpler memory manage-

ment, complete sparse matrix code using linked lists is simpler than that using

Chapter 3. Implementing Sparse Matrix Computation 	 44

index/value arrays. However, there are disadvantages to the linked list method.

Firstly, the amount of memory space required for linked lists is greater than that

of the corresponding index and value arrays, because of the space required for

links. Secondly, although the speed of arithmetic operations using the linked list

method is not significantly different from the speed of the same operations using

index/value arrays when the operations are implemented in scalar code, vector

processors which support scatter/gather type operations support them only on

index and value array representations, not on linked lists. When such a vector

processor is available, and the arrays are long enough that vector instructions are

faster than scalar code, the array method is preferable. Finally, the linked list

method may suffer from 'thrashing', when used in a virtual memory environment,

if the records in each list become too randomly distributed through memory.

Linked list storage methods have been used in practice in a number of sparse

matrix software designs [16], and in fact, index/value arrays and lists are the only

data structures in widespread use for sparse vector computation on conventional

scalar and vector machines. It seems unlikely that better data structures, able

to confer a significant performance advantage on such machines, remain to be

discovered. However, a new architecture which includes hardware support for a

sparse vector data structure might be able to use a data structure which would be

inefficient on a conventional machine, but highly efficient on the special hardware.

One such data structure, requiring a special type of associative memory, has been

proposed by J.T. O'Donnell, and others were considered during the design of the

ESP architecture.

3.6 Associative memory storage

In [38], J.T. O'Donnell proposes a design for a special purpose memory system

for storing sparse vectors in compressed form, which nevertheless supports fast

access to single vector elements by index, and also solves the memory management

problem associated with fill-in.

Chapter 3. Implementing Sparse Matrix Computation 	 45

The storage format is similar to the index/value array format described above,

with vector non-zero elements stored in increasing index order (although in O'Don-

nell's proposal, the index fields of some of the non-zeroes need not be explicitly

stored). Fill-in is handled by arranging for the memory contents to be shiftable

through the memory array. In this way, a new non-zero can rapidly be inserted

into an existing vector, by shifting the entire contents of the memory beyond the

insertion point up by one word. Of course, this means that all vectors stored

in memory beyond the vector being updated move position, so vectors cannot

be accessed using their address, and instead the entire memory array is made

associative, and the start of each vector is labelled with a unique vector identifier

which is found by parallel associative matching throughout the memory array

when an access to the vector is attempted.

The associative matching hardware is also used to support fast access to a

vector element by index. However, because only some of the indices are ex-

plicitly stored in the data structure, the associative matching hardware within

each memory word must, in this case, arithmetically compare the word's contents

against the test word and return a less than indication as well as an equal

indication.

The stored format of a small sparse vector is illustrated in figure 3-1. Each

memory word in the array can contain a vector identifier, an index, or a value,

and each word therefore incorporates a three-valued type tag to distinguish these.

Associative matching is performed on the word/type tag pairs. Each memory

word also has associated with it three binary flags, which are used by the memory

system during memory access. Each kind of memory access, read element, write

element, return next non-zero, etc, is implemented in a small number of steps

which include associative match steps and flag test and set steps. The number of

steps involved in each kind of access is constant, independent of the number of

vectors stored, and the number of non-zeroes in the vectors.

The manipulation of memory word flags and the required priority encode of the

less than match results from each word are implemented by a logic tree connected

to every cell in the memory array. The size of the tree grows linearly with the

VI IX VA VA IX VA IX VA

Value Value Value Value
23 of of 36 of 51 of

A[231 A[241 A[36] A[51]

Tag

Data
Word

Chapter 3. Implementing Sparse Matrix Computation 	 46

(Tags are: VI - vector identifier, IX - index; VA - value)

Figure 3-1: The format of a sparse vector with four non-zeroes, in O'Donnell's

proposed memory system

total size of the memory array, while the propagation delay grows logarithmically

with memory array size. The time taken to execute each step of a memory access

is therefore small, even for large memory arrays, and is independent of the number

and size of stored vectors. Thus, for any particular size of memory, each kind of

memory access takes constant time, regardless of vector size and density.

O'Donnell's memory system certainly appears possible - a shiftable memory

array can easily be designed, and the necessary associative match hardware incor-

porated with each word. However, by the time the shift control, match circuitry,

and the logic tree are included, it seems inevitable that each memory word will

occupy several tens of times the silicon area required for the same size word in a

standard dynamic memory device.

A further practical problem arises from the need to be able to shift the whole

array. If each memory IC were designed as an array of complete words, three

word wide buses would be required on the device - one to shift in a word, one

to shift out, and one for data input and output from the processor. As double-

precision arithmetic is required in many sparse problems, each word must be 64

bits, plus two for the type tag, and so 198 pins would be required for the three

data buses alone. Although the bits of a word could be split between two or more

chips, it is certainly necessary for all the bits of the word on which the associative

match is performed to be in the same device. The vector identifier and index

could be limited to 24 bits, and these bits of the word stored with the type tag in

one device, with the remaining 40 memory word bits split between perhaps two

Chapter 3: Implementing Sparse Matrix Computation 	 47

further memory devices. Three 26 bit data buses would then be required on the

first device. It is clear that, with control signals and logic tree connections also

required, each memory chip will need to be packaged in a pin grid array or similar

large multi-pin package.

A typical numerical workstation might contain 16Mbytes of memory - enough

for most sparse LP problems. This might be implemented using 128 chips packed

onto a few 10 cm 2 of circuit board. Because of the much increased memory cell

size, an implementation of O'Donnell's memory system would require perhaps

4000 chips to handle similar sized problems. Because the of the large pin-out,

each device would be in a much larger package than a dynamic RAM chip, and

might occupy 25 or more cm of circuit board space, giving a total of 10 m 2 of

board space, without allowing for additional logic tree and control circuitry.

Such practical costs might be justified if the architecture could provide a speed

up of a couple of orders of magnitude, but it is not clear that, on typical complete

sparse matrix problems, the proposed architecture will confer any performance

benefit. Certainly, access to a vector element by index is relatively fast, and

memory management is handled automatically, but consecutive access to all the

non-zeroes of a sparse vector would be several times slower than from index/value

arrays on a conventional machine, because of the extra delays in the more complex

access method. If there is some performance benefit, it seems certain to be too

small to justify the large engineering costs.

3.7 Other data structure candidates

The vector operations which must be supported by a sparse vector data structure

involve the following suboperations on individual vector elements:

1. Access to each non-zero index and/or value, one after another - some vector

operations require these accesses to return the non-zeroes in ascending order

of index.

Chapter 3. Implementing Sparse Matrix Computation 	 48

Access to the value of a single vector element (zero or non-zero), given its

index.

Alteration of a single vector element with given index. This may involve

adding a new non-zero, or changing an existing non-zero to zero.

The first suboperation forms part of most vector arithmetic operations (add,

scalar product, etc). The second is required, for example, during Gaussian elimin-

ation, to find the values of the non-zeroes in the chosen pivot column, and during

the Linear Programming FTRAN operation. Alteration of a single element within

an existing vector is required during the BTRAN operation, while the writing of

a complete vector is required for any vector arithmetic instruction producing a

vector result.

Data structures which support these suboperations are required in many ap-

plication areas, and have been studied extensively (see for example [1,31]). The

sparse vector application differs from most in that the first suboperation is re-

quired often (eg for the row subtractions in Gaussian elimination). Also frequent

is the rewriting of a complete vector (the result of a vector instruction), while the

individual element lookup and insert suboperations are less frequently used. The

two data structures discussed above (sections 3.4 and 3.5), an array of key/data

(ie index/value) pairs, and a linked list of key/data pairs, are both used in other

applications also. These structures support the first suboperation above efficiently,

but both are very slow for access to an element by key. Other data structures in

common use in applications requiring indexed lookup are tree-based representa-

tions such as the B-tree, and the hash table.

3.7.1 Tree structures

B-trees [1] have the property that elements can be retrieved by key in a time

logarithmic in the number of key/data pairs in the structure. Insertion of new

elements is also logarithmic, although the worst case insertion time has a large

constant factor due to the need to copy data at each level of the tree. Elements

Chapter 3. Implementing Sparse Matrix Computation 	 49

can also rapidly be accessed in key order. However, a vector machine supporting

vector instructions operating directly on sparse vectors stored as B-trees would

require complex access hardware, as access to an element involves travel down

the tree, and, much more problematically, writing a complete vector (for example,

the result of a vector add operation) will be slow, as the writing of some of the

elements requires copying of many of the previously written elements, to maintain

the tree's balance. Tree-based representations were therefore rejected at an early

stage in the design of ESP.

3.7.2 Hash table based structures

Hash tables support fast access to elements by key (although performance degrades

when the table storage space is nearly full), but there is no way rapidly to access

the elements in the table in key order. However, a combination of a hash technique

with array or linked list storage of the indices of the non-zeroes in a vector results

in a data structure which is fast for all three suboperations listed above. Two

separate memories are required, each with different memory access hardware -

one holds vector indices, the other values. The indices may be stored in arrays or

linked lists, and accesses to them proceed as for the index/value arrays and lists

described above. To fetch the corresponding values, a second access is required, to

the value memory, which is organised as a hash table. The address of each value is

computed by a hash function on the vector identifier and the index. If that function

is guaranteed to generate a different address for each index within a single vector

(a simple function would be the sum of the index and an integer derived from the

identifier), then the data stored at the computed address would be the value itself,

plus the vector identifier, so that collisions can be recognised. A rehash function

is required, and empty and deleted locations are marked, to support collision

handling. A suitable hash function can be computed quickly using combinational

logic, and hardware can also handle rehashing when required. Accesses to values

would usually be very fast, but subject unpredictably to additional cycles due to

collisions.

Chapter 3. Implementing Sparse Matrix Computation 	 50

Such a system would support vector arithmetic operations such as add and

scalar product in either of the two ways described for index/value arrays above

(in-phase scan or scatter/gather), with each index fetched first, followed by a

corresponding value fetch. However, the hash system also supports fast access to

a single vector element, by index - if the value is not found in the value memory,

it is zero.

3.8 Data structures for whole matrices

Many parts of algorithms for sparse matrix computation involve operations on

vectors - either rows or columns of the matrices involved - and any of the data

structures described above is suitable, with the matrix stored either as row vectors

or as column vectors. However, there is one critical step of the Gaussian elimina-

tion algorithm, described in section 2.2.5 above, which requires information about

both the row and column structure of the matrix. In Gaussian elimination by

rows, the natural way to store the matrix is as row vectors. However, at each

elimination step, the pivot row need only be subtracted from rows with a non-zero

in the pivot column - and in a sparse matrix these will be a small fraction of the

rows in the unfactorised sub-matrix. If every row must be examined to discover

whether its entry in the pivot column is zero, this search will dominate the actual

subtraction steps. It is therefore necessary that the structure of the matrix be

stored in such a way that the positions of the non-zeroes in each column can be

quickly determined, while continuing to support fast subtraction between rows.

This has usually been done by storing, separately from the row vectors (which

in a typical implementation would be stored as index/value arrays or linked lists),

an array or linked list for each column, containing a list identifying the positions

(but not the values) of the non-zeroes in that column. These lists must be updated

as elimination proceeds, and the columns fill in. Alternatively, a two-dimensional

linked structure has sometimes been used, where each record contains the value of

Chapter 3. Implementing Sparse Matrix Computation 	 51

a single non-zero, its row and column position, plus links to the next non-zeroes

in its row and in its column.

3.9 A vector storage mechanism for ESP

Each of the vector mechanisms described above was considered as a candidate for

implementation, with suitable hardware support, in ESP. Two of these mechan-

isms, the associative memory system and the B-tree storage method were elimin-

ated early in the design. Although both support all the basic suboperations in a

balanced way, the overheads involved in the relatively complex access mechanisms

would make the memory system several times slower than a standard memory.

The associative memory system is also technically impractical, for reasons dis-

cussed above.

The order vector method (section 3.3) has been tried before, in the CYBER-

205, which provides vector instructions which operate directly on sparse vectors

stored in that form. As discussed above, it is not efficient, either in time or

space utilisation, for very sparse vectors such as are routinely found in Linear

Programming problems. A further problem is the need for the programmer to

surround each vector operation by code which deals with memory management,

to handle vector growth due to fill-in. The CYBER-205 order vector mechanism

was not a success, and has not been repeated in more recent vector processor

designs.

This leaves three mechanisms - index/value arrays, index/value lists, and a

hash-based system. Most recent vector machines incorporate some hardware sup-

port for sparse vector operations using index/value arrays, in the form of scatter

and gather instructions, and on such machines, some form of index/value array

storage is normally used to implement sparse vector software. However, a sparse

vector arithmetic operation, such as add, still requires several vector instructions,

because the scatter/gather implementation of vector arithmetic involves a sequence

of separate steps. The in-phase scan arithmetic method, on the other hand, has
2>.

Chapter 3. Implementing Sparse Matrix Computation 	 52

only a single step (although the iterated operation is more complex) and so it

is an obvious candidate for hardware support. Index comparison hardware on

the input to the processor's arithmetic unit would allow index/value pairs fetched

from arrays in memory to be matched by index (the mechanism is described in

more detail in section 4.2). This hardware would increase the effective arith-

metic pipeline length, but would not reduce the arithmetic rate at all. Vector

operations such as add and scalar product could then be implemented as single

instructions operating directly on sparse vectors stored as index/value arrays, and

these instructions would be several times faster than current hardware-supported

scatter/gather techniques. However, the memory management problem remains

- as vectors fill in they must be copied into larger arrays, and the software must

arrange for this to be done when' necessary.

Using index/value lists, the required memory management operations are sim-

pler, and are carried out within a vector operation, as each element is processed.

Current vector processors do not support scatter and gather operations on linked

lists, because their memory addressing hardware only supports (within a single

vector instruction) access to locations of an array. However, it would not be diffi-

cult to add to the memory addressing hardware the necessary registers to support

the reading from memory of complete vectors stored as index/value linked lists,

within single vector instructions. If a list of free records is maintained, the memory

access hardware can also support the writing of a vector in index/value list form,

and so scatter and gathr operations can now be supported on index/value lists.

With the index matching hardware described in the previous paragraph, vector

arithmetic instructions using the in-phase scan method could operate directly on

vectors stored as index/value lists. If the result vector is written into records taken

from the free-list, fill-in is not a problem, and the only additional memory man-

agement operation required is to reclaim the space occupied by the previous copy

of a vector which has been updated (eg by a vector to vector add instruction),

by adding it back on to the free list. This is an operation which can itself be

implemented in hardware.

Thus if hardware can be designed to support the reading and writing of vectors

Chapter 3. Implementing Sparse Matrix Computation 	 53

stored as linked lists, and to support efficient garbage collection of old vectors, then

the index/value list method becomes much easier to use than the index/value array

technique - no memory management software is required. If additional hardware

is used to support index matching at the arithmetic pipeline input stage, single

vector instructions can implement vector arithmetic directly on sparse vectors

stored as linked lists.

One potential problem that remains to be considered is that accesses to an

array are always to consecutive memory locations, whereas accesses to a linked

list are to scattered locations. As a result, array access can take advantage of

memory bank interleaving techniques, and is therefore faster than list access could

be, even if the overhead of link following could be eliminated. This difficulty can be

overcome by storing index/value lists as linked lists of short arrays of fixed length.

Access within the short array can now take advantage of bank interleaving, and

if the link to the next short array is stored at the start of each array, the address

of the next array is available sufficiently in advance that there need be no gap in

the reading of elements from one short array to the next. Storing vectors as lists

of small arrays also reduces the storage overhead of the links.

If the overheads associated with linked list processing can be eliminated in this

way, a storage method based on index/value lists is superior to the index/value

array method, because memory management is handled almost entirely by the

hardware, within the vector instructions. However, the fundamental drawback of

both methods remains - fetching a single element by index from a sparse vector

is a very slow operation, requiring a search down the list of indices.

This drawback can potentially be removed by using the hashing technique

described in section 3.7.2. In this implementation, the non-zero indices of a sparse

vector would be stored using a linked list of short arrays, as above. Values would

be stored in a separate value memory, at addresses generated by a hash function

of the vector identifier and index. The memory management problem is solved as

in the previous case, by writing the index list for the output vector of a vector

instruction into space taken from a free list, and reclaiming the space used by

out-of-date copies of vectors. The hash-accessed value memory does not require

Chapter 3. Implementing Sparse Matrix Computation 	 54

memory management. The hash calculation can be pipelined with the reading of

indices and values, and so does not reduce memory bandwidth, although it does

increase the memory access pipeline length, and thus the start-up time for a vector

read or write operation. Collisions in the value memory, however, do reduce the

memory bandwidth, and the reduction become progressively worse as the value

memory fills up. This problem could be solved at the expense of larger memory

for any given problem, but there is a more fundamental difficulty with the hash

storage technique. The addresses in value memory of the non-zeroes of any sparse

vector will, by their nature as hash function results, be scattered through memory

in an irregular way, and as a result, bank interleaving will not be effective. Because

of this in any given memory technology, the memory bandwidth for consecutive

access to the non-zeroes of a vector will be several times less using hashed storage

than for the index/value lists described above.

To be balanced against this reduced bandwidth is the very much increased

speed of access to single vector elements. In the Gaussian elimination target ap-

plication, the main use of single element access is to read the non-zeroes in the pivot

column, to calculate the subtraction multipliers. There is one single-element read

per vector subtract operation. Extracting a single element from an index/value

list requires, at most, a scan to the end of the list, and so will take, at most,

no longer than the subsequent subtraction operation, and, on average, less than

half the time required for the add. The slow single element access operation will

therefore slow Gaussian elimination by less than one third. The lack of memory

interleaving in the hash table method would cause a greater performance degrad-

ation - the subtraction operations could be slowed down by a factor approaching

the number of memory banks in an index/value list implementation.

The Linear Programming target application also makes use of single element

access. In the BTRAN operation, a single element of a vector is updated at each

step, while in FTRAN, a single element of a vector must be read at each step.

Again, each step also requires a vector operation (scalar product for BTRAN and

vector add for FTRAN), and so the performance penalty of the vector operation

for the hash storage method would probably outweigh any gain for the single

Chapter 3. Implementing Sparse Matrix Computation 	 55

element access. In any case, there is a better way of improving the performance of

the BTRAN and FTRAN operations, which can be applied in a system based on

index/value lists. Both operations involve many steps (hundreds or thousands for

a large problem), but within the BTRAN or FTRAN calculation, it is the same

vector which is updated at each step. That vector is one operand of each scalar

product (BTRAN) or vector add operation (FTRAN). The performance of both

these operations can therefore be improved substantially by storing that vector in

an array. The vector to be updated is scattered into the array at the start of the

BTRAN or FTRAN operation. Single element lookup and update are now fast -

an indexed access into the array. A scalar product between the array and a sparse

vector in memory, or the addition of a sparse vector into the array, proceeds at the

rate at which the sparse vector index/value elements can be fetched from memory,

with corresponding indexed lookups into the array.

Overall, the slower fetching of complete vectors in the hashed implementation

is unlikely to be compensated by its advantage in speed of single element access,

for the target ESP applications. It was therefore decided to proceed with a design

using a form of index/value linked list storage for sparse vectors, and incorporating

an indexed addressing mechanism for access to arrays, to improve the performance

on operations like BTRAN and FTRAN. For the reasons discussed in section 3.8,

the design also incorporates hardware to handle storage by column of the non-zero

pattern of a matrix consisting of sparse row vectors.

Chapter 4

Sparse Matrix Mechanisms in ESP

ESP supports two formats for storage of vectors - the array form and the list

form. Whether a vector is stored in array or list form, it is accessed indirectly

via a 56-bit descriptor, which includes a pointer to the start of the vector, plus

information about the number of non-zeroes in the vector.

4.1 The array form

This is the standard array mechanism (section 3.2). For operations requiring

indirect access into a vector, it is preferable to store that vector as an array, and

ESP provides instructions to convert between array and list forms of vectors. For

some vector/vector arithmetic operations, such as add, there is no advantage to

using the array mechanism, unless the vector is 100% dense; if the vector is sparse,

the list storage mechanism is always more efficient.

56

Chapter 4. Sparse Matrix Mechanisms in ESP 	 57

4.2 The list form

Linked List Methods - General Strategy

This is a variant of the index/value list mechanism (section 3.5). The lists are

maintained in order of increasing index, and the arithmetic pipeline of ESP in-

cludes hardware to support arithmetic operations via the in-phase scan method

described in section 3.4.1. Thus vector/vector operations such as c - a + b are

implemented by streaming the lists a and b into the vector processor's Arithmetic

Unit (AU), using additional hardware in the AU input stage to align a and b

elements with equal indices. In the add instruction, illustrated in figure 4-1, if the

first index in the a list is n, and that in the b list is m, then if n < m the first

element output is the first index/value pair from a. This element is taken into the

AU from the list a, while the list b is unchanged. Similarly for m < n, while if

n = m, the output element is the sum of the elements at the front of the a and b

queues, both of which are taken into the AU simultaneously, for addition.

A different form of input vector index matching is required for vector/vector

multiplication operations, for example the scalar product operation c - a.b, as in

this case a multiply step is only required if non-zeroes appear at the same index

position in both input streams. In this case, the arithmetic unit input hardware

discards non-matching elements in the input streams.

As has already been noted, the amount of space needed to store a sparse vector

in compressed form is not usually known at compile time. Nor is it in general

known at run time, even at the start of the operation producing the vector. In the

add example above, the output list c may be as short as the longer input list or

as long as the sum of the two input list lengths, depending on the extent to which

the positions of non-zeroes in the input vectors coincide. In some operations (eg

the compression of a vector from array storage format to list format) the range of

possible result list lengths may be anything from zero to the length of the original

array vector. For the list storage format to be useful, therefore, the amount

Chapter 4. Sparse Matrix Mechanisms in ESP 	 58

7
A 7

4
A.

1
A 1

8

88

4

B4

2

82

[A :U 	
(INMEX)

R(VALUE)

17 	14 	I

1A7 1A4 I o-3 	 _____

l Il

1- _ IB2 Ai
I 14121

1B41B2
E 1

18
[B

F-7-T-4 --1
1 A7 1A4

_AU -3
1 814 1

168 IB4I 	>L-----
4 1 2 1

A 4 + B 4 I 82 A 1

Figure 4-1: An ADD operation on list vectors

of memory space allocated to a vector must be dynamically and automatically

variable, and to achieve the required performance, the allocation of space must

be performed in hardware. The ESP hardware maintains a pool of free memory

space, allocating space from the pool to vectors as required. The index/value list

comprising a single vector resides in one or more linked blocks of memory locations.

If the block allocated to hold the result at the start of an operation turns out to

be too small, another block can be linked onto it. The unused portion of the last

block allocated may be returned to the free pool. The hardware which fetches list

vectors from memory must now be capable of following the links between blocks.

Space may be freed by explicit de-allocation (under program control) of the

memory used by temporary vectors which are no longer required. However, more

often, it will become free automatically. To see why this is so, consider an operation

of the type a i- a + b, and suppose vector a has non-zeroes at index positions

100 - 199, while b has non-zeroes at index positions 0 - 99. If the result vector is

written into the memory blocks already occupied by a, then the first 100 output

elements will overwrite the 100 non-zeroes of the original a. The first few of these

Chapter 4. Sparse Matrix Mechanisms in ESP 	 59

will be in the arithmetic unit input pipe, but most will not yet have been read

from memory, as the AU must deal with all 100 non-zeroes of b before using up

any from a. As a result, input elements will have been corrupted before they are

read. To avoid this problem, when a vector appears as both an input and result

of an operation, the result vector must always be allocated new space, and the

original space used by that vector is returned to the free pool automatically at the

end of the operation, by a hardware de-allocate operation.

4.2.1 Implementing linked lists in a single-level memory en-

vironment

These list structures can be implemented in a simple way by treating memory as

a pool of fixed size (small) blocks, each with a single link field. The free space is a

linked list of unused blocks. As a vector operation produces its result, that result

is written into the first locations on the free list, following links as required. The

result vector's descriptor is updated to hold a pointer to the start of the vector

list. The unused part of the final block in the result vector is wasted; this is the

reason for using small blocks. Reclaimed space is linked onto the start or end of

the free list. The hardware required to support these operations is simple, - and the

operations of allocating new space and reclaiming old space are both very fast,

each requiring only the updating of processor pointer registers, and the alteration

of two links in memory.

Matrix codes tend to use many operations of the type a - a+ b. For example,

every elimination step in Gaussian elimination causes a vector to be re-written,

usually with a small increase in density, and for reasons explained above, these

re-writing steps involve the allocation of new space for the updated vector, and

the reclaiming of space previously used. As space from vectors is reclaimed and

later used again by vectors of different length, the blocks on the free list will

become thoroughly mixed. As a result, the blocks used to store any vector will

become randomly distributed throughout the whole memory space. In a single-

level memory environment this may not matter, but in a hierarchical memory

Chapter 4. Sparse Matrix Mechanisms in ESP 	 60

environment it is very likely to lead to thrashing of the paging/cacheing system.

Although the prototype ESP does have only a single-level memory, it was felt

to be important to investigate the operation of memory management techniques

for sparse vector storage which would work effectively in a hierarchical memory

environment, ie which would, as far as possible, preserve locality of reference.

4.2.2 Implementing linked lists in a hierarchical memory en-

vironment

In this variant of the previously described implementation, the free list remains a

linked list of blocks of free memory, and allocation of new space for a result vector

proceeds as above, except that blocks may now be of any length. Any space in

the last block allocated (to a result vector) which remains unused at the end of

the operation is left, as a smaller block, on the front of the free list. The key to

maximising locality of reference lies in ensuring that the blocks on the free list

remain as large as possible, so that the space allocated to a new vector consists

of a small number of large blocks; this requires a more complex de-allocation

algorithm. In general, a vector to be de-allocated itself consists of a list of blocks,

and the de-allocation algorithm must check, for each of these blocks, whether is

is adjacent in memory to a block (or blocks) already on the free list, and if it is,

must merge the blocks. A simple way of achieving this merging de-allocation is

used in the prototype ESP; this involves maintaining the blocks in the vector lists

and in the free list in order of ascending memory address (ie links from block to

block are always forward through the memory address space). The de-allocation

algorithm can then merge the two sorted lists of blocks into a single sorted list by

a synchronised scan of the two lists in the obvious way, and at the same time can

merge adjacent blocks by checking the end address of each block in the merged

list against the start address of the next block.

In ESP, vector elements are held in memory as an index/value pair, in a single

memory word of 88 bits (64 bits for the value, and 24 for the index). A list vector

is held in a sequence of blocks of consecutive memory words, the final word in the

/
-" nil

(I
-1 VALUES

4NNDICES

End-of-list mailk

Chapter 4. Sparse Matrix Mechanisms in ESP
	

61

Increasing Memory Address
10

321 ff
H VALUES

32
06
00

24 	INDICES

Block link word

Figure 4-2: A simple structure for a linked list vector

list being a special end-of-list marker. The simplest way to link such blocks would

be to make the first word of each block a block link word containing two pointers

(each of which is a 32-bit virtual memory address), called here the external pointer

and the internal pointer (see Fig. 4-2). The external pointer holds the address of

the first word of the next block in the list, and is there to maintain the list linkage.

The external pointer in the last block of a list holds the special value nil. The

internal pointer holds the address of the first word after the end of the current

block, and is there because the de-allocation algorithm needs to know the size of

blocks to perform concatenation of adjacent blocks (the de-allocation algorithm is

simpler to implement in hardware if these two pointers, rather than the external

pointer and a block length count, are stored). Because the blocks are in order of

increasing memory address, all pointers point forwards through the address space.

The link word is at the start of the block to ensure that the transfer of operand

elements between memory and the arithmetic unit can be made as efficient for

these list structured vectors as it is for vectors stored in the usual array form.

Providing that blocks are above a certain minimum size, there is time to emit the

start address of the next block to the memory sufficiently far in advance to avoid

a gap in the address generator —*memory—.AU pipeline. The writing of result

elements back to memory may also be effectively pipelined.

Many vector processing systems use interleaved banks of memory to achieve

the memory bandwidth required to run the arithmetic unit at full speed and in

Chapter 4. Sparse Matrix Mechanisms in ESP 	 62

ESP, within a block of a list vector, interleaving will work effectively. However,

even though the link address is known well in advance, if the first word of the

next block falls into the wrong bank, there will be a hiatus in the interleaving. To

avoid this, it is sensible to restrict all blocks to starting in a particular bank, and

all pointers are thus multiples of the number of banks. For example, in an eight-

way interleaved memory, to allow full use of interleaving and pipelining, pointers

should be restricted to be a multiple of 16 (rather than eight, to allow sufficient

time to send the address of the next block to the memory system).

The algorithm for de-allocating vector space, described below, needs only to

access block link words, not the words containing index/value pairs. Because of

the alignment of blocks onto the memory banks, all these link words are in the first

memory bank. To allow de-allocation to proceed as fast as possible, and perhaps

concurrently with other accesses to vector memory, the bandwidth of that bank

should ideally be higher than that of the other memory banks. The prototype ESP

in fact provides this extra bandwidth by providing a completely separate memory

to hold the block link words, as illustrated in figure 4-3. Here, the words in the

link memory are 32 bits wide, which is large enough to hold one pointer only. In

ESP, there are four interleaved banks of 88-bit index/value vector memory, and

there is one word of link memory per four words of vector memory. The internal

and external pointers of a list vector block which starts at main memory address

a are at link memory addresses a/4 and a/4 + 1 respectively. Since every block

uses two link memory words, the minimum block size is 8 words. Of course, if

blocks are large, large amounts of the link memory will be unused, and so the

dual memory system introduces an overhead of wasted memory area. However,

this overhead is more than compensated for by the main memory bus bandwidth

gained, and by the simpler bus arrangements which result from the separation of

the two memory types.

The free list is of identical structure to a list vector, and a pointer to the

start of it is maintained in a register. Vector descriptors contain, in addition to

information about 'vector size, a pointer to the current position of the first word

of the first block in the vector list.

Bank 3 Bank 2,Bank ii Bank 0

100

L
3rd block of vector

Chapter 4. Sparse Matrix Mechanisms in ESP 	 63

Start

Vector Descriptor

	

32-bit memory words 	 88-bit words containing index/value pairs

	

containing pointers 	 in four interleaved memory banks

	

Fast link memory 	 Main memory

Figure 4-3: The list vector structure used in ESP

Chapter 4. Sparse Matrix Mechanisms in ESP

4.2.3 Writing list vectors

As the AU produces index/value pairs as the results of a list vector operation, these

are always written into the free list. The hardware for performing the allocation

of space for a list vector contains four registers: a write address pointer, a block

address pointer which holds the address of the start of the block currently being

written into, plus an internal pointer and an external pointer register, which hold

copies of the link words associated with that block. At the start of a vector

operation which produces a list vector result, the block address pointer and the

write address pointer registers are loaded from the free list pointer register, and

the internal pointer and external pointer registers are loaded by accessing the link

memory, using the block address pointer. Index/value pairs produced by the AU

during the operation are written into consecutive words, with the write address

pointer incremented after each write, until the write address pointer is equal to

the internal pointer register (see figure 4-4). The current block is now full, and

the external pointer register is copied to both the block address pointer and the

write address pointer, to prepare for writing to the next block on the free list.

The internal and external pointer registers are then updated by loading from link

memory, using the new block address pointer. In this way, writing continues

through the blocks on the free list. (Hitting the end of the free list, signalled by a

nil external pointer, aborts the current vector operation and causes a trap.)

Eventually, the AU will signal the end of the list of index/value pairs, by

producing an element with the form of the special end-of-list marker. This is

written in the normal way. The write address pointer is now forced to the next

8-word boundary, as all blocks must be a multiple of 8 words in length, and

a comparison is performed between it and the internal pointer register - this

determines how many words remain unused in the current block. If there are no

unused words, the free list pointer is simply updated from the external pointer

register so that the next complete block is now at the front of the free list. The

external pointer word (in link memory) of the last block in the vector just written

(which is pointed to by the block address pointer) is updated to contain the nil
pointer, to signal that it is the last block in the list vector. Alternatively, if there

Chapter 4. Sparse Matrix Mechanisms in ESP

Bank 0 	Bank 11Bank 2 1 Bank 3

10 (K)

Free List Pointer (16 words)

10 1st block Index/value pairs already written
28 of free list

18
Block Address Pointer (16 words)

32 28
WrEddressPointe Index/value pairs already written

2nd block
of free list

IN

Figure 4-4: Writing a vector in list form

are unused words in the current block, the unused portion of the block is reclaimed

for the free list. This involves writing the external and internal pointer register

contents into the first two link memory locations pointed to by the write address

pointer, to set up the remaining portion of the block as a new block at the start

of the free list, and copying the write address pointer into the free list pointer.

Finally, the last block in the vector just written has its external and internal

pointers updated, using the address in the block address register, to place the nil

pointer value in the external field, and the write address pointer in the internal

field, to indicate the correct block length.

4.2.4 Freeing list vector space

The de-allocation hardware, which reclaims vector space for the free list, requires

two pointer registers (A and B), plus a small number of working registers. The

algorithm merges two ordered lists of blocks - the free list, and the vector list

being de-allocated. At the start, the free list pointer register is updated to point

to the lower of the two list starting addresses. A also points to this address; B

points to the other list. During the algorithm, the pointers A and B proceed along

Chapter 4. Sparse Matrix Mechanisms in ESP 	 66

the two lists. The external pointers are adjusted to merge the two lists, while

the internal pointers are examined to check for contiguous blocks, and updated to

merge such blocks.

If the first block on list B is behind (in memory) the second block on list A,

A is moved to point to the second block on the list.

If the first block on B is between (in memory) the first two blocks on A (but is

not contiguous with the first A block), the external pointer of the first block

on A is updated to point to the first B block, and the A pointer is advanced

to the next A block. Pointers A and B are now exchanged.

If the first block on B is between the first two blocks on A, and is contiguous

with the first A block, it is merged with that block. If it exactly fills the

memory space between the first two A blocks, it is merged with both of

them. The pointer B is updated to point to the next block on its list.

The algorithm terminates when one list is exhausted, and at this point, all

blocks are linked, in order of increasing memory address, onto the list pointed to

by the free list pointer. The maximum number of algorithm iterations will equal

the total number of blocks on both lists which occupy memory locations between

the lower starting address and the lower end address of the two lists.

This de-allocation algorithm is a potential bottleneck in the system, as a de-

allocate must be performed after most vector operations. How long this takes

depends on the number of blocks on the free list and on the vector list being

disposed, and on the start and end positions of both lists; in the worst case, the

algorithm must examine every block on both lists to complete the dc-allocation.

However, note that the list restructuring remaining to be performed at any time

during dc-allocation takes place beyond the locations pointed to by A and B. Since

the new free list pointer is set up at the start of the dc-allocate, writing the result

of the next vector operation into the free list can commence almost immediately

after any pending dc-allocate has started, and can continue concurrently with the

Chapter 4. Sparse Matrix Mechanisms in ESP 	 67

de-allocate, subject to the condition that each free block used by the write must

start at a memory address less than the value of pointer A (which in the particular

algorithm used, is itself always less than B). If this condition fails, the write must

be delayed until it is again satisfied. In this way, so long as the de-allocation

of vectors normally takes less time than writing them, de-allocation need not

necessarily delay the processor.

An alternative, more complex, de-allocation strategy has also been considered;

this takes a time proportional to the number of blocks in the vector being de-

allocated, independent of the number of free list blocks. It is based on a memory

management algorithm in [31]. In this case, blocks contain linking information at

both ends; this consists of an external pointer, and an internal pointer, at each

end of the block. (Because four words in link memory are used in every block, the

minimum block size in this case is 16 words.) Each of the two internal pointers

points to the other end of the block. The external pointer at the front of the block

points forward to the next block on the list, while that in the at the end of the

block points back to the previous block on the list. The top bit of each external

pointer contains a tag bit which indicates whether the block is on the free list or

is part of a vector (this restricts the pointer size to 31 bits). Lists need no longer

be maintained in order of memory address, and by examining the tag bits, it is

possible for the de-allocate algorithm to perform merging of adjacent blocks, and

complete the de-allocate in time proportional to the number of blocks being de-

allocated. Although the operation of de-allocating a single block is more complex,

in some cases this method will be much faster than the algorithm described above.

Since the lists are unordered, however, any stage of the de-allocate may affect the

first block on the free list (by merging another block with it), and so it is no

longer possible to start another write operation until the de-allocate is complete.

The prototype ESP incorporates memory management circuitry flexible enough

to experiment with both algorithms.

Chapter 4. Sparse Matrix Mechanisms in ESP 	 68

4.3 Indirection and vector registers

List vectors do not waste store, and they provide immediate identification of the

non-zero positions of the vector. An operation like the Gaussian elimination step

A2 +- - * A,, will execute efficiently using list vector storage and a single

ESP vector instruction, which operates by streaming operand elements into the

arithmetic unit in the manner described above. 1 This is also true of other vec-

tor/vector operations, such as multiply, on vectors in list form, if both vectors are

of roughly equal sparsity. However, in, for example, the pricing step of the Lin-

ear Programming algorithm (section 2.4.2), one vector (the price vector) is much

denser than the vectors into which it is multiplied. To execute the multiplication

by streaming in two list vectors would be inefficient, as most of the elements of

the price vector would be discarded because there is a zero in the corresponding

position of the column vector. If one vector is several times denser than the other,

the scalar product operation is more efficient with the denser vector stored in ar-

ray form, using ESP's indirect access mode. Using this mode, the sparser vector

(stored in list form) moves into the vector unit element by element, and the index

fields of the elements are used to offset into the denser vector (stored in array

form), using indexed addressing. Obviously, access to the elements of the denser

vector is slower than streaming a vector out of memory, because the elements

accessed are in non-consecutive locations, and memory bank interleaving will be

interrupted, and so this method of access is only preferable where the sparsity of

the two vectors differs by a factor of four or more.

Whether it is worthwhile expanding a vector stored in list form to array form

for an operation like the scalar product will depend how many such operations will

be performed on the vector before it must be recompressed to list form. In the case

of the LP pricing step, many hundreds of scalar products will be performed with

the same price vector, so it is clearly worthwhile having the price vector in array

form. Performance on list vector/array vector operations can be further increased,

if the same array vector is to be operated on many times over, by providing a fast

Chapter 4. Sparse Matrix Mechanisms in ESP 	 69

access vector register near the arithmetic unit, to hold the array vector operand.

This reduces the memory bandwidth required, and, through the use of fast memory

technology for the register, avoids problems related to the failure of memory bank

interleaving.

The usefulness of such a vector register is even clearer in the case of the Linear

Programming BTRAN and FTRAN steps. BTRAN also requires a scalar product

of a sparse vector (the 77-vector) with a vector which is (for most of the BTRAN

steps) more dense, and then requires that one element of that denser vector be

replaced with the result of the product. This final step requires access to an

element of the vector with specified index, and is clearly very inefficient on a list

vector. However, it can be carried out with ease if the vector is stored in array

form in a register. The result of the complete series of BTRAN steps is the price

vector, which is thus conveniently in the register ready for the pricing step.

FTRAN requires the addition of a sparse 77-vector (scaled) to a vector which

for most of the FTRAN steps is denser than the 77-vector. The scaling factor to be

applied to the 7-vector is an element of the denser vector, specified by its index

value. It is therefore useful to store the vector being updated in array form in the

register, to allow rapid indexed access to these scaling elements.

ESP contains a single, large (32K element) vector register, which may be par-

titioned into any number of smaller sections, and thus used to store many, shorter,

vectors.

4.4 The Sideways List Unit

The need for keeping track of both the row structure and the column structure of

the matrix, during Gaussian elimination using threshold pivoting, was discussed

in section 3.8. To support this, an extra facility has been added to the vector

processor in ESP. Known as the Sideways List Unit (SL U), this maintains lists

of non-zero indices (but not values) by column, as the elimination proceeds row

Chapter 4. Sparse Matrix Mechanisms in ESP 	 70

by row (ignoring cancellation of non-zeroes during subtraction steps to form new

zeroes - something which is rare during the solution of most types of problem).

The total number of entries in these column lists is the number of non-zeroes

currently in the matrix, and is equal to the number of entries in all the row vectors.

Thus as many words are required to store the SLU lists, as for the rest of the data

in the problem. However, the size of word required is only 56 bits (24 bits for the

index and 32 bits for the list link), while each row element occupies one word of 88-

bit vector memory. Although it seems conceptually neater to have a single memory

for all vector data, using main vector memory for the SLU lists increases the vector

memory bandwidth requirement, and complicates the memory bus structure. A

simpler solution, adopted in the prototype machine, is to provide a separate SLU

memory, with the same total number of words as the vector memory, but only

56 bits wide. This memory is written to by the SLU alone, and is only read by

the scalar processor. It is not used at all for applications which do not perform

dynamic pivot choice on sparsity grounds.

For each column in the matrix, a list of column non-zero positions is kept in

the separate SLU memory as a linked list of single memory locations, each holding

a non-zero position (24 bits) and a link to the previous word on the list (32 bits),

as illustrated in figure 4-5.

The SLU non-zero lists are updated during Gaussian elimination in the follow-

ing way. A single Gaussian Elimination step consists of the operation

A, - A,,, - s,, * AP.- Whenever the arithmetic unit produces a non-zero in

an index position in the result vector A,,, which contained a zero in the input

copy of A,,,, that element is a new non-zero in the matrix, and its index, i, (its

column position in the matrix) is passed to the SLU. The SLU contains a register

holding the current row number n (this register is loaded from a field in the vector

instruction), and two registers for each column of the matrix, one (the count re-

gister) holding a count of the number of non-zeroes in the column, and the other

(the address register) holding, for each column, a pointer to the last non-zero posi-

tion record which was added to the list of non-zero positions in that column of the

matrix. On receiving a new index i from the arithmetic unit, the SLU increments

Chapter 4. Sparse Matrix Mechanisms in ESP
	

71

SLU memory

Column i count register
I 	4 	I

Column i address register 	 28 I 	 List of non-zero position
records for column i

Next free location pointer
32-bit link

24-bit non-zero position

Registers within SLU

56-bit words of SLU memory

Figure 4-5: An SLU non-zero position list

the non-zero count for column 1 and adds a non-zero position record for the row

number n onto the non-zero list for column i, by writing the row number (from

the row register), together with a link to the previous non-zero on the list (from

the address register for column i), into the next free word in the SLU memory. It

then updates the address register for column i, to point at the word just written.

The information maintained by the SLU is accessed by ESP's scalar processor

during pivot choice. The new non-zero counts for all the columns in which there

were non-zeroes in the previous pivot row (these are the only columns which can

have had extra non-zeroes added during the elimination steps with that pivot

row) are read from the SLU to enable pivot choice by the Markowitz criterion.

The address of the end of the non-zero position list for the chosen pivot column

is then read from the SLU by the scalar processor, and the scalar processor can

then determine the position of all the pivot column non-zeroes by reading the list

directly from the SLU memory, following the links, until a link address of zero is

found. The values of the non-zeroes must be found by using the vector pipeline to

search down the relevant rows until the correct column index is reached (using a

vector instruction which extracts from a vector the element with a specified index).

Chapter 4. Sparse Matrix Mechanisms in ESP 	 72

Before the elimination steps start, the SLU must be fed the positions of the

non-zeroes in the original matrix, and this is achieved by a special vector instruc-

tion which zeroes all the count and address registers in the SLU and sets the SLU

memory pointer to the integer value one, followed by vector instructions which

stream each row vector of the matrix through the vector processor without modi-

fication, but adding all elements onto the non-zero position lists maintained by

the SLU.

4.5 Summary

This chapter has described the general mechanisms used in ESP to store, access

and compute with sparse vectors and matrices. The following chapter describes the

ways in which these mechanisms have been integrated into a complete computer

architecture.

Chapter 5

The Architecture of ESP

5.1 General structure

The innovative part of ESP is the vector processor, in which are implemented the

mechanisms described in the previous chapter. These are intended to confer, for

irregular sparse matrix problems, the performance advantages associated with the

use of conventional vector processor architectures on non-sparse problems.

The hardware required for fetching and operating on vector data is very differ-

ent from that required for general purpose operations on typical scalar data types.

For this reason, vector processors are built as specialised co-processors: they do

not implement any scalar instructions or program flow control operations, and

they contain no instruction fetch hardware [25,28]. Instead, the main, scalar, pro-

cessor controls program execution, and passes to the vector processor any vector

instructions encountered in the instruction stream.

This co-processor arrangement may be distinguished from the commonly occur-

ring provision of multiple operational units within a CPU data-path by the relative

looseness of the coupling between the main processor and the co-processor. In con-

trast to, for example, an additional closely-coupled floating point arithmetic unit

within the data path of a CPU, a vector co-processor will usually provide for:

• fetching and storing its own data from/to memory;

73

Chapter 5. The Architecture of ESP 	 74

an independent register bank which may not be directly accessible by the

scalar processor data path;

• rather looser synchronisation between the scalar processor and the vector

unit - the scalar processor will usually be able to continue execution of

instructions encountered after a vector instruction, even though the vec-

tor instruction has not completed execution. The extent of this decoupling

varies from machine to machine. In the CRAY-1, the scalar and vector pro-

cessors share a single floating-point arithmetic unit, limiting the extent to

which scalar instructions may proceed after a vector instruction is started,

whereas on the CYBER-205, once a vector instruction is started, sub-

sequent scalar instructions may execute until one is encountered which ac-

cesses main memory.

Because synchronisation between the scalar and vector processors is enforced

on the time-scale of short instruction sequences, all the performance advantages

of the vector architecture will be lost unless the scalar processor is sufficiently

fast. For this reason, care has been taken to provide a fast scalar processor in

ESP. In addition, the interconnection between the scalar and vector processors is

necessarily complex, to provide support for rapid instruction and data transfer, and

synchronisation. This precluded use of a ready-built computer as the scalar part

of the machine, and the performance requirement meant that the scalar processor

could not be built from one of the more common microprocessor parts available at

the time of design, and has been implemented using a relatively uncommon fast

microprocessor chip set.

It would have been possible to build ESP as a stand-alone super-computer.

However this would have entailed the provision of various I/O sub-systems, in-

cluding disk and terminals, and of a full operating system including filing system

etc. A preferable alternative was to connect the machine to an existing computer

or network of computers which can provide most of this functionality. One op-

tion would have been to integrate ESP into the Departmental Ethernet network,

running TCP/IP protocols, and to write handlers for NFS file service protocols,

Chapter 5. The Architecture of ESP 	 75

standard remote terminal protocols, and so on. This in itself represents a great

deal of work, however, for a new machine for which everything from assembler

upwards must be written from scratch. To avoid this, it was decided to operate

ESP as a back-end processor to one computer, a workstation, on the Depart-

mental network. The connection between the host workstation and ESP can then

be a dedicated link, with much simpler protocols than those needed for a direct

ESP/network connection. Front-end programs running on the workstation down-

load code and data to ESP, and start and stop ESP execution. Input and output

to and from programs running on ESP is via the workstation. The workstation

connection has been made as fast as possible by using a multi-wire parallel link,

and, at each end of the link, a control microprocessor handles transfer of data and

control information.

The general structure of the machine is shown in figure 5-1. Triple buses

(two read buses and one write bus) connect the vector processor to the vector

memory, to provide the required vector processor/memory bandwidth. Dedicated

buses connect the scalar processor to the program memory and the scalar data

memory, while a further 32-bit wide bus allows the scalar processor access to all

other memories in the machine. Vector instructions are also transferred, via this

bus, from the scalar to the vector processor. The same bus allows the control

processor full control over the entire machine.

	

Chapter 5. The Architecture of ESP 	 76

VECTOR MEMORY

4M x 88 bits

	

VECTOR
	 SLU

MEMORY
PROCESSOR
	

4M x 48 bits

UNK 	 DESCRWFOR
MEMORY 	 MEMORY

IM x 24 bits 	32K x 48 bits

SCALAR MEMORY

0
ci)

32K x 32 bits

SCALAR

PROCESSOR

CODE MEMORY

32K x 64 bits

CONTROL 	 DMA and Control
PROCESSOR
	 connections to host

RS-232 ports

Figure 5-1: The general structure of the Sparse Processor

Chapter 5. The Architecture of ESP

16f

I 	CODE
Cl I 	 I

I in 	MEMORY
:I 	I 32Kx64bits
<I 	I
0I 	I

64'

Code 	 Code

Weitek XL-8137 . 	Weitek XL-8136 I......... .Weitek XL-3364
Integer 	Status 	Program 	Status 	Floating Point

Processing Unit 	 Sequencing Unit 	 Processing Unit

32k' 	32
	

3

Data

Data Address

77

SCALAR
MEMORY

32K x 32 bits

Vector memory . 	Mapped into
Link memory i Registers n 	Scalar Processor

Descriptor memory Vector Processor 	Data Address space
SLU memory

Figure 5-2: The architecture of the scalar processor

5.2 The scalar processor and associated memories

The scalar processor architecture is illustrated in figure 5-2. The 3-chip Weitek

XL-8364 processor set forms the basis of the scalar processor. The chip set im-

plements a "Harvard" architecture, with separate code and data memory spaces -

the code memory is 64 bits wide, and in the prototype, consists of 32K words. One

64-bit instruction can be fetched every clock cycle. The code memory effectively

contains both scalar and vector instructions - the latter are passed to the vector

processor for execution, in a manner described in section 5.4.1 below. The scalar

processor chip set is described in detail in the Weitek manuals [48,49,50].

Chapter 5. The Architecture of ESP 	 78

The data memory space of the scalar processor is 32 bits wide. There is a small

(32K word) scalar memory, which may be accessed by the scalar processor in a

single clock cycle. In addition, the much larger vector memory, the link memory,

the descriptor memory, the Sideways List Unit memory, and a number of registers

within the vector processor, are mapped into the scalar data address space, to

allow access by the scalar processor (and by the control processor).

5.3 The vector processor

The architecture of the vector processor is illustrated in figure 5-3 (the link and

descriptor memories are omitted, for clarity). It comprises instruction decode and

control circuits, plus a pipelined data path consisting of parts which carry out

each of the operations identified in chapter 4, as follows:

• the Vector Read (VR) circuit fetches vectors held in either list or array

form from vector memory, following links between blocks of list vectors, as

appropriate. The VR circuit also supports indexed (ie non-sequential) access

into array vectors.

• the Index Match (IM) unit is responsible for matching the two input vector

streams, and supplying the implicit zeroes where required, to provide the

arithmetic circuits with a stream of index-matched value pairs.

• the Arithmetic Unit (A U) contains integer and floating point add and mul-

tiply pipelines, plus a bank of registers for scalar input and output operands.

• the Vector Output (VO) circuit deletes new non-zeroes, formed by cancel-

lation in the Arithmetic Unit, from the output vector stream before it is

passed to the Vector Write unit or to the Vector Register.

• the Vector Register is a 32K by 64-bit register, which can hold one or more

vectors in full form. The register feeds into the vector pipeline at the Index

Match stage, and is itself fed from the Vector Output stage.

Chapter 5. The Architecture of ESP 	 79

• the Vector Write (VW) circuit writes vectors back into main memory, either

into the pre-allocated, fixed size, space for an array vector, or into space

from the free list, for a list vector. Indexed writing into array vectors is also

supported.

the Garbage Collection (GC) circuit merges, into the free list, list vector

spaces which are no longer required.

the Sideways List Unit (SL U) maintains counts of non-zeroes in each column

of a matrix during Gaussian elimination by row, and keeps updated lists, in

the dedicated SLU memory, of the positions of the non-zeroes in each column.

The vector processor pipeline is divided into three independently controllable

sections, for reasons explained in section 5.3.2. The first section comprises the

Vector Read circuit. The second section, the Arithmetic Section, consists of the

IM, AU, VO and vector register parts. The third section, the Vector Write section,

consists of the VW, GC and SLU parts.

5.3.1 Vector instructions

Vector Types

The two basic vector storage forms described in chapter 4, array and list, are

supported. Array vectors are each stored in a single block of memory words, the

start address of which is specified in the descriptor of the vector (see below). The

value field of the first memory word holds the value of the first element of the

vector, the second word holds the value of the second element of the vector, etc.

The index field of the first memory word holds 1, that of the second word holds 2,

etc. The number of elements in the vector is given in the non.zero.count field of

the descriptor. However, the total number of memory locations used in storing the

vector is (non.zero.count + 1), rounded up to the next multiple of four. This is a

consequence of the way the four memory banks are accessed. The start address

of a vector is always a multiple of four. The first non.zero.count words hold the

I
Vector Exceptionl

Flag Register 	I

Trap 	1 I Vector
Enable Register I

c)

Instruction 	1
identifier Register[

VECTOR WRITE SECTION I

lQueue I
	Vector Write

Control

I .

VECTOR WRITE

CIRCUIT

GARBAGE I
COLLECTOR

SIDEWAYS

UST UNIT

To various 	within vector data path

Chapter 5. The Architecture of ESP

z

OVERALL

PIPELINE

CONTROL

0

VECTOR READ SECTION
VECTOR READ

CIRCUIT
Queue , 	I

Control 	 >

..... ...
:
 j

ARITHMETIC SECTION
INDEX MATCH

CIRCUIT

FIFO I I I V V

--

Arithmetic 	 I ARITHMETIC I 	i
Queue 	Section 	 UNIT II Control 	

,_L, ' V

	

FIFO [JyJ 	I
VECTOR OW

CIRCUIT

Figure 5-3: The architecture of the vector processor

Chapter 5. The Architecture of ESP 	 81

vector elements and their indices (1 to non. zero. count) . The next memory word

holds an end-of-vector marker, which is identified by an index field of all ones

(the value field is not defined). Any words remaining to bring the number of words

to a multiple of four are undefined.

A list vector may be spread over several non-contiguous memory blocks, each

of which is some multiple of eight memory words in length. Elements whose value

is zero do not have to be stored explicitly. The start address of the vector (and of

each linked block of elements) is a multiple of eight. After the last non-zero vector

element, there is an end-of-vector element defined as above, and any remaining

words to bring the total length to a multiple of eight are undefined.

The following data types are supported for both array and list vectors:

• 32-bit IEEE floating point

• 64-bit IEEE floating point

• 32-bit signed integer

• 32-bit logical

Vector Descriptors

All vectors are accessed by reference to a vector descriptor. Descriptors are

stored in a separate descriptor memory (capable, in the prototype, of storing 32K

descriptors), which is accessible to the Vector Read and Write circuits, and to the

scalar and control processors. Contained in the descriptor are the following fields:

• Vector start address (32 bits)

• non-zero.count (24 bits) - for an array vector, this is the number of vector

elements; for a list vector it is the number of elements explicitly stored in

memory (which will normally all be non-zeroes, although there is no reason

why zeroes should not be stored also).

Chapter 5. The Architecture of ESP
	

RA

Vector Instruction Formats

Each vector instruction contains some or all of the following 32-bit words (see

Appendix figure A—i):

. A control word comprising fields specifying the operation of VR, TM, AU,

VO, VW, GC and SLU (always present)

. A 24-bit integer index.count word (always present)

. A 32-bit instruction. identifier field (see section 5.4.2 below - always

present)

. For each vector operand (input or output) held in vector memory, a 15-bit

integer giving the address of the vector descriptor in descriptor memory.

. If the vector register is used as an input and/or output operand of the

instruction, a 32-bit register.offset

If a scalar input operand is required, the operand itself as an immediate

value of one or two 32-bit words

If the SLU is to be used, a word containing the 24-bit row.number to be

loaded into the SLU row register at the start of the instruction.

The presence or absence of each of the optional fields may be determined by

examining the value of the control word.

index.count specifies the notional number of vector elements to be processed

by the instruction (the real number of elements processed can be much less, if the

operands are sparse vectors stored in list form). The register.offset specifies the

index position within the 32K-element vector register at which a vector register

operand starts. Provision of this value allows the 32K-element vector register to

be partitioned into any number of smaller registers.

Chapter 5. The Architecture of ESP 	 83

Scalar input operands are always provided as literal values in the instruction,

rather than via more normal addressing modes. Although this may appear to

prevent the use of any values other than compile-time constants, in fact, because

of the way vector instructions are passed from the scalar to the vector processor

no such restriction occurs (more details are given in section 5.4.1 below). Scalar

output operands, eg the sum produced by a vector element accumulate instruction,

are always passed back to the scalar processor via a hardware queue, the Scalar

Result Queue, readable by the scalar processor.

Further details of the vector instruction set are given in section 5.6 and in

Appendix A.

5.3.2 Instruction decode and control

The sparse vectors which arise in some important sparse matrix problems (eg

Linear Programming) typically have very small numbers of non-zeroes, perhaps

6 to 10, even though the matrix order may be many thousand. In many vector

operations, the number of pipeline clocks required for the data to pass any point in

the pipeline is equal to the number of non-zeroes, and the small numbers involved

mean it is very important to minimise the start-up time of these operations. During

the initial design study, it soon became clear that the total number of pipeline

stages through the Vector Read, Arithmetic Section, and Vector Write stages was

likely to be at least fifteen, and probably over twenty. If only one vector instructibn

could execute in the pipeline at any time, the instruction start-up time could not

be less than the length of the pipeline, and so performance on problems with very

sparse vectors would be a small fraction of the available arithmetic bandwidth.

To deal with this problem, it was decided that the pipeline would be split into

independently-controllable sections, so that, potentially, as many instructions as

there were pipeline sections could be executing at once. The start-up time is then

limited by the pipeline length of the longest section. Obviously, the more inde-

pendently controllable sections, the shorter the start-up time is likely to be, but

the more complex the control hardware. On balance, it was decided to partition

Chapter 5. The Architecture of ESP 	 84

the pipeline into three sections: the Vector Read (VR) section, the Arithmetic

Section (AS) (the Index Match circuit, Arithmetic Unit, and Vector Output cir-

cuit), and the Vector Write (VW) section (the Vector Write circuit, the Garbage

Collection circuit, and the Sideways List Unit). To the author's knowledge, this

method of reducing start-up time has not been employed in any previous vector

processor design. It has some similarity to the control arrangement in a pipelined

scalar processor, where a control pipeline runs in parallel with the data pipeline,

so that each stage in the processor pipeline is executing part of a different in-

struction. The difference between such an arrangement and that in ESP is that

the ESP architecture further decouples the pipeline sections by using data queues

between the sections, and separate instruction queues for each section. Thus it is

possible for one section of the pipeline to run ahead of the next section by more

than one instruction. Similar decoupling mechanisms have been proposed for the

different parts of a scalar processor (instruction fetch, operand fetch and data

manipulation), and in that context the arrangement has been termed a decoupled

architecture [44].

The vector pipeline control circuits process a short queue of vector instructions,

passing the front instruction in the queue into the VR control circuits as soon as

the data stream for the previous instruction leaves VR (ie the last data item enters

the IM input queue). Similarly, the instruction is forwarded to the control circuits

for AS, and then VW, as the previous instruction clears those sections of the

pipeline. The queues in the data paths between each pipeline section, handshake

signals between the control circuits for each of the three sections and the overall

pipeline control circuit ensure that instructions and associated data flow through

the sections correctly.

5.3.3 The Vector Read circuit

For each vector instruction, the Vector Read circuit may access from vector memory

zero, one or two vector operands (according to the VR mode specified in the vector

instruction). The VR circuit is also responsible for fetching the start addresses

Chapter 5. The Architecture of ESP 	 85

of the vector operands from the vector descriptors held in the vector descriptor

memory. The descriptor addresses are specified in the vector instruction.

The Vector Read circuit output path comprises a pair of 88-bit paths to the

input queues of the Index Match circuit in the Arithmetic Section. Each 88-bit

output path may carry a stream of index/value pairs - most VR modes produce

one or two index/value output streams. (A vector operand stream consists of a

stream of index/value pairs, in which the indices are in ascending order, but not

necessarily consecutive, and is terminated by an end-of-vector element which has

an index field of all ones.)

Modes which produce two index/value streams include straightforward access

from memory of two list vectors, two array vectors, or one list and one array

vector. Also supported is indexed access using one array and one list vector, with

the indices of the non-zeroes in the list vector used to index into the array vector

to read the corresponding elements.

Modes which produce one index/value stream are straightforward access to a

single list or array vector.

There is also a VR mode which produces as output nothing at all ('null mode').

Null mode is used in instructions with no vector input operand, for example the

instruction which fills the output vector operand with repeated copies of a scalar

value - in null mode, the Vector Read circuit does nothing.

5.3.4 The Index Match circuit

The Index Match circuit (the first stage of the Arithmetic Section of the pipeline)

receives from VR one or two streams of index/value pairs, or nothing at all. It is

connected to the next stage of the pipeline, the Arithmetic Unit, by a 152-bit wide

data queue which may carry one 24-bit index and two 64-bit values. It passes to

the Arithmetic Unit a stream of index/value/value triples, or of index/value pairs,

or just of indices.

The functions of IM are:

Chapter 5. The Architecture of ESP 	 EM

• To match up pairs with the same index from the two input streams, generat-

ing extra zero values, or discarding unmatched input elements, as required.

• To fetch values from the vector register if appropriate.

• To fill out the operand stream so that all indices are explicitly present in the

stream if the input vectors were list type, and the instruction requires them

to be converted to array type.

. To cause the output data stream to terminate after the index being passed

to AU reaches the index.count value specified in the instruction.

• Where appropriate, to flag values passed to AU as new non-zeroes to support

operation of the Sideways List Unit.

5.3.5 The Arithmetic Unit

The arithmetic unit accepts a stream of index/value/value triples, index/value

pairs or indices only, from the Index Match circuit, and may also accept a single

scalar input operand supplied as part of the vector instruction. It performs various

arithmetic or logical operations on these, and produces as output a stream of

index/value pairs, passed to VO via a queue, and/or one or two single scalar

output values, passed to the Scalar Result Queue.

The Arithmetic Unit contains separate floating-point add and multiply pipelines,

and a bank of 32 64-bit registers, and is able to compute one double precision

floating-point add, and one multiply, per clock cycle. This allows operations such

as scalar product to use up one pair of input values per clock cycle, with one

multiply and one add operation completed each cycle. The functions supported

include straightforward vector arithmetic, accumulate operations (eg add up ele-

ments of vector), a range of searching operations to identify particular elements

of a vector, and more complex operations such as scalar product, scaled subtract

(for a Gaussian elimination step), and operations to support Linear Programming

steps such as BTRAN and FTRAN.

Chapter 5. The Architecture of ESP 	 87

5.3.6 The Vector Output circuit

The Vector Output stage is the final stage of the Arithmetic Section. It receives

as input a stream of index/value pairs from the Arithmetic Unit. It may output

a stream of index/value pairs to the Vector Write section of the pipeline (via a

queue), and/or write the vector result to the vector register.

Its functions are:

• Optionally to compare the value of incoming I/V pairs against a drop value

in a register, and to delete the I/V pair if the absolute value is less than the

drop value. This operation is valid for floating point values only, and only

the exponent field of the value is involved in the comparison.

- 	• To write values into the vector register if required.

• To pass index/value pairs onto the Vector Write unit, if the output vector is

to be written to memory.

5.3.7 The Vector Write circuit

The function of the Vector Write circuit is to write the index/value pairs received

from the Arithmetic Section back into memory. If the specified output vector is

an array vector, this is written to memory in the standard way. If the specified

output vector is a list vector, output elements are written into space from the free

list, and at the end of the write operation, the descriptor is updated to point at the

new version of the vector, while the start address of the old version of the vector is

passed to the Garbage Collection circuit. The Vector Write circuit also supports

indexed access to an array vector; in this case, the index/value pairs coming from

AS are written into the array vector using indexed addressing.

The Vector Write circuit is responsible for accessing descriptor memory at the

start of the instruction, to fetch the contents of the output vector descriptor, using

the descriptor address specified in the instruction, lithe output vector is a list

Chapter 5. The Architecture of ESP 	 88

vector, VW also updates the descriptor at the end of the instruction, to ensure

that it points at the newly allocated memory space, and to bring up to date the

field containing the count of the number of non-zeroes in the vector.

5.3.8 The Garbage Collection circuit

Garbage collection is performed on list vectors which are no longer required, usu-

ally as result of an update operation such as a - a + b, which (in common with

all vector instructions producing a list vector result) writes its result into newly

allocated space from the free list. If the output vector of a vector instruction is

a list vector, the space occupied by the old version of that list vector is retrieved

by the Garbage Collector. In addition, vector instructions exist for explicitly col-

lecting an unwanted list vector. (The mechanism used for garbage collection is

described in section 4.2.4.)

5.3.9 The Sideways List Unit

The principle of the Sideways List Unit was described in section 4.4. The SLU

supports three operations:

• Save the positions of flagged new non-zeroes, output by the Arithmetic Sec-

tion, in the relevant lists (the new non-zeroes are detected and flagged by

the Index Match circuit).

• Save the positions of all non-zeroes output by the Arithmetic Section in the

relevant lists.

• Initialise the SLU registers (the count and address registers are loaded with

zero, and the SLU memory address register with 1).

The second and third operations are used when initialising the non-zero po-

sition lists for a sparse matrix before elimination starts. If the first or second

Chapter 5. The Architecture of ESP 	 89

operations are specified, the instruction will also contain a word specifying the

row number to be loaded into the SLU row register at the start of the instruction.

The function of the Sideways List Unit is to keep track of the positions of the

non-zeroes in a matrix by column, when the rows of the matrix are stored as list

vectors in vector memory. Normally, the non-zeroes stored in the row vectors,

and the non-zeroes stored in the SLU will correspond exactly. However, if the

Vector Output circuit option which drops output vector elements whose values

are below a small threshold is enabled, the SLU non-zero lists may still contain

an entry for any matrix element thus dropped. This is not a serious problem - in

most Gaussian elimination applications, cancellation of non-zero matrix elements

to almost zero is rare, and so few elements would be dropped in this way. The

extra, false, non-zero positions flagged by the SLU would be too few in number to

substantially affect the success of the Markowitz method in minimizing fill-in, and

if any such element were selected as pivot by the Markowitz method, it would be

discovered to have zero value during the threshold check, and abandoned.

5.4 The interface between the scalar and vector

processors

5.4.1 Instruction transfer

Vector instructions are effectively part of the main ESP instruction stream, in the

64-bit wide scalar processor code memory, and are passed to the vector processor

by the scalar processor as they are encountered. However, as the entire 64-bit in-

struction field is used to encode scalar instructions, rather than distinguish vector

instructions from scalar instructions by using an extra, 65th, tag bit, ESP uses

a different mechanism to include vector instructions in the code. To generate a

vector instruction, code is included which causes the scalar processor to write a

small number of 32-bit words to a fixed scalar data address, at which is mapped

the Vector Instruction Queue (VIQ). The words written are the words which make

Chapter 5. The Architecture of ESP 	 90

up the vector instruction, and will usually be literal values specified in the scalar

instruction stream, although some of the words which make up the vector instruc-

tion may be calculated at run time by the scalar processor (for example, most

scalar input operands to vector instructions would be calculated at run time).

Vector instructions entering the 64-word (equivalent to 10 average vector instruc-

tions) Vector Instruction Queue await execution by the vector processor. Although

this mechanism requires the scalar processor to execute a sequence of instructions

to build up a single vector instruction, the overhead is not great, and using the

scalar processor to generate the values of scalar operands, rather than requiring

the vector processor to decode and execute scalar operand addressing mechanisms,

simplifies the design of the vector processor. A similar mechanism was used in the

Burroughs BSP [8], an array processor in which the control (scalar) processor

constructed each array instruction, and entered it into a queue for execution by

the processor array. The arrangement was found to support high utilisation of the

processor array.

5.4.2 Synchronisation between the scalar and vector processors

Providing a short queue for vector instructions waiting to execute decouples the

execution of instructions in the scalar and vector processors, allowing the scalar

processor to 'run ahead'; however, a synchronisation mechanism is required to

deal with data dependencies between scalar and vector instructions, and data

dependencies between different vector instructions.

The synchronisation mechanism chosen for ESP involves the labelling of each

vector instruction with a 32-bit integer, the instruction identifier, supplied as one

word of the multi-word vector instruction. By reading a 32-bit data word from

the Instruction Identifier Register, which is mapped to an address in the scalar

data memory space, the scalar processor may read the instruction identifier of the

most recent vector instruction completed by the vector processor. The program-

mer or compiler can insert an explicit check and wait loop where necessary; for

example, before a issuing a vector instruction which accesses a vector produced by

Chapter 5. The Architecture of ESP 	 91

a previous vector instruction which may not yet be complete, or before scalar code

which requires a particular vector operation to be complete. The execution time

overhead of this check is unlikely to be any greater than the overhead introduced

by an attempt to check for such dependencies automatically. To perform the check

automatically would in any case be extremely difficult, when dependencies may be

between a (full) vector output operand of an executing vector instruction, and a

single element of that vector used as an input operand for a scalar instruction (per-

haps accessed by indirection through an address register in the scalar processor).

The possibility of such dependencies is presumably the reason for the interlock,

in vector processors such as the CYBER-205., which prevents any scalar instruc-

tion which accesses memory from starting while the current vector instruction is

incomplete. The explicit dependency check mechanism in ESP has the advantage

that checking and interlock is performed only when required.

5.4.3 Data transfer between the processors

The vector memory, the link memory, the descriptor memory, and the Sideways

List Unit memory are all mapped into the scalar processor data memory address

space, so that the scalar processor may access any part of each.

The scalar processor may also access a number of registers inside the vector

processor - these are also mapped into the scalar processor data memory space.

In addition to the Vector Instruction Queue and Instruction Identifier Register

described in the previous section, the scalar processor can read scalar results of

vector instructions from the Scalar Result Queue, can access the count and address

registers in the Sideways List Unit, and can read and initialise various registers in

other parts of the vector pipeline, for example, the drop value register in VO, the

free list pointer in VW, etc.

5.4.4 Vector exceptions

Various types of exception can arise during execution of a vector instruction. For

example, an arithmetic overflow may occur. After a vector instruction encounters

Chapter 5. The Architecture of ESP 	 92

an exception, processing of the instruction continues, so as to clear all the data for

that instruction from the pipeline. Processing of subsequent vector instructions

continues normally. Any vector instruction exception causes a bit to be set in a

vector exception flag register, which may be read by the scalar processor. Bits

in this register are 'sticky' - they remain set even though subsequent vector op-

erations complete successfully - and they must be explicitly reset by the scalar

processor writing to the register. Associated with the vector exception flag register

is a vector trap enable register— when an exception flag is set, if the corresponding

bit in the vector trap enable register is set, the scalar processor is interrupted. The

vector trap enable register is loaded by the scalar processor. The scalar processor

interrupt handler will normally be able to identify which vector instruction caused

the exception, although in some cases, when several vector instructions are queued

for execution, exact identification of the problem instruction may be difficult.

5.5 The control processor

The control processor provides the interface between ESP and the host worksta-

tion. It contains a small general purpose microprocessor system able to interpret

commands passed from the host, and to transfer data at high bandwidth between

the host and the various memory spaces of ESP. It is also able to start, stop, inter-

rupt, and single step the ESP hardware, and can also interrupt the host processor.

In addition, the control processor supports two standard RS-232 terminal ports,

and runs a simple monitor program allowing a user at a terminal to download ESP

programs and data (via the other terminal line), and to run a number of hardware

tests, including single stepping the machine through a program, independently of

the host workstation.

Chapter 5. The Architecture of ESP 	 93

5.6 The instruction set

The scalar instruction set of the machine is fully determined by the choice of the

Weitek XL-8364 as scalar processor [48,49,50].

The vector instruction set is defined in detail in Appendix A. The decomposi-

tion of the vector pipeline into three asynchronously controlled sections is reflected

in the instruction format - each pipeline section (Vector Read, the Arithmetic

Section, and Vector Write) is controlled by a different field of the instruction.

In addition, the Arithmetic Section instruction field consists of three subfields,

controlling the Index Match circuit, the Arithmetic Unit, and the Vector Output

circuit, while the Vector Write instruction field includes subfields to control the

Garbage Collection circuit and Sideways List Unit. These instruction fields are

as far as possible orthogonal, except for the constraint that the kind of operand

stream generated by the instruction field for each part of the pipeline must match

the required input stream for the instruction field for the next pipeline part. This

orthogonality means that the majority of vector instructions will operate quite

happily on list vectors or on array vectors, or on one of each, and that one array

operand can optionally come from the vector register rather than memory. Out-

put vectors can be lists or arrays (the latter written to memory or to the vector

register), independent of the kind of input vectors.

The instruction fields controlling the Vector Read and Vector Write sections,

and the Index Match and Vector Output parts of the Arithmetic Section, select

from the different data handling and format conversion operations performed by

those parts of the pipeline, which are detailed earlier in this chapter. The heart

of the vector pipeline is the Arithmetic Unit, and this part of the pipeline has the

largest instruction field set. The Arithmetic Unit part of the instruction set is

based on the instruction set for MU6V [26,47]. The set may be subdivided into

four subsets:

Data movement operations These include the Arithmetic Unit no-op, used

Chapter 5. The Architecture of ESP

when copying a vector, fill instructions, used to fill the output (array type)

vector with copies of a supplied scalar or with an incrementing integer, select

instructions, which locate or extract vector elements whose values satisfy a

specified arithmetic comparison against a supplied scalar, and search instruc-

tions, which find extreme values in a vector.

Arithmetic operations These include the normal vector/vector operations:

element-wise add, subtract, multiply and divide. Reverse subtract and re-

verse divide are also provided, because the two-operand fetch options of the

Vector Read circuit are not fully symmetrical. There is a variety of options

for scaling one of the two vector operands using an additional scalar oper-

and, including, for example, the scaled vector subtract operation required for

Gaussian elimination. Instructions for add, subtract, multiply and divide of

a single vector by a scalar operand are also provided. Finally, accumulating

arithmetic instructions, which produce a scalar, rather than a vector result,

are provided. These include the scalar product instruction, and instructions

for adding up the elements of a vector, and for accumulating the sum of the

squares of the elements of a vector.

Logical operations Bit-wise and, or, and exclusive or operations between two

logical type vectors are supported, plus the logical inversion of the bits of

a single vector operand. The shift instructions shift each word of a single

vector operand, and there are accumulating instructions which produce a

scalar result from a bit-wise and, or or exclusive or of every word in a vector.

Special operations These are unusual vector instructions which have been ad-

ded to support specific operations in the target applications - operations

which are not normally implemented by a single instruction, but which are

time critical. Two such instructions have been identified so far, to support

the Linear Programming BTRAN and FTRAN operations. The BTRAN

instruction takes three operands: an array vector held in the vector re-

gister (this is the vector being updated), a sparse vector from memory (the

71-vector), and an integer (the column position of the 71-vector). The instruc-

Chapter 5. The Architecture of ESP
	

95

tion forms the scalar product of the two vector operands, then writes the

result to the element of the vector register indexed by the integer operand.

The FTRAN instruction takes the same triple of operands. It first reads

the value of the element of the vector register indexed by the integer oper-

and, then scales the sparse vector operand by this value and adds the scaled

sparse vector to the vector register.

The instruction decode and control circuits for each part of the vector pipeline

have been implemented using programmable logic components, to allow some scope

for alterations to the instruction set in the light of experience with the machine.

In particular, it may turn out that there are other parts of the target applications

which can be made considerably faster by adding new special vector instructions

like those already provided for BTRAN and FTRAN.

Chapter 6

The Implementation of ESP

6.1 Introduction

The implementation of a prototype of the architecture described above has been

underway since 1991. The implementation has been developed by the author and

R.W. Thonnes; detailed circuit design has been carried out by R.W. Thonnes, and

construction, by P.J. Lindsay. The detailed design and construction are not yet

complete.

6.2 Basic design decisions

The timescale and budget available for the building of the prototype have pre-

cluded the use of custom VLSI; ESP has therefore been designed from off-the-shelf

components. However, the uncertainties in the architectural details of the vector

processor, and the relative lack of experimental results from simulation studies

at the start of the design, meant that it would be desirable to be able to make

changes to the detailed architecture in the light of experience with the machine.

This has affected both the choice of components and the constructional technique.

By using general purpose parts for implementing data path registers and pro-

cessing elements, rather than single-function components, and by extensive use of

Chapter 6. The Implementation of ESP 	 97

programmable hardware in control circuits, the detailed function of each part of

the machine may to some extent be modified in the light of experience in com-

missioning it. In particular the Integrated Device Technology 1DT49C402

16-bit wide general-purpose data path device, which contains an ALU and 32 16-

bit registers, has been used in several of the functional units, and the Altera

range of erasable programmable logic devices (EPLDs) has been used in many

parts of the design, including in particular the EP448 programmable microcode

sequencer/store [2], for controlling operation of the data path devices. The choice

of wire-wrap construction means that it is also possible to make more substantial

hardware changes if necessary.

Early design decisions were made for some parts of the machine where the

choice of suitable components was limited. In particular, it was straightforward

to choose a component to form the Arithmetic Unit of the vector pipeline. The

relative advantages of the VLSI parts available for IEEE standard floating-point

arithmetic are discussed in section 6.10.2 below - the part chosen was the Weitek
WTL-3364 [48]. Use of this component limits the clock speed of the vector

pipeline to a maximum of 10MHz.

Another early decision was to choose the 3-chip set Weitek XL-8364 [48,49,

50] as the scalar processor, mainly for reasons of performance, but partly because

it uses the same floating point unit as that chosen for the vector processor. This

has helped to reduce time spent on both hardware and software development. The

fastest version of this chip set available is an 80ns version, from which it is possible

to build a system running at 10MHz, using a memory system capable of lOOns

cycle time and 80ns access time. In practice, 120ns is more likely to be the fastest

clock speed achievable, once external logic has been added.

The third design decision taken at an early stage was to implement the vec-

tor memory using four banks of dynamic RAM. Static RAM would have been

prohibitively expensive for the size of store required. The fastest dynamic RAM

components available at that time had cycle times in the range 120ns to 150ns,

which roughly matches the clock speed likely to be achievable in the vector pipeline.

Each pipeline cycle may use two vector input operands and produce one vector

Chapter 6. The Implementation of ESP 	 98

output operand, so it is necessary to read two words from, and write one word

to, memory every cycle. Allowing extra memory bandwidth for scalar processor

accesses, it is clear that providing four memory banks matches the memory band-

width to that of the processors. The highest density memory components available

at reasonable cost were 1M by 8-bit modules, and so each bank is constructed from

eleven of these, to give a total of 4M words of 88-bit wide vector memory.

In the light of these decisions, the design of the rest of the machine assumed a

main clock period of 120 to 150ns, with the possibility that some parts which might

be built from faster components (eg the Vector Read and Index Match circuits)

might be clocked from a synchronous clock running at twice that speed.

6.3 Physical partitioning of the machine

Initial estimates indicated that the required circuit board area was approximately

4000 cm. 2 . The largest easily-available standard card frame, triple Eurocard (9U),

provides for boards up to approximately 30 cm square, and wire-wrap prototyping

cards of this size, with a complete 0.1" grid of holes, and power and ground

colander planes, were available within the Department. Each of the available

prototyping boards can be fitted with three 96-way connectors on the back edge,

plus three 64-way connectors on the front edge. Allowing 36 connector pins for

power feed to the board via the back edge connectors, 444 pins remain available,

and a proportion of these is required for ground return wires for critical signals.

The circuitry was partitioned between seven such boards - the main criterion for

deciding the partition being minimisation of inter-board connections.

The parts of the machine are divided between the seven circuit boards as

follows:

1 The control processor and ESP end of the host interface connection

2 The scalar processor with associated code memory and scalar data memory

Chapter 6. The Implementation of ESP 	 99

3 The vector Arithmetic Section (comprising the Index Match circuit, the Arith-

metic Unit, and the Vector Output circuit) plus the Vector Instruction

Queue, and the Overall Pipeline Control circuit

4 The memory controller, comprising Vector Read and Vector Write circuits,

Garbage Collector, plus link memory and vector descriptor memory

5 The Sideways List Unit

6, 7 A pair of boards carrying the vector memory, two banks per board.

The relative positions of, and connections between, the seven boards are illus-

trated in figure 6-1.

The seven boards are mounted, in the order shown, in a standard triple-

Eurocard card frame inside a 19" cabinet, in the lower half of which is the machine's

power supply (which can provide 60A at 5V). Connection between the boards is

effected via three printed circuit backplanes running across the back of the card

frame, designated A (top), B (middle), and C (bottom), plus ribbon cable con-

nections between connectors mounted on the front edges of some of the boards -

there are three positions for these front edge connectors, designated D (bottom),

E (middle), and F (top).

The backplane printed circuits incorporate ground planes, and provide an elec-

trically quieter connection than the ribbon cable connections at the front of the

boards. Each backplane however runs the full width of the card frame, whereas

each front edge connector position can carry different signals between different

pairs of boards. The backplanes were therefore used for the common connections

to all boards, and for more time critical connections. Running across most of

backplane A is the scalar bus, which provides for transfer of all data and code

to and from the host, via the control processor, for transfer of data between the

scalar processor and vector processor registers, vector memory, and SLU, link and

descriptor memories, and for transfer of vector instructions from the scalar pro-

cessor to the vector processor. Running across the remainder of backplane A,

Chapter 6. The Implementation of ESP 	 p[lIiJ

SCALAR BUS

. x
z

1719
	

X - BUS
Y-BUS
	

U

14
	

Y - BUS

0

Cn

C.) a.)
a.)

2
Cl .

—
2
o
U

Cz
C)

Cl)

Cz

-
.— Cl) 0 _

C.) a.)

On
I-

-
- C

• 0 -0

U

o 0 0 -
U

CI)
04
C

U

z
C
U

z
C

F 	
\Link 	II

to Host 	I 	I 	I 	I 	I

E 	 Z - BUS
I 	I 	I 	I 	I
I
Vector Sub-\

	

I 	I 	I 	I

D Instruction Bu9\ 	Vector Address Bus

	

I 	\ 	I 	I
connects to surface of
Memory Controller Board

Figure 6-1: Interconnection between the seven circuit boards

Chapter 6. The Implementation of ESP 	 101

together with the whole of backplanes B and C, are the two vector Arithmetic

Section input buses, designated the X bus and the Y bus. These carry index/value

pairs from the vector memory, under control of the Vector Read section, to the

vector Arithmetic Section.

Connecting the memory controller to the vector memory boards, in the D

connector position at the front of the boards, is the vector address bus, which

carries vector addresses and read/write request control signals from the memory

controller to the memory boards. The E and F connector positions are used for the

vector Arithmetic Section output bus (the Z bus), which carries index/value pairs

from the vector Arithmetic Section to the memory and to the Sideways List Unit,

under control of the Vector Write section on the Memory Controller board. In

the D position, a ribbon cable link runs from the Arithmetic Section board to the

Sideways List Unit board, and to the Memory Controller board, via a connector

on the board surface, carrying vector subinstructions and synchronisation signals.

Running from the control processor board to the host interface board in the

host workstation is a 4m long ribbon cable, for data and program transfer, and

control purposes.

6.4 The host interface board

A high-bandwidth interface is required from the host workstation, via the ESP

control processor, to ESP's memories. The current host is a SUN 3/60 worksta-

tion with VME bus slots for high-bandwidth I/O, and to provide the necessary

functionality at the host end, an interface board based around a 68010 micropro-

cessor (chosen because of the level of local support for and experience with 68010

design) has been designed for one of the VME slots. A block diagram is shown

in figure 6-2. 64Kbytes of EPROM and 64Kbytes of RAM are provided, plus two

RS232 ports, and interfaces to the SUN VME bus and to the cable connecting

to ESP. The board is clocked at 8MHz, and constructed on a 6U high wire-wrap

prototyping board, so as to match the standard VME format.

Chapter 6. The Implementation of ESP 	 102

Host VME bus

I 	 I

	

64Kbytes 	 64Kbytes I 	 I

	

EPROM 	 RAM VME bus interface
c/-i 	 I
Cn

I 	 I
I 	 I
I 	 I

I 	 I

I 	 I
I 	 I

— 	 I 	 I
I 	 I

00 	 I 	 I 	 FI RS232 Pert 	I RS232 port 	 erface cable driver

	

Control 	Software 	- - 	Parallel interface

	

terminal 	load port 	 cable to ESP

Figure 6-2: The host interface board

The interface board processor is able to access an area of the host workstation's

physical memory, and thus blocks of data can be transferred from a buffer in host

memory, across the cable connecting the interface board to the control proèessor

board in ESP. This cable provides . a 16-bit parallel data path, and can transfer one

32-bit word every 2.75/Ls. A parallel path was chosen so that the speed of transfer

over the cable would be able to keep up with the rate at which the interface board

could access data in the host memory.

A simple loader program is held in EPROM. During development, the loader

is controlled via one of the RS232 ports, and the main software for the board is

loaded into RAM via the other RS232 port. Software may be started by a simple

command from the control RS232 port. In the final configuration, all the software

for this board will be loaded automatically from the workstation.

	

Chapter 6. The Implementation of ESP
	

103

Parallel interface
cable to host workstation

	

I 64Kbytes I 	I 64Kbytes I
EPROM 	 RAM 	 Interface cable driver

	

I I 	I 	I
I 	 I 	 I 	 I

0 I 	 I 	 I 	 I 	 I

	

I 	 I 	 I 	 I
I 	 I 	 I I 	 I 	 I
I 	 I 	 I

I 	 I 	 I
I 	 I 	 I

00

	

I 	I RS232 port f 	RS232 port 	
ESP scalar bus
master interface

Control 	Software 	 ESP scalar bus
terminal 	load port

	

- 	 Figure 6-3: The control processor

6.5 The control processor

The functions of the control processor are: to support the transfer of programs

and data to/from the host workstation, to support control by the host of ESP

program execution, to support interrupts to the host by the ESP program, and to

allow local testing of ESP, separately from the host.

The obvious way to provide this level of functionality is to use a small micro-

processor system, and again the processor chosen was a 68010 running at 8MHz,

provided with 64Kbytes of EPROM and 64Kbytes of RAM, plus two RS232 ports.

Again, a simple loader in EPROM allows loading of software into RAM from an

RS232 port.

A block diagram of the complete control processor is shown in figure 6-3. The

interface to the ESP scalar bus is described in the following section. The main

ESP clock is generated on the control processor board, and runs at 8MHz.

Chapter 6. The Implementation of ESP 	 104

6.5.1 The scalar bus

The control processor must be able to access all the memories of the machine: the

program memory, the scalar data memory, the vector memory, the link memory,

the descriptor memory and the Sideways List Unit (SLU) memory. All these

except the SLU memory (which can be initialised by the vector processor) need to

be initialised from the control processor, before an ESP program can run. Also,

data may need to be transferred back to the host from several of these memories at

the end of a program run. In addition, it is important that the control processor be

able to access all ESP's memories, including the SLU memory, and many control

and status registers, for debugging purposes.

In order to be able to create and read vector and matrix data, ESP's scalar

processor also must have access to the vector, link, descriptor and SLU memories,

and must also be able to access a number of registers and queues within the vector

processor (eg the Vector Instruction Queue, the Instruction Identifier Register,

etc). Since control processor access to memory will normally be before and after

program runs, while scalar processor access will be during program execution, it

was decided to use a single bus, called the scalar bus, to support access by both

processors.

The scalar bus runs across the entire width of the backplane, so that it can con-

nect to memories and registers on any of the seven boards. By default, the scalar

processor is bus master, while the control processor may request bus mastership.

Bus arbitration takes place on the scalar processor board, and control processor

requests take priority over scalar processor accesses. Into the scalar bus address

space are mapped all the memories of the machine, plus a number of control and

data registers within both the vector and scalar processors. In addition, a register

on the control processor board is mapped into this address space, so that programs

running on the scalar processor can return status to the control processor.

Chapter 6. The Implementation of ESP 	 105

6.6 The host interface software

The software supporting the host interface consists of three parts: software run-

ning on the host workstation itself, software running on the host interface board

processor, and software running on the ESP control processor. The simple loaders

for the control processor and the host interface board processor are written in

68010 assembler, while the rest of the software is written in C.

In the initial stages of development, all data transfers are initiated by the

software running on the host. Control operations, such as starting and stopping

ESP's scalar processor, are implemented with single word data transfers to control

registers mapped into ESP's scalar bus address space. Thus, the only operation

which needs to be supported by the interface software is the transfer of a specified

size block of data between the host program and a specified area in the ESP

scalar bus address space. 'Interrupts' from ESP to the host are implemented by

having the host program regularly poll the ESP status register - at a later stage

of development, a proper ESP to host interrupt mechanism will be added.

6.7 The scalar processor

The scalar processor is built around the Weitek XL-8364 microprocessor, which

comprises a 3-chip set. The 3 devices are: the Program Sequencer Unit (PSU), the

Integer Processing Unit (IPU) and the Floating Point Unit (FPU). Each unit is

normally controlled from a different field in the instruction word (although there is

some overlap between the PSU and IPU control fields), and the whole instruction is

64 bits wide. 32K words of 64-bit wide instruction memory are therefore provided

- this is built from 80ns static RAM, so that one instruction may be fetched per

clock cycle. 32K words of 32-bit wide scalar data RAM are provided (also built

with 80ns static RAM). :

A block diagram of the scalar processor is given in Figure 6-4.

Chapter 6. The Implementation of ESP

Weitek XL-8136

 106

Code Address

 I 	32Kx64
Program Sequencing 	 Code Memory

Unit 	 COde

Data Address

32K x 32
Data Memory

Weitek XL-8137
Integer Processing

Unit

Data
c5

Weitek XL-3364
Floating-Point

Unit

Figure 6-4: The scalar processor

I-

0 rj

V

V

Chapter 6. The Implementation of ESP 	 107

Vector instructions are not explicitly present in the instruction stream - they

are generated by scalar processor code which writes a vector instruction as a short

sequence of 32-bit words, into the Vector Instruction Queue, via the scalar bus

(see section 5.4.1). No special hardware is needed on the scalar processor board

to support this.

6.8 The memory controller

The memory controller comprises the Vector Read, Vector Write, and Garbage

Collection circuitry, plus the two memories used by these circuits, the link memory

and the descriptor memory (see Figure 6-5). Accesses to the link memory may

come from the Vector Read circuit (if one or two list vectors are being read), the

Vector Write circuit (if a list vector is being written), and the Garbage Collection

circuit. The descriptor memory is accessed by the Vector Read circuit at the start

of a vector operation, and by the Vector Write circuit, at the start of an operation

which produces an array vector result, or at the end of an operation which produces

a list vector result (to update the start address and non-zero count). Arbitration

circuitry is therefore required for both these memories.

Arbitration is also needed for access requests to the vector memory itself - the

Vector Read and Vector Write circuits will often both be accessing vector memory

during a vector instruction. In addition, requests to access vector memory may

be made via the scalar bus, by the scalar processor or the control processor. To

simplify the arbitration, all these requests are channelled through the memory

controller board. A vector address bus connects the memory controller to the two

vector memory boards, and transfers one memory request per clock cycle. Eight

distinct kinds of memory request may be made:

R4X, R4Y Read four consecutive memory locations starting at the given ad-

dress, into the memory board output queues for the X-bus and Y-bus re-

spectively.

Vector
Write

processor

Z transfer
controller

Y channel
processor

Y transfer
controller

Xchannel
processor

- C.)

C-
N

Z - bus
index and
control fields

cr

Y - bus
index and
control fields

C C)

I-

0

C-)

t)

0

Cd,

0

Chapter 6. The Implementation of ESP
	

108

32K x 48
Descriptor
Memory

Scalar bus

IM x 24
Link

Memory

2

C)
UU U

	

Garbage 	 Link and vector

	

Collection 	memory refresh

	

circuit 	 controller

	

transfer 	 X - bus

index and

	

controller 	fields

Figure 6-5: The memory controller

Chapter 6. The Implementation of ESP 	 109

R1X Read a single memory location into the memory board output queue for the

X- bus.

W4Z Write four consecutive memory locations starting at the given address, with

data from the memory board Z-bus input queue.

W1Z Write one location with a word of data from the memory board Z-bus input

queue.

RS Read a memory location into the memory board scalar register.

WS Write a memory location with data from the memory board scalar register

Refresh Perform a refresh cycle.

6.8.1 The Vector Read circuitry

The Vector Read circuitry forms the first section of the vector processor pipeline.

It receives instructions from the vector processor Arithmetic Section board via

the vector instruction bus - a new instruction is sent by the vector processor

as soon as there is space in the Vector Read instruction queue, and there is a

vector instruction available. The instruction received by the Vector Read circuit

comprises a sequence of one or more 32-bit words - the first word is a copy of the

vector instruction control word. This may be followed by the vector descriptor

address for one or two vector input operands.

The Vector Read circuitry is implemented as two microprogrammed 32-bit

integer processors, each constructed from an EP448 programmable microcode

sequencer/store, and a pair of 1DT49C402 16-bit integer processors. One of these

microprogrammed processors, the X-channel processor, is responsible for issuing

memory requests for the X-bus data stream, the other, the Y-channel processor,

for the Y-bus data stream.

The X-channel processor has three modes of operation. One corresponds to the

Vector Read modes designated AA2, AL2 and Al (see Appendix section A.1) -

Chapter 6. The Implementation of ESP 	 110

here the X-channel is reading an array vector. First the start address is fetched

from the descriptor memory, and then a sequence of R4X requests is issued into

the X-request queue, until the entire vector length (given in the non-zero.count

field of the descriptor, but incremented to allow for the end-of-vector element, and

then rounded up to a multiple of four) has been requested. The necessary address

increment and length checking is performed in the 32-bit integer processor. As

the issuing of the memory requests will normally proceed faster than they can be

processed, the X-request queue will fill, and an interlock holds up the X-channel

processor while the queue is full.

The second X-channel mode corresponds to VR modes LL2 and Li - in this

case, a list vcctor is being read on the X-bus. Again, the start address is fetched

from the vector memory, and R4X requests are issued, but the link memory must

be examined to generate the correct vector addresses. The operation terminates

when the end of the vector is reached - this is determined from the non-zero.count

in the descriptor, as before.

The third X-channel mode supports indexed access into an array vector (VR

mode AiL2). This is a little more complex. The vector start address is fetched

from descriptor memory as before, but, instead of repeatedly accessing blocks of

four consecutive vector elements, only those elements whose indices are present in

the list vector stream being read on the Y-bus should be fetched. In this mode,

therefore, the X-channel processor watches the Y-bus, and copies the index part of

each word as it is transferred from the vector memory output queue to the vector

arithmetic section input queue. This index is added to the X-channel vector start

address, and an R1Y request issued to the X-request queue. This continues until

the end-of-vector marker index is detected on the Y-bus, indicating the end of

the list vector. A final R1X request is then issued, to address zero, which always

contains an end-of-vector marker, thus ensuring that there is an end-of-vector

marker on the end of the X stream. Note that the transfer of the X data words

will be delayed with respect to the transfer of the Y data words, but the words

will be matched up again when they are read from, the Arithmetic Section input

queue by the Index Match circuit.

Chapter 6. The Implementation of ESP 	 111

The Y-channel processor supports the first two modes described, above - for

fetching an array vector to the Y-bus (VR mode AA2) and for fetching a list

vector (modes LL2 and AL2).

6.8.2 The Vector Write circuitry

The Vector Write circuitry (together with the Garbage Collector and Sideways

List Unit) forms the final section of the vector pipeline. It receives its instructions

from the vector processor Arithmetic Section board, over the vector instruction

bus - the next instruction, if there is one, is sent as soon as the Vector Write

section instruction queue has space for it. The instruction comprises a copy of the

vector instruction control word, followed by the descriptor address of the output

vector (if there is one), and the SLU row.number (see section 5.3.1), if there is

one.

The Vector Write circuit itself is implemented in a similar way to the each of

the Vector Read channels, with a 32-bit integer processor and a microprogrammed

controller. It has three modes: for writing an array vector result (VW mode A),

writing a list vector result (VW mode L), and for writing elements into an array

vector using indexed addressing (VW mode Ai).

In mode A, instruction execution starts with the fetching of the vector start

address from descriptor memory into one of the VW processor registers. W4Z

requests are then issued into the Z-request queue,, but, unlike vector read requests,

these are not issued as fast as the Vector Write circuit can generate them, but are

only issued as required. This is achieved by the vector write circuit monitoring

the Z-bus, and issuing a new W4Z request every time four elements have been

passed from the arithmetic section to the memory board Z input queue. The final

W4Z request is signalled by the presence of the end-of-vector marker in any of

the most recent block of four elements (the vector output stream coming from the

Arithmetic Section will always be padded out to a multiple of four elements, and

the end-of-vector marker will always be in the element immediately after the last

real vector element, so may be in any of the four last elements).

Chapter 6. The Implementation of ESP 	 112

Mode L is similar, except that the addresses in the W4Z requests are generated

not by counting, but from the free list, by examining the link memory starting

at the address given by the free list pointer register. In this case, at the end

of the operation the start address field in the vector descriptor, and the free list

register, are updated accordingly. In addition, the vector write circuit keeps a

count of the number of true vector elements which have passed on the Z-bus (ie

not counting the end-of-vector marker or any pad elements), and this is written

to the non-zero count field in the vector descriptor. At the end of the operation,

the old vector start address is passed to the Garbage Collection circuit, so that

the space previously occupied by the vector can be reclaimed.

In mode Ai output elements are written into an array vector using indexed

addressing. At the start of the vector write operation, the vector start address

is fetched from descriptor memory. The index field of each element passing on

the Z bus is added to the vector start address, and a W1Z request issued to the

Z request queue. This continues until the end-of-vector marker is detected on

the Z-bus. A final W1Z request is then issued for vector address zero, causing

the end-of-vector marker to be written to this address (which is used solely for

disposing of these unwanted values).

6.8.3 The Garbage Collection circuitry

The Garbage Collection circuit operates under the control of the Vector Write

circuit. If the Vector Write instruction specifies mode G, and also, at the end

of each Vector Write instruction using mode L, the Garbage Collection circuit

is passed the (original) start address of the specified output vector, so the space

previously used by the vector can be merged with the free list. This circuit is

implemented in a similar way to the Vector Read and Write circuits - with a 32-

bit integer processor and a microprogrammed control section. It implements the

garbage collection algorithm described in section 4.2.4.

Chapter 6. The Implementation of ESP 	 113

6.8.4 Vector memory request arbitration

At any time, there may be outstanding vector memory read requests in the X

and Y request queues, and outstanding write requests in the Z request queue. In

addition, the memory controller must ensure that the dynamic vector memory is

refreshed as often as required, and the scalar processor may also attempt a read

or write to or from vector memory at any time. As vector memory is 88 bits

wide, while the scalar bus is only 32 bits wide, a special mechanism is used to

access vector elements via the scalar bus. (The same mechanism is used for vector

memory access via the scalar bus, by the control processor.)

To write an element to vector address n, the scalar processor first writes the

more significant half of the vector value field to address msvalue, a fixed address

in the scalar processor address space, which identifies a 32-bit register on the vector

memory boards. It then writes the less significant half of the value to lsvalue,

a second 32-bit memory board register. Finally, the scalar processor writes the

vector index field (zero-extended from 24 to 32 bits) to address (vectorbase + n).

The index data is loaded directly into a register on the memory boards, but the

requested address is captured by the memory controller. The memory controller

then issues a WS (write scalar) request to the memory boards, one of which

performs the update of vector memory location n from the three data registers.

To read a vector element from vector address n, the scalar processor reads

from (vectorbase + n). The memory controller recognises the vector memory

read request on the scalar bus, and issues an RS (read scalar) request to the

vector memory. One of the memory boards performs the reading of the 88-bit

vector element into three 32-bit data registers on the memory board. The register

containing the index (zero-extended from 24 to 32 bits) is enabled onto the scalar

bus in the following clock cycle, and the scalar bus read request is acknowledged,

completing the first read cycle. The scalar processor then reads the two halves

of the value field from locations msvalue and Isvalue - these read requests are

handled by the memory boards; the memory controller is not involved.

In order to avoid holding up the scalar processor, and because scalar accesses

Chapter 6. The Implementation of ESP 	 114

to vector memory are expected to be relatively infrequent, scalar bus access to

vector memory is given priority over X, Y and Z requests. Outstanding X, Y and

Z requests are passed to the vector memory in a round-robin fashion (except when

the X queue full or Y queue full signal from the memory is asserted - see below).

A memory refresh timer and row counter request refresh cycles as required; these

have the highest priority. The memory arbitration controller is implemented using

EPLDs.

6.8.5 The data transfer controllers

The memory controller board carries three circuits which control data transfer

between vector memory and the arithmetic section of the vector pipeline, across

the X, Y and Z buses. Words are transferred from the memory boards to the

Index Match circuit (IM) X and Y input queues via the X and Y buses, and are

written from the Arithmetic Section Vector Output circuit to the memory boards

(and to the Sideways List Unit) via the Z bus.

All transfers are under the control of the memory controller board data transfer

controllers. Using a pair of X bus transfer request signals to the memory board,

and an X load signal to the IM input queue, the X data transfer controller may

request five types of transfer on the X bus:

XO, Xl These are used when R4X memory requests are being used. One word

is enabled onto the X bus from the X queue on memory board 0 or 1 re-

spectively, and is clocked into the IM X input queue.

XOK, X1K As above, but the word is killed, ie it is enabled onto the X bus

from the X data queue, but is not clocked into the TM input queue. This is

for removing elements after the end-of-vector marker, and relieves the Index

Match circuit of the this task. The X transfer controller monitors the index

field of the X bus to identify the end-of-vector marker, and knows how many

kill requests to issue from the value in a two-bit transfer counter.

Chapter 6. The Implementation of ESP 	 115

XB This is used when R1X memory requests are in use. One memory board's

X queue will have an actual memory word at the front, the other board's

X queue will have a dummy value at the front (see section 6.9). The board

without the dummy value places the front value from the X queue onto the

X bus; the other board does not enable its X bus drivers, but discards the

dummy value. The bus value is loaded into the TM X input queue.

Apart from up to three 'kill' transfers when the read mode is R4X, transfers

cease after the transfer controller recognises the end-of-vector marker in the word

being transferred.

The Y transfer controller supports the first four types of transfer only, as the

only Y read mode is R4Y.

To achieve proper synchronisation, each of the X and Y transfer controllers

monitors a bus signal which is generated by the second memory board (ie board

1), which indicates that the X (or Y) data queue on the memory board is empty.

A similar signal from the each of IM X and Y input queues indicates that the

queue is full.

The Z bus works in a similar way. A signal from the Vector Output circuit on

the Arithmetic Section board indicates that a data item has been enabled onto

the Z bus, for transfer to the Z data queue for vector memory. The Z transfer

controller issues one of three possible transfer requests, using two signal lines to

the memory boards, and an 'next item' signal to the Vector Output circuit. ZO

and Zi requests cause the data on the Z bus to be copied into the Z queue on

memory board 0 or 1 respectively, and signal the Vector Output circuit to proceed

with thenext data item (these requests are for use with W4Z mode writes). ZOD
and Z1D ("D" for dummy) requests are similar, but do not signal next item to

the Vector Output circuit. These are used to pad out the final block of four data

words with dummy values, after the end-of-vector word. The Z transfer controller

recognises the end-of-vector index pattern on the Z bus, and then issues up to

three of these dummy requests, according to value of a two-bit count of words

transferred so far. The actual data loaded into the Z queue is immaterial - it will

Chapter 6. The Implementation of ESP 	 116

be whatever happens to be on the Z bus in those cycles - either the bus float value

or, possibly, the first data output item of the next vector instruction. Finally, ZB

requests cause the word on the Z-bus to be copied into both Z queues, and the

next item signal to the Vector Output circuit to be asserted - this is for use with

W1Z mode writes.

ZO, Zi and ZB requests also cause the index field on the Z-bus to be loaded

into the Sideways List Unit input queue, if an additional control signal on the

Z-bus, driven by the Vector Output circuit, indicates that the index of this vector

element is to be appended to an SLU list (ie it is a new non-zero in the matrix). A

wired-or status signal, driven by memory board 1 and by the SLU board, indicates

to the Z transfer controller that the memory board Z data queues or the SLU input

queue are full; this holds up the issue of transfer requests.

6.9 The vector memory

The two vector memory boards are virtually identical. Each board carries two

banks of vector memory, and each bank comprises 1M words of 88-bit wide memory

(24 bits to store the index, 64 bits for the value). A block diagram of the vector

memory hardware on one board is given in figure 6-6. Memory banks 0 and 2 are

on board 0; banks 1 and 3 are on board 1.

At the start of each clock cycle, the memory boards may latch a memory

request from the memory controller into the memory request register. The two

memory boards always receive exactly the same request in each cycle. The action

of the memory board in the clock cycle depends in the kind of memory request

(refer to section 6.8 above), as follows:

R4X, R4Y Each memory board reads a word from each of its two memory banks,

into holding registers. In the following clock cycle, each board loads the two

words read, in order, into the X queue or Y queue.

Chapter 6. The Implementation of ESP
	

117

Vector address bus

Control
	

Buffer

1Mx88 1Mx88
memory I memory I bank. bank

Holding register I 	 I Holding register

I Scalar bus Y 	I 	I 	z 	
interface queue

X 	
queue 	 queue 	registers

X - bus 	Y - bus 	Z - bus 	Scalar bus

Figure 6-6: The vector memory board

Chapter 6. The Implementation of ESP 	 118

R1X The memory board with the selected bank (as indicated by the bottom two

bits of the memory address) reads a word from that bank into a holding

register. The unselected memory board places a special dummy word into

the holding register. In the following cycle, both boards load the single word

from the holding register into the X queue.

W4Z Each memory board writes the front two words in the Z queue into its two

memory banks.

W1Z The memory board with the selected bank writes one word from the Z

queue into that bank. The other board deletes one item from the Z queue.

RS The memory board with the selected bank reads one word into the scalar

output registers, and sets the scalar access flag flip-flop. The unselected

board unsets its scalar access flag flip-flop. In the following cycle, the selected

board's index field scalar register is enabled onto the scalar bus, and a scalar

bus acknowledge signal generated.

WS The memory board with the selected bank writes the scalar input registers

into the memory.

Refresh Both memory boards perform a single refresh cycle. No data transfers

take place.

X-queue-full and Y-queue-full status signals are provided by memory board 1,

to the memory controller (note that it is impossible for a queue to become full on

memory board 0 without the corresponding queue on memory board 1 also being

full, and note also that "full" here means zero or one places free, as two free places

are needed in each queue for a memory request which reads four words to be safely

issued). When asserted, these signals prevent the issue of X memory requests and

Y memory requests, respectively. No status signal is needed to signal that the

Z queue is empty, because the memory controller only issues Z memory requests

when it has monitored the necessary number of data items being transferred across

the Z bus into the Z queues.

Chapter 6. The Implementation of ESP 	 119

The memory boards are also able to respond directly to scalar bus accesses to

the two addresses lsvalue and msvalue, which correspond to the less significant

and more significant half of the value field of the scalar input and output registers.

A scalar bus read access from either of these addresses will cause the memory

board with the scalar access flip-flop set to enable the relevant register onto the

scalar bus, and generate a bus acknowledge signal. A scalar bus write access to

either address will cause both boards to load the relevant register from the scalar

bus.

Each memory bank is implemented with eleven 1M by 8-bit SIMM modules,

while the queues are built from Texas Instruments SN74ALS2232 64-word

deep, 8-bit wide FIFO devices [46].

6.10 The vector Arithmetic Section

The Arithmetic Section board carries the Arithmetic Section of the vector pipeline

(ie the Index Match circuit, the Arithmetic Unit, and the Vector Output circuit),

plus the interfaces between the scalar and vector processors (the Vector Instruction

Queue, the Instruction Identifier Register, the Scalar Result Queue and the vector

exception and trap enable registers). It also carries the Overall Pipeline Controller,

which splits each vector instruction taken from the Vector Instruction Queue into

the sub-instructions required for each of the three pipeline sections, and controls

the overall timing of vector instruction execution. The Overall Pipeline Controller

passes the Vector Read section subinstruction to the memory controller board,

and the Vector Write section subinstruction to both the memory controller and

Sideways List Unit boards, and it receives completion and exception signals back.

The Arithmetic Section subinstructions are queued on the Arithmetic Section

board itself, and, as the Arithmetic Section becomes free, a new subinstruction is

decoded by the Arithmetic Section control circuit, to generate the required control

signal sequences for the Index Match circuit, the Arithmetic Unit, and the Vector

Output circuit.

Chapter 6. The Implementation of ESP 	 120

A block diagram of the Arithmetic Section board is given in figure 6-7.

6.10.1 The Index Match circuit

Index Match input data is loaded into the X and Y input queues under the control

of the Vector Read circuitry. For a vector instruction which reads two vectors from

memory, the X and Y input queues will each contain a number (possibly zero) of

index/value words from the vector, followed by an end-of-vector word. For a

vector instruction which reads one vector from memory only, the X input queue

will contain a number of data words followed by an end-of-vector word; the Y input

queue will contain no words relating to the instruction. For a vector instruction

with no operands read from memory, neither queue will contain any words relating

to that instruction.

The output of the index match circuit feeds the Arithmetic Unit (AU) input

queue, which is a 152-bit wide queue, capable of holding one 24-bit index and two

64-bit values per word. The Index Match circuitry performs the operations set out

in section A.2, which may involve comparison of the index fields of the words at

the front of the X and Y input queues, deletion of one of those words, copying of

one or both of those words to the AU input queue, lookup in the vector register,

and insertion of explicit zero values and/or missing indices.

Vector elements are processed asynchronously with their consumption by the

Arithmetic Unit - the Index Match circuit continues to process input elements

and generate output elements as fast as possible, until the index match operation

is complete (see section A.2.3), delaying only if one of its input queues becomes

empty or if the AU input queue becomes full. After all data words have been

written into the AU input queue, an end-of-vector word is written - this may

come from the input queue, or if there is no input from memory (TM modes Ri
and JO), it will be generated by the Index Match circuit itself.

The queues are implemented using the SN74ALS2232 FIFOs, while the Index

Match circuit itself is based around two 1DT49C402 data path devices, and an

EPLD-based controller.

Chapter 6. The Implementation of ESP

X - bus

I 	 I
X index 1 	X value
queue 	queue

Y - bus

I

	

F_____
Y index 	Y value
queue 	queue

121

Index Match
circuit

Index
queue

A value
queue

B value
queue

Ca
Cd,

2
C

AU
micro-
code

WTL-3364
Arithmetic Unit '-4

--4

Index
queue

Value
queue

Ca
Ca

AS control

0

0
.0

Ca

Overall
Pipeline
Control

C#D

Vector Output
circuit

4
Z - bus

Vector
Instruction

Drop register

Scalar
Result Queue

rJ

0
C/D

Figure 6-7: The Arithmetic Section board

Chapter 6. The Implementation of ESP 	 122

6.10.2 The Arithmetic Unit

The design of the Arithmetic Unit centres around a single-chip arithmetic pro-

cessor, which implements both integer and IEEE standard floating-point arith-

metic. At the time of design, three manufacturers were supplying VLSI com-

ponents with this capability: Analog Devices, AMD and Weitek. The AMD

device (Am29325) has the lowest latency of all the available components; it is

implemented internally in emitter coupled logic, and can perform a 32-bit add or

multiply in a single lOOns cycle, without any pipelining. However, it does not sup-

port 64-bit arithmetic, a requirement for ESP. The Analogue Devices and Weitek

parts are CMOS chips, and use pipelining to increase the throughput of the mul-

tiplier and adder. The Analogue Devices components are a chip pair comprising

an adder (ADSP-3220) with a 3 clock cycle latency for 64-bit additions, and a

multiplier (ADSP-3210) with a 7 cycle latency for 64-bit multiplications. Both

can operate with a clock speed of up to 10MHz, and the adder can start a 64-

bit operation every clock cycle. However, the multiplier throughput is limited by

the 32-bit width of the internal multiplier array, and the relatively narrow I/O

ports; as a result, it can only start one 64-bit multiply every 4 clock cycles. The

Weitek part, the WTL-3364, is more highly integrated, containing separate add

and multiply pipelines, plus a register file of 32 64-bit general purpose registers,

on a single chip. It is capable of simultaneous pipelined 64-bit multiply and add

operations, at a clock speed of 10MHz, with latencies of three clock cycles only.

The I/O port bandwidth is sufficient to start a new three-operand (two input, one

output) 64-bit operation every clock cycle. The chip can therefore support 64-bit

vector addition at 10 MFlop/s and scalar product at 20 MFlop/s. The Weitek

part was chosen to form the basis of the Arithmetic Unit.

Data transfers within the Arithmetic Unit, and the operation of the WTL-

3364, are controlled by microcode generated by the Arithmetic Section control

circuit, to implement the operations described in section A.3. The two input

buses of the WTL-3364 are usually fed directly from the two value fields of

the Arithmetic Unit input queue, although scalar values may be input to the

WTL-3364 from the AS instruction queue. The output bus of the WTL-3364

Chapter 6. The Implementation of ESP 	 123

is connected to the value field of the Vector Output circuit input queue, and also

to the input of the Scalar Result Queue. Indices bypass the arithmetic chip, being

copied directly from the index field of the AU input queue to the index field of the

VO input queue.

The AU pipeline is halted if the AU input queue becomes empty, or the VO

input queue or Scalar Result Queue become full.

6.10.3 The Vector Output circuit

Input data for the Vector Output circuit comes from the VO input queue, an 88-bit

wide queue containing index/value pairs. If mode D is specified (see section A.4),

the exponent of each input value is compared against the drop value register

contents. If the input item exponent is less than the drop value exponent, the

input item is discarded. Otherwise, if the R mode is specified, the input item is

written into the vector register at an address given by adding the register.offset

value from the vector instruction and the input item index field, and the item is

removed from the input queue. lithe M mode is specified, the input data item

is driven onto the Z bus, and the Z bus ready signal is asserted to the Z transfer

controller on the memory controller board. When the 'next item' signal is received

from the memory controller, the item is removed from the both the Z bus and the

VO input queue. This continues until the end-of-vector marker is found in the

input queue. In mode M that marker is driven onto the Z bus as usual, while in

mode R it is discarded.

6.11 The Sideways List Unit

The Sideways List Unit is illustrated in figure 6-8. The memory comprises 4M

words of 48-bit wide memory (since the total memory size is only 4M words, the

link field need only be 24 bits wide, rather than the full 32), implemented using

24 off 1M by 8-bit SIMM dynamic memory modules. The count and address

Chapter 6. The Implementation of ESP 	 124

register banks are each implemented as a 32K bank of 24-bit registers, each using

three 32K by 8-bit static RAM devices. A simple processor is provided to support

incrementing and clearing of the count registers. Input data from the Vector

Output circuit arrives via the Z bus into the SLU input queue. The Z bus hold

signal is asserted by the SLU if the input queue becomes full.

The SLU receives a copy of the Vector Write pipeline section subinstruction

over the vector instruction bus, and executes the SLU subinstruction specified (see

sections 5.3.9 and A.5.1), using the row.number field from the subinstruction

when relevant. The control circuitry handles refresh of the dynamic memory.

6.12 Testing ESP

At the time of writing, the host interface board, the control board, and the scalar

processor are constructed and under test. Initial testing uses C programs compiled

for the 68010 and loaded onto the host interface and control processor boards via

the RS232 ports. This allows testing of the host interface access to the host

memory, the host interface to control processor connection, and the ESP scalar

bus. An assembler has been written for the ESP scalar instruction set, and the

scalar processor is tested by loading programs prepared in assembler, into the

program and data memories, and operating the scalar processor under the control

of the control processor.

Initial tests on the vector memory and memory controller will be carried out by

simulating control and data inputs, and testing access to vector memory from the

scalar bus, using the control processor. Once construction of the vector Arithmetic

Section is complete, the complete vector processor will be tested by feeding it single

vector instructions direct from the control processor, over the scalar bus. Finally,

the Sideways List Unit will be constructed and tested on single vector instructions.

Complete scalar/vector programs, prepared in assembler, will then be tested,

including subsections of complete applications, such as sparse Gaussian elimina-

tion. Mounting of Linear Programming code on ESP will proceed by altering an

03

Cd
U

C,)

Chapter 6. The Implementation of ESP

Z - bus 	 Vector
subinstruction bus

125

Figure 6-8: The Sideways List Unit

Chapter 6. The Implementation of ESP 	 126

existing LP package running on the host workstation, so that time critical parts of

the algorithm are transferred to ESP for execution. Initial work on a FORTRAN

compiler for ESP is also underway.

Chapter 7

The Performance of ESP

7.1 Introduction

The mechanisms used by ESP to store and process sparse vectors were chosen after

a simple pencil-and-paper analysis of the performance of the various alternatives

(described in chapter 3). Similar analysis also guided the development of the ar-

chitecture of the machine, suggesting important architectural features, such as the

three section vector pipeline, and the decoupling of scalar and vector instruction

execution. The guiding principle behind the architectural design was to obtain the

maximum possible utilisation of the vector arithmetic unit. It was also important

that this performance be met by hardware built using similar technology to that

of the arithmetic unit, with the same clock rate. In this way, the new design

should be capable of scaling to faster technology - increases in the speed of the

arithmetic circuits should be matched by corresponding increases in the speed of

the new memory control hardware.

Once the architecture was defined to the level described in chapter 5, it was

clear that, if it could be implemented as described, the performance of individual

sparse vector arithmetic operations would be several times better than conven-

tional implementations on scalar or standard vector architectures. Vector/vector

operations, such as add or scaled subtract, generate one output non-zero per ESP

clock cycle (ignoring cancellation of result elements to zero). Because a sparse

vector operation on a conventional machine requires either a scalar loop of several

instructions, or a short sequence of standard vector instructions including scatter

and gather, plus the overhead of memory management checks, the new architecture

127

Chapter 7. The Performance of ESP 	 128

should have a clear performance advantage for vector operations on sparse vectors

with many non-zeroes. If the vector operands have few non-zeroes, the start-up

time of the vector instruction becomes important. It was expected that each of the

three pipeline sections could be designed with a start-up time of around 8 clock

cycles, and so a performance degradation of a little over 50% might be expected

for sequences of vector operations on sparse vectors with 6 or so non-zeroes, such

as are commonly found in large Linear Programming problems.

What was not clear at early stages of the design process was whether the

vector speed advantage of the new architecture could be successfully exploited on

the target applications, or whether overall execution speed would be limited by the

scalar processor, or by other unexpected bottlenecks in the design. Also unclear

was whether the defined architecture could be implemented successfully, with the

estimated start-up times and processing bandwidths.

To investigate the first of these questions, simulation studies on the Linear

Programming target application were carried out by K.I.M. McKinnon, using es-

timated execution timings for scalar and vector instructions, provided by the au-

thor. The simulation method used was to augment the time-consuming parts of

an existing Linear Programming implementation with code which kept track of

the number of ESP clock cycles elapsed. The simulation accounted separately for

scalar and vector processor clock cycles, on an instruction by instruction basis,

and was therefore able to estimate the delays caused by synchronisation between

the two processors. The results are described below, and were generally encour-

aging - no bottlenecks were found, and the loads of the two processors seemed to

be well-balanced, with over 70% utilisation of both scalar and vector processors.

The vector arithmetic unit was used to 30 to 50% of capacity on many problems

(an excellent figure, even for a vector architecture). After the subsequent detailed

design work on the prototype, it has become clear that the scalar processor timing

estimates used in this simulation were over-optimistic by a factor of about two,

and thus the average vector processor utilisation and arithmetic rates of the real

prototype, on LP problems, will probably be 25% to 50% less than these results

Chapter 7. The Performance of ESP 	 129

suggest. However, the originally estimated scalar performance could probably be

achieved by improvements to the current prototype scalar processor design.

These results gave some confidence that the architecture was reasonable. As

more detailed design was progressing, two further simulation studies were carried

out, both by students in the Department of Computer Science, under the supervi-

sion of the author. Both of these involved writing code to simulate the operation

of ESP, using the simulation system SIM++ [30], a package for distributed dis-

crete event simulation, which is based on the language C++. The first study, by

A.G. Manning [35], simulated parts of the vector pipeline of ESP at the level of

architectural detail described in chapter 5. The tests used simple sequences of

various vector instructions, on array and list vectors of various sparsities. The

second study, by Goh Boon Seng [20], simulated the scalar and vector processors

at a rather more detailed level, incorporating some of the implementation detail

described in chapter 6. Simulation experiments included execution of simple vec-

tor instruction sequences, and central parts of the Gaussian elimination algorithm,

using matrices of various sizes and sparsities. The results of both these studies are

described below.

Chapter 7. The Performance of ESP 	 130

7.2 The LP simulation study

The purpose of this study, by K.I.M. McKinnon, was to estimate the performance

of the proposed ESP architecture on typical Linear Programming problems. The

study was performed by adding code to an existing Linear Programming solver

written in the language IMP [42]. The three intensive parts of the LP calculation

(described in section 2.4), BTRAN, pricing and FTRAN, were examined in detail,

and five LP problems, covering a range of typical problem structures, were used

as test data.

7.2.1 The model

ESP was modelled by estimating the number of scalar processor clock cycles re-

quired for each scalar operation, and the number of vector processor cycles required

for each phase of a vector instruction (ie start-up time and execution time, in each

section of the pipeline). The modified IMP program kept track of the elapsing

clock cycles as the computation progressed. The scalar processor/vector processor

interface was also modelled - the Vector Instruction Queue was assumed to be able

to hold three vector instructions in addition to any instructions actually executing,

and the operation of the Instruction Identifier Register was modelled accurately.

Most scalar operations were assumed to take one clock cycle if acting on operands

likely to be in registers, while 2.5 clock cycles was allowed for the scalar processor

to access operands in scalar or vector memory. Scalar floating-point add and mul-

tiply were assumed to take 2 and 4 cycles respectively. The start-up times for

the three vector pipeline sections were estimated at 6, 7 and 6 cycles (VR, AS

and VW respectively), and it was assumed that the vector Arithmetic Unit could

start a ne* operation per clock cycle. Finally, it was estimated that the scalar

processor would require 6 clock cycles to prepare a vector instruction and add it

to the Vector Instruction Queue. If that queue was full when the scalar processor

attempted to insert a new vector instruction, the scalar processor would enter a

wait loop until space became available in the queue.

Chapter 7. The Performance of ESP 	 131

During each phase of the computation, the program kept track of the amount

of time for which the scalar processor was executing useful instructions, and the

amount of time it was blocked by a full Vector Instruction Queue. The amount of

time the vector processor was executing instructions was also accumulated, as two

figures - the time the Arithmetic Unit was performing useful work, and the time

spent in vector instruction start-up. For comparison purposes, a second version

of the program was prepared, which calculated the elapsed time for the same

algorithm executing entirely on the scalar processor.

7.2.2 The results

For the BTRAN and pricing phases, behaviour was relatively straightforward.

In each case, a lengthy sequence of vector instructions is issued - for BTRAN,

a sequence of the special BTRAN instructions, one for each 77-vector, and for

pricing, a sequence of instructions performing scalar products between the price

vector in the vector register and each column of the matrix A 1 . In both cases, the

scalar processor simply loops, preparing the vector instructions. For the pricing

step, the matrix columns are very sparse (six or so non-zeroes), while for BTRAN,

the i7-vectors are similarly sparse immediately after a re-invert operation, but the

density of new 77-vectors produced as iterations proceed rises to 10 or 20%. The

study found that the vector processor utilisation was high (the vector processor

was executing instructions 70% or more of the time), because the preparation of

vector instructions by the scalar processor was overlapped with vector instruction

execution. However, between one quarter and two thirds of the vector processor

execution time (the proportion varied from problem to problem) was spent on

instruction start-up, reflecting the very small number of non-zeroes in many of the

vectors processed. For both BTRAN and pricing, the speed-up, compared with

the simulated scalar-only implementation, was between six and twelve times for

most test problems, but only three times on one test problem of unusual structure.

The FTRAN phase was more interesting. FTRAN consists of a sequence of

scaled additions of the 11-vectors into the vector register. The scaling factor for each

Chapter 7. The Performance of ESP 	 132

vector addition is itself an element taken from the vector register. At the start of

the FTRAN phase, the vector in the register is very sparse, and it usually remains

fairly sparse throughout. Because of this, many of the il-vector addition operations

are unnecessary - the scaling factor is zero. The FTRAN implementation used

in this study used a mixture of scalar and vector operations to identify and skip,

as far as possible, the unnecessary it-vector operations. The was done by pre-

processing (using a mixture of scalar and vector operations) the list of it-vectors

to determine data dependencies between them. The scalar processor could then

determine, as it prepared each 77-vector scaled add operation, whether the relevant

vector register element was zero, and whether any vector operations issued but

not yet complete could possibly insert a non-zero into that register element. If the

element was already non-zero, or could be made non-zero by a vector operation

issued but not complete, the 77-vector operation under consideration had to be

issued into the Vector Instruction Queue, otherwise it could safely be skipped.

The scalar processor was able to identify which of the vector instructions issued

had yet to complete, by examining the Instruction Identifier Register.

Despite the complexity of the FTRAN algorithm, and the fact that the scalar

processor is used for considerably more than simply loop iteration, the results again

showed good utilisation of the vector processor. The 77-vector data dependency

check took between 10 and 50% of the total FTRAN execution time, depending

on the problem, and over the whole FTRAN operation, the vector processor was

executing 75 to 90% of the time. As with BTRANand pricing, between one quarter

and two thirds of that time, depending on the problem, was vector instruction

start-up time. The scalar processor was doing useful work for between 50 and

80% of the time. For the problems involving denser 71-vectors, the scalar processor

spent up to 40% of the total FTRAN time waiting because the Vector Instruction

Queue was full. During the data dependency check phase, the scalar processor was

held up about half of the time, waiting for vector instructions to complete. The

overall speed-up, compared to a scalar FTRAN implementation, was in line for

that for BTRAN and pricing, namely six to twelve on most problems, but as little

as three on peculiar problems. Within each problem, the relative speed-up of the

Chapter 7. The Performance of ESP 	 133

three phases, BTRAN, pricing and FTRAN, was about the same, so that although

the proportion of time spent on each phase varies considerably between problems,

the proportions remained about the same for the vector implementations of each

problem as for the scalar implementations.

Further experiments were performed on the FTRAN phase to determine the

effect of varying some of the estimated instruction execution times. An increase in

allthree pipeline section start-up times by two cycles (to 8, 9 and 8 for VR, AS and

VW) reduced performance by 3 to 6%, while an increase in the time required for

the scalar processor to issue a vector instruction, from 6 to 8 cycles, also reduced

performance by 3 to 6%. Similar sized performance improvements were observed

for 2 cycle reductions in each of these times. Over this range of variation, therefore,

these times are not critical to the ESP performance, for this particular phase of

the LP algorithm, at least.

Overall, the results gave confidence that the architecture could provide substan-

tial performance improvement over a scalar architecture of the same technology.

Despite the fact that the test problems were very sparse, the measured speed-

ups of six to twelve times on most of them are similar to speed-ups achieved on

conventional vector processors for dense matrix computation with long vectors.

The proportion of the vector processor's time spent in vector instruction start-

up confirmed the importance, for the LP application, of keeping the the pipeline

sections short - start-up times much above 10 cycles would begin to have a consid-

erable impact on performance. The advantages of the loose vector processor/scalar

processor coupling were also confirmed, with the two processors working simultan-

eously at least 50% of the time. An interesting unexpected result was that, for

the FTRAN operation, an increase in the length of the Vector Instruction Queue

above three instructions caused a slight drop in performance. This was because

the greater the number of issued but uncompleted vector instructions, the more

often an unnecessary 77-vector operation had to be issued just in case one of the

uncompleted vector instructions changed its scaling factor (an element of the vec-

tor register) from zero to non-zero. Further experiments to find the optimal Vector

Instruction Queue length could be made on the prototype.

Chapter 7. The Performance of E9P 	 134

7.3 The first SIM++ simulation study

This study [35] was carried out in late 1991 and early 1992 by A.G. Manning,

under the supervision of the author. At the time, the detailed implementation

of ESP had not been developed, and so the simulation model was based on the

architecture level description given in chapter 5. The aims were to examine the

performance of the architecture both on simple vector instruction sequences and on

complete sparse Gaussian elimination problems, and to identify the performance

limiting parts of the design. The discrete event simulation system SIM++ was

used, and C++ code was developed to simulate the behaviour of each part of the

simplified ESP architecture shown in figure 7-1.

7.3.1 The model

The simulated behaviour of each vector pipeline section was straightforward. The

Vector Read section was modelled as having a constant start-up time, after issue of

its vector subinstruction, before it began producing output. It was then assumed

to transfer, from vector memory into its output queues, one vector element for

each input vector of the instruction, per clock cycle. The start-up time models

the subinstruction decode time plus the delay in fetching the first vector element

from memory. Similarly, the Vector Write circuit was assumed to transfer one

element from the Arithmetic Section output queue, to memory, per clock cycle,

starting a constant start-up time after the issue of the Vector Write subinstruc-

tion. The Arithmetic Section was also modelled as having a constant start-up

time after subinstruction issue. After that time, it was assumed to remove one

element from one or both of the Vector Read output queues per clock cycle. The

operation of the Index Match circuit was modelled fully, and determined whether

one or two elements were to be fetched from the Vector Read queues in each clock

cycle. The timing of the rest of the Arithmetic Section was modelled simply as

an instruction-dependent pipeline delay: the delay between the fetching of each

element or pair of elements from the Vector Read output queues, and the load-

Chapter 7. The Performance of ESP 	 135

Figure 7-1: ESP as modelled by first SIM++ simulation study

Chapter 7. The Performance of ESP 	 136

ing of the corresponding result (if any) into the Arithmetic Section output queue.

The various subinstruction start-up times were estimated, taking into account the

complexity of the respective pipeline section initialisation operations, as follows:

Vector Read - 8 cycles; Arithmetic Section - 4 cycles; Vector Write - 8 cycles. The

Arithmetic Section pipeline delay was estimated from the known characteristics

of the Weitek floating point unit, plus an allowance for the delay in the Index

Match and Vector Output circuits, and was set at 6 cycles for an add or multiply

operation, and at 9 cycles for a scaled subtraction operation.

Vector memory was modelled as a simple system capable of satisfying sim-

ultaneous access for two vector read elements and one vector write element, per

clock cycle. Written vectors were not actually stored, and the indices and values of

vectors read from memory were generated randomly as they were read, with sim-

ulation parameters controlling their size and sparsity. The simulation was driven

by a model of the vector. Overall Pipeline Control circuit, which simply

issued a preset sequence of vector instructions into the subinstruction queues for

the three pipeline sections.

This simple model differs from the real implementation in a number of im-

portant respects. The Arithmetic Section model is a simplification - the queues

between the Index Match circuit, the Arithmetic Unit, and the Vector Output

circuit are not modelled, and thus the time behaviour of the complete Arithmetic

Section is oversimplified. The timing of the vector memory was not explicitly

modelled at all - it was simply assumed that two vector elements could be read,

and one written, per clock cycle, with no competing accesses by the scalar pro-

cessor. Thus no account was taken of contention for the vector memory, or of the

organisation of the memory into banks. The scalar processor and its interface to

the vector processor were not included in the model.

7.3.2 The results

The experimental tests carried out with this model concentrated on checking the

behavidur of the data queues between the vector pipeline sections. The simplest

Chapter 7. The Performance of ESP 	 137

test involved logging the number of items in the Vector Read output queues and

in the Arithmetic Section output queue, during execution of sequences of addition

operations on pairs of array vectors. The behaviour of the queues in these cir-

cumstances is determined only by the relative start-up times of the three pipeline

sections. As was expected, the Arithmetic Section output queue never contained

more than one item, because the modelled Vector Write start-up time (8 cycles)

was less than the total start-up time for the add operation in the Arithmetic Sec-

tion (4+6 cycles). On the other hand, because the Vector Read start-up time

in this model was 8 cycles, the Vector Read section was able to proceed through

the list of instructions slightly faster than the Arithmetic Section, leading to a

gradual build-up of vector elements in the Vector Read output queues. Overall

performance, as expected, was limited by the longest of the three section start-up

times, in this case the 10 cycles for the Arithmetic Section.

The behaviour of the queues is rather more interesting when the operands are

list vectors. Tests with vectors of densities ranging from 1% to 40%, with randomly

distributed non-zeroes, showed again that the output queue of the Arithmetic

Section was not used, while data built up in the Vector Read output queues more

rapidly than was the case for array vectors, because the Index Match circuit was

often reading an element from only one of the two queues.

None of these results was surprising - they could have been predicted by a

simple analysis of the model, and indeed with such a simple model of the vec-

tor pipeline, it is unlikely that any unexpected behaviour would be uncovered

in simulating straightforward sequences of vector instructions. It had originally

been planned to extend this model to simulate execution of a complete Gaussian

elimination program, by adding a model of the scalar processor. This would have

highlighted potential problems due to the scalar/vector processing rate ratio or

the scalar processor/vector processor synchronisation mechanisms. However, the

necessary extensions to the model were not completed.

Chapter 7. The Performance of ESP 	 138

7.4 The second SIM++ simulation study

This study [20] was carried out over the period May to September 1992, by Goh

Boon Seng, under the supervision of the author. By that time, a considerable

amount of detailed work on the implementation of ESP had been completed. The

aims of the study were similar to those of the earlier SIM++ study: to test the

performance of the machine on a variety of vector operations, and on the Gaussian

elimination algorithm, but using a more accurate model of ESP than the earlier

study.

7.4.1 The model

The vector processor was modelled to the level of detail illustrated in figure 5-3,

except that the Trap registers were not modelled, nor were the vector register, the.

Garbage Collection circuit and the Sideways List Unit. The Overall Pipeline Con-

trol circuit, and the three control circuits for the pipeline sections, were modelled

as single cycle delays to allow for instruction decoding. All of the instruction and

data queues were modelled accurately, from specifications of the FIFO devices

used to implement the queues in the prototype. The Vector Read and Vector

Write circuits were modelled closely on the expected behaviour of the prototype

implementations, described in sections 6.8.1 and 6.8.2. The link memory and

descriptor memory were not included in the model, but the time for descriptor

access was built into the start-up time for both VR and VW. VR was estimated

to require 4 cycles start-up time for reading list vectors, and 3 cycles for array

vectors, while VW timing allowed 3 cycles start-up time for writing an array vec-

tor, and for a list vector, 2 cycles start-up time, plus an additional 4 cycles to

update the descriptor at the end of the instruction (these times are all in addition

to the one cycle subinstruction decode time). It was assumed that, once started,

VR and VW could both generate one four-element memory access request every

clock cycle. The model is slightly optimistic in that it does not model the detailed

timing of arbitration of the link and descriptor memory between the Vector Read

Chapter 7. The Performance of ESP 	 139

and Vector Write circuits. Descriptor memory clashes would lead to extra delays

if both VR and VW were to start an instruction simultaneously, and link memory

clashes will slow down slightly the rate of generation of memory requests when list

vectors are being accessed. The vector memory was modelled on the implement-

ation described in section 6.9. The memory was assumed to be capable of one

read or write'operation across all four banks, per cycle, and arbitration of memory

requests was modelled using two different arbitration protocols, for comparative

purposes. Memory refresh cycles were ignored - these have only a very small effect

on the overall memory bandwidth.

Within the vector processor Arithmetic Section, the Index Match circuit was

assumed to process one input element (or pair of elements) per clock cycle, while

the Arithmetic Unit was modelled as an instruction-dependent pipeline delay (ran-

ging from one cycle for a no-op, through three for an add or multiply, to five cycles

for a scaled subtract instruction - these times were calculated from the detailed

data for the Weitek floating point device). The Vector Output circuit was mod-

elled as a single-cycle pipeline delay.

The scalar processor was not modelled in detail, but was used to drive the rest

of the simulation, by issuing vector instructions to the Vector Instruction Queue.

The timing of vector instruction issues was determined by careful consideration

of the timing of the scalar code which would be used to implement the modelled

applications on the actual prototype scalar processor, the Weitek XL-8364. For

example, the scalar instructions to iterate a simple loop were estimated to take 4

cycles, while the actual issue of a vector instruction into the VIQ was modelled as

taking 10 to 14 cycles depending on the instruction.

7.4.2 Results for vector instruction loops

Two sets of experiments were performed. In the first, sequences of repeating vector

instructions were fed to the vector processor. The timing of vector instruction

issue took into account the scalar processor operations involved in constructing

the vector instruction and in loop iteration. Three different vector instructions

Chapter 7. The Performance of ESP 	 140

p.
0
-1
4-.
z
-d

U

I

9.0

8.5

8.0

7.5

7.0

6.5

6.0

5.5

5.0

4.5

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0
4 	6 	8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

Vector Length

Figure 7-2: Performance vs. vector length for scalar add [20]

were simulated: the addition of a scalar to each of the elements of a vector,

the element-wise multiplication of two vectors, and the scaled subtraction of one

vector from another. The first two instructions were simulated on array vectors;

the third on list vectors, but there it was assumed that the non-zeroes in the two

vector input operands coincided exactly. Tests were carried out in each case with a

single vector instruction, a loop of ten instructions, and a loop of 100 instructions,

and were repeated for vector lengths (number of non-zeroes, in the list case) of

one to 38. The resulting overall arithmetic rates, assuming a clock cycle of lOOns,

are plotted in figures 7-2, 7-3 and 7-4.

For vectors of length 38, the performance achieved is almost 80% of the the-

oretical maximum performance of 10 MFlop/s for the first two operations and 20

MFlop/s for the scaled subtract. Operations on longer vectors would reach even

higher performance, asymptotically approaching the theoretical maximum. The

vector half-performance length (ie the vector length for which half the asymptotic

performance is achieved) can be read from the graphs, and is 20 to 24 for a single

vector instruction, reducing to 8 to 11 for a loop of 100 instructions. This reduc-

tion is due to the overlapping of vector instructions in the pipeline sections, and

Chapter 7. The Performance of ESP
	

141

9.0

8.5

8.0

.7.5

7.0

6.5
P.
o 	6.0
'H
z 5.5

5.0

4.5

4.0

o 	3.5
4-1

3.0
P.

2.5

2.0

1.5

1.0

0.5

0.0

Ki

2 	4 	6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
Vector Length

Figure 7-3: Performance vs. vector length for multiplication [201

16.0

15.0

14.0

13.0

12.0

a 	11.0
0
'-I
'H 	 10.0

9.0
-'-I

w 	8.0

I 6.0

7.0

5.0

4.0

3.0

2.0

1.0

0.0
2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

Vector Length

Figure 7-4: Performance vs. vector length for scaled subtraction [20]

Chapter 7. The Performance of ESP 	 142

to the relative reduction in effect of the initial fixed scalar overhead for issue of

the first vector instruction. Additional interesting features of the graphs are the

jagged nature of the single instruction graph, due to the four-way memory bank

interleaving, and the linear section of the graphs for the 10 and 100 instruction

loops, for vector lengths up to six or seven. This last feature occurs because the

loop iteration time is constant for vector lengths up to six or seven, limited by the

minimum 14- to 18-cycle scalar execution time per iteration. For longer vectors,

the vector instruction execution time limits the loop iteration rate.

Other results from these experiments were that, as expected, the Vector Read

section of the pipeline ran ahead of the Arithmetic Section, so that the VR output

queues filled up, as did the AS and VW section subinstruction queues. The other

queues did not fill at all. The Vector Read section speed exceeded that of the

Arithmetic Section by a considerable margin, and it seems certain that it would

continue do so with the small extra delays caused by vector memory refresh cycles,

and descriptor and link memory arbitration, taken into account.

7.4.3 Results for Gaussian elimination

The second set of experiments involved simulating the central part of the Gaussian

elimination algorithm. Because of the limited time available for program prepara-

tion, it was decided not to attempt to simulate threshold pivoting (section 2.2.5),

but rather to simulate the elimination part of the algorithm under the assumption

that the matrix is already permuted to arrange a good pivot sequence down the

diagonal. This corresponds to actual practice for matrices (such as symmetric

and positive definite ones) where numerical stability is not an issue, and the pivot

sequence can be chosen so as to minimise fill-in, before factorisation starts. It was

assumed that the positions of the non-zeroes in each pivot column had been pre-

calculated during the selection of the pivot sequence, and were available in scalar

memory, and it was further assumed that the rows and columns of the matrix

had been physically permuted, so that the pivot column element was always the

Chapter 7. The Performance of ESP 	 143

first non-zero of the rows involved in subtraction operations. The lower triangular

factor of the matrix was to be discarded.

The time for the scalar processor to set up and issue each scaled subtract

operation was calculated from the detailed data for the prototype Weitek scalar

processor. In order to simulate accurately the timing of each vector subtraction

operation, the number of non-zeroes in each row at each stage of the elimination

was estimated from a simple model of the progress of fill-in. The simulation

was performed with three different matrix models, based on real sparse matrix

problems discussed in [15]. The small matrix model was of order 130, with 713

non-zeroes, the medium model was of order 147, with 1298 non-zeroes, while the

large model was of order 1176, with 9864 non-zeroes. In all three cases, real

data was available about the amount of fill-in to be expected at each stage of the

elimination, and the fill-in model for each matrix was based on that data.

In order to calculate the scaling factor for each vector subtract operation, the

scalar processor must access the non-zeroes in the pivot column, by reading them

from the row vectors in vector memory. Thus the mechanism for scalar processor

access to vector memory must be modelled, and this model was based on the

implementation described in section 6.8.4. It was assumed that the scalar processor

would require three cycles to access the vector descriptor, followed by three cycles

to generate a vector memory access request, and one cycle to read each 32-bit

half of the vector element once the memory access request was satisfied by the

vector memory arbiter. Two alternative vector memory arbitration mechanisms

were modelled - round robin, in which pending memory requests for the two Vector

Read data streams, the Vector Write stream, and the scalar processor, are serviced

in round robin fashion, and scalar priority, in which any pending request from the

scalar processor is always serviced first, with Vector Read and Write requests then

serviced in round robin order.

The results indicated an average performance during factorisation of the small

matrix of 5 MFlop/s; for the medium matrix, 10 MFlop/s, and for the large mat-

rix 15 MFlop/s (the theoretical maximum arithmetic rate for scaled subtraction

operations is 20 MFlop/s). It should be noted that a "Flop" here denotes any

Chapter 7. The Performance of ESP 	 144

floating point operation passing through the Arithmetic Unit, including the addi-

tion of a zero to a non-zero, when the non-zero indices in the two input vectors do

not match. Given that the number of non-zero output elements produced by each

vector subtract operation ranges from 5 to 16 for the small problem, from 9 to 31

for the medium problem, and from 8 to 80 for the large problem, these arithmetic

rates are rather lower for the small and medium problems than might be expected

from the graphs in figure 7-4. The explanation is that for the small and medium

problems, the scalar processor limits the overall performance. For these smal-

ler problems, the scalar processor takes longer to read the pivot column element,

calculate the scaling factor and issue the vector instruction, than each section of

the vector pipeline takes to complete the vector instruction, so that the vector

processor is not kept supplied with vector instructions fast enough to take full

advantage of the overlapping of instructions in the pipeline sections. However, the

use of scalar priority arbitration for the vector memory, rather than round robin

arbitration, increased the performance by only 1/2%, indicating that contention

for the vector memory was not significantly delaying the scalar processor.

7.5 Summary

The first simulations to be carried out, those based on Linear Programming code,

modelled ESP in a crude way, using early estimates of instruction timings. Never-

theless, the measured performance gain over a scalar version of the same algorithm

- six to twelve times on many problems - and the high degree of overlap observed

between execution in the scalar and vector processors, indicated that the sectioned

vector pipeline and the decoupling of the two processors would be successful ar-

chitectural features of the machine. Although tests showed that an increase in

the longest pipeline section start-up time from 7 to 9 cycles decreased FTRAN

performance by no more than 6%, it was clear from the fraction of vector processor

execution time spent in instruction start-up that the three-fold increase in start-

up time which would be incurred if the pipeline were not sectioned would reduce

performance greatly. Similarly, although an increase from.6 to 8 cycles in the time

Chapter 7. The Performance of ESP 	 145

required for the scalar processor to issue a vector instruction reduced FTRAN

performance by no more than 6%, the fact that many vectors processed have only

six or so non-zeroes indicates that an increase in the scalar processor overhead for

each vector instruction much above 14 cycles would reduce performance substan-

tially, as the vector processor would not be kept busy. This effect would probably

be worse for the LP pricing step, as the average number of non-zeroes per vector

is smaller there than for FTRAN and BTRAN.

After more detailed design of the ESP prototype had been completed, it was

possible to construct a much more accurate model of the machine. By the time of

the second SIM++ study, it was clear that the original estimates of the pipeline

section timings had been reasonably accurate, but that, as designed, the prototype

scalar processor would be rather slower than estimated originally. In particular,

scalar processor accesses to vector memory are expected in the prototype to take

up to 10 cycles, including vector descriptor access, and the construction and issue

of a vector instruction may take 10 to 14 cycles. The SIM++ simulations indic-

ated that for simple vector instruction loops the scalar processor was the limiting

factor in performance when the vectors had fewer than 7 non-zeroes, while for the

more realistic code of the Gaussian elimination model, the scalar processor limited

the overall performance until the average number of non-zeroes per vector reached

30 or more. Nevertheless, good overall performance was measured on both simple

vector loops and the Gaussian elimination model. Vector half-performance lengths

were measured at only 8 to 11 for the simple vector instruction loops. These fig-

ures are much lower than corresponding figures for commercial -vector processors,

and although the difference is partly due to the slower technology of ESP, which

reduces the number of clock cycles required for memory access and data commu-

nication, it is also a reflection of the sectioned pipeline architecture. The overall

performance of 5, 10 and 15 MFlop/s respectively on the three Gaussian elim-

ination tests was also impressive, representing 25, 50 and 75% utilisation of the

arithmetic unit; many times higher than could be expected with scalar or conven-

tional vector processor implementations of similar sparse matrix code. However,

it should be borne in mind that threshold pivoting operations, and storage of the

Chapter 7. The Performance of ESP
	

146

lower triangular factor, were omitted in these models, and that those operations

will add to the amount of scalar processing to be carried out during elimination,

increasing the effect of slow scalar processing. The clear lesson is that attempts

should be made to improve on the scalar performance of the prototype, which

at present is limited by implementation choices, rather than real technological

constraints.

Chapter 8

Summary and Conclusion

The vector processor architecture which has been developed for ESP contains the

following innovative features:

• the Index Match and Vector Output hardware of the Arithmetic Section,

which support direct execution of vector arithmetic on sparse vectors stored

in compressed index/value form, using the in-phase scan algorithms de-

scribed in chapter 3;

• the Vector Read, Vector Write, and Garbage Collection circuitry, which sup-

port the reading and writing of sparse vectors as lists of linked blocks, and

the management of memory space as vectors fill-in;

the Sideways List Unit, which supports the maintenance of information con-

cerning the two-dimensional structure of sparse matrices;

a three-section vector pipeline, with asynchronous instruction queues for

each section, and data queues between sections, to reduce effective vector

instruction start-up times to a minimum;

• scalar and vector processors which are loosely coupled via the Vector In-

struction Queue and the Instruction Identifier Register, which identifies the

last completed vector instruction.

147

Chapter 8. Summary and Conclusion 	 148

The development of each of these features has been required to satisfy the

principal aim of the project: the design of a machine able to support efficient

sparse vector arithmetic in the context of the target applications of Gaussian

elimination and Linear Programming.

A prototype implementation of the new architecture has been designed, using

off-the-shelf components, including wherever possible the use of erasable program-

mable logic devices, to simplify modification of the design. The prototype, which

will occupy approximately 5000cm 2 of circuit board space, is currently under con-

struction. When complete, it will be hosted by a standard workstation, to which

it will be connected by a dedicated high-bandwidth link: programs and data pre-

pared on the workstation will be transferred to the ESP for execution, and results

transferred back.

The architecture has been partially evaluated by a number of simulation exper-

iments, the most recent of which have been able to take into account performance

predictions for each part of the machine arising from the detailed design of the

prototype implementation. The SIM++ simulation model currently models most

parts of the vector pipeline, but does not yet include models of the Garbage Col-

lection circuit and Sideways List Unit.

8.1 Evaluation of the ESP architecture

At the time of writing, only a part of the prototype ESP has been built and

tested. Undoubtedly the detailed design will be refined as testing continues, but

work has progressed far enough to give some confidence that implementation of

the proposed architecture is technically feasible. In terms of circuit board area, the

special features of the machine occupy the majority of three 30cm square boards,

while the vector memory, scalar processor, and interface to the host are on four

more. In terms of silicon area, were the machine to be implemented in a set of

VLSI devices, the proportion of the complete scalar/vector processor silicon area

(without memory) taken by the new features would be much less.

Chapter 8. Summary and Conclusion 	 149

8.1.1 The sparse vector handling mechanisms

The sparse vector handling mechanisms are incorporated in the Vector Read, In-

dex Match, Vector Output, Vector Write, and Garbage Collection circuits. These

facilities are required if the advantages of vector processing (the concurrent use of

addressing and memory access hardware to keep the arithmetic unit fully supplied•

with data during a vector instruction) is to be realised for sparse vectors. Con-

sideration of the alternatives (chapter 3) indicated that the chosen mechanisms

would be the most effective, overall, on any typical sparse vector computation.

The detailed design of the vector memory, and Vector Read and Write circuits is

complete, while the behaviour of the Index Match and Vector Output circuits is

straightforward and predictable. Simulations of the complete pipeline plus memory

have been performed (section 7.4), and these indicate that high arithmetic unit

utilisation will be achieved from the design.

The only part of this section of the design which is not yet fully determined

is the Garbage Collection algorithm. As discussed in section 4.2.4, the proposed

simple algorithm may take a long time to execute in some circumstances. Whether

these circumstances will occur in practice will depend on the distribution of the

blocks of list vectors through memory, which itself depends on the order in which

the application algorithm carries out vector computation. The Garbage Collection

circuitry is being designed using programmable logic, and with sufficient func-

tionality to implement an alternative de-allocation strategy with a much lower

worst-case execution time, if this turns out to be necessary. The effectiveness of

the simpler algorithm can only be tested by extending the simulation model to

model the entire machine on real applications (so that the data-dependent pat-

tern of memory use is modelled), or by testing the applications on the completed

prototype.

8.1.2 The Sideways List Unit

The Sideways List Unit (SLU) is required because information about the non-

zero structure of a sparse matrix by both column and row is needed by many

Chapter 8. Summary and Conclusion 	 150

sparse Gaussian elimination algorithms (section 3.8). Without the SLU, scalar

code would be needed to maintain the column non-zero structure of a matrix

stored as row vectors, and the execution time of that scalar code would obliterate

the speed advantages of the vectorised matrix row arithmetic. The detailed design

of the SLU is not yet complete, and its operation has not been modelled in the

simulations. However, the latency of the SLU operation is not a critical factor

in the speed of the machine, while the bandwidth required for accesses to the

dedicated SLU memory during a vector operation is never more than the Vector

Write bandwidth for the same operation, ie a fraction of the total bandwidth

required from the vector memory itself. Thus it is not anticipated that major

problems vill arise in this part of the design, or that the incorporation of the SLU

will impact on the performance of the rest of the machine.

The Sideways List Unit is perhaps the least satisfactory part of the whole

design; it presents the appearance of an afterthought bolted on the side. This ap-

pearance, however, belies the design history of the machine. Considerable thought

went into the search for a storage mechanism for sparse matrices which would sup-

port rapid and efficient row-wise and column-wise access, despite the constantly

changing non-zero structure. A suitable mechanism could not be found, and the

Sideways List Unit was the best alternative.

For simplicity of design and construction, the prototype SLU has its own

memory for storing the non-zero position lists. The number of words in this

memory needs to equal the number of vector memory words, to allow full use of

the vector memory on a Gaussian elimination problem, but in many algorithms

the SLU is not used, and its memory is wasted. It was originally planned to

have the SLU share the main vector memory; a more flexible approach. Since the

memory bandwidth required by the SLU is never more than a quarter of the vector

memory bandwidth provided in the current implementation, it would not be par-

ticularly difficult to provide sufficient extra vector memory bandwidth. However,

the memory arbitration and data bus routing become more complex. In any future

redesign, this complexity should be weighed against the flexibility of having one

large memory rather than two.

Chapter 8. Summary and Conclusion 	 151

8.1.3 The vector pipeline control strategy

The partitioning of the vector pipeline into three sections was introduced when it

became clear that the total pipeline length (and hence minimum start-up time)

would be at least 20 cycles. Many of the vectors occurring in large Linear Pro-

gramming problems contain around six non-zeros, and with a start-up time of

more than 20 cycles, operations on such vectors could achieve no more than 25%

of the maximum vector arithmetic performance, at best. The three stage pipeline

partition should reduce the effective vector instruction start-up time (during se-

quences of rapidly issued vector instructions) to the length of the longest of the

three pipeline sections, and so should double the speed of processing such short

vectors.

- - The vector pipeline control mechanisms, and the data queues between the sec-

tions, were modelled in the SIM++ simulation (section 7.4). The results indicated

that the effective vector instruction start-up time was reduced from between 20

and 24 for a single vector instruction, to between 8 and 11 for a sequence of in-

structions, provided that the scalar processor was able to issue those instructions

fast enough to ensure that the Vector Instruction Queue was never empty.

8.1.4 The scalar processor/vector processor interface

In order to take advantage of the low start-up time supported by the sectioned

vector pipeline, the next vector instruction must be ready before the first pipeline

section finishes executing the current instruction. If the scalar processor is always

able to prepare a vector instruction in time, full use will be made of the vec-

tor pipeline. However, in some parts of the target applications, in particular the

FTRAN phase of the LP algorithm, the scalar operations required between each

vector instruction are complex and data dependent. A queue for vector instruc-

tions was therefore incorporated, to help keep the vector processor busy, despite

variations in the amount of scalar code to be executed between vector instruction

issues.

Chapter 8. Summary and Conclusion 	 152

Even without the Vector Instruction Queue, to take full advantage of the three

pipeline sections, up to three vector instructions must be able to execute at'once.

With the incorporation of the queue, an even larger number of vector instructions

may have been issued but not yet completed. The scalar processor in ESP must be

able, wherever possible, to continue execution, despite the fact that several vector

instructions issued have not finished (or even started). For the reasons described

in section 5.4.2, it was decided to check for data dependencies between instructions

in software, and this required the Instruction Identifier Register mechanism.

The effectiveness of the scalar processor/vector processor interface design will

not be determined until accurate simulations are carried out on complete applic-

ations, or until the prototype becomes available for testing. However, a simple

model of the scalar/vector interface was incorporated into the Linear Program-

ming simulation experiments (section 7.2), and although the model and its para-

meters were approximate, the results indicated That neither the scalar nor the

vector processor suffered serious delays during any phase of execution.

8.1.5 The implementation

The decision to base the design of much of the prototype around general purpose

data path components controlled by programmable logic devices, built using wire-

wrap technology, was intended to make easy the inevitable changes which will be

required to the design (especially since simulation tests of the complete design

have not been carried out). As prototype testing is at an early stage, and the

most innovative parts of the design have not yet been tested, it is not yet known

to what extent such changes will be required. Since the prototype technology and

speed (8MHz) have been kept deliberately conservative, it is hoped that there

will be no major unanticipated technological problems. What is already clear,

however, is that the specific design of the scalar processor in the prototype has

resulted in a lower scalar performance than originally anticipated, and that this

could well prove to be the limiting factor in the performance of the machine on

many sparse problems (section 7.4). Work is underway to re-examine the scalar

Chapter 8. Summary and Conclusion 	 153

processor design, and its interface to the vector memory and Vector Instruction

Queue, to increase the scalar performance while retaining the existing clock speed.

8.1.6 Scalability of the design

The implementation details of ESP are such that the speed of each part of the

processor should scale linearly if re-implemented in faster gate technology. As

with a standard vector processor though, as the processor speed is increased,

more memory banks are required to supply the necessary memory bandwidth.

The performance of the machine should not be greatly affected by a change to

eight memory banks. However, because the design requires that list vector lengths

be a multiple of the number of memory banks, any further increase in the number

of banks, for-example to 16, will increase both the amount of wasted memory per

vector, and, more importantly, the effective vector start-up time. This could cause

a considerable performance drop on problems involving very short list vectors, such

as occur in large Linear Programming applications.

Limiting the number of memory banks to eight would mean a maximum clock

speed of around 20MHz at current dynamic memory speeds. To increase speed

much beyond this, greater use of vector registers, or some kind of cacheing system

would be required. The effectiveness of a cache would depend on the pattern of

vector access by the application, however, and experiments on the ESP prototype

will be needed to examine the feasibility of a cache, and to estimate the size

required.

The memory bandwidth required in a vector machine also presents a further

difficulties for implementation of the architecture in VLSI. VLSI integration levels

have almost reached the point where it is feasible to integrate an entire vector

processor on a single chip, and a clock speed of 100MHz or higher might be possible

on-chip. However, the external interfaces of the chip are unlikely to be able to

support data transfers at this speed, and the pin-out of the chip would be limited

by the I/O pad dimensions. Thus the full performance could only be achieved,

Chapter 8. Summary and Conclusion 	 154

again, if much of the operand data could be held on chip, in vector registers or

cache.

8.2 Evaluation of the design methodology

The choice of the basic sparse vector mechanism was very much dictated by the

chosen aims of the project, and by technological constraints. The validity of other

design choices, however, like the number of pipeline sections and division of func-

tions between sections, and the details of the vector/scalar processor interface, are

less clear. These choices have been partially supported by the simulations which

have been carried out, but the Linear Programming simulation was based on a

rather crude model of the processor, while the SIM++ simulation only simulated

a simpified version of one of the target applications. Thus, the detailed implement-

ation work commenced without fully validating the architecture, by simulation.

This has necessitated a flexible design, with much use of programmable logic, but

there is a limit to the extent to which it will be possible to modify the architecture

once the prototype is constructed. Some parts of the implementation, in partic-

ular, the Garbage Collection algorithm, have had to be left undecided until tests

indicate which algorithm is suitable in practice.

Similarly, construction of the prototype has been proceeding with little ad-

vance verification of the details of the design. The SIM++ simulation of the

vector pipeline was carried out at the same time as the detailed design of parts

of the pipeline, and although some results of the simulation experiments were fed

back into the design process, the simulation is currently at a more abstract level

than the implementation, and is unable to check many of the details. The poten-

tial problems, for example design changes required in the middle of construction,

are clear, although they have not arisen yet. These potential problems could have

been minimised by more extensive use of simulation earlier in the project. Ideally,

a simulation of the architecture, modelling instruction execution and expected

timing, would have been developed, and used to model execution of the target

Chapter 8. Summary and Conclusion 	 155

applications to determine the effect on performance of each of the architectural

features. That model could then have been refined later in the light of informa-

tion about timings, and other details indicated by the prototype design process.

Gate-level simulations of some parts of the prototype might also have assisted

development.

Instead, for a variety of reasons, design and construction of the machine has

outstripped testing through simulation. One major reason for this was that it

was originally planned to emulate the ESP architecture using an ORION mini-

computer [22], which incorporates several writeable microcode stores, between

which the processor can switch on a context switch, allowing different tasks to be

executing different instruction sets simultaneously. However, it became apparent,

as attempts to microcode the ESP instruction set were made, that the architectural

gap between the ORION micro-architecture and the ESP architecture was too

large to be bridged in microcode, and the emulation had to be abandoned.

Of the simulation modelling which was carried out, the Linear Programming

based simulator developed by K.I.M. McKinnon, although a crude model, was

relatively easy to put together, and provided an early indication of the feasibil-

ity of the architecture. For more accurate simulation, the SIM++ [30] system

has proved suitable, and the model written by Goh Boon Seng (section 7.4) is

well-structured and can form the basis of a more complete simulation, by adding

models of the scalar processor and Sideways List Unit. Although it is intended to

extend the SIM++ model in this way, many of the tests which should ideally have

been made using a simulated or emulated model will probably be made on the

prototype hardware. However, even with sophisticated logic analysers, it is much

more difficult to measure the behaviour of hardware than a model, and there is

limited scope for experiments which involve alteration of the architecture.

Chapter 8. Summary and Conclusion 	 156

8.3 Further work on ESP

The detailed design of the Arithmetic Section of the vector pipeline, and of the

Sideways List Unit, remain to be done. The latter is relatively straightforward, but

the former requires considerable amounts of microcode, to implement the Arith-

metic Unit control functions for the large number of different arithmetic operations

provided. Construction will continue steadily - the prototype is expected to be

complete by the autumn of 1993.

Testing of the complete machine will involve mounting the time critical parts

of the Gaussian elimination and Linear Programming applications on ESP (the

input/output, high-level control, and result presentation parts of the applications

will be executed on the host workstation). ESP programming will initially be car-

ried out in assembler, but investigation has started into the feasibility of developing

a FORTRAN compiler for the machine.

As well as experimentation with the prototype, further experiments on ar-

chitectural or implementation alternatives will be carried out by extending the

SIM++ model of ESP developed by Goh Boon Seng. The aims of tests using the

prototype and simulated model will include:

• to determine the efficiency of the sparse vector arithmetic operations in the

context of the target applications, using a variety of real data of differing

sparsity and structure, and to identify the performance limiting factors in

the design;

• to experiment with architectural and implementation alternatives, and in

particular to finalise the choice of Garbage Collection algorithm;

• to estimate the scalabiity of the architecture to faster technology, including

the feasibility of use with a vector data cache.

If these tests indicate that the architecture performs well, further experiments

on the machine, and investigation of other potential implementations would be

Chapter 8. Summary and Conclusion 	 157

worthwhile. In particular, the performance on other sparse matrix applications

should be tested - this would certainly require the development of a compiler

- and preliminary work could be done on a custom silicon implementation of

the architecture, to determine the cost of the special architectural features, the

problems introduced by pin-out limitations, and the likely performance.

8.4 Conclusion

An architecture has been developed which appears to have the potential to provide,

for very sparse matrix problems, the kind of speed-up associated with the stand-

ard vector processing technique for dense problems (a factor of ten over scalar

implementations of the same problems). Whether the architecture could be as

effective at clock speeds above 20MHz remains to be investigated. Development

of a special-purpose computer architecture is risky - if the special architecture

supports an order of magnitude performance increase, but the implementation

takes several years to complete, then technological advances will have improved

the speed of conventional architectures by the same order of magnitude, by the

time the special-purpose machine is commissioned. (This effect was partly re-

sponsible for the commercial failure of the STAR-100, for example.) In addition,

a special-purpose architecture can only succeed commercially if there is a suffi-

ciently large market for the applications which it accelerates (examples are vector

processors, digital signal processors, and graphics processors), or if the special

features do not add too greatly to the cost of the complete machine, and so can

be incorporated into machines destined for a wider market (examples include the

provision of on-chip floating-point hardware in processors in computers which may

never be used for intensive numerical applications, and scatter/gather hardware

in vector processors).

Whether architectural features like those developed for ESP could ever be

commercially viable remains to be seen. Notwithstanding this, it is hoped that

the results of experimentation with ESP will also prove useful in guiding potential

Chapter 8. Summary and Conclusion 	 158

implementations of sparse matrix applications on other newly emerging hardware

platforms, such as superscalar and decoupled processor architectures.

Bibliography

A.V. Aho, J.E. Hoperoft, and J.D. Ullman. Data Structures and Algorithms.

Addison-Wesley, 1983.

Altera Corp., San Jose, California. Altera Data Book, 1991.

H. Amano et al. (SM) 2 : Sparse matrix solving machine. In ACM Proc. 10th

- 	Symposium on Computer Architecture, pages 213-220. ACM, 1983.

H. Amano et al. (SM) 2-II : A new version of the sparse matrix solving ma-

chine. In ACM Proc. 12th Symposium on Computer Architecture, pages 100-

107. ACM, 1985.

H. Amano, B. Taisuke, and T. Kudoh. (SM) 2-II: A large-scale multiprocessor•

for sparse matrix calculations. IEEE Transactions on Computers, 39(7):889-

905, July 1990.

G. Amdahl. The validity of the single processor approach to achieving large

scale computing capabilities. In AFIPS Proc. Spring Joint Comput. Con!.,

1967.

T.W. Archibald, K.I.M. McKinnon, and L.C. Thomas. Parallel iterative al-

gorithms and their application to Markov decision processes. In Proceedings

of the 1991 Edinburgh Workshop on Parallel Numerical Analysis, 1991.

J.H. Austin. The Burroughs Scientific Processor. In C.R. Jesshope and R.W.

Hockney, editors, Info tech State of the Art Report: Supercomputers, vol. 2,

pages 1-31. Infotech mt. Ltd., 1979.

159

Bibliography 	 Wit

0. Axeisson. Conjugate gradient type methods for unsymmetric and incon-

sistent systems of linear equations. Linear Algebra and Applications, 29:1-66,

1980.

W. Buchholz. The IBM System/370 vector architecture. IBM Systems

Journal, 25:51-62, 1986.

T.F. Coleman. Large Sparse Numerical Optimization. Lecture Notes in Com-

puter Science. Springer Verlag, 1984.

Control Data Corporation, St. Paul, Minnesota. Control Data CYBER 200

Model 205 Computer System - Hardware Reference Manual, 1981.

Cray Research Inc., Mendota Heights, Minnesota. CRAY X-MP Computer

Systems: Mainframe Reference Manual, 1982.

T.A. Davis and E.S. Davidson. Pairwise reduction for the direct parallel

solution of sparse unsymmetric sets of linear equations. IEEE Transactions

on Computers, 37:1648-1654 1 1988.

I.S. Duff. Full matrix techniques in sparse Gaussian elimination. In Proc.

Dundee Biennial Conference on Numerical Analysis, June 1981.

I.S. Duff, A.M. Erisman, and J.K. Reid. Direct Methods for Sparse Matrices.

Oxford Science Publications, 1986.

I.S. Duff et al. Sparse matrix test problems. ACM SIGNUM Newsletter,

17(2):22, 1982.

G. Feierbach and D. Stevenson. The ILLIAC IV. In C.R. Jesshope and R.W.

Hockney, editors, Infotech State of the Art Report: Supercomputers, vol. 2,

pages 77-92. Infotech mt. Ltd., 1979.

J.J.H. Forrest and J.A. Tomlin. Vector processing in simplex and interior

methods for Linear Programming. Annals of Operations Research, 22:71-100,

1990.

Bibliography

Goh Boon Seng. Simulation of the Edinburgh Sparse Vector Processor. M.Sc.

Project Report, Department of Computer Science, University of Edinburgh,

September 1992.

P.M.J. Harris. Pivot selection methods of the Devex LP code. Math. Progr.,

5:1-28 1 1973.

High Level Hardware Ltd., Headington, Oxford, UK. ORION Time Sharing

Manual, 1986.

W.D. Hillis. The Connection Machine. MIT Press, Cambridge, Mass., 1985.

R.G. Hintz and Tate D.P. Control Data STAR-100 processor design. In

Proceedings of the IEEE COMPCON, pages 1-4, New York, Sept 1972. IEEE.

R.W. Hockney and C.R. Jesshope. Parallel Computers 2: Architecture, Pro-

gramming and Algorithms. Adam Huger, Bristol, England, second edition,

1988.

R.N. Ibbett, P.C. Capon, and N.P. Topham. MU6V: A parallel vector pro-

cessing system. In Proceedings of the 12th ACM/IEEE International Sym-

posium on Computer Architecture, 1985.

R.N. Ibbett and N.P. Topham. The Architecture of High Performance Com-

puters, volume 2. Macmillan Press, second edition, 1989.

R.N. Ibbett and N.P. Topham. The Architecture of High Performance Com-

puters, volume 1. Macmillan Press, second edition, 1989.

INMOS Ltd., Bristol, England. IMST414 Transputer Reference Manual,

1985.

Jade Simulations International Corporation. Sim++ Release 2.2 Programmer

Reference Manual, 1982.

Bibliography 	 162

D.E. Knuth. The Art of Computer Programming, volume 1 - Fundamental

Algorithms. Addison-Wesley, second edition, 1973.

J.G. Lewis and H.D. Simon. The impact of hardware gather/scatter on sparse

Gaussian elimination. Mathematics and Modelling Technical Report ETA-

TR-33, Boeing Computer Services, Seattle, Washington, 1986.

Q.I. Lin. Design of a Vector Processor. PhD thesis, Department of Computer

Science, University of Manchester, 1983.

J. Luo, F. Bruggeman, and G.L. Reijns. Revised simplex method on a network

of T800 transputers. In A.S. Wagner, editor, Transputer Research and Ap-

plications: Proceedings of the Third North American Transputer Users Con-

ference, pages 39-50, Sunnyvale, California, April 1990. lOS Press.

A.G. Manning. Simulation of hardware - mechanisms for sparse vector pro-

cessing. 4th Year Project Report, Department of Computer Science, Uni-

versity of Edinburgh, June 1992.

H.M. Markowitz. The elimination form of the inverse and its application to

Linear Programming. Management Science, 3:255-269, 1957.

K.I.M. McKinnon and H.P. Williams. Linear Programming and its suitability

for processing by the DAP. Technical report, International Computers Ltd.,

1980.

J.T. O'Donnell. An efficient architecture for implementing sparse array vari-

ables. In Proceedings of the 23rd Annual Allerton Conference on Commu-

nications, Control and Computing, Urbana, Illinois, Oct 1985. Coordinated

Science Laboratory, University of Illinois.

G.E. Pfefferkorn and J.A.Tomlin. Design of a Linear Programming system for

the ILLIAC IV. Technical Report SOL 76-8, Dept. of Operations Research,

Stanford University, 1976.

Bibliography 	 163

S.F. Reddaway. The DAP approach. In C.R. Jesshope and R.W. Hockney,

editors, Infotech State of the Art Report: Supercomputers, vol. 2, pages 311-

329. Infotech mt. Ltd., 1979.

R. Rettberg and R. Thomas. Contention is no obstacle to shared-memory

multiprocessing. CA CM, 29(12):1202-1212, Dec 1986.

P.S. Robertson. The IMP-77 language. Technical Report CSR-19-77, De-

partment of Computer Science, University of Edinburgh, 1983.

R.M. Russell. The CRAY-1 computer system. CA CM, 21:63-72,1978.

J.E. Smith. Decoupled access/execute computer architectures. ACM Trans-

actions on Computer Systems, 2(4):289-308, Nov 1984.

C.B. Stunkel. Linear optimization via message-based parallel processing.

ICPP, 3:264-271, 1988.

Texas Instruments, Houston, Texas. MOS Memory Data Book, 1989.

N.P. Topham. A Parallel Vector Processing System. PhD thesis, Department

of Computer Science, University of Manchester, 1985.

Weitek Corporation, Sunnyvale, California. WTL 31641XL-316 WTL

33641XL-3364 64-bit Floating-Point Data Path Units - Advance Data, April

1988.

Weitek Corporation, Sunnyvale, California. XL-8136 32-bit Program Sequen-

cing Unit Data Sheet, April 1988.

Weitek Corporation, Sunnyvale, California. XL-8137 32-bit Integer Pro-

cessing Unit Data Sheet, April 1988.

[51] Z. Zlatev. Computational Methods for General Sparse Matrices. Kluwer Aca-

demic Press, 1991.

Appendix A

The Vector Processor Instruction

Set

Vector instructions consist of a list of 32-bit words, illustrated in figure A—i. The

control word, the index.count word, and the instruction. identifier word are

always present; the remaining words are optional - their presence is determined

by the relevant field in the control word, described below.

The control word comprises separate fields to control each of the following vec-

tor pipeline parts: the Vector Read (VR) circuit, the three parts of the Arithmetic

Section of the pipeline, namely the Index Match (IM) circuit, the Arithmetic Unit

(AU), the Vector Output (VO) circuit, and the Vector Write (VW) circuit. The

Vector Write instruction field also controls the operation of the Garbage Collec-

tion circuit and the Sideways List Unit. Each field is specified to the assembler

by a mnemonic, with the fields separated by commas. If any field is left null or

blank, a no-operation is assumed for the associated pipeline part (ie input is dis-

carded, and null output is produced). In building up a complete control word, it

is necessary to ensure that the operand stream passed on by each pipeline part is

compatible with the instruction selected for the following pipeline part; however,

there remains an enormous number of allowable combinations of instructions for

the individual pipeline parts, not all of which are useful. To aid programming,

the assembler allows predefinition of more meaningful mnemonics for the complete

control word of commonly used vector instructions.

164

Appendix A. The Vector Processor Instruction Set 	 165

First word CONTROL WORD

Index.count

Instruction. identifier

Vx Descriptor Address

Vy Descriptor Address

Output Vector Descriptor Address

Register Index.offset

Scalar Input Operand

MSW of 64-bit scalar input operand

Row Number for SLU

COMPULSORY WORDS

- Required if there is a vector input operand

- Required if there are two vector input operands

- Required if there is a vector output operand

- Required if vector register is an operand

- Required if there is a scalar input operand

- Required if scalar input operand is 64 bits

- Required if instruction enables SLU

32-bit words written into
Vector Instruction Queue

Figure A—i: The format of ESP vector instructions

A.1 Vector Read circuit instructions

A.1.1 Two operand output modes

Two descriptor addresses must be specified in the instruction. The two specified

vectors are known as Vx and Vy. Two streams of I/V pairs are sent to AS, on

the X and Y data paths. The last element of any stream sent is always an end-

of-vector marker (but when no stream is generated, ie on the Y path for single

operand output modes, and on both the X and Y paths for mode NO, no end-

of-vector marker is sent either). The following is a list of the mnemonics for the

different VR modes, and the corresponding VR function:

LL2 Vx and Vy are both list vectors. For each, VR reads in index/value pairs -

pairs from Vx go to the X stream, pairs from Vy to Y.

AA2 Vx and Vy are both array vectors. VR reads index/value pairs from each.

Vx feeds X and Vy feeds Y.

Appendix A. The Vector Processor Instruction Set 	 166

AL2 Vx is of type array, Vy is of type list. Vx is accessed as in AA2 above, Vy

as in LL2. Vx feeds X and Vy feeds Y.

AiL2 Vx is of type array, Vy is of type list. Vy is accessed as in mode LL2.

The index of each index/value pair in Vy is used to index into Vx and the

corresponding index/value element of Vx is fetched. The Vx index/value

pairs are fed to AS on X, and the Vy index/value pairs on Y.

A.1.2 Single operand output modes

In these modes, only a single index/value stream is passed to AS, on data path X.

Only the Vx descriptor address need be specified.

Li Vx is a list vector, accessed as mode LL2 above. A stream of index/value pairs

is passed to AS on X.

Al Vx is a full vector, accessed as mode AA2 above. A stream of index/value

pairs is passed to AS on X.

A.1.3 Null mode

Neither Vx nor Vy is specified. VR passes nothing to AS.

NO VR does nothing.

A.1.4 Instruction termination

Termination of the VR instruction occurs when vector input is exhausted (ie the

end-of-vector elements have been passed to AS).

Appendix A. The Vector Processor Instruction Set 	 167

A.2 Index Match circuit instructions

The Index Match circuit, which is the first part of the Arithmetic Section, receives

from VR two streams of index/value pairs (one on the X data path, one on the Y

data path), or one stream of index value pairs (on the X data path), or nothing at

all. It passes into the Arithmetic Unit input queue a stream of index/value/value

triples, or of index/value pairs with the values on the Va data path, or a stream

of indices only. The last data item passed is always an end-of-vector marker.

A.2.1 I/V/V triple output modes

The IM instruction mnemonics and corresponding functions are:

*2 TM expects two I/V streams from yR. It passes as I/V/V triples to AU only

elements which appear in both I/V streams. I/V pairs whose indices appear

in one input stream only are deleted. X values go to Va, Y to V/3.

+2 IM expects two I/V streams from yR. It passes an I/V/V triple to AU for

every distinct index appearing in either I/V stream. If the index appears in

one stream only, TM generates a zero value to complete the triple. X values

go to Va, Y to V3.

++2 IM expects two I/V streams from yR. It passes an I/V/V triple to AU for

every index from 1 to index.count, even if the index appears in neither I/V

stream. To do this it generates one or two zeroes to insert as appropriate in

I/V/V triples. X values go to Va, Y to V/3.

Ri2 TM expects one I/V stream from VR, on X. It uses the indices in that stream

to look up in the vector register (first adding the Register Index.offset spe-

cified in the instruction) and passes I/V/V triples to AU consisting of the

index and value from the X stream (the value on the Va data path), and

the corresponding register value (on the V13 data path).

Appendix A. The Vector Processor Instruction Set 	 168

++Ri2 As Ri2 above, except that before the lookup in the register is done, TM

fills out the incoming I/V stream so all indices from 1 to index.count are

explicitly present.

Ri2K As Ri2 above, except that two I/V streams are expected from VR - the Y

stream is discarded (for use with VR mode AiL2).

++R12K As ++Ri2 above, except that two I/V streams are expected from VR

- the Y stream is discarded (for use with VR mode AiL2).

A.2.2 I/V pair output modes

IM passes a single I/V stream to AU, with the values on the Vc data path. The

mnemonics and functions are:

1 A single I/V stream is expected from VR, on X. TM simply passes this stream

through to AU.

1K As 1 above, but two I/V streams are expected from VR - the Y stream is

discarded (for use with VR mode AiL2).

++1, ++1K As 1 and 1K above, but TM fills the stream out by inserting explicit

zeroes, so all indices from 1 to index.count are explicitly present.

Ril A single T/V stream is expected from VR, on X. TM uses the indices from

the X stream, and discards the values. It uses the indices to look up into

the vector register (first adding the Register Index.offset specified in the

instruction), and passes the generated index/value pairs to AU.

Ri IM expects nothing from YR. It generates indices by counting from 1 to

index.bound, adds the Register Index.offset specified in the instruction to

look up in the vector register to get the corresponding values, and passes the

resulting index/value pairs to AU (the indices passed are the ones generated

before addition of the Register index.offset).

Appendix A. The Vector Processor Instruction Set 	 169

Index only output mode

In this mode, TM passes indices only to AU.

JO TM expects nothing from yR. It generates a stream of indices by counting

from 1 to index.count, and passes these to AU, followed by an end-of-vector

marker.

A.2.3 Instruction termination

The TM is part of the Arithmetic Section (AS), and the instruction terminates

when execution is complete in all parts of the AS (TM, AU and VO). TM is finished

when the end-of-vector marker has been written to the AU input queue.

A.3 Arithmetic Unit instructions

The Arithmetic Unit receives from IM, via its input queue, a stream of I/V/V

triples, a stream of T/V pairs (with the values on the Va data path), or a stream

of indices only. Depending on the instruction, it may pass to VO a stream of T/V

pairs, into the VO input queue, and may also pass a scalar output value to the

Scalar Result Queue. TI an T/V stream is output, it will end with an end-of-vector

marker.

Scalar input operands, which may be arithmetic or logical data values, are

specified in the vector instruction in one or two 32-bit words. Scalar output

operands are single arithmetic or logical data values, and are passed to the Scalar

Result Queue. Some instructions (searching operations) produce as output only a

single I/V pair - this is passed to the Scalar Result Queue, not VO.

The Arithmetic Unit operation is specified by a function field, a subfunction

field (only relevant for some values of the function field) and a type field, all in the

vector instruction control word. The type field may take the values 32-bit IEEE

floating point, 64-bit IEEE floating point, 32-bit integer, or 32-bit logical.

Appendix A. The Vector Processor Instruction Set 	 170

The instructions are listed below in four sets, data movement operations, arith-

metic operations, logical operations, and special operations.

A.3.1 Data movement operations

MOVE The AU expects an I/V stream from TM, and passes this through to VO,

unchanged. This mode is used, for example, in instructions which change

the format of a vector from list to array. The type and subfunction fields

are irrelevant here.

FILL The AU expects a stream of indices from TM, and uses the supplied scalar

input operand as the value in I/V pairs passed to VO. The type field may

be any of the four types, and the scalar input operand will be of the same

type; the subfunction field is irrelevant.

INCFILL As FILL, except that the scalar value is incremented every time it is

used. The type must be 32-bit integer; the subfunction field is irrelevant.

SELECT The AU expects an I/V stream from TM. It tests each value against

the scalar input operand S, deleting I/V pairs which fail the test, and for-

warding those which pass to VO. The subfunction field specifies the test.

The type field may be any of the four types, but there are restrictions on

the type/subfunction combination. The valid subfunctions are:

000 Pass pairs where V = S

001 Pass pairs where V S

010 Pass pairs where V > S (not logical type)

011 Pass pairs where V > S (not logical type)

100 Pass pairs where V < S (not logical type)

101 Pass pairs where V < S (not logical type)

FIRSTSELECT As SELECT, but the instruction terminates after generating

just one I/V pair which passes the test, which is passed to the Scalar Result

Queue.

Appendix A. The Vector Processor Instruction Set 	 171

SEARCH The AU expects an I/V stream from IM. It generates a single I/V

pair as output - the pair with the most extreme value, as defined by the

subfunction. This pair is passed to the Scalar Result Queue. The type field

may be any arithmetic type. The valid subfunctions are:

000 Find the most positive value

001 Find the largest absolute value

010 Find the smallest absolute value

011 Find the most negative value

Note that in the event of two or more I/V pairs containing the extreme

value, the first occurrence of the extreme value in the input stream is the

one returned.

RELATIVESELECT As SELECT, but the AU expects I/V/V triples as input,

and compares the values pairwise in the way specified by the subfunction

field, rather than comparing against a single scalar. Indices and Va values

from triples passing the test are forwarded to VO. Again, the type may be any

of the four, but there are restrictions on the type/subfunction combination.

The subfunctions are as SELECT, except that the value field V13 replaces S.

A.3.2 Arithmetic operations

ADD The AU expects I/V pairs or I/V/V triples from TM, and adds the values

in the way specified by the subfunction, to produce I/V pairs. The type may

be any arithmetic type. The valid subfunctions are:

000 The AU expects I/V pairs from TM, and adds the scalar input operand

to each value.

001 The AU expects I/V/V triples from TM, and adds the two V fields.

010 The AU expects I/V/V triples from TM, and produces output values

equal to Va + (V/3 * S) where S is the scalar input operand.

Appendix A. The Vector Processor Instruction Set 	 172

SUBTRACT The AU expects I/V pairs or I/V/V triples from TM, and performs

the operation specified in the subfunction, to produce a stream of I/V pairs.

The type may be any arithmetic type. The valid subfunctions are:

000 The AU expects I/V pairs from TM, and subtracts the scalar input

operand from each value.

001 The AU expects T/V/V triples from TM, and outputs values equal to

Vo—V/3.

010 The AU expects I/V/V triples from TM, and outputs values equal to

Va - (V3 * S), where S is the scalar input operand.

011 The AU expects T/V pairs from TM and sibtracts the values from the

scalar input operand (ie the output values are the negative of those

from subfunction 000).

100 As subfunction 001, except that the values are forced to positive sign

before output.

REVERSESUBTRACT As SUBTRACT, but the Va and V/3 inputs are ex-

changed in the operation.

MULTIPLY The AU expects to receive T/V pairs or T/V/V triples from TM,

and outputs I/V pairs to VO. Any arithmetic type is allowed. The valid

subfunctions are:

000 The AU expects I/V pairs from TM, and multiplies each value by the

scalar input operand before outputting it.

001 The AU expects I/V/V triples from TM, and multiples the Va and V3

values together to form the output values.

010 The AU expects T/V/V triples from TM, and forms output values from

Va * (V/3 + S), where S is the scalar input operand.

DIVIDE The AU expects to receive T/V pairs or T/V/V triples from TM, and

outputs I/V pairs to VO. Any arithmetic type is allowed. The valid sub-

functions are:

Appendix A. The Vector Processor Instruction Set 	 173

000 The AU expects I/V pairs from TM, and divides each value by the scalar

input operand before outputting it to VO.

001 The AU expects I/V/V triples from TM, and divides each Va value by

the corresponding Vf3 value before outputting it.

010 The AU expects I/V/V triples from TM, and outputs values equal to

Va/(V/3 + S) where S is the scalar input operand.

011 The AU expects I/V/V triples from TM, and outputs values equal to

Va/Va if V/3 > 0, or equal to the scalar input operand S if V/3 < 0.

(This is useful in some Linear Programming algorithms).

REVERSEDIVIDE As DIVIDE, except that the Va and V3 values are ex-

changed in the definition of the operation.

ABSOLUTE The AU expects I/V pairs from TM, and converts each value to its

absolute value before outputting it.

ADDUP The AU expects I/V pairs or I/V/V triples from TM. No T/V output

stream is produced, but a single scalar output operand is passed to the Scalar

Result Queue. The type can be any arithmetic type. The valid subfunctions

are:

000 The AU expects T/V pairs from TM, and adds up the values.

001 The AU expects T/V pairs from TM, and adds the squares of the values.

010 the AU expects I/V/V triples from TM, and adds the products Va*V3

(scalar product).

MULTIPLYUP The AU expects I/V pairs from TM. No I/V output stream is

produced, but a single scalar output value is passed to the Scalar Result

Queue. That value is the product of all the values in the input stream. The

type may be any arithmetic type; the subfunction field is ignored.

Appendix A. The Vector Processor Instruction Set 	 174

A.3.3 Logical operations

LOGICAL The AU expects I/V pairs or I/V/V triples from TM, according to

the subfunction. The type must be logical. The allowed subfunctions are:

000 The AU expects I/V pairs from TM, and ANDs each value with the

scalar input operand.

001 The AU expects I/V/V triples from TM, and ANDs the Va and Vf3

values to produce output values.

010 As subfunction 000, but OR.

011 As subfunction 001, but OR.

100 As subfunction 000, but EXOR.

101 As subfunction 001, but EXOR.

110 The AU expects T/V pairs from IM, and logically inverts each value

before output.

SHIFT The AU expects I/V pairs from TM, and outputs T/V pairs according to

the subfunction:

000 Values are shifted one place left, with 0 shifted into LSB. (Logical type

only).

001 Values are shifted one place right, with 0 shifted into MSB. (Logical

type only).

010 Values are shifted one place left, except that the MSB is unaltered

('arithemtic shift left'). Zero is shifted into the LSB. (32-bit integer

type only).

011 Values are shifted one place right, and the MSB is unaltered ('arithmetic

shift right'). (32-bit integer type only).

LOGICALUP The AU expects I/V pairs from TM. No T/V output stream is

produced, but a single scalar output value is passed to the Scalar Result

Queue. The type must be logical, and the subfunction field determines the

operation, as follows:

Appendix A. The Vector Processor Instruction Set 	 175

000 The output value is formed by ANDing together all the input values.

001 The output value is formed by ORing together all the input values.

010 The output value is formed by EXORing together all the input values.

A.3.4 Special operations

BTRAN The AU expects I/V/V triples from TM. It produces a single I/V pair,

which is passed to VO, followed by an end-of-vector element. It adds up the

products Va * V/3 to form the value field of the result pair, while the index

field of the result is given by the least significant 16 bits of the scalar input

operand S.

FTR-AN The AU expects I/V/V triples from TM, and outputs I/V pairs to VO.

It reads the value R5 at the vector register location whose index is given by

the least significant 16 bits of the scalar input operand S plus the Register

index.offset, and then outputs the values Va * Rs + V/3

A.3.5 Instruction termination

Arithmetic exceptions occurring during instruction execution will not cause the

instruction to terminate; however, they will set a bit in the Vector Flag Exception

Register.

The AU is part of the Arithmetic Section - the AS instruction terminates

when all of IM, AU and VO are finished. AU is finished when all the input values

have been read (including the end-of-vector marker) and processed, and all output

values (including the end-of-vector marker where appropriate) have been written

into the VO input queue or the Scalar Request Queue.

Appendix A. The Vector Processor Instruction Set 	 176

A.4 Vector Output circuit instructions

The Vector Output circuit receives from AU a stream of I/V pairs, which may

be empty, followed by an end-of-vector marker. It may forward these to VW, by

passing them to the Z data queue followed by an end-of-vector marker, or it may

write values to the vector register.

The VO instruction mnemonic consists of any combination of of the symbols

D, R, and M, which enable, respectively, dropping of elements whose exponent is

less than that in the drop register (floating-point types only), writing to the vector

register, and forwarding to VW. If neither R nor M is specified, no output vector

is produced.

When writing to the vector register is enabled, the Register Index.offset spe-

cified in the instruction is added to the incoming indices, before they are used to

address the vector register.

A.4.1 Instruction termination

The VO is part of the Arithmetic Section, and the AS instruction terminates

when all of the TM, AU and VO are finished. VO is finished when the end-of-

vector marker has been read from its input queue, and the end-of-vector marker

has been written to the Z data queue (if mode M is specified), and the last element

has been written to the register (if mode R is specified).

Appendix A. The Vector Processor Instruction Set 	 177

A.5 Vector Write circuit instructions

The Vector Write instruction consists of two parts, one to control the operation

of the Vector Write circuit and the Garbage Collector, the other to control the

operation of the Sideways List Unit.

The Vector Write circuit receives a stream of I/V pairs from VO, into the Z

data queue, writes them to vector memory, and optionally updates the Sideways

List Unit memory. If the VW mode is L, A, Ai or G, a vector output operand

must be specified in the instruction. VW is responsible for accessing descriptor

memory to read the contents of the output operand descriptor for an array vector,

at the start of the instruction. It is also responsible for updating the start address

and non-zero count fields of the descriptor at the end of the instruction, if the

output operand is a list vector.

The instruction mnemonics and functions are as follows:

L The I/V pairs are written to memory as a list vector (into space taken from the

front of the free list). At the end, the vector descriptor is updated to contain

the correct start address, and number of non-zeroes is also updated. At the

end of the operation, the old start address of the output vector is passed to

the Garbage Collector, so that the space may be reclaimed.

A The I/V pairs are written to an array vector in memory. This VW mode should

only be used with VR and IS modes which ensure all indices are explicitly

present.

Ai The index field of each incoming I/V pair is added to the output vector

start.address, and the index/value pair is written to the resulting location.

G Do not write data to memory (VO instruction must not specify mode M).

Do pass the start address specified in the descriptor for the vector output

operand to the Garbage Collector, so the space may be reclaimed. Used to

get rid of unwanted list vectors.

Appendix A. The Vector Processor Instruction Set 	 178

N No-Op.

A.5.1 Sideways List Unit instructions

The Sideways List Unit receives a stream of indices from VO (the same stream

that is passed, with associated values, to VW). The Sideways List Unit has four

mutually exclusive operating modes, with the following mnemonics:

F Save the position of flagged new non-zeroes (using the row.number specified in

the instruction) in the relevant lists, specified by the incoming indices.

A Save the position of all non-zeroes (the row.number) in the relevant lists, spe-

cified by the incoming indices.

Z Zero the count and address registers, and set the memory address register to 1

(used for initialisation).

N No-Op.

If modes F or A are specified, the instruction must contain a row.number

word.

A.5.2 Instruction termination

The Vector Write section operation terminates when the end-of-vector marker,

plus any padding elements required, have been written to memory, the Sideways

List Unit updates are complete, the output vector descriptor has been updated

if required, and, if relevant, the garbage address has been passed to the Garbage

Collector. Note that the Garbage Collector may not merge the garbage with

the free list until later. When the VW instruction terminates, the VW section

control logic writes the instruction. identifier word of the vector instruction into

the Instruction Identifier Register.

Appendix B

Reprint of published paper

The following paper was presented by the author at the ACM/IEEE International

Symposium on Computer Architecture, Jerusalem, May/June 1989.

(Copyright on this paper has been transferred to the Association for Computing

Machinery, which has granted to the authors the right to republish without specific

permission.)

179

Architectural Mechanisms To Support Sparse Vector Processing

R.N. Ibbett, T.M. Hopkins and K.I.M. McKinnon

Departments of Computer Science and Mathematics
University of Edinburgh

James Clerk Maxwell Building, King's Buildings
Mayfield Road, Edinburgh, E119 3JZ

Abstract

We discuss the algorithmic steps involved in common sparse ma-
trix problems, with particular emphasis on linear programming by
the revised simplex method. We then propose new architectural
mechanisms which are being built into an experimental machine,
the Edinburgh Sparse Processor, and which enable vector instruc-
tion, to operate efficiently on sparse vectors stored in compressed
form. Finally, we review the use of these new mechanisms on the
linear programming problem.

1 Introduction

Sparse vectors are an important feature of a number of computer
applications. Their distinguishing characteristic is the occurrence
of large numbers of zero elements in vectors and arrays, and in
mapping sparse applications on to existing computers a variety
of software techniques have been employed to reduce the storage
and processing required for the zero elements. Most sparse codes
run on scalar machines, or the scalar processors of vector com-
puters, and make no use of standard vector processing facilities.
A few computers, notably the CDC CYBER 205, have provided
architectural support for sparse vectors in the form of address-
ing modes and special orders [7], but these orders have proved
difficult to use in practice, mainly because of the fill-in problem.
Fill-in occurs when, for example, two sparse vectors are added
and the positions of the non-zero elements in the two vectors do
not match, so that the result vector contains more elements than
either of the source vectors. Since the extent of fill-in cannot be
predicted at compile time, the compiler cannot know how much
space to allocate to sparse vectors which are created during the
running of a program.

2 Sparse Matrix Computation

Computation with sparse matrices whose pattern of sparsity is
regular (eg matrices arising from partial differential equation so-
lution by finite difference or finite element methods) can often

-

Vk — v.q

where k is the column position of the q vector in its PFI matrix.

be carried out efficiently on standard vector processor machines.
Computation on matrices with irregular sparsity pattern is not
amenable to these techniques, and so it is problems of this nature
in particular that the proposed new architectural mechanisms ad-
dress.

Irregular sparsity patterns arise from irregularity in the real-
world problem being modelled, typical examples being found in
engineering design simulations of physical structures or electrical
circuits, and in Linear Programming (LP) problems. As exam-
pies of the type of vector and matrix calculation steps a sparse
vector processor must support, we examine the steps of the Prod-
uct Form of Inverse (PFI) simplex algorithm for Linear Program-
ming, which include (in the re-invert step), the more general prob-
lem of the direct solution of a system of sparse linear equations.

2.1 Linear Programming

LP problems are typically very sparse. A large LP problem might
involve a matrix of several thousand rows and 3 times as many
columns, but with only 6 or so non-zeroes in each column. The
four most computationally intensive steps of the PFI simplex
algorithm are the so-called BTRAN, pricing, FTRAN, and
re-invert steps, which typically take 30%, 35%, 20%, and 7%
respectively of the total solution time. In the PFI method, the
current inverse of the basis matrix is held as a series of PFI ma-
trices, of special form, the product of which is the basis inverse.
Each pivot step in the solution adds another PFI matrix to the
series, so the èeries will usually Contain many hundreds of matri-
ces. Each of these has the same number of rows as the original
problem matrix, and has the form of the unit matrix plus a single
non-zero column, which may typically have a density between 1%
and 20%. For each FF1 matrix, only the non-zero column, plus a
record of its position in the matrix, need be stored; these column
vectors are generally known as the q (eta-) vectors.

2.1.1 BTRAN

This involves the post-multiplication of a vector by each of the
FF1 matrices in turn. Because of the special form of the FF1
matrices, each multiplication step reduces to the replacement of
one element of the vector being updated with the scalar product
of that vector and the q vector of the relevant PFI matrix:

uoien1di2jnw jopaA/JOiDaA ioj p3Jinbi osje St 2utxpleTu xpu!
10pA 311dUj pUp1esrp U5q3 Div qDqm JO q;oq 'SUflnb g pus

V aql jo 1130.11 Dill lie suwp aql jo suns aql si 3uswsp 3nd3no

tj = U J! 1!tlM '14 > Ut 10J 1 1 !!m!S ueq3un S! g 2s!j
112 51!11M 'V 2Sfl aqj W0.IJ p9p1s3Sp st juatuala orJ. i UIOJJ i5d
nj5A/xUpuI 3s1g aql s 3nd3no 2USW w > u I! u2

't SI 2311 if aqj UI 353 pus 'U st 251j 31 aql U! xpu! 1'U Qqj J!
'j ain2g Ut pn3sl2Sflflt 'U0!pIU3SU! ppe aqi jo n1dux q3 u snqj
s)Iput jenb q2!M sluawala g pus v n2js Cq 4*is 2nduT fly DID
! nrSmplSq reuO!3!ppe 2uisn ' ((Iy) i!un 3!25Wt32!JS S1osS)o1d

jopaA q; olut g pus y sjsq aql unue.1;s Aq p3UtUU1dmi aim

sssqj g + ,' -. ss tpns Buoi3s1do Iop9A/IopsA jo uotve2
-uui1dwi juapga 10J (1sSS3UU ST 93Sg aql jo 2uupio siqj

•xapu! 2mpua3ge JO tp10
U! pUre;Urew S3Sfl 5q2 qim '1ossnojd Dip Xq qsss £jsnouu
-53p1W!9 515 puslsdo IpSU JO 25fl SflfSA 51j3 pus IsTj XUpUT 5112 vi°q
3! ULIOJ sTqI U! p51039 910355A UO Alpair p psSUloJlsd sq ties 'pu
-poid zssss pus psiqns 'pps ss ipns 'SUo!Slsdo zopsA/iopsA
P1SPUS2S •SIOpSA 5515dB ACISA 1OJ USAS 1USTS1P surewsi snip pus
'SSOJSZ 53103 YS5tj15A0 35555510 5S1039 OU SJIISU! 2! S

! 10355A 51j3 UHj3IM BSOISZ-UOU q; Jo SSSIpUT 51 JO 2Bjj utpUods
s snjd ' 55n1eA oiss-uou jo ;sq e se 10335A aszedg s 2uuo 2S

IJ9UD - spoq;53A ;J PtrI T .T .

wsuetpajJ JO13aA jsyj aiqjL I

P' ! WSTUSIpSUI 5S1039 10339A 3911 51j3 '310335A SSZSdS
io ssieds LIDA sig BIOpSA It sio;g jo 93UUOWS snowious sssem
5911103 jo pus '4C1110 susuisp ozsz-uou Dill 02 955335 inj 3zoddus
3011 BsOp W9 U51p5W 9U 'XSPU! 93 W0ZJ iUSWSp Sum 03 555335
zoj iuspjs sflq 1o2413s5p 53 ul pspsds sBslpps sseq ioss
alql LU0JJgut pssjjo Scl punoj 91 xaput psijpsds I tj2tM lOpSA S JO
2U)iU5 51j3 pus 'BUO3S30j 551O3B U S5dfl350 10335A 3U5W5p.0 us
T543 OS '51039 UT SSUSA JO S3USflbSS S 35 ULIOJ pXSpUe2S UI 5103S ST
IOPSA SDJaH •iOpsA IP'J alql of 5e1(39 39lIJ sqJ

s uo1sps.id sjqnop 10 52UTs) s;usmsp IwaA aql jo scIA3
51j2 no norsuuojui pUS 'B2U5tUS IOPSA 51(3 PUU 03 15fl013UO3 525
-1039 51(3 10J U0!3SUII0JU! ACJSSSG55U aqi SIUS3UO3 OsjS Io2dIlsssp
sqJ •wioj 15lj35 U! p51029 910335A no i10M ifiM 3uq (iodusssp

D UT SI U0!1SWJOJU! or spusIsdo zpq3 IOJ p5515 W3!1151135U1 S2e
-1033 51j3 C;psds 30U OP 9U0(3311I3SU! Airem ptre dS3 UT p9p!AOld
515 910335A IOJ StU3!Iretp5tU 5251033 2U513JJ! OAt3 'suisqoid ssxeds

1(2° pUe d'l Jo UOflfl35XU 3UST3UP IOJ pslrnbsi noT3sISdoJo SpUp
51(3 3lOddflB 03 15i0 tq [ot] qrlw U! p5SU 5501(3 JO 3U53S!U1UI51
510W 515 pus '10235A 51(3 ;noqs UOI3SWJ0JUT Slow UTS3UOS 5103
-dusssp aql dS ! 3flq 'lO2dLl3SOp 91 10355A 1(555

'[L] 907, 1139,AD 51(3 UT 9 10355A uOT3sUT3ssp DUO pus S10355A
SslflOS 0M3 SSAjOAUI U 0!35fl 13SUT JOPSA jS3dX3 y 9UO!231113SU! 10.1 3
-nos pus IsjSSS jSU03U5AU05 s.iotii pus 'snoipiiisui 10335A JO XTUI
S Jo 3S!SUOS jossssotd-os dSl 51(3 Sq palmiaxa SUU!3001 sia

SSUIIpSUI 3S014 55 SUO3S3S3j1OM sjqspss
(t10U1Ui0D 113IM 53515d0 03 ajqsdsps AjTses sq 112!SSp 51(3 31(2

pSpUslU! S! 31 inq 11530dwo3!UflU [9] NOIHO US IOJ jossssoid-o:)

L se psu2issp 2u(sq st sdA3o3o.ld aiqL LIsJq(j S 55 sjqspss sq

PM ssU!2nol dSg pssuI3do jo s2usi s pus '350q 51(2 no psTdmo
sq Lent surez2ojd urew sssqj lS3nduIos isoq aql no 2urnuni
tUsl2OJd 1115W 5 JO j012UO3 Ispun 'suisi2oid JO SUOTP5S

sIOS jSs!2U5 5351dW03 03 Ssu!200l SS3USSXS lp!qm 1osSsoid-os pus
-,psq ssustnlOJisd-q2(1j S se 151(251 2nq 'sS3ndwo3 suoje-pus3s s

95 psu2!9sp 30U ST dS3 'iSASmofl ço II3HAD 51(2 02 lejrw!S
lSuUSW S U! 'surpdid 2uISsssoJd IO33SA s3Sredos s pus .iossssoid
(012UO3 leS3S S JO 2U!39!SUO3 WS3SLS 2U!SSSSOId 10335A SI dS1

- Quip 5qSU05551 U! Sjq355535 sq uwnios 30A(d pssodoid 51(3
U! O155-UOU 1(355 sq3 351(3 ssjrnbsj osje 21 Xu35w ps2epdn 51(3 JO
uwnjos pus mGi qsss UI saozsz-uou jo .Isqwnu 51(3 jo dais 3oA!d
1(355 35 S2PSIMOU 3I Ssl!llbSl p0q3sUl S(133 JO U0!3515d0 uwn1os 93!
U! 3113Ulsjs 3Ss217ej 51(3 1151(3 ISflSWS tpnw 003 SI 3! J! pS2SsISl Si
2oA!d 1e!2U520d Sq2 ;nq '([61 UOUS3LI) 17Un0?fJDJl/ sq3) asisds LISA
q;oq sie uwnios pus Mo.! SSO1(M 3USWS(3 us 2uT3SSIss icq uasoxp S
20A!d rs!Ius3od y J 5uoatd p,otpaitp se umou ! ssrwoIdwos
1555911 55(J B30AId 31(3 2uisoosp U(LI!11q 5 29 T5I W55U 15P!9UO3 03
Lissssssn OS3e ST 2! 'sl(ulJsp sA!3!SOd 3!1251U1.ULS st 1(31Mm X1•135m
is Jo sses jsrsds 51(3 ! 3dssXS 'IsAsmoll d;s 5(355 35 3OATd jo
55!0P j11JS153 dCq u! -1w SZIW!U!U1 02 re2!A SIOJsIS1(3 S! It UO!3ttIoS
d'I 31(3 Jo lspuIewsl 51(3 U! pus 'UOISU!U1qS S1(3 S3S jdwos 03 qioq
'psl(nbsI SUO!35ISdO 3U10d 2u135o11 JO isqwnu 51(3 UI SSSSJ3U!

03 P1 1e SqJ ssusp slow sswossq pslsu!w!1s sq 03
2UTU!eWSJ xu;em 51(3 JO 315d S1('spsssold U0!35u1W1p 51(3 9

•S3SUIUIOP ifim UOI3SI5dO 3(1(2 10

'OISZ-UOu 255(3 JO SflfSA 532 SSSSSS pus 'uuin1os 30A!d 35(3 UI 0152
-UOU S OASS(SMOJ tpjt(M SU(W1535p IcJp!dsl 1153 5110 355(3

ST 3! pus ';ssj si UO3SI3flB 91(3 's9isdg LISA si Xp3SUI 51(3 11911M
•(iq;o 91(3 U51(3 Isxsds 251(m5wos sq 03 pII3 film MGi 3oA!d 51(3
'IOA(d 55(3 55005(3 03 pSSfl I (mojsq sse) U0U93!13 Z3IM031S1tJ 51(3
P q2no5(3je) L31s1edB jenbs Apj2noz JO 519 SIOPSA 112°q 'H
•3Usmsp 3oA(d 51(3 Lq psprp 'uwnioS 3oAd 51(3 U! g jo juamala
1(1 02 jenbs 15j539 S SI g pus 'moi 30A!d 51(3 I g 'uiunjos

3OAId 51(3 U! OISZ-UOU v qjpA if 2(1135W 51(3 JO MO1 le SI Ug 5I9qM

:UWnjos
30A!d 51(3 Ui 0I9Z-UOU S 1(3I Xj135W (ps3spdn) 51(3 JO SMOI WOIJ
ASOI 30A!d 95(3 JO Sjd!lIflW S JO uO!p'ei;qns 51(3 JO 3SISUOS pM no!;
-SUTWTJS 51(3 U! dais 3oA!d qss %jo 1151(3 sssj 51039155(3 !
pus '2(1.135w wsjqoid ieuI2Iz0 51(3 30 uoT3lods 3! X135w leqj, XL13
-SW srssq 3UsLxns 51(3 110 UOI3Su!WIl USISSUOD 2351!P Lq psAusp
111103 5WS9 55(3 JO 993T.13SW JO S51ISS 3USISArnbS us ippa 5531135W

Idd JO S5!15S p33eplWfl33s 51(2 sss1dsi 02 UO!3fljOB 51(3 2UIIUP swI3
02 511113 WOJJ L159553sU st 2! 'L3!I!11535 1es!15u155u JO SUOSeSI IO4

3ISAUT-5)J VT

1U5 S1(3 3S L;!su9p %OZ S5IpBS1 L11rdL3

p (%vo >) ssisds LIsA 53153S ps;spdn 2usq lOpSA sia

JJ(51(3 U! It JO UOI2!SOd uwnjos 51(3 ! 'sAoqs sy

lz *'Fa + A -* A

:ps3spdn 2U!sq lOpsA
55(3 Jo 3U9W5j5 912u19 s Lq pse3s 3S11j '10355A It lUSAspI 31(3 q3!M
JopsA 31(3 Jo UO!3U1WtS 51(3 03 S55fl51 dais Uo!3551(d!3p1w 1(3S3
U1fl3 iii 553 11 35w fld 55(3 Jo spes Lq (xu3sui uisjqo.id 1eu!2u0 G1(3

jo nuinjos s) 10335A s Jo uOT2Ssqd!3(TUU-aid S143 95A(OAUt ds3S sn(j

NV1JJ,1

%1O U543 SS5 - ssieds LISA 515 SUUIfl(O5
(SU!2!1O 51(2 51!4M '5SU5p %O' sq LflSs!dL3 11!M lopsA ssud 51L

2(1 125W UISjqOld jsU210 91(3 JO SUW551O3 91(3 JO 1355 1(31M 10333A
9(5(2 JO pnpoid 15(539 51(2 Jo UO!35W10J 51(2 S5AjoAu! dais 2u!s!Id
55(2 pus '.topsa zopd s st SUO!3SisdO N"jg 543 JO linsal 51LL

smsuqjj '0433A as.idS asa C 	 2U!ST.ld

l- : 	14 	II 	I

I A7 IA4 Al I
AU 	

RA,

 (INDEX)

1814121
B 8 1641 B2

17 	14 	I

1A7 1A4 I 0 —> [AU — _> 2

	

l Bs 16411 	
> I1 	

B2
IAI I 18 I 	12 821

1714 I ___

	

I A 7 1A4 I 	 ______
AU

8 '4' __ -[A4B4I2I1I

[B 1841 F1
Figure 1: An ADD operation on list vectors

operations, but in this case a multiply step is only required if non.
zeroes appear at the same index position in both input streams.
If either or both of the vector lists were not in ascending in-
dex order, vector/vector arithmetic would involve searching for
matching indices, and would be very inefficient.

As has already been noted, the amount of space needed to
store a sparse vector in compressed form is not usually known
at compile time. Nor is it in general known at run-time, even
at the start of the operation producing the vector. In the add
example above, the output list C may be as short as the longer
input list or as long as the sum of the input list lengths, de-
pending on the extent to which the postions of non-zeroes in the
input vectors coincide. In some operations (eg the run-time com-
pression of a vector from full storage format to list format) the
resulting list length may be anywhere within much wider bounds.
For the list storage format to be useful therefore, the amount of
memory space allocated to a vector must be dynamically and au-
tomatically variable. The hardware must maintain a pool of free
memory space, allocating extra space from the pool to vectors
as required. Because it is impossible tell at the start of a vector
operation how long the result list will be, it is not feasible to al-
locate at the start a single free block of store guaranteed to be
large enough to hold the result. The solution adopted is to allow
the index/value list comprising a single vector to reside in one or
more linked blocks of memory locations. If the block allocated to
hold the result at the start of an operation turns out to be too
small, another block can be linked onto it. The unused portion
of the last block allocated may be returned to the free pool.

Space may be freed by explicit de-allocation (under program
control) of the memory used by temporary vectors which are no
longer required. However, more often, it will become free auto-
matically. To see why this is so, consider an operation of the
type A — A + B, and suppose vector A has non-zeroes at index
positions 100 - 199, while B has non-zeroes at index positions 0 -
99. If the result vector is written into the memory blocks already
occupied by A, then the first 100 output elements will overwrite
the 100 non-zeroes of the original A. The first few of these will
be in the arithmetic unit input pipe, but most will not yet have
been read from memory, as the AU must deal with all 100 non-

zeroes of B before using up any from A. As a result, most of the
required input elements will have been corrupted before they are
read. To avoid this, when a vector appears as both an input and
result of an operation, the result vector must be allocated new
space, and the original space used by that vector automatically
returned to the free pool at the end of the operation.

3.1.2 Implementing Linked Lists in a Single-level Mem-
ory Environment

These list structures can be implemented in a simple way by
treating memory as a pool of fixed size (small) blocks, each with
a single link field. The free space is a linked list of unused blocks.
As a vector operation produces its result, that result is written
into the first locations on the free list, following links as required.
The result vector's descriptor is updated to hold a pointer to the
start of the vector list. The unused part of the final block in
the result vector is wasted; this is the reason for small blocks.
Reclaimed space is linked onto the start or end of the free list.
The hardware required to support these operations is simple, and
the operations of allocating new space and reclaiming old space
are both very fast, each requiring only the updating of processor
pointer registers, and the alteration of two links in memory.

Matrix codes tend to use many operations of the type A —
B op A. For example, every elimination step in Gaussian Elim-
ination causes a vector to be re-written, usually with a small in-
crease in density, and for reasons in explained section 3.1.1 above,
these re-writing steps involve the allocation of new space for the
updated vector, and the reclaiming of space previously used. As
space from vectors is reclaimed and later used again by vectors of
different length, the blocks on the free list will become thoroughly
mixed. As a result, the blocks used to store any vector will be
randomly distributed throughout the whole memory space. In
• single-level memory environment this may not matter, but in
• hierarchical memory environment it is very likely to lead to
thrashing of the paging/cacheing system. We believe that to re-
strict ESP to problems which will fit into a restricted single-level
memory space (or which can be explicitly partitioned into smaller
problems which fit) would be a mistake. We have therefore re-
jected this simple implementation in favour of mechanisms which
retain more locality of reference.

-

-

3.1.3 Implementing Linked Lists in a Hierarchical Mem-
ory Environment

In this implementation, the free list remains a linked list of blocks
of free memory, and allocation of new space for a result vector
proceeds as above, except that blocks may now be of any length.
Any space in the last block allocated (to a result vector) which
remains unused at the end of the operation is left, as a smaller
block, on the front of the free list. The key to maximising locality
of reference lies in ensuring that the blocks on the free list remain
as large as possible, so that the space allocated to a new vector
consists of a small number of large blocks; this requires a more
complex de-allocation algorithm. In general, a vector to be de-
allocated itself consists of a list of blocks, and the dc-allocation
algorithm must check, for each of these blocks, whether is is ad-
jacent in memory to a block (or blocks) already on the free list,
and if it is, must merge the blocks. A simple way of achieving
this merging de-allocation is to maintain the blocks in the vector
lists and in the free list in order of ascending memory address (Ic
links from block to block are always forward through the memory
address space). The dc-allocation algorithm may then merge the
two sorted lists of blocks in a straightforward way.

In ESP, this mechanism is supported by hardware interposed

Increasing Memory Address
ON

nil

72 32
0
a 	 VALUES 	 VALUES

32

24 E 	INDICES 	 INDICES

Block link word End-of-list

Figure 2: Structure of linked list vector

between the arithmetic unit and the memory. Vector elements
are held in memory as an index/value pair, in a single memory
word of 88 bits (64 bits for the value, and at 24 for the index).
In addition to straight index/value pairs, memory words may
hold an end-of-list marker, or they may hold block link words.
A list vector is held in a series of blocks of consecutive memory
words, the final word in the list being an end-of-list marker (see
Fig. 2). The first word of each block is a block link word, and
these words contain two pointers, each of which is a 32 bit (or
larger) virtual memory address, known as the external pointer
and the internal pointer. The external pointer holds the address
of the first word (ie the word containing the block link) of the
next block in the list, and is there to maintain the list linkage.
The external pointer in the last block of a list holds the special
value nil. The internal pointer holds the address of the first
word after the end of the current block, and is there because
the de-allocation algorithm needs to know the size of blocks to
perform concatenation of adjacent blocks. Because the blocks are
in order of increasing memory address, all pointers point forwards.
Vector descriptors contain, in addition to other information about
vector type and size, a pointer to the current position of the
first word of the first block in the vector list. The free list is of
identical structure, and a pointer to the start of it is maintained
in a register.

As the AU produces index/value pairs as the results of a vector
operation, these are written into the free list. The hardware for
performing this contains a small number of pointer registers to
keep track of the position in the free list currently being written
to, and the block linkage. Eventually, the AU will signal the end
of the result vector, by producing an element with the form of
the special end-of-list marker. This is written out in the normal
way, and a check is performed to determine how much free space
remains in the block currently being written to. If this space is
less than the minimum block size, it is left on the end of the
result vector, otherwise it is reclaimed (by writing new block link
words), and left at the front of the free list.

The de-allocation hardware, which reclaims vector space for
the free list, requires two poirter registers (A and B), plus a
small number of working registers. The algorithm merges two
ordered lists of blocks - the free list, and the vector list being
dc-allocated. At the start, the free list pointer register is updated
to point to the lower of the two list starting addresses. A also
points to this address; B points to the other list. During the
algorithm, the pointers A and B proceed along the two lists.
The external pointers in the block link words are adjusted to
merge the two lists, while the internal pointers are examined to
check for contiguous blocks, and updated to merge such blocks.

The algorithm terminates when one list is exhausted, and at this
point, all blocks are linked, in order of increasing memory address,
onto the list pointed to by the free list pointer. The maximum
number of algorithm iterations will equal the total number of
blocks on both lists which occupy memory locations between the
lower starting address and the lower end address of the two lists.

3.1.4 Efficiency Considerations

The transfer of operand elements between memory and the arith-
metic unit can be made as efficient for list structured vectors as
it is for vectors stored in the usual full form. Because the link
word is at the start of the block, if blocks are above a certain
minimum size, there is time to emit the start address of the next
block to the memory sufficiently far in advance to avoid a gap
in the address generator—'memory—AU pipeline. The writing of
result elements back to memory may also be effectively pipeilned.

Many vector processing systems use interleaved banks of mem-
ory to achieve the memory bandwidth required to run the arith-
metic unit at full speed and in ESP, within a block of a list vector,
interleaving will work effectively. However, even though the link
address is known well in advance, if the first word of the next
block falls into the wrong bank, there will be a hiatus in the in-
terleaving. To avoid this, it is sensible to restrict all blocks to
starting in a particular bank, and all pointers are thus multiples
of the number of banks. For example, in an eight-way interleaved
memory, to allow full use of interleaving and pipelining, pointers
should be restricted to be a multiple of 16.

A potential performance limitation in the system so far de-
scribed is the de-allocation operation (a de-allocate must be per-
formed after most vector operations). How long this takes de-
pends on the number of blocks on the free list and on the vector
list being disposed, and on the start and end positions of both
lists; in the worst case, the algorithm must examine every block
on both lists to complete the de-allocation. However, there are
several ways of mitigating the delays caused by this operation.

Firstly, note that the list restructuring remaining to be per-
formed at any time during dc-allocation takes place beyond the
locations pointed to by A and B. Since the new free list pointer is
set up at the start of the de-allocate, writing the result of the next
vector operation into the free list can commence almost immedi-
ately after any pending de-allocate has started, and can continue
concurrently with the dc-allocate, subject to the condition that
each free block used by the write must start at a memory address
less than the value of pointer A (which in the particular algorithm
used, is itself always less than B). If this condition fails, the write
must be delayed until it is again satisfied. In this way, so long as

Vector Descriptor

1 CD

0

0.

32-bit memory words 	 88-bit words containing indesdvalue pairs
containing pointers 	 in four interleaved memory banks

Fast link memory 	 Main memory

Figure 3: List vector storage with separate link memory

the dc-allocation of vectors normally takes less time than writing
them, dc-allocation need not necessarily delay the processor.

For de-allocation to work concurrently with writing (which is
also often concurrent with the reading of one or two streams of
input operands into the arithmetic unit), there must be plenty of
memory bandwidth, and since all pointers are restricted to one
bank of memory (all blocks start in the same bank), the band-
width requirement is considerably greater for that bank than for
the other banks. One way of providing this extra bandwidth is
to provide a completely separate memory to hold the block link
words, as illustrated in figure 3. Here, the words in the link mem-
ory are 32 bits wide, which is large enough to hold one pointer
only. There is one word of link memory per four words of main
memory, and the internal and external pointers of a list vector
block which starts at main memory address a are at link memory
addresses a/4 and a/4+ 1 respectively. Since every block uses two
link memory words, the minimum block size is 8 words. Virtual
to real mappings must be maintained in parallel on both mem-
ories, but the link memory need not be accessible by the vector
or scalar processors, only by the memory controller. Of course,
if blocks are large, large amounts of the link memory will be un-
used, and so the dual memory system introduces an overhead of
wasted memory area. However, this overhead is more than com-
pensated for by the main memory bus bandwidth gained, and by
the simpler bus arrangements which result from the separation of
the two memory types.

Finally, alternative deallocation strategies have been consid-
ered. By linking lists in both directions, and tagging the block
link words in free blocks, it is possible to deallocate a list of blocks
in a time proportional to the number of blocks in the list being
deallocated, independent of the number of free list blocks (see
for example, memory management algorithms in [8]). Because,
as described above, deallocation can be overlapped with vector
writing, we do not think that the extra complexity of dealloca-
tion hardware would be justified. However, simulations of ESP's
mechanisms, and we hope, the prototype hardware itself, will be
flexible enough to experiment with alternatives in this respect.

3.2 The LP problem on ESP

List vectors do not waste store, and they provide immediate and
implicit identification of the non-zero positions of the vector. An
operation like the Gaussian Elimination step B. - B.—S*B,,.,,
where both vectors are of roughly equal sparsity, will execute
efficiently using list vector storage and a single ESP vector in-
struction, which operates by streaming operand elements into the
arithmetic unit in the manner described in section 3.1.1 above.
This is also true of other vector/vector operations on vectors in
list form, where both vectors are of roughly equal sparsity. In the
pricing step of LP (section 2.1 above), however, the price vector
is much denser than the column vectors it is multiplied into. To
execute the multiplication by streaming in two list vectors would
be inefficient, as most of the elements of the price vector would
be discarded because there is a zero in the corresponding position
of the column vector.

If one vector is several times denser than the other, the scalar
product operation is more efficient with the denser vector stored
in full form. The sparser vector (stored in list form) moves into
the vector unit element by element, and the index fields of the
elements are used to offset into the denser vector, using normal
indexed addressing (this is similar to the gather operation sup-
ported in hardware in several vector supercomputers [7]). Obvi-
ously, access to the elements of the denser vector is slower than
streaming a vector out of memory, because the elements accessed
are in non-consecutive locations, and memory bank interleaving
will be interrupted, and so this method of access is only prefer-
able where the sparsity of the two vectors differs by a factor of
four or more.

Performance on list vector/full vector operations can be fur-
ther increased, if the same full vector is to be operated on many
times over, by providing a fast access vector register near the
arithmetic unit, to hold the full vector operand. This reduces
memory bandwidth use, and circumvents the problem of failure
of interleaving.

The usefulness of a vector register is even clearer in the case

of the BTRA:Vand FTRAN steps. BTftANalso requires ascalar
product of a sparse q vector with a vector which is (for most of the
BTRAN steps) less sparse, and then requires that one element of
that less sparse vector be replaced with the result of the product.
This final step requires access to an element of the vector with
specified index, and is clearly very inefficient on a list vector.
However, it can be carried Out with ease if the vector is stored
in full form in a register. The result of the complete series of
BTRAN steps is the price vector, which is thus conveniently in
the register ready for the pricing step.

FTRAN requires a summation of a sparse q vector (scaled)
with a vector which for most of the FTRAN steps is denser than
the ç vector. The scaling factor to be applied to the Y7 vector is
an element of the denser vector, specified by its index value. It is
therefore useful to store the vector being updated in full form in
the register, to allow indexed access to these scaling elements.

Finally, the re-invert step provides special problems. These
cannot be overlooked, as it is intended that ESP should be gener-
ally useful on a wide range of sparse matrix problems, including
the solution of large sparse linear systems of equations by Gaus-
sian Elimination, which corresponds to the re-invert step of LP.

3.3 Sparse Gaussian Elimination on ESP

In some cases, in particular when the matrix to be factorised is
symmetric positive definite, it is possible to decide which elements
to use as pivots on sparsity grounds only, before the elimination
starts [2]. The matrix may be permuted so that pivoting proceeds
down the diagonal, and it is possible to work out in advance (ig-
noring cancellation during the subtraction steps) the positions of
non-zeroes in each pivot column. Elimination will then be very
efficient on ESP with the rows of the matrix stored as list vec-
tors. Many Gaussian Elimination implementations on standard
computers need to switch over from 'sparse code' to 'dense code'
when the density of the filling matrix reaches a critical value.
This is not necessary on ESP - operations on list vectors, such as
that illustrated in figure 1, remain more efficient than equivalent
operations on full vectors, however much the vectors fill in.

As described in section 2.1.4 above, Gaussian Elimination on
matrices which are not symmetric positive definite requires knowl-
edge of the number of non-zeroes in each row and column of the
partially eliminated matrix, and also requires rapid access to the
non-zeroes in each column. In this case, the number and position
of non-zeroes in each row and column of the matrix as elimina-
tion proceeds cannot be determined in advance. If the matrix is
stored within ESP as row vectors in list form, then the elimina-
tion steps themselves are efficient, but choosing the pivot is very
inefficient. This is because the number and positions of the non-
zeroes in each row are available (vector descriptors include a field
specifying the number of non-zeroes in the vector), but not the
corresponding information for each column. It is also not possible
to access directly the non-zeroes in a specified column - one must
search down the row vectors to find them. To support the pivot
choosing algorithm, codes for Gaussian Elimination of sparse in-
definite matrices which run on scalar machines normally store
the matrix as a linked Structure linked in two directions, along
both rows and columns. However, to provide links to matrix ele-
ments by column is directly at variance with the dynamic nature
of list vector storage in ESP - if a row of the matrix is operated
on by a vector instruction, it will move in memory, invalidating
any pointers to its elements. An extra facility has therefore been
added to the vector processor in ESP, known as the sideways
list unit (SLU), which supports maintenance of lists of non-zero
indices (but not values) by column as the elimination proceeds
(ignoring cancellation during subtractions).

3.4 The Sideways List Unit

The SLU keeps updated counts of the number of non-zeroes per
column of a matrix, and their positions, throughout Gaussian
Elimination by rows. The list of non-zero positions in each col-
umn is kept in main memory as a linked list of single memory
locations each holding a non-zero position (24 bits) and a link
to the next word on the list (32 bits), as illustrated in figure 4.
These 56-bit pairs are held in the 64-bit value field of locations
of a vector which is itself stored in the ESP list format described
in section 3.1.3 above. Many such lists of non-zero positions can
be stored inside a single ESP list vector and, since the non-zero
position lists do not have to be linked forwards in memory, a
single non-zero position list can extend through several ESP list
vectors. The reason for storing the non-zero position lists inside
ESP list vectors is that memory space for extending the non-zero
position vectors can then be allocated using the standard list vec-
tor allocation mechanism, and when elimination is complete, all
the space can be de-allocated by de-allocating all the list vectors
used for this purpose.

After the first pivot is chosen, but before the elimination steps
using tha: pivot row are executed, a list vector is produced (using
a vector instruction which generates a vector of specified length)
with number of non-zeroes equal to the maximum number of new
non-zeroes that the elimination with that pivot row can pcssibly
produce. (That number is the multiple of the number of non-
zeroes in the pivot row and the number of non-zeroes in the pivot
column, and has already been calculated during pivot choice using
the Markowitz criterion.) The descriptor of this list vector is
passed to the SLU, so that the vector can be used as space into
which to expand the lists of non-zeroes in the matrix columns,
during the elimination steps with the first pivot row. The vector
is known as the SL space vector.

A single elimination step consists of the operation B,,. —
B,,. - 5* B,,.. Whenever the arithmetic unit produces a non-zero
in an index position in the result vector B. which contained a
zero in the left-hand input operand, that element is a new non-
zero, and its index, i, (its column position in the matrix) is passed
to the SLU. The SLU contains a register holding the row number
n, and three vector registers, one (the count register) holding a
count of the number of non-zeroes in each column of the matrix,
the second (the base register) holding the address of the start
of the list of non-zero positions for each column, and the third
(the address register) holding, for each column, a pointer to the
address of the next free location in the list of non-zeroes in that
column. On receiving an index i from the AU, the SLU incre-
ments the non-zero count for column i, and adds the row number
n of the new non-zero onto the non-zero list for column i, by
writing it, togther with a link to the next free location in the
SLU space vector, to the address pointed to by the ith entry in
the address register. It then updates that entry in the address
register, loading into it the address of the next free location in
the space vector. Since the space vector is an ESP list vector,
determining the next free location may involve following a link to
the next block of the space vector.

When all the elimination steps with the first pivot row are
complete, the SLU space vector may still contain some unused
locations, as the real amount of fill-in may have been less than the
possible maximum calculated at the start. The SLU maintains a
count of the number of locations remaining in the space vector.
After the second pivot is chosen, the maximum possible fill-in
during elimination with that pivot may be calculated, and a new
list vector generated and queued for use by the SLU, to replace
the current SLU space vector when it is full. This is repeated for

Base Register i
Non-zero position 	Link

islex 	 SLU Registers

-4

0
4-a

0

>
1I

(ID

zess Register i

Figure 4: The structure of non-zero position lists

each new pivot, and ensures that the SLU will never run out of
space.

The information maintained by the SLU is accessed by ESP's
scalar/ control processor during pivot choice. The new non-zero
counts for all the columns in which there were non-zeroes in the
previous pivot row (these are the only columns which can have
had extra non-zeroes added during the elimination steps with that
pivot row) are read from the SLU to enable pivot choice by the
Markowitz criterion. The positions of the non-zeroes in the cho-
sen pivot column are then read from the SLU, which itself reads
them direct from main memory, following the links. The values
of the non-zeroes must be found by using the vector pipeline to
search down the relevant rows until the correct column index is
reached (using a vector instruction which extracts from a vector
the element with a specified index). Depending on sparsity, these
operations are likely to involve an overhead of perhaps 100% on
top of the time for the subtraction steps of the elimination, and
this compares very favourably with the total time required for
pivot choice (compared with elimination time) in scalar Gaussian
Elimination codes for sparse indefinite matrices [2).

Before the elimination steps start, the SLU must be fed the
positions of the non-zeroes in the original matrix, and this is
achieved by first allocating a space vector large enough to contain
all the non-zeroes in that matrix. The SLU registers are then
initialized by loading zeroes into the count register, and loading
the base and address registers with locations taken from the space
vector. The operation B,. - 0 + B,,. is then performed on each
row of the matrix. Here, the left-hand operand is always zero, so
every non-Zero position in B_ is passed to the SLU to be added
to the relevant column non-zero position list.

4 Performance

Mechanisms similar to those described above for operating di-
rectly on compressed sparse vectors have been implemented in the
software of sparse matrix programs for many years [1, 3, 11, 21.
Such programs run on scalar processors and do not use vector
instructions. By providing hardware to implement the vector
loops in these programs as single vector instructions, with sep-
arate hardware units operating in parallel on the subfunctions
which scalar implementations control with separate instructions,
we expect to achieve an order of magnitude improvement in the
arithmetic rate of these codes.

More recently, there has been interest in the use of the hard-
ware vector indirect addressing facilities (scatter/gather) provided
in some vector machines (eg CYBER 205, IBM 3090VF), to sup-
port sparse vector operations. Because of the bank conflict prob-
lem (see section 3.2 above), such operations will always be several
times slower than ESP's sparse vector instructions, if the vectors
concerned are of roughly equal sparsity. Where the sparsity of
the two operand vectors differs markedly, indirect addressing is
relatively more efficient, and ESP's provision of a large vector
register allows such operations to proceed at the full rate of the
arithmetic pipeline.

A fuit.her problem (On existing machines) with vector instruc-
tions involving indirection into one of the operand vectors is the
long instruction startup time, due to the long effective pipeline
length. Because LP problems involve sparse vectors with a very
small number of non-zeroes, we have been concerned to keep
vector startup times to a minimum, and have therefore decided
to implement the vector pipeline as several short, independently
controlled, sections. A queue is provided for vector instructions
which have been issued by the control processor, but not yet ex-
ecuted, and there is a mechanism for the control processor to
determine whether a particular vector instruction has completed.

Together, these provisions allow us to have several vector instruc-
tions flowing through the pipeline at once, substantially reducing
effective start-up times. Simulations are underway to quantify the
resulting speed-up on representative problems, and to determine
the optimum number of pipeline sections.

The detailed design of the prototype ESP is now underway.
This will be built in slow technology (clock speed 100-200ns), us-
ing standard VLSI arithmetic components, and will achieve peak
speeds of up to 20 MFLOPs. The prototype will allow us to
make a thorough investigation of the new mechanisms on real,
large, sparse matrix problems.

5 Conclusions

Pipelined vector processors achieve their high performance in part
by taking advantage of the storage of vector elements in sequen-
tial memory locations. The mechanisms developed for ESP allow
this advantage to be maintained in the case of sparse vectors,
by providing a new form of vector storage, the list vector. The
list form wastes no space for the zeroes in a vector, and unlike
compressed sparse vector storage mechanisms in other machines,
solves the problem of fill-in.

ESP supports all the normally found vector/vector operations,
including two operator functions such as scalar product and the
Gaussian Elimination step B,,, - B,,. - S * B,,,, as single vector
instructions which will operate directly and efficiently on full form
vectors, list form vectors, or a combination of the two. The oper-
ations work efficiently over the whole range of non-zero densities.
This allows the advantages of vector processing to be extended
to the case of sparse vectors.

However, some particular computations commonly performed
on sparse matrices, such as the Gaussian Elimination of an indef-
inite matrix, require that information be maintained about the
matrix as a two-dimensional object, rather than simply as a set
of one-dimensional vectors, throughout the program's execution.
Although it is possible to write algorithms which treat the ma-
trix symmetrically, allowing it to be viewed both by row and by
column, fully symmetrical treatment is not possible without sac-
rificing the fundamental advantage of sequential vector element
storage. A compromise solution to this particular problem has
therefore been developed, which retains the full advantages of
the one-dimensional list vector system described above, but in
addition allows information about the non-zero distribution in
the two-dimensional matrix to be maintained in easily accessible
form. The mechanism which supports this, the sideways list unit,
has been developed with the specific requirements of Gaussian
Elimination codes in mind, but it is expected to prove useful in
other sparse matrix computations.

There has recently been interest in putting sparse problems on
to parallel processors 14, 51. We believe that, whilst coarse grain
parallelism will clearly enable the solution of very much larger
problems, the increasing scale of silicon circuit integration will
mean that individual processors can cost-effectively incorporate
extra hardware to exploit parallelism at the level of single vector
or matrix operations. This is the level of parallelism at which
ESP derives its advantages. Such individual processors may then
be connected to work in parallel on larger problems.

Acknowledgements

The ESP project is a collaborative project between the Depart-
ments of Computer Science and Mathematics at the University
of Edinburgh, and High Level Hardware Ltd., of Oxford. The au-
thors would like to acknowledge the support of High Level Hard-
ware, and of the UK Science and Engineering Research Council.

References

James R. Bunch and Donald J. Rose, editors. Sparse Matrix

Computations. Academic Press, 1976.

Thomas F. Coleman. Large Sparse Numerical Optimization.
Lecture Notes in Computer Science. Springer Verlag, 1984.

lain S. Duff and G.W. Stewart, editors. Sparse Matrix Pro-

ceedings 1978. SIAM, Philadelphia, 1979.

H. Amano et al. (SM) 2 : Sparse matrix solving machine.
In ACM Proc. 10th Symposium on Computer Architecture,
pages 213-220. ACM, 1983.

H. Amano et al. (SM) 2-II : A new version of the sparse
matrix solving machine. In ACM Proc. 12th Symposium on
Computer Architecture, pages 100-107. ACM, 1985.

High Level Hardware Ltd., Headington, Oxford, UK.
ORION Time Sharing Manual, 1986.

R.N. Ibbett and N.P. Topham. Architecture of High Per-
formance Computers, volume 1. Macmillan, Basingstoke,
Hampshire, UK, 1989.

D.E. Knuth. The Art of Computer Programming, volume 1 -
Fundamental Algorithms. Addison-Wesley, 2 edition, 1973.

H.M. Markowitz. The elimination form of the inverse and
its application to linear programming. Management Science,
3:255-269, 1957.

D. Morris and R.N. Ibbett. The MU5 Computer System.
Macmillan, London, 1979.

Ole Osterby and Zahari Zlatev. Direct Methods for Sparse
Matrices. Lecture Notes in Computer Science. Springer-
Verlag, 1983.

